Power of the power command in Stata 13

Yulia Marchenko

Director of Biostatistics StataCorp LP

2013 UK Stata Users Group meeting

Outline

- Basic functionality of the power command
- Tables of results
- Automatic graphs
- GUI
- Adding your own methods (forthcoming)

The power command provides power and sample-size (PSS) analysis for hypothesis tests.

You can compute

- sample size given power and effect size
- power given sample size and effect size
- effect size given power and sample size

You can also

- express the magnitude of an effect of interest (or effect size) in multiple ways
- obtain results for multiple scenarios
- display multiple results in a table
- display multiple results on a graph
- use the PSS Control Panel for point-and-click analysis
- read about PSS in the new [PSS] manual

And,

• You will soon be able to add your own methods to the power command and have access to its features such as multiple-scenario support, tables, and graphs.

Power of power in Stata 13

Overview of power

Currently supported analysis

One-sample comparison of a

- Mean (one-sample t test)
- Proportion
- Correlation
- Variance

Two-sample comparison of independent

- Means (two-sample t test)
- Proportions
- Correlations
- Variances

Two-sample comparison of paired

- Means (paired t test)
- Proportions (McNemar's test)

Example

Suppose that school officials would like to study the performance of currently-enrolled students on a standardized math test. They want to compare the average math score with the previous year's average of 25 points using a one-sample t test. Assuming a standard deviation of 6.5 points, the officials want to determine the sample size necessary to detect a hypothesized average score of 30 points with 90% power using a 5%-level two-sided test.

Compute sample size

• Compute sample size given a power of 0.9:

```
. power onemean 25 30, power(0.9) sd(6.5)
Performing iteration ...
Estimated sample size for a one-sample mean test
t test
Ho: m = mO versus Ha: m != mO
Study parameters:
       alpha =
                 0.0500
       power = 0.9000
       delta = 0.7692
          m0 = 25.0000
                 30.0000
          ma =
          sd =
                  6.5000
Estimated sample size:
           N =
                      20
```

Basic functionality of power

• Compute power given a sample size of 15:

```
. power onemean 25 30, n(15) sd(6.5)
Estimated power for a one-sample mean test
t test
Ho: m = mO versus Ha: m != mO
Study parameters:
       alpha =
                  0.0500
           N =
                      15
       delta = 0.7692
          mO =
                 25.0000
          ma =
                 30,0000
          sd = 6.5000
Estimated power:
       power =
                  0.7911
```

Basic functionality of power Compute effect size

• Compute effect size and a hypothesized mean given a sample size of 15 and a power of 0.9:

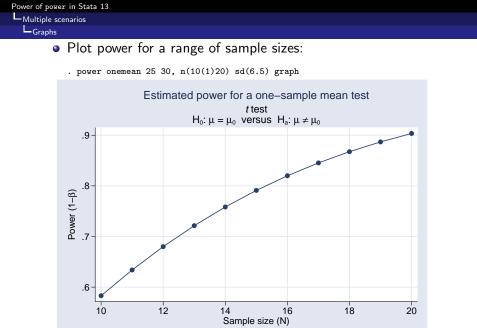
. power onemean 25, power(0.9) n(15) sd(6.5) Performing iteration ... Estimated target mean for a one-sample mean test t test Ho: m = mO versus Ha: m != mO; ma > mO Study parameters: alpha = 0.0500 power = 0.9000 N = 15 mO = 25.0000 sd = 6.5000 Estimated effect size and target mean: delta = 0.9009 30.8557 ma =

• Compute power for multiple sample sizes:

```
. power onemean 25 30, n(10 15 20) sd(6.5)
```

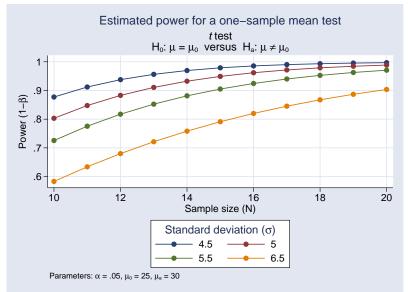
```
Estimated power for a one-sample mean test
```

```
t test
```


```
Ho: m = mO versus Ha: m != mO
```

alpha	power	N	delta	mO	ma	sd
.05	.583	10	.7692	25	30	6.5
.05	.7911	15	.7692	25	30	6.5
.05	.9035	20	.7692	25	30	6.5

• Customize the table:


```
. power onemean 25 30, n(10 15 20) sd(6.5) table(alpha:"Significance level"
> N:" Sample size" power:" Power" delta:" Effect size", formats(power "%6.2f"
> delta "%6.2f"))
Estimated power for a one-sample mean test
t test
Ho: m = m0 versus Ha: m != m0
```

Significance level	Sample size	Power	Effect size
.05	10	0.58	0.77
.05	15	0.79	0.77
.05	20	0.90	0.77

Parameters: $\alpha = .05$, $\delta = .77$, $\mu_0 = 25$, $\mu_a = 30$, $\sigma = 6.5$

- Plot power for a range of sample sizes and standard deviations:
 - . power onemean 25 30, n(10(1)20) sd(4.5 5 5.5 6.5) graph

Go to the **Statistics** > **Power and sample size** menu to launch the PSS Control Panel for point-and-click analysis:

(NEXT SLIDE)

Power and sample-size analysis – 🗆 🗙				
Methods organized by:		Filter methods here		
Pepulation parameter Correlations Hazard rates Correlations Hazard rates Veans Correlations Correlations Correlations Proportions Regression slope, Cox model Standard deviations Survival rates Verances Outcome Analysis type Sample	Test comparing one mean to a reference value Paired test comparing two correlated means, specify correlation between paired observations	Filter methods here Test comparing two independent means Paired test comparing two correlated means, specify standard deviation of the differences		

Suppose you want to add the mymethod method to power. Here is an outline of the steps to follow:

- create an rclass program defined by power_cmd_mymethod.ado that performs PSS computations and follows power's conventions for naming options and storing results;
- optionally, create the initializer, an sclass program defined by power_cmd_mymethod_init.ado, that specifies the information about table columns, options which may allow a *numlist*, etc.;
- optionally, create a program defined by power_cmd_mymethod_parse.ado that checks the syntax of method-specific options.

- As an illustration, we will compute power for a one-sample *z* test.
- We want to add a method called myztest that performs this computation to the power command.
- We first create an rclass program which computes power for a z test, and store the program in a file named power_cmd_myztest.ado.

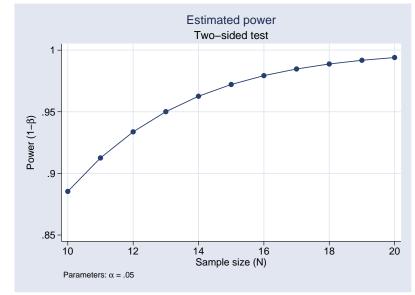
Adding your own methods

```
*! version 1.0.0 18jul2013
*! Power computation for a one-sample z test
program power_cmd_myztest, rclass
       version 13
                                               /* parse options */
                       n(integer)
                                               /// sample size
        syntax ,
                        STDDiff(real)
                                               /// standardized difference
                                               111
                        Alpha(string)
                                               /// significance level
                        ONESTDed
                                               /// one-sided test
                ]
                                               /* compute power */
        tempname power za
        if ("`onesided`"=="") scalar `za` = invnormal(1-`alpha'/2)
        else scalar `za' = invnormal(1-`alpha')
        scalar `power' = normal(`stddiff'*sqrt(`n')-`za')
                                               /* return results */
       return scalar N
                               = `n´
       return scalar power
                               = `power'
       return scalar alpha
                               = `alpha'
        return scalar stddiff
                               = `stddiff'
       return scalar onesided = ("`onesided'"!="")
end
```

• Compute power given a sample size of 20 and a standardized difference of 1:

```
. power myztest, n(20) stddiff(1)
Estimated power
Two-sided test
```

alpha	power	N
.05	.994	20


• Compute power for a range of sample sizes:

```
. power myztest, n(10 15 20) stddiff(1)
Estimated power
Two-sided test
```

alpha	power	N
.05	.8854	10
.05	.9721	15
.05	.994	20

• Plot power for a range of sample sizes:

. power myztest, n(10(1)20) stddiff(1) graph

- We would like to add a column containing standardized differences to our table.
- We need to somehow get this information to the power command. This is done with the initializer.
- To add a column to the displayed table, we store the name of the return scalar containing the values of that column in the s(pss_columns) macro in the initializer program
- power_cmd_myztest stores the differences in a scalar r(stddiff).
- We create an sclass program power_cmd_myztest_init and store "stddiff" in s(pss_colnames).

Power of power in Stata 13 Adding your own methods Additional table columns

- The power command uses the convention that the name of the table column is the same as the name of the return scalar containing values of this column.
- The stddiff column is now displayed in the default table:

```
. power myztest, n(20) stddiff(1)
Estimated power
```

Two-sided test

alpha	ha power N		stddiff	
.05	.994	20	1	

• If desired, we can change the default column label:

. power myztest, n(20) stddif(1) table(, labels(stddiff " Std. Difference")) Estimated power Two-sided test

alpha	power	N	Std. Difference
.05	.994	20	1

Adding your own methods

Options supporting numlist

- We would also like to be able to specify multiple values in the stddiff() option.
- If we try doing this now, we will receive an error:

```
. power myztest, n(20) stddiff(0.5 1)
option stddiff() invalid
r(198);
```

Power of power in Stata 13 Adding your own methods Options supporting *numlist*

- We need to let power know that we want to allow stddiff() to accept multiple values.
- We need to include the name of each option (with abbreviation) for which we wish to allow multiple values in the s(pss_numopts) macro in the initializer:

• The stddiff() option now accepts multiple values:

```
. power myztest, n(20) stddiff(0.5 1)
```

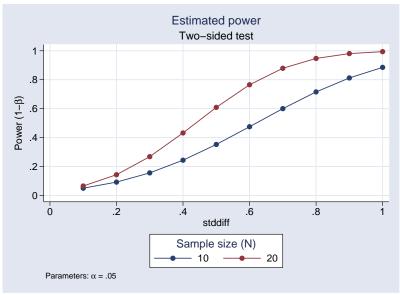
Estimated power Two-sided test

alpha	power	N sto	ddiff
.05	.6088	20	.5
.05	.994	20	1

 For example, we can produce results for all possible combinations of specified sample sizes and standardized differences:

```
. power myztest, n(10 20) stddiff(0.5 1)
Estimated power
Two-sided test
```

alpha	alpha power		ddiff
.05	.3524	10	.5
.05	.8854	10	1
.05	.6088	20	.5
.05	.994	20	1


• or only for specific combinations:

```
. power myztest, n(10 20) stddiff(0.5 1) parallel
```

Estimated power Two-sided test

alpha	power	N stddiff	
.05	.3524	10	.5
.05	.994	20	1

- We can also plot powers for a range of standardized differences and sample sizes
 - . power myztest, n(10 20) stddiff(0.1(0.1)1) graph(xdimension(stddiff))

- More power and sample-size computations
- More control for customization of user-written methods; keep an eye out for a forthcoming FAQ for more details
- Possibly other additions based on your feedback