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Competing Risks

In survival analysis individuals are often at risk of more than one
event.

For example, individuals diagnosed with breast cancer are,

at risk of death from their cancer
at risk of death from other causes

The probability of dying from cancer will depend upon the
mortality rate due to cancer and the mortality rate due to other
causes.

This is a classic competing risks situation.
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Competing risks schematic
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Cause specific hazard function

For cause k ,

hk(t) = lim
δ→0

P (t ≤ T < t + δ, event = k |T > t)

δ

To still be at risk at time t a subject can not have died of cause
k or any of the K − 1 other causes.

Total hazard (mortality) rate

h(t) =
K∑

k=1

hk(t)

All cause survival

S(t) = exp

(
−
∫ t

0

h(u)du

)
= exp

(
−
∫ t

0

K∑
k=1

hk(u)du

)
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Cause specific cumulative incidence function

We want the probability of dying of cause k accounting for the
competing risks.
For cause k .

CIFk(t) = P (T ≤ t, event = k)

CIFk(t) =

∫ t

0

S(u)hk(u)du

CIF (t) =
K∑

k=1

CIFk(t)

Note: CIF does not require independence between causes.
For further details on competing risks see references [1, 2, 3]
Post estimation command stpm2cif will estimate CIFs and
related measures after using stpm2 to model cause-specific
hazards [4, 5]
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Key Paper: Geskus 2011[8]

Geskus showed estimation and modelling of the CIF can use
weighted versions of standard estimators.

crprep function in R to restructure data and calculate
weights[6].

I will describe a new command stcrprep that has similar
functionality to crprep, but also some extensions to enable
parametric models for the CIF to be easily fitted.

After expansion and weighting of the data,

sts graph, failure will plot CIF.
sts test will perform test for differences in CIFs[7].
stcox will fit a Fine and Gray model (same as stcrreg).
estat phtest can be used to assess proportional subhazards.
streg, stpm2 can be used to fit parametric models for CIF.
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Data expansion and weighting

Define event of interest.

Subjects that have a competing event are kept in the risk set to
the end of follow-up.

However, there is a a chance that they would be censored after
their competing event.

Estimate censoring distribution.

Weights depend on conditional probability of not being censored
after competing event.
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Data Expansion for Competing Events
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Data Expansion for Competing Events
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Initial data

Competing event: d == 2

. stset t, failure(d==1,2) id(id)
(output omitted )

. list id d _t0 _t _d, noobs sep(0)

id d _t0 _t _d

1 1 0 3.5 1
2 2 0 2 1
3 1 0 5 1
4 2 0 5.5 1
5 0 0 3.5 0
6 1 0 6 1
7 1 0 8 1
8 0 0 6.5 0
9 0 0 7.5 0
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Using stcrprep

Competing event: d == 2

. stcrprep, events(d) trans(1) noshorten

. gen event = d == failcode

. stset tstop [iw = weight_c], failure(event) enter(tstart) id(id)
(output omitted )

. list id d _t0 _t _d weight_c, noobs sep(0)

id d _t0 _t _d weight_c

1 1 0 3.5 1 1
2 2 0 2 0 1
2 2 2 3.5 0 1
2 2 3.5 5 0 .85714286
2 2 5 6 0 .85714286
2 2 6 8 0 .28571429
3 1 0 5 1 1
4 2 0 5.5 0 1
4 2 5.5 6 0 1
4 2 6 8 0 .33333333
5 0 0 3.5 0 1
6 1 0 6 1 1
7 1 0 8 1 1
8 0 0 6.5 0 1
9 0 0 7.5 0 1
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European Blood and Marrow Transplantation Data

1977 patients from the European Blood and Marrow
Transplantation (EBMT) registry who received an allogeneic
bone marrow transplantation[6].

Events are death and relapse

836 censored
456 relapse
685 died

One covariate of interest, the EBMT risk score, which has been
categorized into 3 groups (low, medium and high risk).
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Using stcrprep

stcrprep

. stset time, failure(status==1,2) scale(365.25) id(patid)
(output omitted )

. stcrprep, events(status) keep(score) trans(1 2) byg(score)

. gen event = status == failcode

. stset tstop [iw=weight_c], failure(event=1) enter(tstart) noshow
(output omitted )

We can now estimate the CIF using sts graph.

sts graph

. sts graph if failcode == 1, by(score) failure // relapse

. sts graph if failcode == 2, by(score) failure // death
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Using sts graph to estimate cause-specific CIF
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Testing for difference between cause-specific CIFs

Use sts test

sts test

. sts test score if failcode == 1

Log-rank test for equality of survivor functions

Events Events
score observed expected

Low risk 79 98.77
Medium risk 328 322.61
High risk 49 34.62

Total 456 456.00

chi2(2) = 10.03
Pr>chi2 = 0.0067

Similar to Gray’s test [7] since the number at risk is modified
when compared to the standard log-rank test.
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Using stcox to fit Fine and Gray Model[9]
Use stcrprep without byg() option since Fine and Gray model
assumes common censoring distribution.

. stcrprep, events(status) keep(score) trans(1 2)

. stset tstop [iw=weight c], failure(event) enter(tstart)

stcox

. stcox i.score if failcode == 1, nolog
Cox regression -- Breslow method for ties
No. of subjects = 72880.46857 Number of obs = 72880
No. of failures = 456
Time at risk = 6026.27434

LR chi2(2) = 9.63
Log likelihood = -3333.3112 Prob > chi2 = 0.0081

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

score
Medium risk 1.271235 .1593392 1.91 0.056 .9943389 1.625238

High risk 1.769899 .3219273 3.14 0.002 1.239148 2.52798
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Comparison with stcrreg

Comparison of Estimates

. estimates table stcrreg stcox*, eq(1) b(%6.5f) se(%6.5f) modelwidth(12)

Variable stcrreg stcox stcox_robust

score
Medium risk 0.23998 0.23999 0.23999

0.12227 0.11861 0.12225
High risk 0.57090 0.57092 0.57092

0.18298 0.16941 0.18297

legend: b/se

Use pweights and vce(cluster id) for robust standard
errors.
However, Geskus (2011) showed that robust standard errors are
less efficient[8].

Perhaps stcrreg should have a ‘norobust’ option.
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Time Improvements (seconds)

EBMT data (1977 subjects)

stcrreg - 18.2
stcrprep - 14.3
stcox - 1.5

stcrprep only needs to be run once!

EBMT data ×10 (19770 subjects): no ties

stcrreg - 2814
stcrprep - 922
stcox - 49

stcrprep only needs to be run once!
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Proportional subhazards (estat phtest)

Assess proportional subhazards using Schoenfeld residuals.

. estat phtest,
Test of proportional-hazards assumption
Time: Time

chi2 df Prob>chi2

global test 23.24 2 0.0000
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Summary (part 1)

Non-parametric estimates of CIF using sts graph.

Other exploratory analysis (stphplot, stcoxkm)

stcrprep allows fitting of Fine and Gray models with
substantial speed improvements.

A number of extensions to what is available in stcrreg.

Schoenfeld like residuals (estat phtest) [10]
Stratified models (strata()) [11].
‘Stacked models’ share parameters over different events.

Tests need a more in depth study of their properties.

Paul Lambert Cumulative Incidence Functions UKSUG 2013 19/32



Parametric approach

Previous parametric models of the CIF required modelling of all
K causes [12, 13].

After using stcrprep we can fit a parametric equivalent of the
Fine and Gray model

Only need to model cause of interest.

Useful for predictions, quantifying differences and
non-proportional subhazards.

Faster than Fine and Gray model as fewer splits (uses an
approximation).
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Parametric approach

For those with competing events, allow to be at risk to end of
potential follow-up.
Split follow-up after competing event into (small) time-intervals.
Apply weights to each interval.

Likelihood

ln Li = d1i ln [h1(ti)] + (1− d2i) ln [S(ti)] +

d2i

Ji∑
j=1

wij

(
ln [S(tij)]− ln

[
S(ti(j−1))

])
Need to specify parametric form of CIF for event of interest, but
not for competing events.
Also need weighting function. Obtained by modelling censoring
distribution.
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Splitting

Censored

Event 2

Event 1

Time
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Splitting
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The censoring distribution

Fit a parametric model stpm2,

Option to include a variety of covariates.
Also to model time-dependent effects.

stcrreg assumes common censoring distribution.

Need to decide where to evaluate censoring distribution (number
of split points) for weighted likelihood.
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Flexible parametric models

Possible to use any parametric approach that allows for delayed
entry and weights.

We use flexible parametric survival models that uses restricted
splines to model the baseline using stpm2 in Stata. [14, 15].

g [S(t|xi)] = ηi = s (ln(t)|γ, k0) + xiβ

where s (ln(t)|γ, k0) is a restricted cubic spline function of ln(t)
with knots, k0.

g() is a link function.
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Link Functions

When using weights with expanded data

proportional sub hazards

log(− log (1− CIFk(t|xi))) = s (ln(t)|γ, k0) + xiβ

proportional odds

log

(
CIFk(t|xi)

1− CIFk(t|xi)

)
= s (ln(t)|γ, k0) + xiβ

relative absolute risk

log (CIFk(t|xi)) = s (ln(t)|γ, k0) + xiβ

Time-dependent effects can be fitted for any of these link
functions.
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Parametric proportional subhazards models 1

stcrprep

. stset time, failure(status==1,2) scale(365.25) id(patid)
(output omitted )

. stcrprep, events(status) keep(score) trans(1 2) censstpm2 every(0.2)

. gen event = status == failcode

. stset tstop [iw=weight_c], failure(event) enter(tstart) noshow
failure event: event != 0 & event < .

obs. time interval: (0, tstop]
enter on or after: time tstart
exit on or before: failure

weight: [iweight=weight_c]

48116 total observations
0 exclusions

48116 observations remaining, representing
1141 failures in single-record/single-failure data

16367.15 total analysis time at risk and under observation
at risk from t = 0

earliest observed entry t = 0
last observed exit t = 8.454483
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Parametric proportional subhazards models 2

stpm2

. stpm2 i.score if failcode == 1, scale(hazard) df(4) eform nolog
note: delayed entry models are being fitted
Log likelihood = -1678.7162 Number of obs = 29147

exp(b) Std. Err. z P>|z| [95% Conf. Interval]

xb
score

Medium risk 1.270615 .1592552 1.91 0.056 .9938639 1.62443
High risk 1.770563 .3220405 3.14 0.002 1.239624 2.528908

_rcs1 1.431289 .0284143 18.06 0.000 1.376667 1.488077
_rcs2 1.124393 .0149958 8.79 0.000 1.095382 1.154172
_rcs3 1.037582 .0130522 2.93 0.003 1.012313 1.063481
_rcs4 .9688918 .0078559 -3.90 0.000 .9536162 .9844121
_cons .2087425 .0235126 -13.91 0.000 .167391 .2603092

Sub-hazard ratios very similar to semi-parametric estimates.
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Predictions of CIF

predict cif, failure
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Difference in CIFs

. predict CIF diff, sdiff1(score2 0 score3 0) sdiff2(score3 1) ci
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Take reciprocal to estimate Number Needed to Treat (NNT)
accounting for competing risks[16]
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Relative absolute risks

stpm2

. stpm2 i.score if failcode == 1, scale(log) df(4) eform nolog
note: delayed entry models are being fitted
Log likelihood = -1680.1742 Number of obs = 29147

exp(b) Std. Err. z P>|z| [95% Conf. Interval]

xb
score

Medium risk 1.19893 .1332627 1.63 0.103 .9642325 1.490755
High risk 1.543556 .2392695 2.80 0.005 1.139137 2.091553

_rcs1 1.38459 .0247152 18.23 0.000 1.336987 1.433889
_rcs2 1.126424 .0141052 9.51 0.000 1.099115 1.154412
_rcs3 1.034958 .0127994 2.78 0.005 1.010174 1.060351
_rcs4 .9702326 .0072774 -4.03 0.000 .9560736 .9846014
_cons .1922568 .0193746 -16.36 0.000 .1577982 .2342401

Effect sizes are now relative risks rather than subhazard ratios.
Assumed constant over time, but this can be relaxed.
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Summary (part 2)

Parametric version of Fine and Gray model.

Only need to model event of interest to estimate CIF.

Models on a variety of scales.

Can relax the proportionality assumption.

Need to choose split times, but can be fairly crude.

When modelling competing risks, still useful to model
cause-specific hazards.

See stpm2cif[5]
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Need to choose split times, but can be fairly crude.

When modelling competing risks, still useful to model
cause-specific hazards.

See stpm2cif[5]
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