Estimating and modelling cumulative incidence functions using time-dependent weights

Paul C Lambert^{1,2}

¹Department of Health Sciences, University of Leicester, Leicester, UK ²Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden

UK Stata Users Group, London, September 2013

- In survival analysis individuals are often at risk of more than one event.
- For example, individuals diagnosed with breast cancer are,
 - at risk of death from their cancer
 - at risk of death from other causes

- In survival analysis individuals are often at risk of more than one event.
- For example, individuals diagnosed with breast cancer are,
 - at risk of death from their cancer
 - at risk of death from other causes
- The probability of dying from cancer will depend upon the mortality rate due to cancer and the mortality rate due to other causes.
- This is a classic competing risks situation.

Competing risks schematic

Cause specific hazard function

• For cause k,

$$h_k(t) = \lim_{\delta \to 0} \frac{P(t \le T < t + \delta, \text{event} = k | T > t)}{\delta}$$

- To still be at risk at time t a subject can not have died of cause k or any of the K - 1 other causes.
- Total hazard (mortality) rate

$$h(t)=\sum_{k=1}^{K}h_k(t)$$

All cause survival

$$S(t) = \exp\left(-\int_0^t h(u)du\right) = \exp\left(-\int_0^t \sum_{k=1}^K h_k(u)du\right)$$

Cause specific cumulative incidence function

- We want the probability of dying of cause *k* accounting for the competing risks.
- For cause k.

$$CIF_k(t) = P(T \le t, ext{event} = k)$$

 $CIF_k(t) = \int_0^t S(u)h_k(u)du$

Cause specific cumulative incidence function

- We want the probability of dying of cause *k* accounting for the competing risks.
- For cause k.

$$CIF_k(t) = P(T \le t, event = k)$$

 $CIF_k(t) = \int_0^t S(u)h_k(u)du$
 $CIF(t) = \sum_{k=1}^K CIF_k(t)$

- Note: CIF does not require independence between causes.
- For further details on competing risks see references [1, 2, 3]
- Post estimation command stpm2cif will estimate CIFs and related measures after using stpm2 to model cause-specific hazards [4, 5]

- Geskus showed estimation and modelling of the CIF can use weighted versions of standard estimators.
- crprep function in R to restructure data and calculate weights[6].
- I will describe a new command stcrprep that has similar functionality to crprep, but also some extensions to enable parametric models for the CIF to be easily fitted.
- After expansion and weighting of the data,
 - sts graph, failure will plot CIF.
 - sts test will perform test for differences in CIFs[7].
 - stcox will fit a Fine and Gray model (same as stcrreg).
 - estat phtest can be used to assess proportional subhazards.
 - streg, stpm2 can be used to fit parametric models for CIF.

- Define event of interest.
- Subjects that have a competing event are kept in the risk set to the end of follow-up.
- However, there is a a chance that they would be censored after their competing event.
- Estimate censoring distribution.
- Weights depend on conditional probability of not being censored after competing event.

Initial data

Competing event: d == 2

- . stset t, failure(d==1,2) id(id)
 (output omitted)
- . list id d _t0 _t _d, noobs sep(0)

id	d	_t0	_t	_d
1	1	0	3.5	1
2	2	0	2	1
3	1	0	5	1
4	2	0	5.5	1
5	0	0	3.5	0
6	1	0	6	1
7	1	0	8	1
8	0	0	6.5	0
9	0	0	7.5	0

Using stcrprep

Competing event: d == 2

- . stcrprep, events(d) trans(1) noshorten
- . gen event = d == failcode
- . stset tstop [iw = weight_c], failure(event) enter(tstart) id(id)
 (output omitted)
- . list id d _t0 _t _d weight_c, noobs sep(0)

id	d	_t0	_t	_d	weight_c
1	1	0	3.5	1	1
2	2	0	2	0	1
2	2	2	3.5	0	1
2	2	3.5	5	0	.85714286
2	2	5	6	0	.85714286
2	2	6	8	0	.28571429
3	1	0	5	1	1
4	2	0	5.5	0	1
4	2	5.5	6	0	1
4	2	6	8	0	.33333333
5	0	0	3.5	0	1
6	1	0	6	1	1
7	1	0	8	1	1
8	0	0	6.5	0	1
9	0	0	7.5	0	1

European Blood and Marrow Transplantation Data

- 1977 patients from the European Blood and Marrow Transplantation (EBMT) registry who received an allogeneic bone marrow transplantation[6].
- Events are death and relapse
 - 836 censored
 - 456 relapse
 - 685 died
- One covariate of interest, the EBMT risk score, which has been categorized into 3 groups (low, medium and high risk).

Using stcrprep

stcrprep

- . stset time, failure(status==1,2) scale(365.25) id(patid) (output omitted)
- . stcrprep, events(status) keep(score) trans(1 2) byg(score)
- . gen event = status == failcode
- . stset tstop [iw=weight_c], failure(event=1) enter(tstart) noshow
 (output omitted)

Using stcrprep

stcrprep

- . stset time, failure(status==1,2) scale(365.25) id(patid) (output omitted)
- . stcrprep, events(status) keep(score) trans(1 2) byg(score)
- . gen event = status == failcode
- . stset tstop [iw=weight_c], failure(event=1) enter(tstart) noshow
 (output omitted)

• We can now estimate the CIF using sts graph.

sts graph

```
. sts graph if failcode == 1, by(score) failure // relapse
. sts graph if failcode == 2, by(score) failure // death
```

Using sts graph to estimate cause-specific CIF

Testing for difference between cause-specific CIFs

• Use sts test

sts test

. sts test score if failcode == 1

Log-rank test for equality of survivor functions

score	Events observed	Events expected
Low risk Medium risk High risk	79 328 49	98.77 322.61 34.62
Total	456 chi2(2) = Pr>chi2 =	456.00 10.03 0.0067

Testing for difference between cause-specific CIFs

Use sts test

sts test

. sts test score if failcode == 1

Log-rank test for equality of survivor functions

score	Events observed	Events expected
Low risk Medium risk High risk	79 328 49	98.77 322.61 34.62
Total	456 chi2(2) = Pr>chi2 =	456.00 10.03 0.0067

• Similar to Gray's test [7] since the number at risk is modified when compared to the standard log-rank test.

Using stcox to fit Fine and Gray Model[9]

- Use stcrprep without byg() option since Fine and Gray model assumes common censoring distribution.
 - . stcrprep, events(status) keep(score) trans(1 2)
 - . stset tstop [iw=weight_c], failure(event) enter(tstart)

Using stcox to fit Fine and Gray Model[9]

- Use stcrprep without byg() option since Fine and Gray model assumes common censoring distribution.
 - . stcrprep, events(status) keep(score) trans(1 2)
 - . stset tstop [iw=weight_c], failure(event) enter(tstart)

stcox

. stcox i.score if failcode == 1, nolog Cox regression Breslow method for ties No. of subjects = 72880.46857 Number of obs = 72880 No. of failures = 456 Time at risk = 6026.27434								
Log likelihood	1 = -3333.3	3112		LR c Prob	hi2(2) > chi2	= 9.63 = 0.0081		
_t	Haz. Ratio	Std. Err.	z	P> z	[95% Conf	. Interval]		
score Medium risk High risk	1.271235 1.769899	.1593392 .3219273	1.91 3.14	0.056	.9943389 1.239148	1.625238 2.52798		

Comparison of Estimates

. estimates table storreg stoox*, eq(1) b(%6.5f) se(%6.5f) modelwidth(12)

Variable	stcrreg	stcox	stcox_robust
score			
Medium risk	0.23998	0.23999	0.23999
	0.12227	0.11861	0.12225
High risk	0.57090	0.57092	0.57092
0	0.18298	0.16941	0.18297
			legend: b/ <mark>se</mark>

- Use pweights and vce(cluster id) for robust standard errors.
- However, Geskus (2011) showed that robust standard errors are less efficient[8].

Comparison of Estimates

. estimates table storreg stoox*, eq(1) b(%6.5f) se(%6.5f) modelwidth(12)

Variable	stcrreg	stcox	stcox_robust
score			
Medium risk	0.23998	0.23999	0.23999
	0.12227	0.11861	0.12225
High risk	0.57090	0.57092	0.57092
0	0.18298	0.16941	0.18297
			legend: b/ <mark>se</mark>

- Use pweights and vce(cluster id) for robust standard errors.
- However, Geskus (2011) showed that robust standard errors are less efficient[8].
- Perhaps stcrreg should have a 'norobust' option.

Time Improvements (seconds)

EBMT data (1977 s	subjects)			
	stcrreg	-	18.2	
	stcrprep	-	14.3	
	stcox	-	1.5	
stcrprep only needs to	be run once	e!		

Time Improvements (seconds)

EBMT data (1977 subj	ects)		
stc	rreg	-	18.2
stc	rprep	-	14.3
stc	cox	-	1.5
sterprep only needs to be	run once	7	

EBMT data $\times 10$ (19770 subjects): no ties

stcrreg	-	2814
stcrprep	-	922
stcox	-	49

stcrprep only needs to be run once!

Proportional subhazards (estat phtest)

• Assess proportional subhazards using Schoenfeld residuals.

Proportional subhazards (estat phtest)

• Assess proportional subhazards using Schoenfeld residuals.

. estat phtest,

Test of proportional-hazards assumption

Time: Time

	chi2	df	Prob>chi2
global test	23.24	2	0.0000

Proportional subhazards (estat phtest)

• Assess proportional subhazards using Schoenfeld residuals.

. estat phtest,

Test of proportional-hazards assumption

Time: Time

	chi2	df	Prob>chi2
global test	23.24	2	0.0000

- Non-parametric estimates of CIF using sts graph.
- Other exploratory analysis (stphplot, stcoxkm)
- stcrprep allows fitting of Fine and Gray models with substantial speed improvements.
- A number of extensions to what is available in stcrreg.
 - Schoenfeld like residuals (estat phtest) [10]
 - Stratified models (strata()) [11].
 - 'Stacked models' share parameters over different events.
- Tests need a more in depth study of their properties.

- Previous parametric models of the CIF required modelling of all *K* causes [12, 13].
- After using stcrprep we can fit a parametric equivalent of the Fine and Gray model

- Previous parametric models of the CIF required modelling of all *K* causes [12, 13].
- After using stcrprep we can fit a parametric equivalent of the Fine and Gray model
 - Only need to model cause of interest.
- Useful for predictions, quantifying differences and non-proportional subhazards.
- Faster than Fine and Gray model as fewer splits (uses an approximation).

Parametric approach

- For those with competing events, allow to be at risk to end of potential follow-up.
- Split follow-up after competing event into (small) time-intervals.
- Apply weights to each interval.

Likelihood

$$egin{aligned} &\ln L_i = d_{1i} \ln \left[h_1(t_i)
ight] + (1 - d_{2i}) \ln \left[S(t_i)
ight] + \ &d_{2i} \sum_{j=1}^{J_i} w_{ij} \left(\ln \left[S(t_{ij})
ight] - \ln \left[S(t_{i(j-1)})
ight]
ight) \end{aligned}$$

- Need to specify parametric form of CIF for event of interest, **but** not for competing events.
- Also need weighting function. Obtained by modelling censoring distribution.

Time

Time

- Fit a parametric model stpm2,
 - Option to include a variety of covariates.
 - Also to model time-dependent effects.
- stcrreg assumes common censoring distribution.
- Need to decide where to evaluate censoring distribution (number of split points) for weighted likelihood.

- Possible to use any parametric approach that allows for delayed entry and weights.
- We use flexible parametric survival models that uses restricted splines to model the baseline using stpm2 in Stata. [14, 15].

$$g[S(t|\mathbf{x}_i)] = \eta_i = s\left(\ln(t)|\boldsymbol{\gamma}, \mathbf{k}_0
ight) + \mathbf{x}_ioldsymbol{eta}$$

- where $s(\ln(t)|\gamma, \mathbf{k}_0)$ is a restricted cubic spline function of ln(t) with knots, \mathbf{k}_0 .
- g() is a link function.

Link Functions

• When using weights with expanded data

proportional sub hazards

$$\log(-\log\left(1-\textit{CIF}_k(t|\mathbf{x}_i)
ight)) = s\left(\ln(t)|oldsymbol{\gamma},\mathbf{k}_0
ight) + \mathbf{x}_ioldsymbol{eta}$$

proportional odds

$$\log\left(rac{\textit{CIF}_k(t|\mathbf{x}_i)}{1-\textit{CIF}_k(t|\mathbf{x}_i)}
ight) = s\left(\ln(t)|m{\gamma},\mathbf{k}_0
ight) + \mathbf{x}_im{eta}$$

relative absolute risk

$$\log\left(\textit{CIF}_k(t|\mathbf{x}_i)
ight) = s\left(\ln(t)|m{\gamma},\mathbf{k}_0
ight) + \mathbf{x}_im{eta}$$

Link Functions

• When using weights with expanded data

proportional sub hazards

$$\log(-\log\left(1-\textit{CIF}_k(t|\mathbf{x}_i)
ight)) = s\left(\ln(t)|oldsymbol{\gamma},\mathbf{k}_0
ight) + \mathbf{x}_ioldsymbol{eta}$$

proportional odds

$$\log\left(rac{\textit{CIF}_k(t|\mathbf{x}_i)}{1-\textit{CIF}_k(t|\mathbf{x}_i)}
ight) = s\left(\ln(t)|oldsymbol{\gamma},\mathbf{k}_0
ight) + \mathbf{x}_ioldsymbol{eta}$$

relative absolute risk

$$\log\left(\textit{CIF}_k(t|\mathbf{x}_i)
ight) = s\left(\ln(t)|oldsymbol{\gamma},\mathbf{k}_0
ight) + \mathbf{x}_ioldsymbol{eta}$$

• Time-dependent effects can be fitted for any of these link functions.

Parametric proportional subhazards models 1

stcrprep

```
. stset time, failure(status==1,2) scale(365.25) id(patid)
  (output omitted)
. stcrprep, events(status) keep(score) trans(1 2) censstpm2 every(0.2)
. gen event = status == failcode
. stset tstop [iw=weight_c], failure(event) enter(tstart) noshow
    failure event: event != 0 & event < .
obs. time interval: (0. tstop]
 enter on or after: time tstart
 exit on or before: failure
            weight: [iweight=weight_c]
   48116 total observations
        0 exclusions
    48116 observations remaining, representing
    1141 failures in single-record/single-failure data
 16367.15 total analysis time at risk and under observation
                                              at risk from t =
                                   earliest observed entry t =
                                        last observed exit t = 8.454483
```

Parametric proportional subhazards models 2

stpm2

. stpm2 i.scom note: delayed	re if failcod entry models	e == 1, scal are being f	e(hazard) itted	df(4) e	form nolog	
Log likelihood = -1678.7162				Numbe	r of obs =	29147
	exp(b)	Std. Err.	z	P> z	[95% Conf.	Interval]
xb						
score						
Medium risk	1.270615	.1592552	1.91	0.056	.9938639	1.62443
High risk	1.770563	.3220405	3.14	0.002	1.239624	2.528908
_rcs1	1.431289	.0284143	18.06	0.000	1.376667	1.488077
_rcs2	1.124393	.0149958	8.79	0.000	1.095382	1.154172
_rcs3	1.037582	.0130522	2.93	0.003	1.012313	1.063481
rcs4	.9688918	.0078559	-3.90	0.000	.9536162	.9844121
_ _cons	.2087425	.0235126	-13.91	0.000	.167391	.2603092

Parametric proportional subhazards models 2

stpm2

. stpm2 i.score if failcode == 1, scale(hazard) note: delayed entry models are being fitted					df(4) eform nolog			
Log likelihood = -1678.7162				Numb	er of obs =	29147		
	exp(b)	Std. Err.	z	P> z	[95% Conf.	Interval]		
xb								
score								
Medium risk	1.270615	.1592552	1.91	0.056	.9938639	1.62443		
High risk	1.770563	.3220405	3.14	0.002	1.239624	2.528908		
_rcs1	1.431289	.0284143	18.06	0.000	1.376667	1.488077		
_rcs2	1.124393	.0149958	8.79	0.000	1.095382	1.154172		
_rcs3	1.037582	.0130522	2.93	0.003	1.012313	1.063481		
_rcs4	.9688918	.0078559	-3.90	0.000	.9536162	.9844121		
_cons	.2087425	.0235126	-13.91	0.000	.167391	.2603092		

• Sub-hazard ratios very similar to semi-parametric estimates.

Paul Lambert

Predictions of CIF

predict cif, failure

Difference in CIFs

. predict CIF_diff, sdiff1(score2 0 score3 0) sdiff2(score3 1) ci

Difference in CIFs

. predict CIF_diff, sdiff1(score2 0 score3 0) sdiff2(score3 1) ci

• Take reciprocal to estimate Number Needed to Treat (NNT) accounting for competing risks[16]

Relative absolute risks

stpm2

<pre>. stpm2 i.score if failcode == 1, scale(log) df(4) eform nolog note: delayed entry models are being fitted</pre>							
Log likelihood = -1680.1742					Numbe	er of obs =	29147
		exp(b)	Std. Err.	z	P> z	[95% Conf.	Interval]
xb							
	score						
Medium	risk	1.19893	.1332627	1.63	0.103	.9642325	1.490755
High	risk	1.543556	.2392695	2.80	0.005	1.139137	2.091553
	_rcs1	1.38459	.0247152	18.23	0.000	1.336987	1.433889
	_rcs2	1.126424	.0141052	9.51	0.000	1.099115	1.154412
	_rcs3	1.034958	.0127994	2.78	0.005	1.010174	1.060351
	_rcs4	.9702326	.0072774	-4.03	0.000	.9560736	.9846014
	_cons	.1922568	.0193746	-16.36	0.000	.1577982	.2342401

Relative absolute risks

stpm2

. stpm note:	2 i.scom delayed	re if failcod entry models	e == 1, scal are being f	e(log) d itted	f(4) efoi	rm nolog	
Log likelihood = -1680.1742					Numbe	er of obs =	29147
		exp(b)	Std. Err.	z	P> z	[95% Conf.	Interval]
xb							
	score						
Medium	risk	1.19893	.1332627	1.63	0.103	.9642325	1.490755
High	risk	1.543556	.2392695	2.80	0.005	1.139137	2.091553
	_rcs1	1.38459	.0247152	18.23	0.000	1.336987	1.433889
	_rcs2	1.126424	.0141052	9.51	0.000	1.099115	1.154412
	_rcs3	1.034958	.0127994	2.78	0.005	1.010174	1.060351
	_rcs4	.9702326	.0072774	-4.03	0.000	.9560736	.9846014
	_cons	.1922568	.0193746	-16.36	0.000	.1577982	.2342401

- Effect sizes are now relative risks rather than subhazard ratios.
- Assumed constant over time, but this can be relaxed.

Paul Lambert

UKSUG 2013

- Parametric version of Fine and Gray model.
- Only need to model event of interest to estimate CIF.
- Models on a variety of scales.
- Can relax the proportionality assumption.

- Parametric version of Fine and Gray model.
- Only need to model event of interest to estimate CIF.
- Models on a variety of scales.
- Can relax the proportionality assumption.
- Need to choose split times, but can be fairly crude.
- When modelling competing risks, still useful to model cause-specific hazards.
 - See stpm2cif[5]

References

- Andersen PK, Abildstrom SZ, Rosthøj S. Competing risks as a multi-state model. Stat Methods Med Res 2002;11:203–215.
- Coviello V, Boggess M. Cumulative incidence estimation in the presence of competing risks. The Stata Journal 2004;4:103–112.
- Putter H, Fiocco M, Geskus RB. Tutorial in biostatistics: competing risks and multi-state models. *Statistics in Medicine* 2007;26:2389–2430.
- [4] Hinchliffe SR, Lambert P. Flexible parametric modelling of cause-specific hazards to estimate cumulative incidence functions. BMC Medical Research Methodology 2013;13:13.
- Hinchliffe SR, Lambert P. Extending the flexible parametric survival model for competing risks. The Stata Journal 2013;13:344–355.
- [6] de Wreede L, Fiocco M, Putter H. mstate: An r package for the analysis of competing risks and multi-state models. *Journal of Statistical Software* 2011;38.
- [7] Gray R. A class of k-sample tests for comparing the cumulative incidence of a competing risk. The Annals of Statistics 1988;16:1141–1154.
- [8] Geskus RB. Cause-specific cumulative incidence estimation and the fine and gray model under both left truncation and right censoring. *Biometrics* 2011;67:39–49.
- [9] Fine JP, Gray RJ. A proportional hazards model for the subdistribution of a competing risk. Journal of the American Statistical Association 1999;446:496–509.
- [10] Zhou B, Fine J, Laird G. Goodness-of-fit test for proportional subdistribution hazards model. Stat Med 2013;.
- Zhou B, Latouche A, Rocha V, Fine J. Competing risks regression for stratified data. Biometrics 2011;67:661–670.
- [12] Jeong JH, Fine JP. Parametric regression on cumulative incidence function. *Biostatistics* 2007;8:184–196.
- [13] Jeong JH, Fine JP. Direct parametric inference for the cumulative incidence function. Applied Statistics 2006;55:187–200.
- [14] Lambert PC, Royston P. Further development of flexible parametric models for survival analysis. The Stata Journal 2009;9:265–290.
- [15] Royston P, Lambert PC. Flexible parametric survival analysis in Stata: Beyond the Cox model. Stata Press, 2011.
- [16] Gouskova NA, Kundu S, Imreyb PB, Fine JP. Number needed to treat for time-to-event data with competing risks. *Statistics in Medicine* 2013;(in press).