
Sample size by simulation for

clinical trials with survival outcomes:

the simsam package in action

Richard Hooper

Senior Lecturer in Medical Statistics

The simsam package

simsam uses simulation to determine the sample size required to

achieve given statistical power to detect a given effect, for any

hypothesis test under any statistical model that can be programmed
in Stata.

Hooper R. Versatile sample size calculation using simulation.

Stata Journal 2013;13(1):21-38

Why worry about sample size?

“The number of subjects in a clinical trial should always be large

enough to provide a reliable answer to the questions addressed. This

number is usually determined by the primary objective of the trial.”

International Conference on Harmonisation of technical requirements

for registration of pharmaceuticals for human use

Why worry about sample size?

“The number of subjects in a clinical trial should always be large

enough to provide a reliable answer to the questions addressed. This

number is usually determined by the primary objective of the trial.”

International Conference on Harmonisation of technical requirements

for registration of pharmaceuticals for human use

“For scientific and ethical reasons, the sample size for a trial needs

to be planned carefully, with a balance between medical and

statistical considerations.”

CONSORT statement on the reporting of clinical trials, endorsed by

leading general medical journals

Why worry about sample size?

“The number of subjects in a clinical trial should always be large

enough to provide a reliable answer to the questions addressed. This

number is usually determined by the primary objective of the trial.”

International Conference on Harmonisation of technical requirements

for registration of pharmaceuticals for human use

“For scientific and ethical reasons, the sample size for a trial needs

to be planned carefully, with a balance between medical and

statistical considerations.”

CONSORT statement on the reporting of clinical trials, endorsed by

leading general medical journals

“This [sample size calculation] is frequently one of the least credible

components of a trial [funding] application.”

UK National Institute for Health Research

Basic syntax of simsam

. simsam subcommand_name n_name, ///

> detect(parameter_name(parameter_value)) ///

> null(parameter_name(null_value)) ///

> assuming(nuisance_parameter1(par1_value) …) ///

> p(.8) inc(10) prec(0.01)

where subcommand_name is the name of a user-written program

which codes the statistical model and the hypothesis test

Basic syntax of simsam

. simsam subcommand_name n_name, ///

> detect(parameter_name(parameter_value)) ///

> null(parameter_name(null_value)) ///

> assuming(nuisance_parameter1(par1_value) …) ///

> p(.8) inc(10) prec(0.01)

where subcommand_name is the name of a user-written program

which codes the statistical model and the hypothesis test

NB simsam doesn't do anything by itself – it needs software

A modular view of a simsam subcommand

program define subcommand_name, rclass

 syntax , n_name(integer) ///

 parameter_name(real) ///

 nuisance_parameter1(real) ///

 :

 drop _all

 [generate data-set]

 [analyse data-set]

 return scalar p = expression_for_pvalue

end

Something more complex: a two-stage adaptive design

program define subcommand_name, rclass

 syntax , …

 drop _all

 [generate data from stage 1]

 [analyse data from stage 1 and calculate p-value]

 [choose to stop there, or else adapt the protocol based
 on stage 1 results, then generate data from stage 2]

 [analyse data from stage 2 and calculate p-value]

 [return a combined p-value from the two stages]

end

Trials with survival (time-to-event) outcomes

For an individually-randomised trial where the outcome is time until

death (possibly censored), the total number of deaths that must be

observed to detect hazard ratio with given power is approximately

(Schoenfeld, 1983)

Jahn-Eimermacher et al (2011) extend this to cluster-randomised

trials analysed with frailty models, for which the above formula

underestimates sample size. Their extended formula still

underestimates sample size when the cluster size is variable.

2

2/1 log/)(4 zz

program define s_survival, rclass

 syntax , recrdur(integer) recrrate(integer) ///

 hr(real) failratec(real) ///

 folldur(real) droprate(real)

 drop _all

 set obs `=`recrdur'*`recrrate''

 gen group=mod(_n,2)

 gen abs_trecr=sum(-log(runiform())/`recrrate'

 gen tfail=-log(runiform())/`failratec'*`hr'^group

 gen tdrop=-log(runiform())/`droprate'

 gen tstop=`recrdur'+`folldur'-abs_trecr

 drop if tstop<0

 gen t=min(tfail, tdrop, tstop)

 gen fail=(t<min(tdrop, tstop)

 stset t, failure(fail)

 stcox group

 return scalar p=2*normal(-abs(_b[group]/_se[group]))

end

Capturing errors in the analysis

• If any untrapped errors occur when you run the subcommand,
simsam will fall over.

Capturing errors in the analysis

• If any untrapped errors occur when you run the subcommand,
simsam will fall over.

• You have to decide how you would handle errors if they

occurred in the analysis of the real data.

Capturing errors in the analysis

• If any untrapped errors occur when you run the subcommand,
simsam will fall over.

• You have to decide how you would handle errors if they

occurred in the analysis of the real data.

• Simplest approach: treat the result as non-significant.

– To do this you just need to exit the subcommand without

returning a p-value

– A general approach is to encase the analysis "module" in
capture noisily brackets

Capturing errors in the analysis

• If any untrapped errors occur when you run the subcommand,
simsam will fall over.

• You have to decide how you would handle errors if they

occurred in the analysis of the real data.

• Simplest approach: treat the result as non-significant.

– To do this you just need to exit the subcommand without

returning a p-value

capture noisily {

 stcox group

 return scalar p=2*normal(-abs(_b[group]/_se[group]))

}

Capturing errors in the survival analysis

• Assuming the data are legitimate, the only error you are really
likely to encounter with stcox is failure to converge.

– This turns out to be especially a problem with frailty analyses

of cluster-randomised trials.

Capturing errors in the survival analysis

• Assuming the data are legitimate, the only error you are really
likely to encounter with stcox is failure to converge.

– This turns out to be especially a problem with frailty analyses

of cluster-randomised trials.

• You have to decide how you would handle errors if they

occurred in the analysis of the real data.

Capturing errors in the survival analysis

• Assuming the data are legitimate, the only error you are really
likely to encounter with stcox is failure to converge.

– This turns out to be especially a problem with frailty analyses

of cluster-randomised trials.

• You have to decide how you would handle errors if they

occurred in the analysis of the real data.

• i.e. you need to specify an Analysis Plan

Capturing errors in the survival analysis

e.g. if Cox regression fails to converge, try parametric regression

with a Weibull model for survival times

capture noisily {

 stcox group

 return scalar p=2*normal(-abs(_b[group]/_se[group]))

}

if _rc~=0 {

 streg group, dist(weibull)

 return scalar p=2*normal(-abs(_b[group]/_se[group]))

}

Convergence problems that don't lead to errors:

controlling the number of iterations used for estimation

• Generally stcox converges after a few iterations

• Very occasionally it will continue on to the maximum number of

iterations (16,000 by default) without producing a non-

convergence error

• Hence simsam will appear to be hung up but will not halt with an

error message

Convergence problems that don't lead to errors:

controlling the number of iterations used for estimation

The solution is to re-set the maximum number of iterations:

. set maxiter 20

. simsam s_survival recrrate, ///

> detect(hr(1.5)) null(hr(1.0)) ///

> assuming(failratec(0.5) ///

> recrdur(2) folldur(1)) ///

> p(.8) inc(1) prec(0.001)

--

iteration recrrate power (99% CI)

--

 1 100 0.6500 (0.5172, 0.7681)

 2 143 0.8120 (0.7782, 0.8428)

 3 139 0.7971 (0.7866, 0.8074)

 4 141 0.8004 (0.7972, 0.8037)

 5 141 0.8009 (0.7999, 0.8019)

 6 140 0.7988 (0.7978, 0.7998)
--

 null 141 0.0499 (0.0489, 0.0509)

--

 recrrate = 141

 achieves 80.09% power (99% CI 79.99, 80.19)

 at the 5% significance level

 to detect

 hr = 1.5

 assuming

 failratec = 0.5

 recrdur = 2

 folldur = 1

 under null: 4.99% power (99% CI 4.89, 5.09)

Concluding remarks

Simulation for sample size calculation

– is accurate and versatile

– but must anticipate every contingency

– needs statistician input

– forces you to think about the analysis in detail (no bad thing)

– helps others to develop related applications

Thank you

• More info at http://webspace.qmul.ac.uk/rlhooper/simsam

• simsam update planned for Jan 2014

