		Discussion	

Multilevel mixed effects parametric survival analysis Stata UK Meeting Cass Business School 12th September 2013

Michael J. Crowther

Department of Health Sciences University of Leicester, UK michael.crowther@le.ac.uk NHS National Institute for Health Research

- Most popular survival model is the Cox (Cox, 1972)
- Parametric survival models are used extensively
- More flexible parametric models are becoming popular (Royston and Lambert, 2011; Crowther and Lambert, 2013)
- Advantages in terms of prediction, extrapolation, quantification

Clustered survival data occurs widely in medical research, event times are clustered within groups of the same or similar individuals, which means event times from the same group are likely to be correlated

- Meta-analyses of individual patient data (IPD)
- Multi-centre clinical trials
- Repeated events

Frailty models (random intercept)

- Maximum likelihood (streg in Stata)
- Partial penalised likelihood (coxph and frailtypack in R)
- Maximum likelihood using Gaussian quadrature (Liu and Huang, 2008)

Mixed effects models

- Penalised likelihood (coxme and frailtypack in R)
- Poisson mixed effect models (Crowther et al., 2012)
 I propose to incorporate mixed effects into the parametric survival analysis framework, using Gaussian quadrature

Some notation...

- ▶ Define i = 1,..., n clusters (trials/centres), with each cluster having j = 1,..., n_i patients.
- ▶ Let S_{ij} be the true survival time, $T_{ij} = \min(S_{ij}, C_{ij})$ the observed survival time, with C_{ij} the censoring time.
- ▶ Define an event indicator d_{ij} , which equals 1 if $S_{ij} \leq C_{ij}$, and 0 otherwise

Introduction		Discussion	

Proportional hazards mixed effects model

$$h_{ij}(t) = h_0(t) \exp(X_{ij}^T \beta + Z_i^T b_i)$$
(1)

 with design matrices X_{ij} and Z_i for the fixed (β) and random (b_i) effects, respectively

• we assume
$$b_i \sim \text{MVN}(\mathbf{0}, V)$$

- if $Z = \mathbf{1}$, Equation (1) redues to a frailty model
- distributions include the exponential, Weibull and Gompertz

 Introduction
 Syntax
 Simulation studies
 Examples
 Discussion
 References

 Proportional (cumulative)
 hazards mixed effects
 model
 mo

$$\log H_{ij}(t) = \log H_0(t) + X_{ij}^T \beta + Z_i^T b_i$$
$$= s \{ \log(t) | \gamma, k_0 \} + X_{ij}^T \beta + Z_i^T b_i$$

Expanded log $H_0(t)$ into restricted cubic spline basis (Royston and Lambert, 2011)

 Introduction
 Syntax
 Simulation studies
 Examples
 Discussion
 References

 Proportional (cumulative) hazards mixed effects
 model
 model

$$\begin{split} \log H_{ij}(t) &= \log H_0(t) + X_{ij}^T \beta + Z_i^T b_i \\ &= s \{ \log(t) | \boldsymbol{\gamma}, k_0 \} + X_{ij}^T \beta + Z_i^T b_i \end{split}$$

Expanded log $H_0(t)$ into restricted cubic spline basis (Royston and Lambert, 2011)

Time-dependent effects (non-proportional hazards)

$$+\sum_{p=1}^{P}s\{\log(t)|\delta_{p},k_{p}\}x_{ijp}$$

Accelerated failure time mixed effects model

$$S_{ij}(t) = S_0(\exp(X_{ij}^T\beta + Z_i^Tb_i)t)$$

Distributions include the log-logistic, log-normal, and generalised gamma.

Likelihood

$$L_{i} = \int_{-\infty}^{\infty} \left[\sum_{j=1}^{n_{i}} p(T_{ij}, d_{ij} | b_{i}, \theta) \right] p(b_{i} | \theta) db_{i}$$
(2)

where

$$p(b_i|\theta) = (2\pi|V|)^{-q/2} \exp\left\{-\frac{b_i^T V^{-1} b_i}{2}\right\}$$

Equation (2) requires numerical integration to solve

Numerical Integration

- The (possibly multi-dimensional) integral in the definition of the likelihood requires numerical integration
- ► As with the new me routines in Stata 13, I use as default mean-variance adaptive Gauss-Hermite quadrature
- Non-adaptive Gauss-Hermite quadrature is also available

	Syntax		Discussion	
Syntax				

stmixed [fe_equation] || re_equation [, options] where the syntax of fe_equation is [varlist] [if] [in] [, fe_options] and the syntax of re_equation is levelvar: [varlist] [, re_options]

levelvar is a variable identifying the group structure for the random effects at that level.

Further options of interest

- bhazard(varname) invokes relative survival models, defining the expected hazard rate at the time of event
- Very little work has been done to incorporate mixed effects into the relative survival framework

Simulation study 1 - multi-centre trial scenario

- ▶ Replicate the scenario in Liu and Huang (2008)
- 100 centres, 6 patients in each
- A binary centre level covariate X₁ ~ Bin(1,0.5) and a patient level covariate X₂ ~ U(0,1), with associated fixed effects of {−1,1}
- ► Assume a Weibull baseline with scale 1 and shape 2, with censoring times generated from U(0,2)

•
$$\sigma = \{0.2, 0.5, 1\}$$
 and 1000 replications

Introduction	Simulation studies	Discussion	

Parameter	Bias	% bias	CP	Conv.
Scenario 1				
$\beta_1 = 1$	0.006	0.6	94.4	100.00
$\beta_2 = -1$	-0.016	1.6	94.4	-
$\sigma = 1$	-0.011	-1.1	94.0	-
Scenario 2				
$\beta_1 = 1$	0.003	0.3	94.8	100.00
$\beta_2 = -1$	-0.016	1.6	94.4	-
$\sigma = 0.5$	-0.017	-3.4	96.7	-
Scenario 3				
$\beta_1 = 1$	0.010	1.0	86.5	90.80
$\beta_2 = -1$	-0.019	1.9	86.5	-
$\sigma = 0.2$	-0.024	-12.0	83.3	-
CP - cover	age proba	bility		

′ - coverage probability Cr

Introduction	Simulation studies	Discussion	

Parameter	Bias	% bias	CP	Conv.
Scenario 1				
$\beta_1 = 1$	0.006	0.6	94.4	100.00
$\beta_2 = -1$	-0.016	1.6	94.4	-
$\sigma = 1$	-0.011	-1.1	94.0	-
Scenario 2				
$\beta_1 = 1$	0.003	0.3	94.8	100.00
$\beta_2 = -1$	-0.016	1.6	94.4	-
$\sigma=$ 0.5	-0.017	-3.4	96.7	-
Scenario 3				
$\beta_1 = 1$	0.010	1.0	86.5	90.80
$\beta_2 = -1$	-0.019	1.9	86.5	-
$\sigma = 0.2$	-0.024	-12.0	83.3	-
CP - cover	age proba	bility		

′ - coverage probability Cr

	Simulation studies	Discussion	

Parameter	Bias	% bias	CP	Conv.
Scenario 1				
$\beta_1 = 1$	0.006	0.6	94.4	100.00
$\beta_2 = -1$	-0.016	1.6	94.4	-
$\sigma = 1$	-0.011	-1.1	94.0	-
_				
Scenario 2				
$\beta_1 = 1$	0.003	0.3	94.8	100.00
$\beta_2 = -1$	-0.016	1.6	94.4	-
$\sigma = 0.5$	-0.017	-3.4	96.7	-
c				
Scenario 3				
$\beta_1 = 1$	0.010	1.0	86.5	90.80
$\beta_2 = -1$	-0.019	1.9	86.5	-
$\sigma = 0.2$	-0.024	-12.0	83.3	-
CP - covera	age proba	bility		

coverage probability C1

Introduction	Simulation studies	Discussion	

Parameter	Bias	% bias	CP	Conv.
Scenario 1				
$\beta_1 = 1$	0.006	0.6	94.4	100.00
$\beta_2 = -1$	-0.016	1.6	94.4	-
$\sigma = 1$	-0.011	-1.1	94.0	-
Scenario 2				
$\beta_1 = 1$	0.003	0.3	94.8	100.00
$\beta_2 = -1$	-0.016	1.6	94.4	-
$\sigma = 0.5$	-0.017	-3.4	96.7	-
Scenario 3				
$\beta_1 = 1$	0.010	1.0	86.5	90.80
$\beta_2 = -1$	-0.019	1.9	86.5	-
$\sigma = 0.2$	-0.024	-12.0	83.3	-
CP - covera	age proba	bility		

ODADIIILY

Michael J. Crowther

Introduction	Simulation studies	Discussion	

Parameter	Bias	% bias	CP	Conv.			
Scenario 1							
$\beta_1 = 1$	0.006	0.6	94.4	100.00			
$\beta_2 = -1$	-0.016	1.6	94.4	-			
$\sigma = 1$	-0.011	-1.1	94.0	-			
Scenario 2							
$\beta_1 = 1$	0.003	0.3	94.8	100.00			
$\beta_2 = -1$	-0.016	1.6	94.4	-			
$\sigma = 0.5$	-0.017	-3.4	96.7	-			
Scenario 3							
$\beta_1 = 1$	0.010	1.0	86.5	90.80			
$\beta_2 = -1$	-0.019	1.9	86.5	-			
$\sigma = 0.2$	-0.024	-12.0	83.3	-			
CP - coverage probability							

′ - coverage probability Cr

Simulation study 2: Weibull baseline with random treatment effect and proportional trial effects

- ▶ We simulate 15 trials with 500 patients in each trial
- ► Binary covariate, with trial specific treatment effects drawn from N(-0.663, τ²)
- Weibull baseline shape and scale parameters of 1.276 and 3.121, respectively, with administrative censoring at 0.24 units
- Fixed trial effect from N(0, 0.5²)
- $\sigma = \{0.25, 0.5, 1\}$

Introduction	Simulation studies	Discussion	

Table : Simulation study 2: Weibull baseline with random treatment effect and proportional trial effects.

Parameter	Bias	% bias	CP	Conv. (%)
Scenario 1				
$\beta_1 = -0.663$	-0.006	0.9	90.6	99.10
$\sigma = 1$	-0.052	-5.2	89.9	-
Scenario 2				
$eta_1=$ -0.663	0.001	-0.2	91.4	100.00
$\sigma = 0.5$	-0.039	-7.8	90.2	-
Scenario 3				
$\beta_1 = -0.663$	-	-	-	-
$\sigma = 0.25$	-	-	-	-

Introduction	Simulation studies	Discussion	

Table : Simulation study 2: Weibull baseline with random treatment effect and proportional trial effects.

Parameter	Bias	% bias	CP	Conv. (%)
Scenario 1				
$\beta_1 = -0.663$	-0.006	0.9	90.6	99.10
$\sigma = 1$	-0.052	-5.2	89.9	-
Scenario 2				
$\beta_1 = -0.663$	0.001	-0.2	91.4	100.00
$\sigma = 0.5$	-0.039	-7.8	90.2	-
Scenario 3				
$\beta_1 = -0.663$	-	-	-	-
$\sigma = 0.25$	-	-	-	-

Introduction	Simulation studies	Discussion	

Table : Simulation study 2: Weibull baseline with random treatment effect and proportional trial effects.

Parameter	Bias	% bias	CP	Conv. (%)
Scenario 1				
$eta_1=$ -0.663	-0.006	0.9	90.6	99.10
$\sigma = 1$	-0.052	-5.2	89.9	-
Scenario 2				
$\beta_1 = -0.663$	0.001	-0.2	91.4	100.00
$\sigma = 0.5$	-0.039	-7.8	90.2	-
Scenario 3				
$eta_1=$ -0.663	-	-	-	-
$\sigma = 0.25$	-	-	-	-

Example 1: kidney data

- ▶ 38 patients with kidney disease
- Event of interest is infection at the catheter insertion point
- Each patient has 2 possible recurrence times, recorded from initial insertion
- A total of 58 failures were observed
- Apply a flexible parametric frailty model

			Examples	Discussion	
Table	: Model fit	criteria across var	ying degrees	of freedom fo	or the

baseline hazard function using a flexible parametric frailty model (Rutherford et al.).

Baseline degrees of freedom	log-likelihood	AIC	BIC
1	-107.469	218.938	223.599
2	-105.672	217.345	224.337
3	-101.872	211.745	221.068
4	-101.846	213.691	225.345
5	-101.445	214.889	228.873
6	-100.017	214.034	230.349
7	-99.727	215.454	234.100
8	-99.632	217.264	238.241
9	-98.306	216.612	239.919

			Examples	Discussion	
Table	: Model fit	criteria across var	ying degrees	of freedom fo	or the

baseline hazard function using a flexible parametric frailty model (Rutherford et al.).

Baseline degrees of freedom	log-likelihood	AIC	BIC
1	-107.469	218.938	223.599
2	-105.672	217.345	224.337
3	-101.872	211.745	221.068
4	-101.846	213.691	225.345
5	-101.445	214.889	228.873
6	-100.017	214.034	230.349
7	-99.727	215.454	234.100
8	-99.632	217.264	238.241
9	-98.306	216.612	239.919

Flexible parametric frailty model

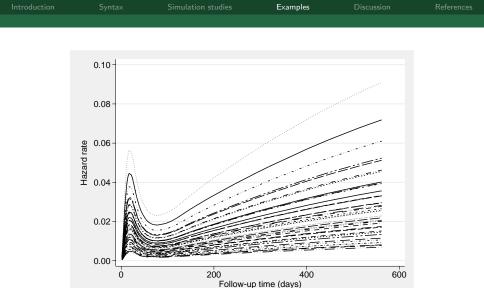
$$h_{ij}(t) = h_0(t) \exp(b_{0i} + \beta_1 X_{1ij} + \beta_2 X_{2ij})$$

adjusting for age (years), X_{1ij} , and sex (male as the reference group), X_{2ij} , with associated log hazard ratios, β_1 and β_2 , respectively.

				Example	es Di		
. stmixed age	e female pa	atient: , di	st(fpm) d	lf(3)			
Refining start	ing values:						
(output omitt	ed)						
Performing gra	adient-based o	ptimization	:				
(output omitt		-					
Mixed effects	/	ression		Number	of obs. =	- 76	
Panel variable	0	ession			of panels =		
Log-likelihood	-	,		Number	or puncto	00	
rog-likelinood	1325.99937						
	Haz. Ratio	Std. Err.	z	P> z	[OF% Comf	. Interval]	
	Haz. Katio	Stu. EII.	Z	F/[2]	[95% 0011	. Incervalj	
xb							
age	1.007186	.0130096	0.55	0.579	.9820075	1.03301	
female	.2309611	.1135457	-2.98	0.003	.0881188	.6053531	
_rcs1	5.771771	1.389566	7.28	0.000	3.600647	9.252044	
_rcs2	1.425722	.2397909	2.11	0.035	1.02535	1.982429	
_rcs3	.8005204	.0762486	-2.34	0.019	.6641963	.9648245	
_cons	.7059881	.4738946	-0.52	0.604	.189421	2.631277	
	I						
Random effec	cts Parameters	s Estim	ate Sto	l. Err.	[95% Conf	. Interval]	
patient: Indep	oendent						
Pasiono, indel	sd(_cons	3) .800	092 .26	81026	.414869	1.54301	

Michael J. Crowther

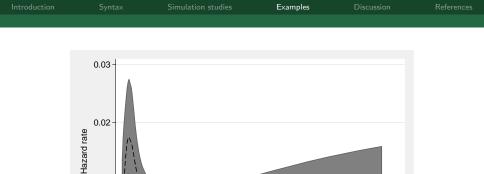
Stata UK User group meeting

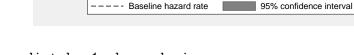


Patient specific baseline hazard rates

Michael J. Crowther

Stata UK User group meeting





200

Time (days)

predict haz1, hazard ci zeros

Michael J. Crowther

0.01

0.00 -

Ó

400

600

Introduction Syntax Simulation studies Examples Discussion References Example 2 - IPD meta-analysis of prognostic factor studies

- IPD was obtained from 15 studies in patients with breast cancer
- ► Total of 7435 patients, of which 2042 (27.48%) died
- ► For illustration purposes we look at hormone receptor status, coded -¹/₂ for negative or unknown and ¹/₂ for at least one positive

One-stage meta-analysis with random covariate effect and separate baselines

$$h_{ij}(t) = h_{0i}(t) \exp \left[(\beta_1 + b_{1i}) X_{1ij} \right], \quad \text{where} \quad b_{1i} \sim \mathsf{N}(0, \tau^2)$$

where $h_{0i}(t)$ is the baseline hazard function for the i^{th} trial, X_{1ij} is hormone receptor status, β_1 is the average log hazard ratio for a distribution of covariate effects, with b_{1i} the deviation of the i^{th} trial from this average effect.

				Example	es Disc	cussion	References
<pre>. stmixed hr > tvc(`labvars (output omitt</pre>							
Mixed effects survival regression Panel variable: labo				Number of obs. = 7435 Number of panels = 15			
Log-likelihood	d = 1077.9397						
	Haz. Ratio	Std. Err.	z	P> z	[95% Conf.	Interval]	
xb							
hr	.5154256	.0503192	-6.79	0.000	.4256632	.6241167	
lab1	.3242661	.0129601	-28.18	0.000	.2998342	.3506889	
lab2	.3045584	.0406042	-8.92	0.000	.2345239	.3955069	
lab3	.0915611	.0106205	-20.61	0.000	.072942	.114933	
(output omitt	ed)						
_rcs_lab142	1.111828	.0529034	2.23	0.026	1.012828	1.220506	
_rcs_lab151	2.314052	.1767816	10.98	0.000	1.992259	2.687822	
_rcs_lab152	1.311918	.1077047	3.31	0.001	1.116928	1.540947	
Random effec	s Estin	nate Sto	l. Err.	[95% Conf.	Interval]		
labo: Independ	lent sd(hi	r) .2574	1361 .08	47183	.1350678	.4906672	

Michael J. Crowther

Stata UK User group meeting

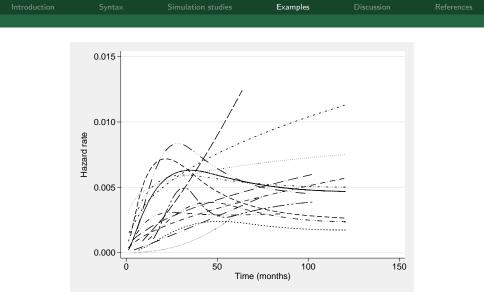


Figure : Estimated separate baseline hazards for each trial

Michael J. Crowther

Stata UK User group meeting

12th September 2013

 Failing to account for heterogeneity, generally leads to underestimation of covariate effects

- Failing to account for heterogeneity, generally leads to underestimation of covariate effects
- Growing use of parametric survival models

- Failing to account for heterogeneity, generally leads to underestimation of covariate effects
- Growing use of parametric survival models
- Increasing availability of IPD

- Failing to account for heterogeneity, generally leads to underestimation of covariate effects
- Growing use of parametric survival models
- Increasing availability of IPD
- Computation time

- Failing to account for heterogeneity, generally leads to underestimation of covariate effects
- Growing use of parametric survival models
- Increasing availability of IPD
- Computation time
- Scaling
 - Large number of units within clusters
 - Discussed on Statalist recently

- Failing to account for heterogeneity, generally leads to underestimation of covariate effects
- Growing use of parametric survival models
- Increasing availability of IPD
- Computation time
- Scaling
 - Large number of units within clusters
 - Discussed on Statalist recently
- Important to establish consistent estimates by using an increasing number of quadrature points

Acknowlegments

- Maxime Look of the Josephine Nefkens Institute, Rotterdam, for providing the IPD prognostic studies data
- Richard Riley of the University of Birmingham

Crowther MJ, Look M, Riley RD. Multilevel mixed effects parametric survival models using adaptive Gauss-Hermite quadrature: with application to recurrent events and IPD meta-analysis. (To submit).

Introduction			Discussion	References
Referer	nces I			

- D. R. Cox. Regression models and life-tables. *Journal of the Royal Statistical Society. Series B (Methodological)*, 34(2):187–220, 1972.
- M J Crowther and P C Lambert. stgenreg: A Stata package for the general parametric analysis of survival data. *Journal of Statistical Software*, 53(12), 2013.
- Michael J. Crowther, Richard D. Riley, Jan A. Staessen, Jiguang Wang, Francois Gueyffier, and Paul C. Lambert. Individual patient data meta-analysis of survival data using Poisson regression models. *BMC Med Res Methodol*, 12(1):34, Mar 2012. doi: 10.1186/1471-2288-12-34. URL http://dx.doi.org/10.1186/1471-2288-12-34.
- Lei Liu and Xuelin Huang. The use of gaussian quadrature for estimation in frailty proportional hazards models. *Stat Med*, 27(14):2665–2683, Jun 2008. doi: 10.1002/sim.3077. URL http://dx.doi.org/10.1002/sim.3077.
- P. Royston and P. C Lambert. *Flexible Parametric Survival Analysis Using Stata: Beyond the Cox Model.* Stata Press, 2011.
- M. J. Rutherford, M. J. Crowther, and P. C. Lambert. The use of restricted cubic splines to approximate complex hazard functions in the analysis of time-to-event data: a simulation study. *Journal of Statistical Computation and Simulation*, (Under revision).