Finite Mixture Models

Partha Deb

Hunter College and the Graduate Center, CUNY NBER

July 2008

< D > < P > < E >

- The finite mixture model provides a natural representation of heterogeneity in a finite number of latent classes
- It concerns modeling a statistical distribution by a mixture (or weighted sum) of other distributions

- The finite mixture model provides a natural representation of heterogeneity in a finite number of latent classes
- It concerns modeling a statistical distribution by a mixture (or weighted sum) of other distributions
- Finite mixture models are also known as
 - latent class models
 - unsupervised learning models
- Finite mixture models are closely related to
 - intrinsic classification models
 - clustering
 - numerical taxonomy

- Heterogeneity of effects for different "classes" of observations
 - wine from different vineyards
 - healthy and sick individuals
 - normal and complicated pregnancies

- Estimating parameters of the distribution of lengths of halibut
- It is known that female halibut is longer, on average, than male fish and that the distribution of lengths is normal
- Gender cannot be determined at measurement
- Then distribution is a 2-component finite mixture of normals

- Estimating parameters of the distribution of lengths of halibut
- It is known that female halibut is longer, on average, than male fish and that the distribution of lengths is normal
- Gender cannot be determined at measurement
- Then distribution is a 2-component finite mixture of normals
- A finite mixture model allows one to estimate:
 - mean lengths of male and female halibut
 - mixing probability

A graphical view

Deb (Hunter College)

 ■ ▶ ■ 少への July 2008 5 / 34

A graphical view

A graphical view

- Characteristics of wine by cultivar
- Infant Birthweight two types of pregnancies "normal" and "complicated"
- Medical Services two types of consumers "healthy" and "sick"
- Public goods experiments selfish, reciprocal, and altruist
- Stock Returns in "typical" and "crisis" times
- Using somatic cell counts to classify records from healthy or infected goats
- Models of internet traffic

- FMM is a semiparametric / nonparametric estimator of the density (Lindsay)
- Experience suggests that usually only few latent classes are needed to approximate density well (Heckman)
- In practice FMM are flexible extensions to basic parametric models
 - can generate skewed distributions from symmetric components
 - can generate leptokurtic distributions from mesokurtic ones

- Introduction
- Model
 - Formulation
 - Estimation
 - Popular densities
 - Properties
- Examples
 - Color of wine
 - Birthweight and prenatal care
 - Medical care

• The density function for a C-component finite mixture is

$$f(y|\mathbf{x};\theta_1,\theta_2,...,\theta_C;\pi_1,\pi_2,...,\pi_C) = \sum_{j=1}^C \pi_j f_j(y|\mathbf{x};\theta_j)$$

where 0 $<\pi_j<$ 1, and $\sum_{j=1}^{\mathcal{C}}\pi_j=$ 1

• The density function for a C-component finite mixture is

$$f(y|\mathbf{x};\theta_{1},\theta_{2},...,\theta_{C};\pi_{1},\pi_{2},...,\pi_{C}) = \sum_{j=1}^{C} \pi_{j} f_{j}(y|\mathbf{x};\theta_{j})$$

where
$$0 < \pi_j < 1$$
, and $\sum_{j=1}^{\mathcal{C}} \pi_j = 1$

• More generally

$$f(y|\mathbf{x};\mathbf{z};\theta_1,\theta_2,...,\theta_C;\pi_1,\pi_2,...,\pi_C) = \sum_{j=1}^C \pi_j(\mathbf{z}) f_j(y|\mathbf{x};\theta_j)$$

(日) (同) (三) (

• Maximum likelihood

$$\max_{\pi,\theta} \ln L = \sum_{i=1}^{N} \left(\log(\sum_{j=1}^{C} \pi_j f_j(y|\theta_j)) \right)$$

・ロト ・聞ト ・ヨト ・ヨト

• Maximum likelihood

$$\max_{\pi,\theta} \ln L = \sum_{i=1}^{N} \left(\log(\sum_{j=1}^{C} \pi_j f_j(y|\theta_j)) \right)$$

• Trick to ensure $0 < \pi_j < 1$, and $\sum_{j=1}^{C} \pi_j = 1$

$$\pi_j = \frac{\exp(\gamma_j)}{\exp(\gamma_1) + \exp(\gamma_2) + \ldots + \exp(\gamma_{C-1}) + 1}$$

イロト イポト イヨト イヨト

• Maximum likelihood

$$\max_{\pi,\theta} \ln L = \sum_{i=1}^{N} \left(\log(\sum_{j=1}^{C} \pi_j f_j(y|\theta_j)) \right)$$

$$ullet$$
 Trick to ensure $0<\pi_j<1$, and $\sum_{j=1}^{\mathcal{C}}\pi_j=1$

$$\pi_j = \frac{\exp(\gamma_j)}{\exp(\gamma_1) + \exp(\gamma_2) + \ldots + \exp(\gamma_{C-1}) + 1}$$

• EM

Bayesian MCMC

イロト イ団ト イヨト イヨト

- Normal (Gaussian)
- Poisson
- Gamma
- Negative Binomial
- Student-t
- Weibull

Image: A matrix

• Conditional mean:

$$\mathsf{E}(y_i | \mathbf{x}_i) = \sum_{j=1}^{\mathcal{C}} \pi_j \lambda_j$$
 where $\lambda_j = \mathsf{E}_j(y_i | \mathbf{x}_i)$

* ロ > * 個 > * 注 > * 注 >

• Conditional mean:

$$\mathsf{E}(y_i | \mathbf{x}_i) = \sum_{j=1}^{\mathcal{C}} \pi_j \lambda_j$$
 where $\lambda_j = \mathsf{E}_j(y_i | \mathbf{x}_i)$

• Marginal effects:

$$\frac{\partial \mathsf{E}_{j}(y_{i}|\mathbf{x}_{i})}{\partial \mathbf{x}_{i}} = \frac{\partial \lambda_{j}}{\partial \mathbf{x}_{i}} \longrightarrow \text{ within component}$$
$$\frac{\partial \mathsf{E}(y_{i}|\mathbf{x}_{i})}{\partial \mathbf{x}_{i}} = \sum_{j=1}^{C} \pi_{j} \frac{\partial \lambda_{j}}{\partial \mathbf{x}_{i}} \longrightarrow \text{ overall}$$

• Prior probability that observation y_i belongs to component c:

 $\mathsf{Pr}[y_i \in \mathsf{population} \ c | \mathbf{x}_i, \boldsymbol{ heta}] = \pi_c$ c = 1, 2, ... C

イロト 不得下 イヨト イヨト

• Prior probability that observation y_i belongs to component c:

$$\mathsf{Pr}[y_i \in \mathsf{population} \ c | \mathbf{x}_i, \boldsymbol{ heta}] = \pi_c$$

 $c = 1, 2, .. C$

• Posterior probability that observation y_i belongs to component c:

$$\Pr[y_i \in \text{population } c | \mathbf{x}_i, y_i; \boldsymbol{\theta}] = \frac{\pi_c f_c(y_i | \mathbf{x}_i, \boldsymbol{\theta}_c)}{\sum_{j=1}^C \pi_j f_j(y_i | \mathbf{x}_i, \boldsymbol{\theta}_j)}$$

$$c = 1, 2, ... C$$

- The number of components has to be specified we usually have little theoretical guidance
- Even if prior theory suggests a particular number of components we may not be able to reliably distinguish between some of the components
- In some cases additional components may simply reflect the presence of outliers in the data
- Likelihood function may have multiple local maxima

• Parameterize $\gamma_j = Z \alpha_j$ in

$$\pi_j = \frac{\exp(\gamma_j)}{\exp(\gamma_1) + \exp(\gamma_2) + \ldots + \exp(\gamma_{\mathcal{C}-1}) + 1}$$

• Parameterizing mixing probabilities

- may lead to finite sample identification issues
- may lead to computational difficulties

- Estimate models with 2 and then more components
- At each step calculate

$$AIC = -2\log(L) + 2K$$
$$BIC = -2\log(L) + K\log(N)$$

• Pick the model with the smallest AIC, BIC

Implementation in Stata

• Stata package fmm

```
fmm depvar [indepvars] [if] [in] [weight],
components(#) mixtureof(density)
```

- where density is one of
 - gamma negbin1 negbin2 normal poisson studentt
- predict and mfx give predictions and marginal effects of means, component means, prior and posterior probabilities

Results of a chemical analysis of wines grown in the same region in Italy but derived from three different cultivars

Cultivar	Freq.	% of total	Color intensity (mean)
1	59	33.15	5.528
2	71	39.89	3.086
3	48	26.97	7.396
Total	178	100	5.058

Example 1 Color of Wine

Deb (Hunter College)

July 2008 21 / 34

• Finite mixture of Normals with 3 components

$$f(y_i|\theta_1, \theta_2, ..., \theta_C; \pi_1, \pi_2, ..., \pi_C) = \sum_{j=1}^C \pi_j \frac{1}{\sqrt{2\pi\sigma_j^2}} \exp\left(-\frac{1}{2\sigma_j^2}(y_i - x_i\beta_j)^2\right)$$

∃ >

Parameter	component 1	component 2	component 3
Constant	4.929	7.548	2.803
	(0.334)	(0.936)	(0.244)
π	0.365	0.312	0.323
	(0.176)	(0.117)	(0.107)

▲ロト ▲圖ト ▲国ト ▲国ト

Parameter	component 1	component 2	component 3
Constant	4.929	7.548	2.803
	(0.334)	(0.936)	(0.244)
π	0.365	0.312	0.323
	(0.176)	(0.117)	(0.107)

Cultivar	Freq.	% of total	Color (mean)
1	59	33.15	5.528
2	71	39.89	3.086
3	48	26.97	7.396
Total	178	100	5.058

▲ロト ▲圖ト ▲国ト ▲国ト

	Posterior probability (median)			
Cultivar	component 1	component 2	component 3	
1	0.737	0.195	9.00e-5	
2	0.048	0.023	0.923	
3	0.030	0.970	7.54e-14	

・ロト ・聞ト ・ヨト ・ヨト

- Data from the National Maternal and Infant Health Survey
- Number of observations: 5219
- Number of covariates: 12

July 2008 26 / 34

Variable	OLS	FMM	
		component 1	component 2
black	-1.213**	-1.231**	-0.775*
	(0.312)	(0.215)	(0.393)
edu	0.353**	0.292**	0.040
	(0.074)	(0.050)	(0.102)
numdead	-1.181**	-0.170	-0.585**
	(0.163)	(0.117)	(0.171)
onsethat	-0.501**	-0.294*	0.006
	(0.183)	(0.127)	(0.234)
π		0.864	0.136
$se(\pi)$		(0.005)	(0.005)

・ロト ・聞ト ・ヨト ・ヨト

- Data from the RAND Health Insurance Experiment
- Number of observations: 20186
- Number of covariates: 17

・ロト ・聞ト ・ヨト ・ヨト

• The density of the C-component finite mixture is specified as

$$f(y_{i}|\theta_{1},\theta_{2},...,\theta_{C};\pi_{1},\pi_{2},...,\pi_{C}) = \sum_{j=1}^{C} \pi_{j} \frac{\Gamma(y_{i}+\psi_{j,i})}{\Gamma(\psi_{j,i})\Gamma(y_{i}+1)} \left(\frac{\psi_{j,i}}{\lambda_{j,i}+\psi_{j,i}}\right)^{\psi_{c,i}} \left(\frac{\lambda_{j,i}}{\lambda_{j,i}+\psi_{j,i}}\right)^{y_{i}}$$

where $\lambda = \exp(xeta)$ and $\psi = (1/lpha)\lambda^k$

- k = 1 NB-2
- *k* = 0 NB-1
- k = 0 fits best

(B)

Parameter Estimates				
	nb1	fmm nb1		
		component 1	component 2	
logc	-0.149*	-0.203*	-0.024	
	(0.012)	(0.020)	(0.031)	
educdec	0.023*	0.027*	0.015	
	(0.003)	(0.005)	(0.010)	
disea	0.021*	0.019*	0.033*	
	(0.001)	(0.002)	(0.004)	
π		0.802	0.198	
		(0.037)	(0.037)	
log L	-42405	-42037		
BIC	84999	84461		

▲□→ ▲圖→ ▲国→ ▲国→

Marginal Effects				
nb1	fmm nb1			
overall	overall	component 1	component 2	
2.561	2.511	1.887	5.038	
-0.382*	-0.331*	-0.382*	-0.121	
(0.030)	(0.032)	(0.032)	(0.158)	
0.058*	0.056*	0.052*	0.073	
(0.007)	(0.009)	(0.008)	(0.053)	
0.054*	0.062*	0.036*	0.167*	
(0.003)	(0.004)	(0.004)	(0.024)	
	nb1 overall 2.561 -0.382* (0.030) 0.058* (0.007) 0.054* (0.003)	Margina nb1 overall overall overall 2.561 2.511 -0.382* -0.331* (0.030) (0.032) 0.058* 0.056* (0.007) (0.009) 0.054* 0.062* (0.003) (0.004)	Marginal Effects nb1 fmm nb1 overall overall component 1 2.561 2.511 1.887 -0.382* -0.331* -0.382* (0.030) (0.032) (0.032) 0.058* 0.056* 0.052* (0.007) (0.009) (0.008) 0.054* 0.062* 0.036* (0.003) (0.004) (0.004)	

▲□→ ▲圖→ ▲国→ ▲国→

Example 3 Medical Care Use

July 2008 33 / 34

Deb (Hunter College)

July 2008 34 / 34