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Introduction

The �nite mixture model provides a natural representation of
heterogeneity in a �nite number of latent classes

It concerns modeling a statistical distribution by a mixture (or
weighted sum) of other distributions

Finite mixture models are also known as

latent class models
unsupervised learning models

Finite mixture models are closely related to

intrinsic classi�cation models
clustering
numerical taxonomy
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Introduction
Intuition

Heterogeneity of e¤ects for di¤erent �classes�of observations

wine from di¤erent vineyards
healthy and sick individuals
normal and complicated pregnancies
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Introduction
Canonical Example

Estimating parameters of the distribution of lengths of halibut

It is known that female halibut is longer, on average, than male �sh
and that the distribution of lengths is normal

Gender cannot be determined at measurement

Then distribution is a 2-component �nite mixture of normals

A �nite mixture model allows one to estimate:

mean lengths of male and female halibut
mixing probability
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Introduction
A graphical view

x

 N(0,1)  N(5,2)
 FM(N(0,1) wp 0.3, N(5,2) wp 0.7

3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12

.00001

.398471
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Introduction
A graphical view
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Introduction
A graphical view
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Introduction
Examples

Characteristics of wine by cultivar

Infant Birthweight - two types of pregnancies �normal� and
�complicated�

Medical Services - two types of consumers �healthy�and �sick�

Public goods experiments - sel�sh, reciprocal, and altruist

Stock Returns in �typical� and �crisis� times

Using somatic cell counts to classify records from healthy or infected
goats

Models of internet tra¢ c
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Introduction
More generally from a statistical perspective

FMM is a semiparametric / nonparametric estimator of the density
(Lindsay)

Experience suggests that usually only few latent classes are needed to
approximate density well (Heckman)

In practice FMM are �exible extensions to basic parametric models

can generate skewed distributions from symmetric components
can generate leptokurtic distributions from mesokurtic ones
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Outline of talk

Introduction

Model

Formulation
Estimation
Popular densities
Properties

Examples

Color of wine
Birthweight and prenatal care
Medical care

Deb (Hunter College) FMM July 2008 10 / 34



Model
Formulation

The density function for a C -component �nite mixture is

f (y jx; θ1, θ2, ..., θC ;π1,π2, ...,πC ) =
C

∑
j=1

πj fj (y jx; θj )

where 0 < πj < 1, and ∑C
j=1 πj = 1

More generally

f (y jx; z; θ1, θ2, ..., θC ;π1,π2, ...,πC ) =
C

∑
j=1

πj (z)fj (y jx; θj )
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Model
Estimation

Maximum likelihood

max
π,θ

ln L =
N

∑
i=1

 
log(

C

∑
j=1

πj fj (y jθj )
!

Trick to ensure 0 < πj < 1, and ∑C
j=1 πj = 1

πj =
exp(γj )

exp(γ1) + exp(γ2) + ...+ exp(γC�1) + 1

EM

Bayesian MCMC
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Model
Popular mixture component densities

Normal (Gaussian)

Poisson

Gamma

Negative Binomial

Student-t

Weibull
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Model
Some basic properties

Conditional mean:

E(yi jxi ) =
C

∑
j=1

πjλj where λj = Ej (yi jxi )

Marginal e¤ects:

∂Ej (yi jxi )
∂xi

=
∂λj
∂xi

�! within component

∂E(yi jxi )
∂xi

=
C

∑
j=1

πj
∂λj
∂xi

�! overall
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Model
Some basic properties

Prior probability that observation yi belongs to component c :

Pr[yi 2 population c jxi , θ] = πc

c = 1, 2, ..C

Posterior probability that observation yi belongs to component c :

Pr[yi 2 population c jxi , yi ;θ] =
πc fc (yi jxi , θc )

∑C
j=1 πj fj (yi jxi , θj )

c = 1, 2, ..C
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Model
Estimation challenges

The number of components has to be speci�ed - we usually have little
theoretical guidance

Even if prior theory suggests a particular number of components we
may not be able to reliably distinguish between some of the
components

In some cases additional components may simply re�ect the presence
of outliers in the data

Likelihood function may have multiple local maxima
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Model
Extending the model

Parameterize γj = Zαj in

πj =
exp(γj )

exp(γ1) + exp(γ2) + ...+ exp(γC�1) + 1

Parameterizing mixing probabilities

may lead to �nite sample identi�cation issues
may lead to computational di¢ culties
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Model
Selecting number of components

Estimate models with 2 and then more components

At each step calculate

AIC = �2 log(L) + 2K
BIC = �2 log(L) +K log(N)

Pick the model with the smallest AIC , BIC
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Model
Implementation in Stata

Stata package fmm

fmm depvar [indepvars] [if] [in] [weight],
components(#) mixtureof(density)

where density is one of

gamma
negbin1
negbin2
normal
poisson
studentt

predict and mfx give predictions and marginal e¤ects of means,
component means, prior and posterior probabilities
Deb (Hunter College) FMM July 2008 19 / 34



Example 1
Color of Wine

Results of a chemical analysis of wines grown in the same region in Italy
but derived from three di¤erent cultivars

Cultivar Freq. % of total Color intensity (mean)
1 59 33.15 5.528
2 71 39.89 3.086
3 48 26.97 7.396
Total 178 100 5.058
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Example 1
Color of Wine
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Example 1
Color of Wine

Finite mixture of Normals with 3 components

f (yi jθ1, θ2, ..., θC ;π1,π2, ...,πC )

=
C

∑
j=1

πj
1q
2πσ2j

exp

 
� 1
2σ2j

(yi � xi βj )2
!
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Example 1
Color of Wine

Parameter component 1 component 2 component 3
Constant 4.929 7.548 2.803

(0.334) (0.936) (0.244)
π 0.365 0.312 0.323

(0.176) (0.117) (0.107)

Cultivar Freq. % of total Color (mean)
1 59 33.15 5.528
2 71 39.89 3.086
3 48 26.97 7.396
Total 178 100 5.058
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Example 1
Color of Wine

Posterior probability (median)
Cultivar component 1 component 2 component 3
1 0.737 0.195 9.00e-5
2 0.048 0.023 0.923
3 0.030 0.970 7.54e-14
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Example 2
Infant Birthweight and Prenatal Care

Data from the National Maternal and Infant Health Survey

Number of observations: 5219

Number of covariates: 12
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Example 2
Infant Birthweight and Prenatal Care
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Example 2
Infant Birthweight and Prenatal Care

Variable OLS FMM
component 1 component 2

black -1.213** -1.231** -0.775*
(0.312) (0.215) (0.393)

edu 0.353** 0.292** 0.040
(0.074) (0.050) (0.102)

numdead -1.181** -0.170 -0.585**
(0.163) (0.117) (0.171)

onsethat -0.501** -0.294* 0.006
(0.183) (0.127) (0.234)

π 0.864 0.136
se(π) (0.005) (0.005)
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Example 3
Medical Care Use

Data from the RAND Health Insurance Experiment

Number of observations: 20186

Number of covariates: 17

Deb (Hunter College) FMM July 2008 28 / 34



Example 3
Medical Care Use
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Example 3
Medical Care Use

The density of the C -component �nite mixture is speci�ed as

f (yi jθ1, θ2, ..., θC ;π1,π2, ...,πC )

=
C

∑
j=1

πj
Γ(yi + ψj ,i )

Γ(ψj ,i )Γ(yi + 1)

 
ψj ,i

λj ,i + ψj ,i

!ψc ,i
 

λj ,i
λj ,i + ψj ,i

!yi

where λ = exp(xβ) and ψ = (1/α)λk

k = 1 NB-2

k = 0 NB-1

k = 0 �ts best
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Example 3
Medical Care Use

Parameter Estimates
nb1 fmm nb1

component 1 component 2
logc -0.149* -0.203* -0.024

(0.012) (0.020) (0.031)
educdec 0.023* 0.027* 0.015

(0.003) (0.005) (0.010)
disea 0.021* 0.019* 0.033*

(0.001) (0.002) (0.004)
π 0.802 0.198

(0.037) (0.037)

log L �42405 �42037
BIC 84999 84461
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Example 3
Medical Care Use

Marginal E¤ects
nb1 fmm nb1
overall overall component 1 component 2

E (y jx) 2.561 2.511 1.887 5.038

logc -0.382* -0.331* -0.382* -0.121
(0.030) (0.032) (0.032) (0.158)

educdec 0.058* 0.056* 0.052* 0.073
(0.007) (0.009) (0.008) (0.053)

disea 0.054* 0.062* 0.036* 0.167*
(0.003) (0.004) (0.004) (0.024)
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Example 3
Medical Care Use
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Example 3
Medical Care Use

Prior and posterior probabilities
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