Mothers[®] Decisions on Children's **Attainments**

Chyi and Ozturk

The Effects of Single Mothers' Welfare Participation and Work Decisions on Children's Attainments

Hau Chyi¹ Orgul Demet Ozturk²

¹WISE, Xiamen University

²University of South Carolina

July 24, 2008

Mode

Econometric

Results
Sample Pattern

Sample Pattern Results

Concluding Remarks

Motivation

- Welfare system in the U.S.
 - Who are eligible?
 - · What are the benefits?
 - · 1996 reform: what changed and how?
- New restrictions on eligibility of TANF program.
 - · 5-year welfare time limit and work requirement
- Implications for children's attainments through changes in mothers' behavior?

Econometric

Results

Sample Patterns Results

Concluding Remarks

Related Literature

- Research on determinants of children's attainments are abundant:
 - Haveman and Wolfe (1995), Duncan and Hills (1997), Dahl and Lochner (2005) and Raquel (2007)
- Lack of information on causal effects of welfare on children's attainments (Currie (1998)).
- Issues:
 - Including children who were ineligible for welfare
 - OLS estimates may be biased
 - Multicollinearity between work and welfare decisions mostly ignored

Mode

Econometric

Results
Sample Patterns

Concluding Remarks

What Have We Done?

- Study effects of a low-skilled single mother's work and welfare decisions during her child's childhood on child's standardized math test score.
- Use IV method to control potential unobserved heterogeneity problem.
 - IV we propose: predicted quarters of work and welfare use estimated from low-skilled married mothers.
- A median welfare user (12 quarters) expects to gain 4.9 points more in test scores. Median work (14 quarters) is associated with 1.6 points more.

Model Specification

Write a structural form of a child's attainment production function as:

$$\ln O_T = \ln A_0 + \gamma_1 \ln Y_T + \gamma_2 E_T + \gamma_3 W_T + \gamma_4 \ln A_0 W_T + \gamma_5 \ln A_0 E_T + \gamma_6 testAge + u$$

where:

- · In O_T : In-PIAT math score of a child
- · In A_0 : initial ability of the child, where:

$$\ln A_0 = \gamma_7 AFQT + \gamma_8 gender + \gamma_9 race
+ \gamma_{10} ageless 18 + \gamma_{11} edu$$

- · Y_T : accumulated family income during childhood.
- \cdot E_T : total quarters of mother's work during childhood.
- · W_T : total quarters of welfare use.
- u: unobserved characteristics.

Model

Econometric

Results
Sample Pattern

Results

Concluding Remarks

Model Specification - Cont.

- Marginal productivity of mother's decisions varies with innate ability, In A₀ (for example, Raquel (2007).
- For example,

$$\frac{\partial \ln O_T}{\partial W_T} = \gamma_3 + \gamma_4 \times \ln A_0. \tag{1}$$

Mode

Econometrics

Results
Sample Pattern

Results

Concluding Remarks

Econometric Concerns

- Correlation between mothers' work and welfare decisions and the unobserved heterogeneity raises the issue of omitted variables bias.
- We will instrument for W and E.

Mode

Econometrics

Results
Sample Patterns

Sample Patterns Results

Concluding Remarks

Econometric Concerns - Cont.

- IV we propose:
 - Predicted quarters of work and welfare use estimated from low-skilled married mothers.
- Why do we think it might work?

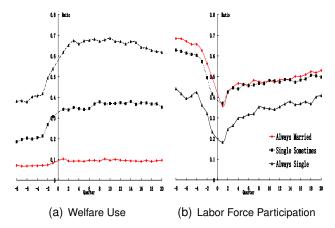
Mothers'
Decisions on
Children's
Attainments

Chyi and Ozturk

Motivation

Motivatio

....


Mode

Econometrics

Results
Sample Patte

Concluding

Decision Patterns of NLSY Low-Skilled Mothers Based on Marital Status

Use the diagnostic functions of **-ivreg2-** to examine the validity of IVs.

Motivation

Polatod

Mode

Econometrics

Results
Sample Pattern

Results

Concluding Remarks

Constructing the Instruments

- Assume a mother makes two decisions of work (h_t =0, 1) and welfare use (ω_t =0, 1) in each quarter.
- Let C_{ijt} represent utility from a single mother i's j_{th} alternative in quarter t,

$$C_{ijt} = \beta_i' Z_{it} + u_{ijt}$$

where:

- · j = 1 if mother chooses to $(h_t=0, \omega_t=0)$;
- · j = 2: $(h_t = 1, \omega_t = 0)$;
- j = 3: $(h_t = 0, \omega_t = 1)$, and j = 4: $(h_t = 1, \omega_t = 1)$.
- Following Keane and Wolpin (2002), Z includes all X as well as annual state welfare benefit rules estimated by Ziliak (2007) and county characteristics.
- Assuming u_{ijt} follows multivariate normal distribution, we can estimate this model using -mprobit-.

Motivatio

Mada

Econometrics

Results

Sample Pattern Results

Concluding Remarks

Constructing the Instruments - Cont.

Potential instruments are:

$$\hat{E} = \sum_{t=1}^{20} \widehat{\Pr}(h_t), \text{ and}$$

$$\hat{W} = \sum_{t=1}^{20} \widehat{\mathsf{Pr}}(\omega_t).$$

Motivation

....

Model

Econometrics

Results
Sample Patter

Sample Pattern Results

Concluding Remarks

- 1. Using two instruments (\hat{E} and \hat{W}) for two endogenous variables (W and E) means exact identification.
 - To be able to test for overidentification, we use:

$$\begin{array}{l} \sum_{t=1}^{20} \widehat{\Pr}(h_t=0,\; \omega_t=0),\; \sum_{t=1}^{20} \widehat{\Pr}(h_t=1,\; \omega_t=0),\\ \sum_{t=1}^{20} \widehat{\Pr}(h_t=0,\; \omega=1), \end{array}$$

as instruments.

Issues - Cont.

2. The model:

$$\begin{aligned} \ln O_T &= \ln A_0 + \gamma_1 \ln Y + \gamma_2 E_T + \gamma_3 W_T + \gamma_4 \ln A_0 W_T \\ &+ \gamma_5 \ln A_0 E_T + \gamma_6 \textit{testAge} + u, \end{aligned}$$

implies we potentially need to instruments for $(W, E, \ln A_0 W, \ln A_0 E)$, which can be impractical.

- We only instrument for W and E, but use the **-orthogonal-** option in **-ivreg2-** to test whether $\ln A_0 W$ and $\ln A_0 E$ are exogenous.
- 3. Use **-cluster-** to control for intra-family correlation in u

Concluding Remarks

Use **-nlsur-** to Estimate the Same Model

Another way to estimate the model is -nlsur-. Treat:

$$\begin{split} \ln O_T &= \ln A_0 + \gamma_1 \ln Y + \gamma_2 E_T + \gamma_3 W_T + \gamma_4 \ln A_0 W_T \\ &+ \gamma_5 \ln A_0 E_T + \gamma_6 \textit{testAge} + \textit{u} \\ E_T &= \textit{Z}'\textit{h} + \epsilon \\ W_T &= \textit{Z}'\omega + \nu \end{split}$$

as a system of simultaneous equations. We can estimate this model by a nonlinear estimation method.

Motivatio

Related

Marala

Econometric

Data and

Sample Patterns

Results

Remarks

Participation Pattern of the NLSY79 Low-Skilled Single Mothers

Child's age	Welfare	Part-time (300-1500)	Full-time (>=1500)
1	.67	.25	.17
	(.47)	(.43)	(.38)
2	.69	.31	.23
	(.46)	(.46)	(.42)
3	.70	.33	.25
	(.47)	(.47)	(.43)
4	.68	.34	.27
	(.47)	(.48)	(.44)
5	.65	.36	.28
	(.48)	(.48)	(.45)

[†] Conditional on work

Results

First-Stage Results for NLSY Test Scores

	Е	W
AFQT	.0031 (.0031)	.0122*** (.0044)
Gender	5366*** (.1057)	-1.3512*** (.2018)
Interaction Between E and	•	•
AFQT	0006**	0002
Gender	(.0002) .0679*** (.0072)	(.0002) .0314*** (.0104)
Internation Determine IV and		•
Interaction Between W and AFQT	0001	0009***
Gender	(.0002) .0013 (.0057)	(.0003) .1078*** (.0118)
Instrumento		
$\frac{\text{Instruments}}{\sum_{t=1}^{5} \widehat{\Pr}(h_t = 0, \ \omega_t = 0)}$.00001 (.0062)	0247** (.0098)
$\sum_{t=1}^{5} \widehat{\Pr}(h_t = 0, \ \omega_t = 1)$	0817*** (.0139)	.0656*** (.0148)
$\sum_{t=1}^{5} \widehat{\Pr}(h_t = 1, \ \omega_t = 0)$.5603*** (.1086)	3581*** (.0971)
F Test	.0000	.0000
No. of Obs.	1,833	1,833

[:] significant at 1% significance level. **: significant at 5% significance level.

Motivatio

Made

Economotr

Loonomoun

Results
Sample Pattern

Sample Pattern Results

Concluding Remarks

First Stage Instruments Validity - Correlation with Endogenous Variables

- Shea partial R^2 , partial R^2 , and F-test

Variable	Shea Partial R2	Partial R ²	F(4,1812)	P-value
E	.0305	.2345	58.11	.0000
W	.0610	.4681	100.17	.0000

 Tests of joint significance of coefficients of endogenous regressors in main equation and overidentifying restrictions

Anderson-Rubin Wald test $(F p$ -value)	3491.85 .0000
Anderson-Rubin Wald test $(\chi^2 p$ -value)	14129.27 .0000
Stock-Wright LM statistic $(\chi^2 p\text{-value})$	231.74 .0000

Underidentification Test

H ₀ : Model is unidentified	56.703
<i>p</i> -value	.0000

Motivatio

Literat

Mode

Econometri

Results
Sample Patterns
Results

Concluding Remarks

First Stage Instruments Validity - Cont.

	GMM2S	CUE
Weak Identification test H ₀ : Instruments are weak	10.049	10.049
Stock-Yogo weak ID test criti	cal values:	
5% maximal IV relative bias	11.04	
10% maximal IV relative bias	7.56	
20% maximal IV relative bias	5.57	
30% maximal IV relative bias	4.73	
10% maximal IV/LIML size	16.87	4.72
15% maximal IV/LIML size	9.93	3.39
20% maximal IV/LIML size	7.54	2.99
25% maximal IV/LIML size	6.28	2.79

Motivation

Related

Model

Econometric

Results

Sample Patterns Results

Concluding Remarks

First Stage Instruments Validity - Cont.

	GMM2S	CUE
Overidentification test		
H ₀ : Instruments are orthogonal to errors	7.638	7.736
<i>p</i> -value	.1058	.1013
Endogeneity Test		
H ₀ : OLS estimator is consistent with IV estimator	39.041	39.041
<i>p</i> -value	.0000	.0000

Motivatio

Made

Econometri

Results

Results

Concluding Remarks

Results for NLSY Test Scores

	GMM2S	CUE	-nlsur-
Ę	.1191***	.1223***	.104***
(γ_2)	(.0209)	(.0209)	(.0151)
W	.2894***	.2819***	.181***
(γ_3)	(.0180)	(.0177)	(.0086)
$\ln A_0 \times W$			0486***
$(\gamma_4)^{\circ}$			(.0010)
$\ln A_0 \times E$			0284***
(γ_5)			(.0013)
Initial Ability			
AFQT	0033**	0033**	0039*
(γ_7)	(.0016)	(.0016)	(.0016)
Gender	.4890***	.4731***	.392***
(γ_8)	(.0714)	(.0706)	(.0591)
(, 0 ,	,	` '	,

Interaction Between E and

AFQT .0001** .0001** (.0000)
Gender -.0125*** -.0122*** (.0024)

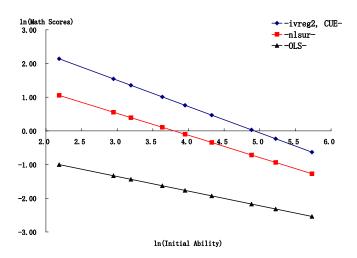
Interaction Between W and

AFQT .0003*** .0003*** (.0001) (.0001) Gender -.0303*** -.0289*** (.0046) (.0045) Mothers'
Decisions on
Children's
Attainments

Chyi and Ozturk

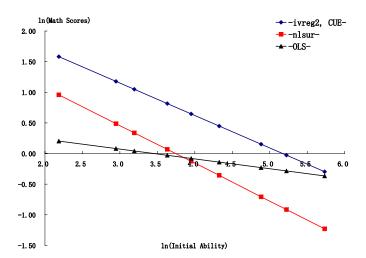
Motivation

Motivation


Model

Econometric

Results
Sample Pattern


Results

Total Effect of Welfare on Ability for a Median User (Welfare = 12 Quarters)

Results

Total Effect of Work on Ability for a Median User (Work=17 Quarters)

Model

Econometric

Sample Patter

Results

Concluding Remarks

Future Plans

- Incorporating longer-run results
- Separate effects of full- and part-time work