The consequences of misspecifying the random effects distribution when fitting generalized linear mixed models

John M. Neuhaus Charles E. McCulloch

Division of Biostatistics
University of California, San Francisco

Outline

(1) Motivation/Background
(2) Parameter estimation
(3) Prediction

Antibotic Rx Study in acute care (Gonzales et al, Academic Emergency Medicine 2006)

- Study objectives: 1) assess intervention to reduce inappropriate antibiotic prescription rates - Rx for antibiotic-nonresponsive conditions (e.g. acute bronchitis); 2) identify poorly performing providers
- Design: multiple responses from 720 providers (clusters)
- Large between-provider variability in RX rates \& cluster sizes - borrow strength between providers

Popular approach: Use estimated regression coefficients \& predicted random effects from GLMMs

Generalized Linear Mixed Models

$$
\begin{gathered}
Y_{i j} \mid b_{i}, X_{i j} \sim \text { GLM } \\
E\left(Y_{i j} \mid X_{i j}, b_{i}\right)=h^{-1}\left(\beta_{0}+b_{i}+\beta_{1} X_{i j}\right)
\end{gathered}
$$

$h(\cdot)$ link function, e.g. identity, logit, probit
$\mathrm{i}=1, \ldots, m$: subjects; $\quad \mathrm{j}=1, \ldots, n_{i}$: repeats per cluster
When $b \sim \mathrm{G}_{\mathrm{T}}, Y_{i 1}, \ldots, Y_{n_{i}}$ cond'ly indep given $b_{i} \& b_{i}$ indep of X
Likelihood: $\mathrm{L}\left(\beta, \mathrm{G}_{\mathrm{T}}\right)=\prod_{i=1}^{m} \int \prod_{j=1}^{n_{i}} f\left(Y_{i j} \mid b, X_{i j}\right) d G_{T}(b)$

Misspecified random effects distributions

G_{T} typically unknown \& we might assume $b \sim G_{F} \neq G_{T}$. Often $G_{F}=N\left(0, \sigma_{b}^{2}\right)$ (e.g. Stata default)

Two general forms of misspecified G_{T} :

- Incorrect distributional shape
- Incorrectly assuming b indep of X
(1) $E(b \mid X)=\mu_{M}(X)$, Neuhaus \& McCulloch (2006)
(2) $\operatorname{var}(b \mid X)=\mu_{V}(X)$, Heagerty \& Kurland (2001)

Worry about correctly specifying the shape of G_{T} ?

- Some say yes - Motivation for more flexible G_{F}, e.g. mixture of normals (Chen et al 2002), nonparametric G_{F} (Lesperance \& Kalbfleisch 1992) \& specification tests (Tchetgen \& Coull 2006)
- Others show little bias in "slopes", $\hat{\beta}_{1}$ (Neuhaus et al 1992)
- Little work on random effects prediction under misspecification

Bias with misspecified shape of G ?

Linear mixed effects model: $Y_{i j} \mid b_{i}=\beta_{0}+\sigma_{b} b_{i}+\beta_{1} X_{i j}+e_{i j}$
$b \perp e, b \sim G_{T}, E(b)=0, \operatorname{var}(b)=1, \operatorname{var}(e)=\sigma_{e}^{2}$
$\operatorname{cov}\left(Y_{i 1}, \ldots, Y_{i n_{i}}\right)=V=\sigma_{e}^{2} I+\sigma_{b}^{2} J$, indep of G_{T}
$E\left\{\hat{\beta}_{G L S}\right\}=E\left\{\left(X^{T} V^{-1} X\right)^{-1} X^{T} V^{-1} Y\right\}=\beta_{1}$, indep of G_{F}
Unbiased estimators of slopes, β_{1}, with misspecified shape

Assessing consequences of random effects misspecification

Follow theory on inference with misspecified models
(e.g. White 1994) - let $\xi=(\beta, \theta)$

$$
\text { True : } f_{T}\left(Y_{i} \mid X_{i} ; \xi\right)=\int \prod_{j=1}^{n_{i}} f\left(Y_{i j} \mid b, X_{i j} ; \beta\right) d G_{T}(b ; \theta)
$$

Fitted : $f_{F}\left(Y_{i} \mid X_{i} ; \xi^{*}\right)=\int \prod_{j=1}^{n_{i}} f\left(Y_{i j} \mid b, X_{i j} ; \beta^{*}\right) d G_{F}\left(b ; \theta^{*}\right)$
"MLE" $\hat{\xi}^{*} \rightarrow \xi^{*}$ minimizes $E_{X} E_{Y \mid X} \log \left\{f_{T}(y \mid X ; \xi) / f_{F}\left(y \mid X ; \xi^{*}\right)\right\}$ Kullback-Leibler Divergence

Misspecified models

Minimizing K-L Divergence wrt $\xi^{*}=\left(\xi_{1}^{*}, \ldots, \xi_{q}^{*}\right)$ yields
$E_{X} \int_{y} \lambda\left(y \mid X, \xi^{*}\right) \frac{\partial}{\partial \xi_{k}{ }^{*}}\left\{\int \prod_{j=1}^{n_{i}} f\left(Y_{i j} \mid b, X_{i j} ; \beta^{*}\right) d G_{F}\left(b ; \theta^{*}\right)\right\} d y=0$
where $\lambda\left(y \mid X, \xi^{*}\right)=f_{T}(Y=y \mid X, \xi) / f_{F}\left(Y=y \mid X, \xi^{*}\right)$

Note: ξ^{*} that yield $\lambda\left(y \mid X, \xi^{*}\right)=1 \forall X$ solve system
Can solve for ξ^{*} analytically in some simple cases, i.e. match fitted \& true densities at all points X

Matched pairs, solutions under misspecification

- For some link functions can find analytic solution with $\beta_{1}^{*}=\beta_{1}$, but $\beta_{0}^{*} \neq \beta_{0} \& \sigma^{*} \neq \sigma$
- Special cases: $\hat{\beta}_{1}^{*}$ consistent, but $\hat{\beta}_{0}^{*} \& \hat{\sigma}^{*}$ inconsistent when $G_{F} \neq G_{T}$

Logistic link

- Binary matched pairs - when G_{F} generates a wide range of $\operatorname{pr}\left(y_{1}, y_{2}\right)$ (e.g. $G_{F}=$ Normal) $\hat{\beta}_{1}^{*}$ is consistent (\&
$\left.\hat{\beta}_{1}^{*} \equiv \hat{\beta}_{C M L}\right)($ Neuhaus et al 1994)
- G_{F} unspecified, $\hat{\beta}_{1}^{*} \equiv \hat{\beta}_{C M L}$ (Lindsay et al 1991)
- General X - when true $\beta_{1}=0, \beta_{1}^{*}=0$ solves Kullback-Leibler minimizing equations $\Rightarrow \widehat{\beta}_{1}^{*}$ consistent

Typically cannot solve Kullback-Leibler system analytically

Numerical solution of Kullback-Leibler equations

- Numerically find ξ^{*} that minimizes $E_{X} E_{Y \mid X} \log \left\{f_{T}(y \mid \xi, X) / f_{F}\left(y \mid \xi^{*}, X\right)\right\}$ using routines in R
- Numerically evaluate integrals
- Numerically minimize Kullback-Leibler divergence
- Allows evaluation of bias over wide range of parameter values, random effect \& covariate distributions

Numerical assessment of bias

True: logit $\left\{p r\left(Y_{i j}=1 \mid X_{i j}, b_{i}\right)\right\}=\beta_{0}+\sigma b_{i}+\beta_{1} X_{i j}$
True $G_{T}: b \sim \exp (1)$, shifted to $E(b)=0$
Fitted $G_{F}: b \sim N(0,1)$
X varied within clusters $X=(0, .25, .5, .75,1), n_{i}=5$
Range of parameter values:
$\beta_{0}:(-3,-1)$ by $0.1 \quad \beta_{1}:(0.5,2)$ by $0.1 \quad \sigma:(0.2,2.5)$ by 0.1
Numerically solved for $\beta_{0}^{*}, \beta_{1}^{*}, \sigma^{*}$ that minimize Kullback-Leibler divergence

Logistic link - further results

- Find approximate solution of Kullback-Leibler equations using Taylor series methods (Neuhaus et al 1992)
- Approximate solution \& simulations indicate $E\left(\hat{\beta}_{1}\right) \approx \beta_{1}$ when G_{T} misspecified, but biased $\hat{\beta}_{0} \& \hat{\sigma}_{b}$

Antibiotic Rx of acute respiratory infections

- Study objective: assess intervention to reduce inappropriate antibiotic prescription rates - Rx for antibiotic-nonresponsive conditions (e.g. acute bronchitis)
- Cluster: visits to a provider for antibiotic-nonresponsive conditions - number of visits varied from 1 to 71
- Design: Baseline $Y \rightarrow$ intervention \rightarrow Post- Y
- Binary outcome: prescribed antibiotics for nonresponsive conditions (yes/no) - measured at each visit
- Covariates: intervention, time, time*intervention, provider type, illness duration prior to visit

Antibiotic Rx study - Fitted models

- logit $\operatorname{pr}\left(Y_{i j}=1 \mid b, X_{i j}\right)=\beta_{0}+\exp \left(\log \sigma_{b}\right) b+\beta_{1} X_{i j}$ where $b \sim G$ with $E(b)=0, \operatorname{Var}(b)=1$
- $G_{1}=\mathrm{N}(0,1)$
- $G_{2}=$ Exponential (1) standardized to $E(b)=0$
- $G_{3}=$ Nonparametric, 4 support points (GLLAMM)

Antibiotic Rx study - Results

Estimated parameters from mixed-effects logistic models with different random effects distributions

$$
\hat{\beta},(\mathrm{SE})
$$

G	β_{0}	TREAT	TIME	TRT*TIME	$\log \sigma_{b}$
Normal	-1.06	0.66	0.56	-0.52	0.09
	(0.53)	(0.32)	(0.32)	(0.20)	(0.08)
Exponential	-0.92	0.72	0.55	-0.53	0.14
	(0.52)	(0.31)	(0.31)	(0.19)	(0.09)
NP (4)	-1.01	0.66	0.59	-0.55	0.02
	(0.51)	(0.32)	(0.31)	(0.19)	

Summary for fixed effects estimation

(1) Misspecifying shape of G_{T} yields accurate "slopes" $\hat{\beta}_{1}$ over wide range of $\beta_{0}, \sigma_{b}^{2}$
(2) Misspecifying shape of G_{T} can yield biased estimates of $\beta_{0} \& \sigma_{b}^{2}$

- \%bias in $\hat{\beta}_{0} \uparrow$ with σ_{b}^{2} \& can be substantial
- \% bias in $\hat{\sigma}$ can also be large
(0) When interest focuses on slope parameters, misspecifying shape has little effect on bias

Prediction of random effects

- Useful method: Predict b by \tilde{b} that minimize

$$
E[\tilde{b}-b]^{2}=\iint(\tilde{b}-b)^{2} f(b, y) d y d b
$$

where $f(b, y)$ is the joint density of $b \& y_{1}, \ldots, y_{n}$

- Can show: $\tilde{b}_{i}=E\left(b_{i} \mid y_{i 1}, \ldots, y_{i n_{i}}\right)$
- Depends on $f(b, y)$, hence on G
- Misspecifying G may produce inaccurate \tilde{b}

Linear Mixed-Effects Model

$Y_{i j}=\beta_{0}+b_{i}+\beta_{1} X_{i j}+\epsilon_{i j}, \quad i=1, \ldots, m ; j=1, \ldots, n_{i}$
$b_{i} \sim N\left(0, \sigma_{b}^{2}\right), \epsilon_{i j} \sim N\left(0, \sigma_{\epsilon}^{2}\right)$
Estimated BLUP: Estimated $\tilde{b}=\hat{b}_{i}=\hat{D}_{i} Z_{i}^{T} \hat{V}_{i}^{-1}\left(y_{i}-X_{i} \hat{\beta}\right)$
$\hat{D}_{i}=\hat{\operatorname{Cov}}\left(b_{i}\right) \hat{V}_{i}=\hat{\operatorname{var}}\left(y_{i}\right)$
Expression depends on joint normality of $b \& y$
Misspecification of distribution of b may produce inaccurate \tilde{b}

Theory for Linear Mixed-Effects Model (simple case)

$Y_{i j}=\mu+b_{i}+\epsilon_{i j}, \quad i=1, \ldots, m ; j=1, \ldots, n_{i}$
$b_{i} \sim N\left(0, \sigma_{b}^{2}\right), \epsilon_{i j} \sim N\left(0, \sigma_{\epsilon}^{2}\right), \epsilon_{i j} \perp b_{i}, \mu, \sigma_{b}^{2}, \sigma_{\epsilon}^{2}$ known
Best Linear Unbiased Predictor (BLUP) is \tilde{b}_{i} that minimizes $E\left[\left(\tilde{b}_{i}-b_{i}\right)^{2}\right]$

Simple calculations show that

$$
\tilde{b}_{i}=E\left[b_{i} \mid y\right]=\frac{\sigma_{b}^{2}}{\sigma_{b}^{2}+\sigma_{\epsilon}^{2} / n_{i}}\left(\bar{Y}_{i .}-\mu\right)=\frac{\sigma_{b}^{2}}{\sigma_{b}^{2}+\sigma_{\epsilon}^{2} / n_{i}}\left(b_{i}+\bar{\epsilon}_{i .}\right)
$$

Theory for LME (cont.)

Conditional on b_{i}, the $Y_{i j}$ are independent $N\left(\mu+b_{i}, \sigma_{\epsilon}^{2}\right)$

$$
\tilde{b}_{i} \left\lvert\, b_{i} \sim N\left\{\mu_{\tilde{b}}=\frac{\sigma_{b}^{2}}{\sigma_{b}^{2}+\sigma_{\epsilon}^{2} / n_{i}} b_{i},\left(\frac{\sigma_{b}^{2}}{\sigma_{b}^{2}+\sigma_{\epsilon}^{2} / n_{i}}\right)^{2} \frac{\sigma_{\epsilon}^{2}}{n_{i}}\right\}\right.
$$

Thus, \tilde{b}_{i} is conditionally biased
However, since calculations are $\mid b_{i}$, result does not depend on distribution of b_{i}
i.e. conditional bias does not depend on distribution of b_{i}

Features of \tilde{b}_{i}

As $n_{i} \rightarrow \infty$,

$$
\tilde{b}_{i}=\frac{\sigma_{b}^{2}}{\sigma_{b}^{2}+\sigma_{\epsilon}^{2} / n_{i}}\left(b_{i}+\bar{\epsilon}_{i \cdot}\right) \rightarrow \frac{\sigma_{b}^{2}}{\sigma_{b}^{2}}\left(b_{i}+0\right)=b_{i}
$$

$\Rightarrow \tilde{b}_{i}$ converges to true value as $n_{i} \rightarrow \infty$
Such asymptotics typically not of interest, rather as $m \rightarrow \infty$

Density of \tilde{b}_{i}

What does the density of \tilde{b}_{i} look like?

Also, what if \tilde{b}_{i} misspecified to be normal?
 If n_{i} large, then each $\tilde{b}_{i} \approx b_{i} \Rightarrow$ density is approximately correct, irrespective of assumed density
 What if n_{i} not large, usual case of interest?
 Then density of \tilde{b}_{i} is convolution of true density of b_{i} with the conditional density of \tilde{b}_{i} given b_{i}

Density of \tilde{b}_{i}

What does the density of \tilde{b}_{i} look like?
Also, what if \tilde{b}_{i} misspecified to be normal?
If n_{i} large, then each $\tilde{b}_{i} \approx b_{i} \Rightarrow$ density is approximately correct, irrespective of assumed density

What if n, not large, usual case of interest?
Then density of \tilde{b}_{i} is convolution of true density of b_{i} with the conditional density of \tilde{b}_{i} given b_{i}

Density of \tilde{b}_{i}

What does the density of \tilde{b}_{i} look like?
Also, what if \tilde{b}_{i} misspecified to be normal?
If n_{i} large, then each $\tilde{b}_{i} \approx b_{i} \Rightarrow$ density is approximately correct, irrespective of assumed density

What if n_{i} not large, usual case of interest?
Then density of \tilde{b}_{i} is convolution of true density of b_{i} with the conditional density of \tilde{b}_{i} given b_{i}

Density of \tilde{b}_{i}

What does the density of \tilde{b}_{i} look like?
Also, what if \tilde{b}_{i} misspecified to be normal?
If n_{i} large, then each $\tilde{b}_{i} \approx b_{i} \Rightarrow$ density is approximately correct, irrespective of assumed density

What if n_{i} not large, usual case of interest?
Then density of \tilde{b}_{i} is convolution of true density of b_{i} with the conditional density of \tilde{b}_{i} given b_{i}

Density of \tilde{b}_{i} (cont)

Suppose $b_{i} \sim$ Exponential(1), shifted so that $E\left(b_{i}\right)=0$
Density of \tilde{b}_{i} (under normal assumption) is

$$
\int_{0}^{\infty} \exp \left\{-\left(\tilde{b}-\mu_{\tilde{b}}\right)^{2} n_{i} /\left(2 \sigma_{\epsilon}^{2}\right)\right\} \exp (-\tilde{b}-1) d \tilde{b}
$$

Straightforward to evaluate numerically

Plot of BLUP Densities for Cluster Size 2

Plot of BLUP Densities for Cluster Size 4

Plot of BLUP Densities for Cluster Size 6

Plot of BLUP Densities for Cluster Size 8

Plot of BLUP Densities for Cluster Size 10

Plot of BLUP Densities for Cluster Size 16

Plot of BLUP Densities for Cluster Size 20

BLUP density plot findings

- Density of BLUPs inherits much of its shape from assumed density
- Doesn't reflect shape of true density of the random effects until cluster sizes get large

Best Predicted values

Under LME, with $e_{i j} \sim N\left(0, \sigma_{e}^{2}\right)$, \& true density $f_{b_{i}}\left(b_{i}\right)$,

$$
\tilde{b}_{i}=\mathrm{E}\left[b_{i} \mid \mathbf{Y}_{i}\right]=\frac{\int_{-\infty}^{\infty} b_{i} \exp \left\{-\frac{n_{i}}{2 \sigma_{i}^{2}}\left(\nu_{i}-b_{i}\right)^{2}\right\} f_{b_{i}}\left(b_{i}\right) d b_{i}}{\int_{-\infty}^{\infty} \exp \left\{-\frac{n_{i}}{2 \sigma_{\epsilon}^{2}}\left(\nu_{i}-b_{i}\right)^{2}\right\} f_{b_{i}}\left(b_{i}\right) d b_{i}}
$$

where $\nu_{i}=\left(\bar{Y}_{i .}-\overline{\mathbf{x}}_{j}^{\prime}, \boldsymbol{\beta}\right)$
Given ν_{i}, compute \tilde{b}_{i} for various true $f_{b_{i}}\left(b_{i}\right)$: Normal, T_{3}, Exponential (1), Mixture of Normals

BP plots

Order preservation for LME

Can show $\frac{\partial \tilde{b}_{i}}{\partial \nu_{i}}>0$ for any $f_{b_{i}}\left(b_{i}\right) \Rightarrow$ transformation $\nu_{i} \rightarrow \tilde{b}_{i}$ monotone

Given n_{i}, BP's under any assumed f ordered based on ν_{i}

- Let $f_{1}\left(b_{i}\right), f_{2}\left(b_{i}\right)$ denote assumed random effects densities
- $\tilde{b}_{i 1}\left(\nu_{i}\right) \& \tilde{b}_{i 2}\left(\nu_{i}\right)$, predictions from each value ν_{i}
- Order the pairs $\left[\tilde{b}_{i 1}\left(\nu_{i}\right), \tilde{b}_{i 2}\left(\nu_{i}\right)\right]$ by ν_{i}
- Since $\frac{\partial \tilde{b}_{i}}{\partial \nu_{i}}>0$, pairs also ordered by $\tilde{b}_{i 1}\left(\nu_{i}\right) \& \tilde{b}_{i 2}\left(\nu_{i}\right)$.
- Thus, all pairs concordant \& Kendall's τ between $\tilde{b}_{i 1}\left(\nu_{i}\right)$ and $\tilde{b}_{i 2}\left(\nu_{i}\right)$ is 1

Mean square error of prediction

Given $\sigma_{b}^{2}, \sigma_{e}^{2}$, we calculated \tilde{b} assuming

- $b \sim N(0,1)$
- $b \sim$ Exponential
- $b \sim$ Mixture of two $\mathrm{N}(0,1)$

Using expressions for \tilde{b} we calculated $\mathrm{MSE}=\mathrm{E}\left[(\tilde{b}-b)^{2}\right]$ for various true $f_{b}(b)$ using numerical integration

True Gaussian Random Effects

True Exponential Random Effects

True Mixture Random Effects

Assumed distributions: Solid line/square=Gaussian, dotted line/circle=Exponential, dashed line/ $\times=$ Mixture

Simulations

Evaluate performance of BP's when all parameters estimated
Two true \& assumed $f(b)$, i.e. 4 true/assumed settings

- $b \sim N(0,1)$
- $b \sim \operatorname{Tukey}(g=0.5, h=0.1)$
- Linear mixed effects \& mixed effects logistic models
- Linear predictor: $\eta_{i j}=-2+b_{i}+x_{\text {between }}+x_{\text {within }}$
- $\sigma_{b}^{2}=1, \sigma_{e}^{2}=1$ for LME
- Calculated $M \hat{S} E=(1 / m K) \sum_{k=1}^{K} \sum_{i=1}^{m}\left(\tilde{b}_{k i}-b_{k i}\right)^{2}$
- $K=1000, m=100$, cluster sizes $=2,4,6,10,20,40$

Percentiles of $N(0,1)$ \& standardized Tukey(0.5,0.1)

Percentile		$\mathrm{N}(0,1)$	Standardized Tukey $(0.5,0,1)$
	$.1 \%$	-3.09	-1.89
1%		-2.33	-1.40
2.5%		-1.96	-1.21
5%		-1.64	-1.06
10%		-1.28	-0.89
50%		0	-0.21
90%		1.28	1.09
95%		1.64	1.73
97.5%		1.96	
99%		2.33	
99.9%		3.09	

Assumed distributions: Solid line/square=Gaussian, dotted line/circle=Tukey

Antibiotic Rx study - Fitted models

Objective: identify poorly performing providers (i.e. large predicted random effects)

- logit $\operatorname{pr}\left(Y_{i j}=1 \mid b, X_{i j}\right)=\beta_{0}+\exp \left(\log \sigma_{b}\right) b+\beta_{1} X_{i j}$
- where $b \sim G$ with $E(b)=0, \operatorname{Var}(b)=1$
- $G_{1}=\mathrm{N}(0,1)$
- $G_{2}=$ Exponential (1) standardized to $E(b)=0$
- Compute \tilde{b} that maximizes

$$
\log \left\{f\left(y_{i 1}, \ldots, y_{i n_{i}} \mid X_{i 1}, \ldots, X_{i n_{i}}, \beta, b_{i}\right) g\left(b_{i} \mid \theta\right)\right\}
$$

- Fit models using PROC NLMIXED in SAS

Predicted random effects from normal \& exponential

Summary of effects on prediction

(1) Predicted values of random effects show modest sensitivity to assumed distributional shape.
(2) Distribution shape of BLUPs often not reflective of true random effects distribution.
(3) Ranking of predicted values is little affected.
((Misspecified shape can produce modest increases in MSE of prediction.

Summary

Misspecifying the shape of the random effects produces

- little bias in estimated covariate effects
- slight deterioration in random effects prediction.

Stata default of $b \sim \mathrm{~N}\left(0, \sigma_{b}^{2}\right)$ yields accurate estimates of covariate effects \& reasonably precise predicted random effects

