Estimating Markov-switching regression models in Stata

Ashish Rajbhandari

Senior Econometrician

StataCorp LP
Stata Conference 2015

ARMA models

- Time series data are autocorrelated due to the dependence with past values.
- Autoregressive moving average (ARMA) class of models is a popular tool to model such autocorrelations.
- The AR part models the current value as a weighted average of past values with some error.

$$
y_{t}=\phi y_{t-1}+\varepsilon_{t}
$$

where

- y_{t} is the observed series
- ϕ is the autoregressive parameter
- ε_{t} is an IID error with mean 0 and variance σ^{2}

ARMA $(1,1)$ model

- The MA part models the current value as a weighted average of past errors.

$$
y_{t}=\varepsilon_{t}+\theta \varepsilon_{t-1}
$$

where θ is the moving average parameter.

- The AR and MA models generate completely different autocorrelations.
- Combining these lead to a flexible way to capture various correlation patterns observed in time series data.

$$
y_{t}=\phi y_{t-1}+\varepsilon_{t}+\theta \varepsilon_{t-1}
$$

Linear ARMA models

- Current value of the series is linearly dependent on past values
- The parameters do not change throughout the sample
- This precludes many interesting features observed in the data

Examples

- In economics, the average growth rate of gross domestic product (GDP) tend to be higher in expansions than in recessions. Furthermore, expansions tend to last longer than recessions
- In finance, stock returns display periods of high and low volatility over the course of years
- In public health, incidence of infectious disease tend be different under epidemic and non-epidemic states

Nonlinear models

- In all these examples, the dynamics are state-dependent.
- The states may be recession and expansion, high volatility and low volatility, or epidemic and non-epidemic states
- Parameters may be changing according to the states
- Nonlinear models aim to characterize such features observed in the data

Markov-switching model

- Hamilton (1989)
- Finite number of unobserved states
- Suppose there are two states 1 and 2
- Let s_{t} denote a random variable such that $s_{t}=1$ or $s_{t}=2$ at any time
- s_{t} follows a first-order Markov process
- Current value of s_{t} depends only on the immediate past value
- We do not know which state the process is in but can only estimate the probabilities
- The process can switch between states repeatedly over the sample

Features

- Estimate the state-dependent parameters
- Estimate transition probabilities
- $P\left(s_{t}=j \mid s_{t-1}=i\right)=p_{i j}$
- Probability of transitioning from state i to state j
- Estimate the expected duration of a state
- Estimate state-specific predictions

Background

- Consider the following state-dependent $\operatorname{AR}(1)$ model

$$
y_{t}=\mu_{s_{t}}+\phi_{s_{t}} y_{t-1}+\varepsilon_{t}
$$

where $\varepsilon_{t} \sim N\left(0, \sigma_{s_{t}}^{2}\right)$

- s_{t} is discrete and denotes the state at time t
- The parameters μ, ϕ, and σ^{2} are state-dependent
- The number of states are imposed apriori
- For example, a two-state model can be expressed as

$$
y_{t}= \begin{cases}\mu_{1}+\phi_{1} y_{t-1}+\varepsilon_{t, 1} & \text { if } s_{t}=1 \\ \mu_{2}+\phi_{2} y_{t-1}+\varepsilon_{t, 2} & \text { if } s_{t}=2\end{cases}
$$

Assumptions on the state variable

- Recall the two-state model

$$
y_{t}= \begin{cases}\mu_{1}+\phi_{1} y_{t-1}+\varepsilon_{t, 1} & \text { if } s_{t}=1 \\ \mu_{2}+\phi_{2} y_{t-1}+\varepsilon_{t, 2} & \text { if } s_{t}=2\end{cases}
$$

- If the timing when the process switches states is known, we could
- Create indicator variables to estimate the parameters in different states.
- For example economic crisis may alter the dynamics of a macroeconomic variable.

States are unobserved

- s_{t} is drawn randomly every period from a discrete probability distribution
- Switching regresssion model
- The realization of s_{t} at each period are independent from that of the previous period
- s_{t} follows a first-order Markov process
- The current realization of the state depends only on the immediate past
- s_{t} is autocorrelated

mswitch regression command in Stata

- Markov-switching autoregression
mswitch ar depvar [nonswitch_varlist] [if] [in], ar(numlist) [options]
- Markov-switching dynamic regression mswitch dr depvar [nonswitch_varlist] [if] [in] [, options]

MSAR with 4 lags

- Hamilton (1989) models the quarterly growth rate of real GNP as a two state model
- The dataset spans the period 1951q1-1984q4
- The states are expansion and recession

$$
\begin{gathered}
\mathrm{rgnp}_{t}=\mu_{s_{t}}+\phi_{1}\left(\mathrm{rgnp}_{t-1}-\mu_{s_{t-1}}\right)+\phi_{2}\left(\mathrm{rgnp}_{t-2}-\mu_{s_{t-2}}\right)+ \\
\phi_{3}\left(\mathrm{rgnp}_{t-3}-\mu_{s_{t-3}}\right)+\phi_{4}\left(\mathrm{rgnp}_{t-4}-\mu_{s_{t-4}}\right)+\varepsilon_{t}
\end{gathered}
$$

Quarterly growth rate of US RGNP

Figure : Quarterly growth rate of US RGNP

Markov-switching autoregression

. mswitch ar rgnp, ar(1/4) nolog						
Performing gradient-based optimization:						
Markov-switching autoregression						
Sample: 1952q2 - 1984q4				No. of		131
Number of states $=2$				AIC		2.9048
Unconditional probabilities: transition				HQIC		2.9851
				SBIC		3.1023
Log likelihood $=-181.26339$						
rgnp	Coef.	Std. Err.	z	$\mathrm{P}>\|z\|$	[95\% Conf	Interval]
rgnp						
ar						
L1.	. 0134871	. 1199941	0.11	0.911	-. 2216971	. 2486713
L2.	-. 0575212	. 137663	-0.42	0.676	-. 3273357	. 2122933
L3.	-. 2469833	. 1069103	-2.31	0.021	-. 4565235	-. 037443
L4.	-. 2129214	. 1105311	-1.93	0.054	-. 4295583	. 0037155
State1						
_cons	-. 3588127	. 2645396	-1.36	0.175	-. 8773007	. 1596753
State2						
_cons	1.163517	. 0745187	15.61	0.000	1.017463	1.309571
sigma	. 7690048	. 0667396			. 6487179	. 9115957
p11	. 754671	. 0965189			. 5254555	. 8952432
p21	. 0959153	. 0377362			. 0432569	. 1993221

Transition probabilities

- State 1 is recession and State 2 is expansion.
- Let P denote a transition probability matrix for 2 states. The elements of P are

$$
P=\left[\begin{array}{ll}
p_{11} & p_{12} \\
p_{21} & p_{22}
\end{array}\right]=\left[\begin{array}{cc}
0.75 & 0.25 \\
0.1 & 0.9
\end{array}\right]
$$

such that $\sum_{j} p_{i j}=1$ for $i, j=1,2$.

- p_{11} denotes the probability of transitioning to recession in the next period given that the current state is in recession.

Predicting the probability of recession

Figure: Probability of recession

Expected duration

- Compute the expected duration the series spends in a state
- Let D_{i} denote the duration of state i
- D_{i} follows a geometric distribution
- The expected duration is

$$
E\left[D_{i}\right]=\frac{1}{1-p_{i i}}
$$

- The closer $p_{i i}$ is to 1 , the higher is the expected duration of state i

Estimating duration of a state

. estat duration
Number of obs $=131$

Expected Duration	Estimate	Std. Err.	[95\% Conf. Interval]	
State1	4.076159	1.603668	2.107284	9.545916
State2	10.42587	4.101873	5.017005	23.11772

Equivalent AR specifications

- Consider the following equivalent $\operatorname{AR}(1)$ models:

$$
\begin{aligned}
y_{t}-\delta & =\phi\left(y_{t-1}-\delta\right)+\varepsilon_{t} \\
y_{t} & =\mu+\phi y_{t-1}+\varepsilon_{t}
\end{aligned}
$$

- The unconditional means for the above models are related: $\delta=\frac{\mu}{1-\phi}$

MSAR and MSDR specifications

- This equivalence is not possible if the mean is state-dependent

$$
\begin{align*}
& y_{t}=\delta_{s_{t}}+\phi\left(y_{t-1}-\delta_{s_{t-1}}\right)+\varepsilon_{t} \tag{AR}\\
& y_{t}=\mu_{s_{t}}+\phi y_{t-1}+\varepsilon_{t}
\end{align*}
$$

(DR)

- A one time change in the state leads to an immediate shift in the mean level in the AR specification.
- A one time change in the state leads to the mean level changing smoothly over several time periods in the DR specification.

State vector of MSAR

- The observed series depends on the value of states at time t and $t-1$.
- A two-state Markov process becomes a four-state Markov process.
- In general, AR specification increases the state vector by the factor K^{p+1}, where p is the number of lags.
- Used for modeling data with smaller frequency such as quarterly, annual, etc.

Markov-switching model of interest rates

Figure : Short term interest rate

Estimating interest rates

- Estimate using data for the period 1955q3-2005q4
- Assume the following specification for interest rates

$$
\text { intrate }_{t}=\mu_{s_{t}}+e_{s_{t}}
$$

where

- intrate is the interest rate
- $e_{s_{t}} \sim N\left(0, \sigma_{s_{t}}^{2}\right)$
- μ and σ^{2} is state-dependent

Estimate the model using mswitch dr

. mswitch dr intrate, varswitch nolog Performing EM optimization:						
Performing gradient-based optimization:						
Markov-switching dynamic regression						
Sample: 1954q3 - 2005q4				No. of		206
Number of states $=2$				AIC		4.4078
Unconditional probabilities: transition				HQIC		4.4470
				SBIC		4.5048
Log likelihood $=-448.00658$						
intrate	Coef.	Std. Err.	z	$P>\|z\|$	[95\% Conf. Interval]	
State1						
_cons	2.650457	. 1260721	21.02	0.000	2.40336	2.897554
State2						
_cons	7.445134	. 2649754	28.10	0.000	6.925792	7.964477
sigma1	. 9704124	. 0880692			. 8122805	1.159329
sigma2	2.958272	. 1824307			2.621478	3.338336
p11	. 9789357	. 0160089			. 9102967	. 9953235
p21	. 0193584	. 0116402			. 0059	. 0616132

Predicted probability of State 2

Figure: Predicted probabilities using MSDR model

Dynamic forecasting with MSAR

- Estimate using data for the period 1955q3-1999q4
- Assume the following specification for interest rates

$$
\text { intrate }_{t}=\mu_{s_{t}}+\rho \text { intrate }_{t-1}+\phi_{s_{t}} \text { inflation }_{t}+\gamma_{s_{t}} \text { ogap }_{t}+e_{t}
$$

where

- intrate is the interest rate
- inflation is the inflation rate
- ogap is the output gap
- $e_{t} \sim N\left(0, \sigma^{2}\right)$
- ρ is constant
- μ, ϕ, and γ are state-dependent
- Out-of-sample forecasting from period 2000q1-2007q1

Estimate the model using mswitch dr

. mswitch dr intrate L.intrate if tin(,1999q4), switch(inflation ogap) nolog Performing EM optimization:						
Performing gradient-based optimization:						
Markov-switching dynamic regression						
Sample: 1955q3 - 1999q4				No. of		178
Number of states $=2$				AIC		2.3301
Unconditional probabilities: transition				HQIC		2.4025
				SBIC		2.5088
Log likelihood $=-197.375$						
intrate	Coef.	Std. Err.	z	$\mathrm{P}>\|\mathrm{z}\|$	[95\% Conf	Interval]
intrate intrate L1.	. 8503947	. 0991269	8.58	0.000	. 6561096	1.04468
State1						
inflation	-. 0392848	. 1298901	-0.30	0.762	-. 2938646	. 215295
ogap	. 1473233	. 0528794	2.79	0.005	. 0436816	. 250965
_cons	. 7403998	. 2041607	3.63	0.000	. 3402522	1.140547
State2						
inflation	. 2688704	. 0798215	3.37	0.001	. 1124232	. 4253177
ogap	-. 0075103	. 0856139	-0.09	0.930	-. 1753105	. 1602899
_cons	. 2173127	. 4685576	0.46	0.643	-. 7010433	1.135669
sigma	. 6138084	. 0367645			. 54582	. 6902655
p11	. 7459455	. 2512815			. 1792104	. 9752993
p21	. 2061723	. 0956226			. 0763309	. 4494157

Out-of-sample dynamic forecasts

Figure: Forecasts using MSDR model

Thank you!

Hamilton, J. D. (1989), 'A new approach to the economic analysis of nonstationary time series and the business cycle', Econometrica 57(2), 357-384.

