Estimating Treatment Effects for Ordered Outcomes Using Maximum Simulated Likelihood

Christian A. Gregory

Economic Research Service, USDA

Stata Users Conference, July 30-31, Columbus OH

The views expressed are those of the author and should not be attributed to ERS or USDA.

Background and Motivation

- ordered outcomes ubiquitous in social sciences
- used in many circumstances with latent variables
 - health status
 - injury severity
 - political preferences
 - disability status
 - grades
 - food security status
- Greene and Hensher (2010) provide a comprehensive overview

Background and Motivation

- How to handle ordered outcomes in context of bivariate treatment?
- Depends upon beliefs about unobservables:
 - unobservables in participation and outcome uncorrelated, use teffects
 - correlated unobservables: use glamm or ssm (Miranda and Rabe-Hesketh, 2006)
- Concerns
 - joint normality violated estimates biased and inconsistent
 - quadrature routine in gllamm and ssm can be slow to converge
- Bayesian methods: Munkin and Trivedi (2008), Deb et al. (2006), Li and Tobias (2008), Li and Tobias (2014)

Background and Motivation

- A strategy: specify unobservables as latent factor (Aakvik et al., 2005).
- Advantages
 - can be specified as entering into treatment/outcome linearly
 - latent factor can follow any continuous distribution
 - current application: use halton-sequence Monte Carlo draws to improve in speed
- This method has been advantageous when outcomes are known not to follow normal distribution (Deb and Trivedi, 2006)
- We use it here to offer same flexibility for situation in which treatment and outcome belived to be marginally normal.

Where We Are Going

- Four estimators
- Model
- Latent Factor Approach
- Syntax
- Monte Carlo Results
- Examples
- Helpful Hints

Four estimators

Error Structure	Outcome Regime				
	Single	Treated/Untreated			
Bivariate Normal	treatoprobit	switchoprobit			
Latent Factor	treatoprobitsim	switchoprobitsim			

Model

For both models, we represent the treatment in the following away.

$$T_i = \begin{cases} 1 & \text{if } T_i^* = Z_i \gamma + \upsilon_i > 0 \\ 0 & \text{if } T_i^* = Z_i \gamma + \upsilon_i \le 0 \end{cases}$$

• Treatment effects model assumes a single regime for outcome:

$$Y_i = \left\{ \begin{array}{ll} 1 & \text{if } -\infty < X_i\beta + \varepsilon_i \leq \mu_1 \\ 2 & \text{if } \mu_1 < X_i\beta + \varepsilon_i \leq \mu_2 \\ & \dots \\ J-1 & \text{if } \mu_{J-1} < X_i\beta + \varepsilon_i \leq \mu_J \\ J & \text{if } \mu_J < X_i\beta + \varepsilon_i \leq \infty \end{array} \right.$$

Model

• Endogenous switching, separate regimes for treated and untreated:

$$Y_{0i} = \left\{ \begin{array}{ll} 1 & \text{if } -\infty < X_{0i}\beta_0 + \varepsilon_{0i} \leq \mu_{01} \\ 2 & \text{if } \mu_{01} < X_{0i}\beta_0 + \varepsilon_{0i} \leq \mu_{02} \\ & \dots \\ J-1 & \text{if } \mu_{0J-1} < X_{0i}\beta_0 + \varepsilon_{0i} \leq \mu_{0J} \\ J & \text{if } \mu_{0J} < X_{0i}\beta_0 + \varepsilon_{0i} \leq \infty \end{array} \right.$$

$$Y_{1i} = \left\{ \begin{array}{ll} 1 & \text{if } -\infty < X_{1i}\beta_1 + \varepsilon_{1i} \leq \mu_{11} \\ 2 & \text{if } \mu_{11} < X_{1i}\beta_1 + \varepsilon_{1i} \leq \mu_{12} \\ & \dots \\ J-1 & \text{if } \mu_{1J-1} < X_{1i}\beta_1 + \varepsilon_{1i} \leq \mu_{1J} \\ J & \text{if } \mu_{1J} < X_{1i}\beta_1 + \varepsilon_{1i} \leq \infty \end{array} \right.$$

• for j=1...J possible outcomes and where the index $Y_{i,+}^*=X_{i,+}eta+arepsilon_{i,+}$

- Latent Factor Approach Conventionally, assume that v and $\varepsilon \sim \Phi_2(0,1)$
 - We reformulate the model such that

$$v_i = \lambda_T \eta_i + \zeta_i$$

$$\varepsilon_i = \lambda_Y \eta_i + \iota_i,$$
(1)

for treatment effects model, or

$$v_i = \lambda_T \eta_i + \zeta_i$$

$$\varepsilon_{i0} = \lambda_{Y0} \eta_{i0} + \iota_{i0}$$
 (2)

$$\varepsilon_{i1} = \lambda_{Y1}\eta_{i1} + \iota_{i1} \tag{3}$$

for the switching model, where we assume that the marginal distributions of ζ and ι are normal, but that η need not be.

Latent Factor Approach

• Use Monte Carlo draws from chosen distribution of η . Likelihood function (treatment effect estimator) then is:

$$L = \frac{1}{5} \prod_{i=1}^{N} \sum_{s=1}^{5} \Phi(\tau * (Z_{i}\gamma + \lambda_{T}\eta_{i})) \times$$

$$\sum_{k=1}^{K} (I * (Y = k)) \{ \Phi(\mu_{k} - X_{i}\beta + \lambda_{Y}\eta_{i}) - \Phi(\mu_{k-1} - X_{i}\beta + \lambda_{Y}\eta_{i}) \}, \quad (4)$$

- $\tau = 2 * T_i 1$
- S is the number of simulation draws
- λs are loading factors-describe dependence between treatment and outcome.

Latent Factor Approach

• For switching estimator, likelihood is:

$$L = \frac{1}{S} \prod_{i=1}^{N} \sum_{s=1}^{S} \sum_{\ell=0}^{\ell=1} (I*(T_{i} = \ell)) \times \Phi(\tau*(Z_{i}\gamma + \lambda_{\ell}\tau\eta_{i})) * \sum_{\ell=0}^{1} (I*(T_{i} = \ell)) \times \sum_{k=1}^{K} (I*(Y_{i} = k)) \{\Phi(\mu_{\ell k} - X_{\ell i}\beta_{\ell} + \lambda_{\ell}\gamma\eta_{\ell i}) - \Phi(\mu_{\ell k-1} - X_{\ell i}\beta_{\ell} + \lambda_{\ell}\gamma\eta_{\ell i})\},$$
(5)

• where $\ell \in (0,1)$

Marginal Effects: ATE

 \bullet Let δ be coefficient on treatment indicator. Then the average treatment effect (ATE) for the treatment effect model is

$$ATE_{j}^{T} = \frac{1}{N} \frac{1}{S} \sum_{i=1}^{N} \sum_{s=1}^{S} \{ \Phi(\mu_{k} - (X_{i}\beta + \delta + \lambda \eta_{is})) - \Phi(\mu_{k-1} - (X_{i}\beta + \delta + \lambda \eta_{is})) \}$$

$$- \{ \Phi(\mu_{k} - (X_{i}\beta + \lambda \eta_{is})) - \Phi(\mu_{k-1} - (X_{i}\beta + \lambda \eta_{is})) \}$$
 (6)

· For the switching regression, it is

$$ATE_{k}^{S} = \frac{1}{N} \frac{1}{S} \sum_{i=1}^{N} \sum_{s=1}^{S} \{ \Phi(\mu_{1k} - (X_{1i}\beta_{1} + \lambda_{1}\eta_{is})) - \Phi(\mu_{1k-1} - (X_{1i}\beta_{1} + \lambda_{1}\eta_{is})) \} - \{ \Phi(\mu_{0k} - (X_{0i}\beta + \lambda_{0}\eta_{is})) - \Phi(\mu_{0k-1} - (X_{0i}\beta_{0} + \lambda_{0}\eta_{is})) \}$$
(7)

Marginal Effects: ATT

• Let δ be coefficient on treatment indicator. Then the average treatment effect on the treated (ATT) for the treatment effect model is

$$ATT_{j}^{T} = \frac{1}{N} \frac{1}{S} \sum_{i=1}^{N} \frac{1}{E(\Phi(Z_{i}\gamma))} \Big[\sum_{s=1}^{S} \Phi(Z_{i}\gamma + \eta_{is}) \times \\ \{ \Phi(\mu_{j} - (X_{i}\beta + \delta + \lambda \eta_{is})) - \Phi(\mu_{j-1} - (X_{i}\beta + \delta + \lambda \eta_{is})) - \Phi(\mu_{j} - (X_{i}\beta + \lambda \eta_{is})) + \Phi(\mu_{j-1} - (X_{i}\beta + \lambda \eta_{is})) \} \Big]$$
(8)

Marginal Effects: ATT

• For the switching regression, it is

$$ATT_{j}^{S} = \frac{1}{N} \frac{1}{S} \sum_{i=1}^{N} \frac{1}{E(\Phi(Z_{i}\gamma))} \Big[\sum_{s=1}^{S} \sum_{\ell=0}^{\ell=1} (I * (T_{i} = \ell)) \Phi(Z_{i}\gamma + \eta_{is}) \times \\ \{ \Phi(\mu_{1j} - (X_{1i}\beta_{1} + \lambda_{1}\eta_{is})) - \Phi(\mu_{1,j-1} - (X_{1i}\beta_{1} + \lambda_{1}\eta_{is})) - \Phi(\mu_{0j} - (X_{0i}\beta_{0} + \lambda_{0}\eta_{is})) + \Phi(\mu_{0,j-1} - (X_{0i}\beta_{0} + \lambda_{0}\eta_{is})) \}. \Big]$$
(9)

• As is conventional for these models, we normalize λ_T to unity.

Syntax and Options

- Command syntax
 - treat/switchoprobitsim depvar [indvars] [if] [in] [weight] , $treat(depvar_T = varlist)$ simulationdraws(integer) [facdensity(string) facskew(real) facscale(real) startpoint(integer) vce(string) sesim(integer) maximize options]
- Options
 - treatment(depvar_T= varlist) specifies treatment index as 0 or 1.
 - sim(integer) specifies the number of simulation draws from the distribution of η .
 - facdensity(string) specifies the density of the latent factor: default is standard normal; other options are uniform, logit, gamma, chi2, lognormal and mixture are also premitted.

Options facskew(real) is for use with the chi2 option; default is 2.

- facmean(real) is particularly useful with gamma distribution option, essentially controls skewness of gamma distribution used; also, with mixture option, specifies the mean of Φ to be mixed with $\Phi(0,1)$
- facscale(real) specifies scale of distribution; default is 1. Also, specifies scale of mixing distribution with mixture option.
- mixpi(integer (0-100)) specifies the weight on the $\Phi(0,1)$ in mixing specification.
- startpoint(integer) specifies the starting point for Halton sequence draws; default is 1.
- sesim(integer) number of simulations used to calculate standard error of ATT; default is 100.
- vce(string) specifies robust or cluster for variance estimation.

Postestimation

- predict predicts p11 the probability of the first outcome for the treated group; this is the default.
- predict *varname*, p0*i* predicts the probability of outcome *i* for the untreated group.
- predict varname, p1i predicts the probability of outcome i for the treated group.

Postestimation

- predict varname, tti predicts the average treatment effect on the treated for outcome i.
- predict varname, tei predicts the average treatment effect for outcome i.
- predict varname, setti predicts the standard error of the average treatment effect on the treated for outcome i.
- predict *varname*, sete*i* predicts the standard error of average treatment effect for outcome *i*.

Table: Monte Carlo Results: ATE's, Treatment Effects Model, N=5,000

	DGP					
	Normal			Logit		
	True	BiVN	LF	True	BiVN	LF
Outcome 1	0.085	0.084	0.086	0.085	0.052	0.077
Outcome 2	0.017	0.016	0.017	0.016	0.009	0.013
Outcome 3	0.000	0.000	0.000	-0.001	-0.001	-0.000
Outcome 4	-0.010	-0.010	-0.010	-0.010	-0.005	-0.008
Outcome 5	-0.092	-0.091	-0.093	-0.091	-0.055	-0.082

Table: Monte Carlo Results: ATE's, Treatment Effects Model, N=5,000

	DGP					
	Gamma			Chi Squared		
	True	BiVN	LF	True	BiVN	LF
Outcome 1	0.085	0.277	0.100	0.085	0.344	0.093
Outcome 2	0.017	0.030	0.018	0.017	0.034	0.017
Outcome 3	0.000	0.015	0.001	0.000	0.017	0.002
Outcome 4	-0.010	-0.011	-0.011	-0.010	-0.013	-0.009
Outcome 5	-0.092	-0.310	-0.108	-0.092	-0.382	-0.102

Table: Monte Carlo Results: ATE's, Treatment Effects Model, N = 5,000

	DGP					
	Log Normal			Mixture		
	True	BiVN	LF	True	BiVN	LF
Outcome 1	0.085	0.234	0.083	0.085	0.048	0.103
Outcome 2	0.017	0.026	0.017	0.017	0.003	0.020
Outcome 3	0.000	0.014	0.004	0.001	0.005	0.006
Outcome 4	-0.010	-0.011	-0.010	-0.010	0.000	-0.010
Outcome 5	-0.092	-0.263	-0.095	-0.092	-0.056	-0.118

Table: Monte Carlo Results: ATE's, Switching Model, N = 5,000

	DGP					
	Normal			Logit		
	True	BiVN	LF	True	BiVN	LF
Outcome 1	-0.156	-0.153	-0.156	-0.156	-0.140	-0.155
Outcome 2	-0.117	-0.105	-0.101	-0.117	-0.096	-0.074
Outcome 3	0.089	0.071	0.075	0.089	0.048	0.057
Outcome 4	0.184	0.186	0.182	0.184	0.188	0.173

Table: Monte Carlo Results: ATE's, Switching Model, N = 5,000

	DGP					
	Gamma			C	hi Square	ed
	True	BiVN	LF	True	BiVN	LF
Outcome 1	-0.156	-0.145	-0.192	-0.157	-0.155	-0.171
Outcome 2	-0.117	-0.162	-0.081	-0.117	-0.150	-0.114
Outcome 3	0.089	0.046	0.071	0.089	0.083	0.085
Outcome 4	0.184	0.261	0.201	0.184	0.222	0.200

Table: Monte Carlo Results: ATE's, Switching Model, N = 5,000

	DGP								
	Log Normal				Mixture				
	True	True BiVN LatentF			BiVN	LatentF			
Outcome 1	-0.156	-0.158	-0.167	-0.157	-0.158	-0.170			
Outcome 2	-0.117	-0.178	-0.135	-0.117	-0.171	-0.121			
Outcome 3	0.089	0.098	0.094	0.089	0.091	0.088			
Outcome 4	0.184	0.238	0.208	0.184	0.238	0.203			

Example

Table: Example: Food Security and SNAP

	ATE: Treatment Effects Model				
	BiVN	LF Logit	LF Gamma		
High Food Security	.23	.21	.12		
Marginal Food Security	04	04	03		
Low Food Security	06	06	04		
Very Low Food Security	13	11	05		
		N=28,8	31		

Data: National Health Interview Survey, 2011-2013, Low Income Sample

Example

Table: Example: Food Security and SNAP

	ATE: Switching Model				
	BiVN	LF Logit	LF Mixture		
High Food Security	.01	01	27		
Marginal Food Security	.09	09	.06		
Low Food Security	05	03	.10		
Very Low Food Security	14	.13	.11		
	N=28,831				

Data: National Health Interview Survey, 2011-2013, Low Income Sample

Comments and Hints

- -sim routines report a likelihood ratio test of independent (treat) and single (switch) regimes.
- Using the mixture option makes tests of regime differences difficult.
 Good robustness check if you don't care about nuisance parameters.
- $\bullet \sim 100$ simulation draws is nearly optimal in terms of accuracy in most applications; ≤ 80 is not recommended
- Models using different distributions are, in general, not nested.
 Model selection is crucial. Test proposed by Vuong (1989) can be useful / easy to calculate.

Going Further

- copula based modeling of dependence structures
- benefts of modeling with and without counterfactuals

Thank You!

Thank You!

