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@ Cox-regression and parametric survival
models are quite common in the analysis of
survival data

@® Recently, Flexible Parametric Models (FPM),
have been introduced as an extension to the
parametric models such as Weibull model
(hazard- scale), loglogistic model (odds-
scale), and lognormal model (probit-scale)
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Objectives & Methods B

@ |n this presentation different FPMs will be
compared based on these modeling scales

® Used two subsets of the U.S. National Cancer
Institute's Surveillance, Epidemiology and End
Results (SEER) dataset from the original 9
registries;
® Ovarian cancer diagnosed 1991 - 2010
® Colorectal cancer in men 60* diagnosed 2001 - 2010
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R review of splines

® The daily statistical practice usually involves
assessing relationship between one outcome
variable and one or more explanatory variables

® \We usually assume linear relationship between
some function of the outcome variable and the
explanatory variables

® However, in many situations this assumption
may not be appropriate
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Linear spline
sysuse auto
twoway (scatter mpg weight) (Ifit mpg weight), xlabel(1700(300)4900)
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Linear spline

mkspline Inweightl 2400 Inweight2= weight

regress mpg Inweight*

predict linsp

twoway (scatter mpg weight) (line linsp weight, sort)
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Cubic Splines

@® Cubic splines are piecewise cubic polynomials
with a separate cubic polynomial fit in each of
the predefined number of intervals

® The number of intervals is chosen by the user
and the split points are known as knots

® Continuity restrictions are imposed to join the
splines at knots to fit a smooth function
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Restricted Cubic Splines

® |In RCS the spline function is forced (restricted)
to be linear before the first and after the last
knot (the boundary knots)

® \When modeling survival time, the boundary
knots are usually defined as the minimum and
maximum of the uncensored survival times
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Restricted Cubic Splines v

® Let s(x) be the restricted cubic spline function, if
we define m interior knots, k;,..., k.,, and two
boundary knots, k., and k..., we can write s(x) as
a function of parameters y and some newly
defined variables z,,..., 2,4,

s(x) = Yot TVl it Vnalnn
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Restricted Cubic Splines
® The derived variables (z;, also know as the basis

functions) are calculated as following

Z, =X
Zj = (X_ k])i _ﬂ’j(x_kmin)i _(1_/1]')()(_ kmax)i

where for j=2,....m+1, and

(x—k;)? = (x—k;)* if it is positive and 0 otherwise

1 = kmax _kj
i K K (Royston & Lambert, 2011)
K max  “min /
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Restricted Cubic Splines

® These RCSs can be calculated using a
number of Stata commands, including
mkspl 1ne (an official Stata command),
rcsgen, and splinegen (two user written
commands)

® The rcsgen command can orthogonalize the
derived spline variables which can lead to
more stable parameter estimates and quicker

K model convergence /
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rcsgen; an alternative spline macro
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FPM: Royston-Parmer (RP) Models

RP models are a extension of the parametric models
(Weibull, log-logistic, and log-normal) which offer greater
flexibility with respect to shape of the survival distribution

The additional flexibility of an RP model is because, for
instance for a hazard model, it represents the baseline
distribution function as a restricted cubic spline
function of log time instead of simply as a linear function
of log time

The complexity of modeling spline functions is
determined by the number and positions of the knots in
the log time
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FPM: Royston-Parmer (RP) Models

® Spline models can be chosen by the appearance of
the survival functions, hazard functions, etc. or more
formally, by minimizing the value of an information
criterion [Akaike (AIC) or Bayes (BIC)]

® Estimation of parameters is by maximum likelihood
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FPM: A review of Weibull distribution

® The cumulative hazard function for a Weibull
distribution is

H (t) = AtP
® To make it consistent with rest of this presentation
let's change the notation as

H () = At"

where vy, is the shape parameter. Then, the Weibull
hazard function is

h(t) = dH (t) / dt = Ayt
\ " y
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FPM: A review of Weibull distribution

® \Women age 60-69 diagnosed with ovarian cancer

159 14

Cumulative hazard function
Survival function
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FPM: A review of Weibull distribution

® One reason that a Weibull model does not fit very well
to the dataset is that it has a monotonic hazard function

® To have a more flexible form, we begin by writing the
Weibull cumulative hazard function in logarithmic form

INH{)=InA+y, Int=y,+y, Int

® Now, suppose that f(t; ) represents some general family

vector yand
InH(t) = f(t;»)

of nonlinear functions of time t, with some parameter
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FPM: Royston-Parmer (RP) Models

.

Because cumulative hazard functions are
monotonic in time, f(t;») must be monotonic too

Two potentially appropriate functions are
fractional polynomials (Royston & Altman 1994)
and splines (de Boor 2001)
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FPM: Royston-Parmer (RP) Models

-

We write a restricted cubic spline function as
s(Int;») instead of f(t;») with s standing for spline
and Int to emphasize that we are working on the
scale of log time

INnH({t)=s(Int;y) =y, +y,Int+p,z.(Int) + y,z,(Int) + ...

where Int, z,(Int), z,(Int), ..., are the basis functions of

the restricted cubic spline
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FPM: Royston-Parmer (RP) Models

® When we specify one or more knots, the spline
function includes a constant term (), a linear
function of Int with parameter y, and a basis
function for each knot

® By convention, the “no knots” case for a hazard
model corresponds to the linear function,
s(Int; )= 5+ 7 Int, which is the Weibull model
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FPM: Royston-Parmer (RP) Models

@® \We estimate the y parameters by
maximum likelihood method using the
Stpm2 routine (Lambert & Royston 2009)

® We identify d¥ for each model based on
AIC criteria and evaluate the variables in
the model using Irtest

® \We use options of hazard, odds, and
normal in stpm2 for fitting different

K scales /
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FPM: Ovarian cancer

. tab agegrp
Age group | Freq. Percent Cum.

_____________ S,
40- 49 years | 2,700 19.55 19.55
50- 59 years | 3,896 28.21 47.76
60- 69 years | 3,466 25.10 72.86
70- 79 years | 2,606 18.87 91.73

>=80 years | 1,142 8.27 100.00
_____________ S,

Total | 13,810 100.00

gen year=DATE_yr-1990
mkspline yearsp=year, cubic nknots(3)

stpm2 agegrp2-agegrp5 yearsp*, df(7) tvc(agegrp2- ///
agegrp5 yearspl) dftvc(2) 77/
\\\‘ scale(hazard) eform nolog 4///
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FPM: Ovarian cancer

. estat ic
Scale | AlIC
_____________ I
Hazard | 35615.92
Odds | 35616.51

Normal | 35564.12
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FPM: Ovarian cancer

o

predict sl, survival

gen timel=1

predict survllyr, survival timevar (timel) //ci
gen timeb5=5h

predict survlbyr , survival timevar(time5) //ci

range tempt2 0.05 5 2000

forvalues i=1/5 {

predict hazl i', hazard per(100) timevar (tempt2) ///
at(agegrp’i' 1 yearspl 15 yearsp2? 6.508929) zeros
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FPM: Ovarian cancer
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FPM: Ovarian cancer
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FPM: Ovarian cancer
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FPM: Colorectal cancer
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. tab agegrp

Age group | Freq
_____________ +
60- 69 years | 14,837
70- 79 years | 16,026
>=80 years | 11,139
_____________ +
Total | 42,002

stpm2 agegrp2-agegrp3 year, df(9) tvc(agegrp2- ///

agegrp3) dftvc(2) scale(hazard) eform nolog

/

Stata Conference 2015, Columbus, USA

30

Stata Conference 2015, Columbus, USA

15



/ i\-"k‘l\slzisl'ah

University B==

FPM: Colorectal cancer

. estat ic

Scale | AlIC
_____________ S
Hazard | 111997.6
Odds | 112056.2

Normal | 111829.9
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FPM: Colorectal cancer
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FPM: Colorectal cancer
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Conclusion

.

In general, there were no substantial
differences between the estimates from the
three modeling scales, although the probit-scale
showed slightly better fit based on the Akaike
information criterion (AIC) for both datasets
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