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Background

Cox-regression and parametric survivalCox regression and parametric survival 
models are quite common in the analysis of 
survival data

Recently, Flexible Parametric Models (FPM), 
have been introduced as an extension to the 
parametric models such as Weibull model 
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p
(hazard- scale), loglogistic model (odds-
scale), and lognormal model (probit-scale) 

Objectives & Methods

In this presentation different FPMs will beIn this presentation different FPMs will be 
compared based on these modeling scales

Used two subsets of the U.S. National Cancer 
Institute's Surveillance, Epidemiology and End 
Results (SEER) dataset from the original 9 
registries; 
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g
• Ovarian cancer diagnosed 1991 - 2010

• Colorectal cancer in men 60+ diagnosed 2001 - 2010 
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R review of splines

 The daily statistical practice usually involvesThe daily statistical practice usually involves 
assessing relationship between one outcome 
variable and one or more explanatory variables

We usually assume linear relationship between 
some function of the outcome variable and the 
explanatory variables

5

p y

 However, in many situations this assumption 
may not be appropriate  
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Linear spline
sysuse auto

twoway (scatter mpg weight) (lfit mpg weight), xlabel(1700(300)4900) y ( pg g ) ( pg g ), ( ( ) )

3
0

4
0

6Stata Conference 2015, Columbus, USA

1
0

2
0

1,700 2,000 2,300 2,600 2,900 3,200 3,500 3,800 4,100 4,400 4,700 5,000
Weight (lbs.)



Stata Conference 2015, Columbus, USA 4

Linear spline 
mkspline lnweight1 2400 lnweight2= weight

regress mpg lnweight*g pg g

predict linsp

twoway (scatter mpg weight) (line linsp weight, sort)
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Cubic Splines

 Cubic splines are piecewise cubic polynomialsCubic splines are piecewise cubic polynomials 
with a separate cubic polynomial fit in each of 
the predefined number of intervals

 The number of intervals is chosen by the user 
and the split points are known as knots

 Continuity restrictions are imposed to join the

8

Continuity restrictions are imposed to join the 
splines at knots to fit a smooth function
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Restricted Cubic Splines

 In RCS the spline function is forced (restricted)In RCS the spline function is forced (restricted) 
to be linear before the first and after the last 
knot (the boundary knots)

When modeling survival time, the boundary 
knots are usually defined as the minimum and 
maximum of the uncensored survival times
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Restricted Cubic Splines
 Let s(x) be the restricted cubic spline function, if 

d fi i t i k t k k d twe define m interior knots, k1,…, km, and two 
boundary knots, kmin and kmax, we can write s(x) as 
a function of parameters  and some newly 
defined variables z1,…, zm+1,

10

0 1 1 2 2 1 1( ) ... m ms x z z z         
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Restricted Cubic Splines
 The derived variables (zj, also know as the basis 

f ti ) l l t d f ll ifunctions) are calculated as following

where for j=2,…,m+1, and 

1

3 3 3
min max( ) ( ) (1 )( )j j j j

z x

z x k x k x k   


       

3 3( ) ( ) if it is positive and 0 otherwisej jx k x k  
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(Royston & Lambert, 2011) 
max

max min

j
j

k k

k k






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( ) ( )  if it is positive and 0 otherwisej jx k x k

Restricted Cubic Splines

 These RCSs can be calculated using aThese RCSs can be calculated using a 
number of Stata commands, including 
mkspline (an official Stata command), 
rcsgen, and splinegen (two user written 
commands)

 The rcsgen command can orthogonalize the 

12

derived spline variables which can lead to 
more stable parameter estimates and quicker 
model convergence
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Flexible Parametric Models
rcsgen; an alternative spline macro
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FPM: Royston-Parmer (RP) Models
 RP models are a extension of the parametric models 

(W ib ll l l i ti d l l) hi h ff t(Weibull, log-logistic, and log-normal) which offer greater 
flexibility with respect to shape of the survival distribution

 The additional flexibility of an RP model is because, for 
instance for a hazard model, it represents the baseline 
distribution function as a restricted cubic spline 
function of log time instead of simply as a linear function 
of log time

14

of log time

 The complexity of modeling spline functions is 
determined by the number and positions of the knots in 
the log time
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FPM: Royston-Parmer (RP) Models

 Spline models can be chosen by the appearance ofSpline models can be chosen by the appearance of 
the survival functions, hazard functions, etc. or more 
formally, by minimizing the value of an information 
criterion [Akaike (AIC) or Bayes (BIC)]

 Estimation of parameters is by maximum likelihood
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FPM: A review of Weibull distribution

 The cumulative hazard function for a WeibullThe cumulative hazard function for a Weibull 
distribution is 

 To make it consistent with rest of this presentation 
let’s change the notation as 

( ) pH t t

1( )H t t 

16

where 1 is the shape parameter.  Then, the Weibull 
hazard function is 

( )

1 1
1( ) ( ) /h t dH t dt t  
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FPM: A review of Weibull distribution
 Women age 60-69 diagnosed with ovarian cancer
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FPM: A review of Weibull distribution

 One reason that a Weibull model does not fit very wellOne reason that a Weibull model does not fit very well 
to the dataset is that it has a monotonic hazard function 

 To have a more flexible form, we begin by writing the 
Weibull cumulative hazard function in logarithmic form 

 N th t f( ) t l f il

1 0 1ln ( ) ln ln lnH t t t      

18

 Now, suppose that f(t;) represents some general family 
of nonlinear functions of time t, with some parameter 
vector  and
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ln ( ) ( ; )H t f t 
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FPM: Royston-Parmer (RP) Models

 Because cumulative hazard functions are 
monotonic in time, f(t;) must be monotonic too 

 Two potentially appropriate functions are 
fractional polynomials (Royston & Altman 1994) 
and splines (de Boor 2001) 
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FPM: Royston-Parmer (RP) Models

 We write a restricted cubic spline function as p
s(lnt;) instead of f(t;) with s standing for spline 
and lnt to emphasize that we are working on the 
scale of log time

2 1 30 1 2ln ( ) (ln ; ) ln (ln ) (ln ) ...z t zH s t t tt         

20

where lnt, z1(lnt), z2(lnt), ..., are the basis functions of 
the restricted cubic spline
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FPM: Royston-Parmer (RP) Models

 When we specify one or more knots, the spline p y p
function includes a constant term (0), a linear 
function of lnt with parameter 1, and a basis 
function for each knot  

 By convention, the “no knots” case for a hazard 
model corresponds to the linear function, 

21

s(lnt;)= 0+ 1 lnt, which is the Weibull model
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FPM: Royston-Parmer (RP) Models

We estimate the  parameters by  p y
maximum likelihood method using the 
stpm2 routine (Lambert & Royston 2009)

We identify df for each model based on 
AIC criteria and evaluate the variables in 
the model using lrtest

22

g
We use options of hazard, odds, and 
normal in stpm2 for fitting different 
scales
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FPM: Ovarian cancer
. tab agegrp

Age group | Freq. Percent Cum.Age group |      Freq.     Percent        Cum.
-------------+-----------------------------------
40- 49 years |      2,700       19.55       19.55
50- 59 years |      3,896       28.21       47.76
60- 69 years |      3,466       25.10       72.86
70- 79 years |      2,606       18.87       91.73

>=80 years |      1,142        8.27      100.00
-------------+-----------------------------------

Total |     13,810      100.00

23

gen year=DATE_yr-1990
mkspline yearsp=year, cubic nknots(3)

stpm2 agegrp2-agegrp5 yearsp*, df(7) tvc(agegrp2- ///      
agegrp5 yearsp1) dftvc(2) ///       
scale(hazard) eform nolog
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FPM: Ovarian cancer

. estat ic

Scale    |      AIC

-------------+--------------

Hazard |  35615.92   

Odds      |  35616.51   

Normal    |  35564.12
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FPM: Ovarian cancer
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FPM: Ovarian cancer
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FPM: Ovarian cancer
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FPM: Ovarian cancer
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FPM: Ovarian cancer
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FPM: Colorectal cancer
. tab agegrp

Age group    |      Freq.     Percent        Cum.
-------------+-----------------------------------
60- 69 years |     14,837       35.32       35.32
70- 79 years |     16,026       38.16       73.48

>=80 years |     11,139       26.52      100.00
-------------+-----------------------------------

Total |     42,002      100.00

30

stpm2 agegrp2-agegrp3 year, df(9) tvc(agegrp2- /// 
agegrp3) dftvc(2) scale(hazard) eform nolog
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FPM: Colorectal cancer
. estat ic

Scale    |      AIC

-------------+--------------

Hazard | 111997.6    

Odds      | 112056.2   

Normal    | 111829.9
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FPM: Colorectal cancer
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FPM: Colorectal cancer
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FPM: Colorectal cancer
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Conclusion
 In general, there were no substantial g

differences between the estimates from the 
three modeling scales, although the probit-scale 
showed slightly better fit based on the Akaike 
information criterion (AIC) for both datasets
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