Bootstrap LM Tests for the Box Cox Tobit Model

David Vincent

Email: david.vincent@hp.com

Introduction

- This presentation sets out a specification test of the Tobit model against the alternative of a specification described by the Box Cox transformation.
- An LM test is used to test the null hypothesis of no specification error as this requires estimates of the restricted (nested) Tobit) model
- The size and power of the test using asymptotic and bootstrap critical values is estimated by the empirical rejection probabilities for small sample sizes

1. The Box Cox Tobit Model

- The Tobit model is used to address censoring and corner solution problems.
- When censoring occurs at zero, the model in both applications is written:

$$y_{i}^{*} = x_{i}^{'}\beta + \epsilon_{i}, \quad i = 1, .., N$$
 (1)

where y_i^* is a `latent' variable and $\epsilon_i \sim NID(0, \sigma^2)$. The observation rule is:

$$y_i = \begin{cases} y_i^* & \text{if } y_i^* \ge 0\\ 0 & \text{if } y_i^* < 0 \end{cases}$$

- In censored data problems, we are usually interested in the features of y_i^* such as $E[y_i^* | x_i]$ For corner solutions however, it is $E[y_i | x_i]$ that is of interest.
- Estimation of the parameters β , and σ in (1) is by Maximum Likelihood (ML), with individual contribution to the log-likelihood given by:

$$\ln L_i = d_i \ln \left[\frac{1}{\sigma} \phi \left(\frac{y_i - x'_i \beta}{\sigma} \right) \right] + (1 - d_i) \ln \left[1 - \Phi \left(\frac{x'_i \beta}{\sigma} \right) \right]$$

1. The Box Cox Tobit Model

- As Moffat (2003) noted however, there are many instances where y_i exhibits positive skew that cannot be attributed to the asymmetric censoring.
- In the double hurdle model, Moffat takes the following transformation of y_i to preserve normality:

$$y_i^T = \frac{y_i^{\lambda} - 1}{\lambda} \qquad 0 \cdot \lambda \cdot 1$$

- The transformation, originally proposed by Box & Cox (1966) for uncensored data, was designed to ensure that the model for y_i^T is:
 - 1. Linear in the explanatory variables
 - 2. Has a constant conditional error variance $E[\epsilon\epsilon^{'} \mid X] = \sigma^{2}I_{N}$
 - 3. Has a normally distributed error term
- The above properties are essential for the ML-estimators to be consistent for the true parameters in the Tobit model (1): $\hat{\beta} \xrightarrow{p} \beta \quad \hat{\sigma} \xrightarrow{p} \sigma$

1. The Box Cox Tobit Model

• Applying the Box Cox Transformation (BCT) to the Tobit model therefore, leads to the following observation rule:

$$y_i^T = \begin{cases} y_i^{T*} & \text{if } y_i^{T*} \geq -1/\lambda \\ -1/\lambda & \text{if } y_i^{T*} < -1/\lambda \end{cases}$$

• where $y_i^T *$ is the `transformed' latent variable with specification:

$$y_{i}^{*T} = x_{i}^{'}\beta + \epsilon_{i}, \qquad \epsilon_{i} \sim NID(0, \sigma^{2})$$

- This should now satisfy (or approximately) the distributional requirements for the ML-estimator to be consistent.
- By a change of variables, the i^{th} contribution to the log-likelihood is:

$$\ln L_{i} = d_{i} \ln \left[\frac{y_{i}^{\lambda-1}}{\sigma} \phi \left(\frac{\left(y_{i}^{\lambda}-1\right)/\lambda - x_{i}^{'}\beta}{\sigma} \right) \right] + (1-d_{i}) \ln \left[1 - \Phi \left(\frac{1/\lambda + x_{i}^{'}\beta}{\sigma} \right) \right]$$
(2)

2. LM test of the Tobit specification

• A test of the linearity, homoskedasticity and normality assumptions of the Tobit specification, is therefore equivalent to a test of:

$$H_0: \lambda = 1$$

• against the more general alternative:

$$H_1: \lambda \neq 1$$

- The LM-statistic is the easiest to compute as this requires parameter estimates under the restrictions imposed by the null $\stackrel{\sim}{ heta} = (\stackrel{\sim}{eta}, \stackrel{\sim}{\sigma}, 1)$.
- Denoting τ as an $N \times 1$ vector one 1's, $\widetilde{G} = (\widetilde{g}_1, ..., \widetilde{g}_N)'$ where $\widetilde{g}_i = \frac{\partial \ln L_i}{\partial \theta}|_{\widetilde{\theta}}$ represents the i^{th} contribution to the unrestricted score evaluated at the restricted $\widetilde{\theta}$, then the OPG-version of the LM-test is:

$$LM = \tau' \widetilde{G} (\widetilde{G}' \widetilde{G}')^{-1} \widetilde{G}' \tau \quad \stackrel{d}{\longrightarrow} \chi_1^2$$

2. LM test of the Tobit specification

- In this form, the LM-statistic is simply $N\times R^2_u$ from artificial regression: $1{=}\stackrel{\sim}{g}_i^{'}\pi+e_i$
- From (2), the individual elements of $\stackrel{\sim}{g}_i$ are:

$$\frac{\partial \ln L_i(\theta)}{\partial \beta} \Big|_{\widetilde{\theta}} = d_i \frac{\widetilde{v}_{i1}}{\widetilde{\sigma}^2} x_i + (1 - d_i) \frac{-\phi(\widetilde{v}_{i2}/\widetilde{\sigma})}{1 - \Phi(\widetilde{v}_{i2}/\widetilde{\sigma})} \frac{x_i}{\widetilde{\sigma}}$$
(3)

$$\frac{\partial \ln L_i(\theta)}{\partial \sigma} \Big|_{\widetilde{\theta}} = d_i \frac{1}{\widetilde{\sigma}} \left[\frac{v_{i1}^2}{\widetilde{\sigma}^2} - 1 \right] + (1 - d_i) \frac{\phi(\widetilde{v}_{i2}/\widetilde{\sigma})}{1 - \Phi(\widetilde{v}_{i2}/\widetilde{\sigma})} \frac{\widetilde{v}_{i2}}{\widetilde{\sigma}^2} \tag{4}$$

$$\frac{\partial \ln L_i(\theta)}{\partial \lambda} \mid_{\widetilde{\theta}} = d_i \left[\ln y_i - \frac{\widetilde{v}_{i1}}{\widetilde{\sigma}^2} \left[y_i \left(\ln y_i - 1 \right) + 1 \right] \right] + (1 - d_i) \frac{\phi(\widetilde{v}_{i2}/\widetilde{\sigma})}{1 - \Phi(\widetilde{v}_{i2}/\widetilde{\sigma})} \frac{1}{\widetilde{\sigma}}$$
(5)

• where $\tilde{v}_{i1} = y_i - (1 + x'_i \beta)$ and $\tilde{v}_{i2} = 1 + x'_i \beta$. Under the restrictions imposed by the null, (3) and (4) are the scores of the Tobit model evaluated at the Tobit MLE's; (5) can therefore be constructed from these estimates.

3. Bootstrap Critical Values

- The critical value for a test of size- α is the solution to $G_n(c_{n,\alpha}; F_0) = 1 \alpha$ where $G_n(c; F_0) = Pr(LM \cdot c)$ and $F_0 = F(x_i, y_i; \theta_0)$ is the distribution of the data.
- Unless F_0 is known, $c_{n,\alpha}$ cannot be obtained and we use critical values from the limiting distribution under H_0 , i.e.: $G_{\infty}(c_{\infty,\alpha}) = Pr(\chi_1^2 \cdot c_{\infty,\alpha}) = 1 \alpha$
- The size of the test using $c_{\infty,\alpha}$ is $\alpha + O(n^{-1})$ which can be determined through the asymptotic expansion $G_n(c; F_0) = G_\infty(c) + O(n^{-1})$. This error can be large
- An alternative approach is to obtain critical values from the bootstrap null distribution $G_n(c; F_n)$ which replaces F_0 with a consistent estimator F_n . Then:

$$G_n(c; F_0) = G_n(c; F_n) + O(n^{-3/2})$$
(6)

• which has a smaller error of order $O(n^{-3/2})$. The critical value $c_{n,\alpha}^{\dagger}$ solving $G_n(c_{n,\alpha}^{\dagger};F_n) = 1 - \alpha$ be found by Monte Carlo simulation as the $1 - \alpha$ quantile of the B ordered *bootstrap statistics* $LM_1^{\dagger}, ..., LM_B^{\dagger}$

4. The Parametric Bootstrap Algorithm

- The null $H_0: \lambda = 1$ is rejected if $LM > c^{\dagger}_{n, \alpha}$
- In the *B* simulations, each bootstrap sample is generated by re-sampling x_i from the EDF, while generating y_i from $F(y_i, |x_i; \tilde{\theta})$. The algorithm is:
- 1. Estimate the Tobit model parameters: \hat{eta} , $\hat{\sigma}$.This imposes the constraint $\lambda=1$
- 2. Draw a random sample of size N from the EDF of x_i and denote these $x_i^{\dagger},...,x_n^{\dagger}$
- 3. Generate N errors from $N(0, \hat{\sigma}^2)$ and denote these $\epsilon_1^{\dagger}, ..., \epsilon_n^{\dagger}$
- 4. Use the values in steps 2 and 3 to generate a bootstrap sample of size N $y_i^{*\dagger} = x_i^{\dagger'} \hat{\beta} + \epsilon_i^{\dagger}$ and compute $y_i^{\dagger} = \max(0, y_i^{*\dagger})$
- 5. Estimate the Tobit model using the bootstrap sample and compute the contributions to the scores $\tilde{g}_i^{\dagger}, ..., \tilde{g}_N^{\dagger}$
- 6. Estimate the artificial regression $1 = {\widetilde{g}_i^{\dagger'}} \delta + u_i$ and compute $LM_b^{\dagger} = N \times R_u^2$
- 7. Repeat steps 2 6 a total of *B* times and compute the critical value $c_{n,\alpha}^{\dagger}$ as the 1α percentile of the *B* ordered bootstrap LM-test statistics.

5. Monte-Carlo Design

- The size and power of the LM-test using bootstrap and first-order asymptotic critical values can be estimated from the empirical rejection probabilities.
- The data for the Monte-Carlo experiments is generated from the DGP:

$$y_i^{*T} = x_i'\beta + \epsilon_i, \qquad y_i^T = \begin{cases} y_i^{T*} & \text{if } y_i^{T*} \ge -1/\lambda \\ -1/\lambda & \text{if } y_i^{T*} < -1/\lambda \end{cases}$$
$$y_i = \left(\lambda y_i^{T*} + 1\right)^{1/\lambda}$$

The experiments consist of the following steps:

- 1. Generate N values for ϵ_i and x_i from a specified DGP and compute $y_i^{*T}, y_i^T |y_i|$
- 2. Estimate the LM statistic for testing $H_0: \lambda = 1$ as detailed earlier
- 3. Compute the bootstrap critical value at the α -level for testing $H_0: \lambda = 1$
- 4. Repeat steps 1-3, T-times and count the rejections R The empirical rejection probability R/T, is an estimate of the true rejection probability p.
- As $R \sim B(T, p)$, then $\sqrt{T} (R/T p) \xrightarrow{d} N[0, p(1-p)]$. Thus for p = 0.05and T = 2000, $Pr(0.04 \cdot R/T \cdot 0.06 | p = 0.05) \approx 0.95$

5.1 Size Estimates

- Under $H_0: \lambda = 1$, the empirical rejection probability is an estimate of the size of the LM-test using bootstrap & asymptotic critical values .
- For these experiments N = 25, $\alpha = 0.05$, B = 499, T = 2000, $\epsilon_i \sim NID(0, 1)$ and $x'_i\beta = \beta_0 + \beta_1 x_{i1}$ where: $\ln x_i \sim N(1, 0.5)$, $\beta_0 = 1$ and $\beta_1 \in \{-.5, -.55, -.6, -.65, -.7, -.75, -.8, -.85, -.9, -.95\}$. The size estimates are:

• Using bootstrap critical values there is no size distortion. This is not the case using asymptotic critical values which result in large size distortions

5.2 Power Estimates (1)

- Under $H_1: \lambda = \lambda_1$, the empirical rejection probability is an estimate of the power of the LM-test against the alternative.
- For these experiments, N = 25, $\alpha = 0.05$, B = 499, T = 2000, $\epsilon_i \sim NID(0,1)$ and $x_i^{'}\beta = \beta_0 + \beta_1 x_{i1}$ where $\ln x_i \sim N(1,0.5)$, $\beta_0 = 1$, $\beta_1 = -.5$ and $\lambda = \lambda_1 \in \{.1, .15, .2, ..., 1.3\}$. The power estimates are:

• With the exception of $\lambda=0.5$, the LM-test using bootstrap critical values at the 5% level of significance seems reasonably powerful for N=25

5.3 Power Estimates (2)

- Whilst the LM-test exhibits reasonable power for $\lambda \neq 1$, it is worth examining the power against DGP's where a $\lambda \neq 1$ would necessary for consistency
- For these experiments, N = 100, $\alpha = 0.05$, B = 499, T = 2000, and the data are generated using similar DGP's to those used by Drukker(2002):

$$y_i^* = 1 + x_{i1} + x_{i2} + x_{i3} + \epsilon_i \sqrt{h(z_i'\alpha)},$$

$$x_{i1} \sim N(0,1) \quad x_{i2} = .3x_{1i} + u_{i2}, \ u_{i2} \sim N(0,1)$$

$$x_{i3} = .3x_{1i} + u_{i3}, \ u_{i3} \sim N(0,1)$$

- The ϵ_i are generated from, N(0,1), t_4 , and χ_5^2 , distributions and the function $h(z_i^{'}\alpha) = 1$ for homoskedastic and $h(z_i^{'}\alpha) = e^{2x_{i1}}$ for hetroskedastic errors.
- The following table sets out the power estimates:

Distribution	$h(z_{i}^{'}\alpha)=1$	$h(z_{i}^{'}\alpha)=e^{2x_{i1}}$
N(0,1)	N/A	0.734
t_4	0.085	0.795
χ_5^2	0.140	0.872

6. Description of `bctobit' Program

bctobit [, Fixed Nodots bfile(string) reps(integer 499)]

Description

- bctobit computes the LM-statistic for testing $H_0: \lambda = 1$ against $H_1: \lambda \neq 1$ in the Box Cox Tobit model. This is equivalent to testing the linearity, normality and homoskedasticity assumptions of the Tobit specification.
- The regressors are assumed to be random, and critical values are obtained from the bootstrap null distribution of the LM test statistic by repeated sampling from the (parametric) bootstrap DGP.

<u>Options</u>

- Fixed specifies that the regressors are fixed in the bootstrap null distribution
- Nodots suppresses the replication dots
- bfile(name) the name of the saved file which contains the LM-statistics computed from the bootstrap samples
- reps(#) the number of samples to be drawn from the bootstrap DGP to estimate the percentiles of the bootstrap null distribution. Default is 499

6. Description of `bctobit' Program

Tobit regression			Number	of obs =	100			
				LR chi	2(3) =	139.54		
			Prob >	ch12 =	0.0000			
Log likelihood = -117.08451			Pseudo	R2 =	0.3734			
У	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]		
×1	.8808724	.1447619	6.08	0.000	.5935602	1.168185		
x2	.9554311	.1253373	7.62	0.000	.7066713	1.204191		
x3	.9387104	.1204485	7.79	0.000	.6996535	1.177767		
_cons	1.200638	.1305344	9.20	0.000	.9415631	1.459712		
/sigma	1.05923	.0898169			.8809688	1.237492		
Obs. summary: 29 left-censored observations at y<=0 71 uncensored observations 0 right-censored observations								
. bctobit, reps(299) Bootstrap replications (299) +- 1+- 2+- 3+ 5								
100								
150								
				200				
				250				
LM test of Tobit specification								
	Bootstra	p critical v	alues					
lm	%10 %5	%1_						
1.4669 2.	86527 4.1014	972 10.1358	39					
1.4669 2.	.86527 4.1014	972 10.1358	39					

7. Further Research....

• A natural extension would be to consider the alternative of a Box Cox transformation with an error term that is hetroskedastic

$$y_i^{T*} = x_i'\beta + \epsilon_i \sqrt{h(z_i'\alpha)},$$

- where h is an unknown function , with $h'(.) \neq 0$, h(0) = 1 and $\ h'(0) = \kappa$
- A test of the joint hypothesis: $H_1: \lambda = 1, \ \eta = 0$ against the alternaitve of $H_1: \lambda \neq 1, \ \eta \neq 0$ is equivalent to testing the validity of the Tobit specification.
- The LM statistic would now be based on the additional components of the score vector, evaluated at the restrictions given by the null. These are:

$$\frac{\partial \ln L_i(\theta)}{\partial \alpha} \Big|_{\widetilde{\theta}} = d_i \frac{1}{2} \left[\frac{\widetilde{v}_{i1}^2}{\sigma^2} - 1 \right] \kappa z_i + (1 - d_i) \frac{-\phi(\widetilde{v}_{i2}/\sigma)}{1 - \Phi(\widetilde{v}_{i2}/\hat{\sigma})} \frac{\kappa z_i}{2\widetilde{\sigma}}$$

• As such $LM \xrightarrow{d} \chi^2_{1+\dim(z)}$. The size and power using bootstrap critical values can be estimated from empirical rejection probabilities as before.

8. References

- Box, G. E. P. and D. R. Cox (1964) "An Analysis of Transformations", Journal of the Royal Statistical Society, 26, 211-243.
- Drukker, D. M. (2002) "Bootstrapping a conditional moments test for normality after tobit estimation", The Stata Journal, 2, 125-139
- Moffatt, P. G. (2003) "Hurdle models of loan default", School of Economic and Social Studies, University of East Anglia, Norwich, UK