Margins and the Tao of Interaction

2010 Boston Stata Conference

Phil Ender

UCLA Statistical Consulting Group

July 2010

Prolog

The **margins** command is new in Stata 11. But interactions have, of course, been around a lot longer.

When it comes to deconstructing and understanding interactions **margins** is your best friend.

In fact, the **margins** command is more flexible and versatile than anything found in S*S, S*SS, or even *.

Why?

Because, margins groks interactions.

General comments

In addition to the two predictor variables, each of the models will also include a continuous covariate that is not part of the interaction.

In general, continuous covariates, which are not part of the interaction, are easy to deal with in linear models. However, the same is not true in nonlinear models where the values for covariates can make a large difference.

About the output

Please note the output has been heavily edited for space considerations.

And yes, I know, there are way too many numbers on most of the screens.

Categorical by Categorical Interaction Categorical by Continuous Interaction

Continuous by Continuous Interaction Continuous by Continuous Interaction Bonus Interaction

Categorical by Categorical Interaction

Phil Ender Margins and the Tao of Interaction

Meet the model

. use http://www.ats.ucla.edu/stat/data/hsbanova, clear

. anova wri	anova write c.read grp##female								
Nu	umber of obs	=	200 R-so	uared =	0.5008				
Bo	ot MSE	= 6.83	602 Adi	R-squared =	0.4799				
100		0.00	002 naj	iv byuur ou	011100				
Course	Domtial CC	a.f	мс	F	Drah N E				
Source	Partial 55	ai	MB	г	PTOD > F				
+-									
read	3818.04142	1	3818.04142	81.70	0.0000				
grp	776.490174	3	258.830058	5.54	0.0011				
female	1328.81274	1	1328.81274	28.44	0.0000				
grp#femal	427.388047	3	142.462682	3.05	0.0299				
Residual	8925.65863	191	46.731197						
+-									
Total I	17878 875	100	80 8/3503						
IULAL	11010.010	199	03.043093						

Phil Ender Margins and the Tao of Interaction

Margins time - compute the 8 adjusted cell means

- . estimates store m1
- . margins grp#female, asbalanced post

Expression : Linear prediction, predict()

_											
		 	D Margin	elta-metho Std. Err.	d z	P> z	[95% Conf	. Interval]			
		-+-									
gı	grp#female										
1	0		44.99	1.468	30.65	0.000	42.11	47.87			
1	1	Ι	53.64	1.348	39.78	0.000	50.99	56.28			
2	0	Ι	48.80	1.492	32.70	0.000	45.87	51.72			
2	1	T	55.78	1.423	39.19	0.000	52.99	58.57			
3	0	T	50.91	1.297	39.25	0.000	48.36	53.45			
3	1	T	55.71	1.222	45.60	0.000	53.32	58.11			
4	0	Ι	55.27	1.610	34.32	0.000	52.12	58.43			
4	1	Ι	55.78	1.361	40.99	0.000	53.11	58.44			

Collect values for graphing

The Kronecker product can be very useful in generating sequences of numbers.

- . matrix m = e(b),
- . matrix g = $(1 \ 3 \ 4) \# (1 \ 1)$
- . matrix f = $(1 \setminus 1 \setminus 1) # (0 \setminus 1)$
- . matrix m = g,f,m
- . svmat m

Here's what matrix m looks like

. matrix list m

m[8,3]

	c1:	c1:	
	c1	c1	y1
r1:r1	1	0	44.988635
r1:r2	1	1	53.637754
r2:r3	2	0	48.795544
r2:r4	2	1	55.784561
r3:r5	3	0	50.905864
r3:r6	3	1	55.711471
r4:r7	4	0	55.273395
r4:r8	4	1	55.77617

Graph it

. graph twoway ///
 (connect m3 m1 if m2==0)(connect m3 m1 if m2==1), ///
 title(Adjusted cell means by gender) ///
 ytitle(mean write) xtitle(grp) ///
 legend(order(1 "male" 2 "female")) scheme(lean1)

The view by gender

Graph it again

. graph twoway ///
 (connect m3 m2 if m1==1)(connect m3 m2 if m1==2) ///
 (connect m3 m2 if m1==3)(connect m3 m2 if m1==4), ///
 title(Adjusted cell means by grp) xlabel(0 1) ///
 ytitle(mean write) xtitle(female) ///
 legend(order(1 "grp1" 2 "grp2" 3 "grp3" 4 "grp4")) ///
 scheme(lean1)

The view by grp

Tests of simple main effects: female at grp (screen 1)

- . test 1.grp#0.female = 1.grp#1.female /* @ grp=1 */
- . test 2.grp#0.female = 2.grp#1.female /* @ grp=2 */

Tests of simple main effects: female at grp (screen 2)

. test 3.grp#0.female = 3.grp#1.female /* @ grp=3 */

. test 4.grp#0.female = 4.grp#1.female /* @ grp=4 */

Tests of simple main effects: grp at female (screen 1)

Tests of simple main effects: grp at female (screen 2)

(1) 1bn.grp#1.female - 2.grp#1.female = 0
(2) 1bn.grp#1.female - 3.grp#1.female = 0
(3) 1bn.grp#1.female - 4.grp#1.female = 0

chi2(3) = 1.86 Prob > chi2 = 0.6028

Alternate method

The method just shown computed the simple main effects using the individual adjusted cell means.

An alternative approach uses the **dydx()** option to compute the simple main effects directly from the **margins** output.

Simple main effects for female at grp

- . estimates restore m1
- . margins grp, dydx(female) asbalanced post

Expression : Linear prediction, predict()

	 	D dy/dx	elta-method Std. Err.	z P:	> z	[95% Con	f. Int.]
grp							
1		8.649119	1.940487	4.46	0.000	4.846	12.452
2		6.989016	2.067385	3.38	0.001	2.937	11.041
3	Τ	4.805607	1.770274	2.71	0.007	1.336	8.275
4	Ι	.5027748	2.06747	0.24	0.808	-3.549	4.555

Simple main effects for grp at female

. estimates restore m1

. margins female, dydx(grp) asbalanced post

Ex	Expression : Linear prediction, predict()											
		I	Delta-method									
	I	dy/dx	Std. Err.	z	P> z	[95% Conf.	Int.]					
2.	+2.grp											
0	1	3.806909	2.099492	1.81	0.070	3080197	7.921838					
1	Ι	2.146807	1.917853	1.12	0.263	-1.612115	5.905729					
3.	grp											
0	1	5.917229	1.978675	2.99	0.003	2.039097	9.795361					
1	1	2.073717	1.848835	1.12	0.262	-1.549932	5.697366					
4.	grp											
0	1	10.28476	2.236825	4.60	0.000	5.900663	14.66886					
1		2.138416	1.951454	1.10	0.273	-1.686363	5.963195					

Phil Ender Margins and the Tao of Interaction

Results: Simple main effects for grp at female

- . test ([2.grp]0.female=0)([3.grp]0.female=0)([4.grp]0.female=0)
 - (1) [2.grp]Obn.female = 0
 - (2) [3.grp]Obn.female = 0
 - (3) [4.grp]Obn.female = 0

chi2(3) = 22.19 Prob > chi2 = 0.0001

- . test ([2.grp]1.female=0)([3.grp]1.female=0)([4.grp]1.female=0)
- (1) [2.grp]1.female = 0
 (2) [3.grp]1.female = 0
 (3) [4.grp]1.female = 0

chi2(3) = 1.86 Prob > chi2 = 0.6028

Categorical by Continuous Interaction

Phil Ender Margins and the Tao of Interaction

Regression model w/ categorical by continuous interaction

- . regress write read female##c.socst, noheader
- . estimates store m1

write	Coef.	Std. Err	. t	P> t	[95% Cor	nf. Interv	al]
read	.3747	.0584	6.41	0.000	. 2595	.4899	
1.female	17.23	4.658	3.70	0.000	8.046	26.42	
socst	.4156	.0693	6.00	0.000	.2790	.5522	
	l						
female#	l						
c.socst	2347	.0870	-2.70	0.008	4063	0631	
_cons	8.802	3.527	2.50	0.013	1.846	15.76	

Getting slopes and intercepts

. margins female, dydx(socst) /* slopes */

Average ma	arg	inal	effects	Number	of obs	= 200	
socst female			dy/dx	Std. Err.	z	P> z	
	1 2		.4156419 .180911	.0692631 .0721559	6.00 2.51	0.000 0.012	
. margins	fe	male	, at(socst=	0) /* inte	rcepts *	«/	
Predictiv	e m 1 2	argi 	ns Margin 28.37166 45.60334	Std. Err. 3.636821 3.884672	Number z 7.80 11.74	of obs P> z 0.000 0.000	= 200

Graph of simple slopes by gender

Suppose we want gender difference at 5 values of socst

Margins - adjusted means

. margins female, at(socst=(30(10)70)) post noatlegend

E	Expression : Linear prediction, predict()										
		I	De	lta-method							
		Ι	Margin	Std. Err.	Z	P> z	[95% Conf.	Interval]			
	 at.#	-+- tfem:	 ale								
_` 1	0		40.84	1.644	24.84	0.000	37.62	44.06			
1	1	Ι	51.03	1.784	28.61	0.000	47.54	54.53			
2	0		44.99	1.056	42.60	0.000	42.93	47.07			
2	1		52.84	1.14	46.46	0.000	50.61	55.07			
()	out	put	omitted)							
5	0		57.47	1.452	39.59	0.000	54.62	60.31			
5	1		58.27	1.371	42.50	0.000	55.58	60.95			

Margins - differences in adjusted means

- . estimates restore m1
- . margins, dydx(female) at(socst=(30(10)70)) noatlegend

Average marginal effectsNumber of obs= 200Expression: Linear prediction - dy/dx w.r.t. : 1.female

	 	dy/dx	Delta-meth Std. Err.	nod z	P> z	[95% Con	f. Interval]	
1.f	' ema	ale _at						
1	1	10.19	2.166	4.70	0.000	5.945	14.43	
2	1	7.842	1.433	5.47	0.000	5.035	10.65	
3	1	5.495	.9633	5.70	0.000	3.607	7.383	
4	1	3.15	1.148	2.74	0.006	.8977	5.398	
5	1	.8005	1.795	0.45	0.656	-2.718	4.319	
Not	e:	dy/dx f	or factor	levels	is the c	liscrete ch	ange from th	e ba

Graph of differences in adjusted means

difference between regression lines

About the graph

We will show a detailed example of creating a graph like this in the last section for the Bonus Interaction.

Continuous by Continuous Interaction

Phil Ender Margins and the Tao of Interaction

Regression model w/ continuous by continuous interaction

. regress read write c.math##c.socst, noheader

read	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
write	. 193	.0714	2.71	0.007	.0524	. 3340
math	2285	.2903	-0.79	0.432	8011	.3441
socst	3206	.2700	-1.19	0.237	8532	.212
I						
c.math#						
c.socst 	.0120	.0052	2.32	0.021	.0018	.022
_cons	37.17	14.32	2.60	0.010	8.931	65.41

Simple slopes the Aiken and West way

Recenter data at 3 points for one predictor:

- 1 standard deviation below the mean
- at the mean
- 1 standard deviation above the mean

then rerun regressions

In Stata 10.1, I would have used as series on lincom commands.

Using the **margins** command you do not need to recenter data and you can compute simple slopes for as many values as you wish.

Compute simple slopes using margins

- . margins, dydx(math) at(socst=(30(5)75)) noatlegend
- . matrix s = r(b) /* capture slopes */

Average marginal effects Number of obs = 200 Expression : Linear prediction - dy/dx w.r.t. : math | dy/dx Std. Err. z P>|z| [95% Conf. Interval] math _at 1 | .1308 .1448 -.1529 0.90 0.366 .4145 2 | .1907 1.55 0.120 .1227 -.0497 .4311 3 | .2506 .1023 2.45 0.014 .0500 .451 (output omitted) 8 | .5500 .0865 6.36 0.000 .380 .7196 9 | .6099 .1043 5.85 0.000 .406 .814 10 L .6698 .1248 5.37 0.000 .4251 .9145

Compute intercepts using margins

- . margins, at(math=0 socst=(30(5)75)) noatlegend
- . matrix i = r(b) /* capture intercepts */

Predictive margins Number of obs = 200 Expression : Linear prediction, predict() Margin Std. Err. z P>|z| [95% Conf. Interval] _at | 1 | 37.7 7.180 5.26 0.000 23.67 51.82 2 | 36.14 6.057 5.97 0.000 24.2748.02 3 | 5.046 34.54 6.85 0.000 24.65 44.43 (output omitted) 8 | 26.53 4.903 5.41 0.000 16.91 36.14 9 | 24.92 5.890 4.23 0.000 13.38 36.47 10 23.32 6.999 3.33 0.001 9.6 37.04

Graph it

. graph twoway /// (function y = i[1, 1] + s[1, 1] * x, range(30 75)) ///(function y = i[1, 2] + s[1, 2]*x, range(30 75)) /// (function y = i[1, 3] + s[1, 3]*x, range(30 75)) /// (function y = i[1, 4] + s[1, 4]*x, range(30 75)) /// (function y = i[1, 5] + s[1, 5]*x, range(30 75)) /// (function y = i[1, 6] + s[1, 6]*x, range(30 75)) /// (function y = i[1, 7] + s[1, 7]*x, range(30 75)) /// (function y = i[1, 8] + s[1, 8]*x, range(30 75)) /// (function v = i[1, 9] + s[1, 9] *x, range(30 75)) ///(function y = i[1,10] + s[1,10]*x, range(30 75)) /// (scatter read math, msym(oh) jitter(3)), 111 xlabel(30(10)75) legend(off) ytitle(read) 111 xtitle(math) scheme(lean1)

Simple slopes for 10 values of socst from 30 to 75

Bonus Interaction

Categorical by continuous logistic interaction

Phil Ender Margins and the Tao of Interaction

Logistic regression model

- . use http://www.ats.ucla.edu/stat/data/logitcatcon, clear
- . logit y cv1 i.f##c.s, nolog noheader

У	Coef	Std. Err.	Z	P> z	[95% Conf.	Interval]
cv1 1.f s	.1877 9.984 .1751	.0348 3.05 .0470	5.40 3.27 3.72	0.000 0.001 0.000	.1195 4.001 .0829	.256 15.97 .2672
f#c.s 1	 1595	.0570	-2.80	0.005	2713	0477
_cons	 -19.01	3.371	-5.64	0.000	-25.61	-12.39

Hold cv1 constant, let s vary (probability metric)

. man Adjus Expre	<pre>. margins f, at(s=(40 50 60) cv1=50) noatlegend Adjusted predictions Number of obs = 200 Expression : Pr(v), predict()</pre>											
	 +-	Margin	n Std. Err.	z	P> z	[95% Con	f. Interval]					
1 0	I	.068052	.0448994	1.5	2 0.130	0199492	.1560531					
1 1	I	.7282426	.0816421	8.92	2 0.000	.5682269	.8882582					
2 0	I	.2960206	.0768246	3.8	5 0.000	.1454472	.446594					
2 1	I	.7578957	.0512602	14.79	0.000	.6574276	.8583637					
30	I	.7077261	.0953456	7.42	2 0.000	.5208521	.8946					
31	I	.7852672	.0669634	11.73	3 0.000	.6540214	.916513					
. margins, dydx(f) at(s=(40 50 60) cv1=50) noatlegend Conditional marginal effects Number of obs = 200												
Exbre	ະວ ເ	du/du	(y), predict	() - uy,		I.I [05% Conf	Intorvoll					
	। +-	uy/ux			F / Z	[95% 0011						
1	l	.6601906	.0983425	6.71	0.000	.4674428	.8529385					
2	I	.4618751	.0965359	4.78	0.000	.2726681	.651082					
3	I	.0775412	.1164177	0.67	0.505	1506333	.3057156					
Note	:	dy/dx for f	actor levels	is the	discrete	change from	the base level.					
			Ph	il Ender	Margins an	d the Tao of Intera	ction					

Hold s constant, let cv1 vary (probability metric)

<pre>. margins f, at(s=50 cv1=(40 50 60)) noatlegend Adjusted predictions Number of obs = 200 Expression : Pr(v), predict()</pre>									
	Marg	gin St	d. Err.	z	P> z	[95%	Conf.	Interval]	
1 0	.06045	557 .0	329478	1.83	0.067	0041	208	.1250322	
1 1	.32388	.0822	808248	4.01	0.000	.1654	685	.4822959	
2 0	.29602	206 .0	768246	3.85	0.000	.1454	472	.446594	
2 1	.75789	957 .0	512602	14.79	0.000	.6574	276	.8583637	
30	.73318	854 .0	823937	8.90	0.000	.5716	966	.8946741	
3 1	.95339	959 .0	227391	41.93	0.000	.9088	281	.9979637	
margins $dvdx(f)$ at (s=50 cv1=(40 50 60)) noatlegend									
Conditional marginal effects Number of obs = 200									
Expression : $Pr(y)$, predict() - dy/dx w.r.t. : 1.f									
1	dy	y/dx S	td. Err.	z	P> z	[95%	Conf	. Interval]	
1	.2634	4265 .	0682395	3.86	0.000	. 129	 6795	.3971735	
2	.4618	8751 .	0965359	4.78	0.000	.272	6681	.651082	
3	.2202	2105 .	0743402	2.96	0.003	.074	5063	.3659147	
Note:	dy/dx i	for fact	or levels	is the	discrete	change	from	the base level	

Phil Ender

Let both s and cv1 vary

. margins, dydx(f) at(s=(25(5)70) cv1=(40 50 60)) noatlegend post

Conditional marginal effects Number of obs = 200 Expression : Pr(y), predict() - dy/dx w.r.t. : 1.f

	1	dy/dx	Std.	Err.	z	P> z	[95% Conf.]	Interval]
	+							
1.f	_at	:						
1	Ι.	2443475	.1321	L009	1.85	0.064	0145655	.5032605
2	Ι.	2578855	.1135	5271	2.27	0.023	.0353765	.4803946
3	Ι.	2704118	.0954	1463	2.83	0.005	.0833405	.4574832
4	Ι.	2797622	.0798	3258	3.50	0.000	.1233066	.4362179
(out	put	omitted))					
27	Ι.	0884101	.0436	6473	2.03	0.043	.0028629	.1739572
28	Ι.	0192749	.0303	3776	0.63	0.526	0402642	.0788139
29		0116134	.0243	3513	-0.48	0.633	059341	.0361142
30		0237264	. 02	2315	-1.02	0.305	0690996	.0216469
Note	: d	ly/dx for	factor	r levels	is th	e discrete	change from	the base leve

Phil Ender Margins and the Tao of Interaction

Capture the data for graphing

```
matrix t = J(30,3,.)
matrix cv = (40\50\60)#(1\1\1\1\1\1\1\1\1\1)
matrix iv = (1\1\1)#(25\30\35\40\45\50\55\60\65\70)
```

```
forvalues i=1/30 {
  quietly lincom _b[1.f:'i'._at]
  matrix t['i',1] = r(estimate)
  matrix t['i',2] = r(estimate) - 1.96*r(se)
  matrix t['i',3] = r(estimate) + 1.96*r(se)
}
```

```
matrix t = t,iv,cv
svmat t
```

Here is what matrix t looks like

. matrix list t

t[30,5]

	c1	c2	c3	c1	c1
r1	.2443475	01457025	.50326526	25	40
r2	.25788554	.0353724	.48039867	30	40
r3	.27041184	.08333707	.4574866	35	40
r4	.27976224	.12330368	.43622079	40	40
r5	.28098578	.14450356	.41746801	45	40
(output omitted)					
r26	.22021051	.07450364	.36591739	50	60
r27	.08841006	.00286136	.17395877	55	60
r28	.01927488	04026528	.07881503	60	60
r29	01161343	0593419	.03611503	65	60
r30	02372637	06910046	.02164773	70	60

Make 3 graphs

```
forvalues i = 40(10)60 {
graph twoway ///
  (rarea t2 t3 t4 if t5=='i', color(gs13) lcolor(gs13)) ///
  (line t1 t4 if t5=='i'), yline(0) legend(off) ///
  xtitle(continuous variable s) ///
  ytitle(difference in probability) ///
  title(male-female difference with cv1 at 'i') ///
  scheme(lean1) xlabel(25(5)70) ylabel(-1(.5)1) ///
  name(difference'i', replace)
}
```


male-female difference with cv1 at 60

