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Preview Slide: Coarsened Exact Matching (CEM)

Preprocess (X , T ) with CEM:

1 Temporarily coarsen X as much as you’re willing

e.g., Education (grade school, high school, college, graduate)
Easy to understand, or can be automated as for a histogram

2 Perform exact matching on the coarsened X , C (X )

Sort observations into strata, each with unique values of C(X )
Prune any stratum with 0 treated or 0 control units

3 Pass on original (uncoarsened) units except those pruned

Analyze as without matching (adding weights for stratum-size)

(Or apply other matching methods within CEM strata
& they inherert CEM’s properties)

 A version of CEM: Last studied 40 years ago by Cochran
 First used many decades before that

Matthew Blackwell (Harvard, IQSS) Matching without Balance Checking 2 / 18
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Characteristics of Observational Data

Lots of data

Data is of uncertain origin. Treatment assignment:

not random, not controlled by investigator, not known

The idea of matching: sacrifice some data to avoid bias

Removing heterogeneous data will often reduce variance too

(Medical experiments are the reverse: small-n with random treatment
assignment; don’t match unless something goes wrong)

Matthew Blackwell (Harvard, IQSS) Matching without Balance Checking 3 / 18
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Model Dependence

What to do?

Preprocess I: Eliminate extrapolation region (a separate step)

Preprocess II: Match (prune bad matches) within interpolation region

Model remaining imbalance
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Matching within the Interpolation Region
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Matching reduces model dependence, bias, and variance
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Matching within the Interpolation Region
(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)
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Matching within the Interpolation Region
(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)
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The Goals, with some more precision

Notation:

Yi Dependent variable
Ti Treatment variable (dichotomous)
Xi Covariates

Treatment Effect for treated (Ti = 1) observation i :

TEi = Yi (Ti = 1)−Yi (Ti = 0)

= observed −unobserved

Estimate Yi (Ti = 0) with Yj from matched (Xi ≈ Xj) controls

Prune unmatched units to improve balance (so X is unimportant)

Sample Average Treatment effect on the Treated:

SATT =
1

nT

∑
i∈{Ti=1}

TEi

Matthew Blackwell (Harvard, IQSS) Matching without Balance Checking 6 / 18
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Problems With Existing Matching Methods

Don’t eliminate extrapolation region

Don’t work with multiply imputed data

Not well designed for observational data:

Least important (variance): matched n chosen ex ante
Most important (bias): imbalance reduction checked ex post

Hard to use: Improving balance on 1 variable can reduce it on others

Best practice:

choose n-match-check, tweak-match-check,
tweak-match-check, tweak-match-check, · · ·

Actual practice:

choose n, match, publish, STOP.
(Is balance even improved?)
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Largest Class of Methods: Equal Percent Bias Reducing

Goal: changing balance on 1 variable should not harm others

For EPBR to be useful, it requires:

(a) X drawn randomly from a specified population X,
(b) X ∼ Normal
(c) Matching algorithm is invariant to linear transformations of X .
(d) Y is a linear function of X .

EPBR Definition: Matched sample size set ex ante, and

matched original

E (X̄mT
− X̄mC

) =γE (X̄T − X̄C )

When data conditions hold:

Reducing mean-imbalance on one variable, reduces it on all
n set ex ante; balance calculated ex post
EPBR controls only expected (not in-sample) imbalance
Methods are assumption-dependent & only potentially EPBR
(In practice, we’re lucky if univariate mean imbalance is reduced)
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A New Class of Methods: Monotonic Imbalance Bounding

No restrictions on data types

Designed for observational data (reversing EPBR):

Most important (bias): degree of balance chosen ex ante
Least important (variance): matched n checked ex post

Balance is measured in sample (like blocked designs), not merely in
expectation (like complete randomization)
Covers all forms of imbalance: means, interactions, nonlinearities,
moments, multivariate histograms, etc.
One adjustable tuning parameter per variable
Convenient monotonicity property: Reducing maximum imbalance on
one X : no effect on others

MIB Formally (simplifying for this talk):

D(XεT ,X
ε
C ) ≤ γ(ε) vars to adjust

D(X ε
T ,X

ε
C ) ≤ γ(ε) remaining vars
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What’s Coarsening?

Coarsening is intrinsic to measurement

We think of measurement as clarity between categories
But measurement also involves homogeneity within categories
Examples: male/female, rich/middle/poor, black/white, war/nonwar.
Better measurement devices (e.g., telescopes) produce more detail

Data analysts routinely coarsen, thinking grouping error is less risky
than measurement error. E.g.:

7 point Party ID  Democrat/Independent/Republican
Likert Issue questions  agree/{neutral,no opinion}/disagree
multiparty voting  winner/losers
Religion, Occupation, SEC industries, ICD codes, etc.

Temporary Coarsening for CEM; e.g.:

Education: grade school, middle school, high school, college, graduate
Income: poverty level threshold, or larger bins for higher income
Age: infant, child, adolescent, young adult, middle age, elderly
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CEM as an MIB Method

Define: ε as largest (coarsened) bin size (ε = 0 is exact matching)

Setting ε bounds the treated-control group difference, within strata
and globally, for:

means, variances, skewness, covariances,
comoments, coskewness, co-kurtosis, quantiles, and full multivariate
histogram.
=⇒ Setting ε controls all multivariate treatment-control differences,

interactions, and nonlinearities, up to the chosen level (matched n is
determined ex post)

By default, both treated and control units are pruned: CEM estimates
a quantity that can be estimated without model dependence

What if ε is set . . .

too large?

 You’re left modeling remaining imbalances

too small?

 n may be too small

as large as you’re comfortable with, but n is still too small?

 No magic method of matching can save you;
 You’re stuck modeling or collecting better data
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Other CEM properties

Automatically eliminates extrapolation region (no separate step)

Bounds model dependence

Bounds causal effect estimation error

Meets the congruence principle

The principle: data space = analysis space
Estimators that violate it are nonrobust and counterintuitive
CEM: εj is set using each variable’s units
E.g., calipers (strata centered on each unit):

would bin college drop out
with 1st year grad student; and not bin Bill Gates & Warren Buffett

Approximate invariance to measurement error:
CEM pscore Mahalanobis Genetic

% Common Units 96.5 70.2 80.9 80.0

Fast and memory-efficient even for large n; can be fully automated

Simple to teach: coarsen, then exact match
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% Common Units 96.5 70.2 80.9 80.0

Fast and memory-efficient even for large n; can be fully automated

Simple to teach: coarsen, then exact match
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CEM in Stata – An example

. cem age education black nodegree re74, tr(treated)

Matching Summary:

-----------------

Number of strata: 205

Number of matched strata: 67

0 1

All 425 297

Matched 324 228

Unmatched 101 69

Multivariate L1 distance: .46113967

Univariate imbalance:

L1 mean min 25% 50% 75% max

age .13641 -.17634 0 0 0 0 -1

education .00687 .00687 1 0 0 0 0

black 3.2e-16 -2.2e-16 0 0 0 0 0

nodegree 5.8e-16 4.4e-16 0 0 0 0 0

re74 .06787 34.438 0 0 492.23 39.425 96.881
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Imbalance Measures

Variable-by-Variable Difference in Global Means

I
(j)
1 =

∣∣∣X̄ (j)
mT − X̄

(j)
mC

∣∣∣ , j = 1, . . . , k

Multivariate Imbalance: difference in histograms (bins fixed ex ante)

L1(f , g) =
∑
`1···`k

|f`1···`k − g`1···`k |

Local Imbalance by Variable (given strata fixed by matching method)

I
(j)
2 =

1

S

S∑
s=1

∣∣∣X̄ (j)
ms

T
− X̄

(j)
ms

C

∣∣∣ , j = 1, . . . , k
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Estimating the Causal Effect from cem output

. reg re78 treated [iweight=cem_weights]

Source | SS df MS Number of obs = 552

-------------+------------------------------ F( 1, 550) = 3.15

Model | 128314324 1 128314324 Prob > F = 0.0766

Residual | 2.2420e+10 550 40764521.6 R-squared = 0.0057

-------------+------------------------------ Adj R-squared = 0.0039

Total | 2.2549e+10 551 40923414.2 Root MSE = 6384.7

------------------------------------------------------------------------------

re78 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

treated | 979.1905 551.9132 1.77 0.077 -104.9252 2063.306

_cons | 4919.49 354.7061 13.87 0.000 4222.745 5616.234

------------------------------------------------------------------------------
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Choosing a custom coarsening

. table education

----------------------

education | Freq.

----------+-----------

3 | 1

4 | 6

5 | 5

6 | 7

7 | 15

8 | 62

9 | 110

10 | 162

11 | 195

12 | 122

13 | 23

14 | 11

15 | 2

16 | 1

----------------------

Grade school 0–6
Middle school 7–8
High school 9–12
College 13–16
Graduate school >16

. cem age education (0 6.5 8.5 12.5 17.5) black nodegree re74, tr(treated)
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CEM Extensions I

CEM and Multiple Imputation for Missing Data

1 put missing observation in stratum where plurality of imputations fall
2 pass on uncoarsened imputations to analysis stage
3 Use the usual MI combining rules to analyze

Multicategory treatments: No modification necessary; keep all strata
with ≥ 1 unit having each value of T

Blocking in Randomized Experiments: no modification needed;
randomly assign T within CEM strata

Automating user choices

Histogram bin size calculations

Improve Existing Matching Methods

Applying other methods within
CEM strata
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For papers, software, tutorials, etc.

http://GKing.Harvard.edu/cem
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