

Computing occupational segregation indices with standard errors

An ado-file application with an illustration for Colombia

Jairo G. Isaza-Castro

<u>jisaza@lasalle.edu.co</u>

Karen Guerrero; Karen Hernandez; Jessy Hemer

Stata Conference at Baltimore (MN), July 29th 2017

Motivation

- Analyzing changes in segregation indices over time or across population groups requires some reference to their variability. Having a representative sample allows to calculate an estimator for the population value of any segregation index –but this yields no information about its dispersion (Deutsch et al. 2002)
- Bootstrap provides a solution for situations like this (cfr. Deutsch et al. 2002; Jenkins et al. 2002)
- We developed an ado file called "segregation" which allows the user to compute three segregation indices with standard errors and confidence intervals:
 - Duncan and Duncan (1955) dissimilarity index
 - Gini Coefficient based on the distribution of jobs by gender (see Deutsch et al. 1994) and
 - Karmel and MacLachlan (1988) index of labor market segregation

Outline

- What we mean by "occupational segregation"
- Selected occupational segregation indices
- The algorithm
- Results and discussion
- Pending issues for further research

What we mean by "occupational segregation"

Three overlapping concepts (Blackburn and Jarman, 2005):

UNIVERSIDAD DE

- Segregation which refers to the existence of a differentiated pattern of jobs predominantly performed by either women or men.
- **Exposure**, which is related to the degree of social interaction that one minority group has with the rest of the population in the labour market.
- **Concentration**, that relates to the composition of the labour force in terms of minority/majority groups of the population and is measured in one or more occupations.

Occupational segregation indices

Index	Statistical formulas	Definition				
Dissimilarity index (Duncan & Duncan, 1955)	$DI = \frac{1}{2} \sum_{i=1}^{n} \left \frac{F_i}{F} - \frac{M_i}{M} \right , i = 1, 2,, n$	✓ where n is the number of occupations, F_i and M_i are the number of female and male workers in occupation I , respectively, and F and M refer to the total number of female and male workers.				
Gini coefficient of the distribution of jobs (Silber, 1986)	GI $= \frac{1}{2} \sum_{i=1}^{n} \sum_{i=j}^{n} \frac{M_{i}}{M} \frac{M_{j}}{M} \left \frac{F_{i}/M_{i} - F_{j}/M_{j}}{F/M} \right $	 ✓ where Mi and Fi are defined as explained above. ✓ it represents a weighted relative mean of deviations of the male/female ratios from an average gender distribution of jobs within occupations. 				
Karmel and MacLachlan (1988) index	$KM = \sum_{i=1}^{n} \left a \frac{M_i}{T} - (1-a) \frac{F_i}{T} \right $	✓ where a (= $F/(M+F)$) represents the female participation in the labour force and T = M + F.				

Command structure

where depvar is a categorical variable deemed to be relevant for the analysis, groupvar features the dichotomous variable defining the analysis groups (i.e., gender or ethnic group), [weight] specifies the weight variable (in terms either of frequencies or sampling weights), n(#) indicates the number of resamples from the original sample to be taken and, by (varname) declares a categorical variable across which the command can be repeated.

The algorithm

Steps

- It takes a view of the original data into Mata for the relevant variables (occupation variable and dichotomous grouping variable –plus conditional variables if necessary)
- 2. Then it draws a number of random samples (i.e., 1200) with replacement from the original Mata view in order to obtain a distribution for each one of the three segregation measures described above.
- 3. Finally it estimates the means for the segregation measures to draw the results table with their corresponding standard errors and confidence intervals (at the 95%).

Results

The dataset...

obs: Cars:	from C:\U 37,192 4 60,344	Users\JairoG\Dropbox\jairo\2017\Stata Conference 2017\GEIH_rural_2011.dta 22 Jul 2017 15:22				
storage displ variable name	lay va type	alue format	label	variable label		
estrato1 p6020 fex_c isco	byte byte float byte	%8.0g %8.0g %9.0g %10.0g	estrato1 p6020	sextile by quality of life score sex frequency weights int. standard classification of occupations 1968		

Results


```
Do-file Editor - rutina segregation*
 File Edit View Project Tools
🗋 📂 🔚 🖶 | &A | 🐰 📭 🖺 🔊 🖭 🕂 🕞 👺 📳
   campana* rutina segregation* Untitled1.do
 1
       clear all
       set more off
       cd "E:\Dropbox\Archivos Memo\Unisalle\jairo\2017\Stata Conference 2017"
 4
       use GEIH rural 2011, clear
 5
 6
       /* To obtain the three segregation measures from 1200 resamples */
       segregation isco p6020 , n(1200)
10
       /* To obtain the three segregation measures with the "if" conditional */
11
       segregation isco p6020 if estrato1==1, n(1200)
12
13
       /* Segregation measures with weighted data */
14
       segregation isco p6020 [fw=fex c], n(1200)
15
       /* Segregation measures by strata */
116
       segregation isco p6020 , n(1200) by(estrato1)
117
118
119
       /* Several options combined */
       segregation isco p6020 [fw=fex c] if estrato1<4, n(1200) by(estrato1)
20
21
122
```

. /* To obtain . segregation			asures from 1	200 resample	es */
Mean estimation	n	Numl	oer of obs	= 1200	
	Mean	Std. Err.	[95% Conf.	Interval]	☐ Conventional
Duncan	.7822177 .6163188 .2325772	.0018427	.6127036	.6199341	results based from 1200 resamples
/* To obtain . segregation (19310 real ch	isco p6020 if			he "if" cond	ditional */
Mean estimatio		Number of obs = 1200			Conditional results for Strata 1
	Mean	Std. Err.	[95% Conf.	Interval]	
Gini Duncan Kmi	.8399941	.0031356 .0045741 .0017544	.8310199		

```
. /* To obtain the three segregation measures from 1200 resamples */
. segregation isco p6020 , n(1200)
                                Number of obs = 1200
Mean estimation
                  Mean Std. Err. [95% Conf. Interval]
                                                            ☐ Conventional
                                                              results based
       Gini | .7822177 .0020915 .7781142 .7863211
                                                              from 1200
             .6163188 .0018427 .6127036 .6199341
     Duncan |
                                                              resamples
       Kmi | .2325772 .0004544 .2316857 .2334687
. /* To obtain the three segregation measures with the "if" conditional */
. segregation isco p6020 if estrato1==1, n(1200)
(19310 real changes made)
                                                            ☐ Conditional
Mean estimation
                                Number of obs
                                                  1200
                                                              results for
                                                              Strata 1
                  Mean Std. Err. [95% Conf. Interval]
       Gini | .9066739 .0031356 .9005221 .9128257
     Duncan |
             .8399941 .0045741 .8310199 .8489683
       Kmi | .3259277 .0017544 .3224857 .3293698
```

☐The command can also compute results with weighted data

```
. /* Segregation measures with weighted data */
. segregation isco p6020 [fw=fex_c], n(1200)

Mean estimation Number of obs = 1200

| Mean Std. Err. [95% Conf. Interval]

Gini | .8210078 .0028506 .8154151 .8266005
Duncan | .6569272 .0026704 .6516881 .6621664
Kmi | .2859661 .001086 .2838354 .2880967
```

In this case, using weights moves all indices upwards but this does not have always to be the case

☐The command can also compute results with weighted data

```
Segregation measures with weighted data */
. segregation isco p6020 [fw=fex c], n(1200)
Mean estimation
                                 Number of obs
                                                      1200
                          Std. Err. [95% Conf. Interval]
                   Mean
       Gini I
                .8210078
                          .0028506 .8154151 .8266005
     Duncan |
                .6569272
                          .0026704
                                       .6516881 .6621664
                .2859661
                           .001086
                                       .2838354
                                                  .2880967
        Kmi |
```

```
. /* Segregation measures by strata */
. segregation isco p6020 , n(1200) by(estrato1)
(1 vector posted)
estrato 1
Mean estimation
                      Number of obs = 1200
           Mean Std. Err. [95% Conf. Interval]
      Gini | .8523668 .0027112 .8470475 .8576861
    Duncan | .8032839 .0032977 .7968141 .8097538
      Kmi | .1998572 .0026832 .1945929 .2051216
estrato 2
Mean estimation
                     Number of obs = 1200
           Mean Std. Err. [95% Conf. Interval]
      Gini | .595272 .0030826 .5892242 .6013198
    Duncan | .5336536 .0039289 .5259453 .541362
      Kmi | .184353 .0020711 .1802897 .1884163
estrato 3
Mean estimation
                      Number of obs = 1200
           Mean Std. Err. [95% Conf. Interval]
      Gini | .8804594 .0035381 .8735179 .8874009
    Duncan | .8260801 .0050609 .8161509 .8360093
                      .0024263
       Kmi I
           .324485
                                 .3197247 .3292453
```

The "[by (varname)]" option

```
□Several options can also be applied simultaneously ✓ weights ✓ if ✓ by
```

```
. /* Several options combined */
. segregation isco p6020 [fw=fex c] if estrato1<4, n(1200) by(estrato1)
(50278 real changes made)
(1 vector posted)
estrato 1
Mean estimation
                               Number of obs
                                                  1200
                        Std. Err. [95% Conf. Interval]
                  Mean
    Gini | .9482807 .0027633 .9428592 .9537022
                                    .9188737 .9341957
  Duncan | .9265347 .0039048
       Kmi | .3988634 .0018887
                                    .3951578 .402569
estrato 2
Mean estimation
                               Number of obs
                                                1200
                        Std. Err. [95% Conf. Interval]
                  Mean
      Gini | .5350322 .0056822 .5238841 .5461804
                                    .4595255
     Duncan | .4715174 .0061122
                                               .4835093
       Kmi | .219724
                        .0028514
                                    .2141297
                                               .2253183
estrato 3
Mean estimation
                               Number of obs = 1200
                        Std. Err. [95% Conf. Interval]
                  Mean
      Gini |
              .5259643
                        .0044516
                                    .5172304 .5346981
     Duncan |
              .4404268
                        .0042713
                                    .4320468
                                               .4488068
                                    .2057891
       Kmi
               .2098955
                         .002093
                                               .2140018
```

```
□Several options
can also be
applied
simultaneously
✓ weights
✓ if
✓ by
```

```
/* Several options combined */
. segregation isco p6020 [fw=fex c] if estrato1<4, n(1200) by(estrato1)
(50278 real changes made)
(1 vector posted)
estrato 1
Mean estimation
                                     Number of obs
                                                           1200
                            Std. Err.
                     Mean
                                           [95% Conf. Interval]
                             .0027633
                 .9482807
                                           .9428592
                                                       .9537022
                 .9285347
                             .0039048
                                           .9188737
                                                       .9341957
      Duncan
         Kmi
                 .3988634
                             .0018887
                                           .3951578
                                                         .402569
estrato
Mean estimation
                                     Number of obs
                                                           1200
                     Mean
                            Std. Err.
                                           [95% Conf. Interval]
                                           .5238841
        Gini |
                 .5350322
                             .0056822
                                                       .5461804
      Duncan |
                 .4715174
                             .0061122
                                           .4595255
                                                       .4835093
         Kmi |
                  .219724
                             .0028514
                                           .2141297
                                                       .2253183
estrato 3
Mean estimation
                                    Number of obs
                                                           1200
                            Std. Err.
                                           [95% Conf. Interval]
                     Mean
        Gini
                 .5259643
                             .0044516
                                           .5172304
                                                       .5346981
      Duncan
                 .4404268
                             .0042713
                                           .4320468
                                                       .4488068
         Kmi
                 .2098955
                              .002093
                                           .2057891
                                                        .2140018
```


Some pending issues

- We are working to give the user more choice to customize the output: different levels for confidence intervals, picking or dropping indices, reporting additional statistics
- More flexibility in order to account for complex sampling designs
- Other segregation measures proposed in the literature could also be incorporated
- Extensions to multi-group segregation indices
 - Hutchens `square root' segregation index with optional decompositions by subgroups (see Jenkings et al. 2006)
 - "seg" command calculates several indices to which standard errors could also be applied: Gini index, Theil Information Theory index, Squared Coefficient of Variation index and Simpson Diversity indexes (see Reardon & Firebaugh 2002)

References

- BLACKBURN, R. M., BROOKS, B. & JARMAN, J. 2001. Occupational Stratification: The Vertical Dimension of Occupational Segregation. *Work, Employment & Society*, 15, 511-538.
- DEUTSCH, J., FLUCKIGER, Y. & SILBER, J. (1994) Measuring occupational segregation: Summary statistics and the impact of classification errors and aggregation. *Journal of Econometrics*, 61, 133-146.
- DUNCAN, O.D., DUNCAN, B., 1955: A Methodological Analysis of Segregation Indexes. *American Sociological Review* 20: 210-217.
- HUTCHENS, R. 2004. One measure of segregation. International Economic Review 45(2): 555-578.
- ISAZA-CASTRO, J.G. & REILLY, B.M. (2010) Occupational Segregation by Gender: An Empirical Analysis for Urban Colombia (1986-2004). Paper presented at the Guanajuato Workshop for Young Economists, Guanajuato (Mexico).
- JENKINS, S.P., MICKLEWRIGHT, J. and SCHNEPF, S.V. 2006. Social segregation in secondary schools: how does England compare with other countries? *Working Paper 2006-02*, Institute for Social and Economic Research, University of Essex. Available at: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.421.4691&rep=rep1&type=pdf -access: 27 June 2017
- KARMEL, T. & MACLACHLAN, M. (1988) Occupational Sex Segregation--Increasing or Decreasing? *Economic Record*, 64, 187.
- REARDON, S. F., & FIREBAUGH, G. 2002. "Measures of multigroup segregation." Sociological Methodology 32: 33-67.
- SEMYONOV, M. & JONES, F. (1999) Dimensions of Gender Occupational Differentiation in Segregation and Inequality: A Cross-National Analysis. *Social Indicators Research*, 46, 225-247.
- SHAO, J., and D. TU. 1995. *The Jackknife and Bootstrap*. New York: Springer.
- SILBER, J. G. (1989) On the measurement of employment segregation. *Economics Letters*, 30, 237-243.

Gracias!

UNIVERSIDAD DE LA SALLE