# Extreme values and robust distribution analysis

Philippe Van Kerm

CEPS/INSTEAD, Luxembourg

ISER, University of Essex

13th UK Stata Users Group meeting Cass Business School (London), September 10-11, 2007



## [outline]

- 1 The problem of data contamination/extreme incomes
- 2 Robust estimation
- **3** Stata Implementation of OBRE
- 4 Simulation results
- 5 Application to real income data for Luxembourg
- 6 The semi-parametric approach
- **7** Concluding remarks



## [outline]

#### 1 The problem of data contamination/extreme incomes

- 2 Robust estimation
- **3** Stata Implementation of OBRE
- 4 Simulation results
- 6 Application to real income data for Luxembourg
- 6 The semi-parametric approach
- **7** Concluding remarks



## Context

#### "Distribution analysis"

Analysis of data modelled as realizations from some random variable  $\boldsymbol{Y}$ 

- characterize *Y* w.r.t. 'location', 'spread'/'skewness', 'modality'
- focus on other particular features, e.g.
  - measures of inequality, poverty, polarization (income data)
  - expected loss, value-at-risk (financial data)
- stochastic dominance comparisons (ordering RV w.r.t. risk or inequality)
- fit parametric models for the RV (e.g., Gamma distribution, Pareto, etc.)



## Context

#### "Distribution analysis"

Analysis of data modelled as realizations from some random variable  $\boldsymbol{Y}$ 

- characterize *Y* w.r.t. 'location', 'spread'/'skewness', 'modality'
- focus on other particular features, e.g.
  - measures of inequality, poverty, polarization (income data)
  - expected loss, value-at-risk (financial data)
- stochastic dominance comparisons (ordering RV w.r.t. risk or inequality)
- fit parametric models for the RV (e.g., Gamma distribution, Pareto, etc.)



## The problem of data contamination and extreme values

#### The problem

Analysis beyond 'central tendency'/'location' estimation (very) sensitive to extreme data

- data contamination (e.g., 'decimal point' encoding error')?
- 'valid' outliers?

Consequences are potential bias and high sampling uncertainty (even with large samples).



## The problem of data contamination and extreme values

#### The problem

Analysis beyond 'central tendency'/'location' estimation (very) sensitive to extreme data

- data contamination (e.g., 'decimal point' encoding error')?
- 'valid' outliers?

Consequences are potential bias and high sampling uncertainty (even with large samples).



## The problem of data contamination and extreme values

#### The problem

Analysis beyond 'central tendency'/'location' estimation (very) sensitive to extreme data

- data contamination (e.g., 'decimal point' encoding error')?
- 'valid' outliers?

Consequences are potential bias and high sampling uncertainty (even with large samples).



## The problem of data contamination and extreme values

#### The problem

Analysis beyond 'central tendency'/'location' estimation (very) sensitive to extreme data

- data contamination (e.g., 'decimal point' encoding error')?
- 'valid' outliers?

Consequences are potential bias and high sampling uncertainty (even with large samples).



## The problem of data contamination and extreme values

#### The problem

Analysis beyond 'central tendency'/'location' estimation (very) sensitive to extreme data

- data contamination (e.g., 'decimal point' encoding error')?
- 'valid' outliers?

Consequences are potential bias and high sampling uncertainty (even with large samples).



## Influence function examples – Inequality indices

#### from Cowell & Flachaire (2007)







#### Impact of extreme incomes adjustments – Gini from Van Kerm (2007)



#### Extreme incomes adjustments – GE(2) from Van Kerm (2007)



## [outline]

#### The problem of data contamination/extreme incomes

#### 2 Robust estimation

- **3** Stata Implementation of OBRE
- 4 Simulation results
- 6 Application to real income data for Luxembourg
- 6 The semi-parametric approach
- **7** Concluding remarks



- Relatively easy, but not efficient and dependence to ad-hoc trimming fractions
- Impact can be substantial ... and difficult to justify
- 2 Rely on functional form assumptions:
  - model the full distribution parametrically (e.g. log-Normal, Gamma), so distribution fully characterized by just a few parameters
  - model only the tails of the distribution parametrically (e.g. Pareto)
  - But... classical ML estimators of distribution parameters are themselves non-robust to extreme values!
  - Solution discussed in this talk: Use "robust" estimators of model parameters (instead of classical ML)



- Relatively easy, but not efficient and dependence to ad-hoc trimming fractions
- Impact can be substantial ... and difficult to justify
- 2 Rely on functional form assumptions:
  - model the full distribution parametrically (e.g. log-Normal, Gamma), so distribution fully characterized by just a few parameters
  - model only the tails of the distribution parametrically (e.g. Pareto)
  - But... classical ML estimators of distribution parameters are themselves non-robust to extreme values!
  - Solution discussed in this talk: Use "robust" estimators of model parameters (instead of classical ML)



- Relatively easy, but not efficient and dependence to ad-hoc trimming fractions
- · Impact can be substantial ... and difficult to justify
- 2 Rely on functional form assumptions:
  - model the full distribution parametrically (e.g. log-Normal, Gamma), so distribution fully characterized by just a few parameters
  - model only the tails of the distribution parametrically (e.g. Pareto)
  - But... classical ML estimators of distribution parameters are themselves non-robust to extreme values!
  - Solution discussed in this talk: Use "robust" estimators of model parameters (instead of classical ML)



- Relatively easy, but not efficient and dependence to ad-hoc trimming fractions
- Impact can be substantial ... and difficult to justify
- 2 Rely on functional form assumptions:
  - model the full distribution parametrically (e.g. log-Normal, Gamma), so distribution fully characterized by just a few parameters
  - model only the tails of the distribution parametrically (e.g. Pareto)
  - But... classical ML estimators of distribution parameters are themselves non-robust to extreme values!
  - Solution discussed in this talk: Use "robust" estimators of model parameters (instead of classical ML)



- Relatively easy, but not efficient and dependence to ad-hoc trimming fractions
- · Impact can be substantial ... and difficult to justify
- **2** Rely on functional form assumptions:
  - model the full distribution parametrically (e.g. log-Normal, Gamma), so distribution fully characterized by just a few parameters
  - model only the tails of the distribution parametrically (e.g. Pareto)
  - But... classical ML estimators of distribution parameters are themselves non-robust to extreme values!
  - Solution discussed in this talk: Use "robust" estimators of model parameters (instead of classical ML)



- Relatively easy, but not efficient and dependence to ad-hoc trimming fractions
- Impact can be substantial ... and difficult to justify
- **2** Rely on functional form assumptions:
  - model the full distribution parametrically (e.g. log-Normal, Gamma), so distribution fully characterized by just a few parameters
  - model only the tails of the distribution parametrically (e.g. Pareto)
  - But... classical ML estimators of distribution parameters are themselves non-robust to extreme values!
  - Solution discussed in this talk: Use "robust" estimators of model parameters (instead of classical ML)



- Relatively easy, but not efficient and dependence to ad-hoc trimming fractions
- · Impact can be substantial ... and difficult to justify
- **2** Rely on functional form assumptions:
  - model the full distribution parametrically (e.g. log-Normal, Gamma), so distribution fully characterized by just a few parameters
  - model only the tails of the distribution parametrically (e.g. Pareto)
  - But... classical ML estimators of distribution parameters are themselves non-robust to extreme values!
  - Solution discussed in this talk: Use "robust" estimators of model parameters (instead of classical ML)



- Relatively easy, but not efficient and dependence to ad-hoc trimming fractions
- · Impact can be substantial ... and difficult to justify
- **2** Rely on functional form assumptions:
  - model the full distribution parametrically (e.g. log-Normal, Gamma), so distribution fully characterized by just a few parameters
  - model only the tails of the distribution parametrically (e.g. Pareto)
  - But... classical ML estimators of distribution parameters are themselves non-robust to extreme values!
  - ⇒ Solution discussed in this talk: Use "robust" estimators of model parameters (instead of classical ML)



## **Robust estimation methods**

(Hampel, 1986)





## **Robust estimation methods**

(Hampel, 1986)





## **Robust estimation methods**

(Hampel, 1986)





## The estimation problem

#### Task

We want to fit a given parametric distribution  $f_{\theta}$  to the available data:  $\theta$  is a vector of parameters to be estimated.

#### **ML** estimation

Find  $\theta^{ML}$  solution to  $\sum_{i=1}^{N} s(x_i, \theta^{ML}) = 0$ , where  $s(x_i, \theta^{ML})$  is the score function:  $s(x_i, \theta) = \partial \log(f_{\theta}(x_i)) / \partial \theta$ 

#### Problem

The score function has unbounded influence function for almost all classic models of size distributions. Parameter estimates can therefore be driven to arbitrary values by data contamination...



## The estimation problem

#### Task

We want to fit a given parametric distribution  $f_{\theta}$  to the available data:  $\theta$  is a vector of parameters to be estimated.

#### **ML** estimation

Find  $\theta^{ML}$  solution to  $\sum_{i=1}^{N} s(x_i, \theta^{ML}) = 0$ , where  $s(x_i, \theta^{ML})$  is the score function:  $s(x_i, \theta) = \partial \log(f_{\theta}(x_i)) / \partial \theta$ 

#### Problem

The score function has unbounded influence function for almost all classic models of size distributions. Parameter estimates can therefore be driven to arbitrary values by data contamination...



## The estimation problem

#### Task

We want to fit a given parametric distribution  $f_{\theta}$  to the available data:  $\theta$  is a vector of parameters to be estimated.

#### **ML** estimation

Find  $\theta^{ML}$  solution to  $\sum_{i=1}^{N} s(x_i, \theta^{ML}) = 0$ , where  $s(x_i, \theta^{ML})$  is the score function:  $s(x_i, \theta) = \partial \log(f_{\theta}(x_i)) / \partial \theta$ 

#### Problem

The score function has unbounded influence function for almost all classic models of size distributions. Parameter estimates can therefore be driven to arbitrary values by data contamination...



## **Optimal B-Robust Estimators (OBRE)**

A robust alternative to classical ML

#### OBRE

- OBRE is also an M-estimator:  $\theta$  solution to  $\sum_{i=1}^{N} \psi(x_i, \theta) = 0$
- For ML:  $\psi(x_i, \theta^{ML}) = s(x_i, \theta^{ML})$
- For OBRE:

 $\psi(x_i, \theta^{OB}) = (s(x_i, \theta^{OB}) - a(\theta^{OB}))W_c(x_i; \theta^{OB})$ 

where

$$W_{c}(x_{l};\theta^{OB}) = \min\left(1; \frac{c}{G(s(x_{l},\theta^{OB}), a(\theta^{OB}), A(\theta^{OB}))}\right)$$



## **Optimal B-Robust Estimators (OBRE)**

A robust alternative to classical ML

#### OBRE

• OBRE is also an M-estimator:  $\theta$  solution to  $\sum_{i=1}^{N} \psi(x_i, \theta) = 0$ 

• For ML: 
$$\psi(x_i, \theta^{ML}) = s(x_i, \theta^{ML})$$

• For OBRE:

 $\psi(x_i, \theta^{OB}) = (s(x_i, \theta^{OB}) - a(\theta^{OB}))W_c(x_i; \theta^{OB})$ 

where

$$W_{c}(x_{i};\theta^{OB}) = \min\left(1;\frac{c}{G(s(x_{i},\theta^{OB}),a(\theta^{OB}),A(\theta^{OB}))}\right)$$



## **Optimal B-Robust Estimators (OBRE)**

A robust alternative to classical ML

#### OBRE

- OBRE is also an M-estimator:  $\theta$  solution to  $\sum_{i=1}^{N} \psi(x_i, \theta) = 0$
- For ML:  $\psi(x_i, \theta^{ML}) = s(x_i, \theta^{ML})$
- For OBRE:

$$\psi(\mathbf{x}_i, \theta^{OB}) = (\mathbf{s}(\mathbf{x}_i, \theta^{OB}) - \mathbf{a}(\theta^{OB})) W_c(\mathbf{x}_i; \theta^{OB})$$

where

$$W_{c}(x_{i};\theta^{OB}) = \min\left(1; \frac{c}{G(s(x_{i},\theta^{OB}), a(\theta^{OB}), A(\theta^{OB}))}\right)$$



## **Optimal B-Robust Estimators (OBRE) (ctd.)**

A robust alternative to classical ML

- *W<sub>c</sub>*(*x*; θ<sup>OB</sup>) imposes a bound on influence function by downweighting extreme values (values deviating from model)
- *c* is a 'robustness' parameter to be determined ex ante (tune efficiency-robustness trade-off)

• If  $\boldsymbol{c} \to \infty$  then  $\theta^{OB} = \theta^{ML}$ 



## **Optimal B-Robust Estimators (OBRE) (ctd.)**

A robust alternative to classical ML

- *W<sub>c</sub>*(*x*; θ<sup>OB</sup>) imposes a bound on influence function by downweighting extreme values (values deviating from model)
- *c* is a 'robustness' parameter to be determined ex ante (tune efficiency-robustness trade-off)

• If  $c \to \infty$  then  $\theta^{OB} = \theta^{ML}$ 



## **Optimal B-Robust Estimators (OBRE) (ctd.)**

A robust alternative to classical ML

- *W<sub>c</sub>*(*x*; θ<sup>OB</sup>) imposes a bound on influence function by downweighting extreme values (values deviating from model)
- *c* is a 'robustness' parameter to be determined ex ante (tune efficiency-robustness trade-off)
  - If  $c \to \infty$  then  $\theta^{OB} = \theta^{ML}$



## **Optimal B-Robust Estimators (OBRE) (ctd.)**

A robust alternative to classical ML

•  $a(\theta^{OB})$  and  $A(\theta^{OB})$  are implicitly defined as

$$\begin{split} E(\psi(x,\theta^{OB})\psi(x,\theta^{OB})') &= (A(\theta^{OB})A(\theta^{OB})')^{-1} \\ E(\psi(x,\theta^{OB})) &= 0 \end{split}$$

- The resulting estimator is the optimal (minimum variance) M-estimator with bounded influence function
  - For a thorough discussion, see Hampel et al. (1986), Robust Statistics: The approach based on influence functions.



## **Optimal B-Robust Estimators (OBRE) (ctd.)**

A robust alternative to classical ML

•  $a(\theta^{OB})$  and  $A(\theta^{OB})$  are implicitly defined as

$$\begin{split} E(\psi(x,\theta^{OB})\psi(x,\theta^{OB})') &= (A(\theta^{OB})A(\theta^{OB})')^{-1} \\ E(\psi(x,\theta^{OB})) &= 0 \end{split}$$

- ⇒ The resulting estimator is the optimal (minimum variance) M-estimator with bounded influence function
  - For a thorough discussion, see Hampel et al. (1986), Robust Statistics: The approach based on influence functions.


-Robust estimation

# **Optimal B-Robust Estimators (OBRE) (ctd.)**

A robust alternative to classical ML

•  $a(\theta^{OB})$  and  $A(\theta^{OB})$  are implicitly defined as

$$\begin{split} E(\psi(x,\theta^{OB})\psi(x,\theta^{OB})') &= (A(\theta^{OB})A(\theta^{OB})')^{-1} \\ E(\psi(x,\theta^{OB})) &= 0 \end{split}$$

- ⇒ The resulting estimator is the optimal (minimum variance) M-estimator with bounded influence function
  - For a thorough discussion, see Hampel et al. (1986), Robust Statistics: The approach based on influence functions.



# [outline]

- The problem of data contamination/extreme incomes
- 2 Robust estimation
- **3** Stata Implementation of OBRE
- 4 Simulation results
- 6 Application to real income data for Luxembourg
- 6 The semi-parametric approach
- **7** Concluding remarks



- Given number of implicit definitions of parameters and constraints, estimation is not easy
- But relatively detailed algorithms are available (fortunately!). I implemented Ronchetti & Victoria-Feser (*Canadian Journal of Statistics*, 1994).
- Iterative algorithm:
  - given some  $\theta$ , solve equations for  $a(\theta)$  and  $A(\theta)$
  - with new a(θ) and A(θ), determine new W<sub>c</sub>(x<sub>i</sub>; θ) and update θ (Newton-Raphson step) until convergence
- Solving equations for *a*(θ) and *A*(θ) also based on an iterative procedure
- ⇒ Rather difficult problem, and very computer-intensive (esp. for numerical integration). So needs
  - speed
  - **2** matrix operations
  - $\Rightarrow$  Mata



- Given number of implicit definitions of parameters and constraints, estimation is not easy
- But relatively detailed algorithms are available (fortunately!). I implemented Ronchetti & Victoria-Feser (*Canadian Journal of Statistics*, 1994).
- Iterative algorithm:
  - given some  $\theta$ , solve equations for  $a(\theta)$  and  $A(\theta)$
  - with new a(θ) and A(θ), determine new W<sub>c</sub>(x<sub>i</sub>; θ) and update θ (Newton-Raphson step) until convergence
- Solving equations for a(θ) and A(θ) also based on an iterative procedure
- ⇒ Rather difficult problem, and very computer-intensive (esp. for numerical integration). So needs
  - speed
  - **2** matrix operations
  - $\Rightarrow$  Mata



- Given number of implicit definitions of parameters and constraints, estimation is not easy
- But relatively detailed algorithms are available (fortunately!). I implemented Ronchetti & Victoria-Feser (*Canadian Journal of Statistics*, 1994).
- Iterative algorithm:
  - given some  $\theta$ , solve equations for  $a(\theta)$  and  $A(\theta)$
  - with new a(θ) and A(θ), determine new W<sub>c</sub>(x<sub>i</sub>; θ) and update θ (Newton-Raphson step) until convergence
- Solving equations for *a*(θ) and *A*(θ) also based on an iterative procedure
- ⇒ Rather difficult problem, and very computer-intensive (esp. for numerical integration). So needs
  - speed
  - **2** matrix operations
  - $\Rightarrow$  Mata



- Given number of implicit definitions of parameters and constraints, estimation is not easy
- But relatively detailed algorithms are available (fortunately!). I implemented Ronchetti & Victoria-Feser (*Canadian Journal of Statistics*, 1994).
- Iterative algorithm:
  - given some  $\theta$ , solve equations for  $a(\theta)$  and  $A(\theta)$
  - with new a(θ) and A(θ), determine new W<sub>c</sub>(x<sub>i</sub>; θ) and update θ (Newton-Raphson step) until convergence
- Solving equations for *a*(θ) and *A*(θ) also based on an iterative procedure
- ⇒ Rather difficult problem, and very computer-intensive (esp. for numerical integration). So needs
  - speed
  - **2** matrix operations
  - $\Rightarrow$  Mata



- Given number of implicit definitions of parameters and constraints, estimation is not easy
- But relatively detailed algorithms are available (fortunately!). I implemented Ronchetti & Victoria-Feser (*Canadian Journal of Statistics*, 1994).
- Iterative algorithm:
  - given some  $\theta$ , solve equations for  $a(\theta)$  and  $A(\theta)$
  - with new a(θ) and A(θ), determine new W<sub>c</sub>(x<sub>i</sub>; θ) and update θ (Newton-Raphson step) until convergence
- Solving equations for *a*(θ) and *A*(θ) also based on an iterative procedure
- ⇒ Rather difficult problem, and very computer-intensive (esp. for numerical integration). So needs
  - speed
  - 2 matrix operations



- Given number of implicit definitions of parameters and constraints, estimation is not easy
- But relatively detailed algorithms are available (fortunately!). I implemented Ronchetti & Victoria-Feser (*Canadian Journal of Statistics*, 1994).
- Iterative algorithm:
  - given some  $\theta$ , solve equations for  $a(\theta)$  and  $A(\theta)$
  - with new a(θ) and A(θ), determine new W<sub>c</sub>(x<sub>i</sub>; θ) and update θ (Newton-Raphson step) until convergence
- Solving equations for *a*(θ) and *A*(θ) also based on an iterative procedure
- ⇒ Rather difficult problem, and very computer-intensive (esp. for numerical integration). So needs
  - speed
  - 2 matrix operations
  - $\implies$  Mata!



- Implementation is "relatively easy" with Mata (but familiarity with matrix algebra can help!)
- Uses a suite of existing commands by Stephen Jenkins to fit functional forms to unit record data by ML
  - just replace ML engine by home-brewed OBRE engine
  - i.e. call a Mata function, rather than ml model! void gamma\_obre(string scalar varname, string scalar sweight, string scalar touse, string scalar thenewvar, real scalar froma, real scalar fromb, real scalar c)
  - the Mata function return a vector of parameter estimates along with a covariance matrix estimate
- To date I implemented Pareto Type I (1 param), log-Normal and Gamma (2 params) and Singh-Maddala (3 params)
- Compatible with Nick Cox's diagnostic commands  ${\tt p}\star$  and  ${\tt q}\star$  for pp-plot and qq-plot



- Implementation is "relatively easy" with Mata (but familiarity with matrix algebra can help!)
- Uses a suite of existing commands by Stephen Jenkins to fit functional forms to unit record data by ML
  - just replace ML engine by home-brewed OBRE engine
  - i.e. call a Mata function, rather than ml model! void gamma\_obre(string scalar varname, string scalar sweight, string scalar touse, string scalar thenewvar, real scalar froma, real scalar fromb, real scalar c)
  - the Mata function return a vector of parameter estimates along with a covariance matrix estimate
- To date I implemented Pareto Type I (1 param), log-Normal and Gamma (2 params) and Singh-Maddala (3 params)
- Compatible with Nick Cox's diagnostic commands  ${\rm p}\star$  and  ${\rm q}\star$  for pp-plot and qq-plot



- Implementation is "relatively easy" with Mata (but familiarity with matrix algebra can help!)
- Uses a suite of existing commands by Stephen Jenkins to fit functional forms to unit record data by ML
  - just replace ML engine by home-brewed OBRE engine
  - i.e. call a Mata function, rather than ml model! void gamma\_obre(string scalar varname, string scalar sweight, string scalar touse, string scalar thenewvar, real scalar froma, real scalar fromb , real scalar c)
  - the Mata function return a vector of parameter estimates along with a covariance matrix estimate
- To date I implemented Pareto Type I (1 param), log-Normal and Gamma (2 params) and Singh-Maddala (3 params)
- Compatible with Nick Cox's diagnostic commands  ${\rm p}\star$  and  ${\rm q}\star$  for pp-plot and qq-plot



- Implementation is "relatively easy" with Mata (but familiarity with matrix algebra can help!)
- Uses a suite of existing commands by Stephen Jenkins to fit functional forms to unit record data by ML
  - just replace ML engine by home-brewed OBRE engine
  - i.e. call a Mata function, rather than ml model! void gamma\_obre(string scalar varname, string scalar sweight, string scalar touse, string scalar thenewvar, real scalar froma, real scalar fromb , real scalar c)
  - the Mata function return a vector of parameter estimates along with a covariance matrix estimate
- To date I implemented Pareto Type I (1 param), log-Normal and Gamma (2 params) and Singh-Maddala (3 params)
- Compatible with Nick Cox's diagnostic commands  ${\tt p}\star$  and  ${\tt q}\star$  for pp-plot and qq-plot



- Implementation is "relatively easy" with Mata (but familiarity with matrix algebra can help!)
- Uses a suite of existing commands by Stephen Jenkins to fit functional forms to unit record data by ML
  - just replace ML engine by home-brewed OBRE engine
  - i.e. call a Mata function, rather than ml model! void gamma\_obre(string scalar varname, string scalar sweight, string scalar touse, string scalar thenewvar, real scalar froma, real scalar fromb , real scalar c)
  - the Mata function return a vector of parameter estimates along with a covariance matrix estimate
- To date I implemented Pareto Type I (1 param), log-Normal and Gamma (2 params) and Singh-Maddala (3 params)
- Compatible with Nick Cox's diagnostic commands  ${\tt p}\star$  and  ${\tt q}\star$  for pp-plot and qq-plot



- Implementation is "relatively easy" with Mata (but familiarity with matrix algebra can help!)
- Uses a suite of existing commands by Stephen Jenkins to fit functional forms to unit record data by ML
  - just replace ML engine by home-brewed OBRE engine
  - i.e. call a Mata function, rather than ml model! void gamma\_obre(string scalar varname, string scalar sweight, string scalar touse, string scalar thenewvar, real scalar froma, real scalar fromb , real scalar c)
  - the Mata function return a vector of parameter estimates along with a covariance matrix estimate
- To date I implemented Pareto Type I (1 param), log-Normal and Gamma (2 params) and Singh-Maddala (3 params)
- Compatible with Nick Cox's diagnostic commands  $_{P}\star$  and  $_{q}\star$  for pp-plot and qq-plot



- Implementation is "relatively easy" with Mata (but familiarity with matrix algebra can help!)
- Uses a suite of existing commands by Stephen Jenkins to fit functional forms to unit record data by ML
  - just replace ML engine by home-brewed OBRE engine
  - i.e. call a Mata function, rather than ml model! void gamma\_obre(string scalar varname, string scalar sweight, string scalar touse, string scalar thenewvar, real scalar froma, real scalar fromb , real scalar c)
  - the Mata function return a vector of parameter estimates along with a covariance matrix estimate
- To date I implemented Pareto Type I (1 param), log-Normal and Gamma (2 params) and Singh-Maddala (3 params)
- Compatible with Nick Cox's diagnostic commands  $\mathtt{p}\star$  and  $\mathtt{q}\star$  for pp-plot and qq-plot



- Precision of numerical integration functions is important...
- ... and drives estimation speed
- Difficulty to set multiple tolerance and precision parameters – trade-off between speed and accuracy (still subject to changes...)
- As in ML estimation, using re-parameterization  $\tilde{\theta} = \ln(\theta)$  can help convergence (in all models considered,  $\theta > 0$ )



- Precision of numerical integration functions is important...
- ... and drives estimation speed
- Difficulty to set multiple tolerance and precision parameters – trade-off between speed and accuracy (still subject to changes...)
- As in ML estimation, using re-parameterization  $\tilde{\theta} = \ln(\theta)$  can help convergence (in all models considered,  $\theta > 0$ )



- Precision of numerical integration functions is important...
- ... and drives estimation speed
- Difficulty to set multiple tolerance and precision parameters – trade-off between speed and accuracy (still subject to changes...)
- As in ML estimation, using re-parameterization  $\tilde{\theta} = \ln(\theta)$  can help convergence (in all models considered,  $\theta > 0$ )



- Precision of numerical integration functions is important...
- ... and drives estimation speed
- Difficulty to set multiple tolerance and precision parameters – trade-off between speed and accuracy (still subject to changes...)
- As in ML estimation, using re-parameterization θ
  = ln(θ)
  can help convergence (in all models considered, θ > 0)



### Output

| Starting value<br>Estimation wit                                                                                                                                                                                                                   | es (ML estimat<br>th OBRE robust | tes):[a=<br>tness consta                                                                                                             | <b>4.430 ;</b>  <br>ant set t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | b = 589.0!<br>o c = 5                                                                                                                                                     | 51]                                 |           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------|
| Iteration 1:<br>Iteration 2:<br>Iteration 3:<br>Iteration 4:<br>Iteration 5:<br>Iteration 6:<br>Iteration 7:<br>Iteration 8:<br>Iteration 9:<br>Iteration 10:<br>Iteration 10:<br>Iteration 12:<br>Iteration 12:<br>Iteration 13:<br>Iteration 14: |                                  | ) $a = 5.56$<br>a = 5.56<br>a = 5.56<br>a = 5.56<br>a = 5.57<br>a = 5.57<br>a = 5.57<br>a = 5.57<br>a = 5.57<br>a = 5.57<br>a = 5.57 | $\begin{array}{l} a = 5.11 \\ a = 5.36 \\ a = 5.46 \\ 5.542, \ b = 5.516, \ b = 5.56, \ b = 4.57, \ b = 4.70, \ b = 4.71, \ b = $ | $\begin{array}{l} 6, \ b = 49;\\ 6, \ b = 46;\\ 6, \ b = 452.;\\ = 450.09;\\ 448.812\\ 48.137\\ 47.780\\ 47.490\\ 47.495\\ 47.495\\ 47.495\\ 47.391\\ 47.383 \end{array}$ | 2.598<br>7.565<br>7.468<br>570<br>6 |           |
| У                                                                                                                                                                                                                                                  | Coef.                            | Std. Err.                                                                                                                            | z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | P>   Z                                                                                                                                                                    | [95% Conf.                          | Interval] |
| a<br>_cons                                                                                                                                                                                                                                         | 5.571198                         | .0580081                                                                                                                             | 96.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000                                                                                                                                                                     | 5.457504                            | 5.684891  |
| b<br>_cons                                                                                                                                                                                                                                         | 447.3829                         | 4.091696                                                                                                                             | 109.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.000                                                                                                                                                                     | 439.3633                            | 455.4025  |
|                                                                                                                                                                                                                                                    |                                  | Half CVA2<br>Gini coe1<br>Theil                                                                                                      | .08<br>ff2<br>.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9747<br>3373<br>7071                                                                                                                                                      |                                     |           |



# [outline]

- The problem of data contamination/extreme incomes
- 2 Robust estimation
- 3 Stata Implementation of OBRE
- **4** Simulation results
- 6 Application to real income data for Luxembourg
- 6 The semi-parametric approach
- **7** Concluding remarks



## Set-up

#### **Monte Carlo simulation**

- 1 Draw samples from known distributions
- 2 Add various kind of contamination decimal point error to a fraction of sample data
- Sestimate parameters from datasets using both ML and OBRE
  - Pareto with sample size of 200
  - log-Normal and Singh-Maddala with samples of size 1000



## Set-up

#### Monte Carlo simulation

- 1 Draw samples from known distributions
- 2 Add various kind of contamination decimal point error to a fraction of sample data
- Estimate parameters from datasets using both ML and OBRE
  - Pareto with sample size of 200
  - log-Normal and Singh-Maddala with samples of size 1000



Set-up (ctd.)

### Types of contamination

- 1% of obs. multiplied by 10
- 2 1% of obs. divided by 10
- 3 1% of obs. mulitplied by 10 and 1% of obs. divided by 10
- 4 3% of obs. multiplied by 10
- 5 3% of obs. divided by 10



Simulation results

### **Results** Pareto distribution

True parameter value:  $\alpha = 3$ 

| Model    |       | root MSE |       |  |
|----------|-------|----------|-------|--|
|          | ML    | c=5      | c=2   |  |
| No cont. | 0.215 | 0.214    | 0.230 |  |
| 1% *10   | 0.261 | 0.252    | 0.231 |  |
| 3% *10   | 0.527 | 0.521    | 0.286 |  |



#### log-Normal distribution

| Model    | Param.            | root MSE |       |       |       |  |
|----------|-------------------|----------|-------|-------|-------|--|
|          |                   |          | ML    | c=5   | c=3   |  |
| No cont. | $\mu$             | 8        | 0.017 | 0.017 | 0.017 |  |
|          | $\sigma$          | .525     | 0.012 | 0.013 | 0.031 |  |
|          | Gini              | 0.290    | 0.006 | 0.007 | 0.017 |  |
|          | Theil             | 0.138    | 0.006 | 0.007 | 0.016 |  |
|          | .5CV <sup>2</sup> | 0.159    | 0.008 | 0.009 | 0.020 |  |
| 1% *10   | $\mu$             | 8        | 0.029 | 0.020 | 0.018 |  |
|          | $\sigma$          | .525     | 0.050 | 0.020 | 0.021 |  |
|          | Gini              | 0.290    | 0.026 | 0.011 | 0.011 |  |
|          | Theil             | 0.138    | 0.027 | 0.011 | 0.011 |  |
|          | .5CV <sup>2</sup> | 0.159    | 0.037 | 0.014 | 0.014 |  |



#### log-Normal distribution (ctd.)

| Model  | Param.            | True  | root MSE |       |       |
|--------|-------------------|-------|----------|-------|-------|
|        |                   |       | ML       | c=5   | c=3   |
| 3% *10 | $\mu$             | 8     | 0.072    | 0.043 | 0.025 |
|        | $\sigma$          | .525  | 0.131    | 0.070 | 0.016 |
|        | Gini              | 0.290 | 0.068    | 0.037 | 0.008 |
|        | Theil             | 0.138 | 0.078    | 0.040 | 0.009 |
|        | .5CV <sup>2</sup> | 0.159 | 0.111    | 0.054 | 0.011 |
| 3% /10 | $\mu$             | 8     | 0.070    | 0.047 | 0.025 |
|        | $\sigma$          | .525  | 0.132    | 0.082 | 0.017 |
|        | Gini              | 0.290 | 0.068    | 0.043 | 0.009 |
|        | Theil             | 0.138 | 0.078    | 0.046 | 0.009 |
|        | .5CV <sup>2</sup> | 0.159 | 0.111    | 0.064 | 0.012 |



#### Singh-Maddala distribution

| Model    | Param.            | True  | root MSE |       |       |
|----------|-------------------|-------|----------|-------|-------|
|          |                   |       | ML       | c=7   | c=5   |
| No cont. | $\alpha$          | 2.8   | 0.128    | 0.145 | 0.301 |
|          | $\beta$           | 3500  | 297      | 283   | 590   |
|          | р                 | 1.7   | 0.283    | 0.252 | 0.522 |
|          | Gini              | 0.289 | 0.008    | 0.009 | 0.016 |
|          | Theil             | 0.132 | 0.016    | 0.014 | 0.030 |
|          | .5CV <sup>2</sup> | 0.162 | 0.016    | 0.020 | 0.059 |
| 1% *10   | $\alpha$          | 2.8   | 0.297    | 0.243 | 0.370 |
|          | $\beta$           | 3500  | 720      | 572   | 751   |
|          | р                 | 1.7   | 0.652    | 0.519 | 0.665 |
|          | Gini              | 0.289 | 0.032    | 0.021 | 0.027 |
|          | Theil             | 0.132 | 0.026    | 0.025 | 0.024 |
|          | .5CV <sup>2</sup> | 0.162 | 0.118    | 0.071 | 0.109 |



#### Singh-Maddala distribution (ctd.)

| Model  | Param.            | True  | rc      | root MSE |       |  |
|--------|-------------------|-------|---------|----------|-------|--|
|        |                   |       | ML      | c=5      | c=3   |  |
| 3% ×10 | $\alpha$          | 2.8   | 0.511   | 0.472    | 0.494 |  |
|        | eta               | 3500  | 1145    | 1069     | 1004  |  |
|        | р                 | 1.7   | 0.991   | 0.935    | 0.880 |  |
|        | Gini              | 0.289 | 0.088   | 0.073    | 0.055 |  |
|        | Theil             | 0.132 | 0.245   | 0.160    | 0.107 |  |
|        | .5CV <sup>2</sup> | 0.162 | 1.154   | 0.547    | 0.320 |  |
| 3% /10 | $\alpha$          | 2.8   | 0.578   | 0.521    | 0.253 |  |
|        | eta               | 3500  | 1814    | 1306     | 788   |  |
|        | р                 | 1.7   | 1.859   | 1.309    | 0.869 |  |
|        | Gini              | 0.289 | 0.022   | 0.021    | 0.021 |  |
|        | Theil             | 0.132 | 172.324 | 0.586    | 3.030 |  |
|        | .5CV <sup>2</sup> | 0.162 | 0.014   | 0.015    | 0.036 |  |



OBRE very useful with Pareto and, especially, log-Normal models

#### OBRE useful too with Singh-Maddala, yet

- choice of *c* matter too much robustness not good with small contamination
- too much contamination remains very harmful (look at impact on estimates of 'sensitive' inequality measures (Theil, .5CV<sup>2</sup>)!) – even with OBRE
- Convergence problems with Gamma models otherwise results similar to SM



OBRE very useful with Pareto and, especially, log-Normal models

### • OBRE useful too with Singh-Maddala, yet

- choice of *c* matter too much robustness not good with small contamination
- too much contamination remains very harmful (look at impact on estimates of 'sensitive' inequality measures (Theil, .5CV<sup>2</sup>)!) – even with OBRE
- Convergence problems with Gamma models otherwise results similar to SM



- OBRE very useful with Pareto and, especially, log-Normal models
- OBRE useful too with Singh-Maddala, yet
  - choice of *c* matter too much robustness not good with small contamination
  - too much contamination remains very harmful (look at impact on estimates of 'sensitive' inequality measures (Theil, .5CV<sup>2</sup>)!) – even with OBRE
- Convergence problems with Gamma models otherwise results similar to SM



- OBRE very useful with Pareto and, especially, log-Normal models
- OBRE useful too with Singh-Maddala, yet
  - choice of *c* matter too much robustness not good with small contamination
  - too much contamination remains very harmful (look at impact on estimates of 'sensitive' inequality measures (Theil, .5CV<sup>2</sup>)!) – even with OBRE
- Convergence problems with Gamma models otherwise results similar to SM



- OBRE very useful with Pareto and, especially, log-Normal models
- · OBRE useful too with Singh-Maddala, yet
  - choice of *c* matter too much robustness not good with small contamination
  - too much contamination remains very harmful (look at impact on estimates of 'sensitive' inequality measures (Theil, .5CV<sup>2</sup>)!) – even with OBRE
- Convergence problems with Gamma models otherwise results similar to SM



- Application to real income data for Luxembourg

# [outline]

- The problem of data contamination/extreme incomes
- 2 Robust estimation
- 3 Stata Implementation of OBRE
- 4 Simulation results
- **5** Application to real income data for Luxembourg
- 6 The semi-parametric approach
- Concluding remarks



- Application to real income data for Luxembourg

### Data

### PSELL-III

- Panel Survey "Liewen zu Letzebuerg", waves 1(2003)-3(2005)
- Representative of residents in Luxembourg
- Real annual household income (in single adult equivalent)


# PDF estimates for log-Normal fit

#### OBRE improves fit, but not very good model



# PDF estimates for Singh-Maddala fit

#### OBRE useful and much better fit



# PDF estimates for Gamma fit

#### (does it call for any comment?)



### **OBRE** weights for log-Normal fit



### **OBRE** weights for Singh-Maddala fit



### **OBRE** weights for Gamma fit



# [outline]

- The problem of data contamination/extreme incomes
- 2 Robust estimation
- **3** Stata Implementation of OBRE
- 4 Simulation results
- 6 Application to real income data for Luxembourg
- 6 The semi-parametric approach
- Concluding remarks



# The principle

#### • More flexible approach is to focus on distribution tails

- bulk of the data are taken at face value use empirical CDF
- parametric approach only for the tails largest (and smallest?) observations are used to estimate a parametric model
- empirical CDF combined with parametric CDFs for estimation of, say, inequality measures, stochastic dominance, etc.
- Under assumption that the CDF "decays as a power function" – i.e., has a heavy tail –, fitting a Pareto distribution to tail data is a valid choice: for x ≥ z,

$$F(x) = 1 - \left(\frac{x}{z}\right)^{-\alpha}$$



### The principle

- · More flexible approach is to focus on distribution tails
  - bulk of the data are taken at face value use empirical CDF
  - parametric approach only for the tails largest (and smallest?) observations are used to estimate a parametric model
  - empirical CDF combined with parametric CDFs for estimation of, say, inequality measures, stochastic dominance, etc.
- Under assumption that the CDF "decays as a power function" – i.e., has a heavy tail –, fitting a Pareto distribution to tail data is a valid choice: for x ≥ z,

$$F(x) = 1 - \left(\frac{x}{z}\right)^{-\alpha}$$



### The principle

- · More flexible approach is to focus on distribution tails
  - bulk of the data are taken at face value use empirical CDF
  - parametric approach only for the tails largest (and smallest?) observations are used to estimate a parametric model
  - empirical CDF combined with parametric CDFs for estimation of, say, inequality measures, stochastic dominance, etc.
- Under assumption that the CDF "decays as a power function" – i.e., has a heavy tail –, fitting a Pareto distribution to tail data is a valid choice: for x ≥ z,

$$F(x) = 1 - \left(\frac{x}{z}\right)^{-\alpha}$$



# Pareto tail estimation

- OBRE estimator useful to avoid influence of contamination on Pareto parameter estimate  $\alpha$
- Main issue is the choice of *z* value beyond which data are modelled parametrically
  - $\implies$  Pareto quantile plot and Hill's plot
    - Under Pareto model, linear relationship between

       log(1 F(x)) and log(x) so help detecting reasonable value of z
    - (yet difficulty associated with contamination at the very top)



# Pareto tail estimation

- OBRE estimator useful to avoid influence of contamination on Pareto parameter estimate  $\alpha$
- Main issue is the choice of z value beyond which data are modelled parametrically
  - ⇒ Pareto quantile plot and Hill's plot
    - Under Pareto model, linear relationship between

       log(1 F(x)) and log(x) so help detecting reasonable value of z
    - (yet difficulty associated with contamination at the very top)



# Pareto tail estimation

- OBRE estimator useful to avoid influence of contamination on Pareto parameter estimate  $\alpha$
- Main issue is the choice of z value beyond which data are modelled parametrically
  - $\implies$  Pareto quantile plot and Hill's plot
    - Under Pareto model, linear relationship between

       log(1 F(x)) and log(x) so help detecting reasonable
       value of z
    - (yet difficulty associated with contamination at the very top)



#### Pareto quantile plot



(Stata command pareto\_logqplot available in package for Pareto tail modelling – coming soon on SSC!)



- Mata makes estimators such as OBRE feasible within Stata
- In theory, OBRE estimators have great relevance in distribution analysis... implementation in Stata may help putting this claim to broader practical assessment
- At present, it is (still) a prototype (but looks ok). Minor developments still needed for
  - fixing precision and tolerance thresholds
  - additional distributions (GB2?) transplanting code to other distributions is easy, yet more convergence problems to be expected with higher number of parameters



- Mata makes estimators such as OBRE feasible within Stata
- In theory, OBRE estimators have great relevance in distribution analysis... implementation in Stata may help putting this claim to broader practical assessment
- At present, it is (still) a prototype (but looks ok). Minor developments still needed for
  - fixing precision and tolerance thresholds
  - additional distributions (GB2?) transplanting code to other distributions is easy, yet more convergence problems to be expected with higher number of parameters



- Mata makes estimators such as OBRE feasible within Stata
- In theory, OBRE estimators have great relevance in distribution analysis... implementation in Stata may help putting this claim to broader practical assessment
- At present, it is (still) a prototype (but looks ok). Minor developments still needed for
  - fixing precision and tolerance thresholds
  - additional distributions (GB2?) transplanting code to other distributions is easy, yet more convergence problems to be expected with higher number of parameters



- Mata makes estimators such as OBRE feasible within Stata
- In theory, OBRE estimators have great relevance in distribution analysis... implementation in Stata may help putting this claim to broader practical assessment
- At present, it is (still) a prototype (but looks ok). Minor developments still needed for
  - fixing precision and tolerance thresholds
  - additional distributions (GB2?) transplanting code to other distributions is easy, yet more convergence problems to be expected with higher number of parameters



- Cowell, F. A. & Flachaire, E. (2007), 'Income distribution and inequality measurement: The problem of extreme values', *Journal of Econometrics*, doi:10.1016/j.jeconom.2007.01.001 (forthcoming).
- Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J. & Stahel,W. A. (1986), *Robust statistics: The approach based on influence functions*, John Wiley, New York.
- Van Kerm, P. (2007), 'Extreme incomes and the estimation of poverty and inequality indicators from EU-SILC', IRISS Working Paper 2007-01, CEPS/INSTEAD, Differdange, Luxembourg.

