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[ outline ]
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@ Robust estimation

€ Stata Implementation of OBRE
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@ Application to real income data for Luxembourg

@ The semi-parametric approach

@ Concluding remarks
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LThe problem of data contamination/extreme incomes

Context

“Distribution analysis”

Analysis of data modelled as realizations from some random
variable Y

e characterize Y w.r.t. ‘location’, ‘spread’/‘'skewness’,
‘modality’
o focus on other particular features, e.g.
e measures of inequality, poverty, polarization (income data)
¢ expected loss, value-at-risk (financial data)
e stochastic dominance comparisons (ordering RV w.r.t. risk
or inequality)
o fit parametric models for the RV (e.g., Gamma distribution,
Pareto, etc.)
e
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The problem of data contamination and extreme
values

The problem

Analysis beyond ‘central tendency’/'location’ estimation (very)
sensitive to extreme data
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values

The problem

Analysis beyond ‘central tendency’/'location’ estimation (very)
sensitive to extreme data

e data contamination (e.g., ‘decimal point’ encoding error’)?
e ‘valid’ outliers?
Consequences are potential bias and high sampling
uncertainty (even with large samples).
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LThe problem of data contamination/extreme incomes

The problem of data contamination and extreme
values

The problem

Analysis beyond ‘central tendency’/'location’ estimation (very)
sensitive to extreme data

e data contamination (e.g., ‘decimal point’ encoding error’)?
e ‘valid’ outliers?
Consequences are potential bias and high sampling
uncertainty (even with large samples).

—> Many measures of interest have ‘unbounded influence
function’

lemr



Robust distribution analysis

LThe problem of data contamination/extreme incomes

Influence function examples — Inequality indices
from Cowell & Flachaire (2007)
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L Robust estimation

[ outline ]

@ Robust estimation
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Remedial actions

© Identify and adjust extreme data: removal, re-coding
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© Identify and adjust extreme data: removal, re-coding
¢ Relatively easy, but not efficient and dependence to ad-hoc
trimming fractions
¢ Impact can be substantial ... and difficult to justify
® Rely on functional form assumptions:
¢ model the full distribution parametrically (e.g. log-Normal,

Gamma), so distribution fully characterized by just a few
parameters

e model only the tails of the distribution parametrically (e.g.
Pareto)

=

10/45



Robust distribution analysis
LRobust estimation
Remedial actions

© Identify and adjust extreme data: removal, re-coding
¢ Relatively easy, but not efficient and dependence to ad-hoc
trimming fractions
¢ Impact can be substantial ... and difficult to justify
® Rely on functional form assumptions:
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e But... classical ML estimators of distribution parameters are
themselves non-robust to extreme values!
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LRobust estimation
Remedial actions

© Identify and adjust extreme data: removal, re-coding
¢ Relatively easy, but not efficient and dependence to ad-hoc
trimming fractions
¢ Impact can be substantial ... and difficult to justify
® Rely on functional form assumptions:
¢ model the full distribution parametrically (e.g. log-Normal,
Gamma), so distribution fully characterized by just a few
parameters
e model only the tails of the distribution parametrically (e.g.
Pareto)
e But... classical ML estimators of distribution parameters are
themselves non-robust to extreme values!
— Solution discussed in this talk: Use “robust” estimators of
model parameters (instead of classical ML) .
s
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LRobust estimation

Robust estimation methods

(Hampel , 1986)
BEE Normal distribution

Using least-squares method '

(a)
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L Robust estimation

Robust estimation methods
(Hampel , 1986)

Using rejection of outliers
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L Robust estimation

Robust estimation methods
(Hampel , 1986)
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L Robust estimation

The estimation problem

We want to fit a given parametric distribution f, to the available
data: 6 is a vector of parameters to be estimated.

lemr

14/45



Robust distribution analysis
L Robust estimation

The estimation problem

We want to fit a given parametric distribution f, to the available
data: 6 is a vector of parameters to be estimated.

ML estimation

Find 6. solution to SN, s(x;, ML) = 0, where s(x;, 0M-) is the
score function: s(x;, 8) = dlog(fy(x;))/00
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L Robust estimation

The estimation problem

Task

We want to fit a given parametric distribution f, to the available
data: 6 is a vector of parameters to be estimated.

ML estimation

Find 6. solution to SN, s(x;, ML) = 0, where s(x;, 0M-) is the
score function: s(x;, 8) = dlog(fy(x;))/00

Problem

The score function has unbounded influence function for almost

all classic models of size distributions. Parameter estimates can

therefore be driven to arbitrary values by data contamination... }
/74
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L Robust estimation

Optimal B-Robust Estimators (OBRE)

A robust alternative to classical ML

OBRE

e OBRE is also an M-estimator: 6 solution to

Z/N:1 T/’(Xia 9) = O
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Optimal B-Robust Estimators (OBRE)

A robust alternative to classical ML

OBRE

° OEI,VRE is also an M-estimator: 6 solution to
Z/ 1 (Xla 9) =
© For ML w(le HML) (Xh QML)
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L Robust estimation

Optimal B-Robust Estimators (OBRE)

A robust alternative to classical ML

OBRE

e OBRE is also an M-estimator: 6 solution to
ZIN:‘I w(Xfa 9) — O
e For OBRE:
$(xi, 09P) = (s(x, 69P) — a(6°%)) We(x;: 0°°)

where

| c
We(xi; 0°F) = min (1; G(s(x;, 69B), a(QOB)vA(QOB)))
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LRobust estimation

Optimal B-Robust Estimators (OBRE) (ctd.)

A robust alternative to classical ML

o W,(x;0°B) imposes a bound on influence function by
downweighting extreme values (values deviating from
model)
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LRobust estimation

Optimal B-Robust Estimators (OBRE) (ctd.)

A robust alternative to classical ML

o W,(x;0°B) imposes a bound on influence function by
downweighting extreme values (values deviating from
model)

e Cis a ‘robustness’ parameter to be determined ex ante
(tune efficiency-robustness trade-off)

e If ¢ — o then 998 = gML
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LRobust estimation

Optimal B-Robust Estimators (OBRE) (ctd.)

A robust alternative to classical ML

o a(098) and A(6°P) are implicitly defined as

E(w(x,09P)p(x,09%)) = (AOP)ABP))
E(¥(x.0%)) = 0
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LRobust estimation

Optimal B-Robust Estimators (OBRE) (ctd.)

A robust alternative to classical ML

o a(098) and A(6°P) are implicitly defined as

E(w(x,09P)p(x,09%)) = (AOP)ABP))
E(¥(x.0%)) = 0

= The resulting estimator is the optimal (minimum variance)
M-estimator with bounded influence function

e For a thorough discussion, see Hampel et al. (1986),
Robust Statistics: The approach based on influence
functions.
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[ outline ]

€ Stata Implementation of OBRE
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Implementation

e Given number of implicit definitions of parameters and
constraints, estimation is not easy
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e Given number of implicit definitions of parameters and
constraints, estimation is not easy
o But relatively detailed algorithms are available
(fortunately!). | implemented Ronchetti & Victoria-Feser
(Canadian Journal of Statistics, 1994).
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e Given number of implicit definitions of parameters and
constraints, estimation is not easy
o But relatively detailed algorithms are available
(fortunately!). | implemented Ronchetti & Victoria-Feser
(Canadian Journal of Statistics, 1994).
e lterative algorithm:
e given some 6, solve equations for a(#) and A(9)
¢ with new a(0) and A(0), determine new W,(x;; #) and
update # (Newton-Raphson step) until convergence
¢ Solving equations for a(8) and A(0) also based on an
iterative procedure
— Rather difficult problem, and very computer-intensive (esp.
for numerical integration). So needs
© speed
@ maitrix operations p
£
= Matal

19/45



Robust distribution analysis
LStata Implementation of OBRE

Implementation (ctd.)
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Implementation (ctd.)

¢ Implementation is “relatively easy” with Mata (but familiarity
with matrix algebra can help!)
e Uses a suite of existing commands by Stephen Jenkins to
fit functional forms to unit record data by ML
e just replace ML engine by home-brewed OBRE engine
e i.e. call a Mata function, rather than m1 model!
void gamma_obre (string scalar varname, string
scalar sweight, string scalar touse, string
scalar thenewvar, real scalar froma, real scalar
fromb , real scalar c)
¢ the Mata function return a vector of parameter estimates
along with a covariance matrix estimate
¢ To date | implemented Pareto Type | (1 param), log-Normal
and Gamma (2 params) and Singh-Maddala (3 params)
e Compatible with Nick Cox’s diagnostic commands p* and -
ax for pp-plot and qqg-plot lewr
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¢ Precision of numerical integration functions is important...
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e ... and drives estimation speed

¢ Difficulty to set multiple tolerance and precision
parameters — trade-off between speed and accuracy (still
subject to changes...)
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LStata Implementation of OBRE

Practical programming issues

Precision of numerical integration functions is important...
... and drives estimation speed

Difficulty to set multiple tolerance and precision
parameters — trade-off between speed and accuracy (still
subject to changes...)

As in ML estimation, using re-parameterization § = In()
can help convergence (in all models considered, 6 > 0)

=

21/45



Robust distribution analysis

LStata Implementation of OBRE

Output

Starting walues (ML estimates): [ a = 4.420 ; b = 589.051 ]
Estimation with OERE robustness Constant set to © = &

Iteration 1: 7 a 5.116, b 492 598
Iteration 2: 1 a 5.266, b 467565
Iteration 3: 1 a="5.466, b = 457.468
Iteration 4: a = 5.516, = 452.570
Iteration G&: .| = 5.542, b = 450.09&
Iteration &: Ja 5.556, b = 448.812
Iteration 7 a= 5 b = 448.137
Iteration & a= b = 447.780
Iteration 9: a= b = 447.591 %
Iteration 10: a b 447490
Iteration 11: a b 447435
Iteration 1z: a b 447407
Iteration 13: a b 447391
Iteration 14: a b = 447.383
W Coef. std. Err z P=]z| [25% Conf. Interwal]
a
_Cons 5.571198 -0580081 96.04 0.000 5.457504 5.684891
b
_Cons 4473829 4.091696 109.24 0.000 429.36332 4554025
Half CwAz -089747
Gini coeff. -23373
Theil -087071
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[ outline ]

O Simulation results

=

23/45



Robust distribution analysis

LSimulation results

Set-up

Monte Carlo simulation

© Draw samples from known distributions

@® Add various kind of contamination — decimal point error —
to a fraction of sample data

@ Estimate parameters from datasets using both ML and
OBRE
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LSimulation results

Set-up

Monte Carlo simulation

© Draw samples from known distributions

@® Add various kind of contamination — decimal point error —
to a fraction of sample data

@ Estimate parameters from datasets using both ML and
OBRE

e Pareto with sample size of 200
¢ log-Normal and Singh-Maddala with samples of size 1000

lemr
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LSimulation results

Set-up (ctd.)

Types of contamination

© 1% of obs. multiplied by 10

@ 1% of obs. divided by 10

© 1% of obs. mulitplied by 10 and 1% of obs. divided by 10
O 3% of obs. multiplied by 10

0 3% of obs. divided by 10

lemr
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LSimulation results

Results

Pareto distribution

True parameter value: a« = 3

Model root MSE

ML c=5 c=2
Nocont. 0.215 0.214 0.230
1% *10 0.261 0.252 0.231
3% *10 0.527 0.521 0.286

=
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LSimulation results

Results

log-Normal distribution

Model Param. root MSE
ML c=5 c=3
Nocont. 4 8 0.017 0.017 0.017
o 525 0.012 0.013 0.031
Gini 0.290 0.006 0.007 0.017
Theil 0.138 0.006 0.007 0.016
5CV2  0.159 0.008 0.009 0.020
1% 10 p 8 0.029 0.020 0.018
o 525 0.050 0.020 0.021
Gini 0.290 0.026 0.011 0.011
Theil 0.138 0.027 0.011 0.011
5CV2 0159 0.037 0.014 0.014

=
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LSimulation results

Results

log-Normal distribution (ctd.)

Model Param. True root MSE
ML c=5 c=3
3% *10 pu 8 0.072 0.043 0.025
o 525 0.131 0.070 0.016
Gini 0.290 0.068 0.037 0.008
Theil 0.138 0.078 0.040 0.009
.5CV? 0.159 0.111 0.054 0.011
3%/10 pu 8 0.070 0.047 0.025
o 525 0.132 0.082 0.017
Gini 0.290 0.068 0.043 0.009
Theil 0.138 0.078 0.046 0.009
5CV? 0.159 0.111 0.064 0.012

=
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LSimulation results

Results
Singh-Maddala distribution
Model Param. True root MSE
ML c=7 c=5
Nocont. « 2.8 0.128 0.145 0.301
Iéi 3500 297 283 590
p 1.7 0.283 0.252 0.522
Gini 0.289 0.008 0.009 0.016
Theil 0.132 0.016 0.014 0.030
5CVv2 0.162 0.016 0.020 0.059
1% *10 o 28 0.297 0.243 0.370
8 3500 720 572 751
p 1.7 0.652 0.519 0.665
Gini 0.289 0.032 0.021 0.027
Theil 0.132 0.026 0.025 0.024
5CV2 0.162 0.118 0.071 0.109

=
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LSimulation results

Results
Singh-Maddala distribution (ctd.)
Model Param. True root MSE
ML c=5 c=3
3% x10 « 2.8 0.511 0.472 0.494
8 3500 1145 1069 1004
p 1.7 0.991 0.935 0.880
Gini 0.289 0.088 0.073 0.055

Theil 0.132 0.245 0.160 0.107
5CV? 0.162 1.154 0.547 0.320

3%/10 « 2.8 0.578 0.521 0.253
163 3500 1814 1306 788
p 1.7 1.859 1.309 0.869
Gini 0.289 0.022 0.021 0.021

Theil 0.132 172.324 0.586 3.030
5Cv? 0.162 0.014 0.015 0.036
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LSimulation results

Main observations

e OBRE very useful with Pareto and, especially, log-Normal
models
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LSimulation results

Main observations

e OBRE very useful with Pareto and, especially, log-Normal
models
e OBRE useful too with Singh-Maddala, yet
¢ choice of ¢ matter — too much robustness not good with
small contamination
e too much contamination remains very harmful (look at
impact on estimates of ‘sensitive’ inequality measures
(Theil, .5CV2)!) — even with OBRE
e Convergence problems with Gamma models — otherwise
results similar to SM
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Robust distribution analysis

LApplication to real income data for Luxembourg

[ outline ]

@ Application to real income data for Luxembourg
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LApplication to real income data for Luxembourg

Data

PSELL-III

e Panel Survey “Liewen zu Letzebuerg”, waves
1(2003)-3(2005)

¢ Representative of residents in Luxembourg

e Real annual household income (in single adult equivalent)
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LApplication to real income data for Luxembourg

PDF estimates for log-Normal fit
OBRE improves fit, but not very good model
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LApplication to real income data for Luxembourg

PDF estimates for Singh-Maddala fit

OBRE useful and much better fit
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Robust distribution analysis

LApplication to real income data for Luxembourg

PDF estimates for Gamma fit
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LApplication to real income data for Luxembourg

OBRE weights for log-Normal fit
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OBRE weights for Singh-Maddala fit
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LApplication to real income data for Luxembourg

OBRE weights for Gamma fit
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The principle

e More flexible approach is to focus on distribution tails

¢ bulk of the data are taken at face value — use empirical CDF

e parametric approach only for the tails — largest (and
smallest?) observations are used to estimate a parametric
model

e empirical CDF combined with parametric CDFs for
estimation of, say, inequality measures, stochastic
dominance, etc.

e Under assumption that the CDF “decays as a power

function” —i.e., has a heavy tail —, fitting a Pareto
distribution to tail data is a valid choice: for x > z,

CREEN
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e OBRE estimator useful to avoid influence of contamination
on Pareto parameter estimate o
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LThe semi-parametric approach

Pareto tail estimation

e OBRE estimator useful to avoid influence of contamination
on Pareto parameter estimate o
e Main issue is the choice of z — value beyond which data
are modelled parametrically
— Pareto quantile plot and Hill’s plot
e Under Pareto model, linear relationship between

—log(1 — F(x)) and log(x) — so help detecting reasonable
value of z

o (yet difficulty associated with contamination at the very top)
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LThe semi-parametric approach

Pareto quantile plot
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(Stata command pareto_loggplot available in package for Pareto tail f;’fy

modelling — coming soon on SSC!)
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Concluding remarks

e Mata makes estimators such as OBRE feasible within
Stata

e In theory, OBRE estimators have great relevance in
distribution analysis... implementation in Stata may help
putting this claim to broader practical assessment

e At present, it is (still) a prototype (but looks ok). Minor
developments still needed for

e fixing precision and tolerance thresholds

¢ additional distributions (GB2?) — transplanting code to other
distributions is easy, yet more convergence problems to be
expected with higher number of parameters
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