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Robust distribution analysis

The problem of data contamination/extreme incomes

Context

“Distribution analysis”

Analysis of data modelled as realizations from some random
variable Y
• characterize Y w.r.t. ‘location’, ‘spread’/‘skewness’,

‘modality’
• focus on other particular features, e.g.

• measures of inequality, poverty, polarization (income data)
• expected loss, value-at-risk (financial data)

• stochastic dominance comparisons (ordering RV w.r.t. risk
or inequality)

• fit parametric models for the RV (e.g., Gamma distribution,
Pareto, etc.)
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Robust distribution analysis

The problem of data contamination/extreme incomes

The problem of data contamination and extreme
values

The problem

Analysis beyond ‘central tendency’/‘location’ estimation (very)
sensitive to extreme data
• data contamination (e.g., ‘decimal point’ encoding error’)?
• ‘valid’ outliers?

Consequences are potential bias and high sampling
uncertainty (even with large samples).
=⇒ Many measures of interest have ‘unbounded influence

function’
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Robust distribution analysis

The problem of data contamination/extreme incomes

Influence function examples – Inequality indices
from Cowell & Flachaire (2007)
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Robust distribution analysis

The problem of data contamination/extreme incomes

Impact of extreme incomes adjustments – Gini
from Van Kerm (2007)
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Robust distribution analysis

The problem of data contamination/extreme incomes

Extreme incomes adjustments – GE(2)
from Van Kerm (2007)

0

.2

.4

.6

.8

Fu
ll 

sa
m

pl
e

To
p 

1 
ex

cl
.

To
p 

5 
ex

cl
.

To
p 

10
 e

xc
l.

B
ot

to
m

 1
 e

xc
l.

B
ot

to
m

 5
 e

xc
l.

B
ot

to
m

 1
0 

ex
cl

.
2 

ex
tre

m
es

 e
xc

l.

10
 e

xt
re

m
es

 e
xc

l.

   
   

  2
0 

ex
tre

m
es

 e
xc

l.

A
Trim obs.

To
p 

0.
25

%
 e

xc
l.

To
p 

0.
50

%
 e

xc
l.

To
p 

0.
75

%
 e

xc
l.

To
p 

1%
 e

xc
l.

B
ot

to
m

 0
.2

5%
 e

xc
l.

B
ot

to
m

 0
.5

0%
 e

xc
l.

B
ot

to
m

 0
.7

5%
 e

xc
l.

B
ot

to
m

 1
%

 e
xc

l.

Tw
o−

si
de

d 
0.

25
%

 e
xc

l.

Tw
o−

si
de

d 
0.

50
%

 e
xc

l.

Tw
o−

si
de

d 
0.

75
%

 e
xc

l.

Tw
o−

si
de

d 
1%

 e
xc

l.

B
Trimming %

To
p 

0.
25

%
 im

p.
To

p 
0.

50
%

 im
p.

To
p 

0.
75

%
 im

p.
To

p 
1%

 im
p.

 B
ot

to
m

 0
.2

5%
 im

p.

 B
ot

to
m

 0
.5

0%
 im

p.

 B
ot

to
m

 0
.7

5%
 im

p.

B
ot

to
m

 1
%

 im
p.

Tw
o−

si
de

d 
0.

25
%

 im
p.

Tw
o−

si
de

d 
0.

50
%

 im
p.

Tw
o−

si
de

d 
0.

75
%

 im
p.

Tw
o−

si
de

d 
1%

 im
p.

C
Winsorizing

To
p 

0.
5%

 im
p.

To
p 

re
−w

ei
gh

te
d

B
ot

to
m

 0
.5

%
 im

p.

B
ot

to
m

 re
−w

ei
gh

te
d

Tw
o−

si
de

d 
0.

5%
 im

p.

Tw
o−

si
de

d 
re

−w
ei

gh
te

d

D
Model−based

D
ro

p 
<=

0 
in

co
m

es
Li

ft 
<=

0 
to

 0

  L
ift

 <
=0

 to
 0

.1
0*

m
ed

  L
ift

 <
=0

 to
 0

.2
5*

m
ed

  I
m

pu
te

 <
=0

 (d
ec

ile
)

  I
m

pu
te

 <
=0

 (q
ua

rti
le

)

E
Adjust <=0

w
/o

 S
el

f−
em

pl
oy

ed

   
  w

/o
 In

t./
D

iv
./P

ro
fit

s
 w

/o
 b

ot
h

Fu
ll 

sa
m

pl
e

F
Sources

8 / 45



Robust distribution analysis

Robust estimation

[ outline ]

1 The problem of data contamination/extreme incomes

2 Robust estimation

3 Stata Implementation of OBRE

4 Simulation results

5 Application to real income data for Luxembourg

6 The semi-parametric approach

7 Concluding remarks

9 / 45



Robust distribution analysis

Robust estimation

Remedial actions

1 Identify and adjust extreme data: removal, re-coding
• Relatively easy, but not efficient and dependence to ad-hoc

trimming fractions
• Impact can be substantial ... and difficult to justify

2 Rely on functional form assumptions:
• model the full distribution parametrically (e.g. log-Normal,

Gamma), so distribution fully characterized by just a few
parameters

• model only the tails of the distribution parametrically (e.g.
Pareto)

• But... classical ML estimators of distribution parameters are
themselves non-robust to extreme values!

=⇒ Solution discussed in this talk: Use “robust” estimators of
model parameters (instead of classical ML)
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Robust distribution analysis

Robust estimation

Robust estimation methods
(Hampel , 1986)
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Robust distribution analysis

Robust estimation

The estimation problem

Task

We want to fit a given parametric distribution fθ to the available
data: θ is a vector of parameters to be estimated.

ML estimation

Find θML solution to
∑N

i=1 s(xi , θ
ML) = 0, where s(xi , θ

ML) is the
score function: s(xi , θ) = ∂ log(fθ(xi))/∂θ

Problem

The score function has unbounded influence function for almost
all classic models of size distributions. Parameter estimates can
therefore be driven to arbitrary values by data contamination...
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Robust distribution analysis

Robust estimation

Optimal B-Robust Estimators (OBRE)
A robust alternative to classical ML

OBRE

• OBRE is also an M-estimator: θ solution to∑N
i=1 ψ(xi , θ) = 0

• For ML: ψ(xi , θ
ML) = s(xi , θ

ML)

• For OBRE:

ψ(xi , θ
OB) = (s(xi , θ

OB)− a(θOB))Wc(xi ; θ
OB)

where

Wc(xi ; θ
OB) = min

(
1;

c
G(s(xi , θOB),a(θOB),A(θOB))

)
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Robust distribution analysis

Robust estimation

Optimal B-Robust Estimators (OBRE) (ctd.)
A robust alternative to classical ML

• Wc(x ; θOB) imposes a bound on influence function by
downweighting extreme values (values deviating from
model)

• c is a ‘robustness’ parameter to be determined ex ante
(tune efficiency-robustness trade-off)
• If c →∞ then θOB = θML
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Robust distribution analysis

Robust estimation

Optimal B-Robust Estimators (OBRE) (ctd.)
A robust alternative to classical ML

• a(θOB) and A(θOB) are implicitly defined as

E(ψ(x , θOB)ψ(x , θOB)′) = (A(θOB)A(θOB)′)−1

E(ψ(x , θOB)) = 0

=⇒ The resulting estimator is the optimal (minimum variance)
M-estimator with bounded influence function

• For a thorough discussion, see Hampel et al. (1986),
Robust Statistics: The approach based on influence
functions.
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Robust distribution analysis

Stata Implementation of OBRE
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Robust distribution analysis

Stata Implementation of OBRE

Implementation
• Given number of implicit definitions of parameters and

constraints, estimation is not easy
• But relatively detailed algorithms are available

(fortunately!). I implemented Ronchetti & Victoria-Feser
(Canadian Journal of Statistics, 1994).

• Iterative algorithm:
• given some θ, solve equations for a(θ) and A(θ)
• with new a(θ) and A(θ), determine new Wc(xi ; θ) and

update θ (Newton-Raphson step) until convergence
• Solving equations for a(θ) and A(θ) also based on an

iterative procedure
=⇒ Rather difficult problem, and very computer-intensive (esp.

for numerical integration). So needs
1 speed
2 matrix operations

=⇒ Mata!
19 / 45
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for numerical integration). So needs
1 speed
2 matrix operations
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Robust distribution analysis

Stata Implementation of OBRE

Implementation (ctd.)
• Implementation is “relatively easy” with Mata (but familiarity

with matrix algebra can help!)
• Uses a suite of existing commands by Stephen Jenkins to

fit functional forms to unit record data by ML
• just replace ML engine by home-brewed OBRE engine
• i.e. call a Mata function, rather than ml model!
void gamma_obre(string scalar varname, string

scalar sweight, string scalar touse, string

scalar thenewvar, real scalar froma, real scalar

fromb , real scalar c)
• the Mata function return a vector of parameter estimates

along with a covariance matrix estimate
• To date I implemented Pareto Type I (1 param), log-Normal

and Gamma (2 params) and Singh-Maddala (3 params)
• Compatible with Nick Cox’s diagnostic commands p* and
q* for pp-plot and qq-plot
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Robust distribution analysis

Stata Implementation of OBRE

Practical programming issues

• Precision of numerical integration functions is important...
• ... and drives estimation speed
• Difficulty to set multiple tolerance and precision

parameters – trade-off between speed and accuracy (still
subject to changes...)

• As in ML estimation, using re-parameterization θ̃ = ln(θ)
can help convergence (in all models considered, θ > 0)
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Stata Implementation of OBRE

Output
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Simulation results

[ outline ]
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Robust distribution analysis

Simulation results

Set-up

Monte Carlo simulation

1 Draw samples from known distributions
2 Add various kind of contamination – decimal point error –

to a fraction of sample data
3 Estimate parameters from datasets using both ML and

OBRE

• Pareto with sample size of 200
• log-Normal and Singh-Maddala with samples of size 1000
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Robust distribution analysis

Simulation results

Set-up (ctd.)

Types of contamination

1 1% of obs. multiplied by 10
2 1% of obs. divided by 10
3 1% of obs. mulitplied by 10 and 1% of obs. divided by 10
4 3% of obs. multiplied by 10
5 3% of obs. divided by 10
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Robust distribution analysis

Simulation results

Results
Pareto distribution

True parameter value: α = 3

Model root MSE
ML c=5 c=2

No cont. 0.215 0.214 0.230
1% *10 0.261 0.252 0.231
3% *10 0.527 0.521 0.286
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Robust distribution analysis

Simulation results

Results
log-Normal distribution

Model Param. root MSE
ML c=5 c=3

No cont. µ 8 0.017 0.017 0.017
σ .525 0.012 0.013 0.031
Gini 0.290 0.006 0.007 0.017
Theil 0.138 0.006 0.007 0.016
.5CV2 0.159 0.008 0.009 0.020

1% *10 µ 8 0.029 0.020 0.018
σ .525 0.050 0.020 0.021
Gini 0.290 0.026 0.011 0.011
Theil 0.138 0.027 0.011 0.011
.5CV2 0.159 0.037 0.014 0.014
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Robust distribution analysis

Simulation results

Results
log-Normal distribution (ctd.)

Model Param. True root MSE
ML c=5 c=3

3% *10 µ 8 0.072 0.043 0.025
σ .525 0.131 0.070 0.016
Gini 0.290 0.068 0.037 0.008
Theil 0.138 0.078 0.040 0.009
.5CV2 0.159 0.111 0.054 0.011

3% /10 µ 8 0.070 0.047 0.025
σ .525 0.132 0.082 0.017
Gini 0.290 0.068 0.043 0.009
Theil 0.138 0.078 0.046 0.009
.5CV2 0.159 0.111 0.064 0.012
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Robust distribution analysis

Simulation results

Results
Singh-Maddala distribution

Model Param. True root MSE
ML c=7 c=5

No cont. α 2.8 0.128 0.145 0.301
β 3500 297 283 590
p 1.7 0.283 0.252 0.522
Gini 0.289 0.008 0.009 0.016
Theil 0.132 0.016 0.014 0.030
.5CV2 0.162 0.016 0.020 0.059

1% *10 α 2.8 0.297 0.243 0.370
β 3500 720 572 751
p 1.7 0.652 0.519 0.665
Gini 0.289 0.032 0.021 0.027
Theil 0.132 0.026 0.025 0.024
.5CV2 0.162 0.118 0.071 0.109
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Robust distribution analysis

Simulation results

Results
Singh-Maddala distribution (ctd.)

Model Param. True root MSE
ML c=5 c=3

3% ×10 α 2.8 0.511 0.472 0.494
β 3500 1145 1069 1004
p 1.7 0.991 0.935 0.880
Gini 0.289 0.088 0.073 0.055
Theil 0.132 0.245 0.160 0.107
.5CV2 0.162 1.154 0.547 0.320

3% /10 α 2.8 0.578 0.521 0.253
β 3500 1814 1306 788
p 1.7 1.859 1.309 0.869
Gini 0.289 0.022 0.021 0.021
Theil 0.132 172.324 0.586 3.030
.5CV2 0.162 0.014 0.015 0.036
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Robust distribution analysis

Simulation results

Main observations

• OBRE very useful with Pareto and, especially, log-Normal
models

• OBRE useful too with Singh-Maddala, yet
• choice of c matter – too much robustness not good with

small contamination
• too much contamination remains very harmful (look at

impact on estimates of ‘sensitive’ inequality measures
(Theil, .5CV2)!) – even with OBRE

• Convergence problems with Gamma models – otherwise
results similar to SM
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Robust distribution analysis

Application to real income data for Luxembourg
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Robust distribution analysis

Application to real income data for Luxembourg

Data

PSELL-III

• Panel Survey “Liewen zu Letzebuerg”, waves
1(2003)-3(2005)

• Representative of residents in Luxembourg
• Real annual household income (in single adult equivalent)
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Robust distribution analysis

Application to real income data for Luxembourg

PDF estimates for log-Normal fit
OBRE improves fit, but not very good model
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Robust distribution analysis

Application to real income data for Luxembourg

PDF estimates for Singh-Maddala fit
OBRE useful and much better fit
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Robust distribution analysis

Application to real income data for Luxembourg

PDF estimates for Gamma fit
(does it call for any comment?)
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Robust distribution analysis

Application to real income data for Luxembourg

OBRE weights for log-Normal fit
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Robust distribution analysis

Application to real income data for Luxembourg

OBRE weights for Gamma fit
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Robust distribution analysis

The semi-parametric approach

[ outline ]
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Robust distribution analysis

The semi-parametric approach

The principle

• More flexible approach is to focus on distribution tails
• bulk of the data are taken at face value – use empirical CDF
• parametric approach only for the tails – largest (and

smallest?) observations are used to estimate a parametric
model

• empirical CDF combined with parametric CDFs for
estimation of, say, inequality measures, stochastic
dominance, etc.

• Under assumption that the CDF “decays as a power
function” – i.e., has a heavy tail –, fitting a Pareto
distribution to tail data is a valid choice: for x ≥ z,

F (x) = 1−
(x

z

)−α

41 / 45



Robust distribution analysis

The semi-parametric approach

The principle

• More flexible approach is to focus on distribution tails
• bulk of the data are taken at face value – use empirical CDF
• parametric approach only for the tails – largest (and

smallest?) observations are used to estimate a parametric
model

• empirical CDF combined with parametric CDFs for
estimation of, say, inequality measures, stochastic
dominance, etc.

• Under assumption that the CDF “decays as a power
function” – i.e., has a heavy tail –, fitting a Pareto
distribution to tail data is a valid choice: for x ≥ z,

F (x) = 1−
(x

z

)−α

41 / 45



Robust distribution analysis

The semi-parametric approach

The principle

• More flexible approach is to focus on distribution tails
• bulk of the data are taken at face value – use empirical CDF
• parametric approach only for the tails – largest (and

smallest?) observations are used to estimate a parametric
model

• empirical CDF combined with parametric CDFs for
estimation of, say, inequality measures, stochastic
dominance, etc.

• Under assumption that the CDF “decays as a power
function” – i.e., has a heavy tail –, fitting a Pareto
distribution to tail data is a valid choice: for x ≥ z,

F (x) = 1−
(x

z

)−α

41 / 45



Robust distribution analysis

The semi-parametric approach

Pareto tail estimation

• OBRE estimator useful to avoid influence of contamination
on Pareto parameter estimate α

• Main issue is the choice of z – value beyond which data
are modelled parametrically
=⇒ Pareto quantile plot and Hill’s plot
• Under Pareto model, linear relationship between
− log(1− F (x)) and log(x) – so help detecting reasonable
value of z

• (yet difficulty associated with contamination at the very top)
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Robust distribution analysis

The semi-parametric approach

Pareto quantile plot
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Grid lines are 5, 10, 25, 50, 75, 90, and 95 percentiles

(Stata command pareto_logqplot available in package for Pareto tail
modelling – coming soon on SSC!)
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Robust distribution analysis

Concluding remarks

Concluding remarks

• Mata makes estimators such as OBRE feasible within
Stata

• In theory, OBRE estimators have great relevance in
distribution analysis... implementation in Stata may help
putting this claim to broader practical assessment

• At present, it is (still) a prototype (but looks ok). Minor
developments still needed for
• fixing precision and tolerance thresholds
• additional distributions (GB2?) – transplanting code to other

distributions is easy, yet more convergence problems to be
expected with higher number of parameters
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Robust distribution analysis

Concluding remarks
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