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What is a Hodges–Lehmann median difference?

I A Theil–Sen median slope of Y with respect to X is a solution
in β to the equation D(Y − βX|X) = 0, where D(·|·) denotes the
rank association measure Somers’ D.

I In other words, a median slope is a linear effect of X on Y , large
enough to explain the observed association.

I If X is binary with values 0 and 1, then the Theil–Sen median
slope is the Hodges–Lehmann median difference between the
subpopulations in which X = 1 and X = 0.

I In other words, the Hodges–Lehmann median difference is the
median pairwise difference between two Y–values, sampled at
random from the two subpopulations.

I Note that the median difference is not always the difference
between the two subpopulation medians!
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The Lehmann confidence interval formula

I The conventional confidence interval formula for the median
difference (Lehmann, 1963)[1] was implemented in Stata by
Wang (1999)[4].

I It assumes that the two subpopulation distributions are different
only in location.

I This assumption implies that the median difference is the
difference between the two medians.

I However, it also implies that the subpopulations are equally
variable.

I The Lehmann formula is therefore robust to non–Normality at
the price of being non–robust to unequal variability. (Which
often causes even more problems.)
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The cendif confidence interval formula

I An alternative confidence interval formula for the median
difference (Newson, 2006)[3] is used by the cendif module of
the SSC package somersd.

I It is derived by inverting a delta–jackknife confidence interval
formula for Somers’ D.

I It should therefore still work if the two subpopulation
distributions differ in ways other than location.

I In particular, it should still work if the two subpopulations are
unequally variable.

I The cendif formula therefore contrasts to the Lehmann
formula as the unequal–variance t–test contrasts to the
equal–variance t–test.
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Comparing the two t–tests: Existing results

I Moser and Stevens (1992)[2] compared the Gosset equal–variance and
Satterthwaite unequal–variance t–tests, using numerical integration.

I The Satterthwaite method had the advertized coverage probability.

I The equal–variance t–test produced oversized (undersized) confidence
intervals if the smaller sample is sampled from the less variable (more
variable) subpopulation.

I However, the equal–variance t–test had the advertized coverage
probability, if either the subsample numbers or the subpopulation
variances were equal.

I Under the latter conditions, the equal–variance t–test produced smaller
confidence intervals with the same coverage probability.

I The authors therefore recommended the unequal–variance method as
the “default”, and the equal–variance method for the “special occasion”
of unequal sample numbers and prior knowledge of equal variability.

I They advised against the “traditional” practice of testing equality of
variances before choosing a t–test!
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Simulation study: Aims

I A simulation study, modelled on the Moser–Stevens study[2],
was designed to test cendif to destruction in a wide range of
scenarios.

I The cendif method was compared with 3 other methods (the
Lehmann method and the two t–tests) for calculating confidence
intervals for median differences.

I In each scenario, coverage probabilities were estimated, together
with median confidence interval width ratios.

I 10000 replicate sample pairs were simulated for each scenario.
I In this presentation, we focus on comparing coverage

probabilities between the Lehmann and cendif methods.
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Simulation study: Scenarios

I Pairs of subpopulation distributions were selected from 2
families: the “t–test friendly” Normal family and the
outlier–prone, “t–test unfriendly” Cauchy family.

I Both families are symmetric, and parameterized by a median µ
(set to zero) and a scale parameter σ (measuring variability).

I Subsample numbers were all 10 possible pairs N1 ≤ N2 from the
set {5, 10, 20, 40}.

I Variability scale ratios σ1/σ2 between the populations of the
smaller and larger samples were from the symmetrical set of 9
values {1/4, 1/3, 1/2, 2/3, 1, 3/2, 2, 3, 4}.

I These 180 scenarios (90 for each distributional family) were
chosen to include “best” and “worst” cases for all 4 statistical
methods.
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Normal coverage probabilities for the Gosset and cendif methods
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The equal–variance t–test produces oversized (undersized) confidence
intervals if the smaller sample is from the less (more) variable
population.
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Normal coverage probabilities for the Lehmann and cendif methods
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Under most (but not all) scenarios, the cendif coverage probability
is closer to the advertized value of 0.95.
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Cauchy coverage probabilities for the Lehmann and cendif methods
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For both rank methods, the Cauchy coverage probabilities are similar
to the Normal coverage probabilities. However . . .
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Lehmann versus cendif: Patterns of relative advantage

I . . . the relative advantage between the two rank methods varies
between scenarios.

I The subsample size pairs N1 ≤ N2 can be classified into 3 “fuzzy
patterns”, which blend into each other gradually.

I These 3 patterns can be named “N1 = N2”, “N1 < N2”, and
“N1 � N2”.

I We will illustrate this remark by focussing on a “typical”
example of each pattern.
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N1 = N2: Both methods are reasonable

I Median differences
between 2 Normal
samples of 40 are
estimated.

I Both methods have
coverage probabilities
close to the advertized
level of 0.95.

I However, the Lehmann
method produces slightly
undersized confidence
intervals under very
unequal variability.
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N1 < N2: cendif is robust

I The first sample number
here is half the second.

I The cendif method has
coverage probabilities
close to the advertized
level of 0.95 under all
variability ratios.

I The Lehmann method
produces oversized
(undersized) confidence
intervals if the smaller
sample is from the less
(more) variable
population. (Like the
equal–variance t–test.)
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N1 � N2: cendif is tested to destruction

I The cendif confidence
interval is now undersized
under most variability
ratios.

I The Lehmann method
still produces oversized
(undersized) confidence
intervals if the smaller
sample is from the less
(more) variable
population.

I However, the Lehmann
coverage is at least
correct under equal
variability!
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Lehmann versus cendif: Summary of results

I If N1 = N2, then both methods (especially cendif) produce
coverage probabilities close to the advertized level.

I If N1 < N2 (and N1 is not too small), then the Lehmann method
produces oversized (undersized) confidence intervals if the
smaller sample is from the less (more) variable population, and
the cendif method is more robust.

I However, if N1 � N2 (and N1 is very small), then the cendif
method produces undersized confidence intervals, and the
Lehmann method is more correct under equal variability.

I Therefore, cendif is robust to unequal variability, at the price
of being less robust to the possibility that the smaller sample (but
not the larger one) is very small.
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Lehmann versus cendif: General principles

I The Lehmann and cendif methods are both based on Central
Limit Theorems, applied to Somers’ D(Y|X) for a binary X and a
continuous Y .

I However, the cendif method estimates the variance from the
joint sample distribution of X and Y , using jackknife methods.

I By contrast, the Lehmann method calculates the variance from
the marginal sample distributions of X and Y , using permutation
methods.

I Therefore, the Lehmann method (like the equal–variance t–test)
estimates the population variability of the smaller sample using
the sample variability of the larger sample.

I By contrast, the cendif method (like the unequal–variance
t–test) estimates the population variability of the smaller sample
using the sample variability of the smaller sample.
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Lehmann versus cendif: Interpretation of results

I If N1 = N2, then there is no larger or smaller sample – and both
methods work (especially cendif).

I If N1 < N2 (and N1 is not too small), then the population
variability of the smaller sample is best estimated using the
sample variability of the smaller sample – favoring cendif.

I If N1 � N2 (and N1 is very small), and we have prior reason to
expect “similar” variability, then the population variability of the
smaller sample is best estimated using the sample variability of
the larger sample – favoring the Lehmann method.

I This seems to suggest a policy of regarding cendif as the
default and the Lehmann formula as the “special case”, similar to
the Moser–Stevens[2] policy regarding the two t–tests.
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expect “similar” variability, then the population variability of the
smaller sample is best estimated using the sample variability of
the larger sample – favoring the Lehmann method.

I This seems to suggest a policy of regarding cendif as the
default and the Lehmann formula as the “special case”, similar to
the Moser–Stevens[2] policy regarding the two t–tests.
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Possible further improvements to cendif

I The jackknife method used by cendif assumes N1 + N2 − 1
degrees of freedom, which may be over–generous if N1 � N2.

I It might be possible to devise an alternative degrees–of–freedom
formula for the jackknife, like the Satterthwaite formula used in
the unequal–variance t–test.

I The percentile bootstrap (Wilcox, 1998)[5] might possibly be an
improvement on the cendif method.

I However, the 1000 subsamples typically used might make it
computationally expensive to prove this in a study as large as this
one!
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Conclusions

I This simulation study compared the coverage probabilities of the
Lehmann and cendif confidence intervals for median
differences.

I Neither method failed “catastrophically”, in the manner of the
t–test.

I However, both methods could be made to produce “95%
confidence intervals” that were really 90% confidence intervals.

I Under most scenarios, it appears safe to use cendif as the
default method.

I However, the Lehmann method may be better, if N1 � N2.
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Appendix

I This and the following frames are not part of the main
presentation.

I However, they may be shown to the audience to illustrate
responses to questions.
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Median Gosset/cendif confidence interval width ratios under equal
variability
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Normal coverage probabilities for the Gosset and cendif methods
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Cauchy coverage probabilities for the Gosset and cendif methods
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Normal coverage probabilities for the Satterthwaite and cendif methods
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Cauchy coverage probabilities for the Satterthwaite and cendif methods
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Normal coverage probabilities for the Lehmann and cendif methods
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