
Title stata.com

input — Enter data from keyboard

Description Quick start Syntax Options
Remarks and examples Reference Also see

Description
input allows you to type data directly into the dataset in memory.

For most users, edit is a better way to add observations to the dataset because it automatically
adjusts the storage type of variables, if required, to accommodate new values.

Quick start
Create numeric v1, v2, and v3 and input data directly into Stata

input v1 v2 v3

As above, but create v1 and v2 as type int, v3 as type byte

input int (v1 v2) byte v3

Add data on string v4 of length 10
input str10 v4

Input data for all existing variables
input

As above, but add observations by typing strings associated with value labels of existing variables
instead of numeric data

input, label

Syntax
input

[
varlist

] [
, automatic label

]
Options

automatic causes Stata to create value labels from the nonnumeric data it encounters. It also
automatically widens the display format to fit the longest label. Specifying automatic implies
label, even if you do not explicitly type the label option.

label allows you to type the labels (strings) instead of the numeric values for variables associated
with value labels. New value labels are not automatically created unless automatic is specified.

1

http://stata.com
http://www.stata.com/manuals14/dedit.pdf#dedit
http://www.stata.com/manuals14/u11.pdf#u11.4varlists


2 input — Enter data from keyboard

Remarks and examples stata.com

If no data are in memory, you must specify a varlist when you type input. Stata will then prompt
you to enter the new observations until you type end.

Example 1

We have data on the accident rate per million vehicle miles along a stretch of highway, along with
the speed limit on that highway. We wish to type these data directly into Stata:

. input
nothing to input
r(104);

Typing input by itself does not provide enough information about our intentions. Stata needs to
know the names of the variables we wish to create.

. input acc_rate spdlimit

acc_rate spdlimit
1. 4.58 55
2. 2.86 60
3. 1.61 .
4. end

.

We typed input acc rate spdlimit, and Stata responded by repeating the variable names and
prompting us for the first observation. We entered the values for the first two observations, pressing
Return after each value was entered. For the third observation, we entered the accident rate (1.61),
but we entered a period (.) for missing because we did not know the corresponding speed limit for
the highway. After entering data for the fourth observation, we typed end to let Stata know that there
were no more observations.

We can now list the data to verify that we have entered the data correctly:

. list

acc_rate spdlimit

1. 4.58 55
2. 2.86 60
3. 1.61 .

If you have data in memory and type input without a varlist, you will be prompted to enter more
information on all the variables. This continues until you type end.

Example 2: Adding observations

We now have another observation that we wish to add to the dataset. Typing input by itself tells
Stata that we wish to add new observations:

. input

acc_rate spdlimit
4. 3.02 60
5. end

.

http://stata.com
http://www.stata.com/manuals14/perror.pdf#perrorRemarksandexamplesr(104)


input — Enter data from keyboard 3

Stata reminded us of the names of our variables and prompted us for the fourth observation. We
entered the numbers 3.02 and 60 and pressed Return. Stata then prompted us for the fifth observation.
We could add as many new observations as we wish. Because we needed to add only 1 observation,
we typed end. Our dataset now has 4 observations.

You may add new variables to the data in memory by typing input followed by the names of the
new variables. Stata will begin by prompting you for the first observation, then the second, and so
on, until you type end or enter the last observation.

Example 3: Adding variables

In addition to the accident rate and speed limit, we now obtain data on the number of access points
(on-ramps and off-ramps) per mile along each stretch of highway. We wish to enter the new data.

. input acc_pts

acc_pts
1. 4.6
2. 4.4
3. 2.2
4. 4.7

.

When we typed input acc pts, Stata responded by prompting us for the first observation. There
are 4.6 access points per mile for the first highway, so we entered 4.6. Stata then prompted us
for the second observation, and so on. We entered each of the numbers. When we entered the final
observation, Stata automatically stopped prompting us—we did not have to type end. Stata knows that
there are 4 observations in memory, and because we are adding a new variable, it stops automatically.

We can, however, type end anytime we wish, and Stata fills the remaining observations on the
new variables with missing. To illustrate this, we enter one more variable to our data and then list
the result:

. input junk

junk
1. 1
2. 2
3. end

. list

acc_rate spdlimit acc_pts junk

1. 4.58 55 4.6 1
2. 2.86 60 4.4 2
3. 1.61 . 2.2 .
4. 3.02 60 4.7 .

You can input string variables by using input, but you must remember to indicate explicitly that
the variables are strings by specifying the type of the variable before the variable’s name.



4 input — Enter data from keyboard

Example 4: Inputting string variables

String variables are indicated by the types str# or strL. For str#, # represents the storage
length, or maximum length, in bytes of the variable. You can create variables up to str2045. You
can create strL variables of arbitrary length.

For text with only plain ASCII characters, the length in bytes is equivalent to the number of
characters displayed. For instance, a str4 variable has a maximum length of 4, meaning that it can
contain the strings a, ab, abc, and abcd, but not abcde. Unicode characters beyond the plain ASCII
range take 2, 3, or 4 bytes each. Thus the same str4 variable could contain the strings á, áb, and
ábc, but not ábcd because á takes two bytes to store. If you are using input with strings containing
Unicode characters, you should allow extra room in your str# specification. See [U] 12.4.2 Handling
Unicode strings.

Strings shorter than the maximum length can be stored in the variable, but strings longer than the
maximum length cannot.

Although a str80 variable can store strings shorter than 80 characters, you should not make all
your string variables str80 because Stata allocates space for strings on the basis of their maximum
length. Thus doing so would waste the computer’s memory.

Let’s assume that we have no data in memory and wish to enter the following data:

. input str16 name age str6 sex

name age sex
1. "Arthur Doyle" 22 male
2. "Mary Hope" 37 "female"
3. Guy Fawkes 48 male

’Fawkes’ cannot be read as a number
3. "Guy Fawkes" 48 male
4. "Kriste Yeager" 25 female
5. end

.

We first typed input str16 name age str6 sex, meaning that name is to be a str16 variable
and sex a str6 variable. Because we did not specify anything about age, Stata made it a numeric
variable.

Stata then prompted us to enter our data. On the first line, the name is Arthur Doyle, which we
typed in double quotes. The double quotes are not really part of the string; they merely delimit the
beginning and end of the string. We followed that with Mr. Doyle’s age, 22, and his sex, male.
We did not bother to type double quotes around the word male because it contained no blanks or
special characters. For the second observation, we typed the double quotes around female; it changed
nothing.

In the third observation, we omitted the double quotes around the name, and Stata informed us
that Fawkes could not be read as a number and reprompted us for the observation. When we omitted
the double quotes, Stata interpreted Guy as the name, Fawkes as the age, and 48 as the sex. This
would have been okay with Stata, except for one problem: Fawkes looks nothing like a number, so
Stata complained and gave us another chance. This time, we remembered to put the double quotes
around the name.

http://www.stata.com/manuals14/iglossary.pdf#iGlossaryplainascii
http://www.stata.com/manuals14/u12.pdf#u12.4.2HandlingUnicodestrings
http://www.stata.com/manuals14/u12.pdf#u12.4.2HandlingUnicodestrings


input — Enter data from keyboard 5

Stata was satisfied, and we continued. We entered the fourth observation and typed end. Here is
our dataset:

. list

name age sex

1. Arthur Doyle 22 male
2. Mary Hope 37 female
3. Guy Fawkes 48 male
4. Kriste Yeager 25 female

Example 5: Specifying numeric storage types

Just as we indicated the string variables by placing a storage type in front of the variable name, we
can indicate the storage type of our numeric variables as well. Stata has five numeric storage types:
byte, int, long, float, and double. When you do not specify the storage type, Stata assumes that
the variable is a float. See the definitions of numbers in [U] 12 Data.

There are two reasons for explicitly specifying the storage type: to induce more precision or to
conserve memory. The default type float has plenty of precision for most circumstances because
Stata performs all calculations in double precision, no matter how the data are stored. If you were
storing nine-digit Social Security numbers, however, you would want to use a different storage type,
or the last digit would be rounded. long would be the best choice; double would work equally well,
but it would waste memory.

Sometimes you do not need to store a variable as float. If the variable contains only integers
between −32,767 and 32,740, it can be stored as an int and would take only half the space. If a
variable contains only integers between −127 and 100, it can be stored as a byte, which would take
only half again as much space. For instance, in example 4 we entered data for age without explicitly
specifying the storage type; hence, it was stored as a float. It would have been better to store it as
a byte. To do that, we would have typed

. input str16 name byte age str6 sex

name age sex
1. "Arthur Doyle" 22 male
2. "Mary Hope" 37 "female"
3. "Guy Fawkes" 48 male
4. "Kriste Yeager" 25 female
5. end

.

Stata understands several shorthands. For instance, typing

. input int(a b) c

allows you to input three variables—a, b, and c—and makes both a and b ints and c a float.
Remember, typing

http://www.stata.com/manuals14/u12.pdf#u12Data


6 input — Enter data from keyboard

. input int a b c

would make a an int but both b and c floats. Typing

. input a long b double(c d) e

would make a a float, b a long, c and d doubles, and e a float.

Stata has a shorthand for variable names with numeric suffixes. Typing v1-v4 is equivalent to
typing v1 v2 v3 v4. Thus typing

. input int(v1-v4)

inputs four variables and stores them as ints.

Technical note
The rest of this section deals with using input with value labels. If you are not familiar with

value labels, see [U] 12.6.3 Value labels.

Value labels map numbers into words and vice versa. There are two aspects to the process. First,
we must define the association between numbers and words. We might tell Stata that 0 corresponds
to male and 1 corresponds to female by typing label define sexlbl 0 "male" 1 "female".
The correspondences are named, and here we have named the 0↔male 1↔female correspondence
sexlbl.

Next we must associate this value label with a variable. If we had already entered the data and
the variable were called sex, we would do this by typing label values sex sexlbl. We would
have entered the data by typing 0s and 1s, but at least now when we list the data, we would see
the words rather than the underlying numbers.

We can do better than that. After defining the value label, we can associate the value label with
the variable at the time we input the data and tell Stata to use the value label to interpret what we
type:

. label define sexlbl 0 "male" 1 "female"

. input str16 name byte(age sex:sexlbl), label

name age sex
1. "Arthur Doyle" 22 male
2. "Mary Hope" 37 "female"
3. "Guy Fawkes" 48 male
4. "Kriste Yeager" 25 female
5. end

.

After defining the value label, we typed our input command. We added the label option at the
end of the command, and we typed sex:sexlbl for the name of the sex variable. The byte(. . . )
around age and sex:sexlbl was not really necessary; it merely forced both age and sex to be
stored as bytes.

Let’s first decipher sex:sexlbl. sex is the name of the variable we want to input. The :sexlbl
part tells Stata that the new variable is to be associated with the value label named sexlbl. The label
option tells Stata to look up any strings we type for labeled variables in their corresponding value
label and substitute the number when it stores the data. Thus when we entered the first observation
of our data, we typed male for Mr. Doyle’s sex, even though the corresponding variable is numeric.
Rather than complaining that “"male" could not be read as a number”, Stata accepted what we typed,
looked up the number corresponding to male, and stored that number in the data.

http://www.stata.com/manuals14/u12.pdf#u12.6.3Valuelabels


input — Enter data from keyboard 7

That Stata has actually stored a number rather than the words male or female is almost irrelevant.
Whenever we list the data or make a table, Stata will use the words male and female just as if
those words were actually stored in the dataset rather than their numeric codings:

. list

name age sex

1. Arthur Doyle 22 male
2. Mary Hope 37 female
3. Guy Fawkes 48 male
4. Kriste Yeager 25 female

. tabulate sex

sex Freq. Percent Cum.

male 2 50.00 50.00
female 2 50.00 100.00

Total 4 100.00

It is only almost irrelevant because we can use the underlying numbers in statistical analyses. For
instance, if we were to ask Stata to calculate the mean of sex by typing summarize sex, Stata
would report 0.5. We would interpret that to mean that one-half of our sample is female.

Value labels are permanently associated with variables, so once we associate a value label with a
variable, we never have to do so again. If we wanted to add another observation to these data, we
could type

. input, label

name age sex
5. "Mark Esman" 26 male
6. end

.

Technical note
The automatic option automates the definition of the value label. In the previous example, we

informed Stata that male corresponds to 0 and female corresponds to 1 by typing label define
sexlbl 0 "male" 1 "female". It was not necessary to explicitly specify the mapping. Specifying
the automatic option tells Stata to interpret what we type as follows:

First, see if the value is a number. If so, store that number and be done with it. If it is not
a number, check the value label associated with the variable in an attempt to interpret it. If an
interpretation exists, store the corresponding numeric code. If one does not exist, add a new numeric
code corresponding to what was typed. Store that new number and update the value label so that the
new correspondence is never forgotten.



8 input — Enter data from keyboard

We can use these features to reenter our age and sex data. Before reentering the data, we drop
all and label drop all to prove that we have nothing up our sleeve:

. drop _all

. label drop _all

. input str16 name byte(age sex:sexlbl), automatic

name age sex
1. "Arthur Doyle" 22 male
2. "Mary Hope" 37 "female"
3. "Guy Fawkes" 48 male
4. "Kriste Yeager" 25 female
5. end

.

We previously defined the value label sexlbl so that male corresponded to 0 and female corresponded
to 1. The label that Stata automatically created is slightly different but is just as good:

. label list sexlbl
sexlbl:

1 male
2 female

Reference
Kohler, U. 2005. Stata tip 16: Using input to generate variables. Stata Journal 5: 134.

Also see
[D] edit — Browse or edit data with Data Editor

[D] import — Overview of importing data into Stata

[D] save — Save Stata dataset

[U] 21 Entering and importing data

http://www.stata-journal.com/sjpdf.html?articlenum=dm0010
http://www.stata.com/manuals14/dedit.pdf#dedit
http://www.stata.com/manuals14/dimport.pdf#dimport
http://www.stata.com/manuals14/dsave.pdf#dsave
http://www.stata.com/manuals14/u21.pdf#u21Enteringandimportingdata

