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Cross-referencing the documentation

When reading this manual, you will find references to other Stata manuals, for example,
[U] 27 Overview of Stata estimation commands; [R] regress; and [D] reshape. The first ex-
ample is a reference to chapter 27, Overview of Stata estimation commands, in the User’s Guide;
the second is a reference to the regress entry in the Base Reference Manual; and the third is a
reference to the reshape entry in the Data Management Reference Manual.

All the manuals in the Stata Documentation have a shorthand notation:

[GSM] Getting Started with Stata for Mac
[GSU] Getting Started with Stata for Unix
[GSW] Getting Started with Stata for Windows
[U] Stata User’s Guide

[R] Stata Base Reference Manual

[ADAPT]  Stata Adaptive Designs: Group Sequential Trials Reference Manual
[BAYES] Stata Bayesian Analysis Reference Manual

[BMA] Stata Bayesian Model Averaging Reference Manual

[CAUSAL] Stata Causal Inference and Treatment-Effects Estimation Reference Manual
[CM] Stata Choice Models Reference Manual

[D] Stata Data Management Reference Manual

[DSGE] Stata Dynamic Stochastic General Equilibrium Models Reference Manual
[ERM] Stata Extended Regression Models Reference Manual

[FMM] Stata Finite Mixture Models Reference Manual

[EFN] Stata Functions Reference Manual

[G] Stata Graphics Reference Manual

[IRT] Stata Item Response Theory Reference Manual

[LASSO] Stata Lasso Reference Manual

[XT] Stata Longitudinal-Data/Panel-Data Reference Manual

[META] Stata Meta-Analysis Reference Manual

[ME] Stata Multilevel Mixed-Effects Reference Manual

[MI] Stata Multiple-Imputation Reference Manual

[MV] Stata Multivariate Statistics Reference Manual

[PSS] Stata Power, Precision, and Sample-Size Reference Manual

[P] Stata Programming Reference Manual

[RPT] Stata Reporting Reference Manual

[SP] Stata Spatial Autoregressive Models Reference Manual

[SEM] Stata Structural Equation Modeling Reference Manual

[SVY] Stata Survey Data Reference Manual

[ST] Stata Survival Analysis Reference Manual

[TABLES] Stata Customizable Tables and Collected Results Reference Manual
[TS] Stata Time-Series Reference Manual

[1] Stata Index

[M] Mata Reference Manual



Title

Intro — Introduction to survival analysis manual

Description

This manual documents commands for survival analysis and is referred to as [ST] in cross-references.
Following this entry, [ST] Survival analysis provides an overview of the commands.

This manual is arranged alphabetically. If you are new to Stata’s survival analysis, we recommend
that you read the following sections first:

[ST] Survival analysis Introduction to survival analysis commands
[ST] st Survival-time data
[ST] stset Set variables for survival data

Stata is continually being updated, and Stata users are always writing new commands. To find out
about the latest survival analysis features, type search survival after installing the latest official
updates; see [R] update.

Also see
[U] 1.3 What’s new

[R] Intro — Introduction to base reference manual



Title

Survival analysis — Introduction to survival analysis commands

Description Remarks and examples References Also see

Description

Stata’s survival analysis routines are used to compute sample size, power, and effect size and to
declare, convert, manipulate, summarize, and analyze survival data. Survival data are time-to-event
data, and survival analysis is full of jargon: truncation, censoring, hazard rates, etc. See the glossary
in this manual. For a good Stata-specific introduction to survival analysis, see Cleves, Gould, and
Marchenko (2016).

To learn how to effectively analyze survival analysis data using Stata, we recommend NetCourse 631,
Introduction to Survival Analysis Using Stata; see https://www.stata.com/netcourse/nc631.html.

All the commands documented in this manual are listed below, and they are described in detail
in their respective manual entries. While most commands for survival analysis are documented here,
some are documented in other manuals. The commands for computing sample size, power, and effect
size for survival analysis are documented in the Stata Power, Precision, and Sample-Size Reference
Manual with the other power commands. The command for longitudinal or panel-data survival
analysis is documented with the other panel-data commands in the Stata Longitudinal-Data/Panel-
Data Reference Manual. The command for multilevel survival analysis is documented with the other
multilevel commands in the Stata Multilevel Mixed-Effects Reference Manual. The commands for
estimating treatment effects from observational survival-time data are documented in the Stata Causal
Inference and Treatment-Effects Estimation Reference Manual. The commands for model selection
and prediction using lasso and elastic net are documented in the Stata Lasso Reference Manual.

Declaring and converting count data

ctset Declare data to be count-time data

cttost Convert count-time data to survival-time data

Converting snapshot data

snapspan Convert snapshot data to time-span data

Declaring and summarizing survival-time data

stset Declare data to be survival-time data
stdescribe Describe survival-time data
stsum Summarize survival-time data

Manipulating survival-time data

stvary Report variables that vary over time

stfill Fill in by carrying forward values of covariates
stgen Generate variables reflecting entire histories
stsplit Split time-span records

2


https://www.stata.com/netcourse/nc631.html

Survival analysis — Introduction to survival analysis commands 3

stjoin

stbase

sts
stir
stci
strate
stptime
stmh
stmc

ltable

Fitting regression models

stcox

estat concordance

estat phtest
stphplot
stcoxkm
streg
stintreg
estat gofplot
stintcox

stintphplot
stintcoxnp

stcrreg
xtstreg
mestreg
stcurve
stteffects
fmm: streg

bayes: streg

bayes: mestreg

lasso cox

elasticnet cox

Join time-span records

Form baseline dataset

Obtaining summary statistics, confidence intervals, tables, etc.

Generate, graph, list, and test the survivor and related functions
Report incidence-rate comparison

Confidence intervals for means and percentiles of survival time
Tabulate failure rate

Calculate person-time, incidence rates, and SMR

Calculate rate ratios with the Mantel-Haenszel method
Calculate rate ratios with the Mantel-Cox method

Display and graph life tables

Cox proportional hazards model

Compute the concordance probability

Test Cox proportional-hazards assumption

Graphically assess the Cox proportional-hazards assumption
Graphically assess the Cox proportional-hazards assumption

Parametric survival models

Parametric models for interval-censored survival-time data

Graphically assess goodness of fit after streg, stcox, stintreg, or stintcox
Cox proportional hazards model for interval-censored data

Graphically assess the Cox proportional-hazards assumption for interval-
censored data

Graphically assess the Cox proportional-hazards assumption for interval-
censored data

Competing-risks regression

Random-effects parametric survival models

Multilevel mixed-effects parametric survival models

Plot the survivor or related function after streg, stcox, and more
Treatment-effects estimation for observational survival-time data
Finite mixtures of parametric survival models

Bayesian parametric survival models

Bayesian multilevel parametric survival models

Prediction and model selection

Lasso selection of covariates in Cox proportional hazards models

Elastic net selection of covariates in Cox proportional hazards models
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Sample size and power determination for survival analysis

power cox Sample size, power, and effect size for the Cox proportional hazards model
power exponential Sample size and power for the exponential test
power logrank Sample size, power, and effect size for the log-rank test

Converting survival-time data

sttocc Convert survival-time data to case—control data

sttoct Convert survival-time data to count-time data

Programmer’s utilities

st_x Survival analysis subroutines for programmers

Remarks and examples

Remarks are presented under the following headings:

Introduction

Declaring and converting count data

Converting snapshot data

Declaring and summarizing survival-time data
Manipulating survival-time data

Obtaining summary statistics, confidence intervals, tables, etc.
Fitting regression models

Prediction and model selection

Sample size and power determination for survival analysis
Converting survival-time data

Programmer’s utilities

Introduction

All but one entry in this manual deals with the analysis of survival data, which is used to measure
the time to an event of interest such as death or failure. Survival data can be organized in two
ways. The first way is as count data, which refers to observations on populations, whether people
or generators, with observations recording the number of units at a given time that failed or were
lost because of censoring. The second way is as survival-time, or time-span, data. In survival-time
data, the observations represent periods and typically contain three variables that record the start
time of the period, the end time, and an indicator of whether failure or right-censoring occurred at
the end of the period. The representation of the response of these three variables makes survival
data unique in terms of implementing the statistical methods in the software. Such representation is
specific to right-censored survival-time data. Interval-censored survival-time data are represented by
two time variables that record the endpoints of time intervals in which failures are known to have
occurred. Throughout the manual, when we refer to survival-time data, we will assume right-censored
survival-time data. We will refer to interval-censored data explicitly.

Survival data may also be organized as snapshot data (a small variation of the survival-time format),
in which observations depict an instance in time rather than an interval. When you have snapshot
data, you simply use the snapspan command to convert it to survival-time data before proceeding.
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Stata commands that begin with ct are used to convert count data to survival-time data. Survival-
time data are analyzed using Stata commands that begin with st, known in our terminology as st
commands. You can express all the information contained in count data in an equivalent survival-time
dataset, but the converse is not true. Thus Stata commands are made to work with survival-time data
because it is the more general representation.

All st commands, except stintreg and stintcox, are designed for right-censored survival-time
data. The stintreg and stintcox commands analyze more general interval-censored survival-time
(event-time) data.

Declaring and converting count data

Count data must first be converted to survival-time data before Stata’s st commands can be used.
Count data can be thought of as aggregated survival-time data. Rather than having observations that
are specific to a subject and a period, you have data that, at each recorded time, record the number
lost because of failure and, optionally, the number lost because of right-censoring.

ctset is used to tell Stata the names of the variables in your count data that record the time, the
number failed, and the number censored. You ctset your data before typing cttost to convert it
to survival-time data. Because you ctset your data, you can type cttost without any arguments to
perform the conversion. Stata remembers how the data are ctset.

Converting snapshot data

Snapshot data are data in which each observation records the status of a given subject at a certain
point in time. Usually you have multiple observations on each subject that chart the subject’s progress
through the study.

Before using Stata’s survival analysis commands with snapshot data, you must first convert the data
to survival-time data; that is, the observations in the data should represent intervals. When you convert
snapshot data, the existing time variable in your data is used to record the end of a time span, and a
new variable is created to record the beginning. Time spans are created using the recorded snapshot
times as breakpoints at which new intervals are to be created. Before converting snapshot data to
time-span data, you must understand the distinction between enduring variables and instantaneous
variables. Enduring variables record characteristics of the subject that endure throughout the time
span, such as sex or smoking status. Instantaneous variables describe events that occur at the end of a
time span, such as failure or censoring. When you convert snapshots to intervals, enduring variables
obtain their values from the previous recorded snapshot or are set to missing for the first interval.
Instantaneous variables obtain their values from the current recorded snapshot because the existing
time variable now records the end of the span.

Stata’s snapspan makes this whole process easy. You specify an ID variable identifying your
subjects, the snapshot time variable, the name of the new variable to hold the beginning times of the
spans, and any variables that you want to treat as instantaneous variables. Stata does the rest for you.

Declaring and summarizing survival-time data

Stata does not automatically recognize survival-time data, so you must declare your survival-time
data to Stata by using stset. Every st command, except stintreg and stintcox, relies on the
information that is provided when you stset your data. Survival-time data come in different forms.
For example, your time variables may be dates, time measured from a fixed date, or time measured
from some other point unique to each subject, such as enrollment in the study. You can also consider
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the following questions. What is the onset of risk for the subjects in your data? Is it time zero? Is
it enrollment in the study or some other event, such as a heart transplant? Do you have censoring,
and if so, which variable records it? What values does this variable record for censoring/failure? Do
you have delayed entry? That is, were some subjects at risk of failure before you actually observed
them? Do you have simple data and wish to treat everyone as entering and at risk at time zero?

Whatever the form of your data, you must first stset it before analyzing it, and so if you are
new to Stata’s st commands, we highly recommend that you take the time to learn about stset.
It is really easy once you get the hang of it, and [ST] stset has many examples to help. For more
discussion of stset, see Cleves, Gould, and Marchenko (2016, chap. 6).

Once you stset the data, you can use stdescribe to describe the aspects of your survival data.
For example, you will see the number of subjects you were successful in declaring, the total number
of records associated with these subjects, the total time at risk for these subjects, time gaps for any
of these subjects, any delayed entry, etc. You can use stsum to summarize your survival data, for
example, to obtain the total time at risk and the quantiles of time-to-failure in analysis-time units.

Manipulating survival-time data

Once your data have been stset, you may want to clean them up a bit before beginning your
analysis. Suppose that you had an enduring variable and snapspan recorded it as missing for the
interval leading up to the first recorded snapshot time. You can use stfill to fill in missing values
of covariates, either by carrying forward the values from previous periods or by making the covariate
equal to its earliest recorded (nonmissing) value for all time spans. You can use stvary to check
for time-varying covariates or to confirm that certain variables, such as sex, are not time varying.
You can use stgen to generate new covariates based on functions of the time spans for each given
subject. For example, you can create a new variable called eversmoked that equals one for all of a
subject’s observations, if the variable smoke in your data is equal to one for any of the subject’s time
spans. Think of stgen as just a convenient way to do things that could be done using by subject_id:
with survival-time data.

stsplit is useful for creating data that have multiple records per subject from data that have
one record per subject. Suppose that you have already stset your data and wish to introduce a
time-varying covariate. You would first need to stsplit your data so that separate time spans could
be created for each subject, allowing the new covariate to assume different values over time within a
subject. stjoin is the opposite of stsplit. Suppose that you have data with multiple records per
subject but then realize that the data could be collapsed into single-subject records with no loss of
information. Using stjoin would speed up any subsequent analysis using the st commands without
changing the results.

stbase can be used to set every variable in your multiple-record st data to the value at baseline,
defined as the earliest time at which each subject was observed. It can also be used to convert st data
to cross-sectional data.

Obtaining summary statistics, confidence intervals, tables, etc.

Stata provides several commands for nonparametric analysis of survival data that can produce a
wide array of summary statistics, inference, tables, and graphs. sts is a truly powerful command,
used to obtain nonparametric estimates, inference, tests, and graphs of the survivor function, the
cumulative hazard function, and the hazard function. You can compare estimates across groups, such
as smoking versus nonsmoking, and you can adjust these estimates for the effects of other covariates
in your data. sts can present these estimates as tables and graphs. sts can also be used to test the
equality of survivor functions across groups.
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stir is used to estimate incidence rates and to compare incidence rates across groups. stci is
the survival-time data analog of ci means and is used to obtain confidence intervals for means and
percentiles of time to failure. strate is used to tabulate failure rates. stptime is used to calculate
person-time and standardized mortality/morbidity ratios (SMRs). stmh calculates rate ratios by using
the Mantel-Haenszel method, and stmc calculates rate ratios by using the Mantel-Cox method.

ltable displays and graphs life tables for individual-level or aggregate data.

Fitting regression models

Stata has commands for fitting both semiparametric and parametric regression models to survival
data. stcox fits the Cox proportional hazards model and predict after stcox can be used to retrieve
estimates of the baseline survivor function, the baseline cumulative hazard function, and the baseline
hazard contributions. predict after stcox can also calculate a myriad of Cox regression diagnostic
quantities, such as martingale residuals, efficient score residuals, and Schoenfeld residuals. stcox
has four options for handling tied failures. stcox can be used to fit stratified Cox models, where
the baseline hazard is allowed to differ over the strata, and it can be used to model multivariate
survival data by using a shared-frailty model, which can be thought of as a Cox model with random
effects. After stcox, you can use estat phtest to test the proportional-hazards assumption or
estat concordance to compute the concordance probability. With stphplot and stcoxkm, you
can graphically assess the proportional-hazards assumption.

stintcox fits the Cox proportional hazards model for interval-censored data, and predict after
stintcox can be used to obtain estimates of the baseline survivor function, the baseline cumulative
hazard function, and the baseline hazard contributions. predict after stintcox can also calculate
martingale-like residuals and Cox—Snell-like residuals. stintcox can be used to fit stratified Cox
models, where the baseline hazard is allowed to differ over the strata. After stintcox, you can use
stintphplot and stintcoxnp to graphically assess the proportional-hazards assumption.

Stata offers six parametric regression models for survival data: exponential, Weibull, lognormal,
loglogistic, Gompertz, and generalized gamma. All six models are fit using streg for right-censored
data and stintreg for interval-censored data, and you can specify the model you want with the
distribution() option. All of these models, except for the exponential, have ancillary parameters
that are estimated (along with the linear predictor) from the data. By default, these ancillary parameters
are treated as constant, but you may optionally model the ancillary parameters as functions of a
linear predictor. Stratified models may also be fit using streg and stintreg. You can also fit frailty
models with streg and specify whether you want the frailties to be treated as spell-specific or shared
across groups of observations.

stcrreg fits a semiparametric regression model for survival data in the presence of competing
risks. Competing risks impede the failure event under study from occurring. An analysis of such
competing-risks data focuses on the cumulative incidence function, the probability of failure in the
presence of competing events that prevent that failure. stcrreg provides an analogue to stcox for
such data. The baseline subhazard function—that which generates failures under competing risks—is
left unspecified, and covariates act multiplicatively on the baseline subhazard.

You can also fit parametric survival models to clustered and hierarchical or multilevel data by
using the xtstreg or mestreg command, respectively.

xtstreg fits random-intercept parametric survival models to clustered survival data. Random
intercepts are assumed to be normally distributed. A random-intercept model with Gaussian intercepts
can be viewed as a shared-frailty model with lognormal frailty. xtstreg supports five distributions:
exponential, loglogistic, Weibull, lognormal, and gamma, which you can specify using the distri-
bution() option. Several predictions, such as mean, median, or survivor or hazard functions, can
be obtained by using predict after fitting a model with xtstreg.
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mestreg fits multilevel mixed-effects parametric survival models. It supports five distributions:
exponential, loglogistic, Weibull, lognormal, and gamma, which you can specify using the distri-
bution() option. mestreg allows for multiple levels of random effects and for random coefficients.
Marginal or conditional predictions for several statistics and functions of interest, such as mean,
median, or survival or hazard functions, can be obtained by using predict after fitting a model with
mestreg.

In addition, you can perform treatment-effects estimation for observational survival-time data by
using stteffects. stteffects estimates average treatment effects, average treatment effects on the
treated, and potential-outcome means using observational survival-time data. The available estimators
are regression adjustment, inverse-probability weighting, and double-robust methods that combine
regression adjustment and inverse-probability weighting; see [CAUSAL] stteffects intro for details.

stcurve plots the survivor, failure, hazard, or cumulative hazard function after stcox, streg,
stintreg, stintcox, stcrreg, mestreg, or xtstreg. stcurve also plots the cumulative subhazard
or cumulative incidence function after stcrreg. Covariates, by default, are held fixed at their mean
values, but you can specify other values if you wish. stcurve is useful for comparing these functions
across different levels of covariates.

estat gofplot creates a goodness of fit plot after streg, stcox, stintreg, or stintcox. This
graph consists of the estimated cumulative hazard function for the Cox—Snell residuals plotted against
the residuals themselves.

Prediction and model selection

Stata provides commands to select covariates and fit models using lasso and elastic net. Lasso is a
solution to a penalized optimization problem, where the penalty is used to force some covariated to
be omitted from the model. For more information on the lasso penalty, see [LASSO] lasso. Elastic net
is similar to lasso; it uses a different penalty that performs better when groups of variables that are
highly correlated. The results from lasso and elastic net are useful for prediction and model selection.

lasso cox selects covariates using lasso and fits a Cox proportional hazards model. After this
command, predictions are available by using the standard predict postestimation command.

elasticnet cox selects covariates using elastic net and fits a Cox proportional hazards model.
After this command, predictions are available by using the standard predict postestimation command.

Sample size and power determination for survival analysis

Stata has commands for computing sample size, power, and effect size for survival analysis using
the log-rank test, the Cox proportional hazards model, and the exponential test comparing exponential
hazard rates.

power logrank computes sample size, power, or effect size for survival analysis comparing
survivor functions in two groups by using the log-rank test. The command supports unbalanced
designs and provides options to account for administrative censoring, uniform accrual, and withdrawal
of subjects from the study.

power cox computes sample size, power, or effect size for survival analyses that use Cox
proportional hazards (PH) models. The results are obtained for the test of the effect of one covariate
(binary or continuous) on time to failure adjusted for other predictors in a PH model. The command
can account for the dependence between the covariate of interest and other model covariates, and it
can adjust computations for censoring and for withdrawal of subjects for the study.



Survival analysis — Introduction to survival analysis commands 9

power exponential computes sample size or power for survival analysis comparing two exponen-
tial survivor functions by using parametric tests for the difference between hazards or, optionally, for
the difference between log hazards. It accommodates unequal allocation between the two groups, flex-
ible accrual of subjects into the study, and group-specific losses to follow-up. The accrual distribution
may be chosen to be uniform or truncated exponential over a fixed accrual period.

The commands allow automated production of customizable tables and graphs; see [PSS-2] power
for details.

Converting survival-time data

Stata has commands for converting survival-time data to case—control and count data. These
commands are rarely used, because most of the analyses are performed using data in the survival-time
format. sttocc is useful for converting survival data to case—control data suitable for estimation with
clogit. sttoct is the opposite of cttost and will convert survival-time data to count data.

Programmer’s utilities

Stata also provides routines for programmers interested in writing their own st commands. These are
basically utilities for setting, accessing, and verifying the information saved by stset. For example,
st_is verifies that the data have in fact been stset and gives the appropriate error if not. st_show
is used to preface the output of a program with key information on the st variables used in the
analysis. Programmers interested in writing st code should see [ST] st_is.
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https://doi.org/10.1177/1536867X221083853
https://doi.org/10.1177/1536867X221083853

Title

ct — Count-time data

Description Also see

Description

The term ct refers to count-time data and the commands—all of which begin with the letters
“ct”—for analyzing them. If you have data on populations, whether people or generators, with
observations recording the number of units under test at time ¢ (subjects alive) and the number of
subjects that failed or were lost because of censoring, you have what we call count-time data.

If, on the other hand, you have data on individual subjects with observations recording that this
subject came under observation at time ¢y and that later, at ¢;, a failure or censoring was observed,
you have what we call survival-time data. If you have survival-time data, see [ST] st.

Do not confuse count-time data with counting-process data, which can be analyzed using the st
commands; see [ST] st.

There are two ct commands:

ctset [ST] ctset  Declare data to be count-time data
cttost [ST] cttost Convert count-time data to survival-time data

The key is the cttost command. Once you have converted your count-time data to survival-time
data, you can use the st commands to analyze the data. The entire process is as follows:

1. ctset your data so that Stata knows that they are count-time data; see [ST] ctset.
2. Type cttost to convert your data to survival-time data; see [ST] cttost.

3. Use the st commands; see [ST] st.

Also see
[ST] ctset — Declare data to be count-time data
[ST] cttost — Convert count-time data to survival-time data
[ST] st — Survival-time data

[ST] Survival analysis — Introduction to survival analysis commands

10



Title

ctset — Declare data to be count-time data

Description Quick start Menu Syntax
Options Remarks and examples Also see

Description
ct refers to count-time data and is described here and in [ST] ct. Do not confuse count-time data
with counting-process data, which can be analyzed using the st commands; see [ST] st.

When specified with a timevar and nfailvar, ctset declares the data in memory to be ct data.
When you ctset your data, ctset also checks that what you have declared makes sense.

ctset, noshow will suppress display of the identities of the key ct variables before the output
of other ct commands. By default, this information is shown. If you type ctset, noshow and then
wish to restore the default behavior, type ctset, show.

ctset, clear is used mostly by programmers and causes Stata to no longer consider the data to
be ct data. The dataset itself remains unchanged. It is not necessary to type ctset, clear before
doing another ctset.

ctset typed without arguments—which can be abbreviated ct —displays the identities of the key
ct variables and reruns the checks on your data. Thus ct can remind you of what you have ctset
(especially if you have ctset, noshow) and reverify your data if you make changes to the data.

Quick start

Declare count-time data with number of failures, fail, at each time in tvar
ctset tvar fail

Same as above, and specify the number censored, cens, at each time
ctset tvar fail cens

Same as above, and specify the number entering, enter, at each time
ctset tvar fail cens enter

Specify that the number of failures and the number censored are recorded for groups identified by v1
ctset tvar fail cens, by(vl)

Display previous ct settings, and verify that any changes to data correspond to settings
ctset

Do not display information on variables specified in ctset when ct commands are run
ctset, noshow

Menu

Statistics > Survival analysis > Setup and utilities > Declare data to be count-time data

11
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Syntax

Declare data in memory to be count-time data and run checks on data

ctset timevar nfailvar [ncensvar [nem‘var]] [, by (varlist) @how]

Specitfy whether to display identities of key ct variables

ctset, {ghow | noshow }

Clear ct setting

ctset, clear

Display identity of key ct variables and rerun checks on data

{ctset|ct}

where timevar refers to the time of failure, censoring, or entry. It should contain times > 0.
nfailvar records the number failing at time timevar.

ncensvar records the number censored at time timevar.

nentvar records the number entering at time timevar.

Stata sequences events at the same time as

at timevar nfailvar failures occurred,
then at timevar + 0 ncensvar censorings occurred, and
finally at timevar + 0+ 0 nentvar subjects entered the data.

Options
by (varlist) indicates that counts are provided by group. For instance, consider data containing records
such as
t fail cens sex agecat
5 10 2 0 1
5 6 1 1 1
5 12 0 0 2

These data indicate that, in the category sex = 0 and agecat = 1, 10 failed and 2 were censored
at time 5; for sex = 1, 1 was censored and 6 failed; and so on.

The above data would be declared
. ctset t fail cens, by(sex agecat)
The order of the records is not important, nor is it important that there be a record at every time

for every group or that there be only one record for a time and group. However, the data must
contain the full table of events.

show and noshow specify whether the identities of the key ct variables are to be displayed at the
start of every ct command. Some users find the report reassuring; others find it repetitive. In any
case, you can set and unset show, and you can always type ct to see the summary.

clear makes Stata no longer consider the data to be ct data.
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Remarks and examples

Remarks are presented under the following headings:

Examples
Data errors flagged by ctset

Examples

About all you can do with ct data in Stata is convert it to survival-time (st) data so that you can
use the survival analysis commands. To analyze count-time data with Stata,

. Ctset ...
. cttost

. (now use any of the st commands)

> Example 1: Simple ct data

We have data on generators that are run until they fail:

. use https://www.stata-press.com/data/r18/ctsetl

. list, sep(0)

failtime

fail

22
30
40
52
54
55
85
97
100
122
140

B O WOWOoWNOO P WN -

=
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For instance, at time 54, four generators failed. To ctset these data, we could type

. ctset failtime fail

Count-time data
Time:

Failures:
Number lost:
Number entered:

settings

failtime

fail

<none>

All enter at time O

It is not important that there be only 1 observation per failure time. For instance, according to our
data, at time 85 there were seven failures. We could remove that observation and substitute two in
its place—one stating that at time 85 there were five failures and another that at time 85 there were
two more failures. ctset would interpret that data just as it did the previous data.
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In more realistic examples, the generators might differ from one another. For instance, the following
data show the number failing with old-style and new-style bearings:
. use https://www.stata-press.com/data/r18/ctset2
. list, sepby(bearings)

bearings failtime fail
1. 0ld-style 22 1
2. 0ld-style 40 2
3. 0ld-style 54 1
4. Old-style 84 2
5. 0ld-style 97 2
6. 0ld-style 100 1
7. New-style 30 1
8. New-style 52 1
9. New-style 55 1
10. New-style 100 3
11. New-style 122 2
12. New-style 140 1

That the data are sorted on bearings is not important. The ctset command for these data is

. ctset failtime fail, by(bearings)

Count-time data settings

Time:

Failures:
Number lost:
Number entered:
Group variable:

In real data, not all units fail in the time allotted. Say that the generator experiment was stopped

failtime

fail

<none>

All enter at time O
bearings

> Example 2: ct data with censoring

after 150 days. The data might be

. use https://www.stata-press.com/data/r18/ctset3

. list
bearings failtime fail censored
1 Old-style 22 1 0
2. 0ld-style 40 2 0
3. Old-style 54 1 0
4 Old-style 84 2 0
5 New-style 97 2 0
6 Old-style 100 1 0
7. 0ld-style 150 0 2
8. New-style 30 1 0
9 New-style 52 1 0
10. New-style 55 1 0
11. New-style 122 2 0
12. New-style 140 1 0
13. New-style 150 0 3
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The ctset command for these data is

. ctset failtime fail censored, by(bearings)
Count-time data settings
Time: failtime
Failures: fail
Number lost: censored
Number entered: All enter at time O
Group variable: bearings

In some other data, observations might also be censored along the way; that is, the value of
censored would not be 0 before time 150. For instance, a record might read

bearings failtime fail censored
0 84 2 1

This would mean that at time 84, two failed and one was lost because of censoring. The failure and
censoring occurred at the same time, and when we analyze these data, Stata will assume that the
censored observation could have failed, that is, that the censoring occurred after the two failures.

N

> Example 3: ct data with delayed entry

Data on survival time of patients with a particular kind of cancer are collected. Time is measured
as time since diagnosis. After data collection started, the sample was enriched with some patients
from hospital records who had been previously diagnosed. Some of the data are

time die cens ent other variables
0 0 0 50
1 0 0 5
30 0 0 3
31 0 1 2
32 1 0 1

100 1 1 0

Fifty patients entered at time O (time of diagnosis); five patients entered 1 day after diagnosis; and
three, two, and one patients entered 30, 31, and 32 days after diagnosis, respectively. On the 32nd
day, one of the previously entered patients died.

If the other variables are named sex and agecat, the ctset command for these data is

. ctset time die cens ent, by(sex agecat)
Count-time data settings
Time: time
Failures: die
Number lost: cens
Number entered: ent
Group variables: sex agecat

N

The count-time format is an inferior way to record data like these—data in which every subject
does not enter at time 0—because some information is already lost. When did the patient who died
on the 32nd day enter? There is no way of telling.
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For traditional survival analysis calculations, it does not matter. More modern methods of estimating
standard errors, however, seek to identify each patient, and these data do not support using such
methods.

This issue concerns the robust estimates of variance and the vce (robust) options on some of the
st analysis commands. After converting the data, you must not use the vce(robust) option, even
if an st command allows it, because the identities of the subjects—tying together when a subject
starts and ceases to be at risk—are assigned randomly by cttost when you convert your ct to st
data. When did the patient who died on the 32nd day enter? For conventional calculations, it does
not matter, and cttost chooses a time randomly from the available entry times.

Data errors flagged by ctset

ctset requires only two things of your data: that the counts all be positive or zero and, if you
specify an entry variable, that the entering and exiting subjects (failure + censored) balance.

If all subjects enter at time 0, we recommend that you do not specify a number-that-enter variable.
ctset can determine for itself the number who enter at time 0 by summing the failures and censorings.

Also see
[ST] ¢t — Count-time data

[ST] cttost — Convert count-time data to survival-time data



Title

cttost — Convert count-time data to survival-time data

Description Quick start Menu Syntax
Options Remarks and examples Also see

Description

cttost converts count-time data to their survival-time format so that they can be analyzed with
Stata. Do not confuse count-time data with counting-process data, which can also be analyzed with
the st commands; see [ST] ctset for a definition and examples of count data.

Quick start

Convert count-time data to survival-time data using ctset data
cttost

Same as above, but name the new weight variable mywvar instead of using the default name
cttost, wvar (mywvar)

Menu

Statistics > Survival analysis > Setup and utilities > Convert count-time data to survival-time data

17
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Syntax
cttost [, options]
options Description
t0 (tOvar) name of entry-time variable
wvar (wvar) name of frequency-weighted variable
clear overwrite current data in memory
nopreserve do not save the original data; programmer’s command

You must ctset your data before using cttost; see [ST] ctset.
nopreserve does not appear in the dialog box.

Options

t0 (t0var) specifies the name of the new variable to create that records entry time. (For most ct data,
no entry-time variable is necessary because everyone enters at time 0.)

Even if an entry-time variable is necessary, you need not specify this option. cttost will, by
default, choose t0, timeO, or etime according to which name does not already exist in the data.

wvar (wvar) specifies the name of the new variable to be created that records the frequency weights
for the new pseudo-observations. Count-time data are actually converted to frequency-weighted st
data, and a variable is needed to record the weights. This sounds more complicated than it is.
Understand that cttost needs a new variable name, which will become a permanent part of the
st data.

If you do not specify wvar (), cttost will, by default, choose w, pop, weight, or wgt according
to which name does not already exist in the data.

clear specifies that it is okay to proceed with the conversion, even though the current dataset has
not been saved on disk.

The following option is available with cttost but is not shown in the dialog box:

nopreserve speeds the conversion by not saving the original data that can be restored should things
go wrong or should you press Break. nopreserve is intended for use by programmers who use
cttost as a subroutine. Programmers can specify this option if they have already preserved the
original data. nopreserve does not affect the conversion.

Remarks and examples

Converting ct to st data is easy. We have some count-time data,

. use https://www.stata-press.com/data/r18/cttost
. ct
Count-time data settings
Time: time
Failures: ndead
Number lost: ncens

Number entered: All enter at time O
Group variables: agecat treat
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. list in 1/5

agecat treat time ndead ncens

1 2 1 464 4 0
2 3 0 268 3 1
3 2 0 638 2 0
4 1 0 803 1 4
5 1 0 431 2 0

and to convert it, we type cttost:

. cttost
Count-time data settings
Time: time
Failures: ndead
Number lost: ncens
Number entered: All enter at time O
Group variables: agecat treat

Converting count-time data to survival-time data ...
Survival-time data settings

Failure event: ndead!=0 & ndead<.
Observed time interval: (0, time]
Exit on or before: failure
Weight: [fweight=w]

33 total observations
0 exclusions

33 physical observations remaining, equal to

82 weighted observations, representing

39 failures in single-record/single-failure data
48,726 total analysis time at risk and under observation

At risk from t = 0
Earliest observed entry t = 0
Last observed exit t = 1,227

Now that it is converted, we can use any of the st commands:

. sts test treat, logrank
Failure _d: ndead
Analysis time _t: time
Weight: [fweight=w]
Equality of survivor functions
Log-rank test

Observed Expected

treat events events
0 22 17.05

1 17 21.95
Total 39 39.00
chi2(1) = 2.73

Pr>chi2 = 0.0986



20 cttost — Convert count-time data to survival-time data

Also see

[ST] ¢t — Count-time data

[ST] ctset — Declare data to be count-time data



Title

Discrete — Discrete-time survival analysis

Description Acknowledgment References Also see

Description

As of the date that this manual was printed, Stata does not have a suite of built-in commands
for discrete-time survival models matching the st suite for continuous-time models, but a good case
could be made that it should. Instead, these models can be fit easily using other existing estimation
commands and data manipulation tools.

Discrete-time survival analysis concerns analysis of time-to-event data whenever survival times are
either a) intrinsically discrete (for example, numbers of machine cycles) or b) grouped into discrete
intervals of time (“interval-censoring”). If intervals are of equal length, the same methods can be
applied to both a) and b); survival times will be positive integers.

You can fit discrete-time survival models with the maximum likelihood method. Data may contain
completed or right-censored spells, and late entry (left-truncation) can also be handled, as well
as unobserved heterogeneity (also termed “frailty”). Estimation makes use of the property that the
sample likelihood can be rewritten in a form identical to the likelihood for a binary dependent variable
multiple regression model and applied to a specially organized dataset (Allison 2014, Jenkins 1995).
For models without frailty, you can use, for example, logistic (or logit) to fit the discrete-time
logistic hazard model or cloglog to fit the discrete-time proportional hazards model (Prentice and
Gloeckler 1978). Models incorporating normal frailty may be fit using xtlogit and xtcloglog. A
model with gamma frailty (Meyer 1990) may be fit using pgmhaz (Jenkins 1997).

Estimation consists of three steps:

1. Data organization: The dataset must be organized so that there is 1 observation for each period
when a subject is at risk of experiencing the transition event. For example, if the original dataset
contains one row for each subject, ¢, with information about their spell length, T}, the new dataset
requires 7; rows for each subject, one row for each period at risk. This may be accomplished
using expand or stsplit. (This step is episode splitting at each and every interval.) The result
is data of the same form as a discrete panel (xt) dataset with repeated observations on each panel
(subject).

2. Variable creation: You must create at least three types of variables. First, you will need an interval
identification variable, which is a sequence of positive integers ¢ = 1,...,T;. For example,

. sort subject_id

. by subject_id: generate t = _n
Second, you need a period-specific censoring indicator, d;. If d; = 1 if subject ¢’s spell is complete
and d; = 0 if the spell is right-censored, the new indicator d, = 1 if d; = 1 and ¢ = T}, and
d}, = 0 otherwise.

Third, you must define variables (as functions of ¢) to summarize the pattern of duration dependence.
These variables are entered as covariates in the regression. For example, for a duration dependence
pattern analogous to that in the continuous-time Weibull model, you could define a new variable
x1 = logt. For a quadratic specification, you define variables z; = t and x5 = ¢2. We can achieve
a piecewise constant specification by defining a set of dummy variables, with each group of periods
sharing the same hazard rate, or a semiparametric model (analogous to the Cox regression model
for continuous survival-time data) using separate dummy variables for each and every duration
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interval. No duration variable need be defined if you want to fit a model with a constant hazard
rate.

In addition to these three essentials, you may define other time-varying covariates.

3. Estimation: You fit a binary dependent variable multiple regression model, with d;, as the dependent
variable and covariates, including the duration variables and any other covariates.

For estimation using spell data with late entry, the stages are the same as those outlined above,
with one modification and one warning. To fit models without frailty, you must drop all intervals
prior to each subject’s entry to the study. For example, if entry is in period e;, you drop it if ¢ < e;.
If you want to fit frailty models on the basis of discrete-time data with late entry, then be aware that
the estimation procedure outlined does not lead to correct estimates. (The sample likelihood in the
reorganized data does not account for conditioning for late entry here. You will need to write your
own likelihood function by using ml; see [R] Maximize.)

To derive predicted hazard rates, use the predict command. For example, after logistic or
cloglog, use predict, pr. After xtlogit or xtcloglog, use predict, puO (which predicts the
hazard assuming the individual effect is equal to the mean value). Estimates of the survivor function, S;;,
can then be derived from the predicted hazard rates, p;:, because S;x = (1—pi1)(1—pi2)(- - ) (1 —pit).
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[ST] stcox — Cox proportional hazards model
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[D] expand — Duplicate observations
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[R] logistic — Logistic regression, reporting odds ratios

[XT] xtcloglog — Random-effects and population-averaged cloglog models

[XT] xtlogit — Fixed-effects, random-effects, and population-averaged logit models
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Title

estat gofplot — Goodness-of-fit plots after streg, stcox, stintreg, or stintcox

Description Quick start Menu for estat Syntax
Options Remarks and examples Methods and formulas References
Also see

Description

estat gofplot plots the estimated cumulative hazard function for the Cox—Snell residuals versus
the residuals themselves to assess the goodness of fit of the model visually after streg, stcox,
stintreg, or stintcox.

Quick start

Plot the default cumulative hazard function for the Cox—Snell residuals versus the residuals themselves
estat gofplot

Plot the minus log of the Kaplan—Meier estimator for the Cox—Snell residuals versus the residuals
themselves

estat gofplot, km

Plot separate cumulative hazard functions for each group of x on the same graph
estat gofplot, by(x)

Plot separate cumulative hazard functions for each group of x on different graphs
estat gofplot, by(x) separate

For the stratified model, plot separate cumulative hazard functions for each stratum
estat gofplot, stratify

Menu for estat

Statistics > Postestimation
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Syntax

estat gofplot [, options]

options Description

na calculate the cumulative hazard function of the Cox—Snell
residuals using the Nelson—Aalen estimator; the
default for and available only after streg and stcox

km calculate the cumulative hazard function of the Cox—Snell
residuals using the minus log of the Kaplan—Meier
estimator; available only after streg and stcox

turnbull calculate the cumulative hazard function of the
Cox—Snell-like residuals using the Turnbull estimator;
the estimator for stintreg and stintcox

by (varlist) estimate and graph separate functions for each group
formed by varlist

stratify estimate and graph separate functions for each stratum
defined by strata() in estimation

separate show curves on separate graphs; default is to show curves

outfile (filename [, replace])

Plot
connect_options

Reference line
rlopts(cline_options)

Add plots
addplot (plot)

Y axis, X axis, Titles, Legend, Overall
twoway—_options

one on top of another
save values used to plot the goodness-of-fit graph

affect rendition of plotted cumulative hazard function

affect rendition of the reference line

add other plots to the generated graph

any options other than by () documented in
[G-3] twoway _options

estat gofplot is not appropriate with svy estimation results and is not supported after estimation with stcox,

tve().

Options

na specifies that the cumulative hazard function of the Cox—Snell residuals be calculated using the
Nelson—Aalen estimator, which is the default after streg and stcox. na is not available after

stintreg and stintcox.

km specifies that the cumulative hazard function of the Cox—Snell residuals be calculated using the
minus log of the Kaplan—Meier estimator instead of the default Nelson—Aalen estimator after
streg and stcox. km is not available after stintreg and stintcox.

turnbull specifies that the cumulative hazard function of the Cox—Snell-like residuals be calculated
using the Turnbull estimator. turnbull is the only estimator after stintreg and stintcox, and
it is not available after streg and stcox.
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by (varlist) estimates a separate function for each by-group and plots all the functions on one graph.
By-groups are identified by equal values of the variables in varlist. Up to five variables are allowed.
by () may not be combined with stratify.

stratify requires that a stratified model has been previously fit using the strata() option; it
estimates a separate function for each stratum and plots all the functions on one graph. stratify
may not be combined with by ().

separate is meaningful only with by () or stratify; it requests that each group be placed on its
own graph rather than one on top of the other.

outfile (ﬁlename[ R replace]) saves in filename .dta the values used to plot the goodness-of-fit
graph.

Plot

connect_options affect the rendition of the plotted cumulative hazard function; see [G-3] con-
nect_options.

Reference line

rlopts(cline_options) affects the rendition of the reference line; see [G-3] cline_options.

Add plots

addplot (plot) provides a way to add other plots to the generated graph; see [G-3] addplot_option.

Y axis, X axis, Titles, Legend, Overall |

twoway_options are any of the options documented in [G-3] twoway _options, excluding by (). These
include options for titling the graph (see [G-3] title_options) and for saving the graph to disk (see
[G-3] saving _option).

Remarks and examples

To assess the overall model fit, we can use the Cox—Snell residuals. If the survival regression
model fits the data, these residuals should have a censored standard exponential distribution for right-
censored data. Therefore, when we consider these residuals as failure (or censoring) times together
with the original censoring variable, the hazard function should be constant and equal to 1, and
the cumulative hazard should be a straight line with slope 1. estat gofplot allows us to verify
the model’s fit visually by calculating an empirical estimate of such a cumulative hazard function,
which is based on either the Nelson—Aalen estimator or the Kaplan—Meier estimator for streg or
stcox or is based on the Turnbull estimator for stintreg or stintcox. If the model fits the data,
a plot of the cumulative hazard versus the residuals themselves should approximate a straight line
with slope 1. See example 2 in [ST] streg postestimation, example 4 in [ST] stcox postestimation,
example 4 in [ST] stintreg postestimation, and example 2 in [ST] stintcox postestimation for more
detailed discussions. For interval-censored data, the Cox—Snell-like residuals are defined, and, under
the correct model assumption, they are expected to approximate an interval-censored sample from the
standard exponential distribution; see [ST] stintcox postestimation.
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> Example 1: Goodness-of-fit plots for stratified model

Returning to the Stanford heart experiment data from example 8 in [ST] stcox, we refit our model
stratified by year of diagnosis group.

. use https://www.stata-press.com/data/r18/stan3

(Heart transplant data)

. generate pgroup = year

. recode pgroup min/69=1 70/72=2 73/max=3

(172 changes made to pgroup)

. stcox age posttran surg year, strata(pgroup) nolog
Failure _d: died

Analysis time _t: t1

ID variable: id

Stratified Cox regression with Breslow method for ties

Strata variable: pgroup

No. of subjects = 103 Number of obs = 172

No. of failures = 75
Time at risk = 31,938.1
LR chi2(4) = 20.67
Log likelihood = -213.35033 Prob > chi2 = 0.0004
_t | Haz. ratio Std. err. z P>zl [95% conf. intervall]
age 1.027406 .0150188 1.85 0.064 .9983874 1.057268
posttran 1.075476 .3354669 0.23 0.816 .583567 1.982034
surgery .2222415 .1218386 -2.74 0.006 .0758882 .6508429
year .5523966 .1132688 -2.89 0.004 .3695832 .825638

We can visually explore the goodness of fit for the stratified model by using estat gofplot.
Here we will use the stratify option to plot the residuals separately for each stratum.

. estat gofplot, stratify

Goodness-of-fit plot for the stratified Cox model

— pgroup =1
—— pgroup =2
—— pgroup =3

Cumulative hazard (Nelson-Aalen)
i

0 1 2 3 4
Cox-Snell residuals
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Even with perfect (artificially simulated) data, we expect to see departures from the diagonal at
the right end of the curve, where values are based on only a few observations and greater fluctuation
is observed. The above plot indicates the model fits well in all strata. To aid visual inspection of the
plot, we can also add the separate option to produce separate graphs for each stratum.

. estat gofplot, stratify separate

Goodness-of-fit plot for the stratified Cox model
1 2

Cumulative hazard (Nelson-Aalen)

N /
0
T T T T T
0 1 2 3 4
Cox-Snell residuals

Graphs by pgroup

Methods and formulas

The Cox and Snell (1968) residual for the jth observation at time ¢; is defined as the estimated cumu-

lative hazard function, H () =— loggj(tj), from the fitted model (Klein and Moeschberger 2003).
Cox and Snell argued that if the correct model has been fit to the data, these residuals are n obser-
vations from a censored standard exponential distribution for right-censored data. Thus, a plot of the
cumulative hazard rate of the residuals against the residuals themselves should result in a straight line
of slope 1. Cox—Snell residuals can never be negative and therefore are not symmetric about 0. In
practice, we can calculate an empirical estimate of the cumulative hazard rate of the residuals.

The default method of calculating the cumulative hazard rate of the residuals after streg and
stcox is to use the Nelson—Aalen estimator (Nelson 1972; Aalen 1978). Alternatively, we may use the
minus log of the Kaplan and Meier (1958) estimator by specifying the km option. For multiple-record
data, the overall Cox—Snell residual is used, and hence, the cumulative hazard function is evaluated
at the subject level defined by id() in the stset command.

For interval-censored data, Cox—Snell-like residuals are intervals themselves for single-record-per-
subject dataset. Farrington (2000) proposed to calculate the Cox—Snell-like residuals for both lower
and upper endpoints of the time intervals, then to use those predicted Cox—Snell-like residual intervals
as the new time intervals and to compute the cumulative hazard function using the Turnbull estimator
(Turnbull 1976). For multiple-record-per-subject data fit by stintcox, the overall Cox—Snell-like
residual is used, and the cumulative hazard function is evaluated at the subject level defined by the
id() option of stintcox.
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Description Quick start Menu Syntax
Options Remarks and examples Methods and formulas Acknowledgments
References Also see

Description

1ltable displays and graphs life tables for individual-level or aggregate data and optionally presents
the likelihood-ratio and log-rank tests for equivalence of groups. 1table also allows you to examine
the empirical hazard function through aggregation.

Quick start

Life table for time variable tvar and death indicator died
ltable tvar died

Same as above, but graph results with confidence intervals instead and suppress table
ltable tvar died, graph ci notable

Life tables for each group defined by catvar with results saved to mydata.dta
ltable tvar died, by(catvar) saving(mydata)

Aggregate time into thirty-day intervals, and suppress actuarial adjustment
ltable tvar died, intervals(30) noadjust

Cumulative failure table for observations where catvar equals 1
ltable tvar died if catvar==1, failure

Hazard table with frequency weights wvar
ltable tvar died [fweight=wvar], hazard

Menu

Statistics > Survival analysis > Summary statistics, tests, and tables > Life tables for survival data

29
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Syntax

ltable timevar [deadvar] [zf} [in] [weight] [, options]

timevar specifies the time of failure or censoring. If deadvar is not specified, all values of timevar
are interpreted as failure times. Observations with fimevar equal to missing are ignored.

deadvar specifies how the time recorded in timevar is to be interpreted. Observations with deadvar
equal to O are treated as censored and all other nonmissing values indicate that timevar should be
interpreted as a failure time. Observations with deadvar equal to missing are ignored.

deadvar does not specify the number of failures. Specify frequency weights for aggregated data
recording the number of failures.

options Description

Main
survival display survival table; the default
failure display cumulative failure table
hazard display hazard table
by (groupvar) produce separate tables (or graphs) for each value of groupvar
test report Y2 measure of differences between groups (2 tests)
overlay overlay plots on the same graph
notable display graph only; suppress display of table
graph present the table graphically, as well as in tabular form
ci graph confidence interval
level (#) set confidence level; default is 1level (95)
noadjust suppress actuarial adjustment to the number at risk
tvid(varname) subject ID variable to use with time-varying parameters

intervals (w | numlist)
saving (ﬁlename[ , replace ])

Plot
plotopts (plot_options)
plot#opts (plot_options)

Cl plot
ciopts (rspike_options)
ci#opts (rspike_options)

Add plots
addplot (plot)

Y axis, X axis, Titles, Legend, Overall
twoway_options
byopts (byopts)

time intervals in which data are to be aggregated for tables

save the life-table data to filename; use replace to overwrite
existing filename

affect rendition of the plotted line and plotted points

affect rendition of the #th plotted line and plotted points;
available only with overlay

affect rendition of the confidence intervals

affect rendition of the #th confidence interval; available only
with overlay

add other plots to the generated graph

any options other than by () documented in [G-3] twoway_options
how subgraphs are combined, labeled, etc.




Itable — Life tables for survival data 31

plot_options Description
connect_options change look of lines or connecting method
marker_options change look of markers (color, size, etc.)

fweights are allowed; see [U] 11.1.6 weight.

Options
Main

survival, failure, and hazard indicate the table to be displayed. If none is specified, the default is
the survival table. Specifying failure displays the cumulative failure table. Specifying survival
failure would display both the survival and the cumulative failure table. If graph is specified,
multiple tables may not be requested.

by (groupvar) creates separate tables (or graphs within the same image) for each value of groupvar.
groupvar may be string or numeric.

test presents two Y2 measures of the differences between groups, the likelihood-ratio test of
homogeneity and the log-rank test for equality of survivor functions. The two groups are identified
by the by () option, so by () must also be specified.

overlay causes the plot from each group identified in the by () option to be overlaid on the same
graph. The default is to generate a separate graph (within the same image) for each group. This
option requires the by () option.

notable suppresses displaying the table. This option is often used with graph.

graph requests that the table be presented graphically, as well as in tabular form; when notable
is also specified, only the graph is presented. When you specify graph, only one table can be
calculated and graphed at a time; see survival, failure, and hazard below.

graph may not be specified with hazard. Use sts graph to graph estimates of the hazard
function.

ci graphs the confidence intervals around survival, failure, or hazard.

level (#) specifies the confidence level, as a percentage, for confidence intervals. The default is
level(95) or as set by set level; see [R] level.

noadjust suppresses the actuarial adjustment to the number at risk. The default is to consider the
adjusted number at risk for each interval as the total at the start minus (the number of censored)/2.
If noadjust is specified, the number at risk is simply the total at the start, corresponding to
the standard Kaplan—Meier assumption. noadjust should be specified when using 1table to list
results corresponding to those produced by sts list; see [ST] sts list.

tvid (varname) is for use with longitudinal data with time-varying parameters. Each subject appears
in the data more than once, and equal values of varname identify observations referring to the
same subject. When tvid() is specified, only the last observation on each subject is used in
making the table. The order of the data does not matter, and last here means the last observation
chronologically.

intervals(w|numlist) specifies the intervals into which the data are to be aggregated for tabular
presentation. A numeric argument is interpreted as the width of the interval. For instance, in-
terval(2) aggregates data into the intervals 0 < ¢ < 2, 2 < ¢ < 4, and so on. Not specifying
interval() is equivalent to specifying interval(1). Because in most data, failure times are
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recorded as integers, this amounts to no aggregation except that implied by the recording of the
time variable, and so it produces Kaplan—Meier product-limit estimates of the survival curve (with
an actuarial adjustment; see the noadjust option above). Also see [ST] sts list. Although it is
possible to examine survival and failure without aggregation, some form of aggregation is almost
always required to examine the hazard.

When more than one argument is specified, intervals are aggregated as specified. For instance,
interval(0,2,8,16) aggregates data into the intervals 0 <¢ < 2,2 <t <8, and 8 <t < 16,
and (if necessary) the open-ended interval ¢ > 16.

interval (w) is equivalent to interval(0,7,15,30,60,90,180,360,540,720), corresponding
to 1 week, (roughly) 2 weeks, 1 month, 2 months, 3 months, 6 months, 1 year, 1.5 years, and 2
years when failure times are recorded in days. The w suggests widening intervals.

saving(filename [ s replace]) creates a Stata data file (.dta file) containing the life table. This
option will not save the graph to disk; see [G-2] graph save to save the resulting graph to disk.

replace specifies that filename be overwritten if it exists. This option is not shown in the dialog
box.

Plot

plotopts (plot_options) affects the rendition of the plotted line and plotted points; see [G-3] con-
nect_options and [G-3] marker_options.

plot#opts (plot_options) affects the rendition of the #th plotted line and plotted points; see [G-3] con-
nect_options and [G-3] marker_options. This option is valid only if overlay is specified.

_ (Grpet)
ciopts (rspike_options) affects the rendition of the confidence intervals for the graphed survival,
failure, or hazard; see [G-3] rspike_options.

ci#opts (rspike_options) affects the rendition of the #th confidence interval for the graphed survival,
failure, or hazard; see [G-3] rspike_options. This option is valid only if overlay is specified.

Add plots

addplot (plot) provides a way to add other plots to the generated graph; see [G-3] addplot_option.

Y axis, X axis, Titles, Legend, and Overall |

twoway_options are any of the options documented in [G-3] twoway _options, excluding by (). These
include options for titling the graph (see [G-3] title_options) and for saving the graph to disk (see
[G-3] saving _option).

byopts (byopts) affects the appearance of the combined graph when by () is specified, including the
overall graph title and the organization of subgraphs. See [G-3] by_option.

Remarks and examples

Life tables describe deathrates in a given population over time. Such tables date back to the 17th
century. John Graunt (1662) and Edmund Halley (1693) are often credited with their development,
but there is a dispute about how they shared in the development. 1table is for use with “cohort”
data, and although one often thinks of such tables as monitoring a population from the “birth” of the
first member to the “death” of the last, more generally, such tables can be thought of as a reasonable
way to list any kind of survival data. For an introductory discussion of life tables, see Pagano and
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Gauvreau (2022, 481-486) and Oliveira (2013); for an intermediate discussion, see Selvin (2004,
335-377); and for a more complete discussion, see Chiang (1984).

John Graunt (1620-1674) was born in London. He learned the haberdashery trade through an
apprenticeship with his father and later managed his own business. He served as a councilman
and as captain and major of the Trained Bands, a militia in charge of protecting England.

Graunt studied death records maintained by London parishes and published his findings in a book
in 1662. In this book, he categorized deathrates by the cause of death and observed differences
across regions and gender. Graunt was the first to point out that the differences in birthrates and
deathrates across gender resulted in a population that had nearly equal proportions of males and
females. He divided the population into age groups and listed their casualties and predicted life
expectancy, thus creating the first life table known. His work motivated Charles II of England
to nominate Graunt as a member of the Royal Society in 1662 and established Graunt as the
founder of demography. His membership in this society stood out because he was a tradesman,
not a scientist. In 1665, the third edition of his book was published.

Graunt later became governor of the company responsible for London’s water supply, weeks
after the Great Fire of London. The fire destroyed Graunt’s business and over 13,000 homes.
Graunt died of jaundice in 1674. His methodical analysis and awareness of the shortcomings of
mortality data at that time will not be forgotten.

Edmond Halley (1656-1742) was born in London. He was a pioneer in astronomy, although
he made many contributions in other fields as well. Halley attended the Queen’s College in the
University of Oxford but left in 1676 to Saint Helena, where he mapped 341 stars of the southern
hemisphere. At 22 years old, he published his findings from the Saint Helena voyage, obtained
his degree from Oxford, and was elected fellow of the Royal Society.

In 1693, he published his findings on mortality data for the city of Breslau, current day Wroctaw.
In this paper, Halley estimated the population size of Breslau, using the number of births and
deaths in the city. He created a life table to calculate annuity prices, which would prove useful
for future actuaries but did not impact the way annuities were priced at the time, independent
of the buyer’s age.

In 1705, Halley published a paper in which he applied his theory of elliptical orbits, predicting
that the comet he had observed in 1682 would return in December 1758. He did not live to see it,
but the comet was observed in December 1758 and consequently named Halley’s comet. Some
other major contributions include calculating the distance from the Earth to the sun, detecting
the motion of stars, and using lunar observations to determine the longitude at sea. Halley also
published the first meteorological chart, designed a diving bell, and introduced a root-finding
algorithm, now called Halley’s method.

> Example 1

In Pike (1966), two groups of rats were exposed to a carcinogen, and the number of days to death
from vaginal cancer was recorded (reprinted in Kalbfleisch and Prentice 2002, 2):
Group 1 143 164 1838 188 190 192 206 209 213 216
220 227 230 234 246 265 304 216% 244%*

Group 2 142 156 163 198 205 232 232 233 233 233
233 239 240 261 280 280 296 296 323  204*
344%
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The “*’ on a few of the entries indicates that the observation was censored—as of the recorded day,
the rat had still not died because of vaginal cancer but was withdrawn from the experiment for other
reasons.

Having entered these data into Stata, we see that the first few observations are

. use https://www.stata-press.com/data/r18/rat

. list in 1/5
group t died
1. 1 143 1
2. 1 164 1
3. 1 188 1
4. 1 188 1
5. 1 190 1

For example, the first observation records a rat from group 1 that died on the 143rd day. The died
variable records whether that rat died or was withdrawn (censored):

. list if died==

group t died
18. 1 216 0
19. 1 244 0
39. 2 204 0
40. 2 344 0

Four rats, two from each group, did not die but were withdrawn.
The life table for group 1 is

. ltable t died if group==

Beg. Std.

Interval total Deaths Lost Survival error [95% conf. int.]
143 144 19 1 0 0.9474 0.0512 0.6812 0.9924
164 165 18 1 0 0.8947 0.0704 0.6408 0.9726
188 189 17 2 0 0.7895 0.0935 0.5319 0.9153
190 191 15 1 0 0.7368 0.1010 0.4789 0.8810
192 193 14 1 0 0.6842 0.1066 0.4279 0.8439
206 207 13 1 0 0.6316 0.1107 0.3790 0.8044
209 210 12 1 0 0.5789 0.1133 0.3321 0.7626
213 214 11 1 0 0.5263 0.1145 0.2872 0.7188
216 217 10 1 1 0.4709 0.1151 0.2410 0.6713
220 221 8 1 0 0.4120 0.1148 0.1937 0.6194
227 228 7 1 0 0.3532 0.1125 0.1502 0.5648
230 231 6 1 0 0.2943 0.1080 0.1105 0.5070
234 235 5 1 0 0.2355 0.1012 0.0751 0.4459
244 245 4 0 1 0.2355 0.1012 0.0751 0.4459
246 247 3 1 0 0.1570 0.0931 0.0312 0.3721
265 266 2 1 0 0.0785 0.0724 0.0056 0.2864
304 305 1 1 0 0.0000

The reported survival rates are the survival rates at the end of the interval. Thus, 94.7% of rats
survived 144 days or more.

4
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Q Technical note

If you compare the table just printed with the corresponding table in Kalbfleisch and Prentice (2002,
16), you will notice that the survival estimates differ beginning with the interval 216—-217, which is
the first interval containing a censored observation. ltable treats censored observations as if they
were withdrawn halfway through the interval. The table printed in Kalbfleisch and Prentice treated
censored observations as if they were withdrawn at the end of the interval, even though Kalbfleisch
and Prentice (2002, 19) mention how results could be adjusted for censoring.

Here the same results as those printed in Kalbfleisch and Prentice could be obtained by incrementing
the time of withdrawal by 1 for the four censored observations. We say “here” because there were
no deaths on the incremented dates. For instance, one of the rats was withdrawn on the 216th day, a
day on which there was also a real death. There were no deaths on day 217, however, so moving the
withdrawal forward 1 day is equivalent to assuming that the withdrawal occurred at the end of the
day 216-217 interval. If the adjustments are made and 1table is used to calculate survival in both
groups, the results are the same as those printed in Kalbfleisch and Prentice, except that for group 2
in the interval 240-241, they report the survival as 0.345 when they mean 0.354.

In any case, the one-half adjustment for withdrawals is generally accepted, but it is only a crude
adjustment that becomes cruder the wider the intervals.
a

> Example 2: Itable with aggregated intervals

When you do not specify the intervals, 1table uses unit intervals. The only aggregation performed
on the data was aggregation due to deaths or withdrawals occurring on the same “day”. If we wanted
to see the table aggregated into 30-day intervals, we would type

. ltable t died if group==1, interval(30)

Beg. Std.

Interval total Deaths Lost Survival error [95% conf. int.]
120 150 19 1 0 0.9474 0.0512 0.6812 0.9924
150 180 18 1 0 0.8947 0.0704 0.6408 0.9726
180 210 17 6 0 0.5789 0.1133 0.3321 0.7626
210 240 11 6 1 0.2481 0.1009 0.0847 0.4552
240 270 4 2 1 0.1063 0.0786 0.0139 0.3090
300 330 1 1 0 0.0000

The interval displayed as 120 150 indicates the interval including 120 and up to, but not including,
150. The reported survival rate is the survival rate just after the close of the interval.

When you specify more than one number as the argument to interval (), you specify the cutoff
points, not the widths.

. 1ltable t died if group==1, interval(120,180,210,240,330)
Beg. Std.

Interval total Deaths Lost Survival error [95% conf. int.]
120 180 19 2 0 0.8947 0.0704 0.6408 0.9726
180 210 17 6 0 0.5789 0.1133 0.3321 0.7626
210 240 11 6 1 0.2481 0.1009 0.0847 0.4552
240 330 4 3 1 0.0354 0.0486 0.0006 0.2245
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If any of the underlying failure or censoring times are larger than the last cutoff specified, then they
are treated as being in the open-ended interval:

. 1ltable t died if group==1, interval(120,180,210,240)
Beg. Std.

Interval total Deaths Lost Survival error [95% conf. int.]
120 180 19 2 0 0.8947 0.0704 0.6408 0.9726
180 210 17 6 0 0.5789 0.1133 0.3321 0.7626
210 240 11 6 1 0.2481 0.1009 0.0847 0.4552
240 . 4 3 1 0.0354 0.0486 0.0006 0.2245

Whether the last interval is treated as open ended or not makes no difference for survival and failure
tables, but it does affect hazard tables. If the interval is open ended, the hazard is not calculated for
it.

d

> Example 3: Itable with separate tables for each group

The by (varname) option specifies that separate tables be presented for each value of varname.
Remember that our rat dataset contains two groups:

. ltable t died, by(group) interval(30)

Beg. Std.
Interval total Deaths Lost  Survival error [95% conf. int.]
group = 1
120 150 19 1 0 0.9474 0.0512 0.6812 0.9924
150 180 18 1 0 0.8947 0.0704 0.6408 0.9726
180 210 17 6 0 0.5789 0.1133 0.3321 0.7626
210 240 11 6 1 0.2481 0.1009 0.0847 0.4552
240 270 4 2 1 0.1063 0.0786 0.0139 0.3090
300 330 1 1 0 0.0000
group = 2
120 150 21 1 0 0.9524 0.0465 0.7072 0.9932
150 180 20 2 0 0.8571 0.0764 0.6197 0.9516
180 210 18 2 1 0.7592 0.0939 0.5146 0.8920
210 240 15 7 0 0.4049 0.1099 0.1963 0.6053
240 270 8 2 0 0.3037 0.1031 0.1245 0.5057
270 300 6 4 0 0.1012 0.0678 0.0172 0.2749
300 330 2 1 0 0.0506 0.0493 0.0035 0.2073
330 360 1 0 1 0.0506 0.0493 0.0035 0.2073
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> Example 4: Itable for failure tables

A failure table is simply a different way of looking at a survival table; failure is 1 — survival:

. ltable t died if group==1, interval(30) failure
Beg. Cum. Std.

Interval Total Deaths Lost Failure Error [95% Conf. Int.]
120 150 19 1 0 0.0526 0.0512 0.0076 0.3188
150 180 18 1 0 0.1053 0.0704 0.0274 0.3592
180 210 17 6 0 0.4211 0.1133 0.2374 0.6679
210 240 11 6 1 0.7519 0.1009 0.5448 0.9153
240 270 4 2 1 0.8937 0.0786 0.6910 0.9861
300 330 1 1 0 1.0000

> Example 5: Survival rate at start of interval versus end of interval

Selvin (2004, 357) presents follow-up data from Cutler and Ederer (1958) on six cohorts of kidney
cancer patients. The goal is to estimate the 5-year survival probability.

With- With-

Year Interval Alive Deaths Lost drawn Year Interval Alive Deaths Lost drawn
1946  0-1 9 4 1 1948  0-1 21 11 0

1-2 4 0 0 1-2 10 1 2

2-3 4 0 0 2-3 7 0 0

3-4 4 0 0 3-4 7 0 0 7

4-5 4 0 0 1949  0-1 34 12 0

5-6 4 0 0 4 1-2 22 3 3
1947  0-1 18 7 0 2-3 16 1 0 15

1-2 11 0 0 1950 0-1 19 5 1

2-3 11 1 0 1-2 13 1 1 11

3-4 10 2 2 1951 0-1 25 8 2 15

4-5 6 0 0 6

The following is the Stata dataset corresponding to the table:

. use https://www.stata-press.com/data/r18/selvin

. list

year t died pop
1. 1946 .5 1 4
2. 1946 .5 0 1
3. 1946 5.5 0 4
4. 1947 .5 1 7
5. 1947 2.5 1 1

(output omitted )

As summary data may often come in the form shown above, it is worth understanding exactly
how the data were translated for use with 1table. t records the time of death or censoring (lost to
follow-up or withdrawal). died contains 1 if the observation records a death and O if it instead records
lost or withdrawn patients. pop records the number of patients in the category. The first line of the
original table stated that, in the 1946 cohort, there were nine patients at the start of the interval 0-1,
and during the interval, four died and one was lost to follow-up. Thus we entered in observation 1
that at t = 0.5, four patients died and in observation 2 that at t = 0.5, one patient was censored.
We ignored the information on the total population because 1table will figure that out for itself.
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The second line of the table indicated that in the interval 1-2, four patients were still alive at the
beginning of the interval, and during the interval, zero died or were lost to follow-up. Because no
patients died or were censored, we entered nothing into our data. Similarly, we entered nothing for
lines 3, 4, and 5 of the table. The last line for 1946 stated that, in the interval 5—6, four patients were
alive at the beginning of the interval and that those four patients were withdrawn. In observation 3,
we entered that there were four censorings at t = 5.5.

It does not matter that we chose to record the times of deaths or censoring as midpoints of intervals;
we could just as well have recorded the times as 0.8 and 5.8. By default, 1table will form intervals
0-1, 1-2, and so on, and place observations into the intervals to which they belong. We suggest
using 0.5 and 5.5 because those numbers correspond to the underlying assumptions made by 1table
in making its calculations. Using midpoints reminds you of these assumptions.

To obtain the survival rates, we type

. 1ltable t died [fweight=pop]

Beg. Std.

Interval total Deaths Lost Survival error [95% conf. int.]
0 1 126 a7 19 0.5966 0.0455 0.5017 0.6792
1 2 60 5 17 0.5386 0.0479 0.4405 0.6269
2 3 38 2 15 0.5033 0.0508 0.4002 0.5977
3 4 21 2 9 0.4423 0.0602 0.3225 0.5554
4 5 10 0 6 0.4423 0.0602 0.3225 0.5554
5 6 4 0 4 0.4423 0.0602 0.3225 0.5554

We estimate the 5-year survival rate as 0.4423 and the 95% confidence interval as 0.3225 to 0.5554.

Selvin (2004, 361), in presenting these results, lists the survival in the interval 0—1 as 1, in 1-2
as 0.597, in 2-3 as 0.539, and so on. That is, relative to us, he shifted the rates down one row
and inserted a 1 in the first row. In his table, the survival rate is the survival rate at the start of the
interval. In our table, the survival rate is the survival rate at the end of the interval (or, equivalently,
at the start of the next interval). This is, of course, simply a difference in the way the numbers are
presented and not in the numbers themselves.

4

> Example 6: Itable for hazard tables

The discrete hazard function is the rate of failure—the number of failures occurring within a
time interval divided by the width of the interval (assuming that there are no censored observations).
Although the survival and failure tables are meaningful at the “individual” level—with intervals so
narrow that each contains only one failure—that is not true for the discrete hazard. If all intervals
contained one death and if all intervals were of equal width, the hazard function would be 1 / At and
so appear to be a constant!

The empirically determined discrete hazard function can be revealed only by aggregation. Gross
and Clark (1975, 37) print data on malignant melanoma at the University of Texas M. D. Anderson
Tumor Clinic between 1944 and 1960. The interval is the time from initial diagnosis:
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Interval Number lost Number with- Number

(years) to follow-up drawn alive dying
0-1 19 77 312
1-2 3 71 96
2-3 4 58 45
3-4 3 27 29
4-5 5 35 7
5-6 1 36 9
6-7 0 17 3
7-8 2 10 1
8-9 0 8 3
9+ 0 0 32

For our statistical purposes, there is no difference between the number lost to follow-up (patients
who disappeared) and the number withdrawn alive (patients dropped by the researchers)—both are
censored. We have entered the data into Stata; here are a few of the data:

. use https://www.stata-press.com/data/r18/tumor

. list in 1/6, separator(0)

t d pop
1. .5 Death 312
2. .5 Censoring 19
3. .5 Censoring 7
4. 1.5 Death 96
5. 1.5 Censoring 3
6. 1.5 Censoring 71

We entered each group’s time of death or censoring as the midpoint of the intervals and entered the
numbers of the table, recording d as 1 for deaths and O for censoring. The hazard table is

. 1ltable t d [fweight=pop], hazard interval(0(1)9)

Beg. Cum. Std. Std.

Interval Total Failure Error Hazard Error [95% Conf. Int.]
0 1 913 0.3607 0.0163 0.4401 0.0243 0.3924 0.4877
1 2 505 0.4918 0.0176 0.2286 0.0232 0.1831 0.2740
2 3 335 0.5671 0.0182 0.1599 0.0238 0.1133 0.2064
3 4 228 0.6260 0.0188 0.1461 0.0271 0.0931 0.1991
4 5 169 0.6436 0.0190 0.0481 0.0182 0.0125 0.0837
5 6 122 0.6746 0.0200 0.0909 0.0303 0.0316 0.1502
6 7 76 0.6890 0.0208 0.0455 0.0262 0.0000 0.0969
7 8 56 0.6952 0.0213 0.0202 0.0202 0.0000 0.0598
8 9 43 0.7187 0.0235 0.0800 0.0462 0.0000 0.1705
9 32 1.0000

We specified the interval() option as we did—and not as interval(1l) or omitting the option
altogether—to force the last interval to be open ended. Had we not, and if we had recorded t as
9.5 for observations in that interval (as we did), 1table would have calculated a hazard rate for the
“interval”. Here the result of that calculation would have been 2, but no matter the result, it would
have been meaningless because we do not know the width of the interval.

When dealing with the survivor or failure function, you are not limited to merely examining a
column of numbers. With the graph option, you can see the result graphically:
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. ltable t d [fweight=popl, i(0(1)9) graph notable ci x1ab(0(2)10)

.81

Proportion surviving
i
1

Time

The vertical lines in the graph represent the 95% confidence intervals for the survivor function. Among
the options we specified, although it is not required, is notable, which suppressed printing the table,
saving us some paper. xlab() was passed through to the graph command (see [G-3] twoway _options)
and was unnecessary but made the graph look better.

N

Q Technical note

Because many intervals can exist during which no failures occur (in which case the hazard estimate
is zero), the estimated hazard is best graphically represented using a kernel smooth. Such an estimate
is available in sts graph; see [ST] sts graph. 0

Video example

How to construct life tables

Methods and formulas

Let 7; be the individual failure or censoring times. The data are aggregated into intervals given by
tj,7=1,...,J, and t ;11 = oo with each interval containing counts for t; < 7 < ¢;4;. Let d; be
the number of failures during the interval, m; be the censored observations during the interval, and
N; be the number alive at the start of the interval. Define n; = N; —m; /2 as the adjusted number

at risk at the start of the interval. If the noadjust option is specified, n; = Nj.

The product-limit estimate of the survivor function is

L —

sy =[] 2%
n
k=1 k


https://www.youtube.com/watch?v=f5cb-Us-GyI&list=UUVk4G4nEtBS4tLOyHqustDA
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(Kalbfleisch and Prentice 2002, 10, 15). Greenwood’s formula for the asymptotic standard error of
Sj is

J
an nk—dk

k=1

(Greenwood 1926; Kalbfleisch and Prentice 2002, 17). s; is reported as the standard deviation of
survival but is not used in generating the confidence intervals because it can produce intervals outside
0 and 1. The “natural” units for the survivor function are log(—logS;), and the asymptotic standard
error of that quantity is

5 S di/{nk(ny — di)}
! [Z 1og{(nk — dk)/nk}}z

(Kalbfleisch and Prentice 2002, 18). The corresponding confidence intervals are Sjexp (E21-a/ 22‘”.

The cumulative failure time is defined as G i =1 fASj, and thus the variance is the same as for
S; and the confidence intervals are 1 — SjeXp(izl’“/ 2%3),
Both S; and G; are graphed against ¢4 1.

Define the within-interval failure rate as f; = d;/n;. The maximum likelihood estimate of the
(within-interval) hazard is then

i
(1*]0]/2)( j+1 )

— . T . 2
o = A, w (o1 = t)/2)
J

Aj =

The standard error of A; is

from which a confidence interval is calculated.

If the noadjust option is specified, the estimate of the hazard is

N=—d
tit1 — 1
and its standard error is
Aj

Sx; =

e

The confidence interval is

Aj o Ai o
T‘lemj,a/Qa T‘ljbdj,l—a/z

where ngj,q is the gth quantile of the 2 distribution with 2d; degrees of freedom (Cox and
Oakes 1984, 53-54, 38-40).
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For the likelihood-ratio test for homogeneity, let d, be the total number of deaths in the gth group.
Define T, = Zie o Tis where 7 indexes the individual failure or censoring times. The x? value with
G — 1 degrees of freedom (where G is the total number of groups) is

2{(Zd ) log<2d > S d, 10g< >}
(Lawless 2003, 155).

The log-rank test for homogeneity is the test presented by sts test; see [ST] sts.
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Also see

[ST] stcox — Cox proportional hazards model



Title

shapspan — Convert snapshot data to time-span data

Description Quick start Menu Syntax
Options Remarks and examples Also see

Description

snapspan converts snapshot data for a given subject to time-span data required for use with
survival analysis commands, such as stcox, streg, and stset. snapspan replaces the data in the
specified variables. Transformed variables may be “events” that occur at the instant of the snapshot
or retrospective variables that are to apply to the time span ending at the time of the current snapshot.

Quick start

Create a time-span dataset from data containing subject identifier id, event variable evar occurring
at the time in tvar, and other variables measured at that time

snapspan id tvar evar

Same as above, and create new variable timeO containing the entry time for each record
snapspan id tvar evar, generate(timeO)

Menu

Statistics > Survival analysis > Setup and utilities > Convert snapshot data to time-span data
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Syntax

snapspan idvar timevar varlist [, generate (newtOvar) replace]

idvar records the subject ID and may be string or numeric.

timevar records the time of the snapshot; it must be numeric and may be recorded on any scale: date, hour, minute,
second, etc.

varlist are the “event” variables, meaning that they occur at the instant of timevar. varlist can also include retrospective
variables that are to apply to the time span ending at the time of the current snapshot. The other variables are
assumed to be measured at the time of the snapshot and thus apply from the time of the snapshot forward. See
Specifying varlist below.

snapspan does not allow alias variables; see [D] frunalias for advice on how to get around this restriction.

Options
generate (newtOvar) adds newtOvar to the dataset containing the entry time for each converted
time-span record.

replace specifies that it is okay to change the data in memory, even though the dataset has not been
saved on disk in its current form.

Remarks and examples

Remarks are presented under the following headings:

Snapshot and time-span datasets
Specifying varlist

Snapshot and time-span datasets

snapspan converts a snapshot dataset to a time-span dataset. A snapshot dataset records a subject
id, a time, and then other variables measured at the time:

Snapshot datasets:

idvar timevar x1 x2
47 12 5 27

a7 42 5 18

a7 55 5 19
idvar datevar x1 x2
122 14jul1998 5 27
122 12aug1998 5 18
122 08sep1998 5 19
idvar year x1 x2
122 1994 5 27
122 1995 5 18
122 1997 5 19

A time-span dataset records a span of time (fime0, timel |:

some variables assumed
to occur at timel
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<— other variables assumed constant over span —>

> time
timeO timel

Time-span data are required, for instance, by stset and the st system. The variables assumed to
occur at timel are the failure or event variables. All the other variables are assumed to be constant
over the span.

Time-span datasets:

idvar timeO timel x1 x2 ... event
47 0 12 5 13 e 0

a7 12 42 5 27 c 0

47 42 55 5 18 . 1
idvar time0 timel x1 x2 ... event
122 01jan1998 14jul1998 5 13 e 0
122 14jul1998 12augl998 5 27 e 0
122 12augl998 08sep1998 5 18 e 1
idvar timeO timel x1 x2 ... event
122 1993 1994 5 13 e 0
122 1994 1995 5 27 e 0
122 1995 1997 5 18 - 1

To convert snapshot data to time-span data, you need to distinguish between event and nonevent
variables. Event variables happen at an instant.

Say that you have a snapshot dataset containing variable e recording an event (e = 1 might
record surgery, death, becoming unemployed, etc.) and the rest of the variables—call them x1, x2,
etc.—recording characteristics (such as sex, birth date, blood pressure, or weekly wage). The same
data, in snapshot and time-span form, would be

In snapshot form: In time-span form:

id time x1  x2 e id time0 time x1  x2 e
1 5 al bl el 1 . 5 . . el
1 7 a2 b2 e2 1 5 7 al bl e2
1 9 a3 b3 e3 1 7 9 a2 b2 e3
1 11 ad b4 e4d 1 9 11 a3 b3 e4

snapspan converts data from the form on the left to the form on the right:

. snapspan id time e, generate(time0) replace
PSP > & P

The form on the right is suitable for use by stcox and stset and the other survival analysis
commands.

Specifying varlist

The varlist—the third variable on—specifies the “event” variables.

In fact, the varlist specifies the variables that apply to the time span ending at the time of the
current snapshot. The other variables are assumed to be measured at the time of the snapshot and
thus apply from the time of the snapshot forward.

Thus varlist should include retrospective variables.
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For instance, say that the snapshot recorded bp, blood pressure; smokes, whether the patient
smoked in the last 2 weeks; and event, a variable recording examination, surgery, etc. Then varlist
should include smokes and event. The remaining variables, bp and the rest, would be assumed to
apply from the time of the snapshot forward.

Suppose that the snapshot recorded ecs, employment change status (hired, fired, promoted, etc.);
wage, the current hourly wage; and ms, current marital status. Then varlist should include esc and
ms (assuming snapshot records are not generated for reason of ms change). The remaining variables,
wage and the rest, would be assumed to apply from the time of the snapshot forward.

Also see
[ST] stset — Declare data to be survival-time data

[D] frunalias — Change storage type of alias variables



Title

st — Survival-time data

Description Also see

Description

The term st refers to survival-time data and the commands—most of which begin with the letters
st—for analyzing these data. If you have data on individual subjects with observations recording that
a particular subject came under observation at time ¢y and that later, at £;, a failure was observed,
you have what we call uncensored survival-time data. If you have data on individual subjects with
observations recording that a particular subject came under observation at time %y and that later,
at t1, a censoring was observed, you have right-censored survival-time data. If you have data on
individual subjects with observations recording that a particular subject was observed at time g, but
a failure already occurred by that time, you have left-censored survival-time data. If you have data
on individual subjects with observations recording that a particular subject failed sometime between
times ¢; and t,, you have interval-censored survival-time data. And, of course, you may have data
that contain observations of all the above types.

If you have subject-specific data, with observations recording not a span of time, but measurements
taken on the subject at that point in time, you have what we call a snapshot dataset; see [ST] snapspan.

If you have data on populations, with observations recording the number of units under test at
time ¢ (subjects alive) and the number of subjects that failed or were lost because of censoring, you
have what we call count-time data; see [ST] ct.

st commands Description

stset Declare data to be survival-time data

stdescribe Describe survival-time data

stsum Summarize survival-time data

stvary Report variables that vary over time

stfill Fill in by carrying forward values of covariates

stgen Generate variables reflecting entire histories

stsplit Split time-span records

stjoin Join time-span records

stbase Form baseline dataset

sts Generate, graph, list, and test the survivor and related functions
stir Report incidence-rate comparison

stci Confidence intervals for means and percentiles of survival time
strate Tabulate failure rate

stptime Calculate person-time, incidence rates, and SMR

stmh Calculate rate ratios with the Mantel-Haenszel method

stmc Calculate rate ratios with the Mantel-Cox method

48



st — Survival-time data 49

stcox Fit Cox proportional hazards model

estat concordance Compute the concordance probability

estat phtest Test Cox proportional-hazards assumption

stphplot Graphically assess the Cox proportional-hazards assumption

stcoxkm Graphically assess the Cox proportional-hazards assumption

streg Fit parametric survival models

stintreg Fit parametric survival models for interval-censored data

estat gofplot Graphically assess goodness of fit after streg, stcox, and stintreg

stintcox Fit Cox proportional hazards model for interval-censored data

stintphplot Graphically assess the Cox proportional-hazards assumption
for interval-censored data

stintcoxnp Graphically assess the Cox proportional-hazards assumption
for interval-censored data

stcrreg Fit competing-risks regression models

xtstreg Fit random-effects parametric survival models

mestreg Fit mixed-effects parametric survival models

stcurve Plot the survivor or related function after streg, stcox, and more

stteffects Estimate treatment effects using observational data

sttocc Convert survival-time data to case—control data

sttoct Convert survival-time data to count-time data

st_x Survival analysis subroutines for programmers

fmm: streg Finite mixtures of parametric survival models

bayes: streg Bayesian parametric survival models

bayes: mestreg Bayesian multilevel parametric survival models

The st commands are used for analyzing time-to-absorbing-event (single-failure) data and for
analyzing time-to-repeated-event (multiple-failure) data.

For uncensored and right-censored data, you begin an analysis by stsetting your data, which
tells Stata the key survival-time variables; see [ST] stset. Once you have stset your data, you can
use the other st commands. If you save your data after stsetting it, you will not have to stset it
again in the future; Stata will remember.

The stintcox and stintreg commands are designed for the analysis of general interval-censored
data, including right-, left-, and interval-censored observations. It does not require stsetting the data.

The subsequent st entries are printed in this manual in alphabetical order. You can skip around,
but if you want to be an expert on all of Stata’s survival analysis capabilities, we suggest the reading
order listed above.

Also see

[ST] ¢t — Count-time data

[ST] snapspan — Convert snapshot data to time-span data

[ST] stset — Declare data to be survival-time data

[ST] Survival analysis — Introduction to survival analysis commands

[ST] Glossary
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st_is — Survival analysis subroutines for programmers

Description Syntax Remarks and examples Also see

Description

These commands are provided for programmers wishing to write new st commands.

st_is verifies that the data in memory are survival-time (st) data. If not, it issues the error message
“data not st”, r(119).

st is currently “release 2”, meaning that this is the second design of the system. Programs written
for the previous release continue to work. (The previous release of st corresponds to Stata 5.)

Modern programs code st_is 2 full or st_is 2 analysis. st_is 2 verifies that the dataset
in memory is in release 2 format; if it is in the earlier format, it is converted to release 2 format.
(Older programs simply code st_is. This verifies that no new features are stset about the data
that would cause the old program to break.)

The full and analysis parts indicate whether the dataset may include past, future, or past and
future data. Code st_is 2 full if the command is suitable for running on the analysis sample and
the past and future data (many data management commands fall into this category). Code st_is 2
analysis if the command is suitable for use only with the analysis sample (most statistical commands
fall into this category). See [ST] stset for the definitions of past and future.

st_show displays the summary of the survival-time variables or does nothing, depending on what
you specify when stsetting the data. noshow requests that st_show display nothing.

st_ct is a low-level utility that provides risk-group summaries from survival-time data.

Syntax

Verify that data in memory are survival-time data

st_is 2 {full|analysis}

Display or do not display summary of survival-time variables

st_show [ noshow]

Risk-group summaries

st_ct " [byvars] " => newtvar newpopvar newfailvar [newcensvar [newentvar] }

You must have stset your data before using st_is, st_show, and st_ct; see [ST] stset.
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Remarks and examples

Remarks are presented under the following headings:

Definitions of characteristics and st variables
Outline of an st command

Using the st_ct utility

Comparison of st_ct with sttoct

Veritying data

Converting data

Definitions of characteristics and st variables

From a programmer’s perspective, st is a set of conventions that specify where certain pieces of
information are stored and how that information should be interpreted, together with a few subroutines
that make it easier to follow the conventions.

At the lowest level, st is nothing more than a set of Stata characteristics that programmers may

access:
char _dta[_dtal st (marks that the data are st)
char _dtal[st_ver] 2 (version number)
char _dtal[st_id] varname or nothing; id() variable
char _dta[st_bt0] varname or nothing; t0() variable
char _dtal[st_bt] varname; t variable from stset t, ...
char _dtal[st_bd] varname or nothing; failure() variable
char _dta[st_ev] list of numbers or nothing; numlist from failure (varname [==numlist])

char _dta[st_enter] contents of enter() or nothing; numlist expanded
char _dtal[st_exit] contents of exit() or nothing; numlist expanded
char _dtalst_orig] contents of origin() or nothing; numlist expanded

char _dtal[st_bs] # or 1; scale() value

char _dtal[st_o] _origin or #

char _dtal[st_s] _scale or #

char _dtal[st_ifexp] exp or nothing; from stset ... if exp ...
char _dtalst_if] exp or nothing; contents of if ()

char _dta[st_ever] exp or nothing; contents of ever ()

char _dtal[st_never] exp or nothing; contents of never ()
char _dtal[st_after] exp or nothing; contents of after ()
char _dtal[st_befor] exp or nothing; contents of before()

char _dtal[st_wt] weight type or nothing; user-specified weight

char _dtalst_wv] varname or nothing; user-specified weighting variable
char _dtal[st_w] [weighttype=weightvar] or nothing

char _dtal[st_show] mnoshow or nothing

char _dtalst_t] —t (for compatibility with release 1)

char _dta[st_t0] —t0 (for compatibility with release 1)

char _dtal[st_d] —d (for compatibility with release 1)

char _dta[st_n0O] # or nothing; number of st notes

char _dtalst_n1i] text of first note or nothing

char _dtal[st_n2] text of second note or nothing

char _dta[st_set] text or nothing. If filled in, streset (see [ST] stset) will refuse

to execute and present this text as the reason
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All st datasets also have the following four variables:

—t0 Time of entry (in t units) into risk pool

—t  Time of exit (in t units) from risk pool

_d 1 if failure, O if censoring

_st 1 if observation is to be used and 0 otherwise

Thus, in a program, you might code

display "the failure/censoring base time variable is _t"
display "and its mean in the uncensored subsample is"
summarize _t if _d

No matter how simple or complicated the data, these four variables exist and are filled in. For
instance, in simple data, —tO might contain O for every observation, and —_d might always contain 1.

Some st datasets also contain the variables

_origin Evaluated value of origin()
_scale Evaluated value of scale()

The _dtal[st_o] characteristic contains either the name _origin or a number, often 0. It contains
a number when the origin does not vary across observations. _dta[st_s] works the same way with
the scale() value. Thus the origin and scale are _dta[st_o] and _dtal[st_s]. In fact, these
characteristics are seldom used because variables _t and _tO are already adjusted.

Some st datasets have an id() variable that clusters together records on the same subject. The
name of the variable varies, and the name can be obtained from the _dta[st_id] characteristic. If
there is no id() variable, the characteristic contains nothing.

Outline of an st command

If you are writing a new st command, place st_is near the top of your code to ensure that your
command does not execute on inappropriate data. Also place st_show following the parsing of your
command’s syntax to display the key st variables. The minimal outline for an st command is

program st name
version 18.0

st_is 2 ...
. syntax command . . .

... determined there are no syntax errors . . .
st_show

... guts of program . . .
end

st_is 2 appears even before the input is parsed. This is to avoid irritating users when they type a
command, get a syntax error, work hard to eliminate the error, and then learn that “data not st”.

A fuller outline for an st command, particularly one that performs analysis on the data, is

program st name
version 18.0
st_is 2 ...
syntax ... [, ... noSHow ... ]

st_show ‘show’
marksample touse
quietly replace ‘touse’ = 0 if _st==0
... guts of program . . .
end
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All calculations and actions are to be restricted, at the least, to observations for which _st # 0.
Observations with _st = 0 are to be ignored.

Using the st_ct utility

st_ct converts the data in memory to observations containing summaries of risk groups. Consider

the code
st_is 2 analysis
preserve
st_ct "" -> t pop die

Typing this would change the data in memory to contain something akin to count-time data. The
transformed data would have observations containing
t time

pop population at risk at time t
die number who fail at time t

There would be one record per time t, and the data would be sorted by t. The original data are
discarded, which is why you should code preserve; see [P] preserve.

The above three lines of code could be used as the basis for calculating the Kaplan—Meier
product-limit survivor-function estimate. The rest of the code is

keep if die

generate double hazard = die/pop

generate double km = 1-hazard if _n==
replace km = (1-hazard)*km[_n-1] if _n>1

st_ct can be used to obtain risk groups separately for subgroups of the population. The code

st_is 2 analysis
preserve
st_ct "race sex" -> t pop die

would change the data in memory to contain

race

sex

t time

pop  population at risk at time t
die  number who fail at time t

There would be one observation for each race—sex—t combination, and the data would be sorted
by race sex t.

With this dataset, you could calculate the Kaplan—Meier product-limit survivor-function estimate
for each race—sex group by coding

keep if die

generate double hazard = die/pop

by race sex: generate double km = 1-hazard if _n==

by race sex: replace km = (1-hazard)*km[_n-1] if _n>1

st_ct is a convenient subroutine. The above code fragment works regardless of the complexity of
the underlying survival-time data. It does not matter whether there is one record per subject, no
censoring, and one failure per subject, or multiple records per subject, gaps, and recurring failures
for the same subject. st_ct forms risk groups that summarize the events recorded by the data.

st_ct can provide the number of censored records and the number who enter the risk group. The
code

st_ct "" -> t pop die cens ent
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creates records containing

t time

pop  population at risk at time t

die  number who fail at time t

cens number who are censored at t (after the failures)
ent number who enter at t (after the censorings)

As before,

st_ct "race sex" -> t pop die cens ent

would create a similar dataset with records for each race—sex group.

Comparison of st_ct with sttoct

sttoct—see [ST] sttoct—is related to st_ct, and in fact, sttoct is implemented in terms of
st_ct. The differences between them are that

e sttoct creates ct data, meaning that the dataset is marked as being ct. st_ct merely creates a
useful dataset; it does not ctset the data.

e st_ct creates a total population at-risk variable— which is useful in programming—but sttoct
creates no such variable.

e sttoct eliminates thrashings—censorings and reentries of the same subject as covariates
change—if there are no gaps, strata shifting, etc. st_ct does not do this. Thus, at a par-
ticular time, sttoct might show that there are two lost to censoring and none entered, whereas
st_ct might show 12 censorings and 10 entries. This makes no difference in calculating the
number at risk and the number who fail, which are the major ingredients in survival calculations.

e st_ct is faster.

Verifying data

As long as you code st_is at the top of your program, you need not verify the consistency of
the data. That is, you need not verify that subjects do not fail before they enter, etc.

The dataset is verified when you stset it. If you make a substantive change to the data, you must
rerun stset (which can be done by typing stset or streset without arguments) to reverify that
all is well.

Converting data

If you write a program that converts the data from one form of st data to another, or from st data to
something else, be sure to issue the appropriate stset command. For instance, a command we have
written, stbase, converts the data from st to a simple cross-section in one instance. In our program,
we coded stset, clear so that all other st commands would know that these are no longer st data
and that making st calculations on them would be inappropriate.

Even if we had forgotten, other st programs would have found many of the key st variables missing
and would have ended with a “[such-and-such] not found” error.
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Also see
[ST] stset — Declare data to be survival-time data
[ST] sttoct — Convert survival-time data to count-time data

[ST] Survival analysis — Introduction to survival analysis commands



Title

stbase — Form baseline dataset

Description Quick start Menu Syntax
Options Remarks and examples Also see

Description

stbase without the at () option converts multiple-record st data to st data with every variable
set to its value at baseline, defined as the earliest time at which each subject was observed. stbase
without at () does nothing to single-record st data.

stbase, at() converts single- or multiple-record st data to a cross-sectional dataset (not st
data), recording the number of failures at the specified time. All variables are given their values at
baseline—the earliest time at which each subject was observed. In this form, single-failure data could
be analyzed by logistic regression and multiple-failure data by Poisson regression, for instance.

stbase can be used with single- or multiple-record or single- or multiple-failure st data.

Quick start

Set all variables to their values at the earliest time the subject was observed using stset data

stbase

Create a dataset with one observation per subject, recording number of failures at time 10, with all
variables set to the value at the earliest time the subject was observed

stbase, at(10)

Menu

Statistics > Survival analysis > Setup and utilities > Form baseline dataset

56
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Syntax
stbase [lf] [ln] [, options]
options Description
Main
at (#) convert single/multiple-record st data to cross-sectional dataset at time #
gap (newvar) name of variable containing gap time; default is gap or gaptime
replace overwrite current data in memory
noshow do not show st setting information
nopreserve programmer’s option; see Options below

You must stset your data before using stbase; see [ST] stset.
fweights, iweights, and pweights may be specified using stset; see [ST] stset.
nopreserve does not appear in the dialog box.

Options
Main

at (#) changes what stbase does. Without the at() option, stbase produces another related st
dataset. With the at () option, stbase produces a related cross-sectional dataset.

gap (newvar) is allowed only with at(); it specifies the name of a new variable to be added to
the data containing the amount of time the subject was not at risk after entering and before # as
specified in at (). If gap() is not specified, the new variable will be named gap or gaptime,
depending on which name does not already exist in the data.

replace specifies that it is okay to change the data in memory, even though the dataset has not been
saved to disk in its current form.

noshow prevents stbase from showing the key st variables. This option is rarely used because most
people type stset, show or stset, noshow to set once and for all whether they want to see
these variables mentioned at the top of the output of every st command; see [ST] stset.

The following option is available with stbase but is not shown in the dialog box:

nopreserve is for use by programmers using stbase as a subroutine. It specifies that stbase not
preserve the original dataset so that it can be restored should an error be detected or should the
user press Break. Programmers would specify this option if, in their program, they had already
preserved the original data.

Remarks and examples

Remarks are presented under the following headings:

stbase without the at() option

stbase with the at() option

Single-failure st data where all subjects enter at time 0
Single-failure st data where some subjects enter after time 0
Single-failure st data with gaps and perhaps delayed entry
Multiple-failure st data

N
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stbase without the at() option

Once you type stbase, you may not streset your data, even though the data are st. streset
will refuse to run because the data have changed, and if the original rules were reapplied, they might
produce different, incorrect results. The st commands use four key variables:

—t0 the time at which the record came under observation
_t the time at which the record left observation

_d 1 if the record left under failure, 0 otherwise

_st whether the observation is to be used (contains 1 or 0)

These variables are adjusted by stbase. The _t0 and _t variables, in particular, are derived from
your variables according to options you specified at the time you stset the data, which might include
an origin() rule, an entry() rule, and the like. Once intervening observations are eliminated, those
rules will not necessarily produce the same results that they did previously.

To illustrate how stbase works, consider multiple-record, time-varying st data, on which you
have performed some analysis. You now wish to compare your results with a simpler, non-time-
varying analysis. For instance, suppose that variables x1 and x2 measure blood pressure and weight,
respectively, and that readings were taken at various times. Perhaps you fit the model

. use https://www.stata-press.com/data/r18/mfail

. stset
-> stset t, id(id) failure(d) exit(time .) noshow

Survival-time data settings
ID variable: id
Failure event: d!=0 & d<.

Observed time interval: (t[_n-1], t]
Exit on or before: time .

1,734 total observations
0 exclusions

1,734 observations remaining, representing
926 subjects
808 failures in multiple-failure-per-subject data
435,855 total analysis time at risk and under observation
At risk from t =
Earliest observed entry t
Last observed exit t = 960

o
(o]
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. stcox x1 x2

Iteration 0: Log likelihood = -5034.9569
Iteration 1: Log likelihood = -4978.4198
Iteration 2: Log likelihood = -4978.1915

Iteration 3: Log likelihood = -4978.1914
Refining estimates:
Iteration 0: Log likelihood = -4978.1914

Cox regression with Breslow method for ties

No. of subjects = 926 Number of obs = 1,734
No. of failures = 808
Time at risk = 435,855

LR chi2(2) = 113.53

Log likelihood = -4978.1914 Prob > chi2 = 0.0000

_t | Haz. ratio Std. err. z P>zl [95% conf. intervall]

x1 2.273456 .216537 8.62 0.000 1.886311 2.740059

x2 .329011 .0685638 -5.33 0.000 .2186883 .4949888

with these data. You now wish to fit that same model but this time use the values of x1 and x2 at
baseline. You do this by typing

. stbase, replace
Converting multiple-record data to baseline data ...
Notes:
1. No gaps.
2. There were multiple failures or reentries after failures.
3. Baseline data have multiple records per ID (id).
4. All records have covariate values at baseline.

. stcox x1 x2

Iteration 0: Log likelihood = -7886.9779
Iteration 1: Log likelihood = -7863.9974
Iteration 2: Log likelihood = -7863.9295

Iteration 3: Log likelihood = -7863.9295
Refining estimates:
Iteration 0: Log likelihood = -7863.9295

Cox regression with Breslow method for ties

No. of subjects = 926 Number of obs = 1,734
No. of failures = 1,337
Time at risk = 435,855

LR chi2(2) = 46.10

Log likelihood = -7863.9295 Prob > chi2 = 0.0000

_t | Haz. ratio Std. err. z P>|z| [95% conf. intervall

x1 1.413195 .1107945 4.41 0.000 1.211903 1.647921

x2 .4566673 .0765272 -4.68 0.000 .3288196 .6342233

Another way you could perform the analysis is to type
. generate x1_0 = x1
. generate x2_0 = x2
. stfill x1_0 x2_0, baseline
. stcox x1 x2

See [ST] stfill. The method you use makes no difference, but if there were many explanatory variables,
stbase would be easier.
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stbase changes the data to record the same events but changes the values of all other variables
to their values at the earliest time the subject was observed.

stbase also simplifies the st data where possible. Say that one of your subjects has three records
in the original data and ends in a failure:

> time
=1 [—— |—=X]
After running stbase, this subject would have one record in the data:
> time
— | | |—=
X <— becomes one record

Here are some other examples of how stbase would process records with gaps and multiple failure
events:

> time
| ] X 3 records, gap
X becomes 2 records
X 2 records, gap
X does not change
X | | X 3 records, 2 failures
X X becomes 2 records
X | ] X 4 records
X X becomes 3 records, 2 failures

The following example shows numerically what is shown in the diagram above.

. use https://www.stata-press.com/data/r18/stbasexmpl, clear

. list, sepby(id)

id  time0 time wgt death
1. 1 0 2 114 0
2. 1 3 5 110 0
3. 1 5 11 118 1
4. 2 0 2 120
5. 2 3 11 111 1
6. 3 0 2 108 1
7 3 2 4 105 0
8 3 4 7 113 1
9. 4 0 2 98 0
10. 4 3 4 101 1
11. 4 5 6 106 0
12. 4 6 11 104 1
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. stset time, id(id) fail(death) timeO(timeO) exit(time .)
Survival-time data settings

ID variable: id
Failure event: death!=0 & death<.
Observed time interval: (timeO, time]
Exit on or before: time .

12 total observations
0 exclusions

12 observations remaining, representing
4 subjects
6 failures in multiple-failure-per-subject data
36 total analysis time at risk and under observation
At risk from t
Earliest observed entry t
Last observed exit t

. list, sepby(id)

id  time0 time wgt death _st d  _t _to
1. 1 0 2 114 0 1 0 2 0
2. 1 3 5 110 0 1 0 5 3
3. 1 5 11 118 1 1 1 11 5
4. 2 0 2 120 0 1 0 2 0
5. 2 3 11 111 1 1 1 11 3
6 3 0 2 108 1 1 1 2 0
7 3 2 4 105 0 0 4 2
8 3 4 7 113 1 1 1 7 4
9. 4 0 2 98 0 1 0 2 0
10. 4 3 4 101 1 1 1 4 3
11. 4 5 6 106 0 1 0 6 5
12. 4 6 11 104 1 1 1 11 6

. stbase, replace
Failure _d: death

Analysis time _%: time
Exit on or before: time .

ID variable: id
Converting multiple-record data to baseline data ...

Notes:
1. There were gaps.

There were multiple failures or reentries after failures.

2.
3. Baseline data have multiple records per ID (id).
4. All records have covariate values at baseline.

o
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. list, sepby(id)

id  time0 time wgt death _st d  _t _to
1. 1 0 2 114 0 1 0 2 0
2. 1 3 11 114 1 1 1 11 3
3. 2 0 2 120 0 1 0 2 0
4. 2 3 11 120 1 1 1 11 3
5. 3 0 2 108 1 1 1 2 0
6. 3 2 7 108 1 1 1 7 2
7. 4 0 2 98 0 1 0 2 0
8. 4 3 4 98 1 1 1 4 3
9. 4 5 11 98 1 1 1 11 5

stbase with the at() option

stbase, at() produces a cross-sectional dataset recording the status of each subject at the
specified time. This new dataset is not st. Four “new” variables are created:

the first entry time for the subject,

the time on gap,

the time at risk, and

the number of failures during the time at risk.

The names given to those variables depend on how your data are stset. Pretend that your stset
command was

. stset varl, failure(var2) timeO(var3)

Then
the first entry time will be named var3 or timeO or _t0
the time on gap will be named gap() or gap or gaptime
the time at risk will be named varl
the number of (or whether) failures will be named var2 or failure or _d

The names may vary because, for instance, if you did not specify a var2 variable when you stset
your data, stbase, at() looks around for a name.

You need not memorize this; the names are obvious from the output produced by stbase, at().
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Consider the actions of stbase, at () with some particular st datasets. Pretend that the command
given is
. use https://www.stata-press.com/data/r18/stbasexmpl2, clear
. list, sepby(id)

id time0 time wgt death
1 1 0 2 114 0
2 1 2 8 110 0
3 1 8 11 118 1
4. 2 0 1 120 0
5. 2 1 3 111 0
6. 2 3 8 108 0
7. 2 8 10 98 1

. stset time, id(id) fail(death) timeO(timeO)
Survival-time data settings
ID variable: id
Failure event: death!=0 & death<.

Observed time interval: (time0O, time]
Exit on or before: failure

7 total observations
0 exclusions
7 observations remaining, representing
2 subjects
2 failures in single-failure-per-subject data
21 total analysis time at risk and under observation
At risk from t = 0
Earliest observed entry t = 0
Last observed exit t = 11

. list, sepby(id)

id  time0 time wgt death _st _d _t _t0O
1 1 0 2 114 0 1 0 2 0
2 1 2 8 110 0 0 8 2
3 1 8 11 118 1 1 1 11 8
4. 2 0 1 120 0 1 0 1 0
5. 2 1 3 111 0 1 0 3 1
6. 2 3 8 108 0 1 0 8 3
7. 2 8 10 98 1 1 1 10 8
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. stbase, at(5) replace

Failure _d: death
Analysis time _%: time
ID variable: id

Converting multiple-record data to cross-sectional data ...

Cross-sectional data
recording each subject status at time 5

Variable Description
id | Subject identifier
timeO | First entry time
gap | Time on gap
time | Time at risk
death | Number of failures during time at risk
Variable Obs Mean Std. dev. Min Max
time0 2 0 0 0 0
gap 2 0 0 0 0
time 2 5 0 5 5
death 2 0 0 0 0
. list
id wgt death time time0 gap
1. 1 114 0 5 0 0
2. 2 120 0 5 0 0

thus producing a cross-section at analysis time 5.

Note that the value of time specified with the at () option must correspond to time in the analysis
scale, that is, z. See [ST] stset for a definition of analysis time.

Single-failure st data where all subjects enter at time 0

The result of stbase, at(5) would be one record per subject. Any subject who was censored
before time 5 would not appear in the data; the rest would. Those that failed after time 5 will be
recorded as having been censored at time 5 (failvar = 0); those that failed at time 5 or earlier will
have failvar = 1.
timevar will contain

for the failures:
time of failure if failed on or before time 5 or
5 if the subject has not failed yet

for the censored:
5 if the subject has not failed yet

With such data, you could perform
e logistic regression of failvar on any of the characteristics or
e incidence-rate analysis, summing the failures (perhaps within strata) and the time at risk, timevar.

With these data, you could examine S5-year survival probabilities.
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Single-failure st data where some subjects enter after time 0

The data produced by stbase, at(5) would be similar to the above, except

e persons who enter on or after time 5 would not be included in the data (because they have not
entered yet) and

e the time at risk, timevar, would properly account for the time at which each patient entered.
timevar (the time at risk) will contain
for the failures:

time of failure if failed on or before time 5 (or less because
or less the subject may not have entered at time 0); or

5 or less if the subject has not failed yet (or less
because the subject may not have entered at time 0)

for the censored:
5 or less if the subject has not failed yet (or less
because the subject may not have entered at time 0)

Depending on the analysis you are performing, you may have to discard those that enter late. This
is easy to do because tO contains the first time of entry.

With these data, you could perform the following:

e Logistic regression of failvar on any of the characteristics, but only if you restricted the sample
to 1f t0==0 because those who entered after time O have a lesser risk of failing over the fixed
interval.

e Incidence-rate analysis, summing the failures (perhaps within stratum) and the time at risk,
timevar. Here you would have to do nothing differently from what you did in the previous
example. The time-at-risk variable already includes the time of entry for each patient.

Single-failure st data with gaps and perhaps delayed entry
These data will be similar to the delayed-entry, no-gap data, but gap will contain O only for those
observations that have no gap.
If analyzing these data, you could perform
e logistic regression, but the sample must be restricted to if t0==0 & gap==0, or

e incidence-rate analysis, and nothing would need to be done differently; the time at risk, timevar,
accounts for late entry and gaps.

Multiple-failure st data

The multiple-failure case parallels the single-failure case, except that fail will not solely contain
0 and 1; it will contain O, 1, 2, ..., depending on the number of failures observed. Regardless of
late entry, gaps, etc., you could perform

e Poisson regression of fail, the number of events, but remember to specify exposure (timevar),
and

e incidence-rate analysis.
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Also see

[ST] stfill — Fill in by carrying forward values of covariates

[ST] stset — Declare data to be survival-time data



Title

stci — Confidence intervals for means and percentiles of survival time
Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see
Description

stci computes means and percentiles of survival time, standard errors, and confidence intervals.
For multiple-event data, survival time is the time until a failure.

stci can be used with single- or multiple-record or single- or multiple-failure st data.

Quick start

Median survival time with standard error and 95% confidence interval using stset data
stci

Also report medians with standard errors and confidence intervals for each level of v1
stci, by(vl)

Same as above, but report 99% confidence intervals
stci, by(vl) level(99)

Report the 75th percentile of survival times instead of the medians
stci, by(vl) p(75)

Mean survival time, computed by exponentially extending curve to zero if last follow-up time is
censored

stci, emean

Same as above, and plot the extended survivor function
stci, emean graph

Menu

Statistics > Survival analysis > Summary statistics, tests, and tables > Cls for means and percentiles of survival
time
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Syntax
stci [lf] [zn} [ , optians]

options Description

Main
by (varlist) perform separate calculations for each group of varlist
median calculate median survival times; the default
rmean calculate mean survival time restricted to longest follow-up time
emean calculate the mean survival time by exponentially extending the survival

curve to zero

p@® compute the # percentile of survival times
ccorr calculate the standard error for rmean using a continuity correction
noshow do not show st setting information
dd (#) set maximum number of decimal digits to report
level (#) set confidence level; default is 1level (95)
graph plot exponentially extended survivor function
tmax (#) set maximum analysis time of # to be plotted

Plot
cline_options affect rendition of the plotted lines

Add plots
addplot (plot) add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

twoway_options any options other than by () documented in [G-3] twoway_options

You must stset your data before using stci; see [ST] stset.
by and collect are allowed; see [U] 11.1.10 Prefix commands.

Options

Main

by (varlist) specifies that separate calculations be made for each group identified by equal values of
the variables in varlist, resulting in separate summaries and an overall total. varlist may contain
any number of variables, each of which may be string or numeric.

median specifies median survival times. This is the default.

rmean and emean specify mean survival times. If the longest follow-up time is censored, emean
(extended mean) computes the mean survival by exponentially extending the survival curve to zero,
and rmean (restricted mean) computes the mean survival time restricted to the longest follow-up
time. If the longest follow-up time is a failure, the restricted mean survival time and the extended
mean survival time are equal.

p(# specifies the percentile of survival time to be computed. For example, p(25) will compute the
25th percentile of survival times, and p(75) will compute the 75th percentile of survival times.
Specifying p(50) is the same as specifying the median option.

ccorr specifies that the standard error for the restricted mean survival time be computed using a
continuity correction. ccorr is valid only with the rmean option.
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noshow prevents stci from showing the key st variables. This option is seldom used because most
people type stset, show or stset, noshow to set whether they want to see these variables
mentioned at the top of the output of every st command; see [ST] stset.

dd (#) specifies the maximum number of decimal digits to be reported for standard errors and
confidence intervals. This option affects only how values are reported and not how they are
calculated.

level (#) specifies the confidence level, as a percentage, for confidence intervals. The default is
level(95) or as set by set level; see [U] 20.8 Specifying the width of confidence intervals.

graph specifies that the exponentially extended survivor function be plotted. This option is valid only
when the emean option is also specified and is not valid in conjunction with the by () option.

tmax (#) is for use with the graph option. It specifies the maximum analysis time to be plotted.

Plot

cline_options affect the rendition of the plotted lines; see [G-3] cline_options.

Add plots

addplot (plot) provides a way to add other plots to the generated graph; see [G-3] addplot_option.

Y axis, X axis, Titles, Legend, Overall |

twoway_options are any of the options documented in [G-3] twoway_options, excluding by (). These
include options for titling the graph (see [G-3] title_options) and for saving the graph to disk (see
[G-3] saving _option).

Remarks and examples

Remarks are presented under the following headings:

Single-failure data
Multiple-failure data
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Single-failure data

Here is an example of stci with single-record survival data:

. use https://www.stata-press.com/data/r18/page2

. stset, noshow

. stci
Number of
subjects 50% Std. err. [95% conf. intervall
Total 40 232 2.562933 213 239
. stci, by(group)
Number of
group subjects 50% Std. err. [95% conf. intervall
1 19 216 7.661029 190 234
2 21 233 3.081611 232 280
Total 40 232 2.562933 213 239

In the example above, we obtained the median survival time, by default.

To obtain the 25th or any other percentile of survival time, specify the p(#) option.

. stci, p(25)
Number of
subjects 257 Std. err. [95% conf. intervall
Total 40 198 10.76878 164 220
. stci, p(25) by(group)
Number of
group subjects 257, Std. err. [95% conf. intervall
1 19 190 13.43601 143 213
2 21 232 19.42378 142 233
Total 40 198 10.76878 164 220

The p-percentile of survival time is the analysis time at which p% of subjects have failed and 1 — p%
have not. In the table above, 25% of subjects in group 1 failed by time 190, whereas 25% of subjects
in group 2 failed by time 232, indicating a better survival experience for this group.
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We can verify the quantities reported by stci by plotting and examining the Kaplan—Meier survival
curves.

. sts graph, by(group)

Kaplan-Meier survival estimates

1.00
0.754
0,504 —— group=1
—— group =2

0.25
0.001

T T T T T
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Analysis time

The mean survival time reported by rmean is calculated as the area under the Kaplan—Meier
survivor function. If the observation with the largest analysis time is censored, the survivor function
does not go to zero. Consequently, the area under the curve underestimates the mean survival time.

In the graph above, the survival probability for group = 1 goes to 0 at analysis time 344, but
the survivor function for group = 2 never goes to 0. For these data, the mean survival time for
group = 1 will be properly estimated, but it will be underestimated for group = 2. When we specify
the rmean option, Stata informs us if any of the mean survival times is underestimated.

. stci, rmean by(group)

Number of Restricted
group subjects mean Std. err. [95% conf. intervall
1 19 218.7566 9.122424 200.877 236.636
2 21 241.8571(*) 11.34728 219.617 264.097
Total 40 231.3522(*) 7.700819 216.259 246.446

(*) largest observed analysis time is censored, mean is underestimated

Stata flagged the mean for group = 2 and the overall mean as being underestimated.

If the largest observed analysis time is censored, stci’s emean option extends the survivor function
from the last observed time to zero by using an exponential function and computes the area under
the entire curve.

. stci, emean

Number of Extended
subjects mean
Total | 40 234.2557

The resulting area must be evaluated with care because it is an ad hoc approximation that can at
times be misleading. We recommend that you plot and examine the extended survivor function. This
is facilitated by the use of stci’s graph option.
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. stci, emean graph

Exponentially extended survivor function

Survival probability

T
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stci also works with multiple-record survival data. Here is a summary of the multiple-record
Stanford heart transplant data introduced in [ST] stset:

. use https://www.stata-press.com/data/r18/stan3
(Heart transplant data)

. stset, noshow

. stci
Number of
subjects 50% Std. err. [95% conf. intervall
Total | 103 100 38.64425 69 219

stci with the by () option may produce results with multiple-record data that you might think
are in error:

. stci, by(posttran)

Number of
posttran subjects 50% Std. err. [95% conf. intervall
0 103 149 43.81077 69 340
1 69 96 58.71712 45 285
Total 103 100 38.64425 69 219

For the number of subjects, 103 + 69 # 103. The posttran variable is not constant for the subjects
in this dataset:

. stvary posttran

Subjects for whom the variable is
never always sometimes
Variable | constant varying missing missing missing

posttran | 34 69 103 0 0
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In this dataset, subjects have one or two records. All subjects were eligible for heart transplantation.
They have one record if they die or are lost because of censoring before transplantation, and they
have two records if the operation was performed. Then the first record records their survival up to
transplantation, and the second records their subsequent survival. posttran is 0 in the first record
and 1 in the second.

Therefore, all 103 subjects have records with posttran = 0, and when stci reported results for
this group, it summarized the pretransplantation survival. The median survival time was 149 days.

The posttran = 1 line of stci’s output summarizes the posttransplantation survival: 69 patients
underwent transplantation, and the median survival time was 96 days. For these data, this is not 96
more days, but 96 days in total. That is, the clock was not reset on transplantation. Thus, without
attributing cause, we can describe the differences between the groups as an increased hazard of death
at early times followed by a decreased hazard later.

Multiple-failure data

If you simply type stci with multiple-failure data, the reported survival time is the survival time
to the first failure, assuming that the hazard function is not indexed by number of failures.

Here we have some multiple-failure data:

. use https://www.stata-press.com/data/r18/mfail2

. st
-> stset t, id(id) failure(d) timeO(t0) exit(time .) noshow

Survival-time data settings

ID variable: id
Failure event: d!=0 & d<.
Observed time interval: (t0, t]
Exit on or before: time .

. stci
Number of
subjects 50% Std. err. [95% conf. intervall
Total | 926 420 13.42537 394 451

To understand this output, let’s also obtain output for each failure separately:

. stgen nf = nfailures()

. stci, by(nf)

Number of
nf subjects 50% Std. err. [95% conf. intervall
0 926 399 13.91796 381 430
1 529 503 28.53425 425 543
2 221 687 69.38412 549 817
3 58
Total 926 420 13.42537 394 451

The stgen command added, for each subject, a variable containing the number of previous failures.
nf is 0 for a subject, up to and including the first failure. Then nf is 1 up to and including the
second failure, and then it is 2, and so on; see [ST] stgen.

The first line, corresponding to nf = 0, states that among those who had experienced no failures
yet, the median time to first failure is 399.
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Similarly, the second line, corresponding to nf = 1, is for those who have already experienced
one failure. The median time of second failures is 503.

When we simply typed stci, we obtained the same information shown as the total line of the
more detailed output. The total survival time distribution is an estimate of the distribution of the time
to first failure, assuming that the hazard function, h(t), is the same across failures—that the second
failure is no different from the first failure. This is an odd definition of same because the clock, ¢,
is not reset in h(t) upon failure. The hazard of a failure—any failure—at time ¢ is h(t).

Another definition of same would have it that the hazard of a failure is given by h(7), where 7
is the time since the last failure—that the process resets itself. These definitions are different unless
h() is a constant function of t.

Let’s examine this multiple-failure data, assuming that the process repeats itself. The key variables
in this st data are id, tO, t, and d:
. st
-> stset t, id(id) failure(d) time0O(t0) exit(time .) noshow
Survival-time data settings

ID variable: id
Failure event: d!=0 & d<.
Observed time interval: (t0, t]
Exit on or before: time .

Our goal, for each subject, is to reset t0 and t to O after every failure event. We must trick Stata, or
at least trick stset because it will not let us set data where the same subject has multiple records
summarizing the overlapping periods. The trick is create a new id variable that is different for every
id—nf combination (remember, nf is the variable we previously created that records the number of
prior failures). Then each of the “new” subjects can have their clock start at time 0:

. egen newid = group(id nf)

. sort newid t

. by newid: replace t = t - tO[1]

(808 real changes made)

. by newid: gen newtO = t0 - tO0[1]

. stset t, failure(d) id(newid) timeO(newtO)
Survival-time data settings

ID variable: newid
Failure event: d!=0 & d<.
Observed time interval: (newtO, t]
Exit on or before: failure

1,734 total observations
0 exclusions

1,734 observations remaining, representing
1,734 subjects
808 failures in single-failure-per-subject data
435,444 total analysis time at risk and under observation

At risk from t = 0
Earliest observed entry t = 0
Last observed exit t = 797

stset no longer thinks that we have multiple-failure data. Whereas with id, subjects had multiple
failures, newid gives a unique identity to each id—nf combination. Each “new” subject has at most
one failure.
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. stci, by(af)
Failure _d: d
Analysis time _%: t
ID variable: newid

Number of
nf subjects 50% Std. err. [95% conf. intervall
0 926 399 13.91796 381 430
1 529 384 18.22987 359 431
2 221 444 29.80391 325 515
3 58
Total 1734 404 10.29992 386 430

Compare this table

with the one we previously obtained. The number of subjects is the same, but
the survival times differ because now we measure the times from one failure to the next, whereas
previously we measured the time from a fixed point. The time between events in these data appears
to be independent of event number.

Similarly, we can obtain the mean survival time for these data restricted to the longest follow-up

time:

. stci, rmean by(nf)
Failure _d: d
Analysis time _6: t
ID variable: newid

Number of Restricted

nf subjects mean Std. err. [95% conf. intervall
0 926 399.1802 8.872794 381.79 416.571

1 529 397.0077 (%) 13.36058 370.821 423.194

2 221 397.8051 (%) 25.78559 347.266 448.344

3 58 471(*) 0 471 471

Total 1734 404.7006 7.021657 390.938 418.463

(%) largest observed analysis time is censored, mean is underestimated

Stored results

stci stores the following in r():

Scalars
r(N_sub)
r (p#)
r(rmean)
r (emean)

number of subjects
#th percentile
restricted mean
extended mean

Methods and formulas

The percentiles of survival times are obtained from S(t), the Kaplan—Meier product-limit estimate

r(se)
r(1b)
r(ub)

standard error
lower bound of CI
upper bound of CI

of the survivor function. The 25th percentile, for instance, is obtained as the minimum value of ¢ such

that S(t) < 0.75. The restricted mean is obtained as the area under the Kaplan—Meier product-limit

survivor curve. The extended mean is obtained by extending the Kaplan—Meier product-limit survivor
curve to zero by using an exponentially fitted curve and then computing the area under the entire
curve. If the longest follow-up time ends in failure, the Kaplan—Meier product-limit survivor curve
goes to zero, and the restricted mean and extended mean are identical.
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The large-sample standard error for the pth percentile of the distribution is given by Collett (2015,
38) and Klein and Moeschberger (2003, 122) as

VVar(S(4,))

f(tp)

where \//;r{g (tp)} is the Greenwood pointwise variance estimate for 5 (tp) and f(tp) is the estimated
density function at the pth percentile.

Confidence intervals, however, are not calculated based on this standard error. For a given confidence
level, the upper confidence limit for the pth percentile is defined as the first time at which the upper
confidence limit for S(¢) (based on a In{— InS(¢)} transformation) is less than or equal to 1 —p/100,
and, similarly, the lower confidence limit is defined as the first time at which the lower confidence
limit of S(¢) is less than or equal to 1 — p/100.

The restricted mean is obtained as the area under the Kaplan—Meier product-limit survivor curve.
The extended mean is obtained by extending the Kaplan—Meier product-limit survivor curve to zero
by using an exponentially fitted curve and then computing the area under the entire curve. If the
longest follow-up time ends in failure, the Kaplan—Meier product-limit survivor curve goes to zero,
and the restricted mean and the extended mean are identical.

The standard error for the estimated restricted mean is computed as given by Klein and
Moeschberger (2003, 118) and Collett (2015, 390):

D =
SE — E PV P —
° — "\ Ri(Ri — d;)

where the sum is over all distinct failure times, A; is the estimated area under the curve from time i
to the maximum follow-up time, R; is the number of subjects at risk at time i, and d; is the number
of failures at time i.

The 100(1 — )% confidence interval for the estimated restricted mean is computed as

1?{1' i Zlfa/QS/]\E
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[ST] stdescribe — Describe survival-time data
[ST] stir — Report incidence-rate comparison
[ST] stptime — Calculate person-time, incidence rates, and SMR
[ST] sts — Generate, graph, list, and test the survivor and related functions
[ST] stset — Declare data to be survival-time data

[ST] stvary — Report variables that vary over time
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Description

stcox fits, via maximum likelihood, proportional hazards models on st data. stcox can be used
with single- or multiple-record or single- or multiple-failure st data.

Quick start

Cox proportional hazards model with covariates x1 and x2 using stset data
stcox x1 x2

Same as above, but using Efron method for tied failures

stcox x1 x2, efron

Different baseline hazards for strata defined by levels of svar
stcox x1 x2, strata(svar)

Adjust for complex survey design using svyset and stset data
svy: stcox x1 x2

Menu

Statistics > Survival analysis > Regression models > Cox proportional hazards (PH) model

77
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Syntax
stcox [indepvars] [zf] [in] [, options]
options Description
Model
estimate fit model without covariates
strata(varnames) strata ID variables
shared (varname) shared-frailty ID variable
offset (varname) include varname in model with coefficient constrained to 1
breslow use Breslow method to handle tied failures; the default
efron use Efron method to handle tied failures
exactm use exact marginal-likelihood method to handle tied failures
exactp use exact partial-likelihood method to handle tied failures

Time varying

tvc (varlist) specify covariates to be interacted with a function of time
texp (exp) specify a function of time; default is texp(_t)
SE/Robust
vce (veetype) vcetype may be oim, robust, cluster clustvar, bootstrap,
or jackknife
noadjust do not use standard degree-of-freedom adjustment
Reporting
level (#) set confidence level; default is 1level (95)
nohr report coefficients, not hazard ratios
noshow do not show st setting information
display_options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization
maximize_options control the maximization process; seldom used
coeflegend display legend instead of statistics

You must stset your data before using stcox; see [ST] stset.
varlist may contain factor variables; see [U] 11.4.3 Factor variables.

bootstrap, by, collect, fp, jackknife, mfp, mi estimate, nestreg, statsby, stepwise, and svy are allowed;
see [U] 11.1.10 Prefix commands.

vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix; see [MI] mi estimate.

estimate, shared(), efron, exactm, exactp, tvc(), texp(), vce(), and noadjust are not allowed with the svy
prefix; see [SVY] svy.

fweights, iweights, and pweights may be specified using stset; see [ST] stset. Weights are not supported with
efron and exactp. Also weights may not be specified if you are using the bootstrap prefix with the stcox
command.

coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Options

_ (Wogel

estimate forces fitting of the null model. All Stata estimation commands redisplay results when
the command name is typed without arguments. So does stcox. What if you wish to fit a Cox
model on x;3, where x;3 is defined as 0? Logic says that you would type stcox. There are no
explanatory variables, so there is nothing to type after the command. Unfortunately, this looks the
same as stcox typed without arguments, which is a request to redisplay results.

To fit the null model, type stcox, estimate.

strata(varnames) specifies up to five strata variables. Observations with equal values of the strata
variables are assumed to be in the same stratum. Stratified estimates (equal coefficients across
strata but with a baseline hazard distinct for each stratum) are then obtained.

shared (varname) specifies that a Cox model with shared frailty be fit. Observations with equal
value of varname are assumed to have shared (the same) frailty. Across groups, the frailties are
assumed to be gamma-distributed latent random effects that affect the hazard multiplicatively, or,
equivalently, the logarithm of the frailty enters the linear predictor as a random offset. Think of a
shared-frailty model as a Cox model for panel data. varname is a variable in the data that identifies
the groups. shared() is not allowed in the presence of delayed entries or gaps.

Shared-frailty models are discussed more in Cox regression with shared frailty.
offset (varname); see [R] Estimation options.

breslow, efron, exactm, and exactp specify the method for handling tied failures in the calculation
of the log partial likelihood (and residuals). breslow is the default. Each method is described in
Treatment of tied failure times. efron and the exact methods require substantially more computer
time than the default breslow option. exactm and exactp may not be specified with tvc(),
vce(robust), or vce(cluster clustvar).

Time varying

tve (varlist) specifies the variables to be included in the model as an interaction with a function of
time to form time-varying covariates. During estimation, these variables are interacted with analysis
time or with a function of analysis time specified in the texp() option. This is a convenience
option used to speed up calculations and to avoid having to stsplit (see [ST] stsplit) the data
over many failure times.

Most predictions are not available after estimation with tvc (). These predictions require that the
data be stsplit to generate the requested information; see help tvc note.

texp(exp) is used in conjunction with tvc(varlist) to specify the function of analysis time that
should be used to multiply covariates specified in the tvc () option to include in the model time-
varying covariates that are deterministic functions of time. For example, specifying texp(1n(_t))
would cause the covariates in option tvc() to be multiplied by the logarithm of analysis time.
If tvc (varlist) is used without texp (exp), Stata understands that you mean texp(_t) and thus
multiplies the covariates by the analysis time.

Both tvc(varlist) and texp(exp) are explained more in the section on Cox regression with
time-varying covariates using option tvc() below.

SE/Robust

vce (veetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory (oim), that are robust to some kinds of misspecification (robust), that
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allow for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods
(bootstrap, jackknife); see [R] vce_option.

noadjust is for use with vce (robust) or vce(cluster clustvar). noadjust prevents the estimated
variance matrix from being multiplied by N/(N — 1) or g/(g — 1), where g is the number of
clusters. The default adjustment is somewhat arbitrary because it is not always clear how to count
observations or clusters. In such cases, however, the adjustment is likely to be biased toward 1,
so we would still recommend making it.

Reporting

level (#); see [R] Estimation options.

nohr specifies that coefficients be displayed rather than exponentiated coefficients or hazard ratios.
This option affects only how results are displayed and not how they are estimated. nohr may be
specified at estimation time or when redisplaying previously estimated results (which you do by
typing stcox without a variable list).

noshow prevents stcox from showing the key st variables. This option is seldom used because most
people type stset, show or stset, noshow to set whether they want to see these variables
mentioned at the top of the output of every st command; see [ST] stset.

display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat (% fint), pformat (% fint),
sformat (% fmt), and nolstretch; see [R] Estimation options.

Maximization

maximize_options: iterate(#), [no} log, trace, tolerance(#), ltolerance (#),
nrtolerance(#), and nonrtolerance; see [R] Maximize. These options are seldom used.

The following option is available with stcox but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

Remarks and examples

Remarks are presented under the following headings:

Cox regression with uncensored data

Cox regression with censored data

Treatment of tied failure times

Cox regression with time-varying covariates in multiple-record data
Cox regression with time-varying covariates using option tvc()
Robust estimate of variance

Cox regression with multiple-failure data

Stratified estimation

Cox regression as Poisson regression

Cox regression with shared frailty

What follows is a summary of what can be done with stcox. For a complete tutorial, see Cleves,
Gould, and Marchenko (2016), which devotes three chapters to this topic.

In the Cox proportional hazards model (Cox 1972), the hazard is assumed to be

h(t) = ho(t) exp(Br21 + - - - + Brwk)
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The Cox model provides estimates of (1,..., [0, but provides no direct estimate of hg(t)—the
baseline hazard. Formally, the function ho(t) is not directly estimated, but it is possible to recover an
estimate of the baseline cumulative hazard Ho(t) and, from that, an estimate of the baseline survivor
function Sy (?).

stcox fits the Cox proportional hazards model; that is, it provides estimates of 3 and its variance—
covariance matrix. Estimates of Ho(t), So(t), and other predictions and diagnostics are obtained
with predict after stcox; see [ST] stcox postestimation. For information on fitting a Cox model
to survey data, see Cleves, Gould, and Marchenko (2016, sec. 9.5), and for information on handling
missing data, see Cleves, Gould, and Marchenko (2016, sec. 9.6).

stcox with the strata() option will produce stratified Cox regression estimates. In the stratified
estimator, the hazard at time ¢ for a subject in group ¢ is assumed to be

hi(t) = hos(t) exp(Brz1 + - - - + Brwr)

That is, the coefficients are assumed to be the same, regardless of group, but the baseline hazard can
be group specific.

Regardless of whether you specify strata(), the default variance estimate is to calculate the
conventional, inverse matrix of negative second derivatives. The theoretical justification for this
estimator is based on likelihood theory. The vce(robust) option instead switches to the robust
measure developed by Lin and Wei (1989). This variance estimator is a variant of the estimator
discussed in [U] 20.22 Obtaining robust variance estimates.

stcox with the shared () option fits a Cox model with shared frailty. A frailty is a group-specific
latent random effect that multiplies into the hazard function. The distribution of the frailties is gamma
with mean 1 and variance to be estimated from the data. Shared-frailty models are used to model
within-group correlation. Observations within a group are correlated because they share the same
frailty.

We give examples below with uncensored, censored, time-varying, and recurring failure data, but
it does not matter in terms of what you type. Once you have stset your data, to fit a model you
type stcox followed by the names of the explanatory variables. You do this whether your dataset
has single or multiple records, includes censored observations or delayed entry, or even has single or
multiple failures. You use stset to describe the properties of the data, and then that information is
available to stcox—and all the other st commands—so that you do not have to specify it again.

Cox regression with uncensored data

> Example 1

We wish to analyze an experiment testing the ability of emergency generators with a new-style
bearing to withstand overloads. For this experiment, the overload protection circuit was disabled, and
the generators were run overloaded until they burned up. Here are our data:
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. use https://www.stata-press.com/data/r18/kva
(Generator experiment)

. list
failtime load bearings
1. 100 15 0
2. 140 15 1
3. 97 20 0
4. 122 20 1
5. 84 25 0
6. 100 25 1
7. 54 30 0
8. 52 30 1
9. 40 35 0
10. 55 35 1
11. 22 40 0
12. 30 40 1

Twelve generators, half with the new-style bearings and half with the old, were allocated to this
destructive test. The first observation reflects an old-style generator (bearings = 0) under a 15-
kVA overload. It stopped functioning after 100 hours. The second generator had new-style bearings
(bearings = 1) and, under the same overload condition, lasted 140 hours. Paired experiments were
also performed under overloads of 20, 25, 30, 35, and 40 kVA.

We wish to fit a Cox proportional hazards model in which the failure rate depends on the amount
of overload and the style of the bearings. That is, we assume that bearings and load do not affect
the shape of the overall hazard function, but they do affect the relative risk of failure. To fit this
model, we type

. stset failtime
(output omitted )
. stcox load bearings

Failure _d: 1 (meaning all fail)
Analysis time _%: failtime

Iteration 0: Log likelihood = -20.274897
Iteration 1: Log likelihood = -10.515114
Iteration 2: Log likelihood = -8.8700259
Iteration 3: Log likelihood = -8.5915211
Iteration 4: Log likelihood = -8.5778991

Iteration 5: Log likelihood = -8.577853
Refining estimates:
Iteration 0: Log likelihood = -8.577853
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Cox regression with Breslow method for ties

No. of subjects = 12 Number of obs = 12
No. of failures = 12
Time at risk = 896

LR chi2(2) = 23.39

Log likelihood = -8.577853 Prob > chi2 = 0.0000

_t Haz. ratio Std. err. z P>|z]| [95% conf. intervall

load 1.52647 .2188172 2.95 0.003 1.152576 2.021653

bearings 0636433 .0746609 -2.35 0.019 .0063855 .6343223

We find that after controlling for overload, the new-style bearings result in a lower hazard and therefore

a longer survivor time.

Once an stcox model has been fit, typing stcox without arguments redisplays the previous results.
Options that affect the display, such as nohr—which requests that coefficients rather than hazard
ratios be displayed—-can be specified upon estimation or when results are redisplayed:

. stcox, nohr

Cox regression with Breslow method for ties

No. of subjects = 12 Number of obs = 12
No. of failures = 12
Time at risk = 896

LR chi2(2) = 23.39

Log likelihood = -8.577853 Prob > chi2 = 0.0000

_t | Coefficient Std. err. z P>zl [95% conf. intervall]

load 4229578 .1433485 2.95 0.003 .1419999 .7039157

bearings -2.754461 1.173115 -2.35 0.019 -5.053723 -.4551981

Q Technical note

stcox’s iteration log looks like a standard Stata iteration log up to where it says “Refining
estimates”. The Cox proportional-hazards likelihood function is indeed a difficult function, both
conceptually and numerically. Until Stata says “Refining estimates”, it maximizes the Cox likelihood
in the standard way by using double-precision arithmetic. Then just to be sure that the answers
are accurate, Stata switches to quad-precision routines (double double precision) and completes the
maximization procedure from its current location on the likelihood.

Cox regression with censored data

> Example 2

a

We have data on 48 participants in a cancer drug trial. Of these 48, 28 receive treatment (drug = 1)
and 20 receive a placebo (drug = 0). The participants range in age from 47 to 67 years. We wish to
analyze time until death, measured in months. Our data include 1 observation for each patient. The
variable studytime records either the month of their death or the last month that they were known
to be alive. Some of the patients still live, so together with studytime is died, indicating their
health status. Persons known to have died—‘“noncensored” in the jargon—have died = 1, whereas
the patients who are still alive— “right-censored” in the jargon—have died = 0.
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Here is an overview of our data:

. use https://www.stata-press.com/data/r18/drugtr
(Patient survival in drug trial)

. st

-> stset studytime, failure(died)

Survival-time data settings

Failure event: died!=0 & died<.
Observed time interval: (0, studytime]

Exit on or before: failure
. summarize

Variable Obs Mean Std. dev. Min Max
studytime 48 15.5 10.25629 1 39
died 48 .6458333 .4833211 0 1
drug 48 .5833333 .4982238 0 1

age 48 55.875 5.659205 47 67

_st 48 1 0 1 1

_d 48 .6458333 .4833211 0 1

_t 48 15.5 10.25629 1 39

t0 48 0 0 0 0

We typed stset studytime, failure(died) previously; that is how st knew about this dataset.
To fit the Cox model, we type

. stcox drug age

Failure _d: died

Analysis time _%: studytime
Iteration 0: Log likelihood = -99.911448
Iteration 1: Log likelihood = -83.551879
Iteration 2: Log likelihood = -83.324009
Iteration 3: Log likelihood = -83.323546
Refining estimates:
Iteration 0: Log likelihood = -83.323546

Cox regression with Breslow method for ties
No. of subjects = 48 Number of obs = 48
No. of failures = 31
Time at risk = 744
LR chi2(2) = 33.18
Log likelihood = -83.323546 Prob > chi2 = 0.0000
_t | Haz. ratio Std. err. z P>|z| [95% conf. interval]
drug .1048772 .0477017 -4.96 0.000 .0430057 .2557622
age 1.120325 .0417711 3.06 0.002 1.041375 1.20526

We find that the drug results in a lower hazard—and therefore a longer survivor time—controlling
for age. Older patients are more likely to die. The model as a whole is statistically significant.

The hazard ratios reported correspond to a one-unit change in the corresponding variable. It is
more typical to report relative risk for 5-year changes in age. To obtain such a hazard ratio, we create
a new age variable such that a one-unit change indicates a 5-year change:
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. replace age = age/5
variable age was byte now float
(48 real changes made)

. stcox drug age, nolog
Failure _d: died
Analysis time _%: studytime

Cox regression with Breslow method for ties

No. of subjects = 48 Number of obs = 48
No. of failures = 31
Time at risk = 744

LR chi2(2) = 33.18

Log likelihood = -83.323544 Prob > chi2 = 0.0000

_t | Haz. ratio Std. err. z P>zl [95% conf. intervall]

drug .1048772 .0477017 -4.96 0.000 .0430057 .2557622

age 1.764898 .3290196 3.05 0.002 1.224715 2.543338

Treatment of tied failure times

The proportional hazards model assumes that the hazard function is continuous and, thus, that there
are no tied survival times. Because of the way that time is recorded, however, tied events do occur
in survival data. In such cases, the partial likelihood must be modified. See Methods and formulas
for more details on the methods described below.

Stata provides four methods for handling tied failures in calculating the Cox partial likelihood
through the breslow, efron, exactm, and exactp options. If there are no ties in the data, the
results are identical, regardless of the method selected.

Cox regression is a series of comparisons of those subjects who fail to those subjects at risk of
failing; we refer to the latter set informally as a risk pool. When there are tied failure times, we must
decide how to calculate the risk pools for these tied observations. Assume that there are 2 observations
that fail in succession. In the calculation involving the second observation, the first observation is not
in the risk pool because failure has already occurred. If the two observations have the same failure
time, we must decide how to calculate the risk pool for the second observation and in which order
to calculate the two observations.

There are two views of time. In the first, time is continuous, so ties should not occur. If they have
occurred, the likelihood reflects the marginal probability that the tied-failure events occurred before
the nonfailure events in the risk pool (the order that they occurred is not important). This is called
the exact marginal likelihood (option exactm).

In the second view, time is discrete, so ties are expected. The likelihood is changed to reflect this
discreteness and calculates the conditional probability that the observed failures are those that fail in
the risk pool given the observed number of failures. This is called the exact partial likelihood (option
exactp).

Let’s assume that there are five subjects—eq, ea, €3, €4, and es—in the risk pool and that subjects
e1 and ey fail. Had we been able to observe the events at a better resolution, we might have seen that
e failed from risk pool e + e2 + e3 + e4 + e5 and then ey failed from risk pool es + €3 + €4 + €e5.
Alternatively, es might have failed first from risk pool e; + e2 + e3 + e4 + €5, and then e; failed
from risk pool e; 4 e3 + e4 + es.
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The Breslow method (option breslow) for handling tied values simply says that because we do
not know the order, we will use the largest risk pool for each tied failure event. This method assumes
that both e; and ey failed from risk pool e; + e2 + e3 + e4 + e5. This approximation is fast and
is the default method for handling ties. If there are many ties in the dataset, this approximation will
not be accurate because the risk pools include too many observations. The Breslow method is an
approximation of the exact marginal likelihood.

The Efron method (option efron) for handling tied values assumes that the first risk pool is
e1 + e2 + es + e4 + e5 and the second risk pool is either e 4+ e3 + e4 + e5 or e; + e3 + e4 + es5.
From this, Efron noted that the e; and ez terms were in the second risk pool with probability 1/2
and so used for the second risk pool .5(e; + e2) + e5 + e4 + e5. Efron’s approximation is a more
accurate approximation of the exact marginal likelihood than Breslow’s but takes longer to calculate.

The exact marginal method (option exactm) is a misnomer in that the calculation performed is
also an approximation of the exact marginal likelihood. It is an approximation because it evaluates
the likelihood (and derivatives) by using 15-point Gauss—Laguerre quadrature. For small-to-moderate
samples, this is slower than the Efron approximation, but the difference in execution time diminishes
when samples become larger. You may want to consider the quadrature when deciding to use this
method. If the number of tied deaths is large (on average), the quadrature approximation of the
function is not well behaved. A little empirical checking suggests that if the number of tied deaths
is larger (on average) than 30, the quadrature does not approximate the function well.

When we view time as discrete, the exact partial method (option exactp) is the final method
available. This approach is equivalent to computing conditional logistic regression where the groups
are defined by the risk sets and the outcome is given by the death variable. This is the slowest method
to use and can take a significant amount of time if the number of tied failures and the risk sets are
large.

Cox regression with time-varying covariates in multiple-record data

> Example 3

In [ST] stset, we introduce the Stanford heart transplant data in which there are one or two records
per patient depending on whether they received a new heart.

This dataset (Crowley and Hu 1977) consists of 103 patients admitted to the Stanford Heart
Transplantation Program. Patients were admitted to the program after review by a committee and then
waited for an available donor heart. While waiting, some patients died or were transferred out of the
program, but 67% received a transplant. The dataset includes the year the patient was accepted into
the program along with the patient’s age, whether the patient had other heart surgery previously, and
whether the patient received a transplant.

In the data, posttran becomes 1 when a patient receives a new heart, so it is a time-varying
covariate. That does not, however, affect what we type to fit the model:
. use https://www.stata-press.com/data/r18/stan3, clear
(Heart transplant data)

. stset t1, failure(died) id(id)
(output omitted )
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. stcox age posttran surg year

Failure _d: died

Analysis time _%: ti1

ID variable: id
Iteration 0: Log likelihood = -298.31514
Iteration 1: Log likelihood = -289.7344
Iteration 2: Log likelihood = -289.53498
Iteration 3: Log likelihood = -289.53378
Iteration 4: Log likelihood = -289.53378
Refining estimates:
Iteration 0: Log likelihood = -289.53378

Cox regression with Breslow method for ties

No. of subjects = 103 Number of obs = 172
No. of failures = 75
Time at risk = 31,938.1

LR chi2(4) = 17.56

Log likelihood = -289.53378 Prob > chi2 = 0.0015

_t | Haz. ratio Std. err. z P>|z| [95% conf. intervall

age 1.030224 .0143201 2.14 0.032 1.002536 1.058677

posttran .9787243 .3032597 -0.07 0.945 .5332291 1.796416

surgery .3738278 .163204 -2.25 0.024 .1588759 .8796

year .8873107 .059808 -1.77 0.076 .7775022 1.012628

We find that older patients have higher hazards, that patients tend to do better over time, and that
patients with prior surgery do better. Whether a patient ultimately receives a transplant does not seem
to make much difference.

4

Cox regression with time-varying covariates using option tvc()

The basic proportional hazards regression assumes the relationship

h(t) = ho(t) exp(Biw1 + - - - + Brxy)

where h(t) is the baseline hazard function. For most purposes, this model is sufficient, but sometimes
we may wish to introduce variables of the form z;(t) = z;¢(¢), which vary continuously with time
so that

h(t) = ho(t)exp{Brx1 + -+ + Brwk + () (V121 + -+ + Ym2m) } (1)
where 21,...,2,, are baseline (constant) covariates and where estimation has the net effect of
estimating, say, a regression coefficient, v;, for a covariate, g(t)zi, which is a function of the current
time.

Variables 21, . . ., z, are specified by using the tvc (varlist) option, and g(t) is specified by using
the texp(exp) option, where ¢ in g(¢) is analysis time. For example, if we want g(¢) = log(t), we
would use texp(log(_t)) because _t stores the analysis time once the data are stset.

Because the calculations in Cox regression are based on evaluations of the partial log likelihood
at the times when failures occur, the above results could also be achieved by using stsplit to split
the data at the observed failure times and manually generating the time-varying covariates. tvc ()
merely represents a more convenient way to accomplish this. However, for large datasets with many
distinct failure times, using stsplit may produce datasets that are too large to fit in memory, and
even if this were not so, the estimation would take far longer to complete. For these reasons, the
tve() and texp() options described above were introduced.
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> Example 4

Consider a dataset consisting of 45 observations on recovery time from walking pneumonia.
Recovery time (in days) is recorded in the variable time, and there are measurements on the
covariates age, drugl, and drug2, where drugl and drug?2 interact a choice of treatment with initial
dosage level. The study was terminated after 30 days, so those who had not recovered by that time
were censored (cured = 0).

. use https://www.stata-press.com/data/r18/drugtr2
. list age drugl drug2 time cured in 1/12, separator(0)

age drugl drug2 time cured
1. 36 0 50 20.6 1
2. 14 0 50 6.8 1
3. 43 0 125 8.6 1
4. 25 100 0 10 1
5. 50 100 0 30 0
6. 26 0 100 13.6 1
7. 21 150 0 5.4 1
8. 25 0 100 15.4 1
9. 32 125 0 8.6 1
10. 28 150 0 8.5 1
11. 34 0 100 30 0
12. 40 0 50 30 0

Patient 1 took 50 mg of drug number 2 and was cured after 20.6 days, whereas patient 5 took 100
mg of drug number 1 and had yet to recover when the study ended and so was censored at 30 days.

We run a standard Cox regression after stsetting the data:

. stset time, failure(cured)
Survival-time data settings

Failure event: cured!=0 & cured<.
Observed time interval: (0, time]
Exit on or before: failure

45 total observations
0 exclusions

45 observations remaining, representing
36 failures in single-record/single-failure data
677.9 total analysis time at risk and under observation
At risk from t =
Earliest observed entry t = 0
Last observed exit t = 30

|
o
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. stcox age drugl drug?2
Failure _d: cured

Analysis time _%: time

Iteration 0: Log likelihood = -116.54385
Iteration 1: Log likelihood = -102.77311
Iteration 2: Log likelihood = -101.92794
Iteration 3: Log likelihood = -101.92504
Iteration 4: Log likelihood = -101.92504
Refining estimates:

Iteration 0: Log likelihood = -101.92504

Cox regression with Breslow method for ties
No. of subjects = 45 Number of obs = 45

No. of failures = 36
Time at risk = 677.9
LR chi2(3) = 29.24
Log likelihood = -101.92504 Prob > chi2 = 0.0000
_t | Haz. ratio Std. err. z P>|z| [95% conf. intervall
age .8759449 .0253259 -4.58 0.000 .8276873 .9270162
drugl 1.008482 .0043249 1.97 0.049 1.000041 1.016994
drug?2 1.00189 .0047971 0.39 0.693 .9925323 1.011337

The output includes p-values for the tests of the null hypotheses that each regression coefficient
is 0 or, equivalently, that each hazard ratio is 1. That all hazard ratios are apparently close to 1 is
a matter of scale; however, we can see that drug number 1 significantly increases the risk of being
cured and so is an effective drug, whereas drug number 2 is ineffective (given the presence of age
and drug number 1 in the model).

Suppose now that we wish to fit a model in which we account for the effect that as time goes
by, the actual level of the drug remaining in the body diminishes, say, at an exponential rate. If it is
known that the half-life of both drugs is close to 2 days, we can say that the actual concentration
level of the drug in the patient’s blood is proportional to the initial dosage times, exp(—0.35t), where
t is analysis time. We now fit a model that reflects this change.

. stcox age, tvc(drugl drug2) texp(exp(-0.35*%_t)) nolog

Failure _d: cured

Analysis time _%: time

Cox regression with Breslow method for ties

No. of subjects = 45 Number of obs = 45
No. of failures = 36
Time at risk = 677.9
LR chi2(3) = 36.98
Log likelihood = -98.052763 Prob > chi2 = 0.0000
_t | Haz. ratio Std. err. z P>|z| [95% conf. intervall]
main
age .8614636 .028558 -4.50 0.000 .8072706 .9192948
tve
drugil 1.304744 .1135967 3.06 0.002 1.100059 1.547514
drug?2 1.200613 .1113218 1.97 0.049 1.001103 1.439882

Note: Variables in tvc equation interacted with exp(-0.35%_t).

The first equation, main, reports the results (hazard ratios) for the covariates that do not vary over
time; the second equation, tvc, reports the results for the time-varying covariates.
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As the level of drug in the blood system decreases, the drug’s effectiveness diminishes. Accounting
for this serves to unmask the effects of both drugs in that we now see increased effects on both. In
fact, the effect on recovery time of drug number 2 now becomes significant.

Q Technical note

The interpretation of hazard ratios requires careful consideration here. For the first model, the
hazard ratio for, say, drugl is interpreted as the proportional change in hazard when the dosage level
of drug1 is increased by one unit. For the second model, the hazard ratio for drugl is the proportional
change in hazard when the blood concentration level—that is, drugl*exp(—0.35¢)—increases by 1.

a

Because the number of observations in our data is relatively small, for illustrative purposes we
can stsplit the data at each recovery time, manually generate the blood concentration levels, and
refit the second model.

. generate id=_n
. streset, id(id)
(output omitted )

. stsplit, at(failures)
(31 failure times)
(812 observations (episodes) created)
. generate druglemt = drugl*exp(-0.35%_t)
. generate drug2emt = drug2*exp(-0.35%_t)
. stcox age druglemt drug2emt
Failure _d: cured
Analysis time _t: time
ID variable: id

Iteration 0: Log likelihood = -116.54385
Iteration 1: Log likelihood = -99.321912
Iteration 2: Log likelihood = -98.07369
Iteration 3: Log likelihood = -98.05277

Iteration 4: Log likelihood = -98.052763
Refining estimates:
Iteration 0: Log likelihood = -98.052763

Cox regression with Breslow method for ties

No. of subjects = 45 Number of obs = 857
No. of failures = 36
Time at risk = 677.9

LR chi2(3) = 36.98

Log likelihood = -98.052763 Prob > chi2 = 0.0000

_t Haz. ratio Std. err. z P>|z]| [95% conf. intervall

age .8614636 .028558 -4.50 0.000 .8072706 .9192948

druglemt 1.304744 .1135967 3.06 0.002 1.100059 1.547514

drug2emt 1.200613 .1113218 1.97 0.049 1.001103 1.439882

We get the same answer. However, this required more work both for Stata and for you.

N

Above we used tvc() and texp() to demonstrate fitting models with time-varying covariates, but
these options can also be used to fit models with time-varying coefficients. For simplicity, consider
a version of (1) that contains only one fixed covariate, x1, and sets 21 = Z1:

h(t) = ho(t) exp{Brz1 + g(t) 171}
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Rearranging terms results in

h(t) = ho(t) exp [{ 51 + 1g(t)} 1]

Given this new arrangement, we consider that 51 + 1 g(t) is a (possibly) time-varying coefficient
on the covariate 1, for some specified function of time g(t). The coefficient has a time-invariant
component, 31, with ; determining the magnitude of the time-dependent deviations from (1. As
such, a test of y; = 0 is a test of time invariance for the coefficient on z;.

Confirming that a coefficient is time invariant is one way of testing the proportional-hazards
assumption. Proportional hazards implies that the relative hazard (that is, () is fixed over time, and
this assumption would be violated if a time interaction proved significant.

> Example 5

Returning to our cancer drug trial, we now include a time interaction on age as a way of testing
the proportional-hazards assumption for that covariate:

. use https://www.stata-press.com/data/r18/drugtr, clear
(Patient survival in drug trial)

. stcox drug age, tvc(age)

Failure _d: died
Analysis time _%: studytime

Iteration 0: Log likelihood = -99.911448
Iteration 1: Log likelihood = -83.328648
Iteration 2: Log likelihood = -83.095631
Iteration 3: Log likelihood = -83.095036
Refining estimates:

Iteration 0: Log likelihood

-83.095036

Cox regression with Breslow method for ties

No. of subjects = 48 Number of obs = 48
No. of failures = 31
Time at risk = 744
LR chi2(3) = 33.63
Log likelihood = -83.095036 Prob > chi2 = 0.0000
_t | Haz. ratio Std. err. z P>|z| [95% conf. intervall]
main
drug .1059862 .0478178 -4.97 0.000 .0437737 .2566171
age 1.156977 .07018 2.40 0.016 1.027288 1.303037
tvce
age .9970966 .0042415 -0.68 0.494 .988818 1.005445

Note: Variables in tve equation interacted with _%.

We used the default function of time, g(t) = t, although we could have specified otherwise with
the texp() option. The estimation results are presented in terms of hazard ratios, and so 0.9971 is
an estimate of exp(Yage). Tests of hypotheses, however, are in terms of the original metric, and so
0.494 is the significance for the test of Hy: yage = 0 versus the two-sided alternative. With respect
to this specific form of misspecification, there is not much evidence to dispute the proportionality of
hazards when it comes to age.

N
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Robust estimate of variance

By default, stcox produces the conventional estimate for the variance—covariance matrix of the
coefficients (and hence the reported standard errors). If, however, you specify the vce(robust)
option, stcox switches to the robust variance estimator (Lin and Wei 1989).

The key to the robust calculation is using the efficient score residual for each subject in the data for
the variance calculation. Even in simple single-record, single-failure survival data, the same subjects
appear repeatedly in the risk pools, and the robust calculation needs to account for that.

> Example 6

Refitting the Stanford heart transplant data model with robust standard errors, we obtain
. use https://www.stata-press.com/data/r18/stan3
(Heart transplant data)
. stset t1, failure(died) id(id)
Survival-time data settings

ID variable: id
Failure event: died!=0 & died<.
Observed time interval: (ti1[_n-1], t1i]
Exit on or before: failure

172 total observations
0 exclusions

172 observations remaining, representing
103 subjects
75 failures in single-failure-per-subject data
31,938.1 total analysis time at risk and under observation
At risk from t =
Earliest observed entry t
Last observed exit t = 1,799

o
o o
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. stcox age posttran surg year, vce(robust)

Failure _d: died
Analysis time _%: t1
ID variable: id

Iteration 0: Log pseudolikelihood = -298.31514
Iteration 1: Log pseudolikelihood = -289.7344
Iteration 2: Log pseudolikelihood = -289.53498
Iteration 3: Log pseudolikelihood = -289.53378
Iteration 4: Log pseudolikelihood = -289.53378
Refining estimates:

Iteration 0: Log pseudolikelihood = -289.53378

Cox regression with Breslow method for ties

No. of subjects = 103 Number of obs = 172
No. of failures = 75
Time at risk = 31,938.1
Wald chi2(4) = 19.68
Log pseudolikelihood = -289.53378 Prob > chi2 = 0.0006
(Std. err. adjusted for 103 clusters in id)
Robust
_t | Haz. ratio std. err. z P>|z| [95% conf. intervall]
age 1.030224 .0148771 2.06 0.039 1.001474 1.059799
posttran .9787243 .2961736 -0.07 0.943 .5408498 1.771104
surgery .3738278 .1304912 -2.82 0.005 .1886013 . 7409665
year .8873107 .0613176 -1.73 0.084 .7749139 1.01601

Note the word Robust above std. err. in the table and the phrase “Std. err. adjusted for 103
clusters in id” above the table.

The hazard ratio estimates are the same as before, but the standard errors are slightly different.

d

Q Technical note

In the previous example, stcox knew to specify vce(cluster id) for us when we specified
vce(robust).

To see the importance of vce (cluster id), consider simple single-record, single-failure survival
data, a piece of which is

t0 t died X
0 5 1 1
0 9 0 1
0 8 0 0

and then consider the absolutely equivalent multiple-record survival data:

id t0
0

W wWNN -
W o o,”Oo Ww

0 WwWo U w
OO K, RFPEFE M

Both datasets record the same underlying data, and so both should produce the same numerical results.
This should be true regardless of whether vce (robust) is specified.
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In the second dataset, were we to ignore id, it would appear that there are 6 observations on 6
subjects. The key ingredients in the robust calculation are the efficient score residuals, and viewing
the data as 6 observations on 6 subjects produces different score residuals. Let’s call the 6 score
residuals s, So, ..., Sg and the 3 score residuals that would be generated by the first dataset S7,
S5, and S3. S1 = 81 + 89, So = 83 + S4, and S3 = s5 + S¢.

That residuals sum is the key to understanding the vce(cluster clustvar) option. When you
specify vce(cluster id), Stata makes the robust calculation based not on the overly detailed s1,
S2, ..., Sg but on S7 + So, S3 + S4, and S5 + Sg. That is, Stata sums residuals within clusters
before entering them into subsequent calculations (where they are squared), so results estimated from
the second dataset are equal to those estimated from the first. In more complicated datasets with
time-varying regressors, delayed entry, and gaps, this action of summing within cluster, in effect,
treats the cluster (which is typically a subject) as a unified whole.

Because we had stset an id() variable, stcox knew to specify vce(cluster id) for us
when we specified vce(robust). You may, however, override the default clustering by specifying
vce(cluster clustvar) with a different variable from the one you used in stset, id(). This is
useful in analyzing multiple-failure data, where you need to stset a pseudo-ID establishing the time
from the last failure as the onset of risk.

a

Cox regression with multiple-failure data

> Example 7

In [ST] stsum, we introduce a multiple-failure dataset:

. use https://www.stata-press.com/data/r18/mfail

. stdescribe

Per subject 4|
Category Total Mean Min Median Max
Number of subjects 926
Number of records 1734 1.87257 1 2 4
Entry time (first) 0 0 0 0
Exit time (final) 470.6857 1 477 960
Subjects with gap 0
Time on gap 0 . . . .
Time at risk 435855 470.6857 1 477 960
Failures 808 .8725702 0 1 3

This dataset contains two variables—x1 and x2—which we believe affect the hazard of failure.
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If we simply want to analyze these multiple-failure data as if the baseline hazard remains unchanged
as events occur (that is, the hazard may change with time, but time is measured from 0 and is independent
of when the last failure occurred), we can type

. stcox x1 x2, vce(robust)

Iteration 0: Log pseudolikelihood = -5034.9569
Iteration 1: Log pseudolikelihood = -4978.4198
Iteration 2: Log pseudolikelihood = -4978.1915
Iteration 3: Log pseudolikelihood = -4978.1914

Refining estimates:
Iteration 0: Log pseudolikelihood = -4978.1914

Cox regression with Breslow method for ties

No. of subjects = 926 Number of obs = 1,734
No. of failures 808
Time at risk 435,855

Wald chi2(2) 152.13
Log pseudolikelihood = -4978.1914 Prob > chi2 = 0.0000

(Std. err. adjusted for 926 clusters in id)

Robust
_t | Haz. ratio std. err. z P>|z| [95% conf. intervall]
x1 2.273456 .1868211 9.99 0.000 1.935259 2.670755
x2 .329011 .0523425 -6.99 0.000 .2408754 .4493951

We chose to fit this model with robust standard errors—we specified vce (robust) —but you can
estimate conventional standard errors if you wish.

In [ST] stsum, we discuss analyzing this dataset as the time since last failure. We wished to assume
that the hazard function remained unchanged with failure, except that one restarted the same hazard
function. To that end, we made the following changes to our data:
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. stgen nf = nfailures()

. egen newid = group(id nf)
. sort newid t

. by newid: replace t = t - tO[1]

(808 real changes made)

. by newid: gen newtO = t0 - tO[1]

. stset t, id(newid) failure(d) timeO(newtO) noshow
Survival-time data settings

newid
d!=0 & d<.
(newt0, t]
failure

ID variable:

Failure event:
Observed time interval:
Exit on or before:

1,734 total observations
0 exclusions
1,734 observations remaining, representing
1,734 subjects
808 failures in single-failure-per-subject data
435,444 total analysis time at risk and under observation

At risk from t = 0
Earliest observed entry t 0
Last observed exit t = 797

That is, we took each subject and made many newid subjects out of each, with each subject entering
at time O (now meaning the time of the last failure). id still identifies a real subject, but Stata thinks
the identifier variable is newid because we stset, id(newid). If we were to fit a model with
vce(robust), we would get

. stcox x1 x2, vce(robust) nolog

Cox regression with Breslow method for ties

No. of subjects = 1,734 Number of obs = 1,734
No. of failures = 808
Time at risk = 435,444
Wald chi2(2) = 88.51
Log pseudolikelihood = -5062.5815 Prob > chi2 = 0.0000
(Std. err. adjusted for 1,734 clusters in newid)
Robust
_t | Haz. ratio std. err. z P>|z| [95% conf. intervall
x1 2.002547 .1936906 7.18 0.000 1.656733 2.420542
x2 .2946263 .0569167 -6.33 0.000 .2017595 .4302382

Note carefully the message concerning the clustering: standard errors have been adjusted for clustering
on newid. We, however, want the standard errors adjusted for clustering on id, so we must specify
the vce(cluster clustvar) option:
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. stcox x1 x2, vce(cluster id) nolog
Cox regression with Breslow method for ties

No. of subjects = 1,734 Number of obs = 1,734
No. of failures 808
Time at risk 435,444

Wald chi2(2) 93.66
Log pseudolikelihood = -5062.5815 Prob > chi2 = 0.0000

(Std. err. adjusted for 926 clusters in id)

Robust
_t | Haz. ratio std. err. z P>|z| [95% conf. intervall
x1 2.002547 .1920151 7.24 0.000 1.659452 2.416576
x2 .2946263 .0544625 -6.61 0.000 .2050806 .4232709

That is, if you are using vce (robust), you must remember to specify vce(cluster clustvar) for
yourself when

1. you are analyzing multiple-failure data and

2. you have reset time to time since last failure, so what Stata considers the subjects are really
subsubjects.

N

Stratified estimation
When you type

. stcox xvars, strata(svars)

you are allowing the baseline hazard functions to differ for the groups identified by svars. This is
equivalent to fitting separate Cox proportional hazards models under the constraint that the coefficients
are equal but the baseline hazard functions are not.

> Example 8

Say that in the Stanford heart experiment data, there was a change in treatment for all patients,
before and after transplant, in 1970 and then again in 1973. Further assume that the proportional-
hazards assumption is not reasonable for these changes in treatment—perhaps the changes result in
short-run benefit but little expected long-run benefit. Our interest in the data is not in the effect of these
treatment changes but in the effect of transplantation, for which we still find the proportional-hazards
assumption reasonable. We might fit our model to account for these fictional changes by typing

. use https://www.stata-press.com/data/r18/stan3, clear
(Heart transplant data)
. generate pgroup = year

. recode pgroup min/69=1 70/72=2 73/max=3
(172 changes made to pgroup)
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. stcox age posttran surg year, strata(pgroup) nolog
Failure _d: died
Analysis time _%: ti1
ID variable: id

Stratified Cox regression with Breslow method for ties
Strata variable: pgroup

No. of subjects = 103 Number of obs = 172
No. of failures = 75
Time at risk = 31,938.1

LR chi2(4) = 20.67

Log likelihood = -213.35033 Prob > chi2 = 0.0004

_t | Haz. ratio Std. err. z P>|z| [95% conf. intervall

age 1.027406 .0150188 1.85 0.064 .9983874 1.057268

posttran 1.075476 .3354669 0.23 0.816 .583567 1.982034

surgery .2222415 .1218386 -2.74 0.006 .0758882 .6508429

year .5523966 .1132688 -2.89 0.004 .3695832 .825638

Of course, we could obtain the robust estimate of variance by also including the vce(robust)
option.

N

Cox regression as Poisson regression

> Example 9
In example 2, we fit the following Cox model to data from a cancer drug trial with 48 participants:

. use https://www.stata-press.com/data/r18/drugtr, clear
(Patient survival in drug trial)

. summarize
Variable Obs Mean Std. dev. Min Max
studytime 48 15.5 10.25629 1 39
died 48 .6458333 .4833211 0 1
drug 48 .5833333 .4982238 0 1
age 48 55.875 5.659205 a7 67
_st 48 1 0 1 1
_d 48 .6458333 .4833211 0 1
_t 48 15.5 10.25629 1 39
_to 48 0 0 0 0
. stcox drug age
(output omitted )
Cox regression with Breslow method for ties
No. of subjects = 48 Number of obs = 48
No. of failures = 31
Time at risk = 744
LR chi2(2) = 33.18
Log likelihood = -83.323546 Prob > chi2 = 0.0000
_t | Haz. ratio Std. err. z P>|z| [95% conf. intervall
drug .1048772 .0477017 -4.96 0.000 .0430057 .2557622
age 1.120325 .0417711 3.05 0.002 1.041375 1.20526
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In what follows, we discuss baseline hazard functions. Thus for clarity, we first fit the same model
with an alternate age variable so that “baseline” reflects someone in the control group who is 50
years old and not a newborn; see Making baseline reasonable in [ST] stcox postestimation for more
details.

. generate ageb50 = age - 50
. stcox drug ageb0

(output omitted )
Cox regression with Breslow method for ties
No. of subjects = 48 Number of obs = 48
No. of failures = 31
Time at risk = 744
LR chi2(2) = 33.18
Log likelihood = -83.323546 Prob > chi2 = 0.0000
_t | Haz. ratio Std. err. z P>|z| [95% conf. intervall
drug .1048772 .0477017 -4.96  0.000 .0430057 .2557622
ageb50 1.120325 .0417711 3.05 0.002 1.041375 1.20526

Because stcox does not estimate a baseline hazard function, our model and hazard ratios remain
unchanged.

Among others, Royston and Lambert (2011, sec. 4.5) show that you can obtain identical hazard
ratios by fitting a Poisson model on the above data after splitting on all observed failure times.

Because these data have already been stset, variable _tO contains the beginning of the time
span (which, for these simple data, is time zero for everyone), variable _t contains the end of the
time span, and variable _d indicates failure (—d == 1) or censoring (—d == 0).

As we did in example 4, we can split these single-record observations at each observed failure
time, thus creating a dataset with multiple records per subject. To do so, we must first create an ID
variable that identifies each observation as a distinct patient:

. generate id = _n

. streset, id(id)
-> stset studytime, id(id) failure(died)
Survival-time data settings
ID variable: id
Failure event: died!=0 & died<.

Observed time interval: (studytime[_n-1], studytime]
Exit on or before: failure

48 total observations
0 exclusions

48 observations remaining, representing
48 subjects
31 failures in single-failure-per-subject data
744 total analysis time at risk and under observation
At risk from t = 0
Earliest observed entry t =
Last observed exit t

I
o

39

. stsplit, at(failures) riskset(interval)
(21 failure times)
(534 observations (episodes) created)
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The output shows that we have 21 distinct failure times and that we created 534 new observations
for a total of 48 + 534 = 582 observations. Also created is the interval variable, which contains
a value of 1 for those records that span from time zero to the first failure time, 2 for those records
that span from the first failure time to the second failure time, all the way up to a value of 21 for
those records that span from the 20th failure time to the 21st failure time. To see this requires a little
bit of sorting and data manipulation:

. gsort _t -_d
. by _t: generate tolist = (_n==1) & _d
. list _tO _t interval if tolist

_t0 _t interval

1. 0 1 1
49. 1 2 2
95. 2 3 3
140. 3 4 4
184. 4 5 5
226. 5 6 6
266. 6 7 7
303. 7 8 8
340. 8 10 9
371. 10 11 10
400. 11 12 11
426. 12 13 12
450. 13 15 13
473. 15 16 14
494 . 16 17 15
517. 17 22 16
532. 22 23 17
545. 23 24 18
556. 24 25 19
566. 25 28 20
576. 28 33 21

Thus for example, interval 16 ranges from time 17 to time 22.

For this newly created multiple-record dataset, our Cox model fit will be identical because we have
not added any information to the data. If you do not believe us, feel free to now try the following
command:

. stcox drug ageb0

At this point, it would seem that making the dataset bigger is a needless waste of space, but what
it grants us is the ability to directly estimate the baseline hazard function in addition to the hazard
ratios we previously obtained. We accomplish this by using Poisson regression.

Poisson regression models event counts, and so we use our event counter for these data, the failure
indicator _d, as the response variable. That _d is only valued as zero or one should not bother
you—it is still a count variable. We need to treat time spanned as the amount of exposure a subject
had toward failing; the longer the interval, the greater the exposure. As such, we create a variable that
records the length of each time span and include it as an exposure () variable in our Poisson model.
We also include indicator variables for each of the 21 time intervals, with no base level assumed; we
use the ibn. factor-variable specification and the noconstant option:
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. generate time_exposed = _t - _tO
. poisson _d ibn.interval drug age50, exposure(time_exposed) noconstant irr
Iteration 0: Log likelihood = -1239.0595
Iteration 1: Log likelihood = -114.23986
Iteration 2: Log likelihood = -100.13556
Iteration 3: Log likelihood = -99.938857
Iteration 4: Log likelihood = -99.937354
Iteration 5: Log likelihood = -99.937354
Poisson regression Number of obs = 573
Wald chi2(23) = 224.18
Log likelihood = -99.937354 Prob > chi2 = 0.0000
_d IRR  Std. err. z P>|z| [95% conf. intervall
interval
1 .0360771 .0284092 -4.22  0.000 .0077081 .1688562
2 .0215286 .0225926 -3.66  0.000 .0027526 .1683778
3 .0228993 .0240269 -3.60 0.000 .0029289 .1790349
4 .0471539 .0366942 -3.92  0.000 .0102596 .2167234
5 .0596354 .045201 -3.72  0.000 .0134999 .2634375
6 .0749754 .0561057 -3.46  0.001 .017296 .3250055
7 .0396981 .0406826 -3.15 0.002 .0053267 .2958558
8 .1203377 .0744625 -3.42 0.001 .0357845 .4046762
9 .0276002 .0283969 -3.49 0.000 .003674 .207341
10 .1120012 .083727 -2.93 0.003 .0258763 4847777
11 .1358135 .1024475 -2.65 0.008 .0309642 .5956972
12 .1007666 .1040271 -2.22 0.026 .0133221 .7621858
13 .0525547 .0540884 -2.86 0.004 .0069915 .395051
14 .1206462 .1250492 -2.04 0.041 .0158215 .919984
15 .1321868 .1357583 -1.97 0.049 .0176599 .9894363
16 .0670895 .0503478 -3.60 0.000 .0154122 .2920415
17 .5736017 .4415411 -0.72  0.470 .1268766 2.59322
18 .4636009 .5113227 -0.70 0.486 .0533731 4.026856
19 .5272168 .5810138 -0.58 0.561 .0608039 4.571377
20 .2074545 .2292209 -1.42 0.155 .023791 1.80898
21 .2101074 .2344194 -1.40 0.162 .0235909 1.871275
drug .1048772 .0477017 -4.96 0.000 .0430057 .2557622
age50 1.120325 .0417711 3.06 0.002 1.041375 1.20526
1n(time_e~d) 1 (exposure)

The incidence-rate ratios from poisson (obtained with the irr option) are identical to the hazard
ratios we previously obtained. Additionally, the incidence-rate ratio for each of the 21 intervals is an
estimate of the baseline hazard function for that time interval.

poisson gives us an estimated baseline hazard function (the hazard for someone aged 50 in the
control group) as a piecewise-constant function. If we had continued to use stcox, estimating the
baseline hazard function would have required that we apply a kernel smoother to the estimated baseline
contributions; see example 3 of [ST] stcox postestimation for details. In other words, estimating a
baseline hazard after stcox is not easy, and it requires choosing a kernel function and bandwidth.
As such, the title of this section is technically a misnomer; the models are not exactly the same,
only the “hazard ratios” are. Using poisson instead of stcox carries the added assumption that the
baseline hazard is constant between observed failures. Making this assumption buys you the ability
to directly estimate the baseline hazard.
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There also exists a duality between the Poisson model and the exponential model as fit by streg;
see [ST] streg. A defining property of the Poisson distribution is that waiting times between events
are distributed as exponential. Thus we can fit the same piecewise-constant hazard model with

. streg ibn.interval drug age50, dist(exponential) noconstant

which we invite you to try.

Of course, if you are willing to assume the hazard is piecewise constant, then perhaps you do not
need it to change over all 21 observed failure times, and thus perhaps you would want to collapse some
intervals. Better still, why not just use streg without the indicator variables for interval, assume
the baseline hazard is some smooth function, and reduce your 21 parameters to one or two estimated
shape parameters? The advantages to this fully parametric approach are that you get a parsimonious
model and smooth hazard functions that you can estimate at any time point. The disadvantage is that
you now carry the stringent assumption that your hazard follows the chosen functional form. If you
choose the wrong function, then your hazard ratios are, in essence, worthless.

The two extremes here are the model that makes no assumption about the baseline hazard (the
Cox model) and the model that makes the strongest assumptions about the baseline hazard (the fully
parametric model). Our piecewise-constant baseline hazard model represents a compromise between
Cox regression and fully parametric regression. If you are interested in other ways you can compromise
between Cox and parametric models, we recommend you read Royston and Lambert (2011), which
is entirely devoted to that topic. There you will find information on (among other things) Royston—
Parmar models (Royston and Parmar 2002; Lambert and Royston 2009), proportional odds models,
scaled-probit models, the use of cubic splines and fractional polynomials, time-dependent effects, and
models for relative survival.

4

Cox regression with shared frailty

A shared-frailty model is the survival-data analog to regression models with random effects. A
frailty is a latent random effect that enters multiplicatively on the hazard function. In a Cox model,
the data are organized as ¢ = 1,...,n groups with j = 1,...,n; observations in group ¢. For the
jth observation in the ith group, the hazard is

hij (t) = ho (t)Oél CXp(Xijﬁ)

where «; is the group-level frailty. The frailties are unobservable positive quantities and are assumed
to have mean 1 and variance 6, to be estimated from the data. You can fit a Cox shared-frailty model
by specifying shared (varname), where varname defines the groups over which frailties are shared.
stcox, shared() treats the frailties as being gamma distributed, but this is mainly an issue of
computational convenience; see Methods and formulas. Theoretically, any distribution with positive
support, mean 1, and finite variance may be used to model frailty.

Shared-frailty models are used to model within-group correlation; observations within a group are
correlated because they share the same frailty. The estimate of 6 is used to measure the degree of
within-group correlation, and the shared-frailty model reduces to standard Cox when 6 = 0.

For v; = loga;, the hazard can also be expressed as
hij () = ho(t) exp(xi; 8 + vi)

and thus the log frailties, 1;, are analogous to random effects in standard linear models.
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> Example 10

Consider the data from a study of 38 kidney dialysis patients, as described in McGilchrist and
Aisbett (1991). The study is concerned with the prevalence of infection at the catheter insertion point.
Two recurrence times (in days) are measured for each patient, and each recorded time is the time
from initial insertion (onset of risk) to infection or censoring:

. use https://www.stata-press.com/data/r18/catheter, clear
(Kidney data, McGilchrist and Aisbett, Biometrics, 1991)

. list patient time infect age female in 1/10

patient  time infect age female

1. 1 16 1 28 0
2. 1 8 1 28 0
3. 2 13 0 48 1
4. 2 23 1 48 1
5. 3 22 1 32 0
6. 3 28 1 32 0
7. 4 318 1 31.5 1
8. 4 447 1 31.5 1
9. 5 30 1 10 0
10. 5 12 1 10 0

Each patient (patient) has two recurrence times (time) recorded, with each catheter insertion
resulting in either infection (infect==1) or right-censoring (infect==0). Among the covariates
measured are age and sex (female==1 if female, female==0 if male).

One subtlety to note concerns the use of the generic term subjects. In this example, the subjects
are taken to be the individual catheter insertions, not the patients themselves. This is a function of
how the data were recorded—the onset of risk occurs at catheter insertion (of which there are two
for each patient), and not, say, at the time of admission of the patient into the study. We therefore
have two subjects (insertions) within each group (patient).

It is reasonable to assume independence of patients but unreasonable to assume that recurrence
times within each patient are independent. One solution would be to fit a standard Cox model,
adjusting the standard errors of the estimated hazard ratios to account for the possible correlation by
specifying vce (cluster patient).

We could instead model the correlation by assuming that the correlation is the result of a latent
patient-level effect, or frailty. That is, rather than fitting a standard model and specifying vce (cluster
patient), we could fit a frailty model by specifying shared(patient):
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. stset time, fail(infect)
(output omitted )

. stcox age female, shared(patient)

Failure _d: infect

Analysis time _t: time
Fitting comparison Cox model ...

Estimating frailty variance:

Iteration 0: Log profile likelihood = -182.06713
Iteration 1: Log profile likelihood = -181.9791
Iteration 2: Log profile likelihood = -181.97453

Iteration 3: Log profile likelihood = -181.97453

Fitting final Cox model:

Iteration 0: Log likelihood = -199.05599
Iteration 1: Log likelihood = -183.72296
Iteration 2: Log likelihood = -181.99509
Iteration 3: Log likelihood = -181.97455
Iteration 4: Log likelihood = -181.97453
Refining estimates:

Iteration 0: Log likelihood = -181.97453

Cox regression with Breslow method for ties

Gamma shared frailty Number of obs = 76
Group variable: patient Number of groups = 38

Obs per group:
No. of subjects = 76 min = 2
No. of failures = 58 avg = 2
Time at risk = 7,424 max = 2
Wald chi2(2) = 11.66
Log likelihood = -181.97453 Prob > chi2 = 0.0029
_t | Haz. ratio Std. err. z P>|z| [95% conf. intervall
age 1.006202 .0120965 0.51 0.607 .9827701 1.030192
female .2068678 .095708 -3.41 0.001 .0835376 .5122756

theta .4754497 .2673108

LR test of theta=0: chibar2(01) = 6.27 Prob >= chibar2 = 0.006

Note: Standard errors of hazard ratios are conditional on theta.

From the output, we obtain § = 0.475, and given the standard error of 6 and likelihood-ratio test
of Hy: § = 0, we find a significant frailty effect, meaning that the correlation within patient cannot be
ignored. Contrast this with the analysis of the same data in [ST] streg, which considered both Weibull
and lognormal shared-frailty models. For Weibull, there was significant frailty; for lognormal, there
was not.

The estimated v; are not displayed in the coefficient table but may be retrieved postestimation by
using predict with the effects option; see [ST] stcox postestimation for an example.

N

In shared-frailty Cox models, the estimation consists of two steps. In the first step, the optimization
is in terms of # only. For fixed 6, the second step consists of fitting a standard Cox model via penalized
log likelihood, with the v; introduced as estimable coefficients of dummy variables identifying the
groups. The penalty term in the penalized log likelihood is a function of #; see Methods and formulas.
The final estimate of 6 is taken to be the one that maximizes the penalized log likelihood. Once
the optimal € is obtained, it is held fixed, and a final penalized Cox model is fit. As a result, the
standard errors of the main regression parameters (or hazard ratios, if displayed as such) are treated
as conditional on 6 fixed at its optimal value.
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With gamma-distributed frailty, hazard ratios decay over time in favor of the frailty effect and thus
the displayed “Haz. ratio” in the above output is actually the hazard ratio only for ¢ = 0. The degree
of decay depends on 6. Should the estimated 6 be close to 0, the hazard ratios do regain their usual
interpretation; see Gutierrez (2002) for details.

Q Technical note

The likelihood-ratio test of § = 0 is a boundary test and thus requires careful consideration
concerning the calculation of its p-value. In particular, the null distribution of the likelihood-ratio test
statistic is not the usual X% but is rather a 50:50 mixture of a X% (point mass at zero) and a X%’

denoted as Y%y See Gutierrez, Carter, and Drukker (2001) for more details.

Q Technical note

Q

In [ST] streg, shared-frailty models are compared and contrasted with unshared frailty models.
Unshared-frailty models are used to model heterogeneity, and the frailties are integrated out of the
conditional survivor function to produce an unconditional survivor function, which serves as a basis

for all likelihood calculations.

Given the nature of Cox regression (the baseline hazard remains unspecified), there is no Cox
regression analog to the unshared parametric frailty model as fit using streg. That is not to say that
you cannot fit a shared-frailty model with 1 observation per group; you can as long as you do not

fit a null model.

Stored results

stcox stores the following in e():

Scalars
e(N)
e(N_sub)
e(N_fail)
e(N_g)
e(df_m)
e(r2_p)
e(11)
e(11_0)
e(1ll_c)
e(N_clust)
e(chi2)
e(chi2_c)
e(risk)
e(g-_min)
e(g_avg)
e(g_max)
e(theta)
e(se_theta)
e(p_c)
e(rank)
e(converged)

number of observations

number of subjects

number of failures

number of groups

model degrees of freedom
pseudo-R?

log likelihood

log likelihood, constant-only model
log likelihood, comparison model

number of clusters

XZ

x2, comparison test

total time at risk

smallest group size

average group size

largest group size

frailty parameter

standard error of 6

p-value for comparison test
rank of e(V)

1 if converged, O otherwise

a
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Macros
e(cmd) cox or stcox_fr
e(cmd2) stcox
e(cmdline) command as typed
e(depvar) _t
e(t0) 1)
e(wtype) weight type
e (wexp) weight expression
e(texp) function of time used for covariates from option tvc()
e(ties) method used for handling ties
e(strata) strata variables
e(shared) frailty grouping variable
e(clustvar) name of cluster variable
e(offset) linear offset variable
e(chi2type) Wald or LR; type of model x? test
e(vce) veetype specified in vce ()
e(vcetype) title used to label Std. err.
e (method) requested estimation method
e(datasignature) the checksum
e(datasignaturevars) variables used in calculation of checksum
e(properties) bV
e(estat_cmd) program used to implement estat
e(predict) program used to implement predict
e(footnote) program used to implement the footnote display
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved
Matrices
e(b) coefficient vector
e(\V) variance—covariance matrix of the estimators
e(V_modelbased) model-based variance estimators
Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,
and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.

Methods and formulas

The proportional hazards model with explanatory variables was first suggested by Cox (1972). For
an introductory explanation, see Hosmer, Lemeshow, and May (2008, chap. 3, 4, and 7), Kahn and
Sempos (1989, 193—-198), and Selvin (2004, 412—442). For an introduction for the social scientist, see
Box-Steffensmeier and Jones (2004, chap. 4). For a comprehensive review of the methods in this entry,
see Klein and Moeschberger (2003). For a detailed development of these methods, see Kalbfleisch
and Prentice (2002). For more Stata-specific insight, see Cleves, Gould, and Marchenko (2016),
Dupont (2009), and Vittinghoff et al. (2012).

Let x; be the row vector of covariates for the time interval (to;, ;] for the ith observation in the
dataset ¢ = 1,..., N. stcox obtains parameter estimates, 3, by maximizing the partial log-likelihood

function 5
logL = Z [ Z X8 —d; log{ Z CXP(Xkﬂ)}]

j=1 ieD; kER;
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where j indexes the ordered failure times ¢(;), j = 1,..., D; Dj is the set of d; observations that
fail at L) d; is the number of failures at Ly and R; is the set of observations k that are at risk
at time t(;) (that is, all k such that tgr < ti) < tr.). This formula for logL is for unweighted data
and handles ties by using the Peto—Breslow approximation (Peto 1972; Breslow 1974), which is the
default method of handling ties in stcox.

If strata(varnames) is specified, then the partial log likelihood is the sum of each stratum-specific
partial log likelihood, obtained by forming the ordered failure times £(;, the failure sets D;, and the
risk sets I?;, using only those observations within that stratum.

The variance of E is estimated by the conventional inverse matrix of (negative) second derivatives
of logL, unless vce(robust) is specified, in which case the method of Lin and Wei (1989) is
used. That method treats efficient score residuals as analogs to the log-likelihood scores one would
find in fully parametric models; see Methods and formulas in [ST] stcox postestimation for how to
calculate efficient score residuals. If vce (cluster clustvar) is specified, the efficient score residuals
are summed within cluster before the sandwich (robust) estimator is applied.

Tied values are handled using one of four approaches. The log likelihoods corresponding to the
four approaches are given with weights (exactp and efron do not allow weights) and offsets by

5 _
log Liresiow = Z Z w;(x;3 + offset;) — w; log Z wy exp(x¢B + offsety)

j=1ieD; | =

D [ d;—1
logLefron = Z Z X;3 + offset; — d;l Z log Z exp(x¢0 + offsety) — kA;
j=lieD; | k=0 LER;
Aj=d;" Y exp(xB + offsety)
ZED]’

D oo w
logLexactm = Z log/ H {1 — exp (—%t)} ‘ exp(—t)dt
s
j=1 0

ZEDJ'
er = exp(x¢0 + offsety)
s = Z wy, exp(xxB + offset,) = sum of weighted nondeath risk scores

kER;
kgDj

Z i (x;8 + offset;) — logf(r;,d;)

1 | ieR;

lOgLexactp =

J
f(r,d) = f(r—1,d)+ f(r — 1,d — 1) exp(xx3 + offsety,)

k = rth observation in the set R;

D

r; = cardinality of the set I2;

_J0 ifr<d
f(r’d)_{l ifd=0
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where d;; is an indicator for failure of observation ¢ at time #(;) and w; are the weights. In the log
likelihood for the Breslow method, @w; = w; X N/ > w; when the model is fit using probability
weights, and w; = w; when the model is fit using frequency weights or importance weights.

Calculations for the exact marginal log likelihood (and associated derivatives) are obtained with
15-point Gauss—Laguerre quadrature. The breslow and efron options both provide approximations
of the exact marginal log likelihood. The efron approximation is a better (closer) approximation,
but the breslow approximation is faster. The choice of the approximation to use in a given situation
should generally be driven by the proportion of ties in the data.

For shared-frailty models, the data are organized into GG groups with the ith group consisting of
n; observations, i = 1, ..., G. From Therneau and Grambsch (2000, 253-255), estimation of 6 takes
place via maximum profile log likelihood. For fixed 6, estimates of 3 and vy, ...,V are obtained
by maximizing

G
1
logL(0) =logLcox(B,v1, ..., va) + Z 7 {vi — exp(vs)} +
i=1
1 1 logf 1 1
-+ D; 1—log|-+D; ——lFfDi—IFf
(9* >{ °g<e+ >} o <9+ ) e (9)1
where D; is the number of death events in group 7, and logLcox (B, 1, . .., Vg) is the standard Cox

partial log likelihood, with the v; treated as the coefficients of indicator variables identifying the
groups. That is, the jth observation in the ¢th group has log relative hazard x;;3 + v;. The estimate

of the frailty parameter, 5 is chosen as that which maximizes logL(6). The final estimates of 3 are

obtained by maximizing logL(6 ) in B and the v;. The v; are not reported in the coefficient table but
are available via predict; see [ST] stcox postestimation. The estimated variance—covariance matrix

of 3 is obtained as the appropriate submatrix of the variance matrix of (3,71,...,7¢), and that
matrix is obtained as the inverse of the negative Hessian of logL(G) Therefore, standard errors and
inference based on ,6' should be treated as conditional on 6 = .

The likelihood-ratio test statistic for testing Hy: 6 = 0 is calculated as minus twice the difference
between the log likelihood for a Cox model without shared frailty and logL(@) evaluated at the final

(/671//\17"'u7//\G)-
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outstanding contributions in areas such as experimental design, stochastic processes, binary data,
survival analysis, asymptotic techniques, and multivariate dependencies. In 2010, Sir David was
awarded the Copley Medal, the Royal Society’s highest honor. In 2017, he was the first recipient
of the International Prize in Statistics.
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Also see
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[ST] stcox PH-assumption tests — Tests of proportional-hazards assumption after stcox
[ST] sterreg — Competing-risks regression
[ST] stintcox — Cox proportional hazards model for interval-censored survival-time data
[ST] stintreg — Parametric models for interval-censored survival-time data
[ST] streg — Parametric survival models
[ST] sts — Generate, graph, list, and test the survivor and related functions
[ST] stset — Declare data to be survival-time data
[MI] Estimation — Estimation commands for use with mi estimate
[PSS-2] power cox — Power analysis for the Cox proportional hazards model
[SVY] svy estimation — Estimation commands for survey data

[U] 20 Estimation and postestimation commands



Title

stcox PH-assumption tests — Tests of proportional-hazards assumption after stcox

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Acknowledgment References Also see

Description

stphplot plots —In{—In(survival)} curves for each category of a nominal or ordinal covariate
versus In(analysis time) for right-censored data. These are often referred to as “log-log” plots.
Optionally, these estimates can be adjusted for covariates. The proportional-hazards assumption is not
violated when the curves are parallel.

stcoxkm plots Kaplan—Meier observed survival curves and compares them with the Cox predicted
curves for the same variable. The closer the observed values are to the predicted, the less likely it is
that the proportional-hazards assumption has been violated.

estat phtest tests the proportional-hazards assumption on the basis of Schoenfeld residuals after
fitting a model with stcox.

Quick start
Log—log plot of survival

Check for parallel lines in plot of —In{—In(survival)} versus In(analysis time) for each category of
covariate a using stset data
stphplot, by(a)

Same as above, but adjust for average values of covariates x1 and x2
stphplot, by(a) adjustfor(xl x2)

Same as above
stphplot, by(a) adjustfor(xl x2, atomeans)

Adjust for x1 =0 and x2 =0
stphplot, by(a) adjustfor(xl x2, atzeros)

Kaplan—Meier and predicted survival plot

Compare Kaplan—Meier survival curve with predicted survival from Cox model for each category of
covariate a using stset data
stcoxkm, by(a)

Same as above, but create separate plots for each level of a
stcoxkm, by(a) separate

Test using Schoenfeld residuals

Test the proportional-hazards assumption after stcox x1 x2 x3
estat phtest

Same as above, and report separate test for each covariate
estat phtest, detail
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Menu
stphplot

Statistics > Survival analysis > Regression models > Graphically assess PH assumption

stcoxkm

Statistics > Survival analysis > Regression models > Kaplan—Meier versus predicted survival

estat phtest

Statistics > Survival analysis > Regression models > Test PH assumption

Syntax
Check proportional-hazards assumption:
Log—log plot of survival

stphplot [Zf} R {by(varname) |stirata(varname)} [stphplot_opzions]

Kaplan—Meier and predicted survival plot

stcoxkm [z:f ] , by (varname) [stcoka_options]

Using Schoenfeld residuals

estat phtest [, phtest_options}

stphplot_options Description
Main
* by (varname) fit separate Cox models; the default
* strata (varname) fit stratified Cox model; requires adjustfor ()

adjustfor(varlist[ , suboptions]) adjust the estimates to specific values of varlist;
default is overall means

Options
nonegative plot In{—In(survival)}
nolntime plot curves against analysis time
noshow do not show st setting information
Plot

plot#opts (stphplot_plot_options) affect rendition of the #th connected line and #th plotted points

Add plots
addplot (plot) add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

twoway_options any options other than by () documented in
[G-3] twoway _options

*Either by (varname) or strata(varname) is required with stphplot.
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stphplot_plot_options Description
cline_options change look of lines or connecting method
marker_options change look of markers (color, size, etc.)
stcoxkm_options Description

Main

* by (varname) report the nominal or ordinal covariate
ties(breslow) use Breslow method to handle tied failures
ties(efron) use Efron method to handle tied failures
ties(exactm) use exact marginal-likelihood method to handle tied failures
ties(exactp) use exact partial-likelihood method to handle tied failures
separate draw separate plot for predicted and observed curves
noshow do not show st setting information

Observed plot
obsopts (stcoxkm_plot_options)  affect rendition of the observed curve

obs#opts (stcoxkm_plot_options) affect rendition of the #th observed curve; not allowed
with separate

Predicted plot
predopts (stcoxkm_plot_options) affect rendition of the predicted curve

pred#opts (stcoxkm_plot_options) affect rendition of the #th predicted curve; not allowed
with separate

Add plots
addplot (plor) add other plots to the generated graph
Y axis, X axis, Titles, Legend, Overall
twoway_options any options other than by () documented in
[G-3] twoway _options
byopts (byopts) how subgraphs are combined, labeled, etc.

* by (varname) is required with stcoxkm.

stcoxkm_plot_options Description
connect_options change look of connecting method
marker_options change look of markers (color, size, etc.)

You must stset your data before using stphplot and stcoxkm; see [ST] stset.
fweights, iweights, and pweights may be specified using stset; see [ST] stset.
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phtest_options Description
Main

log use natural logarithm time-scaling function

km use 1 — KM product-limit estimate as the time-scaling function

rank use rank of analysis time as the time-scaling function

time (varname) use varname containing a monotone transformation of analysis time

as the time-scaling function

plot (varname) plot smoothed, scaled Schoenfeld residuals versus time

bwidth (#) use bandwidth of #; default is bwidth(0.8)

detail test proportional-hazards assumption separately for each covariate
Scatterplot

marker_options change look of markers (color, size, etc.)

marker_label _options add marker labels; change look or position

Smoothed line
lineopts(cline_options)  affect rendition of the smoothed line

Y axis, X axis, Titles, Legend, Overall
twoway_options any options other than by () documented in
[G-3] twoway _options

estat phtest is not appropriate with svy estimation results.
collect is allowed with estat phtest; see [U] 11.1.10 Prefix commands.

Options
Options are presented under the following headings:

Options for stphplot
Options for stcoxkm
Options for estat phtest

Options for stphplot
Main

by (varname) specifies the nominal or ordinal covariate. Either by () or strata() is required with
stphplot.

strata(varname) is an alternative to by (). Rather than fitting separate Cox models for each value
of varname, strata() fits one stratified Cox model. You must also specify adjustfor () with
the strata() option; see [ST] sts graph.

adjustfor(varlist[ , suboptions}) adjusts the estimates of the survivor function to specific values
of varlist. The default is to adjust to overall mean values of covariates. adjustfor() can be
specified with by (); it is required with strata().

suboptions are atomeans (the default), atmeans, atzeros, atbase, and at(); see [ST] adjust-
for_option.
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nonegative specifies that In{—In(survival)} be plotted instead of —In{—In(survival)}.
nolntime specifies that curves be plotted against analysis time instead of against In(analysis time).

noshow prevents stphplot from showing the key st variables. This option is seldom used because
most people type stset, show or stset, noshow to set whether they want to see these variables
mentioned at the top of the output of every st command; see [ST] stset.

Plot

plot#opts (stphplot_plot_options) affects the rendition of the #th connected line and #th plotted
points; see [G-3] cline_options and [G-3] marker_options.

Add plots

addplot (plot) provides a way to add other plots to the generated graph; see [G-3] addplot_option.

Y axis, X axis, Titles, Legend, Overall |

twoway_options are any of the options documented in [G-3] twoway_options, excluding by (). These
include options for titling the graph (see [G-3] title_options) and for saving the graph to disk (see
[G-3] saving _option).

Options for stcoxkm

Main

by (varname) specifies the nominal or ordinal covariate. by () is required.

ties(breslow|efron|exactm|exactp) specifies one of the methods available to stcox for
handling tied failures. If none is specified, ties(breslow) is assumed; see [ST] stcox.

separate produces separate plots of predicted and observed values for each value of the variable
specified with by ().

noshow prevents stcoxkm from showing the key st variables. This option is seldom used because
most people type stset, show or stset, noshow to set whether they want to see these variables
mentioned at the top of the output of every st command; see [ST] stset.

Observed plot

obsopts (stcoxkm_plot_options) affects the rendition of the observed curve; see [G-3] connect_options
and [G-3] marker _options.

obs#opts (stcoxkm_plot_options) affects the rendition of the #th observed curve; see [G-3] con-
nect_options and [G-3] marker_options. This option is not allowed with separate.

Predicted plot

predopts (stcoxkm_connect_options) affects the rendition of the predicted curve; see [G-3] con-
nect_options and [G-3] marker_options.

pred#opts (stcoxkm_connect_options) affects the rendition of the #th predicted curve; see [G-3] con-
nect_options and [G-3] marker_options. This option is not allowed with separate.
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Add plots

addplot (plot) provides a way to add other plots to the generated graph; see [G-3] addplot_option.

Y axis, X axis, Titles, Legend, Overall |

twoway—_options are any of the options documented in [G-3] twoway _options, excluding by (). These

include options for titling the graph (see [G-3] title_options) and for saving the graph to disk (see
[G-3] saving _option).

byopts (byopts) affects the appearance of the combined graph when by () and separate are specified,
including the overall graph title and the organization of subgraphs. See [G-3] by_option.

Options for estat phtest

Main

log, km, rank, and time () are used to specify the time scaling function.

By default, estat phtest performs the tests using the identity function, that is, analysis time
itself.

log specifies that the natural log of analysis time be used.
km specifies that 1 minus the Kaplan—Meier product-limit estimate be used.
rank specifies that the rank of analysis time be used.

time (varname) specifies a variable containing an arbitrary monotonic transformation of analysis
time. You must ensure that varname is a monotonic transform.

plot (varname) specifies that a scatterplot and smoothed plot of scaled Schoenfeld residuals versus
time be produced for the covariate specified by varname. By default, the smoothing is performed
using the running-mean method implemented in lowess, mean noweight; see [R] lowess.

bwidth(#) specifies the bandwidth. Centered subsets of bwidth() X N observations are used for
calculating smoothed values for each point in the data except for endpoints, where smaller,
uncentered subsets are used. The greater the bwidth(), the greater the smoothing. The default is
bwidth(0.8).

detail specifies that a separate test of the proportional-hazards assumption be produced for each
covariate in the Cox model. By default, estat phtest produces only the global test.

Scatterplot

marker_options affect the rendition of markers drawn at the plotted points, including their shape,
size, color, and outline; see [G-3] marker_options.

marker_label _options specify if and how the markers are to be labeled; see [G-3] marker_label _options.

Smoothed line

lineopts (cline_options) affects the rendition of the smoothed line; see [G-3] cline_options.

Y axis, X axis, Titles, Legend, Overall |

twoway_options are any of the options documented in [G-3] twoway_options, excluding by (). These

include options for titling the graph (see [G-3] title_options) and for saving the graph to disk (see
[G-3] saving _option).

N
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Remarks and examples

Cox proportional hazards models assume that the hazard ratio is constant over time. Suppose that
a group of cancer patients on an experimental treatment is monitored for 10 years. If the hazard
of dying for the nontreated group is twice the rate as that of the treated group (HR = 2.0), the
proportional-hazards assumption implies that this ratio is the same at 1 year, at 2 years, or at any point
on the time scale. Because the Cox model, by definition, is constrained to follow this assumption,
it is important to evaluate its validity. If the assumption fails, alternative modeling choices would
be more appropriate (for example, a stratified Cox model, time-varying covariates). For examples of
testing the proportional-hazards assumption using Stata, see Allison (2014).

stphplot and stcoxkm provide graphical methods for assessing violations of the proportional-
hazards assumption. Although using graphs to assess the validity of the assumption is subjective, it
can be a helpful tool.

stphplot plots —In{—In(survival)} curves for each category of a nominal or ordinal covariate
versus In(analysis time). These are often referred to as “log—log” plots. Optionally, these estimates
can be adjusted for covariates. If the plotted lines are reasonably parallel, the proportional-hazards
assumption has not been violated, and it would be appropriate to base the estimate for that variable
on one baseline survivor function.

Another graphical method of evaluating the proportional-hazards assumption, though less common,
is to plot the Kaplan—Meier observed survival curves and compare them with the Cox predicted curves
for the same variable. This plot is produced with stcoxkm. When the predicted and observed curves
are close together, the proportional-hazards assumption has not been violated. See Garrett (1997) for
more details.

Many popular tests for proportional hazards are, in fact, tests of nonzero slope in a generalized
linear regression of the scaled Schoenfeld residuals on time (see Grambsch and Therneau [1994]).
The estat phtest command tests, for individual covariates and globally, the null hypothesis of
zero slope, which is equivalent to testing that the log hazard-ratio function is constant over time.
Thus rejection of the null hypothesis of a zero slope indicates deviation from the proportional-hazards
assumption. The estat phtest command allows three common time-scaling options (log, km, and
rank) and also allows you to specify a user-defined function of time through the time() option.
When no option is specified, the tests are performed using analysis time without further transformation.

> Example 1

These examples use data from a leukemia remission study (Garrett 1997). The data consist of 42
patients who are monitored over time to see how long (weeks) it takes them to go out of remission
(relapse: 1 = yes, 0 = no). Half the patients receive a new experimental drug, and the other
half receive a standard drug (treatmentl: 1 = drug A, 0 = standard). White blood cell count, a
strong indicator of the presence of leukemia, is divided into three categories (wbc3cat: 1 = normal,
2 = moderate, 3 = high).
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. use https://www.stata-press.com/data/r18/leukemia
(Leukemia remission study)

. describe

Contains data from https://www.stata-press.com/data/r18/leukemia.dta

Observations: 42 Leukemia remission study
Variables: 8 23 Mar 2022 10:39
Variable Storage Display Value
name type format label Variable label
weeks byte %8.0g Weeks in remission
relapse byte %8.0g yesno Relapse
treatmentl byte %8.0g trtilbl Treatment I
treatment2 byte %8.0g trt2lbl Treatment II
wbc3cat byte %9.0g wbclbl White blood cell count
wbcl byte %8.0g wbc3cat==Normal
wbc2 byte %8.0g wbc3cat==Moderate
wbc3 byte %8.0g wbc3cat==High

Sorted by: weeks
. stset weeks, failure(relapse)
Survival-time data settings

Failure event: relapse!=0 & relapse<.
Observed time interval: (0, weeks]
Exit on or before: failure

42 total observations
0 exclusions

42 observations remaining, representing
30 failures in single-record/single-failure data
541 total analysis time at risk and under observation

At risk from t = 0
Earliest observed entry t = 0
Last observed exit t = 35

In this example, we examine whether the proportional-hazards assumption holds for drug A versus

the standard drug (treatment1). First, we will use stphplot, followed by stcoxkm.
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. stphplot, by(treatmentl)

Failure _d: relapse
Analysis time _%: weeks

3
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Figure 1.

. stcoxkm, by(treatmentl) legend(pos(6) cols(2))

Failure _d: relapse

Analysis time _%: weeks
1.004

0.801 —
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0.001

0 10 20 30 40
Analysis time

—o— Observed: treatmentl = Standard —e— Observed: treatmentl = Drug A
—e— Predicted: treatmentl = Standard Predicted: treatmentl = Drug A

Figure 2.

Figure 1 (stphplot) displays lines that are parallel, implying that the proportional-hazards
assumption for treatment1 has not been violated. This is confirmed in figure 2 (stcoxkm), where
the observed values and predicted values are close together.

The graph in figure 3 is the same as the one in figure 1, adjusted for white blood cell count. By
default, this adjustment sets each level of wbc3cat to its overall mean. In other words, the results are
adjusted based on the observed proportions of individuals having normal, moderate, and high white
blood cell counts.
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. stphplot, strata(treatmentl) adjustfor(i.wbc3cat)

Failure _d: relapse
Analysis time _%: weeks

3

—e— treatmentl = Standard
—e— treatmentl = Drug A

-In[-In(survival probability)]

0 1 2 3 4
In(analysis time)

Figure 3.

The lines in figure 3 are still parallel, although they are somewhat closer together. Examining the
proportional-hazards assumption on a variable without adjusting for covariates is usually adequate as
a diagnostic tool before using the Cox model. However, if you know that adjustment for covariates in
a final model is necessary, you may wish to reexamine whether the proportional-hazards assumption
still holds.

If we wanted to adjust to the base level of the factor variable wbc3cat instead of the level-specific
averages, we could have typed

. stphplot, strata(treatmentl) adjustfor(i.wbc3cat, atbase)

Adjusting to a different value, however, would not affect our conclusion about the curves being
parallel.

Another variable in this dataset measures a different drug (treatment2: 1 = drug B, 0 = standard).
We wish to examine the proportional-hazards assumption for this variable.
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. stphplot, by(treatment2)

Failure _d: relapse
Analysis time _%: weeks

—e— treatment2 = Standard
—e— treatment2 = Drug B

-In[-In(survival probability)]

0 1 2 3 4
In(analysis time)

Figure 4.

. stcoxkm, by(treatment2) separate byopts(style(altleg))

Analysis time _%: weeks

Failure _d: relapse

Standard Drug B
1.004

0.50+ <1

0.001

Survival probability

0 10 20 BN 0 0 1o 20 30 40

Analysis time

—e— Observed: treatment2 = Standard —e— Observed: treatment2 = Drug B
—e— Predicted: treatment2 = Standard Predicted: treatment2 = Drug B

Graphs by Treatment |1

Figure 5.

This variable violates the proportional-hazards assumption. In figure 4, we see that the lines are
not only nonparallel but also cross in the data region. In figure 5, we see that there are considerable
differences between the observed and predicted values. We have overestimated the positive effect of
drug B for the first half of the study and have underestimated it in the later weeks. One hazard ratio
describing the effect of this drug would be inappropriate. We definitely would want to stratify on this
variable in our Cox model.

4
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> Example 2: estat phtest

In this example, we use estat phtest to examine whether the proportional-hazards assumption
holds for a model with covariates treatment1 and wbc3cat. After stsetting the data, we first run
stcox with these factor variables as regressors. Then we use estat phtest:

. stset weeks, failure(relapse)
Survival-time data settings

Failure event: relapse!=0 & relapse<.
Observed time interval: (0, weeks]
Exit on or before: failure

42 total observations
0 exclusions

42 observations remaining, representing
30 failures in single-record/single-failure data
541 total analysis time at risk and under observation

At risk from t = 0
Earliest observed entry t = 0
Last observed exit t = 35
. stcox i.treatmentl i.wbc3cat, nolog
Failure _d: relapse
Analysis time _t: weeks
Cox regression with Breslow method for ties
No. of subjects = 42 Number of obs = 42
No. of failures = 30
Time at risk = 541
LR chi2(3) = 33.02
Log likelihood = -77.476905 Prob > chi2 = 0.0000
_t | Haz. ratio Std. err. z P>|z| [95% conf. intervall]
treatmentl
Drug A .2834551 .1229874 -2.91 0.004 .1211042 .6634517
wbc3cat
Moderate 3.6378256  2.201306 2.13 0.033 1.111134 11.91015
High 10.92214  7.088783 3.68 0.000 3.06093 38.97284

. estat phtest, detail
Test of proportional-hazards assumption

Time function: Analysis time

rho chi2 df Prob>chi2
Ob.treatme~1 . . 1 .
1.treatmentl -0.07019 0.15 1 0.6948
1b.wbc3cat . . 1 .
2.wbc3cat -0.03223 0.03 1 0.8650
3.wbc3cat 0.01682 0.01 1 0.9237
Global test 0.33 3 0.9551

Because we specified the detail option with the estat phtest command, both covariate-specific
and global tests were produced. In addition, the rho column reports the correlation between the scaled
Schoenfeld residuals and the specified function of time. We can see that there is no evidence that the
proportional-hazards assumption has been violated.
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Another variable in this dataset measures a different drug (treatment2: 1 = drug B, 0 = standard).
We now wish to examine the proportional-hazards assumption for the previous model by substituting
treatment2 for treatmentl.

We fit a new Cox model and perform the test for proportional hazards:

. stcox i.treatment2 i.wbc3cat, nolog

Failure _d: relapse
Analysis time _t: weeks

Cox regression with Breslow method for ties

No. of subjects = 42 Number of obs = 42
No. of failures = 30
Time at risk = 541
LR chi2(3) = 23.93
Log likelihood = -82.019053 Prob > chi2 = 0.0000
_t Haz. ratio Std. err. z P>|z]| [95% conf. intervall
treatment?2
Drug B .8483777 .3469054 -0.40 0.688 .3806529 1.890816
wbc3cat
Moderate 3.409628 2.050784 2.04 0.041 1.048905 11.08353
High 14.0562 8.873693 4.19 0.000 4.078529 48.44314

. estat phtest, detail
Test of proportional-hazards assumption

Time function: Analysis time

rho chi2 df Prob>chi2
Ob.treatme~2 . . 1 .
1.treatment?2 -0.51672 10.19 1 0.0014
1b.wbc3cat . . 1 .
2.wbc3cat -0.09860 0.29 1 0.5903
3.wbc3cat -0.03559 0.04 1 0.8448
Global test 10.24 3 0.0166

treatment?2 violates the proportional-hazards assumption. A single hazard ratio describing the effect
of this drug is inappropriate.

The test of the proportional-hazards assumption is based on the principle that, for a given regressor,
the assumption restricts 3(t;) = (3 for all t;. This implies that a plot of 3(¢;) versus time will have
a slope of zero. Grambsch and Therneau (1994) showed that E(s}) + B~p (tj), where s is the
scaled Schoenfeld residual at failure time ¢; and B is the estimated coefficient from the Cox model.
Thus a plot of 5; + B versus some function of time provides a graphical assessment of the assumption.

Continuing from above, if you type

. predict sch*, scaledsch

you obtain five variables—schl1, sch2, sch3, sch4, and sch6—corresponding to the regressors.
Ignoring the base categories, sch2 corresponds to 1.treatment?2, sch4 corresponds to 2.wbc3cat,

and schb corresponds to 3.wbc3cat. Given the utility of s7 + ,73’\, what is stored in variable sch2 is

actually 5;2 + Bg and not just the scaled Schoenfeld residual for the 1.treatment2, 5;2, itself. The
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estimated coefficient, 32, is added automatically. The same holds true for the variable representing
the next regressor, sch4 = 8;4 + B4, and so on.

As such, a graphical assessment of the proportional-hazards assumption for the first regressor is
as simple as

. scatter sch2 _t || 1fit sch2 _t

which plots a scatter of s7, + (B2 versus analysis time, —t, and overlays a linear fit. Is the slope zero?
The answer is no for 1.treatment?2, and that agrees with our results from estat phtest.

4

Q Technical note

The tests of the proportional-hazards assumption assume homogeneity of variance across risk sets.
This allows the use of the estimated overall (pooled) variance—covariance matrix in the equations.
Although these tests have been shown by Grambsch and Therneau (1994) to be fairly robust to
departures from this assumption, exercise care where this assumption may not hold, particularly when
performing a stratified Cox analysis. In such cases, we recommend that you check the proportional-
hazards assumption separately for each stratum.

a

Video example

How to fit a Cox proportional hazards model and check proportional-hazards assumption

Stored results

estat phtest stores the following in r():

Scalars
r(df) global test degrees of freedom
r(chi2) global test x>
r(p) global test p-value
Matrices
r(phtest) separate tests for each covariate

Methods and formulas
For one covariate, , the Cox proportional hazards model reduces to
h(t;x) = ho(t) exp(zf)

where hg(t) is the baseline hazard function from the Cox model. Let Sy(t) and Hy(t) be the
corresponding Cox baseline survivor and baseline cumulative hazard functions, respectively.

The proportional-hazards assumption implies that
H(t) = Ho(t) exp(x)

or

InH (t) = InHy(t) + x5


https://www.youtube.com/watch?v=ime8BaLLXxw
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where H (t) is the cumulative hazard function. Thus, under the proportional-hazards assumption, the
logs of the cumulative hazard functions at each level of the covariate have equal slope. This is the
basis for the method implemented in stphplot.

The proportional-hazards assumption also implies that
S(t) = Solt) 27

Let S (t) be the estimated survivor function based on the Cox model. This function is a step function
like the Kaplan—Meier estimate and, in fact, reduces to the Kaplan—Meier estimate when x = 0.
Thus for each level of the covariate of interest, we can assess violations of the proportional-hazards
assumption by comparing these survival estimates with estimates calculated independently of the
model. See Kalbfleisch and Prentice (2002) or Hess (1995).

stcoxkm plots Kaplan—Meier estimated curves for each level of the covariate together with the
Cox model predicted baseline survival curve. The closer the observed values are to the predicted
values, the less likely it is that the proportional-hazards assumption has been violated.

Grambsch and Therneau (1994) presented a scaled adjustment for the Schoenfeld residuals that
permits the interpretation of the smoothed residuals as a nonparametric estimate of the log hazard-ratio
function. These scaled Schoenfeld residuals, rg., can be obtained directly with predict’s scaledsch
option; see [ST] stcox postestimation.

Scaled Schoenfeld residuals are centered at 3 for each covariate and, when there is no violation
of proportional hazards, should have slope zero when plotted against functions of time. The estat
phtest command uses these residuals, tests the null hypothesis that the slope is equal to zero for
each covariate in the model, and performs the global test proposed by Grambsch and Therneau (1994).
The test of zero slope is equivalent to testing that the log hazard-ratio function is constant over time.
With the detail option, estat phtest also reports the correlation between the scaled Schoenfeld
residuals and the specified function of time.

For a specified function of time, g(t), the statistic for testing the pth individual covariate is, for
_ _ N
g(t) =d=* 32,1, dig(ti),
N _ L. 12
) {Zizl{&'g(ti) - g(t)}rsm}
Xc = ~ N _ 2
d Var(ﬁp) 21:1 {5i9(ti) - g(t)}

which is asymptotically distributed as y? with 1 degree of freedom. Tgm is the scaled Schoenfeld

residual for observation ¢, and ¢; indicates failure for observation ¢, with d = Z ;.

The statistic for the global test is calculated as

o~

d Var(3)
2
S {ogt) —30) )

N ! N
Xg = [D_{digt:) - g(t)}rsll [Z{@-g (t) —g(t)}rs
i=1 i=1

for rg,, a vector of the m (unscaled) Schoenfeld residuals for the ith observation; see [ST] stcox
postestimation. The global test statistic is asymptotically distributed as x? with m degrees of freedom.

The equations for the scaled Schoenfeld residuals and the two test statistics just described assume
homogeneity of variance across risk sets. Although these tests are fairly robust to deviations from
this assumption, care must be exercised, particularly when dealing with a stratified Cox model.
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Postestimation commands

The following postestimation commands are of special interest after stcox:

Command Description

*estat concordance compute the concordance probability

estat phtest test the proportional-hazards assumption

*estat gofplot produce goodness-of-fit plot
stcoxkm plot Kaplan—-Meier observed survival and Cox predicted curves
stcurve plot the survivor, failure, hazard, or cumulative hazard function
stphplot plot —In{—In(survival)} curves
lassogof calculate goodness-of-fit predictions

*estat concordance and estat gofplot are not appropriate with svy estimation results.

128
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The following standard postestimation commands are also available:

Command Description
contrast contrasts and ANOVA-style joint tests of estimates
estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian in-

estat summarize

estat vce

estat (svy)

estimates

etable
*hausman

lincom

linktest
*lrtest

margins

marginsplot

nlcom

predict
predictnl
pwcompare
test
testnl

formation criteria (AIC, CAIC, AICc, and BIC)
summary statistics for the estimation sample

variance—covariance matrix of the estimators (VCE)
postestimation statistics for survey data

cataloging estimation results

table of estimation results

Hausman’s specification test

point estimates, standard errors, testing, and inference for linear combinations of
coefficients
link test for model specification

likelihood-ratio test
marginal means, predictive margins, marginal effects, and average marginal effects
graph the results from margins (profile plots, interaction plots, etc.)

point estimates, standard errors, testing, and inference for nonlinear combinations
of coefficients
hazard ratios, survivor functions, influence statistics, residuals, etc.

point estimates, standard errors, testing, and inference for generalized predictions
pairwise comparisons of estimates

Wald tests of simple and composite linear hypotheses

Wald tests of nonlinear hypotheses

*hausman and 1lrtest are not appropriate with svy estimation results.
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predict

Description for predict

predict creates a new variable containing predictions such as hazard ratios; linear predictions;
standard errors; baseline survivor, cumulative hazard, and hazard functions; martingale, Cox—Snell,
deviance, efficient score, Schoenfeld, and scaled Schoenfeld residuals; likelihood displacement values;
LMAX measures of influence; log frailties; and DFBETA measures of influence.

Menu for predict

Statistics > Postestimation

Syntax for predict
predict [type] newvar [lf] [zn] [, sv_statistic atfrailty[(varname\#)]

nooffset partial ]

predict [type] {stub*\newvarlist} [zf] [in}, mv_statistic [partial]

sv_statistic Description
Main
hr predicted hazard ratio, also known as the relative hazard; the default
xb linear prediction Xj,@
stdp standard error of the linear prediction; SE(xj,@)
*basesurv baseline survivor function
*basechazard baseline cumulative hazard function
*basehc baseline hazard contributions
*mgale martingale residuals
*csnell Cox—Snell residuals
*deviance deviance residuals
*ldisplace likelihood displacement values
*1lmax LMAX measures of influence
*effects log frailties
my_statistic Description
Main
*scores efficient score residuals
*esr synonym for scores
*dfbeta DFBETA measures of influence
*schoenfeld Schoenfeld residuals
*scaledsch scaled Schoenfeld residuals
Unstarred statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only

for the estimation sample. Starred statistics are calculated only for the estimation sample, even when e (sample)
is not specified. nooffset is allowed only with unstarred statistics.

mgale, csnell, deviance, ldisplace, 1max, dfbeta, schoenfeld, and scaledsch are not allowed with svy
estimation results.
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Options for predict

(Main |
hr, the deanult, calculates the relative hazard (hazard ratio), that is, the exponentiated linear prediction,
exp(x;3).
xb calculates the linear prediction from the fitted model. That is, you fit the model by estimating a
set of parameters, 81, B2, ..., Bk, and the linear prediction is 313313' + nggj + -+ kakj,

often written in matrix notation as x;03.

The 1, x2j, ..., Tk used in the calculation are obtained from the data currently in memory
and need not correspond to the data on the independent variables used in estimating (3.

stdp calculates the standard error of the prediction, that is, the standard error of xjfi

basesurv calculates the baseline survivor function. In the null model, this is equivalent to the Kaplan—
Meier product-limit estimate. If stcox’s strata() option was specified, baseline survivor functions
for each stratum are provided.

basechazard calculates the cumulative baseline hazard. If stcox’s strata() option was specified,
cumulative baseline hazards for each stratum are provided.

basehc calculates the baseline hazard contributions. These are used to construct the product-limit
type estimator for the baseline survivor function generated by basesurv. If stcox’s strata()
option was specified, baseline hazard contributions for each stratum are provided.

mgale calculates the martingale residuals. For multiple-record-per-subject data, by default only one
value per subject is calculated, and it is placed on the last record for the subject.

Adding the partial option will produce partial martingale residuals, one for each record within
subject; see partial below. Partial martingale residuals are the additive contributions to a subject’s
overall martingale residual. In single-record-per-subject data, the partial martingale residuals are
the martingale residuals.

csnell calculates the Cox—Snell generalized residuals. For multiple-record data, by default only one
value per subject is calculated, and it is placed on the last record for the subject.

Adding the partial option will produce partial Cox—Snell residuals, one for each record within
subject; see partial below. Partial Cox—Snell residuals are the additive contributions to a subject’s
overall Cox—Snell residual. In single-record data, the partial Cox—Snell residuals are the Cox—Snell
residuals.

deviance calculates the deviance residuals. Deviance residuals are martingale residuals that have
been transformed to be more symmetric about zero. For multiple-record data, by default only one
value per subject is calculated, and it is placed on the last record for the subject.

Adding the partial option will produce partial deviance residuals, one for each record within
subject; see partial below. Partial deviance residuals are transformed partial martingale residuals.
In single-record data, the partial deviance residuals are the deviance residuals.

ldisplace calculates the likelihood displacement values. A likelihood displacement value is an
influence measure of the effect of deleting a subject on the overall coefficient vector. For multiple-
record data, by default only one value per subject is calculated, and it is placed on the last record
for the subject.

Adding the partial option will produce partial likelihood displacement values, one for each
record within subject; see partial below. Partial displacement values are interpreted as effects
due to deletion of individual records rather than deletion of individual subjects. In single-record
data, the partial likelihood displacement values are the likelihood displacement values.
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1max calculates the LMAX measures of influence. LMAX values are related to likelihood displacement
values because they also measure the effect of deleting a subject on the overall coefficient vector.
For multiple-record data, by default only one LMAX value per subject is calculated, and it is placed
on the last record for the subject.

Adding the partial option will produce partial LMAX values, one for each record within subject;
see partial below. Partial LMAX values are interpreted as effects due to deletion of individual
records rather than deletion of individual subjects. In single-record data, the partial LMAX values
are the LMAX values.

effects is for use after stcox, shared() and provides estimates of the log frailty for each group.
The log frailties are random group-specific offsets to the linear predictor that measure the group
effect on the log relative-hazard.

scores calculates the efficient score residuals for each regressor in the model. For multiple-record
data, by default only one score per subject is calculated, and it is placed on the last record for the
subject.

Adding the partial option will produce partial efficient score residuals, one for each record
within subject; see partial below. Partial efficient score residuals are the additive contributions to
a subject’s overall efficient score residual. In single-record data, the partial efficient score residuals
are the efficient score residuals.

One efficient score residual variable is created for each regressor in the model; the first new
variable corresponds to the first regressor, the second to the second, and so on.

esr is a synonym for scores.

dfbeta calculates the DFBETA measures of influence for each regressor in the model. The DFBETA
value for a subject estimates the change in the regressor’s coefficient due to deletion of that subject.
For multiple-record data, by default only one value per subject is calculated, and it is placed on
the last record for the subject.

Adding the partial option will produce partial DFBETAs, one for each record within subject; see
partial below. Partial DFBETAs are interpreted as effects due to deletion of individual records
rather than deletion of individual subjects. In single-record data, the partial DFBETAs are the
DFBETAS.

One DFBETA variable is created for each regressor in the model; the first new variable corresponds
to the first regressor, the second to the second, and so on.

schoenfeld calculates the Schoenfeld residuals. This option may not be used after stcox with the
exactm or exactp option. Schoenfeld residuals are calculated and reported only at failure times.

One Schoenfeld residual variable is created for each regressor in the model; the first new variable
corresponds to the first regressor, the second to the second, and so on.

scaledsch calculates the scaled Schoenfeld residuals. This option may not be used after stcox with
the exactm or exactp option. Scaled Schoenfeld residuals are calculated and reported only at
failure times.

One scaled Schoenfeld residual variable is created for each regressor in the model; the first new
variable corresponds to the first regressor, the second to the second, and so on.
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Note: The easiest way to use the preceding four options is, for example,
. predict double stubx, scores

where stub is a short name of your choosing. Stata then creates variables stub1, stub2, etc. You
may also specify each variable name explicitly, in which case there must be as many (and no
more) variables specified as there are regressors in the model.

atfrailty or atfrailty (varname | #) is allowed only with basesurv, basechazard, and basehc
and is relevant only if you specified shared(varname) for stcox. It modifies the computations
of baseline functions so that values for the frailties are included in the computation.

Specifying atfrailty allows you to use the estimates of the frailty for each group, which are the
exponentiation of the results calculated by predict, effects. atfrailty(varname |#) allows
you to specify your own frailty values; # must be a positive number.

nooffset is allowed only with hr, xb, and stdp, and is relevant only if you specified off-
set (varname) for stcox. It modifies the calculations made by predict so that they ignore the

offset variable; the linear prediction is treated as x;3 rather than x;3 + offset;.

partial is relevant only for multiple-record data and is valid with mgale, csnell, deviance,
ldisplace, lmax, scores, esr, and dfbeta. Specifying partial will produce “partial” versions
of these statistics, where one value is calculated for each record instead of one for each subject.
The subjects are determined by the id () option to stset.

Specify partial if you wish to perform diagnostics on individual records rather than on individual
subjects. For example, a partial DFBETA would be interpreted as the effect on a coefficient due to
deletion of one record, rather than the effect due to deletion of all records for a given subject.
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margins

Description for margins

margins estimates margins of response for hazard ratios and linear predictions.

Menu for margins

Statistics > Postestimation

Syntax for margins

margins [marginlist} [, options]

margins [marginlisz} , predict (statistic ...) [Eedict (statistic ...) ... ] [opzions]
statistic Description
hr predicted hazard ratio, also known as the relative hazard; the default
xb linear prediction XjB
stdp not allowed with margins
basesurv not allowed with margins
basechazard not allowed with margins
basehc not allowed with margins
mgale not allowed with margins
csnell not allowed with margins
deviance not allowed with margins
ldisplace not allowed with margins
1lmax not allowed with margins
effects not allowed with margins
scores not allowed with margins
esr not allowed with margins
dfbeta not allowed with margins
schoenfeld not allowed with margins
scaledsch not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e (b).

For the full syntax, see [R] margins.
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estat

Description for estat

estat concordance calculates the concordance probability, which is defined as the probability
that predictions and outcomes are concordant. estat concordance provides two measures of the
concordance probability: Harrell’s C' and Gonen and Heller’s K concordance coefficients. estat
concordance also reports the Somers’s D rank correlation, which is obtained by calculating 2C — 1
or 2K — 1.

Menu for estat

Statistics > Postestimation

Syntax for estat

estat concordance [if ] [in] [, concordance_options]

concordance_options Description

Main
harrell compute Harrell’s C' coefficient; the default
gheller compute Gonen and Heller’s concordance coefficient
se compute asymptotic standard error of Gonen and Heller’s coefficient
all compute statistic for all observations in the data
noshow do not show st setting information

collect is allowed; see [U] 11.1.10 Prefix commands.

Options for estat

Main

r

harrell, the default, calculates Harrell’s C coefficient, which is defined as the proportion of all
usable subject pairs in which the predictions and outcomes are concordant.

gheller calculates Gonen and Heller’s /' concordance coefficient instead of Harrell’s C' coefficient.
The harrell and gheller options may be specified together to obtain both concordance measures.

se calculates the smoothed version of Gonen and Heller’s K concordance coefficient and its asymptotic
standard error. The se option requires the gheller option.

all requests that the statistic be computed for all observations in the data. By default, estat
concordance computes over the estimation subsample.

noshow prevents estat concordance from displaying the identities of the key st variables above
its output.
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Remarks and examples

Remarks are presented under the following headings:

Baseline functions

Making baseline reasonable

Residuals and diagnostic measures

Multiple records per subject

Predictions after stcox with the tvc() option
Predictions after stcox with the shared() option
estat concordance

Baseline functions

predict after stcox provides estimates of the baseline survivor and baseline cumulative hazard
function, among other things. Here the term baseline means that these are the functions when all
covariates are set to zero, that is, they reflect (perhaps hypothetical) individuals who have zero-valued
measurements. When you specify predict’s basechazard option, you obtain the baseline cumulative
hazard. When you specify basesurv, you obtain the baseline survivor function. Additionally, when
you specify predict’s basehc option, you obtain estimates of the baseline hazard contribution at
each failure time, which are factors used to develop the product-limit estimator for the survivor
function generated by basesurv.

Although in theory Sy(t) = exp{—Ho(t)}, where Sy(t) is the baseline survivor function and
Hy(t) is the baseline cumulative hazard, the estimates produced by basechazard and basesurv
do not exactly correspond in this manner, although they closely do. The reason is that predict
after stcox uses different estimation schemes for each; the exact formulas are given in Methods and
formulas.

When the Cox model is fit with the strata() option, you obtain estimates of the baseline functions
for each stratum.

» Example 1: Baseline survivor function

Baseline functions refer to the values of the functions when all covariates are set to 0. Let’s graph
the survival curve for the Stanford heart transplant model that we fit in example 3 of [ST] stcox, and
to make the baseline curve reasonable, let’s do that at age = 40 and year = 70.

Thus we will begin by creating variables that, when 0, correspond to the baseline values we desire,
and then we will fit our model with these variables instead. We then predict the baseline survivor
function and graph it:

. use https://www.stata-press.com/data/r18/stan3
(Heart transplant data)
. generate age40 = age - 40

. generate year70 = year - 70
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. stcox age40 posttran surg year70, nolog

Failure _d: died
Analysis time _t: t1

ID variable: id

Cox regression with Breslow method for ties

No. of subjects = 103 Number of obs = 172
No. of failures = 75
Time at risk = 31,938.1

LR chi2(4) = 17.56

Log likelihood = -289.53378 Prob > chi2 = 0.0015

_t | Haz. ratio Std. err. z P>|z| [95% conf. intervall]

aged0 1.030224 .0143201 2.14 0.032 1.002536 1.058677

posttran .9787243 .3032597 -0.07 0.945 .5332291 1.796416

surgery .3738278 .163204 -2.25 0.024 .1588759 .8796

year70 .8873107 .059808 -1.77 0.076 7775022 1.012628

. predict s, basesurv
. summarize s

Variable | Obs Mean Std. dev. Min Max

s | 172 .6291871 .2530009 .130666  .9908968
Our recentering of age and year did not affect the estimation, a fact you can verify by refitting the
model with the original age and year variables.

To see how the values of the baseline survivor function are stored, we first sort according to
analysis time and then list some observations.

. sort _t id

. list id _t0 _t _d s in 1/20

id t0 _t _d s

1. 3 0 1 0 .9908968

2. 15 0 1 1 .9908968

3. 20 0 1 0 .9908968

4. 45 0 1 0 .9908968

5. 39 0 2 0 .9633915

6. 43 0 2 1 .9633915

7. 46 0 2 0 .9633915

8. 61 0 2 1 .9633915

9. 75 0 2 1 .9633915

10. 95 0 2 0 .9633915
11. 6 0 3 1 .9356873
12. 23 0 3 0 .9356873
13. 42 0 3 1 .9356873
14. 54 0 3 1 .9356873
15. 60 0 3 0 .9356873
16. 68 0 3 0 .9356873
17. 72 0 4 0 .9356873
18. 94 0 4 0 .9356873
19. 38 0 5 0 .9264087
20. 70 0 5 0 .9264087
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At time _t = 2, the baseline survivor function is 0.9634, or more precisely, So(2 + At) = 0.9634.
What we mean by So(t + At) is the probability of surviving just beyond ¢. This is done to clarify
that the probability includes escaping failure at precisely time ¢.

The above also indicates that our estimate of Sp(¢) is a step function, and that the steps occur
only at times when failure is observed—our estimated Sy (%) does not change from _t =3 to _t = 4
because no failure occurred at time 4. This behavior is analogous to that of the Kaplan—Meier estimate
of the survivor function; see [ST] sts.

Here is a graph of the baseline survival curve:

. line s _t, sort c(J)
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Baseline survivor function
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This graph was easy enough to produce because we wanted the survivor function at baseline. To
graph survivor functions after stcox with covariates set to any value (baseline or otherwise), use
stcurve; see [ST] stcurve. q

The similarity to Kaplan—-Meier is not limited to the fact that both are step functions that change
only when failure occurs. They are also calculated in much the same way, with predicting basesurv
after stcox having the added benefit that the result is automatically adjusted for all the covariates in
your Cox model. When you have no covariates, both methods are equivalent. If you continue from
the previous example, you will find that

. sts generate sl = s

and

. stcox, estimate

. predict double s2, basesurv

produce the identical variables s1 and s2, both containing estimates of the overall survivor function,
unadjusted for covariates. We used type double for s2 to precisely match sts generate, which
gives results in double precision.

If we had fit a stratified model by using the strata() option, the recorded survivor-function
estimate on each observation would be for the stratum of that observation. That is, what you get is
one variable that holds not an overall survivor curve, but instead a set of stratum-specific curves.
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> Example 2: Baseline cumulative hazard

Obtaining estimates of the baseline cumulative hazard, Hy(t), is just as easy as obtaining the
baseline survivor function. Using the same data as previously,
. use https://www.stata-press.com/data/r18/stan3, clear
(Heart transplant data)
. generate age40 = age - 40
. generate year70 = year - 70

. stcox age40 posttran surg year70
(output omitted )

. predict ch, basechazard

. line ch _t, sort c(J)

24

1.54
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The estimated baseline cumulative hazard is also a step function with the steps occurring at the
observed times of failure. When there are no covariates in your Cox model, what you obtain is
equivalent to the Nelson—Aalen estimate of the cumulative hazard (see [ST] sts), but using predict,
basechazard after stcox allows you to also adjust for covariates.

To obtain cumulative hazard curves at values other than baseline, you could either recenter your
covariates—as we did previously with age and year—so that the values in which you are interested
become baseline, or simply use stcurve; see [ST] stcurve.

4

> Example 3: Baseline hazard contributions

Mathematically, a baseline hazard contribution, h; = (1 — ozlv) (see Kalbfleisch and Prentice 2002,
115), is defined at every analytic time ¢; at which a failure occurs and is undefined at other times. Stata
stores h; in observations where a failure occurred and stores missing values in the other observations.

. use https://www.stata-press.com/data/r18/stan3, clear
(Heart transplant data)

. generate age40 = age - 40

. generate year70 = year - 70

. stcox age40 posttran surg year70
(output omitted )

. predict double h, basehc
(97 missing values generated)
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. list id _t0 _t _d h in 1/10

id  _t0 _t d h
1 1 0 50 1 .01503465
2 2 0 6 1 .02035303
3 3 0 1 0 .
4 3 1 16 1 .03339642
5 4 0 36 0
6. 4 36 39 1 .01365406
7. 5 0 18 1 .01167142
8. 6 0 3 1 .02875689
9. 7 0 51 0 .
10. 7 51 675 1 .06215003

At time _t = 50, the hazard contribution h; is 0.0150. At time _t = 6, the hazard contribution ho
is 0.0204. In observation 3, no hazard contribution is stored. Observation 3 contains a missing value
because observation 3 did not fail at time 1. We also see that values of the hazard contributions are
stored only in observations that are marked as failing.

Hazard contributions by themselves have no substantive interpretation, and in particular they should
not be interpreted as estimating the hazard function at time ¢. Hazard contributions are simply mass
points that are used as components to calculate the survivor function; see Methods and formulas. You
can also use hazard contributions to estimate the hazard, but because they are only mass points, they
need to be smoothed first. This smoothing is done automatically with stcurve; see [ST] stcurve.
In summary, hazard contributions in their raw form serve no purpose other than to help replicate
calculations done by Stata, and we demonstrate this below simply for illustrative purposes.

When we created the new variable h for holding the hazard contributions, we used type double
because we plan on using h in some further calculations below and we wish to be as precise as
possible.

In contrast with the baseline hazard contributions, the baseline survivor function, Sy (t), is defined
at all values of ¢: its estimate changes its value when failures occur, and at times when no failures
occur, the estimated So(t) is equal to its value at the time of the last failure.

Continuing with our example, we now predict the baseline survivor function:

. predict double s, basesurv
. list id _t0 _t _.d h s in 1/10

id _t0 _t d h s
1. 1 0 50 1 .01503465 .68100303
2. 2 0 6 1 .02035303 .89846438
3. 3 0 1 0 . .99089681
4. 3 1 16 1 .03339642 .84087361
5. 4 0 36 0 . 7527663
6. 4 36 39 1 .01365406 . 73259264
7. 5 0 18 1 .01167142 .82144038
8. 6 0 3 1 .02875689 .93568733
9. 7 0 51 0 . .6705895
10. 7 51 675 1 .06215003 .26115633
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In the above, we sorted by id, but it is easier to see how h and s are related if we sort by _t
and put the failures on top:
. gsort +_t -_d
. list id _t0 _t _.d h s in 1/18

id t0 _t _d h s
1 15 0 1 1 .00910319 .99089681
2. 3 0 1 0 .99089681
3. 20 0 1 0 .99089681
4 45 0 1 0 . .99089681
5 43 0 2 1 .02775802 .96339147
6 75 0 2 1 .02775802 .96339147
7. 61 0 2 1 .02775802 .96339147
8. 95 0 2 0 .96339147
9 39 0 2 0 .96339147
10 46 0 2 0 .96339147
11. 54 0 3 1 .02875689 .93568733
12. 6 0 3 1 .02875689 .93568733
13. 42 0 3 1 .02875689 .93568733
14. 60 0 3 0 .93568733
15. 23 0 3 0 .93568733
16. 68 0 3 0 .93568733
17. 94 0 4 0 .93568733
18. 72 0 4 0 .93568733

The baseline hazard contribution is stored on every failure record—if multiple failures occur at a given
time, the value of the hazard contribution is repeated—and the baseline survivor is stored on every
record. (More correctly, baseline values are stored on records that meet the criterion and that were
used in estimation. If some observations are explicitly or implicitly excluded from the estimation,
their baseline values will be set to missing, no matter what.)

With this listing, we can better understand how the hazard contributions are used to calculate the
survivor function. Because the patient with id = 15 died at time ¢; = 1, the hazard contribution for
that patient is h15 = 0.00910319. Because that was the only death at £; = 1, the estimated survivor
function at this time is Sp(1) =1 — hy5 = 1 —0.00910319 = 0.99089681. The next death occurs at
time ¢; = 2, and the hazard contribution at this time for patient 43 (or patient 61 or patient 75, it
does not matter) is h43 = 0.02775802. Multiplying the previous survivor function value by 1 — hy3
gives the new survivor function at t; = 2 as Sy(2) = 0.96339147. The other survivor function values
are then calculated in succession, using this method at each failure time. At times when no failures
occur, the survivor function remains unchanged.

N

Q Technical note
Consider manually obtaining the estimate of Sy(t) from the h;:
. sort _t _d
. by _t: keep if _d & _n==_
. generate double s2 = 1-h
. replace s2 = s2[_n-1]*s2 if _n>1
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s2 will be equivalent to s as produced above. If you had obtained stratified estimates, the code would
be

. sort group _t _d

. by group _t: keep if _d & _n==_

. generate double s2 = 1-h

. by group: replace s2 = s2[_n-1]*s2 if _n>1

Making baseline reasonable

When predicting with basesurv or basechazard, for numerical accuracy reasons, the baseline
functions must correspond to something reasonable in your data. Remember, the baseline functions
correspond to all covariates equal to O in your Cox model.

Consider, for instance, a Cox model that includes the variable calendar year among the covariates.
Say that year varies between 1980 and 1996. The baseline functions would correspond to year O,
almost 2,000 years in the past. Say that the estimated coefficient on year is —0.2, meaning that the
hazard ratio for one year to the next is a reasonable 0.82.

Think carefully about the contribution to the predicted log cumulative hazard: it would be approx-
imately —0.2 x 2,000 = —400. Now e~%0 ~ 10717, which on a digital computer is so close to 0
that there is simply no hope that Hy(t)e~4%° will produce an accurate estimate of H (t).

Even with less extreme numbers, problems arise, even in the calculation of the baseline survivor
function. Baseline hazard contributions near 1 produce baseline survivor functions with steps differing
by many orders of magnitude because the calculation of the survivor function is cumulative. Producing
a meaningful graph of such a survivor function is hopeless, and adjusting the survivor function to
other values of the covariates is too much work.

For these reasons, covariate values of 0 must be meaningful if you are going to specify the
basechazard or basesurv option. As the baseline values move to absurdity, the first problem you
will encounter is a baseline survivor function that is too hard to interpret, even though the baseline
hazard contributions are estimated accurately. Further out, the procedure Stata uses to estimate the
baseline hazard contributions will break down—it will produce results that are exactly 1. Hazard
contributions that are exactly 1 produce survivor functions that are uniformly 0, and they will remain
0 even after adjusting for covariates.

This, in fact, occurs with the Stanford heart transplant data:
. use https://www.stata-press.com/data/r18/stan3, clear
(Heart transplant data)

. stcox age posttran surg year
(output omitted )

. predict ch, basechazard
. predict s, basesurv
. summarize ch s

Variable | Obs Mean Std. dev. Min Max
ch 172 745.1134 682.8671 11.88239 2573.637
s 172 1.45e-07 9.43e-07 0 6.24e-06

The hint that there are problems is that the values of ch are huge and the values of s are close to
0. In this dataset, age (which ranges from 8 to 64 with a mean value of 45) and year (which ranges
from 67 to 74) are the problems. The baseline functions correspond to a newborn at the turn of the
century on the waiting list for a heart transplant!
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To obtain accurate estimates of the baseline functions, type

. drop ch s
. generate age40 = age - 40
. generate year70 = year - 70

. stcox age40 posttran surg year70
(output omitted )

. predict ch, basechazard
. predict s, basesurv

. summarize ch s

Variable | Obs Mean Std. dev. Min Max
ch 172 .5685743 .521076 .0090671 1.963868
s 172 .6291871 .2530009 .130666 .9908968

Adjusting the variables does not affect the coefficient (and, hence, hazard-ratio) estimates, but it
changes the values at which the baseline functions are estimated to be within the range of the data.

Q Technical note

Above we demonstrated what can happen to predicted baseline functions when baseline values
represent a departure from what was observed in the data. In the above example, the Cox model
fit was fine and only the baseline functions lacked accuracy. As baseline values move even further
toward absurdity, the risk-set accumulations required to fit the Cox model will also break down. If
you are having difficulty getting stcox to converge or you obtain missing coefficients, one possible
solution is to recenter your covariates just as we did above.

a

Residuals and diagnostic measures

Stata can calculate Cox—Snell residuals, martingale residuals, deviance residuals, efficient score
residuals (esr), Schoenfeld residuals, scaled Schoenfeld residuals, likelihood displacement values,
LMAX values, and DFBETA influence measures.

Although the uses of residuals vary and depend on the data and user preferences, traditional
and suggested uses are the following: Cox—Snell residuals are useful in assessing overall model fit.
Martingale residuals are useful in determining the functional form of covariates to be included in the
model and are occasionally useful in identifying outliers. Deviance residuals are useful in examining
model accuracy and identifying outliers. Schoenfeld and scaled Schoenfeld residuals are useful for
checking and testing the proportional-hazards assumption. Likelihood displacement values and LMAX
values are useful in identifying influential subjects. DFBETAs also measure influence, but they do so
on a coefficient-by-coefficient basis. Likelihood displacement values, LMAX values, and DFBETAS are
all based on efficient score residuals.

> Example 4: Cox—Snell residuals

Let’s first examine the use of Cox—Snell residuals. Using the cancer data introduced in example 2
in [ST] stcox, we first perform a Cox regression and then predict the Cox—Snell residuals.
. use https://www.stata-press.com/data/r18/drugtr, clear
(Patient survival in drug trial)

. stset studytime, failure(died)
(output omitted )
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. stcox age drug, nolog

Failure _d: died
Analysis time _%: studytime

Cox regression with Breslow method for ties

No. of subjects = 48 Number of obs = 48
No. of failures = 31
Time at risk = 744

LR chi2(2) = 33.18

Log likelihood = -83.323546 Prob > chi2 = 0.0000

_t | Haz. ratio Std. err. z P>zl [95% conf. intervall]

age 1.120325 .0417711 3.05 0.002 1.041375 1.20526

drug .1048772 .0477017 -4.96 0.000 .0430057 .2557622

. predict cs, csnell

The csnell option tells predict to output the Cox—Snell residuals to a new variable, cs. If
the Cox regression model fits the data, these residuals should have a standard censored exponential
distribution with hazard ratio 1. We can verify the model’s fit by calculating—based, for example, on
the Kaplan—Meier estimated survivor function or the Nelson—Aalen estimator—an empirical estimate
of the cumulative hazard function, using the Cox—Snell residuals as the time variable and the data’s
original censoring variable. If the model fits the data, the plot of the cumulative hazard versus cs

should approximate a straight line with slope 1.

To do this, we first re-stset the data, specifying cs as our new failure-time variable and died as
the failure/censoring indicator. We then use the sts generate command to generate the H variable
containing the Nelson—Aalen cumulative hazard estimates and plot it against cs.

. stset cs, failure(died)
(output omitted )

. sts generate H = na

. line H cs cs, sort ytitle("") clstyle(. refline)

4

—— Cox-Snell residual

Cox-Snell residual

—— Nelson-Aalen cumulative hazard
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We specified cs twice in the graph command above so that a reference 45° line is plotted.
Comparing the jagged line with the reference line, we observe that the Cox model does not fit these
data too badly.

We could have used estat gofplot to automate the above steps, creating the goodness-of-fit plot
for a Cox model with the following:

. quietly stset studytime, failure(died)
. quietly stcox age drug
. estat gofplot

Q Technical note

The statement that “if the Cox regression model fits the data, the Cox—Snell residuals have a
standard censored exponential distribution with hazard ratio 1” holds only if the true parameters,
B, and the true cumulative baseline hazard function, Hy(t), are used in calculating the residuals.

Because we use estimates ,@ and Hy(t), deviations from the 45° line in the above plots could be due
in part to uncertainty about these estimates. This is particularly important for small sample sizes and
in the right-hand tail of the distribution, where the baseline hazard is more variable because of the
reduced effective sample caused by prior failures and censoring.

a

> Example 5: Martingale residuals

Let’s now examine the martingale residuals. Martingale residuals are useful in assessing the
functional form of a covariate to be entered into a Cox model. Sometimes the covariate may need
transforming so that the transformed variable will satisfy the assumptions of the proportional hazards
model. To find the appropriate functional form of a variable, we fit a Cox model excluding the variable
and then plot a 1lowess smooth of the martingale residuals against some transformation of the variable
in question. If the transformation is appropriate, then the smooth should be approximately linear.
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We apply this procedure to our cancer data to find an appropriate transformation of age (or to
verify that age need not be transformed).
. use https://www.stata-press.com/data/r18/drugtr, clear
(Patient survival in drug trial)

. stset studytime, failure(died)
(output omitted )

. stcox drug
(output omitted )

. predict mg, mgale

. lowess mg age, mean noweight title("") note("") m(o)

Martingale residual
]
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.
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Patient's age at start of exp.

We used the lowess command with the mean and noweight options to obtain a plot of the
running-mean smoother to ease interpretation. A lowess smoother or other smoother could also be
used; see [R] lowess. The smooth appears nearly linear, supporting the inclusion of the untransformed
version of age in our Cox model. Had the smooth not been linear, we would have tried smoothing
the martingale residuals against various transformations of age until we found one that produced a
near-linear smooth. q

Martingale residuals can also be interpreted as the difference over time of the observed number of
failures minus the difference predicted by the model. Thus a plot of the martingale residuals versus
the linear predictor may be used to detect outliers.

Plots of martingale residuals are sometimes difficult to interpret, however, because these residuals
are skewed, taking values in (—o0, 1). For this reason, deviance residuals are preferred for examining
model accuracy and identifying outliers.
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Originally, “a la martingale” was a French expression meaning in the fashion of Martigues, a
town in Provence. People from that town evidently had a reputation, no doubt unjustified, for
their extravagance. Later the term was applied to a betting method in which a gambler doubles
the stakes after each loss, which is not a strategy that StataCorp will endorse on your behalf.
The current meaning in probability theory is more prosaic. In a fair game, knowing past events
cannot help predict winnings in the future. By extension, a martingale is a stochastic process in
time for which the expectation of the next value equals the present value, even given knowledge
of all previous values. The original reference to fashion survives in equestrian and nautical terms
referring to straps or stays.

» Example 6: Deviance residuals

Deviance residuals are a rescaling of the martingale residuals so that they are symmetric about
0 and thus are more like residuals obtained from linear regression. Plots of these residuals against
the linear predictor, survival time, rank order of survival, or observation number can be useful in
identifying aberrant observations and assessing model fit. We continue from the previous example,
but we need to first refit the Cox model with age included:

. drop mg

. stcox drug age
(output omitted )

. predict mg, mgale
. predict xb, xb

. scatter mg xb
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. predict dev, deviance

. scatter dev xb
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Linear prediction

We first plotted the martingale residuals versus the linear predictor and then plotted the deviance
residuals versus the linear predictor. Given their symmetry about 0, deviance residuals are easier to
interpret, although both graphs yield the same information. With uncensored data, deviance residuals
should resemble white noise if the fit is adequate. Censored observations would be represented as
clumps of deviance residuals near 0 (Klein and Moeschberger 2003, 381). Given what we see above,
there do not appear to be any outliers. q

In evaluating the adequacy of the fitted model, we must determine if any one subject has
a disproportionate influence on the estimated parameters. This is known as influence or leverage
analysis. The preferrgd method of performing influence or leverage analysiAs is to compare the
estimated parameter, 3, obtained from the full data, with estimated parameters 3,, obtained by fitting
the model to the NV — 1 subjects remaining after the ith subject is removed. If B — ,@z is close to 0,
the 7th subject has little influence on the estimate. The process is repeated for all subjects included
in the original model. To compute these differences for a dataset with N subjects, we would have to
execute stcox N additional times, which could be impractical for large datasets.

To avoid fitting IV additional Cox models, an approximation to B — ﬁi can be made based on the

efficient score residuals; see Methods and formulas. The difference 3 — 3, is commonly referred to
as DFBETA in the literature; see [R] regress postestimation.

> Example 7: DFBETAs

You obtain DFBETAs by using predict’s dfbeta option:

. use https://www.stata-press.com/data/r18/drugtr, clear
(Patient survival in drug trial)

. stset studytime, failure(died)

(output omitted )

. stcox age drug
(output omitted )

. predict dfx*, dfbeta

The last command stores the estimates of DFBETA; = B — BZ for ¢ = 1,..., N in the variables
df1 and df2. We can now plot these versus either time or subject (observation) number to identify
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subjects with disproportionate influence. To maximize the available information, we plot versus time
and label the points by their subject numbers.

. generate obs = _n
. scatter dfl studytime, yline(0) mlabel(obs)
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From the second graph we see that observation 35, if removed, would decrease the coefficient on
drug by approximately 0.15 or, equivalently, decrease the hazard ratio for drug by a factor of

approximately exp(—0.15) = 0.861.
N

DFBETAs as measures of influence have a straightforward interpretation. Their only disadvantage is
that the number of values to examine grows both with sample size and with the number of regressors.

Two alternative measures of influence are likelihood displacement values and LMAX values, and
both measure each subject’s influence on the coefficient vector as a whole. Thus, for each, you have
only one value per subject regardless of the number of regressors. As was the case with DFBETAS,
likelihood displacement and LMAX calculations are also based on efficient score residuals; see Methods
and formulas.
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Likelihood displacement values measure influence by approximating what happens to the model
log likelihood (more precisely, twice the log likelihood) when you omit subject ¢. Formally, the
likelihood displacement value for subject ¢ approximates the quantity

2 { logL (B) — logL (B)}

where ,B' and ,@Z are defined as previously and L(-) is the partial likelihood for the Cox model estimated
from all the data. In other words, when you calculate L() you use all the data, but you evaluate at

the parameter estimates B\l obtained by omitting the ith subject. Note that because B represents an
optimal solution, likelihood displacement values will always be nonnegative.

That likelihood displacements measure influence can be seen through the following logic: if subject
1 is influential, then the vector B; will differ substantially from 3. When that occurs, evaluating the
log likelihood at such a suboptimal solution will give you a very different log likelihood.

LMAX values are closely related to likelihood displacements and are derived from an eigensystem
analysis of the matrix of efficient score residuals; see Methods and formulas for details.

Both likelihood displacement and LMAX values measure each subject’s overall influence, but they
are not directly comparable with each other. Likelihood displacement values should be compared only
with other likelihood displacement values, and LMAX values only with other LMAX values.

> Example 8: Likelihood displacement and LMAX values

You obtain likelihood displacement values with predict’s ldisplace option, and you obtain
LMAX values with the 1max option. Continuing from the previous example:
. predict 1d, ldisplace
. predict lmax, lmax
. list _t0O _t _d 1d 1lmax in 1/10

_t0 _t _d 1d 1max
1. 0 1 1 .0059511 .0735375
2. 0 1 1 .032366 .1124505
3. 0 2 1 .0038388 .0686295
4. 0 3 1 .0481942 .0113989
5. 0 4 1 .0078195 .0331513

.0019887 .0308102
.0069245 .0614247
.0051647 .0763283
.0021315 .0353402
.0116187 .1179539

O © 0 ~N O
O O O OO
0 00 U1 U1
Or KL KB
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We can plot the likelihood displacement values versus time and label the points by observation number:
. scatter 1d studytime, mlabel(obs)
2
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The above shows subjects 16 and 46 to be somewhat influential. A plot of LMAX values will show
subject 16 as influential but not subject 46, a fact we leave to you to verify.

N

Schoenfeld residuals and scaled Schoenfeld residuals are most often used to test the proportional-
hazards assumption, as described in [ST] stcox PH-assumption tests.

Multiple records per subject

In the previous section, we analyzed data from a cancer study, and in doing so we were very loose
in differentiating “observations” versus ‘“subjects”. In fact, we used both terms interchangeably. We
were able to get away with that because in that dataset each subject (patient) was represented by only
one observation—the subjects were the observations.

Oftentimes, however, subjects need representation by multiple observations, or records. For example,
if a patient leaves the study for some time only to return later, at least one additional record will be
needed to denote the subject’s return to the study and the gap in their history. If the covariates of
interest for a subject change during the study (for example, transitioning from smoking to nonsmoking),
then this will also require representation by multiple records.

Multiple records per subject are not a problem for Stata; you simply specify an id() variable
when stsetting your data, and this id() variable tells Stata which records belong to which subjects.
The other commands in Stata’s st suite know how to then incorporate this information into your
analysis.

For predict after stcox, by default Stata handles diagnostic measures as always being at the
subject level, regardless of whether that subject comprises one observation or multiple ones.



152 stcox postestimation — Postestimation tools for stcox

> Example 9: Stanford heart transplant data

As an example, consider, as we did previously, data from the Stanford heart transplant study:

. use https://www.stata-press.com/data/r18/stan3, clear
(Heart transplant data)

. stset
-> stset t1, id(id) failure(died)
Survival-time data settings
ID variable: id
Failure event: died!=0 & died<.

Observed time interval: (t1[_n-1], t1i]
Exit on or before: failure

172 total observations
0 exclusions

172 observations remaining, representing

103 subjects

75 failures in single-failure-per-subject data
31,938.1 total analysis time at risk and under observation

At risk from t = 0
Earliest observed entry t = 0
Last observed exit t = 1,799

. list id _tO _t _d age posttran surgery year in 1/10

id  _t0 _t _d age posttran surgery year
1 1 0 50 1 30 0 0 67
2 2 0 6 1 51 0 0 68
3 3 0 1 0 54 0 0 68
4 3 1 16 1 54 1 0 68
5 4 0 36 0 40 0 0 68
6. 4 36 39 1 40 1 0 68
7. 5 0 18 1 20 0 0 68
8. 6 0 3 1 54 0 0 68
9. 7 0 51 0 50 0 0 68
10. 7 51 675 1 50 1 0 68

The data come to us already stset, and we type stset without arguments to examine the current
settings. We verify that the id variable has been set as the patient id. We also see that we have 172
records representing 103 subjects, implying multiple records for some subjects. From our listing, we
see that multiple records are necessary to accommodate changes in patients’ heart-transplant status
(pretransplant versus posttransplant).
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Residuals and other diagnostic measures, where applicable, will by default take place at the subject
level, meaning that (for example) there will be 103 likelihood displacement values for detecting
influential subjects (not observations, but subjects).

. stcox age posttran surg year
(output omitted )

. predict 1d, ldisplace
(69 missing values generated)

. list id _tO _t _d age posttran surgery year 1ld in 1/10

id  _t0 _t _d age posttran surgery year 1d
1 1 0 50 1 30 0 0 67 .0596877
2 2 0 6 1 51 0 0 68 .0154667
3 3 0 1 0 54 0 0 68 .
4 3 1 16 1 54 1 0 68 .0298421
5 4 0 36 0 40 0 0 68
6. 4 36 39 1 40 1 0 68 .0359712
7. 5 0 18 1 20 0 0 68 .1260891
8. 6 0 3 1 54 0 0 68 .0199614
9. 7 0 51 0 50 0 0 68 .
10. 7 51 675 1 50 1 0 68 .0659499

Because here we are not interested in predicting any baseline functions, it is perfectly safe to leave
age and year uncentered. The “(69 missing values generated)” message after predict tells us that
only 103 out of the 172 observations of 1d were filled in; that is, we received only one likelihood
displacement per subject. Regardless of the current sorting of the data, the 1d value for a subject is
stored in the last chronological record for that subject as determined by analysis time, _t.

Patient 4 has two records in the data, one pretransplant and one posttransplant. As such, the 1d
value for that patient is interpreted as the change in twice the log likelihood due to deletion of both
of these observations, that is, the deletion of patient 4 from the study. The interpretation is at the
patient level, not the record level.

d

If, instead, you want likelihood displacement values that you can interpret at the observation level
(that is, changes in twice the log likelihood due to deleting one record), you simply add the partial
option to the predict command above:

. predict 1d, ldisplace partial

We do not think these kinds of observation-level diagnostics are generally what you would want, but
they are available.

In the above, we discussed likelihood displacement values, but the same issue concerning subject-
level versus observation-level interpretation also exists with Cox—Snell residuals, martingale residuals,
deviance residuals, efficient score residuals, LMAX values, and DFBETAs. Regardless of which diagnostic
you examine, this issue of interpretation is the same.

There is one situation where you do want to use the partial option. If you are using martingale
residuals to determine functional form and the variable you are thinking of adding varies within
subject, then you want to graph the partial martingale residuals against that new variable. Because
the variable changes within subject, the martingale residuals should also change accordingly.
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Predictions after stcox with the tvc() option

The residuals and diagnostics discussed previously are not available after estimation with stcox
with the tvc () option, which is a convenience option for handling time-varying covariates:
. use https://www.stata-press.com/data/r18/drugtr, clear
(Patient survival in drug trial)
. stcox drug age, tvc(age) nolog
Failure _d: died

Analysis time _t: studytime

Cox regression with Breslow method for ties

No. of subjects = 48 Number of obs = 48
No. of failures = 31
Time at risk = 744
LR chi2(3) = 33.63
Log likelihood = -83.095036 Prob > chi2 = 0.0000
_t | Haz. ratio Std. err. z P>zl [95% conf. intervall]
main
drug .1059862 .0478178 -4.97 0.000 .0437737 .2566171
age 1.156977 .07018 2.40 0.016 1.027288 1.303037
tvce
age .9970966 .0042415 -0.68 0.494 .988818 1.005445

Note: Variables in tvec equation interacted with _%.

. predict dev, deviance

this prediction is not allowed after estimation with tve();
see tvc note for an alternative to the tvc() option

r(198);

The above fits a Cox model to the cancer data and includes an interaction of age with analysis
time, —t. Such interactions are useful for testing the proportional-hazards assumption: significant
interactions are violations of the proportional-hazards assumption for the variable being interacted
with analysis time (or some function of analysis time). That is not the situation here.

In any case, models with tvc() interactions do not allow predicting the residuals and diagnostics
discussed thus far. The solution in such situations is to forgo the use of tvc (), expand the data, and
use factor variables to specify the interaction:
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. generate id = _n
. streset, id(id)
(output omitted )

. stsplit, at(failures)
(21 failure times)
(534 observations (episodes) created)

. stcox drug age c.age#c._t, nolog
Failure _d: died
Analysis time _t: studytime

ID variable: id

Cox regression with Breslow method for ties

No. of subjects = 48 Number of obs = 582
No. of failures = 31
Time at risk = 744

LR chi2(3) = 33.63

Log likelihood = -83.095036 Prob > chi2 = 0.0000

_t | Haz. ratio Std. err. z P>zl [95% conf. intervall]

drug .1059862 .0478178 -4.97  0.000 .0437737 .2566171

age 1.156977 .07018 2.40 0.016 1.027288 1.303037

c.age#tc._t .9970966 .0042415 -0.68 0.49%4 .988818 1.005445

. predict dev, deviance
(634 missing values generated)

. summarize dev

Variable | Obs Mean Std. dev. Min Max

dev | 48 .0658485 1.020993 -1.804876  2.065424

We split the observations, currently one per subject, so that the interaction term is allowed to vary
over time. Splitting the observations requires that we first establish a subject id variable. Once that
is done, we split the observations with stsplit and the at(failures) option, which splits the
records only at the observed failure times. This amount of splitting is the minimal amount required to
reproduce our previous Cox model. We then include the interaction term c.age#c._t in our model,
verify that our Cox model is the same as before, and obtain our 48 deviance residuals, one for each
subject.

Predictions after stcox with the shared() option

A Cox shared frailty model is a Cox model with added group-level random effects such that
hij (t) = h,o (t) exp(xijﬂ + Vi)

with v; representing the added effect due to being in group 4; see Cox regression with shared frailty
in [ST] stcox for more details. You fit this kind of model by specifying the shared (varname) option
with stcox, where varname identifies the groups. stcox will produce an estimate of 3, its covariance
matrix, and an estimate of the variance of the v;. What it will not produce are estimates of the v;
themselves. These you can obtain postestimation with predict.
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> Example 10: Shared frailty models

In example 10 of [ST] stcox, we fit a shared frailty model to data from 38 kidney dialysis patients,
measuring the time to infection at the catheter insertion point. Two recurrence times (in days) were
measured for each patient.

The estimated v; are not displayed in the stcox coefficient table but may be retrieved postestimation
by using predict with the effects option:

. use https://www.stata-press.com/data/r18/catheter, clear
(Kidney data, McGilchrist and Aisbett, Biometrics, 1991)

. quietly stcox age female, shared(patient)

. predict nu, effects

. sort nu

. list patient nu in 1/2

patient nu

[ure

21 -2.448707
2. 21 -2.448707

. list patient nu in 75/L

patient nu

75. 7  .5187159

76. 7  .5187159
From the results above, we estimate that the least frail patient is patient 21, with TUp; = —2.45,

and that the frailest patient is patient 7, with o7 = 0.52.
d

Q Technical note

When used with shared-frailty models, predict’s basehc, basesurv, and basechazard options
produce estimates of baseline quantities that are based on the last-step penalized Cox model fit.
Therefore, without option atfrailty or atfrailty (), the term “baseline” means that not only the
covariates are set to O but also the v;. If the atfrailty option is specified, all the covariates are set
to 0, but the frailties are set to exp(v;).

Other predictions, such as martingale residuals, are conditional on the estimated frailty variance
being fixed and known at the onset.

a

estat concordance

estat concordance calculates the concordance probability, which is defined as the probability
that predictions and outcomes are concordant. estat concordance provides two measures of the
concordance probability: Harrell’s C' and Gonen and Heller’s K concordance coefficients. Harrell’s
C, which is defined as the proportion of all usable subject pairs in which the predictions and outcomes
are concordant, is computed by default. Gonen and Heller (2005) propose an alternative measure of
concordance, computed when the gheller option is specified, that is not sensitive to the degree of
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censoring, unlike Harrell’s C' coefficient. This estimator is not dependent on the observed event or
the censoring time and is a function of only the regression parameters and the covariate distribution,
which leads to the asymptotic unbiasedness. estat concordance also reports the Somers’s D rank
correlation, which is derived by calculating 2C' — 1 for Harrell’s C' and 2K — 1 for Gonen and
Heller’s K.

estat concordance may not be used after a Cox regression model with time-varying covariates
and may not be applied to weighted data or to data with delayed entries. The computation of
Gonen and Heller’s K coefficient is not supported for shared-frailty models, stratified estimation, or
multiple-record data.

> Example 11: Harrell's C

Using our cancer data, we wish to evaluate the predictive value of the measurement of drug and
age. After fitting a Cox regression model, we use estat concordance to calculate Harrell’s C
index.

. use https://www.stata-press.com/data/r18/drugtr, clear
(Patient survival in drug trial)
. stcox drug age

Failure _d: died
Analysis time _t: studytime

Iteration 0: Log likelihood = -99.911448
Iteration 1: Log likelihood = -83.551879
Iteration 2: Log likelihood = -83.324009

Iteration 3: Log likelihood = -83.323546
Refining estimates:
Iteration 0: Log likelihood = -83.323546

Cox regression with Breslow method for ties

No. of subjects = 48 Number of obs = 48
No. of failures = 31
Time at risk = 744

LR chi2(2) = 33.18

Log likelihood = -83.323546 Prob > chi2 = 0.0000

_t | Haz. ratio Std. err. z P>|z| [95% conf. intervall

drug .1048772 .0477017 -4.96 0.000 .0430057 .2557622

age 1.120325 .0417711 3.056 0.002 1.041375 1.20526

. estat concordance, noshow

Harrell’s C concordance statistic

Number of subjects (N) = 48
Number of comparison pairs (P) = 849
Number of orderings as expected (E) = 679
Number of tied predictions (T) = 15
Harrell’s C = (E + T/2) / P = 0.8086

Somers’ D = 0.6172

The result of stcox shows that the drug results in a lower hazard and therefore a longer survival
time, controlling for age and older patients being more likely to die. The value of Harrell’s C is
0.8086, which indicates that we can correctly order survival times for pairs of patients 81% of the
time on the basis of measurement of drug and age. See Methods and formulas for the full definition
of concordance.

4
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Q Technical note

estat concordance does not work after a Cox regression model with time-varying covariates.
When the covariates are varying with time, the prognostic score, PS = x(3, will not capture or
condense the information in given measurements, in which case it does not make sense to calculate

the rank correlation between PS and survival time.
Q

> Example 12: Génen and Heller’'s K

Alternatively, we can obtain Gonen and Heller’s estimate of the concordance probability, K. To
do so, we specify the gheller option with estat concordance:

. estat concordance, noshow gheller

Gonen and Heller’s K concordance statistic

Number of subjects (N) = 48
Gonen and Heller’s K = 0.7748
Somers’ D = 0.5496

Gonen and Heller’s concordance coefficient may be preferred to Harrell’s C' when censoring is
present because Harrell’s C' can be biased. Because 17 of our 48 subjects are censored, we prefer
Gonen and Heller’s concordance to Harrell’s C'.

d
Stored results
estat concordance stores the following in r():
Scalars
r(N) number of observations r(K) Gonen and Heller’s K coefficient
r(n_P) number of comparison pairs r(K_s) smoothed Gonen and Heller’s K
coefficient
r(n_E) number of orderings as expected r(K_s_se) standard error of the smoothed K
coefficient
r(n_T) number of tied predictions r(D) Somers’s D coefficient for Harrell’s C
r(C) Harrell’s C coefficient r(D_K) Somers’s D coefficient for Gonen and
Heller’s K

r(n_P), r(n_E), and r(n_T) are returned only when strata are not specified.

Methods and formulas

Let x; be the row vector of covariates for the time interval (fo;,t;] for the ith observation in
the dataset ( = 1,..., N). The Cox partial log-likelihood function, using the default Peto—Breslow
method for tied failures is

D
log Lyreslow = Z Z w; (x;8 + offset;) — w; log Z wy exp(x¢0 + offsety)
j=1 iGD_j KER]

where j indexes the ordered failure times ¢; (j = 1,...,D), D; is the set of d; observations that
fail at ¢, dj is the number of failures at ¢;, and I2; is the set of observations k that are at risk at
time t; (that is, all k such that 2oz, < t; < tr). w; and offset; are, respectively, the weight and linear
offset for observation 1, if specified.
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If the Efron method for ties is specified at estimation, the partial log likelihood is

dj—1

logLetron = Z Z x;3 + offset; —d ! Z log Z exp(x¢0 + offsety) — kA;

j=1i€eD; LeER;

for A; = d;l D e D, exp(x¢0 + offset,). Weights are not supported with the Efron method.

At estimation, Stata also supports the exact marginal and exact partial methods for handling ties,
but only the Peto—Breslow and Efron methods are supported in regard to the calculation of residuals,
diagnostics, and other predictions. As such, only the partial log-likelihood formulas for those two
methods are presented above, for easier reference in what follows.

If you specified efron at estimation, all predictions are carried out using the Efron method; that is,
the handling of tied failures is done analogously to the way it was done when calculating 10g Lefron.
If you specified breslow (or nothing, because breslow is the default), exactm, or exactp, all
predictions are carried out using the Peto—Breslow method. That is not to say that if you specify
exactm at estimation, your predictions will be the same as if you had specified breslow. The
formulas used will be the same, but the parameter estimates at which they are evaluated will differ
because those were based on different ways of handling ties.

Define z; = xiEl + offset;. Schoenfeld residuals for the pth variable using the Peto—Breslow
method are given by
T’Sm. = (51 (Qj'pi — am-)
where
W Z[ERi Wepe exp(2y)
P ZZERI We eXp(Zg)

0; indicates failure for observation %, and x,; is the pth element of x;. For the Efron method,
Schoenfeld residuals are

TSy = 0i (Tpi — bpi)

where
di—1

by = d! Z > ter, Tpeexp(ze) — kd; ! > eep, Tpeexp(ze)
' k=0 ZfeRi exp(2¢) — kdi_l ZeeDi exp(2¢)

Schoenfeld residuals are derived from the first derivative of the log likelihood, with

0 logL
r =
9B, Z S

i=1

and only those observations that fail (6; = 1) contribute a Schoenfeld residual to the derivative.

For censored observations, Stata stores a missing value for the Schoenfeld residual even though the
above implies a value of 0. This is to emphasize that no calculation takes place when the observation
is censored.

Scaled Schoenfeld residuals are given by
rg = B+ d Var(B)rg

where rg, = (rg,,,...,7s,.,) > m is the number of regressors, and d is the total number of failures.
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In what follows, we assume the Peto—Breslow method for handling ties. Formulas for the Efron
method, while tedious, can be obtained by applying similar principles of averaging across risk sets,
as demonstrated above with Schoenfeld residuals.

Efficient score residuals are obtained by

Gw; (Tpi — ap;)
2 ter, Weexp(ze)

TEp = TSpi — exp(zi)
Jitoi <t <t;

Like Schoenfeld residuals, efficient score residuals are also additive components of the first derivative
of the log likelihood. Whereas Schoenfeld residuals are the contributions of each failure, efficient
score residuals are the contributions of each observation. Censored observations contribute to the log
likelihood (and its derivative) because they belong to risk sets at times when other observations fail. As
such, an observation’s contribution is twofold: 1) If the observation ends in failure, a risk assessment
is triggered, that is, a term in the log likelihood is computed. 2) Whether failed or censored, an
observation contributes to risk sets for other observations that do fail. Efficient score residuals reflect
both contributions.

The above computes efficient score residuals at the observation level. If you have multiple records
per subject and do not specify the partial option, then the efficient score residual for a given subject
is calculated by summing the efficient scores over the observations within that subject.

Martingale residuals are

Ty, = 0; — exp(z;) Z L)

Jitos <t <t; ZEGRJ' We eXp(Zé)

The above computes martingale residuals at the observation level. If you have multiple records
per subject and do not specify the partial option, then the martingale residual for a given subject
is calculated by summing 7y, over the observations within that subject.

Martingale residuals are in the range (—o0, 1). Deviance residuals are transformations of martingale
residuals designed to have a distribution that is more symmetric about zero. Deviance residuals are

calculated using
1/2

rp, = sign(rar,) | — 2 {ra, + dilog(d; — ras,)}

These residuals are expected to be symmetric about zero but do not necessarily sum to zero.

The above computes deviance residuals at the observation level. If you have multiple records per
subject and do not specify the partial option, then the deviance residual for a given subject is
calculated by applying the above transformation to the subject-level martingale residual.

The estimated baseline hazard contribution is obtained at each failure time as h; = 1 — @j, where
@; is the solution to

exp(zx)
Z 1 a%PGo) Z exp(ze)
keD; Q; (ER;

(Kalbfleisch and Prentice 2002, eq. 4.34, 115).
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The estimated baseline survivor function is

So(t) = H aj

jit <t

When estimated with no covariates, Sy(t) is the Kaplan—Meier estimate of the survivor function.

The estimated baseline cumulative hazard function, if requested, is related to the baseline survivor
function calculation, yet the values of &; are set at their starting values and are not iterated.
Equivalently,

~ d;
Hy(t) = =
Jit; <t ZEERj exp(zg)

When estimated with no covariates, Ho(t) is the Nelson—Aalen estimate of the cumulative hazard.

Cox—Snell residuals are calculated with
TC'i = 67, - TM,;

where ), are the martingale residuals. Equivalently, Cox—Snell residuals can be obtained with

~

re, = exp(z;)Ho(t:)

The above computes Cox—Snell residuals at the observation level. If you have multiple records
per subject and do not specify the partial option, then the Cox—Snell residual for a given subject
is calculated by summing ¢, over the observations within that subject.

DFBETAs are calculated with

DFBETA; = rp, Var((3)

where rg, = (Tmy,,-..,7E,,,) is a row vector of efficient score residuals with one entry for each
regressor, and Var(3) is the model-based variance matrix of 3.

Likelihood displacement values are calculated with

~

LD; =rpg, Var(,@)rh

(Collett 2015, 156). In both of the above, rg, can represent either one observation or, in multiple-
record data, the cumulative efficient score for an entire subject. For the former, the interpretation is
that due to deletion of one record; for the latter, the interpretation is that due to deletion of all of a
subject’s records.

Following Collett (2015, 156), LMAX values are obtained from an eigensystem analysis of
B =0 Var(3) @’

where O is the N X m matrix of efficient score residuals, with element (7, j) representing the jth
regressor and the ith observation (or subject). LMAX values are then the absolute values of the elements
of the unit-length eigenvector associated with the largest eigenvalue of the N x N matrix B.
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For shared-frailty models, the data are organized into G groups, with the ith group consisting of
n; observations, ¢ = 1,...,G. From Therneau and Grambsch (2000, 253-255), for fixed 6, estimates
of B and vy, ..., Vs are obtained by maximizing

& i~ exp(v)} +

1 1 logf 1 1

where D; is the number of death events in group 7, and logLcox (8, 1, ..., Vq) is the standard Cox
partial log likelihood, with the v; treated as the coefficients of indicator variables identifying the
groups. That is, the jth observation in the ith group has log relative-hazard x;;3 + v;.

G
logL(O) :logLCox(/Ba Viyeony VG) + Z
=1

You obtain the estimates of vy, ..., g with predict’s effects option after stcox, shared().

estat concordance

Harrell’s C' was proposed by Harrell et al. (1982) and was developed to evaluate the results
of a medical test. The C' index is defined as the proportion of all usable subject pairs in which
the predictions and outcomes are concordant. The C' index may be applied to ordinary continuous
outcomes, dichotomous diagnostic outcomes, ordinal outcomes, and censored time-until-event response
variables.

In predicting the time until death, C' is calculated by considering all comparable patient pairs. A
pair of patients is comparable if either 1) the two have different values on the time variable, and
the one with the lowest value presents a failure, or 2) the two have the same value on the time
variable, and exactly one of them presents a failure. If the predicted survival time is larger for the
patient who lived longer, the predictions for the pair are said to be concordant with the outcomes.
From Fibrinogen Studies Collaboration (2009), Harrell’s C'is defined as >, (Ey +1%/2)/ >, (Dk).
where Dy, is the total number of pairs usable for comparison in stratum k, E}, is the number of pairs
for which the predictions are concordant with the outcomes and the predictions are not identical in
stratum k, and T}, is the number of usable pairs for which the predictions are identical in stratum k.
If there are no strata specified, then the formula for Harrell’s C' reduces to (E + T'/2)/D.

For a Cox proportional hazards model, the probability that the patient survives past time ¢ is given
by So(t) raised to the exp(x3) power, where Sy(¢) is the baseline survivor function, x denotes a set
of measurements for the patient, and 3 is the vector of coefficients. A Cox regression model is fit by
the stcox command. The hazard ratio, exp(x(3), is obtained by predict after stcox. Because the
predicted survival time and the predicted survivor function are one-to-one functions of each other,
the predicted survivor function can be used to calculate C' instead of the predicted survival time. The
predicted survivor function decreases when the predicted hazard ratio increases; therefore, Harrell’s
C can be calculated by computing F, T', and D, based on the observed outcomes and the predicted
hazard ratios.

C takes a value between 0 and 1. A value of 0.5 indicates no predictive discrimination, and values
of 0 or 1.0 indicate perfect separation of subjects with different outcomes. See Harrell, Lee, and
Mark (1996) for more details. Somers’s D rank correlation is calculated by 2C'— 1; see Newson (2002)
for a discussion of Somers’s D.

In the presence of censoring, Harrell’s C' coefficient tends to be biased. An alternative measure
of concordance that is asymptotically unbiased with censored data was proposed by Gonen and
Heller (2005). This estimator does not depend on observed time directly and is a function of only
the regression parameters and the covariate distribution, which leads to its asymptotic unbiasedness
and thus robustness to the degree of censoring.
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Let Ax;; be the pairwise difference x; — x;. Then Gonen and Heller’s concordance probability
estimator is given by

o I(Ax;;B<0)  I(Ax;B<0)
K =Kn(B 5 * (B, 1
V8= ;Z L+ exp(Ax;iB) 1+ exp(Axy;B) Y

where I(-) is the indicator function. Somers’s D rank correlation is calculated by 2K — 1.

The concordance probability estimator (1) involves indicator functions and thus is a nonsmooth
function for which the asymptotic standard error cannot be computed directly. To obtain the standard
error, a smooth approximation to this estimator is considered:

o “Ax;B/h)  ®(—AxiB/h)
K =Kn(B ] " \x, B i
N( ) _ 1 ;Z 1_|_ exp AX]@/B) 1+ exp(AXijﬁ) ( )

~1/3

where ®(-) is a standard normal distribution function, & = 0.56 N is a smoothing bandwidth,

and o is the estimated standard deviation of the subject-specific linear predictors x;03.

The asymptotic standard error is then computed using a first-order Taylor series expansion of (2)
around the true parameter 3; see Gonen and Heller (2005) for computational details.
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[ST] stcox — Cox proportional hazards model

[ST] estat gofplot — Goodness-of-fit plots after streg, stcox, stintreg, or stintcox

[ST] stcox PH-assumption tests — Tests of proportional-hazards assumption after stcox
[ST] stcurve — Plot the survivor or related function after streg, stcox, and more
[LASSO] lassogof — Goodness of fit after lasso for prediction

[U] 20 Estimation and postestimation commands
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Description

stcrreg fits, via maximum likelihood, competing-risks regression models on st data, according
to the method of Fine and Gray (1999). Competing-risks regression posits a model for the subhazard
function of a failure event of primary interest. In the presence of competing failure events that impede
the event of interest, a standard analysis using Cox regression (see [ST] stcox) is able to produce
incidence-rate curves that either 1) are appropriate only for a hypothetical universe where competing
events do not occur or 2) are appropriate for the data at hand, yet the effects of covariates on these
curves are not easily quantified. Competing-risks regression, as performed using stcrreg, provides
an alternative model that can produce incidence curves that represent the observed data and for which
describing covariate effects is straightforward.

stcrreg can be used with single- or multiple-record data. stcrreg cannot be used when you
have multiple failures per subject.

Quick start

Competing-risks regression with covariates x1 and x2 and competing event defined by fvar = 2
using data that are stset with failure fvar = 1

stcrreg x1 x2, compete(fvar==2)

Same as above, but report coefficients instead of subhazard ratios
stcrreg x1 x2, compete(fvar==2) noshr

With cluster—robust standard errors for clustering by levels of cvar
stcrreg x1 x2, compete(fvar==2) vce(cluster cvar)

Competing events defined by fvar = 2, fvar = 3, and fvar =4
stcrreg x1 x2, compete(fvar==2 3 4)

Specify indicator variable compvar identifying competing events
stcrreg x1 x2, compete(compvar)

Menu

Statistics > Survival analysis > Regression models > Competing-risks regression
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Syntax
stcrreg [indepvars} [zf} [m] , compete (crvar[==numlist]) [options]
options Description
Model
* compete (crvar[==numlist])  specify competing-risks event(s)
offset (varname) include varname in model with coefficient constrained to 1
constraints (constraints) apply specified linear constraints

Time varying

tve (tvarlist) specify covariates to be interacted with time

texp (exp) specify a function of time; default is texp(_t)
SE/Robust

vce (veetype) vcetype may be robust, cluster clustvar, bootstrap,

or jackknife

noadjust do not use standard degree-of-freedom adjustment
Reporting

level (#) set confidence level; default is 1level (95)

noshr report coefficients, not subhazard ratios

noshow do not show st setting information

noheader suppress header from coefficient table

notable suppress coefficient table

nodisplay suppress output; iteration log is still displayed

nocnsreport do not display constraints

display_options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization
maximize_options control the maximization process; seldom used
collinear keep collinear variables
coeflegend display legend instead of statistics

*compete(cwar[:numlist]) is required.
You must stset your data before using stcrreg; see [ST] stset.
varlist and tvarlist may contain factor variables; see [U] 11.4.3 Factor variables.

bootstrap, by, collect, fp, jackknife, mfp, mi estimate, nestreg, statsby, and stepwise are allowed; see
[U] 11.1.10 Prefix commands.

vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix; see [MI] mi estimate.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.

fweights, iweights, and pweights may be specified using stset; see [ST] stset. In multiple-record data, weights
are applied to subjects as a whole, not to individual observations. iweights are treated as fweights that can be
noninteger, but not negative.

collinear and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Options

Model

compete (crvar[==numlist]) is required and specifies the events that are associated with failure due
to competing risks.

If compete (crvar) is specified, crvar is interpreted as an indicator variable; any nonzero, nonmissing
values are interpreted as representing competing events.

If compete (crvar==numlist) is specified, records with crvar taking on any of the values in numlist
are assumed to be competing events.

The syntax for compete() is the same as that for stset’s failure() option. Use stset,
failure() to specify the failure event of interest, that is, the failure event you wish to model
using stcox, streg, stcrreg, or whatever. Use stcrreg, compete() to specify the event or
events that compete with the failure event of interest. Competing events, because they are not the
failure event of primary interest, must be stset as censored.

If you have multiple records per subject, only the value of crvar for the last chronological record
for each subject is used to determine the event type for that subject.

offset (varname), constraints (constraints); see [R] Estimation options.

Time varying
tve (tvarlist) specifies the variables to be included in the model as an interaction with a function

of time to form time-varying covariates. During estimation, these variables are interacted with
analysis time or with a function of analysis time specified in the texp() option.

texp(exp) is used in conjunction with tvc (tvarlist) to specify the function of analysis time that
should be used to multiply covariates specified in the tve () option to include in the model time-
varying covariates that are deterministic functions of time. For example, specifying texp(1n(_t))
would cause the covariates in option tvc () to be multiplied by the logarithm of analysis time. If
tvc (tvarlist) is used without texp(exp), Stata understands that you mean texp(_t) and thus
multiplies the covariates by the analysis time.

Both tvc (tvarlist) and texp (exp) are explained more in Option tvc() and testing the proportional-
subhazards assumption below.

SE/Robust

vce (veetype) specifies the type of standard error reported, which includes types that are robust to some
kinds of misspecification (robust), that allow for intragroup correlation (cluster clustvar), and that
use bootstrap or jackknife methods (bootstrap, jackknife); see [R] vce_option. vce (robust)
is the default in single-record-per-subject st data. For multiple-record st data, vce (cluster idvar)
is the default, where idvar is the ID variable previously stset.

Standard Hessian-based standard errors—vcetype oim—are not statistically appropriate for this
model and thus are not allowed.

noadjust is for use with vce (robust) or vce(cluster clustvar). noadjust prevents the estimated
variance matrix from being multiplied by N/(N — 1) or g/(g — 1), where g is the number of
clusters. The default adjustment is somewhat arbitrary because it is not always clear how to count
observations or clusters. In such cases, however, the adjustment is likely to be biased toward 1,
so we would still recommend making it.
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Reporting

level (#); see [R] Estimation options.

noshr specifies that coefficients be displayed rather than exponentiated coefficients or subhazard
ratios. This option affects only how results are displayed and not how they are estimated. noshr
may be specified at estimation time or when redisplaying previously estimated results (which you
do by typing stcrreg without a variable list).

noshow prevents stcrreg from showing the key st variables. This option is seldom used because
most people type stset, show or stset, noshow to set whether they want to see these variables
mentioned at the top of the output of every st command; see [ST] stset.

noheader suppresses the header information from the output. The coefficient table is still displayed.
noheader may be specified at estimation time or when redisplaying previously estimated results.

notable suppresses the table of coefficients from the output. The header information is still displayed.
notable may be specified at estimation time or when redisplaying previously estimated results.

nodisplay suppresses the output. The iteration log is still displayed.
nocnsreport; see [R] Estimation options.

display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat (% fint), pformat (% fint),
sformat (% fmt), and nolstretch; see [R] Estimation options.

Maximization

maximize_options: difficult, technique (algorithm_spec), iterate (#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init_specs); see [R] Maximize. These options are

seldom used.

The following options are available with stcrreg but are not shown in the dialog box:

collinear, coeflegend; see [R] Estimation options.

Remarks and examples

This section provides a summary of what can be done with stcrreg. For a more general tutorial
on competing-risks analysis, see Cleves, Gould, and Marchenko (2016, chap. 17).
Remarks are presented under the following headings:
The case for competing-risks regression
Using stcrreg
Multiple competing-event types
sterreg as an alternative to stcox

Multiple records per subject
Option tve() and testing the proportional-subhazards assumption

The case for competing-risks regression

In this section, we provide a brief history and literature review of competing-risks analysis, and
provide the motivation behind the stcrreg model. If you know you want to use stcrreg and are
anxious to get started, you can safely skip this section.
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Based on the method of Fine and Gray (1999), competing-risks regression provides a useful
alternative to Cox regression (Cox 1972) for survival data in the presence of competing risks.
Consider the usual survival analysis where one measures time-to-failure as a function of experimental
or observed factors. For example, we may be interested in measuring time from initial treatment to
recurrence of breast cancer in relation to factors such as treatment type and smoking status. The term
competing risk refers to the chance that instead of cancer recurrence, you will observe a competing
event, for example, death. The competing event, death, impedes the occurrence of the event of interest,
breast cancer. This is not to be confused with the usual right-censoring found in survival data, such
as censoring due to loss to follow-up. When subjects are lost to follow-up, they are still considered
at risk of recurrent breast cancer—it is just that the researcher is not in a position to record the
precise time that it happens. In contrast, death is a permanent condition that prevents future breast
cancer. While censoring merely obstructs you from observing the event of interest, a competing event
prevents the event of interest from occurring altogether. Because competing events are distinct from
standard censorings, a competing-risks analysis requires some new methodology and some caution
when interpreting the results from the old methodology.

Putter, Fiocco, and Geskus (2007) and Gichangi and Vach (2005) provide excellent tutorials covering
the problem of competing risks, nonparametric estimators and tests, competing-risks regression, and
the more general multistate models. Textbook treatments of competing-risks analysis can be found
within Andersen et al. (1993), Klein and Moeschberger (2003), Therneau and Grambsch (2000), and
Marubini and Valsecchi (1995). The texts by Crowder (2001) and Pintilie (2006) are devoted entirely
to the topic. In what follows, we assume that you are familiar with the basic concepts of survival
analysis, for example, hazard functions and Kaplan—Meier curves. For such an introduction to survival
analysis aimed at Stata users, see Cleves, Gould, and Marchenko (2016).

Without loss of generality, assume a situation where there is only one event that competes with the
failure event of interest. Before analyzing the problem posed by competing-risks data—the problem
stcrreg proposes to solve—we first formalize the mechanism behind it. Ignoring censoring for
the moment, recording a failure time in a competing-risks scenario can be represented as observing
the minimum of two potential failure times: the time to the event of interest, 77, and the time to
the competing event, 7». The problem of competing risks then becomes one of understanding the
nature of the bivariate distribution of (7%,7%), and in particular the correlation therein. Although
conceptually simple, unfortunately this joint distribution cannot be identified by the data (Pepe and
Mori 1993; Tsiatis 1975; Gail 1975). If you get to observe only the minimum, you are getting only
half the picture.

An alternate representation of the competing-risks scenario that relies on quantities that are data-
identifiable is described by Beyersman et al. (2009). In that formulation, we consider the hazard for
the event of interest, k1 (), and that for the competing event, ho(t). Both hazards can be estimated
from available data and when combined form a total hazard that any event will occur equal to
h(t) = h1(t) + ha(t). As risk accumulates according to h(t), event times T are observed. Whether
these events turn out to be failures of interest (type 1) or competing events (type 2) is determined by
the two component hazards at that precise time. The event will be a failure of interest with probability
hi(T)/{h1(T) + ha(T)}, or a competing event with probability one minus that.

Instead of focusing on the survivor function for the event of interest, P(7T > ¢ and event type 1),
when competing risks are present you want to focus on the failure function, P(7T" < t and event type 1),
also known as the cumulative incidence function (CIF). That is because you will not know what type
of event will occur until after it has occurred. It makes more sense to ask “What is the probability
of breast cancer within 5 months?” than to ask “What is probability that nothing happens before 5
months, and that when something does happen, it will be breast cancer and not death?”

Much of the literature on competing risks focuses on the inadequacy of the Kaplan—Meier (1958)
estimator (which we refer to as KM) as a measure of prevalence for the event of interest. Among
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others, Gooley et al. (1999) point out that 1—KM is a biased estimate of the CIF. The bias results from
KM treating competing events as if they were censored. That is, subjects that experience competing
events are treated as if they could later experience the event of interest, even though that is impossible.
Although you could interpret 1—KM as the probability of a type 1 failure in a hypothetical setting
where type 2 failures do not occur, this requires you to assume that k1 (¢) remains unchanged given
that ho(t) = 0, a rather strong and untestable assumption. Regardless of whether the independence
assumption holds, 1—KM is still not representative of the data at hand, under which competing events
do take place.

As such, 1—KM should be rejected in favor of the cumulative incidence estimator of the CIF; see
Coviello and Boggess (2004) for a Stata-specific presentation. The cumulative incidence estimator is
superior to 1—KM because it acknowledges that cuamulative incidence is a function of both cause-specific
hazards, hi(t) and ho(t). Conversely, 1—KM treats the CIF as a function solely of hi(t).

When you have covariates, you can use stcox to perform regression on hy(t) by treating failures
of type 2 as censored, on ho(t) by treating failures of type 1 as censored, or on hi(t) and ho(t)
simultaneously by using the method of data duplication described by Lunn and McNeil (1995) and
Cleves (1999). Because cause-specific hazards are identified by the data, all three of the above analyses
are suitable for estimating how covariates affect the mechanism behind a given type of failure. For
example, if you are interested in how smoking affects breast cancer in general terms (competing
death notwithstanding), then a Cox model for h(¢) that treats death as censored is perfectly valid;
see Pintilie (2007).

If you are interested in the incidence of breast cancer, however, you want to use a Cox model that
models both hy(t) and ha(t), because the CIF for breast cancer will likely depend on both. Based on
the fitted model, you will have a hard time spotting the effects of covariates on cumulative incidence,
because the covariates can affect h(t) and hs(t) differently, and the CIF is a nonlinear function of
these effects and of the baseline hazards. Whether increasing a covariate increases or decreases the
cumulative incidence depends on time and on the nominal value of that covariate, as well as on the
values of the other covariates. There is no way to determine the full effects of the covariates by just
looking at the model coefficients. You would have to estimate and graph the CIF for various sets of
covariate values, and this requires a bit of programming; see example 4.

An alternative model for the CIF that does make it easy to see the effects of covariates is that due
to Fine and Gray (1999). They specify a model for the hazard of the subdistribution (Gray 1988),
formally defined for failure type 1 as

— ) P(t<T <t+ 4 and event type 1) | T >t or (T <t and not event type 1)
hl (t) = llm(;_)o 5

Less formally, think of this hazard as that which generates failure events of interest while keeping
subjects who experience competing events “at risk” so that they can be adequately counted as not
having any chance of failing. The advantage of modeling the subdistribution hazard, or subhazard, is
that you can readily calculate the CIF from it;

CIFy(t) = 1 — exp{—H ()}

where H(t) = f(f hy(t)dt is the cumulative subhazard.

Competing-risks regression performed in this manner using stcrreg is quite similar to Cox
regression performed using stcox. The model is semiparametric in that the baseline subhazard
hl,o(t) (that for covariates set to zero) is left unspecified, while the effects of the covariates x are
assumed to be proportional:

R (t]x) = ha,0(t) exp(xB)
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Estimation with stcrreg will produce estimates of 3, or exponentiated coefficients known as subhazard
ratios. A positive (negative) coefficient means that the effect of increasing that covariate is to increase
(decrease) the subhazard and thus increase (decrease) the CIF across the board.

Estimates of the baseline cumulative subhazard and of the baseline CIF are available via predict after
stcrreg; see [ST] sterreg postestimation. Because proportionality holds for cumulative subhazards
as well, adjusting the baseline cumulative hazard and baseline CIF for a given set of covariate values
is quite easy and, in fact, done automatically for you by stcurve; see [ST] stcurve.

Using stcrreg

If you have used stcox before, stcrreg will look very familiar.

> Example 1: Cervical cancer study

Pintilie (2006, sec. 1.6.2) describes data from 109 cervical cancer patients that were treated at a
cancer center between 1994 and 2000. The patients were treated and then the time in years until
relapse or loss to follow-up was recorded. Relapses were recorded as either “local” if cancer relapsed
in the pelvis, or “distant” if cancer recurred elsewhere but not in the pelvis. Patients who did not
respond to the initial treatment were considered to have relapsed locally after one day.
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. use https://www.stata-press.com/data/r18/hypoxia
(Hypoxia study)

. describe

Contains data from https://www.stata-press.com/data/r18/hypoxia.dta

Observations: 109 Hypoxia study
Variables: 16 7 Apr 2022 09:44
(_dta has notes)
Variable Storage Display Value
name type format label Variable label
stnum int %8.0g Patient ID
age byte %8.0g Age (years)
hgb int %8.0g Hemoglobin (g/1)
tumsize float  %9.0g Tumor size (cm)
ifp float  %9.0g Interstitial fluid pressure
(marker, mmHg)
hp5 float  %9.0g Hypoxia marker (percentage of
meas. < 5 mmHg)
pelvicln stril %9s Pelvic node involvement:
N=Negative, E=Equivocal,
Y=Positive
resp str2 %9s Response after treatment:
CR=Complete response, NR=No
response
pelrec byte %9.0g yesno Pelvic disease observed
disrec byte %9.0g yesno Distant disease observed
survtime float  %9.0g Time from diagnosis to death or
last follow-up time (yrs)
stat byte %8.0g Status at last follow-up: O=Alive,
1=Dead
dftime float  %9.0g Time from diagnosis to first
failure or last follow-up (yrs)
dfcens byte %8.0g Censoring variable: 1=Failure,
0=Censored
failtype byte %8.0g Failure type: 1 if pelrec, 2 if
disrec & not pelrec, O otherwise
pelnode byte %8.0g 1 if pelvic nodes negative or
equivocal
Sorted by:

The dftime variable records analysis time in years and the failtype variable records the type of
event observed: O for loss to follow-up (censored), 1 for a local relapse, and 2 for a distant relapse.
Among the covariates used in the analysis were a hypoxia marker (hp5) that measures the degree of
oxygenation in the tumor, interstitial fluid pressure (ifp), tumor size (tumsize), and an indicator of
pelvic node involvement (pelnode == 0 if positive involvement and pelnode == 1 otherwise). The
main goal of the study was to determine whether ifp and hp5 influence the outcome, controlling for
the other covariates. Following Pintilie (2006), we focus on ifp and not on hp5. For more details
regarding this study and the process behind the measured data, see Fyles et al. (2002) and Milosevic
et al. (2001).

We wish to fit a competing-risks model that treats a local relapse as the event of interest and a
distant relapse as the competing event. Although a distant relapse does not strictly prevent a future
local relapse, presumably, the treatment protocol changed based on which event was first observed.
As such, both events can be treated as competing with one another because the conditions of the
study ended once any relapse was observed. Because no deaths occurred before first relapse, death
is not considered a competing event in this analysis.
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To fit the model, we first stset the data and specify that a local relapse, failtype == 1, is the
event of interest. We then specify to stcrreg the covariates and that a distant relapse (failtype
== 2) is a competing event.

. stset dftime, failure(failtype == 1)
(output omitted )

. stcrreg ifp tumsize pelnode, compete(failtype == 2)

Iteration

Failure _d: failtype==
Analysis time _t: dftime

Log pseudolikelihood -138.67925

0:
Iteration 1: Log pseudolikelihood = -138.53082
2:

Iteration Log pseudolikelihood = -138.5308
Iteration 3: Log pseudolikelihood = -138.5308
Competing-risks regression No. of obs = 109
No. of subjects = 109
Failure event: failtype == 1 No. failed = 33
Competing event: failtype == 2 No. competing = 17
No. censored = 59
Wald chi2(3) = 33.21
Log pseudolikelihood = -138.5308 Prob > chi2 = 0.0000
Robust
_t SHR  std. err. z P>|z| [95% conf. intervall
ifp 1.033206 .0178938 1.89 0.059 .9987231 1.068879
tumsize 1.297332 .1271191 2.66 0.008 1.070646 1.572013
pelnode .4588123 .1972067 -1.81 0.070 .1975931 1.065365

From the above we point out the following:

When we stset the data, distant relapses were set as censored because they are not the
event of interest and any standard, noncompeting-risks analysis would want to treat them
as censored. stcrreg option compete() tells Stata which of these “censored” events are
actually competing events that require special consideration in a competing-risks regression.
Because competing events are not the event of interest, stcrreg will issue an error if
competing events are not stset as censored.

stcrreg lists the event code(s) for the event of interest under “Failure event(s):” and
the competing event code(s) under “Competing event(s):”. The syntax for stset and
stcrreg allows you to have multiple codes for both. For competing events, multiple event
codes can be devoted entirely to one competing event type, many competing event types,
or some combination of both. The methodology behind stcrreg extends to more than one
competing event type and is concerned only with whether events are competing events, not
with their exact type. The focus is on the event of interest.

We see that out of the 109 patients, 33 experienced a local relapse, 17 experienced a distant
relapse, and the remaining 59 were lost to follow-up before any relapse.

In the column labeled “SHR” are the estimated subhazard ratios, and you interpret these
similarly to hazard ratios in Cox regression. Because the estimated subhazard ratio for ifp
is greater than 1, higher interstitial fluid pressures are associated with higher incidence of
local relapses controlling for tumor size, pelvic node involvement, and the fact that distant
relapses can also occur. However, this effect is not highly significant.

To see the estimated coefficients instead of subhazard ratios, use the noshr option either
when fitting the model or when replaying results.
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e Standard errors are listed as “Robust”, even though we did not specify any sampling weights,
vce(robust), or vce (cluster clustvar). As mentioned in the previous section, competing-
risks regression works by keeping subjects who experience competing events at risk so that
they can be adequately counted as having no chance of failing. Doing so requires a form of
sample weighting that invalidates the usual model-based standard errors; see Methods and
formulas. Robust standard errors are conventional in stcrreg.

e The output lists a “log pseudolikelihood” rather than the standard log likelihood. This
is also a consequence of the inherent sample weighting explained in the previous bullet. The
log pseudolikelihood is used as a maximization criterion to obtain parameter estimates, but
is not representative of the distribution of the data. For this reason, likelihood-ratio (LR) tests
(the 1rtest command) are not valid after stcrreg. Use Wald tests (the test command)

instead.

As mentioned above, you can use the noshr option to obtain coefficients instead of subhazard

ratios.

. stcrreg, noshr

Competing-risks regression No. of obs = 109

No. of subjects = 109

Failure event: failtype == 1 No. failed = 33

Competing event: failtype == 2 No. competing = 17

No. censored = 59

Wald chi2(3) = 33.21

Log pseudolikelihood = -138.5308 Prob > chi2 0.0000
Robust

_t Coefficient std. err. z P>|z]| [95% conf. intervall

ifp .0326664 .0173188 1.89 0.059 -.0012777 .0666105

tumsize .2603096 .0979851 2.66 0.008 .0682623 .4523568

pelnode -.779114 .4298199 -1.81 0.070 -1.621546 .0633175

Just as with stcox, this model has no constant term. It is absorbed as part of the baseline subhazard,

which is not directly estimated.

> Example 2: CIF curves after stcrreg

d

In the above analysis, we stated that with increased interstitial fluid pressure comes an increase
in the incidence of local relapses in the presence of possible distant relapses. To demonstrate this
visually, we use stcurve to compare two CIF curves: one for ifp == 5 and one for ifp == 20. For
both curves, we assume positive pelvic node involvement (pelnode==0) and tumor size set at the

mean over the data.
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. stcurve, cif at(ifp=(5 20) pelnode=0)
note: function evaluated at specified values of selected covariates and
overall means of other covariates (if any).

Competing-risks regression

—— ifp=5 pelnode=0
—— ifp=20 pelnode=0

Cumulative incidence
w
1

4 6 8
Analysis time

o
N

For positive pelvic node involvement and mean tumor size, the probability of local relapse within
2 years is roughly 26% when the interstitial fluid pressure is 5 mmHg and near 40% when this is
increased to 20 mmHg. Both probabilities take into account the possibility that a distant relapse could
occur instead.

4

Multiple competing-event types

Competing-risks regression generalizes to the case where more than one type of event competes
with the event of interest. If you have such data, after you stset the failure event of interest, you
can lump together all competing event codes into the compete() option of stcrreg. It does not
matter whether multiple codes represent the same competing-event type, or if they represent multiple
types. The results will be the same.

> Example 3: UDCA in patients with PBC

Therneau and Grambsch (2000, sec. 8.4.3) analyze data from patients with primary biliary cirrhosis
(PBC), a chronic liver disease characterized by progressive destruction of the bile ducts. Data were
obtained from 170 patients in a randomized double-blind trial conducted at the Mayo Clinic from
1988 to 1992. The trial was for a new treatment, ursodeoxycholic acid (UDCA; Lindor et al. [1994]).



176 stcrreg — Competing-risks regression

. use https://www.stata-press.com/data/r18/udca, clear
(Randomized trial of UDCA in PBC)

. describe
Contains data from https://www.stata-press.com/data/r18/udca.dta
Observations: 188 Randomized trial of UDCA in PBC
Variables: 8 3 Apr 2022 09:37
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

id int %9.0g Patient ID

entry int %td Date of enrollment

eventtime float %td Date of first event or loss to
follow-up

treat byte %9.0g O=placebo 1=UDCA

stage byte %9.0g Histologic stage: O=stage 1/2 at
entry l=stage 3/4

lbili float  %9.0g log(bilirubin value)

etype byte %9.0g event Event type (see notes)

wt double %4.2f Observation weight

Sorted by: id

The etype variable is coded as any of eight distinct event types (or no event) according to table 1.

Table 1. Event codes for the etype variable
Event code Event type

No event (censored)

Death

Transplant

Histologic progression
Development of varices
Development of ascites
Development of encephalopathy
Doubling of bilirubin
Worsening of symptoms

0NN DN B~ W~ O

Cleves (1999) analyzed these data by estimating the cause-specific hazards for each of the eight
events. In the version of the data used there, the time at which any adverse event occurred was
recorded, but here we record only the time of the first adverse event for each patient. We do so
because we wish to perform a competing-risks analysis where we are interested in the time to the
first adverse event and the type of that event. The events compete because only one can be first.

We are interested in whether treatment will decrease the incidence of histologic progression (etype
== 3) as the first adverse outcome, in reference to treatment (treat), the logarithm of bilirubin level
(1bili), and histologic stage at entry (stage). Because the patients entered the study at different
times (entry), when stsetting the data we must specify this variable as the origin, or onset of risk.

The competing-risks analysis described above could thus proceed as follows:

. stset eventtime, failure(etype == 3) origin(entry)
. stcrreg treat 1bili stage, compete(etype == 12 4 5 6 7 8)

except for one minor complication. Some patients experienced multiple “first events”, and thus ties
exist. For example, consider patient 8 who experienced four adverse events at the same time:
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. list if id ==
id entry eventtime  treat stage 1bili etype wt
8. 8  25mayl1988  02jul1990 0 1 1.629241  Ascites 0.25
9. 8  26may1988  02jul1990 0 1 1.629241 Ence 0.25
10. 8 2b5may1988  02jull1990 0 1 1.629241 Bili_2 0.25
11. 8  25may1988  02jul1990 0 1 1.629241 Worse 0.25

While most patients are represented by one record each, patients with multiple first events are represented
by multiple records. Rather than break ties arbitrarily, we take advantage of how importance weights
(iweights) are handled by stcrreg. Importance weights are treated like frequency weights, but
they are allowed to be noninteger. As such, we define the weight variable (wt) to equal one for
single-record patients and to equal one divided by the number of tied events for multiple-record
patients. In this way, each patient contributes a total weight of one observation.

The only further modification we need is to specify vce(cluster id) so that our standard errors
account for the correlation within multiple records on the same patient.

. stset eventtime [iw=wt], failure(etype == 3) origin(entry)
(output omitted )

. stcrreg treat 1bili stage, compete(etype == 1 2 4 5 6 7 8) vce(cluster id)
Failure _d: etype==

Analysis time _t: (eventtime-origin)
Origin: time entry
Weight: [iweight=wt]
Iteration 0: Log pseudolikelihood = -62.158461
Iteration 1: Log pseudolikelihood = -61.671367
Iteration 2: Log pseudolikelihood = -61.669225
Iteration 3: Log pseudolikelihood = -61.669225

Competing-risks regression No. of obs = 170
No. of subjects = 170
Failure event: etype == 3 No. failed = 13
Competing events: etype == 12456 7 8 No. competing = 59
No. censored = 98
Wald chi2(3) = 1.89

Log pseudolikelihood = -61.669225 Prob > chi2 = 0.5955
(Std. err. adjusted for 170 clusters in id)

Robust
_t SHR std. err. z P>zl [95% conf. intervall]
treat .5785214 .3238038 -0.98 0.328 .1931497 1.732786
1bili 1.012415 .367095 0.03 0.973 .4974143 2.060623
stage .55637101 .33056371 -0.99 0.322 .1718534 1.78405

In the above, we clustered on id but we did not stset it as an id() variable. That was because
we wanted stcrreg to treat each observation within patient as its own distinct spell, not as a set of
overlapping spells.

Treatment with UDCA seems to decrease the incidence of histologic progression as a first adverse
event. However, the effect is not significant, most likely as a result of observing so few failures.

N
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stcrreg as an alternative to stcox

In this section, we demonstrate that you may also use stcox to perform a cumulative-incidence
analysis, and we compare that approach with one that uses stcrreg.

> Example 4: HIV and Sl as competing events

Geskus (2000) and Putter, Fiocco, and Geskus (2007) analyzed data from 324 homosexual men
from the Amsterdam Cohort Studies on HIV infection and AIDS. During the course of infection, the
syncytium inducing (SI) HIV phenotype appeared in many of these individuals. The appearance of the
SI phenotype worsens prognosis. Thus the time to SI appearance in the absence of an AIDS diagnosis
is of interest. In this context, a diagnosis of AIDS acts as a competing event.

. use https://www.stata-press.com/data/r18/hiv_si
(HIV and SI as competing risks)

. describe
Contains data from https://www.stata-press.com/data/r18/hiv_si.dta
Observations: 324 HIV and SI as competing risks
Variables: 4 3 Apr 2022 13:40
(_dta has notes)
Variable Storage Display Value
name type format label Variable label
patnr int %8.0g ID
time float  %9.0g Years from HIV infection
status byte %10.0g stat Status
ccrb byte %9.0g ccrb WM (deletion in C-C chemokine
receptor 5 gene)
Sorted by:

In what follows, we re-create the analysis performed by Putter, Fiocco, and Geskus (2007), treating
AIDS and SI as competing events and modeling cumulative incidence in relation to covariate ccr5.
ccrb equals 1 if a specific deletion in the C-C chemokine receptor 5 gene is present and equals zero
otherwise (wild type).

We can model the cumulative incidence of SI on ccrb directly with stcrreg:

. stset time, failure(status == 2) // SI is the event of interest
(output omitted )
. stcrreg ccrb, compete(status == 1) // AIDS is the competing event
(output omitted )
Competing-risks regression No. of obs = 324
No. of subjects = 324
Failure event: status == 2 No. failed = 107
Competing event: status == 1 No. competing = 113
No. censored = 104
Wald chi2(1) = 0.01
Log pseudolikelihood = -579.06241 Prob > chi2 = 0.9172
Robust
_t SHR  std. err. z P>|z| [95% conf. intervall
ccrb 1.023865 .2324119 0.10 0.917 .6561827 1.597574

It seems that this particular genetic mutation has little relation with the incidence of SI, a point
we emphasize further with a graph:
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. stcurve, cif at(ccr5=(0 1)) title(SI) range(0 13) yscale(range(0 0.5))
note: function evaluated at specified covariate values.

Sl

— ccr5=0
— ccr5=1

Cumulative incidence

Analysis time

The above analysis compared SI incidence curves under the assumption that the subhazard for
SI, that which generates SI events in the presence of AIDS, was proportional with respect to ccrb.
Because we modeled the subhazard and not the cause-specific hazard, obtaining estimates of cumulative
incidence was straightforward and depended only on the subhazard for SI and not on that for AIDS.

As explained in The case for competing-risks regression, the cumulative incidence of SI is a
function of both the cause-specific hazard for SI, hi(t), and that for AIDS, hs(t), because SI and
AIDS are competing events. Suppose for the moment that we are not interested in the incidence of SI
in the presence of AIDS, but instead in the biological mechanism that causes SI in general. We can
model this mechanism with stcox by treating AIDS events as censored.

. stcox ccrb

(output omitted )
Cox regression with no ties
No. of subjects = 324 Number of obs = 324
No. of failures = 107
Time at risk = 2,261.96
LR chi2(1) = 1.19
Log likelihood = -549.73443 Prob > chi2 = 0.2748
_t | Haz. ratio Std. err. z P>|z| [95% conf. intervall
ccrb .7755334 .1846031 -1.07 0.286 .4863914 1.23656

Because we initially stset our data with SI as the event of interest, AIDS events are treated as
censored by stcox (but not by stcrreg). In any case, the ccr5 mutation somewhat decreases the
risk of SI, but this effect is not significant.

We make the above interpretation with no regard to AIDS as a competing risk because we are
interested only in the biological mechanism behind SI. To estimate the cumulative incidence of SI, we
first need to make a choice. Either we can pretend a diagnosis of AIDS does not exist as a competing
risk and use stcurve to plot survivor curves for SI based on the Cox model above, or we can
acknowledge AIDS as a competing risk and model that cause-specific hazard also.

We choose the latter. Before fitting the model, however, we need to re-stset the data with AIDS
as the event of interest.
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. stset time, failure(status == 1) // AIDS is the event of interest
(output omitted )
. stcox ccrb
(output omitted )
Cox regression with Breslow method for ties
No. of subjects = 324 Number of obs = 324
No. of failures = 113
Time at risk = 2,261.96
LR chi2(1) = 21.98
Log likelihood = -555.37301 Prob > chi2 = 0.0000
_t | Haz. ratio Std. err. z P>zl [95% conf. intervall]
ccrb .2906087 .0892503 -4.02 0.000 .1591812 .530549

Patients with the ccr5 mutation have a significantly lower risk of AIDS.

We have now modeled both cause-specific hazards separately. Cleves (1999); Lunn and Mc-
Neil (1995); and Putter, Fiocco, and Geskus (2007) (among others) describe an approach based
on data duplication where both hazards can be modeled simultaneously. Such an approach has the
advantage of being able to set the effects of ccrb on both hazards as equal and to test that hypothesis.
Also, you can model the baseline hazards as proportional rather than entirely distinct. However, for
the least parsimonious model with event-specific covariate effects and event-specific baseline hazards,
the data duplication method is no different than fitting separate models for each event type, just as
we have done above. Because data duplication will reveal no simpler model for these data, we do
not describe it further.

We can derive estimates of cumulative incidence for SI based on the above cause-specific hazard
models, but the process is a bit more complicated than before. The cumulative incidence of SI (event
type 1) in the presence of AIDS (event type 2) is calculated as

CiFy(t) = > ha(t;)S(t;1)

Git; <t
with

St = T {1-lt)) ~haty)}

jit; <t

The ¢; index the times at which events (of any type) occur, and h4 (t;) and ho(¢;) are the cause-specific
hazard contributions for SI and AIDS respectively. Baseline hazard contributions can be obtained with
predict after stcox, and they can be transformed to hazard contributions for any covariate pattern by
multiplying them by the exponentiated linear predictor for that pattern. Hazard contributions represent
the increments of the cumulative hazards at each event time. S (t) estimates the probability that you
are event free at time ¢.
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We begin by refitting both models and predicting the hazard contributions.
. stset time, failure(status == 2) // SI
(output omitted )

. stcox ccrb
(output omitted )

. predict h_si_0, basehc
(217 missing values generated)

. generate h_si_1 = h_si_O*exp(_b[ccr5])
(217 missing values generated)

. stset time, failure(status == 1) // AIDS
(output omitted )

. stcox ccrb
(output omitted )

. predict h_aids_0, basehc
(211 missing values generated)

. gsort _t -_d

. by _t: replace h_aids_ 0 = . if _n > 1
(1 real change made, 1 to missing)

. generate h_aids_1 = h_aids_O*exp(_b[ccr5])
(212 missing values generated)

Variables h_si_0 and h_aids_0 hold the baseline hazard contributions, those for ccrb5 ==
Variables h_si_1 and h_aids_1 hold the hazard contributions for ccr5 == 1, and they were obtained
by multiplying the baseline contributions by the exponentiated coefficient for ccr5. When we ran
stcox with AIDS as the event of interest, the output indicated that we had tied failure times (the
analysis for SI had no ties). As such, this required the extra step of setting any duplicated hazard
contributions to missing. As it turned out, this affected only one observation.

Hazard contributions are generated only at times when events are observed and are set to missing
otherwise. Because we will be summing and multiplying over event times, we next drop the observations
that contribute nothing and then replace missing with zero for those observations that have some
hazard contributions missing and some nonmissing.

. drop if missing(h_si_0) & missing(h_aids_0)
(105 observations deleted)

. replace h_aids_0 = 0 if missing(h_aids_0)
(107 real changes made)

. replace h_aids_1 = 0 if missing(h_aids_1)
(107 real changes made)

. replace h_si_0 = 0 if missing(h_si_0)
(112 real changes made)

. replace h_si_1 = 0 if missing(h_si_1)
(112 real changes made)

We can now sort by analysis time and calculate the estimated event-free survivor functions. Recall
that you can express a product as an exponentiated sum of logarithms, which allows us to take
advantage of Stata’s sum() function for obtaining running sums.

. sort _t
. generate S_O = exp(sum(log(l- h_aids_0 - h_si_0)))
. generate S_1 = exp(sum(log(l- h_aids_1 - h_si_1)))

Finally, we calculate the estimated CIFs and graph:

. generate cif_si_0 = sum(S_O[_n-1]*h_si_0)

. label var cif_si_0 "ccr5=0"
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. generate cif_si_1 = sum(S_1[_n-1]*h_si_1)
. label var cif_si_1 "ccrb=1"

. twoway line cif_si* _t if _t<13, connect(J J) sort yscale(range(0 0.5))
> title(SI) ytitle(Cumulative incidence) xtitle(Analysis time)

Sl

ccr5=0
—— cerb=1

Cumulative incidence

Analysis time

This model formulation shows ccr5 to have more of an effect on the incidence of SI, although the
effect is still small. Note that under this formulation, the effect of ccr5 is not constrained to be overall
increasing or overall decreasing. In fact, when ¢ > 11 years or so, those with the ccr5 mutation
actually have an increased SI incidence. That is due to time-accumulated reduced competition from
AIDS, the risk of which is significantly lower when the ccrb mutation is present.

Putter, Fiocco, and Geskus (2007) also performed the same analysis using AIDS as the event of
interest, something we leave to you as an exercise.

N

We have described two different modeling approaches for estimating the cumulative incidence of
SI. Although you may prefer the stcrreg approach because it is much simpler, that does not mean
it is a better model than the one based on stcox. The better model is the one whose assumptions
more closely fit the data. The stcrreg model assumes that the effect of ccrb is proportional on
the subhazard for SI. The stcox model assumes proportionality on the cause-specific hazards for
both SI and AIDS. Because our analysis uses only one binary covariate, we can compare both models
with a nonparametric estimator of the CIF to see which fits the data more closely; see [ST] sterreg
postestimation.

Multiple records per subject

stcrreg can be used with data where you have multiple records per subject, as long as 1) you
stset an ID variable that identifies the subjects and 2) you carefully consider the role played by
time-varying covariates in subjects who fail because of competing events. We explain both issues
below.

Stata’s st suite of commands allows for multiple records per subject. Having multiple records
allows you to record gaps in subjects’ histories and to keep track of time-varying covariates. If you
have multiple records per subject, you identify which records belong to which subjects by specifying
an ID variable to stset option id().



stcrreg — Competing-risks regression 183

Consider the sample data listed below:

. list if id == 18

id _t0 _t _d X
1. 18 3 5 0 5.1
2. 18 5 8 0o 7.8
3. 18 11 12 0 6.7
4. 18 12 20 1 8.9

These data reflect the following:

e Subject 18 first became at risk at analysis time 3 (delayed entry) with covariate value x
equal to 5.1.

e At time 5, subject 18’s x value changed to 7.8.

e Subject 18 left the study at time 8 only to return at time 11 (gap), with x equal to 6.7 at
that time.

e At time 12, x changed to 8.9.
e Subject 18 failed at time 20 with x equal to 8.9 at that time.

An analysis of these data with Cox regression using stcox is capable of processing all of this
information. Intermittent records are treated as censored (—d==0), and either failure or censoring
occurs on the last record (here failure with _d==1). When subjects are not under observation, they
are simply not considered at risk of failure. Time-varying covariates are also processed correctly. For
example, if some other subject failed at time 7, then the risk calculations would count subject 18 at
risk with x equal to 7.8 at that time.

stcox will give the same results for the above data whether or not you stset the ID variable, id.
Whether you treat the above data as four distinct subjects (three censored and one failed) or as one
subject with a four-record history is immaterial. The only difference you may encounter concerns
robust and replication-based standard errors, in which case if you stset an ID variable, then stcox
will automatically cluster on this variable.

Such a distinction, however, is of vital importance to stcrreg. While stcox is concerned only
about detecting one type of failure, stcrreg relies on precise accounting of the number of subjects
who fail because of the event of interest, those who fail because of competing events, and those
who are censored. In particular, the weighting mechanism behind stcrreg depends on an accurate
estimate of the probability a subject will be censored; see Methods and formulas. As such, it makes
a difference whether you want to treat the above as four distinct subjects or as one subject. If you
have multiple records per subject, you must stset your ID variable before using stcrreg. When
counting the number failed, number competing, and number censored, stcrreg only considers what
happened at the end of a subject’s history. Intermittent records are treated simply as temporary entries
to and exits from the analysis, and the exits are not counted as censored in the strict sense.

Furthermore, when using stcrreg with covariates that change over multiple records (time-varying
covariates), you need to carefully consider what happens when subjects experience competing failures.
For the above sample data, subject 18 failed because of the event of interest (—d==1). Consider,
however, what would have happened had this subject failed because of a competing event instead.
Competing-risks regression keeps such subjects “at risk” of failure from the event of interest even
after they fail from competing events; see Methods and formulas. Because these subjects will be used
in future risk calculations for which they have no data, stcrreg will use the last available covariate
values for these calculations. For the above example, if subject 18 experiences a competing event at
time 20, then the last available value of x, 8.9, will be used in all subsequent risk calculations. If
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the last available values are as good a guess as any as to what future values would have been—for
example, a binary covariate recording pretransplant versus posttransplant status—then this is not an
issue. If, however, you have reason to believe that a subject’s covariates would have been much
different had the subject remained under observation, then the results from stcrreg could be biased.

> Example 5: Hospital-acquired pneumonia

Consider the following simulated data from a competing-risks analysis studying the effects of
pneumonia.
. use https://www.stata-press.com/data/r18/pneumonia, clear
(Hospital-acquired pneumonia)
. describe

Contains data from https://www.stata-press.com/data/r18/pneumonia.dta

Observations: 957 Hospital-acquired pneumonia
Variables: 7 7 Apr 2022 15:35

Variable Storage Display Value
name type format label Variable label

id int %9.0g Patient ID

age byte %9.0g Age at admission

ndays int %9.0g Days in ICU

died byte %9.0g 1 if died

censored byte %9.0g 1 if alive and in ICU at the end

of the study
discharged byte %9.0g 1 if discharged
pneumonia byte %9.0g 1 if pneumonia

Sorted by: id

The above data are for 855 ICU patients. One hundred twenty-three patients contracted pneumonia,
of which 21 did before admission and 102 during their stay. Those patients who contracted pneumonia
during their stay are represented by two records with the time-varying covariate pneumonia recording
the change in status.

We perform a competing-risks regression for the cumulative incidence of death during ICU stay
with age and pneumonia as covariates. We also treat hospital discharge as a competing event.

. stset ndays, id(id) failure(died)

(output omitted )

. stcrreg age pneumonia, compete(discharged) noshow nolog
Competing-risks regression No. of obs = 957
No. of subjects = 855
Failure events: died nonzero, nonmissing No. failed = 178
Competing events: discharged nonzero, nonmissing No. competing = 641
No. censored = 36
Wald chi2(2) = 121.21
Log pseudolikelihood = -1128.6096 Prob > chi2 = 0.0000
(Std. err. adjusted for 855 clusters in id)

Robust

_t SHR  std. err. z P>|z| [95% conf. intervall
age 1.021612 .0076443 2.86 0.004 1.006739 1.036705
pneumonia 5.587052 .9641271 9.97  0.000 3.983782 7.835558
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Both increased age and contracting pneumonia are associated with an increased incidence of death in
the ICU.
d

Option tvc() and testing the proportional-subhazards assumption

In the previous section, we considered data with multiple records per subject. Such data make it
possible to record discretely time-varying covariates, those whose values change at discrete points in
time. Each change is captured by a new record.

Consider instead what happens when you have covariates that vary continuously with respect to
time. Competing-risks regression assumes the following relationship between subhazard and baseline
subhazard

hi(t) = h1o(t) exp(Bra1 + - - - + Brar)

where ELO(L‘) is the baseline subhazard function. For most purposes, this model is sufficient, but
sometimes we may wish to introduce variables of the form z;(t) = 2;¢(t), which vary continuously
with time so that

ha(t) = hao(t)exp{Brz1 + - + Bexi + g(t) (1121 + -+ + Yimzm)} (1)

where (z1,...,2,,) are the baseline (constant) covariates. Fitting this model has the net effect of
estimating the regression coefficient, 7;, for the covariate g(¢)z;, which is a function of analysis time.

The covariates (z1,...,2y,) are specified using the tvc (svarlist) option, and g(t) is specified
using the texp (exp) option, where ¢ in g(t) is analysis time. For example, if we want g(t) = log(t),
we would use texp(log(_t)) because _t stores the analysis time once the data are stset.

When subjects fail because of competing events, covariate values for these subjects continue
to be used in subsequent risk calculations; see the previous section for details. When this occurs,
any covariates specified using tvc () will continue to respect their time interactions even after these
subjects fail. Because such behavior is unlikely to reflect any real data situation, we do not recommend
using tvc () for this purpose.

We do, however, recommend using tvc() to model time-varying coefficients, because these can
be used to test the proportionality assumption behind competing-risks regression. Consider a version
of (1) that contains only one fixed covariate, 1, and sets z; = 1:

hi(t) = hio(t)exp [{B1 + 1g(t)} z1]

Given this new arrangement, we consider that 81 + y1g(t) is a (possibly) time-varying coefficient
on the covariate 1, for some specified function of time g(t). The coefficient has a time-invariant
component (31, with ~y; determining the magnitude of the time-dependent deviations from (1. As
such, a test of y; = 0 is a test of time invariance for the coefficient on z;.

Confirming that a coefficient is time invariant is one way of testing the proportional-subhazards
assumption. Proportional subhazards implies that the relative subhazard (that is, () is fixed over time,
and this assumption would be violated if a time interaction proved significant.
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> Example 6: Testing proportionality of subhazards

Returning to our cervical cancer study (example 1), we now include time interactions on all three
covariates as a way of testing the proportional-subhazards assumption for each:

. use https://www.stata-press.com/data/r18/hypoxia
(Hypoxia study)

. stset dftime, failure(failtype == 1)

(output omitted )
. stcrreg ifp tumsize pelnode, compete(failtype == 2) tvc(ifp tumsize pelnode)
> noshr
(output omitted )
Competing-risks regression No. of obs = 109
No. of subjects = 109
Failure event: failtype == 1 No. failed = 33
Competing event: failtype == 2 No. competing = 17
No. censored = 59
Wald chi2(6) = 44 .93
Log pseudolikelihood = -136.79 Prob > chi2 = 0.0000
Robust
_t | Coefficient std. err. z P>|z| [95% conf. intervall
main
ifp .0262093 .0174458 1.50 0.133 -.0079838 .0604025
tumsize .37897 .1096628 3.46 0.001 .1640348 .5939052
pelnode -.766362 .473674 -1.62 0.106 -1.694746 .162022
tve
ifp .0055901 .0081809 0.68 0.494 -.0104441 .0216243
tumsize -.1415204 .0908955 -1.56 0.119 -.3196722 .0366314
pelnode .0610457 .5676173 0.11 0.914 -1.051464 1.173555

Note: Variables in tvc equation interacted with _t.

We used the default function of time g(t) = ¢, although we could have specified otherwise with
the texp () option. After looking at the significance levels in the equation labeled “tvc”, we find no
indication that the proportionality assumption has been violated.

4

When you use tvc() in this manner, there is no issue of postfailure covariate values for subjects
who fail from competing events. The covariate values are assumed constant—the coefficients change
with time.
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Stored results

stcrreg stores the following in e():

Scalars
e(N) number of observations
e(N_sub) number of subjects
e(N_fail) number of failures

e(N_compete)
e(N_censor)

e(crevent)
e(compete)

number of competing events
number of censored subjects

e(k) number of parameters
e(k_eq) number of equations in e(b)
e(k_eq-_model) number of equations in overall model test
e(k_dv) number of dependent variables
e(df_m) model degrees of freedom
e(11) log pseudolikelihood
e(N_clust) number of clusters
e(chi2) X2
e(p) p-value for model test
e(rank) rank of e(V)
e(fmult) 1 if > 1 failure events, O otherwise
e(crmult) 1 if > 1 competing events, O otherwise
e(fnz) 1 if nonzero indicates failure, O otherwise
e(crnz) 1 if nonzero indicates competing, O otherwise
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) stcrreg
e(cmdline) command as typed
e(depvar) name of dependent variable
e(mainvars) variables in main equation
e(tve) covariates interacted with time from option tvec ()
e(texp) function of time used for covariates from option tvc()
e(fevent) failure event(s) in estimation output

competing event(s) in estimation output
competing event(s) as typed

e(wtype) weight type

e (wexp) weight expression

e(title) title in estimation output
e(clustvar) name of cluster variable

e(offsetl) offset

e(chi2type) Wald; type of model x? test

e(vce) veetype specified in vce()
e(vcetype) title used to label Std. err.

e(opt) type of optimization

e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml_method) type of m1 method

e(user) name of likelihood-evaluator program

e(technique)
e(properties)
e(predict)
e(marginsnotok)
e(asbalanced)
e(asobserved)

maximization technique

bV

program used to implement predict
predictions disallowed by margins
factor variables fvset as asbalanced
factor variables fvset as asobserved
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Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log
e(gradient) gradient vector
e (V) variance—covariance matrix of the estimators
e(V_modelbased) model-based variance
Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,
and confidence intervals

Note that results stored in r () are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.

Methods and formulas

In what follows, we assume single-record data and time-invariant covariates or coefficients.
Extensions to both multiple-record data and time-varying covariates that are functions of time are
achieved by treating the mechanisms that generate censorings, competing events, and failure events
of interest as counting processes; see Fine and Gray (1999) and Andersen et al. (1993) for further
details.

Let x; be the row vector of m covariates for the time interval (to;, ¢; | for the ith observation in the

dataset (i = 1,...,n). stcrreg obtains parameter estimates 3 by maximizing the log-pseudolikelihood
function

n
logl = Z d;w; | x;3+ offset; — log Z w;mj; exp(x; 8 + offset;)
i=1 JER;

where §; indicates a failure of interest for observation ¢ and R; is the set of observations, j, that are
at risk at time ¢; (that is, all j such that to; < ¢; < t;). w; and offset; are the usual observation
weights and linear offsets, if specified.

The log likelihood given above is identical to that for standard Cox regression (Breslow method
for ties) with the exception of the weights 7;;. These weights are used to keep subjects who have
failed because of competing events in subsequent risk sets and to decrease their weight over time as
their likelihood of being otherwise censored increases.

Formally, extend I?; above not only to include those at risk of failure at time ¢;, but also to include
those subjects already having experienced a competing-risks event. Also, define

Se(t;)
Tji = Ay
Se{min(t;,t;)}

if subject j experiences a competing event; 7;; = 1 otherwise. S(t) is the Kaplan—Meier estimate
of the survivor function for the censoring distribution—that which treats censorings as the events of
interest—evaluated at time ¢, and ¢; is the time at which subject j experienced his or her competing-

failure event. As a matter of convention, §c (t) is treated as the probability of being censored up to
but not including time t.
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Because of the sample weighting inherent to this estimator, the standard Hessian-based estimate
of variance is not statistically appropriate and is thus rejected in favor of a robust, sandwich-type
estimator, as derived by Fine and Gray (1999).

Define z; = xiEl + offset;. (Pseudo)likelihood scores are given by
u; =0+
where 7; = (W14, -+, Mmi)’> and

3 6w (Tri — ay)

e, wemt; exp(z()

Mei = 0; (Thi — agi) — exp(z;)
Jitoi<t;<t;

for
> ver, WeTeiTre exp(2e)

> ter, WeTe; €xp(2e)

Ak =

The 1, are variance contributions due to data estimation of the weights 7;;, with

~ %) vihe(t;)alty)
2 )

t;
7(t;

Jitoi<t;<t;
~i indicates censoring for observation 4, (¢) is the number at risk of failure (or censoring) at time ¢,

helt) = Z_n(ft§t=t>

and the kth component of q(¢) is

=Y wewz) Y 8w mij (Thi — any) I, > 1)

wey; exp(z
ieC(t) Jitoi<t;<t; ZZER;' emej exp(ze)

where C(t) is the set of observations that experienced a competing event prior to time ¢.

By default, stcrreg calculates the Huber/White/sandwich estimator of the variance and calculates
its clustered version if either the vce (cluster clustvar) option is specified or an ID variable has been
stset. See Maximum likelihood estimators and Methods and formulas in [P] _robust for details on
how the pseudolikelihood scores defined above are used to calculate this variance estimator.
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Postestimation commands

The following postestimation command is of special interest after stcrreg:

Command Description

stcurve plot the cumulative subhazard and cumulative incidence functions

The following standard postestimation commands are also available:

Command Description
contrast contrasts and ANOVA-style joint tests of estimates
estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian in-

formation criteria (AIC, CAIC, AICc, and BIC)
estat summarize summary statistics for the estimation sample

estat vce variance—covariance matrix of the estimators (VCE)

estimates cataloging estimation results

etable table of estimation results

hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations of
coefficients

margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of coefficients

predict subhazard ratios, linear predictions and their SEs, etc.

predictnl point estimates, standard errors, testing, and inference for generalized predictions

pwcompare pairwise comparisons of estimates

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

192
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predict

Description for predict

predict creates a new variable containing predictions such as subhazard ratios, linear predictions,
standard errors, baseline cumulative incidence and subhazard functions, Kaplan—Meier survivor curves,
pseudolikelihood scores, efficient score and Schoenfeld residuals, and DFBETA measures of influence.

Menu for predict

Statistics > Postestimation

Syntax for predict

predict [rype] newvar [if] [m] [, sv_statistic nooffset]

predict [lype] {A‘mb*\newvarlist} [zf] [in}, myv_statistic [ partial]

sv_statistic Description
Main
shr predicted subhazard ratio, also known as the relative subhazard; the default
xb linear prediction x;3
stdp standard error of the linear prediction; SE(x,;/3)
*basecif baseline cumulative incidence function (CIF)
*basecshazard baseline cumulative subhazard function
*kmcensor Kaplan—Meier survivor curve for the censoring distribution
my_statistic Description
Main
*scores pseudolikelihood scores
*esr efficient score residuals
*dfbeta DFBETA measures of influence

*schoenfeld

Schoenfeld residuals

Unstarred statistics are available both in and out of sample; type predict ...

if e(sample) ... if wanted only

for the estimation sample. Starred statistics are calculated only for the estimation sample, even when
if e(sample) is not specified.
nooffset is allowed only with unstarred statistics.
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Options for predict

Main

shr, the default, calculates the relative subhazard (subhazard ratio), that is, the exponentiated linear
prediction, exp(x;03).

xb calculates the linear prediction from the fitted model. That is, you fit the model by estimating a
set of parameters, 31, 32, ..., Bk, and the linear prediction is S121; + Baz2j + - - - + BrTkj, often
written in matrix notation as x;03.

The x1;, x25, ..., xTk; used in the calculation are obtained from the data currently in memory
and need not correspond to the data on the independent variables used in estimating 3.

stdp calculates the standard error of the prediction, that is, the standard error of xj,@.

basecif calculates the baseline CIF. This is the CIF of the subdistribution for the cause-specific failure
process.

basecshazard calculates the baseline cumulative subhazard function. This is the cumulative hazard
function of the subdistribution for the cause-specific failure process.

kmcensor calculates the Kaplan—Meier survivor function for the censoring distribution. These estimates
are used to weight within risk pools observations that have experienced a competing event. As
such, these values are not predictions or diagnostics in the strict sense, but are provided for those
who wish to reproduce the pseudolikelihood calculations performed by stcrreg; see [ST] sterreg.

nooffset is allowed only with shr, xb, and stdp, and is relevant only if you specified off-
set (varname) for stcrreg. It modifies the calculations made by predict so that they ignore

the offset variable; the linear prediction is treated as x; ,8 rather than x; ,8 + offset;.

scores calculates the pseudolikelihood scores for each regressor in the model. These scores are
components of the robust estimate of variance. For multiple-record data, by default only one score
per subject is calculated and it is placed on the last record for the subject.

Adding the partial option will produce partial scores, one for each record within subject;
see partial below. Partial pseudolikelihood scores are the additive contributions to a subject’s
overall pseudolikelihood score. In single-record data, the partial pseudolikelihood scores are the
pseudolikelihood scores.

One score variable is created for each regressor in the model; the first new variable corresponds
to the first regressor, the second to the second, and so on.

esr calculates the efficient score residuals for each regressor in the model. Efficient score residuals
are diagnostic measures equivalent to pseudolikelihood scores, with the exception that efficient
score residuals treat the censoring distribution (that used for weighting) as known rather than
estimated. For multiple-record data, by default only one score per subject is calculated and it is
placed on the last record for the subject.

Adding the partial option will produce partial efficient score residuals, one for each record
within subject; see partial below. Partial efficient score residuals are the additive contributions
to a subject’s overall efficient score residual. In single-record data, the partial efficient scores are
the efficient scores.

One efficient score variable is created for each regressor in the model; the first new variable
corresponds to the first regressor, the second to the second, and so on.

dfbeta calculates the DFBETA measures of influence for each regressor of in the model. The DFBETA
value for a subject estimates the change in the regressor’s coefficient due to deletion of that subject.
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For multiple-record data, by default only one value per subject is calculated and it is placed on
the last record for the subject.

Adding the partial option will produce partial DFBETAs, one for each record within subject; see
partial below. Partial DFBETAs are interpreted as effects due to deletion of individual records
rather than deletion of individual subjects. In single-record data, the partial DFBETAs are the
DFBETAS.

One DFBETA variable is created for each regressor in the model; the first new variable corresponds
to the first regressor, the second to the second, and so on.

schoenfeld calculates the Schoenfeld-like residuals. Schoenfeld-like residuals are diagnostic measures
analogous to Schoenfeld residuals in Cox regression. They compare a failed observation’s covariate
values to the (weighted) average covariate values for all of those at risk at the time of failure.
Schoenfeld-like residuals are calculated only for those observations that end in failure; missing
values are produced otherwise.

One Schoenfeld residual variable is created for each regressor in the model; the first new variable
corresponds to the first regressor, the second to the second, and so on.

Note: The easiest way to use the preceding four options is, for example,
. predict double stubx, scores

where stub is a short name of your choosing. Stata then creates variables stubl, stub2, etc. You
may also specify each variable name explicitly, in which case there must be as many (and no
more) variables specified as there are regressors in the model.

partial is relevant only for multiple-record data and is valid with scores, esr, and dfbeta.
Specifying partial will produce “partial” versions of these statistics, where one value is calculated
for each record instead of one for each subject. The subjects are determined by the id() option
to stset.

Specify partial if you wish to perform diagnostics on individual records rather than on individual
subjects. For example, a partial DFBETA would be interpreted as the effect on a coefficient due to
deletion of one record, rather than the effect due to deletion of all records for a given subject.
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margins

Description for margins

margins estimates margins of response for subhazard ratios and linear predictions.

Menu for margins

Statistics > Postestimation

Syntax for margins

margins [marginlist} [, options]

margins [marginlisz} , predict (statistic ...) [Eedict (statistic ...) ... ] [opzions]
statistic Description
shr predicted subhazard ratio, also known as the relative subhazard; the default
xb linear prediction xj/@
stdp not allowed with margins
basecif not allowed with margins
basecshazard not allowed with margins
kmcensor not allowed with margins
scores not allowed with margins
esr not allowed with margins
dfbeta not allowed with margins
schoenfeld not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e (b).

For the full syntax, see [R] margins.

Remarks and examples

Remarks are presented under the following headings:

Baseline functions
Null models
Measures of influence
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Baseline functions

> Example 1: Cervical cancer study

In example 1 of [ST] sterreg, we fit a proportional subhazards model on data from a cervical
cancer study.

. use https://www.stata-press.com/data/r18/hypoxia
(Hypoxia study)

. stset dftime, failure(failtype == 1)
(output omitted )

. stcrreg ifp tumsize pelnode, compete(failtype == 2)

(output omitted )

Competing-risks regression No. of obs = 109
No. of subjects = 109
Failure event: failtype == 1 No. failed = 33
Competing event: failtype == 2 No. competing = 17
No. censored = 59
Wald chi2(3) = 33.21
Log pseudolikelihood = -138.5308 Prob > chi2 = 0.0000

Robust
_t SHR  std. err. z P>|z| [95% conf. intervall
ifp 1.033206 .0178938 1.89 0.059 .9987231 1.068879
tumsize 1.297332 .1271191 2.66 0.008 1.070646 1.572013
pelnode .4588123 .1972067 -1.81 0.070 .1975931 1.065365

After fitting the model, we can predict the baseline cumulative subhazard, Flyo(t), and the baseline
CIF, CIFy o(t):
. predict bch, basecsh
. predict bcif, basecif

. list dftime failtype ifp tumsize pelnode bch bcif in 1/15

dftime failtype ifp tumsize pelnode bch bcif

1 6.152 0 8 7 1 .0658792 .063756

2. 8.008 0 8.2 2 1 .0813224 .0781036

3. .003 1 8.6 10 1 .0260186 .025683

4 1.073 1 3.3 8 1 .0379107 .0372011

5 .003 1 18.5 8 0 .0260186 .025683

6. 7.929 0 20 8 1 .0813224 .0781036

7. 8.454 0 21.8 4 1 .0813224 .0781036

8. 7.107 1 31.6 5 1 .0813224 .0781036

9. 8.378 0 16.5 5 1 .0813224 .0781036

10. 8.178 0 31.5 3 1 .0813224 .0781036
11. 3.395 0 18.5 4 1 .0658792 .063756
12. .003 1 12.8 5 0 .0260186 .025683
13. 1.35 1 18.4 4 1 .051079 .0497964
14. .003 1 18.5 8 1 .0260186 .025683
15. .512 2 21 10 0 .0260186 .025683
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The baseline functions are for subjects who have zero-valued covariates, which in this example are
not representative of the data. If baseline is an extreme departure from the covariate patterns in your
data, then we recommend recentering your covariates to avoid numerical overflows when predicting
baseline functions; see Making baseline reasonable in [ST] stcox postestimation for more details.

For our data, baseline is close enough to not cause any numerical problems, but far enough to
not be of scientific interest (zero tumor size?). You can transform the baseline functions to those for
other covariate patterns according to the relationships

H,(t) = exp(xB)H1,0(t)

and
CIFy(t) =1— exp{—exp(xﬁ)ﬁljo(t)}

but it is rare that you will ever have to do that. stcurve will predict, transform, and graph these
functions for you. When you use stcurve, you specify the covariate settings, and any you leave
unspecified are set at the mean over the data used in the estimation.

. stcurve, cif at(ifp=(5 20) pelnode=0)

note: function evaluated at specified values of selected covariates and
overall means of other covariates (if any).

Competing-risks regression

—— ifp=5 pelnode=0
— ifp=20 pelnode=0

Cumulative incidence
w
1

4 6 8
Analysis time

o
N

Because they were left unspecified, the cumulative incidence curves are for mean tumor size. If
you wish to graph cumulative subhazards instead of CIFs, use the stcurve option cumhaz in place
of cif.

N
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Null models

Predicting baseline functions after fitting a null model (one without covariates) yields nonparametric
estimates of the cumulative subhazard and the CIF.

> Example 2: HIV and Sl as competing events

In example 4 of [ST] sterreg, we analyzed the incidence of appearance of the SI HIV phenotype,
where a diagnosis of AIDS is a competing event. We modeled SI incidence in reference to a genetic
mutation indicated by the covariate ccr5. We compared two approaches: one that used stcrreg and
assumed that the subhazard of SI was proportional with respect to ccr5 versus one that used stcox
and assumed that the cause-specific hazards for both SI and AIDS were each proportional with respect
to ccrb. For both approaches, we produced cumulative incidence curves for SI comparing those who
did not have the mutation (ccr5==0) to those who did (ccrb5==1).

To see which approach better fits these data, we now produce cumulative incidence curves that
make no model assumption about the effect of ccr5. We do this by fitting null models on the two
subsets of the data defined by ccrb and predicting the baseline CIF for each. Because the models
have no covariates, the estimated baseline CIFs are nonparametric estimators.

. use https://www.stata-press.com/data/r18/hiv_si, clear
(HIV and SI as competing risks)

. stset time, failure(status == 2) // SI is the event of interest
(output omitted )
. stcrreg if !ccrb, compete(status == 1) noshow // AIDS is the competing event
Competing-risks regression No. of obs = 259
No. of subjects = 259
Failure event: status == 2 No. failed = 84
Competing event: status == 1 No. competing = 101
No. censored = 74
Wald chi2(0) = 0.00
Log pseudolikelihood = -435.80148 Prob > chi2 =
Robust
_t SHR  std. err. z P>|z| [95% conf. intervall
. predict cif_si_0, basecif
(65 missing values generated)
. label var cif_si_0 "ccrb5=0"
. stcrreg if ccrb, compete(status == 1) noshow
Competing-risks regression No. of obs = 65
No. of subjects = 65
Failure event: status == 2 No. failed = 23
Competing event: status == 1 No. competing = 12
No. censored = 30
Wald chi2(0) = 0.00
Log pseudolikelihood = -88.306665 Prob > chi2 =
Robust
_t SHR  std. err. z P>|z| [95% conf. intervall

. predict cif_si_1, basecif
(259 missing values generated)

. label var cif_si_1 "ccrb5=1"
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. twoway line cif_si* _t if _t<13, connect(J J) sort yscale(range(0 0.5))
> title(SI) ytitle(Cumulative incidence) xtitle(analysis time)

Sl

—— ccr5=0
ccr5=1

Cumulative incidence

Analysis time

After comparing with the graphs produced in [ST] sterreg, we find that the nonparametric analysis
favors the stcox approach over the stcrreg approach.

N

Q Technical note

Predicting the baseline CIF after fitting a null model with stcrreg produces a nonparametric CIF
estimator that is asymptotically equivalent, but not exactly equal, to an alternate estimator that is
often used; see Coviello and Boggess (2004) for the details of that estimator. The estimator used by
predict after stcrreg is a competing-risks extension of the Nelson—Aalen estimator (Nelson 1972;
Aalen 1978); see Methods and formulas. The other is a competing-risks extension of the Kaplan—Meier
(1958) estimator.

In large samples with many failures, the difference is negligible.

Measures of influence

With predict after stcrreg, you can obtain pseudolikelihood scores that are used to calculate
robust estimates of variance, Schoenfeld residuals that reflect each failure’s contribution to the gradient
of the log pseudolikelihood, efficient score residuals that represent each subject’s (observation’s)
contribution to the gradient, and DFBETAs that measure the change in coefficients due to deletion of
a subject or observation.
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> Example 3: DFBETAs

Returning to our cervical cancer study, we obtain DFBETAs for each of the three coefficients in
the model and graph those for the first with respect to analysis time.
. use https://www.stata-press.com/data/r18/hypoxia, clear
(Hypoxia study)

. stset dftime, failure(failtype == 1)
(output omitted )

. stcrreg ifp tumsize pelnode, compete(failtype == 2)
(output omitted )

. predict dfx*, dfbeta
. generate obs = _n

. twoway scatter dfl dftime, yline(0) mlabel(obs)
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Time from diagnosis to first failure or last follow-up (yrs)

predict created the variables df1, df2, and df3, holding DFBETA values for variables ifp,
tumsize, and pelnode, respectively. Based on the graph, we see that subject 4 is the most influential
on the coefficient for ifp, the first covariate in the model.

4

In the previous example, we had single-record data. If you have data with multiple records per
subject, then by default DFBETAs will be calculated at the subject level, with one value representing
each subject and measuring the effect of deleting all records for that subject. If you instead want
record-level DFBETAs that measure the change due to deleting single records within subjects, add the
partial option; see [ST] stcox postestimation for further details.

Methods and formulas

Continuing the discussion from Methods and formulas in [ST] stcrreg, the baseline cumulative
subhazard function is calculated as

g

Hyo(t) =
jit; <t Z(eRJ_ WeTp;j eXp(Zg)

The baseline CIF is CIFy o(t) = 1 — exp{fﬁlyo(t)}.
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The Kaplan—Meier survivor curve for the censoring distribution is

Set)= 1] {1 - M}

tH<t T(t(j))

where ;) indexes the times at which censorings occur.

Both the pseudolikelihood scores, U;, and the efficient score residuals, ﬁi, are as defined previously.
DFBETAs are calculated according to Collett (2015):

DFBETA; = ﬁ;Var* (B)

where Var* (,8) is the model-based variance estimator, that is, the inverse of the negative Hessian.

Schoenfeld residuals are r; = (714, ..., Tmi) with

Thi = 0; (l‘ki - akz’)
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stcurve — Plot the survivor or related function after streg, stcox, and more

Description Quick start Menu Syntax
Options Remarks and examples References Also see

Description

stcurve plots the survivor, failure, hazard, or cumulative hazard function after stcox, streg,
stintreg, stintcox, mestreg, xtstreg, lasso cox, or elasticnet cox. stcurve also plots
the cumulative subhazard or cumulative incidence function (CIF) after stcrreg.

Quick start
Plot the survivor function with covariates at their means after stcox, streg, stintreg, stintcox,
mestreg, xtstreg, lasso cox, or elasticnet cox
stcurve, survival

Same as above, but plot separate survivor functions for covariate x set to 1, 2, and 3
stcurve, survival atl(x=1) at2(x=2) at3(x=3)

Same as above, but specify a numlist for x in at ()
stcurve, survival at(x=(1 2 3))

Same as above, but specify a different pattern for each line
stcurve, survival at(x=(1 2 3)) lpattern(solid dash dot)

Same as above, and save the graph as mygraph.gph
stcurve, survival at(x=(1 2 3)) saving(mygraph)

Plot the estimated hazard function after stcox, streg, stintreg, stintcox, mestreg, xtstreg,
lasso cox, or elasticnet cox

stcurve, hazard

Smooth the estimated hazard contributions using the Gaussian kernel function for the kernel-density
estimate after stcox or stintcox, and set x to 1

stcurve, hazard kernel(gaussian) at(x=1)

Plot the cumulative hazard function after stcox, streg, stintreg, stintcox, mestreg, xtstreg,
lasso cox, or elasticnet cox

stcurve, cumhaz

Plot the cumulative subhazard function after stcrreg
stcurve, cumhaz

Plot the cumulative incidence function after stcrreg

stcurve, cif

Same as above, but set x to 0
stcurve, cif at(x=0)

203
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Menu

Statistics > Survival analysis > Regression models > Plot survivor or related function

Syntax
stcurve [, options]

options Description

Main

*survival plot survivor function

*failure plot failure function

*hazard plot hazard function

* cumhaz plot cumulative hazard function

*cif plot cumulative incidence function
atomeans evaluate function at overall means; the default
attmeans evaluate function at time-specific means; available only

after stintcox

at (atspec) values of the specified covariates and means of
[atl (atspecl) [at2(atspec2) [ . ] ] ] unspecified covariates
atframe (framename) use covariate values from frame; available only

after stintcox

Options
alphal conditional frailty model
fixedonly set all random effects to zero
unconditional unconditional frailty model or random-effects model
marginal synonym for unconditional
range (# #) range of analysis time
outfile (filename [ s replace]) save values used to plot the curves
width (#) override “optimal” width; use with hazard
kernel (kernel) kernel function; use with hazard
noboundary no boundary correction; use with hazard
Plot
connect_options affect rendition of plotted survivor, failure, hazard, or
cumulative hazard function
Add plots
addplot (plot) add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall
twoway_options any options other than by () documented in
[G-3] twoway _options

*One of survival, failure, hazard, cumhaz, or cif must be specified.

survival, failure, and hazard are not allowed after estimation with stcrreg; see [ST] sterreg
cif is allowed only after estimation with stcrreg; see [ST] sterreg.

stcurve is not supported after stratified estimation.

For the stcurve syntax following lasso cox and elasticnet cox, see [LASSO] lasso postestimation.
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Options
Main

survival specifies that the survivor function be plotted. survival is not allowed after estimation
with stcrreg.

failure specifies that the failure function be plotted. failure is not allowed after estimation with
stcrreg.

hazard specifies that the hazard function be plotted. hazard is not allowed after estimation with
stcrreg.

cumhaz specifies that the cumulative hazard function be plotted when used after stcox, streg,
stintreg, stintcox, mestreg, or xtstreg and specifies that the cumulative subhazard function
be plotted when used after stcrreg.

cif specifies that the cumulative incidence function be plotted. This option is available only after
estimation with stcrreg.

atomeans specifies that the estimates of the survivor or other function be evaluated at the overall
means of covariates. This is the default.

attmeans is supported after stintcox in a multiple-record-per-subject format. It specifies that the
estimates of the survivor or other function be evaluated at the time-specific means of covariates.
This option is useful to incorporate time profiles for time-varying covariates present in the dataset.
Also see option atframe().

at (atspec) specifies that the estimates of the survivor or other function be evaluated at specific
covariate values. By default, stcurve evaluates the function by setting each covariate to its overall
mean value. This option causes the function to be evaluated at the values of the covariates listed in
at () and at the overall means of all unlisted covariates. If option attmeans is also specified, the
unlisted covariates are evaluated at time-specific means. This option can be repeated to produce
multiple curves, or you can specify multiple values for a set of covariates in one at() option;
see Syntax of at() in [ST] adjustfor_option for details. at () may not be combined with at1(),
at2(), and so on.

atl(atspecl), at2(atspec2), ..., at20(atspec20) are the alternatives to the repeated use of
at (). They specify that multiple curves (up to 20) be plotted on the same graph. at1(), at2(),

., at20() work similarly to the at () option. at1() specifies the values of the covariates for
the first curve, at2() specifies the values of the covariates for the second curve, and so on. But,
unlike at (), at#() cannot be repeated and may not be combined with at (). atspecl, atspec2,
and so on follow the same syntax as atspec, except they do not allow numlists or multiple values
for the same covariate.

atframe (framename) is supported after stintcox in a multiple-record-per-subject format. It specifies
that the estimates of the survivor or other function be evaluated using the values of variables
specified in the framename frame. The frame must contain a time variable with the same name
as the examination time variable specified in stintcox’s time() option. It must also include at
least one covariate as specified with stintcox or in its tve() option. atframe () may not be
combined with at ().

alphal, when used after fitting a frailty model, plots curves that are conditional on a frailty value
of one. This is the default for shared-frailty models.
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fixedonly specifies that all random effects be set to zero, which is equivalent to using only the fixed
portion of the model, when plotting results for random-effects models. This option is allowed only
after xtstreg or mestreg; it is the default after xtstreg.

unconditional and marginal, when used after fitting a frailty model or a random-effects model,
plot curves that are unconditional on the frailty or on the random effects. That is, the curve
is “averaged” over the frailty distribution or over the random-effects distributions. This is the
default for unshared-frailty models and for random-effects models. This option is not allowed after
stintreg, stintcox, or xtstreg.

range (# #) specifies the range of the time axis to be plotted. If this option is not specified, stcurve
plots the desired curve on an interval expanding from the earliest to the latest time in the data.

outfile (filename [ s replace]) saves in filename .dta the values used to plot the curve(s).

width(#) is for use with hazard (and applies only after stcox) and is used to specify the bandwidth
to be used in the kernel smooth used to plot the estimated hazard function. If left unspecified, a
default bandwidth is used, as described in [R] kdensity.

kernel (kernel) is for use with hazard and is for use only after stcox or stintcox because,
for Cox regression, an estimate of the hazard function is obtained by smoothing the estimated
hazard contributions. kernel () specifies the kernel function for use in calculating the weighted
kernel-density estimate required to produce a smoothed hazard-function estimator. The default is
kernel (epanechnikov), yet kernel may be any of the kernels supported by kdensity; see
[R] kdensity.

noboundary is for use with hazard and applies only to the plotting of smoothed hazard functions
after stcox or stintcox. It specifies that no boundary-bias adjustments are to be made when
calculating the smoothed hazard-function estimator. By default, the smoothed hazards are adjusted
near the boundaries; see [ST] sts graph. If the epan2, biweight, or rectangular kernel is used
after estimation using stcox, the bias correction near the boundary is performed using boundary
kernels. For other kernels, the plotted range of the smoothed hazard function is restricted to be
inside of one bandwidth from each endpoint. For these other kernels, specifying noboundary
merely removes this range restriction. After estimation using stintcox, the boundary adjustments
correspond to simply restricting the plotted range of the function for all kernels.

Plot

connect_options affect the rendition of the plotted survivor, failure, hazard, or cumulative hazard
function; see [G-3] connect_options.

Add plots

addplot (plot) provides a way to add other plots to the generated graph; see [G-3] addplot_option.

Y axis, X axis, Titles, Legend, Overall |

twoway_options are any of the options documented in [G-3] twoway_options, excluding by (). These
include options for titling the graph (see [G-3] title_options) and for saving the graph to disk (see
[G-3] saving _option).
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Remarks and examples

Remarks are presented under the following headings:

stcurve after stcox

stcurve after streg

stcurve after stcrreg

stcurve after stintreg and stintcox
Using at() with stcurve

For examples of stcurve after xtstreg and mestreg, see [XT] xtstreg postestimation and
[ME] mestreg postestimation, respectively.

stcurve after stcox

After fitting a Cox model, stcurve can be used to plot the estimated survivor, failure, hazard, or
cumulative hazard function.

> Example 1

. use https://www.stata-press.com/data/r18/drugtr
(Patient survival in drug trial)

. stcox age drug
(output omitted )

. stcurve, survival
note: function evaluated at overall means of covariates.

Cox proportional hazards regression

Survival

0 10 20 30 40
Analysis time
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By default, the curve is evaluated at the mean values of all the predictors, but we can specify
other values if we wish.

. stcurve, survival atl(drug=0) at2(drug=1)

note: function evaluated at specified values of selected covariates and
overall means of other covariates (if any).

Cox proportional hazards regression

—— drug=0
—— drug=1

Survival

0 10 20 30 40
Analysis time
Alternatively, you can obtain the same plot by typing the following:
. stcurve, survival at(drug=(0 1))

In this example, we asked for two plots, one for the placebo group and one for the treatment group.
For both groups, the value of age was held at its mean value for the overall estimation sample.

See Cefalu (2011) for a Stata command to plot the survivor or cumulative hazard function with
pointwise confidence intervals.

d
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> Example 2

stcurve can also be used to plot estimated hazard functions. The hazard function is estimated by
a kernel smooth of the estimated hazard contributions; see [ST] sts graph for details. We can thus
customize the smooth as we would any other; see [R] kdensity for details.

. stcurve, hazard at(drug=(0 1)) kernel(gauss) yscale(log)
note: function evaluated at specified values of selected covariates and
overall means of other covariates (if any).

Cox proportional hazards regression

—— drug=0
—— drug=1

Smoothed hazard function

5 10 15 20 25 30
Analysis time

For the hazard plot, we plotted on a log scale to demonstrate the proportionality of hazards under
this model; see the technical note below on smoothed hazards. q

Q Technical note

For survivor or cumulative hazard estimation, stcurve works by first estimating the baseline
function and then modifying it to adhere to the specified (or by default, mean) covariate patterns. As
mentioned previously, baseline (when all covariates are equal to zero) must correspond to something
that is meaningful and preferably in the range of your data. Otherwise, stcurve could encounter
numerical difficulties. We ignored our own advice above and left age unchanged. Had we encountered
numerical problems, or funny-looking graphs, we would have known to try shifting age so that age==0
was in the range of our data.

For hazard estimation, stcurve works by first transforming the estimated hazard contributions
to adhere to the necessary covariate pattern and then applying the smooth. When you plot multiple
curves, each is smoothed independently, although the same bandwidth is used for each.

The smoothing takes place in the hazard scale and not in the log hazard-scale. As a result, the
resulting curves will look nearly, but not exactly, parallel when plotted on a log scale. This inexactitude
is a product of the smoothing and should not be interpreted as a deviation from the proportional-hazards
assumption; stcurve (after stcox) assumes proportionality of hazards and will reflect this in the
produced plots. If smoothing were a perfect science, the curves would be parallel when plotted on
a log scale. If you encounter estimated hazards exhibiting severe disproportionality, this may signal
a numerical problem as described above. Try recentering your covariates so that baseline is more

reasonable.
Q
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stcurve after streg

stcurve is used after streg to plot the fitted survivor, failure, hazard, or cumulative hazard
function. By default, stcurve computes the means of the covariates and evaluates the functions at
each time in the data, censored or uncensored. The resulting plot is therefore the survival experience
of a subject with a covariate pattern equal to the average covariate pattern in the study. You can
produce the plot at other values of the covariates by using the at () option or specify a time range

by using the range ()

> Example 3

We pick up where example 6 of [ST] streg left off. The cancer dataset we are using has three values
for variable drug: 1 corresponds to placebo, and 2 and 3 correspond to two alternative treatments.
Using the cancer data with drug remapped to form an indicator of treatment, let’s fit a loglogistic
regression model and plot its survival curves. We can perform a loglogistic regression by issuing the

following commands:

option.

. use https://www.stata-press.com/data/r18/cancer
(Patient survival in drug trial)

. replace drug = drug==2 | drug==

(48 real change

s made)

. stset studytime, failure(died)

(output omitted )

. streg age drug, distribution(llogistic) nolog

Failure
Analysis time

Loglogistic AFT

_d: died

regression

t: studytime

// 0, placebo : 1,

nonplacebo

No. of subjects = 48 Number of obs = 48
No. of failures = 31
Time at risk = 744

LR chi2(2) = 35.14

Log likelihood = -43.21698 Prob > chi2 = 0.0000

_t | Coefficient Std. err. z P>zl [95% conf. intervall]

age -.0803289 .0221598 -3.62 0.000 -.1237614 -.0368964

drug 1.420237 .2502148 5.68 0.000 .9298251 1.910649

_cons 6.446711 1.231914 5.23 0.000 4.032204 8.861218

/1ngamma -.8456552 .1479337 -5.72  0.000 -1.1356 -.5557105

gamma .429276 .0635044 .3212293 .5736646
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Now, we wish to plot the survivor and the hazard functions:

. stcurve, survival ylabels(0 .5 1)
note: function evaluated at overall means of covariates.

Loglogistic regression

Survival
o
1

0 10 20 30 40
Analysis time

Figure 3. Loglogistic survival distribution at mean value of all covariates

. stcurve, hazard
note: function evaluated at overall means of covariates.

Loglogistic regression
.08

.06

.044

Hazard function

.02

0 10 20 30 40
Analysis time

Figure 4. Loglogistic hazard distribution at mean value of all covariates

These plots show the fitted survivor and hazard functions evaluated for a cancer patient of average
age receiving the average drug. Of course, the “average drug” has no meaning here because drug
is an indicator variable. It makes more sense to plot the curves at a fixed value (level) of the drug.
We can do this with the at option. For example, we may want to compare the average-age patient’s
survival curve under placebo (drug==0) and under treatment (drug==1).
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We can plot both curves on the same graph:

. stcurve, survival at(drug=(0 1)) ylabels(0 .5 1)
note: function evaluated at specified values of selected covariates and
overall means of other covariates (if any).

Loglogistic regression

—— drug=0
5 —— drug=1

Survival

0 10 20 30 40
Analysis time

Figure 5. Loglogistic survival distribution at mean age for placebo

In the plot, we can see from the loglogistic model that the survival experience of an average-age patient
receiving the placebo is worse than the survival experience of that same patient receiving treatment.
We can also see the accelerated-failure-time feature of the loglogistic model. The survivor function
for treatment is a time-decelerated (stretched-out) version of the survivor function for placebo.

> Example 4

In our discussion of frailty models in [ST] streg, we emphasize the distinction between the individual
hazard (or survivor) function and the hazard (survivor) function for the population. When significant
frailty is present, the population hazard will tend to begin falling past a certain point, regardless of the
shape of the individual hazard. This is due to the frailty effect—as time passes, the frailer individuals
will fail, leaving a more homogeneous population comprising only the most robust individuals.

The frailty effect may be demonstrated using stcurve to plot the estimated hazard (both individual
and population) after fitting a frailty model. Use the alphal option to specify the individual hazard
(o = 1) and the unconditional option to specify the population hazard. Applying this to the
Weibull/inverse-Gaussian shared-frailty model on the kidney data of example 11 of [ST] streg,

. use https://www.stata-press.com/data/r18/catheter, clear
(Kidney data, McGilchrist and Aisbett, Biometrics, 1991)

. stset time infect

(output omitted )

. quietly streg age female, distribution(weibull) frailty(invgauss) shared(patient)
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stcurve, hazard at(female=1) alphal
note: function evaluated at specified values of selected covariates and
overall means of other covariates (if any).

Weibull regression
Inverse-Gaussian frailties shared across patient groups

.015

Hazard function
(evaluated at frailties o; = 1)
o
T

.005

o

200 400 600
Analysis time

Figure 6. Individual hazard for females at mean age
Compare with

stcurve, hazard at(female=1) unconditional
note: function evaluated at specified values of selected covariates and
overall means of other covariates (if any).

Weibull regression
Inverse-Gaussian frailties shared across patient groups

.0074

.006 4

.005+

Marginal hazard function

.004

200 400 600
Analysis time

o

Figure 7. Population hazard for females at mean age
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stcurve after stcrreg

> Example 5

In [ST] sterreg, we analyzed data from 109 patients with primary cervical cancer, treated at a
cancer center between 1994 and 2000. We fit a competing-risks regression model where local relapse
was the failure event of interest (failtype == 1), distant relapse with no local relapse was the
competing risk event (failtype == 2), and we were interested primarily in the effect of interstitial
fluid pressure (ifp) while controlling for tumor size and pelvic node involvement.

After fitting the competing-risks regression model, we can use stcurve to plot the estimated
cumulative incidence of local relapses in the presence of the competing risk. We wish to compare
the cumulative incidence curves for ifp == 5 versus ifp == 20, assuming positive pelvic node
involvement (pelnode == 0) and a tumor size that is the average over the data.

. use https://www.stata-press.com/data/r18/hypoxia
(Hypoxia study)
. stset dftime, fail(failtype==1)
(output omitted )
. stcrreg ifp tumsize pelnode, compete(failtype==2)
(output omitted )
. stcurve, cif at(ifp=(5 20) pelnode=0)
note: function evaluated at specified values of selected covariates and
overall means of other covariates (if any).

Competing-risks regression

— ifp=5 pelnode=0
—— ifp=20 pelnode=0

Cumulative incidence
w
1

4 6 8
Analysis time

o
N

Figure 8. Comparative cumulative incidence functions
Specifying ifp=(5 20) in the at () option is the same as specifying the following at#() options:

. stcurve, cif atl(ifp=5 pelnode=0) at2(ifp=20 pelnode=0)

N
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stcurve after stintreg and stintcox

stcurve can be used after stintreg or stintcox to plot the fitted survivor, failure, hazard, or
cumulative hazard function. For single-record interval-censored data, these functions can be evaluated
at a lower or upper time endpoint of time intervals. stcurve after stintreg uses the lower and
upper time endpoints to determine the range for the plotted functions. stcurve after stintcox plots
the functions at the distinct time points formed by combining the lower and upper time endpoints. By
default, without the at () option, stcurve computes the overall means of the covariates and evaluates
the function at the overall means and at each time in the data, censored or uncensored. The resulting
plot is therefore the survival experience of a subject with a covariate pattern equal to the average
covariate pattern in the study. You can produce the plot at other values of the covariates by using
the at () option or specify a time range by using the range () option. stcurve after stintcox can
also be used to plot functions that allow covariates to vary over time; see Remarks and examples in
[ST] stintcox postestimation.

> Example 6

We continue with example 1 of [ST] stintreg, which studies the effect of treatment on breast
retraction for breast cancer patients. In that example, we compared the cosmetic effects of two cancer
treatments, radiotherapy alone versus radiotherapy plus adjuvant chemotherapy, by fitting a Weibull
proportional hazards model:

. use https://www.stata-press.com/data/r18/cosmesis, clear
(Cosmetic deterioration of breast cancer patients)
. stintreg i.treat, interval(ltime rtime) distribution(weibull)

(iteration log omitted)

Weibull PH regression Number of obs = 94
Uncensored = 0
Left-censored = 5
Right-censored = 38
Interval-cens. = 51
LR chi2(1) = 10.93
Log likelihood = -143.19228 Prob > chi2 = 0.0009
Haz. ratio Std. err. z P>zl [95% conf. intervall]

treat
Radio+Chemo 2.498526 .7069467 3.24 0.001 1.434961 4.350383
_cons .0018503 .0013452 -8.66 0.000 .000445 .007693
/1n_p .4785786 .1198972 3.99 0.000 .2435844 .7135729
P 1.613779 .1934876 1.275814 2.041271
1/p .6196635 .0742959 .4898907 .7838134

Note: _cons estimates baseline hazard.
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Now, we wish to compare the average patient’s survival curve under radiotherapy only (treat == 0)
and under radiotherapy plus chemotherapy (treat == 1):

. stcurve, survival at(treat=(0 1))
note: function evaluated at specified covariate values.

Interval-censored Weibull PH regression

—— treat=0
— treat=1

Survival

Analysis time

Figure 9. Treatment-specific survivor functions for Weibull proportional hazards model

From figure 9, we see that the risk of developing breast retraction for an average patient receiving
the radiotherapy-plus-chemotherapy treatment is higher than that for the same patient receiving
radiotherapy-only treatment. In other words, the adjuvant chemotherapy increases the risk of breast
retraction.

Let’s now use stintcox to fit a semiparametric Cox model that relaxes the distributional assumption
about the event-time distribution. To speed up execution, we will use the favorspeed option in this
demonstration.

. stintcox i.treat, interval(ltime rtime) favorspeed

note: using fixed step size with a multiplier of 5 to compute derivatives.
note: using EM and VCE tolerances of 0.0001.

note: option noemhsgtolerance assumed.

Performing EM optimization (showing every 100 iterations):
Iteration 0: Log likelihood = -150.52924
Iteration 36: Log likelihood = -133.02071

Computing standard errors: ... done
Interval-censored Cox regression Number of obs = 94
Baseline hazard: Reduced intervals Uncensored = 0
Left-censored = 5
Event-time interval: Right-censored = 38
Lower endpoint: ltime Interval-cens. = 51

Upper endpoint: rtime

Wald chi2(1) = 8.34
Log likelihood = -133.02071 Prob > chi2 = 0.0039

OPG
Haz. ratio std. err. z P>|z| [95% conf. intervall

treat

Radio+Chemo 2.229089 .6188939 2.89 0.004 1.293589 3.841127

Note: Standard error estimates may be more variable for small datasets and
datasets with low proportions of interval-censored observations.
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And we now compare the survivor functions of the two treatment groups:

. stcurve, survival at(treat=(0 1))
note: function evaluated at specified covariate values.

Interval-censored Cox regression

— treat=0
— treat=1

Survival

Analysis time

Figure 10. Treatment-specific survivor functions for Cox proportional hazards model
The survivor functions for the semiparametric Cox model are step functions but they look similar to
the Weibull survivor functions from figure 9.

4

Using at() with stcurve

stcurve, by default, evaluates the function by setting each covariate to its mean value. The at ()
option specifies that the function be evaluated at the values of the covariates listed in at() and
at the means of all unlisted covariates. You can repeat the at() option to produce multiple curves
corresponding to different sets of covariate values.
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> Example 7

Let’s return to example 1. Suppose that we want to compare the survival curves for patients at
ages 20, 30, 40, and 50 of the treatment group. The easiest way to do this is to specify multiple
values for age in at(numlist).

. use https://www.stata-press.com/data/r18/drugtr
(Patient survival in drug trial)
. quietly stcox age drug

. stcurve, survival at(age=(20(10)50) drug=1)
note: function evaluated at specified values of selected covariates and
overall means of other covariates (if any).

Cox proportional hazards regression

;‘jﬁ—‘—\;

—— age=20 drug=1
—— age=30 drug=1
—— age=40 drug=1

age=50 drug=1

Survival

0 10 20 30 40
Analysis time
We could have obtained the same plot by specifying the at#() options but with more typing:

stcurve, survival atl(age=20 drug=1) at2(age=30 drug=1) ///
at3(age=40 drug=1) at4(age=50 drug=1)
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The at () option provides many other flexible specifications. For example, if we would like to

plot the baseline survivor function, we do not need to set every covariate to zero in at(). We can
set all covariates to zero at once as follows:

. stcurve, survival at((zero) _all)

note: function evaluated at specified values of selected covariates and
overall means of other covariates (if any).

Cox proportional hazards regression

.995+

.99+

Survival

.985

.98

0 10 20 30 40
Analysis time

For details about the at () option, see Syntax of at() in [ST] adjustfor_option.

References

Cefalu, M. S. 2011. Pointwise confidence intervals for the covariate-adjusted survivor function in the Cox model.
Stata Journal 11: 64-81.

Ruhe, C. 2016. Estimating survival functions after stcox with time-varying coefficients. Stata Journal 16: 867-879.
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Also see
[ST] stcox — Cox proportional hazards model
[ST] stcox postestimation — Postestimation tools for stcox
[ST] sterreg — Competing-risks regression
[ST] sterreg postestimation — Postestimation tools for stcrreg
[ST] stintcox — Cox proportional hazards model for interval-censored survival-time data
[ST] stintcox postestimation — Postestimation tools for stintcox
[ST] stintreg — Parametric models for interval-censored survival-time data
[ST] stintreg postestimation — Postestimation tools for stintreg
[ST] streg — Parametric survival models
[ST] streg postestimation — Postestimation tools for streg
[ST] sts — Generate, graph, list, and test the survivor and related functions
[ST] stset — Declare data to be survival-time data
[ST] adjustfor_option — Adjust survivor and related functions for covariates at specific values
[ME] mestreg — Multilevel mixed-effects parametric survival models
[ME] mestreg postestimation — Postestimation tools for mestreg
[XT] xtstreg — Random-effects parametric survival models

[XT] xtstreg postestimation — Postestimation tools for xtstreg



Title

stdescribe — Describe survival-time data

Description Quick start Menu Syntax
Options Remarks and examples Stored results Reference
Also see

Description

stdescribe reports the characteristics of a survival-time dataset. The report includes the number
of subjects and per-subject summary statistics related to the number of records, entry and exit times,
gaps in the data, time at risk, and number of failures.

stdescribe can be used with single- or multiple-record and single- or multiple-failure st data.

Quick start

Report characteristics of a survival-time dataset using stset data
stdescribe

Describe only data with v1 =1
stdescribe if vi==

Compute weighted statistics using the weight specified in stset

stdescribe, weight

Menu

Statistics > Survival analysis > Summary statistics, tests, and tables > Describe survival-time data
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Syntax
stdescribe [lf] [m} [, weight Mow]

You must stset your data before using stdescribe; see [ST] stset.
by and collect are allowed; see [U] 11.1.10 Prefix commands.

fweights, iweights, and pweights may be specified using stset; see [ST] stset.

Options
Main

weight specifies that the summary use weighted rather than unweighted statistics. weight does
nothing unless you specified a weight when you stset the data. The weight option and the
ability to ignore weights are unique to stdescribe. The purpose of stdescribe is to describe
the data in a computer sense—the number of records, etc.—and for that purpose, the weights are
best ignored.

noshow prevents stdescribe from showing the key st variables. This option is seldom used because
most people type stset, show or stset, noshow to set whether they want to see these variables
mentioned at the top of the output of every st command; see [ST] stset.

Remarks and examples

Here is an example of stdescribe with single-record survival data:

. use https://www.stata-press.com/data/r18/page2
. stdescribe

Failure _d: dead
Analysis time _t: time

|7 Per subject 4|

Category Total Mean Min Median Max
Number of subjects 40
Number of records 40 1 1 1 1
Entry time (first) 0 0 0 0
Exit time (final) 227.95 142 231 344
Subjects with gap 0
Time on gap 0
Time at risk 9118 227.95 142 231 344
Failures 36 .9 0 1 1

There is one record per subject. The purpose of this summary is not analysis—it is to describe how
the data are arranged. We can quickly see that there is one record per subject (the number of subjects
equals the number of records, but if there is any doubt, the minimum and maximum number of
records per subject is 1), that all the subjects entered at time 0, that the subjects exited between times
142 and 344 (median 231), that there are no gaps (as there could not be if there is only one record
per subject), that the total time at risk is 9,118 (distributed reasonably evenly across the subjects),
and that the total number of failures is 36 (with a maximum of 1 failure per subject).
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Here is a description of the multiple-record Stanford heart transplant data that we introduced in
[ST] stset:

. use https://www.stata-press.com/data/r18/stan3
(Heart transplant data)
. stdescribe
Failure _d: died
Analysis time _t: t1

ID variable: id

Per subject

Category Total Mean Min Median Max
Number of subjects 103

Number of records 172 1.669903 1 2 2
Entry time (first) 0 0 0 0
Exit time (final) 310.0786 1 90 1799
Subjects with gap 0

Time on gap 0 . . . .
Time at risk 31938.1 310.0786 1 90 1799
Failures 75 .7281553 0 1 1

Here patients have one or two records. Although this is not revealed by the output, a patient has one
record if the patient never received a heart transplant and two if the patient did receive a transplant;
the first reflects the patient’s survival up to the time of transplantation and the second their subsequent
survival:

. stset, noshow /* to not show the st marker variables */

. stdescribe if !transplant

Per subject ——

Category Total Mean Min Median Max
Number of subjects 34

Number of records 34 1 1 1 1
Entry time (first) 0 0 0 0
Exit time (final) 96.61765 1 21 1400
Subjects with gap 0

Time on gap 0 . . . .
Time at risk 3285 96.61765 1 21 1400
Failures 30 .8823529 0 1 1

. stdescribe if transplant

Per subject

Category Total Mean Min Median Max
Number of subjects 69

Number of records 138 2 2 2 2
Entry time (first) 0 0 0 0
Exit time (final) 415.2623 5.1 207 1799
Subjects with gap 0

Time on gap 0 . . . .
Time at risk 28653.1 415.2623 5.1 207 1799

Failures 45 .6521739 0 1 1
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Finally, here are the results of stdescribe from multiple-failure data:

. use https://www.stata-press.com/data/r18/mfail?2

. stdescribe

f—————— Per subject ——
Category Total Mean Min Median Max
Number of subjects 926
Number of records 1734 1.87257 1 2 4
Entry time (first) 0 0 0 0
Exit time (final) 470.6857 1 477 960
Subjects with gap 6
Time on gap 411 68.5 16 57.5 133
Time at risk 435444 470.2419 1 477 960
Failures 808 .8725702 0 1 3

The maximum number of failures per subject observed is three, although 50% had just one failure,
and six subjects have gaps in their histories.

Video example

How to describe and summarize survival data

Stored results

stdescribe stores the following in r():

Scalars
r(N_sub) number of subjects r(gap) total gap, if gap
r(N_total) number of records r(gap—min) minimum gap, if gap
r(N_min) minimum number of records r (gap_mean) mean gap, if gap
r(N_mean) mean number of records r(gap_med) median gap, if gap
r(N_med) median number of records r (gap_max) maximum gap, if gap
r(N_max) maximum number of records r(tr) total time at risk
r(t0_min) minimum first entry time r(tr_min) minimum time at risk
r(tO_mean) mean first entry time r(tr_mean) mean time at risk
r(t0_med) median first entry time r(tr_med) median time at risk
r(tO0_max) maximum first entry time r(tr_max) maximum time at risk
r(tl_min) minimum final exit time r(N_fail) number of failures
r(ti_mean) mean final exit time r(f_min) minimum number of failures
r(tl_med) median final exit time r(f_mean) mean number of failures
r(tl_max) maximum final exit time r(f_med) median number of failures
r(N_gap) number of subjects with gap r(f_max) maximum number of failures
Reference

Cleves, M. A., W. W. Gould, and Y. V. Marchenko. 2016. An Introduction to Survival Analysis Using Stata. Rev. 3rd
ed. College Station, TX: Stata Press.

Also see
[ST] stset — Declare data to be survival-time data
[ST] stsum — Summarize survival-time data

[ST] stvary — Report variables that vary over time


https://www.youtube.com/watch?v=zw8UvYdI8y8
http://www.stata-press.com/books/survival-analysis-stata-introduction/

Title

stfill — Fill in by carrying forward values of covariates
Description Quick start Menu Syntax
Options Remarks and examples Also see
Description

stfill is intended for use with multiple-record st data for which id() has been stset. stfill
may be used with single-record data, but it does nothing. That is, stfill can be used with multiple-
record or single- or multiple-failure st data.

stfill, baseline changes variables to contain the value at the earliest time each subject was
observed, making the variable constant over time. stfill, baseline changes all subsequent values
of the specified variables to equal the first value, whether they originally contained missing or not.

stfill, forward fills in missing values of each variable with that of the most recent time at
which the variable was last observed. stfill, forward changes only missing values.

You must specify either the baseline or the forward option.

if exp and in range operate slightly differently from their usual definitions to work as you would
expect. if and in restrict where changes can be made to the data, but no matter what, all stset
observations are used to provide the values to be carried forward.

Quick start

Replace values of x1 with the value of x1 at the earliest time the subject was observed using
multiple-record stset data

stfill x1, baseline

Replace missing values in x1 and x2 with the most recently observed value of the variable for the
subject

stfill x1 x2, forward

Menu

Statistics > Survival analysis > Setup and utilities > Fill forward with values of covariates
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Syntax
stfill varlist [l_'f] [m} , {Qaseline |iorward} [options]
options Description
Main
*baseline replace with values at baseline
*forward carry forward values
noshow do not show st setting information

* Either baseline or forward is required.
You must stset your data before using stfill; see [ST] stset.
fweights, iweights, and pweights may be specified using stset; see [ST] stset.

Options
Main

baseline specifies that values be replaced with the values at baseline, the earliest time at which the
subject was observed. All values of the specified variables are replaced, missing and nonmissing.

forward specifies that values be carried forward and that previously observed, nonmissing values be
used to fill in later values that are missing in the specified variables.

noshow prevents stfill from showing the key st variables. This option is seldom used because
most people type stset, show or stset, noshow to set whether they want to see these variables
mentioned at the top of the output of every st command; see [ST] stset.

Remarks and examples

stfill assists in fixing data errors and makes baseline analyses easier.

> Example 1

Let’s begin by repairing broken data.

You have a multiple-record st dataset that, because of how it was constructed, has a problem with
the gender variable:
. use https://www.stata-press.com/data/r18/mrecord
. stvary sex
Failure _d: myopic
Analysis time _%: t
ID variable: id

Subjects for whom the variable is

never always sometimes
Variable | constant varying missing missing missing
sex | 131 1 22 0 110

For 110 subjects, sex is sometimes missing, and for one more subject, the value of sex changes over
time! The sex change is an error, but the missing values occurred because sometimes the subject’s
sex was not filled in on the revisit forms. We will assume that you have checked the changing-sex
subject and determined that the baseline record is correct in that case, too.
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. stfill sex, baseline
Failure _d: myopic
Analysis time _%: t
ID variable: id
Replacing all values with value at earliest observed time:
sex: 221 real changes made

. stvary sex

Failure _d: myopic
Analysis time _%: t
ID variable: id

Subjects for whom the variable is

never always sometimes
Variable | constant varying missing missing missing
sex | 132 0 132 0 0

The sex variable is now completely filled in.

In this same dataset, there is another variable—bp, blood pressure—that is not always filled in
because readings were not always taken.

. stvary bp
Failure _d: myopic
Analysis time _%: t
ID variable: id

Subjects for whom the variable is

never always sometimes
Variable | constant varying missing missing missing
bp | 18 114 9 0 123

(bp is constant for 18 patients because it was taken only once—at baseline.) Anyway, you decide
that it will be good enough when bp is missing to use the previous value of bp:

. stfill bp, forward noshow

Replacing missing values with previously observed values:
bp: 263 real changes made

. stvary bp, noshow

Subjects for whom the variable is

never always sometimes
Variable | constant varying missing missing missing
bp | 18 114 132 0 0

So much for data repair and fabrication.
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> Example 2

Much later, deep in analysis, you are concerned about the bp variable and decide to compare
results with a model that simply includes blood pressure at baseline. You are undecided on the issue
and want to have both variables in your data:

. stset, noshow
. gen bp0 = bp
. stfill bpO, baseline

Replacing all values with value at earliest observed time:
bp0: 406 real changes made

. stvary bp bpO

Subjects for whom the variable is

never always sometimes

Variable | constant varying missing missing missing
bp 18 114 132 0 0

bp0 132 0 132 0 0

Also see
[ST] stbase — Form baseline dataset
[ST] stgen — Generate variables reflecting entire histories
[ST] stset — Declare data to be survival-time data

[ST] stvary — Report variables that vary over time
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stgen — Generate variables reflecting entire histories

Description Quick start Menu Syntax
Functions Remarks and examples Also see

Description

stgen provides a convenient way to generate new variables reflecting entire histories. These
functions are intended for use with multiple-record survival data but may be used with single-record
data. With single-record data, each function reduces to one generate, and generate would be a
more natural way to approach the problem.

stgen can be used with single- or multiple-failure st data.

If you want to generate calculated values, such as the survivor function, see [ST] sts.

Quick start

Create binary indicator newvl equal to 1 in all records for a subject if v1 = 1 at any time using
multiple-record stset data

stgen newvl = ever(vi==1)

Create newv2 containing the time when v2 is first greater than 5 for the subject
stgen newv2 = when(v2>5)

Same as above, but assume v2 > 5 becomes true at the beginning instead of at the end of the
corresponding record

stgen newv2 = whenO(v2>5)

Create newv3 containing the cumulative number of records with v1 = 1 for the subject
stgen newv3 = count(vl==1)

Same as above, but assume vl = 1 becomes true at the beginning instead of at the end of the
corresponding record

stgen newv3 = count0(vi==1)

Create newv4 containing the cumulative number of gaps for the subject
stgen newv4 = ngaps()

Menu

Statistics > Survival analysis > Setup and utilities > Generate variable reflecting entire histories
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Syntax
stgen [type] newvar = function

where function is
ever (exp)
never (exp)
always (exp)
min (exp)
max (exp)
when (exp)
whenO (exp)
count (exp)
countO (exp)
minage (exp)
maxage (exp)
avgage (exp)
nfailures()
ngaps ()
gaplen()
hasgap ()

You must stset your data before using stgen; see [ST] stset.

Functions
In the description of the functions below, time units refer to the same units as timevar from stset
timevar, . ... For instance, if timevar is the number of days since 01 January 1960 (a Stata date), time

units are days. If timevar is in years—years since 1960, years since diagnosis, or whatever—time
units are years.

When we say variable X records a “time”, we mean a variable that records when something
occurred in the same units and with the same base as timevar. If timevar is a Stata date, “time” is
correspondingly a Stata date.

t units, or analysis-time units, refer to a variable in the units timevar/scale() from stset
timevar, scale(...) ....If you did not specify a scale(), ¢ units are the same as time units.
Alternatively, say that timevar is recorded as a Stata date and you specified scale(365.25). Then
t units are years. If you specified a nonconstant scale—scale (myvar), where myvar varies from
subject to subject—t units are different for every subject.

“An analysis time” refers to the time something occurred, recorded in the units (timevar-
origin())/scale(). We speak about analysis time only in terms of the beginning and end of each
time-span record.

Although in Description above we said that stgen creates variables reflecting entire histories,
stgen restricts itself to the stset observations, so “entire history” means the entire history as it is
currently stset. If you really want to use entire histories as recorded in the data, type streset,
past or streset, past future before using stgen. Then type streset to reset to the original
analysis sample.
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The following functions are available:

ever (exp) creates newvar containing 1 (true) if the expression is ever true (nonzero) and 0 otherwise.
For instance,

. stgen everlow = ever(bp<100)

would create everlow containing, for each subject, uniformly 1 or 0. Every record for a subject
would contain everlow = 1 if, on any stset record for the subject, bp < 100; otherwise, everlow
would be 0.

never (exp) is the reverse of ever (); it creates newvar containing 1 (true) if the expression is always
false (0) and O otherwise. For instance,

. stgen neverlow = never (bp<100)

would create neverlow containing, for each subject, uniformly 1 or 0. Every record for a subject
would contain neverlow = 1 if, on every stset record for the subject, bp < 100 is false.

always (exp) creates newvar containing 1 (true) if the expression is always true (nonzero) and 0
otherwise. For instance,

. stgen lowlow = always(bp<100)

would create lowlow containing, for each subject, uniformly 1 or 0. Every record for a subject
would contain lowlow = 1 if, on every stset record for a subject, bp < 100.

min(exp) and max(exp) create newvar containing the minimum or maximum nonmissing value of
exp within 1id(). min() and max () are often used with variables recording a time (see definition
above), such as min(visitdat).

when (exp) and whenO(exp) create newvar containing the time when exp first became true within
the previously stset id(). The result is in time, not ¢ units; see the definition above.

when() and whenO() differ about when the exp became true. Records record time spans
(time0, timel |. when() assumes that the expression became true at the end of the time span,
timel. whenO() assumes that the expression became true at the beginning of the time span, time0.

Assume that you previously stset myt, failure(eventvar=...) .... when() would be appro-
priate for use with eventvar, and, presumably, whenO() would be appropriate for use with the
remaining variables.

count (exp) and countO(exp) create newvar containing the number of occurrences when exp is true
within id().

count () and countO() differ in when they assume that exp occurs. count () assumes that exp
corresponds to the end of the time-span record. Thus even if exp is true in this record, the count
would remain unchanged until the next record.

count0() assumes that exp corresponds to the beginning of the time-span record. Thus if exp is
true in this record, the count is immediately updated.

For example, assume that you previously stset myt, failure(eventvar=...) .... count()
would be appropriate for use with eventvar, and, presumably, count0() would be appropriate for
use with the remaining variables.

minage (exp), maxage (exp), and avgage (exp) return the elapsed time, in time units, because exp is
at the beginning, end, or middle of the record, respectively. exp is expected to evaluate to a time
in time units. minage (), maxage (), and avgage () would be appropriate for use with the result
of when(), when0(), min(), and max (), for instance.
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Also see [ST] stsplit; stsplit will divide the time-span records into new time-span records that
record specified intervals of ages.

nfailures() creates newvar containing the cumulative number of failures for each subject as of the
entry time for the observation. nfailures() is intended for use with multiple-failure data; with
single-failure data, nfailures() is always 0. In multiple-failure data,

. stgen nfail = nfailures()

might create, for a particular subject, the following:

id time0 timel fail X nfail
93 0 20 0 1 0
93 20 30 1 1 0
93 30 40 1 2 1
93 40 60 0 1 2
93 60 70 0 2 2
93 70 80 1 1 2

The total number of failures for this subject is 3, and yet the maximum of the new variable nfail
is 2. At time 70, the beginning of the last record, there had been two failures previously, and there
were two failures up to but not including time 80.

ngaps () creates newvar containing the cumulative number of gaps for each subject as of the entry
time for the record. Delayed entry (an opening gap) is not considered a gap. For example,

. stgen ngap = ngaps()

might create, for a particular subject, the following:

id timeO timel fail X ngap
94 10 30 0 1 0
94 30 40 0 2 0
94 50 60 0 1 1
94 60 70 0 2 1
94 82 90 1 1 2

gaplen() creates newvar containing the time on gap, measured in analysis-time units, for each
subject as of the entry time for the observation. Delayed entry (an opening gap) is not considered
a gap. Continuing with the previous example,

. stgen gl = gaplen()

would produce

id timeO timel fail X ngap gl
94 10 30 0 1 0 0
94 30 40 0 2 0 0
94 50 60 0 1 1 10
94 60 70 0 2 1 0
94 82 90 1 1 2 12

hasgap() creates newvar containing uniformly 1 if the subject ever has a gap and O otherwise.
Delayed entry (an opening gap) is not considered a gap.

Remarks and examples

stgen does nothing you cannot do in other ways, but it is convenient.

Consider how you would obtain results like those created by stgen should you need something
that stgen will not create for you. Say that we have an st dataset for which we have previously

. stset t, failure(d) id(id)
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Assume that these are some of the data:

id t d bp
27 30 0 90
27 50 0 110
27 60 1 85
28 11 0 120
28 40 1 130

If we were to type

. stgen everlow = ever(bp<100)

the new variable, everlow, would contain for these two subjects

id t d bp everlow
27 30 0 90 1
27 50 0 110 1
27 60 1 85 1
28 11 0 120 0
28 40 1 130 0

Variable everlow is 1 for subject 27 because, in two of the three observations, bp < 100, and
everlow is O for subject 28 because everlow is never less than 100 in either observation.

Here is one way we could have created everlow for ourselves:
. generate islow = bp<100
. sort id
. by id: generate sumislow = sum(islow)
. by id: generate everlow = sumislow[_N]>0

. drop islow sumislow

The generic term for code like this is explicit subscripting; see [U] 13.7 Explicit subscripting.

Anyway, that is what stgen did for us, although, internally, stgen used denser code that was
equivalent to
. by id, sort: generate everlow=sum(bp<100)

. by id: replace everlow = everlow[_N]>0
Obtaining things like the time on gap is no more difficult. When we stset the data, stset created

variable _tO to record the entry time. stgen’s gaplen() function is equivalent to

. sort id _t

. by id: generate gaplen = _tO-_t[_n-1]

. by id: replace gaplen = 0 if _n ==
Seeing this, you should realize that if all you wanted was the cumulative length of the gap before
the current record, you could type

. sort id _t

. by id: generate curgap = sum(_tO-_t[_n-11)

If, instead, you wanted a variable that was 1 if there were a gap just before this record and 0 otherwise,
you could type

. sort id _t

. by id: generate iscurgap = (_tO0-_t[_n-1])>0
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> Example 1

Let’s use the stgen commands to real effect. We have a multiple-record, multiple-failure dataset.

. use https://www.stata-press.com/data/r18/mrmf, clear
. st
-> stset t, id(id) failure(d) timeO(t0) exit(time .) noshow
Survival-time data settings
ID variable: id
Failure event: d!=0 & d<.

Observed time interval: (t0, t]
Exit on or before: time .

. stdescribe

Per subject 4|
Category Total Mean Min Median Max
Number of subjects 926
Number of records 1734 1.87257 1 2 4
Entry time (first) 0 0 0 0
Exit time (final) 470.6857 1 477 960
Subjects with gap 6
Time on gap 411 68.5 16 57.5 133
Time at risk 435444 470.2419 1 477 960
Failures 808 .8725702 0 1 3

Also in this dataset are two covariates, x1 and x2. We wish to fit a Cox model on these data but
wish to assume that the baseline hazard for first failures is different from that for second and later
failures.

Our data contain six subjects with gaps. Because failures might have occurred during the gap, we
begin by dropping those six subjects:
. stgen hg = hasgap()
. drop if hg
(14 observations deleted)

The six subjects had 14 records among them. We can now create variable nf containing the number
of failures and, from that, create variable group, which will be 0 when subjects have experienced no
previous failures and 1 thereafter:

. stgen nf = nfailures()

. generate byte group = nf>0
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We can now fit our stratified model:

. stcox x1 x2, strata(group) vce(robust)

Iteration 0: Log pseudolikelihood = -4499.9966
Iteration 1: Log pseudolikelihood = -4444.7797
Iteration 2: Log pseudolikelihood = -4444.4596

Iteration 3: Log pseudolikelihood = -4444.4596
Refining estimates:
Iteration 0: Log pseudolikelihood = -4444.4596

Stratified Cox regression with Breslow method for ties
Strata variable: group
No. of subjects = 920 Number of obs = 1,720

No. of failures 800
Time at risk 432,153

Wald chi2(2) 102.78
Log pseudolikelihood = -4444.4596 Prob > chi2 = 0.0000

(Std. err. adjusted for 920 clusters in id)

Robust
_t | Haz. ratio std. err. z P>zl [95% conf. intervall]
x1 2.087903 .1961725 7.84 0.000 1.736738 2.510074
x2 .2765613 .062277 -6.80 0.000 .1909383 .4005806

Also see
[ST] stci — Confidence intervals for means and percentiles of survival time
[ST] sts — Generate, graph, list, and test the survivor and related functions
[ST] stset — Declare data to be survival-time data

[ST] stvary — Report variables that vary over time
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Description

stintcox fits semiparametric Cox proportional hazards models to interval-censored survival-time
data or, more precisely, event-time data, which may contain right-censored, left-censored, and interval-
censored observations. stintcox can be used with single- or multiple-record interval-censored data.
With interval-censored data, the event-time variables are specified with the stintcox command
instead of using stset. All st settings are ignored by stintcox.

Quick start
Single-record-per-subject interval-censored data

Cox proportional hazards model with covariates x1 and x2 fit to interval-censored data with lower
and upper interval endpoints t1 and t2

stintcox x1 x2, interval(tl t2)

Same as above, but estimate the baseline hazard function using all observed intervals instead of the
default reduced set

stintcox x1 x2, interval(tl t2) full

Use less stringent convergence criteria to explore initial results more quickly
stintcox x1 x2, interval(tl t2) favorspeed

Fit a stratified Cox model with strata defined by levels of svar
stintcox x1 x2, interval(tl t2) strata(svar)

Include a time-varying covariate by interacting x2 with the logarithm of analysis time
stintcox x1 x2, interval(tl t2) tvc(x2) texp(ln(_t))

Report the log-likelihood model test instead of the default Wald model test, and report regression
coefficients instead of hazard ratios

stintcox x1 x2, interval(tl t2) lrmodel nohr

Report OIM standard errors instead of the default OPG standard errors
stintcox x1 x2, interval(tl t2) vce(oim)

After estimation, report regression coefficients instead of hazard ratios
stintcox, nohr

After estimation, report OPG standard errors using fixed step size instead of the default adaptive step
size

stintcox, vce(opg, stepsize(fixed))

236
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After estimation, save estimated baseline hazard contributions to basehc.dta, and store estimation
results as intcox

stintcox, saving(basehc)
estimates store intcox

Multiple-record-per-subject interval-censored data

Cox proportional hazards model with baseline (time-invariant) covariate x1 and time-varying covariate
x2 fit to multiple-record-per-subject interval-censored data with subject identifier idvar, examination
time tvar, and event status indicator status

stintcox x1 x2, id(idvar) time(tvar) status(status)

Same as above, but use the covariate values at the nearest examination time on the right instead of
the default nearest examination time on the left to impute values of time-varying covariate x2
between two examination times

stintcox x1 x2, id(idvar) time(tvar) status(status) ///
tvcovimpute (nearright)

Report robust standard errors instead of the default OPG standard errors
stintcox x1 x2, id(idvar) time(tvar) status(status) vce(robust)

Report cluster—robust standard errors with the cluster identifier clustvar

stintcox x1 x2, id(idvar) time(tvar) status(status) ///
vce(cluster clustvar)

Menu

Statistics > Survival analysis > Regression models > Interval-censored Cox PH model
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Syntax

Single-record-per-subject interval-censored data

stintcox [indepvars] [zf] [in}, interval(t; t,) [single_options]

Multiple-record-per-subject interval-censored data
stintcox [indepvars] [lf] [in}, id(idvar) time(timevar) status (statusvar)

[ multiple_options ]

single_options Description
Model
*interval(?; t,) specify lower and upper endpoints for the event-time interval
options options for both single- and multiple-record interval-censored
data

*interval(t; ty) is required for single-record interval-censored data and cannot be combined with option id(),
time (), status(), or tvcovimpute().

multiple _options Description
Model
Tid(idvar) specify multiple-record ID variable
Ttime(timevar) specify examination time variable
Tstatus (statusvar) specify event status indicator variable
tvcovimpute (type) specify how to impute unobserved covariate values between

examination times for time-varying covariates;
default is nearleft

statussysmissok retain the observations that contain system missing values (.)
options options for both single- and multiple-record interval-censored
data

Tid(), time(), and status() are required for multiple-record interval-censored data and cannot be combined with
option interval().
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options Description
Model

strata(varlist) specify strata variables

reduced estimate baseline hazard function using a reduced set of time
intervals; the default

full estimate baseline hazard function using all time intervals

favoraccuracy favor accuracy of results over speed; the default

favorspeed favor speed possibly over accuracy of results

Time varying
tve (varlisty)
texp (exp)
lrphtest

SE/Robust
vce (veetype)

Reporting
level (#)
lrmodel

@ing(ﬁlename[ , replace ] )

nohr
noheader

[no}log
dots
[no}vcedots[(#)]

[no } emlog[ # ]

[ no } emdots [ # ]
display_options

specify covariates to be interacted with a function of time
specify a function of time; default is texp(_t)

perform the likelihood-ratio test for covariates interacted with
time; default is to perform Wald test

veetype may be one of opg (the default), oim, robust, or
cluster clustvar; may be specified on replay of results

set confidence level; default is 1level (95)

perform the likelihood-ratio model test instead of the default
Wald model test

save estimates of baseline hazard contributions to filename;
use replace to overwrite existing filename

report regression coefficients, not hazard ratios
suppress header from coefficient table
display or suppress EM and VCE iteration logs; default is log

display all EM and VCE iterations as dots

display or suppress VCE iteration dots; default is to display a
dot every iteration, meaning vcedots or vcedots (1)

display or suppress EM iteration log; default is emlog(100),
which displays the log-likelihood value every 100 iterations

display or suppress EM iteration dots; default is noemdots

control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling
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EM options

emiterate (#) maximum number of EM iterations; default is
emiterate (5000)

emtolerance (#) tolerance for the coefficient vector; default is
emtolerance(le-6)

emltolerance (#) tolerance for the log likelihood; default is emltolerance(le-7)

emhsgtolerance (#) tolerance for the scaled gradient; default is
emhsgtolerance(le-5)

noemhsgtolerance do not perform the scale-gradient convergence check

from(init_specs) initial values for the regression coefficients

coeflegend display legend instead of statistics

indepvars and varlisty may contain factor variables; see [U] 11.4.3 Factor variables.

by, collect, and statsby are allowed; see [U] 11.1.10 Prefix commands.

coeflegend does not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

veetype Description

opg[ R vce_options] outer product of the gradient (OPG) vectors; the default
oim[ , vce_options] observed information matrix (OIM)

;obust[ s vce_()pti()ns] Huber/White/sandwich estimator

cluster clustvar[ s vce_options] clustered sandwich estimator

vee_options Description

stepsize(adaptive | fixed [#]) use adaptive or fixed step size to compute VCE;
default is adaptive step size

derivopts options to control computation of numerical derivatives
when adaptive step size is used

iterate(#) maximum number of iterations to compute VCE;
default is iterate(5000)

tolerance (#) profile log-likelihood tolerance to compute VCE;
default is tolerance(1le-6)

[no } dots[ (#) } synonym for vcedots, vcedots(), and novcedots

post replace the current e (V) with the specified VCE type;

can be used only on replay with opg, oim, robust,
or cluster

dots, dots(), nodots, and post do not appear in the dialog box.
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Options
_ [Model

interval({; t,) is required with single-record-per-subject interval-censored data; see Single- versus
multiple-record interval-censored data formats in Remarks and examples. It specifies two time
variables that contain the endpoints of the event-time interval. ¢; represents the lower endpoint, and
t,, represents the upper endpoint. interval () may not be combined with option id(), time (),
status(), or tvcovimpute().

The interval time variables ¢; and ¢,, should have the following form:

Type of observations 1ty
interval-censored (a,b] a b
left-censored (0,b] . b
left-censored (0,0] 0 b
right-censored (a,+00) a .
missing

missing 0

In the table, a and b satisfy 0 < a < b < oo. Also note that ¢; = t, is not allowed with
left-censored or interval-censored observations.

id(idvar) is required with multiple-record-per-subject interval-censored data; see Single- versus
multiple-record interval-censored data formats in Remarks and examples. It specifies the subject-ID
variable; observations with equal, nonmissing values of idvar are assumed to belong to the same
subject. Observations for which idvar is missing are ignored.

When id () is not specified, each observation is assumed to represent a different subject and thus
constitutes a single-record-per-subject dataset.

When you specify id(), the data are said to be multiple-record-per-subject data, even if it turns
out that there is only one record per subject. Multiple-record-per-subject data can be used to
accommodate time-varying covariates that exist in the dataset.

If you specify id(), stintcox requires that you also specify options time() and status().
id() may not be combined with the interval() option.

time (timevar) is required with multiple-record-per-subject interval-censored data; see Single- versus
multiple-record interval-censored data formats in Remarks and examples. It specifies the examination
times for the event of interest and may not be combined with the interval () option.

status (statusvar) is required with multiple-record-per-subject interval-censored data; see Single-
versus multiple-record interval-censored data formats in Remarks and examples. It specifies a
binary status indicator for the event of interest. For each examination time, statusvar indicates, by
the value of 1 versus 0, whether the event has occurred between previous and current examination
times. status() may not be combined with the interval () option.

In combination with option statussysmissok, observations with system missing values (.) in the
statusvar variable will be used during estimation but will not be used to determine the event-time
information for the corresponding subjects; see the description of option statussysmissok.

Recurrent events are not allowed. After the first event occurs, the subject is removed from the
analysis, even if the subject has subsequent records in the data.
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Options time() and status() together define the lower and upper endpoints of the event-time
intervals (¢; and ¢,,) and the censoring types in a multiple-record-per-subject interval-censored dataset.
If the event of interest occurs before the first examination time for a subject, the subject is left-censored.
In the first record for this subject, time is the first examination time, and the event-status indicator is
1. The corresponding event-time interval for this subject has O as the left lower endpoint, ¢;, and the
first examination time as the right upper endpoint, ¢,,. If the event occurs between two examination
times, the subject is interval-censored. The event-time interval for this subject has the last examination
time where the status indicator is O as ¢; and the first examination time where the status indicator is
1 as t,. If the event does not occur during the study, the subject is right-censored. The event-time
interval for this subject has the last examination time as ¢; and missing time (.) as &,.

strata(varlist) specifies the stratification variables. Observations with equal values of the strata
variables are assumed to be in the same stratum. Stratified estimates (equal regression coefficients
across strata but with a baseline hazard unique to each stratum) are then obtained.

reduced, the default, specifies that the baseline hazard function be estimated using a reduced
(innermost) set of time intervals. This allows the estimator of the cumulative baseline hazard
function to change its values only at the endpoints of the innermost time intervals, which were
originally used by Turnbull (1976) to estimate the survivor function in the one-sample case. This
option may not be combined with full.

full specifies that the baseline hazard function be estimated using all observed time intervals. In this
case, the estimator of the cumulative baseline hazard function can potentially change its values
at the endpoints of all the observed time intervals. This is the approach used by Zeng, Mao, and
Lin (2016). It is more time consuming, but it may provide more accurate results. full may not
be combined with reduced.

favoraccuracy, the default, and favorspeed control the tradeoff between accuracy of the results
and the execution speed. favoraccuracy specifies that the command run longer to obtain more
accurate results. favorspeed specifies that the command run faster at the possible expense of
reduced accuracy of the results. You can use favorspeed for a quick initial exploration of the
results and favoraccuracy for final reporting of the results.

When you specify favorspeed, stintcox uses less stringent convergence criteria to obtain the
results. Specifically, it assumes lower EM coefficient, likelihood, and VCE tolerances of 0.0001
and implies option noemhsgtolerance. In addition, it uses a fixed step size with a multiplier
of 5 instead of an adaptive step size when computing VCE. That is, specifying favorspeed is
equivalent to specifying emtolerance (0.0001), emltolerance(0.0001), noemhsgtolerance,
and vce(, tolerance(0.0001) stepsize(fixed)).

tvcovimpute (fype) is used with multiple-record-per-subject interval-censored data and relevant only
to variables included in the model whose values vary over time in the dataset. It specifies how
to impute unobserved covariate values between two examination times for time-varying covariates
in the dataset for each subject. type is one of nearleft, the default, nearright, nearest, or
first. tvcovimpute () may not be combined with the interval() option.

stintcox requires covariate values for each subject at all distinct analysis times, but the data
typically record covariates only at subject-specific examination times, and the covariate values at
other analysis times need to be imputed. stintcox offers the following imputation methods.

nearleft, the default, uses covariate values at the nearest examination time on the left to impute
covariate values at observation times that fall between two examination times for a given subject.
This method is often preferred in practice because it does not use future covariate values to fill
in the current values. This is also the method used with right-censored survival-time data.
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nearright uses covariate values at the nearest examination time on the right to impute covariate
values at analysis times that fall between two examination times for a given subject.

nearest uses covariate values at the nearest examination time, left or right, to impute covariate
values at analysis times that fall between two examination times for a given subject.

For all three imputation methods above, if a subject is not examined at baseline (time 0), then
the covariate value at the first examination time is used for all analysis times before the first
examination time for this subject. And the covariate value at the last examination time is used for
all observation times after the last examination time for a subject.

first replaces all covariate values for a subject with those at the first examination time, which is
the same as using the baseline covariate values for all time-varying variables during estimation.

See Methods and formulas for details.

statussysmissok is used with multiple-record-per-subject format. It specifies that, during estimation,
the observations that contain system missing values (.) in the event status variable specified in option
status () be retained. These observations will not be used to determine the event-time intervals and
censoring information for the corresponding subjects, but examination times and covariate values
in these observations will be used during estimation. Without this option, stintcox omits system
missing observations in status() from estimation, like any other missing value in any of the
specified variables. Observations that contain extended missing values (.a through .z) are always
omitted during estimation. Option statussysmissok is useful to create time-varying covariates
in a multiple-record-per-subject format; see Single- versus multiple-record interval-censored data
formats in Remarks and examples.

Time varying

tvc (varlisty) specifies the variables to be included in the model as an interaction with a function of
time to form time-varying covariates. During estimation, these variables are interacted with analysis
time or with a function of analysis time specified in the texp() option. This is a convenience
option to include time-varying covariates that are deterministic functions of time. Using this option
speeds up calculations and avoids having to split the data over many analysis times. tvc() in
conjunction with texp () is also useful for testing the proportional-hazards assumption; see Testing
the proportional-hazards assumption using option tvc() in Remarks and examples.

texp(exp) is used in conjunction with tvec(varlist;)) to specify the function of time that should
be used to multiply covariates specified in the tvc () option to include in the model time-varying
covariates that are deterministic functions of time. For example, specifying texp(1n(_t)) would
cause the covariates in option tvc() to be multiplied by the logarithm of analysis time. If
tve (varlist;) is used without texp (exp), Stata understands that you mean texp(_t) and thus
multiplies the covariates by the analysis time, denoted as —t here.

lrphtest is used in conjunction with tvc (varlisty). It performs the likelihood-ratio test between
the full model and the model without covariates interacted with time, that is, without specifying
option tvc (). By default, the Wald test of coefficients on time-varying covariates equal to zero
is reported when option tvc (varlisty) is specified.

Options tvc (varlist;), texp(exp), and lrphtest are explained more in Testing the proportional-
hazards assumption using option tvc() in Remarks and examples.
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SE/Robust

vce (veetype) specifies the type of standard error estimate reported. vce () may be specified at the
time of estimation or when replaying results. If specified when replaying results, vce ()-related
stored results are not updated unless the post suboption is specified. vcetype may be one of the
following:

vce(opg[ , vce_options]) uses the sum of the OPG vectors based on the profile log likelihood;
see Methods and formulas. vce (opg) is the default.

vce(oim[ , vce_options]) uses the sum of the OIM vectors based on the profile log likelihood;
see Methods and formulas.

vce(robust[ , vce_options]) uses the robust or sandwich estimator of variance based on the
profile log likelihood; see Methods and formulas.

vce(cluster clustvar [, vce_options]) specifies that the standard errors allow for intragroup
correlation, relaxing the usual requirement that the observations be independent. That is, the
observations are independent across groups (clusters) but not necessarily within groups. clustvar
specifies to which group each observation belongs. The clustered sandwich estimator of variance
is based on the profile log likelihood; see Methods and formulas.

vce_options may be stepsize (), derivopts with adaptive step size, iterate (#), tolerance (#),
dots, dots(), nodots, and post.

stepsize(adaptive|fixed [#] ) specifies the step size for computing numerical derivatives
with methods opg, oim, robust, or cluster. The default is stepsize (adaptive), which
uses adaptive step size in computations; see [M-5] deriv(). stepsize(fixed) uses a fixed
step size equal to §,, = 51~ /2, where n is the number of subjects or the number of clusters.
stepsize(fixed #) uses a fixed step size equal to # x n~1/2,

derivopts are allowed only with stepsize(adaptive) and may be search(), h(), scale(),
and bounds ().

search (search_type) specifies the approach used to search for an optimal step size
for computing the numerical derivatives; three approaches are offered: bracket,
interpolate, and off; see deriv_init_search() in [M-5] deriv(). The default
is search(interpolate). In some cases, such as when factor variables have highly
unbalanced levels, the search may lead to the step size that is too small or too large, which
may lead to the error message that the estimates of baseline hazard contributions cannot be
computed because the VCE matrix is close to being singular. Trying search(bracket)
may be helpful in this case.

h(# | matname) specifies the h values, which are multipliers for step size used to compute
numerical derivatives; see deriv_init_h() in [M-5] deriv(). You can specify the same
h value, #, for all parameters or parameter-specific i values as a Stata matrix (vector)
matname.

scale (#| matname) specifies the starting scale values used to compute numerical derivatives;
see deriv_init_scale() in [M-5] deriv(). You can specify the same initial scale value,
#, for all parameters or parameter-specific initial scale values as a Stata matrix (vector)
matname.

bounds (#; #2) specifies the minimum and maximum values used to search for optimal
scale values; see deriv_init_bounds () in [M-5] deriv(). The default is bounds (1e-6
le-5).

iterate(#) specifies the maximum number of iterations to compute the VCE based on the
profile log likelihood. The default is iterate(5000).
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tolerance (#) specifies the tolerance for the profile log likelihood used to compute the VCE.
The default is tolerance(1le-6).

dots, dots(#), and nodots display or suppress iteration dots showing the progress of the
variance estimation. The dots are displayed by default, but you can use nodots to suppress
them. By default, the dot is displayed every iteration, but you can change this by specifying
dots (#).

When a fixed step size is used, an iteration corresponds to one derivative computation
with respect to a regression coefficient. When an adaptive step size is used, an iteration
corresponds to one call of the Mata deriv() function, which may be called multiple times
to compute one derivative with respect to one regression coefficient. Thus, you will typically
see more iteration dots with VCE estimation using an adaptive step size than using a fixed
step size.

These options do not appear in the dialog box.

post can be used only on replay with vce (opg), vce(oim), vce(robust), or vce(cluster
clustvar) . It replaces the current e (V) with the specified vcetype. When vce (vcetype) is
used on replay without post, the coefficient table will display the standard error of the
specified vcetype, but e (V) will remain unchanged. This option does not appear in the dialog
box.

Reporting

level (#), lrmodel; see [R] Estimation options.

saving (ﬁlename[ , replace ]) saves the estimated baseline hazard contributions in filename .dta.
The replace option specifies to overwrite filename .dta if it exists. If option saving() is not
specified, stintcox saves estimation results in a temporary file for later access by postestimation
commands. This temporary file will be overridden every time stintcox is run and will also be
erased if the current estimation results are cleared. saving() may be specified during estimation
or on replay.

Because the file containing the baseline hazard contributions is considered to be part of estimation
results, you must use option saving() before storing or saving your estimation results using
estimates store or estimates save.

nohr specifies that regression coefficients be displayed rather than exponentiated regression coefficients
or hazard ratios. This option affects only how results are displayed and not how they are estimated.
nohr may be specified at estimation time or when replaying results.

noheader suppresses the output header, either at estimation or upon replay.

log and nolog display or suppress stintcox’s iteration log, which includes both the EM and
VCE iterations. The EM iteration log displays the log-likelihood value every 100 iterations (option
emlog). The VCE iteration log displays iterations as dots (option vcedots). log, the default,
implies emlog and vcedots. Use nolog to suppress both EM and VCE iteration logs, which is
equivalent to specifying noemlog and novcedots. If log or nolog is specified, any other options
that control an iteration log are ignored. log and nolog may not be combined with dots.

dots implies option emdots and vcedots to display both the EM and VCE iteration logs as dots. The
VCE iteration log is always displayed as dots. However, the EM iteration log, by default, displays
the log-likelihood value every 100 iterations (option emlog). To display the EM iterations as dots,
you can specify dots or emdots. If dots is specified, any other options that control an iteration
log are ignored. dots may not be combined with log and nolog.

vcedots, vcedots(#), and novcedots are synonyms for vce(, dots), vce(, dots(#)), and
vce(, nodots), respectively.
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emlog, emlog(#), and noemlog display or suppress an iteration log showing the progress of the EM
algorithm. The log is displayed by default, and noemlog suppresses it; see set iterlog in [R] set
iter. emlog, the default, displays the log-likelihood value every 100 iterations and is equivalent to
emlog(100). emlog(#) displays the log-likelihood value every #th iterations.

noemdots, emdots (#), and emdots control the display of the EM iteration log as dots. By default,
the EM iteration log displays the log-likelihood value every 100 iterations; that is, noemdots is
implied. Instead, you can specify emdots to display every 100 iterations as a dot or emdots (#)
to display every # iterations as a dot. This is a useful alternative for long EM iteration logs.

display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat (% fint), pformat (% fint),
sformat (% fmt), and nolstretch; see [R] Estimation options.

EM options

emiterate(#), emtolerance(#), emltolerance(#), emhsgtolerance(#), noemhsgtoler-
ance, and from(); see iterate(), tolerance(), ltolerance(), nrtolerance(), non-
rtolerance, and from() in [R] Maximize. These options control the EM optimization pro-
cess. The defaults are emiterate(5000), emtolerance(le-6), emltolerance(le-7), and
emhsgtolerance(le-5).

The following option is available with stintcox but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

Remarks and examples

Remarks are presented under the following headings:

Introduction

Single- versus multiple-record interval-censored data formats
Case II interval-censored data

Time-varying covariates

Standard error estimation with interval-censored data

Current status or case I interval-censored data

Testing the proportional-hazards assumption using option tvc()

Introduction

stintcox fits the Cox proportional hazards model to interval-censored survival-time data. In the
context of interval-censored data, the term “failure-time data” or “event-time data” is more appropriate,
so we will use it in that context.

Interval-censoring occurs when the failure time or the event time of interest is not exactly observed
but is known only to lie within some interval. See Introduction in [ST] stintreg for details about
interval-censored data. If you have right-censored data, see [ST] stcox. See [ST] stintreg for fitting
parametric models to interval-censored data.

The Cox proportional hazards model was first introduced by Cox (1972) for right-censored
survival data. For an introduction to interval-censored data, see Finkelstein and Wolfe (1985), Odell,
Anderson, and D’ Agostino (1992), Rabinowitz, Tsiatis, and Aragon (1995), Huang and Wellner (1997),
Lindsey (1998), Lindsey and Ryan (1998), Sun (2006), and Sun and Li (2014).

The Cox proportional hazards model specifies that the hazard function of the event time conditional
on a p-vector of baseline (time-invariant or time-independent) covariates x = (z1,..., ;) takes the
form
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h(t;x) = ho(t) exp(Bra1 + -+ + Bpap)

where 1, . . ., 5, are unknown regression coefficients and h () is an arbitrary baseline hazard function.
Under the proportional-hazards assumption, the hazard ratios, or exponentiated regression coefficients
exp(B1), ..., exp(fp), are constant over time. As with right-censored data, the Cox proportional

hazards model is appealing for interval-censored data because it does not require parameterization
of the baseline hazard function and, for low event rates, the exponentiated regression parameters
approximate the relative risks.

The partial-likelihood approach (Cox 1972, 1975) is used to estimate parameters of the Cox model
with right-censored data, in which some of the event times are observed exactly, while others are
known to be longer than the duration of follow-up. Under interval-censoring, however, none of the
event times are observed exactly. Thus, it is much more challenging to deal with interval-censored
data than right-censored data, both theoretically and computationally. In particular, the traditional
partial-likelihood approach is not applicable.

Several authors (Cai and Betensky 2003; Zhang, Hua, and Huang 2010; Wang et al. 2016) have
proposed spline methods to fit the Cox proportional hazards model to interval-censored data. Spline
methods have limitations, however. First, the choices for the type of spline and the number and positions
of knots are arbitrary, and different choices may yield conflicting results. Second, the analysis will be
biased if the event-time distribution is not well approximated by the chosen spline function. Finally,
the variance estimation is difficult given the data-dependent choices of spline functions (Zhang, Hua,
and Huang 2010).

Direct maximum-likelihood optimization for the Cox model with interval-censored data using, for
instance, the Newton—Raphson algorithm is highly unstable (Sun 2006; Finkelstein 1986).

Zeng, Mao, and Lin (2016) developed a novel EM algorithm for efficient nonparametric maximum-
likelihood estimation (NPMLE) of the Cox proportional hazards model with interval-censored data. It
allows a completely arbitrary event-time distribution and results in consistent, asymptotically normal,
and asymptotically efficient estimators of the regression parameters. And it reduces to the classical
maximum partial-likelihood estimation in the special case of right-censored data. For more details
about this method, see Methods and formulas.

Unlike with right-censored data, the estimation of regression coefficients must be performed jointly
with estimation of the baseline cumulative hazard function for interval-censored data. Stata provides
two ways to estimate the baseline cumulative hazard function. One is to use all distinct lower and
upper interval endpoints as time points for estimating the baseline cumulative hazard function. This
is available by specifying the full option.

For large datasets with many distinct time points, this approach may become time consuming.
An alternative is to estimate the baseline cumulative hazard at fewer time points. Turnbull (1976)
proposed a method for estimating the one-sample survivor function at a subset of time intervals,
known as Turnbull’s intervals, or innermost intervals, or regions of the maximal cliques. Thus, one
can allow the baseline cumulative hazard function to change its values only at the endpoints of those
time intervals and set baseline hazard contributions to zero for the other times. This is available via
the reduced option and, for computational reasons, is the default in stintcox.

As mentioned above, NPMLE is a computationally intensive approach, so stintcox may take
some time to run, especially for large datasets. The speed of the command depends on the desired
accuracy of the computations, among other things. The higher the accuracy, the more iterations are
needed to achieve that accuracy, and thus the longer the command runs. It is important to have
high accuracy for the final reporting of the results, but the speed may become an issue during the
exploratory stage of the project. Thus, you may consider using the favorspeed option to expedite
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the command execution. When you specify this option, stintcox uses less stringent convergence
criteria to produce the results more quickly; see the description of option favorspeed for details.

Unlike many st commands, stintcox requires that you specify event-time (“survival”) information
directly with the command instead of using stset. Typing stset is unnecessary, and stintcox
will ignore any settings of stset for the usual trivariate response variable (to,t,d). Event-time
information can be specified with stintcox in two different ways depending on the storage format of
the interval-censored event-time data. The two different storage formats are single-record-per-subject
format (or time-intervals format) and multiple-record-per-subject format (or examination-times format).
With single-record-per-subject data, you must specify two variables containing time intervals for each
subject in stintcox’s interval() option. With multiple-record-per-subject data, you must specify
subjects’ identifiers in option id (), examination times in option time (), and event-status indicators
at each examination time in option status(). See Single- versus multiple-record interval-censored
data formats for details.

stintcox supports time-varying (time-dependent) covariates. You can use option tvc() to more
easily include time-varying covariates that are formed by multiplying covariates specified in tvec ()
with a deterministic function of time specified in option texp(). In a multiple-record-per-subject
format, you can include more general time-varying covariates; see Single- versus multiple-record
interval-censored data formats and Time-varying covariates. In the presence of general time-varying
covariates, stintcox offers several methods for imputing the values of these covariates between the
examination times; see the description of option tvcovimpute () for details.

stintcox does not support data exhibiting delayed entry, gaps, and multiple failures.

Single- versus multiple-record interval-censored data formats

Interval-censored event-time data can be recorded in two different formats. In one format, the
event-time information is recorded as interval data, with one record per subject containing lower and
upper endpoints of the event-time interval. We call data stored in this format “single-record-per-subject
interval-censored event-time data” or “single-record interval-censored data” for short.

In the other format, the event-time information is recorded by a pair of an examination time and
an event status at that time. The dataset typically contains multiple records (multiple examination
times) for a subject. We call data stored in this format “multiple-record-per-subject interval-censored
event-time data” or “multiple-record interval-censored data”. This format is common for what is called
“case I interval-censored data or current status data” and is often used to accommodate time-varying
covariates.

stintcox supports both formats.

Single-record interval-censored data. Consider the following dataset:

id ltime rtime x1 x2 x3
101 0 6 17 22 0
102 4 9 12 22 1
103 13 . 13 22 0

Here variables 1time and rtime record the respective lower, ?;, and upper, ¢,,, endpoints of the event-
time interval for each subject. stintcox requires that we specify these variables in the interval ()
option:

. stintcox x1 x2 x3, interval(ltime rtime) ...
In this format, if the data are left-censored, the lower endpoint is zero and may be represented in ¢;

by either a missing value (.) or zero. If the data are right-censored, the upper endpoint is 00 and is
represented in £, by a missing value. Uncensored data are represented by the two endpoints that are
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equal. If 0 < ?; < t,, < 00, the data are interval-censored. Truly missing values must be represented
by missing values in both ¢; and ¢,, or by a 0 in ¢; and a missing value in ¢,,. Uncensored observations,
with ¢; = t,,, are not allowed in the presence of left-censored or interval-censored observations.

In our example, subject 101 is left-censored, subject 102 is interval-censored, and subject 103 is
right-censored.

This format is convenient for storing data containing interval-censored observations and covariates
that are constant over time.

Multiple-record interval-censored data. We can provide the same event-time information as in
the previous dataset in the following format:

id time status x1 x2 x3
101 6 1 17 22 0
102 4 0 12 22 1
102 9 1 12 22 1
103 13 0 13 22 0

Here variable time records examination times, and variable status records the event status indicator for
each examination time. And subjects may have multiple examination times. In this format, stintcox
requires that we specify the subject identifier (id) in option id (), examination time (time) in option
time (), and the event status indicator (status) in option status().

. stintcox x1 x2 x3, id(id) time(time) status(status) ...

Examination times and event status at each examination time can be used to determine the censoring
type and the event-time interval for each subject. In our example, subject 101 has only one examination
time, 6, and the event has already occurred by that time. Subject 101 is thus left-censored with the time
interval (t;,t,] = (0,6]. Subject 102 has two examination times, 4 and 9, and the event occurred by
time 9. Subject 102 is interval-censored with the time interval (4,9]. Subject 103 has one examination
at time 13, and the event has not occurred by that time. This subject is right-censored with the time
interval (13, 400). Uncensored observations are not allowed in this format.

In this format, we can easily record time-varying covariates. For instance, suppose that subject 102
had an additional examination at time 6 with a status of 0 and the value for covariate x3 was recorded
to be 0. x3 is no longer constant within subject 102 but varies discretely with time. (The event-time
interval for this subject also changed to (6,9]! More about this below.) We can accommodate varying
x3 by adding an extra record for subject 102 at time 6:

id time status x1 x2 x3
101 6 1 17 22 0
102 4 0 12 22 1
102 6 0 12 22 0
102 9 1 12 22 1
103 13 0 13 22 0

Potential caveat when creating time-varying covariates with interval-censored data. In the
above, when we added an extra record for subject 102 at time 6 with status equal 0, we modified
the actual event-time interval for this subject from the original (4, 9] to (6,9]. This is not a problem
if this new record we added corresponds to the actual examination time for this subject. Sometimes,
however, we may need to add extra records to specify varying covariate values at intermediate times
without changing the event-time information for subjects. This is useful, for instance, when we create
more complicated functions of time and covariates to assess the proportional-hazards assumption.

Returning to our previous example, how can we incorporate the varying values of covariate x3
without changing the event-time interval for subject 102? We can replace the zero status with a system
missing value (.) in the new observation and use the statussysmissok option with stintcox to
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specify that this observation should be included in the estimation but should not be used to determine
the subject’s event-time interval and censoring information:

id time status x1 x2 x3
101 6 1 17 22 0
102 4 0 12 22 1
102 6 . 12 22 0
102 9 1 12 22 1
103 13 0 13 22 0

and

. stintcox x1 x2 x3, id(id) time(time) status(status) statussysmissok ...

Without the statussysmissok option, the record with a system missing status value would have
been omitted from the analysis entirely, like any missing value in any of the specified variables.
If you need to omit any values in the status() variable from your analysis in the presence of
statussysmissok, you should record them as extended system missing values (.a through .z).

For an example of fitting stintcox to multiple-record interval-censored data, see Time-varying
covariates. The multiple-record-per-subject format is also convenient for fitting current status data;
see Current status or case I interval-censored data.

Case Il interval-censored data

Case II interval-censored data arise when there are potentially two or more examination times
for each study subject. With baseline covariates, case II interval-censored data are typically recorded
in a single-record-per-subject format. In the presence of time-varying covariates in the dataset, a
multiple-record-per-subject format is used; see Time-varying covariates.

In a single-record-per-subject format, the interval that brackets the event time of interest, the
event-time interval, is recorded for each subject. The event of interest may occur before the first
examination time, resulting in a left-censored observation; after the last examination time, resulting in
a right-censored observation; or between two examination times, resulting in a truly interval-censored
observation.

> Example 1: Single-record-per-subject case Il interval-censored data

Zeng, Mao, and Lin (2016) considered a cohort study of injecting drug users in Thailand.
Subjects were initially seronegative for the HIV-1 virus. They were followed and assessed for HIV-1
seropositivity through blood tests approximately every four months. The event of interest was time
to HIV-1 seropositivity. Because the subjects were tested approximately every four months, the exact
time of HIV-1 seropositivity was not observed but was known to fall only in the interval between
blood tests.

The data used in this example are the data provided in supplementary materials of Zeng, Mao,
and Lin (2016), which are based on the study described above. The dataset contains 1,124 subjects:
76 are females and 1,048 are males. We wish to identify the factors that influence HIV-1 infection.
The covariates that we are interested in are age at recruitment (age), sex (male), history of needle
sharing (needle), history of drug injection before recruitment (inject), and whether a subject has
been in jail at the time of recruitment (jail). The dataset also contains two variables, 1time and
rtime, that record, respectively, the last time of blood test when the HIV-1 was seronegative and the
first time of blood test when the HIV-1 was seropositive.
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. use https://www.stata-press.com/data/r18/idu
(Modified Bangkok IDU Preparatory Study)

. describe

Contains data from https://www.stata-press.com/data/r18/idu.dta

Observations: 1,124 Modified Bangkok IDU Preparatory
Study
Variables: 8 15 Dec 2022 13:34
(_dta has notes)

Variable Storage Display Value

name type format label Variable label
age byte %8.0g Age (in years)
male byte %8.0g yesno Male
needle byte %8.0g yesno Shared needles
jail byte %8.0g yesno Imprisoned at recruitment
inject byte %8.0g yesno Injected drugs before recruitment
ltime double %10.0g Last time seronegative for HIV-1
rtime double %10.0g First time seropositive for HIV-1
age_mean double %10.0g Centered age (in years)
Sorted by:

We want to use stintcox to fit the Cox proportional hazards model in which the time to
HIV-1 infection depends on age, male, needle, inject, and jail. To make the interpretation of
the baseline hazard function more meaningful, we will use the centered age variable, age_mean.
(Remember that a baseline hazard function corresponds to all covariates equal to zero, and age of
zero would not make sense for our sample of subjects. See Making baseline reasonable in [ST] stcox
postestimation for more details.)

Unlike stcox’s specification, in which the survival variables are set using stset and do not
appear in the command, for single-record-per-subject, the interval time variables 1time and rtime
must be specified in the stintcox’s option interval (). Also, recall that the command implements
an NPMLE method, which is computationally intensive, so it may take a little longer to run on our
dataset of 1,124 observations:
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. stintcox age_mean i.male i.needle i.inject i.jail, interval(ltime rtime)
note: using adaptive step size to compute derivatives.

Performing EM optimization (showing every 100 iteratioms):
Iteration O: Log likelihood = -1086.2564
Iteration 100: Log likelihood = -597.65634
Iteration 200: Log likelihood = -597.57555
Iteration 295: Log likelihood = -597.56443

Computing standard errors: .............. ...t done
Interval-censored Cox regression Number of obs = 1,124
Baseline hazard: Reduced intervals Uncensored = 0
Left-censored = 41
Event-time interval: Right-censored = 991
Lower endpoint: ltime Interval-cens. = 92
Upper endpoint: rtime
Wald chi2(5) = 17.10
Log likelihood = -597.56443 Prob > chi2 = 0.0043
OPG
Haz. ratio std. err. z P>zl [95% conf. intervall]
age_mean .9684341 .0126552 -2.45 0.014 .9439452 .9935582
male
Yes .6846949 .1855907 -1.40 0.162 .4025073 1.164717
needle
Yes 1.275912 .2279038 1.36 0.173 .8990401 1.810768
inject
Yes 1.250154 .2414221 1.16 0.248 .85662184 1.825334
jail
Yes 1.567244 .3473972 2.03 0.043 1.014982 2.419998

Note: Standard error estimates may be more variable for small datasets and
datasets with low proportions of interval-censored observations.

The header above the coefficient table summarizes censored observations. Because this is a single-
record-per-subject dataset, the number of observations equals the number of subjects. There are 991
subjects who did not test positive for HIV-1 by the last visit, resulting in right-censored observations.
There are 41 subjects who tested positive for HIV-1 at their first follow-up, resulting in left-censored
observations. The remaining 92 subjects are interval-censored.

As seen in the table, age is associated with lower risk of HIV-1 infection, and being in jail at
enrollment is associated with higher risk of HIV-1 infection. Being a female, needle sharing, and
history of drug injection are associated with the higher risk of HIV-1 infection, although we do not
have strong evidence that the hazard ratios for these variables are different from 1.

The command displays a note following the command that an adaptive step size is used to compute
derivatives during VCE computation. The command also displays a note following the output table
about potential variability of the standard error estimates. We address all of this in more detail in
Standard error estimation with interval-censored data.

stintcox uses the EM algorithm to estimate parameters. EM algorithms are known to require
many iterations. Thus, by default, stintcox displays log-likelihood values every 100 iterations. You
can change how often to display the iteration log by specifying the emlog(#) option. For example,
emlog(1) will display every iteration. You can also use the noemlog option to suppress the iteration
log.
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Similarly, the progress of the VCE computation is displayed with a dot for each iteration. With
more regression coefficients and with larger datasets, you may see many more dots. In this case, you
may consider displaying a dot every # iterations by specifying vcedots (#). To suppress the dots,
use novcedots.

d

> Example 2: Speed versus accuracy

By default, stintcox uses Stata’s standard convergence rules for estimation of parameters. For
instance, the parameter tolerance of le—6 is used as a stopping rule, and the Hessian scale-gradient
tolerance of le-5 is used to check for convergence. More stringent criteria typically require more
iterations and thus lead to longer execution times.

Although high accuracy of the results is important for final reporting, it may be reasonable to
consider less stringent criteria during exploratory analysis in favor of speed. stintcox provides the
favorspeed option for this.

. stintcox age_mean i.male i.needle i.inject i.jail, interval(ltime rtime)
> favorspeed

note: using fixed step size with a multiplier of 5 to compute derivatives.
note: using EM and VCE tolerances of 0.0001.

note: option noemhsgtolerance assumed.

Performing EM optimization (showing every 100 iterations):
Iteration O: Log likelihood = -1086.2564
Iteration 32: Log likelihood = -598.60293

Computing standard errors: ........... done
Interval-censored Cox regression Number of obs = 1,124
Baseline hazard: Reduced intervals Uncensored = 0
Left-censored = 41
Event-time interval: Right-censored = 991
Lower endpoint: ltime Interval-cens. = 92
Upper endpoint: rtime
Wald chi2(5) = 16.95
Log likelihood = -598.60293 Prob > chi2 = 0.0046
OPG

Haz. ratio std. err. z P>|z| [95% conf. intervall
age_mean .9684228 .0126481 -2.46 0.014 .9439476 .9936326

male
Yes .6853044 .1873617 -1.38 0.167 .4010197 1.17112

needle
Yes 1.275045 .2272609 1.36 0.173 .899103 1.80818

inject
Yes 1.251637 .2414583 1.16 0.245 .8575707 1.826784

jail
Yes 1.566873 . 3479667 2.02 0.043 1.013914 2.421398

Note: Standard error estimates may be more variable for small datasets and
datasets with low proportions of interval-censored observations.

The above takes only a few seconds to run. And the results happen to be very similar to the results
from the previous two examples.
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Following the command specification, we now see additional notes about the updated convergence
criteria. The EM and VCE tolerances are now 0.0001 compared with the defaults of 1e—6. The tolerance
check for the Hessian scaled gradient is suppressed. And a fixed step size with the multiplier of 5 is
used to compute derivatives during the VCE computation.

d

> Example 3: Full versus reduced sets of time intervals

By default, stintcox uses a reduced set of intervals (option reduced) to estimate the baseline
hazard function. You can specify the full option to estimate the baseline hazard using all time intervals.
This approach may be much more time consuming, especially for large datasets. For demonstration
purposes, we will also use the favorspeed option from example 2 to speed up execution.

. stintcox age_mean i.male i.needle i.inject i.jail, interval(ltime rtime) full
> favorspeed

note: using fixed step size with a multiplier of 5 to compute derivatives.
note: using EM and VCE tolerances of 0.0001.

note: option noemhsgtolerance assumed.

Performing EM optimization (showing every 100 iterations):
Iteration 0: Log likelihood = -951.11659
Iteration 42: Log likelihood = -599.05659

Computing standard errors: ........... done
Interval-censored Cox regression Number of obs = 1,124
Baseline hazard: All intervals Uncensored = 0
Left-censored = 41
Event-time interval: Right-censored = 991
Lower endpoint: ltime Interval-cens. = 92
Upper endpoint: rtime
Wald chi2(5) = 16.94
Log likelihood = -599.05659 Prob > chi2 = 0.0046
OPG

Haz. ratio std. err. z P>|z| [95% conf. intervall
age_mean .9685754 .0126454 -2.45 0.014 .9441053 .9936797

male
Yes .6845339 .1871941 -1.39 0.166 .4005194 1.169947

needle
Yes 1.276357 .2276023 1.37  0.171 .8998792 1.810339

inject
Yes 1.252501 .2416295 1.17  0.243 .8581566 1.828058

jail
Yes 1.566614 .3479196 2.02 0.043 1.013734 2.42103

Note: Standard error estimates may be more variable for small datasets and
datasets with low proportions of interval-censored observations.

The results are very similar between the two ways of estimating the baseline hazard in this example.
And EM optimization iterations change from 32 to 42 when the full option is specified.

N
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Time-varying covariates

There are two ways to incorporate time-varying covariates with stintcox. If a time-varying
covariate can be represented as an interaction between a baseline covariate and a deterministic
function of time, you can use the tvc () and texp() options to include such a covariate in the model.
You can do this with either single-record or multiple-record interval-censored data. When you specify
tve (), stintcox provides a more memory-efficient computation and automatically incorporates the
specified function of time in various calculations during estimation and postestimation.

But you may already have data in which some variables vary with time. These data will have
multiple examination times for some subjects. You can use stintcox’s multiple-record-per-subject
syntax to analyze data with existing time-varying covariates. And you can still use the tvc () option
to additionally include time-varying covariates that are deterministic functions of time by specifying
baseline or existing time-varying variables in that option.

> Example 4: Multiple-record-per-subject case |l interval-censored data

The dataset used in this example is an extended version of the dataset described in example 1;
it has the imprisonment indicator (jail_vary) that varies with time. The data are recorded in
the multiple-record-per-subject format, where each observation records a subject identifier (id), the
examination time of the blood test (time), whether the blood test changes to positive for HIV-1 since
last examination time (is_seropos), and whether the subject has been imprisoned since the last
clinic visit (jail_vary), which is a time-varying covariate. Each observation also records baseline
(time-invariant) factors, such as centered age at recruitment (age_mean) and sex (male), as described
in example 1.

Here is a subset of the dataset:
. use https://www.stata-press.com/data/r18/idu2
(Modified Bangkok IDU Preparatory Study with time-varying variable jail_vary)
. format time age_mean %6.2f

. list id time is_seropos age_mean male needle inject jail_vary
> if id >= 271 & id <= 274, sepby(id) noobs compress abbreviate(10)

id time  is_seropos age_mean male needle inject jail_vary
271 4.89 No -6.46 Yes Yes No No
271 9.31 No -6.46 Yes Yes No No
271 13.38 No -6.46 Yes Yes No Yes
271 17.97 No -6.46 Yes Yes No Yes
271 22.00 No -6.46 Yes Yes No No
272 3.80 No 8.54 No No No Yes
272 9.41 Yes 8.54 No No No No
273 3.93 No -11.46 Yes Yes No No
273 8.00 No -11.46 Yes Yes No No
273 12.07 No -11.46 Yes Yes No Yes
273 15.97 No -11.46 Yes Yes No Yes
273 20.66 No -11.46 Yes Yes No Yes
274 3.87 Yes -4.46 Yes Yes Yes Yes

There are subjects with multiple records. The examination time and event status is_seropos define
subjects’ event-time intervals and censoring types. For example, subject 271 never tested positive
for HIV-1 through all his examinations. He is right-censored with an event-time interval (22, +00).
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Subject 272 tested negative at her first clinic visit but then tested positive at her second clinic visit.
She is interval-censored with an event-time interval (3.80,9.41]. Like subject 271, subject 273 is
right-censored with an event-time interval (20.66, +o0c]. Finally, subject 274 tested positive at his first
clinic visit, so he is left-censored with an event-time interval (0, 3.87].

We use stintcox to fit a Cox proportional hazards model in which the time to HIV-1 infection
depends on baseline covariates age_mean, male, needle, inject, and time-varying covariate
jail_vary. In a multiple-record-per-subject format, we must specify options id(), time(), and
status() with stintcox.

. stintcox age_mean i.male i.needle i.inject i.jail_vary, id(id) time(time)

> status(is_seropos)

note: time-varying covariates detected in the data; using method nearleft to
impute their values between examination times.

note: using adaptive step size to compute derivatives.

Performing EM optimization (showing every 100 iterations):
Iteration O: Log likelihood = -1086.2564
Iteration 100: Log likelihood = -598.45375
Iteration 200: Log likelihood = -598.35872
Iteration 285: Log likelihood = -598.34887

Computing standard errors: ............ouitiiuiinitinneennennennnenns done
Interval-censored Cox regression Number of obs = 6,453
Baseline hazard: Reduced intervals Number of subjects = 1,124
Uncensored = 0
ID variable: id Left-censored = 41
Examination time: time Right-censored = 991
Status indicator: is_seropos Interval-cens. = 92
Wald chi2(5) = 17.03
Log likelihood = -598.34887 Prob > chi2 = 0.0044
OPG
time | Haz. ratio std. err. z P>|z| [95% conf. intervall
age_mean .9714605 .012757 -2.20 0.027 .9467762 .9967884
male
Yes .6678044 .1816576 -1.48 0.138 .3918353 1.138138
needle
Yes 1.271409 .2275426 1.34 0.180 .8952546 1.805609
inject
Yes 1.370672 .2575405 1.68 0.093 .9484142 1.980928
jail_vary
Yes 1.440966 .2916178 1.81  0.071 .9691488 2.142481

Time varying: jail_vary
Note: Standard error estimates may be more variable for small datasets and
datasets with low proportions of interval-censored observations.

There are 6,453 observations on 1,124 subjects, but the censoring information (as expected) is the
same as in example 1. stintcox identified one time-varying covariate in this dataset—jail_vary.

Compared with example 1, after we account for time-varying imprisonment, the hazard ratio for
drug injection inject increases from 1.25 to 1.37, but the effect of imprisonment decreases from
1.57 for baseline jail to 1.44 for time-varying jail_vary.

N
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Standard error estimation with interval-censored data

With interval-censored data, the NPMLE approach estimates regression coefficients jointly with the
contributions to the baseline cumulative hazard function, which is infinite dimensional. The inverse
of the entire information matrix for all the parameters, which is typically used to estimate standard
errors, does not provide a valid estimator of the variance—covariance matrix in this case.

Murphy and van der Vaart (2000) and Zeng, Mao, and Lin (2016) propose to estimate the VCE
for regression coefficients using the profile log likelihood, which is obtained by maximizing the
likelihood by holding the regression coefficients fixed. Four different methods based on this profile
log likelihood are offered to calculate the VCE for regression coefficients. The vce (opg) method, the
default, uses the first-order numerical derivatives, whereas the vce (oim) method uses the second-order
numerical derivatives. When there are sufficient data to estimate the second-order derivatives reliably,
the OIM method will generally provide more accurate results. With small samples, however, Zeng,
Gao, and Lin (2017) found that the OIM method may lead to a negative definite matrix of second-order
derivatives, which is not invertible. In addition, vce (robust) provides a VCE that is robust to some
types of misspecification, and vce (cluster clustvar) provides a VCE that allows for observations
to be correlated within groups defined by clustvar.

For some datasets, the choice of the step size used to compute numerical derivatives may also
affect the estimates. By default, stintcox uses an adaptive step size, stepsize (adaptive), which
is calculated from the data and updated during the computation of numerical derivatives. Zeng, Mao,
and Lin (2016) and Zeng, Gao, and Lin (2017) found a fixed ad hoc step size of §,, = 50712 o
work well in the examples they considered. You can specify the stepsize(fixed) option to use
that step size. And you can also provide your own multiplier instead of the above 5 by specifying
stepsize(fixed #).

When an adaptive step size is used, stintcox searches for an optimal step size to use to compute
the numerical derivatives. In some cases, such as in the presence of covariates of different magnitudes,
the search may lead to step sizes that are too large or too small such that the VCE matrix becomes
close to being singular. In that case, you may consider trying a different search method, for example,
vce(, search(bracket)), or using a fixed step size, vce(, stepsize(fixed)).

For small datasets or datasets with low proportions of interval-censored observations, the standard
error estimates may be more variable between different estimation methods. In that case, you may
want to compare several VCE estimation methods. stintcox provides the OPG, OIM, robust, and
cluster—robust methods on replay so that you do not need to rerun the estimation command.

> Example 5: Variance estimation

Continuing with example 1, we note that the dataset contains only 92 interval-censored observations
out of a total of 1,124 observations. Let’s compare the OPG and OIM methods using both an adaptive
and a fixed step size.

Let’s refit our model using the default settings and save the estimation results for later comparisons.

. stintcox age_mean i.male i.needle i.inject i.jail, interval(ltime rtime)
(output omitted )

To save estimation results after stintcox, we must save the estimated baseline hazard contributions
in a dataset before using estimates store because they are an integral part of the estimation results.
This can be done after estimation, on replay, or we could have specified the saving() option during
estimation above.

. stintcox, saving(basehc, replace)
note: file basehc.dta not found; file saved.

. estimates store opg_adapt
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We do not need to refit the model to compute OPG and OIM VCEs. To compute OIM estimates
using an adaptive step size, we simply type

. stintcox, vce(oim, post)
note: using adaptive step size to compute derivatives.

Computing standard errors: ....... ...ttt i i e done
Interval-censored Cox regression Number of obs = 1,124
Baseline hazard: Reduced intervals Uncensored = 0
Left-censored = 41
Event-time interval: Right-censored = 991
Lower endpoint: ltime Interval-cens. = 92
Upper endpoint: rtime
Wald chi2(5) = 17.10
Log likelihood = -597.56443 Prob > chi2 = 0.0043
0IM
Haz. ratio std. err. z P>|z| [95% conf. intervall
age_mean .9684341 .0142537 -2.18 0.029 .9408965 .9967776
male
Yes .6846949 .2175931 -1.19 0.233 .3672728 1.276455
needle
Yes 1.275912 .2688546 1.16 0.248 .8442274 1.928334
inject
Yes 1.250154 .3363611 0.83 0.407 .7378069 2.118284
jail
Yes 1.567244 .4679699 1.50 0.132 .8729166 2.813847

Note: Standard error estimates may be more variable for small datasets and
datasets with low proportions of interval-censored observations.

. estimates store oim_adapt
We also specified the post suboption with vce (oim) to store the oim estimates in e (V) and stored
the updated estimation results.
We repeat the same steps using a fixed step size for oim,

. stintcox, vce(oim, stepsize(fixed) post)
(output omitted )

. estimates store oim_fixed

and for opg,

. stintcox, vce(opg, stepsize(fixed) post)
(output omitted )

. estimates store opg_fixed
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We compare the results using estimates table:

. estimates table opg* oimx*, b(%9.4f) se(%9.4f) t p

Variable opg_adapt opg_fixed oim_adapt oim_fixed
age_mean -0.0321 -0.0321 -0.0321 -0.0321
0.0131 0.0131 0.0147 0.0120
-2.45 -2.46 -2.18 -2.67
0.0141 0.0141 0.0293 0.0077

male
Yes -0.3788 -0.3788 -0.3788 -0.3788
0.2711 0.2736 0.3178 0.2994
-1.40 -1.38 -1.19 -1.27
0.1623 0.1662 0.2333 0.2058

needle
Yes 0.2437 0.2437 0.2437 0.2437
0.1786 0.1784 0.2107 0.1824
1.36 1.37 1.16 1.34
0.1725 0.1719 0.2475 0.1817

inject
Yes 0.2233 0.2233 0.2233 0.2233
0.1931 0.1933 0.2691 0.1961
1.16 1.16 0.83 1.14
0.2476 0.2480 0.4066 0.2548

jail
Yes 0.4493 0.4493 0.4493 0.4493
0.2217 0.2221 0.2986 0.2379
2.03 2.02 1.50 1.89
0.0427 0.0431 0.1324 0.0589

Legend: b/se/t/p

As expected, the regression coefficient estimates are the same for all VCE methods. The standard
error estimates are fairly similar across all methods but a little more variable for oim_adapt. This is
not surprising because the OIM method is based on the second-order derivatives, which are estimated
numerically and thus require higher tolerances to produce more accurate estimates. For instance, we
can specify a slightly lower tolerance (le—7 instead of the default 1e—6) for the oim method using
an adaptive step size:
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. stintcox, vce(oim, tolerance(le-7)) nohr
note: using adaptive step size to compute derivatives.

Computing standard errorS: . .......iiiint ittt eeienneenneaeeaneennan

> .. done
Interval-censored Cox regression Number of obs = 1,124
Baseline hazard: Reduced intervals Uncensored = 0
Left-censored = 41
Event-time interval: Right-censored = 991
Lower endpoint: ltime Interval-cens. = 92
Upper endpoint: rtime
Wald chi2(5) = 17.10
Log likelihood = -597.56443 Prob > chi2 = 0.0043
0IM
Coefficient std. err. z P>|z| [95% conf. intervall
age_mean -.0320749 .012257 -2.62 0.009 -.0560982 -.0080516
male
Yes -.378782 .288278 -1.31 0.189 -.9437965 .1862326
needle
Yes .2436616 .1848383 1.32 0.187 -.1186149 .6059381
inject
Yes .2232666 .1981754 1.13 0.260 -.1651501 .6116832
jail
Yes .4493186 .2299995 1.95 0.051 -.0014721 .9001094

Note: Standard error estimates may be more variable for small datasets and
datasets with low proportions of interval-censored observations.

The standard errors are now closer to those of the other methods.

Current status or case | interval-censored data

Current status data or case I interval-censored data arise when each study subject is examined only
once, such that the event of interest is known to occur before or after the examination time, resulting
in a left- or right-censored observation. These data can be viewed as a special case of interval-
censored data without truly interval-censored observations. Current status data can be recorded in
either single-record-per-subject format or multiple-record-per-subject format, but the latter is more
common.

> Example 6: Case | interval-censoring

Sun (2006) investigated a dataset about calcification of the hydrogel intraocular lenses (IOL), a
rarely reported complication of cataract treatment. The dataset contains 379 patients who had IOL
implantation and were examined by an ophthalmologist. The status variable indicates the degree of
severity of IOL calcification: 0 means no or little calcification, and 1 means mild or serious calcification.
The study contains 237 females and 142 males. We want to test whether the IOL calcification is
different between males and females.

Current status data usually contain two variables: one that records the examination time (time)
and one that records the status of the event of interest (status). So we can analyze these data using
the multiple-record-per-subject format, even though each subject has only one observation.



stintcox — Cox proportional hazards model for interval-censored survival-time data 261

Alternatively, we can create two interval time variables based on examination times and event
statuses and analyze the data using the single-record-per-subject format. We already have the respective
interval variables, 1time and rtime, in our dataset, but see example 3 of [ST] stintreg on how to
generate these variables.

In the following, we will demonstrate how to analyze current status data using both formats.

Let us fit a Cox proportional hazards model on gender using the multiple-record-per-subject
format first:
. use https://www.stata-press.com/data/r18/iol
(Hydrogel Intraocular Lenses (IOL) Study)

. stintcox i.gender, id(id) time(time) status(status) nohr
note: using adaptive step size to compute derivatives.

Performing EM optimization (showing every 100 iterations):

Iteration O: Log likelihood = -191.3847
Iteration 100: Log likelihood = -137.70653
Iteration 200: Log likelihood = -137.65739
Iteration 300: Log likelihood = -137.64799
Iteration 400: Log likelihood = -137.64509
Iteration 425: Log likelihood = -137.64472
Computing standard errors: ........... done
Interval-censored Cox regression Number of obs = 379
Baseline hazard: Reduced intervals Number of subjects = 379
Uncensored = 0
ID variable: id Left-censored = 48
Examination time: time Right-censored = 331
Status indicator: status Interval-cens. = 0
Wald chi2(1) = 0.52
Log likelihood = -137.64472 Prob > chi2 = 0.4719
OPG
time | Coefficient std. err. z P>|z| [95% conf. intervall
gender
Male -.2242553 .3117387 -0.72  0.472 -.835252 .3867415
Note: Standard error estimates may be more variable for small datasets and
datasets with low proportions of interval-censored observations.

We specified the nohr option to report the regression coefficient estimates instead of the hazard ratios
for the independent variables to more easily compare results from the literature.

The above table reports E = —0.2243 and its estimated standard error of 0.312. This yields a
test of 5 = 0 with a p-value of 0.47, which suggests that there is no difference between males and
females in terms of the time to IOL calcification.

Sun (2006) reports B\ = —0.2241 with its standard error of 0.295, which are obtained by direct
maximum-likelihood optimization. Our EM-based estimates are comparable.

Let’s fit the same model but now use the single-record-per-subject format, where we specify the
event-time intervals 1time and rtime in the interval() option:
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. stintcox i.gender, interval(ltime rtime) nohr
note: using adaptive step size to compute derivatives.

Performing EM optimization (showing every 100 iterations):

Iteration O: Log likelihood = -191.3847
Iteration 100: Log likelihood = -137.70653
Iteration 200: Log likelihood = -137.65739
Iteration 300: Log likelihood = -137.64799
Iteration 400: Log likelihood = -137.64509
Iteration 425: Log likelihood = -137.64472
Computing standard errors: ........... done
Interval-censored Cox regression Number of obs = 379
Baseline hazard: Reduced intervals Uncensored = 0
Left-censored = 48
Event-time interval: Right-censored = 331
Lower endpoint: ltime Interval-cens. = 0
Upper endpoint: rtime
Wald chi2(1) = 0.52
Log likelihood = -137.64472 Prob > chi2 = 0.4719
0PG
Coefficient std. err. z P>|z| [95% conf. intervall
gender
Male -.2242553 .3117387 -0.72  0.472 -.835252 .3867415
Note: Standard error estimates may be more variable for small datasets and

datasets with low proportions of interval-censored observations.

We obtained the same results in the multiple-record-per-subject format.

Testing the proportional-hazards assumption using option tvc()

One way of testing the proportional-hazards assumption for a covariate is to test whether the
coefficient associated with that covariate is time invariant. This can be accomplished by including
an interaction between that covariate and a function of time in the model and testing whether the
corresponding coefficient equals zero. For instance, consider a model with one baseline covariate x;.
We wish to include an interaction between the covariate and a function of time g(¢):

h(t) = ho(t) exp{ 121 + g(t)n121}
Rearranging terms results in

h(t) = ho(t) exp [{B1 + 119(t)} x1]

Given this new arrangement, we consider that 31 + y1g(t) is a (possibly) time-varying coefficient
on the covariate x; for some specified function of time g(¢). The coefficient has a time-invariant
component, 31, with ; determining the magnitude of the time-varying deviations from (3;. Thus, a
test of y; = 0 is a test of time invariance for the coefficient on x;. Proportional hazards imply that
the relative hazard is fixed over time, and this assumption would be violated if a time interaction
proved significant.

The above can be easily accomplished by using the tvc() option with stintcox, where you
specify the covariates suspected to violate the proportional-hazards assumption. By default, g(t) =t
is used, but you can use the texp() option to specify other functions of time.
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> Example 7: Testing the proportional-hazards assumption

Continuing with example 1, we now include time interaction terms for all covariates to test the
proportional-hazards assumption for individual covariates and globally:

. stintcox age_mean i.male i.needle i.inject i.jail, interval(ltime rtime)
> tvc(age_mean i.male i.needle i.inject i.jail) nohr
note: using adaptive step size to compute derivatives.

Performing EM optimization (showing every 100 iterations):
Iteration O: Log likelihood = -1086.2564
Iteration 100: Log likelihood = -590.53655
Iteration 200: Log likelihood = -590.45163
Iteration 300: Log likelihood = -590.43665
Iteration 340: Log likelihood = -590.43386

Computing standard errors: ...........iiiiniiittiiiiiii it done
Interval-censored Cox regression Number of obs = 1,124
Baseline hazard: Reduced intervals Uncensored = 0
Left-censored = 41
Event-time interval: Right-censored = 991
Lower endpoint: ltime Interval-cens. = 92

Upper endpoint: rtime

Wald chi2(10) = 31.99
Log likelihood = -590.43386 Prob > chi2 = 0.0004
OPG
Coefficient std. err. z P>zl [95% conf. intervall]
main
age_mean -.0310177 .0233817 -1.33 0.185 -.076845 .0148097
male
Yes -1.271583 .4604788 -2.76 0.006 -2.174105 -.3690615
needle
Yes -.1819587 .3297493 -0.55 0.581 -.8282554 .464338
inject
Yes .6852961 .3431924 2.00 0.046 .0126513 1.357941
jail
Yes -.529615 .4021087 -1.32 0.188 -1.317734 .2585036
tve
age_mean -.000129 .0017099 -0.08 0.940 -.0034804 .0032224
male
Yes .0884102 .042994 2.06 0.040 .0041434 . 1726769
needle
Yes .0358545 .0238562 1.50 0.133 -.0109027 .0826118
inject
Yes -.0361192 .0228754 -1.58 0.114 -.0809541 .0087157
jail
Yes .0916036 .0348915 2.63 0.009 .0232176 .1599896

Notes: Standard error estimates may be more variable for small datasets and
datasets with low proportions of interval-censored observations.
Variables in tvec equation interacted with _t.

Wald test that [tve] = 0: chi2(5) = 13.3282 Prob > chi2 = 0.0205
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The first equation, main, reports the coefficients for the covariates that do not vary over time; the
second equation, tvc, reports the results for covariates interacted with time. We used the default
function of time, g(t) = t, although we could have specified other functions with the texp() option.

Without the nohr option, the table would present results as hazard ratios for the two equations;
exponentiated coefficients can be interpreted as hazard ratios when we are actually modeling time-
varying covariates. However, in this case, we are using the tvc () option to incorporate time-varying
coefficients; in our model, the coefficient for covariate k is expressed as by + v X t, where by
corresponds to the parameter in the main equation and < corresponds to the parameter in the tvc
equation. The proportional-hazards assumption does not hold unless 7y = 0.

There is little evidence to dispute the proportionality of hazards for the covariates age_mean,
needle, and inject with respect to this specific form of misspecification. But the proportional-hazards
assumption appears to be violated for covariates male and jail.

At the bottom of the table, stintcox displays results for a Wald test for the global proportional-
hazards assumption (that is, the null hypothesis is that all the coefficients in the tvc equation are
equal to zero). Alternatively, you can specify the lrphtest option to perform the likelihood-ratio
test between the full model and the model without the time interaction terms:

. stintcox age_mean i.male i.needle i.inject i.jail, interval(ltime rtime)
> tvc(age_mean i.male i.needle i.inject i.jail) lrphtest nohr
note: using adaptive step size to compute derivatives.

Performing EM optimization (showing every 100 iterations):

Fitting main model:

Iteration O: Log likelihood = -1086.2564
Iteration 100: Log likelihood = -597.65634
Iteration 200: Log likelihood = -597.57555
Iteration 295: Log likelihood = -597.56443

Fitting full model:

Iteration O: Log likelihood = -1086.2564
Iteration 100: Log likelihood = -590.53655
Iteration 200: Log likelihood = -590.45163
Iteration 300: Log likelihood = -590.43665
Iteration 340: Log likelihood = -590.43386

Computing standard errors: ...........iiiiiiit ittt i done
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Interval-censored Cox regression Number of obs = 1,124
Baseline hazard: Reduced intervals Uncensored = 0
Left-censored = 41
Event-time interval: Right-censored = 991
Lower endpoint: ltime Interval-cens. = 92
Upper endpoint: rtime
Wald chi2(10) = 31.99
Log likelihood = -590.43386 Prob > chi2 = 0.0004
0PG
Coefficient std. err. z P>|z| [95% conf. intervall]
main

age_mean -.0310177 .0233817 -1.33 0.185 -.076845 .0148097

male
Yes -1.271583 .4604788 -2.76 0.006 -2.174105 -.3690615

needle
Yes -.1819587 .3297493 -0.55 0.581 -.8282554 .464338

inject
Yes .6852961 .3431924 2.00 0.046 .0126513 1.357941

jail
Yes -.529615 .4021087 -1.32 0.188 -1.317734 .2585036

tvce

age_mean -.000129 .0017099 -0.08 0.940 -.0034804 .0032224

male
Yes .0884102 . 042994 2.06 0.040 .0041434 .1726769

needle
Yes .0358545 .0238562 1.50 0.133 -.0109027 .0826118

inject
Yes -.0361192 .0228754 -1.58 0.114 -.0809541 .0087157

jail
Yes .0916036 .0348915 2.63 0.009 .0232176 .1599896

Notes: Standard error estimates may be more variable for small datasets and
datasets with low proportions of interval-censored observations.
Variables in tvec equation interacted with _t.

LR test that [tve]l = 0: chi2(5) = 14.2611 Prob > chi2 = 0.0140

The results of the likelihood-ratio test agree with the previous Wald test—the proportional-hazards
assumption has been violated globally. The likelihood-ratio test may be more stable for sample sizes
and when the sampling distribution of regression coefficients is not symmetric.

Specifying the lrphtest option can substantially increase computational time because both the
full model and the reduced main model must be fit.

N
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Stored results

stintcox stores the following in e():

e(emiterate)
e(emtolerance)
e(emltolerance)

e(emhsgtolerance)
e(noemhsgtolerance)

e(vceiterate)
e(vcetolerance)

Macros

e(cmd)
e(cmdline)
e(depvar)

e(id)
e(status)
e(strata)
e(clustvar)
e(title)
e(title2)
e(chi2type)
e(vce)
e(vcetype)
e(properties)
e(estat_cmd)
e(predict)
e(marginsok)
e(marginsnotok)
e(tve)

e(texp)
e(phtest)
e(tvvariables)
e(tvcovimpute)
e(intervals)

Scalars
e(N) number of observations
e(N_sub) number of subjects
e(N_unc) number of uncensored subjects
e(N_1lc) number of left-censored subjects
e(N_rc) number of right-censored subjects
e(N_int) number of interval-censored subjects
e(k) number of parameters
e(k_eq) number of equations in e(b)
e(k_eq-model) number of equations in overall model test
e(k_dv) number of dependent variables
e(df_m) model degrees of freedom
e(df_tvc) degrees of freedom for proportional-hazards test
e(11) log likelihood
e(11-0) log likelihood, constant-only model
e(ll_c) log likelihood, main model
e(N_clust) number of clusters
e(chi2) X2
e(chi2_tvc) x? for proportional-hazards test
e(p) p-value for model test
e(p_tvc) p-value for proportional-hazards test
e(rank) rank of e(V)
e(ic) number of iterations
e(converged) 1 if converged, O otherwise
e(delta) multiplier used with fixed step size
e(delta_n) fixed step size

maximum EM iterations

EM coefficient tolerance

EM log-likelihood tolerance

EM scaled-gradient tolerance

1 if noemhsgtolerance, O otherwise
maximum VCE iterations

VCE log-likelihood tolerance

stintcox

command as typed

names of time interval variables specified in interval() or name
of examination time variable specified in time ()

id variable specified in id ()

name of status variable specified in status()

strata variables

name of cluster variable

title in estimation output

secondary title in estimation output

Wald or LR; type of model x? test

veetype specified in vce ()

title used to label Std. err.

bV

program used to implement estat

program used to implement predict

predictions allowed by margins

predictions disallowed by margins

covariates interacted with time from option tvc()
function of time used for covariates from tvc()

Wald or LR; type of proportional-hazards assumption test
time-varying variables detected in the data

imputation method used for variables in e(tvvariables)
reduced or full
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e(filename) name of the file with estimated baseline hazard contributions
e(stepsize) adaptive or fixed
Matrices
e(b) coefficient vector
e(V) variance—covariance matrix of the estimators
Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,
and confidence intervals

Note that results stored in r () are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.

If the vce() option is specified on replay, the following estimation results will be updated
only if vce()’s post suboption is specified: e(vce), e(vcetype), e(stepsize), e(delta) and
e(delta_n) (with fixed step size) and e(chi2_tvc) and e(p—_tvc) (with the tvc() option).

Methods and formulas

Methods and formulas are presented under the following headings:

Data and model

EM algorithm for computing parameter estimates

Variance estimation using the profile log-likelihood function
Stratified estimation

Option tve()

Data and model

For a comprehensive review of the methods in this entry, see Zeng, Mao, and Lin (2016).

Let T denote the event time, and let x(-) denote a 1 X p vector of covariates that can potentially
depend on time. Under the Cox proportional hazards model, the hazard function of 7" conditional on
x(+) is

h(t:x) = ho(t) exp{x(t)8}

where 3 is a p X 1 vector of unknown regression parameters and hg(¢) is an arbitrary baseline hazard
function. Let Hy(t fo ho(s)ds, which is the baseline cumulative hazard function.

The occurrence of an asymptomatic event can be detected only through periodic examinations. Let
(T}, T,] denote the shortest time interval that brackets T', with T; < T,. Left-censoring is indicated
by 1} = 0, and right-censoring by 1), = oo

Consider a study with n subjects and N observations. In a single-record-per-subject format, n = N
and the data consist of (¢;;,t,i,%;) for i = 1,...,n, where x; records covariate values for subject 4
and t;; and t,,; define the observed time interval.

In a multiple-record-per-subject format, n < N (typically) and the data consist of (¢;;, 6”,x”)
fori =1,2,...,nand j = 1,2,...,n;, where N = Z _1 M, l;; is the examination time j for
subject ¢, d;; denotes whether the event of interest occurs between tij—1) and t;5 (E—1) = 0 if
J = 1), and x;; records covariate values at ¢;;. Here x;; includes both baseline and time-varying
covariates, where for baseline covariates X;; = X;. Pairs (tij, 5¢j)’s are used to form the event-time
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interval endpoints £;;’s and t,;’s as follows. If an event occurs before the first examination time ;;
(6;1 = 1), then t;; = 0, t,; = t;1, and subject i is left-censored. If an event does not occur by the
last examination time ¢;,, (0;n, = 0), then ¢;; = t;,,, t,; = +00, and subject ¢ is right-censored.
If, for 1 < j < my, an event occurs between two examination times ¢;(;_1y and ;; (0;; = 1), then
tii = ti(j—1)> tui = tij, and subject ¢ is interval-censored.

The observed-data likelihood function for 3 and Hy(t) is

n

L.(B8,Hy) = H (exp[—/ot” exp{x;(s)B}dHy(s)] — exp[—/

i=1 0

tui

exp{xi(s),@}dHo(s)])

where the integral is oo if ¢,; = 0o and x;(-) is a 1 X p vector of potentially time-varying covariates
for subject 7. Under the NPMLE approach, Hy is regarded as a step function with nonnegative jumps

hi,...,hy at t1, ..., t,, respectively, where t; < --- < t,, are the distinct time points for all
t;; > 0 and t,; < oo for 2 = 1,...,n. Thus, we need to maximize the function
n . N I(ty;<o0)
La(8,Al}) = [T exo{ = 3° meexpxiuB) }[1-exo{~ 3" heexp(xi8)}] (1)
i=1 te<ti; tys <tp <tui

where X}, = X; (tx) are the covariate values for subject 7 at time ¢j. For baseline covariates, X5 = X;.
For time-varying covariates, if ¢, = t;; is one of the examination times for subject ¢, then xJ,, = x;;.
Otherwise, x7;. is imputed as described in the tvcovimpute () option in Options.

Direct maximization of (1) is difficult because of the lack of an analytic expression for the parameters
hi (k=1,...,m). And an even greater challenge is that not all ¢;; and t,; are informative about
the event times, so many hy’s are zeros and thus lie on the boundary of the parameter space.

To address these challenges, Zeng, Mao, and Lin (2016) construct some latent Poisson variables
that yield the same observed-data likelihood as (1). They propose the EM algorithm, in which the
E-step involves simple calculations and the M-step amounts to the maximization of a weighted sum
of Poisson log-likelihood functions that is strictly concave and has a closed-form solution for hy’s.

Turnbull (1976) showed that the NPMLE of the survival distribution is unique only up to a set of
intervals, which is called Turnbull’s intervals (the innermost intervals or the regions of the maximal
cliques). Therefore, for computational reasons, by default or if the reduced option is specified, we
estimate the baseline cumulative hazard function at the endpoints of Turnbull’s reduced set of intervals.
Alternatively, you can specify the full option to estimate the baseline cumulative hazard function at
the endpoints of all observed time intervals, which corresponds to the approach of Zeng, Mao, and
Lin (2016).

EM algorithm for computing parameter estimates

Let Wi, (i =1,...,n;k =1,...,m) be independent latent Poisson random variables with means
hi exp(x},3). Define A; = Ztkgt“ Wik and B; = I(ty; < 00) Zt”<t,€§tm Wir. The likelihood
for the observed data {t;;,tyi,%x;(-), 4; =0,B; >0} (i =1,...,n) is

ﬁ H Pr(Wik = 0){1 — Pr( Z Wi = O)}I(tui<00) (2)
i=1tp<ty; bt s

which is exactly equal to (1). Thus, we can maximize (2) through an EM algorithm treating W;;, as
missing data.
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The complete-data log likelihood is

Z ZI ty <t [ ik log{ hy exp(x},8) } — hy exp(x},8) — log Wi!

i=1 k=1
where ¥, = I(ty; < 00)ty;+ I(ty; = 00)t;;. In the E-step, we evaluate the posterior means of Wy

as
hi exp (x;‘kﬁ)

Wi =4 1 — exp{ — Zt“qjgtm h; exp(x’;jﬁ)}

0 otherwise

if £ <t <ty <00

In the M-step, we update 3 by solving the following equation via the one-step Newton—Raphson
method,

Zi[ (tp <t { _ Xl < th)eXp(X;’“mx;’“} =0
i=1 k=1 L” Zj:l I(tk S tz_]) exp(x;kﬁ)

and then update hy (k= 1,...,m) using

Yoy Ltk < ) wa
doimy Ity < t5;) exp(x5,0)

hy = (3)

Setting the initial values of (3 to zeros and the initial values of hy’s to 1/m, we iterate between
the E- and M-steps until the desired convergence criteria are achieved. The convergence tolerances
are described in detail in [R] Maximize, where emtolerance() is analogous to tolerance(),
emltolerance() to ltolerance(), hsgtolerance() to nrtolerance(), and nonrtolerance
to nohsgtolerance.

The observed-data log-likelihood function is calculated as
n m

IOgL = Z log{I(tlz < tuz)(slz - Suz) + I tlz - tuz ZI tlz - tk hk exp( zk/B)Slz}
i=1 k=1

where S;; = exp{ = > hg exp(x;?‘kﬁ)} and S,; = exp{ > hpexp(x}.0) }I wi < 00).
tr <ty te<tui

When there are no covariates, the above algorithm becomes iteratively updating hj as

S {hd (t <t < tyi < 00)S1i/ (St — Sui) + It = tui = ti) }
Y Itk < t3)

where Sj;; = exp{— > hk} and S,; = exp{— > hk}I(tm- < 00).
tp<ti; te <tui

hy, =

With multiple-record interval-censored data, because uncensored observations are not supported,
the terms with ¢;; = ¢,,; are ignored in the formulas above.
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Variance estimation using the profile log-likelihood function
Denote the estimators of 3 and hi’s by 5 and hk s, respectively, for k=1,. . The NPMLEs

ﬂ and HO( ) = Zt <t hk are strongly consistent, and ﬂ is asymptotically normal and asymptotlcally

efficient (Zeng, Mao, and Lin 2016). The covariance matrix of ,8 can be estimated using profile
likelihood (Murphy and van der Vaart 2000; Zeng, Mao, and Lin 2016; Zeng, Gao, and Lin 2017).

The profile log-likelihood function for 3 takes the form

n

= Z log{exp{ —Z iy exp(xfkﬁ)} — I (ti < 0 CXP{ Z T exp(x zkﬁ)}:|

i=1 te<ti; te<tui
where hy (k= 1,...,m) are the maximizers of (1) for the glven 3. These maximizers are obtained
from the EM algonthm described in the previous section with hk (k=1,...,m) as the initial values

and with 3 fixed over the iterations. Specifically, we apply the same EM algorithm but hold 3 fixed
during the iterations. Thus, the only steps in the EM algorithm are to explicitly evaluate w;; and to
update hj using (3).

Two likelihood-based methods, vce (opg) and vce (oim), are available to estimate the covariance
matrix of 3.

The oim method estimates the covariance matrix of B by the negative inverse of the Hessian
matrix, —{D2pl(8)} !, where D? is the second-order numerical derivative and its (j, k)th element
is
pl(B) — pl(B+ dnex) — pl(B+ dne;) + pl(B+ one, + one;)

o,
where e; is the jth canonical vector in the space of 3 and &, is the step size chosen for numerical
difference. Zeng, Gao, and Lin (2017) found that the above estimated matrix may be negative definite,
especially in small samples. Therefore, they proposed the opg method, which estimates the covariance

[szl(B)]ch =

N -1
matrix using |, {Dpli(ﬁ)}‘m] , where D is the first-order numerical derivative and a®? = aa’.

Specifically, the jth element of D is

pli (B + 5nej) — pll(lz\a)
dn

where pl;(3) is the contribution of subject ¢ to pl(3). The resulting covariance matrix estimator is
guaranteed to be positive semidefinite and more robust with respect to the choice of the step size
than the estimator based on the second-order numerical difference.

The stepsize() suboption of the vce () option offers different ways for you to choose the step
size with the opg and oim methods when computing numerical derivatives. stepsize (adaptive),
the default, uses an adaptive step size; see [M-5] deriv(). stepsize(fixed) uses a fixed step size
Op = 5p—1/2 (Zeng, Mao, and Lin 2016; Zeng, Gao, and Lin 2017). And stepsize(fixed #) uses
a fixed step size equal to # x n~ /2,

This command also supports the Huber/White/sandwich estimator of the variance and its clustered
version using vce(robust) and vce(cluster clustvar), respectively. The sandwich estimator is
calculated as {D2pl(B)}~ Zm 1 Dol (B)®2{D2pl(B)} ", where pl,,(8) is the contribution of
the mth cluster to pl(3) and M is the number of clusters. For datasets where option id(idvar) has
been specified, option vce (robust) has been implemented as equivalent to vce(cluster idvar).



stintcox — Cox proportional hazards model for interval-censored survival-time data 271

Stratified estimation

stintcox with the strata() option will produce a stratified proportional hazards model for
interval-censored data. Assume that within stratum ¢ (¢ = 1,...,Q), the hazard function of 7" is

hq(t; %) = hqo(t) exp{x() B}

where hgo(t) is an unknown baseline hazard function for stratum g.

Let S; be the stratum for subject ¢, which can take value from {1,...,Q}. Analogously to (1),
we maximize the function

Ly (B, {hgr}) ﬁ 19[ exp{— Z hqk eXP(Xquﬁ)}

i=1¢g=1 tor <t
I(ty:<o0)
[1 — exp{— Z hak exp(x;‘qk,@)H
t1i<tgn <tu:

where x7 ;. = = X;(tqk). Within the NPMLE framework, a stratum-specific baseline cumulative hazard

function Hyo(t) fo qo0(s)ds for ¢ =1,...,Q is regarded as a step function, thk <4 Ngk» With

nonnegative jumps hgqy at the distinct values 4, ordered from smallest to largest, of the observed
interval endpoints from all subjects in stratum gq.

Option tvc()

Let z(-) be a 1 x g vector of potentially time-varying covariates specified in the tvc() option.
Let g(-) be the function of time specified in the texp() option. By default, g(¢) = t. Let z;’s
and z;;’s be the observed covariate values for z(-) in the respective single-record-per-subject and
multiple-record-per-subject formats.

When the tvc() option is specified, we replace x;; 3 in all formulas above with
XixB + g(tr)Ziny

where v is a ¢ x 1 vector of unknown regression parameters for z(-) and z}, = z;(tz) are the
covariate values of the tvc() variables for subject ¢ at time ¢. For baseline covariates, z};, = ;.
For time-varying covariates, if 5, = t;; is one of the examination times for subject 4, then z,, = z;;.
Otherwise, z]; is imputed as described in the tvcovimpute () option in Options.
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Title

stintcox PH-assumption plots — Plots of proportional-hazards assumption after stintcox

Description Quick start Menu Syntax
Options Remarks and examples Methods and formulas References
Also see

Description

stintphplot plots —In{—In(survival)} curves for each level of a nominal or ordinal covariate
specified in option by () versus In(analysis time) for interval-censored data. These plots are often
referred to as “log—log” survival plots. Optionally, the estimates can be adjusted for covariates. The
proportional-hazards assumption is satisfied when the curves are parallel.

stintcoxnp plots Turnbull’s nonparametric and Cox predicted survival curves for each level of a
categorical covariate specified in option by () for interval-censored data. The Turnbull nonparametric
curve for interval-censored data is analogous to the Kaplan—Meier nonparametric curve for right-
censored data. The closer the nonparametric estimates are to the Cox estimates, the less likely it is
that the proportional-hazards assumption has been violated.

Quick start
Log—log plot of survival

Check for parallel lines in plot of —In{—In(survival)} versus In(analysis time) for each category of
covariate a for interval-censored event-time data with interval endpoints 1time and rtime

stintphplot, interval(ltime rtime) by(a)

Same as above, but adjust for average values of covariates x1 and x2
stintphplot, interval(ltime rtime) by(a) adjustfor(xl x2)

Same as above
stintphplot, interval(ltime rtime) by(a) adjustfor(xl x2, atomeans)

Adjust for x1 =0 and x2 =0
stintphplot, interval(ltime rtime) by(a) adjustfor(xl x2, atzeros)

Turnbull’s nonparametric and Cox predicted survival plots

Compare Turnbull’s nonparametric curve with predicted survival from the Cox model for each category
of covariate a for interval-censored event-time data with interval endpoints 1time and rtime

stintcoxnp, interval(ltime rtime) by(a)

Same as above, but create separate plots for each level of a
stintcoxnp, interval(ltime rtime) by(a) separate

273
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Menu
stintphplot

Statistics > Survival analysis > Regression models > Assess PH assumption for interval-censored data

stintcoxnp

Statistics > Survival analysis > Regression models > Nonparametric versus Cox predicted survival

Syntax
Check proportional-hazards assumption:

Log-log plot of survival

stintphplot [lf] , interval(t; t,) {by(varname) |strata(varname)}

[ phplot_options ]

Nonparametric and Cox predicted survival plots

stintcoxnp [lf] , interval(#; t,) by(varname) [stintcoxnp_options]

phplot_options Description
Main
*interval(?; t,) lower and upper endpoints for the event-time interval
*by (varname) fit separate Cox models for levels of varname
* strata(varname) fit stratified Cox model; requires adjustfor ()

adjustfor(varlist[ s suboptions]) adjust the estimates to specific values of varlist;
default is overall means

nonegative plot In{—In(survival)} instead of —In{—In(survival)}
nolntime plot curves against analysis time
Plot

plot#opts (phplot_plot_options)  affect rendition of the #th connected line and #th plotted points

Add plots
addplot (plot) add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

twoway_options any options other than by () documented in
[G-3] twoway _options

*interval() is required with stintphplot.
*Either by (varname) or strata(varname) and adjustfor (varlist) is required with stintphplot.
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phplot_plot_options Description
cline_options change look of lines or connecting method
marker_options change look of markers (color, size, etc.)
stintcoxnp _options Description
Main
*interval (¢; t,) lower and upper endpoints for the event-time interval
*by (varname) specify a categorical covariate
separate draw separate plot for nonparametric and Cox predicted curves

Nonparametric plot
npopts (stintcoxnp_plot_options)  affect rendition of the nonparametric curve

np#opts (stintcoxnp_plot_options) affect rendition of the #th nonparametric curve; not allowed
with separate

Cox predicted plot
coxopts (stintcoxnp_plot_options) affect rendition of the Cox predicted curve

cox#opts (stintcoxnp_plot_options) affect rendition of the #th Cox predicted curve; not allowed
with separate

Add plots
addplot (plot) add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

twoway_options any options other than by () documented in
[G-3] twoway _options

By options
byopts (byopts) how subgraphs are combined, labeled, etc.

*interval() and by() are required with stintcoxnp.

stintcoxnp _plot_options Description

connect_options change look of connecting method

marker_options change look of markers (color, size, etc.)
Options

Options are presented under the following headings:

Options for stintphplot
Options for stintcoxnp
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Options for stintphplot
Main

interval({; t,); see [ST] stintcox. interval() is required.

by (varname) specifies a categorical covariate for which the proportional-hazards assumption is to be
checked. Without option adjustfor(), stintphplot computes nonparametric estimates of the
survivor functions for each category of varname and produces log—log plots. With adjustfor (),
the command fits a separate Cox model for each category of varname to produce log—log plots. When
the plotted curves are parallel for all categories of varname, the proportional-hazards assumption

is considered to be met for varname. Either by () or strata() is required with stintphplot.

strata(varname) is an alternative to by (). Rather than fitting separate Cox models for each value
of varname, strata() fits one stratified Cox model. You must also specify adjustfor () with

the strata() option.

adjustfor(varlist[ , suboptions}) adjusts the estimates of the survivor function to specific values

of varlist. The default is to adjust to overall mean values of covariates. adjustfor() can be

specified with by (); it is required with strata().

suboptions are atomeans (the default), atmeans, atzeros, atbase, and at(); see [ST] adjust-

for_option.

nonegative specifies that In{—In(survival)} be plotted instead of —In{—In(survival)}.

nolntime specifies that curves be plotted against analysis time instead of against In(analysis time).

Plot

Is

plot#opts (phplot_plot_options) affects the rendition of the #th connected line and #th plotted

points; see [G-3] cline_options and [G-3] marker_options.

Add plots

addplot (plot) provides a way to add other plots to the generated graph; see [G-3] addplot_option.

Y axis, X axis, Titles, Legend, Overall |

twoway_options are any of the options documented in [G-3] twoway _options, excluding by (). These
include options for titling the graph (see [G-3] title_options) and for saving the graph to disk (see

[G-3] saving _option).

Options for stintcoxnp

Main

Is

interval({; t,); see [ST] stintcox. interval() is required.

by (varname) specifies a categorical covariate varname for which the agreement between the Cox
predicted and nonparametric survivor functions is to be explored. The nonparametric and Cox
predicted survivor functions are plotted for each level of varname. The agreement between the two
survival curves across all levels indicates that the proportional-hazards assumption for varname is

reasonable. by () is required.

separate produces separate plots of Cox predicted and nonparametric survivor functions for each

value of the variable specified with by ().
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Nonparametric plot

npopts (stintcoxnp_plot_options) affects the rendition of the nonparametric curve; see [G-3] con-
nect_options and [G-3] marker_options.

np#opts (stintcoxnp_plot_options) affects the rendition of the #th nonparametric curve; see [G-3] con-
nect_options and [G-3] marker_options. This option is not allowed with separate.

Cox predicted plot

coxopts (stintcoxnp_connect_options) affects the rendition of the Cox predicted curve; see [G-3] con-
nect_options and [G-3] marker_options.

cox#opts (stintcoxnp_connect_options) affects the rendition of the #th Cox predicted curve; see
[G-3] connect_options and [G-3] marker_options. This option is not allowed with separate.

Add plots

addplot (plot) provides a way to add other plots to the generated graph; see [G-3] addplot_option.

Y axis, X axis, Titles, Legend, Overall |

twoway_options are any of the options documented in [G-3] twoway_options, excluding by (). These
include options for titling the graph (see [G-3] title_options) and for saving the graph to disk (see
[G-3] saving _option).

By options

byopts (byopts) affects the appearance of the combined graph when by () and separate are specified,
including the overall graph title and the organization of subgraphs. See [G-3] by_option.

Remarks and examples

The underlying assumption for the Cox proportional hazards model is that the hazard ratio is
constant over time. Therefore, it is important to evaluate the validity of this assumption. stintphplot
and stintcoxnp are graphical tools for assessing violations of the proportional-hazards assumption
for interval-censored data. For proportional-hazards-assumption plots for right-censored data, see
[ST] stcox PH-assumption tests.

stintphplot plots —In{—In(survival)} curves for each category of a nominal or ordinal covariate
versus In(analysis time). These are often referred to as “log-log” plots. Optionally, these estimates
can be adjusted for covariates. If the plotted lines are reasonably parallel, the proportional-hazards
assumption has not been violated.

Another graphical method of evaluating the proportional-hazards assumption is to plot the non-
parametric maximum-likelihood estimation (NPMLE) survival curves proposed by Turnbull (1976) and
compare them with the Cox predicted curves for each level of a categorical variable. This plot is pro-
duced by stintcoxnp. When the two curves are close together, the proportional-hazards assumption
has not been violated.

For a single categorical covariate in a Cox model, you can use stintphplot and stintcoxnp to
check the proportional-hazards assumption. In the presence of multiple covariates, you can use only
stintphplot, and you should adjust for covariates by including all but the tested covariate in the
adjustfor () option.

To test the proportional-hazards assumption, you do not need to fit a Cox proportional hazards
model using stintcox before issuing stintphplot or stintcoxnp.
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With interval-censored data, the analysis time is formed by the unique values of lower and upper
endpoints ¢; and ¢,,, which must be specified in the interval () option.

> Example 1: Proportional-hazards assumption holds for a model with a single covariate

Consider the dataset described in example 1 of [ST] stintcox. Suppose we want to check whether the
proportional-hazards assumption holds for a single binary variable inject. We will use stintphplot
first and then stintcoxnp:

. use https://www.stata-press.com/data/r18/idu
(Modified Bangkok IDU Preparatory Study)

. stintphplot, interval(ltime rtime) by(inject)
Computing nonparametric estimates for inject = No ...

Computing nonparametric estimates for inject = Yes ...

Nonparametric estimates for interval-censored data

3.59
2
= 34
Qo
]
Q
[
% —e— inject = No
; 2.5 —e— inject = Yes
5
&
£
T o
1.5+

|
IS

In(analysis time)

. stintcoxnp, interval(ltime rtime) by(inject) byopts(style(altleg)) separate
Computing nonparametric estimates ...

Computing Cox estimates ...

Interval-censored data

No Yes
14 ?
°
2 954 [y
z
8 =
<] P
= 94 .
E "
£ T
g .
.81
T T T 7 T T T 7 7 T
0 10 20 30 40 0 10 20 30 40
Analysis time

—e— Nonparametric: inject = No —e— Nonparametric: inject = Yes
—e— Cox estimate: inject = No Cox estimate: inject = Yes

Graphs by Injected drugs before recruitment
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The stintphplot plot shows that the two lines are parallel, implying that the proportional-hazards
assumption holds for inject. This is confirmed in the stintcoxnp plot, where the Turnbull
nonparametric estimates and Cox estimates are close together.

4

> Example 2: Proportional-hazards assumption does not hold for a model with a single
covariate

Continuing with idu.dta, suppose we want to examine the proportional-hazards assumption for
a single binary variable male:

. stintphplot, interval(ltime rtime) by(male)
Computing nonparametric estimates for male = No ...

Computing nonparametric estimates for male = Yes ...

Nonparametric estimates for interval-censored data

44
? 3.59
=
©
Q
SRR
%‘ —e— male = No
; —e— male = Yes
S 2549
&
£
£ 24
1.5+
-—oee
T T T T
1 2 3 4

In(analysis time)

. stintcoxnp, interval(ltime rtime) by(male) byopts(style(altleg)) separate
Computing nonparametric estimates ...

Computing Cox estimates ...

Interval-censored data

Survival probability

0 10 20 30 40 0 10 20 30 40
Analysis time

—e— Nonparametric: male = No —e— Nonparametric: male = Yes
—e— Cox estimate: male = No Cox estimate: male = Yes

Graphs by Male
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The “log—log” plot displays two lines that are not parallel, which indicates that the proportional-
hazards assumption is violated for male. If we take a closer look at the separate stintcoxnp plots
for both males and females, we can see that there are considerable differences between the NPMLE
estimates and the Cox estimates, especially for females. Therefore, using this variable in the Cox
model may not be appropriate.

N

> Example 3: Checking proportional-hazards assumption for a model with multiple covari-
ates

When a Cox model contains multiple covariates, as in example 1 of [ST] stintcox, we should use
the adjustfor () option to adjust for covariates.

To check the proportional-hazards assumption for inject for the Cox model in that example, we
specify all the remaining covariates in the adjustfor () option.
. stintphplot, interval(ltime rtime) by(inject)
> adjustfor(age_mean i.male i.needle i.jail)

Fitting Cox model with covariates from option adjustfor()
for inject = No ...

Fitting Cox model with covariates from option adjustfor()
for inject = Yes ...

Cox estimates for interval-censored data

3.59
z
3 34
[
o
<]
‘_ml —e— inject = No
2 25 —e— inject = Yes
5
K
£
=
< 24
1.51
T T T T
1 2 3 4

In(analysis time)

In this case, a separate Cox model, which contains all covariates from the adjustfor () option, is
fit for each level of inject.
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To check the proportional-hazards assumption for male, we include all covariates except male in
the adjustfor () option.
. stintphplot, interval(ltime rtime) by(male)
> adjustfor(age_mean i.needle i.inject i.jail)

Fitting Cox model with covariates from option adjustfor()
for male = No

Fitting Cox model with covariates from option adjustfor()
for male = Yes

Cox estimates for interval-censored data

—e— male = No
—e— male = Yes

-In[-In(survival probability)]

In(analysis time)

After adjusting for covariates, we see our conclusions from example 1 and example 2 remain the
same. The proportional-hazards assumption appears to be met for the inject variable but not for
the male variable.
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It may not always be feasible to fit a separate Cox model for all levels of a tested covariate when
some levels have only a few observations. In this case, you may consider using the strata() option
instead of by () to fit a Cox model stratified on the tested covariate. For instance, you could type

. stintphplot, interval(ltime rtime) strata(male)
> adjustfor(age_mean i.needle i.inject i.jail)

Fitting Cox model stratified on male with covariates from option adjustfor()

Stratified Cox estimates for interval-censored data

—e— male = No
—e— male = Yes

-In[-In(survival probability)]

In(analysis time)

Note that the stintcoxnp command is not appropriate for testing the proportional-hazards
assumption in the presence of multiple covariates in a Cox model.

4

Methods and formulas

For one covariate, , the Cox proportional hazards model reduces to
h(t;x) = ho(t) exp(zf)

where hg(t) is the baseline hazard function from the Cox model. Let So(t) and Hy(t) be the
corresponding Cox baseline survivor and baseline cumulative hazard functions, respectively.
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The proportional-hazards assumption implies that
H(t;z) = Ho(t) exp(xf)

In{H(t;x)} = n{Hp(t)} + 28

where H(t;x) is the cumulative hazard function. Thus, under the proportional-hazards assumption,
the logs of the cumulative hazard functions at each level of the covariate have equal slope. This is
the basis for the method implemented in stintphplot.

The proportional-hazards assumption also implies that
S(t, J,‘) = So(t)cxp(wﬂ) — exp{_HO(t)}exp(:cB)

so the plot is referred to as a “log-log” survival plot because In[—In{S(¢;z)}] = In{H(¢;x)}.
For the Cox model, let f[(t; x) = fIO(t) exp(xB\), where ff\o(t) =D i<t e, s (k= 1,...,m)
are estimated baseline hazard contributions and ¢;’s are the unique time points, ordered from smallest

to largest, of the observed interval endpoints ¢; and t,,. Let S(t; ) = exp{—H (t; z)} be the estimated
survivor function based on the Cox model. This function is a step function. Thus, for each level of the
covariate of interest, we can assess violations of the proportional-hazards assumption by comparing
these survival estimates with nonparametric estimates from Turnbull (1976). See Kalbfleisch and
Prentice (2002) or Hess (1995).

stintcoxnp plots Turnbull’s (1976) NPMLE curves for each level of the covariate together with
the survival curves predicted by the Cox model. The closer the Turnbull estimates are to the Cox
estimates, the less likely it is that the proportional-hazards assumption has been violated.
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Postestimation commands

The following postestimation commands are of special interest after stintcox:

Command

Description

estat gofplot

stcurve
stintcoxnp

stintphplot

produce goodness-of-fit plot
plot the survivor, failure, hazard, or cumulative hazard function
plot nonparametric curves and Cox predicted curves

plot —In{—In(survival)} curves

The following standard postestimation commands are also available:

Command Description
contrast contrasts and ANOVA-style joint tests of estimates
estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian in-

estat summarize

estat vce
estimates
etable
hausman

lincom

lrtest

margins

marginsplot

nlcom

predict
predictnl
pwcompare
test
testnl

formation criteria (AIC, CAIC, AICc, and BIC)
summary statistics for the estimation sample

variance—covariance matrix of the estimators (VCE)
cataloging estimation results

table of estimation results

Hausman’s specification test

point estimates, standard errors, testing, and inference for linear combinations of
coefficients
likelihood-ratio test

marginal means, predictive margins, marginal effects, and average marginal
effects

graph the results from margins (profile plots, interaction plots, etc.)

point estimates, standard errors, testing, and inference for nonlinear combinations
of coefficients
hazard ratios, survivor functions, influence statistics, residuals, etc.

point estimates, standard errors, testing, and inference for generalized predictions
pairwise comparisons of estimates
Wald tests of simple and composite linear hypotheses

Wald tests of nonlinear hypotheses

284
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predict

Description for predict

predict creates new variables containing predictions such as hazard ratios, linear predictions,
standard errors, and baseline survivor and baseline cumulative hazard functions.
Menu for predict

Statistics > Postestimation

Syntax for predict

Single-record-per-subject interval-censored data with baseline covariates

predict [rype] newvar [lf] [zn] [, statistic]
predict [type] {szub*\newvarl newvaru} [zf] [in] , Statistic2

Single-record-per-subject interval-censored data with time-varying covariates

predict [rype] newvar [lf] [zn] [, mgale}
predict [type] {szub*\newvarl newvaru} [zf] [in] [, statistic statisticZ]

Multiple-record-per-subject interval-censored data

predict [rype] newvar [lf] [zn] [, statistic statisticZ]

For single-record-per-subject data, predictions that depend on time, statistic2, are calculated for
both the lower endpoint ¢; and the upper endpoint ¢,, of the time interval specified in stintcox’s
interval () option and thus are stored in two new variables. This also applies to each statistic except
mgale in the presence of time-varying covariates. For multiple-record-per-subject data, predictions
are calculated for the examination times specified in stintcox’s time () option and are always stored
in a single variable.

statistic Description
Main
hr predicted hazard ratio, also known as the relative hazard; the default
xb linear prediction x;3 R
stdp standard error of the linear prediction, SE(x;/3)
*mgale martingale-like residuals
statistic2 Description
Main
*basesurv baseline survivor function
*basechazard baseline cumulative hazard function
*basehc baseline hazard contributions

*csnell Cox—Snell-like residuals
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Unstarred statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only
for the estimation sample. Starred statistics are calculated only for the estimation sample.

Options for predict
Main

hr, the default, calculates the relative hazard (hazard ratio), that is, the exponentiated linear prediction,
exp(x;(3). After stintcox with option tvc (), it calculates exp{x; 3+ g(t)z;7}, where g(t) is
a function of time as specified in stintcox’s texp() option.

Is

xb calculates the linear prediction from the fitted model. That is, you fit the model by estimating a
set of parameters, 51, B2, ..., Bp, and the linear prediction is Bi121; + Bax2j + -+ + BpTp;,
often written in matrix notation as x; (3.

The 1, x2j, ..., xp; used in the calculation are obtained from the data currently in memory
and need not correspond to the data on the independent variables used in estimating (3.

After stintcox with option tve (), it calculates x;8+ g(t)z;7, where g(t) is a function of time
as specified in stintcox’s texp() option.

stdp calculates the standard error of the linear prediction xb.

basesurv calculates the baseline survivor function.

basechazard calculates the baseline cumulative hazard.

basehc calculates the baseline hazard contributions.

mgale calculates interval-censored martingale-like residuals, which are an interval-censored version
of martingale residuals for right-censored data.

csnell calculates the Cox—Snell-like residuals, which are the estimates of the cumulative hazard
function obtained from the fitted model.
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margins

Description for margins

margins estimates margins of response for hazard ratios and linear predictions.

Menu for margins

Statistics > Postestimation

Syntax for margins

margins [marginlist} [, ()pti()m']

margins [marginlisz} , predict (statistic ...) [Eedict (statistic ...) ... ] [opzions]
statistic Description
hr hazard ratio, also known as the relative hazard
xb linear prediction
stdp not allowed with margins
basesurv not allowed with margins
basechazard not allowed with margins
basehc not allowed with margins
mgale not allowed with margins
csnell not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e (b).

For the full syntax, see [R] margins.

Remarks and examples

Remarks are presented under the following headings:

Baseline functions

Residuals and diagnostic measures

Postestimation after stintcox with option tvc()

Survivor curves for multiple-record-per-subject data with time-varying covariates

Baseline functions

predict after stintcox is used to generate a new variable or variables containing predicted values
or residuals. predict can generate predicted hazard ratios, linear predictions, and standard errors of
the linear predictions. It can also predict the baseline survivor function, baseline cumulative hazard
function, or baseline hazard contributions. Baseline functions refer to the values of the functions when
all covariates are set to 0. If the dataset is single-record-per-subject data, it calculates those statistics
for both interval endpoints ¢; and ¢, specified in the interval() option with stintcox.
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> Example 1: Baseline survivor function

We use data from example 1 of [ST] stintcox and fit the Cox proportional hazards model in which
the time to HIV infection depends on centered age variable (age_mean) and whether a subject has
been in jail at the time of recruitment (jail):

. use https://www.stata-press.com/data/r18/idu
(Modified Bangkok IDU Preparatory Study)

. stintcox age_mean i.jail, interval(ltime rtime)
note: using adaptive step size to compute derivatives.

Performing EM optimization (showing every 100 iterations):
Iteration O: Log likelihood = -1086.2564
Iteration 100: Log likelihood = -600.55818
Iteration 200: Log likelihood = -600.47678
Iteration 295: Log likelihood = -600.46551

Computing standard errors: ................ done
Interval-censored Cox regression Number of obs = 1,124
Baseline hazard: Reduced intervals Uncensored = 0
Left-censored = 41
Event-time interval: Right-censored = 991
Lower endpoint: ltime Interval-cens. = 92
Upper endpoint: rtime
Wald chi2(2) = 14.07
Log likelihood = -600.46551 Prob > chi2 = 0.0009
OPG
Haz. ratio std. err. z P>|z| [95% conf. intervall
age_mean .9647236 .0122201 -2.84 0.005 .9410676 .9889743
jail
Yes 1.819721 .3804566 2.86 0.004 1.207927 2.741379

Note: Standard error estimates may be more variable for small datasets and
datasets with low proportions of interval-censored observations.

We can now estimate, for instance, the baseline survivor function. For this dataset, estimates of
baseline survivor function, as well as baseline cumulative hazard and baseline hazard contributions,
are intervals. So, to compute these statistics, we can either specify two new variable names with
predict or specify a stub stub* that will automatically create two new variable names stubl and
stub2; the first one will contain statistics computed using the lower time endpoint, and the second
one will contain statistics computed using the upper time endpoint.
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. predict bs_1 bs_u, basesurv
. list bs_1l bs_u ltime rtime age jail in 300/310

bs_1 bs_u 1ltime rtime age jail
300. .8989196 0 40.00 . 36 Yes
301. .9547279 .9450011  11.97 15.84 21 Yes
302. .9647679 .9506636 8.20 15.18 36 Yes
303. .8989196 0 39.93 . 40 Yes
304. .8989196 0 39.48 . 25 Yes
305. .8989196 0 36.72 . 40 Yes
306. .8989196 0 39.93 . 40 Yes
307. .9767599 0 4.30 . 34 Yes
308. .8989196 0 39.74 . 42 No
309. .8989196 0 37.61 . 30 Yes
310. .8989196 0 39.97 . 28 Yes

Listed above are the baseline survivor functions, bs_1 and bs_u, evaluated at the lower and upper
time endpoints 1time and rtime, for subjects 300 to 310.

To graph the baseline survival curve, we can use stcurve with all covariates set to 0. We can
also graph survivor functions after stintcox with covariates set to any value. See [ST] stcurve for
more information.

. stcurve, survival at(age_mean=0 jail=0)
note: function evaluated at specified values of selected covariates and
overall means of other covariates (if any).

Interval-censored Cox regression

.98+

.96

Survival

.94+

.92+

0 10 20 30 40
Analysis time
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Residuals and diagnostic measures

For right-censored data, several types of residuals have been introduced to assess the appropri-
ateness of the Cox proportional hazards model; see Residuals and diagnostic measures in [ST] stcox
postestimation for details.

Farrington (2000) proposed extensions of those residuals for interval-censored data; see the reference
for applications and a discussion of limitations of the residuals for interval-censored data. Here we
offer martingale-like residuals and Cox—Snell-like residuals for visual model checking. Martingale-like
residuals are useful in determining the functional form of covariates to be included in the model.
They are also useful in assessing whether some covariates are needed in the model and for identifying
outliers. Cox—Snell-like residuals are useful in assessing the overall model fit. If the model fits the
data, those residuals should approximate an interval-censored sample from the standard exponential
distribution. These residuals can be plotted by using estat gofplot.

> Example 2: Assess overall model fit

To visually assess the overall model fit, we can use the Cox—Snell-like residuals. For right-censored
data, Cox and Snell (1968) argued that if the correct model has been fit to the data, these residuals
should have a censored standard exponential distribution. With interval-censored, Cox—Snell-like
residuals approximate an interval-censored sample from this distribution.

estat gofplot calculates an empirical estimate of the cumulative hazard function based on the
Cox—Snell-like residuals and plots the resulting cumulative hazard rate against the residuals themselves.
If the model fits the data, the plot is expected to approximate a straight line with slope 1.

Continuing with example 1, let’s produce the goodness-of-fit plot.

. estat gofplot

Goodness-of-fit plot for interval-censored Cox model

Cumulative hazard (Turnbull)

0 1 2 3
Cox-Snell-like residuals

The goodness-of-fit plot shows that the jagged line stays very close to the 45° reference line. The
Cox proportional hazards model appears to fit the data well.

N
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> Example 3: Martingale-like residuals

Martingale-like residuals may be used as a diagnostic tool to assess the functional form of a
covariate to be included in a Cox model. To find the appropriate functional form of a variable, we fit
a Cox model without the variable of interest and then plot a lowess smooth of the martingale-like
residuals against some transformation of that variable. If the transformation is appropriate, then the
smooth should be approximately linear.

Continuing with example 1, we can apply this procedure to check whether the functional form of
the covariate age_mean is appropriate. First, we refit the Cox proportional hazards model on whether
a subject has been in jail at the time of recruitment (jail). Then, we obtain the martingale-like
residuals mg using predict with the mgale option. Last, we plot a lowess smooth of mg against

variable age_mean.

. stintcox i.jail, interval(ltime rtime) nolog

note: using adaptive step size to compute derivatives.

Interval-censored Cox regression Number of obs = 1,124
Baseline hazard: Reduced intervals Uncensored = 0
Left-censored = 41
Event-time interval: Right-censored = 991
Lower endpoint: ltime Interval-cens. = 92

Upper endpoint: rtime
Wald chi2(1) = 6.24
Log likelihood = -605.20197 Prob > chi2 = 0.0125

0PG
Haz. ratio std. err. z P>|z| [95% conf. intervall
jail

Yes 1.675924 .3464929 2.50 0.013 1.11756 2.513264

Note:

Standard error estimates may be more variable for small datasets and

datasets with low proportions of interval-censored observations.

. predict mg, mgale

. lowess mg age_mean, mean noweight title("") note("") m(o)
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We used the 1lowess command with the mean and noweight options to obtain a plot of the running-
mean smoother to ease interpretation. The smooth appears nearly linear, supporting the inclusion of
the untransformed version of age_mean in our Cox model. Had the smooth not been linear, we would



292 stintcox postestimation — Postestimation tools for stintcox

have tried smoothing the martingale residuals against various transformations of age_mean until we
found one that produced a near-linear smooth.

N

Postestimation after stintcox with option tvc()

When the tvc() option is used with stintcox, the model includes the time-varying covariates
formed by covariates in the tvc () option multiplied by the deterministic function of time specified
in the texp () option. In this case, predictions that depend on the covariate pattern, such as a linear
predictor and relative hazard, also depend on time. For instance, for single-record-per-subject data,
predict, xb will now produce two new variables: one containing the linear predictor computed
using the lower endpoint of the time interval and the other one computed using the upper endpoint.

After stintcox, tvc(), postestimation features such as predict and stcurve incorporate both
fixed and time-varying covariates. For instance, the linear predictor will include the effects of both
baseline covariates and time-varying covariates produced by the tvc () option.

Predictions of baseline functions and martingale-like residuals do not depend on covariates and
are thus unaffected by stintcox, tvc().
> Example 4: Predictions after stintcox with option tvc()

In Testing the proportional-hazards assumption using option tvc() in [ST] stintcox, we discovered
that jail was one of the variables that did not satisfy the proportional-hazards assumption.

Let’s fit the following model with a time-varying covariate jail X ¢:

h(t) = ho(t) exp{f1 X age_mean + f2 X jail +v; X (jail x )}
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We use the tvc () option to create the time-varying covariate jail X ¢:

. stintcox age_mean i.jail, interval(ltime rtime) tvc(i.jail) nohr
note: using adaptive step size to compute derivatives.

Performing EM optimization (showing every 100 iterations):
Iteration O: Log likelihood = -1086.2564
Iteration 100: Log likelihood = -597.6072
Iteration 200: Log likelihood = -597.52358
Iteration 295: Log likelihood = -597.51247

Computing standard errors: ............... ..., done
Interval-censored Cox regression Number of obs = 1,124
Baseline hazard: Reduced intervals Uncensored = 0
Left-censored = 41
Event-time interval: Right-censored = 991
Lower endpoint: ltime Interval-cens. = 92
Upper endpoint: rtime
Wald chi2(3) = 16.87
Log likelihood = -597.51247 Prob > chi2 = 0.0008
0PG
Coefficient std. err. z P>|z| [95% conf. intervall
main
age_mean -.0360376 .0126271 -2.85 0.004 -.0607864 -.0112889
jail
Yes -.1593675 .3777957 -0.42 0.673 -.8998335 .5810986
tve
jail
Yes .0732193 .0342545 2.14 0.033 .0060818 .1403569
Notes: Standard error estimates may be more variable for small datasets and
datasets with low proportions of interval-censored observations.
Variables in tvec equation interacted with _%.
Wald test that [tve] = 0: chi2(1) = 4.5690 Prob > chi2 = 0.0326

Let’s use predict, xb to calculate the linear prediction. Because the linear prediction now
depends on time and there are two time interval endpoints in a single-record-per-subject data,
predict requires two new variable names. Below, we use a stub notation xb* that automatically
creates two new variables, xb1 and xb2, to store linear predictions. To demonstrate, we list the results
for subjects 30 and 95.

. predict xb*, xb
(991 missing values generated)
note: prediction includes time-varying covariates formed by stintcox, tvec().

. list age_mean jail ltime rtime xbl xb2 if _n==30 | _n==95

age_mean  jail ltime rtime xb1l xb2
30. .53825623 Yes 7.147541  13.213115 .3445733 . 7886905
95. -.46174377 No 4.1311474 8.0327873 .0166402 .0166402

For subject 30, jail is equal to 1, and the linear predictions in xb1 are computed as Bl X age_mean+
B2 +71 X 1time and in xb2 as [3; X age_mean + /3 +7; X rtime. For subject 95, jail = 0, and
thus both x1 and x2 contain 3; X age_mean.

4
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> Example 5: stcurve after stintcox with option tvc()

stcurve can be used after stintcox to plot the estimated survivor, failure, hazard, or cumulative
hazard function. When the tvc() option is specified with stintcox, stcurve incorporates the
time-varying nature of the covariates. By default, a function is evaluated at the overall means of
covariates in the model. For covariates specified in the tvc() option, their overall mean values are
multiplied by the function of time, as specified in stintcox’s texp() option, during a function
evaluation.
. stcurve, survival

note: function evaluated at overall means of covariates, multiplied by _t for
covariates in stintcox’s tvc() option.

Interval-censored Cox regression

.95

Survival

.85+

T T
20 30 40
Analysis time

o
i
o

Here jail is binary, so we may want to use the at () option to evaluate the survivor function for
jail = 0 and jail = 1. The overall mean is used for any covariate not listed in at() (age_mean
in our example).

. sStcurve, survival at(jail=(0 1))

note: function evaluated at specified values of selected covariates and

overall means of other covariates (if any), multiplied by _t for
covariates in stintcox’s tve() option.

Interval-censored Cox regression

.95

—— jail=0
— jai=1

Survival
©
1

.851

‘ 20 30 40
Analysis time

o
-
o

The survival of those who have not been imprisoned is higher than those who have.
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Survivor curves for multiple-record-per-subject data with time-varying covariates

By default, stcurve evaluates the survivor and other functions at the overall means of covariates.
We can also use the at () option to evaluate functions at specific covariate values. Both of these
options work well for baseline covariates. But multiple-record-per-subject data often include time-
varying covariates. In that case, we may want to incorporate the time-varying nature of these covariates
when plotting the survivor function or other functions. We can use the attmeans option to evaluate
the function at time-specific means, which will vary with time for time-varying covariates. We can
also specify our own time-varying values for all or some covariates by using the atframe () option.

In general, care should be taken when interpreting the survivor function in the presence of time-
varying covariates. The interpretation is valid only for external time-varying covariates, which are
covariates that are external to an individual under study, such as air temperature. (Any covariate
that is formed as an interaction of a baseline covariate and a deterministic function of time is an
external covariate by construction.) For an internal time-varying covariate, which is generated by an
individual in a study, such as wellness status, the survivor function is not well defined. See, for
instance, Kalbfleisch and Prentice (2002) for details.

»> Example 6: stcurve with option attmeans

In example 4 in [ST] stintcox, we fit a model that included the time-varying jail_vary variable.
In this example, jail_vary is an internal time-varying covariate because it can be observed for
a subject only until a subject “survives” and is not censored. Although it would not be sensible to
proceed with this example in practice, we will use it here solely to demonstrate the software.

So, continuing with example 4 in [ST] stintcox, after fitting the model with time-varying jail_vary,
we use stcurve with the attmeans option to plot the survivor curve that uses the time-specific mean
values for covariates at each time point, hence accounting for the average changes of the covariates,
specifically jail_vary, over time:

. use https://www.stata-press.com/data/r18/idu2, clear
(Modified Bangkok IDU Preparatory Study with time-varying variable jail_vary)

. stintcox age_mean i.male i.needle i.inject i.jail_vary, id(id) time(time)
> status(is_seropos)
(output omitted )

. stcurve, survival attmeans

note: function evaluated at time-specific means of covariates.

Interval-censored Cox regression

951

Survival

.85

0 10 20 30 40
Analysis time
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> Example 7: stcurve with option atframe()

We can use the atframe () option to specify time-varying covariate values to be used to evaluate
the survivor function. We first need to create a frame that includes all or a subset of the covariates
and the time variable in your model and fill in those variables with the values we want to use for
prediction and the corresponding time points. If a subset of the covariates is specified in atframe (),
the unspecified covariates are evaluated, by default, at their overall means or, if the attmeans option
is specified, at their time-specific means.

Suppose we want to plot the survivor curve for an individual with the same covariate pattern as
subject 2 in our dataset. We start by creating a new frame called id2 and use frame put to copy
the relevant information for subject 2 in this new frame. Then we 1ist the data we just saved in
frame id2.

. frame put time age_mean male needle inject jail_vary if id==2, into(id2)

. frame id2: list

time age_mean male needle inject jail_v~y
1. 4.1311475 -6.4617438 Yes No Yes Yes
2. 8.2622951 -6.4617438 Yes No Yes No
3. 12.295082  -6.4617438 Yes No Yes No
4. 16.065574  -6.4617438 Yes No Yes No
5. 20.098361 -6.4617438 Yes No Yes No
6. 24.262295 -6.4617438 Yes No Yes No

In frame id2, six examination times are recorded, and all covariate values for each examination time
are filled in. Variables age_mean, male, needle, and inject are constant, and variable jail_vary
changes at the second examination time.

We can graph the survivor curve for this particular profile by typing

. stcurve, survival atframe(id2)

note: function evaluated at specified values of selected covariates and
overall means of other covariates (if any).

note: covariate values from frame id2 used to evaluate function.

Interval-censored Cox regression

.95+

Survival
o
1

.85+

0 10 20 30 40
Analysis time

Unless you provide covariate values for all distinct observed times used during estimation, stcurve
will use the same imputation method as specified in the tvcovimpute() option with stintcox
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([ST] stintcox) to impute the unobserved covariate values for time points that are not recorded in the
frame.

N

Methods and formulas
Methods and formulas are presented under the following headings:
Predictions for single-record interval-censored data

Predictions for multiple-record interval-censored data
Survivor curves for interval-censored data

Predictions for single-record interval-censored data

For single-record interval-censored data, each subject i contains one observation (¢, tyi,X;),
where t;; and t,,; define the observed time interval and x; is a 1 X p vector of covariate values. Let

3 be a p x 1 vector of estimates of regression coefficients for x;.

Case of baseline covariates. The survivor function for subject ¢ at time ¢ can be estimated as

Si(t) = exp{ —Z P exp(x;) }

tr<t

where ﬁk (k=1,...,m) are the estimates of the baseline hazard jumps at t1,...,%,, and t; <
-+ < t,,, are the distinct time points for all ¢;; > 0 and ¢,; < co.

predict newvar, statistic may be used after stintcox to predict various quantities, according
to each following statistic:

hr: R
newvar; = eXP(Xi 5)
xb: R
newvar; = X;(3
stdp:
newvar; = sé(x;3)
mgale:
newvar; = Si(ti) log ‘S:f(t”) - *S:f(tM) log S (tui)
Si(ti) — Si(tui)

For right-censored data, martingale residuals can be defined as the scores of the regression
parameters. This property can carry over to the interval-censored data for martingale-like residuals
mgale. Therefore, these residuals are expected to have mean zero and to be asymptotically uncorrelated.
Furthermore, these residuals are orthogonal to variables included in the model. Thus, we can use
them to assess the need to include other covariates in the model. See Farrington (2000) for details.
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predict newvar; newvar,,, statistic may be used after stintcox to predict a pair of quantities
for each observation for both the lower and upper endpoints of the time interval (¢;;,%,;), according
to each following statistic:

basehc: ~
newvary;, = I(tx = t1;)hi
newvary; = I(ty = ty;)hg
basechazard:
newvary; = Ho(t;;) = Z b,
kit <ti;
newvar,; = Ho(t Z B
kit <tui
basesurv:
newvary; = So(ty;) = CXP{ HO(tli)}
newvary; = So(ty;) = CXP{ HO(tm)}
csnell: ~
newvary; = —log S; (ty;)
newvar,; = — log §1(tm)

The Cox—Snell-like residuals are the estimates of the cumulative hazard function obtained from the
fitted model. They are computed separately for each of the two interval endpoints. For interval-
censored data, under the correct model assumption, these residuals are expected to approximate an
interval-censored sample from the standard exponential distribution. Therefore, they can be used
for checking the overall model fit. Cox—Snell-like residuals can never be negative and therefore
are not symmetric about zero. See Farrington (2000) for details.

Case of time-varying covariates with option tvc(). When the tvc() option is specified with
stintcox, predict modifies its calculations so that they include the time-varying components. Let
z; denote a 1 X g vector of covariates specified in the tvc() option of stintcox, and let g(t)
denote the function of time specified in the texp () option of stintcox. Leta ¢ X 1 vector 4 contain
the estimates of regression coefficients for z;. The survivor function for subject % at time ¢ can be
estimated as

§i(t) = CXP[ *Z Ek eXP{Xz’B + g(tk)zﬁ}]

te <t

Also, each following statistic changes to predict a pair of quantities for each observation for both
the lower and upper endpoints of the time interval (t;;,t,;):

hr:
newvary; = exp{xi,@ + g(tli)zfy}

newvary; = exp{xiﬁ + g(tui)ziﬁ}
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xb: >
newvary; = x;3 + g(ti;)z:y

newvar,; = x;3 + 9(tui)ziy
stdp:
~ R N . 1
newvary; = éé{xi/g + g(tli)zi’)’} = {XiE,BX; =+ 29(tli)zi2,8,~yx;' + g(tli)ZZiE’YZ;} ’

—~ ~ ~ ~ 1
newvary; = se{x;8+ g(tui)z:¥} = {Xizﬂxg + 29(%1’)21‘2@7% + g(tui)’z;E~z } 2

where 3 J&; and ﬁ’y are the estimated covariance matrices for 3 and 7, respectively, and b B is

the estimated covariance matrix between (3 and 7.

Predictions for multiple-record interval-censored data

For multiple-record interval-censored data, subject ¢ = 1,...,n may contain n; observations. And
each observation j = 1,...,n; for subject ¢ consists of (t;;,0;;,X;;), where t;; is the examination
time, J;; denotes whether the event of interest occurs between tij—1) and t;5 (t;j—1) = 0if j = 1),
and X;; records covariate values at ¢;;. Here x;; includes both baseline and time-varying covariates.
For baseline covariates, X;; = X;. Without loss of generality, we assume that the examination times
are sorted within the same subject. Let {; < --- < ¢, be the distinct observed time points for all
t;; > 0 and t,; < oo, where t;; and t,; define the observed time interval, based on (tij, 5ij), that
bracket the event of interest for subject ¢. The survivor function for subject 7 at the examination time
t;; can be estimated as

Si(tij) = exp{ —Z ]’Lk exp(xfkﬁ)}

tp<ti;

where hk (k=1,...,m) are the estimates of the baseline hazard j _]umps atty,...,t, and x, are the
covariates’ values for subject i at time t;,. For baseline covariates, X;, = X;; = X;. For time-varying
covariates, if 5 happens to be ¢;;, then X}, = X;;; otherwise, XJ;, is imputed using the imputation
rule specified in the tvcovimpute () option of stintcox.

predict newvar, statistic may be used after stintcox to predict various quantities for each
observation, according to each following statistic:

hr: N
newvar;; = exp(x;;03)
xb: N
newvar;;j = X;;3
stdp:
newvar;; = §&(x;;03)
mgale:

newvar;; =

§( ti—1)) — §i(tij)10g§i(tij)
i(t Si

ii—1)) — Si(tij)
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basehc: ~

newvar;; = I(ty = ti;)hg
basechazard:

newvar;; = Ho (tij) Z hk
k: tk Stzg
basesurv:
newvar;; = So(ti;) = exp {_Ho(tij)}

csnell:

newvar;; = — log §z(tzj)

When the tvc () option is specified with stintcox, predict computes the linear prediction xb

as X;; 8+ g(ti;)z;;7 instead of x;;3. Here ¢(t) denotes the function of time specified in the texp ()
option of stintcox, and z denotes the covariates specified in the tvc() option of stintcox. The
survivor function is then estimated as

Si(ti;) = exp[ —3" heexp{x};.B+ g(tk)zfﬁ}]

tp<tij

where z}; are defined similarly to x7; above but using the covariates z;;’s.

Survivor curves for interval-censored data

You can use the stcurve command to plot the survivor function after stintcox. stcurve can
also plot the failure, hazard, or cumulative hazard function.

Single-record interval-censored data. By default, stcurve plots the estimated survivor function
with covariates set to their mean values,

~

S(t) = exp{ —Z T exp(i@)} =

te<t

~

Sy (t) exp()

where X is a 1 X p mean vector of x. When the tvc () option is specified with stintcox, the plotted
survivor function becomes

S(t) = CXP[ > hrexp{xB + g(tk)ﬁ}}

tp <t

where Z is a 1 X ¢ mean vector of z. Alternatively, you can specify your own values in stcurve’s
at () option. For covariates that are not specified in the at () option, the mean values are used. For
details about the at () option, see Syntax of at() in [ST] adjustfor_option.
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Multiple-record interval-censored data. By default, stcurve plots the estimated survivor function
with covariates set to their overall mean values:

§(t) = exp{ fz I exp(i@)} = §0(t) exp(iﬁ)

te<t

And with the tvc () option of stintcox, the estimated survivor function is computed by default
as

~

S(t) = exp[ - hyexp{%B + g(t)77}]

t <t

Let X, be a 1 X p mean vector of X}, over all subjects at time t; and Z;, be a 1 X ¢ mean
vector of zJ; over all subjects at time ¢; (if the tvc () option is specified with stintcox). When
the attmeans option is specified, stcurve plots the following estimated survivor function:

o~

S(t) = exp{ —Z T CXP{ith + g(tk)itﬁ}}

te <t

If stcurve’s atframe () option is specified, X;, and Z;, in the above will be replaced with x; "
and z;", where X?ew and z;™" are user-specified values if time ¢ and the corresponding covariate
values are recorded in the frame Otherwise, x;”" and z;™" are imputed using the imputation rule
specified in the tvcovimpute () option of stlntcox. Then the survivor function can be estimated

as

~

3(0) = exp| - T exp{xieB + g(t1)21 3}

te <t

The failure, hazard, and cumulative hazard functions are calculated based on the survivor function
above.
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stintreg — Parametric models for interval-censored survival-time data

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

stintreg fits parametric models to survival-time data or, more precisely, event-time data that can
be uncensored, right-censored, left-censored, or interval-censored. These models are generalizations
of the models fit by streg to support interval-censored data. The supported survival models are
exponential, Weibull, Gompertz, lognormal, loglogistic, and generalized gamma. Proportional-hazards
(PH) and accelerated failure-time (AFT) parameterizations are provided.

With interval-censored data, the event-time variables are specified with the stintreg command
instead of using stset. Any st settings are ignored by stintreg.

Quick start

Weibull survival model with covariates x1 and x2 fit to interval-censored event-time data with lower
and upper endpoints t1 and t2

stintreg x1 x2, interval(tl t2) distribution(weibull)

Use AFT metric instead of PH metric
stintreg x1 x2, interval(tl t2) distribution(weibull) time

Different intercepts and ancillary parameters for strata identified by svar
stintreg x1 x2, interval(tl t2) distribution(weibull) strata(svar)

Lognormal survival model
stintreg x1 x2, interval(tl t2) distribution(lognormal)

Same as above, but also model the logarithm of ancillary parameter as the linear combination of
covariates z1 and z2

stintreg x1 x2, interval(tl t2) distribution(lognormal) ///
ancillary(zl z2)

Menu

Statistics > Survival analysis > Regression models > Interval-censored parametric survival models

302
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Syntax
stintreg [indepvars] [zf] [in} [weight] , interval({; t,) distribution(distname)
[options]
options Description
Model
*interval(i; t,) lower and upper endpoints for the event-time interval
noconstant suppress constant term
*distribution(distname) specify survival distribution
time use accelerated failure-time metric
Model 2
strata(varname) strata ID variable
offset (varname) include varname in model with coefficient constrained to 1
ancillary (varlist) use varlist to model the first ancillary parameter
anc2 (varlist) use varlist to model the second ancillary parameter
constraints (constraints) apply specified linear constraints
epsilon(#) tolerance to treat observations as uncensored; default is
epsilon(le-6)
SE/Robust
vce (veetype) vcetype may be oim, robust, cluster clustvar, opg,
bootstrap, or jackknife
Reporting
level (#) set confidence level; default is 1level (95)
nohr do not report hazard ratios
tratio report time ratios
noheader suppress header from coefficient table
nocnsreport do not display constraints
display_options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize_options control the maximization process; seldom used
collinear keep collinear variables
coeflegend display legend instead of statistics

*interval(t; t,) and distribution(dismame) are required.
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distname Description

exponential exponential survival distribution
gompertz Gompertz survival distribution
Elogistic loglogistic survival distribution
llogistic synonym for loglogistic

weibull Weibull survival distribution
lognormal lognormal survival distribution
1normal synonym for lognormal

ggamma generalized gamma survival distribution

varlist may contain factor variables; see [U] 11.4.3 Factor variables.

bootstrap, by, collect, fp, jackknife, nestreg, statsby, stepwise, and svy are allowed; see [U] 11.1.10 Prefix
commands.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.

vce(), noheader, and weights are not allowed with the svy prefix; see [SVY] svy.

fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.

collinear and coeflegend do not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options
_ (Wogel

interval(#; t,) specifies two time variables that contain the endpoints of the event-time interval.
t; represents the lower endpoint, and ¢, represents the upper endpoint. interval () is required.

The interval time variables ¢; and ¢,, should have the following form:

Type of observations ot

S

uncensored a=]
interval-censored (
left-censored (
left-censored (

—_ L
. >t o o

right-censored (a,+o0
missing

missing 0

noconstant; see [R] Estimation options.
distribution(distname) specifies the survival model to be fit. distribution() is required.

time specifies that the model be fit in the accelerated failure-time metric rather than in the log
relative-hazard metric or proportional hazards metric. This option is valid only for the exponential
and Weibull models, because these are the only models that have both a proportional hazards and
an accelerated failure-time parameterization. Regardless of metric, the likelihood function is the
same, and models are equally appropriate viewed in either metric; it is just a matter of changing
the interpretation.
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Model 2

strata(varname) specifies the stratification ID variable. Observations with equal values of the
variable are assumed to be in the same stratum. Stratified estimates (with equal coefficients across
strata but intercepts and ancillary parameters distinct for each stratum) are then obtained. varname
may be a factor variable; see [U] 11.4.3 Factor variables.

offset (varname); see [R] Estimation options.

ancillary (varlist) specifies that the ancillary parameter for the Weibull, lognormal, Gompertz, and
loglogistic distributions and that the first ancillary parameter (o) of the generalized log-gamma
distribution be estimated as a linear combination of varlist.

When an ancillary parameter is constrained to be strictly positive, the logarithm of the ancillary
parameter is modeled as a linear combination of varlist.

anc2(varlist) specifies that the second ancillary parameter (k) for the generalized log-gamma
distribution be estimated as a linear combination of varlist.

constraints (constraints); see [R] Estimation options.

epsilon(#) specifies that observations with ¢, —¢; < # be treated as uncensored. The default is
epsilon(le-6).

SE/Robust

vce (veetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), that
allow for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods
(bootstrap, jackknife); see [R] vce_option.

Reporting

level (#); see [R] Estimation options.

nohr, which may be specified at estimation or upon redisplaying results, specifies that coefficients
rather than exponentiated coefficients be displayed, that is, that coefficients rather than hazard ratios
be displayed. This option affects only how coefficients are displayed, not how they are estimated.

This option is valid only for models with a natural proportional hazards parameterization: exponen-
tial, Weibull, and Gompertz. These three models, by default, report hazard ratios (exponentiated
coefficients).

tratio specifies that exponentiated coefficients, which are interpreted as time ratios, be displayed.
tratio is appropriate only for the loglogistic, lognormal, and generalized gamma models, or for
the exponential and Weibull models when fit in the accelerated failure-time metric.

tratio may be specified at estimation or upon replay.
noheader suppresses the output header, either at estimation or upon replay.
nocnsreport; see [R] Estimation options.

display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat (% fint), pformat (% fint),
sformat (% fimt), and nolstretch; see [R] Estimation options.




306 stintreg — Parametric models for interval-censored survival-time data

Maximization

maximize_options: difficult, technique (algorithm_spec), iterate(#), [no] log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance (#),
nrtolerance(#), nonrtolerance, and from(init_specs); see [R] Maximize. These options are
seldom used.

Setting the optimization type to technique (bhhh) resets the default vcetype to vce (opg).

The following options are available with stintreg but are not shown in the dialog box:

collinear, coeflegend; see [R] Estimation options.

Remarks and examples

Remarks are presented under the following headings:

Introduction
Types of interval-censoring

Case II interval-censored data

Case I interval-censored data
Parameterization of ancillary parameters
Stratified estimation

Introduction

stintreg fits parametric models to survival-time data, which can be uncensored, right-censored,
left-censored, or interval-censored. These models are generalizations of the models fit by streg,
because they extend the censoring mechanism beyond right-censoring. In the context of interval-
censored data, the term “failure-time” or, more generally, “event-time data” is more appropriate than
“survival-time data”, so we will use it from now on.

In survival analysis, we find different types of censored data. Among them, right-censored data have
been studied extensively and can be analyzed using all of Stata’s survival commands, including streg
and stcox. Research on interval-censored data has also been popular; see, for example, Finkelstein
and Wolfe (1985), Odell, Anderson, and D’ Agostino (1992), Rabinowitz, Tsiatis, and Aragon (1995),
Huang and Wellner (1997), Lindsey (1998), Lindsey and Ryan (1998), Sun (2006), and Sun and
Li (2014). Interval-censoring occurs when the failure time of interest is not exactly observed but is
known only to lie within some interval (for example, Kalbfleisch and Prentice 2002). Uncensored,
right-censored, and left-censored data are special cases of interval-censored data. In these cases, the
interval reduces to a single point, is unbounded on the right, or is bounded by zero on the left.

Interval-censored event-time data arise in many areas including medical, epidemiological, financial,
and sociological studies. A study may lead to event-time data with different types of censoring.
Consider a medical study that involves periodic follow-ups with patients who had breast cancer. In
this case, patients are tested on a regular basis, but the time to the recurrence of the cancer may not
be measured exactly. If cancer recurs before the first visit, the observation is called left-censored. If
cancer recurs between two visits, the observation is called interval-censored. If there is no recurrence
by the last visit, the observation is right-censored. To analyze such data, you may fit parametric
survival models using stintreg.

Regardless of the type of censoring, stintreg requires the survival outcome to be stored in the
dataset as interval data. That is, two time variables, #; and ¢,, that contain the endpoints of the
event-time interval must be specified in the interval() option. If the data are left-censored, the
lower endpoint is zero and may be represented in ¢; by either a missing value (.) or zero. If the
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data are right-censored, the upper endpoint is 400 and is represented in ¢, by a missing value.
Uncensored data are represented by the two endpoints that are equal. If 0 < ¢; < £, < oo, the data
are interval-censored. Truly missing values must be represented by missing values in both ¢; and ¢,
or by a 0 in ¢; and a missing value in ¢,,. Typing stset is unnecessary, and stintreg will ignore
any settings of stset for the usual trivariate response variable (tg,t,d). stintreg does not support
data exhibiting delayed entry, gaps, time-varying covariates, and multiple failures.

Two often-used parametric models for adjusting survivor functions for the effects of covariates are
the AFT models and the multiplicative or PH models. The survival models supported by stintreg
are exponential, Weibull, Gompertz, lognormal, loglogistic, and generalized gamma. The lognormal,
loglogistic, and generalized gamma models are implemented as AFT models. The exponential and
Weibull models are implemented as both AFT and PH models, and the Gompertz model is implemented
only in the PH metric. See Remarks and examples in [ST] streg for more details about the supported
models and distributions.

Types of interval-censoring

Interval-censoring can occur in different forms, and each form represents one type of interval-
censored event-time data. stintreg accommodates two important types of interval-censored data
that are commonly used in practice: case II interval-censored data and case I interval-censored data.
Case II interval-censored data are also referred to as general interval-censored data, and case |
interval-censored data are also referred to as current status data. We describe each censoring type in
detail below. Also see Sun (2006) for more information about different types of interval censoring.

Case Il interval-censored data

The most general case of interval-censoring is case II interval-censoring. This type of interval-
censoring occurs when we do not know the exact failure time ¢, but only know that the failure happened
within a random time interval (t;, ¢, |, or before the right endpoint of the time interval t,, or after
the left endpoint of the time interval ¢;. The following is an example of case II interval-censored
data, which contain left-, right-, and interval-censored observations.

> Example 1: Case Il interval-censoring

Sun (2006) presented parametric analysis of a retrospective study of early breast cancer pa-
tients, originally from Finkelstein and Wolfe (1985), that compared the cosmetic effects of two
cancer treatments: radiotherapy alone versus radiotherapy plus adjuvant chemotherapy. There were
46 radiotherapy-only patients and 48 radiation-plus-chemotherapy patients who were observed every
four to six months. Patients had different visit times and durations between visits. At each visit, the
physician recorded a measure of breast retraction. The event of interest was breast retraction. Because
patients were observed at random follow-up times, the exact time of breast retraction was not observed
and was known only to fall in the interval between visits. The data consist of two interval variables,
ltime and rtime, that represent the last clinic visit time when breast retraction had not yet occurred
and the first clinic visit time when breast retraction was detected.

To study the effect of treatment on breast retraction, we fit a Weibull model of time to breast
retraction on treatment treat using stintreg. Unlike streg, in which the survival variables are
set using stset and do not appear in the command, the interval variables 1time and rtime are
required for stintreg and are specified in the interval() option:
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. use https://www.stata-press.com/data/r18/cosmesis
(Cosmetic deterioration of breast cancer patients)

. stintreg i.treat, interval(ltime rtime) distribution(weibull)

Fitting constant-only model:

Iteration 0: Log likelihood = -200.17506
Iteration 1: Log likelihood = -175.09443
Iteration 2: Log likelihood = -155.03621
Iteration 3: Log likelihood = -149.07347
Iteration 4: Log likelihood = -148.7602
Iteration 5: Log likelihood = -148.65639
Iteration 6: Log likelihood = -148.65584

Iteration 7: Log likelihood = -148.65584

Fitting full model:
Iteration 0: Log likelihood = -148.65584

Iteration 1: Log likelihood = -143.53903
Iteration 2: Log likelihood = -143.19322
Iteration 3: Log likelihood = -143.19228
Iteration 4: Log likelihood = -143.19228
Weibull PH regression Number of obs = 94
Uncensored = 0
Left-censored = 5
Right-censored = 38
Interval-cens. = 51
LR chi2(1) = 10.93
Log likelihood = -143.19228 Prob > chi2 = 0.0009
Haz. ratio Std. err. z P>|z| [95% conf. intervall
treat
Radio+Chemo 2.498526 .7069467 3.24 0.001 1.434961 4.350383
_cons .0018503 .0013452 -8.66  0.000 .000445 .007693
/1n_p .4785786 .1198972 3.99 0.000 .2435844 .7135729
P 1.613779 .1934876 1.275814 2.041271
1/p .6196635 .0742959 .4898907 .7838134

Note: _cons estimates baseline hazard.

The header above the coefficient table summarizes censored and uncensored observations. There
are 38 patients who did not experience breast retraction by the last visit, resulting in right-censored
observations. There are 5 patients who had breast retraction before their first follow-up, resulting in
left-censored observations. There are no uncensored observations, so the remaining 51 observations
are interval-censored.

By default, the hazard ratios are reported instead of the natural coefficients. The estimated hazard
ratio of the radiotherapy plus chemotherapy is approximately 2.5 with a 95% confidence interval of
[1.435,4.350], indicating significantly higher risk to develop breast retraction using this treatment than
radiotherapy only. In other words, the adjuvant chemotherapy increases the risk of breast retraction.
The shape parameter is estimated as In(p), but p and 1/p = o are also reported. The estimated p is
greater than 1, indicating that the hazard of breast retraction increases with time.
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By default, stintreg uses the PH parameterization for the Weibull model, but we can specify the
time option to request the AFT parameterization.

. stintreg i.treat, interval(ltime rtime) distribution(weibull) time

(iteration log omitted)

Weibull AFT regression Number of obs = 94
Uncensored = 0
Left-censored = 5
Right-censored = 38
Interval-cens. = 51
LR chi2(1) = 10.93
Log likelihood = -143.19228 Prob > chi2 = 0.0009
Coefficient Std. err. z P>zl [95% conf. intervall]

treat
Radio+Chemo -.5674261 .175814 -3.23 0.001 -.9120151 -.2228371
_cons 3.899163 .1405986 27.73  0.000 3.623595 4.174731
/1n_p .4785789 .119897 3.99 0.000 .2435851 .7135726
P 1.613779 .1934873 1.275815 2.041271
1/p .6196634 .0742958 .4898909 .7838128

With the AFT parameterization, coefficients are reported by default, but we can use the tratio option
to display time ratios.

N

> Example 2: Comparing distributions

To compare different models, let’s fit the model from example 1 but use the generalized gamma
distribution instead. The hazard function of the generalized gamma distribution is extremely flexible,
allowing for many different shapes. Weibull, exponential, and lognormal distributions are all special
cases of the generalized gamma distribution. Therefore, we can use the generalized gamma model
to evaluate and select an appropriate parametric model for the data. When x = 0, the generalized
gamma model reduces to the lognormal model. When x = 1, the generalized gamma model reduces
to the Weibull model.
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. stintreg i.treat, interval(ltime rtime) distribution(ggamma)

(iteration log omitted)

Generalized gamma AFT regression Number of obs = 94
Uncensored = 0
Left-censored = 5
Right-censored = 38
Interval-cens. = 51
LR chi2(1) = 11.26
Log likelihood = -142.71767 Prob > chi2 = 0.0008
Coefficient Std. err. z P>|z| [95% conf. intervall

treat
Radio+Chemo -.5696386 .1686355 -3.38 0.001 -.9001581  -.2391192
_cons 4.009316 .1721275 23.29 0.000 3.671952 4.346679
/1nsigma -.7016455 .2793936 -2.51 0.012 -1.249247  -.1540441
/kappa 1.532208 .6176602 2.48 0.013 .321616 2.7428
sigma .4957689 .1385146 .2867207 .8572342

The Wald test of Hg: k = 0 is reported in the output above. The p-value is 0.013, indicating
that the lognormal model is not appropriate. We can test the hypothesis that kK = 1 using the test
command:

. test /kappa = 1

(1) [/lkappa = 1

chi2( 1) 0.74
Prob > chi2 = 0.3889

The above Wald test of Hy: £ = 1 has a p-value of 0.39, suggesting that the Weibull model may
be appropriate for these data.

4

Case | interval-censored data

Case I interval-censored data arise when the only survival information available is whether the
event of interest occurred before or after the observed time, leading to data in which an observation
is either left-censored or right-censored. As such, case I interval-censored data can be viewed as
a special case of case II interval-censored data without uncensored and interval-censored on (a, b
observations. Case I interval-censored data occur when subjects are observed only once, and thus
we can only know whether the event had already happened before we observed them. Such data are
common in demographical studies, where they are also known as current status data. In addition to
demographical studies, case I interval-censored data occur in other fields including epidemiological
studies, cross-sectional studies, and tumorigenicity experiments. See Huang and Wellner (1997) and
Sun (2006) for more information.

The stintreg command requires that case I interval-censored data are recorded by two interval time
variables that identify which observations are left-censored and which observations are right-censored.
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> Example 3: Case | interval-censoring

We consider the data from Hoel and Walburg (1972) on nonlethal lung tumors for 144 male mice.
The death time of each mouse (death) and an indicator of whether the lung tumor was present by
the time of death (status) were reported. The type of environment (group) in which those mice
lived, either conventional environment (CE) or germ-free environment (GE), was also reported. The
goal of this study was to test whether different types of environment had influence on the time of
tumor onset for those mice. The lung tumor was known to be nonlethal for the mice. Therefore, the
tumor onset time could not be directly observed. The only available information was the observed
death time and whether or not the tumor was detected at the time of death.

. use https://www.stata-press.com/data/r18/lungtumor
(Lung tumor data for mice)

. table group status

Tumor status
No tumor With tumor Total

Environment
CE 69 27 96
GE 13 35 48
Total 82 62 144

. list in 26/30

group status death
26. CE With tumor 811
27. CE With tumor 839
28. CE No tumor 45
29. CE No tumor 198
30. CE No tumor 215

Case I interval-censored data are often stored as shown above: each subject has one variable that
represents the observation time and one variable that represents the status of the event of interest.
To use stintreg, we must create two time variables to contain the lower and upper endpoints of
the intervals. Because case I interval-censored data are either left-censored or right-censored, we first
create two new variables, 1time and rtime, that are both equal to the observation time, death, then
replace the lower endpoint, 1time, with a missing value if the tumor was detected (status = 1) and
replace the upper endpoint, rtime, with a missing value if the tumor was not detected (status = 0).

. generate ltime = death
. generate rtime = death

. replace ltime = . if status ==
(62 real changes made, 62 to missing)
. replace rtime = . if status ==
(82 real changes made, 82 to missing)

. list in 26/30

group status death 1ltime rtime
26. CE With tumor 811 . 811
27. CE  With tumor 839 . 839
28. CE No tumor 45 45
29. CE No tumor 198 198
30. CE No tumor 215 215
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Now, we fit the model using the exponential distribution.

. stintreg i.group, interval(ltime rtime) distribution(exponential)

(iteration log omitted)

Exponential PH regression Number of obs = 144
Uncensored = 0
Left-censored = 62
Right-censored = 82
Interval-cens. = 0
LR chi2(1) = 16.09
Log likelihood = -81.325875 Prob > chi2 = 0.0001
Haz. ratio Std. err. z P>|z| [95% conf. intervall
group
GE 2.90202 .7728318 4.00 0.000 1.721942 4.890828
_cons .0005664 .0001096 -38.63 0.000 .0003876 .0008277

Note: _cons estimates baseline hazard.

The estimated hazard for the mice in the germ-free environment is approximately three times
the hazard for those in the conventional environment. In other words, the mice in the germ-free
environment had higher lung tumor incidence than those in the conventional environment.

4

Parameterization of ancillary parameters

stintreg’s ancillary() and anc2() options allow us to parameterize ancillary parameters in
terms of covariates. By default, all ancillary parameters are estimated as being constant. By specifying,
for example,

. stintreg x1 x2, interval(ltime rtime) distribution(weibull) ancillary(zl z2)

the logarithm of the ancillary parameter p is modeled using the linear predictor of z1 and z2. The
anc2() option models the second ancillary parameter x for the generalized log-gamma distribution.

> Example 4: Modeling the ancillary parameters

Consider the data described in table 2.3 of Sun (2006) (originally from Richman, Grimes, and
Lagakos 1990) on times to resistance to the drug zidovudine for AIDS patients. Covariates of interest
are the stage of the disease, stage (0 = early stage, 1 = late stage) and the dose level of the
treatment, dose (0 = low dose, 1 = high dose). The time intervals, in months, are stored in variables
1ltime and rtime.

To investigate whether stage has any effect on time to drug resistance, we fit the Weibull model
using stintreg. To later compare results with another model that reports coefficients, we use the
nohr option here to display the untransformed coefficients.
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. use https://www.stata-press.com/data/r18/aids, clear
(Time to zidovudine resistance)

. stintreg i.stage, interval(ltime rtime) distribution(weibull) nohr

(iteration log omitted)

Weibull PH regression Number of obs 31
Uncensored = 0

Left-censored = 15

Right-censored = 13

Interval-cens. = 3

LR chi2(1) = 10.02

Log likelihood = -13.27946 Prob > chi2 = 0.0016
Coefficient Std. err. z P>zl [95% conf. intervall]

1.stage 1.910652 .6604416 2.89 0.004 .6162103 3.205094
_cons -7.952868 3.000563 -2.65 0.008 -13.83386 -2.071872

/1n_p 1.036662 .397829 2.61 0.009 .2569319 1.816393

P 2.81979 1.121794 1.292957 6.149635

1/p .3546364 .1410846 .1626113 . 7734209

Out of the 31 patients, 13 patients are right-censored, 15 patients are left-censored, and only 3
patients are interval-censored. The estimated coefficient for patients in their late stage of the disease
is 1.91; their hazard of resisting zidovudine is approximately exp(1.91) = 6.75 times the hazard for
patients in their early stage.

Suppose we believe that the hazards for different dose levels have different shape parameters. We
can accommodate this by specifying the ancillary() option.

. stintreg i.stage, interval(ltime rtime) distribution(weibull) ancillary(i.dose)
note: option mohr is implied if option strata() or ancillary() is specified.

(iteration log omitted)

Weibull PH regression Number of obs 31
Uncensored = 0
Left-censored = 15
Right-censored = 13
Interval-cens. = 3
LR chi2(1) = 12.20
Log likelihood = -11.214877 Prob > chi2 = 0.0005
Coefficient Std. err. z P>zl [95% conf. intervall]

ltime
1.stage 2.795073 1.1675 2.39 0.017 .5068147 5.083331
_cons -10.8462 4.233062 -2.56 0.010 -19.14285 -2.549553

In_p
1.dose .1655302 .0874501 1.89 0.058 -.0058689 .3369292
_cons 1.252361 .4143254 3.02 0.003 .4402978 2.064424




314 stintreg — Parametric models for interval-censored survival-time data

With the ancillary() option, results are displayed as coefficients by default; see the technical

note below. From the above results, ln( Jlow = 1.25 for patients with low dose and ln( high =
1.25 + 0.17 = 1.42 for patients with high dose. Thus, pjow = 3.49 and Dhigh = 4.14. When we
combine this with the main equation in the model, the estimated hazards are

1l
—_

R 3.49 x t?'49_1 X exp (—10.85 + 2.80 x stagej) if dose =0
(t51%;)

4.14 % t?'M_l X exp (710.85 + 2.80 x stagej) if dose

Q Technical note

When fitting PH models, stintreg, by default, displays hazard ratios. If the strata() option
or the ancillary() option (as in our previous example) is specified, stintreg reports coefficients
instead. If either of these options is specified, ancillary parameters are no longer constant and are
modeled as a function of covariates specified in those options. If any of the covariates from the
main equation are used to model ancillary parameters, hazard ratios lose their interpretation. As a
precaution, stintreg always displays results as coefficients when those options are used. If we want
to compare results with PH models with constant ancillary parameters, we can use the nohr option
to display coefficients.

The above argument also applies to time ratios when fitting AFT models. For this reason, the
tratio option is not allowed with AFT models whenever strata(), ancillary(), or anc2() is
specified.

Q

Stratified estimation

We can fit a stratified model by specifying the strata(varname) option. A stratified model means
that the coefficients on the covariates are the same across strata, but the intercept and ancillary
parameters are allowed to vary for each level of the strata variable.

> Example 5: Fitting a stratified model

Continuing with example 4, suppose that we believe that dose affects both the scale and shape of
the hazard, and the effect of stage is the same for each level of dose. We refit the Weibull model,
but now we also stratify on dose:
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. stintreg i.stage, interval(ltime rtime) distribution(weibull) strata(dose)
note: option mohr is implied if option strata() or ancillary() is specified.

(iteration log omitted)

Weibull PH regression Number of obs = 31
Uncensored = 0
Left-censored = 15
Right-censored = 13
Interval-cens. = 3
LR chi2(2) = 12.40
Log likelihood = -11.115197 Prob > chi2 = 0.0020
Coefficient Std. err. z P>zl [95% conf. intervall]

ltime
1.stage 2.711532 1.084146 2.50 0.012 .5866441 4.83642
1.dose -2.661873 5.883975 -0.45 0.651 -14.19425 8.870506
_cons -9.143  4.930796 -1.85 0.064 -18.80718 .5211833

In_p
1.dose .4538942 .6700991 0.68 0.498 -.8594759 1.767264
_cons 1.051935 .6190549 1.70 0.089 -.1613906 2.26526

The indicator for level 1 of dose is added to the main equation and to the ancillary equation; level O
is the baseline and is modeled by the constant terms.

Note that the specification above is the same as fitting the following model:

stintreg i.stage i.dose, interval(ltime rtime) distribution(weibull) ///
ancillary(i.dose)

4

By using ancillary() or strata(), we may fit a wide variety of models; see Stratified estimation
in [ST] streg for details. These models may be compared using Wald or likelihood-ratio tests when
the models in question are nested or by using the AIC for nonnested models. Modeling of ancillary
parameters and stratification is also available for AFT models.

Stored results

stintreg stores the following in e():

Scalars
e(N) number of observations
e(N_unc) number of uncensored observations
e(N_1lc) number of left-censored observations
e(N_rc) number of right-censored observations
e(N_int) number of interval-censored observations
e(k) number of parameters
e(k_eq) number of equations in e (b)
e(k_eq_model) number of equations in overall model test
e(k_aux) number of auxiliary parameters
e(k_dv) number of dependent variables
e(df_m) model degrees of freedom
e(11) log likelihood
e(11_0) log likelihood, constant-only model
e(N_clust) number of clusters
e(chi2) x2
e(aux_p) ancillary parameter (weibull)

e (gamma) ancillary parameter (gompertz, loglogistic)
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e(sigma) ancillary parameter (ggamma, lnormal)
e (kappa) ancillary parameter (ggamma)
e(epsilon) tolerance for uncensored observations
e(p) p-value for model test
e(rank) rank of e(V)
e (rank0) rank of e(V), constant-only model
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, O otherwise
Macros
e(cmd) model or regression name
e(cmd2) stintreg
e(cmdline) command as typed
e(depvar) names of time interval variables specified in interval()
e(distribution) distribution
e(strata) stratum variable
e(title) title in estimation output
e(clustvar) name of cluster variable
e (wtype) weight type
e (wexp) weight expression
e(vce) veetype specified in vce ()
e(vcetype) title used to label Std. err.
e(frm2) hazard or time
e(chi2type) Wald or LR; type of model x? test
e(offsetl) offset for main equation
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml_method) type of m1 method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(properties) bV
e(estat_cmd) program used to implement estat
e(predict) program used to implement predict
e(predict_sub) predict subprogram
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved
Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(V) variance—covariance matrix of the estimators
e(V_modelbased) model-based variance
Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,
and confidence intervals

Note that results stored in r () are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.
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Methods and formulas
Methods and formulas are presented under the following headings:
Introduction

Distributions and parameterizations
Parameter estimation using interval-censored data

Introduction

Consider event-time data that consists of n independent observations. Let ¢; represent the survival
time for the event of interest for observation j, j =1,...,n.

For a given survivor function, .S (t), the density function is obtained as

£t =~ s(1)

and the hazard function (the instantaneous rate of failure) is obtained as

) logS()
S(t) dt

Let x; denote a vector of covariates for observation j, and let 3 denote a vector of regression
coefficients. Let S;(¢) = S(t|x = x;) be the covariate-adjusted survivor function and similarly define
h](t) and fj (t)

stintreg supports six survival distributions: exponential, Weibull, Gompertz, lognormal, loglo-
gistic, and generalized gamma; and two parameterizations for the effects of covariates: PH and AFT.
The parameterization and ancillary parameters for each distribution are summarized in table 1 below.

Distributions and parameterizations
The PH model assumes that the hazard function has the form
hj (t) = h() (t) eXp (Xj,@)
for some baseline hazard function ho(t). For the stintreg command, ho(t) is assumed to be
parametric and the supported distributions are exponential, Weibull, and Gompertz. This model

specifies that the covariates have a multiplicative effect on the hazard function. The covariate-adjusted
survivor function S;(¢) is obtained as

S5() = {So(t)} XPCsD)
. . . t
where the baseline survivor function So(t) = exp{—[,ho(s)ds}.
In the AFT model, the natural logarithm of the survival time, logt, is expressed as a linear function

of the covariates, yielding the linear model

logtj = Xjﬂ —+ Zj
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where z; is the error term with density f(). The distributional form of the error term determines
the regression model. If we let f() be the normal density, the lognormal regression model for ¢,
is obtained. Similarly, by letting f() be the logistic density, the loglogistic regression is obtained.
Setting f() equal to the extreme-value density yields the exponential and the Weibull regression
models. The effect of covariates is also multiplicative, but on time ¢;, by a factor of exp(—x;03).
Depending on whether this factor is greater or less than one, time is either accelerated or decelerated.

Table 1 below describes the supported survival models, their parameterizations, and the corresponding
ancillary parameters.

Table 1. Parametric survival distributions supported by stintreg

Ancillary

Distribution Metric  Survivor function Parameterization parameters
Exponential PH exp(—)\-t») Aj = exp(x,3)
Exponential AFT exp(— ) Aj = exp(—x;0)
Weibull PH exp(—A;t}) Aj = exp(x;3) D
Weibull AFT exp(— )\ tp ) A = exp(—px;8) p
Gompertz PH exp{—\;7 (" — 1)} \; = exp(x;0) v
Lognormal AFT 1-@ {%} wi =%, o
Loglogistic AFT {14 (\t)/t Aj = exp(—x;8) v
Generalized gamma

if k>0 AFT lff(v,u) i = x;08 o, K

ifk=0 AFT 1—-2(2) i =X;0 o, K

if k<0 AFT I('y,u) i = x;3 o, K

where ®(2) is the standard normal cumulative distribution. For the generalized gamma, v = |x|~2,
u = ~yexp(|k|z), I(a, ) is the incomplete gamma function, and z = sign(x){ log (t;) — u;}/o.

Parameter estimation using interval-censored data

Suppose that ¢; is not observed and that only the lower and upper endpoints of the time interval,
t;; and t,;, where t; € (t;;,t,;], are observed. stintreg estimates 3 and the ancillary parameters
via maximum likelihood. For interval-censored observations, the log likelihood is given by

log L = Z log {8 (t1) — Sj(tu;)}

Implicit in the above log-likelihood expression are the regression parameters, (3, and the ancillary
parameters, because both are components of the chosen S;(t); see table 1.
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For case II interval-censored data, the log likelihood can be written as

log L =Y log fi(ti;) + > logS;(ty;) + Y log{1 — S;(tu;)}

jeuc JERC JeELC
+3log{S;(t;) — S;(tu;)}
jerc

where the set UC contains uncensored observations, RC contains right-censored observations, LC
contains left-censored observations, and IC contains interval-censored observations.

For case I interval-censored data, with only right-censored and left-censored observations, the log
likelihood reduces to

logL = Z log S; (1) + Z log {1 — S;(tu;)}

JERC jeLC

Specifying ancillary(), anc2(), or strata() will parameterize the ancillary parameter(s)
by using the linear predictor, z;c., where the covariates, z;, need not be distinct from x;. Here
stintreg will report estimates of «, in addition to estimates of 3. The log likelihood here is simply
the log likelihood given above, with z;c, substituted for the ancillary parameter. If the ancillary
parameter is constrained to be strictly positive, its logarithm is parameterized instead; that is, we
substitute the linear predictor for the logarithm of the ancillary parameter in the above log likelihood.
The gamma model has two ancillary parameters, o and x; we parameterize o by using ancillary ()
and k by using anc2(), and the linear predictors used for each may be distinct. Specifying strata()
includes indicator variables for the strata in the main equation, and uses them to parameterize any
ancillary parameters that exist for the chosen model.

This command supports the Huber/White/sandwich estimator of the variance and its clustered
version using vce (robust) and vce(cluster clustvar), respectively. See [P] _robust, particularly
Maximum likelihood estimators and Methods and formulas. If the assumption of independence of
the observations is highly questionable, this means that the conventional estimate of variance is not
appropriate. We strongly advise that you use the vce(robust) and vce(cluster clustvar) options
here.

stintreg also supports estimation with survey data. For details on VCEs with survey data, see
[SVY] Variance estimation.
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Postestimation commands

The following postestimation commands are of special interest after stintreg:

Command Description

*estat gofplot produce goodness-of-fit plot

stcurve plot the survivor, failure, hazard, or cumulative hazard function

*estat gofplot is not appropriate with svy estimation results.

The following standard postestimation commands are also available:

Command Description
contrast contrasts and ANOVA-style joint tests of estimates
estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian in-

formation criteria (AIC, CAIC, AICc, and BIC)
estat summarize summary statistics for the estimation sample

estat vce variance—covariance matrix of the estimators (VCE)
estat (svy) postestimation statistics for survey data
estimates cataloging estimation results
etable table of estimation results
*hausman Hausman’s specification test
lincom point estimates, standard errors, testing, and inference for linear combinations of
coefficients
*lrtest likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of coefficients
predict hazard ratios, survivor functions, influence statistics, residuals, etc.
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
suest seemingly unrelated estimation
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

*hausman and 1lrtest are not appropriate with svy estimation results.
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predict

Description for predict

predict creates a new variable containing predictions such as median and mean survival times,
hazards, hazard ratios, linear predictions, standard errors, probabilities, and Cox—Snell-like and
martingale-like residuals.

Menu for predict

Statistics > Postestimation

Syntax for predict

predict [type] newvar [lf] [in] [, statistic opzi()ns]
predict [type] newvary; newvary, [zf} [in] , Statistic2 [options]

predict [type] stub* [lf] [in], scores

statistic Description
Main

median time median survival time; the default

median lntime median In(survival time)

mean time mean survival time

mean lntime mean In(survival time)

hr hazard ratio, also known as the relative hazard

xb linear prediction x;3

stdp standard error of the linear prediction; SE(x;03)
*mgale martingale-like residuals

statistic2 Description
Main

hazard hazard for interval endpoints ¢; and ¢,,

surv survivor probability for interval endpoints ¢; and %,
*csnell Cox—Snell-like residuals for interval endpoints ¢; and ¢,

options Description
Main

nooffset ignore the offset () variable specified in stintreg

00s make statistic and statistic2 available in and out of sample
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Unstarred statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only
for the estimation sample. Starred statistics are calculated for the estimation sample by default, but the oos option
makes them available both in and out of sample.

The predicted hazard ratio, option hr, is available only for the exponential, Weibull, and Gompertz models. The mean
time and mean lntime options are not available for the Gompertz model.

csnell and mgale are not allowed with svy estimation results.

Options for predict
Main

median time calculates the predicted median survival time in analysis-time units. When no options
are specified with predict, the predicted median survival time is calculated for all models.

median lntime calculates the natural logarithm of what median time produces.

mean time calculates the predicted mean survival time in analysis-time units. This option is not
available for Gompertz regression.

mean lntime predicts the mean of the natural logarithm of time. This option is not available for
Gompertz regression.

hazard calculates the predicted hazard for both the lower endpoint ¢; and the upper endpoint £,, of
the time interval.

hr calculates the hazard ratio. This option is valid only for models having a proportional-hazards
parameterization.

xb calculates the linear prediction from the fitted model. That is, you fit the model by estimating a set of
parameters, 3o, 51, 52, . . ., Bk, and the linear prediction is J; = Bo+§1$1j +§2m2j +-- ~+Bk:vkj,
often written in matrix notation as 3j; = ij.

The 1, x2j, ..., Tk used in the calculation are obtained from the data currently in memory
and need not correspond to the data on the independent variables used in estimating 3.

stdp calculates the standard error of the linear prediction, that is, the standard error of ¥;.

surv calculates each observation’s predicted survivor probabilities for both the lower endpoint ¢; and
the upper endpoint ¢,, of the time interval.

csnell calculates the Cox—Snell-like residuals for both the lower endpoint ¢; and the upper endpoint
t,, of the time interval.

mgale calculates interval-censored martingale-like residuals, which are an interval-censored version
of martingale residuals for right-censored data.

nooffset is relevant only if you specified offset(varname) with stintreg. It modifies the
calculations made by predict so that they ignore the offset variable; the linear prediction is
treated as x/3 rather than x3 + offset.

oos makes csnell and mgale available both in and out of sample. oos also dictates that summations
and other accumulations take place over the sample as defined by if and in. By default, the
summations are taken over the estimation sample, with if and in merely determining which values
of newvar, newvar, and newvar,, are to be filled in once the calculation is finished.

scores calculates equation-level score variables. The number of score variables created depends upon
the chosen distribution.

The first new variable will always contain Oln L/0(x;/3).

The subsequent new variables will contain the partial derivative of the log likelihood with respect
to the ancillary parameters.
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margins

Description for margins

margins estimates margins of response for median and mean survival times, hazard ratios, and
linear predictions.

Menu for margins

Statistics > Postestimation

Syntax for margins

margins [marginlist} [, options]

margins [marginlist} , predict (statistic ...) [Eedict (statistic ...) ... ] [options]
statistic Description
median time median survival time; the default
median lntime median In(survival time)
mean time mean survival time
mean lntime mean In(survival time)
hr hazard ratio, also known as the relative hazard
xb linear prediction xjﬁ
stdp not allowed with margins
hazard not allowed with margins
surv not allowed with margins
csnell not allowed with margins
mgale not allowed with margins

Hazard estimation is not allowed because it produces interval estimates.
Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.
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Remarks and examples

Remarks are presented under the following headings:

Predicted values
Residuals and diagnostic measures

Predicted values

predict after stintreg is used to generate a new variable or variables containing predicted
values or residuals.

Regardless of the metric used, predict can generate predicted median survival times and median
log survival-times for all models and predicted mean times and mean log survival-times where
available. Predicted survival, hazard, and residuals are also available for all models. The predicted
hazard ratio can be calculated only for models with a proportional-hazards parameterization, that is,
the Weibull, exponential, and Gompertz models. However, the estimation need not take place in the
log-hazard metric. You can perform, for example, a Weibull regression specifying the time option
and then ask that hazard ratios be predicted.

> Example 1: Obtaining predictions

Continuing with example 1 of [ST] stintreg, we refit a proportional-hazards Weibull model for the
effect of treatment on breast retraction for breast cancer patients:
. use https://www.stata-press.com/data/r18/cosmesis
(Cosmetic deterioration of breast cancer patients)

. stintreg i.treat, interval(ltime rtime) distribution(weibull)
(output omitted )

We can predict, for example, the median survival time and the log-median survival time for each
observation by specifying the median time and median lntime options, respectively.

. predict time, median time
. predict 1lntime, median lntime
. tabulate treat, summarize(time) means freq

Summary of Predicted
median for
(1time,rtimel

Treatment Mean Freq.
Radio 39.332397 46
Radio+Che 22.300791 48

Total 30.635407 94
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. tabulate treat, summarize(lntime) means freq

Summary of Predicted
median log for
(1time,rtime]
Treatment Mean Freq.
Radio 3.6720486 46
Radio+Che 3.1046221 48
Total 3.3822989 94

From the tabulate command, the expected mean of the predicted median survival time for
patients with radiotherapy only is approximately 39 months, and the expected mean of the predicted
median survival time for patients with both radiotherapy and chemotherapy is 22 months. We can
also obtain the same results by using margins.

. margins treat, predict(median time)

Adjusted predictions Number of obs = 94
Model VCE: 0IM
Expression: Predicted median for (ltime,rtime], predict(median time)
Delta-method
Margin  std. err. z P>|z| [95% conf. intervall
treat
Radio 39.3324  5.342494 7.36  0.000 28.8613 49.80349
Radio+Chemo 22.30079  2.436642 9.15 0.000 17.52506 27.07652
. margins treat, predict(median lntime)
Adjusted predictions Number of obs = 94
Model VCE: 0IM
Expression: Predicted median log for (ltime,rtime], predict(median lntime)
Delta-method
Margin std. err. z P>|z| [95% conf. intervall
treat
Radio 3.672049 .1358293 27.03 0.000 3.405828 3.938269
Radio+Chemo 3.104622 .1092626 28.41 0.000 2.890471 3.318773

Because the median option is the default, we could have omitted it in the above specifications of
predict and margins.

d

> Example 2: Obtaining survivor probabilities

Continuing with the example above, we can compute observation-specific survivor probabilities.
As with predict after [ST] streg, we will use predict’s surv option. For interval-censored data,
however, estimates of survivor probabilities, as well as hazard estimates and Cox—Snell-like residuals,
are intervals. So, to compute these statistics, we must specify two new variable names with predict
instead of one; one variable will contain statistics computed using the lower time endpoint, and the
other will contain statistics computed using the upper time endpoint.
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. predict surv_l surv_u, surv
(38 missing values generated)

. list ltime rtime treat surv_l surv_u in 1/10

ltime rtime treat surv_1 surv_u
1 0 7 Radio 1 .95814
2 0 8 Radio 1 .948338
3 0 5 Radio 1 .9754614
4 4 11 Radio .9828176 .9151379
5 5 12 Radio .9754614 .9029849
6. 5 11 Radio .9754614 .9151379
7. 6 10 Radio .967206 .9267811
8. 7 16 Radio .95814 .8501493
9. 7 14 Radio .95814 .8773297
10. 11 15 Radio .9151379 .8639108

Listed above are the survivor probabilities, surv_1 and surv_u, evaluated at the lower and
upper time endpoints 1time and rtime, for the first 10 subjects, all of whom happen to be in the
radiotherapy-only group.

d

Residuals and diagnostic measures

For uncensored or right-censored data, several types of residuals have been introduced to assess
the appropriateness of the fitted parametric survival models; see Remarks and examples in [ST] streg
postestimation for details. Farrington (2000) proposed extensions of those residuals, including Cox—
Snell-like residuals and martingale-like residuals, to interval-censored data; see the reference for
applications and a discussion of limitations of the residuals for interval-censored data.

Cox—Snell-like residuals are used with interval-censored event-time data in assessing the overall
model fit. If the model fits the data, those residuals should have the standard exponential distribution.
To use them for checking the goodness of fit, we can estimate the cumulative hazard function
corresponding to these residuals and plot them against the values at which the hazard is evaluated.
If the model fits the data, the plot should be a straight line with a slope of 1 through the origin.

As with right-censored data, martingale-like residuals for interval-censored data do not arise
naturally from martingale theory for parametric survival models as they do for the Cox proportional
hazards model. For right-censored data, martingale residuals are defined using Cox—Snell residuals.
For interval-censored data, Cox—Snell-like residuals are intervals themselves. So Farrington (2000)
proposed a single measure, called adjusted Cox—Snell residuals, which are expectations of the interval
residuals under the standard exponential distribution. Then, following Lagakos’s (1981) definition of
martingale residuals for right-censored data, an interval-censored version of martingale residuals is
defined as one minus the adjusted Cox—Snell residuals. These martingale-like residuals are commonly
used to examine the functional form of covariates. You could also use them to assess whether some
covariates are needed in the model. Or you could plot them against observation numbers to identify
outliers.
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> Example 3: Check whether additional covariates should be included in the model

Martingale-like residuals may be used as a diagnostic tool to assess the need of including some
other covariates in the model. If the model fits well without the covariate of interest, the plot of
martingale residuals against that covariate should not show any trend.

Continuing with example 1, suppose that we want to check whether the patient’s age (age) should
be included in our model. We can specify the mgale option with predict to obtain the martingale-like
residuals from the current model and store them in the mg variable. We then produce a scatterplot of
mg against age.

. predict mg, mgale

. scatter mg age
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The figure does not show any systematic trend, suggesting that age is not needed in the model.
In fact, if we included age in our Weibull model in the first place, we would have found that age is
not statistically significant. You can verify this by typing

. stintreg i.treat age, interval(ltime rtime) distribution(weibull)
(output omitted )

We can produce scatterplots of mg against other variables of interest to identify potential omitted
predictors.

4

> Example 4: Assess overall model fit

Returning to example 1, suppose that we instead want to fit the model with an exponential
distribution and visually assess the overall model fit. We type

. quietly stintreg i.treat, interval(ltime rtime) distribution(exponential)

. estat gofplot

estat gofplot plots the estimated cumulative hazards for Cox—Snell-like residuals against the
residuals themselves. The estimated cumulative hazards are calculated using the algorithm proposed by
Turnbull (1976). The Cox—Snell-like residuals plotted against themselves form the 45° reference line.
If the model fits the data well, the estimated cumulative hazards plotted against the Cox—Snell-like
residuals should be close to the reference line. Comparing the jagged line with the reference line in
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figure 1, we observe that the estimated cumulative hazards deviate from the reference line. So the
exponential model does not appear to fit these data well.

Goodness-of-fit plot for
interval-censored exponential model

Cumulative hazard (Turnbull)

0 5 1 15 2
Cox-Snell-like residuals

Figure 1. Goodness-of-fit plot for the exponential model
Let’s refit this model using our original Weibull distribution and obtain the goodness-of-fit plot.

. quietly stintreg i.treat, interval(ltime rtime) distribution(weibull)

. estat gofplot

Goodness-of-fit plot for
interval-censored Weibull model

Cumulative hazard (Turnbull)

0 5 1 15 2 25
Cox-Snell-like residuals

Figure 2. Goodness-of-fit plot for the Weibull model

The goodness-of-fit plot above shows that the jagged line stays very close to the 45° reference
line. Therefore, we conclude that the Weibull model fits the data better than the exponential model.

N
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Methods and formulas

predict newvar, statistic may be used after stintreg to predict various quantities, according
to the following statistic:

median time:

newvar; = {t : gj(t) =1/2}

where §j(t) is S;(t) for observation j with the parameter estimates “plugged in” and S;(t) is
defined in table 1 of [ST] stintreg.

median lntime:

newvar; = {y : §j(ey) = 1/2}

mean time:
o ~

newvar; = S;(t)dt
0

mean lntime:

o0
newvarj = / ye¥ fi(e¥)dy

where J?J(t) is f;(t) with the parameter estimates plugged in and f;(t) = —(d/dt)S;(t).

hr (proportional hazards models only):

o~

newvar; = exp(x;3")

where (3" does not contain the constant and x; does not contain the coefficient of 1 corresponding
to the constant.

xb: .
newvar; = X;3
stdp:
newvar; = $¢(x;3)
mgale:

newvar; — S (ti;) log Sj (1) — 5 (tuj) log S (tu;)
Sj(ti) = Sj (tu;)

For right-censored data, martingale residuals can be defined as the scores of the regression
parameters. This property can carry over to the interval-censored data to define martingale-
like residuals. Therefore, these residuals are expected to have mean zero and are uncorrelated
asymptotically. Furthermore, these residuals are orthogonal to variables included in the model.
Thus, we can use it to assess the need of including some other covariates in the model. See
Farrington (2000) for details.

These residuals take values between —oo and 1 and have an expected value of O, although like
the Cox—Snell-like residuals, they are not symmetric about 0, making them difficult to interpret.
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predict newvar; newvar, , statistic2 may be used after stintreg to predict a pair of quantities
for each observation for both the lower and upper endpoints of the time interval (¢;;, ¢,,;), according
to the following statistic2:

hazard: ~ ~
newvary; = f;(ti;)/S;(ti;)
newvary; = f;(tu;)/S;(tu;)
surv: &
newvary; = S;(t;5)
newvar,; = Aj(tuj)
csnell: a
newvary; = —log S;(t;;)
newvary; = —log gj (tus)

The Cox—Snell-like residuals are the estimates of the cumulative hazard function obtained from the
fitted model. They are computed separately for each of the two interval endpoints. Under the correct
model assumption, the Cox—Snell-like residuals are expected to approximate an interval-censored
sample from the standard exponential distribution. Therefore, they can be used for checking the
overall model fit. Cox—Snell-like residuals can never be negative and therefore are not symmetric
about zero. See Farrington (2000) for details.
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stir — Report incidence-rate comparison

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Reference Also see

Description

stir reports point estimates and confidence intervals for the incidence-rate ratio (IRR) and
incidence-rate difference (IRD). Stratified IRRs may be standardized to produce standardized mortality
ratios.

stir can be used with single- or multiple-record and single- or multiple-failure st data.

Quick start

IRR and IRD with confidence intervals for exposure indicator exposed using stset data

stir exposed

Same as above, but display exact p-values calculated without the mid-p adjustment

stir exposed, exact

Crude and Mantel-Haenszel combined IRRs with test of homogeneity for strata defined by svar

stir exposed, strata(svar)

Same as above, and standardize the IRRs by weighting variable wvar

stir exposed, strata(svar) standard(wvar)

Same as above, but standardize using time at risk for the unexposed group as weights
stir exposed, strata(svar) estandard

Menu

Statistics > Survival analysis > Summary statistics, tests, and tables > Report incidence-rate comparison

332
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Syntax
stir exposedvar [lf} [ln] [, 0pti0ns]
options Description
Options
strata(varname) stratify on varname
estandard combine external weights with within-stratum statistics
istandard combine internal weights with within-stratum statistics
standard (varname) combine user-specified weights with within-stratum statistics
pool display pooled estimate
nocrude do not display crude estimate
nohom do not display homogeneity test
ird calculate standardized IRD
midp display p-values calculated using mid-p adjustment (unstratified only);
the default
exact display exact p-values without mid-p adjustment (unstratified only)
level (#) set confidence level; default is 1level (95)
noshow do not show st setting information

You must stset your data before using stir; see [ST] stset.

by and collect are allowed; see [U] 11.1.10 Prefix commands.

fweights and iweights may be specified using stset; see [ST] stset. stir may not be used with
pweighted data.

Options
_ [Options |

strata(varname) specifies that the calculation be stratified on varname, which may be a numeric
or string variable. Within-stratum statistics are shown and then combined with Mantel-Haenszel
weights. Also see the by () option in [R] Epitab.

estandard, istandard, standard(varname), pool, nocrude, nohom, and ird are relevant only
if strata() is specified; see [R] Epitab.

midp and exact are relevant only if strata() is not specified; see [R] Epitab.
level (#) is relevant in all cases; see [R] Epitab.

noshow is relevant in all cases; it prevents stir from showing the key st variables. This option is
seldom used because most people type stset, show or stset, noshow to set whether they want
to see these variables mentioned at the top of the output of every st command; see [ST] stset.
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Remarks and examples

stir examines the incidence rate and time at risk.

. use https://www.stata-press.com/data/r18/page2
. stir group

Failure _d: dead
Analysis time _%: time

Incidence-rate comparison

Exposed: group = 2

Unexposed: group = 1
group
Exposed  Unexposed Total
Failures 19 17 36
Time 5023 4095 9118
Incidence rate .0037826 .0041514 .0039482
Point estimate [95% conf. intervall]
Inc. rate diff. -.0003688 -.002974 .0022364
Inc. rate ratio .9111616 .4484366 1.866047 (exact)
Prev. frac. ex. .0888384 -.8660469 .5515634 (exact)
Prev. frac. pop .04894

Mid-p-values for tests of incidence-rate difference:
Adj Pr(Exposed failures <= 19) = 0.3900 (lower one-sided)
Adj Pr(Exposed failures >= 19) = 0.6100 (upper one-sided)
Two-sided p-value = 0.7799

Specifying the exact option displays p-values for the tests of IRD calculated without using the
mid-p adjustment. The noshow option suppresses the display of st variables.
. stir group, exact noshow
Incidence-rate comparison
Exposed: group = 2
Unexposed: group = 1

group
Exposed  Unexposed Total
Failures 19 17 36
Time 5023 4095 9118
Incidence rate .0037826 .0041514 .0039482
Point estimate [95% conf. intervall]
Inc. rate diff. -.0003688 -.002974 .0022364
Inc. rate ratio .9111616 .4484366 1.866047 (exact)
Prev. frac. ex. .0888384 -.8660469 .5515634 (exact)
Prev. frac. pop .04894

Exact p-values for tests of incidence-rate difference:
Pr(Exposed failures <= 19) = 0.4536 (lower one-sided)
Pr(Exposed failures >= 19) = 0.6737 (upper one-sided)

Two-sided p-value = 0.9071

See [R] Epitab for details about the exact option and other stir options.
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Video example

How to calculate incidence rates and incidence-rate ratios

Stored results

stir (without strata()) stores the following in r():

Scalars
r(ird) IRD
r(1lb_ird) lower CI bound for IRD
r(ub_ird) upper CI bound for IRD
r(irr) IRR
r(lb_irr) lower CI bound for IRR
r(ub_irr) upper CI bound for IRR
r(afe) attributable fraction among the exposed
r(lb_afe) lower CI bound for attributable fraction among the exposed
r(ub_afe) upper CI bound for attributable fraction among the exposed
r(afp) attributable fraction for the population
r(p-lower_midp) lower one-sided p-value with mid-p adjustment
r (p_upper_midp) upper one-sided p-value with mid-p adjustment
r(p_twosided_midp) two-sided p-value with mid-p adjustment
r(p-lower_exact) lower one-sided exact p-value
r (p_upper_exact) upper one-sided exact p-value

r(p_twosided_exact) two-sided exact p-value

stir, strata() stores the following in r():

Scalars
r(irr) Mantel-Haenszel IRR, if option ird is not specified
r(lb_irr) lower CI bound for Mantel-Haenszel IRR
r(ub_irr) upper CI bound for Mantel-Haenszel IRR
r(ird) Mantel-Haenszel IRD, if option ird is specified
r(lb_ird) lower CI bound for Mantel-Haenszel IRD
r(ub_ird) upper CI bound for Mantel-Haenszel IRD
r (crude) crude IRR or, if option ird is specified, crude IRD
r(lb_crude) lower CI bound for the crude IRR or IRD
r (ub_crude) upper CI bound for the crude IRR or IRD
r(pooled) pooled IRR or, if option ird is specified, pooled IRD
r(1lb_pooled) lower CI bound for pooled IRR or IRD
r (ub_pooled) upper CI bound for pooled IRR or IRD
r(df) degrees of freedom for homogeneity x? test
r(chi2_mh) Mantel-Haenszel homogeneity x?
r(chi2_p) pooled homogeneity x?, if option pool is specified

Methods and formulas

stir simply accumulates numbers of failures and time at risk by exposed and unexposed (by
strata, if necessary) and passes the calculation to ir; see [R] Epitab.

Reference

Dupont, W. D. 2009. Statistical Modeling for Biomedical Researchers: A Simple Introduction to the Analysis of
Complex Data. 2nd ed. Cambridge: Cambridge University Press.
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Also see
[ST] stset — Declare data to be survival-time data
[ST] stsum — Summarize survival-time data

[R] Epitab — Tables for epidemiologists



Title

stmc — Calculate rate ratios with the Mantel-Cox method

Description Quick start

Menu Syntax
Options Remarks and examples Stored results Acknowledgments
Reference Also see
Description

stmc calculates rate ratios that are stratified finely by time by using the Mantel-Cox method. The
corresponding significance test (the log-rank test) is also calculated.

You can also use stmc to carry out a trend test for a metric explanatory variable.
Quick start

Failure-rate ratio, stratified by time, comparing category 1 with O in binary variable a; computed
using the Mantel-Cox method

stmc a

Same as above, but comparing 4 with 3 in multivalued b
stmc b, compare(4,3)

Same as above, but controlling for values of catvar

stmc b catvar, compare(4,3)

Test for a trend of failure rates with x1 controlling for time and catvar
stmc x1 catvar

Menu

Statistics > Survival analysis > Summary statistics, tests, and tables > Tabulate Mantel-Cox rate ratios
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Syntax
stmc varname [varlist] [lf} [in] [ , options}
options Description
Main
by (varlist) tabulate rate ratio on varlist
compare (numl ,den2) compare categories of exposure variable
missing include missing values as extra categories
level (#) set confidence level; default is 1level (95)

You must stset your data before using stmc; see [ST] stset.
by and collect are allowed; see [U] 11.1.10 Prefix commands.
fweights, iweights, and pweights may be specified using stset; see [ST] stset.

Options
Main

by (varlist) specifies categorical variables by which the rate ratio is to be tabulated.

A separate rate ratio is produced for each category or combination of categories of varlist, and a
test for unequal rate ratios (effect modification) is displayed.

compare (numl ,den2) specifies the categories of the exposure variable to be compared. The first
code defines the numerator categories, and the second code defines the denominator categories.

When compare () is not specified and there are only two categories, the larger category is compared
with the smaller one; when compare () is not specified and there are more than two categories,
stmc analyzes the log-linear trend.

missing specifies that missing values of the explanatory variables be treated as extra categories. The
default is to exclude such observations.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is
level(95) or as set by set level; see [U] 20.8 Specifying the width of confidence intervals.

Remarks and examples

The stmc (Mantel-Cox) command is used to control for variation of rates on a time scale by
breaking up time into short intervals, or clicks.

Usually, this approach is used only to calculate significance tests, but the rate ratio estimated
remains just as useful as in the coarsely stratified analysis from [ST] stmh. The method may be
viewed as an approximate form of Cox regression.

In its simplest specification, stmc varname, stmc will compute a failure-rate ratio, stratified by
time, comparing the two categories of the explanatory variable varname. If varname has more than
two categories, you can specify which two categories should be compared with the compare () option.
If varname has more than two categories and you don’t specify the compare() option, stmc will
carry out a trend test. For trend tests, a one-step Newton approximation to the log-linear Poisson
regression coefficient is also computed.

Any additional variables specified before the comma are categorical variables that are to be
“controlled for” by using stratification. Strata are defined by cross-classification of these variables.
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You can also specify categorical variables in the by () option. With this specification, the rate ratio
is controlled for analysis time separately for each level of the variables specified with by () and then
combined to give a rate ratio controlled for both time and the by () variables.

> Example 1

Below, we use the diet data (Clayton and Hills 1993) described in example 1 of [ST] stsplit. In
this dataset, the presence of coronary heart disease (CHD) has been coded as fail = 1, 3, or 13.
The variable hienergy is coded 1 if the total energy consumption is more than 2.75 Mcal and 0
otherwise. We want to obtain the effect of high energy controlled for age by stratifying finely. First,
we stset the data, specifying the date of birth, dob, as the origin (so analysis time is age), and then
we use stmc:

. use https://www.stata-press.com/data/r18/diet
(Diet data with dates)

. stset dox, origin(time dob) enter(time doe) id(id)
> scale(365.25) fail(fail==1 3 13)

Survival-time data settings

ID variable: id
Failure event: fail==1 3 13
Observed time interval: (dox[_n-1], dox]
Enter on or after: time doe
Exit on or before: failure
Time for analysis: (time-origin)/365.25
Origin: time dob

337 total observations
0 exclusions

337 observations remaining, representing
337 subjects
46 failures in single-failure-per-subject data
4,603.669 total analysis time at risk and under observation
At risk from t = 0
Earliest observed entry t = 30.07529

Last observed exit t = 69.99863
. stmc hienergy
Failure _d: fail==1 3 13
Analysis time _t: (dox-origin)/365.25
Origin: time dob
Enter on or after: time doe
ID variable: id
Mantel—-Cox estimate of the rate ratio
comparing hienergy==1 vs. hienergy==
controlling for time (clicks)
Rate ratio chi2 P>chi2 [95% conf. intervall
0.537 4.20 0.0403 0.293 0.982

The rate ratio of 0.537 is close to that obtained with stmh when controlling for age by using 10-year
age bands; see example 1 of [ST] stmh. q
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Stored results

stmc stores the following in r():

Scalars
r(rratio) overall rate ratio
r(chi2) X2
r(p) p-value
r(level) confidence level
r(1lb) lower bound of confidence interval
r(ub) upper bound of confidence interval
r(chi2_unequal) x? for test of unequal rate ratios with by ()
r(p—unequal) p-value for test of unequal rate ratios with by ()
Macros
r(expvar) explanatory variable
r(explevels) levels of binary explanatory variable
r(controlvars) control variables
r(byvars) by () variables
r(test) type of test
Matrices
r(table) group-specific rate ratios
Acknowledgments

The original version of stmc was written by David Clayton (retired) of the Cambridge Institute
for Medical Research and Michael Hills (1934-2021) of the London School of Hygiene and Tropical
Medicine.

Reference

Clayton, D. G., and M. Hills. 1993. Statistical Models in Epidemiology. Oxford: Oxford University Press.

Also see
[ST] stei — Confidence intervals for means and percentiles of survival time
[ST] stir — Report incidence-rate comparison
[ST] stmh — Calculate rate ratios with the Mantel-Haenszel method
[ST] stptime — Calculate person-time, incidence rates, and SMR
[ST] strate — Tabulate failure rates and rate ratios

[ST] stset — Declare data to be survival-time data
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Title

stmh — Calculate rate ratios with the Mantel-Haenszel method

Description Quick start Menu Syntax
Options Remarks and examples Stored results Acknowledgments
References Also see

Description

stmh calculates stratified rate ratios and significance tests by using a Mantel-Haenszel-type method.
You can also use stmh to carry out a trend test for a metric explanatory variable.

Quick start

Failure-rate ratio comparing category 1 with O in binary variable a, computed using the Mantel—
Haenszel method

stmh a

Same as above, but controlling for catvar
stmh a catvar

Failure-rate ratios for each level of catvar, with test for unequal rate ratios
stmh a, by(catvar)

Same as above, but compare 4 with 3 in multivalued b at each level of catvar
stmh b, compare(4,3) by(catvar)

Test for a trend of failure rates with x1 controlling for b
stmh x1 b

Menu

Statistics > Survival analysis > Summary statistics, tests, and tables > Tabulate Mantel-Haenszel rate ratios
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Syntax

stmh varname [varlist] [l_'f] [ln] [, options}

options Description

Main
by (varlist) tabulate rate ratio on varlist
compare (numl ,den2) compare categories of exposure variable
missing include missing values as extra categories
level (#) set confidence level; default is 1level (95)

You must stset your data before using stmh; see [ST] stset.
by and collect are allowed; see [U] 11.1.10 Prefix commands.
fweights, iweights, and pweights may be specified using stset; see [ST] stset.

Options

Main

Is

by (varlist) specifies categorical variables by which the rate ratio is to be tabulated.

A separate rate ratio is produced for each category or combination of categories of varlist, and a
test for unequal rate ratios (effect modification) is displayed.

compare (numl ,den2) specifies the categories of the exposure variable to be compared. The first
code defines the numerator categories, and the second code defines the denominator categories.

When compare () is not specified and there are only two categories, the larger category is compared
with the smaller one; when compare () is not specified and there are more than two categories,
stmh analyzes log-linear trend.

missing specifies that missing values of the explanatory variables be treated as extra categories. The
default is to exclude such observations.

level (#) specifies the confidence level, as a percentage, for confidence intervals. The default is
level(95) or as set by set level; see [U] 20.8 Specifying the width of confidence intervals.

Remarks and examples

The stmh command is used for estimating rate ratios, controlled for confounding, using stratification.
You can use it to estimate the ratio of the rates of failure for two categories of the explanatory variable
varname. Categories to be compared may be defined by specifying the codes of the levels with
compare (). Rate ratios and significance tests are calculated using a Mantel-Haenszel-type method.

The first variable listed on the command line after stmh is the explanatory variable used in comparing
rates, and the remaining variables, if any, are categorical variables that are to be “controlled for” by
using stratification. Strata are defined by cross-classification of these variables.

stmh may also be used to carry out trend tests for a metric explanatory variable. A one-step
Newton approximation to the log-linear Poisson regression coefficient is also computed.
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> Example 1: Stratified rate ratios

We want to examine the rate ratio of coronary heart disease (CHD) for individuals with high and
low levels of caloric intake, while controlling for age. We will use data from a heart disease and
diet survey that was analyzed in Clayton and Hills (1993). In this dataset, events such as cancer and
CHD indicate failure, but we were interested only in CHD, which has been coded as fail =1, 3, or
13. The variable hienergy is coded 1 if the total energy consumption is more than 2.75 Mcal and
0 otherwise.

First, we stset the data: origin is set to date of birth, making age the analysis time; and the scale
is set to 365.25, so analysis time is measured in years. We also specify the failure codes for CHD.

. use https://www.stata-press.com/data/r18/diet, clear
(Diet data with dates)
. stset dox, origin(time dob) enter(time doe) id(id) scale(365.25)
> fail(fail==1 3 13)
(output omitted )

Below, we stsplit the data into 10-year age bands. The new variable, ageband, identifies each
observation’s age group. We then use stmh to compare the rate for hienergy level 1 with the rate
for level 0, controlled for ageband.

. stsplit ageband, at(40(10)70) after(time=dob) trim
(26 observations trimmed because of lower bound)
(418 observations (episodes) created)
. stmh hienergy ageband
Failure _d: fail==1 3 13
Analysis time _t: (dox-origin)/365.25
Origin: time dob
Enter on or after: time doe
ID variable: id
Note: ageband<=40 trimmed

Mantel-Haenszel estimate of the rate ratio
comparing hienergy==1 vs. hienergy==0
controlling for ageband

Rate ratio chi2 P>chi2 [95% conf. intervall

0.534 4.36 0.0369 0.293 0.972

We see that the rate of CHD for individuals with high levels of caloric intake is about half the rate
for individuals with low levels of caloric intake, controlling for age.
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We can also compare the effect of hienergy between jobs, controlling for ageband.

. stmh hienergy ageband, by(job)
Failure _d: fail==1 3 13
Analysis time _t: (dox-origin)/365.25
Origin: time dob
Enter on or after: time doe
ID variable: id
Note: ageband<=40 trimmed

Mantel-Haenszel estimates of the rate ratio
comparing hienergy==1 vs. hienergy==
controlling for ageband
by job

job  Rate ratio Lower Upper

0 0.42 0.13 1.33
1 0.64 0.22 1.87
2 0.51 0.21 1.26

Note: Lower and Upper are bounds of 95J confidence intervals.

Overall Mantel-Haenszel estimate, controlling for ageband and job

Rate ratio chi2 P>chi2 [95% conf. intervall
0.521 4.88 0.0271 0.289 0.939

Approx. test for unequal RRs (effect modification): chi2(2) = 0.28
Pr>chi2 = 0.8695

Because the rate-ratio estimates are approximate, the test for unequal rate ratios is also approximate.

4

xample 2: Log-linear trend test for metric explanatory variables

diet.dta contains the height for each patient recorded in the variable height. We can test for
a trend of heart disease rates with height controlling for ageband by typing

. stmh height ageband
Failure _d: fail==1 3 13
Analysis time _t: (dox-origin)/365.25
Origin: time dob
Enter on or after: time doe
ID variable: id
Note: ageband<=40 trimmed
Score test for trend of rates with height

Overall Mantel-Haenszel estimate, controlling for ageband

Rate ratio chi2 P>chi2 [95% conf. intervall]

0.906 18.60 0.0000 0.866 0.948

Note: The Rate ratio estimate is an approximation to the rate ratio
for a one-unit increase in height.

stmh tested for trend of heart disease rates with height within age bands and provided a rough
estimate of the rate ratio for a 1 centimeter increase in height—this estimate is a one-step Newton
approximation to the maximum likelihood estimate. It is not consistent, but it does provide a useful
indication of the size of the effect.
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The rate ratio is less than 1, so there is evidence for a decreasing rate with increasing height (about
a 9% decrease in rate per centimeter increase in height). q

Stored results

stmh stores the following in r():

Scalars
r(rratio) overall rate ratio
r(chi?2) X2
r(p) p-value
r(level) confidence level
r(1b) lower bound of confidence interval
r(ub) upper bound of confidence interval
r(chi2_unequal) x? for test of unequal rate ratios with by ()
r(p_unequal) p-value for test of unequal rate ratios with by ()
Macros
r (expvar) explanatory variable
r(explevels) levels of binary explanatory variable
r(controlvars) control variables
r(byvars) by () variables
r(test) type of test
Matrices
r(table) group-specific rate ratios
Acknowledgments

The original version of stmh was written by David Clayton (retired) of the Cambridge Institute
for Medical Research and Michael Hills (1934-2021) of the London School of Hygiene and Tropical
Medicine.
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Nathan Mantel (1919-2002) was an American biostatistician who grew up in New York. He
served in the U.S. Army from 1942 to 1946 and then joined the National Cancer Institute as
a statistical consultant in 1947. He would remain there for over 26 years. During this time,
he was presented with problems from many fields, which led to his diverse publications and
contributions. He is remembered for his outstanding problem-solving skills and brilliance.

Mantel is best known for his 1959 collaboration with William M. Haenszel, which introduced the
Mantel-Haenszel method for obtaining odds ratios for stratified data and a test of equality across
strata. In 1966, Mantel developed the log-rank test and, through a collaboration in 1974, extended
this to data involving transient states. In another collaboration, he helped develop a procedure
for testing carcinogenic agents; this paper defined a safe dosage level that was temporarily
adopted by the Food and Drug Administration. Mantel also contributed to the development of
the polychotomous logistic regression model and methods used to explore temporal and spatial
clustering of diseases.

Mantel received many honors recognizing his contributions. He was elected an honorary fellow
of the Royal Statistical Society and received the Superior Service Award from the National
Institutes of Health. He was also a fellow of the American Statistical Association, which in 2002
created a lifetime achievement award in his name.

William M. Haenszel (1910-1998) was an American biostatistician and epidemiologist. In 1932,
he obtained a master’s degree in statistics from the University of Buffalo. He then worked at
several leading institutions of health, making a lasting impact worldwide.

From 1934 to 1947, he worked for the New York State Department of Health, after which he
became the director of the Bureau of Vital Statistics in the Connecticut State Health Department.
In 1952, he joined the National Institutes of Health, where he would serve as the chief of the
Biometry Branch and head of the Biometric Section. During his time there, Haenszel collaborated
with Nathan Mantel to develop the Mantel-Haenszel method. He also initiated a series of studies
of migrant populations that explored the causes of diseases. Another major contribution was the
instrumental role he played in developing SEER, the first national system for tracking cases of
cancer and the potential causes.

Haenszel was a fellow of the American Public Health Association, the American Association for
the Advancement of Science, and the American Statistical Association. He also served as chair
of the Biometrics Section of the American Statistical Association. Toward the end of his career,
Haenszel joined the Illinois Cancer Council and provided consulting services to the World Health
Organization. Despite having Parkinson’s disease, Haenszel helped tutor a research group that
was developing a brain tumor registry.
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Also see
[ST] stci — Confidence intervals for means and percentiles of survival time
[ST] stir — Report incidence-rate comparison
[ST] stmc — Calculate rate ratios with the Mantel-Cox method
[ST] stptime — Calculate person-time, incidence rates, and SMR
[ST] strate — Tabulate failure rates and rate ratios

[ST] stset — Declare data to be survival-time data



Title

stptime — Calculate person-time, incidence rates, and SMR

Description Quick start Menu Syntax
Options Remarks and examples Stored results References
Also see

Description

stptime calculates person-time and incidence rates. stptime computes standardized mortal-
ity/morbidity ratios (SMRs) after merging the data with a suitable file of standard rates specified with
the using() option.

Quick start

Person-time and incidence rate using stset data
stptime

Same as above, but tabulate in ten-year intervals from 20 to 50
stptime, at(20(10)50)

Same as above, but exclude observations less than or equal to 20 or greater than 50
stptime, at(20(10)50) trim

Same as above, but report rate per 1,000 person-years with two decimal places
stptime, at(20(10)50) trim per(1000) dd(2)

Person-time and incidence rates for each level of v1
stptime, by(v1l)

Standardized mortality ratios in 10-year intervals from 20 to 50 from reference rates rvar for lower
end-points lower, defining each cohort saved in mydata.dta

stptime, at(20(10)50) smr(lower rvar) using(mydata)

Menu

Statistics > Survival analysis > Summary statistics, tests, and tables > Person-time, incidence rates, and SMR
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Syntax
stptime [zf] [ , options]

options Description

Main
at (numlist) compute person-time at specified intervals; default is to

compute overall person-time and incidence rates

trim exclude observations < minimum or > maximum of at ()
by (varname) compute incidence rates or SMRs by varname

Options
per (#) units to be used in reported rates
dd (#) number of decimal digits to be displayed
smr (groupvar ratevar) use groupvar and ratevar in using() dataset to calculate SMRS
using(filename) specify filename to merge that contains smr () variables
level (#) set confidence level; default is 1evel (95)
noshow do not show st setting information

Advanced
jackknife jackknife confidence intervals
title(string) label output table with string

output (ﬁlename[ s replace]) save summary dataset as filename; use replace to overwrite
existing filename

You must stset your data before using stptime; see [ST] stset.
by and collect are allowed; see [U] 11.1.10 Prefix commands.
fweights, iweights, and pweights may be specified using stset; see [ST] stset.

Options

Main

at (numlist) specifies intervals at which person-time is to be computed. The intervals are specified
in analysis time ¢ units. If at() is not specified, overall person-time and incidence rates are
computed.

If, for example, you specify at(5(5)20) and the trim option is not specified, person-time is
reported for the intervals ¢ = (0 — 5], t = (5—10], t = (10 — 15], and ¢t = (15 — 20].

trim specifies that observations less than or equal to the minimum or greater than the maximum
value listed in at () be excluded from the computations.

by (varname) specifies a categorical variable by which incidence rates or SMRs are to be computed.

per (#) specifies the units to be used in reported rates. For example, if the analysis time is in years,
specifying per (1000) results in rates per 1,000 person-years.

dd (#) specifies the maximum number of decimal digits to be reported for rates, ratios, and confidence
intervals. This option affects only how values are displayed, not how they are calculated.
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smr (groupvar ratevar) specifies two variables in the using() dataset. The groupvar identifies the
age-group or calendar-period variable used to match the data in memory and the using() dataset.
The ratevar variable contains the appropriate reference rates. stptime then calculates SMRs rather
than incidence rates.

using(filename) specifies the filename that contains a file of standard rates that is to be merged with
the data so that SMRs can be calculated.

level (#) specifies the confidence level, as a percentage, for confidence intervals. The default is
level(95) or as set by set level; see [U] 20.8 Specifying the width of confidence intervals.

noshow prevents stptime from showing the key st variables. This option is seldom used because
most people type stset, show or stset, noshow to set whether they want to see these variables
mentioned at the top of the output of every st command; see [ST] stset.

Advanced

jackknife specifies that jackknife confidence intervals be produced. This is the default if pweights
or iweights were specified when the dataset was stset.

title(string) replaces the default “Person-time” label on the output table with string.

output (filename [, replace]) saves a summary dataset in filename. The file contains counts of
failures and person-time, incidence rates (or SMRs), confidence limits, and categorical variables
identifying the time intervals. This dataset could be used for further calculations or simply as input
to the table command.

replace specifies that filename be overwritten if it exists. This option is not shown in the dialog
box.

Remarks and examples

stptime computes and tabulates the person-time and incidence rate (formed from the number of
failures divided by the person-time). If you use the by () option, this will be calculated by different
levels of one or more categorical explanatory variables specified by varname. Confidence intervals
for the rate are also given. By default, the confidence intervals are calculated using the quadratic
approximation to the Poisson log likelihood for the log-rate parameter. However, whenever the Poisson
assumption is questionable, such as when pweights or iweights are used, jackknife confidence
intervals can also be calculated.

stptime can also calculate and report SMRs if the data have been merged with a suitable file of
reference rates.

If pweights or iweights were specified when the dataset was stset, stptime calculates jackknife
confidence intervals by default.

The summary dataset can be saved to a file specified with the output () option for further analysis
or a more elaborate graphical display.
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> Example 1

We begin with a simple fictitious example from Clayton and Hills (1993, 42). Thirty subjects were
monitored until the development of a particular disease. Here are the data for the first five subjects:

. use https://www.stata-press.com/data/r18/stptime

. list in 1/5

id year fail

1 1 19.6 1
2 2 10.8 1
3 3 14.1 1
4 4 3.5 1
5 5 4.8 1

The id variable identifies the subject, year records the time to failure in years, and fail is the
failure indicator, which is 1 for all 30 subjects in the data. To use stptime, we must first stset the

data.

. stset year, fail(fail) id(id)
Survival-time data settings
ID variable: id
Failure event: fail!=0 & fail<.

Observed time interval: (year[_n-1], year]
Exit on or before: failure

30 total observations
0 exclusions

30 observations remaining, representin,
30 subjects
30 failures in single-failure-per-subj

261.9 total analysis time at risk and under observation

Earliest ob
Last o

g

ect data

At risk from t
served entry t
bserved exit t

nwon
[N eNe]

36.

We can use stptime to obtain the overall person-time of observation and disease incidence rate.

. stptime, title(Person-years)

Failure _d: fail
Analysis time _%: year
ID variable: id

Estimated person-time and incidence rate

Cohort | Person-years Failures Rate

[95% conf.

intervall

Total | 261.9 30 .11454754

.08009

.1638299
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The total 261.9 person-years reported by stptime matches what stset reported as total analysis
time at risk. stptime computed an incidence rate of 0.11454754 per person-year. In epidemiology,
incidence rates are often presented per 1,000 person-years. We can do this by specifying per (1000).

. stptime, title(Person-years) per(1000)

Failure _d: fail
Analysis time _t: year
ID variable: id

Estimated person-time and incidence rate

Cohort | Person-years Failures Rate [95% conf. intervall

Total | 261.9 30 114.54754  80.09001 163.8299

More interesting would be to compare incidence rates at 10-year intervals. We will specify dd (4)
to display rates to four decimal places.
. stptime, per(1000) at(0(10)40) dd(4)

Failure _d: fail
Analysis time _%: year
ID variable: id

Estimated person-time and incidence rates

Cohort Person-time Failures Rate [95% conf. intervall
(0 - 10] 188.8000 18 95.3390 60.0676 151.3215
(10 - 20] 55.1000 10 181.4882 97 .6506 337.3044
(20 - 30] 11.5000 1 86.9565 12.2490 617.3106
> 30 6.5000 1 153.8462 21.6713 1092.1648
Total 261.9000 30 114.5475 80.0900 163.8299
N
> Example 2

Using the diet data (Clayton and Hills 1993) described in example 1 of [ST] stsplit, we will use
stptime to tabulate age-specific person-years and coronary heart disease (CHD) incidence rates. In
this dataset, CHD has been coded as fail =1, 3, or 13.
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We first stset the data: failure codes for CHD are specified; origin is set to date of birth, making
age the analysis time; and the scale is set to 365.25, so analysis time is measured in years.

. use https://www.stata-press.com/data/r18/diet
(Diet data with dates)

. stset dox, origin(time dob) enter(time doe) id(id) scale(365.25)
> fail(fail==1 3 13)

Survival-time data settings

ID variable: id
Failure event: fail==1 3 13
Observed time interval: (dox[_n-1], dox]
Enter on or after: time doe
Exit on or before: failure
Time for analysis: (time-origin)/365.25
Origin: time dob

337 total observations
0 exclusions

337 observations remaining, representing
337 subjects
46 failures in single-failure-per-subject data
4,603.669 total analysis time at risk and under observation
At risk from t = 0
Earliest observed entry t = 30.07529
Last observed exit t = 69.99863

The incidence of CHD per 1,000 person-years can be tabulated in 10-year intervals.

. stptime, per(1000) at(40(10)70) trim
Failure _d: fail==1 3 13

Analysis time _t: (dox-origin)/365.25
Origin: time dob
Enter on or after: time doe
ID variable: id

Note: _group<=40 trimmed

Estimated person-time and incidence rates

Cohort Person-time Failures Rate [95% conf. intervall]
(40 - 50] 907.00616 6 6.6151701 2.971936 14.72457
(60 - 60] 2107.0418 18 8.5427828 5.382317 13.55906
(60 - 70] 1493.2923 22 14.732548 9.700656 22.37457
Total 4507 .3402 46 10.205575 7.644246 13.62512

4

The SMR for a cohort is the ratio of the total number of observed deaths to the number expected
from age-specific reference rates. This expected number can be found by multiplying the person-time
in each cohort by the reference rate for that cohort. Using the smr option to define the cohort variable
and reference rate variable in the using() dataset, stptime calculates SMRs and confidence intervals.
You must specify the per () option. For example, if the reference rates were per 100,000, you would
specify per (100000).
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> Example 3

In smrchd.dta, we have age-specific CHD rates per 1,000 person-years for a reference population.
We can merge these data with our current data and use stptime to obtain SMRs and confidence
intervals.

. stptime, smr(ageband rate) using(https://www.stata-press.com/data/r18/smrchd)
> per(1000) at(40(10)70) trim
Failure _d: fail==1 3 13
Analysis time _t: (dox-origin)/365.25
Origin: time dob
Enter on or after: time doe
ID variable: id
Note: _group<=40 trimmed

Estimated person-time and standardized mortality ratios

Observed Expected
Cohort Person-time failures failures SMR [95% conf. intervall]
(40 - 50] 907.00616 6 5.62344 1.067 .4793445 2.374931
(50 - 60] 2107.0418 18 18.7527 .95986 .6047547 1.52349
(60 - 70] 1493.2923 22 22.8474 .96291 .6340298 1.46239
Total 4507 .3402 46 47.2235 .97409 .7296205 1.300477

The stptime command can also calculate person-time and incidence rates or SMRs by categories
of the explanatory variable. In our diet data, the variable hienergy is coded 1 if the total energy
consumption is more than 2.75 Mcal and O otherwise. We want to compute the person-years and
incidence rates for these two levels of hienergy.

. stptime, by(hienergy) per(1000)
Failure _d: fail==1 3 13
Analysis time _t: (dox-origin)/365.25
Origin: time dob
Enter on or after: time doe
ID variable: id

Estimated person-time and incidence rates

hienergy Person-time Failures Rate [95% conf. intervall
0 2059.4305 28 13.595992 9.387478 19.69123

1 2544 .2382 18 7.0748093  4.457431 11.2291

Total 4603.6687 46 9.9920309 7.484296 13.34002
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We can also compute the incidence rate for the two levels of hienergy and the three previously
defined age cohorts:

. stptime, by(hienergy) per(1000) at(40(10)70) trim
Failure _d: fail==1 3 13

Analysis time _t: (dox-origin)/365.25
Origin: time dob
Enter on or after: time doe
ID variable: id

Estimated person-time and incidence rates

hienergy Person-time  Failures Rate [95% conf. intervall

0
(40 - 50] 346.87474 2 5.76577  1.442006 23.05407
(50 - 60] 979.34018 12 12.253148 6.958681 21.57587
> 60 699.13758 14 20.024671  11.85966 33.81104

1
(40 - 50] 560.13142 4 7.1411813 2.680213 19.02702
(50 - 60] 1127.7016 6 5.3205566  2.390317 11.84292
> 60 794.15469 8 10.073604 5.037786 20.14327
Total 4507.3402 46  10.205575  7.644246 13.62512

Or we can compute the corresponding SMR:

. stptime, smr(ageband rate) using(https://www.stata-press.com/data/r18/smrchd)
> by(hienergy) per(1000) at(40(10)70) trim
Failure _d: fail==1 3 13
Analysis time _%: (dox-origin)/365.25
Origin: time dob
Enter on or after: time doe
ID variable: id

Estimated person-time and standardized mortality ratios

Observed Expected
hienergy Person-time failures failures SMR  [95% conf. intervall
0
(40 - 50] 346.87474 2 2.15062 .9299629 .2325815 3.718399
(50 - 60] 979.34018 12 8.71613 1.376758 .7818743 2.424256
> 60 699.13758 14 10.6968 1.308802 .7751411 2.209872
1
(40 - 50] 560.13142 4 3.47281 1.151803 .4322924 3.068875
(50 - 60] 1127.7016 6 10.0365 .5978154 .2685749 1.330665
> 60 794.15469 8 12.1506 .6584055 .329267 1.316554
Total 4507 .3402 46 47.2235 .9740917 .7296205 1.300477

Video example

How to calculate incidence rates and incidence-rate ratios


https://www.youtube.com/watch?v=ItmXrcfpTfE&list=UUVk4G4nEtBS4tLOyHqustDA
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Stored results

stptime stores the following in r():

Scalars

r(ptime) person-time

r(failures) observed failures

r(rate) failure rate

r(expected) expected number of failures

r(smr) standardized mortality ratio

r(1lb) lower bound for SMR

r(ub) upper bound for SMR
References

Clayton, D. G., and M. Hills. 1993. Statistical Models in Epidemiology. Oxford: Oxford University Press.
Rutherford, M. J., P. C. Lambert, and J. Thompson. 2010. Age—period—cohort modeling. Stata Journal 10: 606-627.

Also see

[ST] stei — Confidence intervals for means and percentiles of survival time
[ST] stir — Report incidence-rate comparison

[ST] strate — Tabulate failure rates and rate ratios

[ST] stset — Declare data to be survival-time data

[ST] stsplit — Split and join time-span records

[R] Epitab — Tables for epidemiologists


http://www.stata.com/bookstore/sme.html
http://www.stata-journal.com/article.html?article=st0211
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strate — Tabulate failure rates and rate ratios

Description Quick start Menu Syntax
Options Remarks and examples Acknowledgments Reference
Also see

Description

strate tabulates rates by one or more categorical variables declared in varlist. You can also save
an optional summary dataset, which includes event counts and rate denominators, for further analysis
or display. The combination of the commands stsplit and strate implements most of, if not all,
the functions of the special-purpose person-years programs in widespread use in epidemiology; see
[ST] stsplit.

Quick start

Table of failure rates using stset data
strate

Same as above, but calculate failure rates at each level of categorical variable catvar
strate catvar

Graph rates against catvar
strate catvar, graph

Table of SMRs per 1,000 with reference rates stored in variable rvar
strate catvar, per(1000) smr(rvar)

Menu

Statistics > Survival analysis > Summary statistics, tests, and tables > Tabulate failure rates and rate ratios

357
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Syntax

strate [varlisl] [l_'f] [ll’l] [, options]

options Description
Main
per (#) units to be used in reported rates
smr (varname) use varname as reference-rate variable to calculate SMRs
cluster (varname) cluster variable to be used by the jackknife
jackknife report jackknife confidence intervals
missing include missing values as extra categories
graph graph rates against exposure category
nowhisker omit confidence intervals from the graph
level (#) set confidence level; default is 1level (95)

output (ﬁlename[ , replace]) save summary dataset as filename; use replace to overwrite
existing filename

nolist suppress listed output
Plot
marker_options change look of markers (color, size, etc.)
marker_label _options add marker labels; change look or position
cline_options affect rendition of the plotted points
Cl plot
ciopts (rspike_options) affect rendition of the confidence intervals (whiskers)
Add plots
addplot (plot) add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall
twoway_options any options other than by () documented in [G-3] twoway_options

You must stset your data before using strate; see [ST] stset.
fweights, iweights, and pweights may be specified using stset; see [ST] stset.

Options
Main

per (#) specifies the units to be used in reported rates. For example, if the analysis time is in years,
specifying per (1000) results in rates per 1,000 person-years.

smr (varname) specifies a reference-rate variable. strate then calculates SMRs rather than rates. This
option will usually follow stsplit to separate the follow-up records by age bands and possibly
calendar periods.

cluster (varname) defines a categorical variable that indicates clusters of data to be used by the
jackknife. If the jackknife option is selected and this option is not specified, the cluster variable
is taken as the id variable defined in the st data. Specifying cluster() implies jackknife.

jackknife specifies that jackknife confidence intervals be produced. This is the default if weights
were specified when the dataset was stset.
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missing specifies that missing values of the explanatory variables be treated as extra categories. The
default is to exclude such observations.

graph produces a graph of the rate against the numerical code used for the categories of varname.
nowhisker omits the confidence intervals from the graph.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is
level(95) or as set by set level; see [U] 20.8 Specifying the width of confidence intervals.

output (ﬁlename[ s replace]) saves a summary dataset in filename. The file contains counts of
failures and person-time, rates (or SMRs), confidence limits, and all the categorical variables in
the varlist. This dataset could be used for further calculations or simply as input to the table
command; see [R] table.

replace specifies that filename be overwritten if it exists. This option is not shown in the dialog
box.

nolist suppresses the output. This is used only when saving results to a file specified by output ().

Plot

marker_options affect the rendition of markers drawn at the plotted points, including their shape,
size, color, and outline; see [G-3] marker _options.

marker_label _options specify if and how the markers are to be labeled; see [G-3] marker _label _options.

cline_options affect whether lines connect the plotted points and the rendition of those lines; see
[G-3] cline_options.

Cl plot

ciopts (rspike_options) affects the rendition of the confidence intervals (whiskers); see
[G-3] rspike_options.

Add plots

addplot (plot) provides a way to add other plots to the generated graph; see [G-3] addplot_option.

Y axis, X axis, Titles, Legend, Overall |

twoway_options are any of the options documented in [G-3] twoway _options, excluding by (). These
include options for titling the graph (see [G-3] title_options) and for saving the graph to disk (see
[G-3] saving _option).

Remarks and examples

strate tabulates the rate, formed from the number of failures divided by the person-time, by
different levels of one or more categorical explanatory variables specified by varlist. Confidence
intervals for the rate are also given. By default, the confidence intervals are calculated using the
quadratic approximation to the Poisson log likelihood for the log-rate parameter. However, whenever
the Poisson assumption is questionable, jackknife confidence intervals can also be calculated. The
jackknife option also allows for multiple records for the same cluster (usually subject).

strate can also calculate and report SMRs if the data have been merged with a suitable file of
reference rates.

The summary dataset can be saved to a file specified with the output () option for further analysis
or more elaborate graphical display.
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If weights were specified when the dataset was stset, strate calculates jackknife confidence
intervals by default.

> Example 1: Tabulation of failure rates

Using the diet data (Clayton and Hills 1993) described in example 1 of [ST] stsplit, we will use
strate to tabulate age-specific coronary heart disease (CHD). In this dataset, CHD has been coded as
fail =1, 3, or 13.

We first stset the data: failure codes for CHD are specified; origin is set to date of birth, making
age the analysis time; and the scale is set to 365.25, so analysis time is measured in years.

. use https://www.stata-press.com/data/r18/diet
(Diet data with dates)

. stset dox, origin(time dob) enter(time doe) id(id) scale(365.25)
> fail(fail==1 3 13)

Survival-time data settings

ID variable: id
Failure event: fail==1 3 13
Observed time interval: (dox[_n-1], dox]
Enter on or after: time doe
Exit on or before: failure
Time for analysis: (time-origin)/365.25
Origin: time dob

337 total observations
0 exclusions

337 observations remaining, representing
337 subjects
46 failures in single-failure-per-subject data
4,603.669 total analysis time at risk and under observation
At risk from t 0
Earliest observed entry t 30.07529
Last observed exit t = 69.99863

Now we stsplit the data into 10-year age bands.

. stsplit ageband, at(40(10)70) after(time=dob) trim
(26 observations trimmed because of lower bound)
(418 observations (episodes) created)

stsplit added 418 observations to the dataset in memory and generated a new variable, ageband,
that identifies each observation’s age group.
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The CHD rate per 1,000 person-years can now be tabulated for categories of ageband:

. strate ageband, per(1000) graph

Failure _d:
Analysis time _%:
Origin:

Enter on or after:
ID variable:

fail==1 3 13
(dox-origin)/365.25
time dob

time doe

id

Note: ageband<=40 trimmed
Estimated failure rates
Number of records = 729
ageband D Y Rate Lower Upper
40 6 0.9070 6.6152  2.9719 14.7246
50 18 2.1070 8.5428  5.3823 13.5591
60 22 1.4933 14.7325 9.7007 22.3746

Notes: Rate = D/Y = failures/person-time (per 1000).

Lower and Upper are bounds of 95}, confidence intervals.

25+

20

154

Rate (per 1000)

104

40 45 50 55 60
Observation interval

Because we specified the graph option, strate also generated a plot of the estimated rates and
confidence intervals. q

The SMR for a cohort is the ratio of the total number of observed deaths to the number expected
from age-specific reference rates. This expected number can be found by first expanding on age, using
stsplit, and then multiplying the person-years in each age band by the reference rate for that band.
merge (see [D] merge) can be used to add the reference rates to the dataset. Using the smr option to
define the variable containing the reference rates, strate calculates SMRs and confidence intervals.
You must specify the per () option. For example, if the reference rates were per 100,000 person-years,
you would specify per (100000). When reference rates are available by age and calendar period, you
must call stsplit twice to expand on both time scales before merging the data with the reference-rate
file.
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> Example 2: Tabulation of SMRs

In smrchd.dta, we have age-specific CHD rates per 1,000 person-years for a reference population.
We can merge these data with our current data and use strate to obtain SMRs and confidence
intervals.

. sort ageband

. merge m:1 ageband using https://www.stata-press.com/data/r18/smrchd
(variable ageband was byte, now float to accommodate using data’s values)

Result Number of obs
Not matched 26
from master 26 (_merge==1)
from using 0 (_merge==2)
Matched 729 (_merge==3)

. strate ageband, per(1000) smr(rate)
Failure _d: fail==1 3 13
Analysis time _t: (dox-origin)/365.25
Origin: time dob
Enter on or after: time doe
ID variable: id
Note: ageband<=40 trimmed

Estimated standardized mortality rates
Reference-rate variable: rate

Number of records = 729

ageband D E SMR Lower Upper

40 6 5.62 1.0670 0.4793  2.3749
50 18 18.75 0.9599  0.6048 1.5235
60 22 22.85 0.9629 0.6340 1.4624

Notes: SMR = D/E = failures/expected failures (per 1000).
Lower and Upper are bounds of 95} confidence intervals.
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Also see
[ST] stci — Confidence intervals for means and percentiles of survival time
[ST] stir — Report incidence-rate comparison
[ST] stmc — Calculate rate ratios with the Mantel-Cox method
[ST] stmh — Calculate rate ratios with the Mantel-Haenszel method
[ST] stptime — Calculate person-time, incidence rates, and SMR

[ST] stset — Declare data to be survival-time data
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streg — Parametric survival models

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

streg performs maximum likelihood estimation for parametric regression survival-time models.
streg can be used with single- or multiple-record or single- or multiple-failure st data. Survival
models currently supported are exponential, Weibull, Gompertz, lognormal, loglogistic, and generalized
gamma. Parametric frailty models and shared-frailty models are also fit using streg.

Also see [ST] stcox for proportional hazards models.

Quick start

Weibull survival model with covariates x1 and x2 using stset data
streg x1 x2, distribution(weibull)

Use accelerated failure-time metric instead of proportional-hazards parameterization
streg x1 x2, distribution(weibull) time

Different intercepts and ancillary parameters for strata identified by svar
streg x1 x2, distribution(weibull) strata(svar)

Lognormal survival model
streg x1 x2, distribution(lognormal)

Same as above, but also model frailty using the gamma distribution
streg x1 x2, distribution(lognormal) frailty(gamma)

Specify shared frailty within groups identified by gvar
streg x1 x2, distribution(lognormal) frailty(gamma) shared(gvar)

Menu

Statistics > Survival analysis > Regression models > Parametric survival models

364
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Syntax

streg [indepvurs] [lf] [m] [, options]

options Description
Model
noconstant suppress constant term

exponential survival distribution

Gompertz survival distribution

loglogistic survival distribution

synonym for distribution(loglogistic)
Weibull survival distribution

lognormal survival distribution

distribution(exponential)
distribution(gompertz)
g;§§ribution(igglogistic)
distribution(llogistic)
distribution(weibull)
distribution(lognormal)

distribution(lnormal)
distribution(ggamma)
frailty(gamma)
;;ailty(invgaussian)
time

Model 2
strata(varname)
offset (varname)
shared (varname)
ancillary (varlist)
anc2 (varlist)
constraints (constraints)

SE/Robust
vce (veetype)

Reporting

level (#)
nohr

tratio
noshow
noheader
nolrtest
nocnsreport
display_options

Maximization

maximize_options

collinear
coeflegend

synonym for distribution(lognormal)
generalized gamma survival distribution
gamma frailty distribution
inverse-Gaussian distribution

use accelerated failure-time metric

strata ID variable

include varname in model with coefficient constrained to 1
shared frailty ID variable

use varlist to model the first ancillary parameter

use varlist to model the second ancillary parameter

apply specified linear constraints

vcetype may be oim, robust, cluster clustvar, opg,
bootstrap, or jackknife

set confidence level; default is 1level (95)
do not report hazard ratios

report time ratios

do not show st setting information
suppress header from coefficient table

do not perform likelihood-ratio test

do not display constraints

control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

control the maximization process; seldom used

keep collinear variables
display legend instead of statistics
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You must stset your data before using streg; see [ST] stset.
varlist may contain factor variables; see [U] 11.4.3 Factor variables.

bayes, bootstrap, by, collect, fmm, fp, jackknife, mfp, mi estimate, nestreg, statsby, stepwise, and svy
are allowed; see [U] 11.1.10 Prefix commands. For more details, see [BAYES] bayes: streg and [FMM] fmm: streg.

vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix; see [MI] mi estimate.
shared(), vce(), and noheader are not allowed with the svy prefix; see [SVY] svy.

fweights, iweights, and pweights may be specified using stset; see [ST] stset. However, weights may not be
specified if you are using the bootstrap prefix with the streg command.

collinear and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options
[ Wodel

noconstant; see [R] Estimation options.

distribution(distname) specifies the survival model to be fit. A specified distribution() is
remembered from one estimation to the next when distribution() is not specified.

For instance, typing streg x1 x2, distribution(weibull) fits a Weibull model. Subsequently,
you do not need to specify distribution(weibull) to fit other Weibull regression models.

All Stata estimation commands, including streg, redisplay results when you type the command
name without arguments. To fit a model with no explanatory variables, type streg, distribu-
tion(distname). . ..

frailty(gamma | invgaussian) specifies the assumed distribution of the frailty, or heterogeneity.
The estimation results, in addition to the standard parameter estimates, will contain an estimate of
the variance of the frailties and a likelihood-ratio test of the null hypothesis that this variance is
zero. When this null hypothesis is true, the model reduces to the model with frailty(distname)
not specified.

A specified frailty() is remembered from one estimation to the next when distribution()
is not specified. When you specify distribution(), the previously remembered specification of
frailty() is forgotten.

time specifies that the model be fit in the accelerated failure-time metric rather than in the log
relative-hazard metric. This option is valid only for the exponential and Weibull models because
these are the only models that have both a proportional hazards and an accelerated failure-time
parameterization. Regardless of metric, the likelihood function is the same, and models are equally
appropriate viewed in either metric; it is just a matter of changing the interpretation.

time must be specified at estimation.

Model 2

strata(varname) specifies the stratification ID variable. Observations with equal values of the
variable are assumed to be in the same stratum. Stratified estimates (with equal coefficients across
strata but intercepts and ancillary parameters distinct for each stratum) are then obtained. This
option is not available if frailty(distname) is specified.

offset (varname); see [R] Estimation options.

shared (varname) is valid with frailty () and specifies a variable defining those groups over which
the frailty is shared, analogous to a random-effects model for panel data where varname defines the
panels. frailty() specified without shared () treats the frailties as occurring at the observation
level.
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A specified shared() is remembered from one estimation to the next when distribution()
is not specified. When you specify distribution(), the previously remembered specification of
shared () is forgotten.

shared() may not be used with distribution(ggamma), vce(robust), vce(cluster clust-
var), vce (opg), the svy prefix, or in the presence of delayed entries or gaps.

If shared() is specified without frailty() and there is no remembered frailty() from the
previous estimation, frailty(gamma) is assumed to provide behavior analogous to stcox; see
[ST] stcox.

ancillary (varlist) specifies that the ancillary parameter for the Weibull, lognormal, Gompertz, and
loglogistic distributions and that the first ancillary parameter (sigma) of the generalized log-gamma
distribution be estimated as a linear combination of varlist. This option may not be used with
frailty (distname).

When an ancillary parameter is constrained to be strictly positive, the logarithm of the ancillary
parameter is modeled as a linear combination of varlist.

anc2(varlist) specifies that the second ancillary parameter (kappa) for the generalized log-gamma
distribution be estimated as a linear combination of varlist. This option may not be used with
frailty (distmame).

constraints (constraints) ; see [R] Estimation options.

SE/Robust

vce (veetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), that
allow for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods
(bootstrap, jackknife); see [R] vce_option.

Reporting

level (#); see [R] Estimation options.

nohr, which may be specified at estimation or upon redisplaying results, specifies that coefficients
rather than exponentiated coefficients be displayed, that is, that coefficients rather than hazard ratios
be displayed. This option affects only how coefficients are displayed, not how they are estimated.

This option is valid only for models with a natural proportional-hazards parameterization: exponen-
tial, Weibull, and Gompertz. These three models, by default, report hazard ratios (exponentiated
coefficients).

tratio specifies that exponentiated coefficients, which are interpreted as time ratios, be displayed.
tratio is appropriate only for the loglogistic, lognormal, and generalized gamma models, or for
the exponential and Weibull models when fit in the accelerated failure-time metric.

tratio may be specified at estimation or upon replay.

noshow prevents streg from showing the key st variables. This option is rarely used because most
people type stset, show or stset, noshow to set once and for all whether they want to see
these variables mentioned at the top of the output of every st command; see [ST] stset.

noheader suppresses the output header, either at estimation or upon replay.

nolrtest is valid only with frailty models, in which case it suppresses the likelihood-ratio test for
significant frailty.

nocnsreport; see [R] Estimation options.
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display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat (% fint), pformat (% fint),
sformat (% fmt), and nolstretch; see [R] Estimation options.

Maximization

maximize_options: difficult, technique (algorithm_spec), iterate (#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init_specs); see [R] Maximize. These options are
seldom used.

Setting the optimization type to technique (bhhh) resets the default vcetype to vce (opg).

The following options are available with streg but are not shown in the dialog box:

collinear, coeflegend; see [R] Estimation options.

Remarks and examples

Remarks are presented under the following headings:

Introduction
Distributions
Weibull and exponential models
Gompertz model
Lognormal and loglogistic models
Generalized gamma model
Examples
Parameterization of ancillary parameters
Stratified estimation
(Unshared-) frailty models
Shared-frailty models

Introduction

What follows is a brief summary of what you can do with streg. For a complete tutorial, see
Cleves, Gould, and Marchenko (2016), which devotes four chapters to this topic.

Two often-used models for adjusting survivor functions for the effects of covariates are the
accelerated failure-time (AFT) model and the multiplicative or proportional hazards (PH) model. In
the AFT model, the natural logarithm of the survival time, logt, is expressed as a linear function of
the covariates, yielding the linear model

logt; = x;8+ 2;

where x; is a vector of covariates, 3 is a vector of regression coefficients, and z; is the error with
density f(-). The distributional form of the error term determines the regression model. If we let f(-)
be the normal density, the lognormal regression model is obtained. Similarly, by letting f(-) be the
logistic density, the loglogistic regression is obtained. Setting f(-) equal to the extreme-value density
yields the exponential and the Weibull regression models.

The effect of the AFT model is to change the time scale by a factor of exp(—x,;/3). Depending
on whether this factor is greater or less than 1, time is either accelerated or decelerated (degraded).
That is, if a subject at baseline experiences a probability of survival past time ¢ equal to S(¢), then a
subject with covariates x; would have probability of survival past time ¢ equal to S(-) evaluated at
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the point exp(—x;/3)t, instead. Thus accelerated failure time does not imply a positive acceleration
of time with the increase of a covariate but instead implies a deceleration of time or, equivalently, an
increase in the expected waiting time for failure.

In the PH model, the concomitant covariates have a multiplicative effect on the hazard function
h(t;) = ho(t)g(x;)

for some hg(t), and for g(x;), a nonnegative function of the covariates. A popular choice, and the
one adopted here, is to let g(x;) = exp(x;3). The function h¢(t) may either be left unspecified,
yielding the Cox proportional hazards model (see [ST] stcox), or take a specific parametric form.
For the streg command, ho(t) is assumed to be parametric. Three regression models are currently
implemented as PH models: the exponential, Weibull, and Gompertz models. The exponential and
Weibull models are implemented as both AFT and PH models, and the Gompertz model is implemented
only in the PH metric.

The above model allows for the presence of an intercept term, 3y, within x;3. Thus what is
commonly referred to as the baseline hazard function—the hazard when all covariates are zero—is
actually equal to ho(t) exp(Bo). That is, the intercept term serves to scale the baseline hazard. Of
course, specifying noconstant suppresses the intercept or equivalently constrains 3 to equal zero.

streg is suitable only for data that have been stset. By stsetting your data, you define the
variables _t0, _t, and _d, which serve as the trivariate response variable (tg,t,d). Each response
corresponds to a period under observation, (¢, t], resulting in either failure (d = 1) or right-censoring
(d = 0)attime t. Asaresult, streg is appropriate for data exhibiting delayed entry, gaps, time-varying
covariates, and even multiple-failure data.

Distributions

Six parametric survival distributions are currently supported by streg. The parameterization and
ancillary parameters for each distribution are summarized in table 1:

Table 1. Parametric survival distributions supported by streg

Ancillary

Distribution Metric  Survivor function Parameterization parameters
Exponential PH exp(—A\;jt;) Aj = exp(x;3)
Exponential AFT exp(—A\;t;) Aj = exp(—x;0)
Weibull PH exp(—A;t%) A; = exp(x;3) P
Weibull AFT exp(—A\;t) Aj = exp(—px;8) p
Gompertz PH exp{—\;7 (e — 1)} \; = exp(x;0) v
Lognormal AFT 1-9 {%} i = X;3 o
Loglogistic AFT {1+ O\ttt Aj = exp(—x;8) 7
Generalized gamma

if k>0 AFT 1-1 v,u) i = X3 o, K

ifk=0 AFT 1—®(2) i =X;0 o, K

if k<0 AFT I(fy,u) i = x;3 O, K
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where PH = proportional hazards, AFT = accelerated failure time, and ®(z) is the standard normal
cumulative distribution. For the generalized gamma, v = |k|~2, u = ~exp(|x|2), I(a,z) is the
incomplete gamma function, and z = sign(x){log(t;) — p;}/o.

Plotted in figure 1 are example hazard functions for five of the six distributions. The exponential
hazard (not separately plotted) is a special case of the Weibull hazard when the Weibull ancillary
parameter p = 1. The generalized gamma (not plotted) is extremely flexible and therefore can take
many shapes.

Gompertz Weibull

h(t)
e
h(t)

0+ 01
T T T T T T T T T T
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Figure 1. Example plots of hazard functions

Weibull and exponential models

The Weibull and exponential models are parameterized as both PH and AFT models. The Weibull
distribution is suitable for modeling data with monotone hazard rates that either increase or decrease
exponentially with time, whereas the exponential distribution is suitable for modeling data with
constant hazard (see figure 1).

For the PH model, h(t) = 1 for exponential regression, and hq(t) = pt?~! for Weibull regression,
where p is the shape parameter to be estimated from the data. Some authors refer not to p but to

oc=1/p.
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The AFT model is written as
log(t;) = x;8" + 2;

where z; has an extreme-value distribution scaled by o. Let 3 be the vector of regression coefficients
derived from the PH model so that 3* = —o (3. This relationship holds only if the ancillary parameter,
p, is a constant; it does not hold when the ancillary parameter is parameterized in terms of covariates.

streg uses, by default, for the exponential and Weibull models, the proportional-hazards metric
simply because it eases comparison with those results produced by stcox (see [ST] stcox). You can,
however, specify the time option to choose the accelerated failure-time parameterization.

The Weibull hazard and survivor functions are
h(t) = patP~!

S(t) = exp(—AtP)

where A is parameterized as described in table 1. If p = 1, these functions reduce to those of the
exponential.

Gompertz model

The Gompertz regression is parameterized only as a PH model. First described in 1825, this
model has been extensively used by medical researchers and biologists modeling mortality data. The
Gompertz distribution implemented is the two-parameter function as described in Lee and Wang (2013),
with the following hazard and survivor functions:

h(t) = Aexp(7)
S(t) = exp{=My (7" = 1)}

The model is implemented by parameterizing \; = exp(x,/3), implying that ho(t) = exp(vyt),
where 7y is an ancillary parameter to be estimated from the data.

This distribution is suitable for modeling data with monotone hazard rates that either increase or
decrease exponentially with time (see figure 1).

When -y is positive, the hazard function increases with time; when < is negative, the hazard
function decreases with time; and when -y is zero, the hazard function is equal to A for all ¢, so the
model reduces to an exponential.

Some recent survival analysis texts, such as Klein and Moeschberger (2003), restrict -y to be strictly
positive. If v < 0, then as ¢ goes to infinity, the survivor function, S(t), exponentially decreases
to a nonzero constant, implying that there is a nonzero probability of never failing (living forever).
That is, there is always a nonzero hazard rate, yet it decreases exponentially. By restricting -y to be
positive, we know that the survivor function always goes to zero as ¢ tends to infinity.

Although the above argument may be desirable from a mathematical perspective, in Stata’s
implementation, we took the more traditional approach of not restricting . We did this because, in
survival studies, subjects are not monitored forever—there is a date when the study ends, and in many
investigations, specifically in medical research, an exponentially decreasing hazard rate is clinically
appealing.
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Lognormal and loglogistic models

The lognormal and loglogistic models are implemented only in the AFT form. These two distributions
are similar and tend to produce comparable results. For the lognormal distribution, the natural logarithm
of time follows a normal distribution; for the loglogistic distribution, the natural logarithm of time
follows a logistic distribution.

The lognormal survivor and density functions are

S(t)zl—q>{‘°g(t)_“}

g

)= oo [;{ log(1) u}g]

where ®(z) is the standard normal cumulative distribution function.

The lognormal regression is implemented by setting y1; = x;(3 and treating the standard deviation,
0, as an ancillary parameter to be estimated from the data.

The loglogistic regression is obtained if z; has a logistic density. The loglogistic survivor and
density functions are

S(t) = {1+ ()}

A/ vgt/v—=1
H=—2 "
{1+ ()2

This model is implemented by parameterizing A; = exp(—x,/3) and treating the scale parameter
~ as an ancillary parameter to be estimated from the data.

Unlike the exponential, Weibull, and Gompertz distributions, the lognormal and the loglogistic
distributions are indicated for data exhibiting nonmonotonic hazard rates, specifically initially increasing
and then decreasing rates (figure 1).

Thus far we have considered the exponential, Weibull, lognormal, and loglogistic models. These
models are sufficiently flexible for many datasets, but further flexibility can be obtained with the
generalized gamma model, described below. Alternatively, you might consider using a Royston—
Parmar model (Royston and Parmar 2002; Lambert and Royston 2009). Royston—Parmar models are
highly flexible alternatives to the exponential, Weibull, lognormal, and loglogistic models that allow
extension from proportional hazards to proportional odds and to scaled probit models. Additional
flexibility can be obtained with restricted cubic spline functions as alternatives to the linear functions
of log time considered in Introduction. See Royston and Lambert (2011) for a thorough treatment of
this topic.



streg — Parametric survival models 373

Generalized gamma model

The generalized gamma model is implemented only in the AFT form. The three-parameter generalized
gamma survivor and density functions are

1—I('y,u) if k>0
St)=41—-®(2) ifk=0
I(7,u) if k<0

£t) = { #}(wexp(zﬂ—u) if K #£0

atxl/ﬂ exp(—22/2) ifk=0
where v = |k|72, z = sign(k){log(t) — u}/o, u = yexp(|k|z), ®(2) is the standard normal
cumulative distribution function, and I (a, x) is the incomplete gamma function. See the gammap (a, x)
entry in [FN] Statistical functions to see how the incomplete gamma function is implemented in
Stata.

This model is implemented by parameterizing p; = x;3 and treating the parameters x and o as
ancillary parameters to be estimated from the data.

The hazard function of the generalized gamma distribution is extremely flexible, allowing for many
possible shapes, including as special cases the Weibull distribution when x = 1, the exponential when
Kk =1 and o = 1, and the lognormal distribution when x = 0. The generalized gamma model is,
therefore, commonly used for evaluating and selecting an appropriate parametric model for the data.
The Wald or likelihood-ratio test can be used to test the hypotheses that k = 1 or that k = 0.

Q Technical note

Prior to Stata 14, streg’s option distribution(gamma) was used to fit generalized gamma
models. As of Stata 14, the new option for fitting these models is distribution(ggamma). The
old option continues to work under version control. This option was renamed to avoid confusion
with mestreg’s option distribution(gamma) for fitting mixed-effects survival gamma models; see
[ME] mestreg.

a

Examples

> Example 1

The Weibull distribution provides a good illustration of streg because this distribution is param-
eterized as both AFT and PH and serves to compare and contrast the two approaches.

We wish to analyze an experiment testing the ability of emergency generators with new-style
bearings to withstand overloads. This dataset is described in [ST] stcox. This time, we wish to fit a
Weibull model:



374 streg — Parametric survival models

. use https://www.stata-press.com/data/r18/kva
(Generator experiment)

. stset failtime
(output omitted )

. streg load bearings, distribution(weibull)

Failure _d: 1 (meaning all fail)

Analysis time _t: failtime

Fitting constant-only model:

Iteration 0: Log likelihood = -13.666193
Iteration 1: Log likelihood = -9.7427276
Iteration 2: Log likelihood = -9.4421169
Iteration 3: Log likelihood = -9.4408287
Iteration 4: Log likelihood = -9.4408286

Fitting full model:

Iteration 0: Log likelihood = -9.4408286
Iteration 1: Log likelihood = -2.078323
Iteration 2: Log likelihood = 5.2226016
Iteration 3: Log likelihood = 5.6745808
Iteration 4: Log likelihood = 5.6934031
Iteration 5: Log likelihood = 5.6934189
Iteration 6: Log likelihood = 5.6934189

Weibull PH regression

No. of subjects = 12 Number of obs = 12
No. of failures = 12
Time at risk = 896

LR chi2(2) = 30.27

Log likelihood = 5.6934189 Prob > chi2 = 0.0000

_t | Haz. ratio Std. err. z P>|z| [95% conf. intervall

load 1.599315 .1883807 3.99 0.000 1.269616 2.014631

bearings .1887995 .1312109 -2.40 0.016 .0483546 .7371644

_cons 2.51e-20 2.66e-19 -4.26  0.000 2.35e-29 2.68e-11

/1n_p 2.051552 .2317074 8.85 0.000 1.597414 2.505691

P 7.779969 1.802677 4.940241 12.25202

1/p .1285352 .0297826 .0816192 .2024193

Note: _cons estimates baseline hazard.

Because we did not specify otherwise, the estimation took place in the hazard metric, which is
the default for distribution(weibull). The estimates are directly comparable to those produced
by stcox: stcox estimated a hazard ratio of 1.526 for load and 0.0636 for bearings.

However, we estimated the baseline hazard function as well, assuming that it is Weibull. The
estimates are the full maximum-likelihood estimates. The shape parameter is fit as Inp, but streg
then reports p and 1/p = o so that you can think about the parameter however you wish.

We find that p is greater than 1, which means that the hazard of failure increases with time and,
here, increases dramatically. After 100 hours, the bearings are more than 1 million times more likely
to fail per second than after 10 hours (or, to be precise, (100/ 10)7'78_1). From our knowledge of
generators, we would expect this; it is the accumulation of heat due to friction that causes bearings
to expand and seize.

d
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Q Technical note

Regression results are often presented in a metric other than the natural regression coefficients, that
is, as hazard ratios, relative risk ratios, odds ratios, etc. In those cases, standard errors are calculated
using the delta method.

However, the Z test and p-values given are calculated from the natural regression coefficients
and standard errors. Although a test based on, say, a hazard ratio and its standard error would be
asymptotically equivalent to that based on a regression coefficient, in real samples a hazard ratio will
tend to have a more skewed distribution because it is an exponentiated regression coefficient. Also,
it is more natural to think of these tests as testing whether a regression coefficient is nonzero, rather
than testing whether a transformed regression coefficient is unequal to some nonzero value (one for
a hazard ratio).

Finally, the confidence intervals given are obtained by transforming the endpoints of the cor-
responding confidence interval for the untransformed regression coefficient. This ensures that, say,
strictly positive quantities such as hazard ratios have confidence intervals that do not overlap zero.

a

> Example 2

The previous estimation took place in the PH metric, and exponentiated coefficients—hazard
ratios—were reported. If we want to see the unexponentiated coefficients, we could redisplay results
and specify the nohr option:

. streg, nohr

Weibull PH regression

No. of subjects = 12 Number of obs = 12
No. of failures = 12
Time at risk = 896

LR chi2(2) = 30.27

Log likelihood = 5.6934189 Prob > chi2 = 0.0000

_t | Coefficient Std. err. z P>|z| [95% conf. intervall

load .4695753 .1177884 3.99 0.000 .2387143 .7004363

bearings -1.667069 .6949745 -2.40 0.016 -3.029194 -.3049443

_cons -45.13191 10.60663 -4.26 0.000 -65.92053 -24.34329

/1n_p 2.051552 .2317074 8.85 0.000 1.597414 2.505691

P 7.779969 1.802677 4.940241 12.25202

1/p .1285352 .0297826 .0816192 .2024193
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> Example 3

We could just as well have fit this model in the AFT metric:

. streg load bearings, distribution(weibull) time nolog

Failure _d: 1 (meaning all fail)
Analysis time _t: failtime

Weibull AFT regression

No. of subjects = 12 Number of obs = 12
No. of failures = 12
Time at risk = 896

LR chi2(2) = 30.27

Log likelihood = 5.6934189 Prob > chi2 = 0.0000

_t | Coefficient Std. err. z P>zl [95% conf. intervall]

load -.060357 .0062214 -9.70 0.000 -.0725507 -.0481632

bearings .2142771 .0746451 2.87 0.004 .0679753 .3605789

_cons 5.80104 .1752301 33.11 0.000 5.457595 6.144485

/1n_p 2.051552 .2317074 8.85 0.000 1.597414 2.505691

P 7.779969 1.802677 4.940241 12.25202

1/p .1285352 .0297826 .0816192 .2024193

This is the same model we previously fit, but it is presented in a different metric. Calling the
previous coefficients b, these coefficients are —ob = —b/p. For instance, in the previous example,
the coefficient on load was reported as roughly 0.47, and —0.47/7.78 = —0.06. q

> Example 4

streg may also be applied to more complicated data. Below we have multiple records per subject
on a failure that can occur repeatedly:

. use https://www.stata-press.com/data/r18/mfail3

. stdescribe

Per subject ——
Category Total Mean Min Median Max
Number of subjects 926
Number of records 1734 1.87257 1 2 4
Entry time (first) 0 0 0 0
Exit time (final) 470.6857 1 477 960
Subjects with gap 6
Time on gap 411 68.5 16 57.5 133
Time at risk 435444 470.2419 1 477 960
Failures 808 .8725702 0 1 3

In this dataset, subjects have up to four records (most have two) and have up to three failures (most
have one) and, although you cannot tell from the above output, the data have time-varying covariates,
as well. There are even six subjects with gaps in their histories, meaning that, for a while, they went
unobserved. Although we could estimate in the AFT metric, it is easier to interpret results in the PH
metric (or the log relative-hazard metric, as it is also known):
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. streg x1 x2, distribution(weibull) vce(robust)

Fitting constant-only model:

Iteration 0: Log pseudolikelihood = -1398.2504
Iteration 1: Log pseudolikelihood = -1382.8224
Iteration 2: Log pseudolikelihood = -1382.7457
Iteration 3: Log pseudolikelihood = -1382.7457

Fitting full model:

Iteration 0: Log pseudolikelihood = -1382.7457
Iteration 1: Log pseudolikelihood = -1328.4186
Iteration 2: Log pseudolikelihood = -1326.4483
Iteration 3: Log pseudolikelihood = -1326.4449
Iteration 4: Log pseudolikelihood = -1326.4449

Weibull PH regression

No. of subjects = 926 Number of obs = 1,734
No. of failures = 808
Time at risk = 435,444

Wald chi2(2) = 154.45
Log pseudolikelihood = -1326.4449 Prob > chi2 = 0.0000

(Std. err. adjusted for 926 clusters in id)

Robust

_t | Haz. ratio std. err. z P>|z| [95% conf. intervall

x1 2.240069 .1812848 9.97 0.000 1.911504 2.625111

x2 .3206515 .0504626 -7.23 0.000 .2355458 .436507
_cons .0006962 .0001792 -28.25 0.000 .0004204 .001153
/1n_p .1771265 .0310111 5.71 0.000 .1163458 .2379071
P 1.193782 .0370205 1.123384 1.268591

1/p .8376738 .0259772 . 7882759 .8901674

Note: _cons estimates baseline hazard.

A one-unit change in x1 approximately doubles the hazard of failure, whereas a one-unit change
in x2 cuts the hazard to one-third its previous value. We also see that these data are close to being
exponentially distributed; p is nearly 1.

Above we mentioned that interpreting results in the PH metric is easier, though regression coefficients
are not difficult to interpret in the AFT metric. A positive coefficient means that time is decelerated
by a unit increase in the covariate in question. This may seem awkward, but think of this instead as
a unit increase in the covariate causing a delay in failure and thus increasing the expected time until
failure.

The difficulty that arises with the AFT metric is merely that it places an emphasis on log(time-to-
failure) rather than risk (hazard) of failure. With this emphasis usually comes a desire to predict the
time to failure, and therein lies the difficulty with complex survival data. Predicting the log(time to
failure) with predict assumes that the subject is at risk from time O until failure and has a fixed
covariate pattern over this period. With these data, such assumptions produce predictions having little
to do with the test subjects, who exhibit not only time-varying covariates but also multiple failures.

Predicting time to failure with complex survival data is difficult regardless of the metric under
which estimation took place. Those who estimate in the PH metric are probably used to dealing with
results from Cox regression, of which predicted time to failure is typically not the focus.

d
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> Example 5

The multiple-failure data above are close enough to exponentially distributed that we will reestimate
using exponential regression:

. streg x1 x2, distribution(exp) vce(robust)

Iteration 0: Log pseudolikelihood = -1398.2504

Iteration 1: Log pseudolikelihood = -1343.6083

Iteration 2: Log pseudolikelihood = -1341.5932

Iteration 3: Log pseudolikelihood = -1341.5893

Iteration 4: Log pseudolikelihood = -1341.5893

Exponential PH regression

No. of subjects = 926 Number of obs = 1,734
No. of failures = 808

Time at risk = 435,444

Wald chi2(2) = 166.92
Log pseudolikelihood = -1341.5893 Prob > chi2 = 0.0000

(Std. err. adjusted for 926 clusters in id)

Robust
_t | Haz. ratio std. err. z P>zl [95% conf. intervall]
x1 2.19065 .1684399 10.20 0.000 1.884186 2.54696
x2 .3037259 .0462489 -7.83 0.000 .2253552 .4093511
_cons .0024536 .0001535 -96.05 0.000 .0021704 .0027738

Note: _cons estimates baseline hazard.

Q Technical note

For our “complex” survival data, we specified vce (robust) when fitting the Weibull and exponential
models. This was because these data were stset with an id() variable, and given the time-varying
covariates and multiple failures, it is important not to assume that the observations within each subject
are independent. When we specified vce (robust), it was implicit that we were “clustering” on the
groups defined by the id () variable.

You might sometimes have multiple observations per subject, which exist merely as a result
of the data-organization mechanism and are not used to record gaps, time-varying covariates, or
multiple failures. Such data could be collapsed into single-observation-per-subject data with no loss
of information. In these cases, we refer to splitting the observations to form multiple observations per
subject as noninformative. When the episode-splitting is noninformative, the model-based (nonrobust)
standard errors produced will be the same as those produced when the data are collapsed into single
records per subject. Thus, for these type of data, clustering of these multiple observations that results
from specifying vce (robust) is not critical.

a

> Example 6

A reasonable question to ask is, “Given that we have several possible parametric models, how can
we select one?” When parametric models are nested, the likelihood-ratio or Wald test can be used
to discriminate between them. This can certainly be done for Weibull versus exponential or gamma
versus Weibull or lognormal. When models are not nested, however, these tests are inappropriate,
and the task of discriminating between models becomes more difficult. A common approach to this
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problem is to use the Akaike information criterion (AIC). Akaike (1974) proposed penalizing each
log likelihood to reflect the number of parameters being estimated in a particular model and then
comparing them. Here the AIC can be defined as

AIC = —2(log likelihood) + 2(c 4+ p + 1)

where c is the number of model covariates and p is the number of model-specific ancillary parameters
listed in table 1. Although the best-fitting model is the one with the largest log likelihood, the preferred
model is the one with the smallest AIC value. The AIC value may be obtained by using the estat
ic postestimation command; see [R] estat ic.

Using cancer.dta distributed with Stata, let’s first fit a generalized gamma model and test the
hypothesis that k = 0 (test for the appropriateness of the lognormal) and then test the hypothesis that
K =1 (test for the appropriateness of the Weibull).

. use https://www.stata-press.com/data/r18/cancer
(Patient survival in drug trial)
. stset studytime, failure(died)

(output omitted )
. replace drug = drug==2 | drug==3 // 0, placebo : 1, nonplacebo
(48 real changes made)
. streg drug age, distribution(ggamma) nolog

Failure _d: died
Analysis time _%: studytime

Generalized gamma AFT regression

No. of subjects = 48 Number of obs = 48
No. of failures = 31
Time at risk = 744

LR chi2(2) = 36.07

Log likelihood = -42.452006 Prob > chi2 = 0.0000

_t | Coefficient Std. err. z P>|z| [95% conf. intervall

drug 1.394658 .2557198 5.45 0.000 .893456 1.895859

age -.0780416 .0227978 -3.42 0.001 -.1227245 -.0333587

_cons 6.456091 1.238457 5.21 0.000 4.02876 8.883421

/1nsigma -.3793632 .183707 -2.07 0.039 -.7394222 -.0193041

/kappa .4669252 .5419478 0.86 0.389 -.595273 1.529123

sigma .684297 .1257101 4773897 .980881

The Wald test of the hypothesis that Kk = O (test for the appropriateness of the lognormal) is
reported in the output above. The p-value is 0.389, suggesting that lognormal might be an adequate
model for these data.

The Wald test for k = 1 is
. test [kappa] = 1

(1) [/lkappa = 1

chi2( 1)
Prob > chi2

0.97
0.3253

providing some support against rejecting the Weibull model.

We now fit the exponential, Weibull, loglogistic, and lognormal models separately. To directly
compare coefficients, we will ask Stata to report the exponential and Weibull models in AFT form by
specifying the time option. The output from fitting these models and the results from the generalized
gamma model are summarized in table 2.
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Table 2. Results obtained from streg, using cancer.dta with drug as an indicator variable

Generalized
Parameter Exponential Weibull Lognormal Loglogistic gamma
Age —0.0886715  —0.0714323  —0.0833996  —0.0803289 —0.078042
Drug 1.682625 1.305563 1.445838 1.420237 1.394658
Constant 7.146218 6.289679 6.580887 6.446711 6.456091
Ancillary 1.682751 0.751136 0.429276 0.684297
Kappa 0.466925
Log likelihood ~ —48.397094  —42.931335  —42.800864 —43.21698  —42.452006
AIC 102.7942 93.86267 93.60173 94.43396 94.90401

The largest log likelihood was obtained for the generalized gamma model; however, the lognormal

model is preferred by the AIC.
d

Parameterization of ancillary parameters

By default, all ancillary parameters are estimated as being constant. For example, the ancillary
parameter, p, of the Weibull distribution is assumed to be a constant that is not dependent on
any covariates. streg’s ancillary() and anc2() options allow for complete parameterization of
parametric survival models. By specifying, for example,

. streg x1 x2, distribution(weibull) ancillary(x2 zl z2)

both A and the ancillary parameter, p, are parameterized in terms of covariates.

Ancillary parameters are usually restricted to be strictly positive, in which case the logarithm of
the ancillary parameter is modeled using a linear predictor, which can assume any value on the real
line.

> Example 7

Consider a dataset in which we model the time until hip fracture as Weibull for patients on the basis
of age, sex, and whether the patient wears a hip-protective device (variable protect). We believe
that the hazard is scaled according to sex and the presence of the device but believe the hazards for
both sexes to be of different shapes.
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. use https://www.stata-press.com/data/r18/hip3, clear
(Hip-fracture study)

. streg protect age, distribution(weibull) ancillary(male) nolog

Failure _d: fracture
Analysis time _%: timel
ID variable: id

Weibull PH regression

No. of subjects = 148 Number of obs = 206
No. of failures = 37
Time at risk = 1,703
LR chi2(2) = 39.80
Log likelihood = -69.323532 Prob > chi2 = 0.0000
_t Coefficient Std. err. z P>zl [95% conf. intervall]
_t
protect -2.130058 .3567005 -5.97 0.000 -2.829178 -1.430938
age .0939131 .0341107 2.75 0.006 .0270573 .1607689
_cons -10.17575 2.551821 -3.99 0.000 -15.17722 -5.174269
In_p
male -.4887189 .185608 -2.63 0.008 -.8525039 -.1249339
_cons .4540139 .1157915 3.92 0.000 .2270667 .6809611

e e~

From our estimation results, we see that In(p) = 0.454 for females and In(p) = 0.454 — 0.489 =
—0.035 for males. Thus p = 1.57 for females and p = 0.97 for males. When we combine this with
the main equation in the model, the estimated hazards are then

exp (—10.18 — 2.13protect; + 0.09agej) 1.5775?'57 if female

h(tj|x;) =
o exp (—10.18 — 2.13protect; + 0.09agej) O.97tj_0'03 if male

If we believe this model, we would say that the hazard for males given age and protect is almost
constant over time.

Contrast this with what we obtain if we type

. streg protect age if male, distribution(weibull)

. streg protect age if !male, distribution(weibull)
which is completely general, because not only the shape parameter, p, will differ over both sexes but
also the regression coefficients.

4

The anc2() option is for use only with the gamma regression model, because it contains two
ancillary parameters—anc2() is used to parameterize .

Stratified estimation
When we type
. streg xvars, distribution(distname) strata(varname)
we are asking that a completely stratified model be fit. By completely stratified, we mean that both
the model’s intercept and any ancillary parameters are allowed to vary for each level of the strata

variable. That is, we are constraining the coefficients on the covariates to be the same across strata
but allowing the intercept and ancillary parameters to vary.
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> Example 8

We demonstrate this by fitting a stratified Weibull model to the cancer data, with the drug variable
left in its original state: drug==1 refers to the placebo, and drug==2 and drug==3 correspond to
two alternative treatments.

. use https://www.stata-press.com/data/r18/cancer
(Patient survival in drug trial)
. stset studytime, failure(died)

(output omitted )

. streg age, distribution(weibull) strata(drug) nolog

Failure _d: died
Analysis time _%: studytime

Weibull PH regression
Strata variable: drug

No. of subjects = 48 Number of obs = 48
No. of failures = 31
Time at risk = 744
LR chi2(3) = 16.58
Log likelihood = -41.113074 Prob > chi2 = 0.0009
_t | Coefficient Std. err. z P>zl [95% conf. intervall]
_t
age .1212332 .0367538 3.30 0.001 .049197 .1932694
drug
Other -4.561178  2.339448 -1.95 0.051 -9.146411 .0240556
NA -3.715737  2.595986 -1.43 0.152 -8.803776 1.372302
_cons -10.36921  2.341022 -4.43 0.000 -14.95753 -5.780896
In_p
drug
Other .4872195 .332019 1.47 0.142 -.1635257 1.137965
NA .2194213 .4079989 0.54 0.591 -.5802418 1.019084
_cons .4541282 .1715663 2.65 0.008 .1178645 .7903919

d

Completely stratified models are fit by including a stratum variable as a factor variable in the main
equation and in any of the ancillary equations. The strata() option is thus merely a shorthand
method for including i.drug in both the main equation and the ancillary equation(s).

We associate the term “stratification” with this process by noting that the intercept term of the
main equation is a component of the baseline hazard (or baseline survivor) function. By allowing this
intercept, as well as the ancillary shape parameter, to vary with respect to the strata, we allow the
baseline functions to completely vary over the strata, analogous to a stratified Cox model.
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> Example 9

We can produce a less-stratified model by specifying a factor variable in the ancillary () option.

. streg age, distribution(weibull) ancillary(i.drug) nolog

Failure _d: died
Analysis time _%: studytime

Weibull PH regression

No. of subjects = 48 Number of obs = 48
No. of failures = 31
Time at risk = 744
LR chi2(1) = 9.61
Log likelihood = -44.596379 Prob > chi2 = 0.0019
_t | Coefficient Std. err. z P>zl [95% conf. intervall]
_t
age .1126419 .0362786 3.10 0.002 .0415373 .1837466
_cons -10.95772  2.308489 -4.75 0.000 -15.48227 -6.433162
In_p
drug
Other -.3279568 .11238 -2.92 0.004 -.5482176 -.107696
NA -.4775351 .1091141 -4.38 0.000 -.6913948 -.2636755
_cons .6684086 .1327284 5.04 0.000 .4082657 .9285514

By doing this, we are restricting not only the coefficients on the covariates to be the same across
“strata” but also the intercept, while allowing only the ancillary parameter to differ.

4

By using ancillary() or strata(), we may thus consider a wide variety of models, depending
on what we believe about the effect of the covariate(s) in question. For example, when fitting a
Weibull PH model to the cancer data, we may choose from many models, depending on what we
want to assume is the effect of the categorical variable drug. For all models considered below, we
assume implicitly that the effect of age is proportional on the hazard function.

1. drug has no effect:

streg age, distribution(weibull)

2. The effect of drug is proportional on the hazard (scale), and the effect of age is the same for
each level of drug:

streg age i.drug, distribution(weibull)
3. drug affects the shape of the hazard, and the effect of age is the same for each level of drug:
streg age, distribution(weibull) ancillary(i.drug)

4. drug affects both the scale and shape of the hazard, and the effect of age is the same for each
level of drug;:

streg age, distribution(weibull) strata(drug)
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5. drug affects both the scale and shape of the hazard, and the effect of age is different for each
level of drug:

. streg drug##c.age, distribution(weibull) strata(drug)

These models may be compared using Wald or likelihood-ratio tests when the models in question
are nested (such as 3 nested within 4) or by using the AIC for nonnested models.

Everything we said regarding the modeling of ancillary parameters and stratification applies to AFT
models as well, for which interpretations may be stated in terms of the baseline survivor function,
that is, the unaccelerated probability of survival past time ¢.

Q Technical note

When fitting PH models, streg will, by default, display the exponentiated regression coefficients,
labeled as hazard ratios. However, in our previous examples using ancillary() and strata(), the
regression outputs displayed the untransformed coefficients instead. This change in behavior has to
do with the modeling of the ancillary parameter. When we use one or more covariates from the main
equation to model an ancillary parameter, hazard ratios (and time ratios for AFT models) lose their
interpretation. streg, as a precaution, disallows the display of hazard/time ratios when ancillary (),
anc2(), or strata() is specified.

Keep this in mind when comparing results across various model specifications. For example, when
comparing a stratified Weibull PH model to a standard Weibull PH model, be sure that the latter is

displayed using the nohr option. a

(Unshared-) frailty models

A frailty model is a survival model with unobservable heterogeneity, or frailty. At the observation
level, frailty is introduced as an unobservable multiplicative effect, o, on the hazard function, such
that

h(tla) = ah(t)

where A(t) is a nonfrailty hazard function, say, the hazard function of any of the six parametric models
supported by streg described earlier in this entry. The frailty, v, is a random positive quantity and,
for model identifiability, is assumed to have mean 1 and variance 6.

Exploiting the relationship between the cumulative hazard function and survivor function yields
the expression for the survivor function, given the frailty

S(tla) = exp{—/ot h(ua)du} - exp{—a /Ot %du} — (S()°

where S(t) is the survivor function that corresponds to h(t).

Because « is unobservable, it must be integrated out of S(¢|c) to obtain the unconditional survivor
function. Let g(«) be the probability density function of «, in which case an estimable form of our
frailty model is achieved as

i) = | " S(ta)g(a)da = / LS} gla)da
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Given the unconditional survivor function, we can obtain the unconditional hazard and density in
the usual way:
d _ fo(t)

fo(t) = —%Se(t) ho(t) = So(0)

Hence, an unshared-frailty model is merely a typical parametric survival model, with the addi-
tional estimation of an overdispersion parameter, #. In a standard survival regression, the likelihood
calculations are based on S(¢), h(t), and f(¢). In an unshared-frailty model, the likelihood is based
analogously on Sy(t), he(t), and fp(¢).

At this stage, the only missing piece is the choice of frailty distribution, g(«). In theory, any
continuous distribution supported on the positive numbers that has expectation 1 and finite variance 6 is
allowed here. For mathematical tractability, however, we limit the choice to either the gamma(1/6, 0)
distribution or the inverse-Gaussian distribution with parameters 1 and 1/6, denoted as I1G(1,1/6).
The gamma(a, b) distribution has probability density function

xa—le—x/b

g9(x) = Tpr
and the IG(a, b) distribution has density

0= (5) (- (E-2+ 1)

Therefore, performing the integrations described above will show that specifying frailty (gamma)
will result in the frailty survival model (in terms of the nonfrailty survivor function, S(t))

So(t) = [1 — @log {S(t)})/*

Specifying frailty(invgaussian) will give

So(t) = exp {; (1 —[1—26 1og{5(t)}]1/2)}

Regardless of the choice of frailty distribution, limg_,0Sp(t) = S(t), and thus the frailty model
reduces to S(¢) when there is no heterogeneity present.

When using frailty models, distinguish between the hazard faced by the individual (subject), ah(t),
and the “average” hazard for the population, hg(t). Similarly, an individual will have probability of
survival past time ¢ equal to {S(¢)}“, whereas Sp(t) will measure the proportion of the population
surviving past time ¢. You specify S(t) as before with distribution(distname), and the list of
possible parametric forms for S(¢) is given in table 1. Thus when you specify distribution() you
are specifying a model for an individual with frailty equal to one. Specifying frailty (distname)
determines which of the two above forms for Sp(t) is used.

The output of the estimation remains unchanged from the nonfrailty version, except for the additional
estimation of # and a likelihood-ratio test of Hy: 8 = 0. For more information on frailty models,
Hougaard (1986) offers an excellent introduction. For a Stata-specific overview, see Gutierrez (2002).
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> Example 10

Consider as an example a survival analysis of data on women with breast cancer. Our hypothetical
dataset consists of analysis times on 80 women with covariates age, smoking, and dietfat, which
measures the average weekly calories from fat (x103) in the patient’s diet over the course of the
study.

. use https://www.stata-press.com/data/r18/bc
. list in 1/12

age smoking dietfat t dead
1. 30 1 4.919 14.2 0
2. 50 0 4.437 8.21 1
3. 47 0 5.85 5.64 1
4. 49 1 5.149 4.42 1
5. 52 1 4.363 2.81 1
6. 29 0 6.153 35 0
7. 49 1 3.82 4.57 1
8. 27 1 5.294 35 0
9. 47 0 6.102 3.74 1
10. 59 0 4.446 2.29 1
11. 35 0 6.203 15.3 0
12. 26 0 4.515 35 0

The data are well fit by a Weibull model for the distribution of survival time conditional on age,
smoking, and dietary fat. By omitting the dietfat variable from the model, we hope to introduce
unobserved heterogeneity.

. stset t, fail(dead)
(output omitted )

. streg age smoking, distribution(weibull) frailty(gamma)

Failure _d: dead
Analysis time _%: t

Fitting Weibull model ...

Fitting constant-only model:

Iteration 0: Log likelihood = -137.15363
Iteration 1: Log likelihood = -136.3927
Iteration 2: Log likelihood = -136.01557
Iteration 3: Log likelihood = -136.01202
Iteration 4: Log likelihood = -136.01201

Fitting full model:

Iteration 0: Log likelihood = -85.933969
Iteration 1: Log likelihood = -73.61173
Iteration 2: Log likelihood = -68.999447
Iteration 3: Log likelihood = -68.340858
Iteration 4: Log likelihood = -68.136187
Iteration 5: Log likelihood = -68.135804
Iteration 6: Log likelihood = -68.135804
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Weibull PH regression

Gamma frailty

No. of subjects = 80 Number of obs = 80
No. of failures = 58
Time at risk = 1,257.07

LR chi2(2) = 135.75

Log likelihood = -68.135804 Prob > chi2 = 0.0000

_t | Haz. ratio Std. err. z P>|z| [95% conf. intervall

age 1.475948 .1379987 4.16  0.000 1.228811 1.772788

smoking 2.788548 1.457031 1.96 0.050 1.00143 7.764894

_cons 4.57e-11 2.38e-10 -4.57  0.000 1.70e-15 1.23e-06

/1n_p 1.087761 .222261 4.89 0.000 .6521376 1.523385

/1ntheta .3307466 .5250758 0.63 0.529 -.698383 1.359876

P 2.967622 .6595867 1.91964 4.587727

1/p .3369701 .0748953 .2179729 .520931

theta 1.392007 .7309092 .4973889 3.895711

Note: Estimates are transformed only in the first
Note: _cons estimates baseline hazard.
LR test of theta=0: chibar2(01) = 22.57

equation to hazard ratios.

Prob >= chibar2 = 0.000
We could also use an inverse-Gaussian distribution to model the heterogeneity.

. streg age smoking, distribution(weibull) frailty(invgauss) nolog

Failure _d: dead
Analysis time _%: t

Weibull PH regression
Inverse-Gaussian frailty

No. of subjects = 80 Number of obs = 80
No. of failures = 58
Time at risk = 1,257.07

LR chi2(2) = 125.44

Log likelihood = -73.838578 Prob > chi2 = 0.0000

_t | Haz. ratio Std. err. z P>|z| [95% conf. intervall

age 1.284133 .0463256 6.93 0.000 1.196473 1.378217

smoking 2.905409 1.252785 2.47 0.013 1.247892 6.764528

_cons 1.11e-07 2.34e-07 -7.63 0.000 1.83e-09 6.79e-06

/1n_p . 7173904 .1434382 5.00 0.000 .4362567 .9985241

/1lntheta .2374778 .8568064 0.28 0.782 -1.441832 1.916788

P 2.049079 .2939162 1.546906 2.714273

1/p .4880241 .0700013 .3684228 .6464518

theta 1.268047 1.086471 .2364941 6.799082

Note: Estimates are transformed only in the first
Note: _cons estimates baseline hazard.
LR test of theta=0: chibar2(01) = 11.16

equation to hazard ratios.

Prob >= chibar2 = 0.000

The results are similar with respect to the choice of frailty distribution, with the gamma frailty
model producing a slightly higher likelihood. Both models show a statistically significant level of
unobservable heterogeneity because the p-value for the likelihood-ratio (LR) test of Hp: 8 = 0 is
virtually zero in both cases.
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Q Technical note

With gamma-distributed or inverse-Gaussian—distributed frailty, hazard ratios decay over time in
favor of the frailty effect, and thus the displayed “Haz. ratio” in the above output is actually the
hazard ratio only for t = 0. The degree of decay depends on 6. Should the estimated 6 be close to
zero, the hazard ratios regain their usual interpretation. The rate of decay and the limiting hazard
ratio differ between the gamma and inverse-Gaussian models; see Gutierrez (2002) for details.

For this reason, many researchers prefer fitting frailty models in the AFT metric because the
interpretation of regression coefficients is unchanged by the frailty—the factors in question serve to
either accelerate or decelerate the survival experience. The only difference is that with frailty models,
the unconditional probability of survival is described by Sy(t) rather than S(t).

a

Q Technical note

The LR test of § = 0 is a boundary test and thus requires careful consideration concerning the
calculation of its p-value. In particular, the null distribution of the LR test statistic is not the usual x?
but rather is a 50:50 mixture of a xZ (point mass at zero) and a x?, denoted as X%l. See Gutierrez,

Carter, and Drukker (2001) for more details. a

To verify that the significant heterogeneity is caused by the omission of dietfat, we now refit
the Weibull/inverse-Gaussian frailty model with dietfat included.

. streg age smoking dietfat, distribution(weibull) frailty(invgauss) nolog

Failure _d: dead
Analysis time _%: t

Weibull PH regression
Inverse-Gaussian frailty

No. of subjects = 80 Number of obs = 80
No. of failures = 58
Time at risk = 1,257.07

LR chi2(3) = 246.41

Log likelihood = -13.352142 Prob > chi2 = 0.0000

_t | Haz. ratio Std. err. z P>zl [95% conf. intervall]

age 1.74928 .0985246 9.93 0.000 1.566453 1.953447

smoking 5.203552 1.704943 5.03 0.000 2.737814 9.889992

dietfat 9.229842 2.219331 9.24 0.000 5.761312 14.78656

_cons 1.07e-20 4.98e-20 -9.92  0.000 1.22e-24 9.45e-17

/1n_p 1.431742 .0978847 14.63 0.000 1.239892 1.623593

/1ntheta -14.29793 2673.364 -0.01 0.996 -5253.995 5225.399

P 4.185987 .4097439 3.45524 5.071278

1/p .2388923 .0233839 .197189 .2894155

theta 6.17e-07 .0016502 0 .

Note: Estimates are transformed only in the first equation to hazard ratios.
Note: _cons estimates baseline hazard.
LR test of theta=0: chibar2(01) = 0.00 Prob >= chibar2 = 1.000

The estimate of the frailty variance component 6 is near zero, and the p-value of the test of
Hy: 0 = 0 equals one, indicating negligible heterogeneity. A regular Weibull model could be fit to
these data (with dietfat included), producing almost identical estimates of the hazard ratios and
ancillary parameter, p, so such an analysis is omitted here.
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Also hazard ratios now regain their original interpretation. Thus an increase in weekly calories
from fat of 1,000 would increase the risk of death by more than ninefold. q

Shared-frailty models

A generalization of the frailty models considered in the previous section is the shared-frailty model,
where the frailty is assumed to be group specific; this is analogous to a panel-data regression model.
For observation j from the ith group, the hazard is

hij(tlow) = aihij(t)

for i =1,...,n and j = 1,...,n,, where by h;;(t) we mean h(t|x;;), which is the individual
hazard given covariates X;;.

Shared-frailty models are appropriate when you wish to model the frailties as being specific to
groups of subjects, such as subjects within families. Here a shared-frailty model may be used to
model the degree of correlation within groups; that is, the subjects within a group are correlated
because they share the same common frailty.

> Example 11

Consider the data from a study of 38 kidney dialysis patients, as described in McGilchrist and
Aisbett (1991). The study is concerned with the prevalence of infection at the catheter-insertion point.
Two recurrence times (in days) are measured for each patient, and each recorded time is the time
from initial insertion (onset of risk) to infection or censoring.

. use https://www.stata-press.com/data/r18/catheter
(Kidney data, McGilchrist and Aisbett, Biometrics, 1991)

. list patient time infect age female in 1/10

patient time infect age female

1. 1 16 1 28 0
2. 1 8 1 28 0
3. 2 13 0 48 1
4. 2 23 1 48 1
5. 3 22 1 32 0
6. 3 28 1 32 0
7. 4 318 1 31.5 1
8. 4 447 1 31.5 1
9. 5 30 1 10 0
10. 5 12 1 10 0

Each patient (patient) has two recurrence times (time) recorded, with each catheter insertion
resulting in either infection (infect==1) or right-censoring (infect==0). Among the covariates
measured are age and sex (female==1 if female, female==0 if male).

One subtlety to note concerns the use of the generic term subjects. In this example, the subjects
are the individual catheter insertions, not the patients themselves. This is a function of how the data
were recorded—the onset of risk occurs at catheter insertion (of which there are two for each patient)
not, say, at the time of admission of the patient into the study. Thus we have two subjects (insertions)
within each group (patient).
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It is reasonable to assume independence of patients but unreasonable to assume that recurrence
times within each patient are independent. One solution would be to fit a standard survival model,
adjusting the standard errors of the parameter estimates to account for the possible correlation by
specifying vce (cluster patient).

We could also model the correlation by assuming that the correlation is the result of a latent
patient-level effect, or frailty. That is, rather than fitting a standard model and specifying vce (cluster
patient), we fit a frailty model and specify shared(patient). Assuming that the time to infection,
given age and female, follows a Weibull distribution, and inverse-Gaussian distributed frailties, we
get

. stset time, fail(infect)
(output omitted )
. streg age female, distribution(weibull) frailty(invgauss) shared(patient) nolog

Failure _d: infect

Analysis time _t: time

Weibull PH regression

Inverse-Gaussian shared frailty Number of obs = 76

Group variable: patient Number of groups = 38
Obs per group:

No. of subjects = 76 min = 2

No. of failures = 58 avg = 2

Time at risk = 7,424 max = 2

LR chi2(2) = 9.84

Log likelihood = -99.093527 Prob > chi2 = 0.0073

_t Haz. ratio Std. err. z P>|z]| [95% conf. intervall

age 1.006918 .013574 0.51 0.609 .9806623 1.033878

female .2331376 .1046382 -3.24 0.001 .0967322 .5618928

_cons .0110089 .0099266 -5.00 0.000 .0018803 .0644557

/1ln_p .1900625 .1315342 1.44 0.148 -.0677398 .4478649

/1ntheta .0357272 .7745362 0.05 0.963 -1.482336 1.55379

P 1.209325 .1590676 .9345036 1.564967

1/p .8269074 .1087666 .638991 1.070087

theta 1.036373 .8027085 .2271066 4.729362

Note: Estimates are transformed only in the first

Note: _cons estimates baseline hazard.
LR test of theta=0:

chibar2(01) = 8.70

equation to hazard ratios.

Prob >= chibar2 = 0.002
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Contrast this with what we obtain by assuming a subject-level lognormal model:

. streg age female, distribution(lnormal) frailty(invgauss) shared(patient) nolog

Failure _d: infect

Analysis time _%: time

Lognormal AFT regression

Inverse-Gaussian shared frailty Number of obs = 76

Group variable: patient Number of groups = 38
Obs per group:

No. of subjects = 76 min = 2

No. of failures = 58 avg = 2

Time at risk = 7,424 max = 2

LR chi2(2) = 16.34

Log likelihood = -97.614583 Prob > chi2 = 0.0003

_t | Coefficient Std. err. z P>|z| [95% conf. intervall

age -.0066762 .0099457 -0.67 0.502 -.0261694 .0128171

female 1.401719 .3334931 4.20 0.000 . 7480844 2.055354

_cons 3.336709 .4972641 6.71  0.000 2.362089 4.311329

/1nsigma .0625872 .1256185 0.50 0.618 -.1836205 .3087949

/1lntheta -1.606248 1.190775 -1.35  0.177 -3.940125 . 7276282

sigma 1.064587 .1337318 .8322516 1.361783

theta .2006389 .2389159 .0194458 2.070165

LR test of theta=0: chibar2(01) = 1.53 Prob >= chibar2 = 0.108

The frailty effect is insignificant at the 10% level in the latter model yet highly significant in
the former. We thus have two possible stories to tell concerning these data: If we believe the first
model, we believe that the individual hazard of infection continually rises over time (Weibull), but
there is a significant frailty effect causing the population hazard to begin falling after some time.
If we believe the second model, we believe that the individual hazard first rises and then declines
(lognormal), meaning that if a given insertion does not become infected initially, the chances that it
will become infected begin to decrease after a certain point. Because the frailty effect is insignificant,
the population hazard mirrors the individual hazard in the second model.

As a result, both models view the population hazard as rising initially and then falling past a
certain point. The second version of our story corresponds to higher log likelihood, yet perhaps not
significantly higher given the limited data. More investigation is required. One idea is to fit a more
distribution-agnostic form of a frailty model, such as a piecewise exponential (Cleves, Gould, and
Marchenko 2016, 345-348) or a Cox model with frailty; see [ST] stcox.

d

Shared-frailty models are also appropriate when the frailties are subject specific yet there exist
multiple records per subject. Here you would share frailties across the same id () variable previously
stset. When you have subject-specific frailties and uninformative episode splitting, it makes no
difference whether you fit a shared or an unshared frailty model. The estimation results will be the
same.
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Stored results

streg stores the following in e():

Scalars
e(N) number of observations
e(N_sub) number of subjects
e(N_fail) number of failures
e(N_g) number of groups
e(k) number of parameters
e(k_eq) number of equations in e (b)
e(k_eq-model) number of equations in overall model test
e(k_aux) number of auxiliary parameters
e(k_dv) number of dependent variables
e(df_m) model degrees of freedom
e(1D) log likelihood
e(11-0) log likelihood, constant-only model
e(ll_c) log likelihood, comparison model
e(N_clust) number of clusters
e(chi2) x>
e(chi2_c) x?, comparison model
e(risk) total time at risk
e(g_min) smallest group size
e(g_avg) average group size
e(g_max) largest group size
e(theta) frailty parameter
e(aux_p) ancillary parameter (weibull)
e (gamma) ancillary parameter (gompertz, loglogistic)
e(sigma) ancillary parameter (ggamma, lnormal)
e (kappa) ancillary parameter (ggamma)
e(p) p-value for model test
e(p—c) p-value for comparison test
e(rank) rank of e (V)
e(rank0) rank of e(V), constant-only model
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, O otherwise
Macros
e(cmd) model or regression name
e(cmd2) streg
e(cmdline) command as typed
e(dead) _d
e(depvar) _t
e(strata) stratum variable
e(title) title in estimation output
e(clustvar) name of cluster variable
e(shared) frailty grouping variable
e(fr_title) title in output identifying frailty
e(wtype) weight type
e (wexp) weight expression
e(t0) —_t0
e(vce) veetype specified in vce ()
e(vcetype) title used to label Std. err.
e(frm2) hazard or time
e(chi2type) Wald or LR; type of model x? test
e(offsetl) offset for main equation
e(stcurve) stcurve
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml_method) type of m1 method
e(user) name of likelihood-evaluator program
e(technique) maximization technique

e(properties) bV
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e(predict) program used to implement predict
e(predict_sub) predict subprogram
e(footnote) program used to implement the footnote display
e(asbalanced) factor variables fvset as asbalanced
e (asobserved) factor variables fvset as asobserved
Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(\) variance—covariance matrix of the estimators
e(V_modelbased) model-based variance
Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,
and confidence intervals

Note that results stored in r () are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.

Methods and formulas

For an introduction to survival models, see Cleves, Gould, and Marchenko (2016). For an intro-
duction to survival analysis directed at social scientists, see Box-Steffensmeier and Jones (2004).

Consider for j = 1,...,n observations the trivariate response, (to;,t;,d;), representing a period
of observation, (toj, tj], ending in either failure (d; = 1) or right-censoring (d; = 0). This structure
allows analysis of a wide variety of models and may be used to account for delayed entry, gaps,
time-varying covariates, and multiple failures per subject. Regardless of the structure of the data, once
they are stset, the data may be treated in a common manner by streg: the stset-created variable
—t0 holds the tg;, —t holds the t;, and _d holds the dj.

For a given survivor function, .S (t), the density function is obtained as

£t = ~2s(0)

and the hazard function (the instantaneous rate of failure) is obtained as h(t) = f(t)/S(t). Available
forms for S (t) are listed in table 1. For a set of covariates from the jth observation, x;, define
S;(t) = S(t|x = x;), and similarly define h;(t) and f;(t). For example, in a Weibull PH model,
S;(t) = exp{—exp(x,;3)t"}.

Parameter estimation

In this command, 3 and the ancillary parameters are estimated via maximum likelihood. A subject
known to fail at time ¢; contributes to the likelihood function the value of the density at time ¢;
conditional on the entry time to;, f;(t;)/S;(to;). A censored observation, known to survive only
up to time t;, contributes S;(¢;)/S;(to;), which is the probability of surviving beyond time t;
conditional on the entry time, fo;. The log likelihood is thus given by

logl = Y {d;logf;(t;) + (1 — d;) logS;(t;) — logS;(to;)}

Jj=1
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Implicit in the above log-likelihood expression are the regression parameters, 3, and the ancillary
parameters because both are components of the chosen S;(¢) and its corresponding f;(¢); see table 1.
streg reports maximum likelihood estimates of 3 and of the ancillary parameters (if any for the
chosen model). The reported log-likelihood value is logL, = logL + T, where T = ) log(t;) is
summed over uncensored observations. The adjustment removes the time units from logL. Whether
the adjustment is made makes no difference to any test or result since such tests and results depend
on differences in log-likelihood functions or their second derivatives, or both.

Specifying ancillary(), anc2(), or strata() will parameterize the ancillary parameter(s) by
using the linear predictor, z;c., where the covariates, z;, need not be distinct from x;. Here streg
will report estimates of a, in addition to estimates of 3. The log likelihood here is simply the log
likelihood given above, with z;a, substituted for the ancillary parameter. If the ancillary parameter
is constrained to be strictly positive, its logarithm is parameterized instead; that is, we substitute the
linear predictor for the logarithm of the ancillary parameter in the above log likelihood. The gamma
model has two ancillary parameters, o and x; we parameterize o by using ancillary() and x by
using anc2(), and the linear predictors used for each may be distinct. Specifying strata() includes
factor levels for the strata in the main equation and uses the factor levels to parameterize any ancillary
parameters that exist for the chosen model.

Unshared-frailty models have a log likelihood of the above form, with Sp(t) and fy(¢) substituted
for S(t) and f(t), respectively. Equivalently, for gamma-distributed frailties,

logL = Z [0~ " log {1 — 010gS;(to;)} — (07" + d;) log {1 — O1logS;(t;)} + d; logh;(t;)]
j=1
and for inverse-Gaussian—distributed frailties,

logL = Z |:91 {1 — QQIOgSj(toj)}l/z —ot {1 — 260 logsj(tj)}1/2 +

Jj=1

1
dj logh]‘(t]’) — idj 10g{1 - 2910gS](tj)}

In a shared-frailty model, the frailty is common to a group of observations. Thus, to form an
unconditional likelihood, the frailties must be integrated out at the group level. The data are organized
as ¢ = 1,...,n groups with the ¢th group comprising j = 1,...,n; observations. The log likelihood
is the sum of the log-likelihood contributions for each group. Define D; = >_ . d;; as the number of
failures in the ith group. For gamma frailties, the log-likelihood contribution fzor the sth group is

Sij(tij)

logL; = Zdij logh;;(ti;) — (1/0 + D;)log < 1 — GZ logSij(tOij>

Jj=1 Jj=1

D, logh + logI'(1/6 + D;) — logI'(1/6)

+

This formula corresponds to the log-likelihood contribution for multiple-record data. For single-record
data, the denominator S;;(o;;) is equal to 1. This formula is not applicable to data with delayed
entries or gaps.
For inverse-Gaussian frailties, define
-1/2

o~ Si(t)

Ci=<1-20 log—2~"9 2

Z ; Sij (tois)
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The log-likelihood contribution for the ¢th group then becomes

IOng = 971(1 — Oi_l) + B(GC“ Dz) + Zd” {loghij(tij) + lOgO,L}

j=1

The function B(a,b) is related to the modified Bessel function of the third kind, commonly known
as the BesselK function; see Wolfram (2003, 775-776). In particular,

1 2 1
B(a,b) =a™ ' + 5 {log <> - loga} + logBesselK <2 — b,a1>
0

For both unshared- and shared-frailty models, estimation of # takes place jointly with the estimation
of B and the ancillary parameters.

This command supports the Huber/White/sandwich estimator of the variance and its clustered
version using vce (robust) and vce(cluster clustvar), respectively. See [P] _robust, particularly
Maximum likelihood estimators and Methods and formulas. If observations in the dataset represent
repeated observations on the same subjects (that is, there are time-varying covariates), the assumption
of independence of the observations is highly questionable, meaning that the conventional estimate
of variance is not appropriate. We strongly advise that you use the vce (robust) and vce(cluster
clustvar) options here. (stregknows to specify vce (cluster clustvar) if you specify vce (robust).)
vce (robust) and vce (cluster clustvar) do not apply in shared-frailty models, where the correlation
within groups is instead modeled directly.

streg also supports estimation with survey data. For details on VCEs with survey data, see
[SVY] Variance estimation.

Benjamin Gompertz (1779-1865) came from a Jewish family who left Holland and settled in
England. Excluded from a university education, he was self-educated in mathematics. In 1819,
his publications in mathematics earned him an invitation to join the Royal Society. In 1824, he
was appointed as actuary and head clerk of the Alliance Assurance Company.

Gompertz carried out pioneering work on the application of differential calculus to actuarial
questions, particularly the dependence of mortality on age. He is credited with introducing, in
1825, the concept that mortality is a continuous function over time. From this idea came the
notion of a survival function, and ultimately, parametric survival-time analysis. Gompertz’s work
also had a strong influence on the practice of demography, where it is used in the study of parity
and fertility.

Aside from his work in actuarial sciences, Gompertz contributed to astronomy and the study
of astronomical instruments. He was a member of the Astronomical Society nearly from its
founding in 1820. The society’s memoirs recognize him as an important contributor to the study
of the aberration of light. He also helped to develop the society’s catalog of the stars and make
improvements to its instruments, including the convertible pendulum, transit instruments for
studying the position of stars, and the differential sextant, his own invention.
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Ernst Hjalmar Waloddi Weibull (1887—-1979) was a Swedish applied physicist most famous for his
work on the statistics of material properties. He worked in Germany and Sweden as an inventor
and a consulting engineer, publishing his first paper on the propagation of explosive waves in
1914, thereafter becoming a full professor at the Royal Institute of Technology in 1924. Weibull
wrote two important papers, “Investigations into strength properties of brittle materials” and “The
phenomenon of rupture in solids”, which discussed his ideas about the statistical distributions of
material strength. These articles came to the attention of engineers in the late 1930s.
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Postestimation commands

The following postestimation command is of special interest after streg:

Command Description

*estat gofplot produce goodness-of-fit plot
stcurve plot the survivor, failure, hazard, or cumulative hazard function

*estat gofplot is not appropriate with svy estimation results.

The following standard postestimation commands are also available:

Command Description
contrast contrasts and ANOVA-style joint tests of estimates
estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian in-

formation criteria (AIC, CAIC, AICc, and BIC)
estat summarize summary statistics for the estimation sample

estat vce variance—covariance matrix of the estimators (VCE)
estat (svy) postestimation statistics for survey data
estimates cataloging estimation results
etable table of estimation results
*hausman Hausman’s specification test
lincom point estimates, standard errors, testing, and inference for linear combinations of
coefficients
linktest link test for model specification
*lrtest likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of coefficients
predict hazard ratios, survivor functions, influence statistics, residuals, etc.
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
suest seemingly unrelated estimation
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

*hausman and 1lrtest are not appropriate with svy estimation results.
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predict

Description for predict

predict creates a new variable containing predictions such as median and mean survival times;
hazards; hazard ratios; linear predictions; standard errors; probabilities; Cox—Snell, martingale-like,
and deviance residuals.

Menu for predict

Statistics > Postestimation

Syntax for predict
predict [type] newvar [if'] [m] [, statistic options]

predict [type] stub* [lf] [in], scores

statistic Description

Main
median time median survival time; the default
median lntime median In(survival time)
mean time mean survival time
mean lntime mean In(survival time)
hazard hazard
hr hazard ratio, also known as the relative hazard
xb linear prediction XjB
stdp standard error of the linear prediction; SE(xjﬁ)
surv S(tlto)

* csurv S(t| earliest to for subject)

*csnell Cox—Snell residuals

*mgale martingale-like residuals

*deviance deviance residuals
options Description
oos make statistic available in and out of sample
nooffset ignore the offset () variable specified in streg
alphal predict statistic conditional on frailty value equal to one
unconditional predict statistic unconditionally on the frailty
marginal synonym for unconditional

partial produce observation-level results
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Unstarred statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only
for the estimation sample. Starred statistics are calculated for the estimation sample by default, but the oos option
makes them available both in and out of sample.

‘When no option is specified, the predicted median survival time is calculated for all models. The predicted hazard ratio,
option hr, is available only for the exponential, Weibull, and Gompertz models. The mean time and mean Intime
options are not available for the Gompertz model. Unconditional estimates of mean time and mean lntime are
not available if frailty() was specified with streg; see [ST] streg.

csnell, mgale, and deviance are not allowed with svy estimation results.

Options for predict
Main

r

median time calculates the predicted median survival time in analysis-time units. This is the prediction
from time O conditional on constant covariates. When no options are specified with predict, the
predicted median survival time is calculated for all models.

median lntime calculates the natural logarithm of what median time produces.

mean time calculates the predicted mean survival time in analysis-time units. This is the prediction
from time O conditional on constant covariates. This option is not available for Gompertz regressions
and is available for frailty models only if alphal is specified, in which case what you obtain is
an estimate of the mean survival time conditional on a frailty effect of one.

mean lntime predicts the mean of the natural logarithm of time. This option is not available for
Gompertz regression and is available for frailty models only if alphal is specified, in which case
what you obtain is an estimate of the mean log survival-time conditional on a frailty effect of one.

hazard calculates the predicted hazard.

hr calculates the hazard ratio. This option is valid only for models having a proportional-hazards
parameterization.

xb calculates the linear prediction from the fitted model. That is, you fit the model by estimating a set of
parameters, B, 51, 52, . . ., Bk, and the linear prediction is §; = So+S121;+ oo+ - -+ BrTrj,
often written in matrix notation as y; = x;/3.

The 1, x2j, ..., Tk used in the calculation are obtained from the data currently in memory
and need not correspond to the data on the independent variables used in estimating (3.

stdp calculates the standard error of the prediction, that is, the standard error of ;.

surv calculates each observation’s predicted survivor probability, S(¢|tg), where ¢y is —tO, the
analysis time at which each record became at risk. For multiple-record data, see the csurv option
below.

csurv calculates the predicted S(t|earliest ¢y) for each subject in multiple-record data by calculating
the conditional survivor values, S(t|tp) (see the surv option above), and then multiplying them.

What you obtain from surv will differ from what you obtain from csurv only if you have multiple
records for that subject.

In the presence of gaps or delayed entry, the estimates obtained from csurv can be different
for subjects with gaps from those without gaps, having the same covariate values, because the
probability of survival over gaps is assumed to be 1. Thus the predicted cumulative conditional
survivor function is not a smooth function of time _t for constant values of the covariates. Use
stcurve, survival to obtain a smooth estimate of the cumulative survivor function S(¢|z).

csnell calculates the Cox—Snell generalized residuals. For multiple-record-per-subject data, by default
only one value per subject is calculated and it is placed on the last record for the subject.
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Adding the partial option will produce partial Cox—Snell residuals, one for each record within
subject; see partial below. Partial Cox—Snell residuals are the additive contributions to a subject’s
overall Cox—Snell residual. In single-record-per-subject data, the partial Cox—Snell residuals are
the Cox—Snell residuals.

mgale calculates the martingale-like residuals. For multiple-record data, by default only one value
per subject is calculated and it is placed on the last record for the subject.

Adding the partial option will produce partial martingale residuals, one for each record within
subject; see partial below. Partial martingale residuals are the additive contributions to a subject’s
overall martingale residual. In single-record data, the partial martingale residuals are the martingale
residuals.

deviance calculates the deviance residuals. Deviance residuals are martingale residuals that have
been transformed to be more symmetric about zero. For multiple-record data, by default only one
value per subject is calculated and it is placed on the last record for the subject.

Adding the partial option will produce partial deviance residuals, one for each record within
subject; see partial below. Partial deviance residuals are transformed partial martingale residuals.
In single-record data, the partial deviance residuals are the deviance residuals.

oos makes csurv, csnell, mgale, and deviance available both in and out of sample. oos also
dictates that summations and other accumulations take place over the sample as defined by if
and in. By default, the summations are taken over the estimation sample, with if and in merely
determining which values of newvar are to be filled in once the calculation is finished.

nooffset is relevant only if you specified offset (varname) with streg. It modifies the calculations
made by predict so that they ignore the offset variable; the linear prediction is treated as x(3
rather than x3 + offset.

alphal, when used after fitting a frailty model, specifies that statistic be predicted conditional on a
frailty value equal to one. This is the default for shared-frailty models.

unconditional and marginal, when used after fitting a frailty model, specify that statistic be
predicted unconditional on the frailty. That is, the prediction is averaged over the frailty distribution.
This is the default for unshared-frailty models.

partial is relevant only for multiple-record data and is valid with csnell, mgale, and deviance.
Specifying partial will produce “partial” versions of these statistics, where one value is calculated
for each record instead of one for each subject. The subjects are determined by the id() option
of stset.

Specify partial if you wish to perform diagnostics on individual records rather than on individual
subjects. For example, a partial deviance can be used to diagnose the fitted characteristics of an
individual record rather than those of the set of records for a given subject.

scores calculates equation-level score variables. The number of score variables created depends upon
the chosen distribution.

The first new variable will always contain dln L/0(x;/3).

The subsequent new variables will contain the partial derivative of the log likelihood with respect
to the ancillary parameters.
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margins

Description for margins

margins estimates margins of response for median and mean survival times, hazard ratios, and
linear predictions.

Menu for margins

Statistics > Postestimation

Syntax for margins

margins [marginlist} [, options]

margins [marginlist} , predict (statistic ...) [Eedict (statistic ...) ... ] [options]
statistic Description
median time median survival time; the default
median lntime median In(survival time)
mean time mean survival time
mean lntime mean In(survival time)
hr hazard ratio, also known as the relative hazard
xb linear prediction ij'l
hazard not allowed with margins
stdp not allowed with margins
surv not allowed with margins
csurv not allowed with margins
csnell not allowed with margins
mgale not allowed with margins
deviance not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e (b).

For the full syntax, see [R] margins.

Remarks and examples

predict after streg is used to generate a variable containing predicted values or residuals.

For a more detailed discussion on residuals, read Residuals and diagnostic measures in the [ST] stcox
postestimation entry. Many of the concepts and ideas presented there also apply to streg models.

Regardless of the metric used, predict can generate predicted median survival times and median
log survival-times for all models, and predicted mean times and mean log survival-times where
available. Predicted survival, hazard, and residuals are also available for all models. The predicted
hazard ratio can be calculated only for models with a proportional-hazards parameterization, that is,
the Weibull, exponential, and Gompertz models. However, the estimation need not take place in the
log-hazard metric. You can perform, for example, a Weibull regression specifying the time option
and then ask that hazard ratios be predicted.
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After fitting a frailty model, you can use predict with the alphal option to generate predicted
values based on S(t) or use the unconditional option to generate predictions based on Sy(t); see
[ST] streg.

> Example 1

Let’s return to example 1 of [ST] streg concerning the ability of emergency generators with
new-style bearings to withstand overloads. Assume that, as before, we fit a proportional hazards
Weibull model:

. use https://www.stata-press.com/data/r18/kva
(Generator experiment)
. stset failtime

(output omitted )

. streg load bearings, distribution(weibull) nolog

Failure _d: 1 (meaning all fail)
Analysis time _t: failtime

Weibull PH regression

No. of subjects = 12 Number of obs = 12
No. of failures = 12
Time at risk = 896

LR chi2(2) = 30.27

Log likelihood = 5.6934189 Prob > chi2 = 0.0000

_t | Haz. ratio Std. err. z P>|z| [95% conf. intervall

load 1.599315 .1883807 3.99 0.000 1.269616 2.014631

bearings .1887995 .1312109 -2.40 0.016 .0483546 .7371644

_cons 2.51e-20 2.66e-19 -4.26  0.000 2.35e-29 2.68e-11

/1n_p 2.051552 .2317074 8.85 0.000 1.597414 2.505691

P 7.779969 1.802677 4.940241 12.25202

1/p .1285352 .0297826 .0816192 .2024193

Note: _cons estimates baseline hazard.

Now we can predict both the median survival time and the log-median survival time for each
observation:

. predict time, time

(option median time assumed; predicted median time)

. predict lntime, lntime
(option median lntime assumed; predicted median log time)

. format time lntime %9.4f
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. list failtime load bearings time lntime

failtime load bearings time Intime
1. 100 15 0 127.5586  4.8486
2. 140 15 1 158.0407 5.0629
3. 97 20 0 94.3292  4.5468
4. 122 20 1 116.8707 4.7611
5. 84 25 0 69.7562  4.2450
6. 100 25 1 86.4255  4.4593
7. 54 30 0 51.5845  3.9432
8. 52 30 1 63.9114 4.1575
9. 40 35 0 38.1466  3.6414
10. 55 35 1 47.2623  3.8557
11. 22 40 0 28.2093  3.3397
12. 30 40 1 34.9504  3.5539

d
> Example 2

Using the cancer data of example 6 in [ST] streg, again with drug remapped into a drug-treatment
indicator, we can examine the various residuals that Stata produces. For a more detailed discussion on
residuals, read Residuals and diagnostic measures in [ST] stcox postestimation. Many of the concepts
and ideas presented there also apply to streg models. For a more technical presentation of these
residuals, see Methods and formulas.

We will begin by evaluating goodness of fit based on the generalized Cox—Snell residuals. If the
model fits the data, these residuals should have a standard exponential distribution with A = 1. One
way to verify the fit is to calculate an empirical estimate of the cumulative hazard function—based,
for example, on the Kaplan—Meier survival estimates or the Aalen—Nelson estimator, taking the
Cox—Snell residuals as the time variable and the censoring variable as before—and plot it against the
Cox—Snell residuals. If the model fits the data, the plot should be a straight line with a slope of 1.

After fitting the model, we can use the estat gofplot command to create this graph. Here the km
option specifies that the cumulative hazard function be based on the minus log of the Kaplan—Meier
estimator. By default, the cumulative hazard function is based on the Nelson—Aalen estimator.

. use https://www.stata-press.com/data/r18/cancer, clear
(Patient survival in drug trial)

. replace drug = drug==2 | drug== // 0, placebo : 1, nonplacebo
(48 real changes made)

. quietly stset studytime, failure(died)
. quietly streg age drug, distribution(exp)
. estat gofplot, km
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We did this separately for each of four distributions. Results are plotted in figure 1:

Exponential Weibull
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Cox-Snell residual

Figure 1. Cox—Snell residuals to evaluate model fit of four regression models

The plots indicate that the Weibull and lognormal models fit the data best and that the exponential
model fits poorly. These results are consistent with our previous results (in [ST] streg) based on
Akaike’s information criterion.

4
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> Example 3

Let’s now look at the martingale-like and deviance residuals. We use the term “martingale-like”
because, although these residuals do not arise naturally from martingale theory for parametric survival
models as they do for the Cox proportional hazards model, they do share similar form. We can
generate these residuals by using predict’s mgale option. Martingale residuals take values between
—oo and 1 and therefore are difficult to interpret. The deviance residuals are a rescaling of the
martingale-like residuals so that they are symmetric about zero and thus more like residuals obtained
from linear regression. Plots of either deviance residuals against the linear predictor (that is, the log
relative hazard in PH models) or of deviance residuals against individual predictors can be useful
in identifying aberrant observations and in assessing model fit. Continuing with our modified cancer
data, we plot the deviance residual obtained after fitting a lognormal model:

. quietly streg age drug, distribution(lnormal)
. predict dev, deviance

. scatter dev studytime, yline(0) m(o)
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Figure 2. Deviance residuals to evaluate model fit of lognormal model

Figure 2 shows the deviance residuals to be relatively well behaved, with a few minor early exceptions.

Methods and formulas

predict newvar, options may be used after streg to predict various quantities, according to the
following options:

median time: N
newvar; = {t : S;(t) = 1/2}

where §j(t) is S;(t) with the parameter estimates “plugged in”.
median Intime:

newvar; = {y : §j(ey) = 1/2}

mean time:

newvar :/ §j(t)dt
0
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mean lntime:

oo
newvarj = / ye f;(e¥)dy

— 00

where ]?J(t) is f;(t) with the parameter estimates plugged in.

hazard:

hr

newvarj = f;(t;)/S;(t;)
(PH models only):
newvar; = exp(x;3")

where 3% does not contain the constant and x; does not contain the coefficient of 1 corresponding
to the constant.

xb:

newvar; = X;3

stdp:

~

newvar; = se(x;3)

surv and csurv:

newvar; = §j (tj)/gj (toj)

The above represents the probability of survival past time ¢; given survival up until ¢y; and
represents what you obtain when you specify surv. If csurv is specified, these probabilities are
multiplied (in time order) over a subject’s multiple observations. What is obtained is then equal to
the probability of survival past time ¢;, given survival through the earliest observed tg;, and given
the subject’s (possibly time-varying) covariate history. In single-record-per-subject data, surv and
csurv are identical.

csnell:

newvar; = — log§j (t5)

The Cox—Snell (1968) residual, CS;, for observation j at time ¢; is defined as ﬁj (t;) = —log§j (t5),
which is the estimated cumulative hazard function obtained from the fitted model (Collett 2003,
111-112). Cox and Snell argued that if the correct model has been fit to the data, these residuals
are n observations from an exponential distribution with unit mean. Thus a plot of the cumulative
hazard rate of the residuals against the residuals themselves should result in a straight line of
slope 1. Cox—Snell residuals can never be negative and therefore are not symmetric about zero.
The options csnell and partial store in each observation that observation’s contribution to the
subject’s Cox—Snell residual, which we refer to as a partial Cox—Snell residual. If only csnell
is specified, partial residuals are summed within each subject to obtain one overall Cox—Snell
residual for that subject. If there is only 1 observation per subject, partial has no effect.
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mgale:
newvar; = d; — CS;

Martingale residuals follow naturally from martingale theory for Cox proportional hazards, but their
development does not carry over for parametric survival models. However, martingale-like residuals
similar to those obtained for Cox can be derived from the Cox—Snell residuals: M; = d; — CS;,
where CS; are the Cox—Snell residuals, as previously described.

Because martingale-like residuals are calculated from the Cox—Snell residuals, they also could be
partial or not. Partial martingale residuals are generated with the mgale and partial options,
and overall martingale residuals are generated with the mgale option.

Martingale residuals can be interpreted as the difference over time between the number of deaths
in the data and the expected number from the fitted model. These residuals take values between
—oo and 1 and have an expected value of zero, although, like the Cox—Snell residuals, they are
not symmetric about zero, making them difficult to interpret.

deviance:

newvar; = sign(M;) [-2{M; + d; log(d; — Mj)}]l/2

Deviance residuals are a scaling of the martingale-like residuals in an attempt to make them
symmetric about zero. When the model fits the data, these residuals are symmetric about zero and
thus can be more readily used to examine the data for outliers. If you also specify the partial
option, you obtain partial deviance residuals, one for each observation.

predict also allows two options for use after fitting frailty models: alphal and unconditional.
If unconditional is specified, the above predictions are modified to be based on Sy(t) and fy(t),
rather than S(¢) and f(t); see [ST] streg. If alphal is specified, the predictions are as described
above.
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sts — Generate, graph, list, and test the survivor and related functions

Description Syntax Remarks and examples Stored results
Methods and formulas References Also see

Description

sts graphs, reports, and creates variables containing the estimated survivor and related functions,
such as the Nelson—Aalen cumulative hazard function. For the survivor function, sts tests and
produces Kaplan—Meier estimates or, via Cox regression, covariate-adjusted estimates.

sts graph is equivalent to typing sts by itself—it graphs the survivor function. You can also
graph the failure, hazard, or cumulative hazard function.

sts list lists the estimated survivor, failure, or cumulative hazard function.
sts test tests the equality of the survivor function across groups.

sts generate creates new variables containing the estimated survivor function, the Nelson—Aalen
cumulative hazard function, and other related functions.

sts can be used with single- or multiple-record or single- or multiple-failure st data.

Syntax
sts [graph] [if] [in] [, ...]
sts list [if| [in] [, ...]
sts test varlist [if | [in] [, ...]

sts generate newvar = ... [lf] [in} [, ]

You must stset your data before using sts; see [ST] stset.

fweights, iweights, and pweights may be specified using stset; see [ST] stset.

See [ST] sts graph, [ST] sts list, [ST] sts test, and [ST] sts generate for details of syntax.

Remarks and examples

Remarks are presented under the following headings:

Listing, graphing, and generating variables
Comparing survivor or cumulative hazard functions
Testing equality of survivor functions
Covariate-adjusted estimates

Counting the number lost to censoring

Video examples

409
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sts concerns the survivor function, S(t); the probability of surviving to ¢ or beyond; the cumulative
hazard function, H (t); and the hazard function, h(t). Its subcommands can list and generate variables

containing §(t) and ﬁ(t) and test the equality of S(¢) over groups. Also:
e All subcommands share a common syntax.

e All subcommands deal with either the Kaplan—Meier product-limit or the Nelson—Aalen estimates
unless you request covariate-adjusted survival estimates.

e If you request to adjust for covariates, all subcommands perform the adjustment in the same
way, which is described below.

The full details of each subcommand are found in the entries following this one, but each subcommand
provides so many options to control exactly how the listing looks, how the graph appears, the form
of the test to be performed, or what exactly is to be generated that the simplicity of sts can be easily
overlooked.

So, without getting burdened by the details of syntax, let us demonstrate several simple usages of
sts commands first.

> Example 1
. use https://www.stata-press.com/data/r18/drugtr

Graph the Kaplan—Meier survivor function . sts graph
. sts graph, by(drug)
Graph the Nelson—Aalen cumulative hazard function . sts graph, cumhaz
. sts graph, cumhaz by(drug)

Graph the estimated hazard function . sts graph, hazard
. sts graph, hazard by (drug)
List the Kaplan—Meier survivor function . sts list
. sts list, by(drug) compare
List the Nelson—Aalen cumulative hazard function . sts 1list, cumhaz
. sts list, cumhaz by(drug) compare
Generate variable containing the Kaplan—Meier . sts gen surv = s
survivor function . sts gen surv_by_drug = s, by(drug)
Generate variable containing the Nelson—Aalen . sts gen haz = na
cumulative hazard function . sts gen haz_by_drug = na, by(drug)
Test equality of survivor functions . sts test drug

. gen agecat = autocode(age,4,47,67)
. sts test drug, strata(agecat) q

Listing, graphing, and generating variables

You can list the overall survivor function by typing sts 1list, and you can graph it by typing
sts graph or sts. sts assumes that you mean graph when you do not type a subcommand.

Or, you can list the Nelson—Aalen cumulative hazard function by typing sts 1ist, cumhaz, and
you can graph it by typing sts graph, cumhaz.
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Consider the Stanford heart transplant data introduced in [ST] stset. When you type sts list,
you are shown all the details:

. use https://www.stata-press.com/data/r18/stan3
(Heart transplant data)

. stset, noshow
. sts list

Kaplan—-Meier survivor function

At Net Survivor Std.
Time risk Fail lost function error [95% conf. int.]
1 103 1 0 0.9903 0.0097 0.9331 0.9986
2 102 3 0 0.9612 0.0190 0.8998 0.9852
3 99 3 0 0.9320 0.0248 0.8627 0.9670
5 96 1 0 0.9223 0.0264 0.8507 0.9604
(output omitted )
1586 2 0 1 0.1519 0.0493 0.0713 0.2606
1799 1 0 1 0.1519 0.0493 0.0713 0.2606

Note: Net lost equals the number lost minus the number who entered.

When you type sts graph or just sts, you are shown a graph of the same result detailed by list:

. sts graph

Kaplan-Meier survival estimate
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sts generate is a rarely used command. Typing sts generate survf = s creates a new variable,
survf, containing the same survivor function that 1ist just listed and graph just graphed:

. sts gen survf = s
. sort til
. list t1 survf in 1/10

t1 survf
1. 1 .99029126
2. 1 .99029126
3. 1 .99029126
4. 1 .99029126
5. 2 .96116505
6. 2 .96116505
7. 2 .96116505
8. 2 .96116505
9. 2 .96116505
10. 2 .96116505

sts generate is provided if you want to make a calculation, listing, or graph that sts cannot already
do for you.

Comparing survivor or cumulative hazard functions

sts allows you to compare survivor or cumulative hazard functions. sts graph and sts graph,
cumhaz are probably most successful at this. For example, survivor functions can be plotted using

. sts graph, by(posttran)
Kaplan-Meier survival estimates
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and Nelson—Aalen cumulative hazard functions can be plotted using

. sts graph, cumhaz by(posttran)
Nelson-Aalen cumulative hazard estimates

2.00
1.50
"_’_’—‘ ——— posttran = 0
1.00- P
—— posttran = 1
0.504
0.001
T T T T T
0 500 1000 1500 2000
Analysis time

To compare survivor functions, we typed sts graph, just as before, and then we added by (posttran)
to see the survivor functions for the groups designated by posttran. Here there are two groups, but
as far as the sts command is concerned, there could have been more. cumhaz was also added to
compare cumulative hazard functions.

You can also plot and compare estimated hazard functions by using sts graph, hazard. The
hazard is estimated as a kernel smooth of the increments that sum to form the estimated cumulative
hazard. The increments themselves do not estimate the hazard, but the smooth is weighted so that it
estimates the hazard; see [ST] sts graph.

Just as you can compare survivor functions graphically by typing sts graph, by(posttran) and
cumulative hazard functions by typing sts graph, cumhaz by(posttran), you can obtain detailed
listings by typing sts list, by(posttran) and sts list, cumhaz by(posttran), respectively.
Below we list the survivor function and specify enter, which adds a number-who-enter column:



414 sts — Generate, graph, list, and test the survivor and related functions

. sts list, by(posttran) enter

Kaplan-Meier survivor function
By variable: posttran

At Survivor Std.
Time risk Fail Lost Enter function error [95% conf. int.]
posttran=0
0 0 0 0 103 1.0000 . . .
1 103 1 3 0 0.9903 0.0097 0.9331 0.9986
2 99 3 3 0 0.9603 0.0195 0.8976 0.9849
(output omitted )
427 2 0 1 0 0.2359 0.1217 0.0545 0.4882
1400 1 0 1 0 0.2359 0.1217 0.0545 0.4882
posttran=1
1 0 0 0 3 1.0000
2 3 0 0 3 1.0000
3 6 0 0 3 1.0000
4 9 0 0 2 1.0000
5 11 0 0 3 1.0000 . . .
5.1 14 1 0 0 0.9286 0.0688 0.5908 0.9896
6 13 0 0 1 0.9286 0.0688 0.5908 0.9896
8 14 0 0 2 0.9286 0.0688 0.5908 0.9896
10 16 0 0 2 0.9286 0.0688 0.5908 0.9896
(output omitted )
1586 2 0 1 0 0.1420 0.0546 0.0566 0.2653
1799 1 0 1 0 0.1420 0.0546 0.0566 0.2653

sts 1list’s compare option allows you to compare survivor or cumulative hazard functions by
listing the groups side by side.
. sts list, by(posttran) compare

Kaplan—-Meier survivor function
By variable: posttran

posttran 0 1
Time 1 0.9903 1.0000
225 0.4422 0.3934
449 0.2359 0.3304
673 0.2359 0.3139
897 0.2359 0.2535
1121 0.2359 0.1774
1345 0.2359 0.1774
1569 0.1420
1793 0.1420

2017
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If we include the cumhaz option, the cumulative hazard functions are listed:

. sts list, cumhaz by(posttran) compare

Nelson—Aalen cumulative hazard function
By variable: posttran

posttran 0 1

Time 1 0.0097 0.0000
225 0.7896 0.9145
449 1.3229 1.0850
673 1.3229 1.1350
897 1.3229 1.3411
1121 1.3229 1.6772
1345 1.3229 1.6772
1569 1.8772
1793 1.8772
2017

When you specify compare, the same detailed survivor or cumulative hazard function is calculated,
but it is then evaluated at 10 or so given times, and those evaluations are listed.

Also see the risktable (numlist) option for displaying an at-risk table with sts 1ist (example 1
in [ST] sts list) and sts graph (Adding an at-risk table in [ST] sts graph).

Testing equality of survivor functions

sts test tests equality of survivor functions:

. sts test posttran

Equality of survivor functions
Log-rank test

Observed Expected

posttran events events
0 30 31.20

1 45 43.80

Total 75 75.00
chi2(1) = 0.13

Pr>chi2 = 0.7225

When you do not specify otherwise, sts test performs the log-rank test, but it can also perform
the Wilcoxon test:

. sts test posttran, wilcoxon

Equality of survivor functions

Wilcoxon—-Breslow—Gehan test

Observed Expected Sum of

posttran events events ranks

0 30 31.20 -85

1 45 43.80 85

Total 75 75.00 0

chi2(1) = 0.14

Pr>chi2 = 0.7083

sts test also performs stratified tests; see [ST] sts test.
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Covariate-adjusted estimates

All the estimates of the survivor function we have seen so far are the Kaplan—Meier product-limit
estimates. sts can make covariate-adjusted estimates of the survivor and related functions. We want
to illustrate this and explain how it is done.

The heart transplant dataset is not the best for demonstrating this feature because we are starting
with survivor functions that are similar already, so let’s switch to data on a fictional drug trial:
. use https://www.stata-press.com/data/r18/drug2, clear
(Patient survival in drug trial)

. st
-> stset studytime, failure(died)

Survival-time data settings

Failure event: died!=0 & died<.
Observed time interval: (0, studytime]
Exit on or before: failure

The st command showed us how the dataset is currently declared.
This dataset contains 48 subjects, all observed from time 0:

. stdescribe

Failure _d: died
Analysis time _%: studytime

|7 Per subject 4|
n

Category Total Mean Mi. Median Max
Number of subjects 48

Number of records 48 1 1 1

Entry time (first) 0 0 0 0
Exit time (final) 15.5 1 12.5 39
Subjects with gap 0

Time on gap 0

Time at risk 744 15.5 1 12.5 39
Failures 31 .6458333 0 1 1

The dataset contains variables age and drug:

. summarize age drug
Variable | Obs Mean Std. dev. Min Max

age 48 47.125 9.492718 32 67
drug 48 .5833333 .4982238 0 1
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We are comparing the outcomes of drug = 1 with that of the placebo, drug = 0. Here are the
survivor curves for the two groups:

. sts graph, by(drug)
Kaplan-Meier survival estimates
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Here are the survivor curves adjusted for age (and scaled to age 50):
. sts graph, by(drug) adjustfor(age, at(age=50))
Failure _d: died
Analysis time _%: studytime
Covariate-adjusted survivor functions
adjusted for age
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The age difference between the two samples accounts for much of the difference between the survivor
functions.

By default, adjustfor () adjusts the survivor functions to O values of the covariates. Adding the
suboption at (age=50) adjusts the estimates to age 50 instead of age 0.
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The above is equivalent to the following:

. generate age50 = age-50
. sts graph, by(drug) adjustfor(age50)

When you type by (group) adjustfor(vars), sts fits a separate Cox proportional hazards model
on vars (estimation via stcox) and retrieves the separately estimated baseline survivor functions. sts
graph graphs the baseline survivor functions, sts 1ist lists them, and sts generate saves them.

Thus sts 1list can list what sts graph plots:

. sts list, by(drug) adjustfor(age, at(age=50)) compare

Failure _d: died
Analysis time _%: studytime

Covariate-adjusted survivor function
By variable: drug
Adjusted for: age at at() values

drug 0 1

Time 1 0.9463 1.0000
5 0.7439 1.0000
9 0.6135 0.7358
13 0.3770 0.5588
17 0.2282 0.4668
21 0.2282 0.4668
25 0.1342
29 0.0872
33 0.0388
37 0.0388
41

In both the graph and the listing, we must adjust for variable age at age = 50 by specifying the
suboption at () in adjustfor (). Otherwise, the survivor functions are adjusted to age = 0, which
is at birth:

. sts list, by(drug) adjustfor(age) compare

Failure _d: died
Analysis time _%: studytime

Covariate-adjusted survivor function
By variable: drug
Adjusted for: age = 0

drug 0 1

Time 1 0.9994 1.0000
5 0.9970 1.0000
9 0.9951 0.9995
13 0.9903 0.9990
17 0.9853 0.9987
21 0.9853 0.9987
25 0.9965
29 0.9958
33 0.9944
37 0.9944
41

These are equivalent to what we obtained previously but not nearly so informative because of the scaling
of the survivor function. The adjustfor(age) option scales the survivor function to correspond to
age = 0. age is calendar age, so the survivor function is scaled to correspond to a newborn.
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There is another way that sts will adjust the survivor function. Rather than specifying by (group)
adjustfor(vars), we can specify strata(group) adjustfor(vars):

. sts list, strata(drug) adjustfor(age, at(age=50)) compare

Failure _d: died
Analysis time _%: studytime

Stratified covariate-adjusted survivor function
Strata variable: drug
Adjusted for: age at at() values

drug 0 1
Time 1 0.9526 1.0000
5 0.7668 1.0000
9 0.6417 0.7626
13 0.4080 0.5995
17 0.2541 0.5139
21 0.2541 0.5139
25 0.1800
29 0.1247
33 0.0614
37 0.0614
41

When we specify strata() instead of by (), instead of fitting separate Cox models for each stratum,
sts list fits one stratified Cox model and retrieves the stratified baseline survivor function. That
is, strata() rather than by () constrains the effect of the adjustfor() variables to be the same
across strata. In our example, the survivor function is also adjusted to age 50.
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Counting the number lost to censoring

sts list shows the number lost in the fourth column of its output:

. sts list

Failure _d: died

Analysis time

Kaplan—-Meier survivor function

t: studytime

At Survivor Std.

Time risk Fail Lost function error [95% conf. int.]
1 48 2 0 0.9583 0.0288 0.8435 0.9894
2 46 1 0 0.9375 0.0349 0.8186 0.9794
3 45 1 0 0.9167 0.0399 0.7930 0.9679
4 44 2 0 0.8750 0.0477 0.7427 0.9418
5 42 2 0 0.8333 0.0538 0.6943 0.9129
6 40 2 1 0.7917 0.0586 0.6474 0.8820
7 37 1 0 0.7703 0.0608 0.6236 0.8656
8 36 3 1 0.7061 0.0661 0.5546 0.8143
9 32 0 1 0.7061 0.0661 0.5546 0.8143

10 31 1 1 0.6833 0.0678 0.5302 0.7957
11 29 2 1 0.6362 0.0708 0.4807 0.7564
12 26 2 0 0.5872 0.0733 0.4304 0.7145
13 24 1 0 0.5628 0.0742 0.4060 0.6931
15 23 1 1 0.5383 0.0749 0.3821 0.6712
16 21 1 0 0.5127 0.0756 0.3570 0.6483
17 20 1 1 0.4870 0.0761 0.3326 0.6249
19 18 0 2 0.4870 0.0761 0.3326 0.6249
20 16 0 1 0.4870 0.0761 0.3326 0.6249
22 15 2 0 0.4221 0.0786 0.2680 0.5684
23 13 2 0 0.3572 0.0788 0.2087 0.5083
24 11 1 0 0.3247 0.0780 0.1809 0.4771
25 10 1 1 0.2922 0.0767 0.1543 0.4449
28 8 1 1 0.2557 0.0753 0.1247 0.4093
32 6 0 2 0.2557 0.0753 0.1247 0.4093
33 4 1 0 0.1918 0.0791 0.0676 0.3634
34 3 0 1 0.1918 0.0791 0.0676 0.3634
35 2 0 1 0.1918 0.0791 0.0676 0.3634
39 1 0 1 0.1918 0.0791 0.0676 0.3634
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sts graph, if you specify the lost option, will show that number, too, except it will report a total
number lost for the time interval where the survivor function is constant:
. sts graph, lost

Kaplan-Meier survival estimate
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With complicated survival data—meaning delayed entry or multiple records per subject—sts 1list
reports the number of net lost, defined as the number of censored minus the number who enter,
instead of the number of lost. With simple survival data—with 1 observation per subject—net lost
corresponds to lost.

With more complicated survival data, the number of net lost may surprise you. With complicated
data, the vague term lost can mean many things. Sometimes subjects are lost, but mostly there are
many censorings followed by reentries—a subject is censored at time 5 immediately to reenter the
data with different covariates. This is called thrashing.

There are other possibilities: a subject can be lost, but only for a while, and so reenter the data with
a gap; a subject can be censored out of one stratum to enter another. There are too many possibilities
to dedicate a column in a table or a plotting symbol in a graph to each one. sts’s sol