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Cross-referencing the documentation

When reading this manual, you will find references to other Stata manuals, for example,

[U] 27 Overview of Stata estimation commands; [R] regress; and [D] reshape. The first example

is a reference to chapter 27, Overview of Stata estimation commands, in the User’s Guide; the second

is a reference to the regress entry in the Base Reference Manual; and the third is a reference to the

reshape entry in the Data Management Reference Manual.

All the manuals in the Stata Documentation have a shorthand notation:

[GSM] Getting Started with Stata for Mac
[GSU] Getting Started with Stata for Unix
[GSW] Getting Started with Stata for Windows

[U] Stata User’s Guide
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[G] Stata Graphics Reference Manual

[IRT] Stata Item Response Theory Reference Manual

[LASSO] Stata Lasso Reference Manual

[XT] Stata Longitudinal-Data/Panel-Data Reference Manual

[META] Stata Meta-Analysis Reference Manual

[ME] Stata Multilevel Mixed-Effects Reference Manual

[MI] Stata Multiple-Imputation Reference Manual

[MV] Stata Multivariate Statistics Reference Manual

[PSS] Stata Power, Precision, and Sample-Size Reference Manual
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Intro — Introduction to base reference manual

Description Remarks and examples Also see

Description
This entry describes the organization of the reference manuals.

Remarks and examples
The complete list of reference manuals is as follows:

[R] Stata Base Reference Manual

[ADAPT] Stata Adaptive Designs: Group Sequential Trials Reference Manual

[BAYES] Stata Bayesian Analysis Reference Manual

[BMA] Stata Bayesian Model Averaging Reference Manual

[CAUSAL] Stata Causal Inference and Treatment-Effects Estimation Reference Manual

[CM] Stata Choice Models Reference Manual

[D] Stata Data Management Reference Manual

[DSGE] Stata Dynamic Stochastic General Equilibrium Models Reference Manual

[ERM] Stata Extended Regression Models Reference Manual

[FMM] Stata Finite Mixture Models Reference Manual

[FN] Stata Functions Reference Manual

[G] Stata Graphics Reference Manual

[IRT] Stata Item Response Theory Reference Manual

[LASSO] Stata Lasso Reference Manual

[XT] Stata Longitudinal-Data/Panel-Data Reference Manual

[META] Stata Meta-Analysis Reference Manual

[ME] Stata Multilevel Mixed-Effects Reference Manual

[MI] Stata Multiple-Imputation Reference Manual

[MV] Stata Multivariate Statistics Reference Manual

[PSS] Stata Power, Precision, and Sample-Size Reference Manual

[P] Stata Programming Reference Manual

[RPT] Stata Reporting Reference Manual

[SP] Stata Spatial Autoregressive Models Reference Manual

[SEM] Stata Structural Equation Modeling Reference Manual

[SVY] Stata Survey Data Reference Manual

[ST] Stata Survival Analysis Reference Manual

[TABLES] Stata Customizable Tables and Collected Results Reference Manual

[TS] Stata Time-Series Reference Manual

[M] Mata Reference Manual

When we refer to “reference manuals”, we mean all manuals listed above.

When we refer to the specialty manuals, we mean all the manuals listed above except [R].

1
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Arrangement of the reference manuals
Each manual contains the following sections:

• Contents.

A table of contents can be found at the beginning of each manual.

• Cross-referencing the documentation.

This entry lists all the manuals and explains how they are cross-referenced.

• Introduction.

This entry—usually called intro—provides an overview of the manual. In the specialty manuals,

this introduction suggests entries that you might want to read first and provides information about

new features.

Each specialty manual contains an overview of the commands described in it.

• Entries.

Entries are arranged in alphabetical order. Most entries describe Stata commands, but some entries

discuss concepts, and others provide overviews.

Entries that describe estimation commands are followed by an entry discussing postestimation

commands that are available for use after the estimation command. For example, the xtlogit entry

in the [XT] manual is followed by the xtlogit postestimation entry.

• Glossary.

A glossary is contained in all the specialty manuals.

To find information and commands quickly, use Stata’s search command; see [R] search (see the

entry search in the [R] manual).

Each reference manual does not contain its own author or subject index. A combined author index

and a combined subject index for all reference manuals can be found in the Stata Index, [ I ]. This manual

also contains a combined subject table of contents for all reference manuals and the User’s Guide, an

acronym glossary, and a vignette index.

Arrangement of each entry
Entries in most of the Stata reference manuals contain the following sections, which are explained

below:

Description
Quick start
Menu
Syntax
Options
Remarks and examples
Stored results
Methods and formulas
Acknowledgments
References
Also see
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Description

The purpose of the command is briefly described here.

Quick start

A quick start lists common uses of the command and the corresponding syntax for each.

For details on the syntax elements shown in the Quick start examples and to further customize the

examples shown, see the Syntax and Options sections of the entry.

If you prefer to use the GUI, see the Menu section of the entry.

For applied examples of the syntax, see Remarks and examples.

Menu

Amenu indicates how the dialog box for the command may be accessed using the menu system.

Syntax

A command’s syntax diagram shows how to type the command, indicates all possible options, and

gives the minimal allowed abbreviations for all the items in the command. For instance, the syntax

diagram for the summarize command is

summarize [ varlist ] [ if ] [ in ] [weight ] [ , options ]

options Description

Main

detail display additional statistics

meanonly suppress the display; calculate only the mean; programmer’s option

format use variable’s display format

separator(#) draw separator line after every # variables; default is separator(5)
display options control spacing and base and empty cells

varlist may contain factor variables; see [U] 11.4.3 Factor variables.

varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.

by, collect, rolling, and statsby are allowed; see [U] 11.1.10 Prefix commands.

aweights, fweights, and iweights are allowed. However, iweights may not be used with the detail option; see
[U] 11.1.6 weight.

Items in the typewriter-style font should be typed exactly as they appear in the diagram, al-

though theymay be abbreviated. Underlining indicates the shortest abbreviations where abbreviations
are allowed. For instance, summarize may be abbreviated su, sum, summ, etc., or it may be spelled out
completely. Items in the typewriter font that are not underlined may not be abbreviated.

Square brackets denote optional items. In the syntax diagram above, varlist, if, in, weight, and the

options are optional.

The options are listed in a table immediately following the diagram, along with a brief description of

each.

Items typed in italics represent arguments for which you are to substitute variable names, observation

numbers, and the like.
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The diagrams use the following symbols:

# Indicates a literal number, for example, 5; see [U] 12.2 Numbers.

[ ] Anything enclosed in brackets is optional.

{ } At least one of the items enclosed in braces must appear.

| The vertical bar separates alternatives.

%fmt Any Stata format, for example, %8.2f; see [U] 12.5 Formats: Controlling how data are

displayed.

depvar The dependent variable in an estimation command; see [U] 20 Estimation and postestima-

tion commands.

exp Any algebraic expression, for example, (5+myvar)/2; see [U] 13 Functions and expres-

sions.

filename Any filename; see [U] 11.6 Filenaming conventions.

indepvars The independent variables in an estimation command; see [U] 20 Estimation and postesti-

mation commands.

newvar A variable that will be created by the current command; see [U] 11.4.2 Lists of new vari-

ables.

numlist A list of numbers; see [U] 11.1.8 numlist.

oldvar A previously created variable; see [U] 11.4.1 Lists of existing variables.

options A list of options; see [U] 11.1.7 options.

range An observation range, for example, 5/20; see [U] 11.1.4 in range.
”string” Any string of characters enclosed in double quotes; see [U] 12.4 Strings.

varlist A list of variable names; see [U] 11.4 varname and varlists. If varlist allows factor vari-

ables, a note to that effect will be shown below the syntax diagram; see [U] 11.4.3 Factor

variables. If varlist allows time-series operators, a note to that effect will be shown below

the syntax diagram; see [U] 11.4.4 Time-series varlists.

varname A variable name; see [U] 11.3 Naming conventions.

weight A [wgttype=exp] modifier; see [U] 11.1.6 weight and [U] 20.24 Weighted estimation.

xvar The variable to be displayed on the horizontal axis.

yvar The variable to be displayed on the vertical axis.

The Syntax section will indicate whether factor variables or time-series operators may be used with a

command. summarize allows factor variables and time-series operators.

If a command allows prefix commands, this will be indicated immediately following the table of

options. summarize allows by.

If a command allows weights, the types of weights allowed will be specified, with the default weight

listed first. summarize allows aweights, fweights, and iweights, and if the type of weight is not
specified, the default is aweights.
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Options

If the command allows any options, they are explained here, and for dialog users the location of the

options in the dialog is indicated. For instance, in the logistic entry in this manual, the Options section

looks like this:

� � �
Model �

. . .

� � �
SE/Robust �

. . .

� � �
Reporting �

. . .

� � �
Maximization �

. . .

Remarks and examples

The explanations under Description andOptions are exceedingly brief and technical; they are designed

to provide a quick summary. The remarks explain in English what the preceding technical jargon means.

Examples are used to illustrate the command.

Links to video examples posted on Stata’s YouTube channel are provided at the end of this section.

Stored results

Commands are classified as e-class, r-class, s-class, or n-class, according to whether they store cal-

culated results in e(), r(), s(), or not at all. These results can then be used in subroutines by other
programs (ado-files). Such stored results are documented here; see [U] 18.8 Accessing results calcu-

lated by other programs and [U] 18.9 Accessing results calculated by estimation commands.

Methods and formulas

The techniques and formulas used in obtaining the results are described here as tersely and technically

as possible.

Acknowledgments

Some Stata commands began as community-contributed commands, or they were enhanced after sug-

gestions by a Stata user. Here we acknowledge these contributions.

References

Published sources are listed that either were directly referenced in the preceding text or might be of

interest.

https://www.youtube.com/user/statacorp
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Also see

Other manual entries relating to this entry are listed that might also interest you.� �
Elizabeth L. (“Betty”) Scott (1917–1988) was an astronomer and mathematician trained at the Uni-

versity of California at Berkeley. She published her first paper when she was just 22 years old, and

her work was focused on comets for much of her early academic career.

During World War II, Scott began working at the statistical laboratory at Berkeley, which had re-

cently been established by Jerzy Neyman, sparking what would be a long and fruitful collaboration

with him. After the war, she shifted her focus toward mathematics and statistics, partly because of

limited career opportunities as an astronomer, though she still applied her research to astronomical

topics. For example, in 1949 she published a paper using statistical techniques to analyze the distri-

bution of binary star systems. She also published papers examining the distribution of galaxies, and

she is the name behind the “Scott effect”, which helps determine the distances to galaxies. Later in

her career, Scott applied her statistical knowledge to problems associated with ozone depletion and

its effects on the incidence of skin cancer as well as weather modification. She was also a champion

of equality for women graduate students and faculty.

Among Scott’s many awards and accomplishments, she was elected an honorary fellow of the Royal

Statistical Society and was a fellow of theAmericanAssociation for theAdvancement of Science. In

1992, the Committee of Presidents of Statistical Societies established the Elizabeth L. Scott Award,

a biannual award to recognize those who have strived to enhance the status of women within the

statistics profession.� �� �
Janet Lippe Norwood (1923–2015) was born in Newark, New Jersey. She obtained her PhD from

Tufts University and taught political science at Wellesley College. Norwood made significant con-

tributions while she was the first female commissioner for the Bureau of Labor Statistics (BLS). She

accomplished the goal of conducting the Consumer Expenditure Survey annually, a long-time goal

of the BLS, and saved the National Longitudinal Survey from termination. As commissioner, she

would present data on national unemployment before the Joint Economic Committee on a monthly

basis, a duty that she performed with unwavering impartiality. Under her direction, the statistical

quality of reported indicators improved, as did the cooperation of the BLS with the Census Bureau

and the National Center for Health Statistics.

After her role as commissioner, she was the Chair of theAdvisory Council on Unemployment Com-

pensation, appointed by presidents George H. W. Bush and Bill Clinton. She also held a variety of

other leadership positions, including president of the American Statistical Association, board mem-

ber of the American Economic Association, and chair of a statistical committee for the OECD. Nor-

wood was a trailblazer. In her honor, the University of Alabama at Birmingham created the Janet

L. Norwood Award to recognize women in statistics.� �
Also see
[U] 1.1 Getting started with Stata

https://www.stata.com/giftshop/bookmarks/series5/scott/
https://www.stata.com/giftshop/bookmarks/series10/norwood/
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Description Menu Syntax Remarks and examples Also see

Description
about displays information about your version of Stata.

Menu
Help > About Stata

Syntax
about

Remarks and examples
If you are running Stata for Windows, information about memory is also displayed:

. about
StataNow/MP 18.5 for Windows (64-bit x86-64)
Revision date
Copyright 1985-2023 StataCorp LLC
Total usable memory: 8388608 KB

Stata license: 10-user 32-core network perpetual
Serial number: 18.5
Licensed to: Stata Developer

StataCorp LLC

Also see
[R] which — Display location of an ado-file

[U] 3 Resources for learning and using Stata

[U] 5 Editions of Stata

7



ado update — Update community-contributed packages

Description Quick start Syntax Options
Remarks and examples Stored results Also see

Description
ado update checks for available updates to community-contributed packages. To update packages,

use ado update, update. By default, only packages in the PLUS directory are checked.

Quick start
List available updates for community-contributed packages

ado update

Install updates for community-contributed packages

ado update, update

Install updates from Statistical Software Components (SSC) Archive only

ado update, update ssconly

Syntax
ado update [ pkglist ] [ , options ]

options Description

update perform update; default is to list packages that have updates, but not to

update them

all include packages that might have updates; default is to list or update

only packages that are known to have updates

ssconly check only packages obtained from SSCArchive; default is to check all installed
packages

dir(dir) check packages installed in dir; default is to check those installed in PLUS
verbose provide output to assist in debugging network problems

8
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Options
update specifies that packages with updates be updated. The default is simply to list the packages that

could be updated without actually performing the update.

The first time you ado update, do not specify this option. Once you see ado update work, you will
be more comfortable with it. Then type

. ado update, update

The packages that can be updated will be listed and updated.

all is rarely specified. Sometimes, ado update cannot determine whether a package you previously

installed has been updated. ado update can determine that the package is still available over the web
but is unsure whether the package has changed. Usually, the package has not changed, but if you want

to be certain that you are using the latest version, reinstall from the source.

Specifying all does this. Typing

. ado update, all

adds such packages to the displayed list as needing updating but does not update them. Typing

. ado update, update all

lists such packages and updates them.

ssconly specifies that ado update check only packages obtained from the Statistical Software Com-

ponents (SSC) Archive at Boston College, which is provided at http://repec.org. See [R] ssc for more

information on the SSCArchive.

dir(dir) specifies which installed packages be checked. The default is dir(PLUS), and that is probably
correct. If you are responsible for maintaining a large system, however, you may have previously

installed packages in dir(SITE), where they are shared across users. See [P] sysdir for an explanation
of these directory codewords. You may also specify an actual directory name, such as C:\mydir.

verbose is specified when you suspect network problems. It provides more detailed output that may
help you diagnose the problem.

Remarks and examples
Community-contributed additions to Stata are called packages and can add remarkable abilities to

Stata. Community-contributed packages are updated by their developers, just as official Stata software

is updated by StataCorp.

Do not confuse ado update with update. Use ado update to update community-contributed files.
Use update to update the components (including ado-files) of the official Stata software. To use either
command, you must be connected to the Internet.

Although Stata checks for updates automatically and can even be set to update automatically in Stata

for Windows and Stata for Mac, you must remember to type ado update. Doing this regularly can help
prevent errors that occur when accidentally running older versions of community-contributed packages.

http://repec.org
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Remarks are presented under the following headings:

Using ado update
Notes for developers

Using ado update
The first time you try ado update, type

. ado update

ado update without the update option produces a report but does not update any files. The first time
you run ado update, you may see messages such as

. ado update
note: ado update updates community-contributed files; type update to check for

updates to official Stata.

Checking status of installed packages...

[1] sjlatex at http://svn.stata.com/svn/press/press/production:
installed package is up to date

(output omitted )

Having the same packages installed multiple times can lead to confusion; ado update cleans that up.

To update all of your community-contributed packages that need updating, type

. ado update, update

You can also update a subset of your packages. You can specify one or many packages after the ado
update command. You can even use wildcards such as st* to mean all packages that start with st or
st*8 to mean all packages that start with st and end with 8. For example, if the report indicated package
st0008 had an update available, type the following to update that one package:

. ado update st0008, update

Notes for developers
ado update reports whether an installed package is up to date by comparing its distribution date with

that of the package available over the web.

If you are distributing software, include the line

d Distribution-Date: date

somewhere in your .pkg file. The capitalization of Distribution-Date does not matter, but include
the hyphen and the colon as shown. Code the date in either of two formats:

all numeric: yyyymmdd, for example, 20200701
Stata standard: ddMONyyyy, for example, 01jul2020
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Stored results
ado update stores the following in r():

Macros

r(pkglist) a space-separated list of package names that need updating (update not specified) or that were

updated (update specified)

Also see
[R] net — Install and manage community-contributed additions from the Internet

[R] search — Search Stata documentation and other resources

[R] ssc — Install and uninstall packages from SSC

[R] update — Check for official updates



ameans — Arithmetic, geometric, and harmonic means

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Acknowledgments References Also see

Description
ameans computes the arithmetic, geometric, and harmonic means, with their corresponding confi-

dence intervals, for each variable in varlist or for all the variables in the data if varlist is not specified.

gmeans and hmeans are synonyms for ameans.

Quick start
Arithmetic, geometric, and harmonic means of variable v1

ameans v1

Same as above, but for variables v1, v2, and v3
ameans v1 v2 v3

Means for all variables in the dataset

ameans

Add n to each observation before calculating means

ameans v1, add(n)

Add n to each observation only for variables with at least 1 nonpositive value

ameans v1 v2 v3, add(n) only

Request 99% confidence intervals

ameans v1, level(99)

Menu
Statistics > Summaries, tables, and tests > Summary and descriptive statistics > Arith./geometric/harmonic
means

12
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Syntax
ameans [ varlist ] [ if ] [ in ] [weight ] [ , options ]

options Description

Main

add(#) add # to each variable in varlist

only add # only to variables with nonpositive values

level(#) set confidence level; default is level(95)

by and collect are allowed; see [D] by.
aweights and fweights are allowed; see [U] 11.1.6 weight.

Options

� � �
Main �

add(#) adds the value # to each variable in varlist before computing the means and confidence intervals.
This option is useful when analyzing variables with nonpositive values.

only modifies the action of the add(#) option so that it adds # only to variables with at least one non-
positive value.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is

level(95) or as set by set level; see [U] 20.8 Specifying the width of confidence intervals.

Remarks and examples

Example 1
We have a dataset containing 8 observations on a variable named x. The eight values are 5, 4, −4,

−5, 0, 0, missing, and 7.

. ameans x
Variable Type Obs Mean [95% conf. interval]

x Arithmetic 7 1 -3.204405 5.204405
Geometric 3 5.192494 2.57899 10.45448
Harmonic 3 5.060241 3.023008 15.5179

. ameans x, add(5)
Variable Type Obs Mean [95% conf. interval]

x Arithmetic 7 6 1.795595 10.2044*
Geometric 6 5.477226 2.1096 14.22071*
Harmonic 6 3.540984 . .*

* 5 was added to the variables prior to calculating the results.
Note: Missing values in confidence intervals for harmonic mean indicate that

confidence interval is undefined for corresponding variables.
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The number of observations displayed for the arithmetic mean is the number of nonmissing observations.

The number of observations displayed for the geometric and harmonic means is the number of nonmiss-

ing, positive observations. Specifying the add(5) option produces 3 more positive observations. The
confidence interval for the harmonic mean is not reported; see Methods and formulas below.

Video example
Descriptive statistics in Stata

Stored results
ameans stores the following in r():

Scalars

r(N) number of nonmissing observations; used for arithmetic mean

r(N pos) number of nonmissing positive observations; used for geometric and harmonic means

r(mean) arithmetic mean

r(lb) lower bound of confidence interval for arithmetic mean

r(ub) upper bound of confidence interval for arithmetic mean

r(Var) variance of untransformed data

r(mean g) geometric mean

r(lb g) lower bound of confidence interval for geometric mean

r(ub g) upper bound of confidence interval for geometric mean

r(Var g) variance of ln𝑥𝑖
r(mean h) harmonic mean

r(lb h) lower bound of confidence interval for harmonic mean

r(ub h) upper bound of confidence interval for harmonic mean

r(Var h) variance of 1/𝑥𝑖
r(level) confidence level of confidence interval

Methods and formulas
See Armitage, Berry, and Matthews (2002) or Snedecor and Cochran (1989). For a history of the

concept of the mean, see Plackett (1958).

When restricted to the same set of values (that is, to positive values), the arithmetic mean (𝑥) is greater
than or equal to the geometric mean, which in turn is greater than or equal to the harmonic mean. Equality

holds only if all values within a sample are equal to a positive constant.

The arithmetic mean and its confidence interval are identical to those provided by ci; see [R] ci.

To compute the geometric mean, ameans first creates 𝑢𝑗 = ln𝑥𝑗 for all positive 𝑥𝑗. The arithmetic

mean of the 𝑢𝑗 and its confidence interval are then computed as in ci. Let 𝑢 be the resulting mean, and let
[ 𝐿, 𝑈 ] be the corresponding confidence interval. The geometric mean is then exp(𝑢), and its confidence
interval is [ exp(𝐿), exp(𝑈) ].

The same procedure is followed for the harmonic mean, except that then 𝑢𝑗 = 1/𝑥𝑗. The harmonic

mean is then 1/𝑢, and its confidence interval is [ 1/𝑈, 1/𝐿 ] if 𝐿 is greater than zero. If 𝐿 is not greater

than zero, this confidence interval is not defined, and missing values are reported.

https://www.youtube.com/watch?v=kKFbnEWwa2s
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When weights are specified, ameans applies the weights to the transformed values, 𝑢𝑗 = ln𝑥𝑗 and

𝑢𝑗 = 1/𝑥𝑗, respectively, when computing the geometric and harmonic means. For details on how the

weights are used to compute the mean and variance of the 𝑢𝑗, see [R] summarize. Without weights, the

formula for the geometric mean reduces to

exp{ 1
𝑛

∑
𝑗

ln(𝑥𝑗)}

Without weights, the formula for the harmonic mean is

𝑛

∑
𝑗

1
𝑥𝑗
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anova — Analysis of variance and covariance

Description Quick start Menu Syntax
Options Remarks and examples Stored results References
Also see

Description
The anova command fits analysis-of-variance (ANOVA) and analysis-of-covariance (ANCOVA) mod-

els for balanced and unbalanced designs, including designs with missing cells; for repeated-measures

ANOVA; and for factorial, nested, or mixed designs.

Quick start
One-way ANOVAmodel of y for factor a

anova y a

Two-way full-factorial ANOVA for factors a and b
anova y a b a#b

Same as above

anova y a##b

ANCOVAmodel including continuous variable x
anova y a##b c.x

Factor b nested within a
anova y a / b|a /

Repeated-measures ANOVAwith repeated variable rvar
anova y a rvar, repeated(rvar)

Repeated-measures ANOVAwith subjects, idvar, observed at each level of rvar
anova y a / idvar|a rvar rvar#a, repeated(rvar)

Menu
Statistics > Linear models and related > ANOVA/MANOVA > Analysis of variance and covariance

16
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Syntax
anova varname [ termlist ] [ if ] [ in ] [weight ] [ , options ]

where termlist is a factor-variable list (see [U] 11.4.3 Factor variables) with the following additional

features:

• Variables are assumed to be categorical; use the c. factor-variable operator to override this.

• The | symbol (indicating nesting) may be used in place of the # symbol (indicating interaction).

• The / symbol is allowed after a term and indicates that the following term is the error term for the

preceding terms.

options Description

Model

repeated(varlist) variables in terms that are repeated-measures variables

partial use partial (or marginal) sums of squares

sequential use sequential sums of squares

noconstant suppress constant term

dropemptycells drop empty cells from the design matrix

Adv. model

bse(term) between-subjects error term in repeated-measures ANOVA

bseunit(varname) variable representing lowest unit in the between-subjects error term

grouping(varname) grouping variable for computing pooled covariance matrix

bootstrap, by, collect, fp, jackknife, and statsby are allowed; see [U] 11.1.10 Prefix commands.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
aweights are not allowed with the jackknife prefix; see [R] jackknife.
aweights and fweights are allowed; see [U] 11.1.6 weight.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

repeated(varlist) indicates the names of the categorical variables in the terms that are to be treated as
repeated-measures variables in a repeated-measures ANOVA or ANCOVA.

partial presents theANOVA table using partial (or marginal) sums of squares. This setting is the default.
Also see the sequential option.

sequential presents the ANOVA table using sequential sums of squares.

noconstant suppresses the constant term (intercept) from the ANOVA or regression model.

dropemptycells drops empty cells from the design matrix. If c(emptycells) is set to keep (see

[R] set emptycells), this option temporarily resets it to drop before running the ANOVA model. If

c(emptycells) is already set to drop, this option does nothing.



anova — Analysis of variance and covariance 18

� � �
Adv. model �

bse(term) indicates the between-subjects error term in a repeated-measures ANOVA. This option is

needed only in the rare case when the anova command cannot automatically determine the between-
subjects error term.

bseunit(varname) indicates the variable representing the lowest unit in the between-subjects error term
in a repeated-measures ANOVA. This option is rarely needed because the anova command automati-
cally selects the first variable listed in the between-subjects error term as the default for this option.

grouping(varname) indicates a variable that determines which observations are grouped together in

computing the covariance matrices that will be pooled and used in a repeated-measures ANOVA. This

option is rarely needed because the anova command automatically selects the combination of all

variables except the first (or as specified in the bseunit() option) in the between-subjects error term
as the default for grouping observations.

Remarks and examples
Remarks are presented under the following headings:

Introduction
One-way ANOVA
Two-way ANOVA
N-way ANOVA
Weighted data
ANCOVA
Nested designs
Mixed designs
Latin-square designs
Repeated-measures ANOVA
Video examples

Introduction
anova uses least squares to fit the linear models known as ANOVA or ANCOVA (henceforth referred to

simply as ANOVAmodels).

If you want to fit one-way ANOVA models, you may find the oneway or loneway command more

convenient; see [R] oneway and [R] loneway. If you are interested in MANOVA or MANCOVA, see

[MV] manova.

Structural equation modeling provides a more general framework for fitting ANOVAmodels; see the

Stata Structural Equation Modeling Reference Manual.

ANOVA was pioneered by Fisher. It features prominently in his texts on statistical methods and his

design of experiments (1925, 1935). Many books discuss ANOVA; see, for instance, Altman (1991);

van Belle et al. (2004); Cobb (1998); Snedecor and Cochran (1989); or Winer, Brown, and Michels

(1991). For a classic source, see Scheffé (1959). Kennedy and Gentle (1980) discussANOVA’s computing

problems. Edwards (1985) is concerned primarily with the relationship between multiple regression and

ANOVA. Acock (2023, chap. 9) and Baldwin (2019, chap. 5 and 6) illustrate their discussion with Stata

output. Repeated-measures ANOVA is discussed in Winer, Brown, and Michels (1991) and Milliken and

Johnson (2009). Pioneering work in repeated-measures ANOVA can be found in Box (1954); Geisser

and Greenhouse (1958); Huynh and Feldt (1976); and Huynh (1978). For a Stata-specific discussion of

ANOVA contrasts, see Mitchell (2021, chap. 7–9; 2015, chap. 4–9).
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One-way ANOVA
anova, entered without options, performs and reports standard ANOVA. For instance, to perform a

one-way layout of a variable called endog on exog, you would type anova endog exog.

Example 1: One-way ANOVA
We run an experiment varying the amount of fertilizer used in growing apple trees. We test four

concentrations, using each concentration in three groves of 12 trees each. Later in the year, we measure

the average weight of the fruit.

If all had gone well, we would have had 3 observations on the average weight for each of the four con-

centrations. Instead, two of the groves were mistakenly leveled by a confused man on a large bulldozer.

We are left with the following data:

. use https://www.stata-press.com/data/r18/apple
(Apple trees)
. list, abbrev(10) sepby(treatment)

treatment weight

1. 1 117.5
2. 1 113.8
3. 1 104.4

4. 2 48.9
5. 2 50.4
6. 2 58.9

7. 3 70.4
8. 3 86.9

9. 4 87.7
10. 4 67.3

To obtain one-way ANOVA results, we type

. anova weight treatment
Number of obs = 10 R-squared = 0.9147
Root MSE = 9.07002 Adj R-squared = 0.8721

Source Partial SS df MS F Prob>F

Model 5295.5443 3 1765.1814 21.46 0.0013

treatment 5295.5443 3 1765.1814 21.46 0.0013

Residual 493.59167 6 82.265278

Total 5789.136 9 643.23733

We find significant (at better than the 1% level) differences among the four concentrations.

Although the output is a usualANOVA table, let’s run through it anyway. Above the table is a summary

of the underlying regression. The model was fit on 10 observations, and the root mean squared error

(Root MSE) is 9.07. The 𝑅2 for the model is 0.9147, and the adjusted 𝑅2 is 0.8721.
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The first line of the table summarizes the model. The sum of squares (Partial SS) for the model is
5295.5 with 3 degrees of freedom (df). This line results in a mean square (MS) of 5295.5/3 ≈ 1765.2.

The corresponding 𝐹 statistic is 21.46 and has a significance level of 0.0013. Thus, the model appears

to be significant at the 0.13% level.

The next line summarizes the first (and only) term in the model, treatment. Because there is only
one term, the line is identical to that for the overall model.

The third line summarizes the residual. The residual sum of squares is 493.59 with 6 degrees of

freedom, resulting in a mean squared error of 82.27. The square root of this latter number is reported as

the Root MSE.

The model plus the residual sum of squares equals the total sum of squares, which is reported as

5789.1 in the last line of the table. This is the total sum of squares of weight after removal of the

mean. Similarly, the model plus the residual degrees of freedom sum to the total degrees of freedom, 9.

Remember that there are 10 observations. Subtracting 1 for the mean, we are left with 9 total degrees of

freedom.

Technical note
Rather than using the anova command, we could have performed this analysis by using the oneway

command. Example 1 in [R] oneway repeats this same analysis. You may wish to compare the output.

The regress command (see [R] regress) is used to fit the underlying regression model corresponding
to an ANOVA model fit using the anova command. Type regress after anova to see the coefficients,
standard errors, etc., of the regression model for the last run of anova.

Example 2: Regression table from a one-way ANOVA
Returning to the apple tree experiment, we found that the fertilizer concentration appears to signifi-

cantly affect the average weight of the fruit. Although that finding is interesting, we next want to know

which concentration appears to grow the heaviest fruit. One way to find out is by examining the under-

lying regression coefficients.

. regress, baselevels
Source SS df MS Number of obs = 10

F(3, 6) = 21.46
Model 5295.54433 3 1765.18144 Prob > F = 0.0013

Residual 493.591667 6 82.2652778 R-squared = 0.9147
Adj R-squared = 0.8721

Total 5789.136 9 643.237333 Root MSE = 9.07

weight Coefficient Std. err. t P>|t| [95% conf. interval]

treatment
1 0 (base)
2 -59.16667 7.405641 -7.99 0.000 -77.28762 -41.04572
3 -33.25 8.279758 -4.02 0.007 -53.50984 -12.99016
4 -34.4 8.279758 -4.15 0.006 -54.65984 -14.14016

_cons 111.9 5.236579 21.37 0.000 99.08655 124.7134
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See [R] regress for an explanation of how to read this table. The baselevels option of regress displays
a row indicating the base category for our categorical variable, treatment. In summary, we find that
concentration 1, the base (omitted) group, produces significantly heavier fruits than concentration 2,

3, and 4; concentration 2 produces the lightest fruits; and concentrations 3 and 4 appear to be roughly

equivalent.

Example 3: ANOVA replay
We previously typed anova weight treatment to produce and display theANOVA table for our apple

tree experiment. Typing regress displays the regression coefficients. We can redisplay theANOVA table

by typing anova without arguments:

. anova
Number of obs = 10 R-squared = 0.9147
Root MSE = 9.07002 Adj R-squared = 0.8721

Source Partial SS df MS F Prob>F

Model 5295.5443 3 1765.1814 21.46 0.0013

treatment 5295.5443 3 1765.1814 21.46 0.0013

Residual 493.59167 6 82.265278

Total 5789.136 9 643.23733

Two-way ANOVA
You can include multiple explanatory variables with the anova command, and you can specify inter-

actions by placing ‘#’ between the variable names. For instance, typing anova y a b performs a two-way
layout of y on a and b. Typing anova y a b a#b performs a full two-way factorial layout. The shorthand
anova y a##b does the same.

With the default partial sums of squares, when you specify interacted terms, the order of the terms

does not matter. Typing anova y a b a#b is the same as typing anova y b a b#a.

Example 4: Two-way factorial ANOVA
The classic two-way factorial ANOVA problem, at least as far as computer manuals are concerned, is

a two-way ANOVA design from Afifi and Azen (1979).

Fifty-eight patients, each suffering from one of three different diseases, were randomly assigned to

one of four different drug treatments, and the change in their systolic blood pressure was recorded. Here

are the data:

Disease 1 Disease 2 Disease 3

Drug 1 42, 44, 36 33, 26, 33 31, –3, 25
13, 19, 22 21 25, 24

Drug 2 28, 23, 34 34, 33, 31 3, 26, 28
42, 13 36 32, 4, 16

Drug 3 1, 29, 19 11, 9, 7 21, 1, 9
1, –6 3

Drug 4 24, 9, 22 27, 12, 12 22, 7, 25
–2, 15 –5, 16, 15 5, 12
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Let’s assume that we have entered these data into Stata and stored the data as systolic.dta. Below
we use the data, list the first 10 observations, summarize the variables, and tabulate the control

variables:

. use https://www.stata-press.com/data/r18/systolic
(Systolic blood pressure data)
. list in 1/10

drug disease systolic

1. 1 1 42
2. 1 1 44
3. 1 1 36
4. 1 1 13
5. 1 1 19

6. 1 1 22
7. 1 2 33
8. 1 2 26
9. 1 2 33

10. 1 2 21

. summarize
Variable Obs Mean Std. dev. Min Max

drug 58 2.5 1.158493 1 4
disease 58 2.017241 .8269873 1 3
systolic 58 18.87931 12.80087 -6 44

. tabulate drug disease
Patient’s disease

Drug used 1 2 3 Total

1 6 4 5 15
2 5 4 6 15
3 3 5 4 12
4 5 6 5 16

Total 19 19 20 58

Each observation in our data corresponds to one patient, and for each patient we record drug, disease,
and the increase in the systolic blood pressure, systolic. The tabulation reveals that the data are not
balanced—there are not equal numbers of patients in each drug–disease cell. Stata does not require
that the data be balanced. We can perform a two-way factorial ANOVA by typing

. anova systolic drug disease drug#disease
Number of obs = 58 R-squared = 0.4560
Root MSE = 10.5096 Adj R-squared = 0.3259

Source Partial SS df MS F Prob>F

Model 4259.3385 11 387.21259 3.51 0.0013

drug 2997.4719 3 999.15729 9.05 0.0001
disease 415.87305 2 207.93652 1.88 0.1637

drug#disease 707.26626 6 117.87771 1.07 0.3958

Residual 5080.8167 46 110.45254

Total 9340.1552 57 163.86237
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Although Stata’s table command does not performANOVA, it can produce useful summary tables of

your data (see [R] table):

. table drug disease, statistic(mean systolic) nformat(%8.2f)

Patient’s disease
1 2 3 Total

Drug used
1 29.33 28.25 20.40 26.07
2 28.00 33.50 18.17 25.53
3 16.33 4.40 8.50 8.75
4 13.60 12.83 14.20 13.50
Total 22.79 18.21 15.80 18.88

These are simple means and are not influenced by our anova model. More useful is the margins com-
mand (see [R] margins) that provides marginal means and adjusted predictions. Because drug is the

only significant factor in our ANOVA, we now examine the adjusted marginal means for drug.

. margins drug, asbalanced
Adjusted predictions Number of obs = 58
Expression: Linear prediction, predict()
At: disease (asbalanced)

Delta-method
Margin std. err. t P>|t| [95% conf. interval]

drug
1 25.99444 2.751008 9.45 0.000 20.45695 31.53194
2 26.55556 2.751008 9.65 0.000 21.01806 32.09305
3 9.744444 3.100558 3.14 0.003 3.503344 15.98554
4 13.54444 2.637123 5.14 0.000 8.236191 18.8527

These adjusted marginal predictions are not equal to the simple drug means (see the totals from the

table command); they are based upon predictions from our ANOVAmodel. The asbalanced option of
margins corresponds with the interpretation of the 𝐹 statistic produced by ANOVA—each cell is given

equal weight regardless of its sample size (see the following three technical notes). You can omit the

asbalanced option and obtain predictive margins that take into account the unequal sample sizes of the
cells.

. margins drug
Predictive margins Number of obs = 58
Expression: Linear prediction, predict()

Delta-method
Margin std. err. t P>|t| [95% conf. interval]

drug
1 25.89799 2.750533 9.42 0.000 20.36145 31.43452
2 26.41092 2.742762 9.63 0.000 20.89003 31.93181
3 9.722989 3.099185 3.14 0.003 3.484652 15.96132
4 13.55575 2.640602 5.13 0.000 8.24049 18.871
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Technical note
How do you interpret the significance of terms like drug and disease in unbalanced data? If you

are familiar with SAS, the sums of squares and the 𝐹 statistic reported by Stata correspond to SAS type

III sums of squares. (Stata can also calculate sequential sums of squares, but we will postpone that topic

for now.)

Let’s think in terms of the following table:

Disease 1 Disease 2 Disease 3

Drug 1 𝜇11 𝜇12 𝜇13 𝜇1⋅
Drug 2 𝜇21 𝜇22 𝜇23 𝜇2⋅
Drug 3 𝜇31 𝜇32 𝜇33 𝜇3⋅
Drug 4 𝜇41 𝜇42 𝜇43 𝜇4⋅

𝜇⋅1 𝜇⋅2 𝜇⋅3 𝜇⋅⋅

In this table, 𝜇𝑖𝑗 is the mean increase in systolic blood pressure associated with drug 𝑖 and disease 𝑗,
while 𝜇𝑖⋅ is the mean for drug 𝑖, 𝜇⋅𝑗 is the mean for disease 𝑗, and 𝜇⋅⋅ is the overall mean.

If the data are balanced, meaning that there are equal numbers of observations going into the calcula-

tion of each mean 𝜇𝑖𝑗, the row means, 𝜇𝑖⋅, are given by

𝜇𝑖⋅ = 𝜇𝑖1 + 𝜇𝑖2 + 𝜇𝑖3
3

In our case, the data are not balanced, but we define the 𝜇𝑖⋅ according to that formula anyway. The test

for the main effect of drug is the test that

𝜇1⋅ = 𝜇2⋅ = 𝜇3⋅ = 𝜇4⋅

To be absolutely clear, the 𝐹 test of the term drug, called the main effect of drug, is formally equivalent
to the test of the three constraints:

𝜇11 + 𝜇12 + 𝜇13
3

= 𝜇21 + 𝜇22 + 𝜇23
3

𝜇11 + 𝜇12 + 𝜇13
3

= 𝜇31 + 𝜇32 + 𝜇33
3

𝜇11 + 𝜇12 + 𝜇13
3

= 𝜇41 + 𝜇42 + 𝜇43
3

In our data, we obtain a significant 𝐹 statistic of 9.05 and thus reject those constraints.

Technical note
Stata can display the symbolic form underlying the test statistics it presents, as well as display other

test statistics and their symbolic forms; see Obtaining symbolic forms in [R] anova postestimation. Here

is the result of requesting the symbolic form for the main effect of drug in our data:
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. test drug, symbolic
drug

1 -(r2+r3+r4)
2 r2
3 r3
4 r4

disease
1 0
2 0
3 0

drug#disease
1 1 -1/3 (r2+r3+r4)
1 2 -1/3 (r2+r3+r4)
1 3 -1/3 (r2+r3+r4)
2 1 1/3 r2
2 2 1/3 r2
2 3 1/3 r2
3 1 1/3 r3
3 2 1/3 r3
3 3 1/3 r3
4 1 1/3 r4
4 2 1/3 r4
4 3 1/3 r4

_cons 0

This says exactly what we said in the previous technical note.

Technical note
Saying that there is no main effect of a variable is not the same as saying that it has no effect at all.

Stata’s ability to perform ANOVA on unbalanced data can easily be put to ill use.

For example, consider the following table of the probability of surviving a bout with one of two

diseases according to the drug administered to you:

Disease 1 Disease 2

Drug 1 1 0

Drug 2 0 1

If you have disease 1 and are administered drug 1, you live. If you have disease 2 and are administered

drug 2, you live. In all other cases, you die.

This table has no main effects of either drug or disease, although there is a large interaction effect.

You might now be tempted to reason that because there is only an interaction effect, you would be

indifferent between the two drugs in the absence of knowledge about which disease infects you. Given

an equal chance of having either disease, you reason that it does not matter which drug is administered

to you—either way, your chances of surviving are 0.5.

You may not, however, have an equal chance of having either disease. If you knew that disease 1 was

100 times more likely to occur in the population, and if you knew that you had one of the two diseases,

you would express a strong preference for receiving drug 1.
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When you calculate the significance ofmain effects on unbalanced data, youmust ask yourself why the

data are unbalanced. If the data are unbalanced for random reasons and you are making predictions for a

balanced population, the test of the main effect makes perfect sense. If, however, the data are unbalanced

because the underlying populations are unbalanced and you are making predictions for such unbalanced

populations, the test of the main effect may be practically—if not statistically—meaningless.

Example 5: ANOVA with missing cells
Stata can perform ANOVA not only on unbalanced populations, but also on populations that are so

unbalanced that entire cells are missing. For instance, using our systolic blood pressure data, let’s refit

the model eliminating the drug 1–disease 1 cell. Because anova follows the same syntax as all other
Stata commands, we can explicitly specify the data to be used by typing the if qualifier at the end of the
anova command. Here we want to use the data that are not for drug 1 and disease 1:

. anova systolic drug##disease if !(drug==1 & disease==1)
Number of obs = 52 R-squared = 0.4545
Root MSE = 10.1615 Adj R-squared = 0.3215

Source Partial SS df MS F Prob>F

Model 3527.959 10 352.7959 3.42 0.0025

drug 2686.5783 3 895.52611 8.67 0.0001
disease 327.7926 2 163.8963 1.59 0.2168

drug#disease 703.0076 5 140.60152 1.36 0.2586

Residual 4233.4833 41 103.25569

Total 7761.4423 51 152.18514

Here we used drug##disease as a shorthand for drug disease drug#disease.

Technical note
The test of the main effect of drug in the presence of missing cells is more complicated than that for

unbalanced data. Our underlying tableau now has the following form:

Disease 1 Disease 2 Disease 3

Drug 1 𝜇12 𝜇13
Drug 2 𝜇21 𝜇22 𝜇23 𝜇2⋅
Drug 3 𝜇31 𝜇32 𝜇33 𝜇3⋅
Drug 4 𝜇41 𝜇42 𝜇43 𝜇4⋅

𝜇⋅2 𝜇⋅3

The hole in the drug 1–disease 1 cell indicates that the mean is unobserved. Considering the main effect

of drug, the test is unchanged for the rows in which all the cells are defined:

𝜇2⋅ = 𝜇3⋅ = 𝜇4⋅

The first row, however, requires special attention. Here we want the average outcome for drug 1, which

is averaged only over diseases 2 and 3, to be equal to the average values of all other drugs averaged over

those same two diseases:

𝜇12 + 𝜇13
2

=
(𝜇22 + 𝜇23)/2 + (𝜇32 + 𝜇33)/2 + (𝜇42 + 𝜇43)/2

3
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Thus, the test contains three constraints:

𝜇21 + 𝜇22 + 𝜇23
3

=
𝜇31 + 𝜇32 + 𝜇33

3
𝜇21 + 𝜇22 + 𝜇23

3
=

𝜇41 + 𝜇42 + 𝜇43
3

𝜇12 + 𝜇13
2

=
𝜇22 + 𝜇23 + 𝜇32 + 𝜇33 + 𝜇42 + 𝜇43

6

Stata can calculate two types of sums of squares, partial and sequential. If you do not specify which

sums of squares to calculate, Stata calculates partial sums of squares. The technical notes above have

gone into great detail about the definition and use of partial sums of squares. Use the sequential option
to obtain sequential sums of squares.

Technical note
Before we illustrate sequential sums of squares, consider one more feature of the partial sums. If you

know how such things are calculated, you may worry that the terms must be specified in some particular

order, that Stata would balk or, even worse, produce different results if you typed, say, anova systolic
drug#disease drug disease rather than anova systolic drug disease drug#disease. We assure

you that is not the case.

When you type a model, Stata internally reorganizes the terms, forms the cross-product matrix, inverts

it, converts the result to an upper-Hermite form, and then performs the hypothesis tests. As a final touch,

Stata reports the results in the same order that you typed the terms.

Example 6: Sequential sums of squares
We wish to estimate the effects on systolic blood pressure of drug and disease by using sequential

sums of squares. We want to introduce disease first, then drug, and finally, the interaction of drug and

disease:

. anova systolic disease drug disease#drug, sequential
Number of obs = 58 R-squared = 0.4560
Root MSE = 10.5096 Adj R-squared = 0.3259

Source Seq. SS df MS F Prob>F

Model 4259.3385 11 387.21259 3.51 0.0013

disease 488.63938 2 244.31969 2.21 0.1210
drug 3063.4329 3 1021.1443 9.25 0.0001

disease#drug 707.26626 6 117.87771 1.07 0.3958

Residual 5080.8167 46 110.45254

Total 9340.1552 57 163.86237

The 𝐹 statistic on disease is now 2.21. When we fit this same model by using partial sums of squares,

the statistic was 1.88.
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N-way ANOVA
You may include high-order interaction terms, such as a third-order interaction between the variables

A, B, and C, by typing A#B#C.

Example 7: Three-way factorial ANOVA
Wewish to determine the operating conditions that maximize yield for amanufacturing process. There

are three temperature settings, two chemical supply companies, and two mixing methods under investi-

gation. Three observations are obtained for each combination of these three factors.

. use https://www.stata-press.com/data/r18/manuf
(Manufacturing process data)
. describe
Contains data from https://www.stata-press.com/data/r18/manuf.dta
Observations: 36 Manufacturing process data

Variables: 4 2 Jan 2022 13:28

Variable Storage Display Value
name type format label Variable label

temperature byte %9.0g temp Machine temperature setting
chemical byte %9.0g supplier Chemical supplier
method byte %9.0g meth Mixing method
yield byte %9.0g Product yield

Sorted by:

We wish to perform a three-way factorial ANOVA. We could type

. anova yield temp chem temp#chem meth temp#meth chem#meth temp#chem#meth

but prefer to use the ## factor-variable operator for brevity.

. anova yield temp##chem##meth
Number of obs = 36 R-squared = 0.5474
Root MSE = 2.62996 Adj R-squared = 0.3399

Source Partial SS df MS F Prob>F

Model 200.75 11 18.25 2.64 0.0227

temperature 30.5 2 15.25 2.20 0.1321
chemical 12.25 1 12.25 1.77 0.1958

temperature#chemical 24.5 2 12.25 1.77 0.1917
method 42.25 1 42.25 6.11 0.0209

temperature#method 87.5 2 43.75 6.33 0.0062
chemical#method .25 1 .25 0.04 0.8508

temperature#chemical#
method 3.5 2 1.75 0.25 0.7785

Residual 166 24 6.9166667

Total 366.75 35 10.478571
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The interaction between temperature and method appears to be the important story in these data. A

table of means for this interaction is given below.

. table method temp, statistic(mean yield) nformat(%8.2f)

Machine temperature setting
Low Medium High Total

Mixing method
Stir 7.50 6.00 6.00 6.50
Fold 5.50 9.00 11.50 8.67
Total 6.50 7.50 8.75 7.58

Here ourANOVA is balanced (each cell has the same number of observations), and we obtain the same

values as in the table above (but with additional information such as confidence intervals) by using the

margins command. Because ourANOVA is balanced, using the asbalanced option with marginswould
not produce different results. We request the predictive margins for the two terms that appear significant

in our ANOVA: temperature#method and method.

. margins temperature#method method
Predictive margins Number of obs = 36
Expression: Linear prediction, predict()

Delta-method
Margin std. err. t P>|t| [95% conf. interval]

temperature#
method

Low#Stir 7.5 1.073675 6.99 0.000 5.284044 9.715956
Low#Fold 5.5 1.073675 5.12 0.000 3.284044 7.715956

Medium#Stir 6 1.073675 5.59 0.000 3.784044 8.215956
Medium#Fold 9 1.073675 8.38 0.000 6.784044 11.21596
High#Stir 6 1.073675 5.59 0.000 3.784044 8.215956
High#Fold 11.5 1.073675 10.71 0.000 9.284044 13.71596

method
Stir 6.5 .6198865 10.49 0.000 5.220617 7.779383
Fold 8.666667 .6198865 13.98 0.000 7.387284 9.946049

We decide to use the folding method of mixing and a high temperature in our manufacturing process.

Weighted data
Like all estimation commands, anova can produce estimates on weighted data. See [U] 11.1.6 weight

for details on specifying the weight.
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Example 8: Three-way factorial ANOVA on grouped data
Wewish to investigate the prevalence of byssinosis, a form of pneumoconiosis that can afflict workers

exposed to cotton dust. We have data on 5,419 workers in a large cotton mill. We know whether each

worker smokes, his or her race, and the dustiness of the work area. The variables are

smokes smoker or nonsmoker in the last five years

race white or other

workplace 1 (most dusty), 2 (less dusty), 3 (least dusty)

Wewish to fit anANOVAmodel explaining the prevalence of byssinosis according to a full factorial model

of smokes, race, and workplace.

The data are unbalanced. Moreover, although we have data on 5,419 workers, the data are grouped

according to the explanatory variables, along with some other variables, resulting in 72 observations.

For each observation, we know the number of workers in the group (pop), the prevalence of byssinosis
(prob), and the values of the three explanatory variables. Thus, we wish to fit a three-way factorial model
on grouped data.

We begin by showing a bit of the data, which are from Higgins and Koch (1977).

. use https://www.stata-press.com/data/r18/byssin
(Byssinosis incidence)
. describe
Contains data from https://www.stata-press.com/data/r18/byssin.dta
Observations: 72 Byssinosis incidence

Variables: 5 19 Dec 2022 07:04

Variable Storage Display Value
name type format label Variable label

smokes byte %8.0g smokes Smokes
race byte %8.0g race Race
workplace byte %8.0g workplace

Dustiness of workplace
pop int %8.0g Population size
prob float %9.0g Prevalence of byssinosis

Sorted by:
. list in 1/5, abbrev(10) divider

smokes race workplace pop prob

1. Yes White Most 40 .075
2. Yes White Less 74 0
3. Yes White Least 260 .0076923
4. Yes Other Most 164 .152439
5. Yes Other Less 88 0

The first observation in the data represents a group of 40 white workers who smoke and work in a “most”

dusty work area. Of those 40 workers, 7.5% have byssinosis. The second observation represents a group

of 74 white workers who also smoke but who work in a “less” dusty environment. None of those workers

has byssinosis.



anova — Analysis of variance and covariance 31

Almost every Stata command allows weights. Here we want to weight the data by pop. We can, for

instance, make a table of the number of workers by their smoking status and race:

. tabulate smokes race [fw=pop]
Race

Smokes Other White Total

No 799 1,431 2,230
Yes 1,104 2,085 3,189

Total 1,903 3,516 5,419

The [fw=pop] at the end of the tabulate command tells Stata to count each observation as representing
pop persons. When making the tally, tabulate treats the first observation as representing 40 workers,
the second as representing 74 workers, and so on.

Similarly, we can make a table of the dustiness of the workplace:

. tabulate workplace [fw=pop]
Dustiness

of
workplace Freq. Percent Cum.

Least 3,450 63.66 63.66
Less 1,300 23.99 87.65
Most 669 12.35 100.00

Total 5,419 100.00

We can discover the average incidence of byssinosis among these workers by typing

. summarize prob [fw=pop]
Variable Obs Mean Std. dev. Min Max

prob 5,419 .0304484 .0567373 0 .287037

We discover that 3.04% of these workers have byssinosis. Across all cells, the byssinosis rates vary from

0 to 28.7%. Just to prove that there might be something here, let’s obtain the average incidence rates

according to the dustiness of the workplace:

. table (workplace) (race smokes) [fw=pop], statistic(mean prob) nototals

Race
Other White
Smokes Smokes

No Yes No Yes

Dustiness of workplace
Least .0107527 .0101523 .0081549 .0162774
Less .02 .0081633 .0136612 .0143149
Most .0820896 .1679105 .0833333 .2295082

Let’s now fit the ANOVAmodel.
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. anova prob workplace smokes race workplace#smokes workplace#race smokes#race
> workplace#smokes#race [aweight=pop]
(sum of wgt is 5,419)

Number of obs = 65 R-squared = 0.8300
Root MSE = .025902 Adj R-squared = 0.7948

Source Partial SS df MS F Prob>F

Model .17364654 11 .01578605 23.53 0.0000

workplace .09762518 2 .04881259 72.76 0.0000
smokes .01303081 1 .01303081 19.42 0.0001
race .00109472 1 .00109472 1.63 0.2070

workplace#smokes .01969034 2 .00984517 14.67 0.0000
workplace#race .00135252 2 .00067626 1.01 0.3718

smokes#race .00166287 1 .00166287 2.48 0.1214
workplace#smokes#race .00095084 2 .00047542 0.71 0.4969

Residual .03555777 53 .0006709

Total .2092043 64 .00326882

Of course, if we want to see the underlying regression, we could type regress.

Above, we examined simple means of the cells of workplace#smokes#race. Our ANOVA shows

workplace, smokes, and their interaction as being the only significant factors in our model. We now

examine the predictive marginal mean byssinosis rates for these terms.

. margins workplace#smokes workplace smokes
Predictive margins Number of obs = 65
Expression: Linear prediction, predict()

Delta-method
Margin std. err. t P>|t| [95% conf. interval]

workplace#
smokes

Least#No .0090672 .0062319 1.45 0.152 -.0034323 .0215667
Least#Yes .0141264 .0053231 2.65 0.010 .0034497 .0248032
Less#No .0158872 .009941 1.60 0.116 -.0040518 .0358263

Less#Yes .0121546 .0087353 1.39 0.170 -.0053662 .0296755
Most#No .0828966 .0182151 4.55 0.000 .0463617 .1194314

Most#Yes .2078768 .012426 16.73 0.000 .1829533 .2328003

workplace
Least .0120701 .0040471 2.98 0.004 .0039526 .0201875
Less .0137273 .0065685 2.09 0.041 .0005526 .0269019
Most .1566225 .0104602 14.97 0.000 .1356419 .177603

smokes
No .0196915 .0050298 3.91 0.000 .0096029 .02978

Yes .0358626 .0041949 8.55 0.000 .0274488 .0442765

Smoking combined with the most dusty workplace produces the highest byssinosis rates.
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� �
Ronald Aylmer Fisher (1890–1962) (Sir Ronald from 1952) studied mathematics at Cambridge.

Even before he finished his studies, he had published on statistics. He worked as a statistician

at Rothamsted Experimental Station (1919–1933), as professor of eugenics at University College

London (1933–1943), as professor of genetics at Cambridge (1943–1957), and in retirement at

the CSIRO Division of Mathematical Statistics in Adelaide. His many fundamental and applied

contributions to statistics and genetics mark him as one of the greatest statisticians of all time,

including original work on tests of significance, distribution theory, theory of estimation, fiducial

inference, and design of experiments.� �
ANCOVA

You can include multiple explanatory variables with the anova command, but unless you explicitly
state otherwise by using the c. factor-variable operator, all the variables are interpreted as categorical
variables. Using the c. operator, you can designate variables as continuous and thus perform ANCOVA.

Example 9: ANCOVA (ANOVA with a continuous covariate)
We have census data recording the deathrate (drate) and median age (age) for each state. The dataset

also includes the region of the country in which each state is located (region):
. use https://www.stata-press.com/data/r18/census2
(1980 Census data by state)
. summarize drate age region

Variable Obs Mean Std. dev. Min Max

drate 50 84.3 13.07318 40 107
age 50 29.5 1.752549 24 35

region 50 2.66 1.061574 1 4

age is coded in integral years from 24 to 35, and region is coded from 1 to 4, with 1 standing for the

Northeast, 2 for the North Central, 3 for the South, and 4 for the West.

When we examine the data more closely, we discover large differences in the deathrate across regions

of the country:

. tabulate region, summarize(drate)
Census Summary of Deathrate
region Mean Std. dev. Freq.

NE 93.444444 7.0553368 9
N Cntrl 88.916667 5.5833899 12
South 88.3125 8.5457104 16
West 68.769231 13.342625 13

Total 84.3 13.073185 50

Naturally, we wonder if these differences might not be explained by differences in the median ages of

the populations. To find out, we fit a regression model (via anova) of drate on region and age. In the
anova example below, we treat age as a categorical variable.

https://www.stata.com/giftshop/bookmarks/series2/fisher/
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. anova drate region age
Number of obs = 50 R-squared = 0.7927
Root MSE = 6.7583 Adj R-squared = 0.7328

Source Partial SS df MS F Prob>F

Model 6638.8653 11 603.53321 13.21 0.0000

region 1320.0097 3 440.00324 9.63 0.0001
age 2237.2494 8 279.65617 6.12 0.0000

Residual 1735.6347 38 45.674598

Total 8374.5 49 170.90816

We have the answer to our question: differences in median ages do not eliminate the differences in

deathrates across the four regions. TheANOVA table summarizes the two terms in the model, region and
age. The region term contains 3 degrees of freedom, and the age term contains 8 degrees of freedom.

Both are significant at better than the 1% level.

The age term contains 8 degrees of freedom. Because we did not explicitly indicate that age was to
be treated as a continuous variable, it was treated as categorical, meaning that unique coefficients were

estimated for each level of age. The only clue of this labeling is that the number of degrees of freedom

associated with the age term exceeds 1. The labeling becomes more obvious if we review the regression

coefficients:

. regress, baselevels
Source SS df MS Number of obs = 50

F(11, 38) = 13.21
Model 6638.86529 11 603.533208 Prob > F = 0.0000

Residual 1735.63471 38 45.6745977 R-squared = 0.7927
Adj R-squared = 0.7328

Total 8374.5 49 170.908163 Root MSE = 6.7583

drate Coefficient Std. err. t P>|t| [95% conf. interval]

region
NE 0 (base)

N Cntrl .4428387 3.983664 0.11 0.912 -7.621668 8.507345
South -.2964637 3.934766 -0.08 0.940 -8.261981 7.669054
West -13.37147 4.195344 -3.19 0.003 -21.8645 -4.878439

age
24 0 (base)
26 -15 9.557677 -1.57 0.125 -34.34851 4.348506
27 14.30833 7.857378 1.82 0.076 -1.598099 30.21476
28 12.66011 7.495513 1.69 0.099 -2.51376 27.83399
29 18.861 7.28918 2.59 0.014 4.104825 33.61717
30 20.87003 7.210148 2.89 0.006 6.273847 35.46621
31 29.91307 8.242741 3.63 0.001 13.22652 46.59963
32 27.02853 8.509432 3.18 0.003 9.802089 44.25498
35 38.925 9.944825 3.91 0.000 18.79275 59.05724

_cons 68.37147 7.95459 8.60 0.000 52.26824 84.47469

The regress command displayed the anova model as a regression table. We used the baselevels
option to display the dropped level (or base) for each term.
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If we want to treat age as a continuous variable, we must prepend c. to age in our anova.

. anova drate region c.age
Number of obs = 50 R-squared = 0.7203
Root MSE = 7.21483 Adj R-squared = 0.6954

Source Partial SS df MS F Prob>F

Model 6032.0825 4 1508.0206 28.97 0.0000

region 1645.6623 3 548.55409 10.54 0.0000
age 1630.4666 1 1630.4666 31.32 0.0000

Residual 2342.4175 45 52.053721

Total 8374.5 49 170.90816

The age term now has 1 degree of freedom. The regression coefficients are

. regress, baselevels
Source SS df MS Number of obs = 50

F(4, 45) = 28.97
Model 6032.08254 4 1508.02064 Prob > F = 0.0000

Residual 2342.41746 45 52.0537213 R-squared = 0.7203
Adj R-squared = 0.6954

Total 8374.5 49 170.908163 Root MSE = 7.2148

drate Coefficient Std. err. t P>|t| [95% conf. interval]

region
NE 0 (base)

N Cntrl 1.792526 3.375925 0.53 0.598 -5.006935 8.591988
South .6979912 3.18154 0.22 0.827 -5.70996 7.105942
West -13.37578 3.723447 -3.59 0.001 -20.87519 -5.876377

age 3.922947 .7009425 5.60 0.000 2.511177 5.334718
_cons -28.60281 21.93931 -1.30 0.199 -72.79085 15.58524

Although we started analyzing these data to explain the regional differences in deathrate, let’s focus on

the effect of age for a moment. In our first model, each level of age had a unique deathrate associated
with it. For instance, the predicted deathrate in a north central state with a median age of 28 was

0.44 + 12.66 + 68.37 ≈ 81.47

whereas the predicted deathrate from our current model is

1.79 + 3.92 × 28 − 28.60 ≈ 82.95

Our previous model had an 𝑅2 of 0.7927, whereas our current model has an 𝑅2 of 0.7203. This “small”

loss of predictive power accompanies a gain of 7 degrees of freedom, so we suspect that the continuous-

age model is as good as the discrete-age model.

Technical note
There is enough information in the twoANOVA tables to attach a statistical significance to our suspicion

that the loss of predictive power is offset by the savings in degrees of freedom. Because the continuous-

age model is nested within the discrete-age model, we can perform a standard Chow test. For those of

us who know such formulas off the top of our heads, the 𝐹 statistic is
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(2342.41746 − 1735.63471)/7
45.6745977

= 1.90

There is, however, a better way.

We can find out whether our continuous model is as good as our discrete model by putting age in the
model twice: once as a continuous variable and once as a categorical variable. The categorical variable

will then measure deviations around the straight line implied by the continuous variable, and the 𝐹 test

for the significance of the categorical variable will test whether those deviations are jointly zero.

. anova drate region c.age age
Number of obs = 50 R-squared = 0.7927
Root MSE = 6.7583 Adj R-squared = 0.7328

Source Partial SS df MS F Prob>F

Model 6638.8653 11 603.53321 13.21 0.0000

region 1320.0097 3 440.00324 9.63 0.0001
age 699.74137 1 699.74137 15.32 0.0004
age 606.78275 7 86.68325 1.90 0.0970

Residual 1735.6347 38 45.674598

Total 8374.5 49 170.90816

We find that the 𝐹 test for the significance of the (categorical) age variable is 1.90, just as we calcu-
lated above. It is significant at the 9.7% level. If we hold to a 5% significance level, we cannot reject

the null hypothesis that the effect of age is linear.

Example 10: Interaction of continuous and categorical variables
In our census data, we still find significant differences across the regions after controlling for the

median age of the population. We might now wonder whether the regional differences are differences

in level—independent of age—or are instead differences in the regional effects of age. Just as we can

interact categorical variables with other categorical variables, we can interact categorical variables with

continuous variables.

. anova drate region c.age region#c.age
Number of obs = 50 R-squared = 0.7365
Root MSE = 7.24852 Adj R-squared = 0.6926

Source Partial SS df MS F Prob>F

Model 6167.7737 7 881.11053 16.77 0.0000

region 188.7136 3 62.904534 1.20 0.3225
age 873.4256 1 873.4256 16.62 0.0002

region#age 135.69116 3 45.230387 0.86 0.4689

Residual 2206.7263 42 52.541102

Total 8374.5 49 170.90816

The region#c.age term in our model measures the differences in slopes across the regions. We cannot

reject the null hypothesis that there are no such differences. The region effect is now “insignificant”.

This status does not mean that there are no regional differences in deathrates because each test is a
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marginal or partial test. Here, with region#c.age included in the model, region is being tested at the
point where age is zero. Apart from this value not existing in the dataset, it is also a long way from

the mean value of age, so the test of region at this point is meaningless (although it is valid if you

acknowledge what is being tested).

To obtain a more sensible test of region, we can subtract the mean from the age variable and use
this in the model.

. quietly summarize age

. generate mage = age - r(mean)

. anova drate region c.mage region#c.mage
Number of obs = 50 R-squared = 0.7365
Root MSE = 7.24852 Adj R-squared = 0.6926

Source Partial SS df MS F Prob>F

Model 6167.7737 7 881.11053 16.77 0.0000

region 1166.1473 3 388.71578 7.40 0.0004
mage 873.4256 1 873.4256 16.62 0.0002

region#mage 135.69116 3 45.230387 0.86 0.4689

Residual 2206.7263 42 52.541102

Total 8374.5 49 170.90816

region is significant when tested at the mean of the age variable.

Remember that we can specify interactions by typing varname#varname. We have seen examples

of interacting categorical variables with categorical variables and, in the examples above, a categorical

variable (region) with a continuous variable (age or mage).

We can also interact continuous variables with continuous variables. To include an age2 term in our

model, we could type c.age#c.age. If we also wanted to interact the categorical variable region with
the age2 term, we could type region#c.age#c.age (or even c.age#region#c.age).

Nested designs
In addition to specifying interaction terms, nested terms can also be specified in anANOVA. A vertical

bar is used to indicate nesting: A|B is read as A nested within B. A|B|C is read as A nested within B, which
is nested within C. A|B#C is read as A is nested within the interaction of B and C. A#B|C is read as the
interaction of A and B, which is nested within C.

Different error terms can be specified for different parts of the model. The forward slash is used to

indicate that the next term in the model is the error term for what precedes it. For instance, anova y A /
B|A indicates that the 𝐹 test for A is to be tested by using the mean square from B|A in the denominator.
Error terms (terms following the slash) are generally not tested unless they are themselves followed by

a slash. Residual error is the default error term.
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For example, consider A / B / C, where A, B, and C may be arbitrarily complex terms. Then, anova
will report A tested by B and B tested by C. If we add one more slash on the end to form A / B / C /,
then anova will also report C tested by the residual error.

Example 11: Simple nested ANOVA
We have collected data from a manufacturer that is evaluating which of five different brands of ma-

chinery to buy to perform a particular function in an assembly line. Twenty assembly-line employees

were selected at random for training on these machines, with four employees assigned to learn a partic-

ular machine. The output from each employee (operator) on the brand of machine for which he trained

was measured during four trial periods. In this example, the operator is nested within machine. Because

of sickness and employee resignations, the final data are not balanced. The following table gives the

mean output and sample size for each machine and operator combination.

. use https://www.stata-press.com/data/r18/machine, clear
(Machine data)
. table machine operator, statistic(mean output) statistic(freq)
> totals(machine) nformat(%8.2f mean)

Operator nested in machine
1 2 3 4 Total

Five brands of machine
1
Mean 9.15 9.48 8.27 8.20 8.75
Frequency 2 4 3 4 13

2
Mean 15.03 11.55 11.45 11.53 12.47
Frequency 3 2 2 4 11

3
Mean 11.27 10.13 11.13 10.84
Frequency 3 3 3 9

4
Mean 16.10 18.97 15.35 16.60 16.65
Frequency 3 3 4 3 13

5
Mean 15.30 14.35 10.43 13.63
Frequency 4 4 3 11

Assuming that operator is random (that is, we wish to infer to the larger population of possible

operators) and machine is fixed (that is, only these five machines are of interest), the typical test for

machine uses operator nested within machine as the error term. operator nested within machine
can be tested by residual error. Our earlier warning concerning designs with either unplanned missing

cells or unbalanced cell sizes, or both, also applies to interpreting theANOVA results from this unbalanced

nested example.
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. anova output machine / operator|machine /
Number of obs = 57 R-squared = 0.8661
Root MSE = 1.47089 Adj R-squared = 0.8077

Source Partial SS df MS F Prob>F

Model 545.82229 17 32.107193 14.84 0.0000

machine 430.98079 4 107.7452 13.82 0.0001
operator|machine 101.3538 13 7.7964465

operator|machine 101.3538 13 7.7964465 3.60 0.0009

Residual 84.376658 39 2.1635041

Total 630.19895 56 11.253553

operator|machine is preceded by a slash, indicating that it is the error term for the terms before it

(here machine). operator|machine is also followed by a slash that indicates it should be tested with
residual error. The output lists the operator|machine term twice, once as the error term for machine

and again as a term tested by residual error. A line is placed in the ANOVA table to separate the two. In

general, a dividing line is placed in the output to separate the terms into groups that are tested with the

same error term. The overall model is tested by residual error and is separated from the rest of the table

by a blank line at the top of the table.

The results indicate that the machines are not all equal and that there are significant differences be-

tween operators.

Example 12: ANOVA with multiple levels of nesting
Your company builds and operates sewage treatment facilities. You want to compare two particulate

solutions during the particulate reduction step of the sewage treatment process. For each solution, two

area managers are randomly selected to implement and oversee the change to the new treatment process

in two of their randomly chosen facilities. Two workers at each of these facilities are trained to operate

the new process. Ameasure of particulate reduction is recorded at various times during the month at each

facility for each worker. The data are described below.

. use https://www.stata-press.com/data/r18/sewage
(Sewage treatment)
. describe
Contains data from https://www.stata-press.com/data/r18/sewage.dta
Observations: 64 Sewage treatment

Variables: 5 9 May 2022 12:43

Variable Storage Display Value
name type format label Variable label

particulate byte %9.0g Particulate reduction
solution byte %9.0g 2 particulate solutions
manager byte %9.0g 2 managers per solution
facility byte %9.0g 2 facilities per manager
worker byte %9.0g 2 workers per facility

Sorted by: solution manager facility worker
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Youwant to determine if the two particulate solutions provide significantly different particulate reduc-

tion. You would also like to know if manager, facility, and worker are significant effects. solution
is a fixed factor, whereas manager, facility, and worker are random factors.

In the following anova command, we use abbreviations for the variable names, which can sometimes
make long ANOVAmodel statements easier to read.

. anova particulate s / m|s / f|m|s / w|f|m|s /, dropemptycells
Number of obs = 64 R-squared = 0.6338
Root MSE = 12.7445 Adj R-squared = 0.5194

Source Partial SS df MS F Prob>F

Model 13493.609 15 899.57396 5.54 0.0000

solution 7203.7656 1 7203.7656 17.19 0.0536
manager|solution 838.28125 2 419.14063

manager|solution 838.28125 2 419.14063 0.55 0.6166
facility|manager|

solution 3064.9375 4 766.23438

facility|manager|
solution 3064.9375 4 766.23438 2.57 0.1193

worker|facility|
manager|solution 2386.625 8 298.32813

worker|facility|
manager|solution 2386.625 8 298.32813 1.84 0.0931

Residual 7796.25 48 162.42188

Total 21289.859 63 337.93428

While solution is not declared significant at the 5% significance level, it is near enough to that

threshold to warrant further investigation (see example 3 in [R] anova postestimation for a continuation

of the analysis of these data).

Technical note
Why did we use the dropemptycells option with the previous anova? By default, Stata retains

empty cells when building the design matrix and currently treats | and # the same in how it deter-

mines the possible number of cells. Retaining empty cells in an ANOVA with nested terms can cause

your design matrix to become too large. In example 12, there are 1024 = 2 × 4 × 8 × 16 cells

that are considered possible for the worker|facility|manager|solution term because the worker,
facility, and manager variables are uniquely numbered. With the dropemptycells option, the

worker|facility|manager|solution term requires just 16 columns in the design matrix (corre-

sponding to the 16 unique workers).

Why did we not use the dropemptycells option in example 11, where operator is nested in

machine? If you look at the table presented at the beginning of that example, you will see that operator
is compactly instead of uniquely numbered (you need both operator number and machine number to
determine the operator). Here the dropemptycells option would have only reduced our design matrix
from 26 columns down to 24 columns (because there were only 3 operators instead of 4 for machines 3
and 5).
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We suggest that you specify dropemptycellswhen there are nested terms in yourANOVA. You could
also use the set emptycells drop command to accomplish the same thing; see [R] set.

Mixed designs
An ANOVA can consist of both nested and crossed terms. A split-plot ANOVA design provides an

example.

Example 13: Split-plot ANOVA
Two reading programs and three skill-enhancement techniques are under investigation. Ten classes

of first-grade students were randomly assigned so that five classes were taught with one reading program

and another five classes were taught with the other. The 30 students in each class were divided into

six groups with 5 students each. Within each class, the six groups were divided randomly so that each

of the three skill-enhancement techniques was taught to two of the groups within each class. At the

end of the school year, a reading assessment test was administered to all the students. In this split-plot

ANOVA, the whole-plot treatment is the two reading programs, and the split-plot treatment is the three

skill-enhancement techniques.

. use https://www.stata-press.com/data/r18/reading
(Reading experiment data)
. describe
Contains data from https://www.stata-press.com/data/r18/reading.dta
Observations: 300 Reading experiment data

Variables: 5 9 Mar 2022 18:57
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

score byte %9.0g Reading score
program byte %9.0g Reading program
class byte %9.0g Class nested in program
skill byte %9.0g Skill enhancement technique
group byte %9.0g Group nested in class and skill

Sorted by:

In this split-plot ANOVA, the error term for program is class nested within program. The error

term for skill and the program by skill interaction is the class by skill interaction nested within
program. Other terms are also involved in the model and can be seen below.

Our anova command is too long to fit on one line of this manual. Where we have chosen to break the

command into multiple lines is arbitrary. If we were typing this command into Stata, we would just type

along and let Stata automatically wrap across lines, as necessary.
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. anova score prog / class|prog skill prog#skill / class#skill|prog /
> group|class#skill|prog /, dropemptycells

Number of obs = 300 R-squared = 0.3738
Root MSE = 14.6268 Adj R-squared = 0.2199

Source Partial SS df MS F Prob>F

Model 30656.517 59 519.60198 2.43 0.0000

program 4493.07 1 4493.07 8.73 0.0183
class|program 4116.6133 8 514.57667

skill 1122.6467 2 561.32333 1.54 0.2450
program#skill 5694.62 2 2847.31 7.80 0.0043

class#skill|program 5841.4667 16 365.09167

class#skill|program 5841.4667 16 365.09167 1.17 0.3463
group|class#skill|

program 9388.1 30 312.93667

group|class#skill|
program 9388.1 30 312.93667 1.46 0.0636

Residual 51346.4 240 213.94333

Total 82002.917 299 274.25725

The program#skill term is significant, as is the program term. Let’s look at the predictive margins for
these two terms and at a marginsplot for the first term.

. margins, within(program skill)
Predictive margins Number of obs = 300
Expression: Linear prediction, predict()
Within: program skill
Empty cells: reweight

Delta-method
Margin std. err. t P>|t| [95% conf. interval]

program#skill
1 1 68.16 2.068542 32.95 0.000 64.08518 72.23482
1 2 52.86 2.068542 25.55 0.000 48.78518 56.93482
1 3 61.54 2.068542 29.75 0.000 57.46518 65.61482
2 1 50.7 2.068542 24.51 0.000 46.62518 54.77482
2 2 56.54 2.068542 27.33 0.000 52.46518 60.61482
2 3 52.1 2.068542 25.19 0.000 48.02518 56.17482
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. marginsplot, plot2opts(m(D)) plot3opts(m(T))
Variables that uniquely identify margins: program skill
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. margins, within(program)
Predictive margins Number of obs = 300
Expression: Linear prediction, predict()
Within: program
Empty cells: reweight

Delta-method
Margin std. err. t P>|t| [95% conf. interval]

program
1 60.85333 1.194273 50.95 0.000 58.50074 63.20593
2 53.11333 1.194273 44.47 0.000 50.76074 55.46593

Because our ANOVA involves nested terms, we used the within() option of margins; see [R] mar-

gins.

skill 2 produces a low score when combined with program 1 and a high score when combined

with program 2, demonstrating the interaction between the reading program and the skill-enhancement

technique. You might conclude that the first reading program and the first skill-enhancement technique

perform best when combined. However, notice the overlapping confidence interval for the first reading

program and the third skill-enhancement technique.

Technical note
There are several valid ways to write complicated anova terms. In the reading experi-

ment example (example 13), we had a term group|class#skill|program. This term can be

read as group nested within both class and skill and further nested within program. You

can also write this term as group|class#skill#program or group|program#class#skill or

group|skill#class|program, etc. All variations will produce the same result. Some people pre-

fer having only one ‘|’ in a term and would use group|class#skill#program, which is read as group
nested within class, skill, and program.
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� �
Gertrude Mary Cox (1900–1978) was born on a farm near Dayton, Iowa. Initially intending to

become superintendent of an orphanage, she enrolled at Iowa State College. There she majored in

mathematics and attained the college’s first Master’s degree in statistics. After working on her PhD

in psychological statistics for two years at the University of California–Berkeley, she decided to go

back to Iowa State to work with George W. Snedecor. There she pursued her interest in and taught

a course in design of experiments. That work led to her collaboration with W. G. Cochran, which

produced a classic text. In 1940, when Snedecor shared with her his list of men he was nominating

to head the statistics department at North Carolina State College, she wanted to know why she

had not been included. He added her name, she won the position, and she built an outstanding

department at North Carolina State. Cox retired early so she could work at the Research Triangle

Institute in North Carolina. She consulted widely, served as editor of Biometrics, and was elected

to the National Academy of Sciences.� �
Latin-square designs

You can use anova to analyze a Latin-square design. Consider the following example, published in
Snedecor and Cochran (1989).

Example 14: Latin-square ANOVA
Data from a Latin-square design are as follows:

Row Column 1 Column 2 Column 3 Column 4 Column 5

1 257(B) 230(E) 279(A) 287(C) 202(D)

2 245(D) 283(A) 245(E) 280(B) 260(C)

3 182(E) 252(B) 280(C) 246(D) 250(A)

4 203(A) 204(C) 227(D) 193(E) 259(B)

5 231(C) 271(D) 266(B) 334(A) 338(E)

In Stata, the data might appear as follows:

. use https://www.stata-press.com/data/r18/latinsq

. list

row c1 c2 c3 c4 c5

1. 1 257 230 279 287 202
2. 2 245 283 245 280 260
3. 3 182 252 280 246 250
4. 4 203 204 227 193 259
5. 5 231 271 266 334 338

Before anova can be used on these data, the data must be organized so that the outcome measurement
is in one column. reshape is inadequate for this task because there is information about the treatments
in the sequence of these observations. pkshape is designed to reshape this type of data; see [R] pkshape.

https://www.stata.com/giftshop/bookmarks/series3/cox/
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. pkshape row row c1-c5, order(beacd daebc ebcda acdeb cdbae)

. list

sequence outcome treat carry period

1. beacd 257 b 0 1
2. daebc 245 d 0 1
3. ebcda 182 e 0 1
4. acdeb 203 a 0 1
5. cdbae 231 c 0 1

6. beacd 230 e b 2
7. daebc 283 a d 2
8. ebcda 252 b e 2
9. acdeb 204 c a 2

10. cdbae 271 d c 2

11. beacd 279 a e 3
12. daebc 245 e a 3
13. ebcda 280 c b 3
14. acdeb 227 d c 3
15. cdbae 266 b d 3

16. beacd 287 c a 4
17. daebc 280 b e 4
18. ebcda 246 d c 4
19. acdeb 193 e d 4
20. cdbae 334 a b 4

21. beacd 202 d c 5
22. daebc 260 c b 5
23. ebcda 250 a d 5
24. acdeb 259 b e 5
25. cdbae 338 e a 5

. anova outcome sequence period treat
Number of obs = 25 R-squared = 0.6536
Root MSE = 32.4901 Adj R-squared = 0.3073

Source Partial SS df MS F Prob>F

Model 23904.08 12 1992.0067 1.89 0.1426

sequence 13601.36 4 3400.34 3.22 0.0516
period 6146.16 4 1536.54 1.46 0.2758
treat 4156.56 4 1039.14 0.98 0.4523

Residual 12667.28 12 1055.6067

Total 36571.36 24 1523.8067

These methods will work with any type of Latin-square design, including those with replicated mea-

surements. For more information, see [R] pk, [R] pkcross, and [R] pkshape.
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Repeated-measures ANOVA
One approach for analyzing repeated-measures data is to use multivariate ANOVA (MANOVA); see

[MV] manova. In this approach, the data are placed in wide form (see [D] reshape), and the repeated

measures enter the MANOVA as dependent variables.

A second approach for analyzing repeated measures is to use anova. However, one of the underlying
assumptions for the 𝐹 tests in ANOVA is independence of observations. In a repeated-measures design,

this assumption is almost certainly violated. In a repeated-measures ANOVA, the subjects (or whatever

the experimental units are called) are observed for each level of one or more of the other categorical

variables in the model. These variables are called the repeated-measure variables. Observations from

the same subject are likely to be correlated, though this is only a problem if the observations violate

compound symmetry or the sphericity condition.

The approach used in repeated-measures ANOVA to correct for violation of compound symmetry or

sphericity is to apply correction to the degrees of freedom of the 𝐹 test for terms in the model that involve

repeated measures. This correction factor, 𝜖, lies between the reciprocal of the degrees of freedom for

the repeated term and 1. Box (1954) provided the pioneering work in this area. Milliken and Johnson

(2009) refer to the lower bound of this correction factor as Box’s conservative correction factor. Winer,

Brown, and Michels (1991) call it simply the conservative correction factor.

Geisser and Greenhouse (1958) provide an estimate for the correction factor called the Green-

house–Geisser 𝜖. This value is estimated from the data. Huynh and Feldt (1976) show that the Green-

house–Geisser 𝜖 tends to be conservatively biased. They provide a revised correction factor called the
Huynh–Feldt 𝜖. When the Huynh–Feldt 𝜖 exceeds 1, it is set to 1. Thus, there is a natural ordering for
these correction factors:

Box’s conservative 𝜖 ≤ Greenhouse–Geisser 𝜖 ≤ Huynh–Feldt 𝜖 ≤ 1

A correction factor of 1 is the same as no correction.

anovawith the repeated() option computes these correction factors and displays the revised test re-
sults in a table that follows the standardANOVA table. In the resulting table, H-F stands for Huynh–Feldt,

G-G stands for Greenhouse–Geisser, and Box stands for Box’s conservative 𝜖.

Example 15: Repeated-measures ANOVA
This example is taken from table 4.3 of Winer, Brown, and Michels (1991). The reaction time for five

subjects each tested with four drugs was recorded in the variable score. Here is a table of the data (see
[P] tabdisp if you are unfamiliar with tabdisp):

. use https://www.stata-press.com/data/r18/t43, clear
(T4.3 -- Winer, Brown, Michels)
. tabdisp person drug, cellvar(score)

Drug
Person 1 2 3 4

1 30 28 16 34
2 14 18 10 22
3 24 20 18 30
4 38 34 20 44
5 26 28 14 30
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drug is the repeated variable in this simple repeated-measures ANOVA example. The ANOVA is speci-
fied as follows:

. anova score person drug, repeated(drug)
Number of obs = 20 R-squared = 0.9244
Root MSE = 3.06594 Adj R-squared = 0.8803

Source Partial SS df MS F Prob>F

Model 1379 7 197 20.96 0.0000

person 680.8 4 170.2 18.11 0.0001
drug 698.2 3 232.73333 24.76 0.0000

Residual 112.8 12 9.4

Total 1491.8 19 78.515789

Between-subjects error term: person
Levels: 5 (4 df)

Lowest b.s.e. variable: person
Repeated variable: drug

Huynh-Feldt epsilon = 1.0789
*Huynh-Feldt epsilon reset to 1.0000
Greenhouse-Geisser epsilon = 0.6049
Box’s conservative epsilon = 0.3333

Prob > F
Source df F Regular H-F G-G Box

drug 3 24.76 0.0000 0.0000 0.0006 0.0076
Residual 12

Here the Huynh–Feldt 𝜖 is 1.0789, which is larger than 1. It is reset to 1, which is the same as making no
adjustment to the standard test computed in the mainANOVA table. The Greenhouse–Geisser 𝜖 is 0.6049,
and its associated 𝑝-value is computed from an 𝐹 ratio of 24.76 using 1.8147 (= 3𝜖) and 7.2588 (= 12𝜖)
degrees of freedom. Box’s conservative 𝜖 is set equal to the reciprocal of the degrees of freedom for the

repeated term. Here it is 1/3, so Box’s conservative test is computed using 1 and 4 degrees of freedom

for the observed 𝐹 ratio of 24.76.

Even for Box’s conservative 𝜖, drug is significant with a 𝑝-value of 0.0076. The following table gives
the predictive marginal mean score (that is, response time) for each of the four drugs:

. margins drug
Predictive margins Number of obs = 20
Expression: Linear prediction, predict()

Delta-method
Margin std. err. t P>|t| [95% conf. interval]

drug
1 26.4 1.371131 19.25 0.000 23.41256 29.38744
2 25.6 1.371131 18.67 0.000 22.61256 28.58744
3 15.6 1.371131 11.38 0.000 12.61256 18.58744
4 32 1.371131 23.34 0.000 29.01256 34.98744
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TheANOVA table for this example provides an 𝐹 test for person, but you should ignore it. An appro-
priate test for person would require replication (that is, multiple measurements for person and drug
combinations). Also, without replication there is no test available for investigating the interaction be-

tween person and drug.

Example 16: Repeated-measures ANOVA with nesting
Table 7.7 of Winer, Brown, and Michels (1991) provides another repeated-measuresANOVA example.

There are four dial shapes and two methods for calibrating dials. Subjects are nested within calibration

method, and an accuracy score is obtained. The data are shown below.

. use https://www.stata-press.com/data/r18/t77
(T7.7 -- Winer, Brown, Michels)
. tabdisp shape subject calib, cell(score)

2 methods for calibrating dials and
Subject nested in calib

4 dial 1 2
shapes 1 2 3 1 2 3

1 0 3 4 4 5 7
2 0 1 3 2 4 5
3 5 5 6 7 6 8
4 3 4 2 8 6 9

The calibration method and dial shapes are fixed factors, whereas subjects are random. The appro-

priate test for calibration method uses the nested subject term as the error term. Both the dial shape

and the interaction between dial shape and calibration method are tested with the dial shape by subject

interaction nested within calibration method. Here we drop this term from the anova command, and it
becomes residual error. The dial shape is the repeated variable because each subject is tested with all

four dial shapes. Here is the anova command that produces the desired results:

. anova score calib / subject|calib shape calib#shape, repeated(shape)
Number of obs = 24 R-squared = 0.8925
Root MSE = 1.11181 Adj R-squared = 0.7939

Source Partial SS df MS F Prob>F

Model 123.125 11 11.193182 9.06 0.0003

calib 51.041667 1 51.041667 11.89 0.0261
subject|calib 17.166667 4 4.2916667

shape 47.458333 3 15.819444 12.80 0.0005
calib#shape 7.4583333 3 2.4861111 2.01 0.1662

Residual 14.833333 12 1.2361111

Total 137.95833 23 5.9981884
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Between-subjects error term: subject|calib
Levels: 6 (4 df)

Lowest b.s.e. variable: subject
Covariance pooled over: calib (for repeated variable)

Repeated variable: shape
Huynh-Feldt epsilon = 0.8483
Greenhouse-Geisser epsilon = 0.4751
Box’s conservative epsilon = 0.3333

Prob > F
Source df F Regular H-F G-G Box

shape 3 12.80 0.0005 0.0011 0.0099 0.0232
calib#shape 3 2.01 0.1662 0.1791 0.2152 0.2291

Residual 12

The repeated-measure 𝜖 corrections are applied to any terms that are tested in the main ANOVA table

and have the repeated variable in the term. These 𝜖 corrections are given in a table below the mainANOVA

table. Here the repeated-measures tests for shape and calib#shape are presented.

Calibration method is significant, as is dial shape. The interaction between calibration method and

dial shape is not significant. The repeated-measure 𝜖 corrections do not change these conclusions, but
they do change the significance level for the tests on shape and calib#shape. Here, though, unlike in
the example 15, the Huynh–Feldt 𝜖 is less than 1.

Here are the predictive marginal mean scores for calibration method and dial shapes. Because the

interaction was not significant, we request only the calib and shape predictive margins.

. margins, within(calib)
Predictive margins Number of obs = 24
Expression: Linear prediction, predict()
Within: calib
Empty cells: reweight

Delta-method
Margin std. err. t P>|t| [95% conf. interval]

calib
1 3 .3209506 9.35 0.000 2.300709 3.699291
2 5.916667 .3209506 18.43 0.000 5.217375 6.615958

. margins, within(shape)
Predictive margins Number of obs = 24
Expression: Linear prediction, predict()
Within: shape
Empty cells: reweight

Delta-method
Margin std. err. t P>|t| [95% conf. interval]

shape
1 3.833333 .4538926 8.45 0.000 2.844386 4.82228
2 2.5 .4538926 5.51 0.000 1.511053 3.488947
3 6.166667 .4538926 13.59 0.000 5.17772 7.155614
4 5.333333 .4538926 11.75 0.000 4.344386 6.32228
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Technical note
The computation of the Greenhouse–Geisser and Huynh–Feldt epsilons in a repeated-measures

ANOVA requires the number of levels and degrees of freedom for the between-subjects error term, as

well as a value computed from a pooled covariance matrix. The observations are grouped based on all

but the lowest-level variable in the between-subjects error term. The covariance over the repeated vari-

ables is computed for each resulting group, and then these covariancematrices are pooled. The dimension

of the pooled covariance matrix is the number of levels of the repeated variable (or combination of levels

for multiple repeated variables). In example 16, there are four levels of the repeated variable (shape),
so the resulting covariance matrix is 4 × 4.

The anova command automatically attempts to determine the between-subjects error term and the

lowest-level variable in the between-subjects error term to group the observations for computation of the

pooled covariance matrix. anova issues an error message indicating that the bse() or bseunit() option
is required when anova cannot determine them. You may override the default selections of anova by
specifying the bse(), bseunit(), or grouping() option. The term specified in the bse() option must
be a term in the ANOVAmodel.

The default selection for the between-subjects error term (the bse() option) is the interaction of the
nonrepeated categorical variables in the ANOVAmodel. The first variable listed in the between-subjects

error term is automatically selected as the lowest-level variable in the between-subjects error term but can

be overridden with the bseunit(varname) option. varname is often a term, such as subject or subsample
within subject, and is most often listed first in the term because of the nesting notation of ANOVA. This

term makes sense in most repeated-measures ANOVA designs when the terms of the model are written in

standard form. For instance, in example 16, there were three categorical variables (subject, calib, and
shape), with shape being the repeated variable. Here anova looked for a term involving only subject
and calib to determine the between-subjects error term. It found subject|calib as the term with six

levels and 4 degrees of freedom. anova then picked subject as the default for the bseunit() option
(the lowest variable in the between-subjects error term) because it was listed first in the term.

The grouping of observations proceeds, based on the different combinations of values of the variables

in the between-subjects error term, excluding the lowest level variable (as found by default or as specified

with the bseunit() option). You may specify the grouping() option to change the default grouping
used in computing the pooled covariance matrix.

The between-subjects error term, number of levels, degrees of freedom, lowest variable in the term,

and grouping information are presented after the main ANOVA table and before the rest of the repeated-

measures output.

Example 17: Repeated-measures ANOVA with two repeated variables
Data with two repeated variables are given in table 7.13 of Winer, Brown, and Michels (1991). The

accuracy scores of subjects making adjustments to three dials during three different periods are recorded.

Three subjects are exposed to a certain noise background level, whereas a different set of three subjects is

exposed to a different noise background level. Here is a table of accuracy scores for the noise, subject,
period, and dial variables:
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. use https://www.stata-press.com/data/r18/t713
(T7.13 -- Winer, Brown, Michels)
. tabdisp subject dial period, by(noise) cell(score) stubwidth(11)

Noise
background
and Subject 10 minute time periods and Type of dial
nested in 1 2 3
noise 1 2 3 1 2 3 1 2 3

1
1 45 53 60 40 52 57 28 37 46
2 35 41 50 30 37 47 25 32 41
3 60 65 75 58 54 70 40 47 50

2
1 50 48 61 25 34 51 16 23 35
2 42 45 55 30 37 43 22 27 37
3 56 60 77 40 39 57 31 29 46

noise, period, and dial are fixed, whereas subject is random. Both period and dial are repeated
variables. The ANOVA for this example is specified next.

. anova score noise / subject|noise period noise#period /
> period#subject|noise dial noise#dial /
> dial#subject|noise period#dial noise#period#dial, repeated(period dial)

Number of obs = 54 R-squared = 0.9872
Root MSE = 2.81859 Adj R-squared = 0.9576

Source Partial SS df MS F Prob>F

Model 9797.7222 37 264.8033 33.33 0.0000

noise 468.16667 1 468.16667 0.75 0.4348
subject|noise 2491.1111 4 622.77778

period 3722.3333 2 1861.1667 63.39 0.0000
noise#period 333 2 166.5 5.67 0.0293

period#subject|noise 234.88889 8 29.361111

dial 2370.3333 2 1185.1667 89.82 0.0000
noise#dial 50.333333 2 25.166667 1.91 0.2102

dial#subject|noise 105.55556 8 13.194444

period#dial 10.666667 4 2.6666667 0.34 0.8499
noise#period#dial 11.333333 4 2.8333333 0.36 0.8357

Residual 127.11111 16 7.9444444

Total 9924.8333 53 187.26101
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Between-subjects error term: subject|noise
Levels: 6 (4 df)

Lowest b.s.e. variable: subject
Covariance pooled over: noise (for repeated variables)

Repeated variable: period
Huynh-Feldt epsilon = 1.0668
*Huynh-Feldt epsilon reset to 1.0000
Greenhouse-Geisser epsilon = 0.6476
Box’s conservative epsilon = 0.5000

Prob > F
Source df F Regular H-F G-G Box

period 2 63.39 0.0000 0.0000 0.0003 0.0013
noise#period 2 5.67 0.0293 0.0293 0.0569 0.0759

period#subject|noise 8

Repeated variable: dial
Huynh-Feldt epsilon = 2.0788
*Huynh-Feldt epsilon reset to 1.0000
Greenhouse-Geisser epsilon = 0.9171
Box’s conservative epsilon = 0.5000

Prob > F
Source df F Regular H-F G-G Box

dial 2 89.82 0.0000 0.0000 0.0000 0.0007
noise#dial 2 1.91 0.2102 0.2102 0.2152 0.2394

dial#subject|noise 8

Repeated variables: period#dial
Huynh-Feldt epsilon = 1.3258
*Huynh-Feldt epsilon reset to 1.0000
Greenhouse-Geisser epsilon = 0.5134
Box’s conservative epsilon = 0.2500

Prob > F
Source df F Regular H-F G-G Box

period#dial 4 0.34 0.8499 0.8499 0.7295 0.5934
noise#period#dial 4 0.36 0.8357 0.8357 0.7156 0.5825

Residual 16

For each repeated variable and for each combination of interactions of repeated variables, there are dif-

ferent 𝜖 correction values. The anova command produces tables for each applicable combination.
The two most significant factors in this model appear to be dial and period. The noise by period

interaction may also be significant, depending on the correction factor you use. Below is a table of

predictive margins for the accuracy score for dial, period, and noise by period.
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. margins, within(dial)
Predictive margins Number of obs = 54
Expression: Linear prediction, predict()
Within: dial
Empty cells: reweight

Delta-method
Margin std. err. t P>|t| [95% conf. interval]

dial
1 37.38889 .6643478 56.28 0.000 35.98053 38.79724
2 42.22222 .6643478 63.55 0.000 40.81387 43.63058
3 53.22222 .6643478 80.11 0.000 51.81387 54.63058

. margins, within(period)
Predictive margins Number of obs = 54
Expression: Linear prediction, predict()
Within: period
Empty cells: reweight

Delta-method
Margin std. err. t P>|t| [95% conf. interval]

period
1 54.33333 .6643478 81.78 0.000 52.92498 55.74169
2 44.5 .6643478 66.98 0.000 43.09165 45.90835
3 34 .6643478 51.18 0.000 32.59165 35.40835

. margins, within(noise period)
Predictive margins Number of obs = 54
Expression: Linear prediction, predict()
Within: noise period
Empty cells: reweight

Delta-method
Margin std. err. t P>|t| [95% conf. interval]

noise#period
1 1 53.77778 .9395297 57.24 0.000 51.78606 55.76949
1 2 49.44444 .9395297 52.63 0.000 47.45273 51.43616
1 3 38.44444 .9395297 40.92 0.000 36.45273 40.43616
2 1 54.88889 .9395297 58.42 0.000 52.89717 56.8806
2 2 39.55556 .9395297 42.10 0.000 37.56384 41.54727
2 3 29.55556 .9395297 31.46 0.000 27.56384 31.54727

Dial shape 3 produces the highest score, and scores decrease over the periods.

Example 17 had two repeated-measurement variables. Up to four repeated-measurement variables

may be specified in the anova command.

Video examples
Analysis of covariance in Stata

Two-way ANOVA in Stata

https://www.youtube.com/watch?v=Kb9WG4o9zLk
https://www.youtube.com/watch?v=3g1Yj7Vd0mE
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Stored results
anova stores the following in e():

Scalars

e(N) number of observations

e(mss) model sum of squares

e(df m) model degrees of freedom

e(rss) residual sum of squares

e(df r) residual degrees of freedom

e(r2) 𝑅2

e(r2 a) adjusted 𝑅2

e(F) 𝐹 statistic

e(rmse) root mean squared error

e(ll) log likelihood

e(ll 0) log likelihood, constant-only model

e(ss #) sum of squares for term #

e(df #) numerator degrees of freedom for term #

e(ssdenom #) denominator sum of squares for term # (when using nonresidual error)

e(dfdenom #) denominator degrees of freedom for term # (when using nonresidual error)

e(F #) 𝐹 statistic for term # (if computed)

e(N bse) number of levels of the between-subjects error term

e(df bse) degrees of freedom for the between-subjects error term

e(box#) Box’s conservative epsilon for a particular combination of repeated variables

(repeated() only)
e(gg#) Greenhouse–Geisser epsilon for a particular combination of repeated variables

(repeated() only)
e(hf#) Huynh–Feldt epsilon for a particular combination of repeated variables

(repeated() only)
e(rank) rank of e(V)

Macros

e(cmd) anova
e(cmdline) command as typed

e(depvar) name of dependent variable

e(varnames) names of the right-hand-side variables

e(term #) term #

e(errorterm #) error term for term # (when using nonresidual error)

e(sstype) type of sum of squares; sequential or partial
e(repvars) names of repeated variables (repeated() only)
e(repvar#) names of repeated variables for a particular combination (repeated() only)
e(model) ols
e(wtype) weight type

e(wexp) weight expression

e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of the estimators

e(Srep) covariance matrix based on repeated measures (repeated() only)

Functions

e(sample) marks estimation sample
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In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.
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[MV] manova — Multivariate analysis of variance and covariance
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Postestimation commands predict margins test
Remarks and examples References Also see

Postestimation commands
The following postestimation commands are of special interest after anova:

Command Description

dfbeta DFBETA influence statistics

estat hettest tests for heteroskedasticity

estat imtest information matrix test

estat ovtest Ramsey regression specification-error test for omitted variables

estat szroeter Szroeter’s rank test for heteroskedasticity

estat vif variance inflation factors for the independent variables

estat esize 𝜂2 and 𝜔2 effect sizes

rvfplot residual-versus-fitted plot

avplot added-variable plot

avplots all added-variables plots in one image

cprplot component-plus-residual plot

acprplot augmented component-plus-residual plot

rvpplot residual-versus-predictor plot

lvr2plot leverage-versus-squared-residual plot

57
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The following standard postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters

estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian infor-
mation criteria (AIC, CAIC, AICc, and BIC, respectively)

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estimates cataloging estimation results

etable table of estimation results

forecast dynamic forecasts and simulations

hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

linktest link test for model specification

lrtest likelihood-ratio test

margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

predict predictions and their SEs, leverage statistics, distance statistics, etc.

predictnl point estimates, standard errors, testing, and inference for generalized predictions

pwcompare pairwise comparisons of parameters

suest seemingly unrelated estimation

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

predict
predict after anova follows the same syntax as predict after regress and can provide predic-

tions, residuals, standardized residuals, Studentized residuals, the standard error of the residuals, the

standard error of the prediction, the diagonal elements of the projection (hat) matrix, and Cook’s 𝐷. See

[R] regress postestimation for details.

margins
margins after anova follows the same syntax as margins after regress. See [R] regress postesti-

mation for details.
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test

Description for test
In addition to the standard syntax of test (see [R] test), test after anova has three additionally

allowed syntaxes; see below. test performs Wald tests of expressions involving the coefficients of the

underlying regression model. Simple and composite linear hypotheses are possible.

Menu for test
Statistics > Linear models and related > ANOVA/MANOVA > Test linear hypotheses after anova

Syntax for test
test, test(matname) [ mtest[ (opt) ] matvlc(matname) ] syntax a

test, showorder syntax b

test [ term [ term ... ] ] [ / term [ term ... ] ] [ , symbolic ] syntax c

syntax a test expression involving the coefficients of the underlying regression model;

you provide information as a matrix

syntax b show underlying order of design matrix, which is useful when constructing

matname argument of the test() option
syntax c test effects and show symbolic forms

Options for test
test(matname) is required with syntax a of test. The rows of matname specify linear combinations

of the underlying design matrix of theANOVA that are to be jointly tested. The columns correspond to

the underlying design matrix (including the constant if it has not been suppressed). The column and

row names of matname are ignored.

A listing of the constraints imposed by the test() option is presented before the table containing

the tests. You should examine this table to verify that you have applied the linear combinations you

desired. Typing test, showorder allows you to examine the ordering of the columns for the design
matrix from the ANOVA.

mtest[(opt)] specifies that tests are performed for each condition separately. opt specifies the method
for adjusting 𝑝-values for multiple testing. Valid values for opt are

bonferroni Bonferroni’s method

holm Holm’s method

sidak Šidák’s method

noadjust no adjustment is to be made

Specifying mtest with no argument is equivalent to mtest(noadjust).
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matvlc(matname), a programmer’s option, saves the variance–covariance matrix of the linear combi-
nations involved in the suite of tests. For the test Lb = c, what is returned inmatname is L𝑉L′, where

𝑉 is the estimated variance–covariance matrix of b.

showorder causes test to list the definition of each column in the design matrix. showorder is not
allowed with any other option.

symbolic requests the symbolic form of the test rather than the test statistic. When this option is specified

with no terms (test, symbolic), the symbolic form of the estimable functions is displayed.

Remarks and examples
Remarks are presented under the following headings:

Testing effects
Obtaining symbolic forms
Testing coefficients and contrasts of margins
Video example

See examples 4, 7, 8, 13, 15, 16, and 17 in [R] anova for examples that use the margins command.

Testing effects
After fitting a model using anova, you can test for the significance of effects in the ANOVA table, as

well as for effects that are not reported in the ANOVA table, by using the test or contrast command.
You follow test or contrast by the list of effects that you wish to test. By default, these commands
use the residual mean squared error in the denominator of the 𝐹 ratio. You can specify other error terms

by using the slash notation, just as you would with anova. See [R] contrast for details on this command.

Example 1: Testing effects
Recall our byssinosis example (example 8) in [R] anova:

. anova prob workplace smokes race workplace#smokes workplace#race smokes#race
> workplace#smokes#race [aweight=pop]
(sum of wgt is 5,419)

Number of obs = 65 R-squared = 0.8300
Root MSE = .025902 Adj R-squared = 0.7948

Source Partial SS df MS F Prob>F

Model .17364654 11 .01578605 23.53 0.0000

workplace .09762518 2 .04881259 72.76 0.0000
smokes .01303081 1 .01303081 19.42 0.0001
race .00109472 1 .00109472 1.63 0.2070

workplace#smokes .01969034 2 .00984517 14.67 0.0000
workplace#race .00135252 2 .00067626 1.01 0.3718

smokes#race .00166287 1 .00166287 2.48 0.1214
workplace#smokes#race .00095084 2 .00047542 0.71 0.4969

Residual .03555777 53 .0006709

Total .2092043 64 .00326882
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We can easily obtain a test on a particular term from the ANOVA table. Here are two examples:

. test smokes
Source Partial SS df MS F Prob>F

smokes .01303081 1 .01303081 19.42 0.0001
Residual .03555777 53 .0006709

. test smokes#race
Source Partial SS df MS F Prob>F

smokes#race .00166287 1 .00166287 2.48 0.1214
Residual .03555777 53 .0006709

Both of these tests use residual error by default and agree with the ANOVA table produced earlier.

We could have performed these same tests with contrast:

. contrast smokes
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

smokes 1 19.42 0.0001

Denominator 53

. contrast smokes#race
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

smokes#race 1 2.48 0.1214

Denominator 53

Technical note
After anova, you can use the ‘/’syntax in test or contrast to perform tests with a variety of non-𝜎2I

error structures. However, in most unbalanced models, the mean squares are not independent and do not

have equal expectations under the null hypothesis. Also, be warned that you assume responsibility for

the validity of the test statistic.
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Example 2: Testing effects with different error terms
We return to the nested ANOVA example (example 11) in [R] anova, where five brands of machinery

were compared in an assembly line. We can obtain appropriate tests for the nested terms using test,
even if we had run the anova command without initially indicating the proper error terms.

. use https://www.stata-press.com/data/r18/machine
(Machine data)
. anova output machine / operator|machine /

Number of obs = 57 R-squared = 0.8661
Root MSE = 1.47089 Adj R-squared = 0.8077

Source Partial SS df MS F Prob>F

Model 545.82229 17 32.107193 14.84 0.0000

machine 430.98079 4 107.7452 13.82 0.0001
operator|machine 101.3538 13 7.7964465

operator|machine 101.3538 13 7.7964465 3.60 0.0009

Residual 84.376658 39 2.1635041

Total 630.19895 56 11.253553

In this ANOVA table, machine is tested with residual error. With this particular nested design, the appro-

priate error term for testing machine is operator nested within machine, which is easily obtained from
test.

. test machine / operator|machine
Source Partial SS df MS F Prob>F

machine 430.98079 4 107.7452 13.82 0.0001
operator|machine 101.3538 13 7.7964465

This result from test matches what we obtained from our anova command.
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Example 3: Pooling terms when testing effects
The other nested ANOVA example (example 12) in [R] anova was based on the sewage data. The

ANOVA table is presented here again. As before, we will use abbreviations of variable names in typing

the commands.

. use https://www.stata-press.com/data/r18/sewage
(Sewage treatment)
. anova particulate s / m|s / f|m|s / w|f|m|s /, dropemptycells

Number of obs = 64 R-squared = 0.6338
Root MSE = 12.7445 Adj R-squared = 0.5194

Source Partial SS df MS F Prob>F

Model 13493.609 15 899.57396 5.54 0.0000

solution 7203.7656 1 7203.7656 17.19 0.0536
manager|solution 838.28125 2 419.14063

manager|solution 838.28125 2 419.14063 0.55 0.6166
facility|manager|

solution 3064.9375 4 766.23438

facility|manager|
solution 3064.9375 4 766.23438 2.57 0.1193

worker|facility|
manager|solution 2386.625 8 298.32813

worker|facility|
manager|solution 2386.625 8 298.32813 1.84 0.0931

Residual 7796.25 48 162.42188

Total 21289.859 63 337.93428

In practice, it is often beneficial to pool nonsignificant nested terms to increase the power of tests on

remaining terms. One rule of thumb is to allow the pooling of a termwhose 𝑝-value is larger than 0.25. In
this sewage example, the 𝑝-value for the test of manager is 0.6166. This value indicates that the manager
effect is negligible and might be ignored. Currently, solution is tested by manager|solution, which
has only 2 degrees of freedom. If we pool the manager and facility terms and use this pooled estimate
as the error term for solution, we would have a term with 6 degrees of freedom.
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Below are two tests: a test of solution with the pooled manager and facility terms and a test of
this pooled term by worker.

. test s / m|s f|m|s
Source Partial SS df MS F Prob>F

solution 7203.7656 1 7203.7656 11.07 0.0159
manager|solution
facility|manager|

solution 3903.2188 6 650.53646
. test m|s f|m|s / w|f|m|s

Source Partial SS df MS F Prob>F

manager|solution
facility|manager|

solution 3903.2188 6 650.53646 2.18 0.1520
worker|facility|manager|

solution 2386.625 8 298.32813

In the first test, we included two terms after the forward slash (m|s and f|m|s). test after anova
allows multiple terms both before and after the slash. The terms before the slash are combined and are

then tested by the combined terms that follow the slash (or residual error if no slash is present).

The 𝑝-value for solution using the pooled term is 0.0159. Originally, it was 0.0536. The increase

in the power of the test is due to the increase in degrees of freedom for the pooled error term.

We can get identical results if we drop manager from the anova model. (This dataset has unique

numbers for each facility so that there is no confusion of facilities when manager is dropped.)

. anova particulate s / f|s / w|f|s /, dropemptycells
Number of obs = 64 R-squared = 0.6338
Root MSE = 12.7445 Adj R-squared = 0.5194

Source Partial SS df MS F Prob>F

Model 13493.609 15 899.57396 5.54 0.0000

solution 7203.7656 1 7203.7656 11.07 0.0159
facility|solution 3903.2187 6 650.53646

facility|solution 3903.2187 6 650.53646 2.18 0.1520
worker|facility|

solution 2386.625 8 298.32812

worker|facility|
solution 2386.625 8 298.32812 1.84 0.0931

Residual 7796.25 48 162.42188

Total 21289.859 63 337.93428

This output agrees with our earlier test results.
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Example 4: Obtaining overall significance of a term using contrast
In example 10 of [R] anova, we fit the model anova drate region c.mage region#c.mage. Now,

we use the contrast command to test for the overall significance of region.

. contrast region region#c.mage, overall
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

region 3 7.40 0.0004

region#c.mage 3 0.86 0.4689

Overall 6 5.65 0.0002

Denominator 42

The overall 𝐹 statistic associated with the region and region#c.mage terms is 5.65, and it is significant
at the 0.02% level.

In the ANOVA output, the region term, by itself, had a sum of squares of 1166.15, which, based on

3 degrees of freedom, yielded an 𝐹 statistic of 7.40 and a significance level of 0.0004. This is the same

test that is reported by contrast in the row labeled region. Likewise, the test from the ANOVA output

for the region#c.mage term is reproduced in the second row of the contrast output.

Obtaining symbolic forms
test can produce the symbolic form of the estimable functions and symbolic forms for particular

tests.

Example 5: Symbolic form of the estimable functions
After fitting anANOVAmodel, we type test, symbolic to obtain the symbolic form of the estimable

functions. For instance, returning to our blood pressure data introduced in example 4 of [R] anova, let’s

begin by reestimating systolic on drug, disease, and drug#disease:
. use https://www.stata-press.com/data/r18/systolic, clear
(Systolic blood pressure data)
. anova systolic drug disease drug#disease

Number of obs = 58 R-squared = 0.4560
Root MSE = 10.5096 Adj R-squared = 0.3259

Source Partial SS df MS F Prob>F

Model 4259.3385 11 387.21259 3.51 0.0013

drug 2997.4719 3 999.15729 9.05 0.0001
disease 415.87305 2 207.93652 1.88 0.1637

drug#disease 707.26626 6 117.87771 1.07 0.3958

Residual 5080.8167 46 110.45254

Total 9340.1552 57 163.86237
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To obtain the symbolic form of the estimable functions, type

. test, symbolic
drug

1 -(r2+r3+r4-r0)
2 r2
3 r3
4 r4

disease
1 -(r6+r7-r0)
2 r6
3 r7

drug#disease
1 1 -(r2+r3+r4+r6+r7-r12-r13-r15-r16-r18-r19-r0)
1 2 r6 - (r12+r15+r18)
1 3 r7 - (r13+r16+r19)
2 1 r2 - (r12+r13)
2 2 r12
2 3 r13
3 1 r3 - (r15+r16)
3 2 r15
3 3 r16
4 1 r4 - (r18+r19)
4 2 r18
4 3 r19

_cons r0

Example 6: Symbolic form for a particular test
To obtain the symbolic form for a particular test, we type test term [term . . .], symbolic. For in-

stance, the symbolic form for the test of the main effect of drug is

. test drug, symbolic
drug

1 -(r2+r3+r4)
2 r2
3 r3
4 r4

disease
1 0
2 0
3 0

drug#disease
1 1 -1/3 (r2+r3+r4)
1 2 -1/3 (r2+r3+r4)
1 3 -1/3 (r2+r3+r4)
2 1 1/3 r2
2 2 1/3 r2
2 3 1/3 r2
3 1 1/3 r3
3 2 1/3 r3
3 3 1/3 r3
4 1 1/3 r4
4 2 1/3 r4
4 3 1/3 r4

_cons 0
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If we omit the symbolic option, we instead see the result of the test:

. test drug
Source Partial SS df MS F Prob>F

drug 2997.4719 3 999.15729 9.05 0.0001
Residual 5080.8167 46 110.45254

Testing coefficients and contrasts of margins
test allows you to perform tests directly on the coefficients of the underlying regression model. For

instance, the coefficient on the third drug and the second disease is referred to as 3.drug#2.disease.
This could also be written as i3.drug#i2.disease, or b[3.drug#2.disease], or even

coef[i3.drug#i2.disease]; see [U] 13.5 Accessing coefficients and standard errors.

Example 7: Testing linear combinations of coefficients
Let’s begin by testing whether the coefficient on the third drug is equal to the coefficient on the

fourth drug in our blood pressure data. We have already fit the model anova systolic drug##disease
(equivalent to anova systolic drug disease drug#disease), and you can see the results of that

estimation in example 5. Even though we have performed many tasks since we fit the model, Stata still

remembers, and we can perform tests at any time.

. test 3.drug = 4.drug
( 1) 3.drug - 4.drug = 0

F( 1, 46) = 0.13
Prob > F = 0.7234

We find that the two coefficients are not significantly different, at least at any significance level smaller

than 73%.

For more complex tests, the contrast command often provides a more concise way to specify the
tests we are interested in and prevents us from having to write the tests in terms of the regression coef-

ficients. With contrast, we instead specify our tests in terms of differences in the marginal means for
the levels of a particular factor. For example, if we want to compare the third and fourth drugs, we can

test the difference in the mean impact on systolic blood pressure separately for each disease using the @
operator. We also use the reverse adjacent operator, ar., to compare the fourth level of drug with the
previous level.

. contrast ar4.drug@disease
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

drug@disease
(4 vs 3) 1 1 0.13 0.7234
(4 vs 3) 2 1 1.76 0.1917
(4 vs 3) 3 1 0.65 0.4230

Joint 3 0.85 0.4761

Denominator 46
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Contrast Std. err. [95% conf. interval]

drug@disease
(4 vs 3) 1 -2.733333 7.675156 -18.18262 12.71595
(4 vs 3) 2 8.433333 6.363903 -4.376539 21.24321
(4 vs 3) 3 5.7 7.050081 -8.491077 19.89108

None of the individual contrasts shows significant differences between the third drug and the fourth

drug. Likewise, the overall𝐹 statistic is 0.85, which is hardly significant. We cannot reject the hypothesis

that the third drug has the same effect as the fourth drug.

Technical note
Alternatively, we could have specified these tests based on the coefficients of the underlying regres-

sionmodel using the test command. Wewould have needed to perform tests on the coefficients for drug
and for the coefficients on drug interacted with disease to test for differences in the means mentioned
above. To do this, we start with our previous test command:

. test 3.drug = 4.drug

Notice that the 𝐹 statistic for this test is equivalent to the test labeled (4 vs 3) 1 in the contrast output.
Let’s now add the constraint that the coefficient on the third drug interacted with the third disease is equal

to the coefficient on the fourth drug, again interacted with the third disease. We do that by typing the

new constraint and adding the accumulate option:

. test 3.drug#3.disease = 4.drug#3.disease, accumulate
( 1) 3.drug - 4.drug = 0
( 2) 3.drug#3.disease - 4.drug#3.disease = 0

F( 2, 46) = 0.39
Prob > F = 0.6791

So far, our test includes the equality of the two drug coefficients, along with the equality of the two

drug coefficients when interacted with the third disease. Now, we add two more equations, one for each

of the remaining two diseases:

. test 3.drug#2.disease = 4.drug#2.disease, accumulate
( 1) 3.drug - 4.drug = 0
( 2) 3.drug#3.disease - 4.drug#3.disease = 0
( 3) 3.drug#2.disease - 4.drug#2.disease = 0

F( 3, 46) = 0.85
Prob > F = 0.4761

. test 3.drug#1.disease = 4.drug#1.disease, accumulate
( 1) 3.drug - 4.drug = 0
( 2) 3.drug#3.disease - 4.drug#3.disease = 0
( 3) 3.drug#2.disease - 4.drug#2.disease = 0
( 4) 3o.drug#1b.disease - 4o.drug#1b.disease = 0

Constraint 4 dropped
F( 3, 46) = 0.85

Prob > F = 0.4761

The overall 𝐹 statistic reproduces the one from the joint test in the contrast output.
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You may notice that we also got the message “Constraint 4 dropped”. For the technically inclined,

this constraint was unnecessary, given the normalization of the model. If we specify all the constraints

involved in our test or use contrast, we need not worry about the normalization because Stata handles
this automatically.

The test() option of test provides another alternative for testing coefficients. Instead of spelling
out each coefficient involved in the test, a matrix representing the test provides the needed information.

test, showorder shows the order of the terms in theANOVA corresponding to the order of the columns
for the matrix argument of test().

Example 8: Another way to test linear combinations of coefficients
We repeat the last test of example 7 above with the test() option. First, we view the definition and

order of the columns underlying the ANOVA performed on the systolic data.

. test, showorder
Order of columns in the design matrix

1: (drug==1)
2: (drug==2)
3: (drug==3)
4: (drug==4)
5: (disease==1)
6: (disease==2)
7: (disease==3)
8: (drug==1)*(disease==1)
9: (drug==1)*(disease==2)

10: (drug==1)*(disease==3)
11: (drug==2)*(disease==1)
12: (drug==2)*(disease==2)
13: (drug==2)*(disease==3)
14: (drug==3)*(disease==1)
15: (drug==3)*(disease==2)
16: (drug==3)*(disease==3)
17: (drug==4)*(disease==1)
18: (drug==4)*(disease==2)
19: (drug==4)*(disease==3)
20: _cons

Columns 1–4 correspond to the four levels of drug. Columns 5–7 correspond to the three levels of
disease. Columns 8–19 correspond to the interaction of drug and disease. The last column corre-
sponds to cons, the constant in the model.

We construct the matrix dr3vs4 with the same four constraints as the last test shown in example 7
and then use the test(dr3vs4) option to perform the test.

. matrix dr3vs4 = (0,0,1,-1, 0,0,0, 0,0,0,0,0,0,0,0,0, 0, 0, 0, 0 \
> 0,0,0, 0, 0,0,0, 0,0,0,0,0,0,0,0,1, 0, 0,-1, 0 \
> 0,0,0, 0, 0,0,0, 0,0,0,0,0,0,0,1,0, 0,-1, 0, 0 \
> 0,0,0, 0, 0,0,0, 0,0,0,0,0,0,1,0,0,-1, 0, 0, 0)
. test, test(dr3vs4)
( 1) 3.drug - 4.drug = 0
( 2) 3.drug#3.disease - 4.drug#3.disease = 0
( 3) 3.drug#2.disease - 4.drug#2.disease = 0
( 4) 3o.drug#1b.disease - 4o.drug#1b.disease = 0

Constraint 4 dropped
F( 3, 46) = 0.85

Prob > F = 0.4761
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Here the effort involved with spelling out the coefficients is similar to that of constructing a matrix

and using it in the test() option. When the test involving coefficients is more complicated, the test()
option may be more convenient than specifying the coefficients directly in test. However, as previously
demonstrated, contrast may provide an even simpler method for testing the same hypothesis.

After fitting anANOVAmodel, various contrasts (1-degree-of-freedom tests comparing different levels

of a categorical variable) are often of interest. contrast can perform each 1-degree-of-freedom test in

addition to the combined test, even in cases in which the contrasts do not correspond to one of the contrast

operators.

Example 9: Testing particular contrasts of interest
Rencher and Schaalje (2008) illustrate 1-degree-of-freedom contrasts for an ANOVA comparing the

net weight of cans filled by five machines (labeled A–E). The data were originally obtained from Ostle

and Mensing (1975). Rencher and Schaalje use a cell-means ANOVA model approach for this problem.

We could do the same by using the noconstant option of anova; see [R] anova. Instead, we obtain the
same results by using the standard overparameterized ANOVA approach (that is, we keep the constant in

the model).

. use https://www.stata-press.com/data/r18/canfill
(Can fill data)
. list, sepby(machine)

machine weight

1. A 11.95
2. A 12.00
3. A 12.25
4. A 12.10

5. B 12.18
6. B 12.11

7. C 12.16
8. C 12.15
9. C 12.08

10. D 12.25
11. D 12.30
12. D 12.10

13. E 12.10
14. E 12.04
15. E 12.02
16. E 12.02
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. anova weight machine
Number of obs = 16 R-squared = 0.4123
Root MSE = .087758 Adj R-squared = 0.1986

Source Partial SS df MS F Prob>F

Model .05942699 4 .01485675 1.93 0.1757

machine .05942699 4 .01485675 1.93 0.1757

Residual .0847167 11 .00770152

Total .14414369 15 .00960958

The four 1-degree-of-freedom tests of interest among the five machines are A and D versus B, C, and
E; B and E versus C; A versus D; and B versus E. We can specify these tests as user-defined contrasts

by placing the corresponding contrast coefficients into positions related to the five levels of machine as

described in User-defined contrasts of [R] contrast.

. contrast {machine 3 -2 -2 3 -2}
> {machine 0 1 -2 0 1}
> {machine 1 0 0 -1 0}
> {machine 0 1 0 0 -1}, noeffects
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

machine
(1) 1 0.75 0.4055
(2) 1 0.31 0.5916
(3) 1 4.47 0.0582
(4) 1 1.73 0.2150

Joint 4 1.93 0.1757

Denominator 11

contrast produces a 1-degree-of-freedom test for each of the specified contrasts as well as a joint

test. We included the noeffects option so that the table displaying the values of the individual contrasts
with their confidence intervals was suppressed.
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The significance values above are not adjusted for multiple comparisons. We could have produced

the Bonferroni-adjusted significance values by using the mcompare(bonferroni) option.

. contrast {machine 3 -2 -2 3 -2}
> {machine 0 1 -2 0 1}
> {machine 1 0 0 -1 0}
> {machine 0 1 0 0 -1}, mcompare(bonferroni) noeffects
Contrasts of marginal linear predictions
Margins: asbalanced

Bonferroni
df F P>F P>F

machine
(1) 1 0.75 0.4055 1.0000
(2) 1 0.31 0.5916 1.0000
(3) 1 4.47 0.0582 0.2329
(4) 1 1.73 0.2150 0.8601

Joint 4 1.93 0.1757

Denominator 11

Note: Bonferroni-adjusted p-values are reported for tests
on individual contrasts only.

Example 10: Linear and quadratic contrasts
Here there are two factors, A and B, each with three levels. The levels are quantitative so that linear

and quadratic contrasts are of interest.

. use https://www.stata-press.com/data/r18/twowaytrend

. anova Y A B A#B
Number of obs = 36 R-squared = 0.9304
Root MSE = 2.6736 Adj R-squared = 0.9097

Source Partial SS df MS F Prob>F

Model 2578.5556 8 322.31944 45.09 0.0000

A 2026.7222 2 1013.3611 141.77 0.0000
B 383.72222 2 191.86111 26.84 0.0000

A#B 168.11111 4 42.027778 5.88 0.0015

Residual 193 27 7.1481481

Total 2771.5556 35 79.187302
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We can use the p. contrast operator to obtain the 1-degree-of-freedom tests for the linear and quadratic

effects of A and B.

. contrast p.A p.B, noeffects
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

A
(linear) 1 212.65 0.0000

(quadratic) 1 70.88 0.0000
Joint 2 141.77 0.0000

B
(linear) 1 26.17 0.0000

(quadratic) 1 27.51 0.0000
Joint 2 26.84 0.0000

Denominator 27

All the above tests appear to be significant. In addition to presenting the 1-degree-of-freedom tests,

the combined tests for A and B are produced and agree with the original ANOVA results.

Now, we explore the interaction between A and B.

. contrast p.A#p1.B, noeffects
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

A#B
(linear) (linear) 1 17.71 0.0003

(quadratic) (linear) 1 0.07 0.7893
Joint 2 8.89 0.0011

Denominator 27

The 2-degrees-of-freedom test of the interaction of A with the linear components of B is significant at
the 0.0011 level. But, when we examine the two 1-degree-of-freedom tests that compose this result, the

significance is due to the linear A by linear B contrast (significance level of 0.0003). A significance value

of 0.7893 for the quadratic A by linear B indicates that this factor is not significant for these data.

. contrast p.A#p2.B, noeffects
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

A#B
(linear) (quadratic) 1 2.80 0.1058

(quadratic) (quadratic) 1 2.94 0.0979
Joint 2 2.87 0.0741

Denominator 27
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The test of A with the quadratic components of B does not fall below the 0.05 significance level.

Video example
Introduction to contrasts in Stata: One-way ANOVA

References
Mitchell, M. N. 2021. Interpreting and Visualizing Regression Models Using Stata. 2nd ed. College Station, TX: Stata

Press.

Ostle, B., and R. W. Mensing. 1975. Statistics in Research. 3rd ed. Ames, IA: Iowa State University Press.
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Also see
[R] anova —Analysis of variance and covariance

[R] regress postestimation — Postestimation tools for regress

[R] regress postestimation diagnostic plots — Postestimation plots for regress

[U] 20 Estimation and postestimation commands

https://www.youtube.com/watch?v=XaeStjh6n-A
https://www.stata-press.com/books/interpreting-visualizing-regression-models/
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+This command includes features that are part of StataNow.

Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas Acknowledgment References
Also see

Description
areg fits linear regression absorbing categorical factors. areg is designed for datasets with categorical

variables that have many groups, but the number of groups for each variable does not increase with the

sample size. See the xtreg, fe command in [XT] xtreg for an estimator that handles the case in which
one categorical variable (often a panel identifier) has a number of groups that increases with the sample

size; additional categorical variables with fixed group sizes may also be included.

Quick start
Linear regression of y on x, absorbing indicator variables for the levels of cvar

areg y x, absorb(cvar)

Same as above, but add categorical variable a
areg y x i.a, absorb(cvar)

Same as above, but with cluster–robust standard errors

areg y x i.a, absorb(cvar) vce(cluster cvar2)

Linear regression of y on x, absorbing indicator variables for the levels of cvar1 and cvar2 (StataNow)
areg y x, absorb(cvar1 cvar2)

Menu
Statistics > Linear models and related > Other > Linear regression absorbing cat. variables

75
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Syntax
areg depvar [ indepvars ] [ if ] [ in ] [weight ] , absorb(. . .) [ options ]

options Description

Model
∗ absorb(varname) categorical variable to be absorbed

+∗ absorb(varlist[ , method ]) specify categorical variables to be absorbed
+noabsorbtest suppress the 𝐹 test of absorbed indicators

SE/Robust

vce(vcetype) vcetype may be ols, robust, cluster clustvarlist, bootstrap,
jackknife, or hc2 [ clustvar ]

Reporting

level(#) set confidence level; default is level(95)
clustertable display table of multiway cluster combinations

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Optimization
+† tolerance(#) convergence tolerance for maximum absolute difference; default is

tolerance(1e-8)
+† iterate(#) maximum number of iterations for alternating projection method

(APM); default is iterate(50)
+† nolog suppress the APM iteration log

coeflegend display legend instead of statistics

+These features are part of StataNow.
∗absorb() is required.
†Ignored if only one absorbed variable is specified.

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.

bootstrap, by, collect, fp, jackknife, mi estimate, rolling, and statsby are allowed; see [U] 11.1.10 Prefix com-

mands.

vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix; see [MI] mi estimate.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
aweights are not allowed with the jackknife prefix; see [R] jackknife.
aweights, fweights, and pweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

absorb(varname) specifies the categorical variable, which is to be included in the regression as if it

were specified by indicator variables. absorb() is required.
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absorb(varlist[ , method ]) is part of StataNow. It specifies the categorical variables to be absorbed.
The results are adjusted as if indicator variables for each level of each variable in varlistwere included

in the regression. absorb() is required.

When more than one categorical variable is absorbed, anAPM iterative algorithm is used to project the

depvar and indepvars to absorb these variables. method specifies theAPM and is one of halperin or
cimmino.

halperin, the default, uses the product of the projection matrices.

cimmino uses the mean of the projection matrices.

The two methods typically perform similarly. See Stammann (2018) for details.

method is ignored if only one absorbed variable is specified.

noabsorbtest is part of StataNow. It prevents computation of the𝐹 test that all coefficients on indicators

for absorbed variables are jointly zero. Computation of this test requires an iterative search. If the 𝐹
test is of no interest, you may specify noabsorbtest and save computational time.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (ols), that are robust to some kinds of misspecification (robust), that allow for in-

tragroup correlation (cluster clustvarlist), and that use bootstrap or jackknife methods (bootstrap,
jackknife); see [R] vce option.

vce(ols), the default, uses the standard variance estimator for ordinary least-squares regression.

vce(cluster clustvarlist) specifies that standard errors allow for intragroup correlation within

groups defined by one or more variables in clustvarlist, relaxing the usual requirement that

the observations be independent. For example, vce(cluster clustvar1) produces clus-

ter–robust standard errors that allow for observations that are independent across groups defined

by clustvar1 but not necessarily independent within groups. You could also type vce(cluster
clustvar1 clustvar2 . . . cluster𝑝) to account for correlation within groups formed by 𝑝 vari-
ables (multiway clustering).

areg also allows the following:

vce(hc2 [ clustvar ][ , dfadjust ]) specifies an alternative bias correction for the robust variance

calculation. In the unclustered case, vce(robust) uses �̂�2
𝑗 = {𝑛/(𝑛 − 𝑘)}𝑢2

𝑗 as an estimate

of the variance of the 𝑗th observation, where 𝑛 is the number of observations, 𝑘 is the number of

regressors, 𝑢𝑗 is the calculated residual, and 𝑛/(𝑛−𝑘) is included to improve the overall estimate’s
small-sample properties.

vce(hc2) instead uses 𝑢2
𝑗 /(1 − ℎ𝑗𝑗) as the observation’s variance estimate, where ℎ𝑗𝑗 is the

diagonal element of the hat (projection) matrix. This estimate is unbiased if the model really

is homoskedastic. vce(hc2) tends to produce slightly more conservative confidence intervals.

vce(hc2 clustvar) produces estimates that allow for intragroup correlation within groups defined

by clustvar. dfadjust computes the Bell and McCaffrey (2002) adjusted degrees of freedom

based on clustvar. Note that dfadjust does not affect multiple-imputation results when the com-
mand is used with mi estimate. See Methods and formulas in [R] regress for a description of the

computation when clustvar is specified.

vce(hc2 clustvar) is not allowed when multiple variables are absorbed.
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� � �
Reporting �

level(#); see [R] Estimation options.

clustertable displays a table reporting cluster combinations and the number of clusters per combina-
tion. This option is available only when vce(cluster clustvarlist) is specified with more than one
variable in clustvarlist to compute multiway cluster–robust standard errors.

display options: noci, nopvalues, dfci, dfpvalues, noomitted, vsquish, noemptycells,
baselevels, allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt),
pformat(% fmt), sformat(% fmt), and nolstretch; see [R] Estimation options.

dfci specifies that parameter degrees of freedom and confidence intervals be reported in the coeffi-

cient table.

dfpvalues specifies that parameter degrees of freedom and 𝑝-values be reported in the coefficient
table.

� � �
Optimization �

tolerance(#) is part of StataNow. It specifies the limit for the maximum absolute difference between

iterations for the projected depvar and indepvars. The default is tolerance(1e-8).

iterate(#) is part of StataNow. It specifies the maximum number of iterations for theAPM. The default

is iterate(50).

nolog is part of StataNow. It specifies that no APM iterative log be displayed.

The following option is available with areg but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

Remarks and examples
Suppose that we have a linear regression model that includes among predictor variables indicators

for the levels of a high-dimensional categorical variable 𝐶. For instance, the levels of 𝐶 could represent

counties, neighborhoods, or streets. We could write the model as

y = Xβ + d1𝛾1 + d2𝛾2 + · · · + d𝑚𝛾𝑚 + ε

Alternatively, if there are 𝑁 observations and 𝑚 categories of variable 𝐶, we could write this as

y = Xβ + D𝛄 + ε

where D is an 𝑁 × 𝑚 indicator matrix for the categories of 𝐶 and

D = (d1 d2 . . . d𝑚) 𝛄 =
⎛⎜⎜⎜
⎝

𝛾1
𝛾2
⋮

𝛾𝑚

⎞⎟⎟⎟
⎠

Each d𝑎 is a column vector, the indicator variable for category 𝑎 of variable 𝐶.
One option would be to fit the model with regress,

. regress y x* i.C
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but this may be computationally expensive when the dimension, 𝑚, is very large. Moreover, you may

not be interested in the estimates of 𝛄, but you want the remaining results to be adjusted for the inclusion
of 𝐶 in the model.

areg provides a faster way of obtaining estimates of β—but not the 𝛾𝑖’s—in these cases. The effects

of the 𝐶 variable are said to be absorbed.

Example 1
So that we can compare the results produced by areg with Stata’s other regression commands, we

will fit a model in which 𝑚 is small. areg’s real use, however, is when 𝑚 is large.

In our automobile data, we have a variable called rep78 that is coded 1, 2, 3, 4, and 5, where 1

means poor and 5 means excellent. Let’s assume that we wish to fit a regression of mpg on weight,
gear ratio, and rep78 (parameterized as a set of indicators).

. use https://www.stata-press.com/data/r18/auto2
(1978 automobile data)
. regress mpg weight gear_ratio b5.rep78

Source SS df MS Number of obs = 69
F(6, 62) = 21.31

Model 1575.97621 6 262.662702 Prob > F = 0.0000
Residual 764.226686 62 12.3262369 R-squared = 0.6734

Adj R-squared = 0.6418
Total 2340.2029 68 34.4147485 Root MSE = 3.5109

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

weight -.0051031 .0009206 -5.54 0.000 -.0069433 -.003263
gear_ratio .901478 1.565552 0.58 0.567 -2.228015 4.030971

rep78
Poor -2.036937 2.740728 -0.74 0.460 -7.515574 3.4417
Fair -2.419822 1.764338 -1.37 0.175 -5.946682 1.107039

Average -2.557432 1.370912 -1.87 0.067 -5.297846 .1829814
Good -2.788389 1.395259 -2.00 0.050 -5.577473 .0006939

_cons 36.23782 7.01057 5.17 0.000 22.22389 50.25175

To fit the areg equivalent, we type

. areg mpg weight gear_ratio, absorb(rep78)
Linear regression, absorbing indicators Number of obs = 69
Absorbed variable: rep78 No. of categories = 5

F(2, 62) = 41.64
Prob > F = 0.0000
R-squared = 0.6734
Adj R-squared = 0.6418
Root MSE = 3.5109

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

weight -.0051031 .0009206 -5.54 0.000 -.0069433 -.003263
gear_ratio .901478 1.565552 0.58 0.567 -2.228015 4.030971

_cons 34.05889 7.056383 4.83 0.000 19.95338 48.1644

F test of absorbed indicators: F(4, 62) = 1.117 Prob > F = 0.356
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Both regress and areg display the same 𝑅2 values, root mean squared error, and—for weight and

gear ratio—the same parameter estimates, standard errors, 𝑡 statistics, significance levels, and con-
fidence intervals. areg, however, does not report the coefficients for rep78, and, in fact, they are not
even calculated. This computational trick makes the problem manageable when 𝑚 is large. areg reports
a test that the coefficients associated with rep78 are jointly zero. Here this test has a significance level
of 35.6%. This 𝐹 test for rep78 is the same that we would obtain after regress if we were to specify
test 1.rep78 2.rep78 3.rep78 4.rep78; see [R] test.

The model 𝐹 tests reported by regress and areg also differ. The regress command reports a test
that all coefficients except that of the constant are equal to zero; thus, the indicators are included in this

test. The areg output shows a test that all coefficients excluding the indicators and the constant are equal
to zero. This is the same test that can be obtained after regress by typing test weight gear ratio.

Technical note
areg is designed for datasets with many groups, but not a number that grows with the sample size.

Consider two different samples from the US population. In the first sample, we have 10,000 individuals

and we want to include an indicator for each of the 50 states, whereas in the second sample we have

3 observations on each of 10,000 individuals and we want to include an indicator for each individual.

areg was designed for datasets similar to the first sample in which we have a fixed number of groups,
the 50 states. In the second sample, the number of groups, which is the number of individuals, grows as

we include more individuals in the sample. For an estimator designed to handle the case in which the

number of groups grows with the sample size, see the xtreg, fe command in [XT] xtreg.

Although the point estimates produced by areg and xtreg, fe are the same, the estimated VCEs

differ when vce(cluster clustvarlist) is specified because the commands make different assumptions
about whether the number of groups increases with the sample size.

Technical note
The intercept reported by areg deserves some explanation because, given 𝑚 mutually exclusive and

exhaustive indicators, it is arbitrary. areg identifies the model by choosing the intercept that makes

the prediction calculated at the means of the independent variables equal to the mean of the dependent

variable: y = x β̂.

. predict yhat
(option xb assumed; fitted values)
. summarize mpg yhat if rep78 != .

Variable Obs Mean Std. dev. Min Max

mpg 69 21.28986 5.866408 12 41
yhat 69 21.28986 4.383224 11.58643 28.07367

We had to include if rep78 < . in our summarize command because we havemissing values in our data.
areg automatically dropped those missing values (as it should) in forming the estimates, but predict
with the xb option will make predictions for cases with missing rep78 because it does not know that

rep78 is really part of our model.

These predicted values do not include the absorbed effects (that is, the d𝑖𝛾𝑖). For predicted values that

include these effects, use the xbd option of predict (see [R] areg postestimation) or see [XT] xtreg.



areg — Linear regression with many indicator variables+ 81

Example 2
areg, vce(robust) is a Huberized version of areg; see [P] robust. Just as areg is equivalent

to using regress with indicators, areg, vce(robust) is equivalent to using regress, vce(robust)
with indicators. You can use areg, vce(robust)when you expect heteroskedastic or nonnormal errors.
areg, vce(robust), like ordinary regression, assumes that the observations are independent, unless the
vce(cluster clustvarlist) or vce(hc2 clustvar) option is specified. If the vce(cluster clustvarlist)
or vce(hc2 clustvar) option is specified, this independence assumption is relaxed and only the clusters
identified by equal values of clustvarlist or clustvar are assumed to be independent.

Assume that we were to collect data by randomly sampling 10,000 doctors (from 100 hospitals) and

then sampling 10 patients of each doctor, yielding a total dataset of 100,000 patients in a cluster sample.

If in some regression we wished to include effects of the hospitals to which the doctors belonged, we

would want to include an indicator variable for each hospital, adding 100 variables to our model. areg
could fit this model by

. areg depvar patient vars, absorb(hospital) vce(cluster doctor)

Stored results
areg stores the following in e():

Scalars

e(N) number of observations

e(k absorb) total number of absorbed categories

e(mss) model sum of squares

e(tss) total sum of squares

e(df m) model degrees of freedom

e(rss) residual sum of squares

e(df r) residual degrees of freedom

e(r2) 𝑅2

e(r2 a) adjusted 𝑅2

e(df a) degrees of freedom for absorbed effect

e(rmse) root mean squared error

e(ll) log likelihood

e(ll 0) log likelihood, constant-only model

e(N clust) number of clusters

e(F) 𝐹 statistic

e(F absorb) 𝐹 statistic for absorbed effect (when vce(robust) is not specified)
e(p) 𝑝-value for model 𝐹 test

e(p absorb) 𝑝-value for 𝐹 test of absorbed effect

e(rank) rank of e(V)
e(converged) 1 if APM converged, 0 otherwise

Macros

e(cmd) areg
e(cmdline) command as typed

e(depvar) name of dependent variable

e(absvar) names of absorbed variables

e(apm) alternating projection method

e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(clustvar) names of cluster variables

e(cluster#) cluster combination #

e(vce) vcetype specified in vce()
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e(vcetype) title used to label Std. err.

e(datasignature) the checksum

e(datasignaturevars) variables used in calculation of checksum

e(properties) b V
e(predict) program used to implement predict
e(footnote) program used to implement the footnote display

e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

e(adj df) adjusted degrees of freedom when vce(hc2, dfadjust) is specified
e(kcluster) cluster sizes, multiway clustering

e(kabsorb) number of levels for each absorbed variable

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():
Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas
With one absorbed variable, areg begins by recalculating depvar and indepvars to havemean 0 within

the groups specified by absorb(). The overall mean of each variable is then added back in. The adjusted
depvar is then regressed on the adjusted indepvarswith regress, yielding the coefficient estimates. This
is a direct application of the Frisch–Waugh–Lovell theorem (see Hansen [2022, 82]). The degrees of

freedom of the variance–covariance matrix of the coefficients is then adjusted to account for the absorbed

variables—this calculation yields the same results (up to numerical roundoff error) as if the matrix had

been calculated directly by the formulas given in [R] regress.

With multiple absorbed variables in StataNow, an APM with a conjugate gradient acceleration tech-

nique is used to adjust the depvar and indepvars (Hernández-Ramos, Escalante, and Raydan 2011). Two

projection methods are available: Halperin (the default) and Cimmino. You can specify which to use with

the halperin or cimmino suboption within the absorb() option. We describe both methods below.

Suppose we have ℎ categorical variables, 𝐶1, . . . , 𝐶ℎ, that we would like to include as controls in our

regression. For variable 𝐶𝑘, let 𝑚𝑘 be its number of levels and d𝑘(𝑎) be its 𝑁 × 1 indicator vector for

category 𝑎 of 𝐶𝑘. Let D𝑘 denote the 𝑁 × 𝑚𝑘 matrix of indicators for variable 𝐶𝑘:

D𝑘 = (d𝑘(1) d𝑘(2) . . . d𝑘(𝑚))

The orthonormal projection matrix for 𝐶𝑘 is therefore given by P𝑘 = D𝑘(D′
𝑘D𝑘)−1D′

𝑘. Let y be the

𝑁 × 1 vector with the values of the dependent variable in the sample. Similarly, let X be the matrix with

the values of the covariates. Thus, the product y𝑘 = P𝑘y is the projection of the dependent variable onto

the column space of D𝑘. That is, y𝑘 is the 𝑁 × 1 vector containing the (repeated) means of 𝑦𝑖 for each

level of 𝐶𝑘, in the order that these levels appear in the sample. The same projection is applied to the

columns of covariate matrix X.
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The Halperin algorithm first sets ỹ
(1)
0 = y and loops over the ℎ absorbed variables computing projec-

tion residuals ỹ
(1)
𝑘 = (I − Pk)ỹ

(1)
𝑘−1, for 𝑘 = 1, . . . , ℎ. Then, it repeats the loop with ỹ(𝑗+1)

0 = ỹ
(𝑗)
ℎ until

convergence at 𝑗 = 𝚥. Convergence is declared when |ỹ(𝚥)
ℎ − ỹ

(𝚥)
0 | is less than the specified tolerance,

where the matrix norm | ⋅ | is defined as the largest entry in absolute value. The same computations are
applied to the columns of covariate matrix X. On convergence, the overall mean 𝑦 is added to ỹ(𝚥)

ℎ , and

the vector of means x is added to the columns of X̃
(𝚥)
ℎ .

The Cimmino algorithm first sets ỹ(0) = y and then iteratively computes

ỹ(𝑗+1) = (I − 1
ℎ

ℎ
∑
𝑘=1

P𝑘) ỹ(𝑗)

until convergence at 𝑗 + 1 = 𝚥. It then repeats the process for covariance matrix X and adds the overall

means, y and x, to ỹ(𝚥) and to the columns of X̃(𝚥), respectively.

Efficient computation of the projection Py can be done in Mata without generating the 𝑁 × 𝑁 matrix

P directly (see function panelsum(), for instance).

areg with vce(robust) or vce(cluster clustvarlist) with only one variable specified in clust-

varlist works similarly, calling robust after regress to produce the Huber/White/sandwich estimator

of the variance or its clustered version. See [P] robust, particularly Introduction and Methods and for-

mulas. For 𝑝-way clustering, vce(cluster clustvar1 [ clustvar2 [ . . . ] ]), robust is called for each of
the 2𝑝 −1 cluster combinations; details can be found in Multiway clustering of Methods and formulas in

[R] regress. The model 𝐹 test uses the robust or cluster–robust variance estimates. There is, however, no

simple computational means of obtaining a robust or cluster–robust test of the absorbed indicators. Thus,

this test is not displayed when the vce(robust), vce(cluster clustvarlist), or vce(hc2 [ clustvar ])
option is specified.

areg with vce(hc2 [ clustvar ], [ dfadjust ]) specifies an alternative bias correction for the robust
variance calculation. See Robust calculation for regress of Methods and formulas in [R] regress for a

description of this VCE and the adjusted degrees of freedom.

The number of groups specified in absorb() are included in the degrees of freedom used in the

finite-sample adjustment of the cluster–robust VCE estimator. This statement is valid only if the number

of groups is small relative to the sample size. (Technically, the number of groups must remain fixed as

the sample size grows.) For an estimator that allows the number of groups to grow with the sample size,

see the xtreg, fe command in [XT] xtreg.
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Postestimation commands predict margins Remarks and examples References
Also see

Postestimation commands
The following postestimation commands are available after areg:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters

estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian infor-
mation criteria (AIC, CAIC, AICc, and BIC, respectively)

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estimates cataloging estimation results

etable table of estimation results
∗ forecast dynamic forecasts and simulations

hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

linktest link test for model specification

lrtest likelihood-ratio test

margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

predict predictions and their SEs, residuals, etc.

predictnl point estimates, standard errors, testing, and inference for generalized predictions

pwcompare pairwise comparisons of parameters

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

∗forecast is not appropriate with mi estimation results.

85
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predict

Description for predict
predict creates a new variable containing predictions such as fitted values, standard errors, residuals,

and the equation-level score.

Menu for predict
Statistics > Postestimation

Syntax for predict
predict [ type ] newvar [ if ] [ in ] [ , statistic ]

where 𝑦𝑗 = x𝑗b + 𝑑absorbvars + 𝑒𝑗 and statistic is

statistic Description

Main

xb x𝑗b, fitted values; the default

stdp standard error of the prediction

dresiduals 𝑑absorbvars + 𝑒𝑗 = 𝑦𝑗 − x𝑗b
∗ xbd x𝑗b + 𝑑absorbvars
∗ d 𝑑absorbvars
∗ residuals residual
∗ score score; equivalent to residuals

Unstarred statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for the
estimation sample. Starred statistics are calculated only for the estimation sample, even when if e(sample) is not
specified.

Options for predict

� � �
Main �

xb, the default, calculates the prediction of x𝑗b, the fitted values, by using the average effect of the

absorbed variables. Also see xbd below.

stdp calculates the standard error of x𝑗b.

dresiduals calculates 𝑦𝑗 − x𝑗b, which are the residuals plus the effects of the absorbed variables.

xbd calculates x𝑗b+𝑑absorbvars, which are the fitted values including the effects of the absorbed variables.
d calculates 𝑑absorbvars, the effects of the absorbed variables.
residuals calculates the residuals, that is, 𝑦𝑗 − (x𝑗b + 𝑑absorbvars).
score is a synonym for residuals.
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margins

Description for margins
margins estimates margins of response for fitted values.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist ] [ , options ]
margins [marginlist ] , predict(statistic ...) [ options ]

statistic Description

xb x𝑗b, fitted values; the default

stdp not allowed with margins
dresiduals not allowed with margins
xbd not allowed with margins
d not allowed with margins
residuals not allowed with margins
score not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.

Remarks and examples

Example 1
Continuing with example 1 of [R] areg, we refit the model with robust standard errors and then obtain

linear predictions and standard errors for those linear predictions.

. use https://www.stata-press.com/data/r18/auto2
(1978 automobile data)
. areg mpg weight gear_ratio, absorb(rep78) vce(robust)
(output omitted )

. predict xb_ar
(option xb assumed; fitted values)
. predict stdp_ar, stdp

We can obtain the same linear predictions by fitting the model with xtreg, fe, but we would first
need to specify the panel structure by using xtset.
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. xtset rep78
Panel variable: rep78 (unbalanced)
. xtreg mpg weight gear_ratio, fe vce(robust)
(output omitted )

. predict xb_xt
(option xb assumed; fitted values)
. predict stdp_xt, stdp
. summarize xb_ar xb_xt stdp*

Variable Obs Mean Std. dev. Min Max

xb_ar 74 21.36805 4.286788 11.58643 28.07367
xb_xt 74 21.36805 4.286788 11.58643 28.07367

stdp_ar 74 .7105649 .1933936 .4270821 1.245179
stdp_xt 74 .8155919 .4826332 .0826999 1.709786

The predicted xb values above are the same for areg and xtreg, fe, but the standard errors for those
linear predictions are different. The assumptions for these two estimators lead to different formulations

for their standard errors. The robust variance estimates with areg are equivalent to the robust vari-

ance estimates using regress, including the panel dummies. The consistent robust variance estimates
with xtreg are equivalent to those obtained by specifying vce(cluster panelvar) with that estimation
command. For a theoretical discussion, see Wooldridge (2020), Stock and Watson (2008), and Arellano

(2003); also see the technical note after example 3 of [XT] xtreg.

Example 2
We would like to use linktest to check whether the dependent variable for our model is correctly

specified:

. use https://www.stata-press.com/data/r18/auto2, clear
(1978 automobile data)
. areg mpg weight gear_ratio, absorb(rep78)
(output omitted )

. linktest, absorb(rep78)
Linear regression, absorbing indicators Number of obs = 69
Absorbed variable: rep78 No. of categories = 5

F(2, 62) = 46.50
Prob > F = 0.0000
R-squared = 0.6939
Adj R-squared = 0.6643
Root MSE = 3.3990

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

_hat -.9305602 .9537856 -0.98 0.333 -2.83715 .9760302
_hatsq .0462785 .0227219 2.04 0.046 .0008582 .0916989
_cons 19.24899 9.725618 1.98 0.052 -.1922457 38.69022

F test of absorbed indicators: F(4, 62) = 1.278 Prob > F = 0.288

The squared residuals are significant in the regression for mpg on the linear and squared residuals;

therefore, the test indicates that our dependent variable does not seem to bewell specified. Let’s transform

the dependent variable into energy consumption, gallons per mile, fit the alternative model, and check

the link test again.
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. generate gpm = 1/mpg

. areg gpm weight gear_ratio, absorb(rep78)
(output omitted )

. linktest, absorb(rep78)
Linear regression, absorbing indicators Number of obs = 69
Absorbed variable: rep78 No. of categories = 5

F(2, 62) = 72.60
Prob > F = 0.0000
R-squared = 0.7436
Adj R-squared = 0.7187
Root MSE = 0.0068

gpm Coefficient Std. err. t P>|t| [95% conf. interval]

_hat .2842582 .7109124 0.40 0.691 -1.136835 1.705352
_hatsq 6.956965 6.862439 1.01 0.315 -6.760855 20.67478
_cons .0175457 .0178251 0.98 0.329 -.0180862 .0531777

F test of absorbed indicators: F(4, 62) = 0.065 Prob > F = 0.992

The link test supports the use of the transformed dependent variable.

References
Arellano, M. 2003. Panel Data Econometrics. Oxford: Oxford University Press. https://doi.org/10.1093/0199245282.001.
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Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Acknowledgments References Also see

Description
betareg estimates the parameters of a beta regression model. This model accommodates dependent

variables that are greater than 0 and less than 1, such as rates, proportions, and fractional data.

Quick start
Beta regression of y on x1 and x2

betareg y x1 x2

Add categorical variable a using factor-variable syntax
betareg y x1 x2 i.a

Add covariates for scale

betareg y x1 x2 i.a, scale(x1 z1)

Same as above, but use probit link for conditional mean and square-root link for conditional scale

betareg y x1 x2 i.a, scale(x1 z1) link(probit) slink(root)

Beta regression of y on x1 and x2 with robust standard errors
betareg y x1 x2, vce(robust)

Menu
Statistics > Fractional outcomes > Beta regression

90
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Syntax
betareg depvar indepvars [ if ] [ in ] [weight ] [ , options ]

options Description

Model

noconstant suppress constant term

scale(varlist[ , noconstant ]) specify independent variables for scale

link(linkname) specify link function for the conditional mean; default is
link(logit)

slink(slinkname) specify link function for the conditional scale; default is
slink(log)

constraints(constraints) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)
nocnsreport do not display constraints

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

coeflegend display legend instead of statistics

linkname Description

logit logit

probit probit

cloglog complementary log–log

loglog log–log

slinkname Description

log log

root square root

identity identity

indepvars and varlist specified in scale() may contain factor variables; see [U] 11.4.3 Factor variables.
bayes, bootstrap, by, collect, fmm, fp, jackknife, nestreg, rolling, statsby, stepwise, and svy are allowed; see

[U] 11.1.10 Prefix commands. For more details, see [BAYES] bayes: betareg and [FMM] fmm: betareg.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Options

� � �
Model �

noconstant; see [R] Estimation options.

scale(varlist[ , noconstant ]) specifies the independent variables used to model the scale.
noconstant suppresses the constant term in the scale model. A constant term is included by default.

link(linkname) specifies the link function used for the conditional mean. linkname may be logit,
probit, cloglog, or loglog. The default is link(logit).

slink(slinkname) specifies the link function used for the conditional scale. slinkname may be log,
root, or identity. The default is slink(log).

constraints(constraints); see [R] Estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim), that are robust to some kinds of misspecification (robust), that allow for

intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods (bootstrap,
jackknife); see [R] vce option.

� � �
Reporting �

level(#), nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. These options are

seldom used.

The following option is available with betareg but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

Remarks and examples
Dependent variables such as rates, proportions, and fractional data are frequently greater than 0 and

less than 1. There are a variety of methods to model such variables, including beta regression and frac-

tional logistic regression.

Beta regression is widely used because of its flexibility for modeling variables between 0 and 1 and

because its predictions are confined to the same range. However, beta regression models are not ap-

propriate for dependent variables with some observations exactly equal to 0 or 1. See [R] fracreg for

models when the dependent variable can equal 0 or 1 that also make predictions over the same range.

The predictions from linear regression models are not constrained to the 0 to 1 interval; thus, they are

not widely used for these variables.
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These models have applications in a variety of disciplines, such as economics, the social sciences, and

health science. For example, Castellani, Pattitoni, and Scorcu (2012) use beta regression to estimate Gini

index values for the prices of art by famous and nonfamous artists. In political science, Paolino (2001)

explores the advantages of beta regression and reviews its applicability for a variety of research topics

such as the proportion of minority applicants deemed eligible for the Rural Housing Loans program and

the proportion of a state’s gay and lesbian population that is covered by antidiscrimination laws. In

psychology, Smithson, Deady, and Gracik (2007) analyzed the relationship between how jurors judged

the probability of a defendant’s guilt and the verdict in a trial. Finally, beta regression has been used to

model quality-adjusted life years in health-economics outcome studies (Hubben et al. [2008]; Basu and

Manca [2012]).

Ferrari and Cribari-Neto (2004) and Smithson and Verkuilen (2006) derived the beta regression esti-

mators implemented in betareg. Basu and Manca (2012) also discuss quasimaximum likelihood infer-

ence for these estimators. These estimators augment the inherent flexibility of the beta distribution with

functional form choices, known as links.

Beta regression is a model of the mean of the dependent variable 𝑦 conditional on covariates x, which
we denote by 𝜇x. Because 𝑦 is in (0, 1), we must ensure that 𝜇x is also in (0, 1). We do this by using the

link function for the conditional mean, denoted 𝑔(⋅). This is necessary because linear combinations of
the covariates are not otherwise restricted to (0, 1).

Algebraically,

𝑔(𝜇x) = xβ

or, equivalently,

𝜇x = 𝑔−1(xβ)

where 𝑔−1(⋅) is the inverse function of 𝑔(⋅). For example, the default logit link implies that

ln{𝜇x/(1 − 𝜇x)} = xβ

and that

𝜇x = exp(xβ)/{1 + exp(xβ)}

Using a link function to keep the conditional-mean model inside an interval is common in the statistical

literature; see [R] glm for additional applications of link functions.

The conditional variance of the beta distribution is

Var(𝑦|x) = {𝜇x(1 − 𝜇x)}/(1 + 𝜓)

The parameter 𝜓 is known as the scale factor because it rescales the conditional variance. We use the

scale link to ensure that 𝜓 > 0.

Example 1: Beta regression model of a rate
Suppose we wish to know whether offering a summer instruction program increases a school’s pass

rate for a mandatory state exam administered to students. The school-wide pass rate must be between 0

and 1. It is unlikely that any school will have either no students pass or all students pass, so we consider

estimating the effect of the summer instruction program using beta regression.

The dataset sprogram contains fictional data on the pass rate of 1,000 schools (prate). We begin by

reading in the data and verifying that prate contains no 0s or 1s.
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. use https://www.stata-press.com/data/r18/sprogram
(Fictional summer program data)
. summarize prate

Variable Obs Mean Std. dev. Min Max

prate 1,000 .8150803 .1233684 .2986041 .9973584

prate ranges from 0.299 to 0.997, so we proceed with our choice of a beta regression model.

We model prate as a function of a binary indicator for whether the school offered voluntary, half-day
instruction to students during the past two summers (summer). The summer program should raise the

scores of disadvantaged children who otherwise would not have access to programs that maintain their

skills through the summer, thereby increasing the total proportion of students who pass the exam the next

year.

We include the fraction of students receiving free or reduced-price meals (freemeals) and the sum of

parents’ monetary donations to the school two years earlier (pdonations) as additional covariates that
measure affluence of the students’ parents. We estimate the parameters of this model using the default

logit link for the conditional mean and log link for the conditional scale.

. betareg prate i.summer freemeals pdonations
Initial: Log likelihood = 781.55846
Rescale: Log likelihood = 781.55846
Rescale eq: Log likelihood = 781.55846
(setting technique to bhhh)
Iteration 0: Log likelihood = 781.55846
Iteration 1: Log likelihood = 891.57913
Iteration 2: Log likelihood = 892.99578
Iteration 3: Log likelihood = 893.02725
Iteration 4: Log likelihood = 893.0279
Iteration 5: Log likelihood = 893.02792
Beta regression Number of obs = 1,000

LR chi2(3) = 164.61
Prob > chi2 = 0.0000

Link function : g(u) = log(u/(1-u)) [Logit]
Slink function : g(u) = log(u) [Log]
Log likelihood = 893.02792

prate Coefficient Std. err. z P>|z| [95% conf. interval]

prate
summer
Yes .5560171 .0480307 11.58 0.000 .4618787 .6501555

freemeals -.4564181 .0834885 -5.47 0.000 -.6200525 -.2927836
pdonations .0449706 .0097781 4.60 0.000 .025806 .0641353

_cons 1.175013 .0642797 18.28 0.000 1.049027 1.300999

scale
_cons 2.375433 .0443005 53.62 0.000 2.288606 2.462261

The output table reports the estimated coefficients of the covariates and an estimated scale parameter.

The coefficient of the factor variable for summer==1, shown as yes under summer, is significant and
positive. Thus we conclude that the summer program was effective at increasing a school’s pass rate.
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However, we cannot determine the magnitude of the effect from these results. In general, when you

use betareg, the best way to obtain interpretable effect sizes for the covariates is by using margins.
See example 1 in [R] betareg postestimation for more information.

Technical note
The results displayed in example 1 can be written concisely in algebraic form. Because we used the

default logit link, the estimated conditional mean is

̂𝜇x = exp(xβ̂)/{1 + exp(xβ̂)}

where the estimated xβ is

xβ̂ = −0.456 × freemeals + 0.045 × pdonations + 0.556 × (summer==1) + 1.18

The estimated 𝜓 with the default log link for the scale is 𝜓 = exp(2.38) = 10.80, which is simply

substituted into the formula given above to express the conditional variance.

See Methods and formulas for the functional forms of the other links implemented in betareg for
the conditional mean and scale.

Example 2: Modeling conditional variance
Some processes require that we model the scale parameter as a function of covariates. For example,

we might believe that the proportion of students with free or reduced meals influences the variance of

the estimated mean.

We augment example 1 by modeling the scale parameter as a function of freemeals.

. betareg prate i.summer freemeals pdonations, scale(freemeals)
(output omitted )

Beta regression Number of obs = 1,000
LR chi2(4) = 169.38
Prob > chi2 = 0.0000

Link function : g(u) = log(u/(1-u)) [Logit]
Slink function : g(u) = log(u) [Log]
Log likelihood = 895.41544

prate Coefficient Std. err. z P>|z| [95% conf. interval]

prate
summer
Yes .5571133 .0480378 11.60 0.000 .4629609 .6512658

freemeals -.5291892 .0896511 -5.90 0.000 -.7049021 -.3534762
pdonations .0454228 .0097809 4.64 0.000 .0262527 .0645929

_cons 1.209179 .0649585 18.61 0.000 1.081863 1.336495

scale
freemeals -.3598137 .1644214 -2.19 0.029 -.6820737 -.0375536

_cons 2.547047 .0882327 28.87 0.000 2.374114 2.71998
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Again, we conclude that having a summer program increases the pass rate. The effect of an increase

in the proportion of students receiving free meals on the conditional variance is ambiguous because it is

in both equations. We can use margins to estimate the effect of the program on the conditional mean or

the conditional variance.

The estimators in betareg are consistent and efficient when the model is correctly specified. Smith-
son and Verkuilen (2006) discuss model selection for beta regression and note that selecting the model

that minimizes the Bayesian information criterion (BIC) will select the correct model in large samples.

Selecting the model that minimizes the BIC is a general approach to model selection; see Cameron and

Trivedi (2005) for more details.

Example 3: Model selection
We fit the models quietly and use estimates store to store the results under the names model1,

model2, model3, and model4.

. quietly betareg prate i.summer freemeals pdonations, scale(freemeals)

. estimates store model1

. quietly betareg prate i.summer freemeals pdonations, scale(freemeals)
> link(cloglog)
. estimates store model2
. quietly betareg prate i.summer freemeals pdonations, scale(freemeals)
> slink(root)
. estimates store model3
. quietly betareg prate i.summer freemeals pdonations, scale(freemeals)
> link(cloglog) slink(root)
. estimates store model4

Next, we use estimates table to display the coefficients, standard errors, and the BIC for each model.

. estimates table model1 model2 model3 model4, stats(bic) se

Variable model1 model2 model3 model4

prate
summer
Yes .55711332 .27762093 .55719742 .27765283

.04803785 .02460121 .04803698 .02459953

freemeals -.52918917 -.25685191 -.5300549 -.25729221
.08965112 .04308385 .08978883 .04314336

pdonations .04542281 .02162612 .04542462 .02163225
.00978086 .00444813 .00978099 .00444817

_cons 1.2091789 .37961457 1.2094991 .37977162
.06495845 .03212448 .06496946 .03212509

scale
freemeals -.35981368 -.36808486 -.59912234 -.61295521

.16442142 .16448631 .27259725 .27273851
_cons 2.5470469 2.5516626 3.5692049 3.5771444

.0882327 .08821157 .15204032 .15218042

Statistics
bic -1749.3843 -1749.9903 -1749.444 -1750.0511

Legend: b/se



betareg — Beta regression 97

We select model4, the model with the complementary log–log link for the conditional mean and the
square-root link for the conditional variance, because it has the lowest BIC.

Stored results
betareg stores the following in e():

Scalars

e(N) number of observations

e(k) number of parameters

e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test

e(k dv) number of dependent variables

e(df m) model degrees of freedom

e(ll) log likelihood

e(ll 0) log likelihood, constant-only model

e(N clust) number of clusters

e(chi2) 𝜒2

e(p) 𝑝-value for model test
e(rank) rank of e(V)
e(ic) number of iterations

e(rc) return code

e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) betareg
e(cmdline) command as typed

e(depvar) name of dependent variable

e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(linkt) link title in the conditional mean equation

e(linkf) link function in the conditional mean equation

e(slinkt) link title in the conditional scale equation

e(slinkf) link function in the conditional scale equation

e(clustvar) name of cluster variable

e(chi2type) Wald or LR; type of model 𝜒2 test

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(opt) type of optimization

e(which) max or min; whether optimizer is to perform maximization or minimization

e(ml method) type of ml method
e(user) name of likelihood-evaluator program

e(technique) maximization technique

e(properties) b V
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved
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Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(ilog) iteration log (up to 20 iterations)

e(gradient) gradient vector

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas
Beta regression models were proposed by Ferrari and Cribari-Neto (2004) and extended by Smithson

and Verkuilen (2006) to allow the scale parameter to depend on covariates.

Beta regression is appropriate only for a dependent variable that is strictly greater than 0 and strictly

less than 1 because the beta distribution has support only on the interval (0, 1). The density of a beta-
distributed dependent variable 𝑦 conditional on covariates x can be written as

𝑓(𝑦; 𝜇x, 𝜓x) = Γ(𝜓x)
Γ(𝜇x𝜓x)Γ{(1 − 𝜇x)𝜓x}

𝑦𝜇x𝜓x−1(1 − 𝑦)(1−𝜇x)𝜓x−1

where 𝜇x = E(𝑦|x), 𝜇x is linked to the covariates by the link function 𝑔(𝜇x) = xβ, 𝜓x scales the

conditional variance according to

Var(𝑦|x) = 𝜇x(1 − 𝜇x)/(1 + 𝜓x)

and 𝜓x is linked to the covariates by link function ℎ(𝜓x) = x𝛄.
This parameterization yields a log-likelihood function of

𝑁
∑
𝑖=1

𝜔𝑖( ln{Γ(𝜓x,𝑖)} − ln{Γ(𝜇x,𝑖𝜓x,𝑖)} − ln[Γ{(1 − 𝜇x,𝑖)𝜓x,𝑖}]

+ (𝜇x,𝑖𝜓x,𝑖 − 1) ln(𝑦𝑖) + {(1 − 𝜇x,𝑖)𝜓x,𝑖 − 1} ln(1 − 𝑦𝑖))

The definitions of the link functions are

Name Function

logit 𝑔(𝜇x) = ln{𝜇x/(1 − 𝜇x)}
probit 𝑔(𝜇x) = Φ−1(𝜇x)
cloglog 𝑔(𝜇x) = ln{− ln(1 − 𝜇x)}
loglog 𝑔(𝜇x) = − ln{− ln(𝜇x)}
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The definitions of the scale-link functions are

Name Function

log ℎ(𝜓x) = ln(𝜓x)
root ℎ(𝜓x) = √𝜓x

identity ℎ(𝜓x) = 𝜓x

This command supports the Huber/White/sandwich estimator of the variance and its clustered version

using vce(robust) and vce(cluster clustvar), respectively. See [P] robust, particularly Maximum

likelihood estimators and Methods and formulas.
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Also see
[R] betareg postestimation — Postestimation tools for betareg

[R] fracreg — Fractional response regression

[R] glm — Generalized linear models

[BAYES] bayes: betareg — Bayesian beta regression

[FMM] fmm: betareg — Finite mixtures of beta regression models

[SVY] svy estimation — Estimation commands for survey data

[U] 20 Estimation and postestimation commands
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Postestimation commands predict margins Remarks and examples Also see

Postestimation commands
The following postestimation commands are available after betareg:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters

estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian infor-
mation criteria (AIC, CAIC, AICc, and BIC, respectively)

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estat (svy) postestimation statistics for survey data

estimates cataloging estimation results

etable table of estimation results
∗ forecast dynamic forecasts and simulations
∗ hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

∗ lrtest likelihood-ratio test

margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

predict conditional means and variances, linear predictions, etc.

predictnl point estimates, standard errors, testing, and inference for generalized predictions

pwcompare pairwise comparisons of parameters

suest seemingly unrelated estimation

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

∗forecast, hausman, and lrtest are not appropriate with svy estimation results.
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predict

Description for predict
predict creates a new variable containing predictions such as linear predictions, conditional means,

conditional variances, and equation-level scores.

Menu for predict
Statistics > Postestimation

Syntax for predict
predict [ type ] newvar [ if ] [ in ] [ , statistic ]

predict [ type ] stub* [ if ] [ in ], scores

statistic Description

Main

cmean conditional mean of the dependent variable; the default

cvariance conditional variance of the dependent variable

xb linear prediction in the conditional-mean equation

xbscale linear prediction in the conditional-scale equation

stdp standard error of the linear prediction

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for the estimation
sample.

Options for predict

� � �
Main �

cmean, the default, calculates the conditional mean of the dependent variable.

cvariance calculates the conditional variance of the dependent variable.

xb calculates the linear prediction for the conditional-mean equation.

xbscale calculates the linear prediction for the conditional-scale equation.

stdp calculates the standard error of the linear prediction for the conditional-mean equation.

scores calculates equation-level score variables. The first new variable will contain the derivative of

the log likelihood with respect to the conditional-mean equation, and the second new variable will

contain the derivative of the log likelihood with respect to the conditional-scale equation.
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margins

Description for margins
margins estimates margins of response for conditional means, conditional variances, and linear pre-

dictions.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist ] [ , options ]
margins [marginlist ] , predict(statistic ...) [ predict(statistic ...) ... ] [ options ]

statistic Description

cmean conditional mean of the dependent variable; the default

cvariance conditional variance of the dependent variable

xb linear prediction in the conditional-mean equation

xbscale linear prediction in the conditional-scale equation

stdp not allowed with margins
scores not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.

Remarks and examples

Example 1
In example 3 in [R] betareg, we selected a model for school-level data on the fraction of students

passing a state-required exam. In that example, we were interested in whether a voluntary summer

program increased schools’ pass rates. We continue that example to estimate an average treatment effect

(ATE) of the program.

After reading in the data and fitting the model, we use margins to estimate the ATE.

. use https://www.stata-press.com/data/r18/sprogram
(Fictional summer program data)
. betareg prate freemeals pdonations i.summer, scale(freemeals) link(cloglog)
> slink(root) vce(robust)
(output omitted )

We specify vce(robust) with the estimation command and vce(unconditional) with the

margins command to obtain standard errors for a population ATE instead of a sample ATE.
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. margins r.summer, contrast(nowald) vce(unconditional)
Contrasts of predictive margins Number of obs = 1,000
Expression: Conditional mean of prate, predict()

Unconditional
Contrast std. err. [95% conf. interval]

summer
(Yes vs No) .0890851 .008626 .0721784 .1059918

The average pass rate would be about 9% higher when all schools offered the program than when no

school offered the program.

Also see
[R] betareg — Beta regression

[U] 20 Estimation and postestimation commands
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Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas References Also see

Description
binreg fits generalized linear models for the binomial family. It estimates odds ratios, risk ratios,

health ratios, and risk differences. The available links are

Option Implied link Parameter

or logit odds ratios = exp(𝛽)
rr log risk ratios = exp(𝛽)
hr log complement health ratios = exp(𝛽)
rd identity risk differences = 𝛽

Estimates of odds, risk, and health ratios are obtained by exponentiating the appropriate coefficients. The

or option produces the same results as Stata’s logistic command, and or coefficients yields the
same results as the logit command. When no link is specified, or is assumed.

Quick start
Report odds ratios from a model of y on x1 and x2 using a logit link

binreg y x1 x2, or

Use the log link and report risk ratios

binreg y x1 x2, rr

Use the identity link and report risk differences

binreg y x1 x2, rd

Same as above, but with data stored as the number of successes, ys, out of n trials
binreg ys x1 x2, rd n(n)

Menu
Statistics > Generalized linear models > GLM for the binomial family
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Syntax
binreg depvar [ indepvars ] [ if ] [ in ] [weight ] [ , options ]

options Description

Model

noconstant suppress constant term

or use logit link and report odds ratios

rr use log link and report risk ratios

hr use log-complement link and report health ratios

rd use identity link and report risk differences

n(# | varname) use # or varname for number of trials

exposure(varname) include ln(varname) in model with coefficient constrained to 1

offset(varname) include varname in model with coefficient constrained to 1

constraints(constraints) apply specified linear constraints

mu(varname) use varname as the initial estimate for the mean of depvar

init(varname) synonym for mu(varname)

SE/Robust

vce(vcetype) vcetype may be eim, robust, cluster clustvar, oim, opg,
bootstrap, jackknife, hac kernel, jackknife1, or unbiased

t(varname) variable name corresponding to time

vfactor(#) multiply variance matrix by scalar #

disp(#) quasilikelihood multiplier

scale(x2 | dev | #) set the scale parameter; default is scale(1)

Reporting

level(#) set confidence level; default is level(95)
coefficients report nonexponentiated coefficients

nocnsreport do not display constraints

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

irls use iterated, reweighted least-squares optimization; the default

ml use maximum likelihood optimization

maximize options control the maximization process; seldom used

fisher(#) Fisher scoring steps

search search for good starting values

collinear keep collinear variables

coeflegend display legend instead of statistics
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indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.

bayes, bootstrap, by, collect, fp, jackknife, mi estimate, rolling, and statsby are allowed; see [U] 11.1.10 Prefix
commands. For more details, see [BAYES] bayes: binreg.

vce(bootstrap), vce(jackknife), and vce(jackknife1) are not allowed with the mi estimate prefix; see [MI] mi

estimate.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
collinear and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

noconstant; see [R] Estimation options.

or requests the logit link and results in odds ratios if coefficients is not specified.

rr requests the log link and results in risk ratios if coefficients is not specified.

hr requests the log-complement link and results in health ratios if coefficients is not specified.

rd requests the identity link and results in risk differences.

n(# | varname) specifies either a constant integer to use as the denominator for the binomial family or a
variable that holds the denominator for each observation.

exposure(varname), offset(varname), constraints(constraints); see [R] Estimation options.

constraints(constraints) is not allowed with irls.

mu(varname) specifies varname containing an initial estimate for the mean of depvar. This option can
be useful if you encounter convergence difficulties. init(varname) is a synonym.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are robust to some
kinds of misspecification (robust), that allow for intragroup correlation (cluster clustvar), that are
derived from asymptotic theory (oim, opg), and that use bootstrap or jackknife methods (bootstrap,
jackknife); see [R] vce option.

vce(eim), the default, uses the expected information matrix (EIM) for the variance estimator.

binreg also allows the following:

vce(hac kernel [#]) specifies that a heteroskedasticity- and autocorrelation-consistent (HAC) vari-

ance estimate be used. HAC refers to the general form for combining weighted matrices to form

the variance estimate. There are three kernels built into binreg. kernel is a user-written program
or one of

nwest | gallant | anderson
If # is not specified, 𝑁 − 2 is assumed.

vce(jackknife1) specifies that the one-step jackknife estimate of variance be used.

vce(unbiased) specifies that the unbiased sandwich estimate of variance be used.
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t(varname) specifies the variable name corresponding to time; see [TS] tsset. binreg does not always
need to know t(), though it does if vce(hac . . .) is specified. Then you can either specify the time
variable with t(), or you can tsset your data before calling binreg. When the time variable is

required, binreg assumes that the observations are spaced equally over time.

vfactor(#) specifies a scalar by which to multiply the resulting variance matrix. This option allows
users to match output with other packages, whichmay apply degrees of freedom or other small-sample

corrections to estimates of variance.

disp(#)multiplies the variance of depvar by # and divides the deviance by #. The resulting distributions
are members of the quasilikelihood family. This option is not allowed with option ml.

scale(x2 | dev | #) overrides the default scale parameter. This option is allowed only with Hessian

(information matrix) variance estimates.

By default, scale(1) is assumed for the discrete distributions (binomial, Poisson, and negative bi-
nomial), and scale(x2) is assumed for the continuous distributions (Gaussian, gamma, and inverse
Gaussian).

scale(x2) specifies that the scale parameter be set to the Pearson 𝜒2 (or generalized 𝜒2) statistic

divided by the residual degrees of freedom, which is recommended by McCullagh and Nelder (1989)

as a good general choice for continuous distributions.

scale(dev) sets the scale parameter to the deviance divided by the residual degrees of freedom.

This option provides an alternative to scale(x2) for continuous distributions and overdispersed or
underdispersed discrete distributions. This option is not allowed with option ml.

scale(#) sets the scale parameter to #.

� � �
Reporting �

level(#), noconstant; see [R] Estimation options.

coefficients displays the nonexponentiated coefficients and corresponding standard errors and confi-
dence intervals. This option has no effect when the rd option is specified, because it always presents
the nonexponentiated coefficients.

nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Maximization �

irls requests iterated, reweighted least-squares (IRLS) optimization of the deviance instead of New-

ton–Raphson optimization of the log likelihood. This option is the default.

ml requests that optimization be carried out by using Stata’s ml command; see [R] ml.

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. These options are

seldom used.

Setting the optimization method to ml, with technique() set to something other than BHHH, changes
the vcetype to vce(oim). Specifying technique(bhhh) changes vcetype to vce(opg).
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Unless option ml is specified, onlymaximize options iterate(), nolog, trace, and ltolerance()
are allowed. With IRLS optimization, the convergence criterion is satisfied when the absolute

change in deviance from one iteration to the next is less than or equal to ltolerance(), where
ltolerance(1e-6) is the default.

fisher(#) specifies the number of Newton–Raphson steps that should use the Fisher scoring Hessian
or EIM before switching to the observed information matrix (OIM). This option is available only if ml
is specified and is useful only for Newton–Raphson optimization.

search specifies that the command search for good starting values. This option is available only if ml
is specified and is useful only for Newton–Raphson optimization.

The following options are available with binreg but are not shown in the dialog box:

collinear, coeflegend; see [R] Estimation options. collinear is not allowed with irls.

Remarks and examples
Wacholder (1986) suggests methods for estimating risk ratios and risk differences from prospective

binomial data. These estimates are obtained by selecting the proper link functions in the generalized

linear-model framework. (See Methods and formulas for details; also see [R] glm.)

Example 1
Wacholder (1986) presents an example, using data from Wright et al. (1983), of an investigation

of the relationship between alcohol consumption and the risk of a low-birthweight baby. Covariates

examined included whether the mother smoked (yes or no), mother’s social class (three levels), and

drinking frequency (light, moderate, or heavy). The data for the 18 possible categories determined by

the covariates are illustrated below.
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Let’s first describe the data and list a few observations.

. use https://www.stata-press.com/data/r18/binreg
(Alcohol and low-birthweight baby)
. list

category n_lbw_~s n_women alcohol smokes social

1. 1 11 84 Heavy Nonsmoker 1
2. 2 5 79 Moderate Nonsmoker 1
3. 3 11 169 Light Nonsmoker 1
4. 4 6 28 Heavy Smoker 1
5. 5 3 13 Moderate Smoker 1

6. 6 1 26 Light Smoker 1
7. 7 4 22 Heavy Nonsmoker 2
8. 8 3 25 Moderate Nonsmoker 2
9. 9 12 162 Light Nonsmoker 2

10. 10 4 17 Heavy Smoker 2

11. 11 2 7 Moderate Smoker 2
12. 12 6 38 Light Smoker 2
13. 13 0 14 Heavy Nonsmoker 3
14. 14 1 18 Moderate Nonsmoker 3
15. 15 12 91 Light Nonsmoker 3

16. 16 7 19 Heavy Smoker 3
17. 17 2 18 Moderate Smoker 3
18. 18 8 70 Light Smoker 3

Each observation corresponds to one of the 18 covariate structures. The number of low-birthweight

babies from n women in each category is given by the n lbw babies variable.
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We begin by estimating risk ratios:

. binreg n_lbw_babies i.soc i.alc i.smo, n(n_women) rr
Iteration 1: Deviance = 14.2879
Iteration 2: Deviance = 13.607
Iteration 3: Deviance = 13.60503
Iteration 4: Deviance = 13.60503
Generalized linear models Number of obs = 18
Optimization : MQL Fisher scoring Residual df = 12

(IRLS EIM) Scale parameter = 1
Deviance = 13.6050268 (1/df) Deviance = 1.133752
Pearson = 11.51517095 (1/df) Pearson = .9595976
Variance function: V(u) = u*(1-u/n_women) [Binomial]
Link function : g(u) = ln(u/n_women) [Log]

BIC = -21.07943

EIM
n_lbw_babies Risk ratio std. err. z P>|z| [95% conf. interval]

social
2 1.340001 .3127382 1.25 0.210 .848098 2.11721
3 1.349487 .3291488 1.23 0.219 .8366715 2.176619

alcohol
Moderate 1.191157 .3265354 0.64 0.523 .6960276 2.038503

Heavy 1.974078 .4261751 3.15 0.002 1.293011 3.013884

smokes
Smoker 1.648444 .332875 2.48 0.013 1.109657 2.448836
_cons .0630341 .0128061 -13.61 0.000 .0423297 .0938656

Note: _cons estimates baseline risk.

By default, Stata reports the risk ratios (the exponentiated regression coefficients) estimated by the

model. We can see that the risk ratio comparing heavy drinkers with light drinkers, after adjusting for

smoking and social class, is 1.974078. That is, mothers who drink heavily during their pregnancy have

approximately twice the risk of delivering low-birthweight babies as mothers who are light drinkers.
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The nonexponentiated coefficients can be obtained with the coefficients option:

. binreg n_lbw_babies i.soc i.alc i.smo, n(n_women) rr coefficients
Iteration 1: Deviance = 14.2879
Iteration 2: Deviance = 13.607
Iteration 3: Deviance = 13.60503
Iteration 4: Deviance = 13.60503
Generalized linear models Number of obs = 18
Optimization : MQL Fisher scoring Residual df = 12

(IRLS EIM) Scale parameter = 1
Deviance = 13.6050268 (1/df) Deviance = 1.133752
Pearson = 11.51517095 (1/df) Pearson = .9595976
Variance function: V(u) = u*(1-u/n_women) [Binomial]
Link function : g(u) = ln(u/n_women) [Log]

BIC = -21.07943

EIM
n_lbw_babies Coefficient std. err. z P>|z| [95% conf. interval]

social
2 .2926702 .2333866 1.25 0.210 -.1647591 .7500994
3 .2997244 .2439066 1.23 0.219 -.1783238 .7777726

alcohol
Moderate .1749248 .274133 0.64 0.523 -.362366 .7122156

Heavy .6801017 .2158856 3.15 0.002 .2569737 1.10323

smokes
Smoker .4998317 .2019329 2.48 0.013 .1040505 .8956129
_cons -2.764079 .2031606 -13.61 0.000 -3.162266 -2.365891
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Risk differences are obtained with the rd option:

. binreg n_lbw_babies i.soc i.alc i.smo, n(n_women) rd
Iteration 1: Deviance = 18.67277
Iteration 2: Deviance = 14.94364
Iteration 3: Deviance = 14.9185
Iteration 4: Deviance = 14.91762
Iteration 5: Deviance = 14.91758
Iteration 6: Deviance = 14.91758
Iteration 7: Deviance = 14.91758
Generalized linear models Number of obs = 18
Optimization : MQL Fisher scoring Residual df = 12

(IRLS EIM) Scale parameter = 1
Deviance = 14.91758277 (1/df) Deviance = 1.243132
Pearson = 12.60353235 (1/df) Pearson = 1.050294
Variance function: V(u) = u*(1-u/n_women) [Binomial]
Link function : g(u) = u/n_women [Identity]

BIC = -19.76688

EIM
n_lbw_babies Risk diff. std. err. z P>|z| [95% conf. interval]

social
2 .0263817 .0232124 1.14 0.256 -.0191137 .0718771
3 .0365553 .0268668 1.36 0.174 -.0161026 .0892132

alcohol
Moderate .0122539 .0257713 0.48 0.634 -.0382569 .0627647

Heavy .0801291 .0302878 2.65 0.008 .020766 .1394921

smokes
Smoker .0542415 .0270838 2.00 0.045 .0011582 .1073248
_cons .059028 .0160693 3.67 0.000 .0275327 .0905232

The risk difference between heavy drinkers and light drinkers is 0.0801291. Because the risk differences

are obtained directly from the coefficients estimated by using the identity link, the coefficients option
would have no effect here.
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Health ratios are obtained with the hr option. The health ratios (exponentiated coefficients for the
log-complement link) are reported directly.

. binreg n_lbw_babies i.soc i.alc i.smo, n(n_women) hr
Iteration 1: Deviance = 21.15233
Iteration 2: Deviance = 15.16467
Iteration 3: Deviance = 15.13205
Iteration 4: Deviance = 15.13114
Iteration 5: Deviance = 15.13111
Iteration 6: Deviance = 15.13111
Iteration 7: Deviance = 15.13111
Generalized linear models Number of obs = 18
Optimization : MQL Fisher scoring Residual df = 12

(IRLS EIM) Scale parameter = 1
Deviance = 15.13110545 (1/df) Deviance = 1.260925
Pearson = 12.84203917 (1/df) Pearson = 1.07017
Variance function: V(u) = u*(1-u/n_women) [Binomial]
Link function : g(u) = ln(1-u/n_women) [Log complement]

BIC = -19.55336

EIM
n_lbw_babies Hlth ratio std. err. z P>|z| [95% conf. interval]

social
2 .9720541 .024858 -1.11 0.268 .9245342 1.022017
3 .9597182 .0290412 -1.36 0.174 .9044535 1.01836

alcohol
Moderate .9871517 .0278852 -0.46 0.647 .9339831 1.043347

Heavy .9134243 .0325726 -2.54 0.011 .8517631 .9795493

smokes
Smoker .9409983 .0296125 -1.93 0.053 .8847125 1.000865
_cons .9409945 .0163084 -3.51 0.000 .9095674 .9735075

Note: _cons estimates baseline health (probability of no disease).

To see the nonexponentiated coefficients, we could specify the coefficients option.
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Stored results
binreg, irls stores the following in e():

Scalars

e(N) number of observations

e(k) number of parameters

e(k eq model) number of equations in overall model test

e(df m) model degrees of freedom

e(df) residual degrees of freedom

e(phi) model scale parameter

e(disp) dispersion parameter

e(bic) model BIC

e(N clust) number of clusters

e(deviance) deviance

e(deviance s) scaled deviance

e(deviance p) Pearson deviance

e(deviance ps) scaled Pearson deviance

e(dispers) dispersion

e(dispers s) scaled dispersion

e(dispers p) Pearson dispersion

e(dispers ps) scaled Pearson dispersion

e(vf) factor set by vfactor(), 1 if not set
e(rank) rank of e(V)
e(rc) return code

Macros

e(cmd) binreg
e(cmdline) command as typed

e(depvar) name of dependent variable

e(eform) eform() option implied by or, rr, hr, or rd
e(varfunc) program to calculate variance function

e(varfunct) variance title

e(varfuncf) variance function

e(link) program to calculate link function

e(linkt) link title

e(linkf) link function

e(m) number of binomial trials

e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(title fl) family–link title

e(clustvar) name of cluster variable

e(offset) linear offset variable

e(cons) noconstant or not set
e(hac kernel) HAC kernel

e(hac lag) HAC lag

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(opt) type of optimization

e(opt1) optimization title, line 1

e(opt2) optimization title, line 2

e(properties) b V
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved
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Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

binreg, ml stores the following in e():

Scalars

e(N) number of observations

e(k) number of parameters

e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test

e(k dv) number of dependent variables

e(df m) model degrees of freedom

e(df) residual degrees of freedom

e(phi) model scale parameter

e(aic) model AIC, if ml
e(bic) model BIC

e(ll) log likelihood, if ml
e(N clust) number of clusters

e(chi2) 𝜒2

e(p) 𝑝-value for model test
e(deviance) deviance

e(deviance s) scaled deviance

e(deviance p) Pearson deviance

e(deviance ps) scaled Pearson deviance

e(dispers) dispersion

e(dispers s) scaled dispersion

e(dispers p) Pearson dispersion

e(dispers ps) scaled Pearson dispersion

e(vf) factor set by vfactor(), 1 if not set
e(rank) rank of e(V)
e(ic) number of iterations

e(rc) return code

e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) binreg
e(cmdline) command as typed

e(depvar) name of dependent variable

e(eform) eform() option implied by or, rr, hr, or rd
e(varfunc) program to calculate variance function

e(varfunct) variance title

e(varfuncf) variance function

e(link) program to calculate link function

e(linkt) link title

e(linkf) link function

e(m) number of binomial trials
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e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(title fl) family–link title

e(clustvar) name of cluster variable

e(offset) linear offset variable

e(cons) noconstant or not set
e(hac kernel) HAC kernel

e(hac lag) HAC lag

e(chi2type) Wald; type of model 𝜒2 test

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(opt) type of optimization

e(opt1) optimization title, line 1

e(which) max or min; whether optimizer is to perform maximization or minimization

e(ml method) type of ml method
e(user) name of likelihood-evaluator program

e(technique) maximization technique

e(properties) b V
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(ilog) iteration log (up to 20 iterations)

e(gradient) gradient vector

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():
Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas
Let 𝜋𝑖 be the probability of success for the 𝑖th observation, 𝑖 = 1, . . . , 𝑁, and let 𝑋𝛽 be the linear

predictor. The link function relates the covariates of each observation to its respective probability through

the linear predictor.

In logistic regression, the logit link is used:

ln( 𝜋
1 − 𝜋

) = 𝑋𝛽

The regression coefficient 𝛽𝑘 represents the change in the logarithm of the odds associated with a one-

unit change in the value of the 𝑋𝑘 covariate; thus, exp(𝛽𝑘) is the ratio of the odds associated with a
change of one unit in 𝑋𝑘.
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For risk differences, the identity link 𝜋 = 𝑋𝛽 is used. The regression coefficient 𝛽𝑘 represents the risk

difference associated with a change of one unit in 𝑋𝑘. When using the identity link, you can obtain fitted

probabilities outside the interval (0, 1). As suggested byWacholder, at each iteration, fitted probabilities

are checked for range conditions (and put back in range if necessary). For example, if the identity link

results in a fitted probability that is smaller than 1e–4, the probability is replaced with 1e–4 before the

link function is calculated.

A similar adjustment is made for the logarithmic link, which is used for estimating the risk ratio,

ln(𝜋) = 𝑋𝛽, where exp(𝛽𝑘) is the risk ratio associated with a change of one unit in 𝑋𝑘, and for the

log-complement link used to estimate the probability of no disease or health, where exp(𝛽𝑘) represents
the “health ratio” associated with a change of one unit in 𝑋𝑘.

This command supports the Huber/White/sandwich estimator of the variance and its clustered version

using vce(robust) and vce(cluster clustvar), respectively. See [P] robust, particularly Maximum

likelihood estimators and Methods and formulas.
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[ME] mecloglog — Multilevel mixed-effects complementary log–log regression

[ME] meglm — Multilevel mixed-effects generalized linear models

[ME] melogit — Multilevel mixed-effects logistic regression

[ME] meprobit — Multilevel mixed-effects probit regression

[MI] Estimation — Estimation commands for use with mi estimate
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Postestimation commands predict margins References Also see

Postestimation commands
The following postestimation commands are available after binreg:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters
∗ estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian infor-

mation criteria (AIC, CAIC, AICc, and BIC, respectively)

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estimates cataloging estimation results

etable table of estimation results
† forecast dynamic forecasts and simulations

hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

linktest link test for model specification
∗ lrtest likelihood-ratio test

margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

predict predictions, residuals, influence statistics, and other diagnostic measures

predictnl point estimates, standard errors, testing, and inference for generalized predictions

pwcompare pairwise comparisons of parameters

suest seemingly unrelated estimation

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

∗estat ic and lrtest are not appropriate after binreg, irls.
†forecast is not appropriate with mi estimation results.

119



binreg postestimation — Postestimation tools for binreg 120

predict

Description for predict
predict creates a new variable containing predictions such as expected values, linear predictions,

standard errors, residuals, Cook’s distance, diagonals, weighted averages, differences, and first deriva-

tives.

Menu for predict
Statistics > Postestimation

Syntax for predict
predict [ type ] newvar [ if ] [ in ] [ , statistic options ]

statistic Description

Main

mu expected value of 𝑦; the default
xb linear prediction 𝜂 = xβ̂
eta synonym for xb
stdp standard error of the linear prediction

anscombe Anscombe (1953) residuals

cooksd Cook’s distance

deviance deviance residuals

hat diagonals of the “hat” matrix

likelihood weighted average of the standardized deviance and standard Pearson residuals

pearson Pearson residuals

response differences between the observed and fitted outcomes

score first derivative of the log likelihood with respect to x𝑗β
working working residuals

options Description

Options

nooffset modify calculations to ignore the offset variable

adjusted adjust deviance residual to speed up convergence

standardized multiply residual by the factor (1 − ℎ)1/2

studentized multiply residual by one over the square root of the estimated scale parameter

modified modify denominator of residual to be a reasonable estimate of the variance of
depvar

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for the estimation
sample.
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Options for predict

� � �
Main �

mu, the default, specifies that predict calculate the expected value of 𝑦, equal to 𝑔−1(xβ̂) [𝑛𝑔−1(xβ̂)
for the binomial family].

xb calculates the linear prediction 𝜂 = xβ̂.

eta is a synonym for xb.

stdp calculates the standard error of the linear prediction.

anscombe calculates the Anscombe (1953) residuals to produce residuals that closely follow a normal

distribution.

cooksd calculates Cook’s distance, which measures the aggregate change in the estimated coefficients
when each observation is left out of the estimation.

deviance calculates the deviance residuals, which are recommended by McCullagh and Nelder (1989)

and others as having the best properties for examining goodness of fit of a GLM. They are approx-

imately normally distributed if the model is correct and may be plotted against the fitted values or

against a covariate to inspect the model’s fit. Also see the pearson option below.

hat calculates the diagonals of the “hat” matrix, analogous to linear regression.

likelihood calculates a weighted average of the standardized deviance and standardized Pearson (de-
scribed below) residuals.

pearson calculates the Pearson residuals, which often have markedly skewed distributions for nonnor-
mal family distributions. Also see the deviance option above.

response calculates the differences between the observed and fitted outcomes.

score calculates the equation-level score, 𝜕ln𝐿/𝜕(x𝑗β).
working calculates the working residuals, which are response residuals weighted according to the deriva-

tive of the link function.

� � �
Options �

nooffset is relevant only if you specified offset(varname) for binreg. It modifies the calculations
made by predict so that they ignore the offset variable; the linear prediction is treated as x𝑗b rather

than as x𝑗b + offset𝑗.

adjusted adjusts the deviance residual to make the convergence to the limiting normal distribution

faster. The adjustment deals with adding to the deviance residual a higher-order term depending on

the variance function family. This option is allowed only when deviance is specified.

standardized requests that the residual be multiplied by the factor (1 − ℎ)−1/2, where ℎ is the diag-

onal of the hat matrix. This step is done to take into account the correlation between depvar and its

predicted value.

studentized requests that the residual be multiplied by one over the square root of the estimated scale
parameter.

modified requests that the denominator of the residual be modified to be a reasonable estimate of the
variance of depvar. The base residual is multiplied by the factor (𝑘/𝑤)−1/2, where 𝑘 is either one or
the user-specified dispersion parameter and 𝑤 is the specified weight (or one if left unspecified).



binreg postestimation — Postestimation tools for binreg 122

margins

Description for margins
margins estimates margins of response for expected values and linear predictions.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist ] [ , options ]
margins [marginlist ] , predict(statistic ...) [ predict(statistic ...) ... ] [ options ]

statistic Description

mu expected value of 𝑦; the default
xb linear prediction 𝜂 = xβ̂
eta synonym for xb
stdp not allowed with margins
anscombe not allowed with margins
cooksd not allowed with margins
deviance not allowed with margins
hat not allowed with margins
likelihood not allowed with margins
pearson not allowed with margins
response not allowed with margins
score not allowed with margins
working not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.

References
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[R] binreg — Generalized linear models: Extensions to the binomial family

[U] 20 Estimation and postestimation commands
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Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas References Also see

Description
biprobit fits maximum-likelihood two-equation probit models—either a bivariate probit or a seem-

ingly unrelated probit (limited to two equations).

Quick start
Bivariate probit regression of y1 and y2 on x1

biprobit y1 y2 x1

Bivariate probit regression of y1 and y2 on x1, x2, and x3
biprobit y1 y2 x1 x2 x3

Constrain the coefficients for x1 to equality in both equations
constraint define 1 _b[y1:x1] = _b[y2:x1]
biprobit y1 y2 x1 x2 x3, constraints(1)

Seemingly unrelated bivariate probit regression

biprobit (y1 = x1 x2 x3) (y2 = x1 x2)

With robust standard errors

biprobit (y1 = x1 x2 x3) (y2 = x1 x2), vce(robust)

Poirier partial observability model with difficult option
biprobit (y1 = x1 x2) (y2 = x2 x3), partial difficult

Menu
biprobit
Statistics > Binary outcomes > Bivariate probit regression

Seemingly unrelated biprobit
Statistics > Binary outcomes > Seemingly unrelated bivariate probit regression

123



biprobit — Bivariate probit regression 124

Syntax
Bivariate probit regression

biprobit depvar1 depvar2 [ indepvars ] [ if ] [ in ] [weight ] [ , options ]

Seemingly unrelated bivariate probit regression

biprobit equation1 equation2 [ if ] [ in ] [weight ] [ , su options ]

where equation1 and equation2 are specified as

( [ eqname: ] depvar [=] [ indepvars ] [ , noconstant offset(varname) ] )

options Description

Model

noconstant suppress constant term

partial fit partial observability model

offset1(varname) offset variable for first equation

offset2(varname) offset variable for second equation

constraints(constraints) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, opg, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)
lrmodel perform the likelihood-ratio model test instead of the default Wald test

nocnsreport do not display constraints

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

collinear keep collinear variables

coeflegend display legend instead of statistics
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su options Description

Model

partial fit partial observability model

constraints(constraints) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, opg, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)
lrmodel perform the likelihood-ratio model test instead of the default Wald test

nocnsreport do not display constraints

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

collinear keep collinear variables

coeflegend display legend instead of statistics

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

depvar1, depvar2, indepvars, and depvar may contain time-series operators; see [U] 11.4.4 Time-series varlists.

bayes, bootstrap, by, collect, fp, jackknife, rolling, statsby, and svy are allowed; see [U] 11.1.10 Prefix com-

mands. For more details, see [BAYES] bayes: biprobit.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
vce(), lrmodel, and weights are not allowed with the svy prefix; see [SVY] svy.
pweights, fweights, and iweights are allowed; see [U] 11.1.6 weight.
collinear and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

noconstant; see [R] Estimation options.

partial specifies that the partial observability model be fit. This particular model commonly has poor
convergence properties, so we recommend that you use the difficult option if you want to fit the
Poirier partial observability model; see [R]Maximize.

This model computes the product of the two dependent variables so that you do not have to replace

each with the product.

offset1(varname), offset2(varname), constraints(constraints); see [R] Estimation options.
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� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), that al-
low for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods

(bootstrap, jackknife); see [R] vce option.

� � �
Reporting �

level(#), lrmodel, nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. These options are

seldom used.

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

The following options are available with biprobit but are not shown in the dialog box:

collinear, coeflegend; see [R] Estimation options.

Remarks and examples
For a good introduction to the bivariate probit models, see Greene (2018, sec. 17.9) and Pindyck and

Rubinfeld (1998). Poirier (1980) explains the partial observability model. Van de Ven and Van Pragg

(1981) explain the probit model with sample selection; see [R] heckprobit for details.

Example 1
We use the data from Pindyck and Rubinfeld (1998, 332). In this dataset, the variables are whether

children attend private school (private), number of years the family has been at the present residence
(years), log of property tax (logptax), log of income (loginc), and whether the head of the household
voted for an increase in property taxes (vote).

We wish to model the bivariate outcomes of whether children attend private school and whether the

head of the household voted for an increase in property tax based on the other covariates.
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. use https://www.stata-press.com/data/r18/school

. biprobit private vote years logptax loginc
Fitting comparison equation 1:
Iteration 0: Log likelihood = -31.967097
Iteration 1: Log likelihood = -31.452424
Iteration 2: Log likelihood = -31.448958
Iteration 3: Log likelihood = -31.448958
Fitting comparison equation 2:
Iteration 0: Log likelihood = -63.036914
Iteration 1: Log likelihood = -58.534843
Iteration 2: Log likelihood = -58.497292
Iteration 3: Log likelihood = -58.497288
Comparison: Log likelihood = -89.946246
Fitting full model:
Iteration 0: Log likelihood = -89.946246
Iteration 1: Log likelihood = -89.258897
Iteration 2: Log likelihood = -89.254028
Iteration 3: Log likelihood = -89.254028
Bivariate probit regression Number of obs = 95

Wald chi2(6) = 9.59
Log likelihood = -89.254028 Prob > chi2 = 0.1431

Coefficient Std. err. z P>|z| [95% conf. interval]

private
years -.0118884 .0256778 -0.46 0.643 -.0622159 .0384391

logptax -.1066962 .6669782 -0.16 0.873 -1.413949 1.200557
loginc .3762037 .5306484 0.71 0.478 -.663848 1.416255
_cons -4.184694 4.837817 -0.86 0.387 -13.66664 5.297253

vote
years -.0168561 .0147834 -1.14 0.254 -.0458309 .0121188

logptax -1.288707 .5752266 -2.24 0.025 -2.416131 -.1612839
loginc .998286 .4403565 2.27 0.023 .1352031 1.861369
_cons -.5360573 4.068509 -0.13 0.895 -8.510188 7.438073

/athrho -.2764525 .2412099 -1.15 0.252 -.7492153 .1963102

rho -.2696186 .2236753 -.6346806 .1938267

LR test of rho=0: chi2(1) = 1.38444 Prob > chi2 = 0.2393

The output shows several iteration logs. The first iteration log corresponds to running the univariate

probit model for the first equation, and the second log corresponds to running the univariate probit for

the second model. If 𝜌 = 0, the sum of the log likelihoods from these two models will equal the log

likelihood of the bivariate probit model; this sum is printed in the iteration log as the comparison log

likelihood.

The final iteration log is for fitting the full bivariate probit model. A likelihood-ratio test of the log

likelihood for this model and the comparison log likelihood is presented at the end of the output. If

we had specified the vce(robust) option, this test would be presented as a Wald test instead of as a

likelihood-ratio test.

We could have fit the same model by using the seemingly unrelated syntax as

. biprobit (private=years logptax loginc) (vote=years logptax loginc)
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Stored results
biprobit stores the following in e():

Scalars

e(N) number of observations

e(k) number of parameters

e(k eq) number of equations in e(b)
e(k aux) number of auxiliary parameters

e(k eq model) number of equations in overall model test

e(k dv) number of dependent variables

e(df m) model degrees of freedom

e(ll) log likelihood

e(ll 0) log likelihood, constant-only model (lrmodel only)
e(ll c) log likelihood, comparison model

e(N clust) number of clusters

e(chi2) 𝜒2

e(chi2 c) 𝜒2 for comparison test

e(p) 𝑝-value for model test
e(rho) 𝜌
e(rank) rank of e(V)
e(rank0) rank of e(V) for constant-only model
e(ic) number of iterations

e(rc) return code

e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) biprobit
e(cmdline) command as typed

e(depvar) names of dependent variables

e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(clustvar) name of cluster variable

e(offset1) offset for first equation

e(offset2) offset for second equation

e(chi2type) Wald or LR; type of model 𝜒2 test

e(chi2 ct) Wald or LR; type of model 𝜒2 test corresponding to e(chi2 c)
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(opt) type of optimization

e(which) max or min; whether optimizer is to perform maximization or minimization

e(ml method) type of ml method
e(user) name of likelihood-evaluator program

e(technique) maximization technique

e(properties) b V
d(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(ilog) iteration log (up to 20 iterations)

e(gradient) gradient vector

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance
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Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas
The log likelihood, ln𝐿, is given by

𝜉𝛽
𝑗 = 𝑥𝑗𝛽 + offset

𝛽
𝑗

𝜉𝛾
𝑗 = 𝑧𝑗𝛾 + offset

𝛾
𝑗

𝑞1𝑗 = {1 if 𝑦1𝑗 ≠ 0
−1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑞2𝑗 = {1 if 𝑦2𝑗 ≠ 0
−1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝜌∗
𝑗 = 𝑞1𝑗𝑞2𝑗𝜌

ln𝐿 =
𝑛

∑
𝑗=1

𝑤𝑗 lnΦ2 (𝑞1𝑗𝜉
𝛽
𝑗 , 𝑞2𝑗𝜉

𝛾
𝑗 , 𝜌∗

𝑗)

where Φ2(⋅) is the cumulative bivariate normal distribution function (with mean [ 0 0 ]′) and 𝑤𝑗 is an

optional weight for observation 𝑗. This derivation assumes that

𝑦∗
1𝑗 = 𝑥𝑗𝛽 + 𝜖1𝑗 + offset

𝛽
𝑗

𝑦∗
2𝑗 = 𝑧𝑗𝛾 + 𝜖2𝑗 + offset

𝛾
𝑗

𝐸(𝜖1) = 𝐸(𝜖2) = 0
Var(𝜖1) = Var(𝜖2) = 1

Cov(𝜖1, 𝜖2) = 𝜌

where 𝑦∗
1𝑗 and 𝑦∗

2𝑗 are the unobserved latent variables; instead, we observe only 𝑦𝑖𝑗 = 1 if 𝑦∗
𝑖𝑗 > 0 and

𝑦𝑖𝑗 = 0 otherwise (for 𝑖 = 1, 2).
In the maximum likelihood estimation, 𝜌 is not directly estimated, but atanh 𝜌 is

atanh 𝜌 = 1
2
ln(1 + 𝜌

1 − 𝜌
)

From the form of the likelihood, if 𝜌 = 0, then the log likelihood for the bivariate probit models is

equal to the sum of the log likelihoods of the two univariate probit models. A likelihood-ratio test may

therefore be performed by comparing the likelihood of the full bivariate model with the sum of the log

likelihoods for the univariate probit models.
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This command supports the Huber/White/sandwich estimator of the variance and its clustered version

using vce(robust) and vce(cluster clustvar), respectively. See [P] robust, particularly Maximum

likelihood estimators and Methods and formulas.

biprobit also supports estimation with survey data. For details on VCEs with survey data, see

[SVY] Variance estimation.
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Postestimation commands predict margins Also see

Postestimation commands
The following postestimation commands are available after biprobit:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters

estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian infor-
mation criteria (AIC, CAIC, AICc, and BIC, respectively)

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estat (svy) postestimation statistics for survey data

estimates cataloging estimation results

etable table of estimation results
∗ hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

∗ lrtest likelihood-ratio test

margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

predict probabilities for joint, marginal, and conditional outcomes

predictnl point estimates, standard errors, testing, and inference for generalized predictions

pwcompare pairwise comparisons of parameters

suest seemingly unrelated estimation

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

∗hausman and lrtest are not appropriate with svy estimation results.
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predict

Description for predict
predict creates a new variable containing predictions such as probabilities, linear predictions, and

standard errors.

Menu for predict
Statistics > Postestimation

Syntax for predict
predict [ type ] newvar [ if ] [ in ] [ , statistic nooffset ]

predict [ type ] stub* [ if ] [ in ], scores

statistic Description

Main

p11 Φ2(x𝑗b, z𝑗g, 𝜌), predicted probability Pr(𝑦1𝑗 = 1, 𝑦2𝑗 = 1); the default
p10 Φ2(x𝑗b, −z𝑗g, −𝜌), predicted probability Pr(𝑦1𝑗 = 1, 𝑦2𝑗 = 0)
p01 Φ2(−x𝑗b, z𝑗g, −𝜌), predicted probability Pr(𝑦1𝑗 = 0, 𝑦2𝑗 = 1)
p00 Φ2(−x𝑗b, −z𝑗g, 𝜌), predicted probability Pr(𝑦1𝑗 = 0, 𝑦2𝑗 = 0)
pmarg1 Φ(x𝑗b), marginal success probability for equation 1
pmarg2 Φ(z𝑗g), marginal success probability for equation 2
pcond1 Φ2(x𝑗b, z𝑗g, 𝜌)/Φ(z𝑗g), conditional probability of success for equation 1
pcond2 Φ2(x𝑗b, z𝑗g, 𝜌)/Φ(x𝑗b), conditional probability of success for equation 2
xb1 x𝑗b, linear prediction for equation 1

xb2 z𝑗g, linear prediction for equation 2

stdp1 standard error of the linear prediction for equation 1

stdp2 standard error of the linear prediction for equation 2

where Φ(⋅) is the standard normal-distribution function and Φ2(⋅) is the bivariate standard
normal-distribution function.

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for the estimation
sample.

Options for predict

� � �
Main �

p11, the default, calculates the bivariate predicted probability Pr(𝑦1𝑗 = 1, 𝑦2𝑗 = 1).
p10 calculates the bivariate predicted probability Pr(𝑦1𝑗 = 1, 𝑦2𝑗 = 0).
p01 calculates the bivariate predicted probability Pr(𝑦1𝑗 = 0, 𝑦2𝑗 = 1).
p00 calculates the bivariate predicted probability Pr(𝑦1𝑗 = 0, 𝑦2𝑗 = 0).



biprobit postestimation — Postestimation tools for biprobit 133

pmarg1 calculates the univariate (marginal) predicted probability of success Pr(𝑦1𝑗 = 1).
pmarg2 calculates the univariate (marginal) predicted probability of success Pr(𝑦2𝑗 = 1).
pcond1 calculates the conditional (on success in equation 2) predicted probability of success

Pr(𝑦1𝑗 = 1, 𝑦2𝑗 = 1)/Pr(𝑦2𝑗 = 1).
pcond2 calculates the conditional (on success in equation 1) predicted probability of success

Pr(𝑦1𝑗 = 1, 𝑦2𝑗 = 1)/Pr(𝑦1𝑗 = 1).
xb1 calculates the probit linear prediction x𝑗b.

xb2 calculates the probit linear prediction z𝑗g.

stdp1 calculates the standard error of the linear prediction for equation 1.

stdp2 calculates the standard error of the linear prediction for equation 2.

nooffset is relevant only if you specified offset1(varname) or offset2(varname) for biprobit.
It modifies the calculations made by predict so that they ignore the offset variables; the linear pre-
dictions are treated as x𝑗b rather than as x𝑗b + offset1j and z𝑗𝛄 rather than as z𝑗𝛄 + offset2j.

scores calculates equation-level score variables.

The first new variable will contain 𝜕ln𝐿/𝜕(x𝑗β).
The second new variable will contain 𝜕ln𝐿/𝜕(z𝑗𝛄).
The third new variable will contain 𝜕ln𝐿/𝜕(atanh 𝜌).
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margins

Description for margins
margins estimates margins of response for probabilities and linear predictions.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist ] [ , options ]
margins [marginlist ] , predict(statistic ...) [ predict(statistic ...) ... ] [ options ]

statistic Description

p11 Φ2(x𝑗b, z𝑗g, 𝜌), predicted probability Pr(𝑦1𝑗 = 1, 𝑦2𝑗 = 1); the default
p10 Φ2(x𝑗b, −z𝑗g, −𝜌), predicted probability Pr(𝑦1𝑗 = 1, 𝑦2𝑗 = 0)
p01 Φ2(−x𝑗b, z𝑗g, −𝜌), predicted probability Pr(𝑦1𝑗 = 0, 𝑦2𝑗 = 1)
p00 Φ2(−x𝑗b, −z𝑗g, 𝜌), predicted probability Pr(𝑦1𝑗 = 0, 𝑦2𝑗 = 0)
pmarg1 Φ(x𝑗b), marginal success probability for equation 1
pmarg2 Φ(z𝑗g), marginal success probability for equation 2
pcond1 Φ2(x𝑗b, z𝑗g, 𝜌)/Φ(z𝑗g), conditional probability of success for equation 1
pcond2 Φ2(x𝑗b, z𝑗g, 𝜌)/Φ(x𝑗b), conditional probability of success for equation 2
xb1 x𝑗b, linear prediction for equation 1

xb2 z𝑗g, linear prediction for equation 2

stdp1 not allowed with margins
stdp2 not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.

Also see
[R] biprobit — Bivariate probit regression

[U] 20 Estimation and postestimation commands
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Description Quick start Menu Syntax Option
Remarks and examples Stored results Methods and formulas Reference Also see

Description
bitest performs exact hypothesis tests for binomial random variables. The null hypothesis is that

the probability of a success on a trial is #𝑝. The total number of trials is the number of nonmissing values

of varname (in bitest) or #𝑁 (in bitesti). The number of observed successes is the number of 1s in
varname (in bitest) or #succ (in bitesti). varname must contain only 0s, 1s, and missing.

bitesti is the immediate form of bitest; see [U] 19 Immediate commands for a general introduc-

tion to immediate commands.

Quick start
Exact test for probability of success (a = 1) is 0.4

bitest a = .4

With additional exact probabilities

bitest a = .4, detail

Exact test that the probability of success is 0.46, given 22 successes in 74 trials

bitesti 74 22 .46

Menu
bitest
Statistics > Summaries, tables, and tests > Classical tests of hypotheses > Binomial probability test

bitesti
Statistics > Summaries, tables, and tests > Classical tests of hypotheses > Binomial probability test calculator
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Syntax
Binomial probability test

bitest varname== #𝑝 [ if ] [ in ] [weight ] [ , detail ]

Immediate form of binomial probability test

bitesti #𝑁 #succ #𝑝 [ , detail ]

by and collect are allowed with bitest; see [U] 11.1.10 Prefix commands.

fweights are allowed with bitest; see [U] 11.1.6 weight.

Option

� � �
Advanced �

detail shows the probability of the observed number of successes, 𝑘obs; the probability of the number
of successes on the opposite tail of the distribution that is used to compute the two-sided 𝑝-value, 𝑘opp;
and the probability of the point next to 𝑘opp. This information can be safely ignored. See the technical
note below for details.

Remarks and examples
Remarks are presented under the following headings:

bitest
bitesti

bitest

Example 1
We test 15 university students for high levels of one measure of visual quickness which, from other

evidence, we believe is present in 30% of the nonuniversity population. Included in our data is quick,
taking on the values 1 (“success”) or 0 (“failure”) depending on the outcome of the test.

. use https://www.stata-press.com/data/r18/quick

. bitest quick == 0.3
Binomial probability test

Variable N Observed k Expected k Assumed p Observed p

quick 15 7 4.5 0.30000 0.46667
Pr(k >= 7) = 0.131143 (one-sided test)
Pr(k <= 7) = 0.949987 (one-sided test)
Pr(k <= 1 or k >= 7) = 0.166410 (two-sided test)

The first part of the output reveals that, assuming a true probability of success of 0.3, the expected

number of successes is 4.5 and that we observed seven. Said differently, the assumed frequency under

the null hypothesis 𝐻0 is 0.3, and the observed frequency is 0.47.
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The first line under the table is a one-sided test; it is the probability of observing seven or more

successes conditional on 𝑝 = 0.3. It is a test of𝐻0: 𝑝 = 0.3 versus the alternative hypothesis𝐻A: 𝑝 > 0.3.

Said in English, the alternative hypothesis is that more than 30% of university students score at high levels

on this test of visual quickness. The 𝑝-value for this hypothesis test is 0.13.
The second line under the table is a one-sided test of 𝐻0 versus the opposite alternative hypothesis

𝐻A: 𝑝 < 0.3.

The third line is the two-sided test. It is a test of 𝐻0 versus the alternative hypothesis 𝐻A: 𝑝 ≠ 0.3.

Technical note
The 𝑝-value of a hypothesis test is the probability (calculated assuming 𝐻0 is true) of observing any

outcome as extreme or more extreme than the observed outcome, with extreme meaning in the direction

of the alternative hypothesis. In example 1, the outcomes 𝑘 = 8, 9, . . . , 15 are clearly “more extreme”

than the observed outcome 𝑘obs = 7 when considering the alternative hypothesis𝐻A: 𝑝 ≠ 0.3. However,

outcomes with only a few successes are also in the direction of this alternative hypothesis. For two-sided

hypotheses, outcomes with 𝑘 successes are considered “as extreme or more extreme” than the observed

outcome 𝑘obs if Pr(𝑘) ≤ Pr(𝑘obs). Here Pr(𝑘 = 0) and Pr(𝑘 = 1) are both less than Pr(𝑘 = 7), so they
are included in the two-sided 𝑝-value.

The detail option allows you to see the probability (assuming that 𝐻0 is true) of the observed suc-

cesses (𝑘 = 7) and the probability of the boundary point (𝑘 = 1) of the opposite tail used for the two-sided

𝑝-value.
. bitest quick == 0.3, detail
Binomial probability test

Variable N Observed k Expected k Assumed p Observed p

quick 15 7 4.5 0.30000 0.46667
Pr(k >= 7) = 0.131143 (one-sided test)
Pr(k <= 7) = 0.949987 (one-sided test)
Pr(k <= 1 or k >= 7) = 0.166410 (two-sided test)
Pr(k == 7) = 0.081130 (observed)
Pr(k == 2) = 0.091560
Pr(k == 1) = 0.030520 (opposite extreme)

Also shown is the probability of the point next to the boundary point. This probability, namely, Pr(𝑘 =
2) = 0.092, is certainly close to the probability of the observed outcome Pr(𝑘 = 7) = 0.081, so

some people might argue that 𝑘 = 2 should be included in the two-sided 𝑝-value. Statisticians (at least
some we know) would reply that the 𝑝-value is a precisely defined concept and that this is an arbitrary
“fuzzification” of its definition. When you compute exact 𝑝-values according to the precise definition of
a 𝑝-value, your type I error is never more than what you say it is—so no one can criticize you for being

anticonservative. Including the point 𝑘 = 2 is being overly conservative because it makes the 𝑝-value
larger yet. But it is your choice; being overly conservative, at least in statistics, is always safe. Know

that bitest and bitesti always keep to the precise definition of a 𝑝-value, so if you wish to include
this extra point, you must do so by hand or by using the r() stored results; see Stored results below.
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bitesti

Example 2
The binomial test is a function of two statistics and one parameter: 𝑁, the number of observations;

𝑘obs, the number of observed successes; and 𝑝, the assumed probability of a success on a trial. For

instance, in a city of 𝑁 = 2,500,000, we observe 𝑘obs = 36 cases of a particular disease when the

population rate for the disease is 𝑝 = 0.00001.

. bitesti 2500000 36 .00001
Binomial probability test

N Observed k Expected k Assumed p Observed p

2,500,000 36 25 0.00001 0.00001
Pr(k >= 36) = 0.022458 (one-sided test)
Pr(k <= 36) = 0.985448 (one-sided test)
Pr(k <= 14 or k >= 36) = 0.034859 (two-sided test)

Stored results
bitest and bitesti store the following in r():

Scalars

r(N) number 𝑁 of trials

r(P p) assumed probability 𝑝 of success

r(k) observed number 𝑘 of successes

r(p l) lower one-sided 𝑝-value
r(p u) upper one-sided 𝑝-value
r(p) two-sided 𝑝-value
r(k opp) opposite extreme 𝑘
r(P k) probability of observed 𝑘 (detail only)
r(P oppk) probability of opposite extreme 𝑘 (detail only)
r(k nopp) 𝑘 next to opposite extreme (detail only)
r(P noppk) probability of 𝑘 next to opposite extreme (detail only)

Methods and formulas
Let 𝑁, 𝑘obs, and 𝑝 be, respectively, the number of observations, the observed number of successes,

and the assumed probability of success on a trial. The expected number of successes is 𝑁𝑝, and the
observed probability of success on a trial is 𝑘obs/𝑁.

bitest and bitesti compute exact 𝑝-values based on the binomial distribution. The upper one-sided
𝑝-value is

Pr(𝑘 ≥ 𝑘obs) =
𝑁

∑
𝑚=𝑘obs

(𝑁
𝑚

) 𝑝𝑚(1 − 𝑝)𝑁−𝑚

The lower one-sided 𝑝-value is

Pr(𝑘 ≤ 𝑘obs) =
𝑘obs

∑
𝑚=0

(𝑁
𝑚

) 𝑝𝑚(1 − 𝑝)𝑁−𝑚
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If 𝑘obs ≥ 𝑁𝑝, the two-sided 𝑝-value is

Pr(𝑘 ≤ 𝑘opp or 𝑘 ≥ 𝑘obs)

where 𝑘opp is the largest number ≤ 𝑁𝑝 such that Pr(𝑘 = 𝑘opp) ≤ Pr(𝑘 = 𝑘obs). If 𝑘obs < 𝑁𝑝, the
two-sided 𝑝-value is

Pr(𝑘 ≤ 𝑘obs or 𝑘 ≥ 𝑘opp)

where 𝑘opp is the smallest number ≥ 𝑁𝑝 such that Pr(𝑘 = 𝑘opp) ≤ Pr(𝑘 = 𝑘obs).

Reference
Hoel, P. G. 1984. Introduction to Mathematical Statistics. 5th ed. New York: Wiley.

Also see
[R] ci — Confidence intervals for means, proportions, and variances

[R] prtest — Tests of proportions



bootstrap — Bootstrap sampling and estimation

Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas References Also see

Description
bootstrap performs nonparametric bootstrap estimation of specified statistics (or expressions) for a

Stata command or a user-written program. Statistics are bootstrapped by resampling the data in memory

with replacement. bootstrap is designed for use with nonestimation commands, functions of coeffi-
cients, or user-written programs. To bootstrap coefficients, we recommend using the vce(bootstrap)
option when allowed by the estimation command.

Quick start
Bootstrap the mean of v1 returned by summarize in r(mean)

bootstrap mean=r(mean): summarize v1

Bootstrap the statistic r(mystat) returned by program myprog1
bootstrap stat=r(mystat): myprog1 v1

Same as above, but use 100 replications

bootstrap stat=r(mystat), reps(100): myprog1 v1

Same as above, and save the results from each replication in mydata.dta
bootstrap stat=r(mystat), reps(100) saving(mydata): myprog1 v1

Bootstrap a difference in coefficients estimated by regress
bootstrap diff=(_b[x2]-_b[x1]): regress y x1 x2 x3

Bootstrap the coefficients stored in e(b) by myprog2
bootstrap _b: myprog2 y x1 x2 x3

Same as above, but with bootstrap samples taken independently within strata identified by svar
bootstrap _b, strata(svar): myprog2 y x1 x2 x3

Resample clusters defined by cvar and create newcvar identifying resampled clusters
bootstrap _b, cluster(cvar) idcluster(newcvar): myprog2 y x1 x2 x3

Menu
Statistics > Resampling > Bootstrap estimation

140



bootstrap — Bootstrap sampling and estimation 141

Syntax
bootstrap exp list [ , options eform option ] : command

options Description

Main

reps(#) perform # bootstrap replications; default is reps(50)

Options

strata(varlist) variables identifying strata

size(#) draw samples of size #; default is N
cluster(varlist) variables identifying resampling clusters

idcluster(newvar) create new cluster ID variable

saving( filename, . . .) save results to filename; save statistics in double precision;

save results to filename every # replications

bca compute acceleration for BC𝑎 confidence intervals

ties adjust BC/BCa confidence intervals for ties

mse use MSE formula for variance estimation

Reporting

level(#) set confidence level; default is level(95)
notable suppress table of results

noheader suppress table header

nolegend suppress table legend

verbose display the full table legend

nodots suppress replication dots

dots(#) display dots every # replications

noisily display any output from command

trace trace command

title(text) use text as title for bootstrap results

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

eform option display coefficient table in exponentiated form

Advanced

nodrop do not drop observations

nowarn do not warn when e(sample) is not set
force do not check for weights or svy commands; seldom used

reject(exp) identify invalid results

seed(#) set random-number seed to #

group(varname) ID variable for groups within cluster()
jackknifeopts(jkopts) options for jackknife; see [R] jackknife
coeflegend display legend instead of statistics
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command is any command that follows standard Stata syntax. weights are not allowed in command.

collect and svy are allowed; see [U] 11.1.10 Prefix commands.

group(), jackknifeopts(), and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

exp list contains (name: elist)
elist

eexp

elist contains newvar = (exp)
(exp)

eexp is specname

[eqno]specname
specname is b

b[]
se
se[]

eqno is # #
name

exp is a standard Stata expression; see [U] 13 Functions and expressions.

Distinguish between [ ], which are to be typed, and [ ], which indicate optional arguments.

Options

� � �
Main �

reps(#) specifies the number of bootstrap replications to be performed. The default is 50. A total

of 50–200 replications are generally adequate for estimates of standard error and thus are adequate

for normal-approximation confidence intervals; see Mooney and Duval (1993, 11). Estimates of

confidence intervals using the percentile or bias-corrected methods typically require 1,000 or more

replications.

� � �
Options �

strata(varlist) specifies the variables that identify strata. If this option is specified, bootstrap samples
are taken independently within each stratum.

size(#) specifies the size of the samples to be drawn. The default is N, meaning to draw samples of

the same size as the data. If specified, # must be less than or equal to the number of observations

within strata().

If cluster() is specified, the default size is the number of clusters in the original dataset. For unbal-
anced clusters, resulting sample sizes will differ from replication to replication. For cluster sampling,

# must be less than or equal to the number of clusters within strata().

cluster(varlist) specifies the variables that identify resampling clusters. If this option is specified, the
sample drawn during each replication is a bootstrap sample of clusters.

idcluster(newvar) creates a new variable containing a unique identifier for each resampled cluster.

This option requires that cluster() also be specified.
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saving( filename[ , suboptions ]) creates a Stata data file (.dta file) consisting of (for each statistic in
exp list) a variable containing the replicates.

double specifies that the results for each replication be saved as doubles, meaning 8-byte reals. By
default, they are saved as floats, meaning 4-byte reals. This option may be used without the
saving() option to compute the variance estimates by using double precision.

every(#) specifies that results be written to disk every #th replication. every() should be specified
only in conjunction with saving() when command takes a long time for each replication. This
option will allow recovery of partial results should some other software crash your computer. See

[P] postfile.

replace specifies that filename be overwritten if it exists. This option does not appear in the dialog
box.

bca specifies that bootstrap estimate the acceleration of each statistic in exp list. This estimate is used

to construct BC𝑎 confidence intervals. Type estat bootstrap, bca to display the BC𝑎 confidence

interval generated by the bootstrap command.

ties specifies that bootstrap adjust for ties in the replicate values when computing the median bias
used to construct BC and BCa confidence intervals.

mse specifies that bootstrap compute the variance by using deviations of the replicates from the ob-

served value of the statistics based on the entire dataset. By default, bootstrap computes the variance
by using deviations from the average of the replicates.

� � �
Reporting �

level(#); see [R] Estimation options.

notable suppresses the display of the table of results.

noheader suppresses the display of the table header. This option implies nolegend. This option may
also be specified when replaying estimation results.

nolegend suppresses the display of the table legend. This option may also be specified when replaying
estimation results.

verbose specifies that the full table legend be displayed. By default, coefficients and standard errors are
not displayed. This option may also be specified when replaying estimation results.

nodots and dots(#) specify whether to display replication dots. By default, one dot character is dis-
played for each successful replication. An “x” is displayed if command returns an error or if any value

in exp list is missing. You can also control whether dots are displayed using set dots; see [R] set.

nodots suppresses display of the replication dots.

dots(#) displays dots every # replications. dots(0) is a synonym for nodots.

noisily specifies that any output from command be displayed. This option implies the nodots option.

trace causes a trace of the execution of command to be displayed. This option implies the noisily
option.

title(text) specifies a title to be displayed above the table of bootstrap results. The default title is

the title stored in e(title) by an estimation command, or if e(title) is not filled in, Bootstrap
results is used. title() may also be specified when replaying estimation results.
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display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

eform option causes the coefficient table to be displayed in exponentiated form; see [R] eform option.

command determines which of the following are allowed (eform(string) and eform are always al-
lowed):

eform option Description

eform(string) use string for the column title

eform exponentiated coefficient, string is exp(b)
hr hazard ratio, string is Haz. ratio
shr subhazard ratio, string is SHR
irr incidence-rate ratio, string is IRR
or odds ratio, string is Odds ratio
rrr relative-risk ratio, string is RRR

� � �
Advanced �

nodrop prevents observations outside e(sample) and the if and in qualifiers from being dropped

before the data are resampled.

nowarn suppresses the display of a warning message when command does not set e(sample).

force suppresses the restriction that command not specify weights or be a svy command. This is a rarely
used option. Use it only if you know what you are doing.

reject(exp) identifies an expression that indicates when results should be rejected. When exp is true,

the resulting values are reset to missing values.

seed(#) sets the random-number seed. Specifying this option is equivalent to typing the following

command prior to calling bootstrap:

. set seed #

The following options are available with bootstrap but are not shown in the dialog box:

group(varname) re-creates varname containing a unique identifier for each group across the resampled
clusters. This option requires that idcluster() also be specified.

This option is useful for maintaining unique group identifiers when sampling clusters with replace-

ment. Suppose that cluster 1 contains 3 groups. If the idcluster(newclid) option is specified

and cluster 1 is sampled multiple times, newclid uniquely identifies each copy of cluster 1. If

group(newgroupid) is also specified, newgroupid uniquely identifies each copy of each group.

jackknifeopts(jkopts) identifies options that are to be passed to jackknife when it computes the

acceleration values for the BC𝑎 confidence intervals; see [R] jackknife. This option requires the bca
option and is mostly used for passing the eclass, rclass, or n(#) option to jackknife.

coeflegend; see [R] Estimation options.



bootstrap — Bootstrap sampling and estimation 145

Remarks and examples
Remarks are presented under the following headings:

Introduction
Using bootstrap
Regression coefficients
Expressions
Combining bootstrap datasets
A note about macros
Achieved significance level
Bootstrapping a ratio
Warning messages and e(sample)
Bootstrapping statistics from data with a complex structure

Introduction
With few assumptions, bootstrapping provides a way of estimating standard errors and other measures

of statistical precision (Efron 1979; Efron and Stein 1981; Efron 1982; Efron and Tibshirani 1986; Efron

and Tibshirani 1993; also see Davison and Hinkley [1997]; Guan [2003]; Mooney and Duval [1993];

Poi [2004]; and Stine [1990]). It provides a way to obtain such measures when no formula is otherwise

available or when available formulas make inappropriate assumptions. Cameron and Trivedi (2022,

chap. 12) discuss many bootstrapping topics and demonstrate how to do them in Stata.

To illustrate bootstrapping, suppose that you have a dataset containing 𝑁 observations and an estima-

tor that, when applied to the data, produces certain statistics. You draw, with replacement,𝑁 observations

from the 𝑁-observation dataset. In this random drawing, some of the original observations will appear

once, some more than once, and some not at all. Using the resampled dataset, you apply the estimator

and collect the statistics. This process is repeated many times; each time, a new random sample is drawn

and the statistics are recalculated.

This process builds a dataset of replicated statistics. From these data, you can calculate the standard

error by using the standard formula for the sample standard deviation

ŝe = { 1
𝑘 − 1

∑( ̂𝜃𝑖 − 𝜃)2}
1/2

where ̂𝜃𝑖 is the statistic calculated using the 𝑖th bootstrap sample and 𝑘 is the number of replications.

This formula gives an estimate of the standard error of the statistic, according to Hall andWilson (1991).

Although the average, 𝜃, of the bootstrapped estimates is used in calculating the standard deviation, it is
not used as the estimated value of the statistic itself. Instead, the original observed value of the statistic,

̂𝜃, is used, meaning the value of the statistic computed using the original 𝑁 observations.

You might think that 𝜃 is a better estimate of the parameter than ̂𝜃, but it is not. If the statistic is biased,
bootstrapping exaggerates the bias. In fact, the bias can be estimated as 𝜃− ̂𝜃 (Efron 1982, 33). Knowing
this, you might be tempted to subtract this estimate of bias from ̂𝜃 to produce an unbiased statistic. The
bootstrap bias estimate has an indeterminate amount of random error, so this unbiased estimator may

have greater mean squared error than the biased estimator (Mooney and Duval 1993; Hinkley 1978).

Thus, ̂𝜃 is the best point estimate of the statistic.
The logic behind the bootstrap is that all measures of precision come from a statistic’s sampling

distribution. When the statistic is estimated on a sample of size 𝑁 from some population, the sampling

distribution tells you the relative frequencies of the values of the statistic. The sampling distribution, in

turn, is determined by the distribution of the population and the formula used to estimate the statistic.



bootstrap — Bootstrap sampling and estimation 146

Sometimes the sampling distribution can be derived analytically. For instance, if the underlying pop-

ulation is distributed normally and you calculate means, the sampling distribution for the mean is also

normal but has a smaller variance than that of the population. In other cases, deriving the sampling dis-

tribution is difficult, such as when means are calculated from nonnormal populations. Sometimes, as in

the case of means, it is not too difficult to derive the sampling distribution as the sample size goes to

infinity (𝑁 → ∞). However, such asymptotic distributions may not perform well when applied to finite

samples.

If you knew the population distribution, you could obtain the sampling distribution by simulation:

you could draw random samples of size 𝑁, calculate the statistic, and make a tally. Bootstrapping does

precisely this, but it uses the observed distribution of the sample in place of the true population distri-

bution. Thus, the bootstrap procedure hinges on the assumption that the observed distribution is a good

estimate of the underlying population distribution. In return, the bootstrap produces an estimate, called

the bootstrap distribution, of the sampling distribution. From this, you can estimate the standard error of

the statistic, produce confidence intervals, etc.

The accuracy with which the bootstrap distribution estimates the sampling distribution depends on the

number of observations in the original sample and the number of replications in the bootstrap. A crudely

estimated sampling distribution is adequate if you are going to extract, say, only a standard error. A

better estimate is needed if you want to use the 2.5th and 97.5th percentiles of the distribution to produce

a 95% confidence interval. To extract many features simultaneously about the distribution, an even better

estimate is needed. Generally, replications on the order of 1,000 produce very good estimates, but only

50–200 replications are needed for estimates of standard errors. See Poi (2004) for a method to choose

the number of bootstrap replications.

Using bootstrap
Typing

. bootstrap exp list, reps(#): command

executes command multiple times, bootstrapping the statistics in exp list by resampling observations

(with replacement) from the data in memory # times. This method is commonly referred to as the non-

parametric bootstrap.

command defines the statistical command to be executed. Most Stata commands and user-written

programs can be usedwith bootstrap, as long as they follow standard Stata syntax; see [U] 11 Language

syntax. If the bca option is supplied, command must also work with jackknife; see [R] jackknife. The
by prefix may not be part of command.

exp list specifies the statistics to be collected from the execution of command. If command changes

the contents in e(b), exp list is optional and defaults to b.

Because bootstrapping is a random process, if you want to be able to reproduce results, set the random-

number seed by specifying the seed(#) option or by typing

. set seed #

where # is a seed of your choosing, before running bootstrap; see [R] set seed.



bootstrap — Bootstrap sampling and estimation 147

Regression coefficients

Example 1
Let’s say that we wish to compute bootstrap estimates for the standard errors of the coefficients from

the following regression:

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. regress mpg weight gear foreign

Source SS df MS Number of obs = 74
F(3, 70) = 46.73

Model 1629.67805 3 543.226016 Prob > F = 0.0000
Residual 813.781411 70 11.6254487 R-squared = 0.6670

Adj R-squared = 0.6527
Total 2443.45946 73 33.4720474 Root MSE = 3.4096

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

weight -.006139 .0007949 -7.72 0.000 -.0077245 -.0045536
gear_ratio 1.457113 1.541286 0.95 0.348 -1.616884 4.53111

foreign -2.221682 1.234961 -1.80 0.076 -4.684735 .2413715
_cons 36.10135 6.285984 5.74 0.000 23.56435 48.63835

To run the bootstrap, we simply prefix the above regression command with the bootstrap command
(specifying its options before the colon separator). We must set the random-number seed before calling

bootstrap.

. bootstrap, reps(100) seed(1): regress mpg weight gear foreign
(running regress on estimation sample)
Bootstrap replications (100): .........10.........20.........30.........40......
> ...50.........60.........70.........80.........90.........100 done
Linear regression Number of obs = 74

Replications = 100
Wald chi2(3) = 167.13
Prob > chi2 = 0.0000
R-squared = 0.6670
Adj R-squared = 0.6527
Root MSE = 3.4096

Observed Bootstrap Normal-based
mpg coefficient std. err. z P>|z| [95% conf. interval]

weight -.006139 .0006063 -10.13 0.000 -.0073273 -.0049507
gear_ratio 1.457113 1.367917 1.07 0.287 -1.223954 4.138181

foreign -2.221682 1.169727 -1.90 0.058 -4.514305 .070942
_cons 36.10135 5.20581 6.93 0.000 25.89815 46.30455

The displayed confidence interval is based on the assumption that the sampling (and hence bootstrap)

distribution is approximately normal (seeMethods and formulas below). Because this confidence interval

is based on the standard error, it is a reasonable estimate if normality is approximately true, even for a

few replications. Other types of confidence intervals are available after bootstrap; see [R] bootstrap
postestimation.



bootstrap — Bootstrap sampling and estimation 148

We could instead supply names to our expressions when we run bootstrap. For example,

. bootstrap diff=(_b[weight]-_b[gear]): regress mpg weight gear foreign

would bootstrap a statistic, named diff, equal to the difference between the coefficients on weight and
gear ratio.

Technical note
regress, like many estimation commands, allows the vce(bootstrap) option. For any estimation

command that allows this option, we recommend using vce(bootstrap) over bootstrap because the
estimation command automatically handles clustering and other model-specific details for you.

Expressions

Example 2
When we use bootstrap, the list of statistics can contain complex expressions, as long as each

expression is enclosed in parentheses. For example, to bootstrap the range of a variable x, we could type
. bootstrap range=(r(max)-r(min)), reps(1000): summarize x

Of course, we could also bootstrap the minimum and maximum and later compute the range.

. bootstrap max=r(max) min=r(min), reps(1000) saving(mybs): summarize x

. use mybs, clear
(bootstrap: summarize)
. generate range = max - min
. bstat range, stat(19.5637501)

The difference between the maximum and minimum of x in the sample is 19.5637501.

The stat() option to bstat specifies the observed value of the statistic (range) to be summarized.
This option is useful when, as shown above, the statistic of ultimate interest is not specified directly to

bootstrap but instead is calculated by other means.

Here the observed values of r(max) and r(min) are stored as characteristics of the dataset created by
bootstrap and are thus available for retrieval by bstat; see [R] bstat. The observed range, however,
is unknown to bstat, so it must be specified.

Combining bootstrap datasets
You can combine two datasets from separate runs of bootstrap by using append (see [D] append)

and then get the bootstrap statistics for the combined datasets by running bstat. The runs must have
been performed independently (having different starting random-number seeds), and the original dataset,

command, and bootstrap statistics must have been all the same.
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A note about macros
In example 2, we executed the command

. bootstrap max=r(max) min=r(min), reps(1000) saving(mybs): summarize x

We did not enclose r(max) and r(min) in single quotes, as we would in most other contexts, because it
would not produce what was intended:

. bootstrap ‘r(max)’ ‘r(min)’, reps(1000) saving(mybs): summarize x

To understand why, note that ‘r(max)’, like any reference to a local macro, will evaluate to a literal
string containing the contents of r(max) before bootstrap is even executed. Typing the command

above would appear to Stata as if we had typed

. bootstrap 14.5441234 33.4393293, reps(1000) saving(mybs): summarize x

Even worse, the current contents of r(min) and r(max) could be empty, producing an even more con-
fusing result. To avoid this outcome, refer to statistics by name (for example, r(max)) and not by value
(for example, ‘r(max)’).

Achieved significance level

Example 3
Suppose that we wish to estimate the achieved significance level (ASL) of a test statistic by using the

bootstrap. ASL is another name for 𝑝-value. An example is

ASL = Pr ( ̂𝜃∗ ≥ ̂𝜃|𝐻0)

for an upper-tailed, alternative hypothesis, where 𝐻0 denotes the null hypothesis,
̂𝜃 is the observed value

of the test statistic, and ̂𝜃∗ is the random variable corresponding to the test statistic, assuming that 𝐻0 is

true.

Here we will compare the mean miles per gallon (mpg) between foreign and domestic cars by using
the two-sample 𝑡 test with unequal variances. The following results indicate the 𝑝-value to be 0.0034
for the two-sided test using Satterthwaite’s approximation. Thus, assuming that mean mpg is the same
for foreign and domestic cars, we would expect to observe a 𝑡 statistic more extreme (in absolute value)
than 3.1797 in about 0.3% of all possible samples of the type that we observed. Thus, we have evidence

to reject the null hypothesis that the means are equal.
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. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. ttest mpg, by(foreign) unequal
Two-sample t test with unequal variances

Group Obs Mean Std. err. Std. dev. [95% conf. interval]

Domestic 52 19.82692 .657777 4.743297 18.50638 21.14747
Foreign 22 24.77273 1.40951 6.611187 21.84149 27.70396

Combined 74 21.2973 .6725511 5.785503 19.9569 22.63769

diff -4.945804 1.555438 -8.120053 -1.771556

diff = mean(Domestic) - mean(Foreign) t = -3.1797
H0: diff = 0 Satterthwaite’s degrees of freedom = 30.5463

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
Pr(T < t) = 0.0017 Pr(|T| > |t|) = 0.0034 Pr(T > t) = 0.9983

We also place the value of the test statistic in a scalar for later use.

. scalar tobs = r(t)

Efron and Tibshirani (1993, 224) describe an alternative to Satterthwaite’s approximation that esti-

mates the ASL by bootstrapping the statistic from the test of equal means. Their idea is to recenter the

two samples to the combined sample mean so that the data now conform to the null hypothesis but that

the variances within the samples remain unchanged.

. summarize mpg, meanonly

. scalar omean = r(mean)

. summarize mpg if foreign==0, meanonly

. replace mpg = mpg - r(mean) + scalar(omean) if foreign==0
variable mpg was int now float
(52 real changes made)
. summarize mpg if foreign==1, meanonly
. replace mpg = mpg - r(mean) + scalar(omean) if foreign==1
(22 real changes made)
. sort foreign
. by foreign: summarize mpg

-> foreign = Domestic
Variable Obs Mean Std. dev. Min Max

mpg 52 21.2973 4.743297 13.47037 35.47038

-> foreign = Foreign
Variable Obs Mean Std. dev. Min Max

mpg 22 21.2973 6.611187 10.52457 37.52457
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Each sample (foreign and domestic) is a stratum, so the bootstrapped samples must have the same

number of foreign and domestic cars as the original dataset. This requirement is facilitated by the

strata() option to bootstrap. By typing the following, we bootstrap the test statistic using the mod-
ified dataset and save the values in bsauto2.dta:

. keep mpg foreign

. set seed 1

. bootstrap t=r(t), rep(1000) strata(foreign) saving(bsauto2) nodots: ttest mpg,
> by(foreign) unequal
warning: ttest does not set e(sample), so no observations will be excluded

from the resampling because of missing values or other reasons. To
exclude observations, press Break, save the data, drop any
observations that are to be excluded, and rerun bootstrap.

Bootstrap results
Number of strata = 2 Number of obs = 74

Replications = 1,000
Command: ttest mpg, by(foreign) unequal

t: r(t)

Observed Bootstrap Normal-based
coefficient std. err. z P>|z| [95% conf. interval]

t 1.75e-07 1.051867 0.00 1.000 -2.061622 2.061622

We can use the data in bsauto2.dta to estimate ASL via the fraction of bootstrap test statistics that
are more extreme than 3.1797.

. use bsauto2, clear
(bootstrap: ttest)
. generate indicator = abs(t)>=abs(scalar(tobs))
. summarize indicator, meanonly
. display ”ASLboot = ” r(mean)
ASLboot = .004

The result is ASLboot = 0.004. Assuming that the mean mpg is the same between foreign and domestic
cars, we would expect to observe a 𝑡 statistic more extreme (in absolute value) than 3.1797 in about

0.4% of all possible samples of the type we observed. This finding is still strong evidence to reject the

hypothesis that the means are equal.
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Bootstrapping a ratio

Example 4
Suppose that we wish to produce a bootstrap estimate of the ratio of two means. Because summarize

stores results for only one variable, we must call summarize twice to compute the means. Actually, we
could use collapse to compute the means in one call, but calling summarize twice is much faster. Thus,
we will have to write a small program that will return the results we want.

We write the program below and save it to a file called ratio.ado (see [U] 17 Ado-files). Our

program takes two variable names as input and saves them in the local macros y (first variable) and
x (second variable). It then computes one statistic: the mean of ‘y’ divided by the mean of ‘x’. This
value is returned as a scalar in r(ratio). ratio also returns the ratio of the number of observations
used to the mean for each variable.

program myratio, rclass
version 18.0 // (or version 18.5 for StataNow)
args y x
confirm var ‘y’
confirm var ‘x’
tempname ymean
summarize ‘y’, meanonly
scalar ‘ymean’ = r(mean)
return scalar n_‘y’ = r(N)
summarize ‘x’, meanonly
return scalar n_‘x’ = r(N)
return scalar ratio = ‘ymean’/r(mean)

end

Remember to test any newly written commands before using them with bootstrap.

. use https://www.stata-press.com/data/r18/auto, clear
(1978 automobile data)
. summarize price

Variable Obs Mean Std. dev. Min Max

price 74 6165.257 2949.496 3291 15906
. scalar mean1=r(mean)
. summarize weight

Variable Obs Mean Std. dev. Min Max

weight 74 3019.459 777.1936 1760 4840
. scalar mean2=r(mean)
. di scalar(mean1)/scalar(mean2)
2.0418412
. myratio price weight
. return list
scalars:

r(ratio) = 2.041841210168278
r(n_weight) = 74
r(n_price) = 74
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The results of running bootstrap on our program are

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. set seed 1
. bootstrap ratio=r(ratio), reps(1000) nowarn nodots: myratio price weight
Bootstrap results Number of obs = 74

Replications = 1,000
Command: myratio price weight
ratio: r(ratio)

Observed Bootstrap Normal-based
coefficient std. err. z P>|z| [95% conf. interval]

ratio 2.041841 .0953559 21.41 0.000 1.854947 2.228735

As mentioned previously, we should specify the saving() option if we wish to save the bootstrap
dataset.

Warning messages and e(sample)
bootstrap is not meant to be used with weighted calculations. bootstrap determines the presence

of weights by parsing the prefixed command with standard syntax. However, commands like stcox and
streg require that weights be specified in stset, and some user commands may allow weights to be

specified by using an option instead of the standard syntax. Both cases pose a problem for bootstrap
because it cannot determine the presence of weights under these circumstances. In these cases, we can

only assume that you know what you are doing.

bootstrap does not know which variables of the dataset in memory matter to the calculation at hand.

You can speed their execution by dropping unnecessary variables because, otherwise, they are included

in each bootstrap sample.

You should thus drop observations with missing values. Leaving in missing values causes no problem

in one sense because all Stata commands deal with missing values gracefully. It does, however, cause a

statistical problem. Bootstrap sampling is defined as drawing, with replacement, samples of size 𝑁 from

a set of 𝑁 observations. bootstrap determines 𝑁 by counting the number of observations in memory,

not counting the number of nonmissing values on the relevant variables. The result is that too many

observations are resampled; the resulting bootstrap samples, because they are drawn from a population

with missing values, are of unequal sizes.

If the number of missing values relative to the sample size is small, this will make little difference. If

you have many missing values, however, you should first drop the observations that contain them.

Example 5
To illustrate, we use the previous example but replace some of the values of price with missing

values. The number of values of price used to compute the mean for each bootstrap is not constant.
This is the purpose of the warning message.
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. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. replace price = . if inlist(_n,1,3,5,7)
(4 real changes made, 4 to missing)
. set seed 1
. bootstrap ratio=r(ratio) np=r(n_price) nw=r(n_weight), reps(100) nodots:
> myratio price weight
warning: myratio does not set e(sample), so no observations will be excluded

from the resampling because of missing values or other reasons. To
exclude observations, press Break, save the data, drop any
observations that are to be excluded, and rerun bootstrap.

Bootstrap results Number of obs = 74
Replications = 100

Command: myratio price weight
ratio: r(ratio)

np: r(n_price)
nw: r(n_weight)

Observed Bootstrap Normal-based
coefficient std. err. z P>|z| [95% conf. interval]

ratio 2.063051 .0981706 21.01 0.000 1.870641 2.255462
np 70 2.071939 33.78 0.000 65.93908 74.06092
nw 74 . . . . .

Bootstrapping statistics from data with a complex structure
Here we describe how to bootstrap statistics from data with a complex structure, for example, lon-

gitudinal or panel data, or matched data. bootstrap, however, is not designed to work with complex
survey data. It is important to include all necessary information about the structure of the data in the

bootstrap syntax to obtain correct bootstrap estimates for standard errors and confidence intervals.

bootstrap offers several options identifying the specifics of the data. These options are strata(),
cluster(), idcluster(), and group(). The usage of strata() was described in example 3 above.
Below, we demonstrate several examples that require specifying the other three options.

Example 6
Suppose that auto.dta in example 1 above are clustered by rep78. We want to obtain bootstrap

estimates for the standard errors of the difference between the coefficients on weight and gear ratio,
taking into account clustering.

We supply the cluster(rep78) option to bootstrap to request resampling from clusters rather than

from observations in the dataset.
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. use https://www.stata-press.com/data/r18/auto, clear
(1978 automobile data)
. keep if rep78<.
(5 observations deleted)
. bootstrap diff=(_b[weight]-_b[gear]), seed(1) cluster(rep78): regress mpg
> weight gear foreign
(running regress on estimation sample)
Bootstrap replications (50): .........10.........20.........30.........40.......
> ..50 done
Linear regression Number of obs = 69

Replications = 50
Command: regress mpg weight gear foreign

diff: _b[weight]-_b[gear]
(Replications based on 5 clusters in rep78)

Observed Bootstrap Normal-based
coefficient std. err. z P>|z| [95% conf. interval]

diff -1.910396 2.538558 -0.75 0.452 -6.885879 3.065087

We drop missing values in rep78 before issuing the command because bootstrap does not allow
missing values in cluster(). See the section above about using bootstrap when variables contain

missing values.

We can also obtain these same results by using the following syntax:

. bootstrap diff=(_b[weight]-_b[gear]), seed(1): regress mpg weight gear foreign,
> vce(cluster rep78)

When only clustered information is provided to the command, bootstrap can pick up the

vce(cluster clustvar) option from the main command and use it to resample from clusters.

Example 7
Suppose now that we have matched data and want to use bootstrap to obtain estimates of the stan-

dard errors of the exponentiated difference between two coefficients (or, equivalently, the ratio of two

odds ratios) estimated by clogit. Consider the example of matched case–control data on birthweight
of infants described in example 2 of [R] clogit.

The infants are paired by being matched on mother’s age. All groups, defined by the pairid variable,
have 1:1 matching. clogit requires that the matching information, pairid, be supplied to the group()
(or, equivalently, strata()) option to be used in computing the parameter estimates. Because the data
are matched, we need to resample from groups rather than from the whole dataset. However, simply

supplying the grouping variable pairid in cluster() is not enough with bootstrap, as it is with
clustered data.
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. use https://www.stata-press.com/data/r18/lowbirth2, clear
(Applied Logistic Regression, Hosmer & Lemeshow)
. bootstrap ratio=exp(_b[smoke]-_b[ptd]), seed(1) cluster(pairid): clogit low
> lwt smoke ptd ht ui i.race, group(pairid)
(running clogit on estimation sample)
Bootstrap replications (50): .........10.........20.........30.........40.......
> ..50 done
Bootstrap results Number of obs = 112

Replications = 50
Command: clogit low lwt smoke ptd ht ui i.race, group(pairid)
ratio: exp(_b[smoke]-_b[ptd])

(Replications based on 56 clusters in pairid)

Observed Bootstrap Normal-based
coefficient std. err. z P>|z| [95% conf. interval]

ratio .6654095 2.043274 0.33 0.745 -3.339334 4.670153

For the syntax above, imagine that the first pair was sampled twice during a replication. Then, the

bootstrap sample has four subjects with pairid equal to one, which clearly violates the original 1:1

matching design. As a result, the estimates of the coefficients obtained from this bootstrap sample will

be incorrect.

Therefore, in addition to resampling from groups, we need to ensure that resampled groups are

uniquely identified in each of the bootstrap samples. The idcluster(newcluster) option is designed
for this. It requests that at each replication bootstrap create the new variable, newcluster, containing

unique identifiers for all resampled groups. Thus, to make sure that the correct matching is preserved

during each replication, we need to specify the grouping variable in cluster(), supply a variable name
to idcluster(), and use this variable as the grouping variable with clogit, as we demonstrate below.

. bootstrap ratio=exp(_b[smoke]-_b[ptd]), seed(1) cluster(pairid)
> idcluster(newpairid): clogit low lwt smoke ptd ht ui i.race, group(newpairid)
(running clogit on estimation sample)
Bootstrap replications (50): .........10.........20.........30.........40.......
> ..50 done
Bootstrap results Number of obs = 112

Replications = 50
Command: clogit low lwt smoke ptd ht ui i.race, group(newpairid)
ratio: exp(_b[smoke]-_b[ptd])

(Replications based on 56 clusters in pairid)

Observed Bootstrap Normal-based
coefficient std. err. z P>|z| [95% conf. interval]

ratio .6654095 1.156848 0.58 0.565 -1.601972 2.932791

Note the difference between the estimates of the bootstrap standard error for the two specifications of

the bootstrap syntax.
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Technical note
Similarly, when you have panel (longitudinal) data, all resampled panels must be unique in each of the

bootstrap samples to obtain correct bootstrap estimates of statistics. Therefore, both cluster(panelvar)
and idcluster(newpanelvar) must be specified with bootstrap, and i(newpanelvar) must be used
with the main command. Moreover, you must clear the current xtset settings by typing xtset, clear
before calling bootstrap.

Example 8
Continuing with our birthweight data, suppose that we have more information about doctors super-

vising women’s pregnancies. We believe that the data on the pairs of infants from the same doctor may

be correlated and want to adjust standard errors for possible correlation among the pairs. clogit offers
the vce(cluster clustvar) option to do this.

Let’s add a cluster variable to our dataset. One thing to keep in mind is that to use vce(cluster
clustvar), groups in group() must be nested within clusters.

. use https://www.stata-press.com/data/r18/lowbirth2, clear
(Applied Logistic Regression, Hosmer & Lemeshow)
. set seed 12345
. by pairid, sort: egen byte doctor = total(int(2*runiform()+1)*(_n == 1))
. clogit low lwt smoke ptd ht ui i.race, group(pairid) vce(cluster doctor)
Iteration 0: Log pseudolikelihood = -26.768693
Iteration 1: Log pseudolikelihood = -25.810476
Iteration 2: Log pseudolikelihood = -25.794296
Iteration 3: Log pseudolikelihood = -25.794271
Iteration 4: Log pseudolikelihood = -25.794271
Conditional (fixed-effects) logistic regression Number of obs = 112

Wald chi2(1) = .
Prob > chi2 = .

Log pseudolikelihood = -25.794271 Pseudo R2 = 0.3355
(Std. err. adjusted for 2 clusters in doctor)

Robust
low Coefficient std. err. z P>|z| [95% conf. interval]

lwt -.0183757 .0020314 -9.05 0.000 -.0223571 -.0143942
smoke 1.400656 .3067525 4.57 0.000 .7994322 2.00188

ptd 1.808009 .2092246 8.64 0.000 1.397936 2.218082
ht 2.361152 1.410341 1.67 0.094 -.4030665 5.12537
ui 1.401929 .9406248 1.49 0.136 -.4416617 3.24552

race
Black .5713643 .9992656 0.57 0.567 -1.38716 2.529889
Other -.0253148 .8453206 -0.03 0.976 -1.682113 1.631483

To obtain correct bootstrap standard errors of the exponentiated difference between the two coeffi-

cients in this example, we need to make sure that both resampled clusters and groups within resampled

clusters are unique in each of the bootstrap samples. To achieve this, bootstrap needs the informa-

tion about clusters in cluster(), the variable name of the new identifier for clusters in idcluster(),
and the information about groups in group(). We demonstrate the corresponding syntax of bootstrap
below.
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. bootstrap ratio=exp(_b[smoke]-_b[ptd]), seed(1) cluster(doctor)
> idcluster(uidoctor) group(pairid): clogit low lwt smoke ptd ht ui i.race,
> group(pairid)
(running clogit on estimation sample)
Bootstrap replications (50): .........10.........20.........30.........40.......
> ..50 done
Bootstrap results Number of obs = 112

Replications = 50
Command: clogit low lwt smoke ptd ht ui i.race, group(pairid)
ratio: exp(_b[smoke]-_b[ptd])

(Replications based on 2 clusters in doctor)

Observed Bootstrap Normal-based
coefficient std. err. z P>|z| [95% conf. interval]

ratio .6654095 .1459234 4.56 0.000 .3794048 .9514142

In the above syntax, although we specify group(pairid) with clogit, it is not the group identifiers
of the original pairid variable that are used to compute parameter estimates from bootstrap samples.

The way bootstrap works is that, at each replication, the clusters defined by doctor are resampled

and the new variable, uidoctor, uniquely identifying resampled clusters is created. After that, another
new variable uniquely identifying the (uidoctor, group) combination is created and renamed to have
the same name as the grouping variable, pairid. This newly defined grouping variable is then used by
clogit to obtain the parameter estimates from this bootstrap sample of clusters. After all replications

are performed, the original values of the grouping variable are restored.

Technical note
The same logic must be used when running bootstrap with commands designed for panel (longi-

tudinal) data that allow specifying the cluster(clustervar) option. To ensure that the combination

of (clustervar, panelvar) values are unique in each of the bootstrap samples, cluster(clustervar),
idcluster(newclustervar), and group(panelvar) must be specified with bootstrap, and i(panel-
var) must be used with the main command.

Technical note
When the bootstrap prefix is used with a user-defined program and when the expression list is b,

bootstrap calls

set coeftabresults off

before entering the replication loop to prevent Stata from performing unnecessary calculations. This

means that, provided option noisily is not specified, estimation commands will not build or post the
coefficient table matrix r(table).

If your program calls an estimation command and needs r(table) to exist to perform properly, then

your program will need to call

set coeftabresults on

before calling other estimation commands.
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� �
Bradley Efron (1938– ) was born in 1938 in Minnesota and studied mathematics and statistics at

Caltech and Stanford; he has lived in northern California since 1960. He has worked on empirical

Bayes, survival analysis, exponential families, bootstrap and jackknife methods, and confidence

intervals, in conjunction with applied work in biostatistics, astronomy, and physics.

Efron is a member of the USNationalAcademy of Sciences and was awarded the USNational Medal

of Science in 2005. He is by any standards one of the world’s leading statisticians: his work ranges

from deep and elegant contributions in theoretical statistics to pathbreaking involvement in a variety

of practical applications.� �
Stored results

bootstrap stores the following in e():

Scalars

e(N) sample size

e(N reps) number of complete replications

e(N misreps) number of incomplete replications

e(N strata) number of strata

e(N clust) number of clusters

e(k eq) number of equations in e(b)
e(k exp) number of standard expressions

e(k eexp) number of extended expressions (i.e., b)
e(k extra) number of extra equations beyond the original ones from e(b)
e(level) confidence level for bootstrap CIs

e(bs version) version for bootstrap results
e(rank) rank of e(V)

Macros

e(cmdname) command name from command

e(cmd) same as e(cmdname) or bootstrap
e(command) command

e(cmdline) command as typed

e(prefix) bootstrap
e(title) title in estimation output

e(strata) strata variables

e(cluster) cluster variables

e(rngstate) random-number state used

e(size) from the size(#) option
e(exp#) expression for the #th statistic

e(ties) ties, if specified
e(mse) mse, if specified
e(vce) bootstrap
e(vcetype) title used to label Std. err.

e(properties) b V
Matrices

e(b) observed statistics

e(b bs) bootstrap estimates

e(reps) number of nonmissing results

e(bias) estimated biases

e(se) estimated standard errors

e(z0) median biases

e(accel) estimated accelerations

e(ci normal) normal-approximation CIs

e(ci percentile) percentile CIs

e(ci bc) bias-corrected CIs
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e(ci bca) bias-corrected and accelerated CIs

e(V) bootstrap variance–covariance matrix

e(V modelbased) model-based variance

When exp list is b, bootstrap will also carry forward most of the results already in e() from com-

mand.

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas
Let ̂𝜃 be the observed value of the statistic, that is, the value of the statistic calculated with the original

dataset. Let 𝑖 = 1, 2, . . . , 𝑘 denote the bootstrap samples, and let ̂𝜃𝑖 be the value of the statistic from the

𝑖th bootstrap sample.
When the mse option is specified, the standard error is estimated as

ŝeMSE = {1
𝑘

𝑘
∑
𝑖=1

( ̂𝜃𝑖 − ̂𝜃)2}
1/2

Otherwise, the standard error is estimated as

ŝe = { 1
𝑘 − 1

𝑘
∑
𝑖=1

( ̂𝜃𝑖 − 𝜃)2}
1/2

where

𝜃 = 1
𝑘

𝑘
∑
𝑖=1

̂𝜃𝑖

The variance–covariance matrix is similarly computed. The bias is estimated as

b̂ias = 𝜃 − ̂𝜃

Confidence intervals with nominal coverage rates 1 − 𝛼 are calculated according to the following

formulas. The normal-approximation method yields the confidence intervals

[ ̂𝜃 − 𝑧1−𝛼/2 ŝe, ̂𝜃 + 𝑧1−𝛼/2 ŝe ]

where 𝑧1−𝛼/2 is the (1−𝛼/2)th quantile of the standard normal distribution. If the mse option is specified,
bootstrapwill report the normal confidence interval using ŝeMSE instead of ŝe. estat bootstrap only
uses ŝe in the normal confidence interval.
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The percentile method yields the confidence intervals

[ 𝜃∗
𝛼/2, 𝜃∗

1−𝛼/2 ]

where 𝜃∗
𝑝 is the 𝑝th quantile (the 100𝑝th percentile) of the bootstrap distribution ( ̂𝜃1, . . . , ̂𝜃𝑘).

Let

𝑧0 = Φ−1{#( ̂𝜃𝑖 ≤ ̂𝜃)/𝑘}

where #( ̂𝜃𝑖 ≤ ̂𝜃) is the number of elements of the bootstrap distribution that are less than or equal to
the observed statistic and Φ is the standard cumulative normal. 𝑧0 is known as the median bias of ̂𝜃.
When the ties option is specified, 𝑧0 is estimated as #( ̂𝜃𝑖 < ̂𝜃) + #( ̂𝜃𝑖 = ̂𝜃)/2, which is the number
of elements of the bootstrap distribution that are less than the observed statistic plus half the number of

elements that are equal to the observed statistic.

Let

𝑎 =
∑𝑛

𝑖=1(𝜃(⋅) − ̂𝜃(𝑖))3

6{∑𝑛
𝑖=1(𝜃(⋅) − ̂𝜃(𝑖))2}3/2

where ̂𝜃(𝑖) are the leave-one-out (jackknife) estimates of
̂𝜃 and 𝜃(⋅) is their mean. This expression is known

as the jackknife estimate of acceleration for ̂𝜃. Let

𝑝1 = Φ {𝑧0 +
𝑧0 − 𝑧1−𝛼/2

1 − 𝑎(𝑧0 − 𝑧1−𝛼/2)
}

𝑝2 = Φ {𝑧0 +
𝑧0 + 𝑧1−𝛼/2

1 − 𝑎(𝑧0 + 𝑧1−𝛼/2)
}

where 𝑧1−𝛼/2 is the (1 − 𝛼/2)th quantile of the normal distribution. The bias-corrected and accelerated
(BC𝑎) method yields confidence intervals

[ 𝜃∗
𝑝1

, 𝜃∗
𝑝2

]

where 𝜃∗
𝑝 is the 𝑝th quantile of the bootstrap distribution as defined previously. The bias-corrected (but

not accelerated) method is a special case of BC𝑎 with 𝑎 = 0.
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Postestimation commands predict margins
estat Remarks and examples Also see

Postestimation commands
The following postestimation command is of special interest after bootstrap:

Command Description

estat bootstrap percentile-based and bias-corrected CI tables

The following standard postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters

estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian infor-
mation criteria (AIC, CAIC, AICc, and BIC, respectively)

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estimates cataloging estimation results

etable table of estimation results

hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

predict predictions, residuals, influence statistics, and other diagnostic measures

predictnl point estimates, standard errors, testing, and inference for generalized predictions

pwcompare pairwise comparisons of parameters

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

The postestimation command is allowed if it may be used after command.

predict
The syntax of predict (and even if predict is allowed) following bootstrap depends upon the

command used with bootstrap. If predict is not allowed, neither is predictnl.

margins
The syntax of margins (and even if margins is allowed) following bootstrap depends upon the

command used with bootstrap.
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estat

Description for estat
estat bootstrap displays a table of confidence intervals for each statistic from a bootstrap analysis.

Menu for estat
Statistics > Postestimation

Syntax for estat
estat bootstrap [ , options ]

options Description

bc bias-corrected CIs; the default

bca bias-corrected and accelerated (BC𝑎) CIs

normal normal-based CIs

percentile percentile CIs

all all available CIs

noheader suppress table header

nolegend suppress table legend

verbose display the full table legend

bc, bca, normal, and percentile may be used together.

Options for estat
bc is the default and displays bias-corrected confidence intervals.

bca displays bias-corrected and accelerated confidence intervals. This option assumes that you also

specified the bca option on the bootstrap prefix command.

normal displays normal approximation confidence intervals.

percentile displays percentile confidence intervals.

all displays all available confidence intervals.

noheader suppresses display of the table header. This option implies nolegend.

nolegend suppresses display of the table legend, which identifies the rows of the table with the expres-
sions they represent.

verbose requests that the full table legend be displayed.
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Remarks and examples

Example 1
The estat bootstrap postestimation command produces a table containing the observed value of

the statistic, an estimate of its bias, the bootstrap standard error, and up to four different confidence

intervals.

If we were interested merely in getting bootstrap standard errors for the model coefficients, we could

use the bootstrap prefix with our estimation command. If we were interested in performing a thor-

ough bootstrap analysis of the model coefficients, we could use the estat bootstrap postestimation
command after fitting the model with the bootstrap prefix.

Using example 1 from [R] bootstrap, we need many more replications for the confidence interval

types other than the normal based, so let’s rerun the estimation command. We will reset the random-

number seed—in case we wish to reproduce the results—increase the number of replications, and save

the bootstrap distribution as a dataset called bsauto.dta.

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. set seed 1
. bootstrap _b, reps(1000) saving(bsauto) bca: regress mpg weight gear foreign
(output omitted )

. estat bootstrap, all
Linear regression Number of obs = 74

Replications = 1000

Observed Bootstrap
mpg coefficient Bias std. err. [95% conf. interval]

weight -.00613903 .0000686 .00065005 -.0074131 -.004865 (N)
-.0073115 -.0048083 (P)
-.0073757 -.0048444 (BC)
-.0075498 -.0049202 (BCa)

gear_ratio 1.4571134 .0297538 1.4471522 -1.379253 4.29348 (N)
-1.18779 4.540121 (P)
-1.185389 4.540121 (BC)
-1.131393 4.58386 (BCa)

foreign -2.2216815 .1029615 1.2606565 -4.692523 .2491598 (N)
-4.513954 .5011647 (P)
-4.608057 .4208305 (BC)
-4.614719 .3925043 (BCa)

_cons 36.101353 -.3122698 5.4303717 25.45802 46.74469 (N)
24.55211 46.0322 (P)
24.90078 46.05819 (BC)
24.99072 46.40419 (BCa)

Key: N: Normal
P: Percentile
BC: Bias-corrected

BCa: Bias-corrected and accelerated

The estimated standard errors here differ from our previous estimates using only 100 replications by,

respectively, 7%, 6%, 8%, and 4%; see example 1 of [R] bootstrap. So much for our advice that 50–200

replications are good enough to estimate standard errors. Well, the more replications the better—that

advice you should believe.
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Which of the methods to compute confidence intervals should we use? If the statistic is unbiased, the

percentile (P) and bias-corrected (BC) methods should give similar results. The bias-corrected confidence

interval will be the same as the percentile confidence interval when the observed value of the statistic is

equal to the median of the bootstrap distribution. Thus, for unbiased statistics, the two methods should

give similar results as the number of replications becomes large. For biased statistics, the bias-corrected

method should yield confidence intervals with better coverage probability (closer to the nominal value

of 95% or whatever was specified) than the percentile method. For statistics with variances that vary as

a function of the parameter of interest, the bias-corrected and accelerated method (BC𝑎) will typically

have better coverage probability than the others.

When the bootstrap distribution is approximately normal, all of thesemethods should give similar con-

fidence intervals as the number of replications becomes large. If we examine the normality of these boot-

strap distributions using, say, the pnorm command (see [R] Diagnostic plots), we see that they closely
follow a normal distribution. In this case, the normal approximation would also be a valid choice. The

chief advantage of the normal-approximation method is that it (supposedly) requires fewer replications

than the other methods. Of course, it should be used only when the bootstrap distribution exhibits nor-

mality.

We can load bsauto.dta containing the bootstrap distributions for these coefficients:

. use bsauto
(bootstrap: regress)
. describe *
Variable Storage Display Value

name type format label Variable label

_b_weight float %9.0g _b[weight]
_b_gear_ratio float %9.0g _b[gear_ratio]
_b_foreign float %9.0g _b[foreign]
_b_cons float %9.0g _b[_cons]

We can now run other commands, such as pnorm, on the bootstrap distributions. As with all stan-
dard estimation commands, we can use the bootstrap command to replay its output table. The default
variable names assigned to the statistics in exp list are bs 1, bs 2, . . . , and each variable is labeled
with the associated expression. The naming convention for the extended expressions b and se is to
prepend b and se , respectively, onto the name of each element of the coefficient vector. Here the

first coefficient is b[weight], so bootstrap named it b weight.

Also see
[R] bootstrap — Bootstrap sampling and estimation

[U] 20 Estimation and postestimation commands
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Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas References Also see

Description
boxcox finds the maximum likelihood estimates of the parameters of the Box–Cox transform, the

coefficients on the independent variables, and the standard deviation of the normally distributed errors.

Any depvar or indepvars to be transformed must be strictly positive. Options can be used to control

which variables remain untransformed.

Quick start
Box–Cox transform of y in a model of y as a function of x1

boxcox y x1

Same as above

boxcox y x1, model(lhsonly)

Likelihood-ratio test for each scale-variant parameter

boxcox y x1, lrtest

Different transform for each side and adding covariates x2 and x3
boxcox y x1 x2 x3, model(theta)

Same transform for both sides, and include x3 as an untransformed variable transformation
boxcox y x1 x2, model(lambda) notrans(x3)

Menu
Statistics > Linear models and related > Box–Cox regression
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Syntax
boxcox depvar [ indepvars ] [ if ] [ in ] [weight ] [ , options ]

options Description

Model

noconstant suppress constant term

model(lhsonly) left-hand-side Box–Cox model; the default

model(rhsonly) right-hand-side Box–Cox model

model(lambda) both sides Box–Cox model with same parameter

model(theta) both sides Box–Cox model with different parameters

notrans(varlist) do not transform specified independent variables

Reporting

level(#) set confidence level; default is level(95)
lrtest perform likelihood-ratio test

Maximization

[ no ]log suppress all iteration logs

nologlr suppress restricted-model lrtest iteration log
maximize options control the maximization process; seldom used

depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.

bootstrap, by, collect, jackknife, rolling, statsby, and xi are allowed; see [U] 11.1.10 Prefix commands.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
fweights and iweights are allowed; see [U] 11.1.6 weight.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

noconstant; see [R] Estimation options.

model( lhsonly | rhsonly | lambda | theta ) specifies which of the four models to fit.
model(lhsonly) applies the Box–Cox transform to depvar only. model(lhsonly) is the default.

model(rhsonly) applies the transform to the indepvars only.

model(lambda) applies the transform to both depvar and indepvars, and they are transformed by the

same parameter.

model(theta) applies the transform to both depvar and indepvars, but this time, each side is trans-

formed by a separate parameter.

notrans(varlist) specifies that the variables in varlist not be transformed when included in the model.
You can specify notrans(varlist) with model(lhsonly), but the results will be the same as speci-
fying the variables in varlist in indepvars.

� � �
Reporting �

level(#); see [R] Estimation options.

lrtest specifies that a likelihood-ratio test of significance be performed and reported for each indepen-
dent variable.
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� � �
Maximization �

log and nolog specify whether to display the iteration log. The iteration log is displayed by default

unless you used set iterlog off to suppress it; see set iterlog in [R] set iter. These options

control the iteration log produced by the full model and, if option lrtest is specified, by the fitted
restricted models.

nologlr suppresses the iteration log when fitting the restricted models required by the lrtest option.

maximize options: iterate(#) and from(init specs); see [R]Maximize.

Model Initial value specification

lhsonly from(𝜃0, copy)
rhsonly from(𝜆0, copy)
lambda from(𝜆0, copy)
theta from(𝜆0 𝜃0, copy)

Remarks and examples
Remarks are presented under the following headings:

Introduction
Theta model
Lambda model
Left-hand-side-only model
Right-hand-side-only model

Introduction
The Box–Cox transform

𝑦(𝜆) = 𝑦𝜆 − 1
𝜆

has been widely used in applied data analysis. Box and Cox (1964) developed the transformation and

argued that the transformation could make the residuals more closely normal and less heteroskedastic.

Cook and Weisberg (1982) discuss the transform in this light. Because the transform embeds several

popular functional forms, it has received some attention as a method for testing functional forms, in

particular,

𝑦(𝜆) =
⎧{
⎨{⎩

𝑦 − 1 if 𝜆 = 1
ln(𝑦) if 𝜆 = 0
1 − 1/𝑦 if 𝜆 = −1

Davidson and MacKinnon (1993) discuss this use of the transform. Atkinson (1985) also gives a good

general treatment.

Theta model
boxcox obtains the maximum likelihood estimates of the parameters for four different models. The

most general of the models, the theta model, is

𝑦(𝜃)
𝑗 = 𝛽0 + 𝛽1𝑥(𝜆)

1𝑗 + 𝛽2𝑥(𝜆)
2𝑗 + · · · + 𝛽𝑘𝑥(𝜆)

𝑘𝑗 + 𝛾1𝑧1𝑗 + 𝛾2𝑧2𝑗 + · · · + 𝛾𝑙𝑧𝑙𝑗 + 𝜖𝑗
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where 𝜖 ∼ 𝑁(0, 𝜎2). Here the dependent variable, 𝑦, is subject to a Box–Cox transform with parameter

𝜃. Each of the indepvars, 𝑥1, 𝑥2, . . . , 𝑥𝑘, is transformed by a Box–Cox transform with parameter 𝜆. The
𝑧1, 𝑧2, . . . , 𝑧𝑙 specified in the notrans() option are independent variables that are not transformed.

Box and Cox (1964) argued that this transformation would leave behind residuals that more closely

follow a normal distribution than those produced by a simple linear regression model. Bear in mind that

the normality of 𝜖 is assumed and that boxcox obtains maximum likelihood estimates of the 𝑘 + 𝑙 + 4

parameters under this assumption. boxcox does not choose𝜆 and 𝜃 so that the residuals are approximately
normally distributed. If you are interested in this type of transformation to normality, see the official Stata

commands lnskew0 and bcskew0 in [R] lnskew0. However, those commands work on a more restrictive
model in which none of the independent variables is transformed.

Example 1
Below, we fit a thetamodel to a nonrepresentative extract of the Second National Health and Nutri-

tion Examination Survey (NHANES II) dataset discussed in McDowell et al. (1981).

We model individual-level diastolic blood pressure (bpdiast) as a function of the transformed vari-
ables body mass index (bmi) and cholesterol level (tcresult) and of the untransformed variables age
(age) and sex (sex).

. use https://www.stata-press.com/data/r18/nhanes2

. boxcox bpdiast bmi tcresult, notrans(age sex) model(theta) lrtest
Fitting comparison model
Iteration 0: Log likelihood = -41178.61
Iteration 1: Log likelihood = -41032.51
Iteration 2: Log likelihood = -41032.488
Iteration 3: Log likelihood = -41032.488
Fitting full model
Iteration 0: Log likelihood = -39928.606
Iteration 1: Log likelihood = -39775.026
Iteration 2: Log likelihood = -39774.987
Iteration 3: Log likelihood = -39774.987
Fitting comparison models for LR tests
Iteration 0: Log likelihood = -39947.144
Iteration 1: Log likelihood = -39934.55
Iteration 2: Log likelihood = -39934.516
Iteration 3: Log likelihood = -39934.516
Iteration 0: Log likelihood = -39906.96
Iteration 1: Log likelihood = -39896.63
Iteration 2: Log likelihood = -39896.629
Iteration 0: Log likelihood = -40464.599
Iteration 1: Log likelihood = -40459.765 (not concave)
Iteration 2: Log likelihood = -40459.747
Iteration 3: Log likelihood = -40459.604
Iteration 4: Log likelihood = -40459.604
Iteration 0: Log likelihood = -39829.859
Iteration 1: Log likelihood = -39815.576
Iteration 2: Log likelihood = -39815.575
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Number of obs = 10,351
LR chi2(5) = 2515.00

Log likelihood = -39774.987 Prob > chi2 = 0.000

bpdiast Coefficient Std. err. z P>|z| [95% conf. interval]

/lambda .6383286 .1577601 4.05 0.000 .3291245 .9475327
/theta .1988197 .0454088 4.38 0.000 .1098201 .2878193

Estimates of scale-variant parameters

Coefficient chi2(df) P>chi2(df) df of chi2

Notrans
age .003811 319.060 0.000 1
sex -.1054887 243.284 0.000 1

_cons 5.835555

Trans
bmi .0872041 1369.235 0.000 1

tcresult .004734 81.177 0.000 1

/sigma .3348267

Test Restricted
H0: log likelihood chi2 Prob > chi2

theta=lambda = -1 -40162.898 775.82 0.000
theta=lambda = 0 -39790.945 31.92 0.000
theta=lambda = 1 -39928.606 307.24 0.000

The output is composed of the iteration logs and three distinct tables. The first table contains a stan-

dard header for a maximum likelihood estimator and a standard output table for the Box–Cox transform

parameters. The second table contains the estimates of the scale-variant parameters. The third table

contains the output from likelihood-ratio tests on three standard functional form specifications.

The right-hand-side and the left-hand-side transformations each add to the regression fit at the 1%

significance level and are both positive but less than 1. All the variables have significant impacts on

diastolic blood pressure, bpdiast. As expected, the transformed variables—the body mass index, bmi,
and cholesterol level, tcresult—contribute to higher blood pressure. The last output table shows that

the linear, multiplicative inverse, and log specifications are strongly rejected.

Technical note
Spitzer (1984) showed that the Wald tests of the joint significance of the coefficients of the right-

hand-side variables, either transformed or untransformed, are not invariant to changes in the scale of

the transformed dependent variable. Davidson and MacKinnon (1993) also discuss this point. This

problem demonstrates thatWald statistics can be manipulated in nonlinear models. Lafontaine andWhite

(1986) analyze this problem numerically, and Phillips and Park (1988) analyze it by using Edgeworth

expansions. See Drukker (2000) for a more detailed discussion of this issue. Because the parameter

estimates and their Wald tests are not scale invariant, no Wald tests or confidence intervals are reported
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for these parameters. However, when the lrtest option is specified, likelihood-ratio tests are performed
and reported. Schlesselman (1971) showed that, if a constant is included in the model, the parameter

estimates of the Box–Cox transforms are scale invariant. For this reason, we strongly recommend that

you not use the noconstant option.

The lrtest option does not perform a likelihood-ratio test on the constant, so no value for this statistic

is reported. Unless the data are properly scaled, the restricted model does not often converge. For this

reason, no likelihood-ratio test on the constant is performed by the lrtest option. However, if you have
a special interest in performing this test, you can do so by fitting the constrained model separately. If

problems with convergence are encountered, rescaling the data by their means may help.

Lambda model
A less general model than the one above is called the lambda model. It specifies that the same pa-

rameter be used in both the left-hand-side and right-hand-side transformations. Specifically,

𝑦(𝜆)
𝑗 = 𝛽0 + 𝛽1𝑥(𝜆)

1𝑗 + 𝛽2𝑥(𝜆)
2𝑗 + · · · + 𝛽𝑘𝑥(𝜆)

𝑘𝑗 + 𝛾1𝑧1𝑗 + 𝛾2𝑧2𝑗 + · · · + 𝛾𝑙𝑧𝑙𝑗 + 𝜖𝑗

where 𝜖 ∼ 𝑁(0, 𝜎2). Here the depvar variable, 𝑦, and each of the indepvars, 𝑥1, 𝑥2, . . . , 𝑥𝑘, is trans-

formed by a Box–Cox transformwith the common parameter 𝜆. Again, the 𝑧1, 𝑧2, . . . , 𝑧𝑙 are independent

variables that are not transformed.

Left-hand-side-only model
Evenmore restrictive than a common transformation parameter is transforming the dependent variable

only. Because the dependent variable is on the left-hand side of the equation, this model is known as the

lhsonly model. Here you are estimating the parameters of the model

𝑦(𝜃)
𝑗 = 𝛽0 + 𝛽1𝑥1𝑗 + 𝛽2𝑥2𝑗 + · · · + 𝛽𝑘𝑥𝑘𝑗 + 𝜖𝑗

where 𝜖 ∼ 𝑁(0, 𝜎2). Here only the depvar, 𝑦, is transformed by a Box–Cox transformwith the parameter

𝜃.

Example 2
In this example, we model the transform of diastolic blood pressure as a linear combination of the

untransformed body mass index, cholesterol level, age, and sex.
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. boxcox bpdiast bmi tcresult age sex, model(lhsonly) lrtest nolog nologlr
Fitting comparison model
Fitting full model
Fitting comparison models for LR tests

Number of obs = 10,351
LR chi2(4) = 2509.56

Log likelihood = -39777.709 Prob > chi2 = 0.000

bpdiast Coefficient Std. err. z P>|z| [95% conf. interval]

/theta .2073268 .0452895 4.58 0.000 .1185611 .2960926

Estimates of scale-variant parameters

Coefficient chi2(df) P>chi2(df) df of chi2

Notrans
bmi .0272628 1375.841 0.000 1

tcresult .0006929 82.380 0.000 1
age .0040141 334.117 0.000 1
sex -.1122274 263.219 0.000 1

_cons 6.302855

/sigma .3476615

Test Restricted LR statistic
H0: log likelihood chi2 Prob > chi2

theta = -1 -40146.678 737.94 0.000
theta = 0 -39788.241 21.06 0.000
theta = 1 -39928.606 301.79 0.000

The maximum likelihood estimate of the transformation parameter for this model is positive and

significant. Once again, all the scale-variant parameters are significant, and we find a positive impact of

body mass index (bmi) and cholesterol levels (tcresult) on the transformed diastolic blood pressure
(bpdiast). This model rejects the linear, multiplicative inverse, and log specifications.

Right-hand-side-only model
The fourth model leaves the depvar alone and transforms a subset of the indepvars using the parameter

𝜆. This is the rhsonly model. In this model, the depvar, 𝑦, is given by

𝑦𝑗 = 𝛽0 + 𝛽1𝑥(𝜆)
1𝑗 + 𝛽2𝑥(𝜆)

2𝑗 + · · · + 𝛽𝑘𝑥(𝜆)
𝑘𝑗 + 𝛾1𝑧1𝑗 + 𝛾2𝑧2𝑗 + · · · + 𝛾𝑙𝑧𝑙𝑗 + 𝜖𝑗

where 𝜖 ∼ 𝑁(0, 𝜎2). Here each of the indepvars, 𝑥1, 𝑥2, . . . , 𝑥𝑘, is transformed by a Box–Cox transform

with the parameter 𝜆. Again, the 𝑧1, 𝑧2, . . . , 𝑧𝑙 are independent variables that are not transformed.
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Example 3
Now, we consider a rhsonly model in which the regressors sex and age are not transformed.

. boxcox bpdiast bmi tcresult, notrans(sex age) model(rhsonly) lrtest nolog
> nologlr
Fitting full model
Fitting comparison models for LR tests

Number of obs = 10,351
LR chi2(5) = 2500.79

Log likelihood = -39928.212 Prob > chi2 = 0.000

bpdiast Coefficient Std. err. z P>|z| [95% conf. interval]

/lambda .8658841 .1522387 5.69 0.000 .5675018 1.164266

Estimates of scale-variant parameters

Coefficient chi2(df) P>chi2(df) df of chi2

Notrans
sex -3.544042 235.020 0.000 1
age .128809 311.754 0.000 1

_cons 50.01498

Trans
bmi 1.418215 1396.709 0.000 1

tcresult .0462964 78.500 0.000 1

/sigma 11.4557

Test Restricted LR statistic
H0: log likelihood chi2 Prob > chi2

lambda = -1 -39989.331 122.24 0.000
lambda = 0 -39942.945 29.47 0.000
lambda = 1 -39928.606 0.79 0.375

The maximum likelihood estimate of the transformation parameter in this model is positive and sig-

nificant at the 1% level. The transformed bmi coefficient behaves as expected, and the remaining scale-
variant parameters are significant at the 1% level. This model rejects the multiplicative inverse and log

specifications strongly. However, we cannot reject the hypothesis that the model is linear.
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Stored results
boxcox stores the following in e():

Scalars

e(N) number of observations

e(ll) log likelihood

e(chi2) LR statistic of full vs. comparison

e(df m) full model degrees of freedom

e(ll0) log likelihood of the restricted model

e(df r) restricted model degrees of freedom

e(ll t1) log likelihood of model 𝜆 = 𝜃 = 1
e(chi2 t1) LR of 𝜆 = 𝜃 = 1 vs. full model

e(p t1) 𝑝-value of 𝜆 = 𝜃 = 1 vs. full model

e(ll tm1) log likelihood of model 𝜆 = 𝜃 = −1
e(chi2 tm1) LR of 𝜆 = 𝜃 = −1 vs. full model

e(p tm1) 𝑝-value of 𝜆 = 𝜃 = −1 vs. full model

e(ll t0) log likelihood of model 𝜆 = 𝜃 = 0
e(chi2 t0) LR of 𝜆 = 𝜃 = 0 vs. full model

e(p t0) 𝑝-value of 𝜆 = 𝜃 = 0 vs. full model

e(rank) rank of e(V)
e(ic) number of iterations

e(rc) return code

Macros

e(cmd) boxcox
e(cmdline) command as typed

e(depvar) name of dependent variable

e(model) lhsonly, rhsonly, lambda, or theta
e(wtype) weight type

e(wexp) weight expression

e(ntrans) yes if untransformed indepvars
e(chi2type) LR; type of model 𝜒2 test

e(lrtest) lrtest, if requested
e(properties) b V
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of the estimators (see note below)

e(pm) 𝑝-values for LR tests on indepvars

e(df) degrees of freedom of LR tests on indepvars

e(chi2m) LR statistics for tests on indepvars

Functions

e(sample) marks estimation sample

e(V) contains all zeros, except for the elements that correspond to the parameters of the Box–Cox
transform.
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Methods and formulas
In the internal computations,

𝑦(𝜆) =
⎧{
⎨{⎩

𝑦𝜆−1
𝜆 if |𝜆| > 10−10

ln(𝑦) otherwise

The unconcentrated log likelihood for the theta model is

ln𝐿 = (−𝑁
2

) { ln(2𝜋) + ln(𝜎2)} + (𝜃 − 1)
𝑁

∑
𝑖=1

ln(𝑦𝑖) − ( 1
2𝜎2 ) SSR

where

SSR =
𝑁

∑
𝑖=1

(𝑦(𝜃)
𝑖 − 𝛽0 + 𝛽1𝑥(𝜆)

𝑖1 + 𝛽2𝑥(𝜆)
𝑖2 + · · · + 𝛽𝑘𝑥(𝜆)

𝑖𝑘 + 𝛾1𝑧𝑖1 + 𝛾2𝑧𝑖2 + · · · + 𝛾𝑙𝑧𝑖𝑙)2

Writing the SSR in matrix form,

SSR = (y(θ) − X(λ)b′ − Zg′)′(y(θ) − X(λ)b′ − Zg′)

where y(θ) is an 𝑁 × 1 vector of elementwise transformed data, X(λ) is an 𝑁 × 𝑘 matrix of elementwise
transformed data, Z is an 𝑁 × 𝑙 matrix of untransformed data, b is a 1 × 𝑘 vector of coefficients, and g

is a 1 × 𝑙 vector of coefficients. Letting

Wλ = (X(λ) Z)

be the horizontal concatenation of X(λ) and Z and

d′ = (b
′

g′)

be the vertical concatenation of the coefficients yields

SSR = (y(θ) − Wλd
′)′(y(θ) − Wλd

′)

For given values of 𝜆 and 𝜃, the solutions for d′ and 𝜎2 are

d̂′ = (𝑊 ′
𝜆𝑊𝜆)−1𝑊 ′

𝜆𝑦(𝜃)

and

�̂� 2 = 1
𝑁

(y(𝜃) − 𝑊𝜆
̂𝑑′)

′
(𝑦(𝜃) − 𝑊𝜆

̂𝑑′)

Substituting these solutions into the log-likelihood function yields the concentrated log-likelihood func-

tion

ln𝐿𝑐 = (−𝑁
2

) { ln(2𝜋) + 1 + ln(�̂� 2)} + (𝜃 − 1)
𝑁

∑
𝑖=1

ln(𝑦𝑖)



boxcox — Box–Cox regression models 177

Similar calculations yield the concentrated log-likelihood function for the lambda model,

ln𝐿𝑐 = (−𝑁
2

) { ln(2𝜋) + 1 + ln(�̂� 2)} + (𝜆 − 1)
𝑁

∑
𝑖=1

ln(𝑦𝑖)

the lhsonly model,

ln𝐿𝑐 = (−𝑁
2

) { ln(2𝜋) + 1 + ln(�̂� 2)} + (𝜃 − 1)
𝑁

∑
𝑖=1

ln(𝑦𝑖)

and the rhsonly model,

ln𝐿𝑐 = (−𝑁
2

) { ln(2𝜋) + 1 + ln(�̂� 2)}

where �̂� 2 is specific to each model and is defined analogously to that in the theta model.
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Postestimation commands predict Remarks and examples Methods and formulas
References Also see

Postestimation commands
The following postestimation commands are available after boxcox:

Command Description

estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian infor-
mation criteria (AIC, CAIC, AICc, and BIC, respectively)

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estimates cataloging estimation results

etable table of estimation results

hausman Hausman’s specification test
∗ lincom point estimates, standard errors, testing, and inference for linear combinations of

parameters
∗ nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of parameters

predict predictions and residuals
∗ test Wald tests of simple and composite linear hypotheses
∗ testnl Wald tests of nonlinear hypotheses

∗Inference is valid only for hypotheses concerning 𝜆 and 𝜃.

178
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predict

Description for predict
predict creates a new variable containing predictions such as predicted values and residuals.

Menu for predict
Statistics > Postestimation

Syntax for predict
predict [ type ] newvar [ if ] [ in ] [ , statistic options ]

statistic Description

Main

yhat predicted value of 𝑦; the default
residuals residuals

options Description

Options

smearing compute statistic using smearing method; the default

btransform compute statistic using back-transform method

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted
only for the estimation sample.

Options for predict

� � �
Main �

yhat, the default, calculates the predicted value of the dependent variable.

residuals calculates the residuals, that is, the observed value minus the predicted value.

� � �
Options �

smearing calculates the statistics yhat and residuals using the smearing method proposed by Duan
(1983) (see Methods and formulas for a description of this method). smearing is the default.

btransform calculates the statistics yhat and residuals using the back-transform method (see Meth-

ods and formulas for a description of this method).
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Remarks and examples
Below, we present two examples that illustrate how to use the smearing and btransform options.

Example 1: Predictions with the smearing option
In this example, we calculate the predicted values of diastolic blood pressure, bpdiast, that arise

from the theta model calculated in example 1 of [R] boxcox.

. use https://www.stata-press.com/data/r18/nhanes2

. boxcox bpdiast bmi tcresult, notrans(age sex) model(theta) lrtest
(output omitted )

. predict yhat
(statistic yhat and option smearing are assumed)

In the expression above, yhat is the name we gave to the estimates of the conditional expectation.
Given that we did not specify any statistic or option, the corresponding defaults yhat and smearing
were assumed.

As the summary table below illustrates, the mean of the dependent variable is close to the mean of

the predicted value yhat. This indicates that the theta model does a good job approximating the true
value of diastolic blood pressure, bpdiast.

. summarize bpdiast yhat
Variable Obs Mean Std. dev. Min Max

bpdiast 10,351 81.715 12.92722 35 150
yhat 10,351 81.71406 5.983486 66.93709 110.5283

Similarly, we could have asked that residuals be calculated. Here we again use the default smearing
option:

. predict resid, residuals
(option smearing assumed to compute residuals)

Example 2: Predictions with the btransform option
In this example, we illustrate the tradeoffs involved by using the btransform option as opposed to

the default smearing option. Continuing with example 1, we compute the predicted values using the
back-transform method.

. predict yhatb, btransform
(statistic yhat assumed)

We now compute the predicted values using the smearing option and summarize both computations.

. predict yhats
(statistic yhat and option smearing are assumed)
. summarize bpdiast yhats yhatb

Variable Obs Mean Std. dev. Min Max

bpdiast 10,351 81.715 12.92722 35 150
yhats 10,351 81.71406 5.983486 66.93709 110.5283
yhatb 10,351 81.08018 5.95549 66.37479 109.7671
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As can be seen from the mean and the standard deviation of the summary table, the predicted values

using the back-transform method give biased estimates but are less variable than those coming from the

smearing method. However, the efficiency loss is small compared with the bias reduction.

Technical note
boxcox estimates variances only for the 𝜆 and 𝜃 parameters (see the technical note in [R] boxcox), so

the extent to which postestimation commands can be used following boxcox is limited. Formulas used
in lincom, nlcom, test, and testnl are dependent on the estimated variances. Therefore, the use of
these commands is limited and generally applicable only to inferences on the 𝜆 and 𝜃 coefficients.

Methods and formulas
The computation of the expected value of the dependent variable conditional on the regressors for the

Box–Cox model does not follow the logic of the standard linear regression model because the random

disturbance does not vanish from the conditional expectation and must be accounted for. To show this,

we will revisit the lhsonly model described by

𝑦(𝜆)
𝑗 = 𝛽0 + 𝛽1𝑥1𝑗 + 𝛽2𝑥2𝑗 + · · · + 𝛽(𝑘−1)𝑥(𝑘−1)𝑗 + 𝜖𝑗

where

𝑦(𝜆) = 𝑦𝜆 − 1
𝜆

and

𝑦(𝜆) =
⎧{
⎨{⎩

𝑦 − 1 if 𝜆 = 1
ln(𝑦) if 𝜆 = 0
1 − 1/𝑦 if 𝜆 = −1

For the presentation below, let y(𝜆) be an 𝑁 × 1 vector of elementwise transformed data, X be an

𝑁 × 𝑘 matrix of regressors, β be a 𝑘 × 1 vector of parameters, and ι be an 𝑛 × 1 vector of ones.

If we were interested in 𝐸(y(𝜆)|X), then the conventional logic would follow, and we would obtain
predictions as 𝑦(�̂�) = Xβ̂, where β̂ is the estimate of β. However, to estimate the conditional expectation
of y, we need to isolate it on the left-hand side of the model. In the case of the lhsonlymodel, this yields

y = {𝜆(Xβ̂ + ε) + ι}
1/𝜆

The conditional expectation is then defined by

𝐸 (y|X) = ∫ {𝜆(Xβ + ε) + ι}1/𝜆 𝑑𝐹(ε|X)

In the expression above, 𝑑𝐹(ε|X) corresponds to the cdf of ε conditional on the regressors. It is also
clear that the random disturbance does not vanish.

To address this issue, the default methodology used by predict computes this integral using the

smearing method proposed by Duan (1983) to implement a two-step estimator, as was suggested by

Abrevaya (2002).
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In the first step, we get an estimate for ε defined as

̂ε = y(�̂�) − Xβ̂

In the second step, for each 𝑗 we compute our predicted values as the sum:

̂𝑦𝑗 = 1
𝑁

𝑁
∑
𝑖=1

{�̂�(x𝑗β̂ + ̂𝜖𝑖) + 1}1/�̂�

In the expression above, x𝑗 is the 𝑗th row of the matrix X (in other words, the values of the covariates

for individual 𝑗), and ̂𝜖𝑖 is the residual for individual 𝑖. The result of this summation gives us the condi-
tional expectation of the dependent variable for individual 𝑗. Given that this operation is performed for
each individual 𝑗, the methodology is computationally intensive.

The back-transform method can be understood as a naïve estimate that disregards the random distur-

bance. The predictions using this approach are given by

̂𝑦𝑗 = (�̂�x𝑗β̂ + 1)
1/�̂�
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brier — Brier score decomposition

Description Quick start Menu Syntax
Option Remarks and examples Stored results Methods and formulas
Acknowledgment References Also see

Description
brier computes theYates, Sanders, and Murphy decompositions of the Brier mean probability score.

The Brier score is a measure of disagreement between the observed outcome and a forecast (prediction).

Quick start
Brier score decomposition for binary outcome y and predicted probability pvar

brier y pvar

Same as above, but use 5 groups rather than 10 to compute the decomposition

brier y pvar, group(5)

Menu
Statistics > Epidemiology and related > Other > Brier score decomposition

Syntax
brier outcomevar forecastvar [ if ] [ in ] [ , group(#) ]

outcomevar is a binary variable indicating the outcome of the experiment.

forecastvar is the corresponding probability of a positive outcome and must be between 0 and 1.

by and collect are allowed; see [U] 11.1.10 Prefix commands.

Option

� � �
Main �

group(#) specifies the number of groups that will be used to compute the decomposition. group(10)
is the default.

Remarks and examples
You have a binary (0/1) response and a formula that predicts the corresponding probabilities of having

observed a positive outcome (1). If the probabilities were obtained from logistic regression, there are

many methods that assess goodness of fit (see, for instance, [R] estat gof). However, the probabilities

might be computed from a published formula or from a model fit on another sample, both completely

unrelated to the data at hand, or perhaps the forecasts are not from a formula at all. In any case, you

now have a test dataset consisting of the forecast probabilities and observed outcomes. Your test dataset

might, for instance, record predictions made by a meteorologist on the probability of rain along with a

variable recording whether it actually rained.

183
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The Brier score is an aggregate measure of disagreement between the observed outcome and a pre-

diction—the average squared error difference. The Brier score decomposition is a partition of the Brier

score into components that suggest reasons for discrepancy. These reasons fall roughly into three groups:

1) lack of overall calibration between the average predicted probability and the actual probability of the

event in your data, 2) misfit of the data in groups defined within your sample, and 3) inability to match

actual 0 and 1 responses.

Problem 1 refers to simply overstating or understating the probabilities.

Problem 2 refers to what is standardly called a goodness-of-fit test: the data are grouped, and the predic-

tions for the group are compared with the outcomes.

Problem 3 refers to an individual-level measure of fit. Imagine that the grouped outcomes are predicted

on average correctly but that within the group, the outcomes are poorly predicted.

Using logit or probit analysis to fit your data will guarantee that there is no lack of fit due to problem 1,

and a good model fitter will be able to avoid problem 2. Problem 3 is inherent in any prediction exercise.

Example 1
We have data on the outcomes of 20 basketball games (win) and the probability of victory predicted

by a local pundit (for).

. use https://www.stata-press.com/data/r18/bball

. summarize win for
Variable Obs Mean Std. dev. Min Max

win 20 .65 .4893605 0 1
for 20 .4785 .2147526 .15 .9

. brier win for, group(5)
Mean probability of outcome 0.6500

of forecast 0.4785
Correlation 0.5907
ROC area 0.8791 p = 0.0030
Brier score 0.1828
Spiegelhalter’s z-statistic -0.6339 p = 0.7369
Sanders-modified Brier score 0.1861
Sanders resolution 0.1400
Outcome index variance 0.2275
Murphy resolution 0.0875
Reliability-in-the-small 0.0461
Forecast variance 0.0438
Excess forecast variance 0.0285
Minimum forecast variance 0.0153
Reliability-in-the-large 0.0294
2*Forecast-Outcome-Covar 0.1179

The mean probabilities of forecast and outcome are simply the mean of the predicted probabilities

and the actual outcomes (wins/losses). The correlation is the product-moment correlation between them.

The Brier score measures the total difference between the event (winning) and the forecast probability

of that event as an average squared difference. As a benchmark, a perfect forecaster would have a Brier

score of 0, a perfect misforecaster (predicts probability of win is 1 when loses and 0 when wins) would

have a Brier score of 1, and a fence sitter (forecasts every game as 50/50) would have a Brier score of

0.25. Our pundit is doing reasonably well.
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Spiegelhalter’s 𝑧 statistic is a standard normal test statistic for testing whether an individual Brier

score is extreme. The ROC area is the area under the receiver operating curve, and the associated test is

a test of whether it is greater than 0.5. The more accurate the forecast probabilities, the larger the ROC

area.

The Sanders-modified Brier score measures the difference between a grouped forecast measure and

the event, where the data are grouped by sorting the sample on the forecast and dividing it into approxi-

mately equally sized groups. The difference between the modified and the unmodified score is typically

minimal. For this and the other statistics that require grouping—the Sanders and Murphy resolutions

and reliability-in-the-small—to be well defined, group boundaries are chosen so as not to allocate ob-

servations with the same forecast probability to different groups. This task is done by grouping on the

forecast using xtile, n(#), with # being the number of groups; see [D] pctile.

The Sanders resolution measures error that arises from statistical considerations in evaluating the

forecast for a group. A group with all positive or all negative outcomes would have a Sanders resolution

of 0; it would most certainly be feasible to predict exactly what happened to each member of the group.

If the group had 40% positive responses, on the other hand, a forecast that assigned 𝑝 = 0.4 to each

member of the group would be a good one, and yet, there would be “errors” in the squared difference

sense. The “error” would be (1 − 0.4)2 or (0 − 0.4)2 for each member. The Sanders resolution is the

average across groups of such “expected” errors. The 0.1400 value in our data from an overall Brier

score of 0.1828 or 0.1861 suggests that a substantial portion of the “error” in our data is inherent.

Outcome index variance is just the variance of the outcome variable. This is the expected value of the

Brier score if all the forecast probabilities were merely the average observed outcome. Remember that

a fence sitter has an expected Brier score of 0.25; a smarter fence sitter (who would guess 𝑝 = 0.65 for

these data) would have a Brier score of 0.2275.

The Murphy resolution measures the variation in the average outcomes across groups. If all groups

have the same frequency of positive outcomes, little information in any forecast is possible, and the

Murphy resolution is 0. If groups differ markedly, the Murphy resolution is as large as 0.25. The 0.0875

means that there is some variation but not a lot, and 0.0875 is probably higher than in most real cases. If

you had groups in your data that varied between 40% and 60% positive outcomes, the Murphy resolution

would be 0.01; between 30% and 70%, it would be 0.04.

Reliability-in-the-small measures the error that comes from the average forecast within group not

measuring the average outcome within group—a classical goodness-of-fit measure, with 0 meaning a

perfect fit and 1 meaning a complete lack of fit. The calculated value of 0.0461 shows some amount of

lack of fit. Remember, the number is squared, and we are saying that probabilities could be just more

than
√
0.0461 = 0.215 or 21.5% off.

Forecast variance measures the amount of discrimination being attempted—that is, the variation in

the forecasted probabilities. A small number indicates a fence sitter making constant predictions. If the

forecasts were from a logistic regression model, forecast variance would tend to increase with the amount

of information available. Our pundit shows considerable forecast variance of 0.0438 (standard deviation√
0.0438 = 0.2093), which is in line with the reliability-in-the-small, suggesting that the forecaster is

attempting as much variation as is available in these data.

Excess forecast variance is the amount of actual forecast variance over a theoretical minimum. The

theoretical minimum—called the minimum forecast variance—corresponds to forecasts of 𝑝0 for obser-

vations ultimately observed to be negative responses and 𝑝1 for observations ultimately observed to be

positive outcomes. Moreover, 𝑝0 and 𝑝1 are set to the average forecasts made for the ultimate negative

and positive outcomes. These predictions would be just as good as the predictions the forecaster did
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make, and any variation in the actual forecast probabilities above this is useless. If this number is large,

above 1%–2%, then the forecaster may be attempting more than is possible. The 0.0285 in our data

suggests this possibility.

Reliability-in-the-largemeasures the discrepancy between themean forecast and the observed fraction

of positive outcomes. This discrepancy will be 0 for forecasts made by most statistical models—at least

when measured on the same sample used for estimation—because they, by design, reproduce sample

means. For our human pundit, the 0.0294 says that there is a
√
0.0294, or 17-percentage-point, difference.

(This difference can also be found by calculating the difference in the averages of the observed outcomes

and forecast probabilities: 0.65 − 0.4785 = 0.17.) That difference, however, is not significant, as we

would see if we typed ttest win=for; see [R] ttest. If these data were larger and the bias persisted, this
difference would be a critical shortcoming of the forecast.

Twice the forecast-outcome covariance is a measure of how accurately the forecast corresponds to the

outcome. The concept is similar to that of 𝑅2 in linear regression.

Stored results
brier stores the following in r():

Scalars

r(p roc) one-sided 𝑝-value for ROC area test

r(roc area) ROC area

r(z) Spiegelhalter’s 𝑧 statistic

r(p) one-sided 𝑝-value for Spiegelhalter’s 𝑧 test

r(brier) Brier score

r(brier s) Sanders-modified Brier score

r(sanders) Sanders resolution

r(oiv) outcome index variance

r(murphy) Murphy resolution

r(relinsm) reliability-in-the-small

r(Var f) forecast variance

r(Var fex) excess forecast variance

r(Var fmin) minimum forecast variance

r(relinla) reliability-in-the-large

r(cov 2f) 2 × forecast-outcome-covariance

Methods and formulas
See Wilks (2019) or Schmid and Griffith (2005) for a discussion of the Brier score.

Let 𝑑𝑗, 𝑗 = 1, . . . , 𝑁, be the observed outcomes with 𝑑𝑗 = 0 or 𝑑𝑗 = 1, and let 𝑓𝑗 be the corresponding

forecasted probabilities that 𝑑𝑗 is 1, 0 ≤ 𝑓𝑗 ≤ 1. Assume that the data are ordered so that 𝑓𝑗+1 ≥ 𝑓𝑗
(brier sorts the data to obtain this order). Divide the data into𝐾 nearly equally sized groups, with group

1 containing observations 1 through 𝑗2 − 1, group 2 containing observations 𝑗2 through 𝑗3 − 1, and so

on.
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Define

𝑓0 = average 𝑓𝑗 among 𝑑𝑗 = 0

𝑓1 = average 𝑓𝑗 among 𝑑𝑗 = 1

𝑓 = average 𝑓𝑗

𝑑 = average 𝑑𝑗

̃𝑓𝑘 = average 𝑓𝑗 in group 𝑘
̃𝑑𝑘 = average 𝑑𝑗 in group 𝑘

�̃�𝑘 = number of observations in group 𝑘

The Brier score is ∑𝑗(𝑑𝑗 − 𝑓𝑗)2/𝑁.

The Sanders-modified Brier score is ∑𝑗(𝑑𝑗 − ̃𝑓𝑘(𝑗))2/𝑁.

Let 𝑝𝑗 denote the true but unknown probability that 𝑑𝑗 = 1. Under the null hypothesis that 𝑝𝑗 = 𝑓𝑗
for all 𝑗, Spiegelhalter (1986) determined that the expectation and variance of the Brier score is given by
the following:

𝐸(Brier) = 1
𝑁

𝑁
∑
𝑗=1

𝑓𝑗(1 − 𝑓𝑗)

Var(Brier) = 1
𝑁2

𝑁
∑
𝑗=1

𝑓𝑗(1 − 𝑓𝑗)(1 − 2𝑓𝑗)
2

Denoting the observed value of the Brier score by 𝑂(Brier), Spiegelhalter’s 𝑧 statistic is given by

𝑍 = 𝑂(Brier) − 𝐸(Brier)
√Var(Brier)

The corresponding 𝑝-value is given by the upper-tail probability of 𝑍 under the standard normal dis-

tribution.

The area under the ROC curve is estimated by applying the trapezoidal rule to the empirical ROC curve.

This area is Wilcoxon’s test statistic, so the corresponding 𝑝-value is just that of a one-sided Wilcoxon

test of the null hypothesis that the distribution of predictions is constant across the two outcomes.

The Sanders resolution is ∑𝑘 �̃�𝑘{ ̃𝑑𝑘(1 − ̃𝑑𝑘)}/𝑁.

The outcome index variance is 𝑑(1 − 𝑑).

The Murphy resolution is ∑𝑘 �̃�𝑘( ̃𝑑𝑘 − 𝑑)2/𝑁.

Reliability-in-the-small is ∑𝑘 �̃�𝑘( ̃𝑑𝑘 − ̃𝑓𝑘)2/𝑁.

The forecast variance is ∑𝑗(𝑓𝑗 − 𝑓)2/𝑁.

The minimum forecast variance is { ∑𝑗∈𝐹(𝑓𝑗 − 𝑓0)2 + ∑𝑗∈𝑆(𝑓𝑗 − 𝑓1)2}/𝑁, where 𝐹 is the set of

observations for which 𝑑𝑗 = 0 and 𝑆 is the complement.
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The excess forecast variance is the difference between the forecast variance and the minimum forecast

variance.

Reliability-in-the-large is (𝑓 − 𝑑)2.

Twice the outcome covariance is 2(𝑓1 − 𝑓0)𝑑(1 − 𝑑).

� �
GlennWilson Brier (1913–1998) was anAmerican meteorological statistician who, after obtaining

degrees in physics and statistics, was for many years head of meteorological statistics at the US

Weather Bureau inWashington, DC. In the latter part of his career, he was associated with Colorado

State University. Brier worked especially on verification and evaluation of predictions and forecasts,

statistical decision making, the statistical theory of turbulence, the analysis of weather modification

experiments, and the application of permutation techniques.� �
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bsample — Sampling with replacement

Description Quick start Menu Syntax
Options Remarks and examples References Also see

Description
bsample replaces the data in memory with a bootstrap sample (random sample with replacement)

drawn from the current dataset. Clusters can be optionally sampled during each replication in place of

observations. Bootstrap samples can also be selected within strata.

Quick start
Bootstrap sample with the same number of observations as the current dataset

bsample

Same as above, but restrict to just 100 observations

bsample 100

Stratified bootstrap sample of 100 observations at each level of svar
bsample 100, strata(svar)

Bootstrap sample of 10 clusters identified by values of cvar
bsample 10, cluster(cvar)

Same as above, but create a new unique ID code for sampled clusters and store it in cvar2
bsample 10, cluster(cvar) idcluster(cvar2)

Menu
Statistics > Resampling > Draw bootstrap sample

190
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Syntax
bsample [ exp ] [ if ] [ in ] [ , options ]

where exp is a standard Stata expression specifying the size of the sample; see [U] 13 Functions and

expressions.

exp must be less than or equal to N (the number of observations; [U] 13.4 System variables

( variables)) when neither the cluster() nor the strata() option is specified. N is the default
when exp is not specified.

Observations that do not meet the optional if and in criteria are dropped from the resulting dataset.

options Description

strata(varlist) variables identifying strata

cluster(varlist) variables identifying resampling clusters

idcluster(newvar) create new cluster ID variable

weight(varname) replace varname with frequency weights

Options
strata(varlist) specifies the variables identifying strata. If strata() is specified, bootstrap samples

are selected within each stratum, and exp must be less than or equal to N within the defined strata.

cluster(varlist) specifies the variables identifying resampling clusters. If cluster() is specified, the
sample drawn during each replication is a bootstrap sample of clusters, and exp must be less than

or equal to 𝑁𝑐 (the number of clusters identified by the cluster() option). If strata() is also

specified, exp must be less than or equal to the number of within-strata clusters.

idcluster(newvar) creates a new variable containing a unique identifier for each resampled cluster.

weight(varname) specifies a variable in which the sampling frequencies will be placed. varnamemust
be an existing variable, which will be replaced. After bsample, varname can be used as an fweight
in any Stata command that accepts fweights, which can speed up resampling for commands like
regress and summarize. This option cannot be combined with idcluster().

By default, bsample replaces the data in memory with the sampled observations; however, specifying
the weight() option causes only the specified varname to be changed.
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Remarks and examples
Below is a series of examples illustrating how bsample is used with various sampling schemes.

Example 1: Bootstrap sampling
We have data on the characteristics of hospital patients and wish to draw a bootstrap sample of 200

patients. We type

. use https://www.stata-press.com/data/r18/bsample1

. bsample 200

. count
200

Example 2: Stratified samples with equal sizes
Among the variables in our dataset is female, an indicator for the female patients. To get a bootstrap

sample of 200 female patients and 200 male patients, we type

. use https://www.stata-press.com/data/r18/bsample1, clear

. bsample 200, strata(female)

. tabulate female
Indicator

for female Freq. Percent Cum.

Male 200 50.00 50.00
Female 200 50.00 100.00

Total 400 100.00

Example 3: Stratified samples with unequal sizes
To sample 300 females and 200 males, we must generate a variable that is 300 for females and 200

for males and then use this variable in exp when we call bsample.

. use https://www.stata-press.com/data/r18/bsample1, clear

. generate nsamp = cond(female,300,200)

. bsample nsamp, strata(female)

. tabulate female
Indicator

for female Freq. Percent Cum.

Male 200 40.00 40.00
Female 300 60.00 100.00

Total 500 100.00
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Example 4: Stratified samples with proportional sizes
Our original dataset has 2,392 males and 3,418 females.

. use https://www.stata-press.com/data/r18/bsample1, clear

. tabulate female
Indicator

for female Freq. Percent Cum.

Male 2,392 41.17 41.17
Female 3,418 58.83 100.00

Total 5,810 100.00

To sample 10% from females and males, we type

. bsample round(0.1*_N), strata(female)

bsample requires that the specified size of the sample be an integer, so we use the round() function
to obtain the nearest integer to 0.1 × 2392 and 0.1 × 3418. Our sample now has 239 males and 342

females:

. tabulate female
Indicator

for female Freq. Percent Cum.

Male 239 41.14 41.14
Female 342 58.86 100.00

Total 581 100.00

Example 5: Samples satisfying a condition
For a bootstrap sample of 200 female patients, we type

. use https://www.stata-press.com/data/r18/bsample1, clear

. bsample 200 if female

. tabulate female
Indicator

for female Freq. Percent Cum.

Female 200 100.00 100.00

Total 200 100.00
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Example 6: Generating frequency weights
To identify the sampled observations using frequency weights instead of dropping unsampled obser-

vations, we use the weight() option (we will need to supply it an existing variable name) and type

. use https://www.stata-press.com/data/r18/bsample1, clear

. set seed 1234

. generate fw = .
(5,810 missing values generated)
. bsample 200 if female, weight(fw)
. tabulate fw female

Indicator for female
fw Male Female Total

0 2,392 3,222 5,614
1 0 192 192
2 0 4 4

Total 2,392 3,418 5,810

Note that (192 × 1) + (4 × 2) = 200.

Example 7: Oversampling observations
bsample requires the expression in exp to evaluate to a number that is less than or equal to the number

of observations. To sample twice as many male and female patients as there are already in memory, we

must expand the data before using bsample. For example,

. use https://www.stata-press.com/data/r18/bsample1, clear

. set seed 1234

. expand 2
(5,810 observations created)
. bsample, strata(female)
. tabulate female
Indicator

for female Freq. Percent Cum.

Male 4,784 41.17 41.17
Female 6,836 58.83 100.00

Total 11,620 100.00

Example 8: Stratified oversampling with unequal sizes
To sample twice as many female patients as male patients, we must expand the records for the female

patients because there are less than twice as many of them as there are male patients, but first put the

number of observed male patients in a local macro. After expanding the female records, we generate a

variable that contains the number of observations to sample within the two groups.
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. use https://www.stata-press.com/data/r18/bsample1, clear

. set seed 1234

. count if !female
2,392

. local nmale = r(N)

. expand 2 if female
(3,418 observations created)
. generate nsamp = cond(female,2*‘nmale’,‘nmale’)
. bsample nsamp, strata(female)
. tabulate female
Indicator

for female Freq. Percent Cum.

Male 2,392 33.33 33.33
Female 4,784 66.67 100.00

Total 7,176 100.00

Example 9: Oversampling of clusters
For clustered data, sampling more clusters than are present in the original dataset requires more than

just expanding the data. To illustrate, suppose we wanted a bootstrap sample of eight clusters from a

dataset consisting of five clusters of observations.

. use https://www.stata-press.com/data/r18/bsample2, clear

. tabstat x, stat(n mean) by(group)
Summary for variables: x
Group variable: group
group N Mean

A 15 -.3073028
B 10 -.00984
C 11 .0810985
D 11 -.1989179
E 29 -.095203

Total 76 -.1153269

bsample will complain if we simply expand the dataset.

. use https://www.stata-press.com/data/r18/bsample2

. expand 3
(152 observations created)
. bsample 8, cluster(group)
resample size must not be greater than number of clusters
r(498);

Expanding the data will only partly solve the problem. We also need a new variable that uniquely

identifies the copied clusters. We use the expandcl command to accomplish both these tasks; see [D] ex-
pandcl.
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. use https://www.stata-press.com/data/r18/bsample2, clear

. set seed 1234

. expandcl 2, generate(expgroup) cluster(group)
(76 observations created)
. tabstat x, stat(n mean) by(expgroup)
Summary for variables: x
Group variable: expgroup (New cluster ID from expandcl)
expgroup N Mean

1 15 -.3073028
2 15 -.3073028
3 10 -.00984
4 10 -.00984
5 11 .0810985
6 11 .0810985
7 11 -.1989179
8 11 -.1989179
9 29 -.095203
10 29 -.095203

Total 152 -.1153269

. generate fw = .
(152 missing values generated)
. bsample 8, cluster(expgroup) weight(fw)
. tabulate fw group

group
fw A B C D E Total

0 15 10 22 11 58 116
1 0 0 0 11 0 11
2 15 0 0 0 0 15
5 0 10 0 0 0 10

Total 30 20 22 22 58 152

The results from tabulate on the generated frequency weight variable versus the original cluster ID

(group) show us that the bootstrap sample contains one copy of cluster A, one copy of cluster B, two
copies of cluster C, two copies of cluster D, and two copies of cluster E (1 + 1 + 2 + 2 + 2 = 8).

Example 10: Stratified oversampling of clusters
Suppose that we have a dataset containing two strata with five clusters in each stratum, but the cluster

identifiers are not unique between the strata. To get a stratified bootstrap sample with eight clusters

in each stratum, we first use expandcl to expand the data and get a new cluster ID variable. We use

cluster(strid group) in the call to expandcl; this action will uniquely identify the 2 ∗ 5 = 10

clusters across the strata.
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. use https://www.stata-press.com/data/r18/bsample2, clear

. set seed 1234

. tabulate group strid
strid

group 1 2 Total

A 7 8 15
B 5 5 10
C 5 6 11
D 5 6 11
E 14 15 29

Total 36 40 76
. expandcl 2, generate(expgroup) cluster(strid group)
(76 observations created)

Now, we can use bsample with the expanded data, stratum ID variable, and new cluster ID variable.

. generate fw = .
(152 missing values generated)
. bsample 8, cluster(expgroup) str(strid) weight(fw)
. by strid, sort: tabulate fw group

-> strid = 1
group

fw A B C D E Total

0 7 0 10 5 14 36
1 0 5 0 5 14 24
2 7 0 0 0 0 7
3 0 5 0 0 0 5

Total 14 10 10 10 28 72

-> strid = 2
group

fw A B C D E Total

0 0 0 12 0 15 27
1 16 5 0 12 15 48
2 0 5 0 0 0 5

Total 16 10 12 12 30 80

The results from by strid: tabulate on the generated frequency weight variable versus the original
cluster ID (group) show us how many times each cluster was sampled for each stratum. For stratum 1,
the bootstrap sample contains two copies of cluster A, one copy of cluster B, two copies of cluster C, one
copy of cluster D, and two copies of cluster E (2+1+2+1+2 = 8). For stratum 2, the bootstrap sample
contains one copy of cluster A, zero copies of cluster B, three copies of cluster C, one copy of cluster D,
and three copies of cluster E (1 + 0 + 3 + 1 + 3 = 8).
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bstat — Report bootstrap results

Description Menu Syntax Options
Remarks and examples Stored results References Also see

Description
bstat is a programmer’s command that computes and displays estimation results from bootstrap

statistics. For each variable in varlist, bstat computes a covariance matrix, estimates bias, and con-

structs normal confidence intervals (CIs), percentile CIs, bias-corrected (BC) CIs, and bias-corrected and

accelerated (BC𝑎) CIs using a bootstrap dataset in memory or on disk. The computed CIs can be displayed

using estat bootstrap; see [R] bootstrap postestimation.

bstatwithout varlist replays results from the last bootstrap estimation when results are stored in e().

Menu
Statistics > Resampling > Report bootstrap results

Syntax
Bootstrap statistics from variables

bstat [ varlist ] [ if ] [ in ] [ , options ]

Bootstrap statistics from file

bstat [ namelist ] [ using filename ] [ if ] [ in ] [ , options ]

options Description

Main
∗ stat(vector) observed values for each statistic
∗ accel(vector) acceleration values for each statistic
∗ ties adjust BC/BCa confidence intervals for ties
∗ mse use MSE formula for variance estimation

Reporting

level(#) set confidence level; default is level(95)
n(#) # of observations from which bootstrap samples were taken

notable suppress table of results

noheader suppress table header

nolegend suppress table legend

verbose display the full table legend

title(text) use text as title for bootstrap results

display options control column formats and line width

∗Starred options and qualifiers using, if, and in require a bootstrap dataset.
collect is allowed; see [U] 11.1.10 Prefix commands.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Options

� � �
Main �

stat(vector) specifies the observed value of each statistic (that is, the value of the statistic using the
original dataset).

accel(vector) specifies the acceleration of each statistic, which is used to construct BC𝑎 CIs.

ties specifies that bstat adjust for ties in the replicate values when computing the median bias used to
construct BC and BCa CIs.

mse specifies that bstat compute the variance by using deviations of the replicates from the observed

value of the statistics. By default, bstat computes the variance by using deviations from the average

of the replicates.

� � �
Reporting �

level(#); see [R] Estimation options.

n(#) specifies the number of observations from which bootstrap samples were taken. This value is used

in no calculations but improves the table header when this information is not saved in the bootstrap

dataset.

notable suppresses the display of the output table.

noheader suppresses the display of the table header. This option implies nolegend.

nolegend suppresses the display of the table legend.

verbose specifies that the full table legend be displayed. By default, coefficients and standard errors are
not displayed.

title(text) specifies a title to be displayed above the table of bootstrap results; the default title is

Bootstrap results.

display options: cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] Esti-
mation options.

Remarks and examples
Remarks are presented under the following headings:

Bootstrap datasets
Creating a bootstrap dataset

Bootstrap datasets
Although bstat allows you to specify the observed value and acceleration of each bootstrap statistic

via the stat() and accel() options, programmers may be interested in what bstat uses when these
options are not supplied.
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When working from a bootstrap dataset, bstat first checks the data characteristics (see [P] char) that
it understands:

dta[bs version] identifies the version of the bootstrap dataset. This characteristic may be empty

(not defined), 2, or 3; otherwise, bstat will quit and display an error message. This version
tells bstat which other characteristics to look for in the bootstrap dataset.

bstat uses the following characteristics from version 3 bootstrap datasets:

dta[N]
dta[N strata]
dta[N cluster]
dta[command]
varname[observed]
varname[acceleration]
varname[expression]

bstat uses the following characteristics from version 2 bootstrap datasets:

dta[N]
dta[N strata]
dta[N cluster]
varname[observed]
varname[acceleration]

An empty bootstrap dataset version implies that the dataset was created by the bstrap com-
mand in a version of Stata earlier than Stata 8. Here bstat expects varname[bstrap] to con-
tain the observed value of the statistic identified by varname (varname[observed] in version
2). All other characteristics are ignored.

dta[N] is the number of observations in the observed dataset. This characteristic may be overruled by
specifying the n() option.

dta[N strata] is the number of strata in the observed dataset.

dta[N cluster] is the number of clusters in the observed dataset.

dta[command] is the command used to compute the observed values of the statistics.

varname[observed] is the observed value of the statistic identified by varname. To specify a different
value, use the stat() option.

varname[acceleration] is the estimate of acceleration for the statistic identified by varname. To

specify a different value, use the accel() option.

varname[expression] is the expression or label that describes the statistic identified by varname.
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Creating a bootstrap dataset
Suppose that we are interested in obtaining bootstrap statistics by resampling the residuals from a

regression (which is not possible with the bootstrap command). After loading some data, we run a

regression, save some results relevant to the bstat command, and save the residuals in a new variable,

res.
. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. regress mpg weight length

Source SS df MS Number of obs = 74
F(2, 71) = 69.34

Model 1616.08062 2 808.040312 Prob > F = 0.0000
Residual 827.378835 71 11.653223 R-squared = 0.6614

Adj R-squared = 0.6519
Total 2443.45946 73 33.4720474 Root MSE = 3.4137

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

weight -.0038515 .001586 -2.43 0.018 -.0070138 -.0006891
length -.0795935 .0553577 -1.44 0.155 -.1899736 .0307867
_cons 47.88487 6.08787 7.87 0.000 35.746 60.02374

. matrix b = e(b)

. local n = e(N)

. predict res, residuals

We can resample the residual values in res by generating a random observation ID (rid), generate a
new response variable (y), and run the original regression with the new response variables.

. set seed 54321

. generate rid = int(_N*runiform())+1

. matrix score double y = b

. replace y = y + res[rid]
(74 real changes made)
. regress y weight length

Source SS df MS Number of obs = 74
F(2, 71) = 100.11

Model 1695.70314 2 847.851568 Prob > F = 0.0000
Residual 601.341031 71 8.46959199 R-squared = 0.7382

Adj R-squared = 0.7308
Total 2297.04417 73 31.4663585 Root MSE = 2.9103

y Coefficient Std. err. t P>|t| [95% conf. interval]

weight -.0029676 .0013521 -2.19 0.031 -.0056636 -.0002716
length -.1158425 .047194 -2.45 0.017 -.2099446 -.0217404
_cons 51.72451 5.190075 9.97 0.000 41.3758 62.07323
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Instead of programming this resampling inside a loop, it is much more convenient to write a short

program and use the simulate command; see [R] simulate. In the following, mysim r requires the user
to specify a coefficient vector and a residual variable. mysim r then retrieves the list of predictor vari-
ables (removing cons from the list), generates a new temporary response variable with the resampled

residuals, and regresses the new response variable on the predictors.

program mysim_r
version 18.0 // (or version 18.5 for StataNow)
syntax name(name=bvector), res(varname)
tempvar y rid
local xvars : colnames ‘bvector’
local cons _cons
local xvars : list xvars - cons
matrix score double ‘y’ = ‘bvector’
generate long ‘rid’ = int(_N*runiform()) + 1
replace ‘y’ = ‘y’ + ‘res’[‘rid’]
regress ‘y’ ‘xvars’

end

We can now give mysim r a test run, but we first set the random-number seed (to reproduce results).

. set seed 54321

. mysim_r b, res(res)
(74 real changes made)

Source SS df MS Number of obs = 74
F(2, 71) = 100.11

Model 1695.70314 2 847.851568 Prob > F = 0.0000
Residual 601.341031 71 8.46959199 R-squared = 0.7382

Adj R-squared = 0.7308
Total 2297.04417 73 31.4663585 Root MSE = 2.9103

__000000 Coefficient Std. err. t P>|t| [95% conf. interval]

weight -.0029676 .0013521 -2.19 0.031 -.0056636 -.0002716
length -.1158425 .047194 -2.45 0.017 -.2099446 -.0217404
_cons 51.72451 5.190075 9.97 0.000 41.3758 62.07323

Now that we have a program that will compute the results we want, we can use simulate to generate
a bootstrap dataset and bstat to display the results.

. set seed 54321

. simulate, reps(200) nodots: mysim_r b, res(res)
Command: mysim_r b, res(res)

. bstat, stat(b) n(‘n’)
Bootstrap results Number of obs = 74

Replications = 200

Observed Bootstrap Normal-based
coefficient std. err. z P>|z| [95% conf. interval]

_b_weight -.0038515 .0014673 -2.62 0.009 -.0067274 -.0009756
_b_length -.0795935 .0509772 -1.56 0.118 -.1795069 .0203199

_b_cons 47.88487 5.650947 8.47 0.000 36.80922 58.96053
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Finally, we see that simulate created some of the data characteristics recognized by bstat. All we
need to do is correctly specify the version of the bootstrap dataset, and bstat will automatically use the
relevant data characteristics.

. char list
_dta[rngstate]: XAA000000000000d431c5e5401775ee9b9e24b2604d4885..
_dta[command]: mysim_r b, res(res)
_b_weight[is_eexp]: 1
_b_weight[colname]: weight
_b_weight[coleq]: _
_b_weight[expression]: _b[weight]
_b_length[is_eexp]: 1
_b_length[colname]: length
_b_length[coleq]: _
_b_length[expression]: _b[length]
_b_cons[is_eexp]: 1
_b_cons[colname]: _cons
_b_cons[coleq]: _
_b_cons[expression]: _b[_cons]

. char _dta[bs_version] 3

. bstat, stat(b) n(‘n’)
Bootstrap results Number of obs = 74

Replications = 200
Command: mysim_r b, res(res)

Observed Bootstrap Normal-based
coefficient std. err. z P>|z| [95% conf. interval]

weight -.0038515 .0014673 -2.62 0.009 -.0067274 -.0009756
length -.0795935 .0509772 -1.56 0.118 -.1795069 .0203199
_cons 47.88487 5.650947 8.47 0.000 36.80922 58.96053

See Poi (2004) for another example of residual resampling.
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Stored results
bstat stores the following in e():
Scalars

e(N) sample size

e(N reps) number of complete replications

e(N misreps) number of incomplete replications

e(N strata) number of strata

e(N clust) number of clusters

e(k aux) number of auxiliary parameters

e(k eq) number of equations in e(b)
e(k exp) number of standard expressions

e(k eexp) number of extended expressions (i.e., b)
e(k extra) number of extra equations beyond the original ones from e(b)
e(level) confidence level for bootstrap CIs

e(bs version) version for bootstrap results
e(rank) rank of e(V)

Macros

e(cmd) bstat
e(command) from dta[command]
e(cmdline) command as typed

e(title) title in estimation output

e(exp#) expression for the #th statistic

e(prefix) bootstrap
e(ties) ties, if specified
e(mse) mse, if specified
e(vce) bootstrap
e(vcetype) title used to label Std. err.

e(properties) b V
Matrices

e(b) observed statistics

e(b bs) bootstrap estimates

e(reps) number of nonmissing results

e(bias) estimated biases

e(se) estimated standard errors

e(z0) median biases

e(accel) estimated accelerations

e(ci normal) normal-approximation CIs

e(ci percentile) percentile CIs

e(ci bc) bias-corrected CIs

e(ci bca) bias-corrected and accelerated CIs

e(V) bootstrap variance–covariance matrix

References
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Also see
[R] bootstrap postestimation — Postestimation tools for bootstrap

[R] bootstrap — Bootstrap sampling and estimation

[R] bsample — Sampling with replacement
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Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Acknowledgment References Also see

Description
centile estimates specified centiles and calculates confidence intervals. If no varlist is specified,

centile calculates centiles for all the variables in the dataset. If no centiles are specified, medians are
reported.

By default, centile uses a binomial method for obtaining confidence intervals that makes no as-

sumptions about the underlying distribution of the variable.

Quick start
50th percentile with 95% confidence intervals for v1 and v2

centile v1 v2

For all variables in the dataset

centile

25th, 50th, and 75th percentiles of v1
centile v1, centile(25 50 75)

10th, 20th, 30th, . . . , 90th percentiles of v1
centile v1, centile(10(10)90)

Force confidence limits to fall on sample values

centile v1 v2, cci

Confidence intervals based on standard errors for a normal-distribution quantile

centile v1 v2, normal

Centile and confidence intervals based on mean and standard deviation

centile v1 v2, meansd

Replace data in memory with centiles for groups defined by categorical variable cvar
statsby, by(cvar) clear: centile v1, centile(25 50 75)

Menu
Statistics > Summaries, tables, and tests > Summary and descriptive statistics > Centiles with CIs
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Syntax
centile [ varlist ] [ if ] [ in ] [ , options ]

options Description

Main

centile(numlist) report specified centiles; default is centile(50)

Options

cci binomial exact; conservative confidence interval

normal normal, based on observed centiles

meansd normal, based on mean and standard deviation

level(#) set confidence level; default is level(95)

by, collect, and statsby are allowed; see [U] 11.1.10 Prefix commands.

Options

� � �
Main �

centile(numlist) specifies the centiles to be reported. The default is to display the 50th centile. Speci-
fying centile(5) requests that the fifth centile be reported. Specifying centile(5 50 95) requests
that the 5th, 50th, and 95th centiles be reported. Specifying centile(10(10)90) requests that the
10th, 20th, . . . , 90th centiles be reported; see [U] 11.1.8 numlist.

� � �
Options �

cci (conservative confidence interval) forces the confidence limits to fall exactly on sample values.

Confidence intervals displayed with the cci option are slightly wider than those with the default

(nocci) option.

normal causes the confidence interval to be calculated by using a formula for the standard error of a

normal-distribution quantile given by Kendall and Stuart (1969, 237). The normal option is useful
when you want empirical centiles—that is, centiles based on sample order statistics rather than on

the mean and standard deviation—and are willing to assume normality.

meansd causes the centile and confidence interval to be calculated based on the samplemean and standard
deviation, and it assumes normality.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is

level(95) or as set by set level; see [R] level.

Remarks and examples
The 𝑞th centile of a continuous random variable, 𝑋, is defined as the value of 𝐶𝑞, which fulfills the

condition Pr(𝑋 ≤ 𝐶𝑞) = 𝑞/100. The value of 𝑞 must be in the range 0 < 𝑞 < 100, though 𝑞 is not
necessarily an integer. By default, centile estimates 𝐶𝑞 for the variables in varlist and for the values

of 𝑞 given in centile(numlist). It makes no assumptions about the distribution of 𝑋 and, if necessary,

uses linear interpolation between neighboring sample values. Extreme centiles (for example, the 99th

centile in samples smaller than 100) are fixed at the minimum or maximum sample value. An “exact”

confidence interval for 𝐶𝑞 is also given, using the binomial-based method described below in Methods

and formulas and in Conover (1999, 143–148). Again linear interpolation is used to improve the accuracy

of the estimated confidence limits, but extremes are fixed at the minimum or maximum sample value.
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You can prevent centile from interpolating when calculating binomial-based confidence intervals

by specifying cci. The resulting intervals are generally wider than with the default; that is, the coverage
(confidence level) tends to be greater than the nominal value (given as usual by level(#), by default
95%).

If the data are believed to be normally distributed (a common case), there are two alternative methods

for estimating centiles. If normal is specified, 𝐶𝑞 is calculated, as just described, but its confidence

interval is based on a formula for the standard error (se) of a normal-distribution quantile given byKendall

and Stuart (1969, 237). If meansd is alternatively specified, 𝐶𝑞 is estimated as 𝑥 + 𝑧𝑞 × 𝑠, where 𝑥 and 𝑠
are the sample mean and standard deviation, respectively, and 𝑧𝑞 is the 𝑞th centile of the standard normal
distribution (for example, 𝑧95 = 1.645). The confidence interval is derived from the se of the estimate

of 𝐶𝑞.

Example 1
Using auto.dta, we estimate the 5th, 50th, and 95th centiles of the price variable:

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. format price %8.2fc
. centile price, centile(5 50 95)

Binom. interp.
Variable Obs Percentile Centile [95% conf. interval]

price 74 5 3,727.75 3,291.23 3,914.16
50 5,006.50 4,593.57 5,717.90
95 13,498.00 11,061.53 15,865.30

summarize produces somewhat different results from centile; see Methods and formulas.

. summarize price, detail
Price

Percentiles Smallest
1% 3291 3291
5% 3748 3299
10% 3895 3667 Obs 74
25% 4195 3748 Sum of wgt. 74
50% 5006.5 Mean 6165.257

Largest Std. dev. 2949.496
75% 6342 13466
90% 11385 13594 Variance 8699526
95% 13466 14500 Skewness 1.653434
99% 15906 15906 Kurtosis 4.819188
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The confidence limits produced by using the cci option are slightly wider than those producedwithout
this option:

. centile price, c(5 50 95) cci
Binomial exact

Variable Obs Percentile Centile [95% conf. interval]

price 74 5 3,727.75 3,291.00 3,955.00
50 5,006.50 4,589.00 5,719.00
95 13,498.00 10,372.00 15,906.00

If we are willing to assume that price is normally distributed, we could include either the normal or
the meansd option:

. centile price, c(5 50 95) normal
Normal, based on observed centiles

Variable Obs Percentile Centile [95% conf. interval]

price 74 5 3,727.75 3,211.19 4,244.31
50 5,006.50 4,096.68 5,916.32
95 13,498.00 5,426.81 21,569.19

. centile price, c(5 50 95) meansd
Normal, based on mean and std. dev.

Variable Obs Percentile Centile [95% conf. interval]

price 74 5 1,313.77 278.93 2,348.61
50 6,165.26 5,493.24 6,837.27
95 11,016.75 9,981.90 12,051.59

With the normal option, the centile estimates are, by definition, the same as before. The confidence

intervals for the 5th and 50th centiles are similar to the previous ones, but the interval for the 95th centile

is different. The results using the meansd option also differ from both previous sets of estimates.

We can use sktest (see [R] sktest) to check the correctness of the normality assumption:

. sktest price
Skewness and kurtosis tests for normality

Joint test
Variable Obs Pr(skewness) Pr(kurtosis) Adj chi2(2) Prob>chi2

price 74 0.0000 0.0127 21.77 0.0000

sktest reveals that price is definitely not normally distributed, so the normal assumption is not rea-
sonable, and the normal and meansd options are not appropriate for these data. We should rely on the

results from the default choice, which does not assume normality. If the data are normally distributed,

however, the precision of the estimated centiles and their confidence intervals will be ordered (best)

meansd > normal > [default] (worst). The normal option is useful when we really do want empirical
centiles (that is, centiles based on sample order statistics rather than on the mean and standard deviation)

but are willing to assume normality.
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Stored results
centile stores the following in r():

Scalars

r(N) number of observations

r(n cent) number of centiles requested

r(c #) value of # centile

r(lb #) #-requested centile lower confidence bound

r(ub #) #-requested centile upper confidence bound

Macros

r(centiles) centiles requested

Methods and formulas
Methods and formulas are presented under the following headings:

Default case
Normal case
meansd case

Default case
The calculation is based on the method of Mood and Graybill (1963, 408). Let 𝑥1 ≤ 𝑥2 ≤ · · · ≤ 𝑥𝑛

be a sample of size 𝑛 arranged in ascending order. Denote the estimated 𝑞th centile of the 𝑥’s as 𝑐𝑞. We

require that 0 < 𝑞 < 100. Let 𝑅 = (𝑛 + 1)𝑞/100 have integer part 𝑟 and fractional part 𝑓; that is,
𝑟 = int(𝑅) and 𝑓 = 𝑅 − 𝑟. (If 𝑅 is itself an integer, then 𝑟 = 𝑅 and 𝑓 = 0.) Note that 0 ≤ 𝑟 ≤ 𝑛. For
convenience, define 𝑥0 = 𝑥1 and 𝑥𝑛+1 = 𝑥𝑛. 𝐶𝑞 is estimated by

𝑐𝑞 = 𝑥𝑟 + 𝑓 × (𝑥𝑟+1 − 𝑥𝑟)

that is, 𝑐𝑞 is a weighted average of 𝑥𝑟 and 𝑥𝑟+1. Loosely speaking, a (conservative) 𝑝% confidence

interval for 𝐶𝑞 involves finding the observations ranked 𝑡 and 𝑢, which correspond, respectively, to the
𝛼 = (100− 𝑝)/200 and 1− 𝛼 quantiles of a binomial distribution with parameters 𝑛 and 𝑞/100, that is,
B(𝑛, 𝑞/100). More precisely, define the 𝑖th value (𝑖 = 0, . . . , 𝑛) of the cumulative binomial distribution
function as 𝐹𝑖 = Pr(𝑆 ≤ 𝑖), where 𝑆 has distribution 𝐵(𝑛, 𝑞/100). For convenience, let 𝐹−1 = 0

and 𝐹𝑛+1 = 1. 𝑡 is found such that 𝐹𝑡 ≤ 𝛼 and 𝐹𝑡+1 > 𝛼, and 𝑢 is found such that 1 − 𝐹𝑢 ≤ 𝛼 and

1 − 𝐹𝑢−1 > 𝛼.
With the cci option in force, the (conservative) confidence interval is (𝑥𝑡+1, 𝑥𝑢+1), and its actual

coverage probability is 𝐹𝑢 − 𝐹𝑡.

The default case uses linear interpolation on the 𝐹𝑖 as follows. Let

𝑔 = (𝛼 − 𝐹𝑡)/(𝐹𝑡+1 − 𝐹𝑡)
ℎ = {𝛼 − (1 − 𝐹𝑢)}/{(1 − 𝐹𝑢−1) − (1 − 𝐹𝑢)}

= (𝛼 − 1 + 𝐹𝑢)/(𝐹𝑢 − 𝐹𝑢−1)

The interpolated lower and upper confidence limits (𝑐𝑞𝐿, 𝑐𝑞𝑈) for 𝐶𝑞 are

𝑐𝑞𝐿 = 𝑥𝑡+1 + 𝑔 × (𝑥𝑡+2 − 𝑥𝑡+1)
𝑐𝑞𝑈 = 𝑥𝑢+1 − ℎ × (𝑥𝑢+1 − 𝑥𝑢)
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Suppose that we want a 95% confidence interval for the median of a sample of size 13. 𝑛 = 13,

𝑞 = 50, 𝑝 = 95, 𝛼 = 0.025, 𝑅 = 14 × 50/100 = 7, and 𝑓 = 0. Therefore, the median is the 7th

observation. Some example data, 𝑥𝑖, and the values of 𝐹𝑖 are as follows:

𝑖 𝐹𝑖 1 − 𝐹𝑖 𝑥𝑖 𝑖 𝐹𝑖 1 − 𝐹𝑖 𝑥𝑖

0 0.0001 0.9999 – 7 0.7095 0.2905 33

1 0.0017 0.9983 5 8 0.8666 0.1334 37

2 0.0112 0.9888 7 9 0.9539 0.0461 45

3 0.0461 0.9539 10 10 0.9888 0.0112 59

4 0.1334 0.8666 15 11 0.9983 0.0017 77

5 0.2905 0.7095 23 12 0.9999 0.0001 104

6 0.5000 0.5000 28 13 1.0000 0.0000 211

The median is 𝑥7 = 33. Also, 𝐹2 ≤ 0.025 and 𝐹3 > 0.025, so 𝑡 = 2; 1 − 𝐹10 ≤ 0.025 and 1 − 𝐹9 >
0.025, so 𝑢 = 10. The conservative confidence interval is therefore

(𝑐50𝐿, 𝑐50𝑈) = (𝑥𝑡+1, 𝑥𝑢+1) = (𝑥3, 𝑥11) = (10, 77)

with actual coverage 𝐹10 − 𝐹2 = 0.9888 − 0.0112 = 0.9776 (97.8% confidence). For the interpolation

calculation, we have

𝑔 = (0.025 − 0.0112)/(0.0461 − 0.0112) = 0.395
ℎ = (0.025 − 1 + 0.9888)/(0.9888 − 0.9539) = 0.395

So,

𝑐50𝐿 = 𝑥3 + 0.395 × (𝑥4 − 𝑥3) = 10 + 0.395 × 5 = 11.98
𝑐50𝑈 = 𝑥11 − 0.395 × (𝑥11 − 𝑥10) = 77 − 0.395 × 18 = 69.89

Normal case
The value of 𝑐𝑞 is as above. Its se is given by the formula

𝑠𝑞 = √𝑞(100 − 𝑞)/{100
√

𝑛𝑍(𝑐𝑞; 𝑥, 𝑠)}

where 𝑥 and 𝑠 are the mean and standard deviation of the 𝑥𝑖, and

𝑍(𝑌 ; 𝜇, 𝜎) = (1/
√

2𝜋𝜎2)𝑒−(𝑌 −𝜇)2/2𝜎2

is the density function of a normally distributed variable 𝑌 with mean 𝜇 and standard deviation 𝜎. The
confidence interval for 𝐶𝑞 is (𝑐𝑞 − 𝑧100(1−𝛼)𝑠𝑞, 𝑐𝑞 + 𝑧100(1−𝛼)𝑠𝑞).
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meansd case
The value of 𝑐𝑞 is 𝑥 + 𝑧𝑞 × 𝑠. Its se is given by the formula

𝑠⋆
𝑞 = 𝑠√1/𝑛 + 𝑧2

𝑞/(2𝑛 − 2)

The confidence interval for 𝐶𝑞 is (𝑐𝑞 − 𝑧100(1−𝛼) × 𝑠⋆
𝑞, 𝑐𝑞 + 𝑧100(1−𝛼) × 𝑠⋆

𝑞).
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Description
cfprobit fits probit models for binary dependent variables with endogenous regressors using control

functions. Endogenous variables are first modeled as a function of instruments using linear, probit,

fractional probit, or Poisson regression. The residuals, or generalized residuals, from these first-stage

regressions are then included in the main equation as control functions to make regression estimates

robust to endogeneity.

Quick start
Control function estimates of a probit regression of binary variable y1 on x and endogenous regressor

y2 that is instrumented by z
cfprobit y1 x (y2 = z)

Same as above, but with two endogenous regressors and two instruments

cfprobit y1 x (y2 y3 = z1 z2)

Same as above, but use z3 as an additional instrument for y3
cfprobit y1 x (y2 = z1 z2) (y3 = z1 z2 z3)

Model the first stage for count variable y4 using Poisson regression
cfprobit y1 x (y2 = z1 z2) (y4 = z1 z2 z3, poisson)

Include an interaction term between w and the control function of y2 in the main equation
cfprobit y1 x (y2 = z, interact(w))

Include an interaction term between the control functions of y2 and y3
cfprobit y1 x (y2 = z1 z2) (y3 = z1 z2 z3), cfinteract

Include w in the main equation for y1 but not in the first stage
cfprobit y1 x (y2 = z), mainonly(w)

Include an endogenous interaction term between w and y2, and control for its endogeneity by including
an interaction term between w and the control function of y2

cfprobit y1 x w (y2 = z, interact(w)), mainonly(c.y2#c.w)

Menu
Statistics > Endogenous covariates > Control-function probit regression

213
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Syntax
cfprobit depvar [ indepvars ] (varlisten1 = varlistiv1 [ , cfopts ])

[ (varlisten2 = varlistiv2 [ , cfopts ]) ... ] [ if ] [ in ] [weight ] [ , options ]

cfopts Description

Model

linear model the endogenous variables using linear regression; the default

probit model the endogenous variables using probit regression

fprobit model the endogenous variables using fractional probit regression

poisson model the endogenous variables using Poisson regression

interact(varlistint) interact the variables in varlistint with the control functions

Only one of linear, probit, fprobit, or poisson is allowed in each set of parentheses.

options Description

Model

mainonly(varlistm) include the variables in varlistm as exogenous variables in the
main equation but not in the first-stage equations

cfinteract include interactions between control functions when there are
multiple endogenous variables

noconstant suppress constant term

asis retain perfect predictor variables

SE/Robust

vce(vcetype) vcetype may be conventional, robust, cluster clustvar,
bootstrap, jackknife, or hac hacspec

Reporting

level set confidence level; default is level(95)
first report first-stage regressions

noheader display only the coefficient table

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process

coeflegend display legend instead of statistics

indepvars, varlisten⋅, varlistiv⋅, varlistint, and varlistm may contain factor variables; see [U] 11.4.3 Factor variables.

depvars, indepvars, varlisten⋅, varlistiv⋅, varlistint, and varlistm may contain time-series operators; see [U] 11.4.4 Time-series

varlists.

bootstrap, by, collect, jackknife, rolling, and statsby are allowed; see [U] 11.1.10 Prefix commands.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Options

� � �
Model �

linear, probit, fprobit, and poisson specify which regression model is used for the first-stage

model. A different model can be specified for each set of parentheses.

linear, the default, specifies a linear regression model.

probit specifies a probit regression model. Endogenous variables must be coded as 0/1.

fprobit specifies a fractional probit regression model. Endogenous variables must take values in

[0, 1].
poisson specifies a Poisson regression model. Endogenous variables must take nonnegative values.

interact(varlistint) includes in the main regression an interaction term between each variable in

varlistint and the control functions associated with the current set of parentheses. Variables are treated

as continuous by default.

mainonly(varlistm) includes the variables in varlistm as exogenous variables in the main regression but

excludes them from the first-stage regressions.

cfinteract specifies that all interactions between control functions be included in the main regression.
If there is only one endogenous regressor, and thus only one control function, the option has no effect.

noconstant; see [R] Estimation options.

asis requests that all specified variables and observations be retained in the maximization process. This
option is typically not used and may introduce numerical instability. Normally, cfprobit omits any
endogenous or exogenous variables that perfectly predict success or failure in the dependent variable.

The associated observations are also excluded. For more information, see Model identification in

[R] probit.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are robust to some
kinds of misspecification (robust), that allow for intragroup correlation (cluster clustvar), and that
use bootstrap or jackknife methods (bootstrap, jackknife); see [R] vce option.

vce(conventional), the default, requests conventional standard errors appropriate under ho-

moskedasticity and no autocorrelation.

vce(hac hacspec) requests a heteroskedasticity- and autocorrelation-consistent (HAC) variance–

covariance matrix. The full syntax of hacspec is one of the following:

vce(hac kernel [ # ]) requests a HAC variance–covariance matrix using the specified kernel (see
below) with optional # lags. The bandwidth of a kernel is equal to #+ 1. If # is not specified,

a kernel with 𝑁 − 2 lags is used, where 𝑁 is the sample size.

vce(hac kernel opt [ # ]) requests a HAC variance–covariance matrix using the specified kernel
(see below), and the lag order is selected using Newey andWest’s (1994) optimal lag-selection

algorithm. # is an optional tuning parameter that affects the lag order selected; see the discussion

in Methods and formulas in [R] ivregress.
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kernel may be one of the following:

bartlett or nwest requests the Bartlett (Newey–West) kernel.

parzen or gallant requests the Parzen (Gallant 1987) kernel.

quadraticspectral or andrews requests the quadratic spectral (Andrews 1991) kernel.

� � �
Reporting �

level(#); see [R] Estimation options.

first requests that the results of first-stage regressions be displayed.

noheader suppresses the display of the summary statistics at the top of the output, displaying only the
coefficient table.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance; see [R]Maximize. These options are seldom used.

The following option is available with cfprobit but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

Remarks and examples
cfprobit fits probit models for binary dependent variables with endogenous regressors by estimat-

ing one or more control functions and including them in the main regression equation. These control

functions are estimated as the residuals, or generalized residuals, of first-stage regressions.

Control-function methods make use of instruments and are thus related to standard instrumental-

variables methods. However, control-function methods allow for more flexibility than comparable

instrumental-variables methods. Wooldridge (2015) gives an overview of control-function regression

methods.

cfprobit fits a model whose main equation has the form

𝑃(𝑦𝑖0 = 1|y𝑖, x𝑖,w𝑖) = Φ(y𝑖β1 + x𝑖β2 + w𝑖β3 + 𝑢𝑖)

where 𝑦𝑖0 is the dependent variable for the 𝑖th observation; y𝑖 = (𝑦𝑖1, 𝑦𝑖2, . . . , 𝑦𝑖𝑝)′ is a row vector of 𝑝
endogenous regressors; x𝑖 is a row vector of exogenous regressors to be included in the main equation

and in first-stage regressions; w𝑖 is a row vector of exogenous regressors to be included only in the main

equation; β1, β2, and β3 are vectors of coefficients; and 𝑢𝑖 is an error term that may be correlated with

the endogenous regressors.

We assume the existence of a set of exogenous instruments for each endogenous regressor. These

sets of instruments can be the same across endogenous regressors, or they can be different. Let z𝑘
𝑖 be

the vector containing the instruments for endogenous regressor 𝑦𝑖𝑘, and let z𝑖 = (z1
𝑖 , z2

𝑖 , . . . , z𝑝
𝑖 )′ be the

vector containing the instruments for all endogenous regressors in the model.
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While the model is similar to those fit by instrumental-variables probit methods, the control-function

approach explicitly models the endogeneity in the error term 𝑢𝑖. Specifically, we assume

𝑃(𝑦𝑖0 = 1|y𝑖, x𝑖, z𝑖,w𝑖) = 𝑃(𝑦𝑖0 = 1|ν𝑖, y𝑖, x𝑖, z𝑖,w𝑖)
= Φ(y𝑖β1 + x𝑖β2 + w𝑖β3 + 𝜈𝑖ρ + ℎ(ν𝑖, y𝑖, x𝑖, z𝑖,w𝑖)′ρℎ + 𝜖𝑖)

where 𝜖𝑖 is an error term unaffected by endogeneity. Here 𝜈𝑖 = (𝜈𝑖1, 𝜈𝑖2, . . . , 𝜈𝑖𝑝)′ is a row vector of

control functions, one for each endogenous variable, and ρ = (𝜌1, 𝜌2, . . . , 𝜌𝑝) is a vector of parameters.
ℎ(⋅) is a known vector-valued function and can include, for our purposes, interactions among the control
functions in 𝜈𝑖, as well as between the control functions and the exogenous or endogenous variables. ρℎ
is a set of associated parameters.

For example, suppose that we have one endogenous variable 𝑦𝑖1 and two instruments 𝑧1
𝑖1 and 𝑧1

𝑖2 and

that x𝑖 and w𝑖 are empty. ℎ(ν𝑖, 𝑦𝑖1, z1
𝑖 ) might take the form (𝜈𝑖1𝑧1

𝑖1, 𝜈𝑖1𝑧1
𝑖2). We can write

𝑃(𝑦𝑖0 = 1|y𝑖, x𝑖,w𝑖) = Φ(𝑦𝑖1𝛽1 + 𝜈𝑖1𝜌1 + 𝜈𝑖1𝑧1
𝑖1𝜌ℎ1 + 𝜈𝑖1𝑧2

𝑖2𝜌ℎ2 + 𝜖𝑖)

Example 1: Single endogenous regressor, linear first stage
In practice, control functions are not observed but rather estimated. Specifically, the residuals or

generalized residuals produced in first-stage regressions serve as control functions. We can model the

endogenous variable 𝑦𝑖1 by the linear regression

𝑦𝑖1 = x𝑖π11 + z1
𝑖π12 + 𝜈𝑖1

and use the estimate ̂𝜈𝑖1 as our control function for 𝑦𝑖1.

To illustrate, we revisit [ERM] Example 3a, where we used a fictional dataset of university students

to investigate the relationship between graduate, an indicator for college graduation, and hsgpa, a
variable for high school grade point average. Rather than modeling the endogenous regressor and the

main outcome jointly, here we will model the endogeneity using a control function that enters the main

probit model.

Avariable for income (income) and an indicator for whether a student has roommates (roommate) are
included as exogenous variables. An index of the competitiveness of a student’s high school (hscomp)
is included as a set of categorical instrumental variables for hsgpa, which is thought to be endogenous.
The main probit model has the form

𝑃(graduate𝑖 = 1) = Φ(𝛽0 + 𝛽1hsgpa𝑖 + 𝛽21.roommate𝑖 + 𝛽3income𝑖 + 𝑢𝑖)

To fit this model with cfprobit, with a first-stage regression model of hsgpa on income, i.hscomp,
and i.roommate, we could type

. use https://www.stata-press.com/data/r18/class10

. cfprobit graduate income i.roommate (hsgpa = i.hscomp)
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However, in [ERM]Example 3a, robust standard errors are reported, and i.roommate appears only in the
main equation. We can use the mainonly(i.roommate) and vce(robust) option to produce similar
results as follows:

. cfprobit graduate income (hsgpa = i.hscomp), mainonly(i.roommate) vce(robust)
Iteration 0: Log pseudolikelihood = -1670.5207
Iteration 1: Log pseudolikelihood = -1225.1014
Iteration 2: Log pseudolikelihood = -1220.737
Iteration 3: Log pseudolikelihood = -1220.7329
Iteration 4: Log pseudolikelihood = -1220.7329
Control-function probit regression Number of obs = 2,500

Wald chi2(3) = 366.50
Prob > chi2 = 0.0000

Endogenous variable model:
Linear: hsgpa

Robust
graduate Coefficient std. err. z P>|z| [95% conf. interval]

graduate
hsgpa 1.108869 .4212983 2.63 0.008 .2831396 1.934599

roommate
Yes .2835928 .0598045 4.74 0.000 .1663782 .4008074

income .1712461 .0222423 7.70 0.000 .127652 .2148403
_cons -3.958217 1.142227 -3.47 0.001 -6.196942 -1.719492

e.graduate
cf(hsgpa) 1.500675 .4308452 3.48 0.000 .656234 2.345116

Instruments for hsgpa: 2.hscomp 3.hscomp

The estimates here are similar to those in [ERM] Example 3a but not identical, as is to be expected.

The control-function procedure also gives us an estimate of the coefficient on the control function in the

main equation, reported as cf(hsgpa). Here e.graduate denotes the model for 𝑢𝑖, the error term in

the main probit equation. This error term is modeled as a function of the control functions and, in some

cases, other interaction terms involving them. In our example, a test of the hypothesis that the coefficient

on cf(hsgpa) is different from zero can be interpreted as a test of the endogeneity of hsgpa.
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cfprobit allows us to specify variables that interact with the control function. One interesting use of
this feature, as outlined by Wooldridge (2015) in a linear control-function setting, is to specify a model

with a correlated random coefficient on the endogenous variable. To do this, we include an interaction

between hsgpa and the control function in the main model:

. cfprobit graduate income (hsgpa = i.hscomp, interact(hsgpa)),
> mainonly(i.roommate) vce(robust)
Iteration 0: Log pseudolikelihood = -1670.5207
Iteration 1: Log pseudolikelihood = -1227.3099
Iteration 2: Log pseudolikelihood = -1215.8736
Iteration 3: Log pseudolikelihood = -1215.6982
Iteration 4: Log pseudolikelihood = -1215.6981
Control-function probit regression Number of obs = 2,500

Wald chi2(3) = 385.44
Prob > chi2 = 0.0000

Endogenous variable model:
Linear: hsgpa

Robust
graduate Coefficient std. err. z P>|z| [95% conf. interval]

graduate
hsgpa 1.200042 .4204305 2.85 0.004 .3760133 2.02407

roommate
Yes .2894069 .0599019 4.83 0.000 .1720013 .4068124

income .1729677 .0223577 7.74 0.000 .1291474 .2167881
_cons -4.289334 1.139105 -3.77 0.000 -6.52194 -2.056729

e.graduate
cf(hsgpa) -2.005797 1.372688 -1.46 0.144 -4.696216 .6846215

cf(hsgpa)
hsgpa 1.217436 .4549708 2.68 0.007 .3257092 2.109162

Instruments for hsgpa: 2.hscomp 3.hscomp

Conveniently, a test of the coefficient on the interaction term cf(hsgpa)#c.hsgpa is a valid test of
whether the linear coefficient on hsgpa is random. The results suggest it is and, thus, that a random

coefficient model is appropriate.
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Example 2: Two endogenous regressors
The fictional university student database discussed above includes an indicator variable, program,

for whether a student participated in a study-skills program. We can include this as an endogenous

variable in the regression, instrumenting it using indicator variables scholar, for whether the student
has a scholarship, and campus, for whether the student lived on campus in their first year. We use a probit

model for the first-stage regression for program.

Because there are two endogenous variables and thus two control functions, we can include the inter-

action of the two control functions in the main model using the cfinteract option.

. cfprobit graduate income (hsgpa = i.hscomp, interact(hsgpa))
> (program = i.campus i.scholar, probit interact(i.program)),
> mainonly(i.roommate) vce(robust) cfinteract
Iteration 0: Log pseudolikelihood = -1670.5207
Iteration 1: Log pseudolikelihood = -1097.3719
Iteration 2: Log pseudolikelihood = -1077.9706
Iteration 3: Log pseudolikelihood = -1077.6541
Iteration 4: Log pseudolikelihood = -1077.6538
Iteration 5: Log pseudolikelihood = -1077.6538
Control-function probit regression Number of obs = 2,500

Wald chi2(4) = 407.05
Prob > chi2 = 0.0000

Endogenous variable models:
Linear: hsgpa
Probit: 1.program

Robust
graduate Coefficient std. err. z P>|z| [95% conf. interval]

graduate
hsgpa 1.291673 .4500548 2.87 0.004 .4095819 2.173765

1.program .4903884 .1758995 2.79 0.005 .1456318 .8351451

roommate
Yes .3237032 .0633824 5.11 0.000 .1994761 .4479304

income .2166386 .0250304 8.66 0.000 .1675799 .2656973
_cons -5.092267 1.222169 -4.17 0.000 -7.487675 -2.696859

e.graduate
cf(hsgpa) -2.367223 1.550839 -1.53 0.127 -5.406811 .6723648

cf(1.program) .3197215 .1520979 2.10 0.036 .021615 .6178279

cf(1.program)
cf(hsgpa) .0225537 .1966956 0.11 0.909 -.3629625 .40807

cf(hsgpa)
hsgpa 1.442845 .519374 2.78 0.005 .4248904 2.460799

cf(1.program)
program

0 0 (omitted)
1 .1701306 .2206631 0.77 0.441 -.2623611 .6026222

Instruments for hsgpa: 2.hscomp 3.hscomp
Instruments for 1.program: 1.campus 1.scholar
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To test the endogeneity of program, we can perform a joint test of the coefficients on cf(program)
and its interactions using the postestimation command estat endogenous.

. estat endogenous program
Tests of endogeneity
H0: Variables are exogenous
( 1) [e.graduate]cf(1.program) - [e.graduate]cf(1.program)#cf(hsgpa) = 0
( 2) [e.graduate]cf(1.program) - [e.graduate]cf(1.program)#0b.program = 0
( 3) [e.graduate]cf(1.program) - [e.graduate]cf(1.program)#1.program = 0
( 4) [e.graduate]cf(1.program) = 0

Constraint 4 dropped
chi2( 3) = 12.69

Prob > chi2 = 0.0054

The results suggest that program is indeed endogenous.

Stored results
cfprobit stores the following in e():

Scalars

e(N) number of observations

e(N cds) number of completely determined successes

e(N cdf) number of completely determined failures

e(k endog) number of endogenous variables

e(df m) model degrees of freedom

e(ll) log likelihood

e(chi2) 𝜒2

e(p) 𝑝-value for model test
e(N clust) number of clusters

e(hac lag) HAC lag

e(rank) rank of e(V)
e(ic) number of iterations

e(rc) return code

e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) cfprobit
e(cmdline) command as typed

e(depvar) name of dependent variable

e(endog) names of endogenous variables

e(exog) names of exogenous variables

e(exog main) names of exogenous variables in main equation only

e(constant) noconstant, if specified
e(wtype) weight type

e(wexp) weight expression

e(modeltypes) model specification (linear, probit, etc.) for each endogenous regressor
e(cfinteract) cfinteract, if specified
e(title) title in estimation output

e(clustvar) name of cluster variable

e(hac kernel) HAC kernel

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(exogr) exogenous regressors

e(asis) asis, if specified
e(method) ml
e(opt) type of optimization
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e(which) max or min; whether optimizer is to perform maximization or minimization

e(ml method) type of ml method
e(user) name of likelihood-evaluator program

e(technique) maximization technique

e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(footnote) program used to implement footnote display

e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of the estimators

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():
Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas
The probit model fit by cfprobit can be written as

𝑃(𝑦𝑖0 = 1|y𝑖, x𝑖) = Φ(y𝑖β1 + x𝑖β2 + 𝑢𝑖)

where 𝑦𝑖0 is the dependent variable for the 𝑖th observation; y𝑖 = (𝑦𝑖1, 𝑦𝑖2, . . . , 𝑦𝑖𝑝)′ is a row vector of 𝑝
endogenous regressors; x𝑖 is a row vector of exogenous variables; β1 and β2 are vectors of coefficients;

and 𝑢𝑖 is an error term, which may be correlated with the endogenous regressors y𝑖. Here we have

omitted the main equation-only variables w𝑖 for convenience.

We also specify first-stage models for each endogenous regressor 𝑦𝑖𝑘 as a function of the exogenous

regressors x𝑖 and instruments z
𝑘
𝑖 . These first-stage models, and the associated control functions 𝜈𝑖 and

their estimates ̂𝜈𝑖, are defined in [R] cfregress.

Regression estimates are produced using a modified main equation that incorporates the control-

function model of the endogeneity in 𝑢𝑖,

𝑃(𝑦𝑖0 = 1|𝜈𝑖, y𝑖, x𝑖, z𝑖) = Φ{y𝑖β1 + x𝑖β2 + 𝜈𝑖ρ + ℎ(𝜈𝑖, y𝑖, x𝑖, z𝑖)′ρℎ + 𝜖𝑖}

where ℎ(⋅) is known, ρ = (𝜌1, 𝜌2, . . . , 𝜌𝑝), ρℎ is a vector of coefficients corresponding to the elements

of ℎ(𝜈𝑖, y𝑖, x𝑖, z𝑖), z𝑖 = (z1
𝑖 , z2

𝑖 , . . . , z𝑝
𝑖 )′, and 𝜖𝑖 is an error term. This probit model is estimated using

maximum likelihood to produce estimates of the coefficients that are appropriately corrected for endo-

geneity.

Note that control functions enter as estimates that have been computed in a first-stage model. As a

result, the standard errors returned by this procedure are incorrect. For this reason, the standard errors

are computed as if the model was estimated using generalized method of moments (GMM). The GMM

specification used to produce standard errors includes a set of moment conditions for the main equation,

as well as a set of moment conditions for each of the first-stage models.
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The error function for the dependent variable is

𝜖𝑖(𝑦𝑖0, y𝑖, x𝑖, z𝑖,β1,β2,β3,ρ,ρℎ) = 𝑦𝑖0
𝜙(𝜔)
Φ(𝜔)

− (1 − 𝑦𝑖0) 𝜙(−𝜔)
Φ(−𝜔)

where 𝜔 = y𝑖β1 + x𝑖β2 + 𝜈𝑖(y𝑖, x𝑖, z𝑖)ρ + ℎ(𝜈𝑖(y𝑖, x𝑖, z𝑖), y𝑖, x𝑖, z𝑖)′ρℎ.

Note that this error function is equal to the score of the probit log-likelihood function (and thus delivers

the same coefficient estimates as a maximum likelihood procedure). It forms a set of moment conditions

with associated instruments y𝑖, x𝑖, ν̂𝑖, and ℎ(ν̂𝑖, y𝑖, x𝑖, z𝑖).
Additionally, each of the control functions ν𝑘𝑖(y𝑖, x𝑖, z𝑘

𝑖 ) is taken as an error function that forms a set
of moment conditions with the exogenous variables x𝑖 and associated instruments z

𝑘
𝑖 .

Together, these moment conditions define an exactly identified model for the purpose of GMM esti-

mation, even if there are more instruments in z𝑖 than there are endogenous variables (in this sense, it is a

method of moments specification). This is because each instrument in the moment conditions is associ-

ated with a unique parameter. Because the GMM model is exactly identified, the results are invariant to

the choice of the GMM weight matrix.
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+Postestimation features after cfprobit are part of StataNow.

Postestimation commands predict margins estat
Remarks and examples Stored results Methods and formulas Also see

Postestimation commands
The following postestimation command is of special interest after cfprobit:

Command Description

estat endogenous perform tests of endogeneity

The following postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estimates cataloging estimation results

etable table of estimation results

forecast dynamic forecasts and simulations

hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

predict predictions and their SEs, residuals, etc.

predictnl point estimates, standard errors, testing, and inference for generalized predictions

pwcompare pairwise comparisons of parameters

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

224
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predict

Description for predict
predict creates a new variable containing predictions such as linear predictions, residuals, and stan-

dard errors.

Menu for predict
Statistics > Postestimation

Syntax for predict
predict [ type ] newvar [ if ] [ in ] [ , statistic ]

statistic Description

Main

pr probability of a positive outcome; the default

xb linear prediction

xbv linear prediction that includes control functions

stdp standard error of the prediction

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for the estimation
sample.

Options for predict

� � �
Main �

pr calculates the probability of a positive outcome. This has an average structural function interpretation
and is conditional on the control functions.

xb calculates the linear prediction for the main equation that does not include control-function terms,

that is, x𝑖b.

xbv calculates the linear prediction for the main equation that includes the estimated control-function

terms with their coefficients, that is, x𝑖b + ̂𝜈𝑖p + ℎ( ̂𝜈𝑖, y𝑖, x𝑖)′pℎ.

stdp calculates the standard error of the prediction, which can be thought of as the standard error of the
predicted expected value or mean for the observation’s covariate pattern. This is also referred to as

the standard error of the fitted value.
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margins

Description for margins
margins estimates margins of response for linear predictions and probabilities.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist ] [ , options ]
margins [marginlist ] , predict(statistic ...) [ predict(statistic ...) ... ] [ options ]

statistic Description

pr probability of a positive outcome; the default

xb linear prediction

xbv linear prediction that includes control functions

stdp not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.

estat

Description for estat
estat endogenous performs tests to determine whether endogenous regressors in the model are in

fact exogenous. Tests are performed as Wald tests on the coefficients of relevant control functions and

their interactions in the model and account for the type of variance–covariance matrix used.

Menu for estat
Statistics > Postestimation

Syntax for estat
estat endogenous [ varlist ]

collect is allowed with estat endogenous; see [U] 11.1.10 Prefix commands.
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Remarks and examples
Remarks are presented under the following headings:

Obtaining predicted values
estat endogenous

Obtaining predicted values
predict’s pr option calculates the probability of a positive outcome as specified by the model, con-

ditional on the control functions. It corresponds to the result of predict after ivprobit with options
pr and asf and has a similar average structural function interpretation; see [R] ivprobit postestimation.

estat endogenous
Control-function regression lends itself naturally to tests of endogeneity. Under the null hypothesis

that an endogenous variable is in fact endogenous, the coefficient on its associated control function, as

well as the coefficients on any interactions of the control function, will be zero. Accordingly, a test of

these coefficients is a test of the endogeneity of the associated endogenous variable.

estat endogenous tests the endogeneity of all endogenous variables jointly if specified without a
variable list. Otherwise, only the endogeneity of the listed variables is tested.

For an example of the use of estat endogenous after cfprobit, see example 2 in [R] cfprobit.

Stored results
estat endogenous stores the following in r():

Scalar

r(chi2) 𝜒2 statistic

r(df) degrees of freedom

r(p) 𝑝-value for 𝜒2 statistic

Methods and formulas
As discussed in [R] cfprobit, the equation estimated by cfprobit has the form

𝑃(𝑦𝑖0 = 1|y𝑖, x𝑖,w𝑖, z𝑖) = Φ{y𝑖β1 + x𝑖β2 + w𝑖β3 + ν̂𝑖ρ + ℎ(ν̂𝑖, y𝑖, x𝑖, z𝑖,w𝑖)′ρℎ + 𝜖𝑖}

where ν̂𝑖 is a set of estimated control functions, one for each of the endogenous variables in y𝑖, and ℎ(⋅)
is a known vector-valued function. ℎ(⋅) can include, for our purposes, interactions between the control
functions in ν̂𝑖, as well as interactions between control functions and the exogenous and endogenous

variables in the model.

Methods and formulas are presented under the following headings:

Obtaining predicted values
estat endogenous
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Obtaining predicted values

The linear prediction using the xb option is computed as y𝑖β̂1 + x𝑖β̂2 + w𝑖β̂3. The linear predic-

tion, including control functions using the xbv option, is computed as y𝑖β̂1 + x𝑖β̂2 + w𝑖β̂3 + ν̂𝑖ρ̂ +
ℎ(ν̂𝑖, y𝑖, x𝑖, z𝑖,w𝑖)′ρ̂ℎ. The probability of a positive outcome using option pr is computed as the cumu-
lative standard normal distribution function evaluated at the linear prediction including control functions.

estat endogenous
estat endogenous, when specified without a variable list, conducts a joint Wald test of ρ = 0 and

ρℎ = 0.

When a variable list is specified, estat endogenous conducts aWald test for the null hypothesis that

all the coefficients in ρ and ρℎ, which involve the control functions of the specified variables, are jointly

equal to 0. See [R] test for documentation of Wald tests.

Also see
[R] cfprobit — Control-function probit regression+

[U] 20 Estimation and postestimation commands
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+This command is part of StataNow.

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Acknowledgment References Also see

Description
cfregress fits linear models with endogenous regressors using control functions. Endogenous vari-

ables are first modeled as a function of instruments using linear, probit, fractional probit, or Poisson

regression. The residuals, or generalized residuals, from these first-stage regressions are then included

in the main equation as control functions to make regression estimates robust to endogeneity.

Quick start
Control function estimation of a linear regression of y1 on x and endogenous regressor y2 that is instru-

mented by z
cfregress y1 x (y2 = z)

Same as above, but with two endogenous regressors and two instruments

cfregress y1 x (y2 y3 = z1 z2)

Same as above, but use z3 as an additional instrument for y3
cfregress y1 x (y2 = z1 z2) (y3 = z1 z2 z3)

Model the first stage for binary endogenous regressor y4 using probit regression
cfregress y1 x (y2 = z1 z2) (y4 = z1 z2 z3, probit)

Include an interaction term between w and the control function of y2 in the main equation
cfregress y1 x (y2 = z, interact(w))

Include an interaction term between the control functions of y2 and y3
cfregress y1 x (y2 = z1 z2) (y3 = z1 z2), cfinteract

Include w in the main equation for y1 but not in the first stage
cfregress y1 x (y2 = z), mainonly(w)

Include an endogenous interaction term between w and y2, and control for its endogeneity by including
an interaction term between w and the control function of y2

cfregress y1 x w (y2 = z, interact(w)), mainonly(c.y2#c.w)

Menu
Statistics > Endogenous covariates > Control-function linear regression
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Syntax
cfregress depvar [ indepvars ] (varlisten1 = varlistiv1 [ , cfopts ])

[ (varlisten2 = varlistiv2 [ , cfopts ]) ... ] [ if ] [ in ] [weight ] [ , options ]

cfopts Description

Model

linear model the endogenous variables using linear regression; the default

probit model the endogenous variables using probit regression

fprobit model the endogenous variables using fractional probit regression

poisson model the endogenous variables using Poisson regression

interact(varlistint) interact the variables in varlistint with the control functions

Only one of linear, probit, fprobit, or poisson is allowed in each set of parentheses.

options Description

Model

mainonly(varlistm) include the variables in varlistm as exogenous variables in the
main equation but not in the first-stage equations

cfinteract include interactions between control functions when there are
multiple endogenous variables

noconstant suppress constant term

hascons has user-supplied constant

SE/Robust

vce(vcetype) vcetype may be conventional, robust, cluster clustvar,
bootstrap, jackknife, or hac hacspec

Reporting

level set confidence level; default is level(95)
first report first-stage regressions

noheader display only the coefficient table

eform[ (string) ] report exponentiated coefficients and, optionally, label as string

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

coeflegend display legend instead of statistics

indepvars, varlisten⋅, varlistiv⋅, varlistint, and varlistm may contain factor variables; see [U] 11.4.3 Factor variables.

depvars, indepvars, varlisten⋅, varlistiv⋅, varlistint, and varlistm may contain time-series operators; see [U] 11.4.4 Time-series

varlists.

bootstrap, by, collect, jackknife, rolling, and statsby are allowed; see [U] 11.1.10 Prefix commands.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
aweights are not allowed with the jackknife prefix; see [R] jackknife.
aweights, fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Options

� � �
Model �

linear, probit, fprobit, and poisson specify which regression model is used for the first-stage

model. A different model can be specified for each set of parentheses.

linear, the default, specifies a linear regression model.

probit specifies a probit regression model. Endogenous variables must be coded as 0/1.

fprobit specifies a fractional probit regression model. Endogenous variables must take values in

[0, 1].
poisson specifies a Poisson regression model. Endogenous variables must take nonnegative values.

interact(varlistint) includes in the main regression an interaction term between each variable in

varlistint and the control functions associated with the current set of parentheses. Variables are treated

as continuous by default.

mainonly(varlistm) includes the variables in varlistm as exogenous variables in the main regression but

excludes them from the first-stage regressions.

cfinteract specifies that all interactions between control functions be included in the main regression.
If there is only one endogenous regressor, and thus only one control function, the option has no effect.

noconstant; see [R] Estimation options.

hascons indicates that a user-defined constant or its equivalent is specified among the independent vari-
ables.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are robust to some
kinds of misspecification (robust), that allow for intragroup correlation (cluster clustvar), and that
use bootstrap or jackknife methods (bootstrap, jackknife); see [R] vce option.

vce(conventional), the default, requests conventional standard errors appropriate under ho-

moskedasticity and no autocorrelation.

vce(hac hacspec) requests a heteroskedasticity- and autocorrelation-consistent (HAC) variance–

covariance matrix. The full syntax of hacspec is one of the following:

vce(hac kernel [ # ]) requests a HAC variance–covariance matrix using the specified kernel (see
below) with optional # lags. The bandwidth of a kernel is equal to #+ 1. If # is not specified,

a kernel with 𝑁 − 2 lags is used, where 𝑁 is the sample size.

vce(hac kernel opt [ # ]) requests a HAC variance–covariance matrix using the specified kernel
(see below), and the lag order is selected using Newey andWest’s (1994) optimal lag-selection

algorithm. # is an optional tuning parameter that affects the lag order selected; see the discussion

in Methods and formulas of [R] ivregress.

kernel may be one of the following:

bartlett or nwest requests the Bartlett (Newey–West) kernel.

parzen or gallant requests the Parzen (Gallant 1987) kernel.

quadraticspectral or andrews requests the quadratic spectral (Andrews 1991) kernel.
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� � �
Reporting �

level(#); see [R] Estimation options.

first requests that the results of first-stage regressions be displayed.

noheader suppresses the display of the summary statistics at the top of the output, displaying only the
coefficient table.

eform and eform(string) specify that the coefficient table be displayed in exponentiated form and that

exp(b) and string, respectively, be used to label the exponentiated coefficients in the table. Standard
errors and confidence intervals are also transformed.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

The following option is available with cfregress but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

Remarks and examples
cfregress fits linear models with endogenous regressors by estimating one or more control func-

tions and including them in the main regression equation. These control functions are estimated as the

residuals, or generalized residuals, of first-stage regressions.

Control-function methods are closely related to standard instrumental-variables (IV) methods and in

the simplest cases produce the same regression estimates. However, control-function methods allow for

more flexibility than comparable IVmethods. Wooldridge (2015) gives an overview of control-function

regression methods.

The main equation in the model fit by cfregress is

𝑦𝑖0 = y𝑖β1 + x𝑖β2 + w𝑖β3 + 𝑢𝑖 (1)

where 𝑦𝑖0 is the dependent variable for the 𝑖th observation; y𝑖 = (𝑦𝑖1, 𝑦𝑖2, . . . , 𝑦𝑖𝑝)′ is a row vector of 𝑝
endogenous regressors; x𝑖 is a row vector of exogenous regressors to be included in the main equation

and in first-stage regressions; w𝑖 is a row vector of exogenous regressors to be included only in the main

equation; β1, β2, and β3 are vectors of coefficients; and 𝑢𝑖 is an error term whose conditional mean is

thought to depend on the endogenous variables y𝑖.

We assume the existence of a set of exogenous instruments for each endogenous regressor. These

sets of instruments can be the same across endogenous regressors, or they can be different. Let z𝑘
𝑖 be

the vector containing the instruments for endogenous regressor 𝑦𝑖𝑘, and let z𝑖 = (z1
𝑖 , z2

𝑖 , . . . , z𝑝
𝑖 )′ be the

vector containing the instruments for all endogenous regressors in the model.

The main equation is similar to those fit by linear IV methods. However, the control-function ap-

proach imposes additional structure on the model in that the endogeneity in the error term 𝑢𝑖 is explicitly

modeled. Specifically, we assume

𝐸(𝑢𝑖|y𝑖, x𝑖, z𝑖,w𝑖) = 𝐸(𝑢𝑖|ν𝑖, y𝑖, x𝑖, z𝑖,w𝑖)
= 𝜈𝑖ρ + ℎ(ν𝑖, y𝑖, x𝑖, z𝑖,w𝑖)′ρℎ (2)
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Here 𝜈𝑖 = (𝜈𝑖1, 𝜈𝑖2, . . . , 𝜈𝑖𝑝)′ is a row vector of control functions, one for each endogenous variable, and

ρ = (𝜌1, 𝜌2, . . . , 𝜌𝑝) is a vector of coefficients. ℎ(⋅) is a known vector-valued function and can include,
for our purposes, interactions among the control functions in 𝜈𝑖, as well as between the control functions

and the exogenous or endogenous variables. ρℎ is a set of associated parameters.

For example, suppose that we have one endogenous variable 𝑦𝑖1 and two instruments 𝑧1
𝑖1 and 𝑧1

𝑖2 and

that x𝑖 and w𝑖 are empty. ℎ(ν𝑖, 𝑦𝑖1, z1
𝑖 ) might take the form (𝜈𝑖1𝑧1

𝑖1, 𝜈𝑖1𝑧1
𝑖2). Combining (1) and (2) and

specifying that 𝜖𝑖 = 𝑢𝑖 − 𝐸(𝑢𝑖|y𝑖, z𝑖), we can write

𝑦𝑖0 = 𝑦𝑖1𝛽1 + 𝜈𝑖1𝜌1 + 𝜈𝑖1𝑧1
𝑖1𝜌ℎ1 + 𝜈𝑖1𝑧1

𝑖2𝜌ℎ2 + 𝜖𝑖

When ℎ(⋅) ≡ 0 and all first-stage models are linear, control-function estimates of the coefficients of

the main equation are numerically equivalent to two-stage least-squares IV estimates of the same main

equation with the same instruments.

Example 1: Single endogenous regressor, linear first stage
In practice, control functions are not observed but rather estimated. Specifically, the residuals or

generalized residuals produced in first-stage regressions serve as control functions. We can model the

endogenous variable 𝑦𝑖1 by the linear regression

𝑦𝑖1 = x𝑖π11 + z1
𝑖π12 + 𝜈𝑖1

and use the estimate ̂𝜈𝑖1 as our control function for 𝑦𝑖1.

To illustrate, we revisit example 1 in [R] ivregress using census data on housing. We have state data

from the 1980 census on the median home value (hsngval) and the median monthly gross rent (rent).
We can model (rent) as a function of hsngval and the percentage of the population living in urban areas
(pcturban),

rent𝑖 = 𝛽0 + 𝛽1hsngval𝑖 + 𝛽2pcturban𝑖 + 𝑢𝑖

where 𝑖 indexes states. We believe that hsngval is endogenous; thus, we instrument it using the state’s
median family income (faminc) and census region (region).
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We can re-create the ivregress 2sls estimates for this model using cfregress. Here, however,
we rescale hsngval and faminc to be in thousands of dollars so that they are on a scale similar to rent:

. use https://www.stata-press.com/data/r18/hsng
(1980 Census housing data)
. replace hsngval = hsngval/1000
variable hsngval was long now double
(50 real changes made)
. replace faminc = faminc/1000
variable faminc was long now double
(50 real changes made)
. cfregress rent pcturban (hsngval = faminc i.region)
Control-function linear regression Number of obs = 50

Wald chi2(2) = 90.76
Prob > chi2 = 0.0000
R-squared = 0.5989
Root MSE = 22.1656

Endogenous variable model:
Linear: hsngval

rent Coefficient Std. err. z P>|z| [95% conf. interval]

rent
hsngval 2.239833 .3284392 6.82 0.000 1.596104 2.883562
pcturban .081516 .2987652 0.27 0.785 -.504053 .667085

_cons 120.7065 15.22839 7.93 0.000 90.85942 150.5536

e.rent
cf(hsngval) -1.588908 .4333422 -3.67 0.000 -2.438243 -.7395726

Instruments for hsngval: faminc 2.region 3.region 4.region

Accounting for scaling, these estimates are identical to comparable estimates produced by ivregress
2sls, but cfregress also includes an estimate of the coefficient on the control function, reported as

cf(hsngval). Here e.rent denotes the model used for 𝑢𝑖, the error term in the main equation for the

dependent variable, rent. This error term is modeled as a function of the control functions and, in some

cases, other interaction terms involving them. In our example, a test of the hypothesis that the coefficient

on cf(hsngval) is different from zero can be interpreted as a test of the endogeneity of hsngval.
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We may suspect, however, that our model for 𝑢𝑖 in the previous example is misspecified. We

can add an interaction term between the control function and faminc to this model by using the

interact(faminc) option:

. cfregress rent pcturban (hsngval = faminc i.region, interact(faminc))
Control-function linear regression Number of obs = 50

Wald chi2(2) = 95.16
Prob > chi2 = 0.0000
R-squared = 0.5945
Root MSE = 22.2851

Endogenous variable model:
Linear: hsngval

rent Coefficient Std. err. z P>|z| [95% conf. interval]

rent
hsngval 2.155381 .3437284 6.27 0.000 1.481686 2.829076
pcturban .4794597 .2362242 2.03 0.042 .0164688 .9424506

_cons 98.15909 13.86958 7.08 0.000 70.97521 125.343

e.rent
cf(hsngval) 10.66765 3.619442 2.95 0.003 3.573673 17.76163

cf(hsngval)
faminc -.5610651 .1743049 -3.22 0.001 -.9026965 -.2194338

Instruments for hsngval: faminc 2.region 3.region 4.region

The coefficient on the endogenous variable, hsngval, is slightly different but not substantially

changed. However, the coefficient on pcturban is now noticeably larger, and there is evidence it is

different from zero. The coefficient on the control function cf(hsngval) has changed sign, and there
is evidence that the coefficient on the interaction term is also relevant in the model, suggesting that in-

cluding it in the model for the error term is appropriate. In this case, a joint test of cf(hsngval) and
cf(hsngval)#faminc is equivalent to a test of the endogeneity of hsngval.

We can perform this test using the postestimation command estat endogenous.

. estat endogenous
Tests of endogeneity
H0: Variables are exogenous
( 1) [e.rent]cf(hsngval) = 0
( 2) [e.rent]cf(hsngval)#c.faminc = 0

chi2( 2) = 15.30
Prob > chi2 = 0.0005

We note here that as long as the instruments are valid, misspecification of the endogeneity in the

error term, such as by using a two-stage least-squares IV estimator when the data-generating process has

ℎ(𝑢𝑖|y𝑖, x𝑖, z𝑖,w𝑖) ≠ 0, will not affect the consistency of the regression estimates. However, it may lead

to biased estimates or invalid inference in small samples. Kim and Petrin (2011) discuss issues related

to the specification of the endogeneity in the error term.
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Example 2: Endogenous variables entering as interactions
Oftentimes, we have amodel with a single endogenous regressor, 𝑦𝑖1, that appears in themain equation

interacted with an exogenous variable 𝑥𝑖1,

𝑦𝑖0 = 𝑦𝑖1β1 + 𝑦𝑖1𝑥𝑖1β2 + x𝑖β3 + 𝑢𝑖

In these cases, it is natural to model 𝑢𝑖 as a linear function of the control function for 𝑦𝑖1, 𝜈1, and the

interaction term 𝜈1𝑥𝑖1,

𝐸(𝑢𝑖|𝑦𝑖1, x𝑖, z1
𝑖 ) = 𝜌1𝜈1 + 𝜌2𝜈1𝑥𝑖1

We can add an interaction term to the main equation and, at the same time, model 𝑢𝑖 using the

mainonly() and interact() options.

Returning to the housing value model in the previous example, suppose that we want to include

faminc as an exogenous variable and to include an interaction term between it and the endogenous

regressor hsngval in the main equation for rent. At the same time, we want to control for endogeneity
by including the interaction term between the control function of hsngval and faminc. We can type

. cfregress rent pcturban faminc (hsngval = i.region, interact(faminc)),
> mainonly(c.hsngval#c.faminc)
Control-function linear regression Number of obs = 50

Wald chi2(4) = 169.37
Prob > chi2 = 0.0000
R-squared = 0.7694
Root MSE = 16.8055

Endogenous variable model:
Linear: hsngval

rent Coefficient Std. err. z P>|z| [95% conf. interval]

rent
hsngval -.1299135 1.66665 -0.08 0.938 -3.396487 3.13666

c.hsngval#
c.faminc .0744869 .078061 0.95 0.340 -.0785099 .2274836

pcturban .405831 .2078664 1.95 0.051 -.0015798 .8132417
faminc .7928874 3.834329 0.21 0.836 -6.722259 8.308034
_cons 125.9643 73.74242 1.71 0.088 -18.56818 270.4968

e.rent
cf(hsngval) 7.225214 2.793552 2.59 0.010 1.749952 12.70048

cf(hsngval)
faminc -.374434 .1321422 -2.83 0.005 -.633428 -.1154401

Instruments for hsngval: 2.region 3.region 4.region

By specifying mainonly(c.hsngval#c.faminc), we request that the interaction term is included in

the main equation but not in the first-stage regression for hsngval. By specifying interact(faminc),
we request that the interaction term cf(hsngval)#faminc be included to control for endogeneity.
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Example 3: Binary endogenous regressor, probit first stage
Because control-function methods involve explicitly specifying first-stage models for the endoge-

nous variables, the first stage need not be restricted to linear regression. cfregress allows for probit,
fractional probit, and Poisson regression in the first-stage models for the endogenous variables. This

flexibility means that a surprising variety of models can be estimated using cfregress.

For instance, example 2 in [CAUSAL] etregress uses a control-function estimator to estimate the effect

of having health insurance (ins) on the log of prescription drug expenditure (lndrug). The endogenous
binary treatment variable, ins, is instrumented using marital status (married) and employment status
(work). We can reproduce the estimates in the example using cfregresswith the probit, interact(),
and mainonly() options:

. use https://www.stata-press.com/data/r18/drugexp
(Prescription drug expenditures)
. cfregress lndrug age lninc (ins = i.married i.work, probit interact(i.ins)),
> mainonly(i.chron) vce(robust)
Control-function linear regression Number of obs = 6,000

Wald chi2(4) = 1973.78
Prob > chi2 = 0.0000
R-squared = 0.2432
Root MSE = 1.2172

Endogenous variable model:
Probit: 1.ins

Robust
lndrug Coefficient std. err. z P>|z| [95% conf. interval]

lndrug
1.ins -.8598836 .3483648 -2.47 0.014 -1.542666 -.1771011

1.chron .4671725 .0319731 14.61 0.000 .4045064 .5298387
age .1021359 .00292 34.98 0.000 .0964128 .1078589

lninc .0550672 .0225036 2.45 0.014 .0109609 .0991735
_cons 1.665539 .2527527 6.59 0.000 1.170153 2.160925

e.lndrug
cf(1.ins) .5252243 .226367 2.32 0.020 .0815532 .9688954

cf(1.ins)#ins
0 0 (omitted)
1 .2702095 .2585099 1.05 0.296 -.2364605 .7768796

Instruments for 1.ins: 1.married 1.work

Here the first stage is specified as a probit model and an interaction term is included so that the main

error term depends on the value of the treatment variable. We specify the covariate chron (whether the
individual has a chronic health condition) as present in the main equation but not in the treatment model

by using the mainonly() option. The main equation, accounting for the specification of endogeneity,
thus takes the form

lndrug = 𝛽0 + 𝛽1ins + 𝛽2age + 𝛽3lninc + 𝛽4chron

+ 𝜌1cf(1.ins) + 𝜌ℎ1cf(1.ins)#ins + 𝜖

The first-stage model is a standard probit model with ins as the left-hand side variable and married,
work, age, and lninc as right-hand side variables. The estimated control function cf(1.ins) is the
generalized error from this first-stage probit regression, as defined in Methods and formulas.
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The output allows us to assess the way the endogeneity of ins has implicitly been specified by

the treatment-regression model. The model allows the main error term to be correlated with the treat-

ment model error conditional on the value of the treatment variable, which implies that the conditional

mean of the main error depends on the interaction of cf(1.ins) and ins. The estimated coefficient on
cf(1.ins)#ins does not, as it turns out, give evidence that this is the case.

Given this absence of evidence for a treatment-specific error term, we may wish to estimate a regres-

sion that does not include the interaction. This is not possible with etregress, but in cfregress we
can simply drop the interact() option.

. cfregress lndrug age lninc (ins = i.married i.work, probit),
> mainonly(i.chron) vce(robust)
Control-function linear regression Number of obs = 6,000

Wald chi2(4) = 2833.77
Prob > chi2 = 0.0000
R-squared = 0.2393
Root MSE = 1.2203

Endogenous variable model:
Probit: 1.ins

Robust
lndrug Coefficient std. err. z P>|z| [95% conf. interval]

lndrug
1.ins -.8992025 .3399829 -2.64 0.008 -1.565557 -.2328483

1.chron .4675479 .0319717 14.62 0.000 .4048845 .5302113
age .1011597 .0027163 37.24 0.000 .0958359 .1064836

lninc .0505756 .0217621 2.32 0.020 .0079228 .0932285
_cons 1.827957 .1784883 10.24 0.000 1.478126 2.177787

e.lndrug
cf(1.ins) .6157838 .1991464 3.09 0.002 .225464 1.006104

Instruments for 1.ins: 1.married 1.work

Here we find a slightly more extreme main effect of ins and slightly more precise estimates of each
of the coefficients after dropping the interaction term.

Because we have explicit control of the model for the conditional expectation of the error term, we

can not only treat other kinds of models as special cases but also customize these special cases for our

setting, as in the preceding binary treatment example. Similarly, control function regression can be used

to flexibly model correlated random coefficients in linear models, as outlined in Wooldridge (2015).

cfregress also allows for multiple endogenous regressors, each of which can have a different first-
stage model and set of instruments.
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Stored results
cfregress stores the following in e():

Scalars

e(N) number of observations

e(k endog) number of endogenous variables

e(df m) model degrees of freedom

e(rmse) root mean squared error

e(r2) 𝑅2

e(chi2) 𝜒2

e(p) 𝑝-value for model test
e(N clust) number of clusters

e(hac lag) HAC lag

e(rank) rank of e(V)

Macros

e(cmd) cfregress
e(cmdline) command as typed

e(depvar) name of dependent variable

e(endog) names of endogenous variables

e(exog) names of exogenous variables

e(exog main) names of exogenous variables in main equation only

e(constant) noconstant or hasconstant, if specified
e(wtype) weight type

e(wexp) weight expression

e(modeltypes) model specification (linear, probit, etc.) for each endogenous regressor
e(cfinteract) cfinteract, if specified
e(title) title in estimation output

e(clustvar) name of cluster variable

e(hac kernel) HAC kernel

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(exogr) exogenous regressors

e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(footnote) program used to implement footnote display

e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of the estimators

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.
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Methods and formulas
As discussed in Remarks and examples, the main equation estimated by cfregress has the form

𝑦𝑖0 = y𝑖β1 + x𝑖β2 + w𝑖β3 + 𝑢𝑖

where 𝑦𝑖0 is the dependent variable for the 𝑖th observation; y𝑖 = (𝑦𝑖1, 𝑦𝑖2, . . . , 𝑦𝑖𝑝)′ is a row vector of 𝑝
endogenous regressors; x𝑖 is a row vector of exogenous regressors to be included in the main equation

and in first-stage regressions; w𝑖 is a row vector of exogenous regressors to be included only in the main

equation; β1, β2, and β3 are vectors of coefficients; and 𝑢𝑖 is an error term whose conditional mean is

thought to depend on the endogenous variables y𝑖.

We also specify first-stage models for each endogenous regressor 𝑦𝑖𝑘 as a function of the exogenous

regressors x𝑖 and instruments z
𝑘
𝑖 . If a linear model is specified for 𝑦𝑖𝑘, either using the linear option or

by default, its first-stage equation has the form

𝑦𝑖𝑘 = x𝑖π𝑘,1 + z𝑘
𝑖 π𝑘,2 + 𝜈𝑖𝑘

where π𝑘,1 and π𝑘,2 are coefficients and 𝜈𝑖𝑘 is an error term.

If a probit model is specified using the probit option, the first-stage model for 𝑦𝑖𝑘 has the form

𝑃(𝑦𝑖𝑘 = 1|x𝑖, z𝑘
𝑖 ) = Φ(x𝑖π𝑘,1 + z𝑘

𝑖 π𝑘,2)

If a fractional probit model is specified using the fprobit option, the first-stage model for the con-
ditional mean of 𝑦𝑖𝑘 can be written as

𝐸(𝑦𝑖𝑘|x𝑖, z𝑘
𝑖 ) = Φ(x𝑖π𝑘,1 + z𝑘

𝑖 π𝑘,2)

Finally, if a Poisson model is specified using the poisson option, the first-stage model for the condi-
tional mean of 𝑦𝑖𝑘 can be written as

𝐸(𝑦𝑖𝑘|x𝑖, z𝑘
𝑖 ) = exp(x𝑖π𝑘,1 + z𝑘

𝑖 π𝑘,2)

For each endogenous variable 𝑦𝑖𝑘, a control function 𝜈𝑖𝑘(𝑦𝑖𝑘, x𝑖, z𝑘
𝑖 ) is estimated. In the linear case,

this is simply the estimate of the linear error term.

For probit and fractional probit models, it is an estimate at the optimum of the “generalized error”,

which is equal to the first derivative of the probit log likelihood with respect to x𝑖π𝑘,1 + z𝑘
𝑖 π𝑘,2,

𝜈𝑖𝑘(𝑦𝑖𝑘, x𝑖, z𝑘
𝑖 ) = 𝑦𝑖𝑘

𝜙(x𝑖π𝑘,1 + z𝑘
𝑖 π𝑘,2)

Φ(x𝑖π𝑘,1 + z𝑘
𝑖 π𝑘,2)

− (1 − 𝑦𝑖𝑘)
𝜙{−(x𝑖π𝑘,1 + z𝑘

𝑖 π𝑘,2)}
Φ{−(x𝑖π𝑘,1 + z𝑘

𝑖 π𝑘,2)}

For a Poisson first-stage model, 𝜈𝑖𝑘(𝑦𝑖𝑘, x𝑖, z𝑘
𝑖 ) is equal to the first derivative of the Poisson log

likelihood with respect to x𝑖π𝑘,1 + z𝑘
𝑖 π𝑘,2,

𝜈𝑖𝑘(𝑦𝑖𝑘, x𝑖, z𝑘
𝑖 ) = 𝑦𝑖𝑘 − exp(x𝑖π𝑘,1 + z𝑘

𝑖 π𝑘,2)

We also assume a known form for the endogeneity in 𝑢𝑖. Specifically,

𝐸(𝑢𝑖|y𝑖, x𝑖, z𝑖,w𝑖) = 𝐸(𝑢𝑖|ν𝑖, y𝑖, x𝑖, z𝑖,w𝑖)
= 𝜈𝑖ρ + ℎ(ν𝑖, y𝑖, x𝑖, z𝑖,w𝑖)′ρℎ
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where ν𝑖 = {𝜈𝑖1(𝑦𝑖1, x𝑖, z1
𝑖 ), . . . , 𝜈𝑖𝑝(𝑦𝑖𝑝, x𝑖, z

𝑝
𝑖 )}′, ℎ(⋅) is known, ρ = (𝜌1, 𝜌2, . . . , 𝜌𝑝), ρℎ is a vector

of coefficients associated with the elements of ℎ(ν𝑖, y𝑖, x𝑖, z𝑖,w𝑖), and z𝑖 = (z1
𝑖 , z2

𝑖 , . . . , z𝑝
𝑖 )′. Accord-

ingly, we produce estimates of our regression coefficients using a modified main equation of the form

𝑦𝑖0 = y𝑖β1 + x𝑖β2 + w𝑖β3 + ν̂𝑖ρ + ℎ(ν̂𝑖, y𝑖, x𝑖, z𝑖,w𝑖)′ρℎ + 𝜖𝑖

where ν̂𝑖 is an estimate of ν𝑖 computed in first-stage regressions and 𝜖𝑖 is an error term. This equation

is estimated by ordinary least squares to produce estimates of the coefficients that are appropriately

corrected for endogeneity.

Similarly to two-stage least-squares instrumental-variables estimation, the standard errors returned by

this two-stage procedure will be incorrect, because 𝜖𝑖 will be incorrectly taken as the overall error term,

rather than as a component of the true overall error term 𝑢𝑖 = ν𝑖ρ + ℎ(ν𝑖, y𝑖, x𝑖, z𝑖,w𝑖)′ρℎ + 𝜖𝑖.

To correct this, the standard errors are computed as if the model was estimated using generalized

method of moments (GMM). The GMM specification used to produce standard errors includes a set of

moment conditions for the main equation, as well as a set of moment conditions for each of the first-

stage models.

The error function for the dependent variable is

𝜖𝑖(y𝑖, x𝑖, z𝑖,w𝑖,β1,β2,β3,ρ,ρℎ) = 𝑦𝑖0 − y𝑖β1 − x𝑖β2 − w𝑖β3 − ν𝑖(y𝑖, x𝑖, z𝑖)ρ
− ℎ(ν𝑖(y𝑖, x𝑖, z𝑖), y𝑖, x𝑖, z𝑖,w𝑖)′ρℎ

It forms a set of moment conditions with associated instruments y𝑖, x𝑖,w𝑖, ν̂𝑖, and ℎ(ν̂𝑖, y𝑖, x𝑖, z𝑖,w𝑖).
Additionally, each of the control functions ν𝑖𝑘(y𝑖, x𝑖, z𝑘

𝑖 ) is taken as an error function that forms a set
of moment conditions with the exogenous variables x𝑖 and associated instruments z

𝑘
𝑖 .

Together, these moment conditions define an exactly identified model for the purpose of GMM esti-

mation, even if there are more instruments in z𝑖 than there are endogenous variables (in this sense, it is a

method of moments specification). This is because each instrument in the moment conditions is associ-

ated with a unique parameter. Because the GMM model is exactly identified, the results are invariant to

the choice of the GMM weight matrix.
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Also see
[R] cfregress postestimation — Postestimation tools for cfregress+

[R] cfprobit — Control-function probit regression+

[R] ivregress — Single-equation instrumental-variables regression

[R] regress — Linear regression

[CAUSAL] eteffects — Endogenous treatment-effects estimation

[CAUSAL] etregress — Linear regression with endogenous treatment effects

[U] 20 Estimation and postestimation commands
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+Postestimation features after cfregress are part of StataNow.

Postestimation commands predict margins estat
Remarks and examples Stored results Methods and formulas Reference
Also see

Postestimation commands
The following postestimation command is of special interest after cfregress:

Command Description

estat endogenous perform tests of endogeneity

The following postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estimates cataloging estimation results

etable table of estimation results

forecast dynamic forecasts and simulations

hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

predict predictions and their SEs, residuals, etc.

predictnl point estimates, standard errors, testing, and inference for generalized predictions

pwcompare pairwise comparisons of parameters

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses
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predict

Description for predict
predict creates a new variable containing predictions such as linear predictions, residuals, and stan-

dard errors.

Menu for predict
Statistics > Postestimation

Syntax for predict
predict [ type ] newvar [ if ] [ in ] [ , statistic ]

statistic Description

Main

xb linear prediction; the default

xbv linear prediction that includes control functions

e residuals

ve residuals that includes control functions

stdp standard error of the prediction

stdf standard error of the forecast

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for the estimation
sample.

Options for predict

� � �
Main �

xb, the default, calculates the linear prediction for the main equation that does not include control-

function terms, that is, x𝑖b.

xbv calculates the linear prediction for the main equation that includes the estimated control-function

terms with their coefficients, that is, x𝑖b + ̂𝜈𝑖p + ℎ( ̂𝜈𝑖, y𝑖, x𝑖)′pℎ.

e calculates the residuals after removing the control functions, that is, 𝑦𝑖 − x𝑖b− ̂𝜈𝑖p− ℎ( ̂𝜈𝑖, y𝑖, x𝑖)′pℎ.

ve calculates the residuals that include the control functions, that is, 𝑦𝑖 − x𝑖b.

stdp calculates the standard error of the prediction, which can be thought of as the standard error of the
predicted expected value or mean for the observation’s covariate pattern. This is also referred to as

the standard error of the fitted value.

stdf calculates the standard error of the forecast, which is the standard error of the point prediction for
one observation. It is commonly referred to as the standard error of the future or forecast value. By

construction, the standard errors produced by stdf are always larger than those produced by stdp;
see Methods and formulas in [R] regress postestimation.
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margins

Description for margins
margins estimates margins of response for linear predictions.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist ] [ , options ]
margins [marginlist ] , predict(statistic ...) [ predict(statistic ...) ... ] [ options ]

statistic Description

xb linear prediction; the default

xbv linear prediction that includes control functions

e not allowed with margins
ve not allowed with margins
stdp not allowed with margins
stdf not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.

estat

Description for estat
estat endogenous performs tests to determine whether endogenous regressors in the model are in

fact exogenous. Tests are performed as Wald tests on the coefficients of relevant control functions and

their interactions in the model and account for the type of variance–covariance matrix used. This method

of testing for endogeneity gives different results from that of estat endogenous after ivregress in
finite samples, even when models are identical. See Hansen (2022) for a discussion.

Menu for estat
Statistics > Postestimation

Syntax for estat
estat endogenous [ varlist ]

collect is allowed with estat endogenous; see [U] 11.1.10 Prefix commands.
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Remarks and examples
Control-function regression lends itself naturally to tests of endogeneity. Under the null hypothesis

that an endogenous variable is in fact endogenous, the coefficient on its associated control function, as

well as the coefficients on any interactions of the control function, will be zero. Accordingly, a test of

these coefficients is a test of the endogeneity of the associated endogenous variable.

estat endogenous tests the endogeneity of all endogenous variables jointly if specified without a
variable list. Otherwise, only the endogeneity of the listed variables is tested.

For an example of the use of estat endogenous after cfregress, see example 1 in [R] cfregress.

Stored results
estat endogenous stores the following in r():

Scalar

r(chi2) 𝜒2 statistic

r(df) degrees of freedom

r(p) 𝑝-value for 𝜒2 statistic

Methods and formulas
As discussed in [R] cfregress, the equation estimated by cfregress has the form

𝑦𝑖0 = y𝑖β1 + x𝑖β2 + w𝑖β3 + ν̂𝑖ρ + ℎ(ν̂𝑖, y𝑖, x𝑖, z𝑖,w𝑖)′ρℎ + 𝜖𝑖

where ν̂𝑖 is a set of estimated control functions, one for each of the endogenous variables in y𝑖, and ℎ(⋅)
is a known vector-valued function. ℎ(⋅) can include, for our purposes, interactions between the control
functions in ν̂𝑖, as well as interactions between control functions and the exogenous and endogenous

variables in the model.

estat endogenous, when specified without a variable list, conducts a joint Wald test of ρ = 0 and

ρℎ = 0.

When a variable list is specified, estat endogenous conducts aWald test for the null hypothesis that

all the coefficients in ρ and ρℎ, which involve the control functions of the specified variables, are jointly

equal to 0.

Reference
Hansen, B. E. 2022. Econometrics. Princeton, NJ: Princeton University Press.

Also see
[R] cfregress — Control-function linear regression+

[U] 20 Estimation and postestimation commands

https://www.stata.com/bookstore/econometrics-hansen
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Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas References Also see

Description
churdle fits a linear or exponential hurdle model for a bounded dependent variable. The hurdle

model combines a selection model that determines the boundary points of the dependent variable with an

outcome model that determines its nonbounded values. Separate independent covariates are permitted

for each model.

Quick start
Linear hurdle model of y1 on x1 and x2, specifying that y1 is truncated at 0 with x1 and x3 predicting

selection

churdle linear y1 x1 x2, select(x1 x3) ll(0)

Add an upper truncation limit of 40

churdle linear y1 x1 x2, select(x1 x3) ll(0) ul(40)

Same as above, with the upper truncation limit specified in trunc
churdle linear y1 x1 x2, select(x1 x3) ll(0) ul(trunc)

Same as above, and use x3 to model the variance of the selection model
churdle linear y1 x1 x2, select(x1 x3, het(x3)) ll(0) ul(trunc)

Same as above, and use x4 to model the variance of the outcome model
churdle linear y1 x1 x2, select(x1 x3, het(x3)) ll(0) ///

ul(trunc) het(x4)

Exponential hurdle model of y2 on x1 and x2, specifying that y2 is truncated at 4 with x1 and x3 pre-
dicting selection

churdle exponential y2 x1 x2, select(x1 x3) ll(4)

Menu
Statistics > Linear models and related > Hurdle regression
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Syntax
Basic syntax

churdle linear depvar, select(varlist𝑠) { ll(. . .) | ul(. . .) }

churdle exponential depvar, select(varlist𝑠) ll(. . .)

Full syntax for churdle linear

churdle linear depvar [ indepvars ] [ if ] [ in ] [weight ] ,
select(varlist𝑠[ , noconstant het(varlist𝑜) ] )
{ ll(# | varname) | ul(# | varname) } [ options ]

Full syntax for churdle exponential

churdle exponential depvar [ indepvars ] [ if ] [ in ] [weight ] ,

select(varlist𝑠[ , noconstant het(varlist𝑜) ] ) ll(# | varname) [ options ]

options Description

Model
∗ select() specify independent variables and options for selection model
‡ ll(# | varname) lower truncation limit
‡ ul(# | varname) upper truncation limit

noconstant suppress constant term

constraints(constraints) apply specified linear constraints

het(varlist) specify variables to model the variance

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, bootstrap, or
jackknife

Reporting

level(#) set confidence level; default is level(95)
nocnsreport do not display constraints

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

coeflegend display legend instead of statistics
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∗select() is required.
The full specification is select(varlist𝑠[ , noconstant het(varlist𝑜) ] ).
noconstant specifies that the constant be excluded from the selection model.

het(varlist𝑜) specifies the variables in the error-variance function of the selection model.
‡You must specify at least one of ul(# | varname) or ll(# | varname) for the linear model and must specify ll(# | varname)

for the exponential model.

indepvars, varlist𝑠, and varlist𝑜 may contain factor variables; see [U] 11.4.3 Factor variables.

bootstrap, by, collect, fp, jackknife, rolling, statsby, and svy are allowed; see [U] 11.1.10 Prefix commands.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

select(varlist𝑠[ , noconstant het(varlist𝑜) ]) specifies the variables and options for the selection

model. select() is required.

ll(# | varname) and ul(# | varname) indicate the lower and upper limits, respectively, for the depen-
dent variable. You must specify one or both for the linear model and must specify a lower limit for

the exponential model. Observations with depvar≤ ll() have a lower bound; observations with

depvar≥ ul() have an upper bound; and the remaining observations are in the continuous region.

noconstant, constraints(constraints); see [R] Estimation options.

het(varlist) specifies the variables in the error-variance function of the outcome model.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim), that are robust to some kinds of misspecification (robust), that allow for

intragroup correlation (cluster, clustvar), and that use bootstrap or jackknife methods (bootstrap,
jackknife); see [R] vce option.

� � �
Reporting �

level(#), nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. These options are

seldom used.
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The following option is available with churdle but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

Remarks and examples
churdle fits a linear or an exponential hurdle model. It combines a selection model that determines

the boundary points of the dependent variable with an outcome model that determines its nonbounded

values. Hurdle models treat these boundary values as observed instead of censored. That is to say,

observations where the dependent variable is equal to one of the boundary values are not the result of our

inability to observe the distribution above or below a certain point; see Wooldridge (2010) chapter 17 for

a thorough discussion of this point.

These models were proposed by Cragg (1971) to explain the demand for durable goods. In the Cragg

model, individuals purchase zero or a positive amount of the durable good, with different factors de-

termining each of these choices. This may be generalized to other individual decisions, such as money

donated to charity, cigarette consumption, and time spent volunteering.

Hurdle models are characterized by the relationship 𝑦𝑖 = 𝑠𝑖ℎ∗
𝑖 , where 𝑦𝑖 is the observed value of the

dependent variable.

The selection variable, 𝑠𝑖, is 1 if the dependent variable is not bounded and 0 otherwise. In the Cragg

model, the lower limit that binds the dependent variable is 0 so the selection model is

𝑠𝑖 = {1 if z𝑖𝛄 + 𝜖𝑖 > 0
0 otherwise

where z𝑖 is a vector of explanatory variables, 𝛄 is a vector of coefficients, and 𝜖𝑖 is a standard normal

error term. churdle allows a different lower limit to be specified in ll() and, for the linear model, an
upper limit in ul(). Conditional heteroskedasticity of the random error 𝜖𝑖 is allowed if suboption het()
is specified in select().

The continuous latent variable ℎ∗
𝑖 is observed only if 𝑠𝑖 = 1. The outcome model can be either the

linear model or the exponential model, as proposed in Cragg (1971):

ℎ∗
𝑖 = x𝑖β + 𝜈𝑖 (linear)

ℎ∗
𝑖 = exp (x𝑖β + 𝜈𝑖) (exponential)

where x𝑖 is a vector of explanatory variables, β is a vector of coefficients, and 𝜈𝑖 is an error term.

For the linear model, 𝜈𝑖 has a truncated normal distribution with lower truncation point −x𝑖β. For
the exponential model, 𝜈𝑖 has a normal distribution. churdle extends the Cragg hurdle models to allow
for conditional heteroskedasticity of the random error 𝜈𝑖 if the user specifies the het() option.

The parameters and regressors in the models for ℎ∗
𝑖 and for 𝑠𝑖 may differ.
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Example 1: Linear hurdle model
Consider a dataset that contains the number of hours an individual exercises per day (hours), their

age (age), whether they are single (single), hours they work per day (whours), whether they smoke
(smoke), their weight in kilograms (weight), their distance from the nearest gym (distance), and their
average commute from work (commute).
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Figure 1.

Figure 1 shows that 43.9% of the individuals in the sample do not exercise and that the hours exercised

varies among individuals that decide to exercise.

We model the decision to exercise or not as a function of commute, whours, and age. These variables
are written in select(). Once a decision to exercise is made, the time an individual exercises is modeled
as a linear function of age, smoke, distance, and single.
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. use https://www.stata-press.com/data/r18/fitness
(Fictional fitness data)
. churdle linear hours age i.smoke distance i.single,
> select(commute whours age) ll(0)

Iteration 0: Log likelihood = -23657.236
Iteration 1: Log likelihood = -23344.182
Iteration 2: Log likelihood = -23340.051
Iteration 3: Log likelihood = -23340.044
Iteration 4: Log likelihood = -23340.044
Cragg hurdle regression Number of obs = 19,831

LR chi2(4) = 9059.26
Prob > chi2 = 0.0000

Log likelihood = -23340.044 Pseudo R2 = 0.1625

hours Coefficient Std. err. z P>|z| [95% conf. interval]

hours
age .0015116 .000763 1.98 0.048 .0000162 .003007

smoke
Smoking -1.06646 .0460578 -23.15 0.000 -1.156731 -.9761879
distance -.1333868 .0126344 -10.56 0.000 -.1581497 -.1086238

single
Single .9940893 .0258775 38.42 0.000 .9433703 1.044808
_cons .9138855 .0396227 23.06 0.000 .8362264 .9915447

selection_ll
commute -.2953345 .0624665 -4.73 0.000 -.4177666 -.1729024
whours .0022974 .0069306 0.33 0.740 -.0112864 .0158811

age -.0485347 .0006501 -74.65 0.000 -.049809 -.0472604
_cons 2.649945 .0499795 53.02 0.000 2.551987 2.747903

lnsigma
_cons .0083199 .0099648 0.83 0.404 -.0112107 .0278506

/sigma 1.008355 .010048 .9888519 1.028242

The coefficients in the outcome model for the latent variable appear under hours. Because we only
specified a lower limit to bind the dependent variable, the output shows parameter estimates for a single

selection model under selection ll. Information about the estimated standard deviation of the error
term in the outcome model appears under lnsigma and /sigma.

The coefficient estimates are not directly interpretable. To obtain the effect of a covariate on the

model, we need to use the margins command; see [R] churdle postestimation. Consider the effect of

age:
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. margins, dydx(age)
Average marginal effects Number of obs = 19,831
Model VCE: OIM
Expression: Conditional mean estimates of dependent variable, predict()
dy/dx wrt: age

Delta-method
dy/dx std. err. z P>|z| [95% conf. interval]

age -.0216855 .000289 -75.03 0.000 -.022252 -.021119

Each additional year of age is associated with about −0.02 fewer hours, or 1.2 minutes, of exercise.

Example 2: Linear hurdle with models for the outcome and selection variances
In this example, we illustrate the possibility of fitting a heteroskedastic probit for the selection and

latent model. In both cases, this is done by specifying age and single as the variables that affect the
conditional variance. As in example 1, we have separate parameters for the outcome model and lower-

limit selection model.

. churdle linear hours age i.smoke distance i.single,
> select(commute whours age, het(age single)) ll(0) het(age single) nolog

Cragg hurdle regression Number of obs = 19,831
LR chi2(4) = 9060.63
Prob > chi2 = 0.0000

Log likelihood = -23339.355 Pseudo R2 = 0.1626

hours Coefficient Std. err. z P>|z| [95% conf. interval]

hours
age .0012559 .0008198 1.53 0.126 -.0003508 .0028626

smoke
Smoking -1.065564 .0457657 -23.28 0.000 -1.155263 -.9758649
distance -.1332939 .0126102 -10.57 0.000 -.1580094 -.1085783

single
Single 1.002511 .032535 30.81 0.000 .9387436 1.066278
_cons .9166356 .0388318 23.61 0.000 .8405268 .9927445

selection_ll
commute -.2959986 .0641594 -4.61 0.000 -.4217488 -.1702484
whours .0024514 .0069769 0.35 0.725 -.0112231 .0161259

age -.048886 .0021405 -22.84 0.000 -.0530814 -.0446906
_cons 2.669613 .1139478 23.43 0.000 2.44628 2.892947

lnsigma
age .0003537 .0004026 0.88 0.380 -.0004354 .0011427

single -.0080667 .019253 -0.42 0.675 -.0458019 .0296685

lnsigma_ll
age -.0002035 .0008424 -0.24 0.809 -.0018546 .0014475

single .0268271 .0270133 0.99 0.321 -.0261179 .0797721



churdle — Cragg hurdle regression 254

The coefficients on age and single have no effect on the conditional variance of the outcome model
or on the conditional variance of the selectionmodel. Thus, there is no evidence that the variance depends

on age and marital status.

Example 3: Exponential hurdle model
Returning to example 1, if we believe that the conditional mean of the latent variable has an exponen-

tial form instead of a linear form, we use churdle exponential.

. churdle exponential hours age i.smoke distance i.single,
> select(commute whours age) ll(0) nolog

Cragg hurdle regression Number of obs = 19,831
LR chi2(4) = 8663.21
Prob > chi2 = 0.0000

Log likelihood = -15666.195 Pseudo R2 = 0.2166

hours Coefficient Std. err. z P>|z| [95% conf. interval]

hours
age .0008368 .0005341 1.57 0.117 -.00021 .0018836

smoke
Smoking -.6431348 .0258509 -24.88 0.000 -.6938016 -.592468
distance -.0772879 .0079132 -9.77 0.000 -.0927976 -.0617783

single
Single .5975111 .016108 37.09 0.000 .5659401 .6290821
_cons -.0770619 .0254833 -3.02 0.002 -.1270082 -.0271157

selection_ll
commute -.2953345 .0624665 -4.73 0.000 -.4177666 -.1729024
whours .0022974 .0069306 0.33 0.740 -.0112864 .0158811

age -.0485347 .0006501 -74.65 0.000 -.049809 -.0472604
_cons 2.649945 .0499795 53.02 0.000 2.551987 2.747903

lnsigma
_cons -.186917 .0067067 -27.87 0.000 -.200062 -.1737721

/sigma .8295126 .0055633 .81868 .8404884

What was said previously regarding the interpretation of the effects of the different regressors also

holds true for churdle exponential. We again use margins to estimate the effect of age on time spent
exercising.

. margins, dydx(age)
Average marginal effects Number of obs = 19,831
Model VCE: OIM
Expression: Conditional mean estimates of dependent variable, predict()
dy/dx wrt: age

Delta-method
dy/dx std. err. z P>|z| [95% conf. interval]

age -.0245582 .0004805 -51.11 0.000 -.0255 -.0236164
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With the exponential outcome model of the latent variable, our estimate is that each additional year

of age decreases exercise time by about 0.025 hours, or 1.5 minutes.

Stored results
churdle stores the following in e():
Scalars

e(N) number of observations

e(k eq model) number of equations in overall model test

e(df m) model degrees of freedom

e(r2 p) pseudo-𝑅2

e(chi2) 𝜒2

e(ll) log likelihood

e(ll 0) log likelihood, constant-only model

e(N clust) number of clusters

e(p) 𝑝-value for model test
e(rank) rank of e(v)
e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) churdle
e(cmdline) command as typed

e(depvar) name of dependent variable

e(estimator) linear or exponential
e(model) Linear or Exponential
e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(clustvar) name of cluster variable

e(chi2type) Wald or LR; type of model 𝜒2 test

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(opt) type of optimization

e(which) max or min; whether optimizer is to perform maximization or minimization

e(technique) maximization technique

e(properties) b V
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(ilog) iteration log

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():
Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.
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Methods and formulas
Let ℓℓ refer to the lower limit and 𝑢ℓ to the upper limit. Also let the probabilities of being at these

limits be given by

Pr (𝑦𝑖 = ℓℓ|z𝑖) = Φ (ℓℓ − z′
𝑖𝛄ℓℓ)

Pr (𝑦𝑖 = 𝑢ℓ|z𝑖) = Φ (z′
𝑖𝛄𝑢ℓ − 𝑢ℓ)

where z𝑖 are the covariates of the selection model for individual 𝑖, which may be distinct from the co-

variates x𝑖 for the latent model; 𝚽 corresponds to the standard normal cumulative distribution function;

𝛄ℓℓ is the parameter vector for the lower-limit selection model; and 𝛄𝑢ℓ is the parameter vector for the

upper-limit selection model.

Under the assumptions that 𝜈𝑖 has a truncated normal distribution with lower truncation point ℓℓ−x′
𝑖β

and upper truncation point 𝑢ℓ − x′
𝑖β and has a homoskedastic variance, the log-likelihood function is

given by

lnL =
𝑛

∑
𝑖=1

(𝑦𝑖 ≤ ℓℓ) logΦ (ℓℓ − z′
𝑖𝛄ℓℓ) + (𝑦𝑖 ≥ 𝑢ℓ) log{1 − Φ (𝑢ℓ − z′

𝑖𝛄𝑢ℓ)}

+ (𝑢ℓ > 𝑦𝑖 > ℓℓ) [ log{Φ (𝑢ℓ − z′
𝑖𝛄𝑢ℓ) − Φ (ℓℓ − z′

𝑖𝛄ℓℓ)}]

− (𝑢ℓ > 𝑦𝑖 > ℓℓ) [ log{Φ (𝑢ℓ − x′
𝑖β

𝜎
) − Φ (ℓℓ − x′

𝑖β

𝜎
)}]

+ (𝑢ℓ > 𝑦𝑖 > ℓℓ) [ log{φ(𝑦𝑖 − x′
𝑖β

𝜎
)} − log(𝜎)]

Without the homoskedasticity assumption, the heteroskedasticity can be modeled using the form

𝛔2 (w𝑖) = exp (2w′
𝑖θ), where w𝑖 are the variables that affect the conditional variance of 𝜈𝑖. The log-

likelihood function is obtained by replacing 𝛔 with exp (w′
𝑖θ).

The log-likelihood function for the exponential model is given by

lnL =
𝑛

∑
𝑖=1

(𝑦𝑖 ≤ ℓℓ) logΦ (ℓℓ − z′
𝑖𝛄) + (𝑦𝑖 > ℓℓ) [ log {1 − Φ (ℓℓ − z′

𝑖𝛄)}]

+ (𝑦𝑖 > ℓℓ) { log {φ [ log(𝑦𝑖 − ℓℓ) − x′
𝑖β)/𝜎]} − log(𝜎) − log(𝑦𝑖 − ℓℓ)}

Analogous to the linear case, we can model heteroskedasticity by 𝛔2 (w𝑖) = exp (2w′
𝑖θ).

Estimation of both of the aforementioned likelihood functions is done by maximum likelihood.
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Postestimation commands predict margins Remarks and examples
Methods and formulas Also see

Postestimation commands
The following standard postestimation commands are available after churdle:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters

estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian infor-
mation criteria (AIC, CAIC, AICc, and BIC, respectively)

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estat (svy) postestimation statistics for survey data

estimates cataloging estimation results

etable table of estimation results
∗ forecast dynamic forecasts and simulations
∗ hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

∗ lrtest likelihood-ratio test

margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

predict conditional means, residuals, etc.

predictnl point estimates, standard errors, testing, and inference for generalized predictions

pwcompare pairwise comparisons of parameters

suest seemingly unrelated estimation

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

∗forecast, hausman, and lrtest are not appropriate with svy estimation results.

258



churdle postestimation — Postestimation tools for churdle 259

predict

Description for predict
predict creates a new variable containing predictions such as conditional expectation of depvar,

residuals, linear predictions, standard errors, and probabilities.

Menu for predict
Statistics > Postestimation

Syntax for predict
predict [ type ] newvar [ if ] [ in ] [ , statistic equation(eqno) ]

predict [ type ] stub* [ if ] [ in ], scores

statistic Description

Main

ystar conditional expectation of depvar; the default

residuals residuals

ystar(a,b) 𝐸(𝑦∗
𝑗), 𝑦∗

𝑗 = max{𝑎,min(𝑦𝑗, 𝑏)}
xb linear prediction

stdp standard error of the linear prediction

pr(a,b) Pr(a < 𝑦𝑗 < b)
e(a,b) 𝐸(𝑦𝑗| a < 𝑦𝑗 < b)

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for the estimation
sample.

where a and b may be numbers or variables; a missing (a ≥ .) means −∞, and b missing (b ≥ .) means
+∞; see [U] 12.2.1 Missing values. For churdle exponential, 𝑏 is . (missing).

Options for predict

� � �
Main �

ystar, the default, calculates the conditional expectation of the dependent variable.

residuals calculates the residuals.

ystar(a,b) calculates 𝐸(𝑦∗
𝑗). a and b are specified as they are for pr(). If a and b are equal to the

lower and upper bounds specified in churdle, then 𝐸(𝑦∗
𝑗) is equivalent to the predicted value of the

dependent variable ystar.

xb calculates the linear prediction.

stdp calculates the standard error of the linear prediction.
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pr(a,b) calculates Pr(a < 𝑦𝑗 < b), the probability that 𝑦𝑗|x𝑖 would be observed in the interval (a, b).
a and b may be specified as numbers or variable names; lb and ub are variable names;

pr(20,30) calculates Pr(20 < 𝑦𝑗 < 30); pr(lb, ub) calculates Pr(lb < 𝑦𝑗 < ub);
and pr(20, ub) calculates Pr(20 < 𝑦𝑗 < ub).
a missing (a ≥ .) means ll; pr(.,30) calculates Pr(ll < 𝑦𝑗 < 30);
pr(lb,30) calculates Pr(ll < 𝑦𝑗 < 30) in observations for which lb ≥ . and calculates
Pr(lb < 𝑦𝑗 < 30) elsewhere.
b missing (b ≥ .) means ∞; pr(20,.) calculates Pr(∞ > 𝑦𝑗 > 20);
pr(20,ub) calculates Pr(∞ > 𝑦𝑗 > 20) in observations for which ub ≥ . and calculates Pr(ub >
𝑦𝑗 > 20) elsewhere. For churdle linear, ul is ∞.

e(a,b) calculates 𝐸(𝑦𝑗 | a < 𝑦𝑗 < b), the expected value of 𝑦𝑗|x𝑗 conditional on 𝑦𝑗|x𝑗 being in the

interval (a, b), meaning that 𝑦𝑗|x𝑗 is bounded. a and b are specified as they are for pr().

equation(eqno) specifies the equation for which predictions are to bemade for the xb and stdp options.
equation() should contain either one equation name or one of #1, #2, . . . with #1 meaning the first
equation, #2 meaning the second equation, etc.

If you do not specify equation(), the results are the same as if you specified equation(#1).

scores calculates the equation-level score variables. If you specify one new variable, the scores for the

latent-variable equation are computed. If you specify a variable list, the scores for each equation are

calculated. The following scores may be obtained:

the first new variable will contain 𝜕ln𝐿/𝜕(x𝑗β),
the second new variable will contain 𝜕ln𝐿/𝜕(z𝑗𝛄𝑙𝑙),
the third new variable will contain 𝜕ln𝐿/𝜕(z𝑗𝛄𝑢𝑙),
the fourth new variable will contain 𝜕ln𝐿/𝜕(𝛔),
the fifth new variable will contain 𝜕ln𝐿/𝜕(𝛔𝑙𝑙), and
the sixth new variable will contain 𝜕ln𝐿/𝜕(𝛔𝑢𝑙).
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margins

Description for margins
margins estimates margins of response for conditional expectations, linear predictions, and proba-

bilities.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist ] [ , options ]
margins [marginlist ] , predict(statistic ...) [ predict(statistic ...) ... ] [ options ]

statistic Description

Main

ystar conditional expectation of depvar; the default

ystar(a,b) 𝐸(𝑦∗
𝑗), 𝑦∗

𝑗 = max{𝑎,min(𝑦𝑗, 𝑏)}; for churdle exponential 𝑏 is .
xb linear prediction

pr(a,b) Pr(a < 𝑦𝑗 < b) ; for churdle exponential 𝑏 is .
e(a,b) 𝐸(𝑦𝑗| a < 𝑦𝑗 < b) ; for churdle exponential 𝑏 is .
residuals not allowed with margins
stdp not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.

Remarks and examples

Example 1: Predictions for depvar
Below, we use the parameters estimated in example 1 of [R] churdle to calculate the average hours

exercised given the covariates.

. use https://www.stata-press.com/data/r18/fitness
(Fictional fitness data)
. churdle linear hours age i.smoke distance i.single,
> select(commute whours age) ll(0)
(output omitted )

. predict hourshat
(statistic ystar assumed)
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We might also be interested in estimating the average number of hours exercised given that an indi-

vidual exercises. Below we estimate this quantity and compare it with the predicted and true values of

the dependent variable for all the observations.

. predict exercises, e(0,.)

. summarize hours hourshat exercises
Variable Obs Mean Std. dev. Min Max

hours 19,831 .8800172 1.051221 0 5.308835
hourshat 19,831 .8786302 .4915214 .0754708 1.904694

exercises 19,831 1.580729 .3998335 .5630298 2.079012

As expected, we observe that the sample-average predictions are higher for those who exercise.

Example 2: Marginal effects
Suppose we want to study whether single individuals exercise more on average than married individ-

uals. Below, we use margins to estimate the average effect of being single on hours spent exercising in
the population.

. margins, dydx(1.single)
Average marginal effects Number of obs = 19,831
Model VCE: OIM
Expression: Conditional mean estimates of dependent variable, predict()
dy/dx wrt: 1.single

Delta-method
dy/dx std. err. z P>|z| [95% conf. interval]

single
Single .3858462 .0091398 42.22 0.000 .3679324 .4037599

Note: dy/dx for factor levels is the discrete change from the base level.

The average effect of moving each individual from not single to single is an increase in exercise of

0.39 hours, or about 23 minutes.

The statistics pr(a,b), e(a,b), and ystar(a,b) produce counterfactual predictions.

These statistics predict what would be observed if the limits ℓℓ and 𝑢ℓ were the specified a and b and
the estimated parameters did not change, even though the parameters of the model were estimated using

the limits ℓℓ and 𝑢ℓ.
For example, suppose we model contributions to a retirement plan in a world where the government

requires a minimum contribution of 2% so ℓℓ = 2. After estimating the model parameters, we could

predict the average contribution, given the covariates, when the government raises the minimum contri-

bution to 3% with the statistic ystar(3,.).
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Methods and formulas
Let ℓℓ refer to the lower limit and 𝑢ℓ to the upper limit. Also let the probabilities of being at these

limits be given by

Pr (𝑦𝑖 = ℓℓ|z𝑖) = Φ (ℓℓ − z′
𝑖𝛄ℓℓ)

Pr (𝑦𝑖 = 𝑢ℓ|z𝑖) = Φ (z′
𝑖𝛄𝑢ℓ − 𝑢ℓ)

where z𝑖 are the covariates of the selection model for individual 𝑖, which may be distinct from the co-

variates x𝑖 for the outcome model; 𝚽 is the standard normal cumulative distribution function; 𝛄ℓℓ is the

parameter vector for the lower-limit selection model; and 𝛄𝑢ℓ is the parameter vector for the upper-limit

selection model.

We will limit the exposition below to the case with a lower and an upper limit.

In churdle linear, ystar is equivalent to 𝐸 (𝑦𝑖|x𝑖) and is given by

𝐸 (𝑦𝑖|x𝑖, z𝑖) = Φ (z′
𝑖𝛄𝑢ℓ − 𝑢ℓ) 𝑢ℓ + Φ (ℓℓ − z′

𝑖𝛄ℓℓ) ℓℓ

+ {Φ (𝑢ℓ − z′
𝑖𝛄) − Φ (ℓℓ − z′

𝑖𝛄)}

⎧{{
⎨{{⎩

x′
𝑖β + 𝛔

φ( ℓℓ−x′
𝑖β𝛔 ) − φ( 𝑢ℓ−x′

𝑖β𝛔 )

Φ (𝑢ℓ − x′
𝑖β

𝛔
) − Φ (ℓℓ − x′

𝑖β

𝛔
)

⎫}}
⎬}}⎭

pr(a,b) is given by

Pr (𝑎 < 𝑦𝑖 < 𝑏|z𝑖) = Φ (𝑏 − z′
𝑖β) − Φ (𝑎 − z′

𝑖β)

e(a,b) is given by

𝐸 (𝑎 < 𝑦𝑖 < 𝑏|x𝑖) = x′
𝑖β + 𝛔

φ( 𝑎−x′
𝑖β𝛔 ) − φ( 𝑏−x′

𝑖β𝛔 )

Φ (𝑏 − x′
𝑖β

𝛔
) − Φ (𝑎 − x′

𝑖β

𝛔
)

and ystar(a,b) is given by

𝐸 (𝑦∗) = Φ (z′
𝑖𝛄𝑢ℓ − 𝑏) 𝑏 + Φ (𝑎 − z′

𝑖𝛄ℓℓ) 𝑎

+ Pr (𝑎 < 𝑦𝑖 < 𝑏|x𝑖) 𝐸 (𝑎 < 𝑦𝑖 < 𝑏|x𝑖)
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For churdle exponential, ystar is equivalent to

𝐸 (𝑦𝑖|x𝑖) = Φ (ℓℓ − z′
𝑖𝛄ℓℓ) ℓℓ

+ {1 − Φ (ℓℓ − z′
𝑖𝛄)} exp (x′

𝑖β + 𝛔2/2)
⎡
⎢
⎢
⎣

1 − Φ { ln (ℓℓ) − x′
𝑖β

𝛔
− 𝜎}

1 − Φ { ln (ℓℓ) − x′
𝑖β

𝛔
}

⎤
⎥
⎥
⎦

p(a,.) is given by

Pr (𝑎 < 𝑦𝑖|x𝑖) = 1 − Φ (𝑎 − z′
𝑖𝛄ℓℓ)

e(a,.) is given by

𝐸 (𝑎 < 𝑦𝑖|x𝑖) = exp (x′
𝑖β + 𝛔2/2)

⎡
⎢
⎢
⎣

1 − Φ { ln (𝑎) − x′
𝑖β

𝛔
− 𝜎}

1 − Φ { ln (𝑎) − x′
𝑖β

𝛔
}

⎤
⎥
⎥
⎦

and ystar(a,.) is given by

𝐸 (𝑦∗) = 𝑎Φ (𝑎 − z′
𝑖𝛄ℓℓ) + Pr (𝑎 < 𝑦𝑖|x𝑖) 𝐸 (𝑎 < 𝑦𝑖|x𝑖)

Also see
[R] churdle — Cragg hurdle regression

[U] 20 Estimation and postestimation commands
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Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Acknowledgment References Also see

Description
ci computes confidence intervals for population means, proportions, variances, and standard devia-

tions.

cii is the immediate form of ci; see [U] 19 Immediate commands for a general discussion of im-

mediate commands.

Quick start
Confidence intervals for means of normally distributed variables v1, v2, and v3

ci means v1-v3

Confidence interval for mean of Poisson-distributed variable v4
ci means v4, poisson

Confidence interval for rate of v4 with total exposure recorded in v5
ci means v4, poisson exposure(v5)

Confidence interval for proportion of binary variable v6
ci proportions v6

Confidence intervals for variances of v1, v2, and v3
ci variances v1-v3

Same as above, but Bonett confidence intervals are produced

ci variances v1-v3, bonett

90% Bonett confidence intervals for standard deviations of v1, v2, and v3
ci variances v1-v3, sd bonett level(90)

Confidence interval for a mean based on a sample with 85 observations, a sample mean of 10, and a

standard deviation of 3

cii means 85 10 3

90% confidence interval for rate from a sample with 4,379 deaths over 11,394 person-years

cii means 11394 4379, poisson level(90)

Agresti–Coull confidence interval for proportion based on a sample with 2,377 observations and 136

successes

cii proportions 2377 136, agresti

265
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Bonett confidence interval for variance based on a sample with 20 observations, sample variance of 9,

and estimated kurtosis of 1.8

cii variances 20 9 1.8, bonett

Same as above, but with confidence interval for standard deviation

cii variances 20 3 1.8, sd bonett

Menu
ci
Statistics > Summaries, tables, and tests > Summary and descriptive statistics > Confidence intervals

cii for a normal mean
Statistics > Summaries, tables, and tests > Summary and descriptive statistics > Normal mean CI calculator

cii for a Poisson mean
Statistics > Summaries, tables, and tests > Summary and descriptive statistics > Poisson mean CI calculator

cii for a proportion
Statistics > Summaries, tables, and tests > Summary and descriptive statistics > Proportion CI calculator

cii for a variance
Statistics > Summaries, tables, and tests > Summary and descriptive statistics > Variance CI calculator

cii for a standard deviation
Statistics > Summaries, tables, and tests > Summary and descriptive statistics > Standard deviation CI calculator
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Syntax
Confidence intervals for means, normal distribution

ci means [ varlist ] [ if ] [ in ] [weight ] [ , options ]

cii means #obs #mean #sd [ , level(#) ]

Confidence intervals for means, Poisson distribution

ci means [ varlist ] [ if ] [ in ] [weight ], poisson [ exposure(varname) options ]

cii means #exposure #events , poisson [ level(#) ]

Confidence intervals for proportions

ci proportions [ varlist ] [ if ] [ in ] [weight ] [ , prop options options ]

cii proportions #obs #succ [ , prop options level(#) ]

Confidence intervals for variances

ci variances [ varlist ] [ if ] [ in ] [weight ] [ , bonett options ]

cii variances #obs #variance [ , level(#) ]

cii variances #obs #variance #kurtosis, bonett [ level(#) ]

Confidence intervals for standard deviations

ci variances [ varlist ] [ if ] [ in ] [weight ], sd [ bonett options ]

cii variances #obs #sd, sd [ level(#) ]

cii variances #obs #sd #kurtosis, sd bonett [ level(#) ]

#obs must be a positive integer. #exposure, #sd, and #variance must be a positive number. #succ and #events must

be a nonnegative integer or between 0 and 1. If the number is between 0 and 1, Stata interprets it as

the fraction of successes or events and converts it to an integer number representing the number of

successes or events. The computation then proceeds as if two integers had been specified. If option

bonett is specified, you must additionally specify #kurtosis with cii variances.
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prop options Description

exact calculate exact confidence intervals; the default

wald calculate Wald confidence intervals

wilson calculate Wilson confidence intervals

agresti calculate Agresti–Coull confidence intervals

jeffreys calculate Jeffreys confidence intervals

options Description

level(#) set confidence level; default is level(95)
separator(#) draw separator line after every # variables; default is separator(5)
total add output for all groups combined (for use with by only)

by, collect, and statsby are allowed with ci, and collect is allowed with cii; see [U] 11.1.10 Prefix commands.

aweights are allowed with ci means for normal data, and fweights are allowed with all ci subcommands; see
[U] 11.1.6 weight.

Options
Options are presented under the following headings:

Options for ci and cii means
Options for ci and cii proportions
Options for ci and cii variances

Options for ci and cii means

� � �
Main �

poisson specifies that the variables (or numbers for cii) are Poisson-distributed counts; exact Poisson
confidence intervals will be calculated. By default, confidence intervals for means are calculated

based on a normal distribution.

exposure(varname) is used only with poisson. You do not need to specify poisson if you specify
exposure(); poisson is assumed. varname contains the total exposure (typically a time or an area)
during which the number of events recorded in varlist was observed.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is

level(95) or as set by set level; see [R] level.

separator(#) specifies how often separation lines should be inserted into the output. The default is

separator(5), meaning that a line is drawn after every five variables. separator(10)would draw
the line after every 10 variables. separator(0) suppresses the separation line.

total is used with the by prefix. It requests that in addition to output for each by-group, output be added
for all groups combined.
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Options for ci and cii proportions

� � �
Main �

exact, wald, wilson, agresti, and jeffreys specify how binomial confidence intervals are to be

calculated.

exact is the default and specifies exact (also known in the literature as Clopper–Pearson [1934])

binomial confidence intervals.

wald specifies calculation of Wald confidence intervals.

wilson specifies calculation of Wilson confidence intervals.

agresti specifies calculation of Agresti–Coull confidence intervals.

jeffreys specifies calculation of Jeffreys confidence intervals.

See Brown, Cai, and DasGupta (2001) for a discussion and comparison of the different binomial

confidence intervals.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is

level(95) or as set by set level; see [R] level.

separator(#) specifies how often separation lines should be inserted into the output. The default is

separator(5), meaning that a line is drawn after every five variables. separator(10)would draw
the line after every 10 variables. separator(0) suppresses the separation line.

total is used with the by prefix. It requests that in addition to output for each by-group, output be added
for all groups combined.

Options for ci and cii variances

� � �
Main �

sd specifies that confidence intervals for standard deviations be calculated. The default is to compute
confidence intervals for variances.

bonett specifies that Bonett confidence intervals be calculated. The default is to compute normal-based
confidence intervals, which assume normality for the data.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is

level(95) or as set by set level; see [R] level.

separator(#) specifies how often separation lines should be inserted into the output. The default is

separator(5), meaning that a line is drawn after every five variables. separator(10)would draw
the line after every 10 variables. separator(0) suppresses the separation line.

total is used with the by prefix. It requests that in addition to output for each by-group, output be added
for all groups combined.
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Remarks and examples
Remarks are presented under the following headings:

Confidence intervals for means
Normal-based confidence intervals
Poisson confidence intervals

Confidence intervals for proportions
Confidence intervals for variances
Immediate form

Confidence intervals for means
ci means computes a confidence interval for the population mean for each of the variables in varlist.

Normal-based confidence intervals

Example 1: Normal-based confidence intervals
Without the poisson option, ci means produces normal-based confidence intervals that are correct

if the variable is normally distributed and asymptotically correct for all other distributions satisfying the

conditions of the central limit theorem.

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. ci means mpg price

Variable Obs Mean Std. err. [95% conf. interval]

mpg 74 21.2973 .6725511 19.9569 22.63769
price 74 6165.257 342.8719 5481.914 6848.6

The standard error of the mean of mpg is 0.67, and the 95% confidence interval is [ 19.96, 22.64 ]. We

can obtain wider confidence intervals, 99%, by typing

. ci means mpg price, level(99)
Variable Obs Mean Std. err. [99% conf. interval]

mpg 74 21.2973 .6725511 19.51849 23.07611
price 74 6165.257 342.8719 5258.405 7072.108

Example 2: The by prefix
The by prefix breaks out the confidence intervals according to by-group; total adds an overall sum-

mary. For instance,
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. by foreign: ci means mpg, total

-> foreign = Domestic
Variable Obs Mean Std. err. [95% conf. interval]

mpg 52 19.82692 .657777 18.50638 21.14747

-> foreign = Foreign
Variable Obs Mean Std. err. [95% conf. interval]

mpg 22 24.77273 1.40951 21.84149 27.70396

-> Total
Variable Obs Mean Std. err. [95% conf. interval]

mpg 74 21.2973 .6725511 19.9569 22.63769

Example 3: Controlling the format
You can control the formatting of the numbers in the output by specifying a display format for the

variable; see [U] 12.5 Formats: Controlling how data are displayed. For instance,

. format mpg %9.2f

. ci means mpg
Variable Obs Mean Std. err. [95% conf. interval]

mpg 74 21.30 0.67 19.96 22.64

Poisson confidence intervals

If you specify the poisson option, ci means assumes count data and computes exact Poisson confi-
dence intervals.

Example 4: Poisson confidence intervals
We have data on the number of bacterial colonies on a Petri dish. The dish has been divided into

36 small squares, and the number of colonies in each square has been counted. Each observation in our

dataset represents a square on the dish. The variable count records the number of colonies in each square
counted, which varies from 0 to 5.

. use https://www.stata-press.com/data/r18/petri, clear

. ci means count, poisson
Poisson exact

Variable Exposure Mean Std. err. [95% conf. interval]

count 36 2.333333 .2545875 1.861158 2.888825

ci reports that the average number of colonies per square is 2.33. If the expected number of colonies
per square were as low as 1.86, the probability of observing 2.33 or more colonies per square would be

2.5%. If the expected number were as large as 2.89, the probability of observing 2.33 or fewer colonies

per square would be 2.5%.
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Example 5: Option exposure()
The number of “observations”—how finely the Petri dish is divided—makes no difference. The

Poisson distribution is a function only of the count. In example 4, we observed a total of 2.33× 36 = 84

colonies and a confidence interval of [ 1.86 × 36, 2.89 × 36 ] = [ 67, 104 ]. We would obtain the same

[ 67, 104 ] confidence interval if our dish were divided into, say, 49 squares rather than 36.
For the counts, it is not even important that all the squares be of the same size. For rates, however,

such differences do matter but in an easy-to-calculate way. Rates are obtained from counts by dividing

by exposure, which is typically a number multiplied by either time or an area. For our Petri dishes, we

divide by an area to obtain a rate, but if our example were cast in terms of being infected by a disease, we

might divide by person-years to obtain the rate. Rates are convenient because they are easier to compare:

we might have 2.3 colonies per square inch or 0.0005 infections per person-year.

So let’s assume that we wish to obtain the number of colonies per square inch and, moreover, that not

all the “squares” on our dish are of equal size. We have a variable called area that records the area of
each square:

. ci means count, exposure(area)
Poisson exact

Variable Exposure Mean Std. err. [95% conf. interval]

count 3 28 3.055051 22.3339 34.66591

The rates are now in more familiar terms. In our sample, there are 28 colonies per square inch, and the

95% confidence interval is [ 22.3, 34.7 ]. When we did not specify exposure(), ci means with option
poisson assumed that each observation contributed 1 to exposure.

Technical note
If there were no colonies on our dish, ci means with option poisson would calculate a one-sided

confidence interval:

. use https://www.stata-press.com/data/r18/petrinone

. ci means count, poisson
Poisson exact

Variable Exposure Mean Std. err. [95% conf. interval]

count 36 0 0 0 .1024689*
(*) one-sided, 97.5% confidence interval

Confidence intervals for proportions
The ci proportions command assumes binary (0/1) data and computes binomial confidence inter-

vals.
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Example 6: Exact binomial (Clopper–Pearson) confidence interval
We have data on employees, including a variable marking whether the employee was promoted last

year.

. use https://www.stata-press.com/data/r18/promo

. ci proportions promoted
Binomial exact

Variable Obs Proportion Std. err. [95% conf. interval]

promoted 20 .1 .067082 .0123485 .3169827

The exact binomial, also known as the Clopper–Pearson (1934) interval, is computed by default.

Nominally, the interpretation of a 95% confidence interval is that under repeated samples or experi-

ments, 95% of the resultant intervals would contain the unknown parameter in question. However, for

binomial data, the actual coverage probability, regardless of method, usually differs from that interpre-

tation. This result occurs because of the discreteness of the binomial distribution, which produces only

a finite set of outcomes, meaning that coverage probabilities are subject to discrete jumps and that the

exact nominal level cannot always be achieved. Therefore, the term “exact confidence interval” refers to

its being derived from the binomial distribution, the distribution exactly generating the data, rather than

resulting in exactly the nominal coverage.

For the Clopper–Pearson interval, the actual coverage probability is guaranteed to be greater than or

equal to the nominal confidence level, here 95%. Because of the way it is calculated—see Methods and

formulas—it may also be interpreted as follows: If the true probability of being promoted were 0.012,

the chances of observing a result as extreme or more extreme than the result observed (20 × 0.1 = 2 or

more promotions) would be 2.5%. If the true probability of being promoted were 0.317, the chances of

observing a result as extreme or more extreme than the result observed (two or fewer promotions) would

be 2.5%.

Example 7: Other confidence intervals
The Clopper–Pearson interval is desirable because it guarantees nominal coverage; however, by drop-

ping this restriction, youmay obtain accurate intervals that are not as conservative. In this vein, youmight

opt for the Wilson (1927) interval,

. ci proportions promoted, wilson
Wilson

Variable Obs Proportion Std. err. [95% conf. interval]

promoted 20 .1 .067082 .0278665 .3010336

the Agresti–Coull (1998) interval,

. ci proportions promoted, agresti
Agresti--Coull

Variable Obs Proportion Std. err. [95% conf. interval]

promoted 20 .1 .067082 .0156562 .3132439
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or the Bayesian-derived Jeffreys interval (Brown, Cai, and DasGupta 2001),

. ci proportions promoted, jeffreys
Jeffreys

Variable Obs Proportion Std. err. [95% conf. interval]

promoted 20 .1 .067082 .0213725 .2838533

Picking the best interval is a matter of balancing accuracy (coverage) against precision (average in-

terval length) and depends on sample size and success probability. Brown, Cai, and DasGupta (2001)

recommend the Wilson or Jeffreys interval for small sample sizes (≤40) yet favor the Agresti–Coull

interval for its simplicity, decent performance for sample sizes less than or equal to 40, and performance

comparable toWilson or Jeffreys for sample sizes greater than 40. They also deem the Clopper–Pearson

interval to be “wastefully conservative and [. . .] not a good choice for practical use”, unless of course
one requires, at a minimum, the nominal coverage level.

Finally, the binomial Wald confidence interval is obtained by specifying the wald option. The Wald

interval is the one taught in most introductory statistics courses and, for the above, is simply, for level

1 − 𝛼, Proportion±𝑧𝛼/2(Std. err.), where 𝑧𝛼/2 is the 1 − 𝛼/2 quantile of the standard normal.

Because its overall poor performance makes it impractical, the Wald interval is available mainly for

pedagogical purposes. The binomial Wald interval is also similar to the interval produced by treating

binary data as normal data and using ci means, with two exceptions. First, the calculation of the standard
error in ci proportions uses denominator 𝑛 rather than 𝑛 − 1, used for normal data in ci means.
Second, confidence intervals for normal data are based on the 𝑡 distribution rather than the standard

normal. Of course, both discrepancies vanish as sample size increases.

Technical note
Let’s repeat example 6, but this time with data in which there are no promotions over the observed

period:

. use https://www.stata-press.com/data/r18/promonone

. ci proportions promoted
Binomial exact

Variable Obs Proportion Std. err. [95% conf. interval]

promoted 20 0 0 0 .1684335*
(*) one-sided, 97.5% confidence interval

The confidence interval is [ 0, 0.168 ], and this is the confidence interval that most books publish. It is
not, however, a true 95% confidence interval because the lower tail has vanished. As Stata notes, it is

a one-sided, 97.5% confidence interval. If you wanted to put 5% in the right tail, you could type ci
proportions promoted, level(90).
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Technical note
ci proportions ignores any variables that do not take on the values 0 and 1 exclusively. For instance,

with our automobile dataset,

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. ci proportions mpg foreign

Binomial exact
Variable Obs Proportion Std. err. [95% conf. interval]

foreign 74 .2972973 .0531331 .196584 .4148353
Note: The results are produced only for binary (0/1) variables.

We also requested the confidence interval for mpg, but Stata ignored us. It does that so you can type ci
proportions and obtain correct confidence intervals for all the variables that are 0/1 in your data.

Confidence intervals for variances
The ci variances command computes confidence intervals for the variances or, if the sd option is

specified, for the standard deviations. The default is a normal-based confidence interval that assumes the

data are normal and uses a 𝜒2 distribution to construct the confidence intervals. If normality is suspect,

you may consider using the bonett option to compute Bonett (2006) confidence intervals, which are

more robust to nonnormality.

Example 8: Normal-based confidence intervals
So far, we have restricted our attention to confidence intervals for means and proportions. Typically,

when people think of statistical inference, they usually have in mind inferences concerning population

means. However, the population parameter of interest will vary from one situation to another. In many

scenarios, the population variance is as important as the population mean. For example, in a quality

control study, a machine that fills 16-ounce canned peas is investigated at regular time intervals. A

random sample of 𝑛 = 8 containers is selected every hour. Ideally, the amount of peas in a can should

vary only slightly about the 16-ounce value. If the variance was large, then a large proportion of cans

would be either underfilled, thus cheating the customer, or overfilled, thus resulting in economic loss

to the manufacturing company. Suppose that the weights of 16-ounce cans filled by the machine are

normally distributed. The acceptable variability in the weights is expected to be 0.09 with the respective

standard deviation of 0.3 ounces. To monitor the machine’s performance, we can compute confidence

intervals for the variance of the weights of cans:

. use https://www.stata-press.com/data/r18/peas_normdist
(Weights of canned peas, normal distribution)
. ci variances weight

Variable Obs Variance [95% conf. interval]

weight 8 .3888409 .1699823 1.610708

The command reports the sample estimate of the variance of 0.39 with the 95% confidence interval of

[ 0.17, 1.61 ].
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Instead of the variance, we may be interested in confidence intervals for the standard deviation. We

can specify the sd option to compute such confidence intervals.

. ci variances weight, sd
Variable Obs Std. dev. [95% conf. interval]

weight 8 .6235711 .4122891 1.269137

The 95% confidence interval for the standard deviation of the weights is [0.41, 1.27]. Because the desired
value for the standard deviation, 0.3 ounces, falls outside the interval, the machine may require some

tuning.

Confidence intervals in example 8 are based on the assumption that the random sample is selected from

a population having a normal distribution. Nonnormality of the population distribution, in the form of

skewness or heavy tails, can have a drastic impact on the asymptotic coverage probability of the normal-

based confidence intervals. This is the case even for distributions that are similar to normal. Scheffé

(1959, 336) showed that the normal-based interval has an asymptotic coverage probability of about 0.76,

0.63, 0.60, and 0.51 for the logistic, 𝑡 with seven degrees of freedom, Laplace, and 𝑡 with five degrees of
freedom distributions, respectively. Miller (1997, 264) describes this situation as “catastrophic” because

these distributions are symmetric and not easily distinguishable from a normal distribution unless the

sample size is large. Hence, it is judicious to evaluate the normality of the data prior to constructing the

normal-based confidence intervals for variances or standard deviations.

Bonett (2006) proposed a confidence interval that performs well in small samples under moderate

departures from normality. His interval performs only slightly worse than the exact normal-based con-

fidence interval when sampling from a normal distribution. A larger sample size provides Bonett confi-

dence intervals with greater protection against nonnormality.

Example 9: Bonett confidence interval for normal data
We will repeat example 8 and construct a Bonett confidence interval for the standard deviation by

specifying the bonett option. The results are similar, and both examples lead to the same inferential
conclusion.

. ci variances weight, sd bonett
Bonett

Variable Obs Std. dev. [95% conf. interval]

weight 8 .6235711 .3997041 1.288498

The Bonett confidence interval is wider than the normal-based confidence interval in example 8. For

normal data, Bonett (2006) suggested that if Bonett confidence interval is used for a sample of size

𝑛+3, then its average width will be about the same as the average width of the normal-based confidence

interval from a sample size of 𝑛. Sampling three more observations may be a small price to pay because
Bonett confidence intervals perform substantially better than the normal-based confidence intervals for

nonnormal data.
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Example 10: Bonett confidence interval for nonnormal data
The following data have been generated from a 𝑡 distribution with five degrees of freedom to illustrate

the effect of wrongfully using the normal-based confidence interval when the data-generating process is

not normal.

. use https://www.stata-press.com/data/r18/peas_tdist
(Weights of canned peas, t distribution)
. ci variances weight, sd

Variable Obs Std. dev. [95% conf. interval]

weight 8 2.226558 1.472143 4.531652

The standard deviation of a 𝑡 distribution with five degrees of freedom is √5/3 ≈ 1.29 and falls outside

the confidence interval limits. If we suspect that data may not be normal, the Bonett confidence interval

is typically a better choice:

. ci variances weight, sd bonett
Bonett

Variable Obs Std. dev. [95% conf. interval]

weight 8 2.226558 1.137505 5.772519

The value 1.29 is within the limits of the Bonett confidence interval [ 1.14, 5.77 ]

Immediate form
So far, we computed confidence intervals for various parameters using data in memory. We can

also compute confidence intervals using only data summaries, without any data in memory. Each of

the considered ci commands has an immediate cii version that computes the respective confidence

intervals using data summaries.

Example 11: Confidence interval for a normal mean
We are reading a soon-to-be-published paper by a colleague. In it is a table showing the number of

observations, mean, and standard deviation of the 1980 median family income for the Northeast and

West. We correctly think that the paper would be much improved if it included the confidence intervals.

The paper claims that for 166 cities in the Northeast, the average of median family income is $19,509

with a standard deviation of $4,379:

For the Northeast:

. cii means 166 19509 4379
Variable Obs Mean Std. err. [95% conf. interval]

166 19509 339.8763 18837.93 20180.07

For the West:

. cii means 256 22557 5003
Variable Obs Mean Std. err. [95% conf. interval]

256 22557 312.6875 21941.22 23172.78
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Example 12: Confidence interval for a Poisson mean
The number of reported traffic accidents in Santa Monica over a 24-hour period is 27. We need know

nothing else to compute a confidence interval for the mean number of accidents for a day:

. cii means 1 27, poisson
Poisson exact

Variable Exposure Mean Std. err. [95% conf. interval]

1 27 5.196152 17.79317 39.28358

Example 13: Confidence interval for a proportion
We flip a coin 10 times, and it comes up heads only once. We are shocked and decide to obtain a 99%

confidence interval for this coin:

. cii proportions 10 1, level(99)
Binomial exact

Variable Obs Proportion Std. err. [99% conf. interval]

10 .1 .0948683 .0005011 .5442871

Example 14: Confidence interval for a variance
A company fills 32-ounce tomato juice jars with a quantity of juice having a normal distribution with

a claimed variance not exceeding 0.2. A random sample of 15 jars is collected to evaluate this claim.

The sample variance is 0.5:

. cii variances 15 0.5
Variable Obs Variance [95% conf. interval]

15 .5 .2680047 1.243621

Because the advertised value of 0.2 does not fall inside the confidence interval, the company is allowing

too much variation in the amount of tomato juice per jar.

Example 15: Confidence interval for a standard deviation
Suppose the director of statistical development at a statistical software company is a big soccer fan

and requires all developers to play on the company team in the city’s local soccer league. Ten developers

are randomly selected to participate in the game. To ensure an advantage over other teams, the director

requires each of the 10 developers to cover 6 miles on average each game. Being merciful, she will

tolerate a standard deviation of 0.3 miles across different players, arguing that this will keep the team’s

performance consistent. The distance covered by each player is measured using a pedometer. At the end

of the game, the sample standard deviation of the distances covered by the 10 players was 0.56 miles:

. cii variances 10 0.56, sd
Variable Obs Std. dev. [95% conf. interval]

10 .56 .3851877 1.022342
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Because the confidence interval does not include the designated value for the standard deviation, 0.3

miles, it is clear the team is not meeting standards, and an unpleasant meeting is planned.

Example 16: Confidence interval for a standard deviation of nonnormal data
Continuingwith example 15, a clever statistician points out that distances covered by company players

in a soccer match do not follow the normal distribution because some players, mostly econometricians,

walk on the field, while others, mostly statisticians, do all the running. Therefore, the normal-based

confidence interval (which assumes normality) is not valid. Instead, we should use the Bonett confidence

interval, which additionally requires an estimate of kurtosis; see Methods and formulas. If kurtosis is

estimated to be 5, we would obtain the following:

. cii variances 10 0.56 5, sd bonett
Bonett

Variable Obs Std. dev. [95% conf. interval]

10 .56 .2689449 1.45029

TheBonett confidence interval now contains the specified value for the standard deviation, 0.3miles. The

director of statistics concludes that overall team performance is acceptable. An uncomfortable meeting

is still planned but for a smaller group.

Stored results
ci means and cii means store the following in r():
Scalars

r(N) number of observations or, if poisson is specified, exposure
r(mean) mean

r(se) estimate of standard error

r(lb) lower bound of confidence interval

r(ub) upper bound of confidence interval

r(level) confidence level of confidence interval

Macros

r(citype) normal or poisson; type of confidence interval
r(exposure) name of exposure variable with poisson

ci proportions and cii proportions store the following in r():
Scalars

r(N) number of observations

r(proportion) proportion

r(se) estimate of standard error

r(lb) lower bound of confidence interval

r(ub) upper bound of confidence interval

r(level) confidence level of confidence interval

Macros

r(citype) exact, wald, wilson, agresti, or jeffreys; type of confidence interval

ci variances and cii variances store the following in r():
Scalars

r(N) number of observations

r(Var) variance
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r(sd) standard deviation, if sd is specified
r(kurtosis) kurtosis, only if bonett is specified
r(lb) lower bound of confidence interval

r(ub) upper bound of confidence interval

r(level) confidence level of confidence interval

Macros

r(citype) normal or bonett, type of confidence interval

Methods and formulas
Methods and formulas are presented under the following headings:

Normal mean
Poisson mean
Binomial proportion
Variance and standard deviation

Normal mean
Define 𝑛, 𝑥, and 𝑠2 as, respectively, the number of observations, (weighted) average, and (unbiased)

estimated variance of the variable in question; see [R] summarize.

The standard error of the mean, 𝑠𝜇, is defined as √𝑠2/𝑛.
Let 𝛼 be 1−𝑙/100, where 𝑙 is the confidence level specified by the user in the level() option. Define

𝑡𝛼/2 as the two-sided 𝑡 statistic corresponding to a significance level of 𝛼 with 𝑛−1 degrees of freedom;

𝑡𝛼/2 is obtained from Stata as invttail(𝑛-1,0.5*𝛼). The lower and upper confidence bounds are,
respectively, 𝑥 − 𝑠𝜇𝑡𝛼/2 and 𝑥 + 𝑠𝜇𝑡𝛼/2.

Poisson mean
Given the total cases, 𝑘, the estimate of the expected count 𝜆 is 𝑘, and its standard error is

√
𝑘. ci

means with option poisson calculates the exact confidence interval [ 𝜆1, 𝜆2 ] such that

Pr(𝐾 ≥ 𝑘|𝜆 = 𝜆1) = 𝛼/2

and

Pr(𝐾 ≤ 𝑘|𝜆 = 𝜆2) = 𝛼/2

where 𝐾 is Poisson with mean 𝜆. Solution is obtained by Newton’s method. If 𝑘 = 0, the calculation

of 𝜆1 is skipped. All values are then reported as rates, which are the above numbers divided by the total

exposure.

Binomial proportion
Given 𝑘 successes of 𝑛 trials, the estimated probability of a success is ̂𝑝 = 𝑘/𝑛 with standard error

√ ̂𝑝(1 − ̂𝑝)/𝑛. ci calculates the exact (Clopper–Pearson) confidence interval [ 𝑝1, 𝑝2 ] such that

Pr(𝐾 ≥ 𝑘|𝑝 = 𝑝1) = 𝛼/2

and

Pr(𝐾 ≤ 𝑘|𝑝 = 𝑝2) = 𝛼/2
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where 𝐾 is distributed as binomial(𝑛, 𝑝). The endpoints may be obtained directly by using Stata’s

invbinomial() function. If 𝑘 = 0 or 𝑘 = 𝑛, the calculation of the appropriate tail is skipped.
TheWald interval is ̂𝑝±𝑧𝛼/2√ ̂𝑝(1 − ̂𝑝)/𝑛, where 𝑧𝛼/2 is the 1−𝛼/2 quantile of the standard normal.

The interval is obtained by inverting the acceptance region of the large-sample Wald test of 𝐻0 ∶ 𝑝 = 𝑝0
versus the two-sided alternative. That is, the confidence interval is the set of all 𝑝0 such that

∣ ̂𝑝 − 𝑝0

√𝑛−1 ̂𝑝(1 − ̂𝑝)
∣ ≤ 𝑧𝛼/2

TheWilson interval is a variation on theWald interval, using the null standard error √𝑛−1𝑝0(1 − 𝑝0)
in place of the estimated standard error√𝑛−1 ̂𝑝(1 − ̂𝑝) in the above expression. Inverting this acceptance
region is more complicated yet results in the closed form

𝑘 + 𝑧2
𝛼/2/2

𝑛 + 𝑧2
𝛼/2

±
𝑧𝛼/2𝑛1/2

𝑛 + 𝑧2
𝛼/2

{ ̂𝑝(1 − ̂𝑝) +
𝑧2

𝛼/2

4𝑛
}

1/2

TheAgresti–Coull interval is basically aWald interval that borrows its center from theWilson interval.

Defining �̃� = 𝑘 + 𝑧2
𝛼/2/2, �̃� = 𝑛 + 𝑧2

𝛼/2, and (hence) ̃𝑝 = �̃�/�̃�, the Agresti–Coull interval is

̃𝑝 ± 𝑧𝛼/2√ ̃𝑝(1 − ̃𝑝)/�̃�

When𝛼 = 0.05, 𝑧𝛼/2 is near enough to 2 that ̃𝑝 can be thought of as a typical estimate of proportion where
two successes and two failures have been added to the sample (Agresti and Coull 1998). This typical

estimate of proportion makes the Agresti–Coull interval an easy-to-present alternative for introductory

statistics students.

The Jeffreys interval is a Bayesian credible interval and is based on the Jeffreys prior, which is the

Beta(1/2, 1/2) distribution. Assigning this prior to 𝑝 results in a posterior distribution for 𝑝 that is Beta
with parameters 𝑘+1/2 and𝑛−𝑘+1/2. The Jeffreys interval is then taken to be the 1−𝛼 central posterior

probability interval, namely, the 𝛼/2 and 1−𝛼/2 quantiles of the Beta(𝑘+1/2, 𝑛−𝑘+1/2) distribution.
These quantiles may be obtained directly by using Stata’s invibeta() function. See [BAYES] bayesstats
summary for more details about credible intervals.
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Variance and standard deviation
Let𝑋1, . . . , 𝑋𝑛 be a random sample and assume that𝑋𝑖 ∼ 𝑁(𝜇, 𝜎2). Because (𝑛−1)𝑠2/𝜎2 ∼ 𝜒2

𝑛−1,

we have Pr{𝜒2
𝑛−1,𝛼/2 ≤ (𝑛 − 1)𝑠2/𝜎2 ≤ 𝜒2

𝑛−1,1−𝛼/2} = 1− 𝛼, where 𝜒2
𝑛−1,𝛼/2 and 𝜒2

𝑛−1,1−𝛼/2 are the

𝛼/2 and 1 − 𝛼/2 quantiles of the 𝜒2
𝑛−1 distribution. Thus, the normal-based confidence interval for the

population variance 𝜎2 with 100(1 − 𝛼)% confidence level is given by

𝐼normal = [ (𝑛 − 1)𝑠2

𝜒2
𝑛−1,1−𝛼/2

, (𝑛 − 1)𝑠2

𝜒2
𝑛−1,𝛼/2

]

𝜒2
𝑛−1,1−𝛼/2 and 𝜒2

𝑛−1,𝛼/2 are obtained from Stata as invchi2tail(𝑛-1,0.5*𝛼) and invchi2(𝑛-
1,0.5*𝛼), respectively.

The normal-based confidence interval is very sensitive to minor departures from the normality as-

sumption, and its performance does not improve with increasing sample size. For scenarios in which

the population distribution is not normal, the actual coverage probability of the normal-based confidence

interval can be drastically lower than the nominal confidence level 𝛼.
Bonett (2006) proposed an alternative to the normal-based confidence interval that is nearly exact

under normality and has coverage probability close to 1 − 𝛼 under moderate nonnormality. It also has

1− 𝛼 asymptotic coverage probability for nonnormal distributions with finite fourth moment. Instead of

assuming that 𝑋𝑖 ∼ 𝑁(𝜇, 𝜎2), Bonett’s approach requires continuous i.i.d. random variables with finite

fourth moment. The variance of 𝑠2 may be expressed as 𝜎4 {𝛾4 − (𝑛 − 3)/(𝑛 − 1)} /𝑛 (see Casella and

Berger [2002, ex. 5.8, 257]), where 𝛾4 = 𝜇4/𝜎4 is the kurtosis and 𝜇4 = 𝐸 (𝑋𝑖 − 𝜇)4
is the population

fourth central moment. The variance-stabilizing transformation ln (𝑠2) and the delta method can be used
to construct an asymptotic 100(1 − 𝛼)% confidence interval for 𝜎2,

[ exp{ ln (𝑠2) − 𝑧𝛼/2𝑠𝑒} , exp{ ln (𝑠2) + 𝑧𝛼/2𝑠𝑒}]

where 𝑠𝑒 = { ̂𝛾4 − (𝑛 − 3)/(𝑛 − 1)} /𝑛 ≈ Var { ln (𝑠2)} and ̂𝛾4 is an estimate of the kurtosis. Bonett

introduced three adjustments to improve the small-sample properties of the above confidence inter-

val. First, he swapped the inner and outer denominator in the expression for 𝑠𝑒 and changed it to

{ ̂𝛾4 − (𝑛 − 3)/𝑛} /(𝑛 − 1). This was suggested by Shoemaker (2003) who used it to improve the

small-sample performance of his variance test. Second, with regard to the estimation of kurtosis,

Bonett proposed ̂𝛾4 = 𝑛 ∑ (𝑋𝑖 − 𝑚)4 / {∑ (𝑋𝑖 − 𝑋)2}
2
, where 𝑚 is a trimmed mean with a trim-

proportion equal to 1/ {2(𝑛 − 4)1/2}. This kurtosis estimator reduces the negative bias in symmetric
and skewed heavy-tailed distributions. Last, he empirically derived a small-sample correction factor

𝑐 = 𝑛/(𝑛 − 𝑧𝛼/2) that helps equalize the tail probabilities. These modifications yield

𝐼Bonett = [ exp{ ln (𝑐𝑠2) − 𝑧𝛼/2𝑠𝑒} , exp{ ln (𝑐𝑠2) + 𝑧𝛼/2𝑠𝑒}]

where 𝑧𝛼/2 is the 1 − 𝛼/2 quantile of the standard normal and 𝑠𝑒 = 𝑐 [{ ̂𝛾4 − (𝑛 − 3)/𝑛} /(𝑛 − 1)].
Taking the square root of the endpoints of both intervals gives confidence intervals for the standard

deviation 𝜎.
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� �
Edwin Bidwell (E. B.) Wilson (1879–1964) majored in mathematics at Harvard and studied and

taught at Yale and MIT before returning to Harvard in 1922. He worked in mathematics, physics,

and statistics. His method for binomial intervals can be considered a precursor, for a particular

problem, of Neyman’s concept of confidence intervals.

Jerzy Neyman (1894–1981) was born in Bendery, Russia, now Moldavia. He studied and then

taught at Kharkov University, moving from physics to mathematics. In 1921, Neyman moved to

Poland, where he worked in statistics at Bydgoszcz and then Warsaw. Neyman received a Rocke-

feller Fellowship to work with Karl Pearson at University College London. There he collaborated

with Egon Pearson, Karl’s son, on the theory of hypothesis testing. Life in Poland became pro-

gressively more difficult, and Neyman returned to UCL to work there from 1934 to 1938. At this

time, he published on the theory of confidence intervals. He then was offered a post in California at

Berkeley, where he settled. Neyman established an outstanding statistics department and remained

highly active in research, including applications in astronomy, meteorology, and medicine. He was

one of the great statisticians of the 20th century.� �
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clogit — Conditional (fixed-effects) logistic regression

Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas References Also see

Description
clogit fits a conditional logistic regression model for matched case–control data, also known as a

fixed-effects logit model for panel data. clogit can compute robust and cluster–robust standard errors
and adjust results for complex survey designs.

See [CM] cmclogit if you want to fit McFadden’s choice model (McFadden 1974).

Quick start
Conditional logistic regression model of y on xwith matched case–control pairs data identified by idvar

clogit y x, group(idvar)

Fixed-effects logistic regression model with panels identified by idvar
clogit y x, group(idvar)

Add categorical variable a and report results as odds ratios
clogit y x i.a, group(idvar) or

Same as above, but using sampling probability weight wvar
clogit y x i.a [pweight = wvar], group(idvar) or

Menu
Statistics > Binary outcomes > Conditional logistic regression

285
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Syntax
clogit depvar [ indepvars ] [ if ] [ in ] [weight ] , group(varname) [ options ]

depvar is treated as binary regardless of values; depvar equal to nonzero and nonmissing (typically equal

to 1) indicates a positive outcome, whereas depvar equal to 0 indicates a negative outcome.

options Description

Model
∗ group(varname) matched group variable

offset(varname) include varname in model with coefficient constrained to 1

constraints(constraints) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, opg, bootstrap,
or jackknife

nonest do not check that panels are nested within clusters

Reporting

level(#) set confidence level; default is level(95)
or report odds ratios

nocnsreport do not display constraints

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

collinear keep collinear variables

coeflegend display legend instead of statistics

∗group(varname) is required.
indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

bayes, bootstrap, by, collect, fp, jackknife, mfp, mi estimate, nestreg, rolling, statsby, stepwise, and svy
are allowed; see [U] 11.1.10 Prefix commands. For more details, see [BAYES] bayes: clogit.

vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix; see [MI] mi estimate.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
vce(), nonest, and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed (see [U] 11.1.6 weight), but they are interpreted to apply to groups as a

whole, not to individual observations. See Use of weights below.

collinear and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

group(varname) is required; it specifies an identifier variable (numeric or string) for the matched

groups. strata(varname) is a synonym for group().

offset(varname), constraints(constraints); see [R] Estimation options.
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� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), that al-
low for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods

(bootstrap, jackknife); see [R] vce option.

nonest, available only with vce(cluster clustvar), prevents checking that matched groups are nested
within clusters. It is the user’s responsibility to verify that the standard errors are theoretically correct.

� � �
Reporting �

level(#); see [R] Estimation options.

or reports the estimated coefficients transformed to odds ratios, that is, 𝑒𝑏 rather than 𝑏. Standard errors
and confidence intervals are similarly transformed. This option affects how results are displayed, not

how they are estimated. or may be specified at estimation or when replaying previously estimated
results.

nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. These options are

seldom used.

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

The following options are available with clogit but are not shown in the dialog box:

collinear, coeflegend; see [R] Estimation options.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Matched case–control data
Use of weights
Fixed-effects logit

Introduction
clogit fits maximum likelihood models with a dichotomous dependent variable coded as 0/1 (more

precisely, clogit interprets 0 and not 0 to indicate the dichotomy). Conditional logistic analysis differs
from regular logistic regression in that the data are grouped and the likelihood is calculated relative to

each group; that is, a conditional likelihood is used. See Methods and formulas at the end of this entry.
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Biostatisticians and epidemiologists call these models conditional logistic regression for matched

case–control groups (see, for example, Hosmer, Lemeshow, and Sturdivant [2013, chap. 7]) and fit

them when analyzing matched case–control studies with 1 ∶ 1 matching, 1 ∶ 𝑘2𝑖 matching, or 𝑘1𝑖 ∶ 𝑘2𝑖
matching, where 𝑖 denotes the 𝑖th matched group for 𝑖 = 1, 2, . . . , 𝑛, where 𝑛 is the total number of

groups. clogit fits a model appropriate for all of these matching schemes or for any mix of the schemes
because the matching 𝑘1𝑖 ∶ 𝑘2𝑖 can vary from group to group. clogit always uses the true conditional
likelihood, not an approximation. Biostatisticians and epidemiologists sometimes refer to the matched

groups as “strata”, but we will stick to the more generic term “group”.

Economists and other social scientists typically call the model fit by clogit a fixed-effects logit

model for panel data (see, for example, Chamberlain [1980]). The data used to fit a fixed-effects logit

model look exactly like the data biostatisticians and epidemiologists call 𝑘1𝑖 ∶𝑘2𝑖 matched case–control

data. In terms of how the data are arranged, 𝑘1𝑖 ∶𝑘2𝑖 matching means that in the 𝑖th group, the dependent
variable is 1 a total of 𝑘1𝑖 times and 0 a total of 𝑘2𝑖 times. There are a total of 𝑇𝑖 = 𝑘1𝑖 +𝑘2𝑖 observations

for the 𝑖th group. This data arrangement is what economists and other social scientists call “panel data”,
“longitudinal data”, or “cross-sectional time-series data”.

So no matter what terminology you use, the computation and the use of the clogit command is the
same. The following example shows how your data should be arranged to use clogit.

Example 1
Suppose that we have grouped data with the variable id containing a unique identifier for each group.

Our outcome variable, y, contains 0s and 1s. If we were biostatisticians, y = 1 would indicate a case,

y = 0 would be a control, and id would be an identifier variable that indicates the groups of matched
case–control subjects.

If we were economists, y = 1 might indicate that a person was unemployed at any time during a year

and y = 0, that a person was employed all year, and id would be an identifier variable for persons.

If we list the first few observations of this dataset, it looks like

. use https://www.stata-press.com/data/r18/clogitid

. list y x1 x2 id in 1/11

y x1 x2 id

1. 0 0 4 1014
2. 0 1 4 1014
3. 0 1 6 1014
4. 1 1 8 1014
5. 0 0 1 1017

6. 0 0 7 1017
7. 1 1 10 1017
8. 0 0 1 1019
9. 0 1 7 1019

10. 1 1 7 1019

11. 1 1 9 1019
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Pretending that we are biostatisticians, we describe our data as follows. The first group (id = 1014)

consists of four matched persons: 1 case (y = 1) and three controls (y = 0), that is, 1 ∶3 matching. The
second group has 1 ∶2 matching, and the third 2 ∶2.

Pretending that we are economists, we describe our data as follows. The first group consists of 4

observations (one per year) for person 1014. This person had a period of unemployment during 1 year

of 4. The second person had a period of unemployment during 1 year of 3, and the third had a period of

2 years of 4.

Our independent variables are x1 and x2. To fit the conditional (fixed-effects) logistic model, we type

. clogit y x1 x2, group(id)
note: multiple positive outcomes within groups encountered.
Iteration 0: Log likelihood = -123.42828
Iteration 1: Log likelihood = -123.41386
Iteration 2: Log likelihood = -123.41386
Conditional (fixed-effects) logistic regression Number of obs = 369

LR chi2(2) = 9.07
Prob > chi2 = 0.0107

Log likelihood = -123.41386 Pseudo R2 = 0.0355

y Coefficient Std. err. z P>|z| [95% conf. interval]

x1 .653363 .2875215 2.27 0.023 .0898312 1.216895
x2 .0659169 .0449555 1.47 0.143 -.0221943 .1540281

Technical note
The message “note: multiple positive outcomes within groups encountered” at the top of the clogit

output for the previous example merely informs us that we have 𝑘1𝑖 ∶ 𝑘2𝑖 matching with 𝑘1𝑖 > 1 for at

least one group. If your data should be 1∶𝑘2𝑖 matched, this message tells you that there is an error in the

data somewhere.

We can see the distribution of 𝑘1𝑖 and 𝑇𝑖 = 𝑘1𝑖 + 𝑘2𝑖 for the data of the example 1 by using the

following steps:

. by id, sort: generate k1 = sum(y)

. by id: replace k1 = . if _n < _N
(303 real changes made, 303 to missing)
. by id: generate T = sum(y<.)
. by id: replace T = . if _n < _N
(303 real changes made, 303 to missing)
. tabulate k1

k1 Freq. Percent Cum.

1 48 72.73 72.73
2 12 18.18 90.91
3 4 6.06 96.97
4 2 3.03 100.00

Total 66 100.00
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. tabulate T
T Freq. Percent Cum.

2 5 7.58 7.58
3 5 7.58 15.15
4 12 18.18 33.33
5 11 16.67 50.00
6 13 19.70 69.70
7 8 12.12 81.82
8 3 4.55 86.36
9 7 10.61 96.97
10 2 3.03 100.00

Total 66 100.00

We see that 𝑘1𝑖 ranges from 1 to 4 and 𝑇𝑖 ranges from 2 to 10 for these data.

Technical note
For 𝑘1𝑖 ∶ 𝑘2𝑖 matching (and hence in the general case of fixed-effects logit), clogit uses a recursive

algorithm to compute the likelihood, which means that there are no limits on the size of 𝑇𝑖. However,

computation time is proportional to ∑ 𝑇𝑖 min(𝑘1𝑖, 𝑘2𝑖), so clogit will take roughly 10 times longer to
fit a model with 10 ∶ 10 matching than one with 1 ∶ 10 matching. But clogit is fast, so computation
time becomes an issue only when min(𝑘1𝑖, 𝑘2𝑖) is around 100 or more. See Methods and formulas for

details.

Matched case–control data
Here we give a more detailed example of matched case–control data.

Example 2
Hosmer, Lemeshow, and Sturdivant (2013, 24) present data on matched pairs of infants, each pair

having one with low birthweight and another with regular birthweight. The data are matched on age of

the mother. Several possible maternal exposures are considered: race (three categories), smoking status,

presence of hypertension, presence of uterine irritability, previous preterm delivery, and weight at the

last menstrual period.
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. use https://www.stata-press.com/data/r18/lowbirth2, clear
(Applied Logistic Regression, Hosmer & Lemeshow)
. describe
Contains data from https://www.stata-press.com/data/r18/lowbirth2.dta
Observations: 112 Applied Logistic Regression,

Hosmer & Lemeshow
Variables: 9 30 Jan 2022 08:46

Variable Storage Display Value
name type format label Variable label

pairid byte %8.0g Case-control pair ID
low byte %8.0g Baby has low birthweight
age byte %8.0g Age of mother
lwt int %8.0g Mother’s last menstrual weight
smoke byte %8.0g Mother smoked during pregnancy
ptd byte %8.0g Mother had previous preterm baby
ht byte %8.0g Mother has hypertension
ui byte %8.0g Uterine irritability
race byte %9.0g race Race of mother

Sorted by:

We list the case–control indicator variable, low; the match identifier variable, pairid; and two of the
covariates, lwt and smoke, for the first 10 observations.

. list low lwt smoke pairid in 1/10

low lwt smoke pairid

1. 0 135 0 1
2. 1 101 1 1
3. 0 98 0 2
4. 1 115 0 2
5. 0 95 0 3

6. 1 130 0 3
7. 0 103 0 4
8. 1 130 1 4
9. 0 122 1 5

10. 1 110 1 5
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We fit a conditional logistic model of low birthweight on mother’s weight, race, smoking behavior, and

history.

. clogit low lwt smoke ptd ht ui i.race, group(pairid) nolog
Conditional (fixed-effects) logistic regression Number of obs = 112

LR chi2(7) = 26.04
Prob > chi2 = 0.0005

Log likelihood = -25.794271 Pseudo R2 = 0.3355

low Coefficient Std. err. z P>|z| [95% conf. interval]

lwt -.0183757 .0100806 -1.82 0.068 -.0381333 .0013819
smoke 1.400656 .6278396 2.23 0.026 .1701131 2.631199

ptd 1.808009 .7886502 2.29 0.022 .2622828 3.353735
ht 2.361152 1.086128 2.17 0.030 .2323796 4.489924
ui 1.401929 .6961585 2.01 0.044 .0374836 2.766375

race
Black .5713643 .689645 0.83 0.407 -.7803149 1.923044
Other -.0253148 .6992044 -0.04 0.971 -1.39573 1.345101

We might prefer to see results presented as odds ratios. We could have specified the or option when we
first fit the model, or we can now redisplay results and specify or:

. clogit, or
Conditional (fixed-effects) logistic regression Number of obs = 112

LR chi2(7) = 26.04
Prob > chi2 = 0.0005

Log likelihood = -25.794271 Pseudo R2 = 0.3355

low Odds ratio Std. err. z P>|z| [95% conf. interval]

lwt .9817921 .009897 -1.82 0.068 .9625847 1.001383
smoke 4.057862 2.547686 2.23 0.026 1.185439 13.89042

ptd 6.098293 4.80942 2.29 0.022 1.299894 28.60938
ht 10.60316 11.51639 2.17 0.030 1.261599 89.11467
ui 4.06303 2.828513 2.01 0.044 1.038195 15.90088

race
Black 1.770681 1.221141 0.83 0.407 .4582617 6.84175
Other .975003 .6817263 -0.04 0.971 .2476522 3.838573

Smoking, previous preterm delivery, hypertension, uterine irritability, and possibly the mother’s

weight all contribute to low birthweight. Race of black and race of other are statistically insignificant

when compared with the race of white omitted group, although the race of black effect is large. We can

test the joint statistical significance of race being black (2.race) and race being other (3.race) by using
test:

. test 2.race 3.race
( 1) [low]2.race = 0
( 2) [low]3.race = 0

chi2( 2) = 0.88
Prob > chi2 = 0.6436
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For a more complete description of test, see [R] test. test presents results in coefficients rather than
odds ratios. Jointly testing that the coefficients on 2.race and 3.race are 0 is equivalent to jointly

testing that the odds ratios are 1.

Here one case was matched to one control, that is, 1 ∶1 matching. From clogit’s point of view, that
was not important—𝑘1 cases could have been matched to 𝑘2 controls (𝑘1 ∶ 𝑘2 matching), and we would

have fit the model in the same way. Furthermore, the matching can change from group to group, which

we have denoted as 𝑘1𝑖 ∶ 𝑘2𝑖 matching, where 𝑖 denotes the group. clogit does not care. To fit the

conditional logistic regression model, we specified the group(varname) option, group(pairid). The
case and control are stored in separate observations. clogit knew that they were linked (in the same

group) because the related observations share the same value of pairid.

Technical note
clogit provides a way to extend McNemar’s test to multiple controls per case (1 ∶𝑘2𝑖 matching) and

to multiple controls matched with multiple cases (𝑘1𝑖 ∶𝑘2𝑖 matching).

In Stata, McNemar’s test is calculated by the mcc command; see [R] Epitab. The mcc command,

however, requires that the matched case and control appear in one observation, so the data will need to

be manipulated from 1 to 2 observations per stratum before using clogit. Alternatively, if you begin
with clogit’s 2-observations-per-group organization, you will have to change it to 1 observation per
group if you wish to use mcc. In either case, reshape provides an easy way to change the organization
of the data. We will demonstrate its use below, but we direct you to [D] reshape for a more thorough

discussion.

In example 2, we used clogit to analyze the relationship between low birthweight and various char-

acteristics of the mother. Assume that we now want to assess the relationship between low birthweight

and smoking, ignoring the mother’s other characteristics. Using clogit, we obtain the following results:

. clogit low smoke, group(pairid) or
Iteration 0: Log likelihood = -35.425931
Iteration 1: Log likelihood = -35.419283
Iteration 2: Log likelihood = -35.419282
Conditional (fixed-effects) logistic regression Number of obs = 112

LR chi2(1) = 6.79
Prob > chi2 = 0.0091

Log likelihood = -35.419282 Pseudo R2 = 0.0875

low Odds ratio Std. err. z P>|z| [95% conf. interval]

smoke 2.75 1.135369 2.45 0.014 1.224347 6.176763
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Let’s compare our estimated odds ratio and 95% confidence interval with that produced by mcc. We

begin by reshaping the data:

. keep low smoke pairid

. reshape wide smoke, i(pairid) j(low 0 1)
Data Long -> Wide

Number of observations 112 -> 56
Number of variables 3 -> 3
j variable (2 values) low -> (dropped)
xij variables:

smoke -> smoke0 smoke1

We now have the variables smoke0 (formed from smoke and low = 0), recording 1 if the control mother

smoked and 0 otherwise; and smoke1 (formed from smoke and low = 1), recording 1 if the case mother

smoked and 0 otherwise. We can now use mcc:

. mcc smoke1 smoke0
Controls

Cases Exposed Unexposed Total

Exposed 8 22 30
Unexposed 8 18 26

Total 16 40 56
McNemar’s chi2(1) = 6.53 Prob > chi2 = 0.0106
Exact McNemar significance probability = 0.0161
Proportion with factor

Cases .5357143
Controls .2857143 [95% conf. interval]

difference .25 .0519726 .4480274
ratio 1.875 1.148685 3.060565
rel. diff. .35 .1336258 .5663742
odds ratio 2.75 1.179154 7.143667 (exact)

Both methods estimated the same odds ratio, and the 95% confidence intervals are similar. clogit pro-
duced a confidence interval of [ 1.22, 6.18 ], whereas mcc produced a confidence interval of [ 1.18, 7.14 ].

Use of weights
With clogit, weights apply to groups as a whole, not to individual observations. For example, if

there is a group in your dataset with a frequency weight of 3, there are a total of three groups in your

sample with the same values of the dependent and independent variables as this one group. Weights must

have the same value for all observations belonging to the same group; otherwise, an error message will

be displayed.
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Example 3
We use the example from the above discussion of the mcc command. Here we have a total of 56

matched case–control groups, each with one case matched to one control. We had 8 matched pairs in

which both the case and the control are exposed, 22 pairs in which the case is exposed and the control is

unexposed, 8 pairs in which the case is unexposed and the control is exposed, and 18 pairs in which they

are both unexposed.

With weights, it is easy to enter these data into Stata and run clogit.

. clear

. input id case exposed weight
id case exposed weight

1. 1 1 1 8
2. 1 0 1 8
3. 2 1 1 22
4. 2 0 0 22
5. 3 1 0 8
6. 3 0 1 8
7. 4 1 0 18
8. 4 0 0 18
9. end

. clogit case exposed [w=weight], group(id) or
(frequency weights assumed)
Iteration 0: Log likelihood = -35.425931
Iteration 1: Log likelihood = -35.419283
Iteration 2: Log likelihood = -35.419282
Conditional (fixed-effects) logistic regression Number of obs = 112

LR chi2(1) = 6.79
Prob > chi2 = 0.0091

Log likelihood = -35.419282 Pseudo R2 = 0.0875

case Odds ratio Std. err. z P>|z| [95% conf. interval]

exposed 2.75 1.135369 2.45 0.014 1.224347 6.176763

Fixed-effects logit
The fixed-effects logit model can be written as

Pr(𝑦𝑖𝑡 = 1 ∣ x𝑖𝑡) = 𝐹(𝛼𝑖 + x𝑖𝑡β)

where 𝐹 is the cumulative logistic distribution

𝐹(𝑧) = exp(𝑧)
1 + exp(𝑧)

𝑖 = 1, 2, . . . , 𝑛 denotes the independent units (called “groups” by clogit), and 𝑡 = 1, 2, . . . , 𝑇𝑖 denotes

the observations for the 𝑖th unit (group).
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Fitting this model by using a full maximum-likelihood approach leads to difficulties, however. When

𝑇𝑖 is fixed, the maximum likelihood estimates for 𝛼𝑖 and β are inconsistent (Andersen 1970; Chamber-

lain 1980). This difficulty can be circumvented by looking at the probability of y𝑖 = (𝑦𝑖1, . . . , 𝑦𝑖𝑇𝑖
)

conditional on ∑𝑇𝑖
𝑡=1 𝑦𝑖𝑡. This conditional probability does not involve the 𝛼𝑖, so they are never esti-

mated when the resulting conditional likelihood is used. See Hamerle and Ronning (1995) for a succinct

and lucid development. See Methods and formulas for the estimation equation.

Example 4
We are studying unionization of women in the United States by using the union dataset; see [XT] xt.

We fit the fixed-effects logit model:

. use https://www.stata-press.com/data/r18/union, clear
(NLS Women 14-24 in 1968)
. clogit union age grade not_smsa south black, group(idcode)
note: multiple positive outcomes within groups encountered.
note: 2,744 groups (14,165 obs) omitted because of all positive or

all negative outcomes.
note: black omitted because of no within-group variance.
Iteration 0: Log likelihood = -4521.3385
Iteration 1: Log likelihood = -4516.1404
Iteration 2: Log likelihood = -4516.1385
Iteration 3: Log likelihood = -4516.1385
Conditional (fixed-effects) logistic regression Number of obs = 12,035

LR chi2(4) = 68.09
Prob > chi2 = 0.0000

Log likelihood = -4516.1385 Pseudo R2 = 0.0075

union Coefficient Std. err. z P>|z| [95% conf. interval]

age .0170301 .004146 4.11 0.000 .0089042 .0251561
grade .0853572 .0418781 2.04 0.042 .0032777 .1674368

not_smsa .0083678 .1127963 0.07 0.941 -.2127088 .2294445
south -.748023 .1251752 -5.98 0.000 -.9933619 -.5026842
black 0 (omitted)

We received three messages at the top of the output. The first one, “multiple positive outcomes within

groups encountered”, we expected. Our data do indeed have multiple positive outcomes (union = 1) in

many groups. (Here a group consists of all the observations for a particular individual.)

The second message tells us that 2,744 groups were “omitted” by clogit. When either union = 0

or union = 1 for all observations for an individual, this individual’s contribution to the log likelihood is

zero. Although these are perfectly valid observations in every sense, they have no effect on the estimation,

so they are not included in the total “Number of obs”. Hence, the reported “Number of obs” gives the

effective sample size of the estimation. Here it is 12,035 observations—only 46% of the total 26,200.
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We can easily check that there are indeed 2,744 groups with union either all 0 or all 1. We will

generate a variable that contains the fraction of observations for each individual who has union = 1.

. by idcode, sort: generate fraction = sum(union)/sum(union < .)

. by idcode: replace fraction = . if _n < _N
(21,766 real changes made, 21,766 to missing)
. tabulate fraction

fraction Freq. Percent Cum.

0 2,481 55.95 55.95
.0833333 30 0.68 56.63
.0909091 33 0.74 57.37

.1 53 1.20 58.57
(output omitted )

.9 10 0.23 93.59
.9090909 11 0.25 93.84
.9166667 10 0.23 94.07

1 263 5.93 100.00

Total 4,434 100.00

Because 2481 + 263 = 2744, we confirm what clogit did.

The third warning message from clogit said “black omitted because of no within-group variance”.
Obviously, race stays constant for an individual across time. Any such variables are collinear with the 𝛼𝑖
(that is, the fixed effects), and just as the 𝛼𝑖 drop out of the conditional likelihood, so do all variables that

are unchanging within groups. Thus, they cannot be estimated with the conditional fixed-effects model.

There are other estimators implemented in Stata that we could use with these data, such as

cloglog ... , vce(cluster idcode)
logit ... , vce(cluster idcode)
probit ... , vce(cluster idcode)
scobit ... , vce(cluster idcode)
xtcloglog ...
xtgee ... , family(binomial) link(logit) corr(exchangeable)
xtlogit ...
xtprobit ...

See [R] cloglog, [R] logit, [R] probit, [R] scobit, [XT] xtcloglog, [XT] xtgee, [XT] xtlogit, and [XT] xtpro-

bit for details.
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Stored results
clogit stores the following in e():

Scalars

e(N) number of observations

e(N drop) number of observations dropped because of all positive or all negative outcomes

e(N group drop) number of groups dropped because of all positive or all negative outcomes

e(k) number of parameters

e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test

e(k dv) number of dependent variables

e(df m) model degrees of freedom

e(r2 p) pseudo-𝑅2

e(ll) log likelihood

e(ll 0) log likelihood, constant-only model

e(N clust) number of clusters

e(chi2) 𝜒2

e(p) 𝑝-value for model test
e(rank) rank of e(V)
e(ic) number of iterations

e(rc) return code

e(converged) 1 if converged, 0 otherwise
Macros

e(cmd) clogit
e(cmdline) command as typed

e(depvar) name of dependent variable

e(group) name of group() variable
e(multiple) multiple if multiple positive outcomes within group
e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(clustvar) name of cluster variable

e(offset) linear offset variable

e(chi2type) Wald or LR; type of model 𝜒2 test

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(opt) type of optimization

e(which) max or min; whether optimizer is to perform maximization or minimization

e(ml method) type of ml method
e(user) name of likelihood-evaluator program

e(technique) maximization technique

e(properties) b V
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(marginsdefault) default predict() specification for margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(ilog) iteration log (up to 20 iterations)

e(gradient) gradient vector

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

Functions

e(sample) marks estimation sample



clogit — Conditional (fixed-effects) logistic regression 299

In addition to the above, the following is stored in r():
Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas
Breslow and Day (1980, 247–279), Collett (2003, 251–267), and Hosmer, Lemeshow, and Sturdivant

(2013, 243–268) provide a biostatistical point of view on conditional logistic regression. Hamerle and

Ronning (1995) give a succinct and lucid review of fixed-effects logit; Chamberlain (1980) is a standard

reference for this model. Greene (2018, chap. 18) provides a straightforward textbook description of

conditional logistic regression from an economist’s point of view, as well as a brief description of choice

models.

Let 𝑖 = 1, 2, . . . , 𝑛 denote the groups and let 𝑡 = 1, 2, . . . , 𝑇𝑖 denote the observations for the 𝑖th group.
Let 𝑦𝑖𝑡 be the dependent variable taking on values 0 or 1. Let y𝑖 = (𝑦𝑖1, . . . , 𝑦𝑖𝑇𝑖

) be the outcomes for
the 𝑖th group as a whole. Let x𝑖𝑡 be a row vector of covariates. Let

𝑘1𝑖 =
𝑇𝑖

∑
𝑡=1

𝑦𝑖𝑡

be the observed number of ones for the dependent variable in the 𝑖th group. Biostatisticians would say
that there are 𝑘1𝑖 cases matched to 𝑘2𝑖 = 𝑇𝑖 − 𝑘1𝑖 controls in the 𝑖th group.

We consider the probability of a possible value of y𝑖 conditional on ∑𝑇𝑖
𝑡=1 𝑦𝑖𝑡 = 𝑘1𝑖 (Hamerle and

Ronning 1995, eq. 8.33; Hosmer, Lemeshow, and Sturdivant 2013, eq. 7.4),

Pr(y𝑖 ∣ ∑𝑇𝑖
𝑡=1 𝑦𝑖𝑡 = 𝑘1𝑖) =

exp(∑𝑇𝑖
𝑡=1 𝑦𝑖𝑡x𝑖𝑡β)

∑
d𝑖∈𝑆𝑖

exp(∑𝑇𝑖
𝑡=1 𝑑𝑖𝑡x𝑖𝑡β)

where 𝑑𝑖𝑡 is equal to 0 or 1 with∑𝑇𝑖
𝑡=1 𝑑𝑖𝑡 = 𝑘1𝑖 , and 𝑆𝑖 is the set of all possible combinations of 𝑘1𝑖 ones

and 𝑘2𝑖 zeros. Clearly, there are ( 𝑇𝑖
𝑘1𝑖

) such combinations, but we need not count all of these combinations
to compute the denominator of the above equation. It can be computed recursively.

Denote the denominator by

𝑓𝑖(𝑇𝑖, 𝑘1𝑖) = ∑
d𝑖∈𝑆𝑖

exp(
𝑇𝑖

∑
𝑡=1

𝑑𝑖𝑡x𝑖𝑡β)

Consider, computationally, how 𝑓𝑖 changes as we go from a total of 1 observation in the group to 2

observations to 3, etc. Doing this, we derive the recursive formula

𝑓𝑖(𝑇 , 𝑘) = 𝑓𝑖(𝑇 − 1, 𝑘) + 𝑓𝑖(𝑇 − 1, 𝑘 − 1) exp(x𝑖𝑇β)

where we define 𝑓𝑖(𝑇 , 𝑘) = 0 if 𝑇 < 𝑘 and 𝑓𝑖(𝑇 , 0) = 1.

The conditional log-likelihood is

ln𝐿 =
𝑛

∑
𝑖=1

{
𝑇𝑖

∑
𝑡=1

𝑦𝑖𝑡x𝑖𝑡β − log𝑓𝑖(𝑇𝑖, 𝑘1𝑖)}
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The derivatives of the conditional log-likelihood can also be computed recursively by taking derivatives

of the recursive formula for 𝑓𝑖.

Computation time is roughly proportional to

𝑝2
𝑛

∑
𝑖=1

𝑇𝑖 min(𝑘1𝑖, 𝑘2𝑖)

where 𝑝 is the number of independent variables in the model. If min(𝑘1𝑖, 𝑘2𝑖) is small, computation time
is not an issue. But if it is large—say, 100 or more—patience may be required.

If 𝑇𝑖 is large for all groups, the bias of the unconditional fixed-effects estimator is not a concern, and

we can confidently use logit with an indicator variable for each group (provided, of course, that the
number of groups is held within a Stata matrix; see [R] Limits).

This command supports the clustered version of the Huber/White/sandwich estimator of the variance

using vce(robust) and vce(cluster clustvar). See [P] robust, particularlyMaximum likelihood es-

timators and Methods and formulas. Specifying vce(robust) is equivalent to specifying vce(cluster
groupvar), where groupvar is the variable for the matched groups.

clogit also supports estimation with survey data. For details on VCEs with survey data, see

[SVY] Variance estimation.
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Also see
[R] clogit postestimation — Postestimation tools for clogit

[R] logistic — Logistic regression, reporting odds ratios

[R] mlogit — Multinomial (polytomous) logistic regression

[R] ologit — Ordered logistic regression

[R] scobit — Skewed logistic regression

[BAYES] bayes: clogit — Bayesian conditional logistic regression

[CM] cmclogit — Conditional logit (McFadden’s) choice model

[CM] nlogit — Nested logit regression

[MI] Estimation — Estimation commands for use with mi estimate

[SVY] svy estimation — Estimation commands for survey data

[XT] xtgee — GEE population-averaged panel-data models

[XT] xtlogit — Fixed-effects, random-effects, and population-averaged logit models

[XT] xtmlogit — Fixed-effects and random-effects multinomial logit models

[U] 20 Estimation and postestimation commands
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Postestimation commands predict margins Remarks and examples
Methods and formulas Reference Also see

Postestimation commands
The following standard postestimation commands are available after clogit:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters

estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian infor-
mation criteria (AIC, CAIC, AICc, and BIC, respectively)

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estat (svy) postestimation statistics for survey data

estimates cataloging estimation results

etable table of estimation results
∗ hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

linktest link test for model specification
∗ lrtest likelihood-ratio test

margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

predict probabilities, influence statistics, residuals, etc.

predictnl point estimates, standard errors, testing, and inference for generalized predictions

pwcompare pairwise comparisons of parameters

suest seemingly unrelated estimation

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

∗hausman and lrtest are not appropriate with svy estimation results.
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predict

Description for predict
predict creates a new variable containing predictions such as probabilities, linear predictions, stan-

dard errors, influence statistics, lack-of-fit statistics, Hosmer and Lemeshow leverages, Pearson residu-

als, and the equation-level score.

Menu for predict
Statistics > Postestimation

Syntax for predict
predict [ type ] newvar [ if ] [ in ] [ , statistic nooffset ]

statistic Description

Main

pc1 probability of a positive outcome; the default

pu0 probability of a positive outcome, assuming fixed effect is zero

xb linear prediction

stdp standard error of the linear prediction
∗ dbeta Delta-β influence statistic
∗ dx2 Delta-𝜒2 lack-of-fit statistic
∗ gdbeta Delta-β influence statistic for each group
∗ gdx2 Delta-𝜒2 lack-of-fit statistic for each group
∗ hat Hosmer and Lemeshow leverage
∗ residuals Pearson residuals
∗ rstandard standardized Pearson residuals

score first derivative of the log likelihood with respect to x𝑗β

Unstarred statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for the
estimation sample. Starred statistics are calculated only for the estimation sample, even when if e(sample) is not
specified.

Starred statistics are available for multiple controls per case-matching design only. They are not available if vce(robust),
vce(cluster clustvar), or pweights were specified with clogit.

dbeta, dx2, gdbeta, gdx2, hat, and rstandard are not available if constraints() was specified with clogit.

Options for predict

� � �
Main �

pc1, the default, calculates the probability of a positive outcome conditional on one positive outcome
within group.

pu0 calculates the probability of a positive outcome, assuming that the fixed effect is zero.

xb calculates the linear prediction.

stdp calculates the standard error of the linear prediction.



clogit postestimation — Postestimation tools for clogit 304

dbeta calculates the Delta-β influence statistic, a standardized measure of the difference in the coeffi-

cient vector that is due to deletion of the observation.

dx2 calculates the Delta-𝜒2 influence statistic, reflecting the decrease in the Pearson 𝜒2 that is due to

deletion of the observation.

gdbeta calculates the approximation to the Pregibon stratum-specific Delta-β influence statistic, a stan-

dardized measure of the difference in the coefficient vector that is due to deletion of the entire stratum.

gdx2 calculates the approximation to the Pregibon stratum-specific Delta-𝜒2 influence statistic, reflect-

ing the decrease in the Pearson 𝜒2 that is due to deletion of the entire stratum.

hat calculates the Hosmer and Lemeshow leverage or the diagonal element of the hat matrix.

residuals calculates the Pearson residuals.

rstandard calculates the standardized Pearson residuals.

score calculates the equation-level score, 𝜕ln𝐿/𝜕(x𝑖𝑡β).
nooffset is relevant only if you specified offset(varname) for clogit. It modifies the calculations

made by predict so that they ignore the offset variable; the linear prediction is treated as x𝑗b rather

than as x𝑗b + offset𝑗. This option cannot be specified with dbeta, dx2, gdbeta, gdx2, hat, and
rstandard.
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margins

Description for margins
margins estimates margins of response for probabilities and linear predictions.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist ] [ , options ]
margins [marginlist ] , predict(statistic ...) [ predict(statistic ...) ... ] [ options ]

statistic Description

pu0 probability of a positive outcome, assuming fixed effect is zero;
the default

xb linear prediction

pc1 not allowed with margins
stdp not allowed with margins
dbeta not allowed with margins
dx2 not allowed with margins
gdbeta not allowed with margins
gdx2 not allowed with margins
hat not allowed with margins
residuals not allowed with margins
rstandard not allowed with margins
score not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.

Remarks and examples
predict may be used after clogit to obtain predicted values of the index x𝑖𝑡β. Predicted proba-

bilities for conditional logistic regression must be interpreted carefully. Probabilities are estimated for

each group as a whole, not for individual observations. Furthermore, the probabilities are conditional on

the number of positive outcomes in the group (that is, the number of cases and the number of controls),

or it is assumed that the fixed effect is zero. predict may also be used to obtain influence and lack-
of-fit statistics for an individual observation and for the whole group, to compute Pearson, standardized

Pearson residuals, and leverage values.

predict may be used for both within-sample and out-of-sample predictions.
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Example 1
Suppose that we have 1 ∶𝑘2𝑖 matched data and that we have previously fit the following model:

. use https://www.stata-press.com/data/r18/clogitid

. clogit y x1 x2, group(id)
(output omitted )

To obtain the predicted values of the index, we could type predict idx, xb to create a new variable

called idx. From idx, we could then calculate the predicted probabilities. Easier, however, would be to
type

. predict phat
(option pc1 assumed; probability of success given one success within group)

phat would then contain the predicted probabilities.

As noted previously, the predicted probabilities are really predicted probabilities for the group as a

whole (that is, they are the predicted probability of observing 𝑦𝑖𝑡 = 1 and 𝑦𝑖𝑡′ = 0 for all 𝑡′ ≠ 𝑡). Thus,
if we want to obtain the predicted probabilities for the estimation sample, it is important that, when we

make the calculation, predictions be restricted to the same sample on which we estimated the data. We

cannot predict the probabilities and then just keep the relevant ones because the entire sample determines

each probability. Thus, assuming that we are not attempting to make out-of-sample predictions, we type

. predict phat2 if e(sample)
(option pc1 assumed; probability of success given one success within group)

Methods and formulas
Recall that 𝑖 = 1, . . . , 𝑛 denote the groups and 𝑡 = 1, . . . , 𝑇𝑖 denote the observations for the 𝑖th

group.

predict produces probabilities of a positive outcome within group conditional on there being one
positive outcome (pc1),

Pr(𝑦𝑖𝑡 = 1 ∣
𝑇𝑖

∑
𝑡=1

𝑦𝑖𝑡 = 1) = exp(x𝑖𝑡β)
∑𝑇𝑖

𝑡=1 exp(x𝑖𝑡β)

or predict calculates the unconditional pu0:

Pr(𝑦𝑖𝑡 = 1) = exp(x𝑖𝑡β)
1 + exp(x𝑖𝑡β)

Let 𝑁 = ∑𝑛
𝑗=1 𝑇𝑗 denote the total number of observations, 𝑝 denote the number of covariates, and

̂𝜃𝑖𝑡 denote the conditional predicted probabilities of a positive outcome (pc1).

For the multiple control per case (1 ∶ 𝑘2𝑖) matching, Hosmer, Lemeshow, and Sturdivant (2013,

248–251) propose the following diagnostics:

The Pearson residual is

𝑟𝑖𝑡 = (𝑦𝑖𝑡 − ̂𝜃𝑖𝑡)

√ ̂𝜃𝑖𝑡
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The leverage (hat) value is defined as

ℎ𝑖𝑡 = ̂𝜃𝑖𝑡x̃
𝑇
𝑖𝑡(X̃𝑇UX̃)−1x̃𝑖𝑡

where x̃𝑖𝑡 = x𝑖𝑡 − ∑𝑇𝑖
𝑗=1 x𝑖𝑗

̂𝜃𝑖𝑗 is the 1 × 𝑝 row vector of centered by a weighted stratum-specific mean

covariate values, U𝑁 = diag{ ̂𝜃𝑖𝑡}, and the rows of X̃𝑁×𝑝 are composed of x̃𝑖𝑡 values.

The standardized Pearson residual is

𝑟𝑠𝑖𝑡 = 𝑟𝑖𝑡

√1 − ℎ𝑖𝑡

The lack-of-fit and influence diagnostics for an individual observation are (respectively) computed as

Δ𝜒2
𝑖𝑡 = 𝑟2

𝑠𝑖𝑡

and

Δ ̂𝛽𝑖𝑡 = Δ𝜒2
𝑖𝑡

ℎ𝑖𝑡
1 − ℎ𝑖𝑡

The lack-of-fit and influence diagnostics for the groups are the group-specific totals of the respective

individual diagnostics shown above.

Reference
Hosmer, D. W., Jr., S. A. Lemeshow, and R. X. Sturdivant. 2013. Applied Logistic Regression. 3rd ed. Hoboken, NJ:

Wiley.

Also see
[R] clogit — Conditional (fixed-effects) logistic regression

[U] 20 Estimation and postestimation commands

https://www.stata.com/bookstore/applied-logistic-regression/


cloglog — Complementary log–log regression

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Acknowledgment References Also see

Description
cloglog fits a complementary log–log model for a binary dependent variable, typically with one of

the outcomes rare relative to the other. It can also be used to fit a gompit model. cloglog can compute
robust and cluster–robust standard errors and adjust results for complex survey designs.

Quick start
Complementary log–log model of y on x1 and x2

cloglog y x1 x2

With robust standard errors

cloglog y x1 x2, vce(robust)

Adjust for complex survey design using svyset data
svy: cloglog y x1 x2

Menu
Statistics > Binary outcomes > Complementary log–log regression
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Syntax
cloglog depvar [ indepvars ] [ if ] [ in ] [weight ] [ , options ]

options Description

Model

noconstant suppress constant term

offset(varname) include varname in model with coefficient constrained to 1

asis retain perfect predictor variables

constraints(constraints) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, opg, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)
eform report exponentiated coefficients

nocnsreport do not display constraints

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

collinear keep collinear variables

coeflegend display legend instead of statistics

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.

bayes, bootstrap, by, collect, fmm, fp, jackknife, mi estimate, nestreg, rolling, statsby, stepwise, and svy
are allowed; see [U] 11.1.10 Prefix commands. For more details, see [BAYES] bayes: cloglog and [FMM] fmm: cloglog.

vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix; see [MI] mi estimate.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
collinear and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

noconstant, offset(varname); see [R] Estimation options.

asis forces retention of perfect predictor variables and their associated perfectly predicted observations
and may produce instabilities in maximization; see [R] probit.

constraints(constraints); see [R] Estimation options.
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� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), that al-
low for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods

(bootstrap, jackknife); see [R] vce option.

� � �
Reporting �

level(#); see [R] Estimation options.

eform displays the exponentiated coefficients and corresponding standard errors and confidence inter-
vals.

nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. These options are

seldom used.

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

The following options are available with cloglog but are not shown in the dialog box:

collinear, coeflegend; see [R] Estimation options.

Remarks and examples
Remarks are presented under the following headings:

Introduction to complementary log–log regression
Robust standard errors

Introduction to complementary log–log regression
cloglog fits maximum likelihood models with dichotomous dependent variables coded as 0/1 (or,

more precisely, coded as 0 and not 0).

Example 1
We have data on the make, weight, and mileage rating of 22 foreign and 52 domestic automobiles.

We wish to fit a model explaining whether a car is foreign based on its weight and mileage. Here is an

overview of our data:
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. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. keep make mpg weight foreign
. describe
Contains data from https://www.stata-press.com/data/r18/auto.dta
Observations: 74 1978 automobile data

Variables: 4 13 Apr 2022 17:45
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

make str18 %-18s Make and model
mpg int %8.0g Mileage (mpg)
weight int %8.0gc Weight (lbs.)
foreign byte %8.0g origin Car origin

Sorted by: foreign
Note: Dataset has changed since last saved.

. inspect foreign
foreign: Car origin Number of observations

Total Integers Nonintegers
# Negative - - -
# Zero 52 52 -
# Positive 22 22 -
#
# # Total 74 74 -
# # Missing -

0 1 74
(2 unique values)

foreign is labeled and all values are documented in the label.

The variable foreign takes on two unique values, 0 and 1. The value 0 denotes a domestic car, and 1
denotes a foreign car.

The model that we wish to fit is

Pr(foreign = 1) = 𝐹(𝛽0 + 𝛽1weight + 𝛽2mpg)

where 𝐹(𝑧) = 1 − exp{ − exp(𝑧)}.
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To fit this model, we type

. cloglog foreign weight mpg
Iteration 0: Log likelihood = -34.054593
Iteration 1: Log likelihood = -27.869915
Iteration 2: Log likelihood = -27.742997
Iteration 3: Log likelihood = -27.742769
Iteration 4: Log likelihood = -27.742769
Complementary log--log regression Number of obs = 74

Zero outcomes = 52
Nonzero outcomes = 22
LR chi2(2) = 34.58

Log likelihood = -27.742769 Prob > chi2 = 0.0000

foreign Coefficient Std. err. z P>|z| [95% conf. interval]

weight -.0029153 .0006974 -4.18 0.000 -.0042823 -.0015483
mpg -.1422911 .076387 -1.86 0.062 -.2920069 .0074247

_cons 10.09694 3.351841 3.01 0.003 3.527448 16.66642

We find that heavier cars are less likely to be foreign and that cars yielding better gas mileage are also

less likely to be foreign, at least when holding the weight of the car constant.

See [R]Maximize for an explanation of the output.

Technical note
Stata interprets a value of 0 as a negative outcome (failure) and treats all other values (except missing)

as positive outcomes (successes). Thus, if your dependent variable takes on the values 0 and 1, 0 is

interpreted as failure and 1 as success. If your dependent variable takes on the values 0, 1, and 2, 0 is

still interpreted as failure, but both 1 and 2 are treated as successes.

If you prefer a more formal mathematical statement, when you type cloglog 𝑦 𝑥, Stata fits the model

Pr(𝑦𝑗 ≠ 0 ∣ x𝑗) = 1 − exp{− exp(x𝑗β)}

Robust standard errors
If you specify the vce(robust) option, cloglog reports robust standard errors, as described in

[U] 20.22 Obtaining robust variance estimates. For the model of foreign on weight and mpg, the
robust calculation increases the standard error of the coefficient on mpg by 44%:
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. cloglog foreign weight mpg, vce(robust)
Iteration 0: Log pseudolikelihood = -34.054593
Iteration 1: Log pseudolikelihood = -27.869915
Iteration 2: Log pseudolikelihood = -27.742997
Iteration 3: Log pseudolikelihood = -27.742769
Iteration 4: Log pseudolikelihood = -27.742769
Complementary log--log regression Number of obs = 74

Zero outcomes = 52
Nonzero outcomes = 22
Wald chi2(2) = 29.74

Log pseudolikelihood = -27.742769 Prob > chi2 = 0.0000

Robust
foreign Coefficient std. err. z P>|z| [95% conf. interval]

weight -.0029153 .0007484 -3.90 0.000 -.0043822 -.0014484
mpg -.1422911 .1102466 -1.29 0.197 -.3583704 .0737882

_cons 10.09694 4.317305 2.34 0.019 1.635174 18.5587

Without vce(robust), the standard error for the coefficient on mpg was reported to be 0.076, with a

resulting confidence interval of [ −0.29, 0.01 ].
The vce(cluster clustvar) option can relax the independence assumption required by the comple-

mentary log–log estimator to being just independence between clusters. To demonstrate this ability, we

will switch to a different dataset.

We are studying unionization of women in the United States by using the union dataset; see [XT] xt.
We fit the followingmodel, ignoring that women are observed an average of 5.9 times each in this dataset:

. use https://www.stata-press.com/data/r18/union, clear
(NLS Women 14-24 in 1968)
. cloglog union age grade not_smsa south##c.year
Iteration 0: Log likelihood = -13606.373
Iteration 1: Log likelihood = -13540.726
Iteration 2: Log likelihood = -13540.607
Iteration 3: Log likelihood = -13540.607
Complementary log--log regression Number of obs = 26,200

Zero outcomes = 20,389
Nonzero outcomes = 5,811
LR chi2(6) = 647.24

Log likelihood = -13540.607 Prob > chi2 = 0.0000

union Coefficient Std. err. z P>|z| [95% conf. interval]

age .0185346 .0043616 4.25 0.000 .009986 .0270833
grade .0452772 .0057125 7.93 0.000 .0340809 .0564736

not_smsa -.1886592 .0317801 -5.94 0.000 -.2509471 -.1263712
1.south -1.422292 .3949381 -3.60 0.000 -2.196356 -.648227

year -.0133007 .0049576 -2.68 0.007 -.0230174 -.0035839

south#c.year
1 .0105659 .0049234 2.15 0.032 .0009161 .0202157

_cons -1.219801 .2952374 -4.13 0.000 -1.798455 -.6411462
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The reported standard errors in this model are probably meaningless. Women are observed repeatedly,

and so the observations are not independent. Looking at the coefficients, we find a large southern effect

against unionization and a different time trend for the south. The vce(cluster clustvar) option provides
a way to fit this model and obtains correct standard errors:

. cloglog union age grade not_smsa south##c.year, vce(cluster id) nolog
Complementary log--log regression Number of obs = 26,200

Zero outcomes = 20,389
Nonzero outcomes = 5,811
Wald chi2(6) = 160.76

Log pseudolikelihood = -13540.607 Prob > chi2 = 0.0000
(Std. err. adjusted for 4,434 clusters in idcode)

Robust
union Coefficient std. err. z P>|z| [95% conf. interval]

age .0185346 .0084873 2.18 0.029 .0018999 .0351694
grade .0452772 .0125776 3.60 0.000 .0206255 .069929

not_smsa -.1886592 .0642068 -2.94 0.003 -.3145021 -.0628162
1.south -1.422292 .506517 -2.81 0.005 -2.415047 -.4295365

year -.0133007 .0090628 -1.47 0.142 -.0310633 .004462

south#c.year
1 .0105659 .0063175 1.67 0.094 -.0018162 .022948

_cons -1.219801 .5175129 -2.36 0.018 -2.234107 -.2054942

These standard errors are larger than those reported by the inappropriate conventional calculation. By

comparison, another way we could fit this model is with an equal-correlation population-averaged com-

plementary log–log model:

. xtcloglog union age grade not_smsa south##c.year, pa nolog
GEE population-averaged model Number of obs = 26,200
Group variable: idcode Number of groups = 4,434
Family: Binomial Obs per group:
Link: Complementary log--log min = 1
Correlation: exchangeable avg = 5.9

max = 12
Wald chi2(6) = 234.66

Scale parameter = 1 Prob > chi2 = 0.0000

union Coefficient Std. err. z P>|z| [95% conf. interval]

age .0153737 .0081156 1.89 0.058 -.0005326 .03128
grade .0549518 .0095093 5.78 0.000 .0363139 .0735897

not_smsa -.1045232 .0431082 -2.42 0.015 -.1890138 -.0200326
1.south -1.714868 .3384558 -5.07 0.000 -2.378229 -1.051507

year -.0115881 .0084125 -1.38 0.168 -.0280763 .0049001

south#c.year
1 .0149796 .0041687 3.59 0.000 .0068091 .0231501

_cons -1.488278 .4468005 -3.33 0.001 -2.363991 -.6125652

The coefficient estimates are similar, but these standard errors are smaller than those produced by

cloglog, vce(cluster clustvar). This finding is as we would expect. If the within-panel correla-
tion assumptions are valid, the population-averaged estimator should be more efficient.
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In addition to this estimator, we may use the xtgee command to fit a panel estimator (with comple-
mentary log–log link) and any number of assumptions on the within-idcode correlation.

cloglog, vce(cluster clustvar) is robust to assumptions about within-cluster correlation. That is,
it inefficiently sums within cluster for the standard error calculation rather than attempting to exploit what

might be assumed about the within-cluster correlation (as do the xtgee population-averaged models).

Stored results
cloglog stores the following in e():

Scalars

e(N) number of observations

e(k) number of parameters

e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test

e(k dv) number of dependent variables

e(N f) number of zero outcomes

e(N s) number of nonzero outcomes

e(df m) model degrees of freedom

e(ll) log likelihood

e(ll 0) log likelihood, constant-only model

e(N clust) number of clusters

e(chi2) 𝜒2

e(p) 𝑝-value for model test
e(rank) rank of e(V)
e(ic) number of iterations

e(rc) return code

e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) cloglog
e(cmdline) command as typed

e(depvar) name of dependent variable

e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(clustvar) name of cluster variable

e(offset) linear offset variable

e(chi2type) Wald or LR; type of model 𝜒2 test

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(opt) type of optimization

e(which) max or min; whether optimizer is to perform maximization or minimization

e(ml method) type of ml method
e(user) name of likelihood-evaluator program

e(technique) maximization technique

e(properties) b V
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved
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Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(ilog) iteration log (up to 20 iterations)

e(gradient) gradient vector

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas
Complementary log–log analysis (related to the gompit model, so named because of its relationship

to the Gompertz distribution) is an alternative to logit and probit analysis, but it is unlike these other

estimators in that the transformation is not symmetric. Typically, this model is used when the positive

(or negative) outcome is rare.

The log-likelihood function for complementary log–log is

ln𝐿 = ∑
𝑗∈𝑆

𝑤𝑗 ln𝐹(x𝑗b) + ∑
𝑗∉𝑆

𝑤𝑗 ln{1 − 𝐹(x𝑗b)}

where 𝑆 is the set of all observations 𝑗 such that 𝑦𝑗 ≠ 0, 𝐹(𝑧) = 1 − exp{ − exp(𝑧)}, and 𝑤𝑗 denotes

the optional weights. ln𝐿 is maximized as described in [R]Maximize.

We can fit a gompit model by reversing the success–failure sense of the dependent variable and using

cloglog.

This command supports the Huber/White/sandwich estimator of the variance and its clustered version

using vce(robust) and vce(cluster clustvar), respectively. See [P] robust, particularly Maximum

likelihood estimators and Methods and formulas. The scores are calculated as u𝑗 = [ exp(x𝑗b) exp{ −
exp(x𝑗b)}/𝐹(x𝑗b)]x𝑗 for the positive outcomes and {− exp(x𝑗b)}x𝑗 for the negative outcomes.

cloglog also supports estimation with survey data. For details on VCEs with survey data, see

[SVY] Variance estimation.
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[MI] Estimation — Estimation commands for use with mi estimate

[SVY] svy estimation — Estimation commands for survey data

[XT] xtcloglog — Random-effects and population-averaged cloglog models

[U] 20 Estimation and postestimation commands

https://www.stata.com/bookstore/regmod.html
https://www.stata-press.com/books/regression-models-categorical-dependent-variables/
https://www.stata-journal.com/article.html?article=st0094


cloglog postestimation — Postestimation tools for cloglog

Postestimation commands predict margins Remarks and examples Also see

Postestimation commands
The following postestimation commands are available after cloglog:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters

estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian infor-
mation criteria (AIC, CAIC, AICc, and BIC, respectively)

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estat (svy) postestimation statistics for survey data

estimates cataloging estimation results

etable table of estimation results
∗ forecast dynamic forecasts and simulations
∗ hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

linktest link test for model specification
∗ lrtest likelihood-ratio test

margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

predict probabilities, linear predictions and their SEs, etc.

predictnl point estimates, standard errors, testing, and inference for generalized predictions

pwcompare pairwise comparisons of parameters

suest seemingly unrelated estimation

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

∗forecast, hausman, and lrtest are not appropriate with svy estimation results. forecast is also not appropriate with mi
estimation results.
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predict

Description for predict
predict creates a new variable containing predictions such as probabilities, linear predictions, stan-

dard errors, and the equation-level score.

Menu for predict
Statistics > Postestimation

Syntax for predict
predict [ type ] newvar [ if ] [ in ] [ , statistic nooffset ]

statistic Description

Main

pr probability of a positive outcome; the default

xb linear prediction

stdp standard error of the linear prediction

score first derivative of the log likelihood with respect to x𝑗β

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for the estimation
sample.

Options for predict

� � �
Main �

pr, the default, calculates the probability of a positive outcome.

xb calculates the linear prediction.

stdp calculates the standard error of the linear prediction.

score calculates the equation-level score, 𝜕ln𝐿/𝜕(x𝑗β).
nooffset is relevant only if you specified offset(varname) for cloglog. It modifies the calculations

made by predict so that they ignore the offset variable; the linear prediction is treated as x𝑗b rather

than as x𝑗b + offset𝑗.
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margins

Description for margins
margins estimates margins of response for probabilities and linear predictions.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist ] [ , options ]
margins [marginlist ] , predict(statistic ...) [ predict(statistic ...) ... ] [ options ]

statistic Description

pr probability of a positive outcome; the default

xb linear prediction

stdp not allowed with margins
score not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.

Remarks and examples
Once you have fit a model, you can obtain the predicted probabilities by using the predict command

for both the estimation sample and other samples; see [U] 20 Estimation and postestimation commands

and [R] predict. Here we will make only a few comments.

predict without arguments calculates the predicted probability of a positive outcome. With the

xb option, it calculates the linear combination x𝑗b, where x𝑗 are the independent variables in the 𝑗th
observation and b is the estimated parameter vector.

With the stdp option, predict calculates the standard error of the linear prediction, which is not

adjusted for replicated covariate patterns in the data.
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Example 1
In example 1 in [R] cloglog, we fit the complementary log–log model cloglog foreign weight mpg.

To obtain predicted probabilities,

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. cloglog foreign weight mpg
(output omitted )

. predict p
(option pr assumed; Pr(foreign))
. summarize foreign p

Variable Obs Mean Std. dev. Min Max

foreign 74 .2972973 .4601885 0 1
p 74 .2928348 .29732 .0032726 .9446067

Also see
[R] cloglog — Complementary log–log regression

[U] 20 Estimation and postestimation commands



cls — Clear Results window

Description
cls clears the Results window, causing all text to be removed. This operation cannot be undone.

Syntax
cls
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Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas References Also see

Description
cnsreg fits constrained linear regression models.

Quick start
Linear regression with coefficients for x1 and x2 constrained to equality

constraint 1 x1 = x2
cnsreg y x1 x2 x3, constraints(1)

Add constraint x2 = x3 to impose x1 = x2 = x3
constraint 2 x2 = x3
cnsreg y x1 x2 x3, constraints(1 2)

Constrain the coefficient for x4 to be −1

constraint 3 x4 = -1
cnsreg y x1 x2 x3 x4, constraints(1-3)

Menu
Statistics > Linear models and related > Constrained linear regression
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Syntax
cnsreg depvar indepvars [ if ] [ in ] [weight ] , constraints(constraints) [ options ]

options Description

Model
∗ constraints(constraints) apply specified linear constraints

noconstant suppress constant term

SE/Robust

vce(vcetype) vcetype may be ols, robust, cluster clustvar, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)
nocnsreport do not display constraints

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

mse1 force MSE to be 1

collinear keep collinear variables

coeflegend display legend instead of statistics

∗constraints(constraints) is required.
indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.

bootstrap, by, collect, fp, jackknife, mi estimate, rolling, statsby, and svy are allowed; see [U] 11.1.10 Prefix
commands.

vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix; see [MI] mi estimate.

With the fp prefix (see [R] fp), constraints cannot be specified for the variable containing fractional polynomial terms.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
aweights are not allowed with the jackknife prefix; see [R] jackknife.
vce(), mse1, and weights are not allowed with the svy prefix; see [SVY] svy.
aweights, fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
mse1, collinear, and coeflegend do not appear in the dialog.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

constraints(constraints), noconstant; see [R] Estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (ols), that are robust to some kinds of misspecification (robust), that allow for

intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods (bootstrap,
jackknife); see [R] vce option.

vce(ols), the default, uses the standard variance estimator for ordinary least-squares regression.
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� � �
Reporting �

level(#), nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

The following options are available with cnsreg but are not shown in the dialog box:

mse1 is used only in programs and ado-files that use cnsreg to fit models other than constrained linear
regression. mse1 sets the mean squared error to 1, thus forcing the variance–covariance matrix of

the estimators to be (X′DX)−1 (see Methods and formulas in [R] regress) and affecting calculated

standard errors. Degrees of freedom for 𝑡 statistics are calculated as 𝑛 rather than 𝑛 − 𝑝 + 𝑐, where 𝑝
is the total number of parameters (prior to restrictions and including the constant) and 𝑐 is the number
of constraints.

mse1 is not allowed with the svy prefix.

collinear, coeflegend; see [R] Estimation options.

Remarks and examples
For a discussion of constrained linear regression, see Greene (2018, 126–127); Hill, Griffiths, and

Lim (2018, 271–273); or Davidson and MacKinnon (1993, 17).

Example 1: One constraint
In principle, we can obtain constrained linear regression estimates bymodifying the list of independent

variables. For instance, if we wanted to fit the model

mpg = 𝛽0 + 𝛽1 price + 𝛽2 weight + 𝑢

and constrain 𝛽1 = 𝛽2, we could write

mpg = 𝛽0 + 𝛽1(price + weight) + 𝑢

and run a regression of mpg on price + weight. The estimated coefficient on the sum would be the

constrained estimate of 𝛽1 and 𝛽2. Using cnsreg, however, is easier:

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. constraint 1 price = weight
. cnsreg mpg price weight, constraint(1)
Constrained linear regression Number of obs = 74

F(1, 72) = 37.59
Prob > F = 0.0000
Root MSE = 4.7220

( 1) price - weight = 0

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

price -.0009875 .0001611 -6.13 0.000 -.0013086 -.0006664
weight -.0009875 .0001611 -6.13 0.000 -.0013086 -.0006664
_cons 30.36718 1.577958 19.24 0.000 27.22158 33.51278
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We define constraints by using the constraint command; see [R] constraint. We fit the model with

cnsreg and specify the constraint number or numbers in the constraints() option.

Just to show that the results above are correct, here is the result of applying the constraint by hand:

. generate x = price + weight

. regress mpg x
Source SS df MS Number of obs = 74

F(1, 72) = 37.59
Model 838.065767 1 838.065767 Prob > F = 0.0000

Residual 1605.39369 72 22.2971346 R-squared = 0.3430
Adj R-squared = 0.3339

Total 2443.45946 73 33.4720474 Root MSE = 4.722

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

x -.0009875 .0001611 -6.13 0.000 -.0013086 -.0006664
_cons 30.36718 1.577958 19.24 0.000 27.22158 33.51278

Example 2: Multiple constraints
Models can be fit subject to multiple simultaneous constraints. We simply define the constraints and

then include the constraint numbers in the constraints() option. For instance, say that we wish to fit
the model

mpg = 𝛽0 + 𝛽1 price + 𝛽2 weight + 𝛽3 displ + 𝛽4 gear ratio + 𝛽5 foreign+
𝛽6 length + 𝑢

subject to the constraints

𝛽1 = 𝛽2 = 𝛽3 = 𝛽6

𝛽4 = −𝛽5 = 𝛽0/20

(This model, like the one in example 1, is admittedly senseless.) We fit the model by typing

. constraint 1 price=weight

. constraint 2 displ=weight

. constraint 3 length=weight

. constraint 5 gear_ratio = -foreign

. constraint 6 gear_ratio = _cons/20
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. cnsreg mpg price weight displ gear_ratio foreign length, c(1-3,5-6)
Constrained linear regression Number of obs = 74

F(2, 72) = 785.20
Prob > F = 0.0000
Root MSE = 4.6823

( 1) price - weight = 0
( 2) - weight + displacement = 0
( 3) - weight + length = 0
( 4) gear_ratio + foreign = 0
( 5) gear_ratio - .05*_cons = 0

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

price -.000923 .0001534 -6.02 0.000 -.0012288 -.0006172
weight -.000923 .0001534 -6.02 0.000 -.0012288 -.0006172

displacement -.000923 .0001534 -6.02 0.000 -.0012288 -.0006172
gear_ratio 1.326114 .0687589 19.29 0.000 1.189046 1.463183

foreign -1.326114 .0687589 -19.29 0.000 -1.463183 -1.189046
length -.000923 .0001534 -6.02 0.000 -.0012288 -.0006172
_cons 26.52229 1.375178 19.29 0.000 23.78092 29.26365

There are many ways we could have specified the constraints() option (which we abbreviated c()
above). We typed c(1-3,5-6), meaning that wewant constraints 1 through 3 and 5 and 6; those numbers
correspond to the constraints we defined. The only reason we did not use the number 4 was to emphasize

that constraints do not have to be consecutively numbered. We typed c(1-3,5-6), but we could have
typed c(1,2,3,5,6) or c(1-3,5,6) or c(1-2,3,5,6) or even c(1-6), which would have worked as
long as constraint 4 was not defined. If we had previously defined a constraint 4, then c(1-6) would
have included it.

Stored results
cnsreg stores the following in e():

Scalars

e(N) number of observations

e(df m) model degrees of freedom

e(df r) residual degrees of freedom

e(F) 𝐹 statistic

e(p) 𝑝-value for model test
e(rmse) root mean squared error

e(ll) log likelihood

e(N clust) number of clusters

e(rank) rank of e(V)

Macros

e(cmd) cnsreg
e(cmdline) command as typed

e(depvar) name of dependent variable

e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(clustvar) name of cluster variable

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(properties) b V
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e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas
Let 𝑛 be the number of observations, 𝑝 be the total number of parameters (prior to restrictions and

including the constant), and 𝑐 be the number of constraints. The coefficients are calculated as b′ =
T{(T′X′WXT)−1(T′X′Wy−T′X′WXa′)} +a′, where T and a are as defined in [P]makecns. W = I

if no weights are specified. If weights are specified, let v: 1 × 𝑛 be the specified weights. If fweight
frequency weights are specified, W = diag(v). If aweight analytic weights are specified, then W =
diag[v/(1′v)(1′1)], meaning that the weights are normalized to sum to the number of observations.

The mean squared error is 𝑠2 = (y′Wy − 2b′X′Wy + b′X′WXb)/(𝑛 − 𝑝 + 𝑐). The vari-

ance–covariance matrix is 𝑠2T(T′X′WXT)−1T′.

This command supports the Huber/White/sandwich estimator of the variance and its clustered version

using vce(robust) and vce(cluster clustvar), respectively. See [P] robust, particularly Introduc-

tion and Methods and formulas.

cnsreg also supports estimation with survey data. For details on VCEs with survey data, see

[SVY] Variance estimation.
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Also see
[R] cnsreg postestimation — Postestimation tools for cnsreg

[R] regress — Linear regression

[MI] Estimation — Estimation commands for use with mi estimate

[SVY] svy estimation — Estimation commands for survey data

[U] 20 Estimation and postestimation commands
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Postestimation commands predict margins Also see

Postestimation commands
The following postestimation commands are available after cnsreg:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters

estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian infor-
mation criteria (AIC, CAIC, AICc, and BIC, respectively)

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estat (svy) postestimation statistics for survey data

estimates cataloging estimation results

etable table of estimation results
∗ forecast dynamic forecasts and simulations
∗ hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

linktest link test for model specification
∗ lrtest likelihood-ratio test

margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

predict predictions and their SEs, residuals, etc.

predictnl point estimates, standard errors, testing, and inference for generalized predictions

pwcompare pairwise comparisons of parameters

suest seemingly unrelated estimation

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

∗forecast, hausman, and lrtest are not appropriate with svy estimation results. forecast is also not appropriate with mi
estimation results.
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predict

Description for predict
predict creates a new variable containing predictions such as linear predictions, residuals, standard

errors, probabilities, and expected values.

Menu for predict
Statistics > Postestimation

Syntax for predict
predict [ type ] newvar [ if ] [ in ] [ , statistic ]

statistic Description

Main

xb linear prediction; the default

residuals residuals

stdp standard error of the prediction

stdf standard error of the forecast

pr(a,b) Pr(a < 𝑦𝑗 < b)
e(a,b) 𝐸(𝑦𝑗| a < 𝑦𝑗 < b)
ystar(a,b) 𝐸(𝑦∗

𝑗), 𝑦∗
𝑗 = max{𝑎,min(𝑦𝑗, 𝑏)}

score equivalent to residuals

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for the estimation
sample.

stdf is not allowed with svy estimation results.

where a and b may be numbers or variables; a missing (a ≥ .) means −∞, and b missing (b ≥ .) means
+∞; see [U] 12.2.1 Missing values.

Options for predict

� � �
Main �

xb, the default, calculates the linear prediction.

residuals calculates the residuals, that is, 𝑦𝑗 − x𝑗b.

stdp calculates the standard error of the prediction, which can be thought of as the standard error of the
predicted expected value or mean for the observation’s covariate pattern. The standard error of the

prediction is also referred to as the standard error of the fitted value.

stdf calculates the standard error of the forecast, which is the standard error of the point prediction for
1 observation. It is commonly referred to as the standard error of the future or forecast value. By

construction, the standard errors produced by stdf are always larger than those produced by stdp;
see Methods and formulas in [R] regress postestimation.

pr(a,b) calculates Pr(a < x𝑗b + 𝑢𝑗 < b), the probability that 𝑦𝑗|x𝑗 would be observed in the interval

(a, b).
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a and b may be specified as numbers or variable names; lb and ub are variable names;

pr(20,30) calculates Pr(20 < x𝑗b + 𝑢𝑗 < 30);
pr(lb,ub) calculates Pr(lb < x𝑗b + 𝑢𝑗 < ub); and
pr(20,ub) calculates Pr(20 < x𝑗b + 𝑢𝑗 < ub).
a missing (a ≥ .) means −∞; pr(.,30) calculates Pr(−∞ < x𝑗b + 𝑢𝑗 < 30);
pr(lb,30) calculates Pr(−∞ < x𝑗b + 𝑢𝑗 < 30) in observations for which lb ≥ .
and calculates Pr(𝑙𝑏 < x𝑗b + 𝑢𝑗 < 30) elsewhere.
b missing (b ≥ .) means +∞; pr(20,.) calculates Pr(+∞ > x𝑗b + 𝑢𝑗 > 20);
pr(20,ub) calculates Pr(+∞ > x𝑗b + 𝑢𝑗 > 20) in observations for which ub ≥ .
and calculates Pr(20 < x𝑗b + 𝑢𝑗 < ub) elsewhere.

e(a,b) calculates 𝐸(x𝑗b + 𝑢𝑗 | a < x𝑗b + 𝑢𝑗 < b), the expected value of 𝑦𝑗|x𝑗 conditional on 𝑦𝑗|x𝑗
being in the interval (a, b), meaning that 𝑦𝑗|x𝑗 is truncated. a and b are specified as they are for pr().

ystar(a,b) calculates 𝐸(𝑦∗
𝑗), where 𝑦∗

𝑗 = 𝑎 if x𝑗b+𝑢𝑗 ≤ 𝑎, 𝑦∗
𝑗 = 𝑏 if x𝑗b+𝑢𝑗 ≥ 𝑏, and 𝑦∗

𝑗 = x𝑗b+𝑢𝑗
otherwise, meaning that 𝑦∗

𝑗 is censored. a and b are specified as they are for pr().

score is equivalent to residuals for linear regression models.
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margins

Description for margins
margins estimates margins of response for linear predictions, probabilities, and expected values.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist ] [ , options ]
margins [marginlist ] , predict(statistic ...) [ predict(statistic ...) ... ] [ options ]

statistic Description

xb linear prediction; the default

pr(a,b) Pr(a < 𝑦𝑗 < b)
e(a,b) 𝐸(𝑦𝑗| a < 𝑦𝑗 < b)
ystar(a,b) 𝐸(𝑦∗

𝑗), 𝑦∗
𝑗 = max{𝑎,min(𝑦𝑗, 𝑏)}

stdp not allowed with margins
stdf not allowed with margins
residuals not allowed with margins
score not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.

Also see
[R] cnsreg — Constrained linear regression

[U] 20 Estimation and postestimation commands



constraint — Define and list constraints

Description Quick start Menu Syntax
Remarks and examples Reference Also see

Description
constraint defines, lists, and drops linear constraints. Constraints are for use by models that allow

constrained estimation.

Constraints are defined by the constraint command. The currently defined constraints can be listed
by either constraint list or constraint dir; both do the same thing. Existing constraints can be
eliminated by constraint drop.

constraint get and constraint free are programmer’s commands. constraint get returns the
contents of the specified constraint in macro r(contents) and returns in scalar r(defined) 0 or 1—1

being returned if the constraint was defined. constraint free returns the number of a free (unused)
constraint in macro r(free).

Quick start
For single-equation models

Define constraint 1 to constrain the coefficient for x1 to 0
constraint define 1 x1=0

Same as above

constraint 1 x1

Constrain coefficients for x1 and x2 to 0
constraint 2 x1 x2

Overwrite constraint 2 to constrain x2 and x3 to equality
constraint 2 x2 = x3

Constrain the coefficients for factor indicators 2.a and 3.a to equality
constraint 3 2.a = 3.a

Constrain the coefficient on x1 to equal 1
constraint 4 x1 = 1

For multiple-equation models

Constrain coefficient for x4 to 0 in all equations
constraint 11 x4

Constrain coefficients for x4 and x5 to equality in the equation for y2
constraint 12 [y2]x4 = [y2]x5
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Constrain the coefficient for x5 to equality in equations for y1 and y2
constraint 13 [y1=y2] x5

Constrain coefficient for x1 to 0 in equation where the dependent variable equals cat2
constraint 14 [cat2] x1

Constrain the coefficients for factor indicators 1.a and 1.b to equality in the equation for category cat3
constraint 15 [cat3]: 1.a = 1.b

Constrain coefficients for x1 to equality in the equations for categories cat2 and cat3
constraint 16 [cat2=cat3]: x1

Listing constraints

List existing constraints

constraint dir

Same as above

constraint list

Menu
Statistics > Other > Manage constraints
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Syntax
Define constraints

constraint [ define ] # [ exp=exp | coeflist ]

List constraints

constraint dir [ numlist | all ]

constraint list [ numlist | all ]

Drop constraints

constraint drop { numlist | all }

Programmer’s commands

constraint get #

constraint free

where coeflist is as defined in [R] test and # is restricted to the range 1 to 1,999, inclusive.

Remarks and examples
Using constraints is discussed in [R] cnsreg, [R] mlogit, and [R] reg3; this entry is concerned only

with practical aspects of defining and manipulating constraints.

Example 1
Constraints are numbered from 1 to 1,999, and we assign the number when we define the constraint:

. use https://www.stata-press.com/data/r18/sysdsn1
(Health insurance data)
. constraint 2 [indemnity]2.site = 0

The currently defined constraints can be listed by constraint list:

. constraint list
2: [indemnity]2.site = 0

constraint drop drops constraints:

. constraint drop 2

. constraint list
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The empty list after constraint list indicates that no constraints are defined. Below, we demonstrate
the various syntaxes allowed by constraint:

. constraint 1 [Indemnity]

. constraint 10 [Indemnity]: 1.site 2.site

. constraint 11 [Indemnity]: 3.site

. constraint 21 [Prepaid=Uninsure]: nonwhite

. constraint 30 [Prepaid]

. constraint 31 [Insure]

. constraint list
1: [Indemnity]
10: [Indemnity]: 1.site 2.site
11: [Indemnity]: 3.site
21: [Prepaid=Uninsure]: nonwhite
30: [Prepaid]
31: [Insure]

. constraint drop 21-25, 31

. constraint list
1: [Indemnity]
10: [Indemnity]: 1.site 2.site
11: [Indemnity]: 3.site
30: [Prepaid]

. constraint drop _all

. constraint list

Technical note
The constraint command does not check the syntax of the constraint itself because a constraint can

be interpreted only in the context of a model. Thus, constraint is willing to define constraints that

later will not make sense. Any errors in the constraints will be detected and mentioned at the time of

estimation.

Reference
Buis, M. L. 2012. Stata tip 108: On adding and constraining. Stata Journal 12: 342–344.

Also see
[R] cnsreg — Constrained linear regression

[P] makecns — Constrained estimation

https://www.stata-journal.com/article.html?article=st0261
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Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas References Also see

Description
contrast tests linear hypotheses and forms contrasts involving factor variables and their interactions

from the most recently fit model. The tests include ANOVA-style tests of main effects, simple effects,

interactions, and nested effects. contrast can use named contrasts to decompose these effects into

comparisons against reference categories, comparisons of adjacent levels, comparisons against the grand

mean, orthogonal polynomials, and such. Custom contrasts may also be specified.

contrast can be used with svy estimation results; see [SVY] svy postestimation.

Contrasts can also be computed for margins of linear and nonlinear responses; see [R]margins, con-

trast.

Quick start
Contrasts for one-way models

Test the main effect of categorical variable a after regress y i.a or anova y a
contrast a

Reference category contrasts of cell means of y with the smallest value of a as the base category
contrast r.a

Same as above, but specify a = 3 as the base category for comparisons

contrast rb3.a

Report tests instead of confidence intervals for each contrast

contrast r.a, pveffects

Report tests and confidence intervals for each contrast

contrast r.a, effects

Contrasts of the cell mean of y for each level of a with the grand mean of y
contrast g.a

Same as above, but compute grand mean as a weighted average of cell means with weights based on the

number of observations for each level of a
contrast gw.a

User-defined contrast comparing the cell mean of y for a = 1 with the average of the cell means for

a = 3 and a = 4

contrast {a -1 0 .5 .5}
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Contrasts for two-way models

Test of the interaction effect after regress y a##b or anova y a##b
contrast a#b

Test of the main and interaction effects

contrast a b a#b

Same as above

contrast a##b

Individual reference category contrasts for the interaction of a and b
contrast r.a#r.b

Joint tests of the simple effects of a within each level of b
contrast a@b

Individual reference category contrasts for the simple effects of a within each level of b
contrast r.a@b

Orthogonal polynomial contrasts for a within each level of b
contrast p.a@b

Reference category contrasts of the marginal means of y for levels of a
contrast r.a

Same as above, but with marginal means for a computed as a weighted average of cell means, using the
marginal frequencies of b rather than equal weights for each level

contrast r.a, asobserved

Contrasts of the marginal mean of y for each level of a with the previous level—reverse-adjacent con-

trasts

contrast ar.a

Contrasts for models with continuous covariates

Test of the interaction effect after regress y a##c.x or anova y a##c.x
contrast a#c.x

Reference category effects of a on the slope of x
contrast r.a#c.x

Reference category effects of a on the intercept
contrast r.a
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Contrasts for nonlinear models

Orthogonal polynomial contrasts of log odds across levels of a after logit y i.a
contrast p.a

Test the main and interaction effects after logit y a##b
contrast a##b

Simple reference category effects for a within each level of b
contrast r.a@b

Contrasts for multiple-equation models

Test the main and interaction effects in the equation for y2 after mvreg y1 y2 y3 = a##b
contrast a##b, equation(y2)

Reference category contrasts of estimated marginal means of y3 for levels of a
contrast r.a, equation(y3)

Test for a difference in the overall estimated marginal means of y1, y2, and y3
contrast _eqns

Contrasts of estimated marginal means of y2 and y3 with y1
contrast r._eqns

Test whether interaction effects differ across equations

contrast a#b#_eqns

Menu
Statistics > Postestimation



contrast — Contrasts and linear hypothesis tests after estimation 341

Syntax
contrast termlist [ , options ]

where termlist is a list of factor variables or interactions that appear in the current estimation results. The

variables may be typed with or without contrast operators, and you may use any factor-variable syntax:

See the operators (op.) table below for the list of contrast operators.

options Description

Main

overall add a joint hypothesis test for all specified contrasts

asobserved treat all factor variables as observed

lincom treat user-defined contrasts as linear combinations

Equations

equation(eqspec) perform contrasts in termlist for equation eqspec

atequations perform contrasts in termlist within each equation

Advanced

emptycells(empspec) treatment of empty cells for balanced factors

noestimcheck suppress estimability checks

Reporting

level(#) confidence level; default is level(95)
mcompare(method) adjust for multiple comparisons; default is mcompare(noadjust)
noeffects suppress table of individual contrasts

cieffects show effects table with confidence intervals

pveffects show effects table with 𝑝-values
effects show effects table with confidence intervals and 𝑝-values
nowald suppress table of Wald tests

noatlevels report only the overall Wald test for terms that use the within @
or nested | operator

nosvyadjust compute unadjusted Wald tests for survey results

sort sort the individual contrast values in each term

post post contrasts and their VCEs as estimation results

display options control column formats, row spacing, line width, and factor-variable labeling

eform option report exponentiated contrasts

df(#) use 𝑡 distribution with # degrees of freedom for computing 𝑝-values
and confidence intervals

collect is allowed; see [U] 11.1.10 Prefix commands.

df(#) does not appear in the dialog box.
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Term Description

Main effects

A joint test of the main effects of A
r.A individual contrasts that decompose A using r.

Interaction effects

A#B joint test of the two-way interaction effects of A and B
A#B#C joint test of the three-way interaction effects of A, B, and C
r.A#g.B individual contrasts for each interaction of A and B defined by r. and g.

Partial interaction effects

r.A#B joint tests of interactions of A and B within each contrast defined by r.A
A#r.B joint tests of interactions of A and B within each contrast defined by r.B

Simple effects

A@B joint tests of the effects of A within each level of B
A@B#C joint tests of the effects of A within each combination of the levels of B and C
r.A@B individual contrasts of A that decompose A@B using r.
r.A@B#C individual contrasts of A that decompose A@B#C using r.

Other conditional effects

A#B@C joint tests of the interaction effects of A and B within each level of C
A#B@C#D joint tests of the interaction effects of A and B within each combination of

the levels of C and D
r.A#g.B@C individual contrasts for each interaction of A and B that decompose A#B@C

using r. and g.

Nested effects

A|B joint tests of the effects of A nested in each level of B
A|B#C joint tests of the effects of A nested in each combination of the levels of B and C
A#B|C joint tests of the interaction effects of A and B nested in each level of C
A#B|C#D joint tests of the interaction effects of A and B nested in each

combination of the levels of C and D
r.A|B individual contrasts of A that decompose A|B using r.
r.A|B#C individual contrasts of A that decompose A|B#C using r.
r.A#g.B|C individual contrasts for each interaction of A and B defined by r. and g.

nested in each level of C

Slope effects

A#c.x joint test of the effects of A on the slopes of x
A#c.x#c.y joint test of the effects of A on the slopes of the product (interaction) of x and y
A#B#c.x joint test of the interaction effects of A and B on the slopes of x
A#B#c.x#c.y joint test of the interaction effects of A and B on the slopes of the product

(interaction) of x and y
r.A#c.x individual contrasts of A’s effects on the slopes of x using r.

Denominators

... / term2 use term2 as the denominator in the 𝐹 tests of the preceding terms

... / use the residual as the denominator in the 𝐹 tests of the preceding terms

(the default if no other /s are specified)
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A, B, C, and D represent any factor variable in the current estimation results.

x and y represent any continuous variable in the current estimation results.

r. and g. represent any contrast operator. See the table below.

c. specifies that a variable be treated as continuous; see [U] 11.4.3 Factor variables.

Operators are allowed on any factor variable that does not appear to the right of @ or |. Operators

decompose the effects of the associated factor variable into one-degree-of-freedom effects (contrasts).

Higher-level interactions are allowed anywhere an interaction operator (#) appears in the table.

Time-series operators are allowed if they were used in the estimation.

eqns designates the equations in manova, mlogit, mprobit, and mvreg and can be specified anywhere
a factor variable appears.

/ is allowed only after anova, cnsreg, manova, mvreg, or regress.

operators (op.) Description

r. differences from the reference (base) level; the default

a. differences from the next level (adjacent contrasts)

ar. differences from the previous level (reverse adjacent contrasts)

As-balanced operators

g. differences from the balanced grand mean

h. differences from the balanced mean of subsequent levels (Helmert contrasts)

j. differences from the balanced mean of previous levels (reverse Helmert

contrasts)

p. orthogonal polynomial in the level values

q. orthogonal polynomial in the level sequence

As-observed operators

gw. differences from the observation-weighted grand mean

hw. differences from the observation-weighted mean of subsequent levels

jw. differences from the observation-weighted mean of previous levels

pw. observation-weighted orthogonal polynomial in the level values

qw. observation-weighted orthogonal polynomial in the level sequence

One or more individual contrasts may be selected by using the op#. or op(numlist). syntax. For exam-
ple, a3.A selects the adjacent contrast for level 3 of A, and p(1/2).B selects the linear and quadratic
effects of B. Also see Orthogonal polynomial contrasts and Beyond linear models.

Custom contrasts Description

{A numlist} user-defined contrast on the levels of factor A

{A#B numlist} user-defined contrast on the levels of interaction between A and B

Custom contrasts may be part of a term, such as {A numlist}#B, {A numlist}@B, {A numlist}|B, {A#B
numlist}, and {A numlist}#{B numlist}. The same is true of higher-order custom contrasts, such as

{A#B numlist}@C, {A#B numlist}#r.C, and {A#B numlist}#c.x.

Higher-order interactions with at most eight factor variables are allowed with custom contrasts.
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method Description

noadjust do not adjust for multiple comparisons; the default

bonferroni [ adjustall ] Bonferroni’s method; adjust across all terms

sidak [ adjustall ] Šidák’s method; adjust across all terms

scheffe Scheffé’s method

Options

� � �
Main �

overall specifies that a joint hypothesis test over all terms be performed.

asobserved specifies that factor covariates be evaluated using the cell frequencies observed in the es-
timation sample. The default is to treat all factor covariates as though there were an equal number of

observations in each level.

lincom specifies that user-defined contrasts be treated as linear combinations. The default is to require
that all user-defined contrasts sum to zero. (Summing to zero is part of the definition of a contrast.)

� � �
Equations �

equation(eqspec) specifies the equation from which contrasts are to be computed. The default is to

compute contrasts from the first equation.

atequations specifies that the contrasts be computed within each equation.

� � �
Advanced �

emptycells(empspec) specifies how empty cells are handled in interactions involving factor variables

that are being treated as balanced.

emptycells(strict) is the default; it specifies that contrasts involving empty cells be treated as
not estimable.

emptycells(reweight) specifies that the effects of the observed cells be increased to accommodate
any missing cells. This makes the contrast estimable but changes its interpretation.

noestimcheck specifies that contrast not check for estimability. By default, the requested contrasts
are checked and those found not estimable are reported as such. Nonestimability is usually caused

by empty cells. If noestimcheck is specified, estimates are computed in the usual way and reported
even though the resulting estimates are manipulable, which is to say they can differ across equivalent

models having different parameterizations.

� � �
Reporting �

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is

level(95) or as set by set level; see [U] 20.8 Specifying the width of confidence intervals.

mcompare(method) specifies the method for computing 𝑝-values and confidence intervals that account
for multiple comparisons within a factor-variable term.

Most methods adjust the comparisonwise error rate, 𝛼𝑐, to achieve a prespecified experimentwise

error rate, 𝛼𝑒.
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mcompare(noadjust) is the default; it specifies no adjustment.
𝛼𝑐 = 𝛼𝑒

mcompare(bonferroni) adjusts the comparisonwise error rate based on the upper limit of the Bon-
ferroni inequality

𝛼𝑒≤𝑚𝛼𝑐

where m is the number of comparisons within the term.

The adjusted comparisonwise error rate is

𝛼𝑐 = 𝛼𝑒/𝑚

mcompare(sidak) adjusts the comparisonwise error rate based on the upper limit of the probability
inequality

𝛼𝑒 ≤ 1 − (1 − 𝛼𝑐)𝑚

where m is the number of comparisons within the term.

The adjusted comparisonwise error rate is

𝛼𝑐 = 1 − (1 − 𝛼𝑒)1/𝑚

This adjustment is exact when the m comparisons are independent.

mcompare(scheffe) controls the experimentwise error rate using the 𝐹 or 𝜒2 distribution with de-

grees of freedom equal to the rank of the term.

mcompare(method adjustall) specifies that the multiple-comparison adjustments count all com-
parisons across all terms rather than performing multiple comparisons term by term. This leads to

more conservative adjustments when multiple variables or terms are specified in marginslist. This

option is compatible only with the bonferroni and sidak methods.

noeffects suppresses the table of individual contrasts with confidence intervals. This table is produced
by default when the mcompare() option is specified or when a term in termlist implies all individual

contrasts.

cieffects specifies that a table containing a confidence interval for each individual contrast be reported.

pveffects specifies that a table containing a 𝑝-value for each individual contrast be reported.
effects specifies that a single table containing a confidence interval and 𝑝-value for each individual

contrast be reported.

nowald suppresses the table of Wald tests.

noatlevels indicates that only the overall Wald test be reported for each term containing within or

nested (@ or |) operators.

nosvyadjust is for use with svy estimation commands. It specifies that the Wald test be carried out

without the default adjustment for the design degrees of freedom. That is to say the test is carried out

as 𝑊/𝑘 ∼ 𝐹(𝑘, 𝑑) rather than as (𝑑 − 𝑘 + 1)𝑊/(𝑘𝑑) ∼ 𝐹(𝑘, 𝑑 − 𝑘 + 1), where 𝑘 is the dimension
of the test and 𝑑 is the total number of sampled PSUs minus the total number of strata.

sort specifies that the table of individual contrasts be sorted by the contrast values within each term.
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post causes contrast to behave like a Stata estimation (e-class) command. contrast posts the vector
of estimated contrasts along with the estimated variance–covariance matrix to e(), so you can treat
the estimated contrasts just as you would results from any other estimation command. For example,

you could use test to perform simultaneous tests of hypotheses on the contrasts, or you could use

lincom to create linear combinations.

display options: vsquish, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt),
pformat(% fmt), sformat(% fmt), and nolstretch.

vsquish specifies that the blank space separating factor-variable terms or time-series–operated vari-
ables from other variables in the model be suppressed.

nofvlabel displays factor-variable level values rather than attached value labels. This option over-
rides the fvlabel setting; see [R] set showbaselevels.

fvwrap(#) specifies how many lines to allow when long value labels must be wrapped. Labels

requiring more than # lines are truncated. This option overrides the fvwrap setting; see [R] set
showbaselevels.

fvwrapon(style) specifies whether value labels that wrap will break at word boundaries or break

based on available space.

fvwrapon(word), the default, specifies that value labels break at word boundaries.

fvwrapon(width) specifies that value labels break based on available space.

This option overrides the fvwrapon setting; see [R] set showbaselevels.

cformat(% fmt) specifies how to format contrasts, standard errors, and confidence limits in the table

of estimated contrasts.

pformat(% fmt) specifies how to format 𝑝-values in the table of estimated contrasts.
sformat(% fmt) specifies how to format test statistics in the table of estimated contrasts.

nolstretch specifies that the width of the table of estimated contrasts not be automatically widened
to accommodate longer variable names. The default, lstretch, is to automatically widen the table
of estimated contrasts up to thewidth of the Results window. Specifying lstretch or nolstretch
overrides the setting given by set lstretch. If set lstretch has not been set, the default is

lstretch. nolstretch is not shown in the dialog box.

eform option specifies that the contrasts table be displayed in exponentiated form. 𝑒contrast is dis-
played rather than contrast. Standard errors and confidence intervals are also transformed. See

[R] eform option for the list of available options.

The following option is available with contrast but is not shown in the dialog box:

df(#) specifies that the 𝑡 distribution with # degrees of freedom be used for computing 𝑝-values and
confidence intervals. The default is to use e(df r) degrees of freedom or the standard normal dis-

tribution if e(df r) is missing.
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Remarks and examples
Remarks are presented under the following headings:

Introduction
One-way models

Estimated cell means
Testing equality of cell means
Reference category contrasts
Reverse adjacent contrasts
Orthogonal polynomial contrasts

Two-way models
Estimated interaction cell means
Simple effects
Interaction effects
Main effects
Partial interaction effects

Three-way and higher-order models
Contrast operators

Differences from a reference level (r.)
Differences from the next level (a.)
Differences from the previous level (ar.)
Differences from the grand mean (g.)
Differences from the mean of subsequent levels (h.)
Differences from the mean of previous levels (j.)
Orthogonal polynomials (p. and q.)

User-defined contrasts
Empty cells
Empty cells, ANOVA style
Nested effects
Multiple comparisons
Unbalanced data

Using observed cell frequencies
Weighted contrast operators

Testing factor effects on slopes
Chow tests
Beyond linear models
Multiple equations
Video example

Introduction
contrast performsANOVA-style tests of main effects, interactions, simple effects, and nested effects.

It can easily decompose these tests into constituent contrasts using either named contrasts (codings) or

user-specified contrasts. Comparing levels of factor variables—whether as main effects, interactions,

or simple effects—is as easy as adding a contrast operator to the variable. The operators can compare

each level with the previous level, each level with a reference level, each level with the mean of previous

levels, and more.

contrast tests and estimates contrasts. A contrast of the parameters 𝜇1, 𝜇2, . . . , 𝜇𝑝 is a linear com-

bination ∑𝑖 𝑐𝑖𝜇𝑖 whose 𝑐𝑖 sum to zero. A difference of population means such as 𝜇1 − 𝜇2 is a contrast,

as are most other comparisons of population or model quantities (Coster 2005). Some contrasts may

be estimated with lincom, but contrast is much more powerful. contrast can handle multiple con-
trasts simultaneously, and the command’s contrast operators make it easy to specify complicated linear

combinations.
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Both the contrast operation and the creation of the margins for comparison can be performed as though

the data were balanced (typical for experimental designs) or using the observed frequencies in the esti-

mation sample (typical for observational studies). contrast can perform these analyses on the results

of almost all of Stata’s estimators, not just the linear-models estimators.

Most of contrast’s computations can be considered comparisons of estimated cell means from a

model fit. Tests of interactions are tests of whether the cell means for the interaction are all equal. Tests

of main effects are tests of whether the marginal cell means for the factor are all equal. More focused

comparisons of cell means (for example, is level 2 equal to level 1) are specified using contrast operators.

More formally, all of contrast’s computations are comparisons of conditional expectations; cell means
are one type of conditional expectation.

All contrasts can also easily be graphed; see [R] marginsplot.

For a discussion of contrasts and testing for linear models, see Searle and Gruber (2017) and Searle

(1997). For discussions specifically related to experimental design, see Winer, Brown, and Michels

(1991) and Milliken and Johnson (2009). Rosenthal, Rosnow, and Rubin (2000) focus on contrasts with

applications in behavioral sciences. Mitchell (2021, 2015) and Baldwin (2019) focus on contrasts in

Stata.

contrast is a flexible tool for understanding the effects of categorical covariates. If your model

contains categorical covariates, and especially if it contains interactions, you will want to use contrast.

One-way models
Suppose we have collected data on cholesterol levels for individuals from five age groups. To study

the effect of age group on cholesterol, we can begin by fitting a one-way model using regress:

. use https://www.stata-press.com/data/r18/cholesterol
(Artificial cholesterol data)
. label list ages
ages:

1 10--19
2 20--29
3 30--39
4 40--59
5 60--79

. regress chol i.agegrp
Source SS df MS Number of obs = 75

F(4, 70) = 35.02
Model 14943.3997 4 3735.84993 Prob > F = 0.0000

Residual 7468.21971 70 106.688853 R-squared = 0.6668
Adj R-squared = 0.6477

Total 22411.6194 74 302.859722 Root MSE = 10.329

chol Coefficient Std. err. t P>|t| [95% conf. interval]

agegrp
20--29 8.203575 3.771628 2.18 0.033 .6812991 15.72585
30--39 21.54105 3.771628 5.71 0.000 14.01878 29.06333
40--59 30.15067 3.771628 7.99 0.000 22.6284 37.67295
60--79 38.76221 3.771628 10.28 0.000 31.23993 46.28448

_cons 180.5198 2.666944 67.69 0.000 175.2007 185.8388
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Estimated cell means

margins will show us the estimated cell means for each age group based on our fitted model:

. margins agegrp
Adjusted predictions Number of obs = 75
Model VCE: OLS
Expression: Linear prediction, predict()

Delta-method
Margin std. err. t P>|t| [95% conf. interval]

agegrp
10--19 180.5198 2.666944 67.69 0.000 175.2007 185.8388
20--29 188.7233 2.666944 70.76 0.000 183.4043 194.0424
30--39 202.0608 2.666944 75.76 0.000 196.7418 207.3799
40--59 210.6704 2.666944 78.99 0.000 205.3514 215.9895
60--79 219.282 2.666944 82.22 0.000 213.9629 224.601

We can graph those means with marginsplot:

. marginsplot
Variables that uniquely identify margins: agegrp
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Testing equality of cell means

Are all the means equal? That is to say is there an effect of age group on cholesterol level? We can

answer that by asking contrast to test whether the means of the age groups are identical.
. contrast agegrp
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

agegrp 4 35.02 0.0000

Denominator 70



contrast — Contrasts and linear hypothesis tests after estimation 350

The means are clearly different. We could have obtained this same test directly had we fit our model

using anova rather than regress.

. anova chol agegrp
Number of obs = 75 R-squared = 0.6668
Root MSE = 10.329 Adj R-squared = 0.6477

Source Partial SS df MS F Prob>F

Model 14943.4 4 3735.8499 35.02 0.0000

agegrp 14943.4 4 3735.8499 35.02 0.0000

Residual 7468.2197 70 106.68885

Total 22411.619 74 302.85972

Achieving a more direct test result is why we recommend using anova instead of regress for models
where our focus is on the categorical covariates. The models fit by anova and regress are identical;
they merely parameterize the effects differently. The results of contrast will be identical regardless

of which command is used to fit the model. If, however, we were fitting models whose responses are

nonlinear functions of the covariates, such as logistic regression, then there would be no analogue to

anova, and we would appreciate contrast’s ability to quickly test main effects and interactions.

Reference category contrasts

Now that we know that the overall effect of age group is statistically significant, we can explore the

effects of each age group. One way to do that is to use the reference category operator, r.:
. contrast r.agegrp
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

agegrp
(20--29 vs 10--19) 1 4.73 0.0330
(30--39 vs 10--19) 1 32.62 0.0000
(40--59 vs 10--19) 1 63.91 0.0000
(60--79 vs 10--19) 1 105.62 0.0000

Joint 4 35.02 0.0000

Denominator 70

Contrast Std. err. [95% conf. interval]

agegrp
(20--29 vs 10--19) 8.203575 3.771628 .6812991 15.72585
(30--39 vs 10--19) 21.54105 3.771628 14.01878 29.06333
(40--59 vs 10--19) 30.15067 3.771628 22.6284 37.67295
(60--79 vs 10--19) 38.76221 3.771628 31.23993 46.28448
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The cell mean of each age group is compared against the base age group (ages 10–19). The first table

shows that each difference is significant. The second table gives an estimate and confidence interval

for each contrast. These are the comparisons that linear regression gives with a factor covariate and no

interactions. The contrasts are identical to the coefficients from our linear regression.

Reverse adjacent contrasts

We have far more flexibility with contrast. Age group is ordinal, so it is interesting to compare
each age group with the preceding age group (rather than against one reference group). We specify that

analysis by using the reverse adjacent operator, ar.:
. contrast ar.agegrp
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

agegrp
(20--29 vs 10--19) 1 4.73 0.0330
(30--39 vs 20--29) 1 12.51 0.0007
(40--59 vs 30--39) 1 5.21 0.0255
(60--79 vs 40--59) 1 5.21 0.0255

Joint 4 35.02 0.0000

Denominator 70

Contrast Std. err. [95% conf. interval]

agegrp
(20--29 vs 10--19) 8.203575 3.771628 .6812991 15.72585
(30--39 vs 20--29) 13.33748 3.771628 5.815204 20.85976
(40--59 vs 30--39) 8.60962 3.771628 1.087345 16.1319
(60--79 vs 40--59) 8.611533 3.771628 1.089257 16.13381

The 20–29 age group’s cholesterol level is 8.2 points higher than the 10–19 age group’s cholesterol

level; the 30–39 age group’s level is 13.3 points higher than the 20–29 age group’s level; and so on. Each

age group is statistically different from the preceding age group at the 5% level.
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Orthogonal polynomial contrasts

The relationship between age group and cholesterol level looked almost linear in our graph. We can

examine that relationship further by using the orthogonal polynomial operator, p.:
. contrast p.agegrp, noeffects
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

agegrp
(linear) 1 139.11 0.0000

(quadratic) 1 0.15 0.6962
(cubic) 1 0.37 0.5448

(quartic) 1 0.43 0.5153
Joint 4 35.02 0.0000

Denominator 70

Only the linear effect is statistically significant.

We can even perform the joint test that all effects beyond linear are zero. We do that by selecting all

polynomial contrasts above linear—that is, polynomial contrasts 2, 3, and 4.

. contrast p(2 3 4).agegrp, noeffects
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

agegrp
(quadratic) 1 0.15 0.6962

(cubic) 1 0.37 0.5448
(quartic) 1 0.43 0.5153

Joint 3 0.32 0.8129

Denominator 70

The joint test has three degrees of freedom and is clearly insignificant. A linear effect of age group

seems adequate for this model.
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Two-way models
Suppose we are investigating the effects of different dosages of a blood pressure medication and

believe that the effects may be different for men and women. We can fit the following ANOVAmodel for

bpchange, the change in diastolic blood pressure. Change is defined as the after measurement minus the
before measurement, so that negative values of bpchange correspond to decreases in blood pressure.

. use https://www.stata-press.com/data/r18/bpchange
(Artificial blood pressure data)
. label list gender
gender:

1 Male
2 Female

. anova bpchange dose##gender
Number of obs = 30 R-squared = 0.9647
Root MSE = 1.4677 Adj R-squared = 0.9573

Source Partial SS df MS F Prob>F

Model 1411.9087 5 282.38174 131.09 0.0000

dose 963.48179 2 481.7409 223.64 0.0000
gender 355.11882 1 355.11882 164.85 0.0000

dose#gender 93.308093 2 46.654046 21.66 0.0000

Residual 51.699253 24 2.1541355

Total 1463.608 29 50.46924

Estimated interaction cell means

Everything is significant, including the interaction. So increasing dosage is effective and differs by

gender. Let’s explore the effects. First, let’s look at the estimated cell mean of blood pressure change for

each combination of gender and dosage.

. margins dose#gender
Adjusted predictions Number of obs = 30
Expression: Linear prediction, predict()

Delta-method
Margin std. err. t P>|t| [95% conf. interval]

dose#gender
250#Male -7.35384 .6563742 -11.20 0.000 -8.708529 -5.99915

250#Female 3.706567 .6563742 5.65 0.000 2.351877 5.061257
500#Male -13.73386 .6563742 -20.92 0.000 -15.08855 -12.37917

500#Female -6.584167 .6563742 -10.03 0.000 -7.938857 -5.229477
750#Male -16.82108 .6563742 -25.63 0.000 -18.17576 -15.46639

750#Female -14.38795 .6563742 -21.92 0.000 -15.74264 -13.03326

Our data are balanced, so these results will not be affected by the many different ways that margins
can compute cell means. Moreover, because our model consists of only dose and gender, these are also
the point estimates for each combination.
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We can graph the results:

. marginsplot
Variables that uniquely identify margins: dose gender
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The lines are not parallel, which we expected because the interaction term is significant. Males ex-

perience a greater decline in blood pressure at every dosage level, but the effect of increasing dosage is

greater for females. In fact, it is not clear if we can tell the difference between male and female response

at the maximum dosage.

Simple effects

We can contrast the male and female responses within dosage to see the simple effects of gender.
Because there are only two levels in gender, the choice of contrast operator is largely irrelevant. Aside
from orthogonal polynomials, all operators produce the same estimates, although the effects can change

signs.

. contrast r.gender@dose
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

gender@dose
(Female vs Male) 250 1 141.97 0.0000
(Female vs Male) 500 1 59.33 0.0000
(Female vs Male) 750 1 6.87 0.0150

Joint 3 69.39 0.0000

Denominator 24

Contrast Std. err. [95% conf. interval]

gender@dose
(Female vs Male) 250 11.06041 .9282533 9.144586 12.97623
(Female vs Male) 500 7.149691 .9282533 5.23387 9.065512
(Female vs Male) 750 2.433124 .9282533 .5173031 4.348944
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The effect for females is about 11 points higher than for males at a dosage of 250, and that shrinks to

2.4 points higher at the maximum dosage of 750.

We can form the simple effects the other way by contrasting the effect of dose at each level of gender:

. contrast ar.dose@gender
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

dose@gender
(500 vs 250) Male 1 47.24 0.0000

(500 vs 250) Female 1 122.90 0.0000
(750 vs 500) Male 1 11.06 0.0028

(750 vs 500) Female 1 70.68 0.0000
Joint 4 122.65 0.0000

Denominator 24

Contrast Std. err. [95% conf. interval]

dose@gender
(500 vs 250) Male -6.380018 .9282533 -8.295839 -4.464198

(500 vs 250) Female -10.29073 .9282533 -12.20655 -8.374914
(750 vs 500) Male -3.087217 .9282533 -5.003038 -1.171396

(750 vs 500) Female -7.803784 .9282533 -9.719605 -5.887963

Here we use the ar. reverse adjacent contrast operator so that first we are comparing a dosage of 500
with a dosage of 250, and then we are comparing 750 with 500. We see that increasing the dosage has a

larger effect on females—10.3 points when going from 250 to 500 compared with 6.4 points for males,

and 7.8 points when going from 500 to 750 versus 3.1 points for males.
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Interaction effects

By specifying contrast operators on both factors, we can decompose the interaction effect into separate

interaction contrasts.

. contrast ar.dose#r.gender
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

dose#gender
(500 vs 250) (Female vs Male) 1 8.87 0.0065
(750 vs 500) (Female vs Male) 1 12.91 0.0015

Joint 2 21.66 0.0000

Denominator 24

Contrast Std. err. [95% conf. interval]

dose#gender
(500 vs 250)

(Female vs Male) -3.910716 1.312748 -6.620095 -1.201336
(750 vs 500)

(Female vs Male) -4.716567 1.312748 -7.425947 -2.007187

Look for departures from zero to indicate an interaction effect between dose and gender. Both

contrasts are significantly different from zero. Of course, we already knew the overall interaction was

significant from our ANOVA results. The effect of increasing dose from 250 to 500 is 3.9 points greater in

females than in males, and the effect of increasing dose from 500 to 750 is 4.7 points greater in females

than in males. The confidence intervals for both estimates easily exclude zero, meaning that there is an

interaction effect.

The joint test of these two interaction effects reproduces the test of interaction effects in the anova
output. We can see that the 𝐹 statistic of 21.66 matches the statistic from our original ANOVA results.

Main effects

We can perform tests of the main effects by listing each variable individually in contrast.
. contrast dose gender
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

dose 2 223.64 0.0000

gender 1 164.85 0.0000

Denominator 24
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The 𝐹 tests are equivalent to the tests of main effects in the anova output. This is true only for linear
models. contrast provides an easy way to obtain main effects and other ANOVA-style tests for models
whose responses are not linear in the parameters—logistic, probit, glm, etc.

If we include contrast operators on the variables, we can also decompose the main effects into indi-

vidual contrasts:

. contrast ar.dose r.gender
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

dose
(500 vs 250) 1 161.27 0.0000
(750 vs 500) 1 68.83 0.0000

Joint 2 223.64 0.0000

gender 1 164.85 0.0000

Denominator 24

Contrast Std. err. [95% conf. interval]

dose
(500 vs 250) -8.335376 .6563742 -9.690066 -6.980687
(750 vs 500) -5.4455 .6563742 -6.80019 -4.090811

gender
(Female vs Male) 6.881074 .5359273 5.774974 7.987173

By specifying the ar. operator on dose, we decompose the main effect for dose into two one-degree-
of-freedom contrasts, comparing the marginal mean of blood pressure change for each dosage level with

that of the previous level. Because gender has only two levels, we cannot decompose this main effect
any further. However, specifying a contrast operator on gender allowed us to calculate the difference in
the marginal means for women and men.

Partial interaction effects

At this point, we have looked at the total interaction effects and at the main effects of each variable.

The partial interaction effects are a midpoint between these two types of effects where we collect the

individual interaction effects along the levels of one of the variables and perform a joint test of those

interactions. If we think of the interaction effects as forming a table, with the levels of one factor variable

forming the rows and the levels of the other forming the columns, partial interaction effects are joint tests

of the interactions in a row or a column. To perform these tests, we specify a contrast operator on only one

of the variables in our interaction. For this particular model, these are not very interesting because our

variables have only two and three levels. Therefore, the tests of the partial interaction effects reproduce

the tests that we obtained for the total interaction effects. We specify a contrast operator only on dose to
decompose the overall test for interaction effects into joint tests for each ar.dose contrast:



contrast — Contrasts and linear hypothesis tests after estimation 358

. contrast ar.dose#gender
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

dose#gender
(500 vs 250) (joint) 1 8.87 0.0065
(750 vs 500) (joint) 1 12.91 0.0015

Joint 2 21.66 0.0000

Denominator 24

The first row is a joint test of all the interaction effects involving the (500 vs 250) comparison of
dosages. The second row is a joint test of all the interaction effects involving the (750 vs 500) compar-
ison. If we look back at our output in Interaction effects, we can see that there was only one of each of

these interaction effects. Therefore, each test labeled (joint) has only one degree-of-freedom.

We could have instead included a contrast operator on gender to compute the partial interaction

effects along the other dimension:

. contrast dose#r.gender
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

dose#gender 2 21.66 0.0000

Denominator 24

Here we obtain a joint test of all the interaction effects involving the (Female vs Male) comparison
for gender. Because gender has only two levels, the (Female vs Male) contrast is the only reference
category contrast possible. Therefore, we obtain a single joint test of all the interaction effects.

Clearly, the partial interaction effects are not interesting for this particular model. However, if our

factors had more levels, the partial interaction effects would produce tests that are not available in the

total interaction effects. For example, if our model included factors for four dosage levels and three

races, then typing

. contrast ar.dose#race

would produce three joint tests, one for each of the reverse adjacent contrasts for dosage. Each of these

tests would be a two-degree-of-freedom test because race has three levels.
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Three-way and higher-order models
All the contrasts and tests that we reviewed above for two-way models can be used with models

that have more terms. For instance, we could fit a three-way full factorial model by using the anova
command:

. use https://www.stata-press.com/data/r18/cont3way

. anova y race##sex##group

We could then test the simple effects of race within each level of the interaction between sex and
group:

. contrast race@sex#group

To see the reference category contrasts that decompose these simple effects, type

. contrast r.race@sex#group

We could test the three-way interaction effects by typing

. contrast race#sex#group

or the interaction effects for the interaction of race and sex by typing

. contrast race#sex

To see the individual reference category contrasts that decompose this interaction effect, type

. contrast r.race#r.sex

We could even obtain joint tests for the interaction of race and sex within each level of group by
typing

. contrast race#sex@group

For tests of the main effects of each factor, we can type

. contrast race sex group

We can calculate the individual reference category contrasts that decompose these main effects:

. contrast r.race r.sex r.group

For the partial interaction effects, we could type

. contrast r.race#group

to obtain a joint test of the two-way interaction effects of race and group for each of the individual

r.race contrasts.

We could type

. contrast r.race#sex#group

to obtain a joint test of all the three-way interaction terms for each of the individual r.race contrasts.
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Contrast operators
contrast recognizes a set of contrast operators that are used to specify commonly used contrasts.

When these operators are used, contrast will report a test for each individual contrast in addition to the
joint test for the term. We have already seen a few of these, like r. and ar., in the previous examples.
Here we will take a closer look at each of the unweighted operators.

Here we use the cholesterol dataset and the one-way ANOVA model from the example in One-way

models:

. use https://www.stata-press.com/data/r18/cholesterol
(Artificial cholesterol data)
. anova chol agegrp
(output omitted )

The margins command reports the estimated cell means, ̂𝜇1, . . . , ̂𝜇5, for each of the five age groups.

. margins agegrp
Adjusted predictions Number of obs = 75
Expression: Linear prediction, predict()

Delta-method
Margin std. err. t P>|t| [95% conf. interval]

agegrp
10--19 180.5198 2.666944 67.69 0.000 175.2007 185.8388
20--29 188.7233 2.666944 70.76 0.000 183.4043 194.0424
30--39 202.0608 2.666944 75.76 0.000 196.7418 207.3799
40--59 210.6704 2.666944 78.99 0.000 205.3514 215.9895
60--79 219.282 2.666944 82.22 0.000 213.9629 224.601

Contrast operators provide an easy way to make certain types of comparisons of these cell means.

We use the ordinal factor agegrp to demonstrate these operators because some types of contrasts are

meaningful only when the levels of the factor have a natural ordering. We demonstrate these contrast

operators using a one-way model; however, they are equally applicable to main effects, simple effects,

and interactions for more complicated models.

Differences from a reference level (r.)

The r. operator specifies that each level of the attached factor variable be compared with a reference
level. These are referred to as reference-level or reference-category contrasts (or effects), and r. is the
reference-level operator.
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In the following, we use the r. operator to test the effect of each category of age group when that
category is compared with a reference category.

. contrast r.agegrp
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

agegrp
(20--29 vs 10--19) 1 4.73 0.0330
(30--39 vs 10--19) 1 32.62 0.0000
(40--59 vs 10--19) 1 63.91 0.0000
(60--79 vs 10--19) 1 105.62 0.0000

Joint 4 35.02 0.0000

Denominator 70

Contrast Std. err. [95% conf. interval]

agegrp
(20--29 vs 10--19) 8.203575 3.771628 .6812991 15.72585
(30--39 vs 10--19) 21.54105 3.771628 14.01878 29.06333
(40--59 vs 10--19) 30.15067 3.771628 22.6284 37.67295
(60--79 vs 10--19) 38.76221 3.771628 31.23993 46.28448

In the first table, the row labeled (20–29 vs 10–19) is a test of 𝜇2 = 𝜇1, a test that the mean cholesterol

levels for the 10–19 age group and the 20–29 age group are equal. The tests in the next three rows are

defined similarly. The row labeled Joint provides the joint test for these four hypotheses, which is just
the test of the main effects of age group.

The second table provides the contrasts of each category with the reference category along with con-

fidence intervals. The contrast in the row labeled (20–29 vs 10–19) is the difference in the cell means
of the second age group and the first age group, ̂𝜇2 − ̂𝜇1.

The first level of a factor is the default reference level, but we can specify a different reference level

by using the b. operator; see [U] 11.4.3.2 Base levels. Here we use the last age group, (60–79), instead
of the first as the reference category. We also include the nowald option so that only the table of contrasts
and their confidence intervals is produced.

. contrast rb5.agegrp, nowald
Contrasts of marginal linear predictions
Margins: asbalanced

Contrast Std. err. [95% conf. interval]

agegrp
(10--19 vs 60--79) -38.76221 3.771628 -46.28448 -31.23993
(20--29 vs 60--79) -30.55863 3.771628 -38.08091 -23.03636
(30--39 vs 60--79) -17.22115 3.771628 -24.74343 -9.698877
(40--59 vs 60--79) -8.611533 3.771628 -16.13381 -1.089257

Now, the first row is labeled (10–19 vs 60–79) and is the difference in the cell means of the first and
fifth age groups.
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Differences from the next level (a.)

The a. operator specifies that each level of the attached factor variable be compared with the next
level. These are referred to as adjacent contrasts (or effects), and a. is the adjacent operator. This operator
is meaningful only with factor variables that have a natural ordering in the levels.

We can use the a. operator to perform tests that each level of age group differs from the next adjacent

level.

. contrast a.agegrp
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

agegrp
(10--19 vs 20--29) 1 4.73 0.0330
(20--29 vs 30--39) 1 12.51 0.0007
(30--39 vs 40--59) 1 5.21 0.0255
(40--59 vs 60--79) 1 5.21 0.0255

Joint 4 35.02 0.0000

Denominator 70

Contrast Std. err. [95% conf. interval]

agegrp
(10--19 vs 20--29) -8.203575 3.771628 -15.72585 -.6812991
(20--29 vs 30--39) -13.33748 3.771628 -20.85976 -5.815204
(30--39 vs 40--59) -8.60962 3.771628 -16.1319 -1.087345
(40--59 vs 60--79) -8.611533 3.771628 -16.13381 -1.089257

In the first table, the row labeled (10–19 vs 20–29) tests the effect of belonging to the 10–19 age group
instead of the 20–29 age group. Likewise, the rows labeled (20–29 vs 30–39), (30–39 vs 40–59),
and (40–59 vs 60–79) are tests for the effects of being in the younger of the two age groups instead of
the older one.

In the second table, the contrast in the row labeled (10–19 vs 20–29) is the difference in the cell
means of the first and second age groups, ̂𝜇1 − ̂𝜇2. The contrasts in the other rows are defined similarly.



contrast — Contrasts and linear hypothesis tests after estimation 363

Differences from the previous level (ar.)

The ar. operator specifies that each level of the attached factor variable be comparedwith the previous
level. These are referred to as reverse adjacent contrasts (or effects), and ar. is the reverse adjacent

operator. As with the a. operator, this operator is meaningful only with factor variables that have a

natural ordering in the levels.

In the following, we use the ar. operator to report tests for the individual reverse adjacent effects of
agegrp.

. contrast ar.agegrp
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

agegrp
(20--29 vs 10--19) 1 4.73 0.0330
(30--39 vs 20--29) 1 12.51 0.0007
(40--59 vs 30--39) 1 5.21 0.0255
(60--79 vs 40--59) 1 5.21 0.0255

Joint 4 35.02 0.0000

Denominator 70

Contrast Std. err. [95% conf. interval]

agegrp
(20--29 vs 10--19) 8.203575 3.771628 .6812991 15.72585
(30--39 vs 20--29) 13.33748 3.771628 5.815204 20.85976
(40--59 vs 30--39) 8.60962 3.771628 1.087345 16.1319
(60--79 vs 40--59) 8.611533 3.771628 1.089257 16.13381

Here the Wald tests in the first table for the individual reverse adjacent effects are equivalent to the tests

for the adjacent effects in the previous example. However, if we compare values of the contrasts in the

bottom tables, we see the difference between the r. and the ar. operators. This time, the contrast in the
first row is labeled (20–29 vs 10–19) and is the difference in the cell means of the second and first age
groups, ̂𝜇2 − ̂𝜇1. This is the estimated effect of belonging to the 20–29 age group instead of the 10–19

age group. The remaining rows make similar comparisons with the previous level.
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Differences from the grand mean (g.)

The g. operator specifies that each level of a factor variable be compared with the grand mean of all
levels. For this operator, the grand mean is computed using a simple average of the cell means.

Here are the grand mean effects of agegrp:
. contrast g.agegrp
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

agegrp
(10--19 vs mean) 1 68.42 0.0000
(20--29 vs mean) 1 23.36 0.0000
(30--39 vs mean) 1 0.58 0.4506
(40--59 vs mean) 1 19.08 0.0000
(60--79 vs mean) 1 63.65 0.0000

Joint 4 35.02 0.0000

Denominator 70

Contrast Std. err. [95% conf. interval]

agegrp
(10--19 vs mean) -19.7315 2.385387 -24.48901 -14.974
(20--29 vs mean) -11.52793 2.385387 -16.28543 -6.770423
(30--39 vs mean) 1.809552 2.385387 -2.947953 6.567057
(40--59 vs mean) 10.41917 2.385387 5.661668 15.17668
(60--79 vs mean) 19.0307 2.385387 14.2732 23.78821

There are five age groups in our estimation sample. Thus, the row labeled (10–19 vs mean) tests 𝜇1 =
(𝜇1 +𝜇2 +𝜇3 +𝜇4 +𝜇5)/5. The row labeled (20–29 vs mean) tests 𝜇2 = (𝜇1 +𝜇2 +𝜇3 +𝜇4 +𝜇5)/5.
The remaining rows perform similar tests for the third, fourth, and fifth age groups. In our example, the

means for all age groups except the 30–39 age group are statistically different from the grand mean.



contrast — Contrasts and linear hypothesis tests after estimation 365

Differences from the mean of subsequent levels (h.)

The h. operator specifies that each level of the attached factor variable be compared with the mean of
subsequent levels. These are referred to as Helmert contrasts (or effects), and h. is the Helmert operator.
For this operator, the mean is computed using a simple average of the cell means. This operator is

meaningful only with factor variables that have a natural ordering in the levels.

Here are the Helmert contrasts for agegrp:
. contrast h.agegrp
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

agegrp
(10--19 vs >10--19) 1 68.42 0.0000
(20--29 vs >20--29) 1 50.79 0.0000
(30--39 vs >30--39) 1 15.63 0.0002
(40--59 vs 60--79) 1 5.21 0.0255

Joint 4 35.02 0.0000

Denominator 70

Contrast Std. err. [95% conf. interval]

agegrp
(10--19 vs >10--19) -24.66438 2.981734 -30.61126 -18.7175
(20--29 vs >20--29) -21.94774 3.079522 -28.08965 -15.80583
(30--39 vs >30--39) -12.91539 3.266326 -19.42987 -6.400905
(40--59 vs 60--79) -8.611533 3.771628 -16.13381 -1.089257

The row labeled (10–19 vs >10–19) tests 𝜇1 = (𝜇2 + 𝜇3 + 𝜇4 + 𝜇5)/4, that is, that the cell mean for
the youngest age group is equal to the average of the cell means for the older age groups. The row labeled

(20–29 vs >20–29) tests 𝜇2 = (𝜇3 + 𝜇4 + 𝜇5)/3. The tests in the other rows are defined similarly.

Differences from the mean of previous levels (j.)

The j. operator specifies that each level of the attached factor variable be compared with the mean of
the previous levels. These are referred to as reverse Helmert contrasts (or effects), and j. is the reverse
Helmert operator. For this operator, the mean is computed using a simple average of the cell means. This

operator is meaningful only with factor variables that have a natural ordering in the levels.
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Here are the reverse Helmert contrasts of agegrp:

. contrast j.agegrp
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

agegrp
(20--29 vs 10--19) 1 4.73 0.0330
(30--39 vs <30--39) 1 28.51 0.0000
(40--59 vs <40--59) 1 43.18 0.0000
(60--79 vs <60--79) 1 63.65 0.0000

Joint 4 35.02 0.0000

Denominator 70

Contrast Std. err. [95% conf. interval]

agegrp
(20--29 vs 10--19) 8.203575 3.771628 .6812991 15.72585
(30--39 vs <30--39) 17.43927 3.266326 10.92479 23.95375
(40--59 vs <40--59) 20.2358 3.079522 14.09389 26.37771
(60--79 vs <60--79) 23.78838 2.981734 17.8415 29.73526

The row labeled (20–29 vs 10–19) tests 𝜇2 = 𝜇1, that is, that the cell means for the 20–29 and the

10–19 age groups are equal. The row labeled (30–39 vs <30–29) tests 𝜇3 = (𝜇1 + 𝜇2)/2, that is, that
the cell mean for the 30–39 age group is equal to the average of the cell means for the 10–19 and 20–29

age groups. The tests in the remaining rows are defined similarly.

Orthogonal polynomials (p. and q.)

The p. and q. operators specify that orthogonal polynomials be applied to the attached factor variable.
Orthogonal polynomial contrasts allow us to partition the effects of a factor variable into linear, quadratic,

cubic, and higher-order polynomial components. The p. operator applies orthogonal polynomials using
the values of the factor variable. The q. operator applies orthogonal polynomials using the level indices.
If the level values of the factor variable are equally spaced, as with our agegrp variable, then the p. and
q. operators yield the same result. These operators are meaningful only with factor variables that have
a natural ordering in the levels.
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Because agegrp has five levels, contrast can test the linear, quadratic, cubic, and quartic effects of
agegrp.

. contrast p.agegrp, noeffects
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

agegrp
(linear) 1 139.11 0.0000

(quadratic) 1 0.15 0.6962
(cubic) 1 0.37 0.5448

(quartic) 1 0.43 0.5153
Joint 4 35.02 0.0000

Denominator 70

The row labeled (linear) tests the linear effect of agegrp, the only effect that appears to be significant
in this case.

The labels for our agegrp variable show the age ranges that correspond to each level.

. label list ages
ages:

1 10--19
2 20--29
3 30--39
4 40--59
5 60--79

Notice that these groups do not have equal widths. Now, let’s refit our model using the agemidpt vari-
able. The values of agemidpt indicate the midpoint of each age group that was defined by the agegrp
variable and are, therefore, not equally spaced.

. anova chol agemidpt
Number of obs = 75 R-squared = 0.6668
Root MSE = 10.329 Adj R-squared = 0.6477

Source Partial SS df MS F Prob>F

Model 14943.4 4 3735.8499 35.02 0.0000

agemidpt 14943.4 4 3735.8499 35.02 0.0000

Residual 7468.2197 70 106.68885

Total 22411.619 74 302.85972
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Now if we use the q. operator, we will obtain the same results as above because the level indices of

agemidpt are equivalent to the values of agegrp.

. contrast q.agemidpt, noeffects
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

agemidpt
(linear) 1 139.11 0.0000

(quadratic) 1 0.15 0.6962
(cubic) 1 0.37 0.5448

(quartic) 1 0.43 0.5153
Joint 4 35.02 0.0000

Denominator 70

However, if we use the p. operator, we will instead fit an orthogonal polynomial to the midpoint values.

. contrast p.agemidpt, noeffects
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

agemidpt
(linear) 1 133.45 0.0000

(quadratic) 1 5.40 0.0230
(cubic) 1 0.05 0.8198

(quartic) 1 1.16 0.2850
Joint 4 35.02 0.0000

Denominator 70

Using the values of the midpoints, the quadratic effect is also significant at the 5% level.

Technical note
We used the noeffects option when working with orthogonal polynomial contrasts. Apart from

perhaps the sign of the contrast, the values of the individual contrasts are not meaningful for orthogonal

polynomial contrasts. In addition, many textbooks provide tables with contrast coefficients that can be

used to compute orthogonal polynomial contrasts where the levels of a factor are equally spaced. If

we use these coefficients and calculate the contrasts manually with user-defined contrasts, as described

below, theWald tests for the polynomial termswill be equivalent, but the values of the individual contrasts

will not necessarily match those that we obtain when using the polynomial contrast operator. When we

use one of these contrast operators, an algorithm is used to calculate the coefficients of the polynomial

contrast that will allow for unequal spacing in the levels of the factor as well as in the weights for the

cell frequencies (when using pw. or qw.), as described in Methods and formulas.
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User-defined contrasts
In the previous examples, we performed tests using contrast operators. When there is not a contrast

operator available to calculate the contrast in which we are interested, we can specify custom contrasts.

Here we fit a one-way model for cholesterol on the factor race, which has three levels:
. label list race
race:

1 Black
2 White
3 Other

. anova chol race
Number of obs = 75 R-squared = 0.0299
Root MSE = 17.3775 Adj R-squared = 0.0029

Source Partial SS df MS F Prob>F

Model 669.27823 2 334.63912 1.11 0.3357

race 669.27823 2 334.63912 1.11 0.3357

Residual 21742.341 72 301.97696

Total 22411.619 74 302.85972

margins calculates the estimated cell mean cholesterol level for each race:

. margins race
Adjusted predictions Number of obs = 75
Expression: Linear prediction, predict()

Delta-method
Margin std. err. t P>|t| [95% conf. interval]

race
Black 204.4279 3.475497 58.82 0.000 197.4996 211.3562
White 197.6132 3.475497 56.86 0.000 190.6849 204.5415
Other 198.7127 3.475497 57.18 0.000 191.7844 205.6409

Suppose we want to test the following linear combination:

3
∑
𝑖=1

𝑐𝑖𝜇𝑖

where 𝜇𝑖 is the cell mean of cholwhen race is equal to its 𝑖th level (the means estimated using margins
above). Assuming the 𝑐𝑖 elements sum to zero, this linear combination is a contrast. We can specify this

type of custom contrast by using the following syntax:

{race 𝑐1 𝑐2 𝑐3}



contrast — Contrasts and linear hypothesis tests after estimation 370

The null hypothesis for the test of the main effects of race is

𝐻0race
∶ 𝜇1 = 𝜇2 = 𝜇3

Although 𝐻0race
can be tested using any of several different contrasts on the cell means, we will test it

by comparing the second and third cell means with the first. To test that the cell means for blacks and

whites are equal, 𝜇1 = 𝜇2, we can specify the contrast

{race -1 1 0}

To test that the cell means for blacks and other races are equal, 𝜇1 = 𝜇3, we can specify the contrast

{race -1 0 1}

We can use both in a single call to contrast.

. contrast {race -1 1 0} {race -1 0 1}
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

race
(1) 1 1.92 0.1699
(2) 1 1.35 0.2488

Joint 2 1.11 0.3357

Denominator 72

Contrast Std. err. [95% conf. interval]

race
(1) -6.814717 4.915095 -16.61278 2.983345
(2) -5.715261 4.915095 -15.51332 4.082801

The row labeled (1) is the test for 𝜇1 = 𝜇2, the first specified contrast. The row labeled (2) is the test
for 𝜇1 = 𝜇3, the second specified contrast. The row labeled Joint is the overall test for the main effects
of race.

Now, let’s fit a model with two factors, race and age group:

. anova chol race##agegrp
Number of obs = 75 R-squared = 0.7524
Root MSE = 9.61785 Adj R-squared = 0.6946

Source Partial SS df MS F Prob>F

Model 16861.438 14 1204.3884 13.02 0.0000

race 669.27823 2 334.63912 3.62 0.0329
agegrp 14943.4 4 3735.8499 40.39 0.0000

race#agegrp 1248.7601 8 156.09501 1.69 0.1201

Residual 5550.1814 60 92.503024

Total 22411.619 74 302.85972



contrast — Contrasts and linear hypothesis tests after estimation 371

The null hypothesis for the test of the main effects of race is now

𝐻0race
∶ 𝜇1⋅ = 𝜇2⋅ = 𝜇3⋅

where 𝜇𝑖⋅ is the marginal mean of chol when race is equal to its 𝑖th level.
We can use the same syntax as above to perform this test by specifying contrasts on the marginal

means of race:

. contrast {race -1 1 0} {race -1 0 1}
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

race
(1) 1 6.28 0.0150
(2) 1 4.41 0.0399

Joint 2 3.62 0.0329

Denominator 60

Contrast Std. err. [95% conf. interval]

race
(1) -6.814717 2.720339 -12.2562 -1.37323
(2) -5.715261 2.720339 -11.15675 -.2737739

Custom contrasts may be specified on the cell means of interactions, too. Here we use margins to
calculate the mean of chol for each cell in the interaction of race and agegrp:

. margins race#agegrp
Adjusted predictions Number of obs = 75
Expression: Linear prediction, predict()

Delta-method
Margin std. err. t P>|t| [95% conf. interval]

race#agegrp
Black#10--19 179.2309 4.301233 41.67 0.000 170.6271 187.8346
Black#20--29 196.4777 4.301233 45.68 0.000 187.874 205.0814
Black#30--39 210.6694 4.301233 48.98 0.000 202.0656 219.2731
Black#40--59 214.097 4.301233 49.78 0.000 205.4933 222.7008
Black#60--79 221.6646 4.301233 51.54 0.000 213.0609 230.2684
White#10--19 186.0727 4.301233 43.26 0.000 177.469 194.6765
White#20--29 184.6714 4.301233 42.93 0.000 176.0676 193.2751
White#30--39 196.2633 4.301233 45.63 0.000 187.6595 204.867
White#40--59 209.9953 4.301233 48.82 0.000 201.3916 218.5991
White#60--79 211.0633 4.301233 49.07 0.000 202.4595 219.667
Other#10--19 176.2556 4.301233 40.98 0.000 167.6519 184.8594
Other#20--29 185.0209 4.301233 43.02 0.000 176.4172 193.6247
Other#30--39 199.2498 4.301233 46.32 0.000 190.646 207.8535
Other#40--59 207.9189 4.301233 48.34 0.000 199.3152 216.5227
Other#60--79 225.118 4.301233 52.34 0.000 216.5143 233.7218
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Now, we are interested in testing the following linear combination of these cell means:

3
∑
𝑖=1

5
∑
𝑗=1

𝑐𝑖𝑗𝜇𝑖𝑗

We can specify this type of custom contrast using the following syntax:

{race#agegrp 𝑐11 𝑐12 . . . 𝑐15 𝑐21 𝑐22 . . . 𝑐25 𝑐31 𝑐32 . . . 𝑐35}

Because the marginal means of chol for each level of race are linear combinations of the cell means,
we can compose the test for the main effects of race in terms of the cell means directly. The constraint
that the marginal means for blacks and whites are equal, 𝜇1⋅ = 𝜇2⋅, translates to the following constraint

on the cell means:

1
5

(𝜇11 + 𝜇12 + 𝜇13 + 𝜇14 + 𝜇15) = 1
5

(𝜇21 + 𝜇22 + 𝜇23 + 𝜇24 + 𝜇25)

Ignoring the common factor, we can specify this contrast as

{race#agegrp -1 -1 -1 -1 -1 1 1 1 1 1 0 0 0 0 0}

contrast will fill in the trailing zeros for us if we neglect to specify them, so

{race#agegrp -1 -1 -1 -1 -1 1 1 1 1 1}

is also allowed. The other constraint, 𝜇1⋅ = 𝜇3⋅, translates to

1
5

(𝜇11 + 𝜇12 + 𝜇13 + 𝜇14 + 𝜇15) = 1
5

(𝜇31 + 𝜇32 + 𝜇33 + 𝜇34 + 𝜇35)

This can be specified to contrast as

{race#agegrp -1 -1 -1 -1 -1 0 0 0 0 0 1 1 1 1 1}

The following call to contrast yields the same test results as above.

. contrast {race#agegrp -1 -1 -1 -1 -1 1 1 1 1 1}
> {race#agegrp -1 -1 -1 -1 -1 0 0 0 0 0 1 1 1 1 1}, noeffects
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

race#agegrp
(1) (1) 1 6.28 0.0150
(2) (2) 1 4.41 0.0399
Joint 2 3.62 0.0329

Denominator 60
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The row labeled (1) (1) is the test for

𝜇11 + 𝜇12 + 𝜇13 + 𝜇14 + 𝜇15 = 𝜇21 + 𝜇22 + 𝜇23 + 𝜇24 + 𝜇25

It was the first specified contrast. The row labeled (2) (2) is the test for

𝜇11 + 𝜇12 + 𝜇13 + 𝜇14 + 𝜇15 = 𝜇31 + 𝜇32 + 𝜇33 + 𝜇34 + 𝜇35

It was the second specified contrast. The row labeled Joint tests (1) (1) and (2) (2) simultaneously.

We used the noeffects option above to suppress the table of contrasts. We can omit the 1/5 from
the equations for 𝜇1⋅ = 𝜇2⋅ and 𝜇1⋅ = 𝜇3⋅ and still obtain the appropriate tests. However, if we want to

calculate the differences in the marginal means, we must include the 1/5 = 0.2 on each of the contrast

coefficients as follows:

. contrast {race#agegrp -0.2 -0.2 -0.2 -0.2 -0.2 ///
0.2 0.2 0.2 0.2 0.2} ///

{race#agegrp -0.2 -0.2 -0.2 -0.2 -0.2 ///
0 0 0 0 0 ///

0.2 0.2 0.2 0.2 0.2}

So far, we have reproduced the reference category contrasts by specifying user-defined contrasts on the

marginal means and then on the cell means. For this test, it would have been easier to use the r. contrast
operator:

. contrast r.race, noeffects
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

race
(White vs Black) 1 6.28 0.0150
(Other vs Black) 1 4.41 0.0399

Joint 2 3.62 0.0329

Denominator 60

In most cases, we can use contrast operators to perform tests. However, if we want to compare, for

instance, the second and third age groups with the fourth and fifth age groups with the test

1
2

(𝜇⋅2 + 𝜇⋅3) = 1
2

(𝜇⋅4 + 𝜇⋅5)

there is not a contrast operator that corresponds to this particular contrast. A custom contrast is necessary.
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. contrast {agegrp 0 -0.5 -0.5 0.5 0.5}
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

agegrp 1 62.19 0.0000

Denominator 60

Contrast Std. err. [95% conf. interval]

agegrp
(1) 19.58413 2.483318 14.61675 24.5515

Empty cells
An empty cell is a combination of the levels of factor variables that is not observed in the estimation

sample. In the previous examples, we have seen data with three levels of race, five levels of agegrp,
and all level combinations of race and agegrp present. Suppose there are no observations for white

individuals in the second age group (ages 20–29).

. use https://www.stata-press.com/data/r18/cholesterol2
(Artificial cholesterol data, empty cells)
. label list
race:

1 Black
2 White
3 Other

ages:
1 10--19
2 20--29
3 30--39
4 40--59
5 60--79
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. regress chol race##agegrp
note: 2.race#2.agegrp identifies no observations in the sample.

Source SS df MS Number of obs = 70
F(13, 56) = 13.51

Model 15751.6113 13 1211.66241 Prob > F = 0.0000
Residual 5022.71559 56 89.6913498 R-squared = 0.7582

Adj R-squared = 0.7021
Total 20774.3269 69 301.077201 Root MSE = 9.4706

chol Coefficient Std. err. t P>|t| [95% conf. interval]

race
White 12.84185 5.989703 2.14 0.036 .8430383 24.84067
Other -.167627 5.989703 -0.03 0.978 -12.16644 11.83119

agegrp
20--29 17.24681 5.989703 2.88 0.006 5.247991 29.24562
30--39 31.43847 5.989703 5.25 0.000 19.43966 43.43729
40--59 34.86613 5.989703 5.82 0.000 22.86732 46.86495
60--79 44.43374 5.989703 7.42 0.000 32.43492 56.43256

race#agegrp
White#20--29 0 (empty)
White#30--39 -22.83983 8.470719 -2.70 0.009 -39.80872 -5.870939
White#40--59 -14.67558 8.470719 -1.73 0.089 -31.64447 2.293306
White#60--79 -10.51115 8.470719 -1.24 0.220 -27.48004 6.457735
Other#20--29 -6.054425 8.470719 -0.71 0.478 -23.02331 10.91446
Other#30--39 -11.48083 8.470719 -1.36 0.181 -28.44971 5.488063
Other#40--59 -.6796112 8.470719 -0.08 0.936 -17.6485 16.28928
Other#60--79 -1.578052 8.470719 -0.19 0.853 -18.54694 15.39084

_cons 175.2309 4.235359 41.37 0.000 166.7464 183.7153

Now, let’s use contrast to test the main effects of race:

. contrast race
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

race (not testable)

Denominator 56

By “not testable”, contrast means that it cannot form a test for the main effects of race based on es-
timable functions of the model coefficients. agegrp has five levels, so contrast constructs an estimate
of the 𝑖th margin for race as

̂𝜇𝑖⋅ = 1
5

5
∑
𝑗=1

̂𝜇𝑖𝑗 = ̂𝜇0 + ̂𝛼𝑖 + 1
5

5
∑
𝑗=1

{ ̂𝛽𝑗 + (𝛼𝛽)𝑖𝑗}

but (𝛼𝛽)22 was constrained to zero because of the empty cell, so ̂𝜇2⋅ is not an estimable function of the

model coefficients.
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See Estimable functions in Methods and formulas of [R] margins for a technical description of es-

timable functions. The emptycells(reweight) option causes contrast to estimate 𝜇2⋅ by

̂𝜇2⋅ = ̂𝜇21 + ̂𝜇23 + ̂𝜇24 + ̂𝜇25
4

which is an estimable function of the model coefficients.

. contrast race, emptycells(reweight)
Contrasts of marginal linear predictions
Margins: asbalanced
Empty cells: reweight

df F P>F

race 2 3.17 0.0498

Denominator 56

We can reconstruct the effect of the emptycells(reweight) option by using custom contrasts.

. contrast {race#agegrp -4 -4 -4 -4 -4 5 0 5 5 5}
> {race#agegrp -1 -1 -1 -1 -1 0 0 0 0 0 1 1 1 1 1}, noeffects
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

race#agegrp
(1) (1) 1 1.06 0.3080
(2) (2) 1 2.37 0.1291
Joint 2 3.17 0.0498

Denominator 56

The row labeled (1) (1) is the test for

1
5

(𝜇11 + 𝜇12 + 𝜇13 + 𝜇14 + 𝜇15) = 1
4

(𝜇21 + 𝜇23 + 𝜇24 + 𝜇25)

It was the first specified contrast. The row labeled (2) (2) is the test for

𝜇11 + 𝜇12 + 𝜇13 + 𝜇14 + 𝜇15 = 𝜇31 + 𝜇32 + 𝜇33 + 𝜇34 + 𝜇35

It was the second specified contrast. The row labeled Joint is the overall test of the main effects of

race.
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Empty cells, ANOVA style
Let’s refit the linear model from the previous example with anova to compare with contrast’s test

for the main effects of race.
. anova chol race##agegrp

Number of obs = 70 R-squared = 0.7582
Root MSE = 9.47055 Adj R-squared = 0.7021

Source Partial SS df MS F Prob>F

Model 15751.611 13 1211.6624 13.51 0.0000

race 305.49046 2 152.74523 1.70 0.1914
agegrp 14387.856 4 3596.964 40.10 0.0000

race#agegrp 795.80757 7 113.6868 1.27 0.2831

Residual 5022.7156 56 89.69135

Total 20774.327 69 301.0772

contrast and anova handled the empty cell differently; the 𝐹 statistic reported by contrast was
3.17, but anova reported 1.70. To see how they differ, consider the following table of the cell means and

margins for our situation.

agegrp
1 2 3 4 5

1 𝜇11 𝜇12 𝜇13 𝜇14 𝜇15 𝜇1⋅
race 2 𝜇21 𝜇23 𝜇24 𝜇25

3 𝜇31 𝜇32 𝜇33 𝜇34 𝜇35 𝜇3⋅
𝜇⋅1 𝜇⋅3 𝜇⋅4 𝜇⋅5

For testing the main effects of race, we know that we will be testing the equality of the marginal means

for rows 1 and 3, that is, 𝜇1⋅ = 𝜇3⋅. This translates into the following constraint:

𝜇11 + 𝜇12 + 𝜇13 + 𝜇14 + 𝜇15 = 𝜇31 + 𝜇32 + 𝜇33 + 𝜇34 + 𝜇35

Because row 2 contains an empty cell in column 2, anova dropped column 2 and tested the equality of
the marginal mean for row 2 with the average of the marginal means from rows 1 and 3, using only the

remaining cell means. This translates into the following constraint:

2(𝜇21 + 𝜇23 + 𝜇24 + 𝜇25) = 𝜇11 + 𝜇13 + 𝜇14 + 𝜇15 + 𝜇31 + 𝜇33 + 𝜇34 + 𝜇35 (1)
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Now that we know the constraints that anova used to test for the main effects of race, we can use custom
contrasts to reproduce the anova test result.

. contrast {race#agegrp -1 -1 -1 -1 -1 0 0 0 0 0 1 1 1 1 1}
> {race#agegrp 1 0 1 1 1 -2 0 -2 -2 -2 1 0 1 1 1}, noeffects
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

race#agegrp
(1) (1) 1 2.37 0.1291
(2) (2) 1 1.03 0.3138
Joint 2 1.70 0.1914

Denominator 56

The row labeled (1) (1) is the test for 𝜇1⋅ = 𝜇3⋅; it was the first specified contrast. The row labeled

(2) (2) is the test for the constraint in (1); it was the second specified contrast. The row labeled Joint
is an overall test for the main effects of race.

Nested effects
contrast has the | operator for computing simple effects when the levels of one factor are nested

within the levels of another. Here is a fictional example where we are interested in the effect of five

methods of teaching algebra on students’ scores for the math portion of the SAT. Suppose three algebra

classes are randomly sampled from classes using each of the five methods so that class is nested in

method as demonstrated in the following tabulation.
. use https://www.stata-press.com/data/r18/sat
(Fictional SAT data)
. tabulate class method

Five methods of teaching algebra
Class ID 1 2 3 4 5 Total

1 5 0 0 0 0 5
2 5 0 0 0 0 5
3 5 0 0 0 0 5
4 0 5 0 0 0 5
5 0 5 0 0 0 5
6 0 5 0 0 0 5
7 0 0 5 0 0 5
8 0 0 5 0 0 5
9 0 0 5 0 0 5

10 0 0 0 5 0 5
11 0 0 0 5 0 5
12 0 0 0 5 0 5
13 0 0 0 0 5 5
14 0 0 0 0 5 5
15 0 0 0 0 5 5

Total 15 15 15 15 15 75
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We will consider method as fixed and class nested in method as random. To use class nested in
method as the error term for method, we can specify the following anova model:

. anova score method / class|method /
Number of obs = 75 R-squared = 0.7599
Root MSE = 71.8517 Adj R-squared = 0.7039

Source Partial SS df MS F Prob>F

Model 980312 14 70022.286 13.56 0.0000

method 905872 4 226468 30.42 0.0000
class|method 74440 10 7444

class|method 74440 10 7444 1.44 0.1845

Residual 309760 60 5162.6667

Total 1290072 74 17433.405

Like anova, contrast allows the | operator, which specifies that one variable is nested in the levels
of another. We can use contrast to test the main effects of method and the simple effects of class
within method.

. contrast method class|method
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

method (not testable)

class|method
1 2 2.80 0.0687
2 2 0.91 0.4089
3 2 1.10 0.3390
4 2 0.22 0.8025
5 2 2.18 0.1221

Joint 10 1.44 0.1845

Denominator 60
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Although contrast was able to perform the individual tests for the simple effects of class within

method, empty cells in the interaction between method and class prevented contrast from testing for

a main effect of method. Here we add the emptycells(reweight) option so that contrast can take
the empty cells into account when computing the marginal means for method.

. contrast method class|method, emptycells(reweight)
Contrasts of marginal linear predictions
Margins: asbalanced
Empty cells: reweight

df F P>F

method 4 43.87 0.0000

class|method
1 2 2.80 0.0687
2 2 0.91 0.4089
3 2 1.10 0.3390
4 2 0.22 0.8025
5 2 2.18 0.1221

Joint 10 1.44 0.1845

Denominator 60

Now, contrast does report a test for the main effects of method. However, if we compare this with the
anova results, we will see that the results are different. They are different because contrast uses the
residual error term to compute the 𝐹 test by default. Using notation similar to anova, we can use the /
operator to specify a different error term for the test. Therefore, we can reproduce the test of main effects

from our anova command by typing

. contrast method / class|method /, emptycells(reweight)
Contrasts of marginal linear predictions
Margins: asbalanced
Empty cells: reweight

df F P>F

method 4 30.42 0.0000

class|method 10 (denominator)

class|method
1 2 2.80 0.0687
2 2 0.91 0.4089
3 2 1.10 0.3390
4 2 0.22 0.8025
5 2 2.18 0.1221

Joint 10 1.44 0.1845

Denominator 60
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Multiple comparisons
We have seen that contrast can report the individual linear combinations that make up the requested

effects. Depending upon the specified option, contrast will report confidence intervals, 𝑝-values, or
both in the effects table. By default, the reported confidence intervals and 𝑝-values are not adjusted for
multiple comparisons. Use the mcompare() option to adjust the confidence intervals and 𝑝-values for
multiple comparisons of the individual effects.

Let’s compute the grand mean effects of race using the g. operator. We also specify the

mcompare(bonferroni) option to compute 𝑝-values and confidence intervals using Bonferroni’s ad-
justment.

. use https://www.stata-press.com/data/r18/cholesterol
(Artificial cholesterol data)
. anova chol race##agegrp
(output omitted )

. contrast g.race, mcompare(bonferroni)
Contrasts of marginal linear predictions
Margins: asbalanced

Bonferroni
df F P>F P>F

race
(Black vs mean) 1 7.07 0.0100 0.0301
(White vs mean) 1 2.82 0.0982 0.2947
(Other vs mean) 1 0.96 0.3312 0.9936

Joint 2 3.62 0.0329

Denominator 60

Note: Bonferroni-adjusted p-values are reported for tests on
individual contrasts only.

Number of
comparisons

race 3

Bonferroni
Contrast Std. err. [95% conf. interval]

race
(Black vs mean) 4.17666 1.570588 .3083743 8.044945
(White vs mean) -2.638058 1.570588 -6.506343 1.230227
(Other vs mean) -1.538602 1.570588 -5.406887 2.329684

The last table reports a Bonferroni-adjusted confidence interval for each individual contrast. (Use the

effects option to add 𝑝-values to the last table.) The first table includes a Bonferroni-adjusted 𝑝-value
for each test that is not a joint test.
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Joint tests are never adjusted for multiple comparisons. For example,

. contrast race@agegrp, mcompare(bonferroni)
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

race@agegrp
10--19 2 1.37 0.2620
20--29 2 2.44 0.0958
30--39 2 3.12 0.0512
40--59 2 0.53 0.5889
60--79 2 2.90 0.0628
Joint 10 2.07 0.0409

Denominator 60

Note: Bonferroni-adjusted p-values are reported
for tests on individual contrasts only.

Number of
comparisons

race@agegrp 10

Bonferroni
Contrast Std. err. [95% conf. interval]

race@agegrp
(White vs base) 10--19 6.841855 6.082862 -10.88697 24.57068
(White vs base) 20--29 -11.80631 6.082862 -29.53513 5.922513
(White vs base) 30--39 -14.40607 6.082862 -32.13489 3.322751
(White vs base) 40--59 -4.101691 6.082862 -21.83051 13.62713
(White vs base) 60--79 -10.60137 6.082862 -28.33019 7.127448
(Other vs base) 10--19 -2.975244 6.082862 -20.70407 14.75358
(Other vs base) 20--29 -11.45679 6.082862 -29.18561 6.272031
(Other vs base) 30--39 -11.41958 6.082862 -29.1484 6.309244
(Other vs base) 40--59 -6.17807 6.082862 -23.90689 11.55075
(Other vs base) 60--79 3.453375 6.082862 -14.27545 21.1822

Here we have five tests of simple effects with two degrees of freedom each. No Bonferroni-adjusted

𝑝-values are available for these tests, but the confidence intervals for the individual contrasts are adjusted.
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Unbalanced data
By default, contrast treats all factors as balanced when computing marginal means. By balanced,

we mean that contrast assumes an equal number of observations in each level of each factor and an
equal number of observations in each cell of each interaction. If our data are balanced, there is no issue.

If, however, our data are not balanced, we might prefer that contrast use the actual cell frequencies
from our data in computing marginal means. We instruct contrast to use observed frequencies by

adding the asobserved option.

Even if our data are unbalanced, we might still want contrast to compute balanced marginal means.
It depends on what we want to test and what our data represent. If we have data from a designed exper-

iment that started with an equal number of males and females but the data became unbalanced because

the data from a few males were unusable, we might still want our margins computed as though the data

were balanced. If, however, we have a representative sample of individuals from LosAngeles with 40%

of European descent, 34%African-American, 25% Hispanic, and 1%Australian, we probably want our

margins computed using these representative frequencies. We do not wantAustralians receiving the same

weight as Europeans.

The following examples will use an unbalanced version of our dataset.

. use https://www.stata-press.com/data/r18/cholesterol3
(Artificial cholesterol data, unbalanced)
. tab race agegrp

Age group
Race 10--19 20--29 30--39 40--59 60--79 Total

Black 1 5 5 4 3 18
White 4 5 7 4 4 24
Other 3 7 6 5 4 25

Total 8 17 18 13 11 67

The row labeled Total gives observed cell frequencies for age group. These can be obtained by sum-
ming frequencies from the cells in the corresponding column. In this respect, we can also refer to them

as marginal frequencies. We use the terms marginal frequencies and cell frequencies interchangeably

below.

We begin by fitting the two-factor model with an interaction.

. anova chol race##agegrp
Number of obs = 67 R-squared = 0.8179
Root MSE = 8.37496 Adj R-squared = 0.7689

Source Partial SS df MS F Prob>F

Model 16379.993 14 1169.9995 16.68 0.0000

race 230.7544 2 115.3772 1.64 0.2029
agegrp 13857.988 4 3464.4969 49.39 0.0000

race#agegrp 857.81521 8 107.2269 1.53 0.1701

Residual 3647.2774 52 70.13995

Total 20027.27 66 303.44349
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Using observed cell frequencies

Recall that the marginal means are computed from the cell means. Treating the factors as balanced

yields the following marginal means for race:

𝜂1⋅ = 1
5

(𝜇11 + 𝜇12 + 𝜇13 + 𝜇14 + 𝜇15)

𝜂2⋅ = 1
5

(𝜇21 + 𝜇22 + 𝜇23 + 𝜇24 + 𝜇25)

𝜂3⋅ = 1
5

(𝜇31 + 𝜇32 + 𝜇33 + 𝜇34 + 𝜇35)

If we have a fixed population and unbalanced cells, then the 𝜂𝑖⋅ do not represent population means. If,

however, our data are representative of the population, we can use the frequencies from our estimation

sample to estimate the population marginal means, denoted 𝜇𝑖⋅.

Here are the results of testing for a main effect of race, treating all the factors as balanced.
. contrast r.race
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

race
(White vs Black) 1 3.28 0.0757
(Other vs Black) 1 1.50 0.2263

Joint 2 1.64 0.2029

Denominator 52

Contrast Std. err. [95% conf. interval]

race
(White vs Black) -5.324254 2.93778 -11.21934 .5708338
(Other vs Black) -3.596867 2.93778 -9.491955 2.298221

The row labeled (White vs Black) is the test for 𝜂2⋅ = 𝜂1⋅. The row labeled (Other vs Black) is the
test for 𝜂3⋅ = 𝜂1⋅.
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If the observed marginal frequencies are representative of the distribution of the levels of agegrp, we
can use them to form the marginal means of chol for each of the levels of race from the cell means.

𝜇1⋅ = 1
67

(8𝜇11 + 17𝜇12 + 18𝜇13 + 13𝜇14 + 11𝜇15)

𝜇2⋅ = 1
67

(8𝜇21 + 17𝜇22 + 18𝜇23 + 13𝜇24 + 11𝜇25)

𝜇3⋅ = 1
67

(8𝜇31 + 17𝜇32 + 18𝜇33 + 13𝜇34 + 11𝜇35)

Here are the results of testing for the main effects of race, using the observed marginal frequencies:

. contrast r.race, asobserved
Contrasts of marginal linear predictions
Margins: asobserved

df F P>F

race
(White vs Black) 1 7.25 0.0095
(Other vs Black) 1 3.89 0.0538

Joint 2 3.74 0.0304

Denominator 52

Contrast Std. err. [95% conf. interval]

race
(White vs Black) -7.232433 2.686089 -12.62246 -1.842402
(Other vs Black) -5.231198 2.651203 -10.55123 .0888295

The row labeled (White vs Black) is the test for 𝜇2⋅ = 𝜇1⋅. The row labeled (Other vs Black)
is the test for 𝜇3⋅ = 𝜇1⋅. Both tests were insignificant when we tested the cell means resulting from

balanced frequencies; however, when we tested the cell means from observed frequencies, the first test

is significant beyond the 5% level (and the second test is nearly so).
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Here we reproduce the results of the asobserved option with custom contrasts. Because we are

modifying the way that the marginal means are constructed from the cell means, we will specify the

contrasts on the predicted cell means. We use macro expansion, =exp, to evaluate the fractions instead
of approximating them with decimals. Macro expansion guarantees that the contrast coefficients sum to

zero. For more information, see Macro expansion operators and function in [P] macro.

. contrast {race#agegrp -‘=8/67’ -‘=17/67’ -‘=18/67’ -‘=13/67’ -‘=11/67’
> ‘=8/67’ ‘=17/67’ ‘=18/67’ ‘=13/67’ ‘=11/67’}
> {race#agegrp -‘=8/67’ -‘=17/67’ -‘=18/67’ -‘=13/67’ -‘=11/67’
> 0 0 0 0 0
> ‘=8/67’ ‘=17/67’ ‘=18/67’ ‘=13/67’ ‘=11/67’}
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

race#agegrp
(1) (1) 1 7.25 0.0095
(2) (2) 1 3.89 0.0538
Joint 2 3.74 0.0304

Denominator 52

Contrast Std. err. [95% conf. interval]

race#agegrp
(1) (1) -7.232433 2.686089 -12.62246 -1.842402
(2) (2) -5.231198 2.651203 -10.55123 .0888295

Weighted contrast operators

contrast provides observation-weighted versions of five of the contrast operators—gw., hw., jw.,
pw., and qw.. The first three of these operators perform comparisons of means across cells, and like

the marginal means just discussed, these means can be computed in two ways: 1) as though the cell fre-

quencies were equal or 2) using the observed cell frequencies from the estimation sample. The weighted

operators provide versions of the standard (as balanced) operators that weight these means by their cell

frequencies. The two orthogonal polynomial operators involve similar adjustments for weighting.

Let’s examine what this means by using the gw. operator. The gw. operator is a weighted version of
the g. operator. The gw. operator computes the grand mean using the cell frequencies for race obtained
from the model fit.

Here we test the effects of race, comparing each level with the weighted grand mean but otherwise
treating the factors as balanced in the marginal mean calculations.



contrast — Contrasts and linear hypothesis tests after estimation 387

. contrast gw.race
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

race
(Black vs mean) 1 2.78 0.1014
(White vs mean) 1 2.06 0.1573
(Other vs mean) 1 0.06 0.8068

Joint 2 1.64 0.2029

Denominator 52

Contrast Std. err. [95% conf. interval]

race
(Black vs mean) 3.24931 1.948468 -.6605779 7.159198
(White vs mean) -2.074944 1.44618 -4.976915 .8270276
(Other vs mean) -.347557 1.414182 -3.18532 2.490206

The observed marginal frequencies of race are 18, 24, and 25. Thus, the row labeled (Black vs Mean)
tests 𝜂1⋅ = (18𝜂1⋅ + 24𝜂2⋅ + 25𝜂3⋅)/67; the row labeled (White vs Mean) tests 𝜂2⋅ = (18𝜂1⋅ + 24𝜂2⋅ +
25𝜂3⋅)/67; and the row labeled (Other vs Mean) tests 𝜂3⋅ = (18𝜂1⋅ + 24𝜂2⋅ + 25𝜂3⋅)/67.

Now, we reproduce the above results using custom contrasts. We are weighting the calculation of the

grand mean from the marginal means for each of the races, but we are not weighting the calculation of

the marginal means themselves. Therefore, we can specify the custom contrast on the marginal means

for race instead of on the cell means.

. contrast {race ‘=49/67’ -‘=24/67’ -‘=25/67’}
> {race -‘=18/67’ ‘=43/67’ -‘=25/67’}
> {race -‘=18/67’ -‘=24/67’ ‘=42/67’}
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

race
(1) 1 2.78 0.1014
(2) 1 2.06 0.1573
(3) 1 0.06 0.8068

Joint 2 1.64 0.2029

Denominator 52

Contrast Std. err. [95% conf. interval]

race
(1) 3.24931 1.948468 -.6605779 7.159198
(2) -2.074944 1.44618 -4.976915 .8270276
(3) -.347557 1.414182 -3.18532 2.490206
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Now, we will test for each race the difference between the marginal mean and the weighted grand
mean, treating the factors as observed in the marginal mean calculations.

. contrast gw.race, asobserved wald ci
Contrasts of marginal linear predictions
Margins: asobserved

df F P>F

race
(Black vs mean) 1 6.81 0.0118
(White vs mean) 1 3.74 0.0587
(Other vs mean) 1 0.26 0.6099

Joint 2 3.74 0.0304

Denominator 52

Contrast Std. err. [95% conf. interval]

race
(Black vs mean) 4.542662 1.740331 1.050432 8.034891
(White vs mean) -2.689771 1.39142 -5.481859 .1023172
(Other vs mean) -.6885363 1.341261 -3.379973 2.002901

The row labeled (Black vs Mean) tests 𝜇1⋅ = (18𝜇1⋅ + 24𝜇2⋅ + 25𝜇3⋅)/67; the row labeled (White
vs Mean) tests 𝜇2⋅ = (18𝜇1⋅ + 24𝜇2⋅ + 25𝜇3⋅)/67; and the row labeled (Other vs Mean) tests 𝜇3⋅ =
(18𝜇1⋅ + 24𝜇2⋅ + 25𝜇3⋅)/67.

Here we use a custom contrast to reproduce the above result testing 𝜇1⋅ = (18𝜇1⋅+24𝜇2⋅+25𝜇3⋅)/67.
Because both the calculation of the marginal means and the calculation of the grand mean are adjusted,

we specify the custom contrast on the cell means.

. contrast {race#agegrp ‘=49/67*8/67’ ‘=49/67*17/67’ ‘=49/67*18/67’
> ‘=49/67*13/67’ ‘=49/67*11/67’
> -‘=24/67*8/67’ -‘=24/67*17/67’ -‘=24/67*18/67’
> -‘=24/67*13/67’ -‘=24/67*11/67’
> -‘=25/67*8/67’ -‘=25/67*17/67’ -‘=25/67*18/67’
> -‘=25/67*13/67’ -‘=25/67*11/67’}, nowald
Contrasts of marginal linear predictions
Margins: asbalanced

Contrast Std. err. [95% conf. interval]

race#agegrp
(1) (1) 4.542662 1.740331 1.050432 8.034891

The Helmert and reverse Helmert contrasts also involve calculating averages of the marginal means;

therefore, weighted versions of these parameters are available as well. The hw. operator is a weighted
version of the h. operator that computes the mean of the subsequent levels using the cell frequencies

obtained from the model fit. The jw. operator is a weighted version of the j. operator that computes the
mean of the previous levels using the cell frequencies obtained from the model fit.

For orthogonal polynomials, we can use the pw. and qw. operators, which are the weighted versions
of the p. and q. operators. In this case, the cell frequencies from the model fit are used in the calculation

of the orthogonal polynomial contrast coefficients.
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Testing factor effects on slopes
For linear models where the independent variables are all factor variables, the linear prediction at

fixed levels of the factor variables turns out to be a cell mean. With these models, contrast computes
and tests the effects of the factor variables on the expected mean of the dependent variable. When factor

variables are interacted with continuous variables, contrast distinguishes factor effects on the intercept
from factor effects on the slope.

Here we have 1980 census data including information on the birthrate (brate), the median age

(medage), and the region of the country (region) for each of the 50 states. We can fit an ANCOVA

model for brate using main effects of the factor variable region and the continuous variable medage.
. use https://www.stata-press.com/data/r18/census3
(1980 Census data by state)
. label list cenreg
cenreg:

1 NE
2 NCentral
3 South
4 West

. anova brate i.region c.medage
Number of obs = 50 R-squared = 0.8264
Root MSE = 12.7575 Adj R-squared = 0.8110

Source Partial SS df MS F Prob>F

Model 34872.859 4 8718.2147 53.57 0.0000

region 2197.7545 3 732.58484 4.50 0.0076
medage 15327.423 1 15327.423 94.18 0.0000

Residual 7323.9611 45 162.75469

Total 42196.82 49 861.15959

For those more comfortable with linear regression, this is equivalent to the regression model

. regress brate i.region c.medage

You may use either.
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We can use contrast to compute reference category effects for region. These contrasts compare
the adjusted means of NCentral, South, and West regions with the adjusted mean of the NE region.

. contrast r.region
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

region
(NCentral vs NE) 1 2.24 0.1417

(South vs NE) 1 0.78 0.3805
(West vs NE) 1 10.33 0.0024

Joint 3 4.50 0.0076

Denominator 45

Contrast Std. err. [95% conf. interval]

region
(NCentral vs NE) 9.061063 6.057484 -3.139337 21.26146

(South vs NE) 5.06991 5.72396 -6.458738 16.59856
(West vs NE) 21.71328 6.755616 8.106774 35.31979

Let’s add the interaction between region and medage to the model.

. anova brate region##c.medage
Number of obs = 50 R-squared = 0.9000
Root MSE = 10.0244 Adj R-squared = 0.8833

Source Partial SS df MS F Prob>F

Model 37976.315 7 5425.1878 53.99 0.0000

region 3405.0704 3 1135.0235 11.30 0.0000
medage 5279.7145 1 5279.7145 52.54 0.0000

region#medage 3103.456 3 1034.4853 10.29 0.0000

Residual 4220.5051 42 100.48822

Total 42196.82 49 861.15959

The parameterization for the expected value of brate as a function of region and medage is given by

𝐸(brate|region = 𝑖, medage) = 𝛼0 + 𝛼𝑖 + 𝛽0medage + 𝛽𝑖medage

where 𝛼0 is the intercept and 𝛽0 is the slope of medage. We are modeling the effects of region in two
different ways. The 𝛼𝑖 parameters measure the effect of region on the intercept, and the 𝛽𝑖 parameters

measure the effect of region on the slope of medage.
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contrast computes and tests effects on slopes separately from effects on intercepts. First, we will

compute the reference category effects of region on the intercept:

. contrast r.region
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

region
(NCentral vs NE) 1 0.09 0.7691

(South vs NE) 1 0.01 0.9389
(West vs NE) 1 8.50 0.0057

Joint 3 11.30 0.0000

Denominator 42

Contrast Std. err. [95% conf. interval]

region
(NCentral vs NE) -49.38396 167.1281 -386.6622 287.8942

(South vs NE) -9.058983 117.424 -246.0302 227.9123
(West vs NE) 343.0024 117.6547 105.5656 580.4393

Now, we will compute the reference category effects of region on the slope of medage:

. contrast r.region#c.medage
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

region#c.medage
(NCentral vs NE) 1 0.16 0.6917

(South vs NE) 1 0.03 0.8558
(West vs NE) 1 8.18 0.0066

Joint 3 10.29 0.0000

Denominator 42

Contrast Std. err. [95% conf. interval]

region#c.medage
(NCentral vs NE) 2.208539 5.530981 -8.953432 13.37051

(South vs NE) .6928008 3.788735 -6.953175 8.338777
(West vs NE) -10.94649 3.827357 -18.67041 -3.22257

At the 5% level, the slope of medage for the West region differs from that of the NE region, but at that
level of significance, we cannot say that the slope for the NCentral or the South region differs from
that of the NE region.
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This model is simple enough that the reference category contrasts reproduce the coefficients for

region and for the interactions in an equivalent model fit by regress.

. regress brate region##c.medage
Source SS df MS Number of obs = 50

F(7, 42) = 53.99
Model 37976.3149 7 5425.18784 Prob > F = 0.0000

Residual 4220.5051 42 100.488217 R-squared = 0.9000
Adj R-squared = 0.8833

Total 42196.82 49 861.159592 Root MSE = 10.024

brate Coefficient Std. err. t P>|t| [95% conf. interval]

region
NCentral -49.38396 167.1281 -0.30 0.769 -386.6622 287.8942

South -9.058983 117.424 -0.08 0.939 -246.0302 227.9123
West 343.0024 117.6547 2.92 0.006 105.5656 580.4393

medage -8.802707 3.462865 -2.54 0.015 -15.79105 -1.814362

region#
c.medage

NCentral 2.208539 5.530981 0.40 0.692 -8.953432 13.37051
South .6928008 3.788735 0.18 0.856 -6.953175 8.338777
West -10.94649 3.827357 -2.86 0.007 -18.67041 -3.22257

_cons 411.8268 108.2084 3.81 0.000 193.4533 630.2002

This will not be the case for models that are more complicated.

Chow tests
Now, let’s suppose we are fitting a model for birthrates on median age and marriage rate. We are also

interested in whether the regression coefficients differ for states in the east versus states in the west. We

use census divisions to create a new variable, west, that indicates which states are in the western half of
the United States.

. generate west = inlist(division, 4, 7, 8, 9)
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We fit a model that includes a separate intercept for west as well as an interaction between west and
each of the other variables in our model.

. regress brate i.west##c.medage i.west##c.mrgrate
Source SS df MS Number of obs = 50

F(5, 44) = 92.09
Model 38516.2172 5 7703.24344 Prob > F = 0.0000

Residual 3680.60281 44 83.6500639 R-squared = 0.9128
Adj R-squared = 0.9029

Total 42196.82 49 861.159592 Root MSE = 9.146

brate Coefficient Std. err. t P>|t| [95% conf. interval]

1.west 327.8733 58.71793 5.58 0.000 209.5351 446.2115
medage -7.532304 1.387624 -5.43 0.000 -10.32888 -4.735731

west#
c.medage

1 -10.11443 1.849103 -5.47 0.000 -13.84105 -6.387808

mrgrate 828.6813 643.3443 1.29 0.204 -467.8939 2125.257

west#
c.mrgrate

1 -800.8036 645.488 -1.24 0.221 -2101.699 500.092

_cons 366.5325 47.08904 7.78 0.000 271.6308 461.4343

We can test the effects of west on the intercept and on the slopes of medage and mrgrate. We will

specify all of these effects in a single contrast command and include the overall option to obtain a
joint test of effects, that is, a test that the coefficients for eastern states and for western states are equal.

. contrast west west#c.medage west#c.mrgrate, overall
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

west 1 31.18 0.0000

west#c.medage 1 29.92 0.0000

west#c.mrgrate 1 1.54 0.2213

Overall 3 22.82 0.0000

Denominator 44

This overall test is referred to as a Chow test in econometrics (Chow 1960).
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Beyond linear models
contrast may be used after almost any estimation command, with the added benefit that contrast

provides direct support for testing main and interaction effects that is not available in most estimation

commands. To illustrate, we will use contrast with results from a logistic regression. Stata’s logit
command fits logistic regression models, reporting the fitted regression coefficients. The logistic
command fits the same models but reports odds ratios. Although contrast can report odds ratios for the
computed effects, the tests are all computed from linear combinations of themodel coefficients regardless

of which estimation command we used.

Suppose we have data on patient satisfaction for three hospitals in a city. Let’s begin by fitting a

model for satisfied, whether the patient was satisfied with his or her treatment, using the main effects
of hospital:

. use https://www.stata-press.com/data/r18/hospital, clear
(Artificial hospital satisfaction data)
. logit satisfied i.hospital
Iteration 0: Log likelihood = -393.72216
Iteration 1: Log likelihood = -387.55736
Iteration 2: Log likelihood = -387.4768
Iteration 3: Log likelihood = -387.47679
Logistic regression Number of obs = 802

LR chi2(2) = 12.49
Prob > chi2 = 0.0019

Log likelihood = -387.47679 Pseudo R2 = 0.0159

satisfied Coefficient Std. err. z P>|z| [95% conf. interval]

hospital
2 .5348129 .2136021 2.50 0.012 .1161604 .9534654
3 .7354519 .2221929 3.31 0.001 .2999618 1.170942

_cons 1.034708 .1391469 7.44 0.000 .7619855 1.307431

Because there are no other independent variables in this model, the reference category effects of

hospital computed by contrast will match the fitted model coefficients, assuming a common refer-
ence level.

. contrast r.hospital
Contrasts of marginal linear predictions
Margins: asbalanced

df chi2 P>chi2

hospital
(2 vs 1) 1 6.27 0.0123
(3 vs 1) 1 10.96 0.0009

Joint 2 12.55 0.0019

Contrast Std. err. [95% conf. interval]

hospital
(2 vs 1) .5348129 .2136021 .1161604 .9534654
(3 vs 1) .7354519 .2221929 .2999618 1.170942
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We see that the reference category effects are equal to the fitted coefficients. They also have the same

interpretation, the difference in log odds from the reference category. The top table also provides a joint

test of these effects, a test of the main effects of hospital.

We also have information on the condition for which each patient is being treated in the variable

illness. Here we fit a logistic regression using a two-way crossed model of hospital and illness.

. label list illness
illness:

1 Heart attack
2 Stroke
3 Pneumonia
4 Lung disease
5 Kidney failure

. logistic satisfied hospital##illness
Logistic regression Number of obs = 802

LR chi2(14) = 38.51
Prob > chi2 = 0.0004

Log likelihood = -374.46865 Pseudo R2 = 0.0489

satisfied Odds ratio Std. err. z P>|z| [95% conf. interval]

hospital
2 1.226496 .5492177 0.46 0.648 .509921 2.950049
3 1.711111 .8061016 1.14 0.254 .6796395 4.308021

illness
Stroke 1.328704 .6044214 0.62 0.532 .544779 3.240678

Pneumonia .7993827 .3408305 -0.53 0.599 .3466015 1.843653
Lung dise.. 1.231481 .5627958 0.46 0.649 .5028318 3.016012
Kidney fa.. 1.25 .5489438 0.51 0.611 .5285676 2.956102

hospital#
illness

2#Stroke 2.434061 1.768427 1.22 0.221 .5860099 10.11016
2#Pneumonia 4.045805 2.868559 1.97 0.049 1.008058 16.23769

2 #
Lung dise.. .54713 .3469342 -0.95 0.342 .1578866 1.89599

2 #
Kidney fa.. 1.594425 1.081104 0.69 0.491 .4221288 6.022312

3#Stroke .5416535 .3590089 -0.93 0.355 .1477555 1.985635
3#Pneumonia 1.579502 1.042504 0.69 0.489 .4332209 5.758783

3 #
Lung dise.. 3.137388 2.595748 1.38 0.167 .6198955 15.87881

3 #
Kidney fa.. 1.672727 1.226149 0.70 0.483 .3976256 7.036812

_cons 2.571429 .8099239 3.00 0.003 1.386983 4.767358

Note: _cons estimates baseline odds.
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Using contrast, we can obtain anANOVA-style table of tests for the main effects and interaction effects
of hospital and illness.

. contrast hospital##illness
Contrasts of marginal linear predictions
Margins: asbalanced

df chi2 P>chi2

hospital 2 14.92 0.0006

illness 4 4.09 0.3937

hospital#illness 8 20.45 0.0088

Our interaction effect is significant, so we decide to evaluate the simple reference category effects of

hospital within illness. We are particularly interested in patient satisfaction when being treated for

a heart attack or stroke, so we will use the i. operator to limit our output to simple effects within the
first two illnesses.

. contrast r.hospital@i(1 2).illness, nowald
Contrasts of marginal linear predictions
Margins: asbalanced

Contrast Std. err. [95% conf. interval]

hospital@illness
(2 vs 1) Heart attack .2041611 .4477942 -.6734995 1.081822

(2 vs 1) Stroke 1.093722 .5721288 -.0276296 2.215074
(3 vs 1) Heart attack .5371429 .4710983 -.3861928 1.460479

(3 vs 1) Stroke -.0759859 .4662325 -.9897847 .8378129

The row labeled (2 vs 1) heart attack estimates simple effects on the log odds when comparing hos-
pital 2 with hospital 1 for patients having heart attacks. These effects are differences in the cell means of

the linear predictions.

We can add the or option to report an odds ratio for each of these simple effects:

. contrast r.hospital@i(1 2).illness, nowald or
Contrasts of marginal linear predictions
Margins: asbalanced

Odds ratio Std. err. [95% conf. interval]

hospital@illness
(2 vs 1) Heart attack 1.226496 .5492177 .509921 2.950049

(2 vs 1) Stroke 2.985366 1.708014 .9727486 9.162089
(3 vs 1) Heart attack 1.711111 .8061016 .6796395 4.308021

(3 vs 1) Stroke .9268293 .4321179 .3716567 2.311306

These odds ratios are just the exponentiated version of the contrasts in the previous table.

For contrasts of the margins of nonlinear predictions, such as predicted probabilities, see [R]margins,

contrast.
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Multiple equations
contrastworks with models containingmultiple equations. Commands such as intreg and gnbreg

allow their ancillary parameters to be modeled as functions of independent variables, and contrast can
compute and test effects within these equations. In addition, contrast allows a special pseudofactor for
equation—called eqns—when working with results from manova, mvreg, mlogit, and mprobit.

In example 4 of [MV] manova, we fit a two-way MANOVA model using data from Woodard (1931).

Here we will fit this model using mvreg. The data represent patients with jaw fractures. y1 is the patient’s
age, y2 is blood lymphocytes, and y3 is blood polymorphonuclears. Two factor variables, gender and
fracture, are used as independent variables.

. use https://www.stata-press.com/data/r18/jaw
(Table 4.6. Two-way unbalanced data for fractures of the jaw, Rencher (1998))
. mvreg y1 y2 y3 = gender##fracture, vsquish nofvlabel
Equation Obs Parms RMSE ”R-sq” F P>F

y1 27 6 10.21777 0.4086 2.902124 0.0382
y2 27 6 5.268768 0.4743 3.78967 0.0133
y3 27 6 4.993647 0.4518 3.460938 0.0195

Coefficient Std. err. t P>|t| [95% conf. interval]

y1
2.gender -17.5 11.03645 -1.59 0.128 -40.45156 5.451555
fracture

2 -12.625 5.518225 -2.29 0.033 -24.10078 -1.149222
3 5.666667 5.899231 0.96 0.348 -6.601456 17.93479

gender#
fracture

2 2 21.375 12.68678 1.68 0.107 -5.008595 47.75859
2 3 8.833333 13.83492 0.64 0.530 -19.93796 37.60463
_cons 39.5 4.171386 9.47 0.000 30.82513 48.17487

y2
2.gender 20.5 5.69092 3.60 0.002 8.665083 32.33492
fracture

2 -3.125 2.84546 -1.10 0.285 -9.042458 2.792458
3 .6666667 3.041925 0.22 0.829 -5.659362 6.992696

gender#
fracture

2 2 -19.625 6.541907 -3.00 0.007 -33.22964 -6.02036
2 3 -23.66667 7.133946 -3.32 0.003 -38.50252 -8.830813
_cons 35.5 2.150966 16.50 0.000 31.02682 39.97318

y3
2.gender -18.16667 5.393755 -3.37 0.003 -29.38359 -6.949739
fracture

2 1.083333 2.696877 0.40 0.692 -4.52513 6.691797
3 -3 2.883083 -1.04 0.310 -8.9957 2.9957

gender#
fracture

2 2 19.91667 6.200305 3.21 0.004 7.022426 32.81091
2 3 23.5 6.76143 3.48 0.002 9.438837 37.56116
_cons 61.16667 2.038648 30.00 0.000 56.92707 65.40627
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contrast computes Wald tests using the coefficients from the first equation by default.

. contrast gender##fracture
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

y1
gender 1 2.16 0.1569

fracture 2 2.74 0.0880

gender#fracture 2 1.69 0.2085

Denominator 21

Here we use the equation() option to compute the Wald tests in the y2 equation:

. contrast gender##fracture, equation(y2)
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

y2
gender 1 5.41 0.0301

fracture 2 7.97 0.0027

gender#fracture 2 5.97 0.0088

Denominator 21

Here we use the equation index to compute the Wald tests in the third equation:

. contrast gender##fracture, equation(#3)
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

y3
gender 1 2.23 0.1502

fracture 2 6.36 0.0069

gender#fracture 2 6.66 0.0058

Denominator 21
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Here we use the atequations option to compute Wald tests for each equation in the model. We also

use the vsquish option to suppress the extra blank lines between terms.

. contrast gender##fracture, atequations vsquish
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

y1
gender 1 2.16 0.1569

fracture 2 2.74 0.0880
gender#fracture 2 1.69 0.2085

y2
gender 1 5.41 0.0301

fracture 2 7.97 0.0027
gender#fracture 2 5.97 0.0088

y3
gender 1 2.23 0.1502

fracture 2 6.36 0.0069
gender#fracture 2 6.66 0.0058

Denominator 21

Because we are investigating the results from mvreg, we can use the special eqns factor to test for
a marginal effect on the means among the dependent variables:

. contrast _eqns
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

_eqns 2 49.19 0.0000

Denominator 21

Here we test whether the main effects of gender differ among the dependent variables:

. contrast gender#_eqns
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

gender#_eqns 2 3.61 0.0448

Denominator 21



contrast — Contrasts and linear hypothesis tests after estimation 400

Although it is not terribly interesting in this case, we can even calculate contrasts across equations:

. contrast gender#r._eqns
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

gender#_eqns
(joint) (2 vs 1) 1 5.82 0.0251
(joint) (3 vs 1) 1 0.40 0.5352

Joint 2 3.61 0.0448

Denominator 21

Video example
Introduction to contrasts in Stata: One-way ANOVA

Stored results
contrast stores the following in r():

Scalars

r(df r) variance degrees of freedom

r(k terms) number of terms in termlist

r(level) confidence level of confidence intervals

Macros

r(cmd) contrast
r(cmdline) command as typed

r(est cmd) e(cmd) from original estimation results

r(est cmdline) e(cmdline) from original estimation results

r(title) title in output

r(overall) overall or empty
r(emptycells) empspec from emptycells()
r(mcmethod) method from mcompare()
r(mctitle) title for method from mcompare()
r(mcadjustall) adjustall or empty
r(margin method) asbalanced or asobserved

Matrices

r(b) contrast estimates

r(V) variance–covariance matrix of the contrast estimates

r(error) contrast estimability codes;

0 means estimable,
8 means not estimable

r(L) matrix of contrasts applied to the model coefficients

r(table) matrix containing the contrasts with their standard errors,

test statistics, 𝑝-values, and confidence intervals
r(F) vector of 𝐹 statistics; r(df r) present
r(chi2) vector of 𝜒2 statistics; r(df r) not present
r(p) vector of 𝑝-values corresponding to r(F) or r(chi2)
r(df) vector of degrees of freedom corresponding to r(p)
r(df2) vector of denominator degrees of freedom corresponding to r(F)

https://www.youtube.com/watch?v=XaeStjh6n-A
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contrast with the post option stores the following in e():

Scalars

e(df r) variance degrees of freedom

e(k terms) number of terms in termlist

Macros

e(cmd) contrast
e(cmdline) command as typed

e(properties) b V
e(est cmd) e(cmd) from original estimation results

e(est cmdline) e(cmdline) from original estimation results

e(title) title in output

e(overall) overall or empty
e(emptycells) empspec from emptycells()
e(margin method) asbalanced or asobserved
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) contrast estimates

e(V) variance–covariance matrix of the contrast estimates

e(error) contrast estimability codes;

0 means estimable,
8 means not estimable

e(L) matrix of contrasts applied to the model coefficients

e(F) vector of unadjusted 𝐹 statistics; e(df r) present
e(chi2) vector of 𝜒2 statistics; e(df r) not present
e(p) vector of unadjusted 𝑝-values corresponding to e(F) or e(chi2)
e(df) vector of degrees of freedom corresponding to e(p)
e(df2) vector of denominator degrees of freedom corresponding to e(F)

Methods and formulas
Methods and formulas are presented under the following headings:

Marginal linear predictions
Contrast operators

Reference level contrasts
Adjacent contrasts
Grand mean contrasts
Helmert contrasts
Reverse Helmert contrasts
Orthogonal polynomial contrasts

Contrasts within interactions
Multiple comparisons



contrast — Contrasts and linear hypothesis tests after estimation 402

Marginal linear predictions
contrast treats intercept effects separately from slope effects. To illustrate, consider the following

parameterization for a quadratic regression of 𝑦 on 𝑥 that also models the effects of two factor variables

𝐴 and 𝐵, where the levels of 𝐴 are indexed by 𝑖 = 1, . . . , 𝑘𝑎 and the levels of 𝐵 are indexed by 𝑗 =
1, . . . , 𝑘𝑏.

𝐸(𝑦|𝐴 = 𝑖, 𝐵 = 𝑗, 𝑥) = 𝜂0𝑖𝑗 + 𝜂1𝑖𝑗𝑥 + 𝜂2𝑖𝑗𝑥2

𝜂0𝑖𝑗 = 𝜂0 + 𝛼0𝑖 + 𝛽0𝑗 + (𝛼𝛽)0𝑖𝑗

𝜂1𝑖𝑗 = 𝜂1 + 𝛼1𝑖 + 𝛽1𝑗 + (𝛼𝛽)1𝑖𝑗

𝜂2𝑖𝑗 = 𝜂2 + 𝛼2𝑖 + 𝛽2𝑗 + (𝛼𝛽)2𝑖𝑗

We have partitioned the coefficients into three groups of parameters: 𝜂0𝑖𝑗 is a cell prediction for the

intercept, 𝜂1𝑖𝑗 is a cell prediction for the slope on 𝑥, and 𝜂2𝑖𝑗 is a cell prediction for the slope on 𝑥2. For

the intercept parameters, 𝜂0 is the intercept, 𝛼0𝑖 represents a main effect for factor 𝐴 at its 𝑖th level, 𝛽0𝑗
represents a main effect for factor 𝐵 at its 𝑗th level, and (𝛼𝛽)0𝑖𝑗 represents an effect for the interaction

of 𝐴 and 𝐵 at the 𝑖𝑗th level. The individual coefficients in 𝜂1𝑖𝑗 and 𝜂2𝑖𝑗 have similar interpretations, but

the effects are on the slopes of 𝑥 and 𝑥2, respectively.

The marginal intercepts for 𝐴 are given by

𝜂0𝑖. =
𝑘𝑏

∑
𝑗=1

𝑓𝑖𝑗𝜂0𝑖𝑗

where 𝑓𝑖𝑗 is a marginal relative frequency of the 𝑗th level of 𝐵 and is controlled by the asobserved and
emptycells(reweight) options according to

𝑓𝑖𝑗 =

⎧{{
⎨{{⎩

1/𝑘𝑏, default

𝑤.𝑗/𝑤.., asobserved
1/(𝑘𝑏 − 𝑒𝑖.), emptycells(reweight)
𝑤𝑖𝑗/𝑤𝑖., emptycells(reweight) and asobserved

Above, 𝑤𝑖𝑗 is the number of individuals with 𝐴 at its 𝑖th level and 𝐵 at its 𝑗th,

𝑤𝑖. =
𝑘𝑏

∑
𝑗=1

𝑤𝑖𝑗

𝑤.𝑗 =
𝑘𝑎

∑
𝑖=1

𝑤𝑖𝑗

𝑤.. =
𝑘𝑎

∑
𝑖=1

𝑘𝑏

∑
𝑗=1

𝑤𝑖𝑗

and 𝑒𝑖. is the number of empty cells where𝐴 is at its 𝑖th level. The marginal intercepts for𝐵 andmarginal

slopes on 𝑥 and 𝑥2 are similarly defined.
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Estimates for the cell intercepts and slopes are computed using the corresponding linear combination

of the coefficients from the fitted model. For example, the estimated cell intercepts are computed using

̂𝜂0𝑖𝑗 = ̂𝜂0 + ̂𝛼0𝑖 + ̂𝛽0𝑗 + (𝛼𝛽)0𝑖𝑗

and the estimated marginal intercepts for 𝐴 are computed as

̂𝜂0𝑖. =
𝑘𝑏

∑
𝑗=1

𝑓𝑖𝑗 ̂𝜂0𝑖𝑗

Contrast operators
contrast performsWald tests using linear combinations of marginal linear predictions. For example,

the following linear combination can be used to test for a specific effect of factor 𝐴 on the marginal

intercepts.

𝑘𝑎

∑
𝑖=1

𝑐𝑖𝜂0𝑖.

If the 𝑐𝑖 elements sum to zero, the linear combination is called a contrast. If the factor 𝐴 is represented

by a variable named A, then we specify this contrast using the following syntax:

{A 𝑐1 𝑐2 ... 𝑐𝑘𝑎
}

Similarly, the following linear combination can be used to test for a specific interaction effect of factors

𝐴 and 𝐵 on the marginal slope of 𝑥.

𝑘𝑎

∑
𝑖=1

𝑘𝑏

∑
𝑗=1

𝑐𝑖𝑗𝜂1𝑖𝑗

If the factor 𝐵 is represented by a variable named B, then we specify this contrast using the following
syntax:

{A#B 𝑐11 𝑐12 ... 𝑐1𝑘𝑏
𝑐21 ... 𝑐𝑘𝑎𝑘𝑏

}

contrast has variable operators for several commonly used contrasts. Each contrast operator speci-
fies a matrix of linear combinations that yield the requested set of contrasts to be applied to the marginal

linear predictions associated with the attached factor variable.
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Reference level contrasts

The r. operator compares each level with a reference level. Let R be the corresponding contrast

matrix for factor 𝐴, and then R is a (𝑘𝑎 − 1) × 𝑘𝑎 matrix with elements

R𝑖𝑗 =

⎧{{
⎨{{⎩

−1, if 𝑗 is the reference level
1, if 𝑖 = 𝑗 and 𝑗 is less than the reference level
1, if 𝑖 + 1 = 𝑗 and 𝑗 is greater than the reference level
0, otherwise

If 𝑘𝑎 = 5 and the reference level is the third level of 𝐴 (specified as rb(#3).A), then

R =
⎛⎜⎜⎜
⎝

1 0 −1 0 0
0 1 −1 0 0
0 0 −1 1 0
0 0 −1 0 1

⎞⎟⎟⎟
⎠

Adjacent contrasts

The a. operator compares each level with the next level. Let A be the corresponding contrast matrix

for factor 𝐴, and then A is a (𝑘𝑎 − 1) × 𝑘𝑎 matrix with elements

A𝑖𝑗 =
⎧{
⎨{⎩

1, if 𝑖 = 𝑗
−1, if 𝑖 + 1 = 𝑗

0, otherwise

If 𝑘𝑎 = 5, then

A =
⎛⎜⎜⎜
⎝

1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1

⎞⎟⎟⎟
⎠

The ar. operator compares each level with the previous level. If A is the contrast matrix for the

a. operator, then −A is the corresponding contrast matrix for the ar. operator.
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Grand mean contrasts

The g. operator compares each level with the mean of all the levels. Let G be the corresponding

contrast matrix for factor 𝐴, and then G is a 𝑘𝑎 × 𝑘𝑎 matrix with elements

G𝑖𝑗 = {1 − 1/𝑘𝑎, if 𝑖 = 𝑗
− 1/𝑘𝑎, if 𝑖 ≠ 𝑗

If 𝑘𝑎 = 5, then

G =
⎛⎜⎜⎜⎜⎜⎜
⎝

4/5 −1/5 −1/5 −1/5 −1/5
−1/5 4/5 −1/5 −1/5 −1/5
−1/5 −1/5 4/5 −1/5 −1/5
−1/5 −1/5 −1/5 4/5 −1/5
−1/5 −1/5 −1/5 −1/5 4/5

⎞⎟⎟⎟⎟⎟⎟
⎠

The gw. operator compares each level with the weighted mean of all the levels. The weights are taken
from the observed weighted cell frequencies in the estimation sample of the fitted model. Let G𝑤 be the

corresponding contrast matrix for factor 𝐴, and then G𝑤 is a 𝑘𝑎 × 𝑘𝑎 matrix with elements

G𝑖𝑗 = {1 − 𝑤𝑖/𝑤⋅, if 𝑖 = 𝑗
− 𝑤𝑗/𝑤⋅, if 𝑖 ≠ 𝑗

where 𝑤𝑖 is a marginal weight representing the number of individuals with 𝐴 at its 𝑖th level and 𝑤⋅ =
∑𝑖 𝑤𝑖.

Helmert contrasts

The h. operator compares each level with the mean of the subsequent levels. Let H be the corre-

sponding contrast matrix for factor 𝐴, and then H is a (𝑘𝑎 − 1) × 𝑘𝑎 matrix with elements

H𝑖𝑗 =
⎧{
⎨{⎩

1, if 𝑖 = 𝑗
−1/(𝑘𝑎 − 𝑖), if 𝑖 < 𝑗

0, otherwise

If 𝑘𝑎 = 5, then

H =
⎛⎜⎜⎜
⎝

1 −1/4 −1/4 −1/4 −1/4
0 1 −1/3 −1/3 −1/3
0 0 1 −1/2 −1/2
0 0 0 1 −1

⎞⎟⎟⎟
⎠
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The hw. operator compares each level with the weighted mean of the subsequent levels. Let H𝑤 be

the corresponding contrast matrix for factor 𝐴, and then H𝑤 is a (𝑘𝑎 − 1) × 𝑘𝑎 matrix with elements

H𝑤𝑖𝑗 =
⎧{
⎨{⎩

1, if 𝑖 = 𝑗
−𝑤𝑗/ ∑𝑘𝑎

𝑙=𝑗 𝑤𝑙, if 𝑖 < 𝑗
0, otherwise

Reverse Helmert contrasts

The j. operator compares each level with the mean of the previous levels. Let J be the corresponding
contrast matrix for factor 𝐴, and then J is a (𝑘𝑎 − 1) × 𝑘𝑎 matrix with elements

J𝑖𝑗 =
⎧{
⎨{⎩

1, if 𝑖 + 1 = 𝑗
−1/𝑖, if 𝑗 ≤ 𝑖

0, otherwise

If 𝑘𝑎 = 5, then

H =
⎛⎜⎜⎜
⎝

−1 1 0 0 0
−1/2 −1/2 1 0 0
−1/3 −1/3 −1/3 1 0
−1/4 −1/4 −1/4 −1/4 1

⎞⎟⎟⎟
⎠

The jw. operator compares each level with the weighted mean of the previous levels. Let J𝑤 be the

corresponding contrast matrix for factor 𝐴, and then J𝑤 is a (𝑘𝑎 − 1) × 𝑘𝑎 matrix with elements

J𝑤𝑖𝑗 =
⎧{
⎨{⎩

1, if 𝑖 + 1 = 𝑗
−𝑤𝑗/ ∑𝑖

𝑙=1 𝑤𝑙, if 𝑖 ≤ 𝑗
0, otherwise
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Orthogonal polynomial contrasts

The p. operator applies orthogonal polynomial contrasts using the level values of the attached factor
variable. The q. operator applies orthogonal polynomial contrasts using the level indices of the attached
factor variable. These two operators are equivalent when the level values of the attached factor are equally

spaced. The pw. and qw. operators are weighted versions of p. and q., where the weights are taken from
the observed weighted cell frequencies in the estimation sample of the fitted model. contrast uses the
Christoffel–Darboux recurrence formula for computing orthogonal polynomial contrasts (Abramowitz

and Stegun 1964). The elements of the contrasts are normalized such that

Q′WQ = 1
𝑤⋅
I

whereW is a diagonal matrix of the marginal cell weights 𝑤1, 𝑤2, . . . , 𝑤𝑘 of the attached factor variable

(all 1 for p. and q.), and 𝑤⋅ is the sum of the weights (the number of levels 𝑘 for p. and q.).

Contrasts within interactions
Contrast operators are allowed to be specified on factor variables participating in interactions. In

such cases, contrast applies the proper matrix product of the contrast matrices to the cell margins of
the interacted factor variables.

For example, consider the contrasts implied by specifying r.A#h.B. LetM be the matrix of estimated

cell margins for the levels of 𝐴 and 𝐵, where the rows of M are indexed by the levels of 𝐴 and the

columns are indexed by the levels of 𝐵. contrast puts the estimated cell margins in the following

vector form:

v = vec(M′) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

M11
M12

⋮
M1𝑘𝑏
M21
M22

⋮
M2𝑘𝑏

⋮
M𝑘𝑎𝑘𝑏

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

The individual contrasts are then given by the elements of

(R ⊗ H)v

where ⊗ denotes the Kronecker direct product.
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Multiple comparisons
See [R] pwcompare for details on the methods and formulas used to adjust 𝑝-values and confidence

intervals for multiple comparisons. The formulas for Bonferroni’s method and Šidák’s method are pre-

sented with m = k(k − 1)/2, the number of pairwise comparisons for a factor term with k levels. For

contrasts, m is instead the number of contrasts being performed on the factor term; often, m = k − 1 for

a term with k levels.
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Postestimation commands Remarks and examples Also see

Postestimation commands
The following postestimation commands are available after contrast, post:

Command Description

estat vce variance–covariance matrix of the estimators (VCE)

estat (svy) postestimation statistics for survey data

estimates cataloging estimation results

etable table of estimation results

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

Remarks and examples
In Orthogonal polynomial contrasts in [R] contrast, we used the p. operator to test the orthogonal

polynomial effects of age group.

. contrast p.agegrp, noeffects

We then used a second contrast command,

. contrast p(2 3 4).agegrp, noeffects

selecting levels to test whether the quadratic, cubic, and quartic contrasts were jointly significant.

We can perform the same joint test by using the test command after specifying the post option with
our first contrast command.
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. use https://www.stata-press.com/data/r18/cholesterol
(Artificial cholesterol data)
. anova chol agegrp
(output omitted )

. contrast p.agegrp, noeffects post
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

agegrp
(linear) 1 139.11 0.0000

(quadratic) 1 0.15 0.6962
(cubic) 1 0.37 0.5448

(quartic) 1 0.43 0.5153
Joint 4 35.02 0.0000

Denominator 70

. test p2.agegrp p3.agegrp p4.agegrp
( 1) p2.agegrp = 0
( 2) p3.agegrp = 0
( 3) p4.agegrp = 0

F( 3, 70) = 0.32
Prob > F = 0.8129

Also see
[R] contrast — Contrasts and linear hypothesis tests after estimation

[U] 20 Estimation and postestimation commands
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Description
copyright presents copyright notifications concerning tools, libraries, etc., used in the construction

of Stata.

Syntax
copyright

Remarks and examples
The correct form for a copyright notice is

Copyright dates by author/owner

The word “Copyright” is spelled out. You can use the © symbol, but “(C)” has never been given legal

recognition. The phrase “All Rights Reserved” was historically required but is no longer needed.

Currently, most works are copyrighted from the moment they are written, and no copyright notice is

required. Copyright concerns the protection of the expression and structure of facts and ideas, not the

facts and ideas themselves. Copyright concerns the ownership of the expression and not the name given

to the expression, which is covered under trademark law.

Copyright law as it exists today began in England in 1710 with the Statute of Anne, An Act for the

Encouragement of Learning, by Vesting the Copies of Printed Books in theAuthors or Purchases of Such

Copies, during the Times therein mentioned. In 1672, Massachusetts introduced the first copyright law

in what was to become the United States. After the Revolutionary War, copyright was introduced into

the US Constitution in 1787 and went into effect on May 31, 1790. On June 9, 1790, the first copyright

in the United States was registered for The Philadelphia Spelling Book by John Barry.

There are significant differences in the understanding of copyright in the English- and non–English-

speaking world. The Napoleonic or Civil Code, the dominant legal system in the non–English-speaking

world, splits the rights into two classes: the author’s economic rights and the author’s moral rights. Moral

rights are available only to “natural persons”. Legal persons (corporations) have economic rights but not

moral rights.

Also see
Copyright page of this book
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Description Also see

Description
Stata uses portions of the Apache Commons Java components library, Apache log4j Java library,

the docx4j Java library, the FlatLaf Java library, the JSON.simple Java library, and Apache Batik SVG

Toolkit with the express permission of the authors under the Apache License, version 2.0, pursuant to

the following notice:

Apache License

Version 2.0, January 2004

http://www.apache.org/licenses/

TERMSAND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

“License” shall mean the terms and conditions for use, reproduction, and distribution as

defined by Sections 1 through 9 of this document.

“Licensor” shall mean the copyright owner or entity authorized by the copyright owner that

is granting the License.

“Legal Entity” shall mean the union of the acting entity and all other entities that control, are

controlled by, or are under common control with that entity. For the purposes of this defini-

tion, “control” means (i) the power, direct or indirect, to cause the direction or management

of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or

more of the outstanding shares, or (iii) beneficial ownership of such entity.

“You” (or “Your”) shall mean an individual or Legal Entity exercising permissions granted

by this License.

“Source” form shall mean the preferred form for making modifications, including but not

limited to software source code, documentation source, and configuration files.

“Object” form shall mean any form resulting from mechanical transformation or translation

of a Source form, including but not limited to compiled object code, generated documenta-

tion, and conversions to other media types.

“Work” shall mean thework of authorship, whether in Source or Object form, made available

under the License, as indicated by a copyright notice that is included in or attached to the

work (an example is provided in the Appendix below).

“DerivativeWorks” shall mean any work, whether in Source or Object form, that is based on

(or derived from) theWork and for which the editorial revisions, annotations, elaborations, or

other modifications represent, as a whole, an original work of authorship. For the purposes

of this License, Derivative Works shall not include works that remain separable from, or

merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof.
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“Contribution” shall mean any work of authorship, including the original version of the

Work and any modifications or additions to that Work or Derivative Works thereof, that

is intentionally submitted to Licensor for inclusion in the Work by the copyright owner or

by an individual or Legal Entity authorized to submit on behalf of the copyright owner.

For the purposes of this definition, “submitted” means any form of electronic, verbal, or

written communication sent to the Licensor or its representatives, including but not limited to

communication on electronic mailing lists, source code control systems, and issue tracking

systems that are managed by, or on behalf of, the Licensor for the purpose of discussing

and improving the Work, but excluding communication that is conspicuously marked or

otherwise designated in writing by the copyright owner as “Not a Contribution.”

“Contributor” shall mean Licensor and any individual or Legal Entity on behalf of whom a

Contribution has been received by Licensor and subsequently incorporated within theWork.

2. Grant of Copyright License. Subject to the terms and conditions of this License, each Con-

tributor hereby grants toYou a perpetual, worldwide, non-exclusive, no-charge, royalty-free,

irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display,

publicly perform, sublicense, and distribute the Work and such Derivative Works in Source

or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each Con-

tributor hereby grants toYou a perpetual, worldwide, non-exclusive, no-charge, royalty-free,

irrevocable (except as stated in this section) patent license to make, have made, use, offer to

sell, sell, import, and otherwise transfer the Work, where such license applies only to those

patent claims licensable by such Contributor that are necessarily infringed by their Con-

tribution(s) alone or by combination of their Contribution(s) with the Work to which such

Contribution(s) was submitted. If You institute patent litigation against any entity (including

a cross-claim or counterclaim in a lawsuit) alleging that theWork or a Contribution incorpo-

rated within theWork constitutes direct or contributory patent infringement, then any patent

licenses granted to You under this License for that Work shall terminate as of the date such

litigation is filed.

4. Redistribution. Youmay reproduce and distribute copies of theWork or DerivativeWorks

thereof in any medium, with or without modifications, and in Source or Object form, pro-

vided that You meet the following conditions:

You must give any other recipients of the Work or Derivative Works a copy of this License;

and

You must cause any modified files to carry prominent notices stating that You changed the

files; and

You must retain, in the Source form of any Derivative Works that You distribute, all copy-

right, patent, trademark, and attribution notices from the Source form of theWork, excluding

those notices that do not pertain to any part of the Derivative Works; and

If the Work includes a “NOTICE” text file as part of its distribution, then any Derivative

Works that You distribute must include a readable copy of the attribution notices contained

within such NOTICE file, excluding those notices that do not pertain to any part of the

Derivative Works, in at least one of the following places: within a NOTICE text file dis-

tributed as part of the Derivative Works; within the Source form or documentation, if pro-

vided along with the Derivative Works; or, within a display generated by the Derivative

Works, if and wherever such third-party notices normally appear. The contents of the NO-
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TICE file are for informational purposes only and do not modify the License. You may

add Your own attribution notices within Derivative Works that You distribute, alongside

or as an addendum to the NOTICE text from the Work, provided that such additional at-

tribution notices cannot be construed as modifying the License. You may add Your own

copyright statement to Your modifications and may provide additional or different license

terms and conditions for use, reproduction, or distribution of Your modifications, or for any

such Derivative Works as a whole, provided Your use, reproduction, and distribution of the

Work otherwise complies with the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution

intentionally submitted for inclusion in the Work by You to the Licensor shall be under the

terms and conditions of this License, without any additional terms or conditions. Notwith-

standing the above, nothing herein shall supersede or modify the terms of any separate li-

cense agreement you may have executed with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade names, trademarks,

service marks, or product names of the Licensor, except as required for reasonable and cus-

tomary use in describing the origin of theWork and reproducing the content of the NOTICE

file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Li-

censor provides the Work (and each Contributor provides its Contributions) on an “AS IS”

BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express

or implied, including, without limitation, any warranties or conditions of TITLE, NON-

INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PUR-

POSE. You are solely responsible for determining the appropriateness of using or redis-

tributing theWork and assume any risks associated with Your exercise of permissions under

this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including

negligence), contract, or otherwise, unless required by applicable law (such as deliberate

and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You

for damages, including any direct, indirect, special, incidental, or consequential damages of

any character arising as a result of this License or out of the use or inability to use the Work

(including but not limited to damages for loss of goodwill, work stoppage, computer failure

or malfunction, or any and all other commercial damages or losses), even if such Contributor

has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or Deriva-

tive Works thereof, You may choose to offer, and charge a fee for, acceptance of support,

warranty, indemnity, or other liability obligations and/or rights consistent with this License.

However, in accepting such obligations, You may act only on Your own behalf and on Your

sole responsibility, not on behalf of any other Contributor, and only if You agree to indem-

nify, defend, and hold each Contributor harmless for any liability incurred by, or claims

asserted against, such Contributor by reason of your accepting any such warranty or addi-

tional liability.

END OF TERMSAND CONDITIONS

APPENDIX: How to apply the Apache License to your work
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To apply the Apache License to your work, attach the following boilerplate notice, with the

fields enclosed by brackets “[]” replaced with your own identifying information. (Don’t

include the brackets!) The text should be enclosed in the appropriate comment syntax for

the file format. We also recommend that a file or class name and description of purpose be

included on the same “printed page” as the copyright notice for easier identification within

third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this

file except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under

the License is distributed on an “AS IS” BASIS, WITHOUTWARRANTIES OR CON-

DITIONS OF ANY KIND, either express or implied. See the License for the specific

language governing permissions and limitations under the License.

Also see
[R] copyright — Display copyright information

http://www.apache.org/licenses/LICENSE-2.0
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Description
Stata uses portions of autolink with the express permission of the authors pursuant to the following

notice:

Copyright © 2015 Robin Stocker

Permission is hereby granted, free of charge, to any person obtaining a copy of this software

and associated documentation files (the “Software”), to deal in the Software without restric-

tion, including without limitation the rights to use, copy, modify, merge, publish, distribute,

sublicense, and/or sell copies of the Software, and to permit persons to whom the Software

is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or

substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES

OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONIN-

FRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS

BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN

ANACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR

IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN

THE SOFTWARE.

Also see
[R] copyright — Display copyright information
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Description
Stata uses portions of Boost with the express permission of the authors pursuant to the following

notice:

Boost Software License - Version 1.0 - August 17, 2003

Permission is hereby granted, free of charge, to any person or organization obtaining

a copy of the software and accompanying documentation covered by this license (the

“Software”) to use, reproduce, display, distribute, execute, and transmit the Software,

and to prepare derivative works of the Software, and to permit third-parties to whom the

Software is furnished to do so, all subject to the following:

The copyright notices in the Software and this entire statement, including the above li-

cense grant, this restriction and the following disclaimer, must be included in all copies

of the Software, in whole or in part, and all derivative works of the Software, unless

such copies or derivative works are solely in the form of machine-executable object code

generated by a source language processor.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUTWARRANTYOFANYKIND,

EXPRESS OR IMPLIED, INCLUDING BUTNOTLIMITEDTOTHEWARRANTIES

OF MERCHANTABILITY, FITNESS FORA PARTICULAR PURPOSE, TITLE AND

NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR

ANYONEDISTRIBUTINGTHESOFTWAREBELIABLEFORANYDAMAGESOR

OTHERLIABILITY,WHETHER INCONTRACT,TORTOROTHERWISE,ARISING

FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR

OTHER DEALINGS IN THE SOFTWARE.

Also see
[R] copyright — Display copyright information
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Description
Stata uses portions of flexmark with the express permission of the authors pursuant to the following

notice:

Copyright © 2015–2016, Atlassian Pty Ltd

All rights reserved.

Copyright © 2016, Vladimir Schneider,

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permit-

ted provided that the following conditions are met:

* Redistributions of source codemust retain the above copyright notice, this list of conditions

and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of con-

ditions and the following disclaimer in the documentation and/or other materials provided

with the distribution.

THIS SOFTWARE IS PROVIDED BYTHE COPYRIGHTHOLDERSANDCONTRIBU-

TORS “AS IS” ANDANY EXPRESS OR IMPLIEDWARRANTIES, INCLUDING, BUT

NOTLIMITEDTO, THE IMPLIEDWARRANTIESOFMERCHANTABILITYANDFIT-

NESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL

THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,

INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAM-

AGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE

GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTER-

RUPTION) HOWEVER CAUSEDAND ONANYTHEORYOF LIABILITY,WHETHER

IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR

OTHERWISE)ARISING INANYWAYOUTOFTHEUSEOFTHIS SOFTWARE, EVEN

IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Also see
[R] copyright — Display copyright information
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Description
Stata uses portions of Hamcrest with the express permission of the authors pursuant to the following

notice:

Copyright © 2000–2015 www.hamcrest.org

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permit-

ted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions

and the following disclaimer. Redistributions in binary formmust reproduce the above copy-

right notice, this list of conditions and the following disclaimer in the documentation and/or

other materials provided with the distribution.

Neither the name of Hamcrest nor the names of its contributors may be used to endorse or

promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BYTHE COPYRIGHTHOLDERSANDCONTRIBU-

TORS “AS IS” ANDANY EXPRESS OR IMPLIEDWARRANTIES, INCLUDING, BUT

NOTLIMITEDTO, THE IMPLIEDWARRANTIESOFMERCHANTABILITYANDFIT-

NESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL

THE COPYRIGHTOWNERORCONTRIBUTORS BE LIABLE FORANYDIRECT, IN-

DIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIALDAMAGES

(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-

TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHER-

WISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF

ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Also see
[R] copyright — Display copyright information
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Description Also see

Description
Stata uses portions of the H2O Java library with the express permission of the authors under the

Apache License, version 2.0, pursuant to the following notice:

Apache License

Version 2.0, January 2004

http://www.apache.org/licenses/

TERMSAND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

“License” shall mean the terms and conditions for use, reproduction, and distribution as

defined by Sections 1 through 9 of this document.

“Licensor” shall mean the copyright owner or entity authorized by the copyright owner that

is granting the License.

“Legal Entity” shall mean the union of the acting entity and all other entities that control, are

controlled by, or are under common control with that entity. For the purposes of this defini-

tion, “control” means (i) the power, direct or indirect, to cause the direction or management

of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or

more of the outstanding shares, or (iii) beneficial ownership of such entity.

“You” (or “Your”) shall mean an individual or Legal Entity exercising permissions granted

by this License.

“Source” form shall mean the preferred form for making modifications, including but not

limited to software source code, documentation source, and configuration files.

“Object” form shall mean any form resulting from mechanical transformation or translation

of a Source form, including but not limited to compiled object code, generated documenta-

tion, and conversions to other media types.

“Work” shall mean thework of authorship, whether in Source or Object form, made available

under the License, as indicated by a copyright notice that is included in or attached to the

work (an example is provided in the Appendix below).

“DerivativeWorks” shall mean any work, whether in Source or Object form, that is based on

(or derived from) theWork and for which the editorial revisions, annotations, elaborations, or

other modifications represent, as a whole, an original work of authorship. For the purposes

of this License, Derivative Works shall not include works that remain separable from, or

merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof.
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“Contribution” shall mean any work of authorship, including the original version of the

Work and any modifications or additions to that Work or Derivative Works thereof, that

is intentionally submitted to Licensor for inclusion in the Work by the copyright owner or

by an individual or Legal Entity authorized to submit on behalf of the copyright owner.

For the purposes of this definition, “submitted” means any form of electronic, verbal, or

written communication sent to the Licensor or its representatives, including but not limited to

communication on electronic mailing lists, source code control systems, and issue tracking

systems that are managed by, or on behalf of, the Licensor for the purpose of discussing

and improving the Work, but excluding communication that is conspicuously marked or

otherwise designated in writing by the copyright owner as “Not a Contribution.”

“Contributor” shall mean Licensor and any individual or Legal Entity on behalf of whom a

Contribution has been received by Licensor and subsequently incorporated within theWork.

2. Grant of Copyright License. Subject to the terms and conditions of this License, each Con-

tributor hereby grants toYou a perpetual, worldwide, non-exclusive, no-charge, royalty-free,

irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display,

publicly perform, sublicense, and distribute the Work and such Derivative Works in Source

or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each Con-

tributor hereby grants toYou a perpetual, worldwide, non-exclusive, no-charge, royalty-free,

irrevocable (except as stated in this section) patent license to make, have made, use, offer to

sell, sell, import, and otherwise transfer the Work, where such license applies only to those

patent claims licensable by such Contributor that are necessarily infringed by their Con-

tribution(s) alone or by combination of their Contribution(s) with the Work to which such

Contribution(s) was submitted. If You institute patent litigation against any entity (including

a cross-claim or counterclaim in a lawsuit) alleging that theWork or a Contribution incorpo-

rated within theWork constitutes direct or contributory patent infringement, then any patent

licenses granted to You under this License for that Work shall terminate as of the date such

litigation is filed.

4. Redistribution. Youmay reproduce and distribute copies of theWork or DerivativeWorks

thereof in any medium, with or without modifications, and in Source or Object form, pro-

vided that You meet the following conditions:

(a) You must give any other recipients of the Work or Derivative Works a copy of this Li-

cense; and

(b) You must cause any modified files to carry prominent notices stating that You changed

the files; and

(c) You must retain, in the Source form of any Derivative Works that You distribute, all

copyright, patent, trademark, and attribution notices from the Source form of the Work,

excluding those notices that do not pertain to any part of the Derivative Works; and

(d) If the Work includes a “NOTICE” text file as part of its distribution, then any Deriva-

tive Works that You distribute must include a readable copy of the attribution notices con-

tained within such NOTICE file, excluding those notices that do not pertain to any part of

the Derivative Works, in at least one of the following places: within a NOTICE text file

distributed as part of the Derivative Works; within the Source form or documentation, if

provided along with the Derivative Works; or, within a display generated by the Derivative

Works, if and wherever such third-party notices normally appear. The contents of the NO-
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TICE file are for informational purposes only and do not modify the License. You may add

Your own attribution notices within Derivative Works that You distribute, alongside or as

an addendum to the NOTICE text from the Work, provided that such additional attribution

notices cannot be construed as modifying the License.

You may add Your own copyright statement to Your modifications and may provide ad-

ditional or different license terms and conditions for use, reproduction, or distribution of

Your modifications, or for any such Derivative Works as a whole, provided Your use, repro-

duction, and distribution of the Work otherwise complies with the conditions stated in this

License.

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution

intentionally submitted for inclusion in the Work by You to the Licensor shall be under the

terms and conditions of this License, without any additional terms or conditions. Notwith-

standing the above, nothing herein shall supersede or modify the terms of any separate li-

cense agreement you may have executed with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade names, trademarks,

service marks, or product names of the Licensor, except as required for reasonable and cus-

tomary use in describing the origin of theWork and reproducing the content of the NOTICE

file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Li-

censor provides the Work (and each Contributor provides its Contributions) on an “AS IS”

BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express

or implied, including, without limitation, any warranties or conditions of TITLE, NON-

INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PUR-

POSE. You are solely responsible for determining the appropriateness of using or redis-

tributing theWork and assume any risks associated with Your exercise of permissions under

this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including

negligence), contract, or otherwise, unless required by applicable law (such as deliberate

and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You

for damages, including any direct, indirect, special, incidental, or consequential damages of

any character arising as a result of this License or out of the use or inability to use the Work

(including but not limited to damages for loss of goodwill, work stoppage, computer failure

or malfunction, or any and all other commercial damages or losses), even if such Contributor

has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or Deriva-

tive Works thereof, You may choose to offer, and charge a fee for, acceptance of support,

warranty, indemnity, or other liability obligations and/or rights consistent with this License.

However, in accepting such obligations, You may act only on Your own behalf and on Your

sole responsibility, not on behalf of any other Contributor, and only if You agree to indem-

nify, defend, and hold each Contributor harmless for any liability incurred by, or claims

asserted against, such Contributor by reason of your accepting any such warranty or addi-

tional liability.

END OF TERMSAND CONDITIONS

APPENDIX: How to apply the Apache License to your work.
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To apply the Apache License to your work, attach the following boilerplate notice, with the

fields enclosed by brackets “{}” replaced with your own identifying information. (Don’t
include the brackets!) The text should be enclosed in the appropriate comment syntax for

the file format. We also recommend that a file or class name and description of purpose be

included on the same “printed page” as the copyright notice for easier identification within

third-party archives.

Copyright 2014–2021 H2O.ai, Inc.

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this

file except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under

the License is distributed on an “AS IS” BASIS, WITHOUTWARRANTIES OR CON-

DITIONS OF ANY KIND, either express or implied. See the License for the specific

language governing permissions and limitations under the License.

Also see
[R] copyright — Display copyright information

http://www.apache.org/licenses/LICENSE-2.0
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Description
Stata uses the ICD-10 codes in [D] icd10with the express permission of theWorld Health Organization

(WHO) pursuant to the following notice:

ICD-10 codes used by permission ofWHO, from: International Statistical Classification of

Diseases and Related Health Problems, Tenth Revision (ICD-10) 2010 Edition. Vols 1–3.

Geneva, World Health Organization, 2011.

The use of ICD-10 in this Product does not imply any endorsement byWHO of any specific

product.

The ICD-10 codes shall not be amended, abridged, translated, deleted or in any other way

changed without the consent ofWHO.

The ICD-10 codes are for the internal use of the end user. They are not to be reproduced,

transmitted or distributed outside of the user’s organization in any form or by any means

except in summary results of analyses.

ICD-10 is distributed without warranty of any kind, either express or implied. In no event

shall theWorld Health Organization be liable for damages, including any general, special,

incidental, or consequential damages, arising out of the use of ICD-10.

Also see
[R] copyright — Display copyright information
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Description
Stata uses portions of ICUwith the express permission of the authors pursuant to the following notice:

COPYRIGHTAND PERMISSION NOTICE

Copyright © 1995–2014 International Business Machines Corporation and others

All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this soft-

ware and associated documentation files (the “Software”), to deal in the Software without

restriction, including without limitation the rights to use, copy, modify, merge, publish,

distribute, and/or sell copies of the Software, and to permit persons to whom the Software

is furnished to do so, provided that the above copyright notice(s) and this permission no-

tice appear in all copies of the Software and that both the above copyright notice(s) and

this permission notice appear in supporting documentation.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUTWARRANTYOFANYKIND,

EXPRESS OR IMPLIED, INCLUDING BUTNOTLIMITEDTOTHEWARRANTIES

OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-

INFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPY-

RIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR

ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES,

ORANYDAMAGESWHATSOEVERRESULTING FROMLOSSOFUSE, DATAOR

PROFITS,WHETHER INANACTION OF CONTRACT, NEGLIGENCE OR OTHER

TORTIOUSACTION,ARISINGOUTOF OR IN CONNECTIONWITHTHE USE OR

PERFORMANCE OF THIS SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not be used in

advertising or otherwise to promote the sale, use or other dealings in this Softwarewithout

prior written authorization of the copyright holder.

All trademarks and registered trademarks mentioned herein are the property of their re-

spective owners.

Also see
[R] copyright — Display copyright information
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Description Source code Also see

Description
Stata uses portions of JAXB with the express permission of the authors, pursuant to the terms of the

Common Development and Distribution License (CDDL) version 1.1.

COMMON DEVELOPMENTAND DISTRIBUTION LICENSE (CDDL) Version 1.1

1. Definitions.

1.1. “Contributor” means each individual or entity that creates or contributes to the creation of

Modifications.

1.2. “Contributor Version” means the combination of the Original Software, prior Modifications

used by a Contributor (if any), and the Modifications made by that particular Contributor.

1.3. “Covered Software” means (a) the Original Software, or (b) Modifications, or (c) the com-

bination of files containing Original Software with files containing Modifications, in each

case including portions thereof.

1.4. “Executable” means the Covered Software in any form other than Source Code.

1.5. “Initial Developer” means the individual or entity that first makes Original Software avail-

able under this License.

1.6. “Larger Work” means a work which combines Covered Software or portions thereof with

code not governed by the terms of this License.

1.7. “License” means this document.

1.8. “Licensable” means having the right to grant, to the maximum extent possible, whether at the

time of the initial grant or subsequently acquired, any and all of the rights conveyed herein.

1.9. “Modifications” means the Source Code and Executable form of any of the following:

A. Any file that results from an addition to, deletion from or modification of the contents

of a file containing Original Software or previous Modifications;

B. Any new file that contains any part of the Original Software or previous Modification;

or

C. Any new file that is contributed or otherwise made available under the terms of this

License.

1.10. “Original Software” means the Source Code and Executable form of computer software code

that is originally released under this License.

1.11. “Patent Claims” means any patent claim(s), now owned or hereafter acquired, including

without limitation, method, process, and apparatus claims, in any patent Licensable by

grantor.

1.12. “Source Code” means (a) the common form of computer software code in which modifica-

tions are made and (b) associated documentation included in or with such code.

426



Copyright JAXB — JAXB copyright notification 427

1.13. “You” (or “Your”) means an individual or a legal entity exercising rights under, and comply-

ing with all of the terms of, this License. For legal entities, “You” includes any entity which

controls, is controlled by, or is under common control with You. For purposes of this defini-

tion, “control” means (a) the power, direct or indirect, to cause the direction or management

of such entity, whether by contract or otherwise, or (b) ownership of more than fifty percent

(50%) of the outstanding shares or beneficial ownership of such entity.

2. License Grants.

2.1. The Initial Developer Grant.

Conditioned upon Your compliance with Section 3.1 below and subject to third party intel-

lectual property claims, the Initial Developer hereby grants You a world-wide, royalty-free,

non-exclusive license:

(a) under intellectual property rights (other than patent or trademark) Licensable by Initial

Developer, to use, reproduce, modify, display, perform, sublicense and distribute the

Original Software (or portions thereof), with or without Modifications, and/or as part

of a Larger Work; and

(b) under Patent Claims infringed by the making, using or selling of Original Software, to

make, have made, use, practice, sell, and offer for sale, and/or otherwise dispose of the

Original Software (or portions thereof).

(c) The licenses granted in Sections 2.1(a) and (b) are effective on the date Initial Developer

first distributes or otherwisemakes the Original Software available to a third party under

the terms of this License.

(d) Notwithstanding Section 2.1(b) above, no patent license is granted: (1) for code that

You delete from the Original Software, or (2) for infringements caused by: (i) the mod-

ification of the Original Software, or (ii) the combination of the Original Software with

other software or devices.

2.2. Contributor Grant.

Conditioned upon Your compliance with Section 3.1 below and subject to third party in-

tellectual property claims, each Contributor hereby grants You a world-wide, royalty-free,

non-exclusive license:

(a) under intellectual property rights (other than patent or trademark) Licensable by Con-

tributor to use, reproduce, modify, display, perform, sublicense and distribute the Mod-

ifications created by such Contributor (or portions thereof), either on an unmodified

basis, with other Modifications, as Covered Software and/or as part of a Larger Work;

and

(b) under Patent Claims infringed by the making, using, or selling of Modifications made

by that Contributor either alone and/or in combination with its Contributor Version (or

portions of such combination), to make, use, sell, offer for sale, have made, and/or

otherwise dispose of: (1) Modifications made by that Contributor (or portions thereof);

and (2) the combination of Modifications made by that Contributor with its Contributor

Version (or portions of such combination).
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(c) The licenses granted in Sections 2.2(a) and 2.2(b) are effective on the date Contributor

first distributes or otherwise makes the Modifications available to a third party.

(d) Notwithstanding Section 2.2(b) above, no patent license is granted: (1) for any code that

Contributor has deleted from the Contributor Version; (2) for infringements caused by:

(i) third party modifications of Contributor Version, or (ii) the combination of Modifi-

cations made by that Contributor with other software (except as part of the Contributor

Version) or other devices; or (3) under Patent Claims infringed by Covered Software in

the absence of Modifications made by that Contributor.

3. Distribution Obligations.

3.1. Availability of Source Code.

Any Covered Software that You distribute or otherwise make available in Executable form

must also be made available in Source Code form and that Source Code form must be dis-

tributed only under the terms of this License. You must include a copy of this License with

every copy of the Source Code form of the Covered Software You distribute or otherwise

make available. You must inform recipients of any such Covered Software in Executable

form as to how they can obtain such Covered Software in Source Code form in a reasonable

manner on or through a medium customarily used for software exchange.

3.2. Modifications.

The Modifications that You create or to which You contribute are governed by the terms of

this License. You represent thatYou believeYourModifications areYour original creation(s)

and/or You have sufficient rights to grant the rights conveyed by this License.

3.3. Required Notices.

Youmust include a notice in each ofYourModifications that identifiesYou as the Contributor

of the Modification. You may not remove or alter any copyright, patent or trademark notices

contained within the Covered Software, or any notices of licensing or any descriptive text

giving attribution to any Contributor or the Initial Developer.

3.4. Application of Additional Terms.

You may not offer or impose any terms on any Covered Software in Source Code form that

alters or restricts the applicable version of this License or the recipients’ rights hereunder.

You may choose to offer, and to charge a fee for, warranty, support, indemnity or liability

obligations to one or more recipients of Covered Software. However, you may do so only

on Your own behalf, and not on behalf of the Initial Developer or any Contributor. You must

make it absolutely clear that any such warranty, support, indemnity or liability obligation is

offered by You alone, and You hereby agree to indemnify the Initial Developer and every

Contributor for any liability incurred by the Initial Developer or such Contributor as a result

of warranty, support, indemnity or liability terms You offer.

3.5. Distribution of Executable Versions.

You may distribute the Executable form of the Covered Software under the terms of this

License or under the terms of a license of Your choice, which may contain terms different

from this License, provided thatYou are in compliance with the terms of this License and that

the license for the Executable form does not attempt to limit or alter the recipient’s rights in

the Source Code form from the rights set forth in this License. If You distribute the Covered

Software in Executable form under a different license, You must make it absolutely clear

that any terms which differ from this License are offered by You alone, not by the Initial
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Developer or Contributor. You hereby agree to indemnify the Initial Developer and every

Contributor for any liability incurred by the Initial Developer or such Contributor as a result

of any such terms You offer.

3.6. Larger Works.

Youmay create a LargerWork by combining Covered Software with other code not governed

by the terms of this License and distribute the LargerWork as a single product. In such a case,

You must make sure the requirements of this License are fulfilled for the Covered Software.

4. Versions of the License.

4.1. New Versions.

Oracle is the initial license steward and may publish revised and/or new versions of this

License from time to time. Each version will be given a distinguishing version number.

Except as provided in Section 4.3, no one other than the license steward has the right to

modify this License.

4.2. Effect of New Versions.

You may always continue to use, distribute or otherwise make the Covered Software avail-

able under the terms of the version of the License under which You originally received the

Covered Software. If the Initial Developer includes a notice in the Original Software pro-

hibiting it from being distributed or otherwise made available under any subsequent version

of the License, Youmust distribute andmake the Covered Software available under the terms

of the version of the License under which You originally received the Covered Software.

Otherwise, You may also choose to use, distribute or otherwise make the Covered Software

available under the terms of any subsequent version of the License published by the license

steward.

4.3. Modified Versions.

When You are an Initial Developer and You want to create a new license for Your Original

Software, You may create and use a modified version of this License if You: (a) rename the

license and remove any references to the name of the license steward (except to note that the

license differs from this License); and (b) otherwise make it clear that the license contains

terms which differ from this License.

5. DISCLAIMER OFWARRANTY.

COVERED SOFTWARE IS PROVIDED UNDER THIS LICENSE ON AN “AS IS” BA-

SIS, WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, IN-

CLUDING, WITHOUT LIMITATION, WARRANTIES THAT THE COVERED SOFTWARE

IS FREE OF DEFECTS, MERCHANTABLE, FIT FORA PARTICULAR PURPOSE OR NON-

INFRINGING. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE

COVERED SOFTWARE ISWITHYOU. SHOULDANYCOVERED SOFTWARE PROVEDE-

FECTIVE IN ANY RESPECT, YOU (NOT THE INITIAL DEVELOPER OR ANY OTHER

CONTRIBUTOR) ASSUME THE COST OF ANY NECESSARY SERVICING, REPAIR OR

CORRECTION. THIS DISCLAIMER OF WARRANTY CONSTITUTES AN ESSENTIAL

PART OF THIS LICENSE. NO USE OF ANY COVERED SOFTWARE IS AUTHORIZED

HEREUNDER EXCEPT UNDER THIS DISCLAIMER.
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6. TERMINATION.

6.1. This License and the rights granted hereunder will terminate automatically if You fail to

comply with terms herein and fail to cure such breach within 30 days of becoming aware of

the breach. Provisions which, by their nature, must remain in effect beyond the termination

of this License shall survive.

6.2. If You assert a patent infringement claim (excluding declaratory judgment actions) against

Initial Developer or a Contributor (the Initial Developer or Contributor against whom You

assert such claim is referred to as “Participant”) alleging that the Participant Software (mean-

ing the Contributor Version where the Participant is a Contributor or the Original Software

where the Participant is the Initial Developer) directly or indirectly infringes any patent, then

any and all rights granted directly or indirectly to You by such Participant, the Initial Devel-

oper (if the Initial Developer is not the Participant) and all Contributors under Sections 2.1

and/or 2.2 of this License shall, upon 60 days notice from Participant terminate prospec-

tively and automatically at the expiration of such 60 day notice period, unless if within such

60 day periodYou withdrawYour claim with respect to the Participant Software against such

Participant either unilaterally or pursuant to a written agreement with Participant.

6.3. If You assert a patent infringement claim against Participant alleging that the Participant

Software directly or indirectly infringes any patent where such claim is resolved (such as

by license or settlement) prior to the initiation of patent infringement litigation, then the

reasonable value of the licenses granted by such Participant under Sections 2.1 or 2.2 shall

be taken into account in determining the amount or value of any payment or license.

6.4. In the event of termination under Sections 6.1 or 6.2 above, all end user licenses that have

been validly granted by You or any distributor hereunder prior to termination (excluding

licenses granted to You by any distributor) shall survive termination.

7. LIMITATION OF LIABILITY.

UNDER NO CIRCUMSTANCESAND UNDER NO LEGALTHEORY,WHETHER TORT (IN-

CLUDINGNEGLIGENCE), CONTRACT, OROTHERWISE, SHALLYOU, THE INITIALDE-

VELOPER, ANY OTHER CONTRIBUTOR, OR ANY DISTRIBUTOR OF COVERED SOFT-

WARE, OR ANY SUPPLIER OF ANY OF SUCH PARTIES, BE LIABLE TO ANY PER-

SON FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES

OF ANY CHARACTER INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF

GOODWILL, WORK STOPPAGE, COMPUTER FAILURE OR MALFUNCTION, OR ANY

ANDALLOTHERCOMMERCIALDAMAGESORLOSSES, EVEN IF SUCHPARTYSHALL

HAVE BEEN INFORMEDOF THE POSSIBILITYOF SUCHDAMAGES. THIS LIMITATION

OF LIABILITY SHALL NOTAPPLY TO LIABILITY FOR DEATH OR PERSONAL INJURY

RESULTING FROM SUCH PARTY’S NEGLIGENCE TO THE EXTENTAPPLICABLE LAW

PROHIBITS SUCH LIMITATION. SOME JURISDICTIONS DO NOTALLOW THE EXCLU-

SION OR LIMITATION OF INCIDENTALOR CONSEQUENTIALDAMAGES, SO THIS EX-

CLUSIONAND LIMITATION MAYNOTAPPLY TO YOU.
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8. U.S. GOVERNMENT END USERS.

The Covered Software is a “commercial item,” as that term is defined in 48 C.F.R. 2.101

(Oct. 1995), consisting of “commercial computer software” (as that term is defined at 48 C.F.R.

§252.227-7014(a)(1)) and “commercial computer software documentation” as such terms are used

in 48 C.F.R. 12.212 (Sept. 1995). Consistent with 48 C.F.R. 12.212 and 48 C.F.R. 227.7202-1

through 227.7202-4 (June 1995), all U.S. Government End Users acquire Covered Software with

only those rights set forth herein. This U.S. Government Rights clause is in lieu of, and supersedes,

any other FAR, DFAR, or other clause or provision that addresses Government rights in computer

software under this License.

9. MISCELLANEOUS.

This License represents the complete agreement concerning subject matter hereof. If any provi-

sion of this License is held to be unenforceable, such provision shall be reformed only to the extent

necessary to make it enforceable. This License shall be governed by the law of the jurisdiction

specified in a notice contained within the Original Software (except to the extent applicable law, if

any, provides otherwise), excluding such jurisdiction’s conflict-of-law provisions. Any litigation

relating to this License shall be subject to the jurisdiction of the courts located in the jurisdiction

and venue specified in a notice contained within the Original Software, with the losing party re-

sponsible for costs, including, without limitation, court costs and reasonable attorneys’ fees and

expenses. The application of the United Nations Convention on Contracts for the International

Sale of Goods is expressly excluded. Any law or regulation which provides that the language of

a contract shall be construed against the drafter shall not apply to this License. You agree that

You alone are responsible for compliance with the United States export administration regulations

(and the export control laws and regulation of any other countries) when You use, distribute or

otherwise make available any Covered Software.

10. RESPONSIBILITY FOR CLAIMS.

As between Initial Developer and the Contributors, each party is responsible for claims and dam-

ages arising, directly or indirectly, out of its utilization of rights under this License and You agree

to work with Initial Developer and Contributors to distribute such responsibility on an equitable

basis. Nothing herein is intended or shall be deemed to constitute any admission of liability.

Source code
Per Section 3.1 above, the source code for JAXB is publicly available via https://javaee.github.io/jaxb-

v2/.

Also see
[R] copyright — Display copyright information

https://javaee.github.io/jaxb-v2/
https://javaee.github.io/jaxb-v2/
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Description
Stata uses portions of JGoodies Common with the express permission of the authors pursuant to the

following notice:

The BSD License for the JGoodies Common

====================================

Copyright © 2009–2014 JGoodies Software GmbH. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are

permitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of condi-

tions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of

conditions and the following disclaimer in the documentation and/or other materials pro-

vided with the distribution.

• Neither the name of JGoodies Software GmbH nor the names of its contributors may be

used to endorse or promote products derived from this software without specific prior

written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CON-

TRIBUTORS ”AS IS”ANDANYEXPRESS OR IMPLIEDWARRANTIES, INCLUD-

ING, BUTNOTLIMITEDTO,THE IMPLIEDWARRANTIESOFMERCHANTABIL-

ITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO

EVENTSHALLTHECOPYRIGHTOWNERORCONTRIBUTORSBELIABLE FOR

ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSE-

QUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT

OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR

BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF

LIABILITY,WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUD-

ING NEGLIGENCE OR OTHERWISE) ARISING IN ANYWAY OUT OF THE USE

OF THIS SOFTWARE, EVEN IFADVISED OF THE POSSIBILITYOF SUCH DAM-

AGE.

Also see
[R] copyright — Display copyright information
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Description
Stata uses portions of JGoodies Forms with the express permission of the authors pursuant to the

following notice:

The BSD License for the JGoodies Forms

====================================

Copyright © 2002–2014 JGoodies Software GmbH. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are

permitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of condi-

tions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of

conditions and the following disclaimer in the documentation and/or other materials pro-

vided with the distribution.

• Neither the name of JGoodies Software GmbH nor the names of its contributors may be

used to endorse or promote products derived from this software without specific prior

written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CON-

TRIBUTORS ”AS IS”ANDANYEXPRESS OR IMPLIEDWARRANTIES, INCLUD-

ING, BUTNOTLIMITEDTO,THE IMPLIEDWARRANTIESOFMERCHANTABIL-

ITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO

EVENTSHALLTHECOPYRIGHTOWNERORCONTRIBUTORSBELIABLE FOR

ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSE-

QUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT

OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR

BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF

LIABILITY,WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUD-

ING NEGLIGENCE OR OTHERWISE) ARISING IN ANYWAY OUT OF THE USE

OF THIS SOFTWARE, EVEN IFADVISED OF THE POSSIBILITYOF SUCH DAM-

AGE.

Also see
[R] copyright — Display copyright information
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Description
Stata uses portions of JSON for Modern C++ with the express permission of the author pursuant to

the following notice:

© 2013–2021, Niels Lohmann <mail@nlohmann.me>
All Rights Reserved

Permission is hereby granted, free of charge, to any person obtaining a copy of this software

and associated documentation files (the “Software”), to deal in the Software without restric-

tion, including without limitation the rights to use, copy, modify, merge, publish, distribute,

sublicense, and/or sell copies of the Software, and to permit persons to whom the Software

is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or

substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES

OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONIN-

FRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS

BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN

ANACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR

IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN

THE SOFTWARE.

Also see
[R] copyright — Display copyright information
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Description
Stata uses portions of jsoup with the express permission of the authors pursuant to the following

notice:

© 2009–2017, Jonathan Hedley <jonathan@hedley.net>
Permission is hereby granted, free of charge, to any person obtaining a copy of this software

and associated documentation files (the “Software”), to deal in the Software without restric-

tion, including without limitation the rights to use, copy, modify, merge, publish, distribute,

sublicense, and/or sell copies of the Software, and to permit persons to whom the Software

is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or

substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES

OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONIN-

FRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS

BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN

ANACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR

IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN

THE SOFTWARE.

Also see
[R] copyright — Display copyright information
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Description
Stata uses portions of LAPACK, a linear algebra package, with the express permission of the authors

pursuant to the following notice:

Copyright © 1992–2008 The University of Tennessee. All rights reserved.

• Redistributions of source code must retain the above copyright notice, this list of

conditions, and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of

conditions, and the following disclaimer, listed in this license in the documentation

or other materials provided with the distribution or both.

• Neither the names of the copyright holders nor the names of its contributors may be

used to endorse or promote products derived from this software without specific prior

written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CON-

TRIBUTORS “AS IS”ANDANYEXPRESS OR IMPLIEDWARRANTIES, INCLUD-

ING, BUTNOTLIMITEDTO,THE IMPLIEDWARRANTIESOFMERCHANTABIL-

ITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO

EVENTSHALLTHECOPYRIGHTOWNERORCONTRIBUTORSBELIABLE FOR

ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSE-

QUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT

OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR

BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF

LIABILITY,WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUD-

ING NEGLIGENCE OR OTHERWISE) ARISING IN ANYWAY OUT OF THE USE

OF THIS SOFTWARE, EVEN IFADVISED OF THE POSSIBILITYOF SUCH DAM-

AGE.

Also see
[R] copyright — Display copyright information
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Description
Stata uses portions of HARUwith the express permission of the author pursuant to the following notice:

Copyright © 1999–2006 Takeshi Kanno

This software is provided ‘as-is’, without any express or implied warranty.

In no event will the authors be held liable for any damages arising from the use of this

software.

Permission is granted to anyone to use this software for any purpose, including com-

mercial applications, and to alter it and redistribute it freely, subject to the following

restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you

wrote the original software. If you use this software in a product, an acknowledgment

in the product documentation would be appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be misrepre-

sented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Also see
[R] copyright — Display copyright information
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Description Also see

Description
Stata uses portions of libpng with the express permission of the authors.

For the purposes of this acknowledgment, “ContributingAuthors” is as defined by the copyright notice

below.

StataCorp thanks and acknowledges the Contributing Authors of libpng and Group 42, Inc. for pro-

ducing libpng and allowing its use in Stata and other software.

For more information about libpng, visit http://www.libpng.org/.

The full libpng copyright notice is

COPYRIGHT NOTICE, DISCLAIMER, and LICENSE:

If you modify libpng you may insert additional notices immediately following this sen-

tence.

This code is released under the libpng license.

libpng versions 1.2.6, August 15, 2004, through 1.6.16, December 22, 2014, are Copy-

right © 2004, 2006–2014 Glenn Randers-Pehrson, and are distributed according to the

same disclaimer and license as libpng-1.2.5 with the following individual added to the

list of Contributing Authors

Cosmin Truta

libpng versions 1.0.7, July 1, 2000, through 1.2.5 - October 3, 2002, are Copyright ©

2000–2002 Glenn Randers-Pehrson, and are distributed according to the same disclaimer

and license as libpng-1.0.6 with the following individuals added to the list of Contributing

Authors

Simon-Pierre Cadieux

Eric S. Raymond

Gilles Vollant

and with the following additions to the disclaimer:

There is no warranty against interference with your enjoyment of the library or against

infringement. There is no warranty that our efforts or the library will fulfill any of your

particular purposes or needs. This library is provided with all faults, and the entire risk

of satisfactory quality, performance, accuracy, and effort is with the user.
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libpng versions 0.97, January 1998, through 1.0.6, March 20, 2000, are Copyright ©

1998, 1999 Glenn Randers-Pehrson, and are distributed according to the same disclaimer

and license as libpng-0.96, with the following individuals added to the list of Contributing

Authors:

Tom Lane

Glenn Randers-Pehrson

Willem van Schaik

libpng versions 0.89, June 1996, through 0.96, May 1997, are Copyright © 1996, 1997

Andreas Dilger Distributed according to the same disclaimer and license as libpng-0.88,

with the following individuals added to the list of Contributing Authors:

John Bowler

Kevin Bracey

Sam Bushell

Magnus Holmgren

Greg Roelofs

Tom Tanner

libpng versions 0.5, May 1995, through 0.88, January 1996, are Copyright © 1995, 1996

Guy Eric Schalnat, Group 42, Inc.

For the purposes of this copyright and license, “Contributing Authors” is defined as the

following set of individuals:

Andreas Dilger

Dave Martindale

Guy Eric Schalnat

Paul Schmidt

Tim Wegner

The PNGReference Library is supplied “AS IS”. The ContributingAuthors and Group 42,

Inc. disclaim all warranties, expressed or implied, including, without limitation, the war-

ranties of merchantability and of fitness for any purpose. The Contributing Authors and

Group 42, Inc. assume no liability for direct, indirect, incidental, special, exemplary, or

consequential damages, which may result from the use of the PNG Reference Library,

even if advised of the possibility of such damage.

Permission is hereby granted to use, copy, modify, and distribute this source code, or

portions hereof, for any purpose, without fee, subject to the following restrictions:

1. The origin of this source code must not be misrepresented.

2. Altered versions must be plainly marked as such and must not be misrepresented as

being the original source.

3. This Copyright noticemay not be removed or altered from any source or altered source

distribution.
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The Contributing Authors and Group 42, Inc. specifically permit, without fee, and en-

courage the use of this source code as a component to supporting the PNG file format in

commercial products. If you use this source code in a product, acknowledgment is not

required but would be appreciated.

Also see
[R] copyright — Display copyright information
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Description
Stata uses portions of Mersenne Twister with the express permission of the author, pursuant to the

following notice:

Commercial Use of Mersenne Twister

2001/4/6

Until 2001/4/6, MT had been distributed under GNU Public License, but after 2001/4/6,

we decided to let MT be used for any purpose, including commercial use. 2002-versions

mt19937ar.c, mt19937ar-cok.c are considered to be usable freely.

Copyright © 2004, Makoto Matsumoto and Takuji Nishimura, All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are

permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of

conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list

of conditions and the following disclaimer in the documentation and/or other materials

provided with the distribution.

3. The names of its contributors may not be used to endorse or promote products derived

from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CON-

TRIBUTORS ”AS IS”ANDANYEXPRESS OR IMPLIEDWARRANTIES, INCLUD-

ING, BUTNOTLIMITEDTO,THE IMPLIEDWARRANTIESOFMERCHANTABIL-

ITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO

EVENTSHALLTHECOPYRIGHTOWNERORCONTRIBUTORSBELIABLE FOR

ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSE-

QUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT

OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR

BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF

LIABILITY,WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUD-

ING NEGLIGENCE OR OTHERWISE) ARISING IN ANYWAY OUT OF THE USE

OF THIS SOFTWARE, EVEN IFADVISED OF THE POSSIBILITYOF SUCH DAM-

AGE.

Also see
[R] copyright — Display copyright information
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Description
Stata uses portions ofMiG Layout with the express permission of the author, pursuant to the following

notice:

Copyright (c) 2004, Mikael Grev, MiG InfoCom AB. (miglayout (at) miginfocom (dot)

com) All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are

permitted provided that the following conditions are met: Redistributions of source code

must retain the above copyright notice, this list of conditions and the following disclaimer.

Redistributions in binary formmust reproduce the above copyright notice, this list of con-

ditions and the following disclaimer in the documentation and/or other materials provided

with the distribution. Neither the name of the MiG InfoComAB nor the names of its con-

tributors may be used to endorse or promote products derived from this software without

specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CON-

TRIBUTORS “AS IS”ANDANYEXPRESS OR IMPLIEDWARRANTIES, INCLUD-

ING, BUTNOTLIMITEDTO,THE IMPLIEDWARRANTIESOFMERCHANTABIL-

ITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO

EVENTSHALLTHECOPYRIGHTOWNERORCONTRIBUTORSBELIABLE FOR

ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSE-

QUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT

OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR

BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF

LIABILITY,WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUD-

ING NEGLIGENCE OR OTHERWISE) ARISING IN ANYWAY OUT OF THE USE

OF THIS SOFTWARE, EVEN IFADVISED OF THE POSSIBILITYOF SUCH DAM-

AGE.

Also see
[R] copyright — Display copyright information
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Description
Stata uses portions of Parsington with the express permission of the authors pursuant to the following

notice:

Copyright © 2015–2019, Board of Regents of the University of Wisconsin–Madison. All

rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permit-

ted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of condi-

tions and the following disclaimer.

2. Redistributions in binary formmust reproduce the above copyright notice, this list of con-

ditions and the following disclaimer in the documentation and/or other materials provided

with the distribution.

THIS SOFTWARE IS PROVIDED BYTHE COPYRIGHTHOLDERSANDCONTRIBU-

TORS “AS IS” ANDANY EXPRESS OR IMPLIEDWARRANTIES, INCLUDING, BUT

NOTLIMITEDTO, THE IMPLIEDWARRANTIESOFMERCHANTABILITYANDFIT-

NESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL

THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,

INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAM-

AGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE

GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTER-

RUPTION) HOWEVER CAUSEDAND ONANYTHEORYOF LIABILITY,WHETHER

IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR

OTHERWISE)ARISING INANYWAYOUTOFTHEUSEOFTHIS SOFTWARE, EVEN

IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Also see
[R] copyright — Display copyright information
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Description
Stata uses portions of the PolyHook library with the express permission of the author under the MIT

License pursuant to the following notice:

MIT License

Copyright © 2018 Stephen Eckels

Permission is hereby granted, free of charge, to any person obtaining a copy of this software

and associated documentation files (the ”Software”), to deal in the Software without restric-

tion, including without limitation the rights to use, copy, modify, merge, publish, distribute,

sublicense, and/or sell copies of the Software, and to permit persons to whom the Software

is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or

substantial portions of the Software.

THE SOFTWARE IS PROVIDED ”AS IS”, WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES

OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONIN-

FRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS

BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN

ANACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR

IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN

THE SOFTWARE.

Also see
[R] copyright — Display copyright information
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Description
Stata uses portions of ReadStat with the express permission of the author, pursuant to the following

notice:

Copyright © 2013–2016 Evan Miller (except where otherwise noted)

Permission is hereby granted, free of charge, to any person obtaining a copy of this software

and associated documentation files (the “Software”), to deal in the Software without restric-

tion, including without limitation the rights to use, copy, modify, merge, publish, distribute,

sublicense, and/or sell copies of the Software, and to permit persons to whom the Software

is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or

substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES

OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONIN-

FRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS

BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN

ANACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR

IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN

THE SOFTWARE.

Also see
[R] copyright — Display copyright information
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Description
Stata uses portions of Scintilla with the express permission of the author, pursuant to the following

notice:

Copyright © 1998–2002 by Neil Hodgson <neilh@scintilla.org>
All Rights Reserved

Permission to use, copy, modify, and distribute this software and its documentation for

any purpose and without fee is hereby granted, provided that the above copyright notice

appear in all copies and that both that copyright notice and this permission notice appear

in supporting documentation.

NEIL HODGSON DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS

SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABIL-

ITY AND FITNESS, IN NO EVENT SHALL NEIL HODGSON BE LIABLE FOR

ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAM-

AGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,

WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TOR-

TIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR

PERFORMANCE OF THIS SOFTWARE.

Also see
[R] copyright — Display copyright information
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Description
Stata uses portions of slf4j with the express permission of the authors pursuant to the following notice:

Copyright © 2004–2008 QOS.ch

All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software

and associated documentation files (the “Software”), to deal in the Software without restric-

tion, including without limitation the rights to use, copy, modify, merge, publish, distribute,

sublicense, and/or sell copies of the Software, and to permit persons to whom the Software

is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or

substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES

OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONIN-

FRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS

BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN

ANACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR

IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN

THE SOFTWARE.

Also see
[R] copyright — Display copyright information
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Description Also see

Description
Stata uses portions of ttf2pt1 to convert TrueType fonts to PostScript fonts, with express permission

of the authors, pursuant to the following notice:

Copyright © 1997–2003 by the AUTHORS:

Andrew Weeks <ccsaw@bath.ac.uk>
Frank M. Siegert <fms@this.net>
Mark Heath <mheath@netspace.net.au>
Thomas Henlich <thenlich@rcs.urz.tu-dresden.de>
Sergey Babkin <babkin@users.sourceforge.net>, <sab123@hotmail.com>
Turgut Uyar <uyar@cs.itu.edu.tr>
Rihardas Hepas <rch@WriteMe.Com>
Szalay Tamas <tomek@elender.hu>
Johan Vromans <jvromans@squirrel.nl>
Petr Titera <P.Titera@sh.cvut.cz>
Lei Wang <lwang@amath8.amt.ac.cn>
Chen Xiangyang <chenxy@sun.ihep.ac.cn>
Zvezdan Petkovic <z.petkovic@computer.org>
Rigel <rigel863@yahoo.com>

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided

that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the

following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and

the following disclaimer in the documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must display the following ac-

knowledgment: This product includes software developed by the TTF2PT1 Project and its contributors.
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THIS SOFTWARE IS PROVIDED BYTHEAUTHORSAND CONTRIBUTORS “AS IS” ANDANY

EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE FOR

ANYDIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIALDAM-

AGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

CAUSED AND ONANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABIL-

ITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANYWAY OUT OF

THE USE OF THIS SOFTWARE, EVEN IFADVISED OF THE POSSIBILITYOF SUCH DAMAGE.

Also see
[R] copyright — Display copyright information
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Description
Stata uses portions of the Win32 Dark Mode library with the express permission of the author under

the MIT License pursuant to the following notice:

MIT License

Copyright © 2019 Richard Yu

Permission is hereby granted, free of charge, to any person obtaining a copy of this software

and associated documentation files (the “Software”), to deal in the Software without restric-

tion, including without limitation the rights to use, copy, modify, merge, publish, distribute,

sublicense, and/or sell copies of the Software, and to permit persons to whom the Software

is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or

substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES

OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONIN-

FRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS

BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN

ANACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR

IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN

THE SOFTWARE.

Also see
[R] copyright — Display copyright information
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Description
Stata uses portions of zlib with the express permission of the authors.

StataCorp thanks and acknowledges the authors of zlib, Jean-loup Gailly and MarkAdler, for produc-

ing zlib and allowing its use in Stata and other software.

For more information about zlib, visit http://www.zlib.net/.

The full zlib copyright notice is

Copyright © 1995–2013 Jean-loup Gailly and Mark Adler

This software is provided ’as-is’, without any express or implied warranty. In no event

will the authors be held liable for any damages arising from the use of this software.

Permission is granted to anyone to use this software for any purpose, including com-

mercial applications, and to alter it and redistribute it freely, subject to the following

restrictions:

1. The origin of this software must not be misrepresented; youmust not claim that you wrote

the original software. If you use this software in a product, an acknowledgment in the

product documentation would be appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be misrepresented

as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly

Mark Adler

Also see
[R] copyright — Display copyright information
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correlate — Correlations of variables

Description Quick start Menu Syntax
Options for correlate Options for pwcorr Remarks and examples Stored results
Methods and formulas References Also see

Description
The correlate command displays the correlation matrix or covariance matrix for a group of vari-

ables. If varlist is not specified, the matrix is displayed for all variables in the dataset.

pwcorr displays all the pairwise correlation coefficients between the variables in varlist or, if varlist
is not specified, all the variables in the dataset.

Quick start
Correlation matrix for variables v1, v2, and v3

correlate v1 v2 v3

Same as above, but display covariances instead of correlations

correlate v1 v2 v3, covariance

Pairwise correlation coefficients between v1, v2, and v3
pwcorr v1 v2 v3

Also print significance level of each correlation coefficient

pwcorr v1 v2 v3, sig

Same as above, but star correlation coefficients significant at the 5% level

pwcorr v1 v2 v3, sig star(.05)

Same as above, but use Bonferroni-adjusted significance levels

pwcorr v1 v2 v3, sig star(.05) bonferroni

Menu
correlate
Statistics > Summaries, tables, and tests > Summary and descriptive statistics > Correlations and covariances

pwcorr
Statistics > Summaries, tables, and tests > Summary and descriptive statistics > Pairwise correlations
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Syntax
Display correlation matrix or covariance matrix

correlate [ varlist ] [ if ] [ in ] [weight ] [ , correlate options ]

Display all pairwise correlation coefficients

pwcorr [ varlist ] [ if ] [ in ] [weight ] [ , pwcorr options ]

correlate options Description

Options

means display means, standard deviations, minimums, and
maximums with matrix

noformat ignore display format associated with variables

covariance display covariances

wrap allow wide matrices to wrap

pwcorr options Description

Main

obs print number of observations for each entry

sig print significance level for each entry

listwise use listwise deletion to handle missing values

casewise synonym for listwise
print(#) significance level for displaying coefficients

star(#) significance level for displaying with a star

bonferroni use Bonferroni-adjusted significance level

sidak use Šidák-adjusted significance level

varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.

by and collect are allowed with correlate and pwcorr; see [U] 11.1.10 Prefix commands.

aweights and fweights are allowed; see [U] 11.1.6 weight.

Options for correlate

� � �
Options �

means displays summary statistics (means, standard deviations, minimums, and maximums) with the

matrix.

noformat displays the summary statistics requested by the means option in g format, regardless of the
display formats associated with the variables.

covariance displays the covariances rather than the correlation coefficients.

wrap requests that no action be taken on wide correlation matrices to make them readable. It prevents

Stata from breaking wide matrices into pieces to enhance readability. You might want to specify this

option if you are displaying results in a window wider than 80 characters. Then you may need to set
linesize to however many characters you can display across a line; see [R] log.
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Options for pwcorr

� � �
Main �

obs adds a line to each row of the matrix reporting the number of observations used to calculate the

correlation coefficient.

sig adds a line to each row of the matrix reporting the significance level of each correlation coefficient.

listwise handles missing values through listwise deletion, meaning that the entire observation is omit-
ted from the estimation sample if any of the variables in varlist is missing for that observation. By

default, pwcorr handles missing values by pairwise deletion; all available observations are used to
calculate each pairwise correlation without regard to whether variables outside that pair are missing.

correlate uses listwise deletion. Thus, listwise allows users of pwcorr to mimic correlate’s
treatment of missing values while retaining access to pwcorr’s features.

casewise is a synonym for listwise.

print(#) specifies the significance level of correlation coefficients to be printed. Correlation coeffi-
cients with larger significance levels are left blank in the matrix. Typing pwcorr, print(.10)would
list only correlation coefficients significant at the 10% level or better.

star(#) specifies the significance level of correlation coefficients to be starred. Typing pwcorr,
star(.05) would star all correlation coefficients significant at the 5% level or better.

bonferroni makes the Bonferroni adjustment to calculated significance levels. This option affects

printed significance levels and the print() and star() options. Thus, pwcorr, print(.05)
bonferroni prints coefficients with Bonferroni-adjusted significance levels of 0.05 or less.

sidak makes the Šidák adjustment to calculated significance levels. This option affects printed sig-

nificance levels and the print() and star() options. Thus, pwcorr, print(.05) sidak prints

coefficients with Šidák-adjusted significance levels of 0.05 or less.

Remarks and examples
Remarks are presented under the following headings:

correlate
pwcorr
Video example

correlate
Typing correlate by itself produces a correlation matrix for all variables in the dataset. If you

specify the varlist, a correlation matrix for just those variables is displayed.
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Example 1
We have state data on demographic characteristics of the population. To obtain a correlation matrix,

we type

. use https://www.stata-press.com/data/r18/census13
(1980 Census data by state)
. correlate
(obs=50)

state brate pop medage division region mrgrate

state 1.0000
brate 0.0208 1.0000

pop -0.0540 -0.2830 1.0000
medage -0.0624 -0.8800 0.3294 1.0000

division -0.1345 0.6356 -0.1081 -0.5207 1.0000
region -0.1339 0.6086 -0.1515 -0.5292 0.9688 1.0000

mrgrate 0.0509 0.0677 -0.1502 -0.0177 0.2280 0.2490 1.0000
dvcrate -0.0655 0.3508 -0.2064 -0.2229 0.5522 0.5682 0.7700
medagesq -0.0621 -0.8609 0.3324 0.9984 -0.5162 -0.5239 -0.0202

dvcrate medagesq

dvcrate 1.0000
medagesq -0.2192 1.0000

Because we did not specify the wrap option, Stata did its best to make the result readable by breaking
the table into two parts.

To obtain the correlations between mrgrate, dvcrate, and medage, we type

. correlate mrgrate dvcrate medage
(obs=50)

mrgrate dvcrate medage

mrgrate 1.0000
dvcrate 0.7700 1.0000
medage -0.0177 -0.2229 1.0000

Example 2
The pop variable in example 1 represents the total population of the state. Thus, to obtain population-

weighted correlations among mrgrate, dvcrate, and medage, we type

. correlate mrgrate dvcrate medage [w=pop]
(analytic weights assumed)
(sum of wgt is 225,907,472)
(obs=50)

mrgrate dvcrate medage

mrgrate 1.0000
dvcrate 0.5854 1.0000
medage -0.1316 -0.2833 1.0000
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With the covariance option, correlate can be used to obtain covariance matrices, as well as cor-
relation matrices, for both weighted and unweighted data.

Example 3
To obtain the matrix of covariances between mrgrate, dvcrate, and medage, we type correlate

mrgrate dvcrate medage, covariance:

. correlate mrgrate dvcrate medage, covariance
(obs=50)

mrgrate dvcrate medage

mrgrate .000662
dvcrate .000063 1.0e-05
medage -.000769 -.001191 2.86775

We could have obtained the pop-weighted covariancematrix by typing correlate mrgrate dvcrate
medage [w=pop], covariance.

pwcorr
correlate calculates correlation coefficients by using casewise deletion; when you request correla-

tions of variables 𝑥1, 𝑥2, . . . , 𝑥𝑘, any observation for which any of 𝑥1, 𝑥2, . . . , 𝑥𝑘 is missing is not used.

Thus if 𝑥3 and 𝑥4 have no missing values, but 𝑥2 is missing for half the data, the correlation between

𝑥3 and 𝑥4 is calculated using only the half of the data for which 𝑥2 is not missing. Of course, you can

obtain the correlation between 𝑥3 and 𝑥4 by using all the data by typing correlate 𝑥3 𝑥4.

pwcorr makes obtaining such pairwise correlation coefficients easier.

Example 4
Using auto.dta, we investigate the correlation between several of the variables.

. use https://www.stata-press.com/data/r18/auto1
(Automobile models)
. pwcorr mpg price rep78 foreign, obs sig

mpg price rep78 foreign

mpg 1.0000

74

price -0.4594 1.0000
0.0000

74 74

rep78 0.3739 0.0066 1.0000
0.0016 0.9574

69 69 69

foreign 0.3613 0.0487 0.5922 1.0000
0.0016 0.6802 0.0000

74 74 69 74
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. pwcorr mpg price headroom rear_seat trunk rep78 foreign, print(.05) star(.01)
mpg price headroom rear_s~t trunk rep78 foreign

mpg 1.0000
price -0.4594* 1.0000

headroom -0.4220* 1.0000
rear_seat -0.5213* 0.4194* 0.5238* 1.0000

trunk -0.5703* 0.3143* 0.6620* 0.6480* 1.0000
rep78 0.3739* 1.0000

foreign 0.3613* -0.2939 -0.2409 -0.3594* 0.5922* 1.0000
. pwcorr mpg price headroom rear_seat trunk rep78 foreign, print(.05) bon

mpg price headroom rear_s~t trunk rep78 foreign

mpg 1.0000
price -0.4594 1.0000

headroom -0.4220 1.0000
rear_seat -0.5213 0.4194 0.5238 1.0000

trunk -0.5703 0.6620 0.6480 1.0000
rep78 0.3739 1.0000

foreign 0.3613 -0.3594 0.5922 1.0000

Technical note
The correlate command will report the correlation matrix of the data, but there are occasions when

you need the matrix stored as a Stata matrix so that you can further manipulate it. You can obtain the

matrix by typing

. matrix accum R = varlist, noconstant deviations

. matrix R = corr(R)

The first line places the cross-product matrix of the data in matrix R. The second line converts that to a
correlation matrix. Also see [P] matrix define and [P] matrix accum.

Video example
Pearson’s correlation coefficient in Stata

Stored results
correlate stores the following in r():

Scalars

r(N) number of observations

r(rho) 𝜌 (first and second variables)

r(cov 12) covariance (covariance only)
r(Var 1) variance of first variable (covariance only)
r(Var 2) variance of second variable (covariance only)
r(sum w) sum of weights

Matrices

r(C) correlation or covariance matrix

https://www.youtube.com/watch?v=o7ko844ff-g
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pwcorr stores the following in r():

Scalars

r(N) number of observations (first and second variables)

r(rho) 𝜌 (first and second variables)

Matrices

r(Nobs) number of observations for each correlation coefficient

r(C) pairwise correlation matrix

r(sig) significance level of each correlation coefficient

Methods and formulas
For a discussion of correlation, see, for instance, Snedecor and Cochran (1989, 177–195); for an

introductory explanation using Stata examples, see Acock (2023, 205–210).

According to Snedecor and Cochran (1989, 180), the term “co-relation” was first proposed by Galton

(1888). The product-moment correlation coefficient is often called the Pearson product-moment corre-

lation coefficient because Pearson (1896) and Pearson and Filon (1898) were partially responsible for

popularizing its use. See Stigler (1986) for information on the history of correlation.

The estimate of the product-moment correlation coefficient, 𝜌, is

̂𝜌 =
∑𝑛

𝑖=1 𝑤𝑖(𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦)

√∑𝑛
𝑖=1 𝑤𝑖(𝑥𝑖 − 𝑥)2√∑𝑛

𝑖=1 𝑤𝑖(𝑦𝑖 − 𝑦)2

where 𝑤𝑖 are the weights, if specified, or 𝑤𝑖 = 1 if weights are not specified. 𝑥 = (∑ 𝑤𝑖𝑥𝑖)/(∑ 𝑤𝑖) is
the mean of 𝑥, and 𝑦 is similarly defined.

The unadjusted significance level is calculated by pwcorr as

𝑝 = 2 ∗ ttail(𝑛 − 2, | ̂𝜌|
√

𝑛 − 2 /√1 − ̂𝜌2 )

Let 𝑣 be the number of variables specified so that 𝑘 = 𝑣(𝑣 − 1)/2 correlation coefficients are to be
estimated. If bonferroni is specified, the adjusted significance level is 𝑝′ = min(1, 𝑘𝑝). If sidak is
specified, 𝑝′ = min{1, 1 − (1 − 𝑝)𝑘}. In both cases, see Methods and formulas in [R] oneway for a

more complete description of the logic behind these adjustments.



correlate — Correlations of variables 459

� �
Carlo Emilio Bonferroni (1892–1960) was born in Bergamo, Italy, in 1892. Before enrolling in

the mathematics department at the University of Turin, he studied conducting and the piano at the

Music Conservatory of Turin. Bonferroni, like many men of his generation, fought in World War I,

during which he was part of The Engineer Corps of the Italian Army.

After the war, Bonferroni was appointed as an assistant professor at the Polytechnic University of

Turin. He taught geometry, mechanics, and analysis. In 1923, he moved to Bari and began teaching

at the Economics Institute, where he got to teach financial mathematics, a topic that was of great

interest to him. In 1933, Bonferroni moved to Florence, where he was chair of the mathematics

department until his death in 1960.

Bonferroni’s interests had a large breadth. He published on actuarial mathematics, probability,

statistics, analysis, geometry, and mechanics. His work on probability inequalities has been ap-

plied to simultaneous statistical inference. However, the application of Bonferroni’s theory to the

construction of confidence intervals is the work of Olive Jean Dunn.

Olive Jean Dunn (1915–2008) was born in the United States in 1915. She obtained her bachelor’s

degree in 1936, her master’s degree in 1951, and her PhD in 1956, all from the University of Califor-

nia in Los Angeles (UCLA). After spending one year as an assistant professor at Iowa State College,

she returned to UCLA to serve in the biostatistics and preventive medicine and health departments.

She remained at UCLA for the rest of her career. Dunn died in 2008.

Dunn is best known for her application of Bonferroni’s inequalities to construct corrections to con-

fidence intervals for multiple comparisons. Although the literature refers to it as the Bonferroni

correction, it is Dunn who developed the application we use today.

Dunn is also well known for her textbooks Basic Statistics: A Primer for the Biomedical Sciences,

written in 1977 with later editions coauthored with Virginia A. Clark, and Applied Statistics: An

Analysis of Variance and Regression, which was also coauthored with Clark.

In 1968, Dunn became a Fellow of the American Statistical Association. She also was a fellow

of the American Public Health Association and the American Association for the Advancement of

Science. In 1974, she was awarded the honor of UCLAWoman of Science.� �

https://www.stata.com/giftshop/bookmarks/series9/cebonferroni/
https://www.stata.com/giftshop/bookmarks/series9/ojdunn/


correlate — Correlations of variables 460

� �
Florence Nightingale David (1909–1993) was born in Ivington, England, to parents who were

friends with Florence Nightingale, David’s namesake. She began her studies in statistics under

the direction of Karl Pearson at University College London and continued her studies under the di-

rection of Jerzy Neyman. After receiving her doctorate in statistics in 1938, David became a senior

statistician for various departments within the British military. She developed statistical models to

forecast the toll on life and infrastructure that would occur if a large city were bombed. In 1938,

she also published her book Tables of the Correlation Coefficient, dealing with the distributions

of correlation coefficients. After the war, she returned to University College London, serving as

a lecturer until her promotion to professor in 1962. In 1967, David joined the University of Cal-

ifornia–Riverside, eventually becoming chair of the Department of Statistics. One of her most

well-known works is the book Games, Gods and Gambling: The Origins and History of Probability

and Statistical Ideas from the Earliest Times to the Newtonian Era, a history of statistics. David

published over 100 papers on topics including combinatorics, symmetric functions, the history of

statistics, and applications of statistics, including ecological diversity. She published under the name

F. N. David to avoid revealing her gender in a male-dominated profession.

Karl Pearson (1857–1936) studied mathematics at Cambridge. He was professor of applied math-

ematics (1884–1911) and eugenics (1911–1933) at University College London. His publications

include literary, historical, philosophical, and religious topics. Statistics became his main interest

in the early 1890s after he learned about its application to biological problems. His work centered

on distribution theory, the method of moments, correlation, and regression. Pearson introduced the

𝜒2 test and the terms coefficient of variation, contingency table, heteroskedastic, histogram, ho-

moskedastic, kurtosis, mode, random sampling, random walk, skewness, standard deviation, and

truncation. Despite many strong qualities, he also fell into prolonged disagreements with others,

most notably, William Bateson and R. A. Fisher.

Zbyněk Šidák (1933–1999) was a notable Czech statistician and probabilist. He worked onMarkov

chains, rank tests, multivariate distribution theory and multiple-comparison methods, and he served

as the chief editor of Applications of Mathematics.� �
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cpoisson — Censored Poisson regression

Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas References Also see

Description
cpoisson fits a Poisson model of a count dependent variable with some censored values. The com-

mand can be used when the dependent variable is left-censored (has a lower limit), is right-censored (has

an upper limit), or is interval-censored (has a lower and an upper limit).

Quick start
Censored Poisson regression of y on x without options ll() and ul(), equivalent to Poisson regression

cpoisson y x

Add categorical variable a using factor-variable syntax, and specify censoring at an upper limit of 4
cpoisson y x i.a, ul(4)

Also specify a lower-censoring limit that varies across observations by using the variable lower
cpoisson y x i.a, ul(4) ll(lower)

Add offset variable v, and report results as incidence-rate ratios
cpoisson y x i.a, ul(4) ll(lower) offset(v) irr

Constrain the coefficient for x to 2
constraint define 1 x=2
cpoisson y x i.a, ul(4) constraints(1)

Menu
Statistics > Count outcomes > Censored Poisson regression

462
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Syntax
cpoisson depvar [ indepvars ] [ if ] [ in ] [weight ] [ , options ]

options Description

Model

noconstant suppress constant term

ll[(varname | #)] left-censoring variable or limit

ul[(varname | #)] right-censoring variable or limit

exposure(varname𝑒) include ln(varname𝑒) in model with coefficient constrained to 1

offset(varname𝑜) include varname𝑜 in model with coefficient constrained to 1

constraints(constraints) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)
irr report incidence-rate ratios

nocnsreport do not display constraints

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

collinear keep collinear variables

coeflegend display legend instead of statistics

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.

bootstrap, by, collect, fp, jackknife, rolling, statsby, and svy are allowed; see [U] 11.1.10 Prefix commands.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
collinear and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

noconstant; see [R] Estimation options.

ll[(varname | #)] and ul[(varname | #)] indicate the lower and upper limits for censoring, respec-

tively. Observations with depvar≤ ll() are left-censored; observations with depvar≥ ul() are

right-censored; and remaining observations are not censored. You do not have to specify the cen-

soring values. If you specify ll, the lower limit is the minimum of depvar. If you specify ul, the
upper limit is the maximum of depvar.

exposure(varname𝑒), offset(varname𝑜), constraints(constraints); see [R] Estimation options.
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� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), that al-
low for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods

(bootstrap, jackknife); see [R] vce option.

� � �
Reporting �

level(#); see [R] Estimation options.

irr reports estimated coefficients transformed to incidence-rate ratios, that is, 𝑒𝛽𝑖 rather than 𝛽𝑖. Stan-

dard errors and confidence intervals are similarly transformed. This option affects how results are

displayed, not how they are estimated. irr may be specified at estimation or when replaying previ-
ously estimated results.

nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. These options are

seldom used.

The following options are available with cpoisson but are not shown in the dialog box:

collinear, coeflegend; see [R] Estimation options.

Remarks and examples
Censored Poisson regression is a method for analyzing censored count data. One of the most common

sources of censored count data is top coding, data that record only the value 𝑥 when 𝑥 or greater is

observed. Not observing subjects for a sufficient period of time is another common cause.

Censored count data models have been studied by Terza (1985) and Brännäs (1992), among oth-

ers. For an introduction to censored Poisson regression, see Cameron and Trivedi (2005, 2013) and

Winkelmann (2008). Raciborski (2011) discusses a command for right-censored Poisson regression and

presented Monte Carlo results indicating that the estimator performs well in finite samples. See Creel

and Loomis (1990) and Gurmu and Trivedi (1996) for some examples of survey applications with top

coding.

Censored data can be right-censored, left-censored, or interval-censored. Right-censoring occurs

when we observe the covariates but only observe that the dependent variable is greater than or equal

to an upper limit. Left-censoring occurs when we observe the covariates but only observe that the de-

pendent variable is less than or equal to a lower limit.

When the dependent variable is censored, we must use estimation methods that account for this lim-

itation. If we do not account for censoring when our data are censored, our estimates will not converge

to the true values. More formally, failure to control for censoring when it exists leads to inconsistent

parameter estimation.
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Censored Poisson regression provides an alternative to standard Poisson regression that produces

consistent estimates when the dependent variable is censored. If the dependent variable is not censored,

standard Poisson regression may be more appropriate; see [R] poisson.

Censoring differs from truncation. For censored observations, we observe complete covariate infor-

mation but only a censored value of the dependent variable. When the data are truncated, we do not

observe either the dependent variable or the covariates. Different research designs can give rise to cen-

sored data or truncated data.

For example, consider a study about the use of national parks. We could ask a random sample of

people in the population how many national parks each has visited in the past year. Suppose we decide

to record three for those individuals who visited three or more parks. In this case, individuals who visit

four or more parks will have observations that are right-censored at three visits. Now suppose that instead

of sending out surveys to a random sample from the population, we ask questions only of individuals

who come to parks. We will have no information about individuals who do not visit at least one park,

and the data will be truncated at zero visits.

Censoring and truncation are different statistical phenomenon and require different analytic methods.

See [R] tpoisson for information on truncated Poisson regression.

Example 1: Poisson model with top-coded data
Imagine that we have collected survey data about how many times a household has visited the ABC

amusement park from a random sample of households in the state in whichABC is located. Respondents

were asked about the number of visits to the park in the last year (trips), their income (income), and
the number of children in the household (children). The number of trips recorded in trips was top
coded at “three or more” visits.

We model right-censored trips as a function of income and children.

. use https://www.stata-press.com/data/r18/trips
(Visits to the ABC amusement park)
. cpoisson trips income children, ul(3)
Initial: Log likelihood = -620.68749
Rescale: Log likelihood = -620.68749
Iteration 0: Log likelihood = -620.68749
Iteration 1: Log likelihood = -600.96763
Iteration 2: Log likelihood = -600.78416
Iteration 3: Log likelihood = -600.78415
Censored Poisson regression Number of obs = 500

Uncensored = 278
Limits: Lower = 0 Left-censored = 0

Upper = 3 Right-censored = 222
LR chi2(2) = 49.29

Log likelihood = -600.78415 Prob > chi2 = 0.0000

trips Coefficient Std. err. z P>|z| [95% conf. interval]

income .0740477 .0137653 5.38 0.000 .0470683 .1010272
children .1346922 .028617 4.71 0.000 .078604 .1907805

_cons .0033918 .1455473 0.02 0.981 -.2818756 .2886592
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Both income and the number of children have positive effects on the expected number of trips to the

amusement park. The estimated parameters provide the sign, but not the magnitude of the effect, because

the model is nonlinear; see [R] cpoisson postestimation.

Stored results
cpoisson stores the following in e():

Scalars

e(N) number of observations

e(N unc) number of uncensored observations

e(N lc) number of left-censored observations

e(N rc) number of right-censored observations

e(k) number of parameters

e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test

e(k dv) number of dependent variables

e(df m) model degrees of freedom

e(ll) log likelihood

e(ll 0) log likelihood, constant-only model

e(N clust) number of clusters

e(chi2) 𝜒2

e(p) 𝑝-value for model test
e(rank) rank of e(V)
e(ic) number of iterations

e(rc) return code

e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) cpoisson
e(cmdline) command as typed

e(depvar) name of dependent variable

e(llopt) contents of ll(), if specified
e(ulopt) contents of ul(), if specified
e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(clustvar) name of cluster variable

e(offset) linear offset variable

e(chi2type) Wald or LR; type of model 𝜒2 test

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(opt) type of optimization

e(which) max or min; whether optimizer is to perform maximization or minimization

e(ml method) type of ml method
e(user) name of likelihood-evaluator program

e(technique) maximization technique

e(properties) b V
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(ilog) iteration log (up to 20 iterations)
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e(gradient) gradient vector

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas
We let 𝑦𝑗 be the observed, interval-censored dependent variable for observation 𝑗 and let 𝑦∗

𝑗 be the

uncensored, latent dependent variable. When 𝑦𝑗 is not censored, it is the same as 𝑦∗
𝑗 . When 𝑦𝑗 is censored,

only the censoring point is observed. Letting 𝐿𝑗 denote the left-censoring point (lower limit) and 𝑈𝑗
denote the right-censoring point (upper limit), we see that

𝑦𝑗 =
⎧{
⎨{⎩

𝐿𝑗 if 𝑦∗
𝑗 ≤ 𝐿𝑗

𝑦∗
𝑗 if 𝐿𝑗 < 𝑦∗

𝑗 < 𝑈𝑗
𝑈𝑗 if 𝑦∗

𝑗 ≥ 𝑈𝑗

Note that 𝐿𝑗 and 𝑈𝑗 may vary over the observations so that individuals may have different left- and

right-censoring points.

Although cpoisson may be used with data that are left-censored, right-censored, or censored from
both sides (which is known as interval-censored), we present the formulas for the interval-censored case

because it applies to all three cases.

Let 𝑓(𝑦𝑗|x𝑗) denote the probability mass function of the Poisson distribution. Defining 𝜉𝑗 = x𝑗β +
offset𝑗 implies that the conditional mean of the uncensored variable is given by 𝐸(𝑦∗

𝑗 |x𝑗) = exp(𝜉𝑗).
The log likelihood for observation 𝑗 is given by

𝑙𝑗 = 𝑤𝑗 [𝑑𝑗{− exp(𝜉𝑗) + 𝑦𝑗𝜉𝑗 − ln(𝑦𝑗!)} + (1 − 𝑑𝑗) ln{1 −
𝑈𝑗−1

∑
𝑘=0

𝑓(𝑘|x𝑗) +
𝐿𝑗

∑
𝑘=0

𝑓(𝑘|x𝑗)}]

where 𝑑𝑗 equals 1 when 𝐿𝑗 < 𝑦∗
𝑗 < 𝑈𝑗 and equals 0 when 𝑦∗

𝑗 ≤ 𝐿𝑗 or 𝑦∗
𝑗 ≥ 𝑈𝑗. The log likelihood is

thus

ln𝐿 =
𝑁

∑
𝑗=1

𝑙𝑗

This command supports the Huber/White/sandwich estimator of the variance and its clustered version

using vce(robust) and vce(cluster clustvar), respectively. See [P] robust, particularly Maximum

likelihood estimators and Methods and formulas.

cpoisson also supports estimation with survey data. For details on variance–covariance estimates
with survey data, see [SVY] Variance estimation.
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Postestimation commands predict margins Remarks and examples
Methods and formulas Also see

Postestimation commands
The following postestimation commands are available after cpoisson:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters

estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian infor-
mation criteria (AIC, CAIC, AICc, and BIC, respectively)

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estat (svy) postestimation statistics for survey data

estimates cataloging estimation results

etable table of estimation results
∗ forecast dynamic forecasts and simulations
∗ hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

∗ lrtest likelihood-ratio test

margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

predict number of events, incidence rates, probabilities, etc.

predictnl point estimates, standard errors, testing, and inference for generalized predictions

pwcompare pairwise comparisons of parameters

suest seemingly unrelated estimation

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

∗forecast, hausman, and lrtest are not appropriate with svy estimation results.
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predict

Description for predict
predict creates a new variable containing predictions such as numbers of events, incidence rates,

conditional means, probabilities, conditional probabilities, linear predictions, standard errors, and the

equation-level score.

Menu for predict
Statistics > Postestimation

Syntax for predict
predict [ type ] newvar [ if ] [ in ] [ , statistic nooffset ]

statistic Description

Main

n number of events; the default

ir incidence rate

cm conditional mean, 𝐸(𝑦𝑗 | 𝑦𝑗 > 𝐿𝑗), 𝐸(𝑦𝑗 | 𝑦𝑗 < 𝑈𝑗),
or 𝐸(𝑦𝑗 | 𝐿𝑗 < 𝑦𝑗 < 𝑈𝑗)

pr(n) probability Pr(𝑦𝑗 = n)
pr(a,b) probability Pr(a ≤ 𝑦𝑗 ≤ b)
cpr(n) conditional probability Pr(𝑦𝑗 = n | 𝑦𝑗 > 𝐿𝑗), Pr(𝑦𝑗 = n | 𝑦𝑗 < 𝑈𝑗),

or Pr(𝑦𝑗 = n | 𝐿𝑗 < 𝑦𝑗 < 𝑈𝑗)
cpr(a,b) conditional probability Pr(a ≤ 𝑦𝑗 ≤ b | 𝑦𝑗 > 𝐿𝑗), Pr(a ≤ 𝑦𝑗 ≤ b | 𝑦𝑗 < 𝑈𝑗),

or Pr(a ≤ 𝑦𝑗 ≤ b | 𝐿𝑗 < 𝑦𝑗 < 𝑈𝑗)
xb linear prediction

stdp standard error of the linear prediction

score first derivative of the log likelihood with respect to x𝑗β

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted
only for the estimation sample.

Options for predict

� � �
Main �

n, the default, calculates the predicted number of events, which is exp(x𝑗β) if neither offset() nor

exposure() was specified when the model was fit; exp(x𝑗β + offset𝑗) if offset() was specified;
or exp(x𝑗β) × exposure𝑗 if exposure() was specified.

ir calculates the incidence rate exp(x𝑗β), which is the predicted number of events when exposure is 1.
This is equivalent to specifying both the n and the nooffset options.
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cm calculates the conditional mean,

𝐸(𝑦𝑗 | Ω𝑗) =
𝐸(𝑦𝑗)
Pr(Ω𝑗)

where Ω𝑗 represents 𝑦𝑗 > 𝐿𝑗 for a left-censored model, 𝑦𝑗 < 𝑈𝑗 for a right-censored model, and

𝐿𝑗 < 𝑦𝑗 < 𝑈𝑗 for an interval-censored model. 𝐿𝑗 is the left-censoring point found in e(llopt), and
𝑈𝑗 is the right-censoring point found in e(ulopt).

pr(n) calculates the probability Pr(𝑦𝑗 = n), where n is a nonnegative integer that may be specified as
a number or a variable.

pr(a,b) calculates the probability Pr(a ≤ 𝑦𝑗 ≤ b), where a and b are nonnegative integers that may be
specified as numbers or variables;

b missing (b ≥ .) means +∞;

pr(20,.) calculates Pr(𝑦𝑗 ≥ 20);
pr(20,b) calculates Pr(𝑦𝑗 ≥ 20) in observations for which b ≥ . and calculates
Pr(20 ≤ 𝑦𝑗 ≤ b) elsewhere.
pr(.,b) produces a syntax error. Amissing value in an observation of the variable a causes a missing

value in that observation for pr(a,b).

cpr(n) calculates the conditional probability Pr(𝑦𝑗 = n | Ω𝑗), where Ω𝑗 represents 𝑦𝑗 > 𝐿𝑗 for a left-

censored model, 𝑦𝑗 < 𝑈𝑗 for a right-censored model, and 𝐿𝑗 < 𝑦𝑗 < 𝑈𝑗 for an interval-censored

model. 𝐿𝑗 is the left-censoring point found in e(llopt), and 𝑈𝑗 is the right-censoring point found

in e(ulopt). n is an integer in the noncensored range.

cpr(a,b) calculates the conditional probability Pr(a ≤ 𝑦𝑗 ≤ b | Ω𝑗), where Ω𝑗 represents 𝑦𝑗 > 𝐿𝑗 for a

left-censored model, 𝑦𝑗 < 𝑈𝑗 for a right-censored model, and 𝐿𝑗 < 𝑦𝑗 < 𝑈𝑗 for an interval-censored

model. 𝐿𝑗 is the left-censoring point found in e(llopt), and 𝑈𝑗 is the right-censoring point found

in e(ulopt). a and b must fall in the noncensored range if they are not missing. A missing value in

an observation of the variable a causes a missing value in that observation for cpr(a,b).

xb calculates the linear prediction, which is x𝑗β if neither offset() nor exposure()was specifiedwhen
the model was fit; x𝑗β + offset𝑗 if offset() was specified; or x𝑗β + ln(exposure𝑗) if exposure()
was specified; see nooffset below.

stdp calculates the standard error of the linear prediction.

score calculates the equation-level score, 𝜕ln𝐿/𝜕(x𝑗β).
nooffset is relevant only if you specified offset() or exposure() when you fit the model. It modi-

fies the calculations made by predict so that they ignore the offset or exposure variable; the linear
prediction is treated as x𝑗β rather than as x𝑗β+ offset𝑗 or x𝑗β+ ln(exposure𝑗). Specifying predict
..., nooffset is equivalent to specifying predict ..., ir.
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margins

Description for margins
margins estimates margins of response for numbers of events, incidence rates, conditional means,

probabilities, and linear predictions.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist ] [ , options ]
margins [marginlist ] , predict(statistic ...) [ predict(statistic ...) ... ] [ options ]

statistic Description

n number of events; the default

ir incidence rate

cm conditional mean, 𝐸(𝑦𝑗 | 𝑦𝑗 > 𝐿𝑗), 𝐸(𝑦𝑗 | 𝑦𝑗 < 𝑈𝑗),
or 𝐸(𝑦𝑗 | 𝐿𝑗 < 𝑦𝑗 < 𝑈𝑗)

pr(n) probability Pr(𝑦𝑗 = n)
pr(a,b) probability Pr(a ≤ 𝑦𝑗 ≤ b)
cpr(n) conditional probability Pr(𝑦𝑗 = n | 𝑦𝑗 > 𝐿𝑗), Pr(𝑦𝑗 = n | 𝑦𝑗 < 𝑈𝑗),

or Pr(𝑦𝑗 = n | 𝐿𝑗 < 𝑦𝑗 < 𝑈𝑗)
cpr(a,b) conditional probability Pr(a ≤ 𝑦𝑗 ≤ b | 𝑦𝑗 > 𝐿𝑗), Pr(a ≤ 𝑦𝑗 ≤ b | 𝑦𝑗 < 𝑈𝑗),

or Pr(a ≤ 𝑦𝑗 ≤ b | 𝐿𝑗 < 𝑦𝑗 < 𝑈𝑗)
xb linear prediction

stdp not allowed with margins
score not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.

Remarks and examples

Example 1: Obtaining marginal effects
Continuing with example 1 of [R] cpoisson, we estimate the effect of having another child on the

uncensored number of trips to amusement parks. We use margins to estimate the average number of
trips when each household has its actual number of children and when each household has one additional

child. We include the post option so that we can use the results in subsequent commands.

. use https://www.stata-press.com/data/r18/trips
(Visits to the ABC amusement park)
. cpoisson trips income children, ul(3)
(output omitted )
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. margins, at(children = generate(children))
> at(children = generate(children+1)) post
Predictive margins Number of obs = 500
Model VCE: OIM
Expression: Predicted number of events, predict()
1._at: children = children
2._at: children = children+1

Delta-method
Margin std. err. z P>|z| [95% conf. interval]

_at
1 2.525517 .0836237 30.20 0.000 2.361618 2.689417
2 2.889658 .1337997 21.60 0.000 2.627416 3.151901

An average of 2.53 trips are taken when each household has its observed number of children. If each

household has one additional child, then the average number of trips increases to 2.89.

We now use contrast to compute the effect of having an additional child. The Wald test, in this

case, is superfluous, so we suppress it with the nowald option.

. contrast r._at, nowald
Contrasts of predictive margins Number of obs = 500
Model VCE: OIM
Expression: Predicted number of events, predict()
1._at: children = children
2._at: children = children+1

Delta-method
Contrast std. err. [95% conf. interval]

_at
(2 vs 1) .3641407 .0849951 .1975535 .530728

Adding one child to each household increases the average by 0.36 trips.

Methods and formulas
Using the notation under Methods and formulas of [R] cpoisson, we see that the equation-level score

is given by

score(xβ)𝑗 =𝑑𝑗{− exp(𝜉𝑗) + 𝑦𝑗}

+ (1 − 𝑑𝑗)
Ψ1(𝐿𝑗|x𝑗) − Ψ1(𝑈𝑗 − 1|x𝑗)

1 − 𝐹(𝑈𝑗 − 1|x𝑗) + 𝐹(𝐿𝑗|x𝑗)

where Ψ1(𝐶) = ∑𝐶
𝑘=0 𝑓(𝑘|x𝑗){𝑘 − exp(𝜉𝑗)}; 𝑓(𝑦𝑗|x𝑗) and 𝐹(𝑦𝑗|x𝑗) denote the probability mass func-

tion and the cumulative distribution function of the Poisson, respectively. 𝐿𝑗 is the left-censoring point

found in e(llopt), and 𝑈𝑗 is the right-censoring point found in e(ulopt).
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Also see
[R] cpoisson — Censored Poisson regression

[U] 20 Estimation and postestimation commands



cumul — Cumulative distribution

Description Quick start Menu Syntax
Options Remarks and examples Acknowledgment References
Also see

Description
cumul creates newvar, defined as the empirical cumulative distribution function of varname.

Quick start
Create new variable ecd containing the empirical cumulative distribution of v

cumul v, gen(ecd)

Use frequency as the unit for v to generate ecdf
cumul v, gen(ecdf) freq

Give equal values of v the same value in generated ecde
cumul v, gen(ecde) equal

Graph the empirical cumulative distribution of v
line ecd v, sort

Graph the distributions of variables v1 and v2
cumul v1, gen(ecd1) equal
cumul v2, gen(ecd2) equal
stack ecd1 v1 ecd2 v2, into(ecd v) wide clear
line ecd1 ecd2 v, sort

Menu
Statistics > Summaries, tables, and tests > Distributional plots and tests > Generate cumulative distribution
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Syntax
cumul varname [ if ] [ in ] [weight ] , generate(newvar) [ options ]

options Description

Main
∗ generate(newvar) create variable newvar

freq use frequency units for cumulative

equal generate equal cumulatives for tied values

∗generate(newvar) is required.
by is allowed; see [D] by.
fweights and aweights are allowed; see [U] 11.1.6 weight.

Options

� � �
Main �

generate(newvar) is required. It specifies the name of the new variable to be created.

freq specifies that the cumulative be in frequency units; otherwise, it is normalized so that newvar is 1
for the largest value of varname.

equal requests that observations with equal values in varname get the same cumulative value in newvar.

Remarks and examples

Example 1
cumul is most often used with graph to graph the empirical cumulative distribution. For instance,

we have data on the median family income of 957 US cities:

. use https://www.stata-press.com/data/r18/hsng
(1980 Census housing data)
. cumul faminc, gen(cum)
. sort cum
. line cum faminc, ytitle(””) xlabel(, format(%6.0f))
> title(”Cumulative of median family income”)
> subtitle(”1980 Census, 957 US cities”)
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Cumulative of median family income

It would have been enough to type line cum faminc, but we wanted to make the graph look better; see
[G-2] graph twoway line.

If we had wanted a weighted cumulative, we would have typed cumul faminc [w=pop] at the first
step.

Example 2
To graph two (or more) cumulatives on the same graph, use cumul and stack; see [D] stack. For

instance, we have data on the average January and July temperatures of 956 US cities:

. use https://www.stata-press.com/data/r18/citytemp, clear
(City temperature data)
. cumul tempjan, gen(cjan)
. cumul tempjuly, gen(cjuly)
. stack cjan tempjan cjuly tempjuly, into(c temp) wide clear
. line cjan cjuly temp, sort ytitle(””) xtitle(”Temperature (F)”)
> title(”Cumulatives:” ”Average January and July temperatures”)
> subtitle(”956 US cities”) legend(label(1 January) label(2 July))
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As before, it would have been enough to type line cjan cjuly temp, sort. See [D] stack for an

explanation of how the stack command works.

Technical note
According to Beniger and Robyn (1978), Fourier (1821) published the first graph of a cumulative

frequency distribution, which was later given the name “ogive” by Galton (1875).� �
Jean Baptiste Joseph Fourier (1768–1830) was born inAuxerre in France. As a young man, Fourier

became entangled in the complications of the French Revolution. As a result, he was arrested and put

into prison, where he feared he might meet his end at the guillotine. When he was not in prison, he

was studying, researching, and teaching mathematics. Later, he served Napolean’s army in Egypt as

a scientific adviser. Upon his return to France in 1801, hewas appointed Prefect of theDepartment of

Isère. While prefect, Fourier worked on the mathematical basis of the theory of heat, which is based

on what are now called Fourier series. This work was published in 1822, despite the skepticism

of Lagrange, Laplace, Legendre, and others—who found the work lacking in generality and even

rigor—and disagreements of both priority and substance with Biot and Poisson.� �
Acknowledgment

The equal option was added by Nicholas J. Cox of the Department of Geography at Durham Univer-

sity, UK, who is coeditor of the Stata Journal and author of Speaking Stata Graphics.
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Description Quick start Menu Syntax Options
Remarks and examples Stored results Acknowledgment Reference Also see

Description
cusum graphs the cumulative sum (cusum) of a binary (0/1) variable, yvar, against a (usually) contin-

uous variable, xvar.

Quick start
Cusum statistics for binary variable y and graph of cumulative sum against values of x

cusum y x

Also generate cs to store the cumulative sum
cusum y x, generate(cs)

Set the seed first for reproducible results

set seed 87534690
cusum y x, generate(cs)

Cumulative sum of y against a variable containing fitted values yhat
cusum y x, yfit(yhat)

Menu
Statistics > Other > Quality control > Cusum plots and tests for binary variables
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Syntax
cusum yvar xvar [ if ] [ in ] [ , options ]

options Description

Main

generate(newvar) save cumulative sum in newvar

yfit(fitvar) calculate cumulative sum against fitvar

nograph suppress the plot

nocalc suppress cusum test statistics

Cusum plot

connect options affect the rendition of the plotted line

Add plots

addplot(plot) add plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

collect is allowed; see [U] 11.1.10 Prefix commands.

Options

� � �
Main �

generate(newvar) saves the cusum in newvar.

yfit(fitvar) calculates a cusum against fitvar, that is, the running sums of the “residuals” fitvar minus

yvar. Typically, fitvar is the predicted probability of a positive outcome obtained from a logistic

regression analysis.

nograph suppresses the plot.

nocalc suppresses calculation of the cusum test statistics.

� � �
Cusum plot �

connect options affect the rendition of the plotted line; see [G-3] connect options.

� � �
Add plots �

addplot(plot) provides a way to add other plots to the generated graph. See [G-3] addplot option.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see

[G-3] saving option).
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Remarks and examples
The cusum is the running sum of the proportion of ones in the sample, a constant number, minus yvar,

𝑐𝑗 =
𝑗

∑
𝑘=1

𝑓 − yvar(𝑘), 1 ≤ 𝑗 ≤ 𝑁

where 𝑓 = (∑ yvar)/𝑁 and yvar(𝑘) refers to the corresponding value of yvar when xvar is placed in

ascending order: xvar(𝑘+1) ≥ xvar(𝑘). Tied values of xvar are broken at random. If you want them

broken the same way in two runs, you must set the random-number seed to the same value before giving

the cusum command; see [R] set seed.

AU-shaped or inverted U-shaped cusum indicates, respectively, a negative or a positive trend of yvar

with xvar. A sinusoidal shape is evidence of a nonmonotonic (for example, quadratic) trend. cusum
displays the maximum absolute cusum for monotonic and nonmonotonic trends of yvar on xvar. These

are nonparametric tests of departure from randomness of yvar with respect to xvar. Approximate values

for the tests are given.

Example 1
For the automobile dataset, auto.dta, we wish to investigate the relationship between foreign

(0 = domestic, 1 = foreign) and car weight as follows:

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. cusum foreign weight
Variable Obs Pr(1) CusumL zL Pr>zL CusumQ zQ Pr>zQ

foreign 74 0.2973 10.30 3.963 0.000 2.92 0.064 0.475
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The resulting plot, which is U-shaped, suggests a negativemonotonic relationship. The trend is confirmed

by a highly significant linear cusum statistic, labeled CusumL in the output above.

Some 29.73% of the cars are foreign (coded 1). The proportion of foreign cars diminishes with in-

creasing weight. The domestic cars are crudely heavier than the foreign ones. We could have discovered

that by typing table foreign, statistics(mean weight), but such an approach does not give the
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full picture of the relationship. The quadratic cusum (CusumQ) is not significant, so we do not suspect
any tendency for the very heavy cars to be foreign rather than domestic. A slightly enhanced version of

the plot shows the preponderance of domestic (coded 0) cars at the heavy end of the weight axis:

. label values foreign

. cusum foreign weight, s(none) recast(scatter) mlabel(foreign) mlabp(0)
Variable Obs Pr(1) CusumL zL Pr>zL CusumQ zQ Pr>zQ

foreign 74 0.2973 10.30 3.963 0.000 3.32 0.469 0.320
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The example is, of course, artificial, because we would not really try to model the probability of a car

being foreign given its weight.

Stored results
cusum stores the following in r():

Scalars

r(N) number of observations r(P zl) 𝑝-value for test (linear)
r(prop1) proportion of positive outcomes r(cusumq) quadratic cusum

r(cusuml) cusum r(zq) test (quadratic)

r(zl) test (linear) r(P zq) 𝑝-value for test (quadratic)

Acknowledgment
cusum was written by Patrick Royston of the MRC Clinical Trials Unit, London, and coauthor of the

Stata Press book Flexible Parametric Survival Analysis Using Stata: Beyond the Cox Model.

Reference
Royston, P. 1992. The use of cusums and other techniques in modelling continuous covariates in logistic regression.

Statistics in Medicine 11: 1115–1129. https://doi.org/10.1002/sim.4780110813.
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Also see
[R] logistic — Logistic regression, reporting odds ratios

[R] logit — Logistic regression, reporting coefficients

[R] probit — Probit regression



db — Launch dialog

Description Syntax Options Remarks and examples Also see

Description
db opens the dialog box for the specified command. Programmers who wish to allow the launching

of dialogs from a help file, see [P] smcl for information on the dialog SMCL directive.

set maxdb sets the maximum number of dialog boxes whose contents are remembered from one

invocation to the next during a session. The default value of maxdb is 50.

Syntax
Syntax for db

db commandname

For programmers

db commandname [ , message(string) debug dryrun ]

Set system parameter

set maxdb # [ , permanently ]

where # must be between 5 and 1,000.

Options
message(string) specifies that string be passed to the dialog box, where it can be referred to from the

MESSAGE STRING property.

debug specifies that the underlying dialog box be loaded with debug messaging turned on.

dryrun specifies that, rather than launching the dialog, db show the commands it would issue to launch

the dialog.

permanently specifies that, in addition to making the change right now, the maxdb setting be remem-
bered and become the default setting when you invoke Stata.

Remarks and examples
The usual way to launch a dialog is to open the Data, Graphics, or Statistics menu and to make

your selection from there. When you know the name of the command that you want to run, however, db
provides a way to invoke the dialog from the command line.

484
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db follows the same abbreviation rules that Stata’s command-line interface follows. So, to launch the
dialog for regress, you can type

. db regress

or

. db reg

Say that you use the dialog box for regress, either by selecting Statistics > Linear models and

related > Linear regression or by typing

. db regress

You fit a regression.

Much later during the session, you return to the regress dialog box. It will have the contents as you
left them if 1) you have not typed clear all between the first and second invocations; 2) you have not
typed discard between the two invocations; and 3) you have not used more than 50 different dialog

boxes—regardless of how many times you have used each—between the first and second invocations

of regress. If you use 51 or more, the contents of the regress dialog box will be forgotten.

set maxdb determines how many different dialog boxes are remembered. A dialog box takes, on

average, about 20 KB of memory, so the 50 default corresponds to allowing dialog boxes to consume

about 1 MB of memory.

Also see
[R] query — Display system parameters
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Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Acknowledgment References Also see

Description
demandsys fits demand systems, sets of equations derived from economic theory that describe con-

sumers’ purchases of various goods or services. demandsys allows you to fit eight different demand

systems, including the Cobb–Douglas system, the almost ideal demand system (AIDS) of Deaton and

Muellbauer (1980b), the translog indirect utility demand system of Christensen, Jorgenson, and Lau

(1975), and variants of the latter two. You can also include demographic variables that affect a con-

sumer’s or household’s demands.

Quick start
Fit an AIDS demand system with four goods with expenditure shares w1, w2, w3, and w4; prices, p1, p2,

p3, and p4; and total expenditure, totexp
demandsys aids w1 w2 w3 w4, prices(p1 p2 p3 p4) ///

expenditure(totexp)

Same as above, reporting Marshallian (uncompensated) elasticities rather than coefficients

demandsys aids w1 w2 w3 w4, prices(p1 p2 p3 p4) ///
expenditure(totexp) elasticities(uncompensated) ///
nocoeftable

Same as above, labeling goods in output for easier interpretation

demandsys aids w1 w2 w3 w4, prices(p1 p2 p3 p4) ///
expenditure(totexp) elasticities(uncompensated) ///
nocoeftable labels(”apples bananas carrots dates”)

Fit a quadratic AIDS model with four goods, controlling for x1 and x2 using demographic translation
demandsys quaids w1 w2 w3 w4, prices(p1 p2 p3 p4) ///

expenditure(totexp) demographics(x1 x2)

Same as above, but use demographic scaling rather than translating

demandsys quaids w1 w2 w3 w4, prices(p1 p2 p3 p4) ///
expenditure(totexp) demographics(x1 x2, scaling)

Menu
Statistics > Linear models and related > Multiple-equation models > Demand system

486
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Syntax
demandsys model varlist𝑠 [ if ] [ in ] [weight ], prices(varlist𝑝)

expenditure(varname) [ options ]

model Description

cdouglas Cobb–Douglas demand system

les linear expenditure system

translog basic translog demand system

gtranslog generalized translog demand system

aids almost ideal demand system (AIDS)

gaids generalized AIDS

quaids quadratic AIDS

gquaids generalized quadratic AIDS

varlist𝑠 indicates the list of 𝐺 variables containing the expenditure shares of the 𝐺 goods in the model.

options Description

Main
∗ prices(varlist𝑝) specify the variables containing prices
∗ expenditure(varname) specify the variable containing total expenditure

demographics(varlist𝑑[ , scaling ]) specify other variables affecting a consumer’s demand
for the goods; use demographic scaling instead of
translating

piconstant(#) specify constant term in transcendental logarithmic
price index

SE/Robust

vce(vcetype) vcetype may be gnr, robust, cluster clustvar,
bootstrap, or jackknife

Reporting

elasticities(e type) report elasticities; e type may be expenditure,
compensated, or uncompensated

labels(string) specify labels for goods

level(#) set confidence level; default is level(95)
noheader suppress the summary header at the top of the output

nocoeftable do not display the table of estimated coefficients

display options control columns and column formats and line width

Optimization

optimization options control the optimization process; seldom used

coeflegend display legend instead of statistics
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∗prices() and expenditure() are required.
collect is allowed; see [U] 11.1.10 Prefix commands.

aweights, fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Main �

prices(varlist𝑝) specifies a list of𝐺 variables corresponding to the prices of the𝐺 goods faced by each

consumer. The number of variables specified here must match the number specified in varlist𝑠, and

the price variables must be specified in the same order as the share variables. All the price variables

must be strictly positive for all the demand systems implemented. prices() is required.

expenditure(varname) specifies the variable corresponding to the total expenditure on all goodswithin
the system by each consumer. This variable must be strictly positive. expenditure() is required.

demographics(varlist𝑑[ , scaling ]) specifies one or more demographic variables that affect each

consumer’s demand for the goods in the system. Suboption scaling, available only with models
aids and quaids, requests that demographics be incorporated via demographic scaling rather than
demographic translation, the default.

piconstant(#) specifies the value of the constant term in the transcendental logarithmic price index; by

default, this is set to the logarithm of the minimum expenditure observed in the sample. This option

is relevant only for models aids and quaids.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (gnr), that are robust to some kinds of misspecification (robust), that allow for

intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods (bootstrap,
jackknife); see [R] vce option.

vce(gnr), the default, uses the conventionally derived variance estimator for nonlinear models fit
using Gauss–Newton regression.

� � �
Reporting �

elasticities(e type) requests that elasticities be reported instead of, or in addition to, the param-

eter estimates. e type may be expenditure, compensated, or uncompensated. expenditure
computes demand elasticity to changes in expenditure. compensated computes demand elasticity

to changes in prices, ignoring income effects. These elasticities are also known as Hicksian price

elasticities. uncompensated computes demand elasticity to changes in prices. These elasticities are
also known as Marshallian price elasticities. The elasticities are computed at the estimation sample

means of the prices, expenditures, and any demographic variables specified. For more flexibility in

obtaining elasticities, use the postestimation command estat elasticities.
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labels(string) specifies a set of names with which the goods are to be labeled. By default, if you

specify a four-good demand system, then the goods will be labeled generically: “Good 1”, “Good 2”,

“Good 3”, and “Good 4”.

If you specify labels(”shelter fuel food other”), then the four goods will be labeled “shelter”,
“fuel”, “food”, and “other” in the output. If you specify a demand system with 𝐺 goods, then you

must supply 𝐺 labels separated by spaces.

level(#); see [R] Estimation options.

noheader requests that the header summarizing the model, estimation sample, and other statistics not
be shown in the output.

nocoeftable requests that the table containing the parameter estimates, their standard errors, and so on
not be displayed. Typically, you would use this option if you specify the elasticities() option.

display options: noci, nopvalues, cformat(% fmt), pformat(% fmt), sformat(% fmt), and

nolstretch; see [R] Estimation options.

� � �
Optimization �

optimization options: iterate(#), [no]log, trace, eps(#), ifgnlsiterate(#),
ifgnlseps(#), and delta(#).

iterate(#) specifies the maximum number of iterations to use for nonlinear least squares at each

round of feasible generalized nonlinear least-squares (FGNLS) estimation. The default is the num-

ber set using set maxiter, which is 300 by default.

log and nolog specify whether to display the iteration log. The iteration log is displayed by default
unless you used set iterlog off to suppress it; see set iterlog in [R] set iter.

trace specifies that the iteration log should include the current parameter vector.

eps(#) specifies the convergence criterion for successive parameter estimates and for the residual

sum of squares. The default is eps(1e-5) (0.00001). eps() also specifies the convergence crite-
rion for successive parameter estimates between rounds of iterative FGNLS.

ifgnlsiterate(#) specifies the maximum number of FGNLS iterations to perform. The default is

the number set using set maxiter, which is 300 by default.

ifgnlseps(#) specifies the convergence criterion for successive estimates of the error covariance
matrix during iterative FGNLS estimation. The default is ifgnlseps(1e-10).

delta(#) specifies the relative change in a parameter, 𝛿, to be used in computing the numeric deriva-
tives. The derivative for parameter 𝑏𝑒𝑡𝑎𝑖 is computed as

{𝑓𝑖 (x𝑖, 𝛽1, 𝛽2, . . . , 𝛽𝑖 + 𝑑, 𝛽𝑖+1, . . .) − 𝑓𝑖 (x𝑖, 𝛽1, 𝛽2, . . . , 𝛽𝑖, 𝛽𝑖+1, . . .)} /𝑑

where 𝑑 = 𝛿(|𝛽𝑖| + 𝛿). The default is delta(4e-7).

The following option is available with demandsys but is not shown in the dialog box:

coeflegend; see [R] Estimation options.
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Remarks and examples
Remarks are presented under the following headings:

Introduction
Some notation
Cobb–Douglas
Linear expenditure system (LES)
Translog

Basic translog
Generalized translog

AIDS
QUAIDS
Controlling for demographic factors
Demographic translation
Demographic scaling
Epilogue

Introduction
demandsys fits demand systems, sets of equations derived from economic theory that describe con-

sumers’ purchases of various goods or services. Typically, you will have a large cross-sectional survey

containing consumers’ data on their expenditures on various goods and services along with the prices

paid for them. We often refer to the items as “goods” for brevity, but of course some of the items may

be services. Whether they are physical goods or intangible services, in the context of utility-maximizing

consumers, they are both goods in the sense that “more is better”. We also use the term “purchase” some-

what loosely; in some cases, what we are interested in is not the actual purchase of goods but rather their

consumption over a fixed time period.

To fit a demand system, you must first decide on what is in the consumption basket or bundle and

the set of goods whose demands you wish to model. Using the parameters from the model, you may

then obtain the elasticities—the effects of changes in prices or changes in expenditure on demand of

goods. You may also perform welfare analysis by contrasting changes in demand or utility that occur at

different price or expenditure levels. We assume that you have decided which consumption bundle to

model already or else that you have several alternative baskets to model and compare.

The left-hand-side variables you specify with demandsys are expenditure shares, the shares of to-

tal expenditure spent on goods or services. Given 𝑝𝑔 (the price of good 𝑔), 𝑞𝑔 (the quantity of good

𝑔 purchased), and 𝑚 (the consumer’s total expenditure on all goods within the demand system), the

expenditure share for good 𝑔 is defined as

𝑤𝑔 =
𝑝𝑔 𝑞𝑔

𝑚

demandsys requires that you have the prices of all the goods and that you have the total expenditure

across all the goods. demandsys does not need the quantities of the goods purchased, though you may
need them to calculate the expenditure shares.

Consumer theory in microeconomics presents demand models in terms of quantities. In demand

system analysis, we model expenditure shares, not quantities. By our definition of total expenditure,

0 ≤ 𝑤𝑔 ≤ 1 for all 𝑔, and ∑𝑔 𝑤𝑔 = 1. For all but the simplest utility or cost functions, the algebra

to obtain expenditure shares is arguably easier than that to obtain quantities. demandsys checks your
expenditure shares for all goods and will exit with an error message if an expenditure share is found

outside that range or if the sum is not equal to one (allowing for small rounding errors).
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You may also specify additional variables that may affect a consumer’s purchase decisions. These

are often demographic variables, such as the number of children and adults in a household, or a set of

indicator variables to denote the region of a country in which a consumer is located. If you have data

that were collected over the course of different months or years, you may wish to include indicators to

control for the time at which the consumer’s purchases were observed. We call all of these variables

demographics, even if some of these variables are not really demographic characteristics.

Based on the theoretical considerations in Lewbel (2001), we strongly encourage you to include de-

mographic variables in your model. He shows that econometrically estimated demand functions will

not satisfy rationality conditions unless other variables that affect demand and are correlated with ex-

penditures are included. Conversely, if we include all such variables in our model, then the estimated

demands will satisfy rationality even if preferences vary among households. On the other hand, you

should also bear in mind that including too many demographic variables can greatly increase the number

of parameters in your model, especially if your demand system includes many goods.

demandsys offers just a small sampling of demand systems that have been proposed in the literature.
As a practical matter, which one should you use? We have included the Cobb–Douglas model mainly for

pedagogical purposes because most students are familiar with Cobb–Douglas utility, though soon there-

after they learn about its severe restrictions on consumer behavior. Stone’s (1954) linear expenditure

system (LES) is historically important as an early demand system but also places somewhat strong re-

strictions on consumer behavior. Christensen, Jorgenson, and Lau’s (1975) translog model relaxes some

of the LES’s restrictions. It is not as widely used as some of the newer models, though a very similar

translog production function those authors proposed continues to see extensive use. Shortly after the

translog model arrived, Deaton and Muellbauer (1980b) proposed their more flexible AIDS, which has

been a workhorse model of demand system analysis ever since its arrival. Banks, Blundell, and Lewbel

(1997) provided a quadratic extension to AIDS that is also popular.

Banks, Blundell, and Lewbel (1997) suggest using QUAIDS because of its flexibility. Moreover,

QUAIDS satisfies certain theoretical properties developed in Gorman (1981); and it allows goods to be

either luxuries or necessities depending on a consumer’s income, which Banks, Blundell, and Lewbel

(1997) show to be important in the data they consider.

With the AIDS and QUAIDS models, you can include demographics via two different methods: demo-

graphic translation and demographic scaling; see Demographic translation and Demographic scaling. If

you believe that subsistence or committed quantities are appropriate for the goods you are modeling, you

can use what we call the generalized QUAIDS model. If you do that, you should check to see that the

subsistence quantity interpretation holds; we do that in example 2 of [R] demandsys postestimation.

You can also do a simple likelihood-ratio test to see whether the quadratic terms of these QUAIDSmodels

increase their explanatory power over Deaton and Muellbauer’s AIDS and its generalized variant; see

example 5 below.

Throughout the rest of the discussion, we assume that you are familiar with a few basicmicroeconomic

concepts, including utility maximization, the expenditure function, and the indirect utility function. The

presentations in standard texts like Varian (1992, chap. 7–10) and Mas-Colell, Whinston, and Green

(1995, chap. 3) provide good introductions to these concepts. The classic monograph by Deaton and

Muellbauer (1980a) and the book by Pollak andWales (1992) describe demand system analysis in much

greater detail than space permits us here. More recent survey papers include Holt and Goodwin (2009)

and Barnett and Serletis (2008). Fisher, Fleissig, and Serletis (2001) compare many flexible functional

forms for demand system analysis, including several that are implemented by demandsys.
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Some notation
It will be useful to establish at the outset some standard notationwewill use throughout this discussion.

We use subscript 𝑖 = 1, . . . , 𝑁 to index observations, 𝑔 = 1, . . . , 𝐺 to index goods, and 𝑑 = 1, . . . , 𝐷 to

index demographic variables. In formulas where we must use double summations across goods or else

have used subscript 𝑔 elsewhere, we also use ℎ = 1, . . . , 𝐺 and 𝑗 = 1, . . . , 𝐺 to index goods. When no

confusion could arise, we omit the observation subscript to reduce the number of subscripts.

Let 𝑤𝑔 be the expenditure share for good 𝑔 defined as 𝑤𝑔 ≡ (𝑝𝑔 𝑞𝑔)/𝑚, where 𝑝𝑔 is the price of good

𝑔, 𝑞𝑔 is the quantity of good 𝑔 consumed, and 𝑚 denotes total expenditure on all the goods in the system

being modeled. We use the notation p to refer to the 𝐺-length vector of all 𝐺 prices. When we refer to

𝑤𝑔, we are referring to the observed expenditure share for good 𝑔 for consumer 𝑖. When we refer to, say,

𝑤𝑔(p, 𝑚;α,β), we are referring to an expenditure-share equation or function for good 𝑔 that depends on
the prices of all the goods and total expenditure as well as parameter vectors α and β. We include the

parameter vectors and matrices in the arguments for expenditure shares as well as some other functions

to emphasize that they are estimated and will appear in the output from demandsys and that statistics
available via predict or estat elasticities after estimation depend on those parameters.

The observed 𝑤𝑔 is assumed to be related to the expenditure-share function 𝑤𝑔(p, 𝑚;α,β) as

𝑤𝑔 = 𝑤𝑔(p, 𝑚;α,β) + 𝜖𝑔

where 𝜖𝑔 is a zero-mean error term that we discuss in more detail in Methods and formulas.

Cobb–Douglas
Although widely used in many economic models, the Cobb–Douglas utility function is arguably too

simple for serious demand system analysis because of its severe restrictions on the expenditure-share

equations and elasticities. For instance, it restricts expenditure elasticities to be identically equal to 1

for all goods. Nevertheless, we include it because it serves as a good starting point for our discussion

and allows us to present various aspects of demandsys. For three goods, consumers maximize their

Cobb–Douglas utility function subject to the constraint that total expenditure does not exceed the allo-

cated budget,

max𝑞1,𝑞2,𝑞3
𝑞𝛼1

1 𝑞𝛼2
2 𝑞(1−𝛼1−𝛼2)

3

subject to 𝑝1𝑞1 + 𝑝2𝑞2 + 𝑝3𝑞3 ≤ 𝑚

where, without loss of generality, we have made the sum of the exponents of the Cobb–Douglas utility

function sum to 1. It is easy to show that the optimal quantities 𝑞∗
1, 𝑞∗

2, and 𝑞∗
3 are

𝑞∗
1 = 𝛼1

𝑚
𝑝1

𝑞∗
2 = 𝛼2

𝑚
𝑝2

𝑞∗
3 = (1 − 𝛼1 − 𝛼2) 𝑚

𝑝3
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To obtain the expenditure-share function of, say, good 1, we have

𝑤1(p, 𝑚;α) = 𝑝1 𝑞1
𝑚

= 𝛼1
𝑚
𝑝1

𝑝1
𝑚

= 𝛼1

and likewise for goods 2 and 3. Notice that the expenditure-share function for good 𝑔 is simply its coef-
ficient 𝛼𝑔 in the Cobb–Douglas utility function, or, equivalently, the coefficients in the Cobb–Douglas

utility function are simply the shares of total expenditure allocated to each good. Most importantly,

the expenditure shares for the Cobb–Douglas model are not functions of prices, income, or any other

variables.

We made the sum of the exponents in the Cobb–Douglas utility function sum to 1, and it is clear

that 𝑤1 + 𝑤2 + 𝑤3 = 1. Without the constraint on the sum, we would have to carry around the divisor

𝛼1 + 𝛼2 + 𝛼3 in our expenditure-share equations, but we would gain absolutely no additional insight.

Moreover, with the constraint we need estimate only two parameters rather than three.

More generally, for a Cobb–Douglas utility function of the form

𝑢(q;α) =
𝐺

∏
𝑔=1

𝑞𝛼𝑔
𝑔 with

𝐺
∑
𝑔=1

𝛼𝑔 = 1

the expenditure-share function for the 𝑔th good is simply 𝑤𝑔(p, 𝑚;α) = 𝛼𝑔.

Example 1
We first describe the dataset we will use in this example and all others in this manual entry:

. use https://www.stata-press.com/data/r18/food_consumption
(Food consumption)
. describe
Contains data from https://www.stata-press.com/data/r18/food_consumption.dta
Observations: 4,160 Food consumption

Variables: 13 17 Jul 2022 16:03
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

w_dairy float %10.6f Expenditure share on dairy
w_proteins float %10.6f Expenditure share on meats and

proteins
w_fruitveg float %10.6f Expenditure share on fruits and

vegetables
w_flours float %10.6f Expenditure share on flours,

breads, pasta, and cereals
w_misc float %10.6f Expenditure share on misc. food

items
p_dairy float %10.6f Price of dairy
p_proteins float %10.6f Price of meats and proteins
p_fruitveg float %10.6f Price of fruits and vegetables
p_flours float %10.6f Price of flours, breads, pasta,

and cereals
p_misc float %10.6f Price of misc. food items
expfd float %10.6f Total expenditure on all food

categories
n_adults byte %8.0g # adults in household
n_kids byte %8.0g # kids in household

Sorted by:
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The observation level of this dataset is the household, and we have data on 4,160 households. The data

include five categories of food: dairy products; proteins, including meats and fish; fruits and vegetables;

flour-based products, including breads, pastas, and cereals; and a catchall category. For each of the five

categories, we have the expenditure shares and prices, and we have the household’s total expenditure on

all five categories in the week that the household was surveyed. We also have demographic data for the

household, including the numbers of children and adults.

Although we constructed the expenditure shares ourselves and know they sum to one, it is a good idea

to verify that you have created your expenditure-share variables properly:

. egen wsum = rowtotal(w_dairy w_proteins w_fruitveg w_flours w_misc)

. summarize wsum
Variable Obs Mean Std. dev. Min Max

wsum 4,160 1 4.40e-08 .9999999 1

demandsyswill check that for you and exit with an error message if it is not the case, but doing so during
your data management tasks may make debugging easier. demandsys will also check that all your price
variables and expenditure variable are strictly positive, though again you might want to check those facts

earlier in your data pipeline.

With a dataset in hand, we are ready to fit our first Cobb–Douglas demand system.

. demandsys cdouglas w_dairy w_proteins w_fruitveg w_flours w_misc,
> prices(p_dairy p_proteins p_fruitveg p_flours p_misc) expenditure(expfd)
Calculating NLS estimates:
Iteration 0: Residual SS = 180.2506
Iteration 1: Residual SS = 180.2506
Calculating FGNLS estimates:
Iteration 0: Scaled RSS = 16640
FGNLS iteration 2:
Iteration 0: Scaled RSS = 16640
Parameter change = 0.00e+00
Covariance matrix change = 0.00e+00
Cobb--Douglas model Number of obs = 4,160
Expenditure variable: expfd Number of goods = 5
Uncentered R2 of model for
Good 1 = 0.7519
Good 2 = 0.8851
Good 3 = 0.8329
Good 4 = 0.7467
Good 5 = 0.6836

Estimate Std. err. z P>|z| [95% conf. interval]

alpha
Good

1 .1505844 .0013411 112.29 0.000 .147956 .1532129
2 .3986526 .0022265 179.05 0.000 .3942887 .4030166
3 .2406533 .0016711 144.01 0.000 .237378 .2439286
4 .1031129 .0009312 110.73 0.000 .1012877 .104938

Note: alpha estimates are expenditure shares.
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Normalized parameter

Estimate Std. err. z P>|z| [95% conf. interval]

alpha
Good

5 .1069968 .0011286 94.80 0.000 .1047847 .1092088

Note: alpha estimates sum to 1.
Shares: w_dairy w_proteins w_fruitveg w_flours w_misc
Prices: p_dairy p_proteins p_fruitveg p_flours p_misc
Expenditure: expfd

We specified the command name, demandsys, followed by the model we wish to fit, cdouglas. We

then specified the five expenditure-share variables, w dairy through w misc. The price variables,

p dairy through p misc, go into the prices() option, and the expenditure variable, expfd, goes
into the expenditure() option. demandsys uses a nonlinear multiple-equation estimator, so the top of
the output includes an iteration log showing the model’s convergence. In fact, the Cobb–Douglas model

is linear, but that is the only model fit by demandsys that is. Stata uses the same nonlinear estimator for
cdouglas as we use for the other demand systems. The header of the output includes 𝑅2 values to get

some idea of how well the model fits the data.

The table of coefficients is a bit different frommost other estimators in Stata, which report coefficients

organized by equations. The Cobb–Douglas model is unique in that each equation has its own parameter.

However, that is not the case for any other demand system that demandsys fits. For most demand

systems, many of the parameters appear in multiple equations, and there is no way to link parameters

and equations. Hence, we cannot provide a coefficient table organized by equations as other multiple-

equation estimators such as sureg provide. Instead, demandsys organizes estimates by parameter type.

We mentioned having a five-good demand system, so why do we see only four estimated parameters

in the main output table? Recall that we used the normalization that the sum of the parameters in the

Cobb–Douglas utility function is one. The upshot is that we really have only four free parameters because

the fifth parameter must equal one minus the sum of the other four parameters. We provide the estimate

of the fifth parameter in a separate table. It is computed separately using the parameter estimates of our

fitted demand system and their standard errors. Given how the fifth parameter was computed, it does not

share a covariance matrix with the other parameters and cannot be used for testing. We provide it here

for reference.

demandsys shows only unconstrained parameters in the main estimation output because, with many
goods and more complicated models, the output becomes long. Moreover, the estimated parameters

themselves are of less interest than elasticities and other statistics derived from the fitted model.

Technical note
In the header of the output in the previous example, we see that the equation-level 𝑅2 values are

labeled as uncentered. Recall that the standard𝑅2 in regression analysis measures the ability of themodel

to predict the regressand comparedwith amodel that contains just a constant term. For the Cobb–Douglas

demand system, the expenditure shares are simply constant terms to be estimated. Hence, the traditional

𝑅2 is by definition zero. We therefore report the uncentered𝑅2, which is an alternative that measures the

model’s explanatory power as a fraction of the sum of squares of an equation’s left-hand-side variable. A
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higher uncentered 𝑅2 is presumably better than a lower uncentered 𝑅2, but you cannot compare the

uncentered 𝑅2 of a Cobb–Douglas share equation with the centered 𝑅2 of a share equation from a

different demand system.

The command estat elasticities, which is available after demandsys, allows you to calculate
expenditure and price elasticities after fitting your demand system, and estat elasticities provides
options to specify how those elasticities are calculated and for which observations. The full syntax for

that command is listed in [R] demandsys postestimation, but the basic command is easy to pick up as

we work through examples below.

Here we use estat elasticities to obtain the expenditure elasticities for the estimation sample.

. estat elasticities, expenditure
Expenditure elasticities Number of obs = 4,160

Expenditure Elasticity

Good
1 1
2 1
3 1
4 1
5 1

Note: No standard errors are displayed because all elasticities are
identically equal to one.

The expenditure elasticities for all five goods are identically equal to one, and so the standard errors,

test statistics, and confidence interval are not displayed because there is no sampling variance. The

Cobb–Douglas function is an example of a utility function with “homothetic preferences”, meaning that

the ratio of two goods demanded by a consumer with such preferences depends only on the goods’relative

prices and not on income. Homothetic preferences also imply that, regardless of changes in income, the

shares consumed of each good remain the same; the expansion path of consumption is linear in income.

The Cobb–Douglas case is a particularly extreme example, where the expenditure elasticities are one,

the uncompensated own-price elasticities are minus one, and uncompensated cross-price elasticities are

zero, which you can verify by typing

estat elasticities, uncompensated
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Particularly with more complex demand systems, the coefficients themselves can be more difficult to

interpret. Therefore, demandsys allows you to request that expenditure, uncompensated price, or com-
pensated price elasticities be displayed in addition to, or in place of, the table of estimated coefficients.

The elasticities reported directly by demandsys are calculated at the estimation sample means of prices,
expenditures, and any demographics that you specify. To obtain, say, the uncompensated price elasticities

instead of the coefficient table from a Cobb–Douglas demand system, you would type

demandsys cdouglas ..., prices(...) expenditure(...) ///
elasticities(uncompensated) nocoeftable

estat elasticities gives you much more flexibility in terms of the sample used, and you can even
specify particular prices or expenditures at which you want the elasticities to be calculated.

Linear expenditure system (LES)
Nobel laureate Sir Richard Stone’s estimation of the LES, developed based on theory by Nobel laure-

ates Paul Samuelson and Lawrence Klein, together with Herman Rubin, represents the genesis of flexible

demand system estimation (Stone 1954). LES provides for more flexible consumption patterns than the

Cobb–Douglas model. The LES begins with the utility function

𝑢(q;β,µ) = ∏
𝑔

(𝑞𝑔 − 𝜇𝑔)𝛽𝑔

where 𝜇𝑔 is the 𝑔th element of𝐺×1 vectorµ, which is to be estimated. This utility function results from
translating or shifting the origin of the Cobb–Douglas utility function; utility does not accrue from good

𝑔 unless its consumption exceeds an amount 𝜇𝑔. That parameter is known as a subsistence or committed

quantity that a consumer must purchase for survival. 𝛽𝑔 is the 𝑔th element of𝐺×1 vectorβ. 𝛽𝑔 measures

the share of supernumerary expenditure, namely, the share of remaining expenditure once all subsistence

quantities have been purchased, on good 𝑔. As in the Cobb–Douglas case, we normalize the 𝐺 × 1

parameter vector β so that ∑𝑔 𝛽𝑔 = 1. Thus, the model has 2𝐺 − 1 parameters we must estimate.

Solving

maxq ∏
𝑔

(𝑞𝑔 − 𝜇𝑔)𝛽𝑔 s. t. p′q ≤ 𝑚

yields the expenditure-share functions

𝑤𝑔(p, 𝑚;β,µ) =
𝑝𝑔𝜇𝑔

𝑚
+ 𝛽𝑔 (1 − ∑

ℎ

𝑝ℎ𝜇ℎ
𝑚

)

The term to the left of the plus sign is the fraction of expenditure that must be spent on good 𝑔 to maintain
subsistence. To the right, the term bound in parentheses is the fraction of expenditure left after the

subsistence level for all other goods has been spent. Of this amount, a share 𝛽𝑔 is spent on good 𝑔. The
normalization that ∑𝑔 𝛽𝑔 = 1 ensures that ∑𝑔 𝑤𝑔(p, 𝑚) = 1, as must be true of a demand system.

While we have interpreted the 𝜇𝑔 as minimum required amounts of each good, there is no requirement

that 𝜇𝑔 > 0 for all 𝑔, nor do we impose any such constraints during estimation. Moreover, for this

interpretation to hold we must have that for each household 𝑖, ∑𝑔 𝑝𝑔𝑖𝜇𝑔𝑖 ≤ 𝑚𝑖.
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Example 2
Here we fit an LES to the same data as in example 1.

. use https://www.stata-press.com/data/r18/food_consumption, clear
(Food consumption)
. demandsys les w_dairy w_proteins w_fruitveg w_flours w_misc,
> prices(p_dairy p_proteins p_fruitveg p_flours p_misc)
> expenditure(expfd) nolog
Calculating NLS estimates ...
Calculating FGNLS estimates ...
FGNLS iteration 2 ...
FGNLS iteration 3 ...
FGNLS iteration 4 ...
FGNLS iteration 5 ...
Linear expenditure system Number of obs = 4,160
Expenditure variable: expfd Number of goods = 5
Centered R2 of model for
Good 1 = -0.0508
Good 2 = 0.0494
Good 3 = 0.0366
Good 4 = 0.0829
Good 5 = 0.0603

Estimate Std. err. z P>|z| [95% conf. interval]

beta
Good

1 .1650894 .0018783 87.89 0.000 .161408 .1687708
2 .4108231 .0033135 123.98 0.000 .4043288 .4173175
3 .2262407 .0024899 90.86 0.000 .2213607 .2311208
4 .0949082 .0013152 72.16 0.000 .0923304 .097486

mu
Good

1 .1794068 .0383858 4.67 0.000 .1041721 .2546416
2 .6975436 .0800327 8.72 0.000 .5406824 .8544048
3 2.368491 .1351367 17.53 0.000 2.103628 2.633354
4 .4215745 .0202499 20.82 0.000 .3818854 .4612636
5 .3742182 .0243646 15.36 0.000 .3264644 .421972

Note: beta estimates measure how expenditure shares respond to increases in
supernumerary income.

Note: mu estimates are subsistence levels of consumption for each good.
Normalized parameter

Estimate Std. err. z P>|z| [95% conf. interval]

beta
Good

5 .1029385 .0015833 65.02 0.000 .0998354 .1060416

Note: beta estimates sum to 1.
Shares: w_dairy w_proteins w_fruitveg w_flours w_misc
Prices: p_dairy p_proteins p_fruitveg p_flours p_misc
Expenditure: expfd
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We specified the nolog option to suppress the detailed iteration log. We first noticed that the 𝑅2 for the

model for Good 1 is actually negative. Because the equations here are nonlinear, the value of 𝑅2 is not

constrained to be between 0 and 1; that is only true for linear regression. The footer of the table with

normalized parameters reemphasizes the fact that we have made ∑𝑔 𝛽𝑔 = 1.

All the 𝜇 parameters are greater than zero. The 𝜇 parameter for Good 3, fruits and vegetables, is

largest, implying the physical quantity of them required is much higher than the other four goods. How-

ever, we should also look at the average prices of the goods:

. summarize p_*
Variable Obs Mean Std. dev. Min Max

p_dairy 4,160 .4387958 .4238236 .1041262 18
p_proteins 4,160 1.729284 .69554 .3333333 9.258823
p_fruitveg 4,160 .5472199 .1945325 .1073369 2.672269
p_flours 4,160 1.49421 .6816424 .0805687 7.202127
p_misc 4,160 1.47115 .8588024 .1428571 15.74629

Based on the average price of each good, the dollar amount of protein required for survival is only

9 cents less than the dollar amount of fruits and vegetables required (2.368 × 0.547 = $1.30 versus
0.698 × 1.729 = $1.21).

As we mentioned in the introductory remarks, if you have demographic variables, you should incor-

porate them into your model. demandsys incorporates demographics into models by applying Pollak

and Wales’s (1978) “demographic translation” to the expenditure-share equations. Just as the linear

expenditure system is a translated version of the Cobb–Douglas system, Pollak and Wales incorporate

demographics by translating the consumer’s available level of expenditures.

Suppose for each consumer we have a 𝐷 × 1 vector of demographic characteristics d. We have 𝐺
expenditure-share equations, so associated with d is a 𝐺 × 𝐷 matrix of parameters N with typical row

ν𝑔. Let c = Nd with typical element 𝑐𝑔. In demographic translation, we write each translated demand

function as

𝑥𝑔(p, 𝑚, c) = 𝑐𝑔 + 𝑥𝑔(p, 𝑚 − ∑
ℎ

𝑝ℎ𝑐ℎ)

For the LES, we have

𝑥𝑔(p, 𝑚, d;β,µ,N) = (𝜇𝑔 + 𝑐𝑔) +
𝛽𝑔

𝑝𝑔
(𝑚 − ∑

ℎ
𝑝ℎ𝜇ℎ − ∑

ℎ
𝑝ℎ𝑐ℎ)

so that

𝑤𝑔(p, 𝑚, d;β,µ,N) =
𝑝𝑔(𝜇𝑔 + ν𝑔d)

𝑚
+ 𝛽𝑔 {1 −

∑ℎ 𝑝ℎ (𝜇ℎ + νℎd)
𝑚

}

For the LES, the effect of the demographic variables is to adjust the 𝜇 parameters, though we must be

cautious in interpreting the term 𝜇𝑔 + ν𝑔d as a minimum required quantity because there is nothing

preventing it from being negative.

Example 3
The dataset described in example 1 also includes two demographic characteristics, the numbers of

children and adults in each household. Here we refit the LES to these data, controlling for these two

demographics.
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. use https://www.stata-press.com/data/r18/food_consumption
(Food consumption)
. demandsys les w_dairy w_proteins w_fruitveg w_flours w_misc,
> prices(p_dairy p_proteins p_fruitveg p_flours p_misc)
> expenditure(expfd) demographics(n_kids n_adults) nolog
Calculating NLS estimates ...
Calculating FGNLS estimates ...
FGNLS iteration 2 ...
FGNLS iteration 3 ...
FGNLS iteration 4 ...
FGNLS iteration 5 ...
Linear expenditure system Number of obs = 4,160
Expenditure variable: expfd Number of goods = 5
Demographic method: Translating Number of demographics = 2
Centered R2 of model for
Good 1 = -0.0444
Good 2 = 0.0665
Good 3 = 0.0584
Good 4 = 0.1576
Good 5 = 0.0922

Estimate Std. err. z P>|z| [95% conf. interval]

beta
Good

1 .1656925 .0023639 70.09 0.000 .1610594 .1703256
2 .4170346 .0042631 97.82 0.000 .408679 .4253901
3 .2434237 .0032072 75.90 0.000 .2371377 .2497098
4 .0800666 .0015889 50.39 0.000 .0769525 .0831808

mu
Good

1 -.3932844 .164016 -2.40 0.016 -.71475 -.0718189
2 -.53048 .1798223 -2.95 0.003 -.8829251 -.1780349
3 1.010915 .3046076 3.32 0.001 .4138951 1.607935
4 -.0269827 .0426005 -0.63 0.526 -.1104782 .0565128
5 .0097685 .0526521 0.19 0.853 -.0934277 .1129647

Nu
Good#

c.n_kids
1 .4332196 .160145 2.71 0.007 .1193413 .747098
2 -.0680289 .1197109 -0.57 0.570 -.302658 .1666002
3 -.7945652 .2003774 -3.97 0.000 -1.187298 -.4018328
4 .3923541 .0273698 14.34 0.000 .3387103 .4459979
5 .3563529 .0368047 9.68 0.000 .284217 .4284888

Good#
c.n_adults

1 .4856673 .1525998 3.18 0.001 .1865771 .7847574
2 .8669319 .1316001 6.59 0.000 .6090005 1.124863
3 .843552 .227083 3.71 0.000 .3984775 1.288626
4 .3576213 .0318802 11.22 0.000 .2951373 .4201054
5 .2639693 .0374888 7.04 0.000 .1904925 .3374461

Note: beta estimates measure how expenditure shares respond to increases in
supernumerary income.

Note: mu estimates are subsistence levels of consumption for each good.
Note: Nu estimates measure the effect of demographic variables on subsistence

levels of consumption.
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Normalized parameter

Estimate Std. err. z P>|z| [95% conf. interval]

beta
Good

5 .0937826 .0019264 48.68 0.000 .090007 .0975582

Note: beta estimates sum to 1.
Shares: w_dairy w_proteins w_fruitveg w_flours w_misc
Prices: p_dairy p_proteins p_fruitveg p_flours p_misc
Expenditure: expfd
Demographics: n_kids n_adults

The estimated parameter matrix N is shown in the last block of the coefficient table, and demandsys
labels the coefficients using factor-variable notation. Yet you should not think of the terms as you would

of interactions in a regression. Here the notation means something different. The first five rows of the

output for N correspond to the demographic variable n kids and how it affects the consumption of each

good. The remaining five correspond to n adults. For instance, all the coefficients for n adults are
positive, as we would expect, meaning that having more adults in the family increases consumption of

all goods. The coefficient for n kids on the consumption of Good 3, fruits and vegetables, is negative,
meaning consumption decreases as the number of children increases.

Directly interpreting the coefficients on demographic variables is not difficult for the LES, but for

more complicated models, it can be. One easy way to see the practical effect of that negative coefficient

is to use the margins command to see how our predicted quantity for Good 3 changes as the number of

children changes.

. margins, predict(quantities equation(#3)) at(n_kids=1 n_kids=2 n_kids=3)
Predictive margins Number of obs = 4,160
Model VCE: GNR
Expression: Predicted quantity of good 3, predict(quantities equation(#3))
1._at: n_kids = 1
2._at: n_kids = 2
3._at: n_kids = 3

Delta-method
Margin std. err. z P>|z| [95% conf. interval]

_at
1 22.57831 .1734791 130.15 0.000 22.2383 22.91833
2 21.407 .2254155 94.97 0.000 20.96519 21.84881
3 20.23569 .323032 62.64 0.000 19.60256 20.86882

We asked margins to produce predictions of quantities of Good 3, fruits and vegetables, by specifying
the equation(#3) option, and we asked it to do so when the number of children is equal to one, again
when the number of children is equal to two, and finally when the number of children is equal to three.

margins first sets n kids equal to one for all 4,160 observations in the estimation sample and obtains
the predicted quantities; the mean of those predictions is 22.6. When n kids is equal to two for all

observations, the mean is 21.4, and when n kids is equal to three, the mean is 20.2.

Kids do not always eat their fruits and vegetables, but finding that the quantity of fruits and vegetables

actually declines as the household grows is rather surprising. Perhaps we have omitted other relevant

demographic variables from our model, biasing our estimates, or perhaps the model itself is simply too

rigid.
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Finally, we use estat elasticities to obtain uncompensated price elasticities. We will obtain two

sets of results, one for households with fewer than three kids and one for households with three or more

kids.

. estat elasticities if n_kids <= 2, uncompensated
Uncompensated (Marshallian) price elasticities Number of obs = 3,742

Price Elasticity Std. err. z P>|z| [95% conf. interval]

Good 1
Good

1 -.9537446 .0083361 -114.41 0.000 -.970083 -.9374061
2 -.00852 .0015032 -5.67 0.000 -.0114662 -.0055738
3 -.0083598 .0014808 -5.65 0.000 -.0112621 -.0054574
4 -.0062373 .0011228 -5.56 0.000 -.0084379 -.0040367
5 -.0071346 .0012983 -5.50 0.000 -.0096793 -.00459

Good 2
Good

1 -.0621117 .012096 -5.13 0.000 -.0858194 -.038404
2 -.9289446 .0085912 -108.13 0.000 -.945783 -.9121063
3 -.0499231 .0062304 -8.01 0.000 -.0621346 -.0377117
4 -.0390871 .0048967 -7.98 0.000 -.0486844 -.0294897
5 -.0445883 .0056323 -7.92 0.000 -.0556274 -.0335492

Good 3
Good

1 -.0503597 .0118715 -4.24 0.000 -.0736274 -.0270921
2 -.0410463 .0036302 -11.31 0.000 -.0481614 -.0339312
3 -.886701 .0100534 -88.20 0.000 -.9064052 -.8669968
4 -.030438 .0027264 -11.16 0.000 -.0357816 -.0250944
5 -.0348829 .0032109 -10.86 0.000 -.0411761 -.0285897

Good 4
Good

1 -.0428307 .0038014 -11.27 0.000 -.0502814 -.0353801
2 -.0373442 .0014421 -25.90 0.000 -.0401707 -.0345178
3 -.0357288 .0013809 -25.87 0.000 -.0384354 -.0330223
4 -.7107582 .0101357 -70.12 0.000 -.7306238 -.6908925
5 -.0306015 .0012718 -24.06 0.000 -.0330941 -.0281089

Good 5
Good

1 -.0347514 .0047892 -7.26 0.000 -.0441381 -.0253647
2 -.0296409 .0016063 -18.45 0.000 -.0327893 -.0264926
3 -.0285217 .0015907 -17.93 0.000 -.0316394 -.025404
4 -.0212131 .0011859 -17.89 0.000 -.0235375 -.0188887
5 -.7824229 .0109448 -71.49 0.000 -.8038744 -.7609714
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. estat elasticities if n_kids >= 3, uncompensated
Uncompensated (Marshallian) price elasticities Number of obs = 418

Price Elasticity Std. err. z P>|z| [95% conf. interval]

Good 1
Good

1 -.9395485 .0146154 -64.28 0.000 -.9681941 -.9109029
2 -.0126359 .0032625 -3.87 0.000 -.0190303 -.0062416
3 -.0146746 .004299 -3.41 0.001 -.0231005 -.0062486
4 -.0082076 .002108 -3.89 0.000 -.0123393 -.0040759
5 -.0093949 .0024408 -3.85 0.000 -.0141788 -.0046109

Good 2
Good

1 -.023357 .0100783 -2.32 0.020 -.04311 -.0036039
2 -.9674982 .0135281 -71.52 0.000 -.9940128 -.9409836
3 -.028745 .0152303 -1.89 0.059 -.0585959 .0011058
4 -.0152942 .0064352 -2.38 0.017 -.0279071 -.0026813
5 -.0178107 .007578 -2.35 0.019 -.0326633 -.0029581

Good 3
Good

1 -.0000379 .0055043 -0.01 0.995 -.0108261 .0107504
2 .0001398 .0056976 0.02 0.980 -.0110273 .0113068
3 -1.000682 .0201954 -49.55 0.000 -1.040264 -.9610998
4 -.0000842 .0035771 -0.02 0.981 -.0070951 .0069268
5 -.0000569 .0041395 -0.01 0.989 -.0081702 .0080565

Good 4
Good

1 -.0451601 .0025582 -17.65 0.000 -.0501741 -.0401461
2 -.0463532 .0024489 -18.93 0.000 -.051153 -.0415534
3 -.052944 .0045994 -11.51 0.000 -.0619587 -.0439293
4 -.6843304 .0131677 -51.97 0.000 -.7101385 -.6585222
5 -.0334225 .0018152 -18.41 0.000 -.0369803 -.0298648

Good 5
Good

1 -.0356486 .002797 -12.75 0.000 -.0411305 -.0301666
2 -.0365794 .0027339 -13.38 0.000 -.0419377 -.0312212
3 -.0401475 .0035616 -11.27 0.000 -.0471281 -.033167
4 -.0234098 .0017471 -13.40 0.000 -.0268341 -.0199856
5 -.7542306 .0156676 -48.14 0.000 -.7849385 -.7235226

For example, in the table for households with 3 or more children, the price elasticity for Good 5 with

respect to Good 1 is −0.0356486. Among these households, if the price of Good 5 (miscellaneous items)

increases by 1%, then the quantity of Good 1 (dairy products) purchased will decrease by an average of

0.036%.

We summarize the own-price elasticities in table 1. We again focus on the demand for fruits and

vegetables. Among households with two children or fewer, it is inelastic, while it is (barely) elastic for

households with three or more children. Again, we have no explanation for why that would be the case,

though we suspect the model is simply too rigid to accurately model the consumption patterns seen in

our data.
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Table 1: Own-price elasticities based on number of children

# of Children

Good ≤ 2 ≥ 3

Dairy −0.954 −0.940

Proteins −0.939 −0.967

Fruits & vegetables −0.887 −1.001

Flours −0.711 −0.684

Miscellany −0.782 −0.754

Translog
Pollak and Wales (1992, sec. 3.1) discuss an entire class of demand systems that they describe as the

transcendental logarithmic or “translog” family. We implement the version they call the “basic translog”

function, which is probably the most well known, because it corresponds to the translog indirect utility

function proposed by Christensen, Jorgenson, and Lau (1975). We also implement the version Pollak

andWales call the “generalized translog” function, which is a more flexible version of the basic translog

that has been translated in a way analogous to how the LES is a shifted version of the Cobb–Douglas

utility function.

Basic translog

Christensen, Jorgenson, and Lau (1975) proposed both direct and indirect utility functions with the

“translog” functional form. For their direct utility function, they obtain expenditure shares that are a

function of expenditure and quantities, which is not the focus of demandsys. We instead implement the

demand system based on their translog indirect utility function. The starting point is the indirect utility

function

ln𝑣(p, 𝑚;α, 𝚪) = − ∑
𝑔

𝛼𝑔ln
𝑝𝑔

𝑚
− 1

2
∑

𝑔
∑

ℎ
𝛾𝑔ℎln

𝑝𝑔

𝑚
ln

𝑝ℎ
𝑚

(1)

Equation (1) is twice differentiable in prices, and based onYoung’s (1909) theorem, we must have 𝛾𝑔ℎ =
𝛾ℎ𝑔 for all 𝑔 and ℎ. (Young’s theorem states that cross-partial derivatives are equal.)

Roy (1943) introduced what would be known as Roy’s identity, which equates a consumer’s Mar-

shallian demand function for a good with a function of their indirect utility function. Applying Roy’s

identity, we have the expenditure-share functions

𝑤𝑔(p, 𝑚;α, 𝚪) =
𝛼𝑔 + ∑ℎ 𝛾𝑔ℎln

𝑝ℎ
𝑚

1 + ∑𝑗 ∑ℎ 𝛾𝑗ℎln
𝑝ℎ
𝑚

where we have imposed the normalization ∑𝑔 𝛼𝑔 = 1. This ensures that the expenditure shares sum to

1, a property known as “additivity”.

As we remarked in the introduction, if one has relevant demographic variables, one should include

them in the demand system, so wewill not present an example of the translogmodel without demographic

variables. Moreover, it is in fact easier to describe how we incorporate demographic variables into the

translog system if we first describe the generalized translog model.
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Generalized translog

Another way to perform translation and introduce subsistence or committed quantities into a demand

system is to translate the indirect utility function, so that consumers’ effective expenditures are their

expenditures after the subsistence quantities of all goods are purchased. Pollak and Wales (1992, 56) do

this to Christensen, Jorgenson, and Lau’s (1975) indirect utility function to obtain

ln𝑣(p, 𝑚;α, 𝚪,µ) = − ∑
𝑔

𝛼𝑔ln
𝑝𝑔

𝑚
− 1

2
∑

𝑔
∑

ℎ
𝛾𝑔ℎ ln

𝑝𝑔

𝑚
ln

𝑝ℎ
𝑚

𝑚 = 𝑚 − ∑
ℎ

𝑝ℎ𝜇ℎ ∑
ℎ

𝛼ℎ = 1 𝛾𝑔ℎ = 𝛾ℎ𝑔

where again µ is a 𝐺×1 vector of subsistence quantities with typical element 𝜇𝑔. A tedious but straight-

forward application of Roy’s identity gives the expenditure-share functions as

𝑤𝑔(p, 𝑚;α, 𝚪,µ) =
𝑝𝑔𝜇𝑔

𝑚
+ 𝑚

𝑚
(

𝛼𝑔 + ∑ℎ 𝛾𝑔ℎln
𝑝ℎ
𝑚

1 + ∑𝑗 ∑ℎ 𝛾𝑗ℎln
𝑝ℎ
𝑚

)

𝑚 = 𝑚 − ∑
ℎ

𝑝ℎ𝜇ℎ ∑
ℎ

𝛼ℎ = 1 𝛾ℎ𝑗 = 𝛾𝑗ℎ

It is apparent that the sum of 𝑤𝑔(p, 𝑚;α, 𝚪,µ) across all 𝑔 is equal to one, as must be true of a demand
system. Again, suppose for each consumer that we have a 𝐷 × 1 vector of demographics d and an

associated 𝐺 × 𝐷 matrix N, and again, let 𝑐𝑔 denote the 𝑔th element of the vector c = Nd.

To apply both demographic characteristics and committed quantities, we can translate the translog

indirect utility function, this time with the value (𝜇𝑔 + 𝑐𝑔) replacing 𝜇𝑔 in the developments above.

Thus, the generalized translog system with demographic variables has expenditure-share functions of

the form

𝑤𝑔(p, 𝑚, d;α, 𝚪,µ,N) =
𝑝𝑔(𝜇𝑔 + ν𝑔d)

𝑚
+ 𝑚

𝑚
(

𝛼𝑔 + ∑ℎ 𝛾𝑔ℎln
𝑝ℎ
𝑚

1 + ∑𝑗 ∑ℎ 𝛾𝑗ℎln
𝑝ℎ
𝑚

)

𝑚 = 𝑚 − ∑
ℎ

𝑝ℎ(𝜇ℎ + νℎd) ∑
ℎ

𝛼ℎ = 1 𝛾ℎ𝑗 = 𝛾𝑗ℎ

The basic translog model results if we set µ = 0 and N = 0, and the basic translog model with de-

mographics results if we set just µ = 0. The generalized translog model results if we set just N = 0.

The generalized translog model is essentially a translog model with a constant term included among the

demographic variables.
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Example 4
We first fit a basic translogmodel to our food consumption data, controlling for the number of children

and adults in each household. We will also store these estimation results so we can use them later.

. use https://www.stata-press.com/data/r18/food_consumption
(Food consumption)
. demandsys translog w_dairy w_proteins w_fruitveg w_flours w_misc,
> prices(p_dairy p_proteins p_fruitveg p_flours p_misc)
> demographics(n_kids n_adults)
> labels(”dairy proteins fruitveg flours misc”)
> expenditure(expfd) elasticities(expenditure) nolog nocoeftable
Calculating NLS estimates ...
Calculating FGNLS estimates ...
FGNLS iteration 2 ...
FGNLS iteration 3 ...
FGNLS iteration 4 ...
Basic translog model Number of obs = 4,160
Expenditure variable: expfd Number of goods = 5
Demographic method: Translating Number of demographics = 2
Centered R2 of model for
dairy = 0.0448
proteins = 0.1593
fruitveg = 0.0976
flours = 0.1881
misc = 0.1678

Calculating expenditure elasticities ...
Expenditure elasticities

Expenditure Elasticity Std. err. z P>|z| [95% conf. interval]

dairy .90727 .0157948 57.44 0.000 .8763129 .9382272
proteins 1.0912 .0102476 106.48 0.000 1.071115 1.111285
fruitveg .9629558 .0128444 74.97 0.000 .9377813 .9881303
flours .8728076 .0152504 57.23 0.000 .8429174 .9026979
misc 1.000333 .0177894 56.23 0.000 .9654664 1.0352

Note: Elasticities are calculated at prices’, demographic variables’, and
expenditure means.

. estimates store translog

We specified the nocoeftable option to suppress the coefficient table and the

elasticities(expenditure) option to obtain expenditure elasticities. Finally, we used the

labels() option to name our five goods. Had we not done that, then the output would simply have

numbered the goods from one to five.
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For comparison’s sake, we also fit the equivalent generalized translog model. We note that despite

the long commands, the following one differs from the previous by just one character:

. demandsys gtranslog w_dairy w_proteins w_fruitveg w_flours w_misc,
> prices(p_dairy p_proteins p_fruitveg p_flours p_misc)
> demographics(n_kids n_adults)
> labels(”dairy proteins fruitveg flours misc”)
> expenditure(expfd) elasticities(expenditure) nolog nocoeftable
Calculating NLS estimates ...
Calculating FGNLS estimates ...
FGNLS iteration 2 ...
FGNLS iteration 3 ...
FGNLS iteration 4 ...
Generalized translog model Number of obs = 4,160
Expenditure variable: expfd Number of goods = 5
Demographic method: Translating Number of demographics = 2
Centered R2 of model for
dairy = 0.0478
proteins = 0.1615
fruitveg = 0.0988
flours = 0.1903
misc = 0.1732

Calculating expenditure elasticities ...
Expenditure elasticities

Expenditure Elasticity Std. err. z P>|z| [95% conf. interval]

dairy .906851 .0174393 52.00 0.000 .8726706 .9410313
proteins 1.074059 .01144 93.89 0.000 1.051637 1.096481
fruitveg .9716098 .0144251 67.36 0.000 .943337 .9998826
flours .892461 .0170431 52.36 0.000 .8590571 .9258649
misc 1.023297 .0194942 52.49 0.000 .9850886 1.061504

Note: Elasticities are calculated at prices’, demographic variables’, and
expenditure means.

. estimates store gtranslog

The 𝑅2 statistics from the generalized translog model are trivially higher than for the basic translog

model. Because demandsys is based on maximum likelihood estimation and because the translog model

is nested within the generalized translog model, we can use a likelihood-ratio test to see whether the

inclusion of committed quantities is warranted here.

. lrtest gtranslog translog
Likelihood-ratio test
Assumption: translog nested within gtranslog
LR chi2(5) = 59.00
Prob > chi2 = 0.0000

The generalized translog model adds additional 𝐺 parameters over the basic translog model, so the 𝜒2

statistic has five degrees of freedom in this example. The result indicates that the use of the generalized

version of the translog model is warranted. Of course, if you do this test for your own models, you must

use the same demographic specification in both.
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As we cautioned with the LES, interpreting the 𝜇 parameters of the generalized translog model as

subsistence quantities requires care. We do not force the estimates to be positive, nor does demandsys
check that ∑𝑔 𝑝𝑔𝑖(𝜇𝑔 +ν′

𝑔d𝑖) ≤ 𝑚𝑖 for each observation 𝑖 in the dataset or that 𝜇𝑔 +ν′
𝑔d𝑖 ≥ 0 for each

observation and each good, both of which must be true if the subsistence argument is to be credible. We

have noted that the generalized translog model can produce negative estimates of 𝜇’s quite frequently
and changing the demographic specification is often enough to produce negative estimates.

For example, if we refit the previous example controlling for just the number of children but not the

number of adults, we obtain negative estimates for some of the 𝜇 parameters:

. demandsys gtranslog w_dairy w_proteins w_fruitveg w_flours w_misc,
> prices(p_dairy p_proteins p_fruitveg p_flours p_misc)
> demographics(n_kids) expenditure(expfd) nolog
Calculating NLS estimates ...
Calculating FGNLS estimates ...
FGNLS iteration 2 ...
FGNLS iteration 3 ...
FGNLS iteration 4 ...
Generalized translog model Number of obs = 4,160
Expenditure variable: expfd Number of goods = 5
Demographic method: Translating Number of demographics = 1
Centered R2 of model for
Good 1 = 0.0421
Good 2 = 0.1600
Good 3 = 0.0929
Good 4 = 0.1825
Good 5 = 0.1706

Estimate Std. err. z P>|z| [95% conf. interval]

alpha
Good

1 .1745891 .0097353 17.93 0.000 .1555082 .1936699
2 .3416641 .0188744 18.10 0.000 .304671 .3786572
3 .3634044 .0192262 18.90 0.000 .3257218 .401087
4 .0598082 .0066154 9.04 0.000 .0468423 .0727741

Gamma
Good_g#
Good_h
1#1 .0232919 .002496 9.33 0.000 .0183998 .0281841
1#2 -.0146955 .0032932 -4.46 0.000 -.02115 -.0082411
1#3 .0005704 .0018905 0.30 0.763 -.0031349 .0042758
1#4 .001351 .0009723 1.39 0.165 -.0005546 .0032566
1#5 .0026193 .0010776 2.43 0.015 .0005073 .0047312
2#2 .120652 .0085591 14.10 0.000 .1038764 .1374275
2#3 -.0301533 .0055644 -5.42 0.000 -.0410593 -.0192474
2#4 -.0184411 .0027052 -6.82 0.000 -.0237432 -.013139
2#5 -.0228452 .0032034 -7.13 0.000 -.0291238 -.0165667
3#3 .0698867 .0067428 10.36 0.000 .056671 .0831023
3#4 .0006331 .0013394 0.47 0.636 -.0019921 .0032583
3#5 -.0065477 .0017672 -3.71 0.000 -.0100113 -.003084
4#4 .0233853 .0023855 9.80 0.000 .0187097 .0280608
4#5 -.0074747 .0011361 -6.58 0.000 -.0097014 -.005248
5#5 .0323539 .0030878 10.48 0.000 .0263019 .0384059
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mu
Good

1 -.1560689 .0474664 -3.29 0.001 -.2491014 -.0630364
2 -.811357 .2053694 -3.95 0.000 -1.213874 -.4088403
3 -.7661874 .3576452 -2.14 0.032 -1.467159 -.0652156
4 .2121302 .0367754 5.77 0.000 .1400517 .2842087
5 .0887401 .0446207 1.99 0.047 .0012853 .176195

Nu
Good#

c.n_kids
1 -.5508244 .1957429 -2.81 0.005 -.9344734 -.1671754
2 -1.350384 .1934558 -6.98 0.000 -1.72955 -.9712175
3 -2.749218 .303765 -9.05 0.000 -3.344586 -2.153849
4 .0446036 .0442943 1.01 0.314 -.0422117 .1314189
5 -.103696 .0559887 -1.85 0.064 -.2134318 .0060399

Note: alpha estimates are constant expenditures for each good.
Note: Gamma estimates measure the effect of price on expenditures shares

across goods.
Note: mu estimates are subsistence levels of consumption for each good.
Note: Nu estimates measure the effect of demographic variables on shares and

subsistence levels of consumption.
Normalized parameter

Estimate Std. err. z P>|z| [95% conf. interval]

alpha
Good

5 .0605342 .007785 7.78 0.000 .045276 .0757925

Note: alpha estimates sum to 1.
Shares: w_dairy w_proteins w_fruitveg w_flours w_misc
Prices: p_dairy p_proteins p_fruitveg p_flours p_misc
Expenditure: expfd
Demographics: n_kids

Here, again, we see factor-variable notation for the parameter matrix N but also for 𝚪. As we men-
tioned before, you should not interpret the factor-variable notation as you would in a regression output.

We see the estimate labeled 1#2 under Good g#Good h. This is the estimate of 𝛾12, the coefficient

associated with ln𝑝2/𝑚 in the equation for Good 1.

AIDS
One of the most commonly used demand systems is the celebrated AIDS model of Deaton and Muell-

bauer (1980b). Among other benefits, the AIDS model can be viewed as a first-order approximation

to any demand system. Historically, the AIDS model was also favored because it is “almost linear” in

the sense that replacing the price index with an approximation results in share equations that are linear.

Given the speed with which computers can fit nonlinear systems of equations, we do not implement that

approximation.

An additional nice property of the AIDS model is that the functional form for its budget shares is a

member of the “price-independent generalized log-linear” and the broader “price-independent general-

ized linear” families. An advantage to price-independent generalized linear expenditure shares is that

they satisfy certain conditions required for the existence of a representative consumer and the related
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theory of aggregation. In short, expenditure shares of this form can be fit to data aggregated across

consumers. The implied market demand curves are consistent with a single utility-maximizing represen-

tative agent and satisfy the same conditions like Slutsky symmetry that hold for demand curves implied

by a single consumer’s utility-maximizing behavior. For more on price-independent generalized linear

demands, see, for example, Muellbauer (1975), Lewbel (1989), and Pollak and Wales (1992, chap. 2).

The starting point for the AIDS model is the expenditure function

ln𝑒(p, 𝑢; 𝛼0,α,β, 𝚪) = (1 − ln𝑢)ln𝑎(p) + ln𝑢 {ln𝑎(p) + 𝑏(p)} (2)

where 𝑢 is utility, the price index ln𝑎(p) is defined as

ln𝑎(p) ≡ 𝛼0 + ∑
𝑔

𝛼𝑔ln𝑝𝑔 + 1
2

∑
𝑔

∑
ℎ

𝛾𝑔ℎln𝑝𝑔ln𝑝ℎ

where 𝑝𝑔 is the price of good 𝑔, and the price aggregator 𝑏(p) is defined as

𝑏(p) ≡ 𝛽0 ∏
𝑔

𝑝𝛽𝑔
𝑔

Parameter 𝛽0 cannot be distinguished from 𝑢, so we take 𝛽0 = 1 in the following. In their original

formulation, Deaton and Muellbauer (1980b) wrote their expenditure function slightly differently, with

𝑢 in place of ln𝑢 in (2). We have chosen to use ln𝑢 to draw some comparisons with the QUAIDS model

later, and because utility is an ordinal concept, it will not affect the expenditure-share equations.

Suppose that all prices are equal to one. Then (2) with 𝛽0 = 1 implies that ln𝑒(𝑝, 𝑢) = 𝛼0. Thus,

exp(𝛼0) can be interpreted as the level of expenditure needed for minimal subsistence when all prices are
equal to one. In practice, estimating 𝛼0 is difficult, particularly when prices are correlated, as they often

are. Therefore, by default, we set 𝛼0 equal to the natural logarithm of the minimum level of expenditure

in the estimation sample. You can override the default by specifying the piconstant() option. Of

course, prices are generally not all equal to one, so you will want to try various values for 𝛼0 to see how

sensitive elasticities and other calculations you may perform are to its value.

Expenditure functions consistent with rational consumer choice must be homogeneous of degree one

in prices and expenditure, which imply that we must have ∑𝑔 𝛼𝑔 = 1, ∑𝑔 𝛽𝑔 = 0, and ∑𝑔 𝛾𝑔ℎ =
∑ℎ 𝛾𝑔ℎ = 0. Slutsky symmetry further requires that 𝛾𝑔ℎ = 𝛾ℎ𝑔 for all 𝑔 and ℎ. Note that demandsys
imposes these restrictions on the model being fit. An alternative is to fit the model with and without

one or more of those restrictions and then test whether they hold. However, such unrestricted models

can often fail to converge because of the increased number of parameters or because the models are “too

flexible” and contain unidentifiable parameters.

Shephard’s (1970) lemma equates the Hicksian demand functions with the partial derivatives of the

expenditure function with respect to the price of the goods. Using Shephard’s lemma, we can write the

expenditure-share functions as

𝑤𝑔(p, 𝑚; 𝛼0,α,β, 𝚪) = 𝛼𝑔 + ∑
ℎ

𝛾𝑔ℎln𝑝ℎ + 𝛽𝑔ln{ 𝑚
𝑎(p)

} (3)

Notice the simplicity of these share equations. Good 𝑔’s expenditure share depends linearly on the log
prices of all the goods as well as the log of an expenditure term. The expenditure term𝑚/𝑎(p) essentially
adjusts each household’s expenditure to control the cost of living faced by that household. This term is

sometimes referred to as deflated expenditure. Equation (3) also makes clear that luxury goods have

𝛽𝑔 > 1 while necessities have 𝛽𝑔 < 1; inferior goods have 𝛽𝑔 < 0.
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Setting 𝑒(p, 𝑢) = 𝑚 and manipulating (2) yields the indirect utility function

ln𝑣(p, 𝑚; 𝛼0,α,β, 𝚪) = ln𝑚 − ln𝑎(p)
𝑏(p)

(4)

We will come back to this equation below. We show how the indirect utility function plays a role in

computing welfare measures in [R] demandsys postestimation.

QUAIDS
The Engel curves for theAIDSmodel have the so-called “Working–Leser” form after Working (1943)

and Leser (1963),

𝑤𝑔 = 𝜔𝑔 + 𝜓𝑔ln𝑚

so that the share of expenditures spent on good 𝑔 is a linear function of the logarithm of total expenditures.

Banks, Blundell, and Lewbel (1997) provided evidence that in fact linear Engel curves provide a poor

fit for many goods. They therefore consider Engel curves with an additional expenditure term,

𝑤𝑔 = 𝐴𝑔(p) + 𝐵𝑔(p)ln{ 𝑚
𝑎(p)

} + 𝐶𝑔(p) 𝑓 { 𝑚
𝑎(p)

} (5)

where 𝐴𝑔(p), 𝐵𝑔(p), and 𝐶𝑔(p) are differentiable functions of prices and 𝑓 {𝑚/𝑎(p)} is a differentiable
function of real expenditures. 𝑎(p) is the same translog price index as in the AIDS model.

Lewbel (1991), building on the work of Gorman (1981), showed that any exactly aggregable demand

system must have the form of (5) and that additional terms containing functions of 𝑚/𝑎(p) are not
theoretically possible if exact aggregability is to hold. Lewbel (1991) termed demand systems of the

form (5) as having rank three because there are three linearly independent terms; Gorman (1981) showed

that the maximum rank of demand systems is three if exact aggregability is to hold. In contrast, theAIDS

model has rank two.

Banks, Blundell, and Lewbel (1997) further showed that the only indirect utility functions consistent

with rank-three expenditure-share equations like (5) have the form

ln𝑣(p, 𝑚) = [{ ln𝑚 − ln𝑎(p)
𝑏(p)

}
−1

+ 𝜆(p)]
−1

where in their application they use the same definitions for 𝑎(p) and 𝑏(p) as in the AIDS model and they
take 𝜆(p) = ∑𝑔 𝜆𝑔ln𝑝𝑔 with ∑𝑔 𝜆𝑔 = 0. As with the restrictions implied by economic theory for the

AIDS model, demandsys imposes the restriction that the 𝜆’s sum to zero. Also notice that if we restrict

𝜆𝑔 = 0 for all 𝑔, we are left with the indirect utility function for the AIDS model shown in (4).
Solving for ln𝑚 yields the cost function

ln𝑒(p, 𝑢) = 𝑏(p)
1
ln𝑢

− 𝜆(p)
+ ln𝑎(p)
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Applying Shephard’s lemma, we have the expenditure-share functions

𝑤𝑔(p, 𝑚;α, 𝚪, 𝚲) = 𝛼𝑔 + ∑
ℎ

𝛾𝑔ℎln𝑝ℎ + 𝛽𝑔ln{ 𝑚
𝑎(p)

} +
𝜆𝑔

𝑏(p)
[ln{ 𝑚

𝑎(p)
}]

2

This equation also makes clear our earlier claim that if 𝜆𝑔 = 0 for all 𝑔 then the QUAIDS model reduces
to the AIDS model; see (3).

Controlling for demographic factors
demandsys allows you to choose between two different methods of incorporating demographic char-

acteristics into AIDS and QUAIDS. The first method is the same as we have used with demand systems

we have already covered: Pollak and Wales’s (1978) demographic translation. An added benefit of

translation is that it allows us to introduce constant terms that might be interpreted as subsistence or

committed quantities. A possible downside to demographic translation is that the intuition behind how

demographic variables affect expenditure shares may not strike all users as entirely lucid. Essentially,

demographic variables alter the level of subsistence for each household or observation. However, as we

cautioned above in our discussion of the generalized translog model, there are no restrictions to force

∑𝑔 𝑝𝑔𝑖(𝜇𝑔 + ν′
𝑔d𝑖) ≤ 𝑚𝑖, nor are there any restrictions to force (𝜇𝑔 + ν′

𝑔d𝑖) ≥ 0.

The second method of incorporating demographics that demandsys implements is based on Ray

(1983) and Poi (2002) and is known as demographic scaling. This method explicitly allows for de-

mographic variables to have “scale” and “composition” effects on expenditures as we explain below.

There are two possible downsides to demographic scaling. First, it does not allow one to incorporate

subsistence quantities into the demand system. While one may be tempted to include a constant term in

the list of demographic variables because that is essentially what demographic translation does to incor-

porate subsistence quantities, the resulting parameter estimates do not have such a clearcut interpretation.

Second, in our experience, models that incorporate demographic scaling sometimes take many iterations

to converge. Specifying fewer demographic characteristics may help achieve convergence. We think

this method is more intuitive than demographic translation, but either method should prove adequate for

most applications.

Demographic translation
We have already discussed demographic translation in the context of the LES and the translog and

generalized translog demand systems, so we will not show the details here. In Methods and formulas,

we show the formula for the expenditure shares for the generalized QUAIDS model, and we discuss the

parameter restrictions that give rise to the generalized AIDS model and their nongeneralized variants.

demandsys provides for four models in the AIDS family that can incorporate demographic variables
via demographic translation: aids, quaids, gaids, and gquaids. The first two models do not allow for

committed quantities, while the latter two represent generalized variants that do. The arguments in Pollak

and Wales (1992, 75) suggest that the generalized variants are to be preferred because doing so ensures

that a constant term is included in each demand equation (compare with share equation). Whether the

constants allow for a subsistence interpretation is another matter, and in [R] demandsys postestimation,

we provide an example of how to see whether that interpretation holds.
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Demographic scaling
demandsys also implements the demographic scaling method used by Ray (1983) for theAIDSmodel

and extended by Poi (2002) to the QUAIDS model. For each consumer, we again have a 𝐷-length vector

of demographic characteristics d. Suppose d is the number of children in a household and we are mod-

eling expenditures on household goods, rent, utilities, and food. Then the household’s expenditures will

presumably increase by virtue of there being more members in the household; call this the scale effect.

Second, the consumption pattern of the household may shift as more money is spent on items consumed

by children versus adults; think of that as a composition effect. Ray (1983) does this by writing the

expenditure function as

𝑒(p,d, 𝑢) = 𝑒𝑅(p, 𝑢) 𝑚0(d) 𝜙(p,d, 𝑢)

Here 𝑒𝑅(p, 𝑢) is the expenditure function for a reference household, where d = 0. 𝑚0(d) increases
total expenditure of the household and accounts for the scale effect. 𝜙(p,d, 𝑢) controls for composition
effects. For AIDS, Ray (1983) controlled for both of these effects by taking

𝑚0(d) = 1 + ρ′d

for 𝐺 × 1 parameter vector ρ and

𝜙(p,d, 𝑢) = exp{𝑢 ∏
𝑖

𝑝𝛽𝑔
𝑔 (∏

𝑔
𝑝
η𝑔d

𝑔 − 1)}

where η𝑔 is the 𝑔th row of 𝐺 × 𝐷 parameter matrix H. In Methods and formulas, we show that the

expenditure-share functions for the AIDS model with demographic scaling are

𝑤𝑔(p, 𝑚, d; 𝛼0,α,β, 𝚪,λ,ρ,H) = 𝛼𝑔 + ∑
ℎ

𝛾𝑔ℎln𝑝ℎ + (𝛽𝑔 + η𝑖d)ln{ 𝑚
𝑚0(d;ρ) 𝑎(p)

}

Basically, the function 𝑚0(d;ρ) acts to reduce the effective amount of money available for spending. If
d represents a set of indicator variables for regions of a country, then 𝑚0(d;ρ) is controlling for the cost
of living in different regions of the country. The function 𝜙(p,d, 𝑢) is to make each good’s expenditure
expansion path a function of the household’s demographics. Rather than all households increasing their

expenditure share of good 𝑔 by the same 𝛽𝑔 in response to a change in 𝑚, now their responses can vary

by household composition.

For the QUAIDS model, we show in Methods and formulas that an appropriate choice for 𝜙(p,d, 𝑢)
leads to expenditure share equations

𝑤𝑔(p, 𝑚, d; 𝛼0,α,β, 𝚪,λ,ρ,H) =𝛼𝑔 + ∑
ℎ

𝛾𝑔ℎln𝑝ℎ + (𝛽𝑔 + η𝑖d)ln{ 𝑚
𝑚0(d;ρ) 𝑎(p)

}

+
𝜆𝑔

𝑏(p) 𝑐(p,d)
[ln{ 𝑚

𝑚0(d;ρ) 𝑎(p)
}]

2

The models aids and quaids allow for demographic scaling. To request demographic scaling, rather

than demographic translation, we specify the scaling suboption of the demographics() option, as the
next example shows.
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Example 5
Here we fit a QUAIDS model to our food consumption data, controlling for the numbers of children

and adults in each household. We request that demographic scaling be used rather than the default de-

mographic translation.

. use https://www.stata-press.com/data/r18/food_consumption
(Food consumption)
. demandsys quaids w_dairy w_proteins w_fruitveg w_flours w_misc,
> prices(p_dairy p_proteins p_fruitveg p_flours p_misc)
> demographics(n_kids n_adults, scaling)
> labels(”dairy proteins fruitveg flours misc”)
> expenditure(expfd) elasticities(expenditure) nolog nocoeftable
Calculating NLS estimates ...
Calculating FGNLS estimates ...
FGNLS iteration 2 ...
FGNLS iteration 3 ...
FGNLS iteration 4 ...
Quadratic AIDS model Number of obs = 4,160
Expenditure variable: expfd Number of goods = 5

Price index constant = 1.615
Demographic method: Scaling Number of demographics = 2
Centered R2 of model for
dairy = 0.0453
proteins = 0.1530
fruitveg = 0.0949
flours = 0.1813
misc = 0.1726

Calculating expenditure elasticities ...
Expenditure elasticities

Expenditure Elasticity Std. err. z P>|z| [95% conf. interval]

dairy .8918188 .0176252 50.60 0.000 .857274 .9263636
proteins 1.077283 .0117431 91.74 0.000 1.054267 1.100299
fruitveg 1.043209 .014428 72.30 0.000 1.01493 1.071487
flours .8409016 .0162384 51.78 0.000 .8090749 .8727284
misc .9460643 .0189172 50.01 0.000 .9089872 .9831413

Note: Elasticities are calculated at prices’, demographic variables’, and
expenditure means.

. estimates store quaids_s

Because the QUAIDSmodel with demographic scaling for a 5-good system with 2 demographic variables

has 32 estimated parameters, we instructed demandsys to report expenditure elasticities rather than the
estimated parameters. We draw your attention to this part of the command:

demographics(n_kids n_adults, scaling)

Notice that we specified the suboption scaling. Had we not included this suboption, then demandsys
would have used demographic translation instead. Finally, we asked Stata to store these estimation results

as quaids s.
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The header of the output shows that demandsys fit a QUAIDS model as requested and that our demo-
graphic variables were incorporated using demographic scaling. Take note of the line that reads

Price index constant = 1.615

In our discussion of the basic AIDS model, we discussed the price index 𝑎(p) that includes a constant
term 𝛼0. We discussed that when all prices are equal to one, then exp(𝛼0) can be interpreted as the level
of expenditure needed for minimal subsistence. demandsys looked at our expenditure variable expfd
and found that the minimum value within the estimation sample is $5.03. It therefore set 𝛼0 = ln 5.03 =
1.615. You can specify your own value for 𝛼0 by using the piconstant() option, which stands for price
index constant.

The QUAIDS model nests the AIDS model, so we can easily use a likelihood-ratio test to see whether

the quadratic terms in the expenditure-share equations contribute to the explanatory power of the model.

We include quietly to fit the corresponding aids model without displaying the results and store the
estimation results:

. quietly demandsys aids w_dairy w_proteins w_fruitveg w_flours w_misc,
> prices(p_dairy p_proteins p_fruitveg p_flours p_misc)
> demographics(n_kids n_adults, scaling)
> labels(”dairy proteins fruitveg flours misc”) expenditure(expfd)
. estimates store aids_s

Becausewe specified quietly, we did not request expenditure elasticities. Doing sowould have required
Stata to do more computations that we would not have seen.

We now perform the likelihood-ratio test:

. lrtest quaids_s aids_s
Likelihood-ratio test
Assumption: aids_s nested within quaids_s
LR chi2(4) = 36.58
Prob > chi2 = 0.0000

In this example, we reject the null hypothesis that the four free 𝜆 parameters are jointly equal to zero.

Hence, the use of the QUAIDS model instead of the linear AIDS model is justified here. (Recall that to

satisfy the adding-up constraint, we impose ∑𝑔 𝜆𝑔 = 0 so that in our example the fifth parameter is

determined by the first four and is not estimated.)

When one conducts tests of one model versus another using the likelihood-ratio principle, the more

restrictive model must be nested within the more general model. For example, each of the AIDS models

implemented here is nested within the corresponding QUAIDS models, and the AIDS model with demo-

graphic translation is nested within the generalized AIDS model. But it would make no sense to fit a

generalizedAIDSmodel and compare it with a generalized translog model because one is not a restricted

variant of the other. In Methods and formulas, we describe the most flexible variant within each class of

demand system, and we describe the parameter restrictions that give rise to less flexible variants; using

lrtest to choose among members within the same class is valid.

Also, for a likelihood-ratio test to be valid, themodel specifications—apart from the component we are

testing—must be identical. That is, the two models must include the same estimation sample, the same

goods, and the same demographic specification, including the method by which demographic variables

are introduced for AIDS and QUAIDS models. Moreover, for AIDS and QUAIDS models, you must use the

same value for the price index constant 𝛼0. If you do not specify the piconstant() option, demandsys
will use the same value, assuming you use the same estimation sample.
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Example 6
In this example, we will fit a generalized QUAIDS model, again controlling for the number of chil-

dren and adults. Because we are fitting a generalized model, the demographics will be incorporated via

demographic translation. To demonstrate the use of the piconstant() option, we will specify 𝛼0 = 3.

. use https://www.stata-press.com/data/r18/food_consumption
(Food consumption)
. demandsys gquaids w_dairy w_proteins w_fruitveg w_flours w_misc,
> prices(p_dairy p_proteins p_fruitveg p_flours p_misc)
> demographics(n_kids n_adults) piconstant(3) expenditure(expfd) nolog
Calculating NLS estimates ...
Calculating FGNLS estimates ...
FGNLS iteration 2 ...
FGNLS iteration 3 ...
FGNLS iteration 4 ...
Generalized quadratic AIDS model Number of obs = 4,160
Expenditure variable: expfd Number of goods = 5

Price index constant = 3
Demographic method: Translating Number of demographics = 2
Centered R2 of model for
Good 1 = 0.0486
Good 2 = 0.1596
Good 3 = 0.0996
Good 4 = 0.1893
Good 5 = 0.1715

Estimate Std. err. z P>|z| [95% conf. interval]

alpha
Good

1 .1911178 .0084914 22.51 0.000 .1744749 .2077607
2 .2916652 .0180614 16.15 0.000 .2562654 .3270649
3 .3606389 .0168958 21.34 0.000 .3275237 .3937542
4 .0716379 .0045291 15.82 0.000 .062761 .0805149

beta
Good

1 -.0123296 .0075589 -1.63 0.103 -.0271448 .0024856
2 .0007156 .0191226 0.04 0.970 -.036764 .0381953
3 -.0083998 .0137386 -0.61 0.541 -.0353269 .0185273
4 .0118892 .0045299 2.62 0.009 .0030106 .0207677

Gamma
Good_g#
Good_h
1#1 .0381355 .0030825 12.37 0.000 .032094 .044177
1#2 -.0326577 .0029964 -10.90 0.000 -.0385305 -.026785
1#3 -.0106876 .0026841 -3.98 0.000 -.0159483 -.0054269
1#4 .0021791 .0012889 1.69 0.091 -.000347 .0047052
2#2 .1579944 .0060979 25.91 0.000 .1460428 .169946
2#3 -.0694334 .0044839 -15.49 0.000 -.0782216 -.0606452
2#4 -.024068 .0020371 -11.82 0.000 -.0280606 -.0200755
3#3 .0923088 .005649 16.34 0.000 .0812371 .1033806
3#4 -.0001376 .0017618 -0.08 0.938 -.0035908 .0033156
4#4 .0313475 .0023698 13.23 0.000 .0267027 .0359922
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lambda
Good

1 .0043566 .0028362 1.54 0.125 -.0012021 .0099154
2 .0005706 .0059707 0.10 0.924 -.0111316 .0122729
3 -.0068449 .004352 -1.57 0.116 -.0153747 .0016848
4 -.0001594 .0017033 -0.09 0.925 -.0034979 .003179

mu
Good

1 1.06405 .2097966 5.07 0.000 .6528563 1.475244
2 .6058156 .4529227 1.34 0.181 -.2818965 1.493528
3 2.146931 .6621706 3.24 0.001 .8490999 3.444761
4 .3204353 .0685528 4.67 0.000 .1860743 .4547964
5 .3588502 .0854053 4.20 0.000 .191459 .5262415

Nu
Good#

c.n_kids
1 -.2399129 .1953618 -1.23 0.219 -.6228149 .1429892
2 -1.176653 .1938486 -6.07 0.000 -1.556589 -.7967167
3 -2.604984 .3121795 -8.34 0.000 -3.216845 -1.993123
4 .1120979 .0416122 2.69 0.007 .0305396 .1936563
5 -.0296108 .0541832 -0.55 0.585 -.1358079 .0765863

Good#
c.n_adults

1 -1.271932 .2071674 -6.14 0.000 -1.677972 -.865891
2 -1.278973 .2249348 -5.69 0.000 -1.719837 -.8381089
3 -2.698807 .3809636 -7.08 0.000 -3.445482 -1.952132
4 -.0562651 .0483113 -1.16 0.244 -.1509536 .0384234
5 -.2693881 .0569314 -4.73 0.000 -.3809716 -.1578045

Note: alpha estimates are constant terms in expenditure-share equations and
also appear in the price index.

Note: beta estimates measure sensitivity of expenditure shares to changes in
deflated expenditure and also appear in the price aggregator function.

Note: Gamma estimates measure the effect of price on expenditures shares
across goods.

Note: lambda estimates measure the sensitivity of expenditure shares to
changes in deflated expenditure.

Note: Nu estimates measure the effect of demographic variables on expenditure
shares of each good.
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Normalized parameters

Estimate Std. err. z P>|z| [95% conf. interval]

alpha
Good

5 .0849402 .0049286 17.23 0.000 .0752803 .0946001

beta
Good

5 .0081246 .0050562 1.61 0.108 -.0017854 .0180345

Gamma
Good_g#
Good_h
1#5 .0030308 .0014661 2.07 0.039 .0001572 .0059044
2#5 -.0318352 .0023155 -13.75 0.000 -.0363734 -.0272969
3#5 -.0120502 .0019986 -6.03 0.000 -.0159674 -.008133
4#5 -.0093209 .0011512 -8.10 0.000 -.0115772 -.0070646

lambda
Good

5 .0020771 .0019631 1.06 0.290 -.0017705 .0059247

Note: alpha estimates sum to 1.
Note: beta estimates sum to 0.
Note: Gamma estimates sum to 0 over goods.
Note: lambda estimates sum to 0 over goods.
Shares: w_dairy w_proteins w_fruitveg w_flours w_misc
Prices: p_dairy p_proteins p_fruitveg p_flours p_misc
Expenditure: expfd
Demographics: n_kids n_adults

We see in the header of the output that demandsys did set the price index constant 𝛼0 = 3 as per our

request.

The 𝜇 parameter estimates are all greater than zero, but it is difficult to interpret them in isolation.

Because we control for the number of children and the number of adults in each household, the 𝜇 pa-

rameters themselves would represent subsistence expenditure shares for a hypothetical household with

neither any children nor any adults! In a somewhat technical example in [R] demandsys postestima-

tion, we continue this example and show how to recover the estimated µ and N parameters and then use

those estimates to calculate the actual subsistence shares for each household. We then compare the cal-

culated subsistence expenditures with actual expenditures to see whether the subsistence interpretation

even holds.

Epilogue
demandsys provides easy access to some of the most commonly used demand systems and their

extensions. You can control for demographic characteristics. Options and postestimation commands

make obtaining elasticities trivial.

Despite what may appear to be a thorough implementation, we have only scratched the surface.

demandsys is designed for large cross-sectional datasets. The Rotterdam model of Theil (1965) and

Barten (1966) and its extensions are widely used in the analysis of time-series data.
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A frequent concern is that datasets often have expenditure shares that are zero for some households.

Deaton and Irish (1984) is an early contribution to the literature on how to deal with zero shares. Heien

and Wessells (1990) proposed a two-step Heckman estimation procedure, but it has been shown to lead

to inconsistent estimates (Vermeulen 2001). Tauchmann (2010) provides an alternative Heckman-type

estimator that is consistent. Shonkwiler andYen (1999) proposed an alternative estimator for zero shares.

See also Yen and Lin (2006) for yet another approach and Meyerhoefer, Ranney, and Sahn (2005), who

develop an estimator that controls for censoring with panel data. More recently, Caro et al. (2021) have

developed the community-contributed Stata command quaidsce, which provides an implementation of
Schonkwiler and Yen’s estimator.

All of our estimators treat price as an exogenous variable. There are multiple reasons why one may

want to allow for endogenous prices. In the classical supply and demand setting, which may occur for ex-

ample in small villages, there are a small number of buyers and sellers, so the decisions that buyers make

will influence prices, causing them to be endogenous in expenditure-share equations. A more pertinent

concern is that prices may be measured with error. Consumption is often collected by survey data, and

consumers are often not able to recall the exact price paid for an item. Unobserved quality differences

also cause prices to be measured with error, especially when the goods being modeled are aggregates of

individual items. For example, you may purchase filet mignon every week, while I purchase economy-

grade ground beef. Both items are lumped together as “meat” even though, arguably, the two products

are not even close substitutes; Nelson (1991) considers this type of problem. Spatial patterns may also

make prices endogenous; see Case (1991) as an example.

Lecocq and Robin (2015) provide a community-contributed command called aidsills that allows
one to fit an AIDS model with endogenous variables. Their command, however, provides the AIDS and

QUAIDS models with only one method of including demographic variables that is similar to the demo-

graphic translation approach used here.

We have presented the QUAIDS model as somewhat of an endpoint because it has rank 3, which Gor-

man (1981) and Lewbel (1991) showed is the maximum rank of an exactly aggregable demand system.

Lewbel and Pendakur (2009) develop what they call a theory of “implicit Marshallian demands” that

are not within the class of demand equations considered by Gorman and Lewbel and hence can have

any rank. Lewbel and Pendakur propose a demand system they call the exact affine Stone index that

allows for interactions between prices and expenditures and allows for much more flexible Engel curves.

Their empirical application shows that observed demands often deviate from those implied by demands

that are linear or quadratic in income. Moreover, their model can be fit using the generalized method of

moments, so the possibility of controlling for price endogeneity exists.

Stored results
demandsys stores the following in e():

Scalars

e(N) number of observations

e(k) number of parameters

e(k eq) number of equations in e(b)
e(n demos) number of demographic factors

e(n goods) number of goods

e(mss #) model sum of squares for the #th equation

e(rss #) residual sum of squares for the #th equation

e(tss #) total sum of squares for the #th equation

e(r2 #) 𝑅2 for the #th equation

e(ll) Gaussian log likelihood

e(N clust) number of clusters
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e(piconstant) number of constant term

e(rank) rank of e(V)
e(ic) number of iterations

e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) demandsys
e(cmdline) command as typed

e(wtype) weight type

e(wexp) weight expression

e(model) demand model

e(model eval) demand evaluator

e(title) title in estimation output

e(clustvar) name of cluster variable

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(demo type) demographic variable specification

e(demos) demographic variables

e(has demos) 1 if demographic variables are used, 0 otherwise
e(expenditures) expenditures variable

e(prices) price variables

e(shares) expenditure-share variables

e(r2 type) 𝑅2 type computed

e(p index) whether model has price index

e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins

Matrices

e(b) coefficient vector

e(Sigma) error covariance matrix (�̂�)

e(V) variance–covariance matrix of the estimators

e(b normalized) coefficient vector of the normalized parameters

e(V normalized) variance–covariance matrix of the normalized parameters

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas
Methods and formulas are presented under the following headings:

Introduction
LES
Generalized translog
QUAIDS with demographic translation
QUAIDS with demographic scaling
Estimation
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Introduction
As in the text in Remarks and examples, we continue to use subscript 𝑖 = 1, . . . , 𝑁 to index obser-

vations, 𝑔 = 1, . . . , 𝐺 to index goods, and 𝑑 = 1, . . . , 𝐷 to index demographic variables. In formulas

where we must use double summations across goods, we use ℎ = 1, . . . , 𝐺 and 𝑗 = 1, . . . , 𝐺 to index

goods. We omit the observation subscript for most of this discussion; all variables and expressions with-

out 𝑖 subscripts implicitly refer to the 𝑖th observation. Only when we sum across observations do we

make the 𝑖 subscript explicit.
Let 𝑤𝑔 be the expenditure share for good 𝑔 defined as 𝑤𝑔 ≡ (𝑝𝑔 𝑞𝑔)/𝑚, where 𝑝𝑔 is the price of good

𝑔, 𝑞𝑔 is the quantity of good 𝑔 consumed, and 𝑚 denotes total expenditure on all the goods in the system

being modeled. We use w, p, and q to represent the 𝐺 × 1 vectors of expenditure shares, prices, and

quantities for observation 𝑖. Let d represent the 𝐷 × 1 vector of demographic characteristics.

We use the notation 𝑤𝑔 to denote the observed expenditure share for good 𝑔 for observation 𝑖. We

use the notation 𝑤𝑔(p, 𝑚;θ) to represent an expenditure-share functions where we will replace generic
parameter vector θwith eachmodel’s parameter vectors andmatrices. We adorn direct and indirect utility

functions and expenditure functions analogously.

We use the notation 𝐸𝑔
ℎ to denote the uncompensated (Marshallian) elasticity of the quantity of good

𝑔 with respect to the price of good ℎ. We use the notation 𝐸𝑔 to note the expenditure elasticity of good

𝑔. Then, given the definition of 𝑤𝑔, one can easily verify the following facts that are useful in obtaining

the formulas for the elasticities:

𝐸𝑔 = 1
𝑤𝑔

𝜕𝑤𝑔

𝜕ln𝑚
+ 1 = 𝑚

𝑤𝑔

𝜕𝑤𝑔

𝜕𝑚
+ 1

𝐸𝑔
𝑔 = 1

𝑤𝑔

𝜕𝑤𝑔

𝜕ln𝑝𝑔
− 1 =

𝑝𝑔

𝑤𝑔

𝜕𝑤𝑔

𝜕𝑝𝑔
− 1

𝐸𝑔
ℎ = 1

𝑤𝑔

𝜕𝑤𝑔

𝜕ln𝑝ℎ
= 𝑝ℎ

𝑤𝑔

𝜕𝑤𝑔

𝜕𝑝ℎ

The Slutsky equation can be written in elasticity form to obtain the compensated (Hicksian) elasticity

of the quantity of good 𝑔with respect to the price of good ℎ: 𝐸𝑔
ℎ = 𝐸𝑔𝑤ℎ+𝐸𝑔

ℎ, where𝑤ℎ is the predicted

expenditure share for good ℎ. We discuss elasticities in more detail, including why we use𝑤ℎ rather than

𝑤ℎ, in [R] demandsys postestimation.

For each demand system, we provide the equations for the 𝑔th expenditure share, the direct utility
function (if available), the indirect utility function, the expenditure function (if available), and the elas-

ticities of the quantity of good 𝑔 with respect to expenditure and the price of good ℎ. Predicted values
of the first four items are available via predict; the elasticities are available via estat elasticities.
When one demand system is nested within a more general demand system, we provide the equations

for only the more general demand system and note what parameter restrictions would result in the less

general demand system. Moreover, we include demographic variables in our exposition; versions of

models without demographic variables result when the corresponding parameter vectors and matrices

are set to zero. We also note what parameter restrictions are imposed at estimation to ensure adding up,

homogeneity, and Slutsky symmetry.
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LES
Let 𝑐𝑔 = 𝜇𝑔 + ν𝑔d, where ν𝑔 is the 𝑔th row of 𝐺 × 𝐷 parameter matrix N. The LES begins with the

utility function

𝑢(q,d;β,µ,N) = ∏
𝑔

(𝑞𝑔 − 𝑐𝑔)𝛽𝑔

Utility maximization yields the expenditure-share equations

𝑤𝑔(p, 𝑚, d;β,µ,N) =
𝑝𝑔𝑐𝑔

𝑚
+ 𝛽𝑔 (1 − ∑

ℎ

𝑝ℎ𝑐ℎ
𝑚

)

To enforce adding up, we impose the constraint ∑𝑔 𝛽𝑔 = 1. Slutsky symmetry and homogeneity are

implied by the functional form of the LES model. Straightforward algebra shows the indirect utility

function is

𝑣(p, 𝑚, d;β,µ,N) =
∏𝑔 𝛽𝛽𝑔

𝑔

∏𝑔 𝑝𝛽𝑔
𝑔

(𝑚 − ∑
𝑔

𝑝𝑔𝑐𝑔)

and inverting provides the expenditure function

𝑒(p, 𝑢, d;β,µ,N) = 𝑢
∏𝑔 𝑝𝛽𝑔

𝑔

∏𝑔 𝛽𝛽𝑔
𝑔

+ ∑
𝑔

𝑝𝑔𝑐𝑔

The expenditure and uncompensated price elasticities are given by

𝐸𝑔 =
𝛽𝑔𝑚

𝑝𝑔𝑐𝑔 + 𝛽𝑔 (𝑚 − ∑ℎ 𝑝ℎ𝑐ℎ)

𝐸𝑔
ℎ =

⎧{{{{
⎨{{{{⎩

𝑝𝑔𝑐𝑔(1 − 𝛽𝑔)

𝑝𝑔𝑐𝑔 + 𝛽𝑔 (𝑚 − ∑
ℎ

𝑝ℎ𝑐ℎ)
− 1 𝑔 = ℎ

−𝛽𝑔𝑝ℎ𝑐ℎ

𝑝𝑔𝑐𝑔 + 𝛽𝑔 (𝑚 − ∑
ℎ

𝑝ℎ𝑐ℎ)
𝑔 ≠ ℎ

The Cobb–Douglas demand system results if we set µ = 0. Models without demographics result if we

set N = 0.
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Generalized translog
Continuing to use 𝑐𝑔 = 𝜇𝑔 +ν𝑔d, we can obtain the generalized translog expenditure-share equations

with demographics by first obtaining the regular translog expenditure-share equations and then applying

translation with both a constant term and demographic characteristics to those expenditure-share equa-

tions to obtain

𝑤𝑔(p, 𝑚, d;α, 𝚪,µ,N) =
𝑝𝑔𝑐𝑔

𝑚
+ 𝑚

𝑚

𝛼𝑔 + ∑
ℎ

𝛾𝑔ℎln(𝑝ℎ
𝑚

)

1 + ∑
ℎ

∑
𝑗

𝛾ℎ𝑗ln(
𝑝𝑗

𝑚
)

𝑚 = 𝑚 − ∑
𝑗

𝑝𝑗𝑐𝑗

The normalization ∑𝑔 𝛼𝑔 = 1 ensures the expenditure shares sum to 1, and Slutsky symmetry requires

that 𝛾𝑗ℎ = 𝛾ℎ𝑗. Homogeneity is implied by the functional form of the expenditure-share equation.

Noting that the translated indirect utility function has the same form as the untranslated version except

with 𝑚 replacing 𝑚, we have the indirect utility function

ln𝑣(p, 𝑚, d;α, 𝚪,µ,N) = − ∑
𝑔

𝛼𝑔ln(
𝑝𝑔

𝑚
) − 1

2
∑

𝑔
∑

ℎ
𝛾𝑔ℎln(

𝑝𝑔

𝑚
) ln(𝑝ℎ

𝑚
)

A limitation of the generalized translog model is that we cannot solve the indirect utility function for

a closed-form expression for the cost function, nor does a closed-form expression for the direct utility

function exist. (The direct utility function described in Christensen, Jorgenson, and Lau [1975] is not the

utility function that is implied by their indirect utility function.)

Demand systems with translated demographics and committed quantities tend to produce elastic-

ity formulas that are rather long. Omitting function arguments for clarity, we begin by writing the

expenditure-share equation for good 𝑔 as

𝑤𝑔 = 𝐴𝑔 + 𝐵𝑔 ×
𝑁𝑔

𝐷𝑔

where

𝐴𝑔 =
𝑝𝑔𝑐𝑔

𝑚

𝐵𝑔 = 𝑚
𝑚

= 1 −
∑ℎ 𝑝ℎ𝑐ℎ

𝑚
𝑁𝑔 = 𝛼𝑔 + ∑

ℎ
𝛾𝑔ℎln𝑝ℎ − ln(𝑚 − ∑

ℎ
𝑝ℎ𝑐ℎ) ∑

ℎ
𝛾𝑔ℎ

𝐷𝑔 = 1 + ∑
𝑗

∑
ℎ

𝛾𝑗ℎln𝑝ℎ − ln(𝑚 − ∑
ℎ

𝑝ℎ𝑐ℎ) ∑
𝑗

∑
ℎ

𝛾𝑗ℎ
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Applying the chain and quotient rules of elementary calculus, we have

𝜕𝑤𝑔

𝜕𝑚
=

𝜕𝐴𝑔

𝜕𝑚
+ 𝐵𝑔

⎛⎜⎜⎜
⎝

𝐷𝑔
𝜕𝑁𝑔

𝜕𝑚
− 𝑁𝑔

𝜕𝐷𝑔

𝜕𝑚
𝐷2

𝑔

⎞⎟⎟⎟
⎠

+
𝑁𝑔

𝐷𝑔

𝜕𝐵𝑔

𝜕𝑚

where

𝜕𝐴𝑔

𝜕𝑚
= −

𝑝𝑔𝑐𝑔

𝑚2
𝜕𝐵𝑔

𝜕𝑚
=

∑ℎ 𝑝ℎ𝑐ℎ

𝑚2

𝜕𝑁𝑔

𝜕𝑚
= − 1

𝑚 − ∑ℎ 𝑝ℎ𝑐ℎ
∑

ℎ
𝛾𝑔ℎ

𝜕𝐷𝑔

𝜕𝑚
= − 1

𝑚 − ∑ℎ 𝑝ℎ𝑐ℎ
∑

𝑗
∑

ℎ
𝛾𝑗ℎ

Given 𝜕𝑤𝑔/𝜕𝑚, the expenditure elasticity of good 𝑔 is calculated as 𝐸𝑔 = (𝑚/𝑤𝑔)(𝜕𝑤𝑔/𝜕𝑚) + 1. We

also have

𝜕𝑤𝑔

𝜕𝑝ℎ
=

𝜕𝐴𝑔

𝜕𝑝ℎ
+ 𝐵𝑔

⎛⎜⎜⎜⎜
⎝

𝐷𝑔
𝜕𝑁𝑔

𝜕𝑝ℎ
− 𝑁𝑔

𝜕𝐷𝑔

𝜕𝑝ℎ
𝐷2

𝑔

⎞⎟⎟⎟⎟
⎠

+
𝑁𝑔

𝐷𝑔

𝜕𝐵𝑔

𝜕𝑝ℎ

where

𝜕𝐴𝑔

𝜕𝑝ℎ
= {𝑐𝑔/𝑚 ℎ = 𝑔

0 ℎ ≠ 𝑔
𝜕𝐵𝑔

𝜕𝑝ℎ
= −

𝑐𝑔

𝑚
𝜕𝑁𝑔

𝜕𝑝ℎ
=

𝛾𝑔ℎ

𝑐ℎ
+ 𝑐ℎ

𝑚 − ∑𝑗 𝑝𝑗𝑐𝑗
∑

𝑗
𝛾𝑔𝑗

𝜕𝐷𝑔

𝜕𝑝ℎ
= 1

𝑝ℎ
∑

𝑗
𝛾𝑗ℎ + 𝑐ℎ

𝑚 − ∑𝑗 𝑝𝑗𝑐𝑗
∑
𝑗𝑘

𝛾𝑗𝑘

Given 𝜕𝑤𝑔/𝜕𝑝ℎ, the uncompensated price elasticity of good 𝑔 with respect to price ℎ is calculated as

𝐸𝑔
ℎ = (𝑝ℎ/𝑤𝑔)(𝜕𝑤𝑔/𝜕𝑝ℎ) + Iℎ=𝑔, where I𝑥 is the indicator function that takes on the value one if 𝑥 is

true and zero otherwise.

The basic translog results if we set µ = 0, and models without demographics have N = 0.
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QUAIDS with demographic translation
Translating Banks, Blundell, and Lewbel’s (1997) indirect utility function, we have

ln𝑉 (p, 𝑚, d; 𝛼0,α,β, 𝚪,λ,µ,N) = [{ ln𝑚 − ln𝑎(p)
𝑏(p)

}
−1

+ 𝜆(p)]
−1

ln𝑎(p) = 𝛼0 + ∑
𝑔

𝛼𝑔ln𝑝𝑔 + 1
2

∑
𝑔

∑
ℎ

𝛾𝑔ℎln𝑝𝑔ln𝑝ℎ

𝑏(p) = ∏
𝑔

𝑝𝛽𝑔
𝑔

𝜆(p) = ∑
𝑔

𝜆𝑔ln𝑝𝑔

where 𝛼0 is the value specified in the piconstant() option. Solving for 𝑚 and recalling that 𝑚 =
𝑚 + ∑𝑔 𝑝𝑔𝑐𝑔 for 𝑐𝑔 = 𝜇𝑔 + ν𝑔𝑑, we have the expenditure function

𝑒(p, 𝑢, d; 𝛼0,α,β, 𝚪,λ,µ,N) = exp{ 𝑏(p)ln𝑢
1 − 𝜆(p)ln𝑢

+ ln𝑎(p)} + ∑
𝑔

𝑝𝑔𝑐𝑔 (6)

Applying Shepherd’s lemma yields the expenditure-share equations

𝑤𝑔(p, 𝑚, d; 𝛼0,α,β, 𝚪,λ,µ,N) =

𝑝𝑔𝑐𝑔

𝑚
+ 𝑚

𝑚
(𝛼𝑔 + ∑

ℎ
𝛾𝑔ℎln𝑝ℎ + 𝛽𝑔ln{ 𝑚

𝑎(p)
} +

𝜆𝑔

𝑏(p)
[ln{ 𝑚

𝑎(p)
}]

2

)
(7)

To obtain the expenditure elasticities, we first write (7) as

𝑤𝑔 = 𝑅𝑔 + 𝑆𝑔 × 𝑇𝑔 (8)

where

𝑅𝑔 =
𝑝𝑔𝑐𝑔

𝑚
𝑆𝑔 = 𝑚

𝑚

𝑇𝑔 = 𝛼𝑔 + ∑
ℎ

𝛾𝑔ℎln𝑝ℎ + 𝛽𝑔ln{ 𝑚
𝑎(p)

} +
𝜆𝑔

𝑏(p)
[ln{ 𝑚

𝑎(p)
}]

2
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Taking the derivative with respect to ln𝑚, we have

𝜕𝑤𝑔

𝜕ln𝑚
=

𝜕𝑅𝑔

𝜕ln𝑚
+ 𝑆𝑔

𝜕𝑇𝑔

𝜕ln𝑚
+ 𝑇𝑔

𝜕𝑆𝑔

𝜕ln𝑚

where

𝜕𝑅𝑔

𝜕ln𝑚
= −

𝑝𝑔𝑐𝑔

𝑚
𝜕𝑆𝑔

𝜕ln𝑚
= 1 − 𝑆𝑔

𝜕𝑇𝑔

𝜕ln𝑚
= 1

𝑆𝑔
[𝛽𝑔 + 2

𝜆𝑔

𝑏(p)
ln{ 𝑚

𝑎(p)
}]

Then the expenditure elasticity for good 𝑔 is given by 𝐸𝑔 = (1/𝑤𝑔)(𝜕𝑤𝑔/𝜕ln𝑚) + 1.

To obtain the uncompensated price elasticity of good 𝑔 with respect to price ℎ, we again use (8). Taking
the partial derivative with respect to ln𝑝ℎ, we have

𝜕𝑤𝑔

𝜕ln𝑝ℎ
=

𝜕𝑅𝑔

𝜕ln𝑝ℎ
+ 𝑆𝑔

𝜕𝑇𝑔

𝜕ln𝑝ℎ
+ 𝑇𝑔

𝜕𝑆𝑔

𝜕ln𝑝ℎ

The required partials are

𝜕𝑅𝑔

𝜕ln𝑝ℎ
= {

𝑝ℎ𝑐ℎ𝑚 ℎ = 𝑔
0 ℎ ≠ 𝑔

𝜕𝑆𝑔

𝜕ln𝑝ℎ
= −𝑝ℎ𝑐ℎ

𝑚
𝜕𝑇𝑔

𝜕ln𝑝ℎ
= 𝛾𝑔ℎ + 𝛽𝑔

𝜕
𝜕ln𝑝ℎ

[ln{ 𝑚
𝑎(p)

}] + 𝜕
𝜕ln𝑝ℎ

(
𝜆𝑔

𝑏(p)
[ln{ 𝑚

𝑎(p)
}]

2

)

where

𝜕
𝜕ln𝑝ℎ

[ln{ 𝑚
𝑎(p)

}] = − ( 𝑝ℎ𝑐ℎ
𝑚 − ∑𝑗 𝑝𝑗𝑐𝑗

+ 𝛼ℎ + ∑
𝑗

𝛾ℎ𝑗ln𝑝𝑗)

𝜕
𝜕ln𝑝ℎ

(
𝜆𝑔

𝑏(p)
[ln{ 𝑚

𝑎(p)
}]

2

) = 2
𝜆𝑔

𝑏(p)
ln{ 𝑚

𝑎(p)
} 𝜕

𝜕ln𝑝ℎ
[ln{ 𝑚

𝑎(p)
}]

−
𝜆𝑔𝛽ℎ

𝑏(p)
[ln{ 𝑚

𝑎(p)
}

2

]

The uncompensated price elasticity of good 𝑔with respect to price ℎ is𝐸𝑔
ℎ = (𝑝ℎ/𝑤𝑔)(𝜕𝑤𝑔/𝜕𝑝ℎ)+Iℎ=𝑔.

The AIDS model results if λ = 0. The nongeneralized variants result if µ = 0. The variants without

demographics result if N = 0.
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QUAIDS with demographic scaling
As can be gleaned from (6), the expenditure function for a QUAIDS model without any form of trans-

lation or scaling is

𝑒(p, 𝑢; 𝛼0,α,β, 𝚪,λ) = exp{ 𝑏(p)ln𝑢
1 − 𝜆(p)ln𝑢

+ ln𝑎(p)} = exp{ 𝑏(p)
1
ln𝑢

− 𝜆(p)
+ ln𝑎(p)}

𝑎(p) = 𝛼0 + ∑
𝑗

𝛼𝑗ln𝑝𝑗 + 1
2

∑
𝑗

∑
𝑘

𝛾𝑗𝑘ln𝑝𝑗ln𝑝𝑘

𝑏(p) = ∏
𝑗

𝑝𝛽𝑗
𝑗

𝜆(p) = ∑
𝑗

𝜆𝑗ln𝑝𝑗

The AIDS case results when λ = 0, and we obtain the expenditure function given by (2).

To implement Ray’s (1983) demographic scaling as extended to the QUAIDS case in Poi (2002), we

require a function that can be split into two parts, one part that depends on prices and utility and one part

that does not:

𝑚0(p, 𝑢, d) = 𝑚0(d) 𝜙(p,d, 𝑢)

For 𝑚0(d), we use the same function as in Ray,

𝑚0(d;ρ) = 1 + ρ′d

where ρ is a 𝐷 × 1 parameter vector. For 𝜙(p, δ, 𝑢), we follow Poi (2002) and use

𝜙(p,d, 𝑢;β,λ,H) = exp

⎧{
⎨{⎩

𝑏(p) (∏𝑗 𝑝
η𝑗d

𝑗 − 1)
1
ln𝑢

− 𝜆(p)

⎫}
⎬}⎭

where η𝑗 is the 𝑗th row of𝐺×𝐷 parameter matrixH. ForAIDSwhenλ = 0, we are left with the function

used by Ray (1983). The expenditure function for the QUAIDS model with demographic scaling is then

𝑒(p, 𝑢, d; 𝛼0,α,β, 𝚪,λ,ρ,H) = 𝑒(p, 𝑢; 𝛼0,α,β, 𝚪,λ) × 𝑚0(d;ρ) × 𝜙(p,d, 𝑢;β,H)
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Applying Shepherd’s lemma, we have the share equations

𝑤𝑔(p, 𝑚, d; 𝛼0,α,β, 𝚪,λ,ρ,H) =

𝛼𝑔 + ∑
ℎ

𝛾𝑔ℎln𝑝ℎ + (𝛽𝑔 + η𝑔d)ln [ 𝑚
𝑚0(d;ρ) 𝑎(p)

] +
𝜆𝑔

𝑏(p) 𝑐(p,d)
[ln{ 𝑚

𝑚0(d;ρ) 𝑎(p)
}]

2

where the demographic-adjusted price aggregator is defined as 𝑐(p,d) ≡ ∏𝑗 𝑝
η𝑗d

𝑗 . The indirect utility

function is

ln𝑉 (p, 𝑚, d; 𝛼0,α,β, 𝛄,λ,ρ,H) = [ 𝑏(p) 𝑐(p,d)
ln {𝑚 − 𝑚0(d;ρ) − 𝑎(p)}

+ 𝜆(p)]
−1

Because we are not dealing with demographic translation here, the partial derivatives required for

elasticities are not as involved as they are for the QUAIDS model with demographic translation or the

generalized translog model. We have

𝜕𝑤𝑔

𝜕ln𝑚
= 𝛽𝑔 + η𝑔d +

2𝜆𝑔

𝑏(p) 𝑐(p,d)
ln{ 𝑚

(1 + ρ′d) 𝑎(p)
}

and

𝜕𝑤𝑔

𝜕ln𝑝ℎ
= 𝛾𝑔ℎ − [𝛽𝑔 + η𝑔d +

2𝜆𝑔

𝑏(p) 𝑐(p,d)
ln{ 𝑚

(1 + ρ′d) 𝑎(p)
}] × (𝛼ℎ + ∑

𝑘
𝛾ℎ𝑘ln𝑝𝑘)

+
(𝛽ℎ + ηℎd) 𝜆𝑔

𝑏(p) 𝑐(p,d)
[ln{ 𝑚

(1 + ρ′d) 𝑎(p)
}]

2

The AIDS model with demographic scaling results if λ = 0, and models without demographic scaling

result if ρ = 0 and H = 0.

Estimation
The expenditure shares of a demand system represent a set of nonlinear seemingly unrelated regression

(SUR) equations. Hence, estimation is performed using nlsur with just one complication. Our system
of equations for observation 𝑖 and generic parameter vector θ can be written as

𝑤1𝑖 = 𝑤1(p𝑖, 𝑚𝑖,d𝑖;θ) + 𝜖1𝑖

𝑤2𝑖 = 𝑤2(p𝑖, 𝑚𝑖,d𝑖;θ) + 𝜖2𝑖

⋮ = ⋮
𝑤𝐺𝑖 = 𝑤𝐺(p𝑖, 𝑚𝑖,d𝑖;θ) + 𝜖𝐺𝑖

where ε𝑖 = (𝜖1𝑖, 𝜖2𝑖, . . . , 𝜖𝐺𝑖) is a vector of zero-mean disturbances. Because ∑𝑔 𝑤𝑔𝑖 = 1 and by

the construction of our demand systems we also have ∑𝑔 𝑤𝑔(p𝑖, 𝑚𝑖,d𝑖;θ) = 1, it must be the case

that ∑𝑔 𝜖𝑔𝑖 = 0. Therefore, det(𝚺) = det {𝐸(εε′)} = 0, and neither the (quasi)maximum likelihood

estimator nor the feasible generalized nonlinear SUR estimator is defined.

Barten (1969) showed that to obtain a well-defined likelihood function, we can drop any one of the

expenditure-share equations and fit the system containing the remaining 𝐺 − 1 equations. Parameter

restrictions that force the demand system’s equations to sum to 1 can then be used to recover the param-

eters of the dropped equation. demandsys drops the final equation from the demand system, but which

equation is dropped should not concern you: Barten (1969) showed that you obtain the same likelihood

function regardless of which one is dropped.
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Moreover, the nonlinear SUR model satisfies the so-called Oberhofer–Kmenta (1974) conditions that

allow us to cycle between estimating the parameters θ and the error covariance matrix 𝚺 as nlsur
does when we specify option ifgnls. The upshot is that we fit our expenditure-share equations by

calling nlsurwith option ifgnls. The resulting parameter estimate θ̂ is the (quasi)maximum likelihood

estimate of the parameters of our demand system. The (𝐺 − 1) × (𝐺 − 1) estimated error covariance
matrix is returned in matrix e(Sigma).

Estimation weights, variance–covariance matrix options, and options to control the optimization pro-

cess available with demandsys are simply passed to nlsur. See Methods and formulas in [R] nlsur.

When you type predict ..., shares eq(#), you obtain the predicted shares for the #th equation,
based on the expenditure-share equation for the demand system estimated. By construction, the sum of

predicted shares for each observation is equal to one.

When you type predict ..., residuals eq(#), you obtain the residuals for the #th equation de-
fined as 𝑟#𝑖 = 𝑤#𝑖 − 𝑤#𝑖, where 𝑤#𝑖 is the predicted share for equation # for observation 𝑖.

When you type predict ..., quantities eq(#), predict first computes the predicted shares𝑤#𝑖
and then computes 𝑞#𝑖 = 𝑚𝑖𝑤#𝑖/𝑝#𝑖.

When you type predict ..., iuf, predict evaluates the indirect utility function based on the for-
mulas given above.

When you type predict ..., ef utilities(u), predict evaluates the expenditure function based
on the formulas given above at the levels of utility specified in variable u.

Acknowledgment
We thank Brian Poi of Poi Consulting LLC, East Fallowfield, PA, for writing the popular community-

contributed quaids command, which motivated us to implement demandsys. We also thank Dr. Poi for

his advice on and review of the demandsys command.

References
Banks, J., R. W. Blundell, and A. Lewbel. 1997. Quadratic Engel curves and consumer demand. Review of Economics

and Statistics 79: 527–539. https://doi.org/10.1162/003465397557015.

Barnett, W.A., andA. Serletis. 2008. Consumer preferences and demand systems. Journal of Econometrics 147: 210–224.

https://doi.org/10.1016/j.jeconom.2008.09.009.

Barten, A. P. 1966. Theorie en empirie van een volledig stelsel van vraagvergelijkingen. PhD thesis, University of Rot-

terdam.

———. 1969. Maximum likelihood estimation of a complete system of demand equations. European Economic Review

1: 7–73. https://doi.org/10.1016/0014-2921(69)90017-8.

Caro, J. C., G. Melo, J.A. Molina, and J. C. Salgado. 2021. Censored demand system estimation with quaidsce. Presented

at the 2021 Stata Conference, virtual, August 6. https://www.stata.com/meeting/us21/slides/US21_Melo.pdf.

Case, A. C. 1991. Spatial patterns in household demand. Econometrica 59: 953–965. https://doi.org/10.2307/2938168.

Christensen, L. R., D.W. Jorgenson, and L. J. Lau. 1975. Transcendental logarithmic utility functions.American Economic

Review 65: 367–383. https://doi.org/10.2307/1927992.

Deaton, A. S., and M. Irish. 1984. Statistical models for zero expenditures in household budgets. Journal of Public Eco-

nomics 23: 59–80. https://doi.org/10.1016/0047-2727(84)90067-7.

Deaton, A. S., and J. Muellbauer. 1980a. Economics and Consumer Behavior. Cambridge: Cambridge University Press.

https://doi.org/10.1017/CBO9780511805653.

———. 1980b. An almost ideal demand system.American Economic Review 70: 312–326.

https://doi.org/10.1162/003465397557015
https://doi.org/10.1016/j.jeconom.2008.09.009
https://doi.org/10.1016/0014-2921(69)90017-8
https://www.stata.com/meeting/us21/slides/US21_Melo.pdf
https://doi.org/10.2307/2938168
https://doi.org/10.2307/1927992
https://doi.org/10.1016/0047-2727(84)90067-7
https://doi.org/10.1017/CBO9780511805653


demandsys — Estimation of flexible demand systems 530

Fisher, D., A. R. Fleissig, and A. Serletis. 2001. An empirical comparison of flexible demand system functional forms.

Journal of Applied Econometrics 16: 59–80. https://doi.org/10.1002/jae.585.

Gorman, W. M. 1981. “Some Engle curves”. In Essays in the Theory and Measurement of Consumer Behavior: In Honour

of Sir Richard Stone, edited by A. Deaton, 7–30. Cambridge: Cambridge University Press. https://doi.org/10.1017/

CBO9780511984082.003.

Heien, D., and C. R.Wessells. 1990. Demand systems estimation withmicrodata: Acensored regression approach. Journal

of Business and Economic Statistics 8: 365–371. https://doi.org/10.2307/1391973.

Holt, M. T., and B. K. Goodwin. 2009. The almost ideal and translog demand systems. MPRA Paper 15092, University

Library, Ludwig Maximilians University, München, Germany. https://mpra.ub.uni-muenchen.de/15092/.

Lecocq, S., and J.-M. Robin. 2015. Estimating almost-ideal demand systems with endogenous regressors. Stata Journal

15: 554–573.

Leser, C. E. V. 1963. Forms of Engel functions. Econometrica 31: 694–703. https://doi.org/10.2307/1909167.

Lewbel, A. 1989. Household equivalence scales and welfare comparisons. Journal of Public Economics 39: 377–391.

https://doi.org/10.1016/0047-2727(89)90035-2.

———. 1991. The rank of demand systems: Theory and nonparametric estimation. Econometrica 59: 711–730. https:

//doi.org/10.2307/2938225.

———. 2001. Demand systems with and without errors. American Economic Review 91: 611–618. https://doi.org/10.

1257/aer.91.3.611.

Lewbel, A., and K. Pendakur. 2009. Tricks with Hicks: The EASI demand system. American Economic Review 99:

827–863. https://doi.org/10.1257/aer.99.3.827.

Mas-Colell, A., M. D. Whinston, and J. R. Green. 1995.Microeconomic Theory. New York: Oxford University Press.

Meyerhoefer, C. D., C. K. Ranney, and D. E. Sahn. 2005. Consistent estimation of censored demand systems using panel

data.American Journal of Agricultural Economics 87: 660–672. https://doi.org/10.1111/j.1467-8276.2005.00754.x.

Muellbauer, J. 1975.Aggregation, income distribution, and consumer demand. Review of Economic Studies 42: 525–543.

https://doi.org/10.2307/2296792.

Nelson, D. B. 1991. Conditional heteroskedasticity in asset returns: A new approach. Econometrica 59: 347–370. https:

//doi.org/10.2307/2938260.

Oberhofer, W., and J. Kmenta. 1974. A general procedure for obtaining maximum likelihood estimates in generalized

regression models. Econometrica 42: 579–590. https://doi.org/10.2307/1911792.

Poi, B. P. 2002. From the help desk: Demand system estimation. Stata Journal 2: 403–410.

———. 2012. Easy demand-system estimation with quaids. Stata Journal 12: 433–446.

Pollak, R. A., and T. J. Wales. 1978. Estimation of complete demand systems from household budget data: The linear

and quadratic expenditure systems.American Economic Review 68: 348–359.

———. 1992. Demand System Specification and Estimation. New York: Oxford University Press.

Ray, R. 1983. Measuring the costs of children: An alternative approach. Journal of Public Economics 22: 89–102. https:

//doi.org/10.1016/0047-2727(83)90058-0.

Roy, P. R. 1943. La hiérarchie des besoins et la notion de groupes dans l’économie de choix. Econometrica 11: 13–24.

https://doi.org/10.2307/1905715.

Shephard, R. W. 1970. Theory of Cost and Production Functions. Princeton, NJ: Princeton University Press.

Shonkwiler, J. S., and S. T. Yen. 1999. Two-step estimation of a censored system of equations. American Journal of

Agricultural Economics 81: 972–982. https://doi.org/10.2307/1244339.

Stone, R. 1954. Linear expenditure systems and demand analysis: An application to the pattern of British demand.

Economic Journal 64: 511–527. https://doi.org/10.2307/2227743.

Tauchmann, H. 2010. Consistency of Heckman-type two-step estimators for the multivariate sample-selection model.

Applied Economics 42: 3895–3902. https://doi.org/10.1080/00036840802360179.

Theil, H. 1965. The information approach to demand analysis. Econometrica 33: 67–87. https://doi.org/10.2307/1911889.

Varian, H. R. 1992.Microeconomic Analysis. 3rd ed. New York: W. W. Norton.

https://doi.org/10.1002/jae.585
https://doi.org/10.1017/CBO9780511984082.003
https://doi.org/10.1017/CBO9780511984082.003
https://doi.org/10.2307/1391973
https://mpra.ub.uni-muenchen.de/15092/
https://doi.org/10.1177/1536867X1501500214
https://doi.org/10.2307/1909167
https://doi.org/10.1016/0047-2727(89)90035-2
https://doi.org/10.2307/2938225
https://doi.org/10.2307/2938225
https://doi.org/10.1257/aer.91.3.611
https://doi.org/10.1257/aer.91.3.611
https://doi.org/10.1257/aer.99.3.827
https://doi.org/10.1111/j.1467-8276.2005.00754.x
https://doi.org/10.2307/2296792
https://doi.org/10.2307/2938260
https://doi.org/10.2307/2938260
https://doi.org/10.2307/1911792
https://www.stata-journal.com/article.html?article=st0029
https://www.stata-journal.com/article.html?article=st0268
https://doi.org/10.1016/0047-2727(83)90058-0
https://doi.org/10.1016/0047-2727(83)90058-0
https://doi.org/10.2307/1905715
https://doi.org/10.2307/1244339
https://doi.org/10.2307/2227743
https://doi.org/10.1080/00036840802360179
https://doi.org/10.2307/1911889


demandsys — Estimation of flexible demand systems 531

Vermeulen, F. 2001. A note on Heckman-type corrections in models for zero expenditures. Applied Economics 33:

1089–1092. https://doi.org/10.1080/00036840010004004.

Working, H. 1943. Statistical laws of family expenditure. Journal of theAmerican Statistical Association 38: 43–56. https:

//doi.org/10.2307/2279311.

Yen, S. T., and B.-H. Lin. 2006.Asample selection approach to censored demand systems.American Journal ofAgricultural

Economics 88: 742–749. https://doi.org/10.1111/j.1467-8276.2006.00892.x.

Young, W. H. 1909. On the conditions for the reversibility of the order of partial differentiation. Proceedings of the Royal

Society, B ser., 29: 136–164. https://doi.org/10.1017/S0370164600008865.

Also see
[R] demandsys postestimation — Postestimation tools for demandsys

[R] nlsur — Estimation of nonlinear systems of equations

[U] 20 Estimation and postestimation commands

https://doi.org/10.1080/00036840010004004
https://doi.org/10.2307/2279311
https://doi.org/10.2307/2279311
https://doi.org/10.1111/j.1467-8276.2006.00892.x
https://doi.org/10.1017/S0370164600008865


demandsys postestimation — Postestimation tools for demandsys

Postestimation commands predict margins estat Remarks and examples
References Also see

Postestimation commands
The following postestimation commands are of special interest after demandsys:

Command Description

estat elasticities price and expenditure elasticities

estat parameters estimated parameter vectors and matrices

The following standard postestimation commands are also available:

Command Description

estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian in-
formation criteria (AIC, CAIC, AICc, and BIC, respectively)

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estimates cataloging estimation results

lincom point estimates, standard errors, testing, and inference for linear combinations
of parameters

lrtest likelihood-ratio test

margins marginal means, predictive margins, marginal effects, and average marginal
effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combina-
tions of parameters

predict predicted shares, residuals, quantities, and functions

predictnl point estimates, standard errors, testing, and inference for generalized predic-
tions

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

532
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predict

Description for predict
predict creates a new variable containing statistics such as predicted shares and residuals based on

the demandsys estimation results currently active.

Menu for predict
Statistics > Postestimation

Syntax for predict
predict [ type ] newvar [ if ] [ in ] [ , statistic options ]

statistic Description

Main

shares predicted shares; the default

quantities predicted quantities

residuals residuals

iuf indirect utility function

ef expenditure function

options Description

Main

equation(eqno) display only specified goods; available only with shares,
quantities, and residuals

prices(varlist𝑝) specify set of counterfactual price variables

expenditures(varname) specify a counterfactual total expenditure variable

utilities(varname) specify the variable containing the utilities at which to compute the
expenditure function; available only with and required with ef

demographics(varlist) specify a set of counterfactual demographic variables

Options for predict

� � �
Main �

shares, the default, calculates the predicted shares.

quantities calculates the predicted quantities given actual prices, actual expenditures, and predicted
shares.

residuals calculates the residuals.

iuf calculates the indirect utility function 𝑣(p, 𝑚).
ef calculates the expenditure function 𝑒(p, 𝑢). You must also specify option utilities() with this

option. This option is not available after translog and generalized translog models.
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equation(eqno) specifies to which good you are referring. equation(#1)would mean the calculation
is to be made for the first good, equation(#2) would mean the second, and so on. If you do not
specify equation(), results are the same as if you specified equation(#1).

prices(varlist𝑝) specifies a set of counterfactual price variables at which to compute the requested

statistic. You must specify 𝐺 variables, where 𝐺 is the number of goods in the demand system. By

default, predict uses the same price variables that were used to fit the demand system. This option
aids in the computation of welfare and other policy measures by allowing you to contrast predicted

values at different price levels.

expenditures(varname) specifies a counterfactual total expenditure variable at which to compute the
requested statistic. By default, predict uses the same expenditure variable that was used to fit the
demand system. This option aids in the computation of welfare and other policy measures by allowing

you to contrast predicted values at different expenditure levels.

utilities(varname) specifies the variable containing the utilities at which the expenditure function
is to be computed. Almost surely, varname is a variable that was created by calling predict . . .,
iuf . . . . This option aids in the computation of welfare and other policy measures by allowing you to
contrast predicted values at different levels of utility.

demographics(varlist) specifies a set of counterfactual demographic variables at which to compute

the requested statistic. If you specified 𝐷 demographic variables at estimation, then you must specify

precisely𝐷 variables here. By default, predict uses the same demographic variables (if any) that were

used to fit the demand system.

margins

Description for margins
margins estimates margins for the predicted share of the first good.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [ , options ]
margins, predict(statistic ...) [ options ]

statistic Description

shares predicted shares; the default

quantities predicted quantities

residuals residuals

iuf indirect utility function
∗ ef expenditure function

∗You must specify the predict option utilities() with statistic ef.

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.
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estat

Description for estat
estat elasticities computes expenditure and price elasticities after fitting a demand system using

demandsys. Elasticities are calculated at the price and expenditure levels in the data. However, you
may compute elasticities at the means of prices and expenditures or use other counterfactual prices or

expenditures.

estat parameters returns the estimated parameter vectors andmatrices based on the currently active
demandsys estimation results. Results are stored in r() and vary depending on the demand model fitted.
See [U] 18.8 Accessing results calculated by other programs.

Menu for estat
Statistics > Postestimation

Syntax for estat

Compute price and expenditure elasticities

estat elasticities [ if ] [ in ], { expenditure | compensated | uncompensated }

[ [ atmeans | at(atspec) ] generate(stub) ]

Report estimated parameter vectors and matrices

estat parameters

Options for estat elasticities

� � �
Main �

expenditure, compensated, and uncompensated indicate the type of elasticities to be reported. You
must specify one of these.

expenditure requests that the 𝐺 expenditure elasticities be calculated, where 𝐺 is the number of

goods in the system.

compensated requests that compensated price elasticities be calculated. There is a total of 𝐺2 such

elasticities because there are 𝐺 goods, each of whose quantity consumed can be affected by any

one of the 𝐺 prices changing.

uncompensated requests that the 𝐺2 uncompensated price elasticities be calculated.

atmeans requests that elasticities be calculated at the means of the price, expenditure, and demographic
variables. By default, elasticities are computed for each observation and then averaged.
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at(atspec) specifies the prices, expenditures, and demographic variables’ values at which elasticities

are to be calculated. If you do not specify this option, elasticities are calculated at the observed values

unless you specify option atmeans, in which case they are calculated at the means of the variables.
See example 1 below. You may not specify option at() if you request compensated price elasticities.

generate(stub) requests that new variables be generated holding the observation-level elasticities. For

expenditure elasticities, 𝐺 new variables stub 1, stub 2, . . . , stub G will be created, where 𝐺 is the

number of goods. For price elasticities, 𝐺2 new variables will be created of the form stub 𝑔 ℎ for

𝑔 = 1, . . . , 𝐺 and ℎ = 1, . . . , 𝐺. Variable stub 𝑔 ℎwill contain the percentage change in the quantity
of good ℎ with respect to the price of good 𝑔.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Elasticities
Evaluating elasticities
Compensating and equivalent variation

Introduction
estat elasticities allows you to compute expenditure and price elasticities after you fit a demand

model and is much more flexible than the options available with demandsys to display elasticities in lieu
of coefficient estimates. With estat elasticities, you can calculate elasticities at the same prices,
expenditures, and demographic variables’ levels as was used at estimation time, or you can specify your

own values. For example, you could calculate price elasticities for every observation in your dataset as-

suming each household had two children, even if the number of children varies by household. Example 1

below shows you how that can be done.

predict allows you to obtain values of the indirect utility function and of the expenditure function
underlying the demand system you fit. Example 3 leverages that ability and shows you how to compute

compensated and equivalent variation in response to a price change.

estat parameters allows you to obtain the estimated parameter vectors andmatrices for the demand
system based on the coefficient vector stored in e(b). This may be useful if you wish to conduct further
policy experiments or calculate your own welfare measures. For instance, in example 2 below, we show

how estat parameters with just a bit of coding can be used to check whether a fitted generalized

translog model can be interpreted as having subsistence quantities for each good.

Elasticities
Although one can have demandsys report expenditure or price elasticities for the estimation sample,

the estat elasticities command gives you much more flexibility. We illustrate features of estat
elasticities in the next example. We often request expenditure elasticities to keep the output shorter,

but all our commands would work regardless of the type of elasticity requested.
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Example 1
Before we can obtain elasticities, we first need to fit a demand system to our data. Here we include the

quietly prefix command to omit the results of fitting a quadratic almost ideal demand system (QUAIDS)

model with demographic translation, and we use the labels() option to provide short names for each
of our goods. We type

. use https://www.stata-press.com/data/r18/food_consumption
(Food consumption)
. quietly demandsys quaids w_dairy w_proteins w_fruitveg w_flours w_misc,
> prices(p_dairy p_proteins p_fruitveg p_flours p_misc)
> expenditures(expfd)
> demographics(n_kids n_adults)
> labels(Dairy Meats FruitVeg Flours Misc)

Suppose we want the average expenditure elasticity among households with two children. We type

. estat elasticities if n_kids == 2, expenditure
Expenditure elasticities Number of obs = 751

Expenditure Elasticity Std. err. z P>|z| [95% conf. interval]

Dairy .9028921 .0240869 37.48 0.000 .8556826 .9501016
Meats 1.087763 .0156852 69.35 0.000 1.05702 1.118505

FruitVeg .9978958 .0215996 46.20 0.000 .9555614 1.04023
Flours .8523383 .0220511 38.65 0.000 .8091189 .8955576
Misc .9971274 .0265993 37.49 0.000 .9449938 1.049261

The header of the output reports that there are 751 households in the dataset with two children. Had we

not specified the labels() option when we fit our model, estat elasticities would have simply
numbered the goods from one through five.

What is displayed in the table of output is an average elasticity. Behind the scenes, estat
elasticities calculated the five expenditure elasticities for each of the 751 households in this sample.
What is reported as the expenditure elasticity for dairy products is the average over the 751 individual

expenditure elasticities calculated. The column labeled Std. err. contains the standard error of the

estimated mean. Looking to the right, we see the 95% confidence interval for the mean dairy elasticity

is [0.856, 0.950]. More importantly, the column labeled Std. err. is not the sample standard deviation
of the 751 individual elasticities, nor does the 95% confidence interval report something resembling the

central 95% of the individual elasticities.

To save the individual elasticities for the 751 observations, you can use the generate() option like
so:

. quietly estat elasticities if n_kids == 2, expenditure generate(ee)

. summarize ee*
Variable Obs Mean Std. dev. Min Max

ee_1 751 .9028921 .0753773 .5095888 1.44884
ee_2 751 1.087763 .0664746 .8448506 1.525114
ee_3 751 .9978958 .1755427 .7566877 5.07766
ee_4 751 .8523383 .1053903 .3864381 1.110392
ee_5 751 .9971274 .082875 .3257591 1.296199



demandsys postestimation — Postestimation tools for demandsys 538

The means of these variables match the point estimates in the previous estat elasticities output.
The standard deviations reported here measure the spread of the individual observations’ elasticities

rather than the standard errors of the means as in the previous output.

A second way to compute elasticities is to first compute the means of the price variables, the expen-

diture variable, and any demographics and then compute the elasticity for this hypothetical household.

To have estat elasticities do that, you use the atmeans option. Here we obtain the expenditure
elasticities at the means for the subset of households with two children:

. estat elasticities if n_kids == 2, expenditure atmeans
Expenditure elasticities Number of obs = 751

Expenditure Elasticity Std. err. z P>|z| [95% conf. interval]

Dairy .9155493 .0232877 39.31 0.000 .8699063 .9611923
Meats 1.078329 .0149179 72.28 0.000 1.04909 1.107567

FruitVeg .9804481 .0201581 48.64 0.000 .9409389 1.019957
Flours .8695964 .0212882 40.85 0.000 .8278722 .9113206
Misc 1.004098 .0246939 40.66 0.000 .9556994 1.052498

Note: Elasticities are calculated at prices’, demographic variables’, and
expenditure means.

With the atmeans option, we calculate the elasticities for a hypothetical household that may have, for
example, 0.87 children and 1.93 adults. Without the atmeans option, we are calculating elasticities for
households that do exist in the data, though taking the average of household elasticities poses its own

conceptual issues.

Consider the following table:

Table 1. Average expenditure elasticities

Consumer 𝑚 𝐸𝑚 𝑄 𝑚′ 𝑄′

𝐴 100 2 20 110 24

𝐵 200 1 30 220 33

𝐶 400 0.5 30 440 31.5

Sum 700 80 770 88.5

Mean 1.17

Column 𝑚 represents each consumer’s initial total expenditure, 𝐸𝑚 is the consumer’s expenditure elas-

ticity for the good in question, and 𝑄 is the quantity consumed. Column 𝑚′ represents a 10% increase

in each consumer’s expenditure, and 𝑄′ represents the level of consumption based on the increases

in total expenditure and the expenditure elasticities. The mean elasticity, analogous to what estat
elasticities reports without the atmeans option, is 1.17. However, based on the aggregate data,

the expenditure elasticity works out to 1.06.

So far in this example, we computed the expenditure elasticities for the subset of households with

two children. We can also calculate the average elasticity for all households in our dataset under the

counterfactual that all of them have two children. One way to do that is to type

. generate n_kids_backup = n_kids

. replace n_kids = 2
(3,409 real changes made)
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. estat elasticities, expenditure
Expenditure elasticities Number of obs = 4,160

Expenditure Elasticity Std. err. z P>|z| [95% conf. interval]

Dairy .8464408 .0266003 31.82 0.000 .7943051 .8985764
Meats 1.20188 .0252998 47.51 0.000 1.152294 1.251467

FruitVeg 1.130297 .0323216 34.97 0.000 1.066948 1.193646
Flours .7604338 .0229378 33.15 0.000 .7154766 .8053911
Misc .9082414 .0287833 31.55 0.000 .8518271 .9646556

. replace n_kids = n_kids_backup
(3,409 real changes made)

Here we first created a backup variable holding the true values of n kids, and then we set n kids equal
to two for all observations. After calling estat elasticities, we restored the true values.

Technical note
In principle, a second way to obtain the expenditure elasticities under the counterfactual that all house-

holds have two children would be to type

estat elasticities, expenditure at(n_kids=2)

The key is the at() option, which allows us to request that variables be set to the values we specify before
calculating the elasticities. For more information about the at() option, see [R] margins, especially

Syntax of at().

However, in this example, if you issue the previous command, you would obtain the error message

. estat elasticities, expenditure at(n_kids=2)
Option at() specified; using margins.
could not calculate numerical derivatives -- discontinuous region with missing
values encountered
r(459);

The issue is that for most demand systems the predicted quantities are nonlinear functions of prices. As

the output indicates, when you specify the at() option, estat elasticities calls margins to obtain
the desired results. Depending on the exact demand system and demographic specification, margins
may not be able to obtain all the required derivatives numerically.

When you do not use the at() option, estat elasticities uses analytics formulas for the expen-
diture and price elasticities; Methods and formulas of [R] demandsys includes the elasticity formulas

for all the demand systems implemented. Evaluating analytic formulas is quick, and most of the time

is spent computing the variance–covariance matrix of the estimated mean elasticities, because that does

use numerical derivatives. Because those derivatives are for a sample mean, rather than individual ob-

servations, you are unlikely to obtain the same message as margins issued in the previous command.

In contrast, margins uses numerical derivatives for all its calculations, and, moreover, it must incur
the added expense of having to call predict to evaluate predicted quantities. One case where you would
need to use margins is to obtain, say, a quantity elasticity with respect to a change in a demographic
variable, because those elasticities are not programmed into demandsys.

In the text after example 4 and in example 6 of [R] demandsys, we cautioned that after fitting a

generalized model that allows for subsistence or committed quantities, you should check whether that

interpretation actually holds. If for some household ∑𝑔 𝑝𝑔(𝜇𝑔 + ν′
𝑔d) > 𝑚, then either the household
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is not consuming enough to meet what we think is a minimum subsistence or our assumption that this

quantity represents a minimum subsistence is wrong. Moreover, if 𝜇𝑔 + ν′
𝑔d < 0, then we are saying

that the minimum required level of 𝑔 is less than 0, which implies that good 𝑔 is in fact not needed for
subsistence.

Example 2
This example is a continuation of example 6 in [R] demandsys. In that example, we fit a generalized

QUAIDS model, which we refit here:

. use https://www.stata-press.com/data/r18/food_consumption, clear
(Food consumption)
. demandsys gquaids w_dairy w_proteins w_fruitveg w_flours w_misc,
> prices(p_dairy p_proteins p_fruitveg p_flours p_misc)
> demographics(n_kids n_adults) piconstant(3) expenditure(expfd) nolog
(output omitted )

Next, we compute variables containing each household’s implied minimum quantity of each good con-

ditional on that household’s demographics. Given those variables, we can then calculate the expenditure

needed to acquire the minimum quantities given the prices each household faces. We type

. estat parameters

. return list
macros:

r(cmdline) : ”estat parameters”
r(names) : ”alpha beta Gamma lambda mu Nu”

matrices:
r(Nu) : 5 x 2
r(mu) : 5 x 1

r(lambda) : 5 x 1
r(Gamma) : 5 x 5
r(beta) : 5 x 1

r(alpha) : 5 x 1
. matrix mu = r(mu)
. matrix Nu = r(Nu)
. forvalues g = 1/5 {
2. generate minq_‘g’ = mu[‘g’, 1] + Nu[‘g’,1]*n_kids + Nu[‘g’,2]*n_adults
3. }

. generate sub_exp = p_dairy*minq_1 + p_proteins*minq_2
> + p_fruitveg*minq_3 + p_flour*minq_4 + p_misc*minq_5

We first issued the command estat parameters to obtain the estimated parameter matrices from our

demand system. The following command shows that six vectors and matrices were stored, following the

layout of the coefficient table from demandsys. To compute minimum quantities, we need matrices µ
and N, so we transferred those r() results to Stata matrices.

Because we specified n kids first in the demographics() option of demandsys, that variable’s co-
efficients are stored in the first column of our matrix r(Nu), which we converted to Nu. The second
column corresponds to coefficients associated with n adults. We looped over the five goods in our

system and created variables named minq 𝑔 containing the minimum quantities. The final generate
statement calculates the minimum expenditure for each household given the prices it faced and our cal-

culated minimum quantities.
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Now we can look at the results.

. summarize minq_*
Variable Obs Mean Std. dev. Min Max

minq_1 4,160 -1.604524 .9955552 -7.287278 -.2078816
minq_2 4,160 -2.893994 1.743902 -13.71866 -.6731574
minq_3 4,160 -5.344705 3.802853 -29.30052 -.5518766
minq_4 4,160 .3094948 .1354879 -.0171551 1.328884
minq_5 4,160 -.1878337 .2030023 -1.346311 .0894622

For the first three goods in our system, the calculated minimum quantity is negative for every single

household in our sample. That is hardly encouraging if we wish to take the subsistence interpretation

seriously, because it implies three of the five categories of food we have are not required for subsistence.

Moreover, on average, good 5 is not required either. Even for good 4, for some households, the minimum

quantity is negative. Finally, we look at the expenditure needed to purchase the minimum quantities of

the five goods:

. summarize sub_exp
Variable Obs Mean Std. dev. Min Max

sub_exp 4,160 -8.101177 5.480523 -43.8327 .2678587

Not surprisingly given the previous summary statistics, the minimum required expenditure for most

households is less than zero.

What are we to make of the results in the previous example? We think there are at least four explana-

tions:

1. There are minimum quantities of each good consumers must purchase for subsistence, but our

demand system is misspecified. If you believe this to be true, you might try changing the demo-

graphic variables for which you control. Alternatively, try a different model; for example, use a

generalized QUAIDS model rather than a generalized translog or AIDS model.

2. The data are simply not compatible with a minimum subsistence interpretation. That does not im-

ply the results of the fitted demand system must be ignored. As Pollak andWales (1992, 75) write,

any demand system that includes demographic translation should include a constant term in the

demand equations—which is the key characteristic of the models we refer to as “generalized”. For

example, rather than using the translog model with demographic translation, you should instead

use the generalized translog model with demographic translation. In other words, the 𝜇 parame-

ters do belong in the model, but they should not be construed as minimum quantities required for

subsistence.

3. Items for which the calculated minimum quantities are positive for all observations must be pur-

chased to achieve subsistence, but items for which the minimum quantities are negative need not

be consumed for subsistence. Under this interpretation, in our example, households must consume

breads, cereals, and pastas but need not consume any other foods for minimal subsistence. That is

not particularly palatable to us.
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4. The procedure we used is useful as a diagnostic tool, but it is not a formal statistical test. Our

estimated parameters are subject to sampling variation, and therefore our calculated minimum

quantities are also subject to sampling variation. We have not accounted for this. If we were to

conduct a test of the hypothesis that all minimum quantities are zero or more versus the alternative

that some are negative, we may not be able to reject the null hypothesis.

Evaluating elasticities
The elasticities that are reported with estat elasticities refer to the slope of the fitted demand

curve. Let us explain what we mean. Look at figure 1. We have plotted a fitted demand curve 𝐷F as a

straight line for simplicity, and the large dots represent observed (price, quantity) pairs for two observa-

tions. The dotted lines represent each observation’s residual, and the plus signs represent the predicted

quantities given the two observations’ prices. While quantity is a function of price here, following the

influential English economist Alfred Marshall, we plot price on the ordinate; hence, the lines connecting

observations to the regression line are horizontal, not vertical.

DF

P 

Q 

Figure 1. Actual and predicted quantities

For the AIDS model without demographic variables included, we can show that the expenditure elas-

ticity for the 𝑔th good is given by

𝐸𝑔 = 1 +
𝛽𝑔

𝑤𝑔

We do not observe the true value 𝛽𝑔, so to compute the elasticity for household 𝑖, we have no choice but
to use the estimated ̂𝛽𝑔. However, we observe both household 𝑖’s true expenditure share 𝑤𝑔𝑖, and we can

compute its predicted expenditure share 𝑤𝑔𝑖.
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In terms of figure 1, the issue is whether we evaluate the expenditure or any other elasticity formula

at the red and blue dots or at their corresponding fitted values shown by the pluses on the demand curve.

We believe the correct procedure is to evaluate elasticity formulas at their fitted values. That is, estat
elasticities evaluates the expenditure share elasticity for household 𝑖 as

𝐸𝑔
𝑖 = 1 +

𝛽𝑔

𝑤𝑔𝑖

After all, for policy or other analyses, what we want to know is essentially the slope of the fitted demand

curve. We need to be able to predict the effect of a policy on a household, and in general to do that,

we predict the household’s response with the policy imposed and compare it with the predicted response

in the absence of the policy. In other words, our elasticity computations measure the slope of the fitted

demand curve, not the slope of an imaginary line that passes through one of our dots that may or may

not be parallel to the fitted demand curve.

In contrast, the postestimation tools accompanying the community-contributed quaids command of
Poi (2012) use the actual values 𝑤𝑔 to calculate elasticities. Thus, users of that command will see minor

differences when refitting models using demandsys and estat elasticities. We believe, however,

that evaluating the formulas at the predicted expenditure shares, or equivalently, evaluating the elasticity

formulas along the demand curve rather than at points in space that need not lie on the demand curve,

is conceptually more sound. Moreover, the elasticity results reported after quaids cannot be replicated
using the margins command, but the results reported by estat elasticities are identical to those
one would obtain using margins.

Compensating and equivalent variation
Although students in introductory economics courses learn of consumer’s surplus as a way to measure

whether consumers are better or worse off in response to a policy such as a tax, it has limitations. Perhaps

most importantly, consumer’s surplus is not well defined in most cases; see Auerbach (1985). Also see

Harberger (1964), who develops a method for calculating consumer welfare when multiple prices change

but assumes the timing of the price changes is scattered rather than occurring simultaneously. Hines

(1999) provides a historical overview of consumer’s welfare measurement.

The workhorse metrics used to evaluate a policy are compensating and equivalent variation (CV and

EV, respectively). These metrics assign a monetary amount to a household’s change in welfare and

can accommodate policies that cause multiple prices to change simultaneously. Because predict after
demandsys allows us to obtain the predicted values of the expenditure and indirect utility functions,

these metrics are easy to obtain.
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CVmeasures how much a social planner would have to compensate a consumer to offset the effect of,

say, a tax that causes prices to rise. Consider figure 2, which illustrates CV for two goods and would be

familiar to those who have studied intermediate microeconomics.

U1

U0

O

A

B

Good 2

q1 q1' q0 p1/m p1'/m p0/m Good 1

Figure 2. CV if the price of good 1 rises

Initially, the price of good 1 is 𝑝0, and the line segment 𝐴 ⋅ 𝑝0/𝑚 represents the budget constraint.

The consumer purchases 𝑞0 units of good 1 and enjoys utility level 𝑈0. Now suppose the price of good

1 rises to 𝑝1: consumption of good 1 falls to 𝑞1 and utility falls to 𝑈1; line segment 𝐴 ⋅ 𝑝1/𝑚 represents

the new budget constraint.

The dotted line segment 𝐵 ⋅ 𝑝′
1𝑚 represents a budget constraint based on price 𝑝1 but shifted outward

so that the consumer can still achieve utility level 𝑈0 when facing price 𝑝1, by consuming 𝑞′
1. The line

segment 𝐵 ⋅ 𝐴 represents the CV. It tells us, in the face of a higher price for good 1, how much the social

planner would have to compensate this consumer so that he or she can enjoy the same level of utility as

before the price increase. In this case, CV is negative because the social planner must pay the consumer.

Notice the close similarity to the concept of the income and substitution effects that cause demand

curves to slope downward. CV, and EV as we will see shortly, is a measure of the income effect.

Mathematically, CV is defined as

CV = 𝑒(p1, 𝑢1) − 𝑒(p1, 𝑢0)
= 𝑒(p0, 𝑢0) − 𝑒(p1, 𝑢0)
= 𝑚 − 𝑒(p1, 𝑢0)

where p0 and p1 are the price vectors before and after the policy is implemented and 𝑢0 is the house-

hold’s initial level of utility. Where do we get that level of utility, considering that utility is unobserved?

The answer is the indirect utility function, which expresses utility as a function of observed prices and

expenditure; we can evaluate the indirect utility function by calling predict with the iuf option. With

the indirect utility variable in hand, we then call predict with the ef option and set the price variables
to p1.
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Example 3
We compute household CV in response to a 10% increase in the price of dairy products, holding

all other prices constant. See Poi (2002) for similar computations for an expanded look at the welfare

implications of lower dairy and other prices. First, we fit a generalized QUAIDSmodel controlling for the

number of children and adults in each household. We type

. use https://www.stata-press.com/data/r18/food_consumption, clear
(Food consumption)
. quietly demandsys gquaids w_dairy w_proteins w_fruitveg w_flours w_misc,
> prices(p_dairy p_proteins p_fruitveg p_flours p_misc)
> expenditures(expfd) demographics(n_kids n_adults) nolog
. estimates store gquaids

We stored our estimation results for later use by specifying the estimates store command. Next, we
obtain each household’s initial utility 𝑢0 by evaluating the indirect utility function:

. predict u0, iuf

Now, we create a new dairy price variable containing the price each household will face after the impo-

sition of the tax. Given that price variable and initial utility 𝑢0, we can calculate each household’s new

level of expenditure. Finally, we compute the CV. We type

. generate ptax_dairy = p_dairy * 1.10

. predict ep1u0, ef utilities(u0)
> prices(ptax_dairy p_proteins p_fruitveg p_flours p_misc)
. generate cv = expfd - ep1u0

Here we used the prices() option of predict to specify the new prices p1 at which we want the

expenditure function. Had we not specified that option, predict would have used the prices used at

estimation, p0. Because we wanted to evaluate the function at the level of expenditures 𝑚, the same as

used at estimation, we did not need to specify the expenditures() option of predict.

We summarize our results by looking at the average CV by household size:

. mean cv, over(n_kids)
Mean estimation Number of obs = 4,160

Mean Std. err. [95% conf. interval]

c.cv@n_kids
0 -.5142129 .0066562 -.5272627 -.5011632
1 -.7762653 .013486 -.8027049 -.7498256
2 -.906099 .014986 -.9354796 -.8767183
3 -1.067159 .0268302 -1.11976 -1.014557
4 -1.222379 .0506473 -1.321675 -1.123084
5 -1.550713 .1581971 -1.860864 -1.240562
6 -1.304842 .2223386 -1.740745 -.8689394
7 -1.902751 .1828133 -2.261162 -1.544339
8 -2.923615 . . .
10 -1.743889 . . .
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The standard errors of the means are missing for households with 8 and 10 children because only one

household of each size exists in our data. For the most part, CV becomes more negative with the number

of children, as we expected, because larger households are likely to consume more dairy products by

virtue of there being more people within the household. To reiterate, CV is negative here, indicating that

the social planner must transfer money to the consumer. For a price decrease, CV would be positive.

EV is similar to CV, except that we use the postpolicy level of utility and the initial price vector rather

than the initial level of utility and postpolicy price vector. We have

EV = 𝑒(p0, 𝑢1) − 𝑒(p0, 𝑢0)
= 𝑒(p0, 𝑢1) − 𝑒(p1, 𝑢1)
= 𝑒(p0, 𝑢1) − 𝑚

To aid in understanding EV, you may wish to sketch a diagram similar to figure 2. EV tells us how much

consumers would be willing to pay to trade at the original price vector rather than the postpolicy one. In

other words, EV tells us the change in expenditure that would yield 𝑢1 if total expenditure were to change

rather than the price vector. A negative value indicates that consumers are worse off.

Example 4
Continuing the previous example, to calculate EV, we first need to calculate the new level of utility 𝑢1

each household will enjoy based on the postpolicy dairy price. Because the preferences underlying all

the demand systems implemented by demandsys are locally nonsatiated, each household will exhaust
its full budget. Thus, the level of expenditure we supply as an argument to the indirect utility function

is simply 𝑚, the value we used during estimation. To get 𝑢1, we can therefore call predict, iuf at

postpolicy prices.

. estimates restore gquaids
(results gquaids are active now)
. predict u1, iuf prices(ptax_dairy p_proteins p_fruitveg p_flours p_misc)

We had to restore our estimation results because the means command we used previously overwrites

results in e().

Now we evaluate the expenditure function at original prices and our computed level of utility 𝑢1.

Because the original prices were used at estimation, we do not need to supply alternative prices via the

prices() option. We type

. predict ep0u1, ef utilities(u1)
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We are now ready to compute EV and summarize the results:

. generate ev = ep0u1 - expfd

. mean ev, over(n_kids)
Mean estimation Number of obs = 4,160

Mean Std. err. [95% conf. interval]

c.ev@n_kids
0 -.5073723 .0065622 -.5202378 -.4945068
1 -.7660212 .013292 -.7920806 -.7399619
2 -.8940227 .014762 -.9229642 -.8650813
3 -1.052523 .0264206 -1.104322 -1.000725
4 -1.205508 .0498827 -1.303304 -1.107711
5 -1.528723 .1554491 -1.833486 -1.22396
6 -1.285957 .2186523 -1.714633 -.8572819
7 -1.871658 .1780595 -2.22075 -1.522567
8 -2.877365 . . .
10 -1.716629 . . .

For small price changes, CV and EVwill be similar; however, they will not match because CV is based

on the original level of utility and postpolicy prices and EV is based on the postpolicy level of utility and

original prices. Which one is more appropriate in any situation depends on the policy and goals. If the

government is implementing, say, a carbon tax to reduce consumption of goods and services that emit

carbon dioxide, CV may be a better choice because it tells how much the government must compensate

consumers so that their overall utilities do not change. If one is evaluating the introduction of a new

product competing with an existing product into the market, EV may be a better metric because it could

be interpreted as a measure of how much better off consumers would be thanks to lower prices.

As with our analysis of estimated minimum quantities in example 2, here we have not attempted

to obtain measures of the sampling variation associated with the CV or EV. One alternative to obtain,

say, the sampling variation of the mean CV across households would be to use the bootstrap, being sure

to bootstrap the entire procedure, including refitting the model at each bootstrap replication as well as

obtaining the desired statistics.
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Also see
[R] demandsys — Estimation of flexible demand systems

[U] 20 Estimation and postestimation commands



Diagnostic plots — Distributional diagnostic plots

Description Quick start Menu
Syntax Options for symplot, quantile, and qqplot Options for qnorm and pnorm
Options for qchi and pchi Remarks and examples Methods and formulas
Acknowledgments References Also see

Description
symplot graphs a symmetry plot of varname.

quantile plots the ordered values of varname against the quantiles of a uniform distribution.

qqplot plots the quantiles of varname1 against the quantiles of varname2 (Q–Q plot).

qnorm plots the quantiles of varname against the quantiles of the normal distribution (Q–Q plot).

pnorm graphs a standardized normal probability plot (P–P plot).

qchi plots the quantiles of varname against the quantiles of a 𝜒2 distribution (Q–Q plot).

pchi graphs a 𝜒2 probability plot (P–P plot).

See [R] regress postestimation diagnostic plots for regression diagnostic plots and [R] logistic

postestimation for logistic regression diagnostic plots.

Quick start
Symmetry plot for v1

symplot v1

Change marker color and size

symplot v1, mcolor(red) msize(large)

Plot ordered values of v1 against quantiles of the uniform distribution

quantile v1

Same as above, but only for observations with v2 greater than 5
quantile v1 if v2 > 5

Plot quantiles of v1 against quantiles of v2
qqplot v1 v2

Change thickness of the reference line

qqplot v1 v2, rlopts(lwidth(thick))

Plot quantiles of v1 against quantiles of the normal distribution
qnorm v1

Add grid lines

qnorm v1, grid

549
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Standardized normal probability plot for v1
pnorm v1

Change labels on the 𝑥 and 𝑦 axes
pnorm v1, xlabel(0(0.1)1) ylabel(0(0.1)1)

Plot quantiles of v1 against quantiles of the 𝜒2
1 distribution

qchi v1

Same as above, but comparing with quantiles of the 𝜒2
2 distribution

qchi v1, df(2)

𝜒2 probability plot for v1
pchi v1

Add “𝜒2(1) P-P plot” to graph

pchi v1, title(”{&chi}{sup:2}(1) P-P plot”)

Menu
symplot
Statistics > Summaries, tables, and tests > Distributional plots and tests > Symmetry plot

quantile
Statistics > Summaries, tables, and tests > Distributional plots and tests > Quantiles plot

qqplot
Statistics > Summaries, tables, and tests > Distributional plots and tests > Quantile–quantile plot

qnorm
Statistics > Summaries, tables, and tests > Distributional plots and tests > Normal quantile plot

pnorm
Statistics > Summaries, tables, and tests > Distributional plots and tests > Normal probability plot, standardized

qchi
Statistics > Summaries, tables, and tests > Distributional plots and tests > Chi-squared quantile plot

pchi
Statistics > Summaries, tables, and tests > Distributional plots and tests > Chi-squared probability plot
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Syntax
Symmetry plot

symplot varname [ if ] [ in ] [ , options1 ]

Ordered values of varname against quantiles of uniform distribution

quantile varname [ if ] [ in ] [ , options1 ]

Quantiles of varname1 against quantiles of varname2

qqplot varname1 varname2 [ if ] [ in ] [ , options1 ]

Quantiles of varname against quantiles of normal distribution

qnorm varname [ if ] [ in ] [ , options2 ]

Standardized normal probability plot

pnorm varname [ if ] [ in ] [ , options2 ]

Quantiles of varname against quantiles of 𝜒2 distribution

qchi varname [ if ] [ in ] [ , options3 ]

𝜒2 probability plot

pchi varname [ if ] [ in ] [ , options3 ]

options1 Description

Plot

marker options change look of markers (color, size, etc.)

marker label options add marker labels; change look or position

Reference line

rlopts(cline options) affect rendition of the reference line

Add plots

addplot(plot) add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options
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options2 Description

Main

grid add grid lines

Plot

marker options change look of markers (color, size, etc.)

marker label options add marker labels; change look or position

Reference line

rlopts(cline options) affect rendition of the reference line

Add plots

addplot(plot) add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

options3 Description

Main

grid add grid lines

df(#) degrees of freedom of 𝜒2 distribution; default is df(1)

Plot

marker options change look of markers (color, size, etc.)

marker label options add marker labels; change look or position

Reference line

rlopts(cline options) affect rendition of the reference line

Add plots

addplot(plot) add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

Options for symplot, quantile, and qqplot

� � �
Plot �

marker options affect the rendition of markers drawn at the plotted points, including their shape, size,

color, and outline; see [G-3] marker options.

marker label options specify if and how the markers are to be labeled; see [G-3]marker label options.

� � �
Reference line �

rlopts(cline options) affect the rendition of the reference line; see [G-3] cline options.
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� � �
Add plots �

addplot(plot) provides a way to add other plots to the generated graph; see [G-3] addplot option.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see

[G-3] saving option).

Options for qnorm and pnorm

� � �
Main �

grid adds grid lines at the 0.05, 0.10, 0.25, 0.50, 0.75, 0.90, and 0.95 quantiles when specified with

qnorm. With pnorm, grid is equivalent to yline(.25,.5,.75) xline(.25,.5,.75).

� � �
Plot �

marker options affect the rendition of markers drawn at the plotted points, including their shape, size,

color, and outline; see [G-3] marker options.

marker label options specify if and how the markers are to be labeled; see [G-3]marker label options.

� � �
Reference line �

rlopts(cline options) affect the rendition of the reference line; see [G-3] cline options.

� � �
Add plots �

addplot(plot) provides a way to add other plots to the generated graph; see [G-3] addplot option.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see

[G-3] saving option).

Options for qchi and pchi

� � �
Main �

grid adds grid lines at the 0.05, 0.10, 0.25, 0.50, 0.75, 0.90, and .95 quantiles when specified with qchi.
With pchi, grid is equivalent to yline(.25,.5,.75) xline(.25,.5,.75).

df(#) specifies the degrees of freedom of the 𝜒2 distribution. The default is df(1).

� � �
Plot �

marker options affect the rendition of markers drawn at the plotted points, including their shape, size,

color, and outline; see [G-3] marker options.

marker label options specify if and how the markers are to be labeled; see [G-3]marker label options.



Diagnostic plots — Distributional diagnostic plots 554

� � �
Reference line �

rlopts(cline options) affect the rendition of the reference line; see [G-3] cline options.

� � �
Add plots �

addplot(plot) provides a way to add other plots to the generated graph; see [G-3] addplot option.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see

[G-3] saving option).

Remarks and examples
Remarks are presented under the following headings:

symplot
quantile
qqplot
qnorm
pnorm
qchi
pchi

symplot

Example 1
We have data on 74 automobiles. To make a symmetry plot of the variable price, we type

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. symplot price
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All points would lie along the reference line (defined as 𝑦 = 𝑥) if car prices were symmetrically dis-
tributed. The points in this plot lie above the reference line, indicating that the distribution of car prices

is skewed to the right—the most expensive cars are far more expensive than the least expensive cars are

inexpensive.

The logic works as follows: a variable, 𝑧, is distributed symmetrically if

median − 𝑧(𝑖) = 𝑧(𝑁+1−𝑖) − median

where 𝑧(𝑖) indicates the 𝑖th-order statistic of 𝑧. symplot graphs 𝑦𝑖 = median − 𝑧(𝑖) versus 𝑥𝑖 =
𝑧(𝑁+1−𝑖) − median.

For instance, consider the largest and smallest values of price in the example above. The most

expensive car costs $15,906 and the least expensive, $3,291. Let’s compare these two cars with the

typical car in the data and see how much more it costs to buy the most expensive car, and compare

that with how much less it costs to buy the least expensive car. If the automobile price distribution is

symmetric, the price differences would be the same.

Before we canmake this comparison, wemust agree on a definition for the word “typical”. Let’s agree

that “typical” means median. The price of the median car is $5,006.50, so the most expensive car costs

$10,899.50 more than the median car, and the least expensive car costs $1,715.50 less than the median

car. We now have one piece of evidence that the car price distribution is not symmetric. We can repeat

the experiment for the second-most-expensive car and the second-least-expensive car. We find that the

second-most-expensive car costs $9,494.50 more than the median car, and the second-least-expensive

car costs $1,707.50 less than the median car. We now have more evidence. We can continue doing this

with the third most expensive and the third least expensive, and so on.

Once we have all of these numbers, we want to compare each pair and ask how similar, on average,

they are. The easiest way to do that is to plot all the pairs.
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quantile

Example 2
We have data on the prices of 74 automobiles. To make a quantile plot of price, we type

. use https://www.stata-press.com/data/r18/auto, clear
(1978 automobile data)
. quantile price, rlopts(clpattern(dash)) ytitle(Quantiles of price)
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We changed the pattern of the reference line by specifying rlopts(clpattern(dash)).

In a quantile plot, each value of the variable is plotted against the fraction of the data that have values

less than that fraction. The diagonal line is a reference line. If automobile prices were rectangularly

distributed, all the data would be plotted along the line. Because all the points are below the reference

line, we know that the price distribution is skewed right.
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qqplot

Example 3
We have data on the weight and country of manufacture of 74 automobiles. We wish to compare the

distributions of weights for domestic and foreign automobiles:

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. generate weightd=weight if !foreign
(22 missing values generated)
. generate weightf=weight if foreign
(52 missing values generated)
. qqplot weightd weightf
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qnorm

Example 4
Continuing with our price data on 74 automobiles, we now wish to compare the distribution of price

with the normal distribution:

. qnorm price, grid
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Grid lines are 5, 10, 25, 50, 75, 90, and 95 percentiles.

The result shows that the distributions are different.

Technical note
The idea behind qnorm is recommended strongly by Miller (1997): he calls it probit plotting. His

recommendations from much practical experience should interest many users. “My recommendation for

detecting nonnormality is probit plotting” (Miller 1997, 10). “If a deviation from normality cannot be

spotted by eye on probit paper, it is not worth worrying about. I never use the Kolmogorov–Smirnov

test (or one of its cousins) or the 𝜒2 test as a preliminary test of normality. They do not tell you how the

sample is differing from normality, and I have a feeling they are more likely to detect irregularities in the

middle of the distribution than in the tails” (Miller 1997, 13–14).
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pnorm

Example 5
Quantile–normal plots emphasize the tails of the distribution. Normal probability plots put the focus

on the center of the distribution:

. pnorm price, grid
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qchi

Example 6
Suppose that wewant to examine the distribution of the sumof squares of price and mpg, standardized

for their variances.

. egen c1 = std(price)

. egen c2 = std(mpg)

. generate ch = c1^2 + c2^2

. qchi ch, df(2) grid ylabel(, axis(2) labsize(*.8) format(%4.2f))
> xlabel(, axis(2) format(%4.2f))
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Grid lines are 5, 10, 25, 50, 75, 90, and 95 percentiles.

The quadratic form is clearly not 𝜒2 with 2 degrees of freedom.
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pchi

Example 7
We can focus on the center of the distribution by doing a probability plot:

. pchi ch, df(2) grid
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Methods and formulas
Let 𝑥(1), 𝑥(2), . . . , 𝑥(𝑁) be the data sorted in ascending order.

If a continuous variable, 𝑥, has a cumulative distribution function 𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥) = 𝑝, the
quantiles 𝑥𝑝𝑖

are such that 𝐹(𝑥𝑝𝑖
) = 𝑝𝑖. For example, if 𝑝𝑖 = 0.5, then 𝑥0.5 is the median. When

we plot data, the probabilities, 𝑝𝑖, are often referred to as plotting positions. There are many different

conventions for choice of plotting positions, given 𝑥(1) ≤ · · · ≤ 𝑥(𝑁). Most belong to the family

(𝑖 − 𝑎)/(𝑁 − 2𝑎 + 1). 𝑎 = 0.5 (suggested by Hazen) and 𝑎 = 0 (suggested by Weibull) are popular

choices.

For a wider discussion of the calculation of plotting positions, see Cox (2002).

symplot plots median − 𝑥(𝑖) versus 𝑥(𝑁+1−𝑖) − median.

quantile plots 𝑥(𝑖) versus (𝑖 − 0.5)/𝑁 (the Hazen position).

qnorm plots 𝑥(𝑖) against 𝑞𝑖 × �̂� + ̂𝜇, where 𝑞𝑖 = Φ−1(𝑝𝑖), Φ is the cumulative normal distribution,

𝑝𝑖 = 𝑖/(𝑁 + 1) (the Weibull position), �̂� is the standard deviation, and ̂𝜇 is the mean of the data.

pnorm plots Φ{(𝑥𝑖 − ̂𝜇)/�̂�} versus 𝑝𝑖 = 𝑖/(𝑁 + 1), where ̂𝜇 is the mean of the data and �̂� is the

standard deviation.

qchi and pchi are similar to qnorm and pnorm; the cumulative 𝜒2 distribution is used in place of the

cumulative normal distribution.
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qqplot is just a two-way scatterplot of one variable against the other after both variables have been
sorted into ascending order, and both variables have the same number of nonmissing observations. If

the variables have unequal numbers of nonmissing observations, interpolated values of the variable with

more data are plotted against the variable with fewer data.� �
Ramanathan Gnanadesikan (1932–2015) was born in Madras. He obtained degrees from the Uni-

versities of Madras and North Carolina. He worked in industry at Procter & Gamble, Bell Labs, and

Bellcore, as well as in universities, retiring from Rutgers in 1998. Among many contributions to

statistics, he is especially well known for work on probability plotting, robustness, outlier detection,

clustering, classification, and pattern recognition.

Martin Bradbury Wilk (1922–2013) was born in Montreal. He obtained degrees in chemical en-

gineering and statistics from McGill and Iowa State Universities. After holding several statistics-

related posts in industry and at universities (including periods at Princeton, Bell Labs, and Rut-

gers), Wilk was appointed Chief Statistician at Statistics Canada (1980–1986). He is especially

well known for his work with Gnanadesikan on probability plotting and with Shapiro on tests for

normality.� �
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display — Substitute for a hand calculator

Description Quick start Syntax Remarks and examples Also see

Description
display displays strings and values of scalar expressions.

display really has many more features and a more complex syntax diagram, but the diagram shown

above is adequate for interactive use. For a full discussion of display’s capabilities, see [P] display.

Quick start
Perform calculations interactively

display 100*100

Same as above, but include comma in the result

display %6.0fc 100*100

Verify choice of datetime function

display %tm monthly(”January 1983”,”MY”)

View formatted mean after summarize
display %5.2f r(mean)

Add the variance with a different format on its own line

display ”mean = ” %5.2f r(mean) _newline ”variance = ” %10.4f r(Var)

Syntax
display exp

Remarks and examples
display can be used as a substitute for a hand calculator.

Example 1
display 2+2 produces the output 4. Stata variables may also appear in the expression, such as in

display myvar/2. Because display works only with scalars, the resulting calculation is performed
only for the first observation. You could type display myvar[10]/2 to display the calculation for the
10th observation. Here are more examples:

564
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. display sqrt(2)/2

.70710678

. display normal(-1.1)

.13566606

. di (57.2-3)/(12-2)
5.42
. display myvar/10
7
. display myvar[10]/2
3.5

Also see
[P] display — Display strings and values of scalar expressions

[U] 13 Functions and expressions



do — Execute commands from a file

Description Quick start Menu Syntax
Option Reference Also see

Description
do and run cause Stata to execute the commands stored in filename just as if they were entered from

the keyboard. do echoes the commands as it executes them, whereas run is silent.

Quick start
Execute commands stored in myfile.do

do myfile

Same as above, passing first arg in local macro 1 and arg2 in local macro 2 for use by myfile.do
do myfile ”first arg” arg2

Execute commands stored in myfile.do, continuing execution even if an error occurs in one or more
commands

do myfile, nostop

Execute commands stored in myfile.do silently
run myfile

Menu
File > Do...

Syntax
{do | run} filename [ arguments ] [ , nostop ]

filename (called a do-file) can be created using Stata’s Do-file Editor; see [R] doedit. This file will be

a standard text file. filename can also be created by using a non-Stata text editor; see [D] shell for a

way to invoke your favorite editor from inside Stata. Ensure that you save the file in ASCII or UTF-8

format.

If filename is specified without an extension, .do is assumed.

If the path or filename contains spaces, it should be enclosed in double quotes.

A complete discussion of do-files, including information on arguments, can be found in [U] 16 Do-files.

Option
nostop allows the do-file to continue executing even if an error occurs. Normally, Stata stops executing

the do-file when it detects an error (nonzero return code).

566
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Reference
Jenkins, S. P. 2006. Stata tip 32: Do not stop. Stata Journal 6: 281.

Also see
[R] doedit — Edit do-files and other text files

[P] include — Include commands from file

[GSM] 13 Using the Do-file Editor—automating Stata

[GSU] 13 Using the Do-file Editor—automating Stata

[GSW] 13 Using the Do-file Editor—automating Stata

[U] 15 Saving and printing output—log files

[U] 16 Do-files

https://www.stata-journal.com/article.html?article=pr0023


doedit — Edit do-files and other text files

Description
doedit opens the Do-file Editor. This text editor lets you create and edit do-files, which typically

contain a series of Stata commands. If you specify filename, doedit will open a text file, such as a

do-file or an ado-file, saved to disk.

Quick start
Open a new untitled do-file in the Do-file Editor

doedit

Open new or existing do-file myfile.do in the Do-file Editor
doedit myfile

Menu
Window > Do-file Editor

Syntax
doedit [ filename ]

Remarks and examples
Clicking on the Do-file Editor button is equivalent to typing doedit.

doedit, typed by itself, invokes the Editor with an empty document. If you specify filename, that
file is displayed in the Editor.

Youmay havemore than oneDo-file Editor open at once. Each time you submit the doedit command,
a new window will be opened.

A tutorial discussion of doedit can be found in the Getting Started with Stata manual. Read

[U] 16 Do-files for an explanation of do-files, and then read [GSW] 13 Using the Do-file Editor—

automating Stata to learn how to use the Do-file Editor to create and execute do-files.

Also see
[R] do — Execute commands from a file

[GSM] 13 Using the Do-file Editor—automating Stata

[GSU] 13 Using the Do-file Editor—automating Stata

[GSW] 13 Using the Do-file Editor—automating Stata

[U] 16 Do-files
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dotplot — Comparative distribution dotplots

Description Quick start Menu Syntax Options
Remarks and examples Stored results Acknowledgments Reference

Description
A dotplot is a scatterplot with values grouped together vertically (“binning”, as in a histogram) and

with plotted points separated horizontally. The aim is to display all the data for several variables or

groups in one compact graphic.

Quick start
Dotplot of v1

dotplot v1

Columns with separate dotplots of v1 for each level of categorical variable a
dotplot v1, over(a)

Same as above, but with the dots centered in each column

dotplot v1, over(a) center

Dotplots for v1, v2, and v3 in separate columns
dotplot v1 v2 v3

Add a horizontal line of pluses at the mean of each variable

dotplot v1 v2 v3, mean

Add pluses for the medians and dashed lines for the upper and lower quartiles

dotplot v1 v2 v3, median bar

Menu
Graphics > Distributional graphs > Distribution dotplot

569



dotplot — Comparative distribution dotplots 570

Syntax
Dotplot of varname, with one column per value of groupvar

dotplot varname [ if ] [ in ] [ , options ]

Dotplot for each variable in varlist, with one column per variable

dotplot varlist [ if ] [ in ] [ , options ]

options Description

Options

over(groupvar) display one columnar dotplot for each value of groupvar

nx(#) horizontal dot density; default is nx(0)
ny(#) vertical dot density; default is ny(35)
incr(#) label every # group; default is incr(1)
mean | median plot a horizontal line of pluses at the mean or median

bounded use minimum and maximum as boundaries

bar plot horizontal dashed lines at shoulders of each group

nogroup use the actual values of yvar

center center the dot for each column

Plot

marker options change look of markers (color, size, etc.)

marker label options add marker labels; change look or position

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

collect is allowed; see [U] 11.1.10 Prefix commands.

Options

� � �
Options �

over(groupvar) identifies the variable for which dotplot will display one columnar dotplot for each
value of groupvar. over() may not be specified in the second syntax.

nx(#) sets the horizontal dot density. A larger value of # will increase the dot density, reducing the

horizontal separation between dots. This option will increase the separation between columns if two

or more groups or variables are used.

ny(#) sets the vertical dot density (number of “bins” on the 𝑦 axis). A larger value of # will result in

more bins and a plot that is less spread out horizontally. # should be determined in conjunction with

nx() to give the most pleasing appearance.

incr(#) specifies how the 𝑥 axis is to be labeled. incr(1), the default, labels all groups. incr(2)
labels every second group.

[ mean | median ] plots a horizontal line of pluses at the mean or median of each group.
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bounded forces the minimum and maximum of the variable to be used as boundaries of the smallest and

largest bins. It should be used with one variable whose support is not the whole of the real line and

whose density does not tend to zero at the ends of its support, for example, a uniform random variable

or an exponential random variable.

bar plots horizontal dashed lines at the “shoulders” of each group. The shoulders are taken to be the
upper and lower quartiles unless mean has been specified; here they will be the mean plus or minus
the standard deviation.

nogroup uses the actual values of yvar rather than grouping them (the default). This option may be

useful if yvar takes on only a few values.

center centers the dots for each column on a hidden vertical line.

� � �
Plot �

marker options affect the rendition of markers drawn at the plotted points, including their shape, size,

color, and outline; see [G-3] marker options.

marker label options specify if and how the markers are to be labeled; see [G-3]marker label options.

marker label options are not allowed if varlist is specified.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see

[G-3] saving option).

Remarks and examples
dotplot produces a figure that has elements of a boxplot, a histogram, and a scatterplot. Like a

boxplot, it is most useful for comparing the distributions of several variables or the distribution of 1

variable in several groups. Like a histogram, the figure provides a crude estimate of the density, and, as

with a scatterplot, each symbol (dot) represents 1 observation.

Example 1
dotplot may be used as an alternative to Stata’s histogram graph for displaying the distribution of

one variable.
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. set seed 123456789

. set obs 1000

. generate norm = rnormal()

. dotplot norm, title(”Normal distribution, sample size 1000”)
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Example 2
The over() option lets us use dotplot to compare the distribution of one variable within different

levels of a grouping variable. The center, median, and bar options create a graph that may be compared
with Stata’s boxplot; see [G-2] graph box. The next graph illustrates this option with Stata’s automobile

dataset.

. use https://www.stata-press.com/data/r18/auto, clear
(1978 automobile data)
. dotplot mpg, over(foreign) nx(25) ny(10) center median bar
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Example 3
The second version of dotplot lets us compare the distribution of several variables. In the next

graph, all 10 variables contain measurements on tumor volume.

. use https://www.stata-press.com/data/r18/dotgr

. dotplot g1r1-g1r10, ytitle(”Tumor volume, cu mm”)
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Example 4
When using the first form with the over() option, we can encode a third dimension in a dotplot

by using a different plotting symbol for different groups. The third dimension cannot be encoded with a

varlist. The example is of a hypothetical matched case–control study. The next graph shows the exposure

of each individual in each matched stratum. Cases are marked by the letter ‘x’, and controls are marked

by the letter ‘o’.

. use https://www.stata-press.com/data/r18/dotdose

. label define symbol 0 ”o” 1 ”x”

. label values case symbol
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. dotplot dose, over(strata) m(none) mlabel(case) mlabp(0) center
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Example 5
dotplot can also be used with two virtually continuous variables as an alternative to jittering the data

to distinguish ties. We must use the xlabel() option, because otherwise dotplot will attempt to label
too many points on the 𝑥 axis. It is often useful in such instances to use a value of nx that is smaller than
the default. That was not necessary in this example, partly because of our choice of symbols.

. use https://www.stata-press.com/data/r18/auto, clear
(1978 automobile data)
. generate byte hi_price = (price>10000) if price < .
. label define symbol 0 ”|” 1 ”o”
. label values hi_price symbol
. dotplot weight, over(gear_ratio) m(none) mlabel(hi_price) mlabp(0) center
> xlabel(#5)
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Example 6
The following figure is included mostly for aesthetic reasons. It also demonstrates dotplot’s ability

to cope with even very large datasets. The sample size for each variable is 10,000, so it may take a long

time to print.

. clear all

. set seed 123456789

. set obs 10000

. generate norm0 = rnormal()

. generate norm1 = rnormal() + 1

. generate norm2 = rnormal() + 2

. label variable norm0 ”N(0,1)”

. label variable norm1 ”N(1,1)”

. label variable norm2 ”N(2,1)”

. dotplot norm0 norm1 norm2

-4

-2

0

2

4

6

N(0,1) N(1,1) N(2,1)

Stored results
dotplot stores the following in r():
Scalars

r(nx) horizontal dot density

r(ny) vertical dot density
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Description
dstdize produces standardized rates, a weighted average of the stratum-specific rates.

istdize produces indirectly standardized rates that are appropriate when the stratum-specific rates
for the population being studied are either unavailable or unreliable.

istdize also calculates a point estimate and exact confidence interval for the study population’s

standardized mortality ratio (SMR) or the standardized incidence ratio (SIR).

Quick start
Direct standardization

Use reference population saved in mypop.dta to standardize v1with stratum identifier svar and stratum
size v2 for catvar

dstdize v1 v2 svar, by(catvar) using(mypop)

Same as above, but with reference population in memory where catvar = 1

dstdize v1 v2 svar, by(catvar) base(1)

Same as above, but with reference population in memory where catvar = “nation”

dstdize v1 v2 svar, by(catvar) base(”nation”)

Indirect standardization

Use population cases and size saved in cases and pop to standardize study cases v3 and stratum size v4
at each level of svar

istdize v3 v4 svar using mypop.dta, popvars(cases pop)

Same as above, but standardize subpopulations identified by levels of catvar
isdize v3 v4 svar using mypop.dta, popvars(cases pop) by(catvar)

Same as above, but standardize by population stratum-specific and crude rates saved in srate and crate
and display summary of standard population

isdize v3 v4 svar using mypop.dta, rate(srate crate) by(catvar) print

Same as above, but indicate that the crude population rate is 0.01

isdize v3 v4 svar using mypop.dta, rate(srate .01) by(catvar) print

576
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Menu
dstdize
Statistics > Epidemiology and related > Other > Direct standardization

istdize
Statistics > Epidemiology and related > Other > Indirect standardization

Syntax
Direct standardization

dstdize charvar popvar stratavars [ if ] [ in ] , by(groupvars) [ dstdize options ]

Indirect standardization

istdize casevar𝑠 popvar𝑠 stratavars [ if ] [ in ] using filename,

{ popvars(casevar𝑝 popvar𝑝) | rate(ratevar𝑝 {# | crudevar𝑝}) }

[ istdize options ]

charvar is the characteristic to be standardized across different subpopulations identified by groupvars.

popvar defines the weights used in standardization.

stratavars defines the strata across which the weights are to be averaged in dstdize. For istdize,
stratavars defines the strata for which casevar𝑠 is measured.

casevar𝑠 is the variable name for the study population’s number of cases. If by(groupvars) is specified,
casevar𝑠 must be constant or missing within each group defined by combinations of groupvars.

popvar𝑠 identifies the number of subjects in each strata in the study population.

filename must be a Stata dataset and contain popvar and stratavars.

dstdize options Description

Main
∗ by(groupvars) study populations

using( filename) use standard population from Stata dataset

base(# | string) use standard population from a value of grouping variable

level(#) set confidence level; default is level(95)

Options

saving( filename) save computed standard population distribution as a Stata dataset

format(% fmt) final summary table display format; default is %10.0g
print include table summary of standard population in output

nores suppress storing results in r()
∗by(groupvars) is required.
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istdize options Description

Main
∗ popvars(casevar𝑝 popvar𝑝) for standard population, casevar𝑝 is number of cases and

popvar𝑝 is number of individuals
∗ rate(ratevar𝑝 {# | crudevar𝑝}) ratevar𝑝 is stratum-specific rates and # or crudevar𝑝 is the

crude case rate value or variable

level(#) set confidence level; default is level(95)

Options

by(groupvars) variables identifying study populations

format(% fmt) final summary table display format; default is %10.0g
print include table summary of standard population in output

∗Either popvars(casevar𝑝 popvar𝑝) or rate(ratevar𝑝 {# | crudevar𝑝}) must be specified.

collect is allowed with dstdize and istdize; see [U] 11.1.10 Prefix commands.

Options for dstdize

� � �
Main �

by(groupvars) is required for the dstdize command; it specifies the variables identifying the study

populations. If base() is also specified, there must be only one variable in the by() group. If you do
not have a variable for this option, you can generate one by using something like generate newvar=1
and then use newvar as the argument to this option.

using(filename) or base(# | string) may be used to specify the standard population. You may not

specify both options. using( filename) supplies the name of a .dta file containing the standard

population. The standard population must contain the popvar and the stratavars. If using() is

not specified, the standard population distribution will be obtained from the data. base(# | string)
lets you specify one of the values of groupvar—either a numeric value or a string—to be used as

the standard population. If neither base() nor using() is specified, the entire dataset is used to

determine an estimate of the standard population.

level(#) specifies the confidence level, as a percentage, for a confidence interval of the adjusted rate.
The default is level(95) or as set by set level; see [U] 20.8 Specifying the width of confidence
intervals.

� � �
Options �

saving( filename) saves the computed standard population distribution as a Stata dataset that can be

used in further analyses.

format(% fmt) specifies the format in which to display the final summary table. The default is %10.0g.

print includes a table summary of the standard population before displaying the study population results.

nores suppresses storing results in r(). This option is seldom specified. Some results are stored in

matrices. If there are more groups than can fit in a matrix, dstdizewill report the “unable to allocate
matrix” error message. In this case, you must specify nores. The nores option does not change how
results are calculated but specifies that results need not be left behind for use by other programs.
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Options for istdize

� � �
Main �

popvars(casevar𝑝 popvar𝑝) or rate(ratevar𝑝 {# | crudevar𝑝})must be specified with istdize. Only
one of these two options is allowed. These options are used to describe the standard population’s data.

With popvars(casevar𝑝 popvar𝑝), casevar𝑝 records the number of cases (deaths) for each stratum
in the standard population, and popvar𝑝 records the total number of individuals in each stratum (in-

dividuals at risk).

With rate(ratevar𝑝 {# | crudevar𝑝}), ratevar𝑝 contains the stratum-specific rates. # | crudevar𝑝
specifies the crude case rate either by a variable name or by the crude case rate value. If a crude

rate variable is used, it must be the same for all observations, although it could be missing for some.

level(#) specifies the confidence level, as a percentage, for a confidence interval of the adjusted rate.
The default is level(95) or as set by set level; see [U] 20.8 Specifying the width of confidence
intervals.

� � �
Options �

by(groupvars) specifies variables identifying study populations when more than one exists in the data.
If this option is not specified, the entire study population is treated as one group.

format(% fmt) specifies the format in which to display the final summary table. The default is %10.0g.

print outputs a table summary of the standard population before displaying the study population results.

Remarks and examples
Remarks are presented under the following headings:

Direct standardization
Indirect standardization

In epidemiology and other fields, you will often need to compare rates for some characteristic across

different populations. These populations often differ on factors associated with the characteristic under

study; thus, directly comparing overall rates may be misleading.

See van Belle et al. (2004, 642–684), Fleiss, Levin, and Paik (2003, chap. 19), or Kirkwood and

Sterne (2003, chap. 25) for a discussion of direct and indirect standardization.

Direct standardization
The direct method of adjusting for differences among populations involves computing the overall

rates that would result if, instead of having different distributions, all populations had the same standard

distribution. The standardized rate is defined as a weighted average of the stratum-specific rates, with

the weights taken from the standard distribution. Direct standardization may be applied only when the

specific rates for a given population are available.
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dstdize generates adjusted summary measures of occurrence, which can be used to compare preva-
lence, incidence, or mortality rates between populations that may differ on certain characteristics (for

example, age, gender, race). These underlying differences may affect the crude prevalence, mortality, or

incidence rates.

Example 1
We have data (Rothman 1986, 42) on mortality rates for Sweden and Panama for 1962, and we wish

to compare mortality in these two countries:

. use https://www.stata-press.com/data/r18/mortality
(1962 Mortality, Sweden & Panama)
. describe
Contains data from https://www.stata-press.com/data/r18/mortality.dta
Observations: 6 1962 Mortality, Sweden & Panama

Variables: 4 14 Apr 2022 16:18

Variable Storage Display Value
name type format label Variable label

nation str6 %9s Nation
age_category byte %9.0g age_lbl Age category
population float %10.0gc Population in age category
deaths float %9.0gc Deaths in age category

Sorted by:
. list, sepby(nation) abbrev(12) divider

nation age_category population deaths

1. Sweden 0--29 3145000 3,523
2. Sweden 30--59 3057000 10,928
3. Sweden 60+ 1294000 59,104

4. Panama 0--29 741,000 3,904
5. Panama 30--59 275,000 1,421
6. Panama 60+ 59,000 2,456

We divide the total number of cases in the population by the population to obtain the crude rate:

. collapse (sum) pop deaths, by(nation)

. list, abbrev(10) divider

nation population deaths

1. Panama 1075000 7,781
2. Sweden 7496000 73,555

. generate crude = deaths/pop

. list, abbrev(10) divider

nation population deaths crude

1. Panama 1075000 7,781 .0072381
2. Sweden 7496000 73,555 .0098126
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If we examine the total number of deaths in the two nations, the total crude mortality rate in Sweden

is higher than that in Panama. From the original data, we see one possible explanation: Swedes are older

than Panamanians, making direct comparison of the mortality rates difficult.

Direct standardization lets us remove the distortion caused by the different age distributions. The

adjusted rate is defined as the weighted sum of the crude rates, where the weights are given by the

standard distribution. Suppose that we wish to standardize these mortality rates to the following age

distribution:

. use https://www.stata-press.com/data/r18/1962, clear
(Standard population distribution)
. list, abbrev(12) divider

age_category population

1. 0--29 .35
2. 30--59 .35
3. 60+ .3

. save 1962
file 1962.dta saved

If we multiply the above weights for the age strata by the crude rate for the corresponding age category,

the sum gives us the standardized rate.

. use https://www.stata-press.com/data/r18/mortality
(1962 Mortality, Sweden & Panama)
. generate crude=deaths/pop
. drop pop
. merge m:1 age_cat using 1962

Result Number of obs

Not matched 0
Matched 6 (_merge==3)

. list, sepby(age_category) abbrev(12)

nation age_category deaths crude population _merge

1. Sweden 0--29 3,523 .0011202 .35 Matched (3)
2. Panama 0--29 3,904 .0052686 .35 Matched (3)

3. Sweden 30--59 10,928 .0035747 .35 Matched (3)
4. Panama 30--59 1,421 .0051673 .35 Matched (3)

5. Sweden 60+ 59,104 .0456754 .3 Matched (3)
6. Panama 60+ 2,456 .0416271 .3 Matched (3)

. generate product = crude*pop

. by nation, sort: egen adj_rate = sum(product)

. drop _merge
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. list, sepby(nation)

nation age_ca~y deaths crude popula~n product adj_rate

1. Panama 30--59 1,421 .0051673 .35 .0018085 .0161407
2. Panama 0--29 3,904 .0052686 .35 .001844 .0161407
3. Panama 60+ 2,456 .0416271 .3 .0124881 .0161407

4. Sweden 0--29 3,523 .0011202 .35 .0003921 .0153459
5. Sweden 60+ 59,104 .0456754 .3 .0137026 .0153459
6. Sweden 30--59 10,928 .0035747 .35 .0012512 .0153459

Comparing the standardized rates indicates that the Swedes have a slightly lower mortality rate.

To perform the above analysis with dstdize, type

. use https://www.stata-press.com/data/r18/mortality, clear
(1962 Mortality, Sweden & Panama)
. dstdize deaths pop age_cat, by(nation) using(1962)
Direct standardization

-> nation = Panama
Unadjusted Std.

Pop. Stratum pop.
Stratum Pop. Cases dist. rate dist. s*P

0--29 741,000 3,904 0.689 0.0053 0.350 0.0018
30--59 275,000 1,421 0.256 0.0052 0.350 0.0018
60+ 59,000 2,456 0.055 0.0416 0.300 0.0125

Total: 1,075,000 7,781
Note: s*P is Stratum rate multiplied by Std. pop. dist.

Adjusted cases = 17,351.2
Crude rate = 0.0072

Adjusted rate = 0.0161
95% conf. interval: [0.0156, 0.0166]

-> nation = Sweden
Unadjusted Std.

Pop. Stratum pop.
Stratum Pop. Cases dist. rate dist. s*P

0--29 3,145,000 3,523 0.420 0.0011 0.350 0.0004
30--59 3,057,000 10,928 0.408 0.0036 0.350 0.0013
60+ 1,294,000 59,104 0.173 0.0457 0.300 0.0137

Total: 7,496,000 73,555
Note: s*P is Stratum rate multiplied by Std. pop. dist.

Adjusted cases = 115,032.5
Crude rate = 0.0098

Adjusted rate = 0.0153
95% conf. interval: [0.0152, 0.0155]
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Summary of study populations
nation N Crude rate Adjusted rate [95% conf. interval]

Panama 1,075,000 0.007238 0.016141 0.015645 0.016637
Sweden 7,496,000 0.009813 0.015346 0.015235 0.015457

The summary table above lets us make a quick inspection of the results within the study populations, and

the detail tables give the behavior among the strata within the study populations.

Example 2
We have individual-level data on persons in four cities over several years. Included in the data is a

variable indicating whether the person has high blood pressure, together with information on the person’s

age, sex, and race. We wish to obtain standardized high blood pressure rates for each city for 1990 and

1992, using, as the standard, the age, sex, and race distribution of the four cities and two years combined.

Our dataset contains

. use https://www.stata-press.com/data/r18/hbp

. describe
Contains data from https://www.stata-press.com/data/r18/hbp.dta
Observations: 1,130

Variables: 7 21 Feb 2022 06:42

Variable Storage Display Value
name type format label Variable label

id str10 %10s Record identification number
city byte %8.0g City
year int %8.0g Year
sex byte %8.0g sexfmt Sex
age_group byte %8.0g agefmt Age group
race byte %8.0g racefmt Race
hbp byte %8.0g yn High blood pressure

Sorted by:

The dstdize command is designed to work with aggregate data but will work with individual-level
data only if we create a variable recording the population represented by each observation. For individual-

level data, this is one:

. generate pop = 1

On the next page, we specify print to obtain a listing of the standard population and level(90) to
request 90% rather than 95% confidence intervals. Typing if year==1990 | year==1992 restricts the
data to the two years for both summary tables and the standard population.
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. dstdize hbp pop age race sex if year==1990 | year==1992, by(city year) print
> level(90)
Standard population

Stratum Pop. Dist.

15--19 Black Female 35 0.077
15--19 Black Male 44 0.097
15--19 Hispanic Female 5 0.011
15--19 Hispanic Male 10 0.022
15--19 White Female 7 0.015
15--19 White Male 5 0.011
20--24 Black Female 43 0.095
20--24 Black Male 67 0.147
20--24 Hispanic Female 14 0.031
20--24 Hispanic Male 13 0.029
20--24 White Female 4 0.009
20--24 White Male 21 0.046
25--29 Black Female 17 0.037
25--29 Black Male 44 0.097
25--29 Hispanic Female 7 0.015
25--29 Hispanic Male 13 0.029
25--29 White Female 9 0.020
25--29 White Male 16 0.035
30--34 Black Female 16 0.035
30--34 Black Male 32 0.070
30--34 Hispanic Female 2 0.004
30--34 Hispanic Male 3 0.007
30--34 White Female 5 0.011
30--34 White Male 23 0.051

Total: 455
(6 observations excluded because of missing values)
Direct standardization

-> city year = 1 1990
Unadjusted Std.

Pop. Stratum pop.
Stratum Pop. Cases dist. rate dist. s*P

15--19 Black Female 6 2 0.128 0.3333 0.077 0.0256
15--19 Black Male 6 0 0.128 0.0000 0.097 0.0000
15--19 Hispanic Male 1 0 0.021 0.0000 0.022 0.0000
20--24 Black Female 3 0 0.064 0.0000 0.095 0.0000
20--24 Black Male 11 0 0.234 0.0000 0.147 0.0000
25--29 Black Female 4 0 0.085 0.0000 0.037 0.0000
25--29 Black Male 6 1 0.128 0.1667 0.097 0.0161
25--29 Hispanic Female 2 0 0.043 0.0000 0.015 0.0000
25--29 White Female 1 0 0.021 0.0000 0.020 0.0000
30--34 Black Female 1 0 0.021 0.0000 0.035 0.0000
30--34 Black Male 6 0 0.128 0.0000 0.070 0.0000

Total: 47 3
Note: s*P is Stratum rate multiplied by Std. pop. dist.

Adjusted cases = 2.0
Crude rate = 0.0638

Adjusted rate = 0.0418
90% conf. interval: [0.0074, 0.0761]
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-> city year = 1 1992
Unadjusted Std.

Pop. Stratum pop.
Stratum Pop. Cases dist. rate dist. s*P

15--19 Black Female 3 0 0.054 0.0000 0.077 0.0000
15--19 Black Male 9 0 0.161 0.0000 0.097 0.0000
15--19 Hispanic Male 1 0 0.018 0.0000 0.022 0.0000
20--24 Black Female 7 0 0.125 0.0000 0.095 0.0000
20--24 Black Male 9 0 0.161 0.0000 0.147 0.0000
20--24 Hispanic Female 1 0 0.018 0.0000 0.031 0.0000
25--29 Black Female 2 0 0.036 0.0000 0.037 0.0000
25--29 Black Male 11 1 0.196 0.0909 0.097 0.0088
25--29 Hispanic Male 1 0 0.018 0.0000 0.029 0.0000
30--34 Black Female 7 0 0.125 0.0000 0.035 0.0000
30--34 Black Male 4 0 0.071 0.0000 0.070 0.0000
30--34 White Female 1 0 0.018 0.0000 0.011 0.0000

Total: 56 1
Note: s*P is Stratum rate multiplied by Std. pop. dist.

Adjusted cases = 0.5
Crude rate = 0.0179

Adjusted rate = 0.0088
90% conf. interval: [0.0000, 0.0226]

-> city year = 2 1990
Unadjusted Std.

Pop. Stratum pop.
Stratum Pop. Cases dist. rate dist. s*P

15--19 Black Female 5 0 0.078 0.0000 0.077 0.0000
15--19 Black Male 7 1 0.109 0.1429 0.097 0.0138
15--19 Hispanic Male 1 0 0.016 0.0000 0.022 0.0000
20--24 Black Female 7 1 0.109 0.1429 0.095 0.0135
20--24 Black Male 8 0 0.125 0.0000 0.147 0.0000
20--24 Hispanic Female 5 0 0.078 0.0000 0.031 0.0000
20--24 Hispanic Male 2 0 0.031 0.0000 0.029 0.0000
20--24 White Male 2 0 0.031 0.0000 0.046 0.0000
25--29 Black Female 3 0 0.047 0.0000 0.037 0.0000
25--29 Black Male 9 0 0.141 0.0000 0.097 0.0000
25--29 Hispanic Female 2 0 0.031 0.0000 0.015 0.0000
25--29 White Female 1 0 0.016 0.0000 0.020 0.0000
25--29 White Male 2 1 0.031 0.5000 0.035 0.0176
30--34 Black Female 1 0 0.016 0.0000 0.035 0.0000
30--34 Black Male 5 0 0.078 0.0000 0.070 0.0000
30--34 Hispanic Female 2 0 0.031 0.0000 0.004 0.0000
30--34 White Female 1 0 0.016 0.0000 0.011 0.0000
30--34 White Male 1 0 0.016 0.0000 0.051 0.0000

Total: 64 3
Note: s*P is Stratum rate multiplied by Std. pop. dist.

Adjusted cases = 2.9
Crude rate = 0.0469

Adjusted rate = 0.0449
90% conf. interval: [0.0091, 0.0807]
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-> city year = 2 1992
Unadjusted Std.

Pop. Stratum pop.
Stratum Pop. Cases dist. rate dist. s*P

15--19 Black Female 1 0 0.015 0.0000 0.077 0.0000
15--19 Black Male 5 0 0.075 0.0000 0.097 0.0000
15--19 Hispanic Female 3 0 0.045 0.0000 0.011 0.0000
15--19 Hispanic Male 1 0 0.015 0.0000 0.022 0.0000
15--19 White Male 1 0 0.015 0.0000 0.011 0.0000
20--24 Black Female 8 0 0.119 0.0000 0.095 0.0000
20--24 Black Male 11 0 0.164 0.0000 0.147 0.0000
20--24 Hispanic Female 6 0 0.090 0.0000 0.031 0.0000
20--24 Hispanic Male 4 2 0.060 0.5000 0.029 0.0143
20--24 White Female 1 0 0.015 0.0000 0.009 0.0000
20--24 White Male 2 0 0.030 0.0000 0.046 0.0000
25--29 Black Female 2 0 0.030 0.0000 0.037 0.0000
25--29 Black Male 3 0 0.045 0.0000 0.097 0.0000
25--29 Hispanic Female 2 0 0.030 0.0000 0.015 0.0000
25--29 Hispanic Male 4 0 0.060 0.0000 0.029 0.0000
25--29 White Female 4 0 0.060 0.0000 0.020 0.0000
25--29 White Male 2 0 0.030 0.0000 0.035 0.0000
30--34 Black Female 1 0 0.015 0.0000 0.035 0.0000
30--34 Black Male 2 0 0.030 0.0000 0.070 0.0000
30--34 Hispanic Male 1 0 0.015 0.0000 0.007 0.0000
30--34 White Female 2 0 0.030 0.0000 0.011 0.0000
30--34 White Male 1 0 0.015 0.0000 0.051 0.0000

Total: 67 2
Note: s*P is Stratum rate multiplied by Std. pop. dist.

Adjusted cases = 1.0
Crude rate = 0.0299

Adjusted rate = 0.0143
90% conf. interval: [0.0025, 0.0260]

-> city year = 3 1990
Unadjusted Std.

Pop. Stratum pop.
Stratum Pop. Cases dist. rate dist. s*P

15--19 Black Female 3 0 0.043 0.0000 0.077 0.0000
15--19 Black Male 1 0 0.014 0.0000 0.097 0.0000
15--19 Hispanic Female 1 0 0.014 0.0000 0.011 0.0000
15--19 White Female 3 0 0.043 0.0000 0.015 0.0000
15--19 White Male 1 0 0.014 0.0000 0.011 0.0000
20--24 Black Female 1 0 0.014 0.0000 0.095 0.0000
20--24 Black Male 9 0 0.130 0.0000 0.147 0.0000
20--24 Hispanic Male 3 0 0.043 0.0000 0.029 0.0000
20--24 White Female 2 0 0.029 0.0000 0.009 0.0000
20--24 White Male 8 1 0.116 0.1250 0.046 0.0058
25--29 Black Female 1 0 0.014 0.0000 0.037 0.0000
25--29 Black Male 8 3 0.116 0.3750 0.097 0.0363
25--29 Hispanic Male 4 0 0.058 0.0000 0.029 0.0000
25--29 White Female 1 0 0.014 0.0000 0.020 0.0000
25--29 White Male 6 0 0.087 0.0000 0.035 0.0000
30--34 Black Male 6 2 0.087 0.3333 0.070 0.0234
30--34 White Male 11 5 0.159 0.4545 0.051 0.0230

Total: 69 11
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Note: s*P is Stratum rate multiplied by Std. pop. dist.
Adjusted cases = 6.1

Crude rate = 0.1594
Adjusted rate = 0.0885

90% conf. interval: [0.0501, 0.1268]

-> city year = 3 1992
Unadjusted Std.

Pop. Stratum pop.
Stratum Pop. Cases dist. rate dist. s*P

15--19 Black Female 2 0 0.054 0.0000 0.077 0.0000
15--19 Hispanic Male 3 0 0.081 0.0000 0.022 0.0000
15--19 White Female 2 0 0.054 0.0000 0.015 0.0000
15--19 White Male 1 0 0.027 0.0000 0.011 0.0000
20--24 Black Male 3 0 0.081 0.0000 0.147 0.0000
20--24 Hispanic Female 1 0 0.027 0.0000 0.031 0.0000
20--24 Hispanic Male 3 0 0.081 0.0000 0.029 0.0000
20--24 White Female 1 0 0.027 0.0000 0.009 0.0000
20--24 White Male 6 1 0.162 0.1667 0.046 0.0077
25--29 Hispanic Male 1 0 0.027 0.0000 0.029 0.0000
25--29 White Male 5 1 0.135 0.2000 0.035 0.0070
30--34 Black Male 1 0 0.027 0.0000 0.070 0.0000
30--34 White Male 8 5 0.216 0.6250 0.051 0.0316

Total: 37 7
Note: s*P is Stratum rate multiplied by Std. pop. dist.

Adjusted cases = 1.7
Crude rate = 0.1892

Adjusted rate = 0.0463
90% conf. interval: [0.0253, 0.0674]

-> city year = 5 1990
Unadjusted Std.

Pop. Stratum pop.
Stratum Pop. Cases dist. rate dist. s*P

15--19 Black Female 9 0 0.196 0.0000 0.077 0.0000
15--19 Black Male 7 0 0.152 0.0000 0.097 0.0000
15--19 Hispanic Male 1 0 0.022 0.0000 0.022 0.0000
15--19 White Male 1 0 0.022 0.0000 0.011 0.0000
20--24 Black Female 4 0 0.087 0.0000 0.095 0.0000
20--24 Black Male 6 0 0.130 0.0000 0.147 0.0000
20--24 Hispanic Female 1 0 0.022 0.0000 0.031 0.0000
25--29 Black Female 3 1 0.065 0.3333 0.037 0.0125
25--29 Black Male 5 0 0.109 0.0000 0.097 0.0000
25--29 Hispanic Female 1 0 0.022 0.0000 0.015 0.0000
25--29 White Female 2 1 0.043 0.5000 0.020 0.0099
30--34 Black Female 2 0 0.043 0.0000 0.035 0.0000
30--34 Black Male 3 0 0.065 0.0000 0.070 0.0000
30--34 White Male 1 0 0.022 0.0000 0.051 0.0000

Total: 46 2
Note: s*P is Stratum rate multiplied by Std. pop. dist.

Adjusted cases = 1.0
Crude rate = 0.0435

Adjusted rate = 0.0223
90% conf. interval: [0.0020, 0.0426]
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-> city year = 5 1992
Unadjusted Std.

Pop. Stratum pop.
Stratum Pop. Cases dist. rate dist. s*P

15--19 Black Female 6 0 0.087 0.0000 0.077 0.0000
15--19 Black Male 9 0 0.130 0.0000 0.097 0.0000
15--19 Hispanic Female 1 0 0.014 0.0000 0.011 0.0000
15--19 Hispanic Male 2 0 0.029 0.0000 0.022 0.0000
15--19 White Female 2 0 0.029 0.0000 0.015 0.0000
15--19 White Male 1 0 0.014 0.0000 0.011 0.0000
20--24 Black Female 13 0 0.188 0.0000 0.095 0.0000
20--24 Black Male 10 0 0.145 0.0000 0.147 0.0000
20--24 Hispanic Male 1 0 0.014 0.0000 0.029 0.0000
20--24 White Male 3 0 0.043 0.0000 0.046 0.0000
25--29 Black Female 2 0 0.029 0.0000 0.037 0.0000
25--29 Black Male 2 0 0.029 0.0000 0.097 0.0000
25--29 Hispanic Male 3 0 0.043 0.0000 0.029 0.0000
25--29 White Male 1 0 0.014 0.0000 0.035 0.0000
30--34 Black Female 4 0 0.058 0.0000 0.035 0.0000
30--34 Black Male 5 0 0.072 0.0000 0.070 0.0000
30--34 Hispanic Male 2 0 0.029 0.0000 0.007 0.0000
30--34 White Female 1 0 0.014 0.0000 0.011 0.0000
30--34 White Male 1 1 0.014 1.0000 0.051 0.0505

Total: 69 1
Note: s*P is Stratum rate multiplied by Std. pop. dist.

Adjusted cases = 3.5
Crude rate = 0.0145

Adjusted rate = 0.0505
90% conf. interval: [0.0505, 0.0505]

Summary of study populations
city
year N Crude rate Adjusted rate [90% conf. interval]

1
1990 47 0.063830 0.041758 0.007427 0.076089

1
1992 56 0.017857 0.008791 0.000000 0.022579

2
1990 64 0.046875 0.044898 0.009072 0.080724

2
1992 67 0.029851 0.014286 0.002537 0.026035

3
1990 69 0.159420 0.088453 0.050093 0.126813

3
1992 37 0.189189 0.046319 0.025271 0.067366

5
1990 46 0.043478 0.022344 0.002044 0.042644

5
1992 69 0.014493 0.050549 0.050549 0.050549
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Indirect standardization
Standardization of rates can be performed via the indirect method whenever the stratum-specific rates

are either unknown or unreliable. If the stratum-specific rates are known, the direct standardization

method is preferred.

To apply the indirect method, you must have the following information:

• The observed number of cases in each population to be standardized, 𝑂. For example, if deathrates in
two states are being standardized using the US deathrate for the same period, you must know the total

number of deaths in each state.

• The distribution across the various strata for the population being studied, 𝑛1, . . . , 𝑛𝑘. If you are stan-

dardizing the deathrate in the two states, adjusting for age, you must know the number of individuals in

each of the k age groups.

• The stratum-specific rates for the standard population, 𝑝1, . . . , 𝑝𝑘. For example, you must have the US

deathrate for each stratum (age group).

• The crude rate of the standard population, 𝐶. For example, you must have the US mortality rate for the
year.

The indirect adjusted rate is then

𝑅indirect = 𝐶𝑂
𝐸

where 𝐸 is the expected number of cases (deaths) in each population. See Methods and formulas for a

more detailed description of calculations.

Example 3
This example is borrowed from Kahn and Sempos (1989, 95–105). We want to compare 1970 mor-

tality rates in California and Maine, adjusting for age. Although we have age-specific population counts

for the two states, we lack age-specific deathrates. Direct standardization is not feasible here. We can

use the US population census data for the same year to produce indirectly standardized rates for these two

states.

From the US census, the standard population for this example was entered into Stata and saved in

popkahn.dta.

. use https://www.stata-press.com/data/r18/popkahn, clear

. list age pop deaths rate, sep(4)

age population deaths rate

1. <15 57,900,000 103,062 .00178
2. 15--24 35,441,000 45,261 .00128
3. 25--34 24,907,000 39,193 .00157
4. 35--44 23,088,000 72,617 .00315

5. 45--54 23,220,000 169,517 .0073
6. 55--64 18,590,000 308,373 .01659
7. 65--74 12,436,000 445,531 .03583
8. 75+ 7,630,000 736,758 .09656
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The standard population contains for each age stratum the total number of individuals (pop) and both the
age-specific mortality rate (rate) and the number of deaths. The standard population need not contain
all three. If we have only the age-specific mortality rate, we can use the rate(ratevar𝑝 crudevar𝑝) or
rate(ratevar𝑝 #) option, where crudevar𝑝 refers to the variable containing the total population’s crude
deathrate or # is the total population’s crude deathrate.

Now, let’s look at the states’ data (study population):

. use https://www.stata-press.com/data/r18/kahn

. list, sep(4)

state age populat~n death st death_~e

1. California <15 5,524,000 166,285 1 .0016
2. California 15--24 3,558,000 166,285 1 .0013
3. California 25--34 2,677,000 166,285 1 .0015
4. California 35--44 2,359,000 166,285 1 .0028

5. California 45--54 2,330,000 166,285 1 .0067
6. California 55--64 1,704,000 166,285 1 .0154
7. California 65--74 1,105,000 166,285 1 .0328
8. California 75+ 696,000 166,285 1 .0917

9. Maine <15 286,000 11,051 2 .0019
10. Maine 15--24 168,000 . 2 .0011
11. Maine 25--34 110,000 . 2 .0014
12. Maine 35--44 109,000 . 2 .0029

13. Maine 45--54 110,000 . 2 .0069
14. Maine 55--64 94,000 . 2 .0173
15. Maine 65--74 69,000 . 2 .039
16. Maine 75+ 46,000 . 2 .1041

For each state, the number of individuals in each stratum (age group) is contained in the pop variable.
The death variable is the total number of deaths observed in the state during the year. It must have

the same value for all observations in the group, as for California, or it could be missing in all but one

observation per group, as for Maine.

To match these two datasets, the strata variables must have the same name in both datasets and ideally

the same levels. If a level is missing from either dataset, that level will not be included in the standard-

ization.

With kahn.dta in memory, we now execute the command. Wewill use the print option to obtain the
standard population’s summary table, and because we have both the standard population’s age-specific

count and deaths, we will specify the popvars(casevar𝑝 popvar𝑝) option. Or, we could specify the

rate(rate 0.00945) option because we know that 0.00945 is the US crude deathrate for 1970.
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. istdize death pop age using https://www.stata-press.com/data/r18/popkahn,
> by(state) pop(deaths pop) print
Standard population

Stratum Rate

<15 0.00178
15-24 0.00128
25-34 0.00157
35-44 0.00315
45-54 0.00730
55-64 0.01659
65-74 0.03583
75+ 0.09656

Crude rate = 0.00945
Indirect standardization

-> state = California

Standard
population Observed Expected

Stratum rate population cases

<15 0.0018 5,524,000 9,832.72
15--24 0.0013 3,558,000 4,543.85
25--34 0.0016 2,677,000 4,212.46
35--44 0.0031 2,359,000 7,419.59
45--54 0.0073 2,330,000 17,010.10
55--64 0.0166 1,704,000 28,266.14
65--74 0.0358 1,105,000 39,587.63
75+ 0.0966 696,000 67,206.23

Total: 19,953,000 178,078.73
Observed cases = 166,285
SMR (Obs/Exp) = 0.93

SMR exact 95% conf. interval: [0.9293, 0.9383]
Crude rate = 0.0083

Adjusted rate = 0.0088
95% conf. interval: [0.0088, 0.0089]

-> state = Maine

Standard
population Observed Expected

Stratum rate population cases

<15 0.0018 286,000 509.08
15--24 0.0013 168,000 214.55
25--34 0.0016 110,000 173.09
35--44 0.0031 109,000 342.83
45--54 0.0073 110,000 803.05
55--64 0.0166 94,000 1,559.28
65--74 0.0358 69,000 2,471.99
75+ 0.0966 46,000 4,441.79

Total: 992,000 10,515.67
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Observed cases = 11,051
SMR (Obs/Exp) = 1.05

SMR exact 95% conf. interval: [1.0314, 1.0707]
Crude rate = 0.0111

Adjusted rate = 0.0099
95% conf. interval: [0.0097, 0.0101]

Summary of study populations, reporting rates
Observed Adjusted

state cases Crude rate rate [95% conf. interval]

California 166,285 0.008334 0.008824 0.008782 0.008866
Maine 11,051 0.011140 0.009931 0.009747 0.010118

Summary of study populations, reporting SMRs
Observed Expected Exact

state cases cases SMR [95% conf. interval]

California 166,285 178,078.73 0.934 0.929290 0.938271
Maine 11,051 10,515.67 1.051 1.031405 1.070688

Stored results
dstdize stores the following in r():

Scalars

r(k) number of populations

Macros

r(by) variable names specified in by()
r(c#) values of r(by) for #th group

Matrices

r(se) 1×𝑘 vector of standard errors of adjusted rates

r(ub adj) 1×𝑘 vector of upper bounds of confidence intervals for adjusted rates

r(lb adj) 1×𝑘 vector of lower bounds of confidence intervals for adjusted rates

r(Nobs) 1×𝑘 vector of number of observations

r(crude) 1×𝑘 vector of crude rates (*)

r(adj) 1×𝑘 vector of adjusted rates (*)

(*) If, in a group, the number of observations is 0, then 9 is stored for the corresponding crude and adjusted rates.

istdize stores the following in r():

Scalars

r(k) number of populations

Macros

r(by) variable names specified in by()
r(c#) values of r(by) for #th group

Matrices

r(cases obs) 1×𝑘 vector of number of observed cases

r(cases exp) 1×𝑘 vector of number of expected cases

r(ub adj) 1×𝑘 vector of upper bounds of confidence intervals for adjusted rates

r(lb adj) 1×𝑘 vector of lower bounds of confidence intervals for adjusted rates

r(crude) 1×𝑘 vector of crude rates
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r(adj) 1×𝑘 vector of adjusted rates

r(smr) 1×𝑘 vector of SMRs

r(ub smr) 1×𝑘 vector of upper bounds of confidence intervals for SMRs

r(lb smr) 1×𝑘 vector of lower bounds of confidence intervals for SMRs

Methods and formulas
The directly standardized rate, 𝑆R, is defined by

𝑆R =

𝑘
∑
𝑖=1

𝑤𝑖𝑅𝑖

𝑘
∑
𝑖=1

𝑤𝑖

(Rothman 1986, 44), where 𝑅𝑖 is the stratum-specific rate in stratum 𝑖 and 𝑤𝑖 is the weight for stratum

𝑖 derived from the standard population.

If 𝑛𝑖 is the population of stratum 𝑖, the standard error, se(𝑆R), in stratified sampling for proportions
(ignoring the finite population correction) is

se(𝑆R) = 1
∑ 𝑤𝑖

√
𝑘

∑
𝑖=1

𝑤𝑖
2𝑅𝑖(1 − 𝑅𝑖)

𝑛𝑖

(Cochran 1977, 108), from which the confidence intervals are calculated.

For indirect standardization, define 𝑂 as the observed number of cases in each population to be

standardized; 𝑛1, . . . , 𝑛𝑘 as the distribution across the various strata for the population being studied;

𝑅1, . . . , 𝑅𝑘 as the stratum-specific rates for the standard population; and 𝐶 as the crude rate of the stan-

dard population. The expected number of cases (deaths), 𝐸, in each population is obtained by applying
the standard population stratum-specific rates, 𝑅1, . . . , 𝑅𝑘, to the study populations:

𝐸 =
𝑘

∑
𝑖=1

𝑛𝑖𝑅𝑖

The indirectly adjusted rate is then

𝑅indirect = 𝐶𝑂
𝐸

and 𝑂/𝐸 is the study population’s SMR if death is the event of interest or the SIR for studies of disease

(or other) incidence.

The exact confidence interval is calculated for each estimated SMR by assuming a Poisson process as

described in Breslow and Day (1987, 69–71). These intervals are obtained by first calculating the upper

and lower bounds for the confidence interval of the Poisson-distributed observed events, 𝑂—say, L and

U, respectively—and then computing SMR𝐿 = 𝐿/𝐸 and SMR𝑈 = 𝑈/𝐸.
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Description
The dtable command allows you to easily create a table of descriptive (summary) statistics, com-

monly known as “Table 1”. Optionally, you can add 𝑝-values from test statistics comparing groups on

summary statistics. You can also create a table complete with a title, notes, and more, and then export it

to a variety of file types.

Quick start
Create a table describing continuous variables x1 and x2 and factor variables f1 and f2

dtable x1 x2 i.f1 i.f2

Same as above, but report statistics for each level of variable group, with and without the total sample
dtable x1 x2 i.f1 i.f2, by(group)
dtable x1 x2 i.f1 i.f2, by(group, nototals)

Same as above, but test each variable for equality between groups using linear regressions for continuous

variables and Pearson 𝜒2 tests for factor variables

dtable x1 x2 i.f1 i.f2, by(group, tests)

Same as above, but rather than putting sample frequencies in the first row, put them in the column header

under each group label

dtable x1 x2 i.f1 i.f2, by(group, tests) sample(, place(seplabels))

Create a table of the median and interquartile interval for variables x1-x4
dtable, continuous(x1-x4, statistics(q2 iqi)) ///

define(iqi = q1 q3) sformat(”[%s]” iqi)

Same as above, but add the Kruskal–Wallis test for equality between levels of variable group
dtable, continuous(x1-x4, statistics(q2 iqi) test(kwallis)) ///

define(iqi = q1 q3) sformat(”[%s]” iqi) by(group, tests)

Create a table to describe variables using survey weights

dtable x* i.f*, svy

Same as above, but restrict the sample to the subpopulation where group equals 4
dtable x* i.f*, svy subpop(if group==4)

Menu
Statistics > Summaries, tables, and tests > Table of descriptive statistics

595
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Syntax
dtable [ varlist ] [ if ] [ in ] [weight ] [ , options ]

options Description

Main

by(varname[ , by opts ]) group results by categories of varname

column(col opts) change column header styles and titles

Survey

svy use survey settings

subpop([ varname ][ if ]) identify a survey subpopulation

Sample

nosample suppress sample frequency statistics

sample([ title ][ , samp opts ]) select sample frequency statistics

Continuous

continuous([ varlist𝑐 ][ , cont opts ]) select continuous variable statistics

Factors

factor([ varlist𝑓 ][ , fact opts ]) select factor-variable statistics

Composite

define(name = elements[ , def opts ]) define a composite result

Formats

nformat(% fmt [ results ][ , basestyle ]) specify numeric format

sformat(sfmt [ results ]) specify string format

Title

title(string) add table title

titlestyles(text styles) change table title styles

Notes

note(string) add table note

notestyles(text styles) change table note styles

Export

export( filename.suffix[ , export opts ]) export table

Options

[ no ]varlabel display or suppress variable names or labels

[ no ]fvlabel display or suppress factor values or labels

[ no ]listwise specify how to handle missing values

halign(hvalue) specify horizontal alignment of item cells

name(cname) work with collection cname; default is name(DTable)
replace replace the collection

label( filename) specify the collection labels

style( filename[ , override ]) specify the collection style

warn show collect warnings

warn does not appear in the dialog box.
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by opts Description

[ no ]tests show or suppress tests across groups

[ no ]testnotes show or suppress notes about tests across groups

[ no ]totals show or suppress statistics for the total sample

[ no ]missing show or suppress numeric missing values in varname

col opts Description

summary([ title ][ , hcol opts ]) change header styles for the summary column

by([ by style ][ , by hcol opts ]) change header styles for the by() variable columns;
by style may be label, name, or hide

test([ title ][ , hcol opts ]) change header styles for the test column

total([ title ][ , hcol opts ]) change header styles for the total sample column

hcol opts Description

[ no ]hide show or hide the column header title

halign(hvalue) specify horizontal alignment of column header cells

text styles change column header text styles

nohide and hide do not appear in the dialog box for summary().

by hcol opts Description

[ no ]fvlabel display by() variable values or value labels
halign(hvalue) specify horizontal alignment of column header cells

text styles change column header text styles

text styles Description

font([ fontfamily ][ , font opts ]) specify font style

smcl(smcl) specify formatting for SMCL files

latex(latex) specify LATEX macro

shading(sspec) set background color, foreground color, and fill pattern

font opts Description

size(# [ unit ]) specify font size

color(color) specify font color

variant(variant) specify font variant and capitalization

[ no ]bold specify whether to format text as bold

[ no ]italic specify whether to format text as italic

[ no ]strikeout specify whether to strike out text

[ no ]underline specify whether to underline text

underline(upattern) specify underline pattern for text
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samp opts Description

statistics(nstats) select sample frequency statistics

place(place) select location for sample frequency statistics; place may be

items, inlabels, or seplabels
text styles change row header text styles

cont opts Description

statistics(cstats) select continuous variable statistics

test(ctest) select continuous variable test

text styles change row header text styles

fact opts Description

statistics(fstats) select factor-variable statistics

test(ftest) select factor-variable test

text styles change row header text styles

def opts Description

delimiter(char) use character as delimiter between elements

[ no ]trim preserve or trim extra spaces from numeric formats

[ no ]override preserve or override trim property of elements

replace redefine name if it already exists

suffix fileformat Output format

docx as(docx) Microsoft Word

html as(html) HTML 5 with CSS

pdf as(pdf) PDF

xlsx as(xlsx) Microsoft Excel 2007/2010 or newer

xls as(xls) Microsoft Excel 1997/2003

tex as(latex) LATEX

smcl as(smcl) SMCL

txt as(txt) plain text

markdown as(markdown) Markdown

md as(markdown) Markdown
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export opts Description

as(fileformat) specify document type

replace overwrite existing file

docx options available when exporting to .docx files
html options available when exporting to .html files
pdf options available when exporting to .pdf files
excel options available when exporting to .xls and .xlsx files
tex options available when exporting to .tex files
smcl option available when exporting to .smcl files
txt option available when exporting to .txt files
md option available when exporting to .markdown and .md files

docx options Description

noisily show the putdocx commands used to export to the Microsoft
Word file

dofile(filename[ , replace ]) save the putdocx commands used for exporting to the named
do-file

html options Description

append append to an existing file

tableonly export only the table to the specified file

cssfile(cssfile) define the styles in cssfile instead of filename

prefix(prefix) use prefix to identify style classes

pdf options Description

noisily show the putpdf commands used to export to the PDF file
dofile(filename[, replace ]) save the putpdf commands used for exporting to the named

do-file

excel options Description

noisily show the putexcel commands used to export to the Excel file
dofile(filename[ , replace ]) save the putexcel commands used for exporting to the named

do-file

sheet(sheetname[ , replace ]) specify the worksheet to use; the default sheet name
is Sheet1

cell(cell) specify the Excel upper-left cell as the starting position to
export the table; the default is cell(A1)

modify modify Excel file

noopen do not open Excel file in memory

noopen does not appear in the dialog box.
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tex options Description

append append to an existing file

tableonly export only the table to the specified file

smcl option Description

append append to an existing file

txt option Description

append append to an existing file

md option Description

append append to an existing file

varlistmay contain i. notation, including level selection. Time-series operators and interactions are not
allowed.

fweights, aweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.

results is a list of names taken from nstats, cstats, ctest, fstats, ftest, and composite results.

hvalue may be left, center, or right.

fontfamily specifies a valid font family.

unit may be in (inch), pt (point), or cm (centimeter). An inch is equivalent to 72 points and 2.54 cen-
timeters. The default is pt.

variant may be allcaps, smallcaps, or normal.

variant(allcaps) changes the text to all uppercase letters; applicable when publishing items from
a collection to Microsoft Word, PDF, LATEX, and HTML files.

variant(smallcaps) changes the text to use large capitals for uppercase letters and smaller capitals
for lowercase letters; applicable when publishing items from a collection toMicrosoftWord, LATEX,

and HTML files.

variant(normal) changes the font variant back to normal and leaves the capitalization unchanged
from the original text; applicable when publishing items from a collection to MicrosoftWord, PDF,

LATEX, and HTML files.

upattern may be any of the patterns listed in the Appendix. For example, underline(none) removes
the underline from the text, and underline(single) underlines the text. All other upatterns are

available only when publishing items from a collection to Microsoft Word.

smcl specifies the name of the SMCL directive to render text for SMCL output. The supported SMCL

directives are input, error, result, and text.

latex specifies the name of a LATEX macro to render text for LATEX output. Example LATEX macro names

are textbf, textsf, textrm, and texttt. Custom LATEX macros are also allowed. If text is to be

rendered in a cell, title, or note, then latex is translated to the following when you export to LATEX:

\latex {text}
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sspec is

[ background(bgcolor) foreground(fgcolor) pattern(fpattern) ]
bgcolor specifies the background color.

fgcolor specifies the foreground color.

fpattern specifies the fill pattern. A complete list of fill patterns is shown in the Appendix.

bgcolor, fgcolor, and color may be one of the colors listed in the Appendix; a valid RGB value in the

form ### ### ###, for example, 171 248 103; or a valid RRGGBB hex value in the form ######, for

example, ABF867.

sfmt is the specification for a string format in option sformat() and may contain a mix of text and %s.
Here %s refers to the statistic value that is formatted as specified using nformat(). The text will be
placed around the statistic as it is placed around %s in this option. For instance, to place parentheses
around the statistic, you can specify sformat(”(%s)”).

Two text characters must be specified using a special character sequence if you want them to be

displayed in your collection. To include %, type %%. To include \, type \\. For instance, to place a
percent sign after a statistic, you can specify sformat(”%s%%”).

Options

� � �
Main �

by(varname[ , by opts ]) specifies that the statistics be displayed separately for each unique value of
varname; varname may be numeric or string.

by opts are the following:

tests and notests specify whether to show the tests comparing groups. tests displays the tests
comparing groups; notests suppresses them.

When tests is combined with the missing suboption, the test will be performed with the

missing values composing an additional group. By default, missing values are excluded from

tests.

testnotes and notestnotes specify whether to show a note detailing each test comparing

groups. testnotes displays the notes; notestnotes suppresses them.

totals and nototals specify whether to show the statistics for the total sample. totals displays
the statistics for the total sample; nototals suppresses them.

missing and nomissing specify whether to show numeric missing values in varname. missing
displays the numeric missing values; nomissing suppresses them.

When missing is combined with the tests suboption, missing values will also be included in
the test performed. By default, missing values are excluded from tests.
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column(col opts) specifies the column header styles and titles. col opts are one or more of the follow-
ing.

summary([ title ][ , [ no ]hide halign(hvalue) text styles ]) specifies the column header and styles
when global option by() is not specified. The default title is Summary.

hide and nohide specify whether to show the title. hide suppresses the title; nohide displays
the title.

halign(hvalue) specifies how the column header cell is horizontally aligned. hvalue may be

left, center, or right.

text styles affect the text styles for the column header.

by([ by style ][ , [ no ]fvlabel halign(hvalue) text styles ]) specifies the by() variable’s column
header and styles.

by style specifies the column header style for the by() variable. by style may be label, name,
or hide.

label specifies that the by() variable’s label be used. If the by() variable does not have a

label, then the name is used.

name specifies that the by() variable’s name be used.

hide specifies that the by() variable not be shown in the column header.

fvlabel and nofvlabel specify whether value labels for the levels of the by() variable should
be displayed. fvlabel displays the value labels; nofvlabel displays the values.

halign(hvalue) specifies how the column header cells are horizontally aligned. hvalue may be

left, center, or right.

text styles affect the text styles for the column header.

test([ title ][ , [ no ]hide halign(hvalue) text styles ]) specifies the column header and text styles
for the test column. The default title is Test.

hide and nohide specify whether to show the title for the test column. hide suppresses the title;
nohide displays the title.

halign(hvalue) specifies how the test column header cell is horizontally aligned. hvalue may

be left, center, or right.

text styles affect the text styles for the test column header.

total([ title ][ , [ no ]hide halign(hvalue) text styles ]) specifies the column header and text

styles for the total sample. The default title is Total.

hide and nohide specify whether to show the title for the total sample. hide suppresses the title;
nohide displays the title.

halign(hvalue) specifies how the total sample column header cell is horizontally aligned. hvalue

may be left, center, or right.

text styles affect the text styles for the total sample column header.
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text styles are font([ fontfamily ][ , font opts ]), smcl(smcl), latex(latex), and shading(sspec).
font([ fontfamily ] [ , size(# [ unit ]) color(color) variant(variant) [ no ]bold

[ no ]italic [ no ]strikeout [ no ]underline underline(upattern) ]) specifies the font style.
These font style properties are applicable when exporting the table to Microsoft Word, Microsoft

Excel, PDF, HTML, and LATEX files, unless otherwise specified.

fontfamily specifies a valid font family. This font style property is applicable when publishing

items from a collection to Microsoft Word, Microsoft Excel, PDF, and HTML files.

size(# [ unit ]) specifies the font size as a number optionally followed by units. This font style
property is applicable when publishing items from a collection to Microsoft Word, Microsoft

Excel, PDF, and HTML files.

color(color) specifies the text color.

variant(variant) specifies the font variant and capitalization.

bold and nobold specify the font weight. bold changes the font weight to bold; nobold changes
the font weight back to normal.

italic and noitalic specify the font style. italic changes the font style to italic; noitalic
changes the font style back to normal.

strikeout and nostrikeout specify whether to add a strikeout mark to the text. strikeout
adds a strikeout mark to the text; nostrikeout changes the text back to normal.

underline(upattern), underline, and nounderline specify how to underline the text.

Only one of strikeout or underline is allowed when publishing to HTML files.

smcl(smcl) specifies how to render the text for SMCL output. This style property is applicable only

when publishing items from a collection to a SMCL file.

latex(latex) specifies how to render the text for LATEX output. This style property is applicable only

when publishing items from a collection to a LATEX file.

shading(sspec) sets the background color, foreground color, and fill pattern. The background color
is applicable when exporting the table to Microsoft Word, Microsoft Excel, PDF, HTML, and LATEX

files. The foreground color and fill pattern are applicable when exporting the table to Microsoft

Word and Microsoft Excel.

� � �
Survey �

svy specifies that dtable use the survey design information from svyset. This means all statistics will
be computed using the specified survey weights, where applicable. This option changes the list of

supported tests in continuous() and factor().

subpop([ varname ] [ if ]) specifies that estimates be computed for the single subpopulation identi-

fied by the observations for which varname ≠ 0 and that also meet the if conditions. Typically,

varname = 1 defines the subpopulation, and varname = 0 indicates observations not belonging to

the subpopulation. For observations whose subpopulation status is uncertain, varname should be set

to a missing value; such observations are dropped from the estimation sample. This option implies

the svy option.

See [SVY] Subpopulation estimation for more information.
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� � �
Sample �

nosample and sample() control the display of sample frequency statistics.

nosample prevents reporting any sample frequency statistic.

sample([ title ][ , statistics(nstats) place(place) text styles ]) specifies sample frequency

statistics, their row header title, and how they are composed in the table.

title specifies the row header for the sample frequency statistics. The default title is N.

statistics(nstats) specifies the sample frequency statistics to report.

nstats may include the following sample frequency statistics and any composite result defined

from them.

nstats Definition

frequency frequency

sumw sum of weights

percent percentage

proportion proportion

rawpercent unweighted percentage

rawproportion unweighted proportion

Without weights, the default sample frequency statistic is frequency.

With weights, the default sample frequency statistic is sumw.

With option by(), percent is added to the default sample frequency statistic.

place(place) controls where the sample frequency statistics are reported in the table.

place(items), the default, specifies that the sample frequency statistics be reported in the first
row of items in the table.

place(inlabels) specifies that the sample frequency statistics be added to the column header
labels.

place(seplabels) specifies that the sample frequency statistics be stacked in the column

header as separate labels.

text styles specifies the text styles for title.
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� � �
Continuous �

continuous([ varlist𝑐 ][ , statistics(cstats) test(ctest) text styles ]) specifies continuous vari-

ables, their row header text styles, their statistics, and their test. If varlist𝑐 is not specified, then

the specified text styles, statistics, and test become the default for all continuous variables in varlist.

This option is repeatable, and when multiple text styles, statistics, or tests apply to a variable, the

rightmost specification is applied.

statistics(cstats) specifies the statistics to report for varlist𝑐.

cstats may contain the following continuous variable statistics and any composite result defined

from them.

cstats Description

mean mean

semean standard error of the mean

sebinomial standard error of the mean, binomial

sepoisson standard error of the mean, Poisson

variance variance

sd standard deviation

skewness skewness

kurtosis kurtosis

cv coefficient of variation

svycv coefficient of variation (svy)

geomean geometric mean

geosd geometric standard deviation

count number of nonmissing values

median median

p# #th percentile

q1 first quartile

q2 second quartile

q3 third quartile

iqr interquartile range

min minimum value

max maximum value

range range

first first value

last last value

firstnm first nonmissing value

lastnm last nonmissing value

total total

rawtotal unweighted total

The default continuous variable statistics are mean and sd.
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test(ctest) specifies that ctest be computed for the continuous variables in varlist𝑐. This option has
no effect if the by() option is not specified.

ctest is one of the following:

ctest Description

regress main effects test from a linear regression

poisson main effects test from a Poisson regression

lnormal main effects test from a log-normal regression

kwallis Kruskal–Wallis rank test

kwallis ties Kruskal–Wallis rank test, adjusted for ties

none suppress the test

kwallis and kwallis ties are not allowed with weights or the svy option.

The default test for continuous variables is regress.

For nonsurvey data, regress is equivalent to a one-way ANOVA, and when the by() variable has
two levels, regress is equivalent to a pooled 𝑡 test.

text styles specifies the row header text styles for varlist𝑐.

� � �
Factors �

factor([ varlist𝑓 ][ , statistics(fstats) test(ftest) text styles ]) specifies factor variables, their

row header text styles, their statistics, and their test. If varlist𝑓 is not specified, then the specified

text styles, statistics, and test become the default for all factor variables in varlist.

This option is repeatable, and when multiple text styles, statistics, or tests apply to a variable, the

rightmost specification is applied.

statistics(fstats) specifies the statistics to report for varlist𝑓.

fstats may contain the following factor-variable statistics and any composite result defined from

them.

fstats Definition

fvfrequency frequency of each factor-variable level

fvpercent percentage within each factor-variable level

fvproportion proportion within each factor-variable level

fvrawfrequency unweighted frequency of each factor-variable level

fvrawpercent unweighted percentage within each factor-variable level

fvrawproportion unweighted proportion within each factor-variable level

The default factor-variable statistics are fvfrequency and fvpercent.
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test(ftest) specifies that ftest be computed for the factor variables in varlist𝑓. This option has no
effect if the by() option is not specified.

ftest is one of the following:

ftest Description

pearson Pearson’s 𝜒2 test

fisher Fisher’s exact test

lrchi2 likelihood-ratio 𝜒2 test

gamma Goodman and Kruskal’s gamma

kendall Kendall’s 𝜏𝑏
cramer Cramér’s 𝑉

svylr survey-adjusted likelihood-ratio test

svywald survey-adjusted Wald test

svyllwald survey-adjusted log-linear Wald test

none suppress the test

fisher, lrchi2, gamma, kendall, and cramer are not allowed with aweights, iweights,
pweights, or the svy option. pearson is ignored when aweights, iweights, or pweights are
specified.

svylr, svywald, and svyllwald are allowed only with the svy option.

The default test for factor variables is pearson. No test is computed when aweights, iweights,
or pweights are specified with the default pearson.

text styles specifies the row header text styles for varlist𝑓.

� � �
Composite �

define(name=elements[ , def opts ]) defines a composite result. Composite results give more control
over how statistics are composed and formatted in a table cell.

name is the name you choose for the new composite result.

elements is a list of statistics and other composite results.

def opts are delimiter(char), [ no ]trim, [ no ]override, and replace.
delimiter(char) changes the delimiter between elements. The default is delimiter(” ”).

notrim and trim control the handling of extra spaces caused by numeric formats applied to the
elements. notrim preserves the extra spaces; trim, the default, removes the extra spaces.

nooverride and override control handling of the trim property when an element is a composite

result. nooverride, the default, does not change the trim property of elements; override
applies the specified trim property to all elements.

replace permits you to redefine name if it already exists.
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� � �
Formats �

nformat(% fmt [ results ][ , basestyle ]) changes the numeric format, such as the number of decimal
places, for specified results. If results are not specified, the numeric format is changed for all results.

results is a list of names taken from nstats, cstats, ctest, fstats, ftest, and composite results.

This option is repeatable, and when multiple formats apply to one result, the rightmost specification

is applied.

This option does not affect the format of factor variables specified in varlist or the factor() option.
The default format of these variables is taken from the dataset.

basestyle indicates that the format be applied to results that do not already have their own format
instead of overriding the format for all results.

sformat(sfmt [ results ]) changes the string format for specified results. You can, for instance, add

symbols or text to the values reported in the table by modifying the string format.

sfmt may contain a mix of text and %s. Here %s refers to the numeric value that is formatted as

specified using nformat(). The text will be placed around the numeric values in your table as it is
placed around %s in this option. For instance, to place parentheses around the percent statistics, you
can specify sformat(”(%s)” fvpercent percent).

results is a list of names taken from nstats, cstats, ctest, fstats, ftest, and composite results.

Two text characters must be specified using a special character sequence if you want them to be

displayed in your table. To include %, type %%. To include \, type \\. For instance, to place a percent
sign following percent statistics, you can specify sformat(”%s%%” fvpercent percent).

This option is repeatable, and when multiple formats apply to one result, the rightmost specification

is applied.

� � �
Title �

title(string) adds the text string as a title to the table.

titlestyles(text styles) changes the style for the table title. text styles are the following:

font([ fontfamily ] [ , size(# [ unit ]) color(color) variant(variant) [ no ]bold
[ no ]italic [ no ]strikeout [ no ]underline ]) specifies the font style. These font style prop-
erties are applicable when exporting the table to Microsoft Word, Microsoft Excel, PDF, HTML,

and LATEX files, unless otherwise specified.

fontfamily specifies a valid font family. This font style property is applicable when publishing

items from a collection to Microsoft Word, Microsoft Excel, PDF, and HTML files.

size(# [ unit ]) specifies the font size as a number optionally followed by units. This font style
property is applicable when publishing items from a collection to Microsoft Word, Microsoft

Excel, PDF, and HTML files.

color(color) specifies the text color.

variant(variant) specifies the font variant and capitalization.

bold and nobold specify the font weight. bold changes the font weight to bold; nobold changes
the font weight back to normal.
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italic and noitalic specify the font style. italic changes the font style to italic; noitalic
changes the font style back to normal.

strikeout and nostrikeout specify whether to add a strikeout mark to the title. strikeout
adds a strikeout mark to the title; nostrikeout changes the title back to normal.

underline and nounderline specify whether to underline the table title. underline adds a

single line under the title; nounderline removes the underline.

Only one of strikeout or underline is allowed when publishing to HTML files.

smcl(smcl) specifies how to render the table title for SMCL output. This style property is applicable

only when publishing items from a collection to a SMCL file.

latex(latex) specifies how to render the table title for LATEX output. This style property is applicable

only when publishing items from a collection to a LATEX file.

shading(sspec) sets the background color, foreground color, and fill pattern. The background color
is applicable when exporting the table to Microsoft Word, Microsoft Excel, PDF, HTML, and LATEX

files. The foreground color and fill pattern are applicable when exporting the table to Microsoft

Word and Microsoft Excel.

� � �
Notes �

note(string) adds the text string as a note to the table. note() may be specified multiple times to add
multiple notes. Each note is placed on a new line.

notestyles(text styles) changes the style for the table notes. text styles are the following:

font([ fontfamily ] [ , size(# [ unit ]) color(color) variant(variant) [ no ]bold
[ no ]italic [ no ]strikeout [ no ]underline ]) specifies the font style. These font style prop-
erties are applicable when exporting the table to Microsoft Word, Microsoft Excel, PDF, HTML,

and LATEX files, unless otherwise specified.

fontfamily specifies a valid font family. This font style property is applicable when publishing

items from a collection to Microsoft Word, Microsoft Excel, PDF, and HTML files.

size(# [ unit ]) specifies the font size as a number optionally followed by units. This font style
property is applicable when publishing items from a collection to Microsoft Word, Microsoft

Excel, PDF, and HTML files.

color(color) specifies the text color.

variant(variant) specifies the font variant and capitalization.

bold and nobold specify the font weight. bold changes the font weight to bold; nobold changes
the font weight back to normal.

italic and noitalic specify the font style. italic changes the font style to italic; noitalic
changes the font style back to normal.

strikeout and nostrikeout specify whether to add a strikeout mark to the notes. strikeout
adds a strikeout mark to the note; nostrikeout changes the note back to normal.

underline and nounderline specify whether to underline the table notes. underline adds a
single line under the notes; nounderline removes the underline.

Only one of strikeout or underline is allowed when publishing to HTML files.

smcl(smcl) specifies how to render the table notes for SMCL output. This style property is applicable

only when publishing items from a collection to a SMCL file.
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latex(latex) specifies how to render the table notes for LATEXoutput. This style property is applicable

only when publishing items from a collection to a LATEX file.

shading(sspec) sets the background color, foreground color, and fill pattern. The background color
is applicable when exporting the table to Microsoft Word, Microsoft Excel, PDF, HTML, and LATEX

files. The foreground color and fill pattern are applicable when exporting the table to Microsoft

Word and Microsoft Excel.

� � �
Export �

export(filename.suffix[ , export opts ]) exports the table to the specified file. export opts are the

following:

as(fileformat) specifies the file format to which the table is to be exported. This option is rarely spec-
ified because, by default, dtable determines the format from the suffix of the file being created.

replace permits dtable to overwrite an existing file.

noisily specifies that dtable show the commands used to export the table to Microsoft Word,

Microsoft Excel, and PDF files. The putdocx, putexcel, or putpdf command used to export

the table will be displayed.

dofile(filename[ , replace ]) specifies that dtable save to filename the commands used to export
the table to Microsoft Word, Microsoft Excel, and PDF files.

If filename already exists, it can be overwritten by specifying replace. If filename is specified
without an extension, .do is assumed.

append specifies that dtable append the table to an existing file.

This option is applicable when you export the table to an HTML, a LATEX, a SMCL, a txt, or a Mark-

down file. When you export to HTML and LATEX files, the append option implies the tableonly
option. Furthermore, when you export to HTML files, if the target CSS file already exists, dtable
will also append to it.

tableonly specifies that only the table be exported to the specified HTML or LATEX document. By

default, dtable produces complete HTML and LATEX documents.

When you export to an HTML file, if the cssfile() option is not specified, a CSS filename is

constructed from filename, with the extension replaced with .css.

cssfile(cssfile) specifies that dtable define the styles in cssfile instead of filename when you

export to HTML.

prefix(prefix) specifies that dtable use prefix to identify style classes when you export to HTML.

sheet(sheetname [ , replace ]) saves to the worksheet named sheetname. For more information
about this option, see [RPT] putexcel.

cell(cell) specifies an Excel upper-left cell as the starting position to publish the table. The default
is cell(A1).
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modify permits putexcel set to modify an Excel file. For more information about this option, see
[RPT] putexcel.

noopen prevents putexcel from opening the Excel file in memory for modification. It does not

appear in the dialog box. For more information about this option, see [RPT] putexcel.

� � �
Options �

varlabel and novarlabel specify whether variable labels for the continuous and factor variables

should be displayed. varlabel displays the variable label; novarlabel displays variable names.

fvlabel and nofvlabel specify whether value labels for the factor variables should be displayed.

fvlabel displays value labels; nofvlabel displays the values.

listwise and nolistwise specify how to handle missing values across the continuous and factor vari-

ables. listwise handles missing values through listwise deletion, meaning that the entire observa-
tion is omitted from the sample if any continuous or factor variable is missing for that observation;

nolistwise specifies that dtable omit an observation only if all the continuous and factor variables
are missing for that observation.

halign(hvalue) specifies how the item cells are horizontally aligned. hvalue may be left, center, or
right.

name(cname) specifies the collection for dtable to work with. The default is name(DTable).

replace permits dtable to overwrite the existing collection. This option is implied for name(DTable).

label(filename) specifies the filename containing the collection labels to use for your table. Labels in
filename will be loaded for the table, and default labels will be used for any labels not specified in

filename.

style(filename[ , override ]) specifies the filename containing the collection styles to use for your
table. This might be a style you saved with collect style save or a predefined style shipped with
Stata. The dtable collection styles will be discarded, and only the collection styles in filename will
be applied. Note that the layout specification saved in filename will not be applied; dtable will

always use its predefined layout.

If you prefer the dtable collection styles but also want to apply any styles in filename, specify

override. If there are conflicts between the default collection styles and those in filename, the ones
in filename will take precedence.

The default is to use only the collection styles set in c(dtable style); see [TABLES] set

dtable style.

The following option is available with dtable but is not shown in the dialog box:

warn specifies that dtable display warnings from collect. By default, these warnings are suppressed.



dtable — Create a table of descriptive statistics 612

Remarks and examples
Remarks are presented under the following headings:

Introduction
A first example
Describe variables across groups
Survey data
Save your style choices for next time
Composite results
The default style

Introduction
dtable allows you to easily create a table of summary statistics and export it to a variety of file types,

without any knowledge of the collection system. You can specify the continuous and factor variables that

you want described in your table. You can also customize the table by formatting the results, changing the

variable-specific statistics, adding a variable to identify sample groups, testing each variable for equality

between groups, adding a title and notes, and more.

In most cases, you will use dtable to easily create a table and export it to another format. However,
you can customize the table beyond the options that are available with dtable. When you issue a dtable
command, the results are stored in a collection called DTable. This collection is replaced with each new
dtable command, unless you specify a different name for the collection in the name() option. You can
make additional changes to the collection with the collect suite of commands. To learn more about the
collect commands, see [TABLES] Intro and the entries discussed therein.

See Mitchell (2025, chap. 3) for further examples.

A first example
In its simplest specification, you type dtable and a list of variables you want described in your

table. We will use data from the Second National Health and Nutrition Examination Survey (NHANES

II) (McDowell et al. 1981). Our table describes continuous variables for systolic blood pressure, age,

weight, and factor variables for race and health status.

. use https://www.stata-press.com/data/r18/nhanes2l
(Second National Health and Nutrition Examination Survey)
. dtable bpsystol age weight i.race i.hlthstat

Summary

N 10,351
Systolic blood pressure 130.882 (23.333)
Age (years) 47.580 (17.215)
Weight (kg) 71.898 (15.356)
Race
White 9,065 (87.6%)
Black 1,086 (10.5%)
Other 200 (1.9%)

Health status
Excellent 2,407 (23.3%)
Very good 2,591 (25.1%)
Good 2,938 (28.4%)
Fair 1,670 (16.2%)
Poor 729 (7.1%)
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The default continuous variable statistics are the mean and standard deviation. The default factor-

variable statistics are the factor-level frequencies and percentages. You can change the statistics reported

for each continuous and factor variable; see the continuous() and factor() options for the list of

supported statistics.

Many options are available to change the formatting and style of your table. Here we set the format

of means and standard deviations to show two decimal places, remove the first row of the table with the

overall sample size, and change the column header to be more descriptive of the table results.

. dtable bpsystol age weight i.race i.hlthstat, nformat(%16.2fc mean sd)
> nosample column(summary(M(SD) / n(%)))

M(SD) / n(%)

Systolic blood pressure 130.88 (23.33)
Age (years) 47.58 (17.21)
Weight (kg) 71.90 (15.36)
Race
White 9,065 (87.6%)
Black 1,086 (10.5%)
Other 200 (1.9%)

Health status
Excellent 2,407 (23.3%)
Very good 2,591 (25.1%)
Good 2,938 (28.4%)
Fair 1,670 (16.2%)
Poor 729 (7.1%)

Additionally, you can complete your table with a title and notes and even export it to another format.

We now add a title and export our table to the file mydtable.html.

. dtable bpsystol age weight i.race i.hlthstat, nformat(%16.2fc mean sd)
> nosample column(summary(M(SD) / n(%))) title(Table 1)
> export(mydtable.html)
Table 1

M(SD) / n(%)

Systolic blood pressure 130.88 (23.33)
Age (years) 47.58 (17.21)
Weight (kg) 71.90 (15.36)
Race
White 9,065 (87.6%)
Black 1,086 (10.5%)
Other 200 (1.9%)

Health status
Excellent 2,407 (23.3%)
Very good 2,591 (25.1%)
Good 2,938 (28.4%)
Fair 1,670 (16.2%)
Poor 729 (7.1%)

(collection DTable exported to file mydtable.html)

We could also export this table to a Microsoft Word, Microsoft Excel, LATEX, Markdown, SMCL, PDF,

or plain-text file by specifying the appropriate file extension.
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Describe variables across groups
Describing variables across samples in your dataset is easy with the by() option. In the following,

we revisit our original table, but we add the by() option to get summary statistics from the urban, rural,

and total samples.

. dtable bpsystol age weight i.race i.hlthstat, by(rural) sample(N (%))

Rural
Urban Rural Total

N (%) 6,548 (63.3%) 3,803 (36.7%) 10,351 (100.0%)
Systolic blood pressure 130.460 (23.526) 131.607 (22.980) 130.882 (23.333)
Age (years) 46.835 (17.484) 48.862 (16.666) 47.580 (17.215)
Weight (kg) 71.427 (15.363) 72.708 (15.314) 71.898 (15.356)
Race
White 5,419 (82.8%) 3,646 (95.9%) 9,065 (87.6%)
Black 968 (14.8%) 118 (3.1%) 1,086 (10.5%)
Other 161 (2.5%) 39 (1.0%) 200 (1.9%)

Health status
Excellent 1,609 (24.6%) 798 (21.0%) 2,407 (23.3%)
Very good 1,713 (26.2%) 878 (23.1%) 2,591 (25.1%)
Good 1,878 (28.7%) 1,060 (27.9%) 2,938 (28.4%)
Fair 950 (14.5%) 720 (19.0%) 1,670 (16.2%)
Poor 389 (5.9%) 340 (9.0%) 729 (7.1%)

Next, we add the tests suboption in the by() option to report tests of equality between samples and
the nototals option to suppress the column of statistics from the total sample. We also specify that

we would like sample statistics to be in the column headers rather than the first row of the table using

the sample() option. Here we also add the column(by(hide)) option to suppress the redundant label
from variable rural and add notes that detail what is being reported.
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. dtable bpsystol age weight i.race i.hlthstat,
> by(rural, nototals tests)
> column(by(hide))
> sample(, place(seplabels))
> note(Mean (Standard deviation): p-value from a pooled t-test.)
> note(Frequency (Percent%): p-value from Pearson test.)
note: using test regress across levels of rural for bpsystol, age, and

weight.
note: using test pearson across levels of rural for race and hlthstat.

Urban Rural Test
6,548 (63.3%) 3,803 (36.7%)

Systolic blood pressure 130.460 (23.526) 131.607 (22.980) 0.016
Age (years) 46.835 (17.484) 48.862 (16.666) <0.001
Weight (kg) 71.427 (15.363) 72.708 (15.314) <0.001
Race
White 5,419 (82.8%) 3,646 (95.9%) <0.001
Black 968 (14.8%) 118 (3.1%)
Other 161 (2.5%) 39 (1.0%)

Health status
Excellent 1,609 (24.6%) 798 (21.0%) <0.001
Very good 1,713 (26.2%) 878 (23.1%)
Good 1,878 (28.7%) 1,060 (27.9%)
Fair 950 (14.5%) 720 (19.0%)
Poor 389 (5.9%) 340 (9.0%)

Mean (Standard deviation): p-value from a pooled t-test.
Frequency (Percent%): p-value from Pearson test.

For continuous variables, the Test column reports the 𝑝-value from linear regressions, which are

equivalent to pooled 𝑡 tests because rural has two categories. For factor variables, the Test column
reports the 𝑝-values from Pearson 𝜒2 tests.

Survey data
dtable supports survey data by using the survey data characteristics in your dataset when you specify

the svy option. Your data must be svyset prior to calling dtable with the svy option. Our data already
have survey data characteristics.

. svyset
Sampling weights: finalwgt

VCE: linearized
Single unit: missing

Strata 1: strata
Sampling unit 1: psu

FPC 1: <zero>

The following table reports the survey weighted frequency, mean, standard deviation, factor-level

frequency, and factor-level percent of the specified variables.
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. dtable bpsystol age weight i.race i.hlthstat, svy

Summary

N 117,157,513
Systolic blood pressure 126.946 (21.401)
Age (years) 42.253 (15.502)
Weight (kg) 71.901 (15.433)
Race
White 102,999,549 (87.9%)
Black 11,189,236 (9.6%)
Other 2,968,728 (2.5%)

Health status
Excellent 32,187,335 (27.5%)
Very good 32,176,310 (27.5%)
Good 32,715,395 (28.0%)
Fair 14,380,261 (12.3%)
Poor 5,537,956 (4.7%)

Option by() is allowedwith svy. dtable also has options for tests of equality between groups that are
allowed with svy. These tests account for the survey data characteristics in your data. In the following,
we revisit the urban and rural summary table, but we add the svy option, a title, and some notes. We

also add the column(by(hide)) option to suppress the redundant label from variable rural and add
the test() suboption to rename the Test column.

. dtable bpsystol age weight i.race i.hlthstat, svy
> by(rural, nototals tests)
> column(by(hide) test(p-value))
> title(Survey data summary)
> note(Mean (Standard deviation): p-value from linear regression.)
> note(Frequency (Percent%): p-value from Pearson test.)
> note(Statistics computed using the survey weights.)
> note(Tests adjusted for the survey design.)
note: using test regress across levels of rural for bpsystol, age, and

weight.
note: using test pearson across levels of rural for race and hlthstat.
Survey data summary

Urban Rural p-value

N 79,965,794 (68.3%) 37,191,719 (31.7%)
Systolic blood pressure 126.607 (21.438) 127.675 (21.305) 0.406
Age (years) 41.805 (15.662) 43.215 (15.112) 0.024
Weight (kg) 71.322 (15.371) 73.144 (15.493) <0.001
Race
White 67,579,394 (84.5%) 35,420,155 (95.2%) <0.001
Black 9,936,159 (12.4%) 1,253,077 (3.4%)
Other 2,450,241 (3.1%) 518,487 (1.4%)

Health status
Excellent 22,781,784 (28.5%) 9,405,551 (25.3%) <0.001
Very good 22,867,496 (28.6%) 9,308,814 (25.1%)
Good 22,089,942 (27.7%) 10,625,453 (28.6%)
Fair 8,892,926 (11.1%) 5,487,335 (14.8%)
Poor 3,229,798 (4.0%) 2,308,158 (6.2%)

Mean (Standard deviation): p-value from linear regression.
Frequency (Percent%): p-value from Pearson test.
Statistics computed using the survey weights.
Tests adjusted for the survey design.
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Save your style choices for next time
If you find yourself repeating certain options each time you use dtable, you can save most of those

option choices for future tables. Use collect style save to store your dtable option choices to a

collection style file and then specify this file in the style() option the next time you use dtable. If
you store the collection style file in your PERSONAL folder, you can set that file as the default style for
dtable.

In the following, we use dtable to create a table with some option choices, save our style to a file in
the PERSONAL directory, and set that style file as the default for dtable.

. sysuse auto
(1978 automobile data)
. dtable mpg turn i.rep78,
> sample(Sample, statistic(frequency) place(seplabels))
> sformat(”n=%s” frequency)
> by(foreign, tests nototals missing)
> continuous(, test(kwallis))
> factor(, test(pearson))
> title(Table 1. Summary by group with a test.)
> note(Kruskal-Wallis test for continuous variables.)
> note(Pearson’s test for factor variables.)
note: using test kwallis across levels of foreign for mpg and turn.
note: using test pearson across levels of foreign for rep78.
Table 1. Summary by group with a test.

Car origin
Domestic Foreign Test

n=52 n=22

Mileage (mpg) 19.827 (4.743) 24.773 (6.611) 0.002
Turn circle (ft.) 41.442 (3.968) 35.409 (1.501) <0.001
Repair record 1978
1 2 (4.2%) 0 (0.0%) <0.001
2 8 (16.7%) 0 (0.0%)
3 27 (56.2%) 3 (14.3%)
4 9 (18.8%) 9 (42.9%)
5 2 (4.2%) 9 (42.9%)

Kruskal-Wallis test for continuous variables.
Pearson’s test for factor variables.
. personal dir
your personal ado-directory is C:\ado\personal\
(output omitted )

. collect style save ”C:\ado\personal\mydtable”
(style from DTable saved to file C:\ado\personal\mydtable.stjson)
. set dtable_style mydtable
. display c(dtable_style)
mydtable
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Now these style choices are the defaults for tables created in the future. Here we create a similarly

styled table but from different data.

. use https://www.stata-press.com/data/r18/lbw
(Hosmer & Lemeshow data)
. dtable age i.smoke i.ht, by(low)
note: using test kwallis across levels of low for age.
note: using test pearson across levels of low for smoke and ht.
Table 1. Summary by group with a test.

Birthweight<2500g
0 1 Test

n=130 n=59

Age of mother 23.662 (5.585) 22.305 (4.511) 0.248
Smoked during pregnancy
Nonsmoker 86 (66.2%) 29 (49.2%) 0.026
Smoker 44 (33.8%) 30 (50.8%)

Has history of hypertension
0 125 (96.2%) 52 (88.1%) 0.036
1 5 (3.8%) 7 (11.9%)

Kruskal-Wallis test for continuous variables.
Pearson’s test for factor variables.

To reset the dtable style back to its original default, type

. set dtable_style dtable

You can add the permanently option to set the default dtable style for future Stata sessions.

Composite results
dtable’s default style does not define any composite results, so you will need to define your own

with the define() option. Stata has a collection style named dtable composites that defines the

following composite results for you.

composite elements Description

idi p10 p90 Interdecile interval

iqi q1 q3 Interquartile interval

rangei min max Range interval

All of these results are bound in square brackets without a delimiter between their elements. To get

access to these composite results, use the style(dtable composites, override) option. You can
then specify idi, iqi, and rangei in the statistic() suboption of continuous(), just as you would
any other statistic.
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You may want different formatting for these composite results, or you may want to create composite

results based on other statistics. The define() option allows you to customize your own composite

results. In the following, we use dtable to create a table that defines our own interval results with some
other option choices and then save the collection’s style to a file.

. sysuse auto
(1978 automobile data)
. dtable, define(idi = p10 p90, delimiter(”; ”))
> define(iqi = q1 q3, delimiter(”; ”))
> define(rangei = min max, delimiter(”; ”))
> sample(Sample, statistic(frequency) place(seplabels))
> sformat(”n=%s” frequency)
> sformat(”{%s}” idi)
> sformat(”[%s]” iqi)
> sformat(”<%s>” rangei)
> continuous(mpg, statistic(p50 idi))
> continuous(turn, statistic(q2 iqi))
> continuous(trunk, statistic(mean rangei))
> title(Table 1. Location and interval.)
> note(Median {Interdecile interval})
> note(Median [Interquartile interval])
> note(Mean <Range interval>)
Table 1. Location and interval.

Summary
n=74

Mileage (mpg) 20.000 {14.000; 29.000}
Turn circle (ft.) 40.000 [36.000; 43.000]
Trunk space (cu. ft.) 13.757 <5.000; 23.000>

Median {Interdecile interval}
Median [Interquartile interval]
Mean <Range interval>
. collect style save dtable-intervals
(style from DTable saved to file dtable-intervals.stjson)

Nowwe can use this style and simply reference our composite results without having to redefine them.

. dtable, continuous(mpg, statistic(p50 idi))
> continuous(turn, statistic(q2 iqi))
> continuous(trunk, statistic(mean rangei))
> style(dtable-intervals)
Table 1. Location and interval.

Summary
n=74

Mileage (mpg) 20.000 {14.000; 29.000}
Turn circle (ft.) 40.000 [36.000; 43.000]
Trunk space (cu. ft.) 13.757 <5.000; 23.000>

Median {Interdecile interval}
Median [Interquartile interval]
Mean <Range interval>
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The default style
Most of dtable’s option defaults are controllable in its collection style. The following options are

not part of dtable’s collection style:

svy
subpop()
export()
name()
replace
label()
style()
warn

When the by() option is not specified, the default column() header options are

summary(”Summary”, nohide
halign(center)
font(, nobold

noitalic
nostrikeout
nounderline)

smcl(text))

When a variable is specified in the by() option, its default options are

notest
testnotes
totals
nomissing

and its default column() header options are

by(label, nohide
fvlabel
halign(center)
font(, nobold

noitalic
nostrikeout
nounderline)

smcl(text))
total(”Total”, nohide

halign(center)
font(, nobold

noitalic
nostrikeout
nounderline)

smcl(text))
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test(”Test”, nohide
halign(center)
font(, nobold

noitalic
nostrikeout
nounderline)

smcl(text))

The default sample frequency title is “N”. When weights are not specified, the default sample fre-

quency statistic is frequency; otherwise, sumw is reported. When the by() option is specified, percent
is added to the default sample frequency statistic. The other default sample() options are

font(, nobold
noitalic
nostrikeout
nounderline)

smcl(text)
place(items)

The defaults for the continuous() option are

statistic(mean sd)
test(regress)
font(, nobold

noitalic
nostrikeout
nounderline)

smcl(text)

The defaults for the factor() option are

statistic(fvfrequency fvpercent)
test(pearson)
font(, nobold

noitalic
nostrikeout
nounderline)

smcl(text)

There are no predefined composite results in dtable’s default style.

The default formats are

nformat(”%21.3fc”, basestyle)
nformat(”%21.0fc” N count sumw frequency fvfrequency fvrawfrequency)
nformat(”%9.1fc” percent rawpercent fvpercent fvrawpercent)
sformat(”(%s%%)” percent rawpercent fvpercent fvrawpercent)
sformat(”(%s)” sd)
nformat(”%6.3f” regress poisson lnormal kwallis kwallis_ties pearson

fisher lrchi2 svylr svywald svyllwald)
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There is no default table title. The defaults for the titlestyles() option are

font(, nobold
noitalic
nostrikeout
nounderline)

smcl(text)

There are no default table notes. The defaults for the notestyles() option are

font(, nobold
noitalic
nostrikeout
nounderline)

smcl(text)

The remaining default options for dtable are

varlabel
fvlabel
nolistwise
halign(right)

Methods and formulas
See Methods and formulas in [R] table for details on the statistics supported by dtable. When the

svy or subpop() option is specified, the weights from svyset are used to compute statistics that support
weights. In addition, the subpopulation variance �̂�2 is computed as

�̂�2 = 𝑠2 𝑀
𝑛 − 1

⋅ 𝑛𝑠 − 1
𝑀𝑠

where 𝑠2 is the sample variance as documented in [R] table, 𝑀 is the estimated population size, 𝑛 is the

full sample size, 𝑀𝑠 is the estimated subpopulation size, and 𝑛𝑠 is the subpopulation sample size. The

subpopulation standard deviation is computed as �̂� =
√

�̂�2 and coefficient of variation (cv) is computed
as �̂�/𝑥.

Let y be a continuous variable and by(group, tests) be in effect. For test(regress), dtable
reports the 𝑝-value from test [#1] after

regress y i.group [ if ] [ in ] [weight ]

For test(poisson), dtable reports the 𝑝-value from test [#1] after

poisson y i.group [ if ] [ in ] [weight ]

For test(lnormal), dtable reports the 𝑝-value from test [#1] after

gsem y <- i.group [ if ] [ in ] [weight ], family(lognormal)
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For test(kwallis) and test(kwallis ties), dtable reports the 𝑝-values corresponding with the
𝜒2 statistics reported by

kwallis y [ if ] [ in ], by(group)

When the svy or subpop() option is specified, the prefix

svy, subpop([ varname ] [ if ]) :

is used with regress, poisson, and gsem. For more details, see [R] test, [R] regress, [R] poisson,

[SEM] gsem, [R] kwallis, and [SVY] svy.

Let f be a factor variable and by(group, tests) be in effect. For nonsurvey data, the factor-variable
test across groups is performed using

tabulate f group [ if ] [ in ] [weight ], opt

where opt is an option of tabulate corresponding with the specified test(ftest) using the following
table:

ftest opt

pearson chi2
fisher exact
lrchi2 lrchi2
gamma gamma
kendall taub
cramer V

For survey data, dtable reports the 𝑝-value from

svy, subpop([ varname ] [ if ]): tabulate f group [ if ] [ in ], opt

where opt is an option of svy: tabulate corresponding with the specified test(ftest) using the fol-
lowing table:

ftest opt

pearson pearson
svylr lr
svywald wald
svyllwald llwald

pearson, fisher, lrchi2, svylr, svywald, and svyllwald report a 𝑝-value. gamma, kendall, and
cramer report the computed measure of association. For more details, see [R] tabulate twoway and

[SVY] svy: tabulate twoway.
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Appendix

Colors
bgcolor, fgcolor, and color

aliceblue darkslategray lightsalmon palevioletred
antiquewhite darkturquoise lightseagreen papayawhip
aqua darkviolet lightskyblue peachpuff
aquamarine deeppink lightslategray peru
azure deepskyblue lightsteelblue pink
beige dimgray lightyellow plum
bisque dodgerblue lime powderblue
black firebrick limegreen purple
blanchedalmond floralwhite linen red
blue forestgreen magenta rosybrown
blueviolet fuchsia maroon royalblue
brown gainsboro mediumaquamarine saddlebrown
burlywood ghostwhite mediumblue salmon
cadetblue gold mediumorchid sandybrown
chartreuse goldenrod mediumpurple seagreen
chocolate gray mediumseagreen seashell
coral green mediumslateblue sienna
cornflowerblue greenyellow mediumspringgreen silver
cornsilk honeydew mediumturquoise skyblue
crimson hotpink mediumvioletred slateblue
cyan indianred midnightblue slategray
darkblue indigo mintcream snow
darkcyan ivory mistyrose springgreen
darkgoldenrod khaki moccasin steelblue
darkgray lavender navajowhite tan
darkgreen lavenderblush navy teal
darkkhaki lawngreen oldlace thistle
darkmagenta lemonchiffon olive tomato
darkolivegreen lightblue olivedrab turquoise
darkorange lightcoral orange violet
darkorchid lightcyan orangered wheat
darkred lightgoldenrodyellow orchid white
darksalmon lightgray palegoldenrod whitesmoke
darkseagreen lightgreen palegreen yellow
darkslateblue lightpink paleturquoise yellowgreen
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Underline patterns

upattern

none dashLong
single dashLongHeavy
words dotDash
double dashDotHeavy
thick dotDotDash
dotted dashDotDotHeavy
dottedHeavy wave
dash wavyHeavy
dashedHeavy wavyDouble

Shading patterns

fpattern

nil pct20
clear pct25
solid pct30
horzStripe pct35
vertStripe pct37
reverseDiagStripe pct40
diagStripe pct45
horzCross pct50
diagCross pct55
thinHorzStripe pct60
thinVertStripe pct62
thinReverseDiagStripe pct65
thinDiagStripe pct70
thinHorzCross pct75
thinDiagCross pct80
pct5 pct85
pct10 pct87
pct12 pct90
pct15 pct95
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Description
dydx and integ calculate derivatives and integrals of numeric “functions”.

Quick start
For variables y and x corresponding to function 𝑦 = 𝑓(𝑥), compute 𝑑𝑦/𝑑𝑥 using cubic splines and store

result in dy
dydx y x, generate(dy)

Evaluate the integral of 𝑓(𝑥) using cubic splines
integ y x

Evaluate the integral using the trapezoidal rule

integ y x, trapezoid

Same as above, and generate variable iy containing integral evaluated for each value of x
integ y x, trapezoid generate(iy)

Menu
dydx
Data > Create or change data > Other variable-creation commands > Calculate numerical derivatives

integ
Data > Create or change data > Other variable-creation commands > Calculate numeric integrals

627
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Syntax
Derivatives of numeric functions

dydx yvar xvar [ if ] [ in ] , generate(newvar) [ dydx options ]

Integrals of numeric functions

integ yvar xvar [ if ] [ in ] [ , integ options ]

dydx options Description

Main
∗ generate(newvar) store results in variable named newvar

replace overwrite the existing variable

double store new variable as double
∗generate(newvar) is required.

integ options Description

Main

trapezoid use trapezoidal rule to compute integrals; default is cubic splines

generate(newvar) store results in variable named newvar

replace overwrite the existing variable

double store new variable as double
initial(#) initial value of integral; default is initial(0)

by and collect are allowed with dydx and integ; see [U] 11.1.10 Prefix commands.

Options for dydx

� � �
Main �

generate(newvar) specifies that results be stored in a new variable. generate() is required.

replace specifies that if an existing variable is specified for generate(), it should be overwritten.

double specifies that the new variable in generate() be stored as double. If the double option is not
specified, the variable is stored using the current type as set by set type, which is float by default.

Options for integ

� � �
Main �

trapezoid requests that the trapezoidal rule [the sum of (𝑥𝑖 − 𝑥𝑖−1)(𝑦𝑖 + 𝑦𝑖−1)/2] be used to compute
integrals. The default is cubic splines, which give superior results for most smooth functions; for

irregular functions, trapezoid may give better results.

generate(newvar) specifies that results be stored in a new variable.

replace specifies that if an existing variable is specified for generate(), it should be overwritten.
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double specifies that the new variable in generate() be stored as double. If the double option is not
specified, the variable is stored using the current type as set by set type.

initial(#) specifies the initial condition for calculating definite integrals; see Methods and formulas

below. The default is initial(0).

Remarks and examples
dydx and integ lets you extend Stata’s graphics capabilities beyond data analysis and into mathe-

matics.

Example 1
We graph 𝑦 = 𝑒−𝑥/6sin(𝑥) over the interval [ 0, 12.56 ]:

. range x 0 12.56 100
Number of observations (_N) was 0, now 100.
. generate y = exp(-x/6)*sin(x)
. label variable y ”exp(-x/6)*sin(x)”
. twoway connected y x, connect(i) yline(0)
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We estimate the derivative by using dydx and compute the relative difference between this estimate
and the true derivative.

. dydx y x, gen(dy)

. generate dytrue = exp(-x/6)*(cos(x) - sin(x)/6)

. generate error = abs(dy - dytrue)/dytrue

The error is greatest at the endpoints, as we would expect. The error is approximately 0.5% at each

endpoint, but the error quickly falls to less than 0.01%.
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. label variable error ”Error in derivative estimate”

. twoway line error x, ylabel(0(.002).006)

0

.002

.004

.006

E
rr

or
 in

 d
er

iv
at

iv
e 

es
tim

at
e

0 5 10 15
x

We now estimate the integral by using integ:

. integ y x, gen(iy)
number of points = 100
integral = .85316397
. generate iytrue = (36/37)*(1 - exp(-x/6)*(cos(x) + sin(x)/6))
. display iytrue[_N]
.85315901
. display abs(r(integral) - iytrue[_N])/iytrue[_N]
5.811e-06
. generate diff = iy - iytrue

The relative difference between the estimate [stored in r(integral)] and the true value of the integral
is about 6 × 10−6. A graph of the absolute difference (diff) is shown below. Here error is cumulative.
Again, most of the error is due to a relatively poorer fit near the endpoints.

. label variable diff ”Error in integral estimate”

. twoway line diff x, ylabel(0(5.00e-06).00001)
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Stored results
dydx stores the following in r():
Macros

r(y) name of yvar

integ stores the following in r():
Scalars

r(N points) number of unique 𝑥 points

r(integral) estimate of the integral

Methods and formulas
Consider a set of data points, (𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛), generated by a function 𝑦 = 𝑓(𝑥). dydx and

integ first fit these points with a cubic spline, which is then analytically differentiated (integrated) to
give an approximation for the derivative (integral) of 𝑓.

The cubic spline (see, for example, Press et al. [2007]) consists of 𝑛 − 1 cubic polynomials 𝑃𝑖(𝑥),
with the 𝑖th one defined on the interval [𝑥𝑖, 𝑥𝑖+1],

𝑃𝑖(𝑥) = 𝑦𝑖𝑎𝑖(𝑥) + 𝑦𝑖+1𝑏𝑖(𝑥) + 𝑦′′
𝑖 𝑐𝑖(𝑥) + 𝑦′′

𝑖+1𝑑𝑖(𝑥)

where

𝑎𝑖(𝑥) =
𝑥𝑖+1 − 𝑥
𝑥𝑖+1 − 𝑥𝑖

𝑐𝑖(𝑥) = 1
6

(𝑥𝑖+1 − 𝑥𝑖)2𝑎𝑖(𝑥)[{𝑎𝑖(𝑥)}2 − 1]

𝑏𝑖(𝑥) = 𝑥 − 𝑥𝑖
𝑥𝑖+1 − 𝑥𝑖

𝑑𝑖(𝑥) = 1
6

(𝑥𝑖+1 − 𝑥𝑖)2𝑏𝑖(𝑥)[{𝑏𝑖(𝑥)}2 − 1]

and 𝑦′′
𝑖 and 𝑦′′

𝑖+1 are constants whose values will be determined as described below. The notation for

these constants is justified because 𝑃 ′′
𝑖 (𝑥𝑖) = 𝑦′′

𝑖 and 𝑃 ′′
𝑖 (𝑥𝑖+1) = 𝑦′′

𝑖+1.

Because 𝑎𝑖(𝑥𝑖) = 1, 𝑎𝑖(𝑥𝑖+1) = 0, 𝑏𝑖(𝑥𝑖) = 0, and 𝑏𝑖(𝑥𝑖+1) = 1. Therefore, 𝑃𝑖(𝑥𝑖) = 𝑦𝑖, and

𝑃𝑖(𝑥𝑖+1) = 𝑦𝑖+1. Thus, the 𝑃𝑖 jointly define a function that is continuous at the interval boundaries. The

first derivative should be continuous at the interval boundaries; that is,

𝑃 ′
𝑖 (𝑥𝑖+1) = 𝑃 ′

𝑖+1(𝑥𝑖+1)

The above 𝑛 − 2 equations (one equation for each point except the two endpoints) and the values of the

first derivative at the endpoints, 𝑃 ′
1(𝑥1) and 𝑃 ′

𝑛−1(𝑥𝑛), determine the 𝑛 constants 𝑦′′
𝑖 .

The value of the first derivative at an endpoint is set to the value of the derivative obtained by fitting

a quadratic to the endpoint and the two adjacent points; namely, we use

𝑃 ′
1(𝑥1) = 𝑦1 − 𝑦2

𝑥1 − 𝑥2
+ 𝑦1 − 𝑦3

𝑥1 − 𝑥3
− 𝑦2 − 𝑦3

𝑥2 − 𝑥3

and a similar formula for the upper endpoint.

dydx approximates 𝑓 ′(𝑥𝑖) by using 𝑃 ′
𝑖 (𝑥𝑖).

integ approximates 𝐹(𝑥𝑖) = 𝐹(𝑥1) + ∫𝑥𝑖

𝑥1
𝑓(𝑥) 𝑑𝑥 by using

𝐼0 +
𝑖−1
∑
𝑘=1

∫
𝑥𝑘+1

𝑥𝑘

𝑃𝑘(𝑥) 𝑑𝑥
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where 𝐼0 (an estimate of 𝐹(𝑥1)) is the value specified by the initial(#) option. If the trapezoid
option is specified, integ approximates the integral by using the trapezoidal rule:

𝐼0 +
𝑖−1
∑
𝑘=1

1
2

(𝑥𝑘+1 − 𝑥𝑘)(𝑦𝑘+1 + 𝑦𝑘)

If there are ties among the 𝑥𝑖, the mean of 𝑦𝑖 is computed at each set of ties and the cubic spline is fit

to these values.

Acknowledgment
The present versions of dydx and integ were inspired by the dydx2 command written by Patrick

Royston of the MRC Clinical Trials Unit, London, and coauthor of the Stata Press book Flexible Para-

metric Survival Analysis Using Stata: Beyond the Cox Model.� �
Maria Gaetana Agnesi (1718–1799) was an Italian mathematician and philosopher.

Born in Milan into a wealthy family, she was recognized as a child prodigy. At age nine, she pub-

lished a detailed argument in Latin on the importance of education for women. At age 15, her father,

a mathematics professor at the University of Bologna, presented her talents in language and philo-

sophical reasoning to Bologna’s intellectual elite. Uncomfortable with public life, she educated

her twenty siblings and published on mathematics. After her father’s death in 1752, she studied

theology and devoted the rest of her life to helping the poor, homeless, and sick.

Agnesi’s best known work, Instituzioni analitiche ad uso della gioventù italiana (Analytical Institu-

tions for the Use of Italian Youth), written in 1748, helped develop the analysis of finite quantities

and infinitesimals. At the time, it was hailed as the best introduction to calculus. The work also dis-

cussed an asymptotic curve that, because of mistranslation, would come to be known as the “Witch

of Agnesi”. In 1750, Pope Benedict XIV appointed her to the chair of mathematics and natural

philosophy at Bologna, though she never served.

In addition to being recognized as an important mathematician, Agnesi is revered in the Basilica of

San Nazaro in Milan. At her death, she was mourned by radical authors as a proponent for women’s

rights and by the Catholic faithful as a symbol of personal piety.� �
Reference
Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. 2007. Numerical Recipes: The Art of Scientific Com-

puting. 3rd ed. New York: Cambridge University Press.

Also see
[D] obs — Increase the number of observations in a dataset

[D] range — Generate numerical range

https://www.stata-press.com/books/fpsaus.html
https://www.stata-press.com/books/fpsaus.html
https://www.stata.com/giftshop/bookmarks/series7/agnesi/


eform option — Displaying exponentiated coefficients

Description Remarks and examples Reference Also see

Description
An eform option causes the coefficient table to be displayed in exponentiated form: for each coeffi-

cient, 𝑒𝑏 rather than 𝑏 is displayed. Standard errors and confidence intervals (CIs) are also transformed.
An eform option is one of the following:

eform option Description

eform(string) use string for the column title

eform exponentiated coefficient, string is exp(b)
hr hazard ratio, string is Haz. ratio
shr subhazard ratio, string is SHR
irr incidence-rate ratio, string is IRR
or odds ratio, string is Odds ratio
rrr relative-risk ratio, string is RRR

Remarks and examples

Example 1
Here is a simple example of the or option with svy: logit. The CI for the odds ratio is computed by

transforming (by exponentiating) the endpoints of the CI for the corresponding coefficient.

. use https://www.stata-press.com/data/r18/nhanes2d

. svy, or: logit highbp female black
(running logit on estimation sample)
(output omitted )

Linearized
highbp Odds ratio std. err. t P>|t| [95% conf. interval]

female .6107011 .0326159 -9.23 0.000 .5476753 .6809798
black 1.384865 .1336054 3.37 0.002 1.137507 1.686011
_cons .7249332 .0551062 -4.23 0.000 .6208222 .8465035

Note: _cons estimates baseline odds.

We also could have specified the following command and received the same results as above:

. svy: logit highbp female black, or

Reference
Buis, M. L. 2012. Stata tip 107: The baseline is now reported. Stata Journal 12: 165–166.
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https://www.stata-journal.com/article.html?article=st0251
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Also see
[R] ml — Maximum likelihood estimation



eivreg — Errors-in-variables regression

Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas References Also see

Description
eivreg fits errors-in-variables regression models when one or more of the independent variables are

measured with error. To use eivreg, you must have an estimate of each independent variable’s reliability
or assume it is measured without error.

Quick start
Regression of y on x1, x2, and x3 adjusted for x1 measured with 90% reliability

eivreg y x1 x2 x3, reliab(x1 .9)

Same as above, but also specify 80% reliability for x2
eivreg y x1 x2 x3, reliab(x1 .9 x2 .8)

Menu
Statistics > Linear models and related > Errors-in-variables regression

635
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Syntax
eivreg depvar [ indepvars ] [ if ] [ in ] [weight ] [ , options ]

options Description

Model

reliab(indepvar # [ indepvar # [ . . . ] ])
specify measurement reliability for each indepvar measured with error

Reporting

level(#) set confidence level; default is level(95)
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

coeflegend display legend instead of statistics

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

bootstrap, by, collect, jackknife, rolling, and statsby are allowed; see [U] 11.1.10 Prefix commands.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
aweights are not allowed with the jackknife prefix; see [R] jackknife.
aweights and fweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

reliab(indepvar # [ indepvar # [ . . . ] ]) specifies the measurement reliability for each independent

variable measured with error. Reliabilities are specified as pairs consisting of an independent variable

name (a name that appears in indepvars) and the corresponding reliability 𝑟, 0 < 𝑟 ≤ 1. Indepen-

dent variables for which no reliability is specified are assumed to have reliability 1. If the option is

not specified, all variables are assumed to have reliability 1, and the result is thus the same as that

produced by regress (the ordinary least-squares results).

� � �
Reporting �

level(#); see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

The following option is available with eivreg but is not shown in the dialog box:

coeflegend; see [R] Estimation options.
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Remarks and examples
For an introduction to errors-in-variables regression, see Draper and Smith (1998, 89–91) or Kmenta

(1997, 352–357). Treiman (2009, 258–261) compares the results of errors-in-variables regression with

conventional regression. Also see Lockwood and McCaffrey (2020) for how to use sem (see [SEM] sem)
to fit errors-in-variables regression.

Errors-in-variables regression models are useful when one or more of the independent variables are

measured with additive noise. Standard regression (as performed by regress) would underestimate the
effect of the variable, and the other coefficients in the model can be biased to the extent that they are

correlated with the poorly measured variable. You can adjust for the biases if you know the reliability:

𝑟 = 1 − noise variance

total variance

That is, given the model y = Xβ+u, for some variable x𝑖 inX, the x𝑖 is observed with error, x𝑖 = x∗
𝑖 +e,

and the noise variance is the variance of e. The total variance is the variance of x𝑖.

Example 1
Say that in our automobile data, the weight of cars was measured with error, and the reliability of our

measured weight is 0.85. The result of this would be to underestimate the effect of weight in a regression
of, say, price on weight and foreign, and it would also bias the estimate of the coefficient on foreign
(because being of foreign manufacture is correlated with the weight of cars). We would ignore all of this

if we fit the model with regress:

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. regress price weight foreign

Source SS df MS Number of obs = 74
F(2, 71) = 35.35

Model 316859273 2 158429637 Prob > F = 0.0000
Residual 318206123 71 4481776.38 R-squared = 0.4989

Adj R-squared = 0.4848
Total 635065396 73 8699525.97 Root MSE = 2117

price Coefficient Std. err. t P>|t| [95% conf. interval]

weight 3.320737 .3958784 8.39 0.000 2.531378 4.110096
foreign 3637.001 668.583 5.44 0.000 2303.885 4970.118
_cons -4942.844 1345.591 -3.67 0.000 -7625.876 -2259.812
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With eivreg, we can account for our measurement error:

. eivreg price weight foreign, reliab(weight .85)
Errors-in-variables regression

Assumed
Variable reliability

Number of obs = 74
weight 0.8500 F( 2, 71) = 18.46

* 1.0000 Prob > F = 0.0000
R-squared = 0.6483
Root MSE = 1773.54

price Coefficient Std. err. t P>|t| [95% conf. interval]

weight 4.31985 .7134251 6.06 0.000 2.89732 5.742379
foreign 4637.32 849.0221 5.46 0.000 2944.418 6330.222
_cons -8257.017 2390.337 -3.45 0.001 -13023.21 -3490.821

The effect of weight is increased—as we knew it would be—and here the effect of foreign manufacture

is also increased. A priori, we knew only that the estimate of foreignmight be biased; we did not know
the direction.

Technical note
Swept under the rug in our example is how we would determine the reliability, 𝑟. We can easily see

that a variable is measured with error, but we may not know the reliability because the ingredients for

calculating 𝑟 depend on the unobserved noise.
For our example, we made up a value for 𝑟, and in fact we do not believe that weight is measured with

error at all, so the reported eivreg results have no validity. The regress results were the statistically
correct results here.

But let’s say that we do suspect that weight is measured with error and that we do not know 𝑟. We

could then experiment with various values of 𝑟 to describe the sensitivity of our estimates to possible error
levels. We may not know 𝑟, but 𝑟 does have a simple interpretation, and we could probably produce a
sensible range for 𝑟 by thinking about how the data were collected.

If the reliability, 𝑟, is less than the 𝑅2 from a regression of the poorly measured variable on all the

other variables, including the dependent variable, the information might as well not have been collected;

no adjustment to the final results is possible. For our automobile data, running a regression of weight
on foreign and price would result in an 𝑅2 of 0.6743. Thus, the reliability must be at least 0.6743

here. If we specify a reliability that is too small, eivreg will inform us and refuse to fit the model:

. eivreg price weight foreign, reliab(weight .6742)
reliability r() too small
r(399);

Returning to our problem of how to estimate 𝑟, too small or not, if the measurements are summaries of
scaled items, the reliability may be estimated using the alpha command; see [MV] alpha. If the score is

computed from factor analysis and the data are scored using predict’s default options (see [MV] factor

postestimation), the square of the standard deviation of the score is an estimate of the reliability.
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Example 2
Consider a model with more than one variable measured with error. For instance, say that our model

is that price is a function of weight, foreign, and mpg and that both weight and mpg are measured
with error.

. eivreg price weight foreign mpg, reliab(weight .85 mpg .95)
Errors-in-variables regression

Assumed
Variable reliability

Number of obs = 74
weight 0.8500 F( 3, 70) = 9.58

mpg 0.9500 Prob > F = 0.0000
* 1.0000 R-squared = 0.8522

Root MSE = 1158.04

price Coefficient Std. err. t P>|t| [95% conf. interval]

weight 9.69903 3.768985 2.57 0.012 2.182027 17.21603
foreign 6918.624 2259.531 3.06 0.003 2412.132 11425.12

mpg 627.6764 431.0284 1.46 0.150 -231.9826 1487.335
_cons -38545.27 20960.72 -1.84 0.070 -80350.11 3259.564

Stored results
eivreg stores the following in e():

Scalars

e(N) number of observations

e(df m) model degrees of freedom

e(df r) residual degrees of freedom

e(r2) 𝑅2

e(F) 𝐹 statistic

e(rmse) root mean squared error

e(rank) rank of e(V)

Macros

e(cmd) eivreg
e(cmdline) command as typed

e(depvar) name of dependent variable

e(rellist) indepvars and associated reliabilities

e(wtype) weight type

e(wexp) weight expression

e(properties) b V
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of the estimators

Functions

e(sample) marks estimation sample
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In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas
Let the model to be fit be

y = X∗β + ε

X = X∗ + U

where X∗ are the true values and X are the observed values. ε and U are assumed to be independent and

have zero means and finite fourth moments. Var(U) is assumed to be diagonal.
LetW be the user-specified weights. If no weights are specified,W = I. If weights are specified, let

v be the specified weights. If fweight frequency weights are specified, thenW = diag(v). If aweight
analytic weights are specified, thenW = diag{v/(1′v)(1′1)}, meaning that the weights are normalized
to sum to the number of observations.

The estimates b of β are obtained as A−1X′Wy, where A = X′WX− S. S is a diagonal matrix with

elements (1 − 𝑟𝑗)𝑠2
𝑗 . Here 𝑟𝑗 is the user-specified reliability coefficient for the 𝑗th explanatory variable

(or 1 if not specified), and 𝑠2
𝑗 is the (appropriately weighted) sample variance of the variable.

The root mean squared error is (y′Wy− bAb′)/(𝑛 − 𝑝), where 𝑛 is the number of observations and

𝑝 is the number of estimated parameters. The variance–covariance matrix of the estimators is obtained
based on the formulas provided in Stefanski and Boos (2002), Buonaccorsi (2010), and Fuller (1987).

For each 𝑖 = 1, 2, . . . , 𝑛, let residual 𝑒𝑖 = 𝑦𝑖 − x𝑖b, where x𝑖 is the 𝑖th row of X. Consider matrix H,

where the 𝑖th row of H, h𝑖, is

h′
𝑖 =

⎛⎜⎜⎜
⎝

𝑒𝑖𝑥𝑖1 + (𝑥𝑖1 − 𝑥1)2(1 − 𝑟1)𝑏1
𝑒𝑖𝑥𝑖2 + (𝑥𝑖2 − 𝑥2)2(1 − 𝑟2)𝑏2

⋮
𝑒𝑖𝑥𝑖𝑝 + (𝑥𝑖𝑝 − 𝑥𝑝)2(1 − 𝑟𝑝)𝑏𝑝

⎞⎟⎟⎟
⎠

where 𝑥𝑗 is the weighted mean of the 𝑗th variable.

If analytic weights, aweights, are specified, the variance–covariance matrix is A−1 H′WWHA−1;

otherwise, it is A−1H′WHA−1.
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Postestimation commands predict margins Remarks and examples Also see

Postestimation commands
The following postestimation commands are available after eivreg:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estimates cataloging estimation results

etable table of estimation results

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

predict linear predictions

pwcompare pairwise comparisons of parameters

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

predict

Description for predict
predict creates a new variable containing the linear prediction assuming that values of the covariates

used for the prediction were measured without error.

Menu for predict
Statistics > Postestimation

Syntax for predict
predict [ type ] newvar [ if ] [ in ]

Available both in and out of sample; type predict ... if e(sample) ... if wanted only for the estimation sample.
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margins

Description for margins
margins estimates margins of response for linear predictions.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist ] [ , options ]

Remarks and examples

Example 1
We return to example 1 from [R] eivreg:

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. eivreg price weight foreign, reliab(weight .85)
Errors-in-variables regression

Assumed
Variable reliability

Number of obs = 74
weight 0.8500 F( 2, 71) = 18.46

* 1.0000 Prob > F = 0.0000
R-squared = 0.6483
Root MSE = 1773.54

price Coefficient Std. err. t P>|t| [95% conf. interval]

weight 4.31985 .7134251 6.06 0.000 2.89732 5.742379
foreign 4637.32 849.0221 5.46 0.000 2944.418 6330.222
_cons -8257.017 2390.337 -3.45 0.001 -13023.21 -3490.821

We wish to predict the price of a foreign car that weighs 2,300 pounds. We can use predict because
2,300 pounds is the true weight, not the result of an error-prone measurement.

To make this prediction, first we add the new observation to the dataset.

. set obs 75
Number of observations (_N) was 74, now 75.
. replace foreign = 1 in 75
(1 real change made)
. replace weight = 2300 in 75
(1 real change made)
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Now, we use predict to predict the price of the car.

. predict newprice in 75
(option xb assumed; fitted values)
(74 missing values generated)
(predictions assume covariates measured without error)
. list weight foreign newprice in 75

weight foreign newprice

75. 2,300 Foreign 6315.957

predict issued a note reminding us that the computed predictions assume that the covariates used for
prediction are measured without error. In general, you should avoid using predict to obtain in-sample
predictions unless you first replace the measurement-error covariates with values that are error free.

Also see
[R] eivreg — Errors-in-variables regression

[U] 20 Estimation and postestimation commands



Epitab — Tables for epidemiologists

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Acknowledgments References Also see

Description
ir is used with incidence-rate (incidence-density or person-time) data. It calculates point estimates

and confidence intervals for the incidence-rate ratio (IRR) and incidence-rate difference (IRD), along with

attributable or prevented fractions for the exposed and total population. iri is the immediate form of

ir; see [U] 19 Immediate commands. Also see [R] poisson and [ST] stcox for related commands.

cs is used with cohort study data with equal follow-up time per subject and sometimes with cross-
sectional data. Risk is then the proportion of subjects who become cases. It calculates point estimates

and confidence intervals for the risk difference, risk ratio, and (optionally) the odds ratio, along with

attributable or prevented fractions for the exposed and total population. csi is the immediate form of

cs; see [U] 19 Immediate commands. Also see [R] logistic for related commands.

cc is used with case–control and cross-sectional data. It calculates point estimates and confidence
intervals for the odds ratio, along with attributable or prevented fractions for the exposed and total pop-

ulation. cci is the immediate form of cc; see [U] 19 Immediate commands. Also see [R] logistic for

related commands.

tabodds is used with case–control and cross-sectional data. It tabulates the odds of failure against
a categorical explanatory variable expvar. If expvar is specified, tabodds performs an approximate 𝜒2

test of homogeneity of odds and a test for linear trend of the log odds against the numerical code used

for the categories of expvar. Both tests are based on the score statistic and its variance; see Methods and

formulas. When expvar is absent, the overall odds are reported. The variable varcase is coded 0/1 for

individual and simple frequency records and equals the number of cases for binomial frequency records.

Optionally, tabodds tabulates adjusted or unadjusted odds ratios, using either the lowest levels of

expvar or a user-defined level as the reference group. If adjust(varlist) is specified, it produces odds
ratios adjusted for the variables in varlist along with a (score) test for trend.

mhodds is used with case–control and cross-sectional data. It estimates the ratio of the odds of failure
for two categories of expvar, controlled for specified confounding variables, varsadjust, and tests whether

this odds ratio is equal to one. When expvar has more than two categories but none are specified with

the compare() option, mhodds assumes that expvar is a quantitative variable and calculates a 1-degree-
of-freedom test for trend. It also calculates an approximate estimate of the log odds-ratio for a one-

unit increase in expvar. This is a one-step Newton–Raphson approximation to the maximum likelihood

estimate calculated as the ratio of the score statistic, 𝑈, to its variance, 𝑉 (Clayton and Hills 1993, 103).

mcc is used with matched case–control data. It calculates McNemar’s 𝜒2; point estimates and con-

fidence intervals for the difference, ratio, and relative difference of the proportion with the factor; and

the odds ratio and its confidence interval. mcci is the immediate form of mcc; see [U] 19 Immediate

commands. Also see [R] clogit and [R] symmetry for related commands.

645
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Quick start
Cohort studies

IRR and IRD for the number of cases stored in cases for exposure indicator exposed given time exposed
time

ir cases exposed time

Crude and Mantel–Haenszel combined IRRs with test of homogeneity for strata defined by svar
ir cases exposed time, by(svar)

Same as above, and standardize the IRR by weighting variable wvar1
ir cases exposed time, by(svar) standard(wvar1)

Same as above, but use person-time of the unexposed group as weights

ir cases exposed time, by(svar) estandard

IRR and IRD for 10 cases over 50 person-years in the exposed group and 15 cases over 100 person-years

in the unexposed group

iri 10 15 50 100

Risk difference and ratio with binary indicators case and exposed using cumulative incidence data
cs case exposed [fweight=wvar2]

Add odds ratios and calculate Fisher’s exact 𝑝
cs case exposed [fweight=wvar2], or exact

Internally standardized risk ratio for strata defined by svar
cs case exposed [fweight=wvar2], by(svar) istandard

Risk difference and ratio for 12 cases and 55 noncases among exposed subjects and 16 cases and 125

noncases among unexposed subjects

csi 12 16 55 125

Case–control studies

Odds ratios from summary data with binary indicators case and exposed and frequency weight wvar3
cc case exposed [fweight=wvar3]

Same as above, but stratify analysis by svar and perform Breslow–Day and Tarone’s homogeneity tests

cc case exposed [fweight=wvar3], by(svar) bd tarone

Odds ratios for 37 exposed cases, 148 unexposed cases, 7 exposed controls, and 137 unexposed controls

cci 37 148 7 137

Odds of binary event against catvar using summary data with frequency weight wvar4
tabodds event catvar [fweight=wvar4]
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Same as above, but report odds ratios with the fourth level of catvar as the reference
tabodds event catvar [fweight=wvar4], or base(4)

Same as above, but tabulate Mantel–Haenszel adjusted odds ratios adjusting for values of categorical

variable a
tabodds event catvar [fweight=wvar4], base(4) adjust(a)

Graph odds and confidence intervals against categories of catvar
tabodds event catvar [fweight=wvar4], ciplot

Odds ratios for the effect of catvar on event controlling for categorical variable a using summary data
with frequency weight wvar5

mhodds event catvar a [fweight=wvar5]

Same as above, but calculate odds ratios for each level of svar
mhodds event catvar a [fweight=wvar5], by(svar)

Maximum likelihood estimate of odds ratio for a equal to 4 compared with a equal to 1
mhodds event a [fweight=wvar5], compare(4,1)

Statistics on the difference in the proportion with the factor for exposed cases indicated in expcase and
exposed controls indicated in expcontrol using summary data with frequency weight wvar6

mcc expcase expcontrol [fweight=wvar6]

Same as above, but indicate that there are 4 pairs where both cases and controls were exposed, 9 pairs

where the case was exposed but the control was not, 3 pairs where the control was exposed but the

case was not, and 14 pairs where neither subject was exposed

mcci 4 9 3 14
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Menu
ir
Statistics > Epidemiology and related > Tables for epidemiologists > Incidence-rate ratio

iri
Statistics > Epidemiology and related > Tables for epidemiologists > Incidence-rate–ratio calculator

cs
Statistics > Epidemiology and related > Tables for epidemiologists > Cohort study risk-ratio etc.

csi
Statistics > Epidemiology and related > Tables for epidemiologists > Cohort study risk-ratio etc. calculator

cc
Statistics > Epidemiology and related > Tables for epidemiologists > Case–control odds ratio

cci
Statistics > Epidemiology and related > Tables for epidemiologists > Case–control odds-ratio calculator

tabodds
Statistics > Epidemiology and related > Tables for epidemiologists > Tabulate odds of failure by category

mhodds
Statistics > Epidemiology and related > Tables for epidemiologists > Ratio of odds of failure for two categories

mcc
Statistics > Epidemiology and related > Tables for epidemiologists > Matched case–control studies

mcci
Statistics > Epidemiology and related > Tables for epidemiologists > Matched case–control calculator
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Syntax
Cohort studies

ir varcase varexposed vartime [ if ] [ in ] [weight ] [ , ir options ]

iri #𝑎 #𝑏 #𝑁1
#𝑁2

[ , iri options ]

cs varcase varexposed [ if ] [ in ] [weight ] [ , cs options ]

csi #𝑎 #𝑏 #𝑐 #𝑑 [ , csi options ]

Case–control studies

cc varcase varexposed [ if ] [ in ] [weight ] [ , cc options ]

cci #𝑎 #𝑏 #𝑐 #𝑑 [ , cci options ]

tabodds varcase [ expvar ] [ if ] [ in ] [weight ] [ , tabodds options ]

mhodds varcase expvar [ varsadjust ] [ if ] [ in ] [weight ] [ , mhodds options ]

Matched case–control studies

mcc varexposed case varexposed control [ if ] [ in ] [weight ] [ , level(#) ]

mcci #𝑎 #𝑏 #𝑐 #𝑑 [ , level(#) ]

ir options Description

Options

by(varname[ , missing ]) stratify on varname

estandard combine external weights with within-stratum statistics

istandard combine internal weights with within-stratum statistics

standard(varname) combine user-specified weights with within-stratum statistics

pool display pooled estimate

nocrude do not display crude estimate

nohom do not display homogeneity test

ird calculate standardized IRD

midp display 𝑝-values calculated using mid-𝑝 adjustment (unstratified only);
the default

exact display exact 𝑝-values without mid-𝑝 adjustment (unstratified only)
level(#) set confidence level; default is level(95)

iri options Description

midp display 𝑝-values calculated using mid-𝑝 adjustment; the default
exact display exact 𝑝-values without mid-𝑝 adjustment
level(#) set confidence level; default is level(95)
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cs options Description

Options

by(varlist[ , missing ]) stratify on varlist

estandard combine external weights with within-stratum statistics

istandard combine internal weights with within-stratum statistics

standard(varname) combine user-specified weights with within-stratum statistics

pool display pooled estimate

nocrude do not display crude estimate

nohom do not display homogeneity test

rd calculate standardized risk difference

binomial(varname) number of subjects variable

or report odds ratio

woolf use Woolf approximation to calculate SE and CI of the odds ratio

exact calculate Fisher’s exact 𝑝
level(#) set confidence level; default is level(95)

csi options Description

or report odds ratio

woolf use Woolf approximation to calculate SE and CI of the odds ratio

exact calculate Fisher’s exact 𝑝
level(#) set confidence level; default is level(95)

cc options Description

Options

by(varname[ , missing ]) stratify on varname

estandard combine external weights with within-stratum statistics

istandard combine internal weights with within-stratum statistics

standard(varname) combine user-specified weights with within-stratum statistics

pool display pooled estimate

nocrude do not display crude estimate

nohom do not display homogeneity test

bd perform Breslow–Day homogeneity test

tarone perform Tarone’s homogeneity test

binomial(varname) number of subjects variable

cornfield use Cornfield approximation to calculate CI of the odds ratio

woolf use Woolf approximation to calculate SE and CI of the odds ratio

exact calculate Fisher’s exact 𝑝
level(#) set confidence level; default is level(95)
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cci options Description

cornfield use Cornfield approximation to calculate CI of the odds ratio

woolf use Woolf approximation to calculate SE and CI of the odds ratio

exact calculate Fisher’s exact 𝑝
level(#) set confidence level; default is level(95)

tabodds options Description

Main

binomial(varname) number of subjects variable

level(#) set confidence level; default is level(95)
or report odds ratio

adjust(varlist) report odds ratios adjusted for the variables in varlist

base(#) reference group of control variable for odds ratio

cornfield use Cornfield approximation to calculate CI of the odds ratio

woolf use Woolf approximation to calculate SE and CI of the odds ratio

graph graph odds against categories

ciplot same as graph option, except include confidence intervals

CI plot

ciopts(rcap options) affect rendition of the confidence bands

Plot

marker options change look of markers (color, size, etc.)

marker label options add marker labels; change look or position

cline options affect rendition of the plotted points

Add plots

addplot(plot) add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

mhodds options Description

Options

by(varlist[ , missing ]) stratify on varlist

binomial(varname) number of subjects variable

compare(𝑣1,𝑣2) override categories of the control variable

level(#) set confidence level; default is level(95)

collect is allowed with ir, iri, cs, csi, cc, cci, tabodds, mhodds, mcc, and mcci; see [U] 11.1.10 Prefix commands.

fweights are allowed; see [U] 11.1.6 weight.
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Options
Options are listed in the order that they appear in the syntax tables above. The commands for which

the option is valid are indicated in parentheses immediately after the option name.

� � �
Options (ir, cs, cc, and mhodds) / Main (tabodds) �

by(varname[ , missing ]) (ir, cs, cc, and mhodds) specifies that the tables be stratified on varname.
Missing categories in varname are omitted from the stratified analysis, unless option missing is

specified within by(). Within-stratum statistics are shown and then combined with Mantel–Haen-

szel weights. If estandard, istandard, or standard() is also specified (see below), the weights
specified are used in place of Mantel–Haenszel weights.

estandard, istandard, and standard(varname) (ir, cs, and cc) request that within-stratum statistics

be combined with external, internal, or user-specified weights to produce a standardized estimate.

These options are mutually exclusive and can be used only when by() is also specified. (When by()
is specified without one of these options, Mantel–Haenszel weights are used.)

estandard external weights are the person-time for the unexposed (ir), the total number of unex-
posed (cs), or the number of unexposed controls (cc).

istandard internal weights are the person-time for the exposed (ir), the total number of exposed
(cs), or the number of exposed controls (cc). istandard can be used to produce, among other things,
standardized mortality ratios (SMRs).

standard(varname) allows user-specified weights. varnamemust contain a constant within stratum
and be nonnegative. The scale of varname is irrelevant.

pool (ir, cs, and cc) specifies that, in a stratified analysis, the directly pooled estimate also be displayed.
The pooled estimate is a weighted average of the stratum-specific estimates using inverse-variance

weights, which are the inverse of the variance of the stratum-specific estimate. pool is relevant only
if by() is also specified.

nocrude (ir, cs, and cc) specifies that in a stratified analysis the crude estimate—an estimate obtained

without regard to strata—not be displayed. nocrude is relevant only if by() is also specified.

nohom (ir, cs, and cc) specifies that a 𝜒2 test of homogeneity not be included in the output of a stratified

analysis. This tests whether the exposure effect is the same across strata and can be performed for

any pooled estimate—directly pooled or Mantel–Haenszel. nohom is relevant only if by() is also
specified.

ird (ir) may be used only with estandard, istandard, or standard(). It requests that ir calculate
the standardized IRD rather than the default IRR.

midp (ir without by() and iri), the default, displays mid-𝑝-adjusted 𝑝-values for one-sided and two-
sided tests of IRD. The tests of IRD are not available with ir for stratified analysis, so midp is not

allowed in combination with by(). Only one of exact or midp may be specified.

exact (irwithout by() and iri) displays exact 𝑝-values for one-sided and two-sided tests of IRD instead
of the default mid-𝑝-adjusted 𝑝-values. This option produces 𝑝-values that are more conservative than
the mid-𝑝-adjusted 𝑝-values. When counts of exposed and unexposed cases are both large, exact and
midp give similar results. The tests of IRD are not available with ir for stratified analysis, so exact
is not allowed in combination with by(). Only one of exact or midp may be specified.

rd (cs) may be used only with estandard, istandard, or standard(). It requests that cs calculate
the standardized risk difference rather than the default risk ratio.
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bd (cc) specifies that Breslow and Day’s 𝜒2 test of homogeneity be included in the output of a stratified

analysis. This tests whether the exposure effect is the same across strata. bd is relevant only if by()
is also specified.

tarone (cc) specifies that Tarone’s 𝜒2 test of homogeneity, which is a correction to the Breslow–Day

test, be included in the output of a stratified analysis. This tests whether the exposure effect is the

same across strata. tarone is relevant only if by() is also specified.

binomial(varname) (cs, cc, tabodds, and mhodds) supplies the number of subjects (cases plus con-
trols) for binomial frequency records. For individual and simple frequency records, this option is not

used.

or (cs, csi, and tabodds), for cs and csi, reports the calculation of the odds ratio in addition to the
risk ratio if by() is not specified. With by(), or specifies that a Mantel–Haenszel estimate of the

combined odds ratio be made rather than the Mantel–Haenszel estimate of the risk ratio. In either

case, this is the same calculation that would be made by cc and cci. Typically, cc, cci, or tabodds
is preferred for calculating odds ratios. For tabodds, or specifies that odds ratios be produced; see
base() for details about selecting a reference category. By default, tabodds will calculate odds.

adjust(varlist) (tabodds) specifies that odds ratios adjusted for the variables in varlist be calculated.

base(#) (tabodds) specifies that the #th category of expvar be used as the reference group for calcu-
lating odds ratios. If base() is not specified, the first category, corresponding to the minimum value

of expvar, is used as the reference group.

cornfield (cc, cci, and tabodds) requests that the Cornfield (1956) approximation be used to calculate
the confidence interval of the odds ratio. By default, cc and cci report an exact interval and tabodds
reports a standard-error–based interval, with the standard error coming from the square root of the

variance of the score statistic.

woolf (cs, csi, cc, cci, and tabodds) requests that the Woolf (1955) approximation, also known as

the Taylor expansion, be used for calculating the standard error and confidence interval for the odds

ratio. By default, cs and csi with the or option report the Cornfield (1956) interval; cc and cci
report an exact interval; and tabodds reports a standard-error–based interval, with the standard error
coming from the square root of the variance of the score statistic.

exact (cs, csi, cc, and cci) requests that Fisher’s exact 𝑝 be calculated rather than the 𝜒2 and its

significance level. We recommend specifying exact whenever samples are small. When the least-

frequent cell contains 1,000 cases or more, there will be no appreciable difference between the exact

significance level and the significance level based on the 𝜒2, but the exact significance level will

take considerably longer to calculate. exact does not affect whether exact confidence intervals are
calculated. Commands always calculate exact confidence intervals where they can, unless cornfield
or woolf is specified.

compare(𝑣1,𝑣2) (mhodds) indicates the categories of expvar to be compared; 𝑣1 defines the numerator

and 𝑣2, the denominator. When compare() is not specified and there are only two categories, the

second is compared with the first; when there are more than two categories, an approximate estimate

of the odds ratio for a unit increase in expvar, controlled for specified confounding variables, is given.

level(#) (ir, iri, cs, csi, cc, cci, tabodds, mhodds, mcc, and mcci) specifies the confidence level,
as a percentage, for confidence intervals. The default is level(95) or as set by set level; see
[R] level.
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The following options are for use only with tabodds.

� � �
Main �

graph (tabodds) produces a graph of the odds against the numerical code used for the categories of
expvar. All graph options except connect() are allowed. This option is not allowed with the or
option or the adjust() option.

ciplot (tabodds) produces the same plot as the graph option, except that it also includes the confidence
intervals. This option may not be used with either the or option or the adjust() option.

� � �
CI plot �

ciopts(rcap options) (tabodds) is allowed only with the ciplot option. It affects the rendition of
the confidence bands; see [G-3] rcap options.

� � �
Plot �

marker options (tabodds) affect the rendition of markers drawn at the plotted points, including their
shape, size, color, and outline; see [G-3] marker options.

marker label options (tabodds) specify if and how the markers are to be labeled; see

[G-3] marker label options.

cline options (tabodds) affect whether lines connect the plotted points and the rendition of those lines;
see [G-3] cline options.

� � �
Add plots �

addplot(plot) (tabodds) provides a way to add other plots to the generated graph; see
[G-3] addplot option.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options (tabodds) are any of the options documented in [G-3] twoway options, excluding by().
These include options for titling the graph (see [G-3] title options) and options for saving the graph

to disk (see [G-3] saving option).

Remarks and examples
Remarks are presented under the following headings:

Incidence-rate data
Stratified incidence-rate data
Standardized estimates with stratified incidence-rate data
Cumulative incidence data
Stratified cumulative incidence data
Standardized estimates with stratified cumulative incidence data
Case–control data
Stratified case–control data
Case–control data with multiple levels of exposure
Case–control data with confounders and possibly multiple levels of exposure
Standardized estimates with stratified case–control data
Matched case–control data
Video examples
Glossary
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To calculate appropriate statistics and suppress inappropriate statistics, the ir, cs, cc, tabodds,
mhodds, and mcc commands, along with their immediate counterparts, are organized in the way epi-

demiologists conceptualize data. ir processes incidence-rate data from prospective studies; cs, cohort
study data with equal follow-up time (cumulative incidence); cc, tabodds, and mhodds, case–control
or cross-sectional (prevalence) data; and mcc, matched case–control data. With the exception of mcc,
these commands work with both simple and stratified tables.

Epidemiological data are often summarized in a contingency table from which various statistics are

calculated. The rows of the table reflect cases and noncases or cases and person-time, and the columns

reflect exposure to a risk factor. To an epidemiologist, cases and noncases refer to the outcomes of the

process being studied. For instance, a case might be a person with cancer and a noncase might be a

person without cancer.

A factor is something that might affect the chances of being ultimately designated a case or a noncase.

Thus, a case might be a cancer patient, and the factor might be smoking behavior. A person is said to

be exposed or unexposed to the factor. Exposure can be classified as a dichotomy, smokes or does not

smoke, or as multiple levels, such as number of cigarettes smoked per week.

For an introduction to epidemiological methods, see Walker (1991). For an intermediate treatment,

see Clayton and Hills (1993) and Schneider and Lilienfeld (2015). For other advanced discussions, see

Kleinbaum, Kupper, and Morgenstern (1982) and Lash et al. (2021). For an analysis of incidence rates,

see, for instance, Cummings (2019). For an anthology of writings on epidemiology since World War II,

see Greenland (1987). See Jewell (2004) for a text aimed at graduate students in the medical professions

that uses Stata for much of the analysis. See Dohoo, Martin, and Stryhn (2010) for a graduate-level

text on the principles and methods of veterinary epidemiologic research; Stata datasets and do-files are

available. Also see Dohoo, Martin, and Stryhn (2012) for a text that is a revision of their veterinary

epidemiology text, but examples from human epidemiology are used.

Incidence-rate data
In incidence-rate data from a prospective study, you observe the transformation of noncases into cases.

Starting with a group of noncase subjects, you monitor them to determine whether they become cases

(for example, stricken with cancer). You monitor two populations: those exposed and those unexposed

to the factor (for example, multiple X-rays). A summary of the data is

Exposed Unexposed Total

Cases 𝑎 𝑏 𝑎 + 𝑏
Person-time 𝑁1 𝑁0 𝑁1 + 𝑁0
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Example 1: iri
It will be easiest to understand these commands if we start with the immediate forms. Remember,

in the immediate form, we specify the data on the command line rather than specifying names of vari-

ables containing the data; see [U] 19 Immediate commands. We have data (Boice and Monson [1977];

reported in Lash et al. [2021, 408]) on breast cancer cases and person-years of observation for women

with tuberculosis repeatedly exposed to multiple X-ray fluoroscopies, and those not so exposed:

X-ray fluoroscopy
Exposed Unexposed

Breast cancer cases 41 15
Person-years 28,010 19,017

Using iri, the immediate form of ir, we specify the values in the table following the command:

. iri 41 15 28010 19017
Incidence-rate comparison

Exposed Unexposed Total

Cases 41 15 56
Person-time 28010 19017 47027

Incidence rate .0014638 .0007888 .0011908

Point estimate [95% conf. interval]

Inc. rate diff. .000675 .0000749 .0012751
Inc. rate ratio 1.855759 1.005684 3.6093 (exact)
Attr. frac. ex. .4611368 .0056519 .722938 (exact)
Attr. frac. pop .337618

Mid-p-values for tests of incidence-rate difference:
Adj Pr(Exposed cases <= 41) = 0.9823 (lower one-sided)
Adj Pr(Exposed cases >= 41) = 0.0177 (upper one-sided)

Two-sided p-value = 0.0355

iri shows the table, reports the incidence rates for the exposed and unexposed populations, and then
shows the point estimates of the difference and ratio of the two incidence rates alongwith their confidence

intervals. The incidence rate is simply the frequency with which noncases are transformed into cases.

Next, iri reports the attributable fraction among the exposed (AFE), an estimate of the proportion of
exposed cases attributable to exposure. We estimate that 46.1% of the 41 breast cancer cases among the

exposed were due to exposure. (Had the IRR been less than 1, iri would have reported the prevented
fraction among the exposed (PFE), an estimate of the net proportion of all potential cases in the exposed

population that was prevented by exposure; see the following technical note.)

After that, the table shows the attributable fraction for the population (AFP), which is the net proportion

of all cases attributable to exposure. This number, of course, depends on the proportion of cases that are

exposed in the base population, which here is taken to be 41/56 and may not be relevant in all situations.
We estimate that 33.8% of the 56 cases were due to exposure. We estimate that 18.9 cases were caused

by exposure; that is, 0.338 × 56 = 0.461 × 41 = 18.9.

At the bottom of the table, iri reports one- and two-sided tests of the IRD. For the one-sided test of
the number of exposed cases being 41 or greater, the 𝑝-value is 0.0177. The two-sided test is twice the
smallest one-sided 𝑝-value and is 0.0355. These 𝑝-values are calculated using the mid-𝑝 adjustment to

exact 𝑝-values.
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Exact 𝑝-values can be seen by specifying the exact option.
. iri 41 15 28010 19017, exact
Incidence-rate comparison

Exposed Unexposed Total

Cases 41 15 56
Person-time 28010 19017 47027

Incidence rate .0014638 .0007888 .0011908

Point estimate [95% conf. interval]

Inc. rate diff. .000675 .0000749 .0012751
Inc. rate ratio 1.855759 1.005684 3.6093 (exact)
Attr. frac. ex. .4611368 .0056519 .722938 (exact)
Attr. frac. pop .337618

Exact p-values for tests of incidence-rate difference:
Pr(Exposed cases <= 41) = 0.9884 (lower one-sided)
Pr(Exposed cases >= 41) = 0.0238 (upper one-sided)

Two-sided p-value = 0.0477

The exact 𝑝-values are slightly larger than those calculated using the mid-𝑝 adjustment. This is always
the case. However, when counts of exposed and unexposed cases are both large, they will be nearly

identical. See Methods and formulas below.

Technical note
When the IRR is less than 1, iri (and ir, cs, csi, cc, and cci) substitutes the prevented fraction

for the attributable fraction. Let’s reverse the roles of exposure in the above data, treating as exposed a

person who did not receive the X-ray fluoroscopy. You can think of this as a new treatment for preventing

breast cancer—the suggested treatment being not to use fluoroscopy.

. iri 15 41 19017 28010
Incidence-rate comparison

Exposed Unexposed Total

Cases 15 41 56
Person-time 19017 28010 47027

Incidence rate .0007888 .0014638 .0011908

Point estimate [95% conf. interval]

Inc. rate diff. -.000675 -.0012751 -.0000749
Inc. rate ratio .5388632 .277062 .9943481 (exact)
Prev. frac. ex. .4611368 .0056519 .722938 (exact)
Prev. frac. pop .1864767

Mid-p-values for tests of incidence-rate difference:
Adj Pr(Exposed cases <= 15) = 0.0177 (lower one-sided)
Adj Pr(Exposed cases >= 15) = 0.9823 (upper one-sided)

Two-sided p-value = 0.0355
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The PFE is the net proportion of all potential cases in the exposed population that were prevented by

exposure. We estimate that 46.1% of potential cases among the women receiving the new “treatment”

were prevented by the treatment. (Previously, we estimated that the same percentage of actual cases

among women receiving the X-rays was caused by the X-rays.)

The prevented fraction for the population (PFP), which is the net proportion of all potential cases in

the total population that was prevented by exposure, as with the attributable fraction, depends on the

proportion of cases that are exposed in the base population—here taken as 15/56—so it may not be

relevant in all situations. We estimate that 18.6% of the potential cases were prevented by exposure.

See Greenland and Robins (1988) for a discussion of how to interpret attributable and prevented

fractions.

Example 2: ir
ir works like iri, except that it obtains the entries in the tables by summing data. You specify three

variables: the first represents the number of cases represented by this observation, the second indicates

whether the observation is for subjects exposed to the factor, and the third records the total time the

subjects in this observation were observed. An observation may reflect one subject or a group of subjects.

For instance, here is a 2-observation dataset for the table in the previous example:

. use https://www.stata-press.com/data/r18/irxmpl

. list

cases exposed time

1. 41 0 28010
2. 15 1 19017

If we typed ir cases exposed time, we would obtain the same output that we obtained above. Another
way the data might be recorded is

. use https://www.stata-press.com/data/r18/irxmpl2

. list

cases exposed time

1. 20 0 14000
2. 21 0 14010
3. 15 1 19017
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Here the first 2 observations will be automatically summed by ir because both are exposed. Finally, the
data might be individual-level data:

. use https://www.stata-press.com/data/r18/irxmpl3

. list in 1/5

cases exposed time

1. 1 1 10
2. 0 1 8
3. 0 0 9
4. 1 0 2
5. 0 1 1

The first observation represents a woman who got cancer, was exposed, and was observed for 10 years.

The second is a woman who did not get cancer, was exposed, and was observed for 8 years, and so on.

Technical note
ir (and all the other commands) assumes that a subject was exposed if the exposed variable is nonzero

and not missing, assumes the subject was not exposed if the variable is zero, and ignores the observation

if the variable is missing. For ir, the case variable and the time variable are restricted to nonnegative
integers and are summed within the exposed and unexposed groups to obtain the entries in the table.

Stratified incidence-rate data

Example 3: ir with stratified data
ir can work with stratified tables, as well as with single tables. For instance, Rothman (1986, 185)

discusses data fromRothman andMonson (1973) onmortality by sex and age for patients with trigeminal

neuralgia:

Age through 64 Age 65+
Males Females Males Females

Deaths 14 10 76 121
Person-years 1516 1701 949 2245

Entering the data into Stata, we have the following dataset:

. use https://www.stata-press.com/data/r18/rm
(Rothman and Monson 1973 data)
. list

age male deaths pyears

1. <65 Male 14 1516
2. <65 Female 10 1701
3. 65+ Male 76 949
4. 65+ Female 121 2245
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The stratified analysis of the IRR is

. ir deaths male pyears, by(age)
Stratified incidence-rate analysis

Age category IRR [95% conf. interval] M--H weight

<65 1.570844 .6489373 3.952809 4.712465 (exact)
65+ 1.485862 1.100305 1.99584 35.95147 (exact)

Crude 1.099794 .831437 1.449306 (exact)
M--H combined 1.49571 1.141183 1.960377

Test of homogeneity (M--H): chi2(1) = 0.02 Pr>chi2 = 0.8992

The row labeled M--H combined reflects the combined Mantel–Haenszel estimates.

As with the previous example, it is not important that each entry in the table correspond to 1 obser-

vation in the data—ir sums the time (pyears) and case (deaths) variables within the exposure (male)
category.

The difference between the unadjusted crude estimate and the Mantel–Haenszel estimate suggests

confounding by age: women in the study are older, and older patients are more likely to die. But we

should not use the Mantel–Haenszel estimate without checking its homogeneity assumption. The 𝜒2 test

of homogeneity gives a 𝑝-value of 0.8992, so we have no evidence that the exposure effect (the effect of
being male) differs across age categories. We are justified in using the Mantel–Haenszel estimate.

Technical note
Stratification is one way to deal with confounding; that is, perhaps sex affects the incidence of trigem-

inal neuralgia and so does age, so the table was stratified by age in an attempt to uncover the sex effect.

(We are concerned that age may confound the true association between sex and the incidence of trigemi-

nal neuralgia because the age distributions are so different for males and females. If age affects incidence,

the difference in the age distributions would induce different incidences for males and females and thus

confound the true effect of sex.)

We do not, however, have to use tables to uncover effects; the estimation alternative when we have

aggregate data is Poisson regression, and we can use the same data on which we ran ir with poisson.
Poisson regression also works with individual-level data.

(Although age in the previous example appears to be a string, it is actually a numeric variable taking
on values 1 and 2. We attached a value label to produce the labels <65 and 65+ to make ir’s output look
better; see [U] 12.6.3 Value labels. Stata’s estimation commands will ignore this labeling.)
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. poisson deaths male age, exposure(pyears) irr
Iteration 0: Log likelihood = -10.836732
Iteration 1: Log likelihood = -10.734087
Iteration 2: Log likelihood = -10.733944
Iteration 3: Log likelihood = -10.733944
Poisson regression Number of obs = 4

LR chi2(2) = 164.01
Prob > chi2 = 0.0000

Log likelihood = -10.733944 Pseudo R2 = 0.8843

deaths IRR Std. err. z P>|z| [95% conf. interval]

male 1.495096 .2060997 2.92 0.004 1.141118 1.95888
age 8.888775 1.934943 10.04 0.000 5.801616 13.61867

_cons .0006805 .0002908 -17.07 0.000 .0002945 .0015724
ln(pyears) 1 (exposure)

Note: _cons estimates baseline incidence rate.

Compare these results with the Mantel–Haenszel estimates produced by ir:

Source IRR 95% conf. interval

Mantel–Haenszel (ir) 1.50 1.14 1.96
poisson 1.50 1.14 1.96

The results from poisson agree with the Mantel–Haenszel estimates to two decimal places. But

poisson also estimates an IRR for age. Here the estimate is not of much interest, because the outcome

variable is total mortality and we already knew that older people have a higher mortality rate. In other

contexts, however, the estimate might be of greater interest.

See [R] poisson for an explanation of the poisson command.
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Technical note
Both the model fit above and the preceding table asserted that exposure effects are the same across

age categories and, if they are not, then both of the previous results are equally inappropriate. The table

presented a test of homogeneity, reassuring us that the exposure effects do indeed appear to be constant.

The Poisson-regression alternative can be used to reproduce that test by including interactions between

the age groups and exposure:

. poisson deaths male age male#c.age, exposure(pyears) irr
Iteration 0: Log likelihood = -10.898799
Iteration 1: Log likelihood = -10.726225
Iteration 2: Log likelihood = -10.725904
Iteration 3: Log likelihood = -10.725904
Poisson regression Number of obs = 4

LR chi2(3) = 164.03
Prob > chi2 = 0.0000

Log likelihood = -10.725904 Pseudo R2 = 0.8843

deaths IRR Std. err. z P>|z| [95% conf. interval]

male 1.660688 1.396496 0.60 0.546 .3195218 8.631283
age 9.167973 3.01659 6.73 0.000 4.810583 17.47226

male#c.age
Male .9459 .41539 -0.13 0.899 .3999832 2.236911

_cons .0006412 .0004097 -11.51 0.000 .0001833 .0022434
ln(pyears) 1 (exposure)

Note: _cons estimates baseline incidence rate.

The significance level of the male#c.age effect is 0.899, the same as previously reported by ir.

Here forming the male-times-age interaction was easy because there were only two age groups. Had

there been more groups, the test would have been slightly more difficult—see the following technical

note.

Technical note
Aword of caution is in order when applying poisson (or any estimation technique) to more than two

age categories. Say that in our data, we had three age categories, which we will call categories 0, 1, and

2, and that they are stored in the variable agecat. We might think of the categories as corresponding to

age less than 35, 35–64, and 65 and above.

With such data, we might type ir deaths male pyears, by(agecat), but we would not type

poisson deaths male agecat, exposure(pyears) to obtain the equivalent Poisson-regression es-

timated results. Such a model might be reasonable, but it is not equivalent because we would be con-

straining the age effect in category 2 to be (multiplicatively) twice the effect in category 1.

To poisson (and all of Stata’s estimation commands other than anova), agecat is simply one vari-
able, and only one estimated coefficient is associated with it. Thus, the model is

Poisson index = 𝑃 = 𝛽0 + 𝛽1male + 𝛽2agecat
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The expected number of deaths is then 𝑒𝑃, and the IRR associated with a variable is 𝑒𝛽; see [R] poisson.

Thus, the value of the Poisson index when male==0 and agecat==1 is 𝛽0 + 𝛽2, and the possibilities are

male==0 male==1
agecat==0 𝛽0 𝛽0 + 𝛽1
agecat==1 𝛽0 + 𝛽2 𝛽0 + 𝛽2 + 𝛽1
agecat==2 𝛽0 + 2𝛽2 𝛽0 + 2𝛽2 + 𝛽1

The age effect for agecat==2 is constrained to be twice the age effect for agecat==1—the only dif-

ference between lines 3 and 2 of the table is that 𝛽2 is replaced with 2𝛽2. Under certain circumstances,

such a constraint might be reasonable, but it does not correspond to the assumptions made in generating

the Mantel–Haenszel combined results.

To obtain results equivalent to the Mantel–Haenszel result, we must estimate a separate effect for

each age group, meaning that we must replace 2𝛽2, the constrained effect, with 𝛽3, a new coefficient that

is free to take on any value. We can achieve this by creating two new variables and using them in place

of agecat. agecat1 will take on the value 1 when agecat is 1 and 0 otherwise; agecat2 will take on
the value 1 when agecat is 2 and 0 otherwise:

. generate agecat1 = (agecat==1)

. generate agecat2 = (agecat==2)

. poisson deaths male agecat1 agecat2 [fweight=pop], exposure(pyears) irr

In Stata, we do not have to generate these variables for ourselves. We could use factor variables:

. poisson deaths male i.agecat [fweight=pop], exposure(pyears) irr

See [U] 11.4.3 Factor variables.

To reproduce the homogeneity test with multiple age categories, we could type

. poisson deaths agecat##male [fweight=pop], exp(pyears) irr

. testparm agecat#male

Poisson regression combined with factor variables generalizes to multiway tables. Suppose that there

are three exposure categories. Assume exposure variable burn takes on the values 1, 2, and 3 for first-,
second-, and third-degree burns. The table itself is estimated by typing

. poisson deaths i.burn i.agecat [fweight=pop], exp(pyears) irr

and the test of homogeneity is estimated by typing

. poisson deaths burn##agecat [fweight=pop], exp(pyears) irr

. testparm burn#agecat
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Standardized estimates with stratified incidence-rate data
The by() option specifies that the data are stratified and, by default, will produce a Mantel–Haenszel

combined estimate of the IRR. With the estandard, istandard, or standard(varname) options, you
can specify your own weights and obtain standardized estimates of the IRR or IRD.

Example 4: ir with stratified data, using standardized estimates
Lash et al. (2021, 417) report results fromDoll and Hill (1966) on age-specific coronary disease deaths

among British male doctors from cigarette smoking:

Smokers Nonsmokers
Age Deaths Person-years Deaths Person-years

35–44 32 52,407 2 18,790
45–54 104 43,248 12 10,673
55–64 206 28,612 28 5,710
65–74 186 12,663 28 2,585
75–84 102 5,317 31 1,462

We have entered these data into Stata:

. use https://www.stata-press.com/data/r18/dollhill3
(Doll and Hill (1966))
. list

agecat smokes deaths pyears

1. 35--44 1 32 52,407
2. 45--54 1 104 43,248
3. 55--64 1 206 28,612
4. 65--74 1 186 12,663
5. 75--84 1 102 5,317

6. 35--44 0 2 18,790
7. 45--54 0 12 10,673
8. 55--64 0 28 5,710
9. 65--74 0 28 2,585

10. 75--84 0 31 1,462

We can obtain the Mantel–Haenszel combined estimate along with the crude estimate for ignoring strat-

ification of the IRR and 90% confidence intervals by typing

. ir deaths smokes pyears, by(age) level(90)
Stratified incidence-rate analysis

Age category IRR [90% conf. interval] M--H weight

35--44 5.736638 1.704271 33.61646 1.472169 (exact)
45--54 2.138812 1.274552 3.813282 9.624747 (exact)
55--64 1.46824 1.044915 2.110422 23.34176 (exact)
65--74 1.35606 .9626026 1.953505 23.25315 (exact)
75--84 .9047304 .6375194 1.305412 24.31435 (exact)

Crude 1.719823 1.437544 2.0688 (exact)
M--H combined 1.424682 1.194375 1.699399

Test of homogeneity (M--H): chi2(4) = 10.41 Pr>chi2 = 0.0340
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Note the presence of heterogeneity revealed by the test; the effect of smoking is not the same across age

categories. Moreover, the listed stratum-specific estimates show an effect that appears to be declining

with age. (Even if the test of homogeneity is not significant, you should always examine estimates

carefully when stratum-specific effects occur on both sides of 1 for ratios and 0 for differences.)

Lash et al. (2021, 422) obtain the standardized IRR and 90% confidence intervals, weighting each

age category by the population of the exposed group, thus producing the standardized mortality ratio

(SMR). This calculation can be reproduced by specifying by(age) to indicate that the table is stratified
and istandard to specify that we want the internally standardized rate. We may also specify that we

would like to see the pooled estimate (weighted average where the weights are based on the variance of

the strata calculations):

. ir deaths smokes pyears, by(age) level(90) istandard pool
Stratified incidence-rate analysis

Age category IRR [90% conf. interval] Weight

35--44 5.736638 1.704271 33.61646 52407 (exact)
45--54 2.138812 1.274552 3.813282 43248 (exact)
55--64 1.46824 1.044915 2.110422 28612 (exact)
65--74 1.35606 .9626026 1.953505 12663 (exact)
75--84 .9047304 .6375194 1.305412 5317 (exact)

Crude 1.719823 1.437544 2.0688 (exact)
Pooled (direct) 1.355343 1.134356 1.619382
I. standardized 1.417609 1.186541 1.693676

Test of homogeneity (direct): chi2(4) = 10.20 Pr>chi2 = 0.0372

We obtained the simple pooled results because we specified the pool option. Note the significance of
the homogeneity test; it provides the motivation for standardizing the rate ratios.

If wewanted the externally standardized ratio (weights proportional to the population of the unexposed

group), we would substitute estandard for istandard in the above command.

We are not limited to IRRs; ir can also estimate IRDs. Differences may be standardized internally or
externally. We will obtain the internally weighted difference (Lash et al. 2021 , 418–419):

. ir deaths smokes pyears, by(age) level(90) istandard ird
Stratified incidence-rate analysis

Age category IRD [90% conf. interval] Weight

35--44 .0005042 .0002877 .0007206 52407
45--54 .0012804 .0006205 .0019403 43248
55--64 .0022961 .0005628 .0040294 28612
65--74 .0038567 .0000521 .0076614 12663
75--84 -.0020201 -.0090201 .00498 5317

Crude .0018537 .001342 .0023654
I. standardized .0013047 .000712 .0018974
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Example 5: ir with user-specified weights
In addition to calculating results by using internal or external weights, ir (and cs and cc) can calculate

results for arbitrary weights. If we wanted to obtain the IRR weighting each age category equally, we

would type

. generate conswgt=1

. ir deaths smokes pyears, by(age) standard(conswgt)
Stratified incidence-rate analysis

Age category IRR [95% conf. interval] Weight

35--44 5.736638 1.463557 49.40468 1 (exact)
45--54 2.138812 1.173714 4.272545 1 (exact)
55--64 1.46824 .9863624 2.264107 1 (exact)
65--74 1.35606 .9081925 2.096412 1 (exact)
75--84 .9047304 .6000757 1.399687 1 (exact)

Crude 1.719823 1.391992 2.14353 (exact)
Standardized 1.155026 .9006199 1.481295

Technical note
estandard and istandard are convenience features; they do nothing different from what you could

accomplish by creating the appropriate weights and using the standard() option. For instance, we

could duplicate the previously shown results of istandard (example before last) by typing

. sort age smokes

. by age: generate wgt=pyears[_N]

. list in 1/4

agecat smokes deaths pyears conswgt wgt

1. 35--44 0 2 18,790 1 52407
2. 35--44 1 32 52,407 1 52407
3. 45--54 0 12 10,673 1 43248
4. 45--54 1 104 43,248 1 43248

. ir deaths smokes pyears, by(age) level(90) standard(wgt) ird
(output omitted )

sort age smokes made the exposed group (smokes = 1) the last observation within each age category.

by age: gen wgt=pyears[ N] created wgt equal to the last observation in each age category.
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Cumulative incidence data
Cumulative incidence data are “follow-up data with denominators consisting of persons rather than

person-time” (Rothman 1986, 172). Agroup of noncases is monitored for some time, during which some

become cases. Each subject is also known to be exposed or unexposed. A summary of the data is

Exposed Unexposed Total

Cases 𝑎 𝑏 𝑎 + 𝑏
Noncases 𝑐 𝑑 𝑐 + 𝑑
Total 𝑎 + 𝑐 𝑏 + 𝑑 𝑎 + 𝑏 + 𝑐 + 𝑑

Data of this type are generally summarized using the risk ratio, {𝑎/(𝑎+𝑐)}/{𝑏/(𝑏 +𝑑)}. A ratio of 2

means that an exposed subject is twice as likely to become a case than is an unexposed subject, a ratio of

one-half means half as likely, and so on. The “null” value—the number corresponding to no effect—is

a ratio of 1. If cross-sectional data are analyzed in this format, the risk ratio becomes a prevalence ratio.

Example 6: csi
We have data on diarrhea during a 10-day follow-up period among 30 breast-fed infants colonized

with Vibrio cholerae 01 according to antilipopolysaccharide antibody titers in the mother’s breast milk

(Glass et al. [1983]; reported in Lash et al. [2021, 403]):

Antibody level
High Low

Diarrhea 7 12
No diarrhea 9 2

The csi command works much like the iri command. Our sample is small, so we will specify the

exact option.
. csi 7 12 9 2, exact

Exposed Unexposed Total

Cases 7 12 19
Noncases 9 2 11

Total 16 14 30

Risk .4375 .8571429 .6333333

Point estimate [95% conf. interval]

Risk difference -.4196429 -.7240828 -.1152029
Risk ratio .5104167 .2814332 .9257086

Prev. frac. ex. .4895833 .0742914 .7185668
Prev. frac. pop .2611111

1-sided Fisher’s exact P = 0.0212
2-sided Fisher’s exact P = 0.0259

We find that high antibody levels reduce the risk of diarrhea (the risk falls from 0.86 to 0.44). The

difference is just significant at the 2.59% two-sided level. (Had we not specified the exact option, a 𝜒2

value and its significance level would have been reported in place of Fisher’s exact 𝑝. The calculated 𝜒2

two-sided significance level would have been 0.0173, but this calculation is inferior for small samples.)
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Technical note
By default, cs and csi do not report the odds ratio, but they will if you specify the or option. If you

want odds ratios, however, use the cc or cci commands—the commands appropriate for case–control

data—because cs and csi calculate the attributable (prevented) fraction with the risk ratio, even if you
specify or:

. csi 7 12 9 2, or exact
Exposed Unexposed Total

Cases 7 12 19
Noncases 9 2 11

Total 16 14 30

Risk .4375 .8571429 .6333333

Point estimate [95% conf. interval]

Risk difference -.4196429 -.7240828 -.1152029
Risk ratio .5104167 .2814332 .9257086

Prev. frac. ex. .4895833 .0742914 .7185668
Prev. frac. pop .2611111

Odds ratio .1296296 .0246233 .7180882 (Cornfield)

1-sided Fisher’s exact P = 0.0212
2-sided Fisher’s exact P = 0.0259

Technical note
As with iri and ir, csi and cs report the AFE,AFP, PFE, or PFP; see the discussion under Incidence-

rate data above. In example 6, we estimated that 49% of potential cases in the exposed population were

prevented by exposure. We also estimated that exposure accounted for a 26% reduction in cases over the

entire population, but that is based on the exposure distribution of the (small) population (16/30) and
probably is of little interest.

Fleiss, Levin, and Paik (2003, 128) report infant mortality by birthweight for 72,730 live white births

in 1974 in New York City:

. csi 618 422 4597 67093
Exposed Unexposed Total

Cases 618 422 1040
Noncases 4597 67093 71690

Total 5215 67515 72730

Risk .1185043 .0062505 .0142995

Point estimate [95% conf. interval]

Risk difference .1122539 .1034617 .121046
Risk ratio 18.95929 16.80661 21.38769

Attr. frac. ex. .9472554 .9404996 .9532441
Attr. frac. pop .5628883

chi2(1) = 4327.92 Pr>chi2 = 0.0000
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In these data, exposed means a premature baby (birthweight ≤2,500 g), and a case is a baby who is dead

at the end of one year. We find that being premature accounts for 94.7% of deaths among the premature

population. We also estimate, paraphrasing from Fleiss, Levin, and Paik (2003, 128), that 56.3% of

all white infant deaths in New York City in 1974 could have been prevented if prematurity had been

eliminated. (Moreover, Fleiss, Levin, and Paik put a standard error on the AFP. The formula is given

in Methods and formulas but is appropriate only for the population on which the estimates are based

because other populations may have different probabilities of exposure.)

Example 7: cs
cs works like csi, except that it obtains its information from the data. The data equivalent to typing

csi 7 12 9 2 are

. use https://www.stata-press.com/data/r18/csxmpl, clear

. list

case exp pop

1. 1 1 7
2. 1 0 12
3. 0 1 9
4. 0 0 2

We could then type cs case exp [fweight=pop]. If we had individual-level data, so that each obser-
vation reflected a patient and we had 30 observations, we would type cs case exp.

Stratified cumulative incidence data

Example 8: cs with stratified data
Lash et al. (2021, 419) reprint the following age-specific information for deaths from all causes for

tolbutamide and placebo treatment groups (University Group Diabetes Program 1970):

Age through 54 Age 55 and above
Tolbutamide Placebo Tolbutamide Placebo

Dead 8 5 22 16
Surviving 98 115 76 69
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The data corresponding to these results are

. use https://www.stata-press.com/data/r18/ugdp
(University Group Diabetes Program 1970)
. list

age case exposed pop

1. <55 Surviving Placebo 115
2. <55 Surviving Tolbutamide 98
3. <55 Dead Placebo 5
4. <55 Dead Tolbutamide 8
5. 55+ Surviving Placebo 69

6. 55+ Surviving Tolbutamide 76
7. 55+ Dead Placebo 16
8. 55+ Dead Tolbutamide 22

The order of the observations is unimportant. If we were now to type cs case exposed [fweight=pop],
we would obtain a summary for all the data, ignoring the stratification by age. To incorporate the strati-

fication, we type

. cs case exposed [fweight=pop], by(age)
Age category Risk ratio [95% conf. interval] M--H weight

<55 1.811321 .6112044 5.367898 2.345133
55+ 1.192602 .6712664 2.11883 8.568306

Crude 1.435574 .8510221 2.421645
M--H combined 1.325555 .797907 2.202132

Test of homogeneity (M--H) chi2(1) = 0.447 Pr>chi2 = 0.5037

Mantel–Haenszel weights are appropriate when the risks may differ according to the strata but the risk

ratio is believed to be the same (homogeneous across strata). Under these assumptions, Mantel–Haenszel

weights are designed to use the information efficiently. They are not intended to measure a composite

risk ratio when the within-stratum risk ratios differ. Then, we want a standardized ratio (see below).

The risk ratios above appear to differ markedly, but the confidence intervals are also broad because of

the small sample sizes. The test of homogeneity shows that the differences can be attributed to chance;

the use of the Mantel–Haenszel combined test is sensible.
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Technical note
Stratified cumulative incidence tables are not the only way to control for confounding. Another way

is logistic regression. However, logistic regression measures effects with odds ratios, not with risk ratios.

So before we fit a logistic model, let’s use cs to estimate the Mantel–Haenszel odds ratio:

. cs case exposed [fweight=pop], by(age) or
Age category Odds ratio [95% conf. interval] M--H weight

<55 1.877551 .6238165 5.637046 2.168142 (Cornfield)
55+ 1.248355 .6112772 2.547411 6.644809 (Cornfield)

Crude 1.510673 .8381198 2.722012
M--H combined 1.403149 .7625152 2.582015

Test of homogeneity (M--H) chi2(1) = 0.347 Pr>chi2 = 0.5556
Test that combined odds ratio = 1:

Mantel--Haenszel chi2(1) = 1.19
Pr>chi2 = 0.2750

The Mantel–Haenszel odds ratio is 1.40. It measures the association between death and treatment while

adjusting for age. A more general way to adjust for age is logistic regression; the outcome variable is

case, and it is explained by age and exposed. (As in the incidence-rate example, agemay appear to be
a string variable in our data—we listed the data in the previous example—but it is actually a numeric

variable taking on values 0 and 1 with value labels disguising that fact; see [U] 12.6.3 Value labels.)

. logistic case exposed age [fweight=pop]
Logistic regression Number of obs = 409

LR chi2(2) = 22.47
Prob > chi2 = 0.0000

Log likelihood = -142.6212 Pseudo R2 = 0.0730

case Odds ratio Std. err. z P>|z| [95% conf. interval]

exposed 1.404674 .4374454 1.09 0.275 .7629451 2.586175
age 4.216299 1.431519 4.24 0.000 2.167361 8.202223

_cons .0513818 .0170762 -8.93 0.000 .0267868 .0985593

Note: _cons estimates baseline odds.

Compare these results with the Mantel–Haenszel estimates obtained with cs:

Source Odds ratio 95% conf. interval

Mantel–Haenszel (cs) 1.40 0.76 2.58
logistic 1.40 0.76 2.59

They are virtually identical.

Logistic regression has advantages over the stratified-table approach. First, we obtained an estimate

of the age effect: being 55 years or over significantly increases the odds of death. In addition to the point

estimate, 4.22, we have a confidence interval for the effect: 2.17 to 8.20.

A discrete effect at age 55 is not a plausible model of aging. It would be more reasonable to assume

that a 54-year-old patient has a higher probability of death, due merely to age, than does a 53-year-old

patient; a 53-year-old, a higher probability than a 52-year-old patient; and so on. If we had the underlying
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data, where each patient’s age is presumably known, we could include the actual age in the model and

so better control for the age effect. This would improve our estimate of the effect of being exposed to

tolbutamide.

See [R] logistic for an explanation of the logistic command. Also see the technical note in Strati-
fied incidence-rate data concerning categorical variables, which applies to logistic regression as well as

Poisson regression.

Standardized estimates with stratified cumulative incidence data
As with ir, cs can produce standardized estimates, and the method is basically the same, although

the options for which estimates are to be combined or standardized make it confusing. We showed above

that cs can produce Mantel–Haenszel weighted estimates of the risk ratio (the default) or the odds ratio

(obtained by specifying or). cs can also produce standardized estimates of the risk ratio (the default) or
the risk difference (obtained by specifying rd).

Example 9: cs with stratified data, using standardized estimates
To produce an estimate of the internally standardized risk ratio by using our age-specific data on

deaths from all causes for tolbutamide and placebo treatment groups (example above), we type

. cs case exposed [fweight=pop], by(age) istandard
Age category Risk ratio [95% conf. interval] Weight

<55 1.811321 .6112044 5.367898 106
55+ 1.192602 .6712664 2.11883 98

Crude 1.435574 .8510221 2.421645
I. Standardized 1.312122 .7889772 2.182147

We could obtain externally standardized estimates by substituting estandard for istandard.

To produce an estimate of the risk ratio weighting each age category equally, we could type

. generate wgt=1

. cs case exposed [fweight=pop], by(age) standard(wgt)
Age category Risk ratio [95% conf. interval] Weight

<55 1.811321 .6112044 5.367898 1
55+ 1.192602 .6712664 2.11883 1

Crude 1.435574 .8510221 2.421645
Standardized 1.304737 .7844994 2.169967

If we instead wanted the risk difference, we would type

. cs case exposed [fweight=pop], by(age) standard(wgt) rd
Age category Risk diff. [95% conf. interval] Weight

<55 .033805 -.0278954 .0955055 1
55+ .0362545 -.0809204 .1534294 1

Crude .0446198 -.0192936 .1085332
Standardized .0350298 -.0311837 .1012432
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If we wanted to weight the less-than-55 age group five times as heavily as the 55-and-over group, we

would create wgt to contain 5 for the first age group and 1 for the second (or 10 for the first group and 2
for the second—the scale of the weights does not matter).

Case–control data
In case–control data, you select a sample on the basis of the outcome under study; that is, cases and

noncases are sampled at different rates. If you were examining the link between coffee consumption

and heart attacks, for instance, you could select a sample of subjects with and without the heart problem

and then examine their coffee-drinking behavior. A subject who has suffered a heart attack is called a

case just as with cohort study data. A subject who has never suffered a heart attack, however, is called a

control rather than merely a noncase, emphasizing that the sampling was performed with respect to the

outcome.

In case–control data, all hope of identifying the risk (that is, incidence) of the outcome (heart attacks)

associated with the factor (coffee drinking) vanishes, at least without information on the underlying

sampling fractions, but you can examine the proportion of coffee drinkers among the two populations

and reason that, if there is a difference, coffee drinking may be associated with the risk of heart attacks.

Remarkably, even without the underlying sampling fractions, you can also measure the ratio of the odds

of heart attacks if a subject drinks coffee to the odds if a subject does not—the so-called odds ratio.

What is lost is the ability to compare absolute rates, which is not always the same as comparing relative

rates; see Fleiss, Levin, and Paik (2003, 123).

Example 10: cci
cci calculates the odds ratio and the attributable risk associated with a 2 × 2 table. Rothman et al.

(1979; reprinted in Rothman [1986, 161], and Lash et al. [2021, 411]) present case–control data on

the history of chlordiazopoxide use in early pregnancy for mothers of children born with and without

congenital heart defects:
Chlordiazopoxide use

Yes No

Case mothers 4 386
Control mothers 4 1250

. cci 4 386 4 1250, level(90)
Proportion

Exposed Unexposed Total exposed

Cases 4 386 390 0.0103
Controls 4 1250 1254 0.0032

Total 8 1636 1644 0.0049

Point estimate [90% conf. interval]

Odds ratio 3.238342 .7698467 13.59664 (exact)
Attr. frac. ex. .6912 -.2989599 .9264524 (exact)
Attr. frac. pop .0070892

chi2(1) = 3.07 Pr>chi2 = 0.0799

We obtain a point estimate of the odds ratio as 3.24 and a 𝜒2 value, which is a test that the odds ratio is

1, significant at the 10% level.
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Technical note
The epitab commands can calculate three different confidence intervals for the odds ratio: the exact,

Woolf, and Cornfield intervals. The exact interval, illustrated in example 10, is the default. The interval

is “exact” because it uses an exact sampling distribution—a distribution with no unknown parameters

under the null hypothesis. An exact interval does not use a normal or 𝜒2 approximation. “Exact” does

not describe the coverage probability; the coverage probability of a 90% exact interval is not exactly

90%. The coverage probability is actually bounded below by 90% (Agresti 2013, 606), so a 90% exact

interval will always cover the odds ratio with probability at least 90% (if the model is correct).

The Woolf and Cornfield intervals, on the other hand, are approximate. They approximate the exact

sampling distribution with a normal model and are not guaranteed to maintain their nominal coverage:

the coverage probability of a 90% approximate interval fluctuates above and below 90%. The cover-

age approaches 90% only in the limit as the sample size increases. Exact intervals are conservative;

approximate intervals can be conservative or anticonservative (Agresti 2013, 607).

If you wish to maintain nominal coverage, then you should use the exact interval. But you will

pay a price for the coverage: the exact interval will usually be wider than the approximate intervals.

Example 10 is no exception:

Method 90% conf. interval Command

exact 0.77 13.60 cci
Woolf 1.01 10.40 cci, woolf
Cornfield 1.07 9.83 cci, cornfield

The exact interval is the widest of the three—so wide that it includes the null value of one—even

though the 𝜒2 test 𝑝-value of 0.0799 was significant at the 10% level. The exact interval and 𝜒2 test

come from different models, so we should not expect them to always agree on sharp conclusions such as

statistical significance.

The odds-ratio intervals are all frequentist methods, so we cannot compare them rigorously with one

example. See Brown (1981), Gart and Thomas (1982), and Agresti (1999) for more rigorous compar-

isons. Agresti (1999) found that the Woolf interval performed well, even for small samples.� �
Jerome Cornfield (1912–1979) was born in New York City. He majored in history at New York

University and took courses in statistics at the US Department of Agriculture Graduate School but

otherwise had little formal training. Cornfield held positions at the Bureau of Labor Statistics, the

National Cancer Institute, the National Institutes of Health, Johns Hopkins University, the Univer-

sity of Pittsburgh, and GeorgeWashington University. He worked on many problems in biomedical

statistics, including the analysis of clinical trials, epidemiology (especially case–control studies),

and Bayesian approaches.

Barnet Woolf (1902–1983) was born in London. His parents were immigrants from Lithuania.

Woolf was educated at Cambridge, where he studied physiology and biochemistry, and proposed

methods for linearizing plots in enzyme chemistry that were later rediscovered by others (see Hal-

dane [1957]). His later career in London, Birmingham, Rothamsted, and Edinburgh included lasting

contributions to nutrition, epidemiology, public health, genetics, and statistics. He was also active

in left-wing causes and penned humorous poems, songs, and revues.� �
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Technical note
By default, cc and cci report exact confidence intervals but an approximate significance test. You

can replace the approximate test with Fisher’s exact test by specifying the exact option. We recommend

specifying exact whenever any cell count is less than 1,000.

. cci 4 386 4 1250, exact level(90)
Proportion

Exposed Unexposed Total exposed

Cases 4 386 390 0.0103
Controls 4 1250 1254 0.0032

Total 8 1636 1644 0.0049

Point estimate [90% conf. interval]

Odds ratio 3.238342 .7698467 13.59664 (exact)
Attr. frac. ex. .6912 -.2989599 .9264524 (exact)
Attr. frac. pop .0070892

1-sided Fisher’s exact P = 0.0964
2-sided Fisher’s exact P = 0.0964

In this table, the one- and two-sided significance values are equal. This is not a mistake, but it does not

happen often. Exact significance values are calculated by summing the probabilities for tables that have

the same marginals (row and column sums) but that are less likely (given an odds ratio of 1) than the

observed table. When considering each possible table, we might ask if the table is in the same or opposite

tail as the observed table. If it is in the same tail, we would count the table under consideration in the

one-sided test and, either way, we would count it in the two-sided test. Here all the tables more extreme

than this table are in the same tail, so the one- and two-sided tests are the same.

The 𝑝-value of 0.0964 is significant at the 10% level, but the exact confidence interval is not (it

includes the null odds ratio of one). It was not surprising that the exact interval disagreed with the 𝜒2

test; after all, they come from different models. Now, the exact interval and Fisher’s exact test also

disagree, even though they come from the same model!

The test and interval disagree because the exact sampling distribution is asymmetric, and the test and

interval handle the asymmetry differently. The two-sided test, as we have seen, sums the probabilities

of all tables at least as unlikely as the observed table, and in example 10, all the unlikely tables fall in

the same tail of the distribution. The other tail does not contribute to the 𝑝-value. The exact interval, on
the other hand, must always use both tails of the distribution, because the interval inverts two one-sided

tests, not one two-sided test (Breslow and Day 1980, 128–129).

Technical note
The reported value of theAFE or PFE is calculated using the odds ratio as a proxy for the risk ratio. This

can be justified only if the outcome is rare in the population. The extrapolation to theAFP or PFP assumes

that the control group is a random sample of the corresponding group in the underlying population.
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Example 11: cc equivalent to cci
Equivalent to typing cci 4 386 4 1250 would be typing cc case exposed [fweight=pop] with the

following data:

. use https://www.stata-press.com/data/r18/ccxmpl, clear

. list

case exposed pop

1. 1 1 4
2. 1 0 386
3. 0 1 4
4. 0 0 1250

Stratified case–control data

Example 12: cc with stratified data
cc can work with stratified tables. Lash et al. (2021, 429) reprint and discuss data from a case–control

study on infants with congenital heart disease and Down syndrome and healthy controls, according to

maternal spermicide use before conception and maternal age at delivery (Rothman 1982):

Maternal age to 34 Maternal age 35+
Spermicide used not used Spermicide used not used

Down syndrome 3 9 1 3
Controls 104 1059 5 86

The data corresponding to these tables are

. use https://www.stata-press.com/data/r18/downs
(Congenital heart disease and Down syndrome)
. list

case exposed pop age

1. 1 1 3 <35
2. 1 0 9 <35
3. 0 1 104 <35
4. 0 0 1059 <35
5. 1 1 1 35+

6. 1 0 3 35+
7. 0 1 5 35+
8. 0 0 86 35+
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The stratified results for the odds ratio are

. cc case exposed [fweight=pop], by(age) woolf
Maternal age Odds ratio [95% conf. interval] M--H weight

<35 3.394231 .9048403 12.73242 .7965957 (Woolf)
35+ 5.733333 .5016418 65.52706 .1578947 (Woolf)

Crude 3.501529 1.110362 11.04208 (Woolf)
M--H combined 3.781172 1.18734 12.04142

Test of homogeneity (M--H) chi2(1) = 0.14 Pr>chi2 = 0.7105
Test that combined odds ratio = 1:

Mantel--Haenszel chi2(1) = 5.81
Pr>chi2 = 0.0159

For no particular reason, we also specified the woolf option to obtainWoolf approximations to thewithin-

stratum confidence intervals rather than the default. Had we wanted Tarone’s test of homogeneity, we

would have used

. cc case exposed [fweight=pop], by(age) tarone
Maternal age Odds ratio [95% conf. interval] M--H weight

<35 3.394231 .5812415 13.87412 .7965957 (exact)
35+ 5.733333 .0911619 85.89602 .1578947 (exact)

Crude 3.501529 .8080857 11.78958 (exact)
M--H combined 3.781172 1.18734 12.04142

Test of homogeneity (M--H) chi2(1) = 0.14 Pr>chi2 = 0.7105
Test of homogeneity (Tarone) chi2(1) = 0.14 Pr>chi2 = 0.7092

Test that combined odds ratio = 1:
Mantel--Haenszel chi2(1) = 5.81

Pr>chi2 = 0.0159

Whatever method you choose for calculating confidence intervals, Stata will report a test of homo-

geneity, which here is 𝜒2(1) = 0.14 and not significant. That is, the odds of Down syndrome might vary

with maternal age, but we cannot reject the hypothesis that the association between Down syndrome and

spermicide is the same in the two maternal age strata. This is thus a test to reject the appropriateness of

the single, Mantel–Haenszel combined odds ratio—a rejection not justified by these data.

Technical note
The cc command includes four tests of homogeneity: Mantel–Haenszel (the default); directly pooled,

also known as the Woolf test (available with the pool option); Tarone (available with the tarone op-
tion); and Breslow–Day (available with the bd option). The preferred test is Tarone’s (Tarone 1985, 94),
which corrected an error in the Breslow–Day test; see Breslow (1996, 17–18) for details of the error and

Tarone’s correction.

The other two homogeneity tests, the Mantel–Haenszel and directly pooled, are less useful: they use

the logs of the stratum-specific odds ratios, so they are undefined when any stratum has a zero cell. The

epitab commands deal with the problem differently: cs omits the offending strata, while cc substitutes
the Tarone test. The Tarone test does not use the stratum-specific odds ratios, so it can still be calculated

when there are zero cells.
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None of the tests is appropriate for finely stratified (many strata with only a few observations each)

studies (Lash et al. 2021 , 429). If you have fine stratification, one alternative is multilevel logistic

regression; see [ME] melogit.

Technical note
Aswith cohort study data, an alternative to stratified tables for uncovering effects is logistic regression.

From the logistic point of view, case–control data are no different from cohort study data—you must

merely ignore the estimated intercept. The intercept is meaningless in case–control data because it

reflects the baseline prevalence of the outcome, which you controlled by sampling.

The data we used with cc can be used directly by logistic. (The age variable, which appears to be
a string, is really numeric with an associated value label; see [U] 12.6.3 Value labels. age takes on the
value 0 for the age-less-than-35 group and 1 for the 35+ group.)

. logistic case exposed age [fweight=pop]
Logistic regression Number of obs = 1,270

LR chi2(2) = 8.74
Prob > chi2 = 0.0127

Log likelihood = -81.517532 Pseudo R2 = 0.0509

case Odds ratio Std. err. z P>|z| [95% conf. interval]

exposed 3.787779 2.241922 2.25 0.024 1.187334 12.0836
age 4.582857 2.717352 2.57 0.010 1.433594 14.65029

_cons .0082631 .0027325 -14.50 0.000 .0043218 .0157988

Note: _cons estimates baseline odds.

We compare the results with those presented by cc in the previous example:

Source Odds ratio 95% CI

Mantel–Haenszel (cc) 3.78 1.19 12.04
logistic 3.79 1.19 12.08

As with the cohort study data in example 8, results are virtually identical, and all the same comments we

made previously apply once again.
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To demonstrate an advantage of logistic regression, let’s now ask a question that would be difficult to

answer on the basis of a stratified table analysis. We now know that spermicide use appears to increase

the risk of having a baby with Down syndrome, and we know that the mother’s age also increases the

risk. Is the effect of spermicide use statistically different for mothers in the two age groups?

. logistic case exposed age c.age#exposed [fweight=pop]
Logistic regression Number of obs = 1,270

LR chi2(3) = 8.87
Prob > chi2 = 0.0311

Log likelihood = -81.451332 Pseudo R2 = 0.0516

case Odds ratio Std. err. z P>|z| [95% conf. interval]

exposed 3.394231 2.289544 1.81 0.070 .9048403 12.73242
age 4.104651 2.774868 2.09 0.037 1.091034 15.44237

exposed#
c.age

1 1.689141 2.388785 0.37 0.711 .1056563 27.0045

_cons .0084986 .0028449 -14.24 0.000 .0044097 .0163789

Note: _cons estimates baseline odds.

The answer is no. The odds ratio and confidence interval reported for exposed now measure the sper-

micide effect for an age==0 (age < 35) mother. The odds ratio and confidence interval reported for

c.age#exposed are the (multiplicative) difference in the spermicide odds ratio for an age==1 (age 35+)
mother relative to a young mother. The point estimate is that the effect is larger for older mothers, sug-

gesting grounds for future research, but the difference is not significant.

See [R] logistic for an explanation of the logistic command. Also see the technical note under

Incidence-rate data above concerning Poisson regression, which applies equally to logistic regression.

Case–control data with multiple levels of exposure
In a case–control study, subjects with the disease of interest (cases) are compared with disease-free

individuals (controls) to assess the relationship between exposure to one or more risk factors and dis-

ease incidence. Often exposure is measured qualitatively at several discrete levels or measured on a

continuous scale and then grouped into three or more levels. The data can be summarized as

Exposure level

1 2 . . . 𝑘 Total

Cases 𝑎1 𝑎2 . . . 𝑎𝑘 𝑀1
Controls 𝑐1 𝑐2 . . . 𝑐𝑘 𝑀0

Total 𝑁1 𝑁2 . . . 𝑁𝑘 𝑇

An advantage afforded by having multiple levels of exposure is the ability to examine dose–response

relationships. If the association between a risk factor and a disease or outcome is real, we expect the

strength of that association to increase with the level and duration of exposure. A dose–response rela-

tionship provides strong support for a direct or even causal relationship between the risk factor and the

outcome. On the other hand, the lack of a dose–response is usually seen as an argument against causality.
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We can use the tabodds command to tabulate the odds of failure or odds ratios against a categorical
exposure variable. The test for trend calculated by tabodds can serve as a test for dose–response if the
exposure variable is at least ordinal. If the exposure variable has no natural ordering, the trend test is

meaningless and should be ignored. See the technical note at the end of this section for more information

regarding the test for trend.

Before looking at an example, consider three possible data arrangements for case–control and preva-

lence studies. The most common data arrangement is individual records, where each subject in the study

has his or her own record. Closely related are frequency records where identical individual records are

included only once, but with a variable giving the frequency with which the record occurs. The fweight
weight option is used for these data to specify the frequency variable. Data can also be arranged as bino-

mial frequency records where each record contains a variable, D, the number of cases; another variable,
N, the number of total subjects (cases plus controls); and other variables. An advantage of binomial

frequency records is that large datasets can be entered succinctly into a Stata database.

Example 13: tabodds
Consider the following data from the Ille-et-Vilaine study of esophageal cancer, discussed in Breslow

and Day (1980, chap. 4 and app. I), corresponding to subjects age 55–64 who use from 0 to 9 g of tobacco

per day:
Alcohol consumption (g/day)

0–39 40–79 80–119 120+ Total

Cases 2 9 9 5 25

Controls 47 31 9 5 92

Total 49 40 18 10 117

The study included 24 such tables, each representing one of four levels of tobacco use and one of six age

categories. We can create a binomial frequency-record dataset by typing

. input alcohol D N agegrp tobacco
alcohol D N agegrp tobacco

1. 1 2 49 4 1
2. 2 9 40 4 1
3. 3 9 18 4 1
4. 4 5 10 4 1
5. end

where D is the number of esophageal cancer cases and N is the number of total subjects (cases plus

controls) for each combination of six age groups (agegrp), four levels of alcohol consumption in g/day
(alcohol), and four levels of tobacco use in g/day (tobacco).

Both the tabodds and mhodds commands can correctly handle all three data arrangements. Binomial
frequency records require that the number of total subjects (cases plus controls) represented by each

record N be specified with the binomial() option.



Epitab — Tables for epidemiologists 681

We could also enter the data as frequency-weighted data:

. input alcohol case freq agegrp tobacco
alcohol case freq agegrp tobacco

1. 1 1 2 4 1
2. 1 0 47 4 1
3. 2 1 9 4 1
4. 2 0 31 4 1
5. 3 1 9 4 1
6. 3 0 9 4 1
7. 4 1 5 4 1
8. 4 0 5 4 1
9. end

If you are planning on using any of the other estimation commands, such as poisson or logistic,
we recommend that you enter your data either as individual records or as frequency-weighted records

and not as binomial frequency records, because the estimation commands currently do not recognize the

binomial() option.

We have entered all the esophageal cancer data into Stata as a frequency-weighted record dataset as

previously described. In our data, case indicates the esophageal cancer cases and controls, and freq is
the number of subjects represented by each record (the weight).

We added value labels to the agegrp, alcohol, and tobacco variables in our dataset to ease inter-
pretation in outputs, but these variables are numeric.

We are interested in the association between alcohol consumption and esophageal cancer. We first

use tabodds to tabulate the odds of esophageal cancer against alcohol consumption:

. use https://www.stata-press.com/data/r18/bdesop, clear
(Ille-et-Vilaine study of esophageal cancer)
. tabodds case alcohol [fweight=freq]

alcohol Cases Controls Odds [95% conf. interval]

0--39 29 386 0.07513 0.05151 0.10957
40--79 75 280 0.26786 0.20760 0.34560

80--119 51 87 0.58621 0.41489 0.82826
120+ 45 22 2.04545 1.22843 3.40587

Test of homogeneity (equal odds): chi2(3) = 158.79
Pr>chi2 = 0.0000

Score test for trend of odds: chi2(1) = 152.97
Pr>chi2 = 0.0000

The test of homogeneity clearly indicates that the odds of esophageal cancer differ by level of alcohol

consumption, and the test for trend indicates a significant increase in odds with increasing alcohol use.

This suggests a strong dose–response relation. The graph option can be used to study the shape of the
relationship of the odds with alcohol consumption. Most of the heterogeneity in these data can be “ex-

plained” by the linear increase in risk of esophageal cancer with increased dosage (alcohol consumption).

We also could have requested that the odds ratios at each level of alcohol consumption be calcu-

lated by specifying the or option. For example, tabodds case alcohol [fweight=freq], or would
produce odds ratios using the minimum value of alcohol—that is, alcohol = 1 (0–39)—as the ref-

erence group, and the command tabodds case alcohol [fweight=freq], or base(2) would use

alcohol = 2 (40–79) as the reference group.
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Although our results appear to provide strong evidence supporting an association between alco-

hol consumption and esophageal cancer, we need to be concerned with the possible existence of con-

founders, specifically age and tobacco use, in our data. We can again use tabodds to tabulate the odds
of esophageal cancer against age and against tobacco use, independently:

. tabodds case agegrp [fweight=freq]

agegrp Cases Controls Odds [95% conf. interval]

25--34 1 115 0.00870 0.00121 0.06226
35--44 9 190 0.04737 0.02427 0.09244
45--54 46 167 0.27545 0.19875 0.38175
55--64 76 166 0.45783 0.34899 0.60061
65--74 55 106 0.51887 0.37463 0.71864
75+ 13 31 0.41935 0.21944 0.80138

Test of homogeneity (equal odds): chi2(5) = 96.94
Pr>chi2 = 0.0000

Score test for trend of odds: chi2(1) = 83.37
Pr>chi2 = 0.0000

. tabodds case tobacco [fweight=freq]

tobacco Cases Controls Odds [95% conf. interval]

0--9 78 447 0.17450 0.13719 0.22194
10--19 58 178 0.32584 0.24228 0.43823
20--29 33 99 0.33333 0.22479 0.49428
30+ 31 51 0.60784 0.38899 0.94983

Test of homogeneity (equal odds): chi2(3) = 29.33
Pr>chi2 = 0.0000

Score test for trend of odds: chi2(1) = 26.93
Pr>chi2 = 0.0000

We can see that there is evidence to support our concern that both age and tobacco use are potentially

important confounders. Clearly, before we can make any statements regarding the association between

esophageal cancer and alcohol use, we must examine and, if necessary, adjust for the effect of any con-

founder. We will return to this example in the following section.

Technical note
The score test for trend performs a test for linear trend of the log odds against the numerical code

used for the exposure variable. The test depends not only on the relationship between dose level and the

outcome but also on the numeric values assigned to each level or, to be more accurate, to the distance

between the numeric values assigned. For example, the trend test on a dataset with four exposure levels

coded 1, 2, 3, and 4 gives the same results as coding the levels 10, 20, 30, and 40 because the distance

between the levels in each case is constant. In the first case, the distance is 1 unit, and in the second

case, it is 10 units. However, if we code the exposure levels as 1, 10, 100, and 1,000, we would obtain

different results because the distance between exposure levels is not constant. Thus, be careful when

assigning values to exposure levels. You must determine whether equally spaced numbers make sense

for your data or if other more meaningful values should be used.
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Remember that we are testing whether a log-linear relationship exists between the odds and the ex-

posure variable. For your particular problem, this relationship may not be correct or even make sense,

so you must be careful in interpreting the output of this trend test.

Case–control data with confounders and possibly multiple levels of exposure
In the esophageal cancer data example introduced earlier, we determined that the apparent association

between alcohol consumption and esophageal cancer could be confounded by age and tobacco use. You

can adjust for the effect of possible confounding factors by stratifying on these factors. This is the

method used by both tabodds and mhodds to adjust for other variables in the dataset. We will compare

and contrast these two commands in the following example.

Example 14: tabodds, adjusting for confounding factors
We begin by using tabodds to tabulate unadjusted odds ratios.

. tabodds case alcohol [fweight=freq], or

alcohol Odds ratio chi2 P>chi2 [95% conf. interval]

0--39 1.000000 . . . .
40--79 3.565271 32.70 0.0000 2.237981 5.679744
80--119 7.802616 75.03 0.0000 4.497054 13.537932
120+ 27.225705 160.41 0.0000 12.507808 59.262107

Test of homogeneity (equal odds): chi2(3) = 158.79
Pr>chi2 = 0.0000

Score test for trend of odds: chi2(1) = 152.97
Pr>chi2 = 0.0000

The alcohol = 1 group (0–39) was used by tabodds as the reference category for calculating the
odds ratios. We could have selected a different group by specifying the base() option; however, because
the lowest dosage level is most often the appropriate reference group, as it is in these data, the base()
option is seldom used.

We use tabodds with the adjust() option to tabulate Mantel–Haenszel age-adjusted odds ratios:

. tabodds case alcohol [fweight=freq], adjust(age)
Mantel--Haenszel odds ratios adjusted for agegrp

alcohol Odds ratio chi2 P>chi2 [95% conf. interval]

0--39 1.000000 . . . .
40--79 4.268155 37.36 0.0000 2.570025 7.088314
80--119 8.018305 59.30 0.0000 4.266893 15.067922
120+ 28.570426 139.70 0.0000 12.146409 67.202514

Score test for trend of odds: chi2(1) = 135.09
Pr>chi2 = 0.0000

Weobserve that the age-adjusted odds ratios are just slightly higher than the unadjusted ones, so it appears

that age is not as strong a confounder as it first appeared. Even after adjusting for age, the dose–response

relationship, as measured by the trend test, remains strong.
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We now perform the same analysis but this time adjust for tobacco use instead of age.

. tabodds case alcohol [fweight=freq], adjust(tobacco)
Mantel--Haenszel odds ratios adjusted for tobacco

alcohol Odds ratio chi2 P>chi2 [95% conf. interval]

0--39 1.000000 . . . .
40--79 3.261178 28.53 0.0000 2.059764 5.163349
80--119 6.771638 62.54 0.0000 3.908113 11.733306
120+ 19.919526 123.93 0.0000 9.443830 42.015528

Score test for trend of odds: chi2(1) = 135.04
Pr>chi2 = 0.0000

Again we observe a significant dose–response relationship and not much difference between the ad-

justed and unadjusted odds ratios. We could also adjust for the joint effect of both age and tobacco use

by specifying adjust(tobacco age), but we will not bother here.

A different approach to analyzing these data is to use the mhodds command. This command estimates
the ratio of the odds of failure for two categories of an exposure variable, controlling for any specified

confounding variables, and it tests whether this odds ratio is equal to one. For multiple exposures, if two

exposure levels are not specified with compare(), then mhodds assumes that exposure is quantitative
and calculates a 1-degree-of-freedom test for trend. This test for trend is the same one that tabodds
reports.

Example 15: mhodds, controlling for confounding factors
We first use mhodds to estimate the effect of alcohol controlled for age:

. mhodds case alcohol agegrp [fweight=freq]
Score test for trend of odds with alcohol
controlling for agegrp

Odds ratio chi2(1) P>chi2 [95% conf. interval]

2.845895 135.09 0.0000 2.385749 3.394792

Note: The Odds ratio estimate is an approximation to the odds ratio
for a one-unit increase in alcohol.

Because alcohol has more than two levels, mhodds estimates and reports an approximate age-

adjusted odds ratio for a one-unit increase in alcohol consumption. The 𝜒2 value reported is identical to

that reported by tabodds for the score test for trend on the previous page.
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We now use mhodds to estimate the effect of alcohol controlled for age, and while we are at it, we do
this by levels of tobacco consumption:

. mhodds case alcohol agegrp [fweight=freq], by(tobacco)
Score test for trend of odds with alcohol
controlling for agegrp
by tobacco

tobacco Odds ratio chi2(1) P>chi2 [95% conf. interval]

0--9 3.579667 75.95 0.0000 2.68710 4.76871
10--19 2.303580 25.77 0.0000 1.66913 3.17920
20--29 2.364135 13.27 0.0003 1.48810 3.75589
30+ 2.217946 8.84 0.0029 1.31184 3.74992

Notes: Only 19 of the 24 strata formed in this analysis contribute information
about the effect of the explanatory variable.
The Odds ratio estimate is an approximation to the odds ratio for a
one-unit increase in alcohol.

Mantel--Haenszel estimate controlling for agegrp and tobacco

Odds ratio chi2(1) P>chi2 [95% conf. interval]

2.751236 118.37 0.0000 2.292705 3.301471

Approximate test of homogeneity of odds ratios: chi2(3) = 5.46
Pr>chi2 = 0.1409

The first table reports estimates of the effect of alcohol for each level of tobacco use, controlling for age.

From the second table, we find that the effect of alcohol is about ×2.8 when we control for both age

and tobacco use. Again, because alcohol has more than two levels, mhodds estimates and reports an
approximate Mantel–Haenszel age and tobacco-use adjusted odds ratio for a one-unit increase in alcohol

consumption.

The 𝜒2 test for trend reported with the Mantel–Haenszel estimate is again the same one that tabodds
produces if adjust(agegrp tobacco) is specified.

To instead estimate the effect of tobacco use for each level of alcohol consumption, controlling for

age, we type

. mhodds case tobacco agegrp [fweight=freq], by(alcohol)
Score test for trend of odds with tobacco
controlling for agegrp
by alcohol

alcohol Odds ratio chi2(1) P>chi2 [95% conf. interval]

0--39 2.420650 15.61 0.0001 1.56121 3.75320
40--79 1.427713 5.75 0.0165 1.06717 1.91007

80--119 1.472218 3.38 0.0659 0.97483 2.22339
120+ 1.214815 0.59 0.4432 0.73876 1.99763

Notes: Only 18 of the 24 strata formed in this analysis contribute information
about the effect of the explanatory variable.
The Odds ratio estimate is an approximation to the odds ratio for a
one-unit increase in tobacco.
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Mantel--Haenszel estimate controlling for agegrp and alcohol

Odds ratio chi2(1) P>chi2 [95% conf. interval]

1.553437 20.07 0.0000 1.281160 1.883580

Approximate test of homogeneity of odds ratios: chi2(3) = 5.26
Pr>chi2 = 0.1540

From the second table, we find that the effect of tobacco, controlled for both age and alcohol consumption,

is about ×1.6.

Comparisons between particular levels of alcohol and tobacco consumption can bemade by generating

a new variable with levels corresponding to all combinations of alcohol and tobacco, as in

. egen alctob = group(alcohol tobacco)

. mhodds case alctob [fweight=freq], compare(16,1)
Maximum likelihood estimate of the odds ratio comparing alctob==16
vs. alctob==1

Odds ratio chi2(1) P>chi2 [95% conf. interval]

93.333333 103.21 0.0000 14.766136 589.938431

which yields an odds ratio of 93 between subjects with the highest levels of alcohol and tobacco and

those with the lowest levels. Similar results can be obtained simultaneously for all levels of alctob
using alctob = 1 as the comparison group by specifying tabodds D alctob, binomial(N) or.

Standardized estimates with stratified case–control data

Example 16: cc with stratified data, using standardized estimates
You obtain standardized estimates (here for the odds ratio) by using cc just as you obtain standardized

estimates by using ir or cs. Along with the by() option, you specify one of estandard, istandard,
or standard(varname).

Case–control studies can provide standardized rate-ratio estimates when density sampling is used,

or when the disease is rare (Lash et al. 2021 , 422). Lash et al. (2021, 429) report the SMR for the

case–control study on infants with congenital heart disease and Down syndrome. We can reproduce

their estimates along with the pooled estimates by typing

. use https://www.stata-press.com/data/r18/downs, clear
(Congenital heart disease and Down syndrome)
. cc case exposed [fweight=pop], by(age) istandard pool

Maternal age Odds ratio [95% conf. interval] Weight

<35 3.394231 .5812415 13.87412 104 (exact)
35+ 5.733333 .0911619 85.89602 5 (exact)

Crude 3.501529 .8080857 11.78958 (exact)
Pooled (direct) 3.824166 1.196437 12.22316
I. Standardized 3.779749 1.180566 12.10141

Test of homogeneity (direct) chi2(1) = 0.14 Pr>chi2 = 0.7109
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Using the distribution of the nonexposed subjects in the source population as the standard, we can

obtain an estimate of the standardized rate ratio (SRR):

. cc case exposed [fweight=pop], by(age) estandard
Maternal age Odds ratio [95% conf. interval] Weight

<35 3.394231 .5812415 13.87412 1059 (exact)
35+ 5.733333 .0911619 85.89602 86 (exact)

Crude 3.501529 .8080857 11.78958 (exact)
E. Standardized 3.979006 1.176096 13.46191

Finally, if we wanted to weight the two age groups equally, we could type

. generate wgt=1

. cc case exposed [fweight=pop], by(age) standard(wgt)
Maternal age Odds ratio [95% conf. interval] Weight

<35 3.394231 .5812415 13.87412 1 (exact)
35+ 5.733333 .0911619 85.89602 1 (exact)

Crude 3.501529 .8080857 11.78958 (exact)
Standardized 5.275104 .6233794 44.6385

Matched case–control data
Matched case–control studies are performed to gain sample-size efficiency and to control for impor-

tant confounding factors. In a matched case–control design, each case is matched with a control on the

basis of demographic characteristics, clinical characteristics, etc. Thus, their difference with respect to

the outcome must be due to something other than the matching variables. If the only difference between

them was exposure to the factor, we could attribute any difference in outcome to the factor.

A summary of the data is

Controls

Cases Exposed Unexposed Total

Exposed 𝑎 𝑏 𝑀1
Unexposed 𝑐 𝑑 𝑀0

Total 𝑁1 𝑁0 𝑇 = 𝑎 + 𝑏 + 𝑐 + 𝑑

Each entry in the table represents the number of case–control pairs. For instance, in 𝑎 of the pairs, both

members were exposed; in 𝑏 of the pairs, the case was exposed but the control was not; and so on. In
total, 𝑇 pairs were observed.
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Example 17: mcci
Rothman (1986, 257) discusses data from Jick et al. (1973) on a matched case–control study of

myocardial infarction and drinking six or more cups of coffee per day (persons drinking from one to five

cups per day were excluded):
Controls

Cases 6+ cups 0 cups

6+ cups 8 8
0 cups 3 8

mcci analyzes matched case–control data:

. mcci 8 8 3 8
Controls

Cases Exposed Unexposed Total

Exposed 8 8 16
Unexposed 3 8 11

Total 11 16 27
McNemar’s chi2(1) = 2.27 Prob > chi2 = 0.1317
Exact McNemar significance probability = 0.2266
Proportion with factor

Cases .5925926
Controls .4074074 [95% conf. interval]

difference .1851852 -.0822542 .4526246
ratio 1.454545 .891101 2.374257
rel. diff. .3125 -.0243688 .6493688
odds ratio 2.666667 .6400364 15.6064 (exact)

The point estimate states that the odds of drinking 6 or more cups of coffee per day is 2.67 times greater

among the myocardial infarction patients. The confidence interval is wide, however, and the 𝑝-value of
0.1317 from McNemar’s test is not statistically significant.

mcc works like the other nonimmediate commands but does not handle stratified data. If you have
stratified matched case–control data, you can use conditional logistic regression to estimate odds ratios;

see [R] clogit.

Matched case–control studies can also be analyzed using mhodds by controlling on the variable used
to identify the matched sets. For example, if the variable set is used to identify the matched set for each
subject,

. mhodds fail xvar set

will do the job. Any attempt to control for further variables will restrict the analysis to the comparison of

cases and matched controls that share the same values of these variables. In general, this would lead to

the omission of many records from the analysis. Similar considerations usually apply when investigating

effect modification by using the by() option. An important exception to this rule is that a variable used
in matching cases to controls may appear in the by() option without loss of data.
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Example 18: mhodds with matched case–control data
Let’s use mhodds to analyze matched case–control studies using the study of endometrial cancer and

exposure to estrogen described in Breslow and Day (1980, chap. 5). In this study, there are four controls

matched to each case. Cases and controls are matched on age, marital status, and time living in the

community. The data collected include information on the daily dose of conjugated estrogen therapy.

Breslow and Day created four levels of the dose variable and began by analyzing the 1:1 study formed

by using the first control in each set. We examine the effect of exposure to estrogen:

. use https://www.stata-press.com/data/r18/bdendo11, clear
(Endometrial cancer and estrogen exposure)
. describe
Contains data from https://www.stata-press.com/data/r18/bdendo11.dta
Observations: 126 Endometrial cancer and estrogen

exposure
Variables: 13 3 Mar 2022 23:29

(_dta has notes)

Variable Storage Display Value
name type format label Variable label

set byte %8.0g Set number
fail byte %8.0g fail Case or control
gall byte %8.0g Gallbladder dis
hyp byte %8.0g Hypertension
ob byte %8.0g Obesity
est byte %8.0g Estrogen
dos byte %8.0g Ordinal dose
dur byte %8.0g Ordinal duration
non byte %8.0g Nonestrogen drug
duration byte %8.0g Months
age byte %8.0g Years
cest byte %8.0g Conjugated est dose
agegrp byte %9.0g Age group of set

Sorted by: set
. mhodds fail est set
Mantel--Haenszel estimate of the odds ratio comparing est==1 vs.

est==0
controlling for set

Odds ratio chi2(1) P>chi2 [95% conf. interval]

9.666667 21.12 0.0000 2.944702 31.733072

Note: Only 32 of the 63 strata formed in this analysis contribute
information about the effect of the explanatory variable.

For the 1:1 matched study, the Mantel–Haenszel methods are equivalent to conditional likelihood

methods. The maximum conditional likelihood estimate of the odds ratio is given by the ratio of the off-

diagonal frequencies in the two-way (case–control) table below. The data must be in the 1-observation-

per-group format; that is, the matched case and control must appear in 1 observation (the same format as

required by the mcc command; see also [R] clogit).
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. keep fail est set

. reshape wide est, i(set) j(fail)
(j = 0 1)
Data Long -> Wide

Number of observations 126 -> 63
Number of variables 3 -> 3
j variable (2 values) fail -> (dropped)
xij variables:

est -> est0 est1

. rename est1 case

. rename est0 control

. label variable case case

. label variable control control

. tabulate case control
control

case 0 1 Total

0 4 3 7
1 29 27 56

Total 33 30 63

The odds ratio is 29/3 = 9.67, which agrees with the value obtained from mhodds. In the more gen-
eral 1:𝑚 matched study, however, the Mantel–Haenszel methods are no longer equivalent to maximum

conditional likelihood, although they are usually close.

To illustrate the use of the by() option in matched case–control studies, we look at the effect of

exposure to estrogen, stratified by age3, which codes the sets into three age groups (55–64, 65–74, and
75+) as follows:

. use https://www.stata-press.com/data/r18/bdendo11, clear
(Endometrial cancer and estrogen exposure)
. generate age3 = agegrp
. recode age3 1/2=1 3/4=2 5/6=3
(124 changes made to age3)
. mhodds fail est set, by(age3)
Mantel--Haenszel estimate of the odds ratio comparing est==1 vs. est==0
controlling for set
by age3

age3 Odds ratio chi2(1) P>chi2 [95% conf. interval]

1 6.000000 3.57 0.0588 0.72235 49.83724
2 15.000000 12.25 0.0005 1.98141 113.55557
3 8.000000 5.44 0.0196 1.00059 63.96252

Note: Only 32 of the 63 strata formed in this analysis contribute information
about the effect of the explanatory variable.



Epitab — Tables for epidemiologists 691

Mantel--Haenszel estimate controlling for set and age3

Odds ratio chi2(1) P>chi2 [95% conf. interval]

9.666667 21.12 0.0000 2.944702 31.733072

Approximate test of homogeneity of odds ratios: chi2(2) = 0.41
Pr>chi2 = 0.8128

There is no further loss of information when we stratify by age3 because age was one of the matching
variables.

The full set of matched controls can be used in the same way. For example, the effect of exposure to

estrogen is obtained (using the full dataset) with

. use https://www.stata-press.com/data/r18/bdendo, clear
(Endometrial cancer and estrogen exposure)
. mhodds fail est set
Mantel--Haenszel estimate of the odds ratio comparing est==1 vs.

est==0
controlling for set

Odds ratio chi2(1) P>chi2 [95% conf. interval]

8.461538 31.16 0.0000 3.437773 20.826746

Note: Only 58 of the 63 strata formed in this analysis contribute
information about the effect of the explanatory variable.

The effect of exposure to estrogen, stratified by age3, is obtained with

. generate age3 =agegrp

. recode age3 1/2=1 3/4=2 5/6=3
(310 changes made to age3)
. mhodds fail est set, by(age3)
Mantel--Haenszel estimate of the odds ratio comparing est==1 vs. est==0
controlling for set
by age3

age3 Odds ratio chi2(1) P>chi2 [95% conf. interval]

1 3.800000 3.38 0.0660 0.82165 17.57438
2 10.666667 18.69 0.0000 2.78773 40.81376
3 13.500000 9.77 0.0018 1.59832 114.02620

Note: Only 58 of the 63 strata formed in this analysis contribute information
about the effect of the explanatory variable.

Mantel--Haenszel estimate controlling for set and age3

Odds ratio chi2(1) P>chi2 [95% conf. interval]

8.461538 31.16 0.0000 3.437773 20.826746

Approximate test of homogeneity of odds ratios: chi2(2) = 1.41
Pr>chi2 = 0.4943
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Video examples
Incidence-rate ratios calculator

Risk ratios calculator

Odds ratios for case–control data

Stratified analysis of case–control data

Odds ratios calculator

Glossary
attributable fraction. An attributable fraction is the reduction in the risk of a disease or other condition

of interest when a particular risk factor is removed.

case–control studies. In case–control studies, cases meeting a fixed criterion are matched to noncases

ex post to study differences in possible covariates. Relative sample sizes are usually fixed at 1:1 or

1:2 but sometimes vary once the survey is complete. In any case, sample sizes do not reflect the

distribution in the underlying population.

cohort studies. In cohort studies, a group that is well defined ismonitored over time to track the transition

of noncases to cases. Cohort studies differ from incidence studies in that they can be retrospective as

well as prospective.

confounding. In the analysis of contingency tables, factor or interaction effects are said to be confounded

when the effect of one factor is combined with that of another. For example, the effect of alcohol

consumption on esophageal cancer may be confounded with the effects of age, smoking, or both. In

the presence of confounding, it is often useful to stratify on the confounded factors that are not of

primary interest, in the above example, age and smoking.

cross-sectional or prevalence studies. Cross-sectional studies sample distributions of healthy and dis-

eased subjects in the population at one point in time.

crude estimate. A crude estimate has not been adjusted for the effects of other variables. Disregarding

a stratification variable, for example, yields a crude estimate.

incidence and incidence rate. Incidence is the number of new failures (for example, number of new

cases of a disease) that occur during a specified period in a population at risk (for example, of the

disease).

Incidence rate is incidence divided by the sum of the length of time each individual was exposed to

the risk.

Do not confuse incidence with prevalence. Prevalence is the fraction of a population that has the

disease. Incidence refers to the rate at which people contract a disease, whereas prevalence is the total

number actually sick at a given time.

incidence studies, longitudinal studies, and follow-up studies. Whichever word is used, these studies

monitor a population for a time to track the transition of noncases into cases. Incidence studies are

prospective. Also see cohort studies.

matched case–control study. Also known as a retrospective study, a matched case–control study is

a study in which persons with positive outcomes are each matched with one or more persons with

negative outcomes but with similar characteristics.

https://www.youtube.com/watch?v=6JANRVFxqAw
https://www.youtube.com/watch?v=ZYaYUpgahv4
https://www.youtube.com/watch?v=RKWYNI7AORw
https://www.youtube.com/watch?v=CHTfzJLSbWM
https://www.youtube.com/watch?v=A1c4ElvFHIE
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odds and odds ratio. The odds in favor of an event are 𝑜 = 𝑝/(1 − 𝑝), where 𝑝 is the probability of the
event. Thus if 𝑝 = 0.2, the odds are 0.25, and if 𝑝 = 0.8, the odds are 4.

The log of the odds is ln(𝑜) = logit(𝑝) = ln{𝑝/(1−𝑝)}, and logistic-regression models, for instance,
fit ln(𝑜) as a linear function of the covariates.
The odds ratio is a ratio of two odds: 𝑜1/𝑜0. The individual odds that appear in the ratio are usually

for an experimental group and a control group, or two different demographic groups.

prevented fraction. A prevented fraction is the reduction in the risk of a disease or other condition of

interest caused by including a protective risk factor or public-health intervention.

prospective study. Also known as a prospective longitudinal study, a prospective study is a study based

on observations over the same subjects for a given period.

risk factor. This is a variable associated with an increased or decreased risk of failure.

risk ratio. In a log-linear model, this is the ratio of probability of survival associated with a one-unit

increase in a risk factor relative to that calculated without such an increase, that is, 𝑅(𝑥 + 1)/𝑅(𝑥).
Given the exponential form of the model,𝑅(𝑥+1)/𝑅(𝑥) is constant and is given by the exponentiated
coefficient.

SMR. See standardized mortality (morbidity) ratio.

standardized mortality (morbidity) ratio. Standardized mortality (morbidity) ratio (SMR) is the ob-

served number of deaths divided by the expected number of deaths. It is calculated using indirect

standardization: you take the population of the group of interest—say, by age, sex, and other fac-

tors—and calculate the expected number of deaths in each cell (expected being defined as the num-

ber of deaths that would have been observed if those in the cell had the same mortality as some other

population). You then take the ratio to compare the observed with the expected number of deaths. For

instance,

(1) (2) (1)×(2) (4)

Population Deaths per 100,000 Expected # Observed

Age of group in general pop. of deaths deaths

25–34 95,965 105.2 100.9 92

34–44 78,280 203.6 159.4 180

44–54 52,393 428.9 224.7 242

55–64 28,914 964.6 278.9 312

Total 763.9 826

SMR = 826/763.9 = 1.08

stratified test. A stratified test is performed separately for each stratum. The stratum-specific results are

then combined into an overall test statistic.

Stored results
ir (without by()) and iri store the following in r():

Scalars

r(ird) IRD

r(lb ird) lower CI bound for IRD

r(ub ird) upper CI bound for IRD

r(irr) IRR
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r(lb irr) lower CI bound for IRR

r(ub irr) upper CI bound for IRR

r(afe) AFE

r(lb afe) lower CI bound for AFE

r(ub afe) upper CI bound for AFE

r(afp) AFP

r(p lower midp) lower one-sided 𝑝-value with mid-𝑝 adjustment

r(p upper midp) upper one-sided 𝑝-value with mid-𝑝 adjustment

r(p twosided midp) two-sided 𝑝-value with mid-𝑝 adjustment

r(p lower exact) lower one-sided exact 𝑝-value
r(p upper exact) upper one-sided exact 𝑝-value
r(p twosided exact) two-sided exact 𝑝-value

ir, by() stores the following in r():

Scalars

r(irr) Mantel–Haenszel IRR, if option ird is not specified
r(lb irr) lower CI bound for Mantel–Haenszel IRR

r(ub irr) upper CI bound for Mantel–Haenszel IRR

r(ird) Mantel–Haenszel IRD, if option ird is specified
r(lb ird) lower CI bound for Mantel–Haenszel IRD

r(ub ird) upper CI bound for Mantel–Haenszel IRD

r(crude) crude IRR or, if option ird is specified, crude IRD
r(lb crude) lower CI bound for the crude IRR or IRD

r(ub crude) upper CI bound for the crude IRR or IRD

r(pooled) pooled IRR or, if option ird is specified, pooled IRD
r(lb pooled) lower CI bound for pooled IRR or IRD

r(ub pooled) upper CI bound for pooled IRR or IRD

r(df) degrees of freedom for homogeneity 𝜒2 test

r(chi2 mh) Mantel–Haenszel homogeneity 𝜒2

r(chi2 p) pooled homogeneity 𝜒2, if option pool is specified

cs and csi store the following in r():

Scalars

r(p) two-sided 𝑝-value
r(rd) risk difference

r(lb rd) lower CI bound for risk difference

r(ub rd) upper CI bound for risk difference

r(rr) risk ratio

r(lb rr) lower CI bound for risk ratio

r(ub rr) upper CI bound for risk ratio

r(or) odds ratio

r(lb or) lower CI bound for odds ratio

r(ub or) upper CI bound for odds ratio

r(afe) AFE

r(lb afe) lower CI bound for AFE

r(ub afe) upper CI bound for AFE

r(afp) AFP

r(crude) crude estimate (cs only)
r(lb crude) lower CI bound for crude estimate

r(ub crude) upper CI bound for crude estimate

r(pooled) pooled estimate (cs only)
r(lb pooled) lower CI bound for pooled estimate

r(ub pooled) upper CI bound for pooled estimate

r(chi2 mh) Mantel–Haenszel heterogeneity 𝜒2 (cs only)
r(chi2 p) pooled heterogeneity 𝜒2

r(df) degrees of freedom (cs only)
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r(chi2) 𝜒2

r(p exact) 2-sided Fisher’s exact 𝑝 (exact only)
r(p1 exact) 1-sided Fisher’s exact 𝑝 (exact only)

cc and cci store the following in r():

Scalars

r(p) two-sided 𝑝-value
r(p1 exact) one-sided 𝑝-value for Fisher’s exact test
r(p exact) two-sided 𝑝-value for Fisher’s exact test
r(or) odds ratio

r(lb or) lower CI bound for odds ratio

r(ub or) upper CI bound for odds ratio

r(afe) AFE

r(lb afe) lower CI bound for AFE

r(ub afe) upper CI bound for AFE

r(afp) AFP

r(crude) crude estimate (cc only)
r(lb crude) lower CI bound for crude estimate

r(ub crude) upper CI bound for crude estimate

r(pooled) pooled estimate (cc only)
r(lb pooled) lower CI bound for pooled estimate

r(ub pooled) upper CI bound for pooled estimate

r(chi2 p) pooled heterogeneity 𝜒2

r(chi2 bd) Breslow–Day 𝜒2

r(df bd) degrees of freedom for Breslow–Day 𝜒2 test

r(chi2 t) Tarone 𝜒2

r(df t) degrees of freedom for Tarone 𝜒2 test

r(df) degrees of freedom

r(chi2) 𝜒2

tabodds stores the following in r():

Scalars

r(odds) odds

r(lb odds) lower CI bound for odds

r(ub odds) upper CI bound for odds

r(chi2 hom) 𝜒2 for test of homogeneity

r(p hom) 𝑝-value for test of homogeneity
r(df hom) degrees of freedom for test of homogeneity

r(chi2 tr) 𝜒2 for score test for trend

r(p trend) 𝑝-value for score test for trend

mhodds stores the following in r():

Scalars

r(p) two-sided 𝑝-value
r(or) odds ratio

r(lb or) lower CI bound for odds ratio

r(ub or) upper CI bound for odds ratio

r(chi2 hom) 𝜒2 for test of homogeneity

r(df hom) degrees of freedom for test of homogeneity

r(chi2) 𝜒2

Matrices

r(strata table) odds ratios for strata, if by() specified
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mcc and mcci store the following in r():
Scalars

r(p exact) two-sided 𝑝-value for McNemar’s test

r(or) odds ratio

r(lb or) lower CI bound for odds ratio

r(ub or) upper CI bound for odds ratio

r(D f) difference in proportion with factor

r(lb D f) lower CI bound for difference in proportion

r(ub D f) upper CI bound for difference in proportion

r(R f) ratio of proportion with factor

r(lb R f) lower CI bound for ratio of proportion

r(ub R f) upper CI bound for ratio of proportion

r(RD f) relative difference in proportion with factor

r(lb RD f) lower CI bound for relative difference in proportion

r(ub RD f) upper CI bound for relative difference in proportion

r(chi2) 𝜒2

Methods and formulas
The notation for incidence-rate data is

Exposed Unexposed Total

Cases 𝑎 𝑏 𝑀1
Person-time 𝑁1 𝑁0 𝑇

The notation for 2 × 2 tables is

Exposed Unexposed Total

Cases 𝑎 𝑏 𝑀1
Controls 𝑐 𝑑 𝑀0

Total 𝑁1 𝑁0 𝑇

The notation for 2 × 𝑘 tables is
Exposure level

1 2 . . . k Total

Cases 𝑎1 𝑎2 . . . 𝑎𝑘 𝑀1
Controls 𝑐1 𝑐2 . . . 𝑐𝑘 𝑀0

Total 𝑁1 𝑁2 . . . 𝑁𝑘 𝑇

If the tables are stratified, all quantities are indexed by 𝑖, the stratum number.

We will refer to Fleiss, Levin, and Paik (2003); Kleinbaum, Kupper, and Morgenstern (1982); and

Rothman (1986) so often that we will adopt the notation F-23 to mean Fleiss, Levin, and Paik (2003)

page 23; KKM-52 to mean Kleinbaum, Kupper, and Morgenstern (1982) page 52; and R-164 to mean

Rothman (1986) page 164.

We usually avoid making the continuity corrections to 𝜒2 statistics, following the advice of KKM-

292: “. . . the use of a continuity correction has been the subject of considerable debate in the statistical
literature . . . . On the basis of our evaluation of this debate and other evidence, we do not recommend the

use of the continuity correction.” Breslow and Day (1980, 133), on the other hand, argue for inclusion of

the correction, but not strongly. Their summary is that for small datasets, one should use exact statistics.

In practice, we believe that the adjustment makes little difference for reasonably sized datasets.
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Methods and formulas are presented under the following headings:

Unstratified incidence-rate data (ir and iri)
Unstratified cumulative incidence data (cs and csi)
Unstratified case–control data (cc and cci)
Unstratified matched case–control data (mcc and mcci)
Stratified incidence-rate data (ir with the by() option)
Stratified cumulative incidence data (cs with the by() option)
Stratified case–control data (cc with by() option, mhodds, tabodds)

Unstratified incidence-rate data (ir and iri)
The IRD is defined as 𝐼𝑑 = 𝑎/𝑁1 − 𝑏/𝑁0 (R-164). The standard error of the difference is 𝑠𝐼𝑑

≈
√𝑎/𝑁2

1 + 𝑏/𝑁2
0 (R-170), from which confidence intervals are calculated.

The IRR is defined as 𝐼𝑟 = (𝑎/𝑁1)/(𝑏/𝑁0) (R-164). Let 𝑝𝑙 and 𝑝𝑢 be the exact confidence interval

of the binomial probability for observing 𝑎 successes in 𝑀1 trials (obtained from cii proportions;
see [R] ci). The exact confidence interval for the incidence ratio is then (𝑝𝑙𝑁0)/{(1 − 𝑝𝑙)𝑁1} to

(𝑝𝑢𝑁0)/{(1 − 𝑝𝑢)𝑁1} (R-166).
The AFE is defined as AFE = (𝐼𝑟 − 1)/𝐼𝑟 for 𝐼𝑟 ≥ 1 (KKM-164; R-38); the confidence interval is

obtained by similarly transforming the interval values of 𝐼𝑟. The AFP is AFP = AFE ⋅ 𝑎/𝑀1 (KKM-

161); no confidence interval is reported. For 𝐼𝑟 < 1, the PFE is defined as PFE = 1 − 𝐼𝑟 (KKM-166;

R-39); the confidence interval is obtained by similarly transforming the interval values of 𝐼𝑟. The PFP is

PFP = PFE ⋅ 𝑁1/𝑇 (KKM-165); no confidence interval is reported.

Exact one-sided 𝑝-values are calculated as the binomial probabilities (with 𝑛 = 𝑀1 and 𝑝 = 𝑁1/𝑇)
Pr(𝑘 ≤ 𝑎) and Pr(𝑘 ≥ 𝑎). Exact 𝑝-values tend to be overly conservative, so the mid-𝑝 adjustment

(R-155) reduces the exact 𝑝-values by subtracting half the probability of the observed result from each

one-sided 𝑝-value. That is, one-sided 𝑝-values with the mid-𝑝 adjustment are the binomial probabilities
Pr(𝑘 ≤ 𝑎) − Pr(𝑘 = 𝑎)/2 and Pr(𝑘 ≥ 𝑎) − Pr(𝑘 = 𝑎)/2. The two-sided 𝑝-value is twice the smallest
one-sided 𝑝-value for both the exact and mid-𝑝-adjustment calculations. Rather than using twice the

smallest one-sided 𝑝-value for the two-sided 𝑝-value, there is an another formula for the two-sided 𝑝-value
that is sometimes used. The command bitest uses this alternative; see [R] bitest for details.

Unstratified cumulative incidence data (cs and csi)
The risk difference is defined as 𝑅𝑑 = 𝑎/𝑁1 − 𝑏/𝑁0 (R-164). Its standard error is

𝑠𝑅𝑑
≈ { 𝑎𝑐

𝑁3
1

+ 𝑏𝑑
𝑁3

0
}

1/2

(R-172), from which confidence intervals are calculated.

The risk ratio is defined as 𝑅𝑟 = (𝑎/𝑁1)/(𝑏/𝑁0) (R-165). The standard error of ln𝑅𝑟 is

𝑠 ln𝑅𝑟
≈ ( 𝑐

𝑎𝑁1
+ 𝑑

𝑏𝑁0
)

1/2

(R-173), from which confidence intervals are calculated.
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For 𝑅𝑟 ≥ 1, the AFE is calculated as AFE = (𝑅𝑟 − 1)/𝑅𝑟 (KKM-164; R-38); the confidence interval is

obtained by similarly transforming the interval values for𝑅𝑟. TheAFP is calculated as AFP = AFE ⋅𝑎/𝑀1
(KKM-161); no confidence interval is reported, but F-128 provides

{𝑐 + (𝑎 + 𝑑)AFP
𝑏𝑇

}
1/2

as the approximate standard error of ln(1 − AFP).
For 𝑅𝑟 < 1, the PFE is calculated as PFE = 1 − 𝑅𝑟 (KKM-166; R-39); the confidence interval is

obtained by similarly transforming the interval values for 𝑅𝑟. The PFP is calculated as PFP = PFE ⋅𝑁1/𝑇;
no confidence interval is reported.

The odds ratio, available with the or option, is defined as 𝜓 = (𝑎𝑑)/(𝑏𝑐) (R-165). Several confidence
intervals are available. The default interval for cs and csi is the Cornfield (1956) approximate interval.
If we let 𝑧𝛼 be the index from a normal distribution for an 𝛼 significance level, the Cornfield interval

(𝜓𝑙, 𝜓𝑢) is calculated from

𝜓𝑙 = 𝑎𝑙(𝑀0 − 𝑁1 + 𝑎𝑙)/{(𝑁1 − 𝑎𝑙)(𝑀1 − 𝑎𝑙)}

𝜓𝑢 = 𝑎𝑢(𝑀0 − 𝑁1 + 𝑎𝑢)/{(𝑁1 − 𝑎𝑢)(𝑀1 − 𝑎𝑢)}

where 𝑎𝑢 and 𝑎𝑙 are determined iteratively from

𝑎𝑖+1 = 𝑎 ± 𝑧𝛼 ( 1
𝑎𝑖

+ 1
𝑁1 − 𝑎𝑖

+ 1
𝑀1 − 𝑎𝑖

+ 1
𝑀0 − 𝑁1 + 𝑎𝑖

)
−1/2

(Newman 2001, sec. 4.4). 𝑎𝑖+1 converges to 𝑎𝑢 using the plus sign and 𝑎𝑙 using the minus sign. 𝑎0 is

taken as 𝑎. With small numbers, the iterative technique may fail. It is then restarted by decrementing (𝑎𝑙)

or incrementing (𝑎𝑢) 𝑎0. If that fails, 𝑎0 is again decremented or incremented and iterations restarted, and

so on, until a terminal condition is met (𝑎0 < 0 or 𝑎0 > 𝑀1), at which point the value is not calculated.

The Woolf odds-ratio confidence intervals are available with cs and csi. The Woolf method (Woolf

1955; R-173; Schlesselman 1982, 176), available with the woolf option, estimates the standard error of
ln𝜓 by

𝑠 ln𝜓 = ( 1
𝑎

+ 1
𝑏

+ 1
𝑐

+ 1
𝑑

)
1/2

from which confidence intervals are calculated. The Woolf interval cannot be calculated when there

exists a zero cell. Sometimes the Woolf interval is called the “logit interval” (Breslow and Day 1980,

134).

The 𝜒2 statistic, reported by default, can be calculated as

𝜒2 = (𝑎𝑑 − 𝑏𝑐)2𝑇
𝑀1𝑀0𝑁1𝑁0

(Schlesselman 1982, 179).

Fisher’s exact test, available with the exact option, is calculated as described in [R] tabulate twoway.
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Unstratified case–control data (cc and cci)
cc and cci report by default the same odds ratio, 𝜓, that is available with the or option in cs and csi.

But cc and cci calculate the confidence interval differently: they default to the exact odds-ratio interval,
not the Cornfield interval, but you can request the Cornfield interval with the cornfield option. The
1 − 𝛼 exact interval (𝑅, 𝑅) is calculated from

𝛼/2 =
∑min(𝑁1,𝑀1)

𝑘=𝑎 (𝑁1
𝑘 )( 𝑁0

𝑀1−𝑘)𝑅𝑘

∑min(𝑁1,𝑀1)
𝑘=max(0,𝑀1−𝑁0) (𝑁1

𝑘 )( 𝑁0
𝑀1−𝑘)𝑅𝑘

and

1 − 𝛼/2 =
∑min(𝑁1,𝑀1)

𝑘=𝑎+1 (𝑁1
𝑘 )( 𝑁0

𝑀1−𝑘)𝑅𝑘

∑min(𝑁1,𝑀1)
𝑘=max(0,𝑀1−𝑁0) (𝑁1

𝑘 )( 𝑁0
𝑀1−𝑘)𝑅𝑘

(R-169). The equations invert two one-sided Fisher exact tests.

cc and cci also report the same tests of significance as cs and csi: the 𝜒2 statistic is the default,

and Fisher’s exact test is obtained with the exact option. The odds ratio, 𝜓, is used as an estimate

of the risk ratio in calculating attributable or prevented fractions. For 𝜓 ≥ 1, the AFE is calculated as

AFE = (𝜓 − 1)/𝜓 (KKM-164); the confidence interval is obtained by similarly transforming the interval

values for 𝜓. TheAFP is calculated as AFP = AFE ⋅ 𝑎/𝑀1 (KKM-161). No confidence interval is reported;

however, F-152 provides

( 𝑎
𝑀1𝑏

+ 𝑐
𝑀0𝑑

)
1/2

as the standard error of ln(1 − AFP).
For𝜓 < 1, the PFE is calculated as PFE = 1−𝜓 (KKM-166); the confidence interval is obtained by simi-

larly transforming the interval values for𝜓. The PFP is calculated as PFP = {(𝑎/𝑀1)PFE}/{(𝑎/𝑀1)PFE+
𝜓} (KKM-165); no confidence interval is reported.

Unstratified matched case–control data (mcc and mcci)
Referring to the table at the beginning of Matched case–control data under Remarks and examples

above, the columns of the table indicate controls; the rows are cases. Each entry in the table reflects a

pair of a matched case and control.

McNemar’s (1947) 𝜒2 is defined as

𝜒2 = (𝑏 − 𝑐)2

𝑏 + 𝑐
(KKM-389).

The proportion of controls with the factor is 𝑝1 = 𝑁1/𝑇, and the proportion of cases with the factor
is 𝑝2 = 𝑀1/𝑇.

The difference in the proportions is 𝑃𝑑 = 𝑝2 − 𝑝1. An estimate of its standard error when the two

underlying proportions are not hypothesized to be equal is

𝑠𝑃𝑑
≈ {(𝑎 + 𝑑)(𝑏 + 𝑐) + 4𝑏𝑐}1/2

𝑇 3/2

(F-378), from which confidence intervals are calculated. The confidence interval uses a continuity cor-

rection (F-378, eq. 13.15).
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The ratio of the proportions is 𝑃𝑟 = 𝑝2/𝑝1 (R-276, R-278). The standard error of ln𝑃𝑟 is

𝑠 ln𝑃𝑟
≈ ( 𝑏 + 𝑐

𝑀1𝑁1
)

1/2

(R-276), from which confidence intervals are calculated.

The relative difference in the proportions is 𝑃𝑒 = (𝑏 − 𝑐)/(𝑏 + 𝑑) (F-379). Its standard error is

𝑠𝑃𝑒
≈ (𝑏 + 𝑑)−2 {(𝑏 + 𝑐 + 𝑑)(𝑏𝑐 + 𝑏𝑑 + 𝑐𝑑) − 𝑏𝑐𝑑}1/2

(F-379), from which confidence intervals are calculated.

The odds ratio is 𝜓 = 𝑏/𝑐 (F-376), and the exact Fisher confidence interval is obtained by transforming
into odds ratios the exact binomial confidence interval for the binomial parameter from observing 𝑏
successes in 𝑏 + 𝑐 trials (R-264). Binomial confidence limits are obtained from cii proportions (see
[R] ci) and are transformed by 𝑝/(1 − 𝑝).

The exact McNemar significance probability is a two-tailed exact test of 𝐻0 ∶ 𝜓 = 1. The 𝑝-value,
calculated from the binomial distribution, is

min{1, 2
min(𝑏,𝑐)

∑
𝑘=0

(𝑏 + 𝑐
𝑘

) (1
2

)
𝑏+𝑐

}

(Agresti 2013, 416).� �
Quinn McNemar (1900–1986) was born in West Virginia and attended college there and in Penn-

sylvania. After a brief spell of high school teaching, he began graduate study of psychology at

Stanford and then joined the faculty. McNemar’s text Psychological Statistics, first published in

1949, was widely influential, and he made many substantive and methodological contributions to

the application of statistics in psychology.� �
Stratified incidence-rate data (ir with the by() option)

Statistics presented for each stratum are calculated independently according to the formulas in Un-

stratified incidence-rate data (ir and iri) above. Within strata, the Mantel–Haenszel style weight is

𝑊𝑖 = 𝑏𝑖𝑁1𝑖/𝑇𝑖, and the Mantel–Haenszel combined incidence-rate ratio (Rothman and Boice 1982)

is

𝐼mh =
∑𝑖 𝑎𝑖𝑁0𝑖/𝑇𝑖

∑𝑖 𝑊𝑖

(R-196). The standard error for the log of the incidence-rate ratio was derived by Greenland and Robins

(1985, 63) and appears in R-213:

𝑠 ln𝐼mh
≈ {

∑𝑖 𝑀1𝑖𝑁1𝑖𝑁0𝑖/𝑇 2
𝑖

(∑𝑖 𝑎𝑖𝑁0𝑖/𝑇𝑖)(∑𝑖 𝑏𝑖𝑁1𝑖/𝑇𝑖)
}

1/2

The confidence interval is calculated first on the log scale and then is transformed.
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For standardized rates, let 𝑤𝑖 be the user-specified weight within stratum 𝑖. The standardized rate
difference (the ird option) and rate ratio are defined as

SRD =
∑𝑖 𝑤𝑖(𝑅1𝑖 − 𝑅0𝑖)

∑𝑖 𝑤𝑖

SRR =
∑𝑖 𝑤𝑖𝑅1𝑖

∑𝑖 𝑤𝑖𝑅0𝑖

(R-229). The standard error of SRD is

𝑠SRD ≈ { 1
(∑𝑖 𝑤𝑖)2 ∑

𝑖
𝑤2

𝑖 ( 𝑎𝑖
𝑁2

1𝑖
+ 𝑏𝑖

𝑁2
0𝑖

)}
1/2

(R-231), from which confidence intervals are calculated. The standard error of ln(SRR) is

𝑠 ln(SRR) ≈ {
∑𝑖 𝑤2

𝑖 𝑎𝑖/𝑁2
1𝑖

(∑𝑖 𝑤𝑖𝑅1𝑖)2 +
∑𝑖 𝑤2

𝑖 𝑏𝑖/𝑁2
0𝑖

(∑𝑖 𝑤𝑖𝑅0𝑖)2 }
1/2

(R-231), from which confidence intervals are calculated.

Internally and externally standardized measures are calculated using 𝑤𝑖 = 𝑁1𝑖 and 𝑤𝑖 = 𝑁0𝑖, re-

spectively, and are obtained with the istandard and estandard options, respectively.

Directly pooled estimates are available with the pool option. The directly pooled estimate is a

weighted average of stratum-specific estimates; each weight,𝑤𝑖, is inversely proportional to the variance

of the estimate for stratum 𝑖. The variances for rate differences come from the formulas in Unstratified

incidence-rate data (ir and iri), while the variances of log rate-ratios are estimated by (1/𝑎𝑖 + 1/𝑏𝑖) (R-
184). Ratios are averaged in the log scale before being exponentiated. The standard error of the directly

pooled estimate is calculated as 1/√∑ 𝑤𝑖, from which confidence intervals are calculated (R-183–185);

the calculation for ratios again uses the log scale.

For rate differences, the 𝜒2 test of homogeneity is calculated as ∑(𝑅𝑑𝑖 − �̂�𝑑)2/var(𝑅𝑑𝑖), where 𝑅𝑑𝑖
are the stratum-specific rate differences and �̂�𝑑 is the directly pooled estimate. The number of degrees

of freedom is one less than the number of strata (R-222).

For rate ratios, the same calculation is made, except that it is made on a logarithmic scale using

ln(𝑅𝑟𝑖) (R-222), and ln(�̂�𝑑)may be the log of either the directly pooled estimate or the Mantel–Haenszel

estimate.

Stratified cumulative incidence data (cs with the by() option)
Statistics presented for each stratum are calculated independently according to the formulas in Unstrat-

ified cumulative incidence data (cs and csi) above. The Mantel–Haenszel 𝜒2 test (Mantel and Haenszel

1959) is

𝜒2
mh =

{∑𝑖(𝑎𝑖 − 𝑁1𝑖𝑀1𝑖/𝑇𝑖)}
2

∑𝑖(𝑁1𝑖𝑁0𝑖𝑀1𝑖𝑀0𝑖)/{𝑇 2
𝑖 (𝑇𝑖 − 1)}

(R-206).
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For the odds ratio (available with the or option), the Mantel–Haenszel weight is 𝑊𝑖 = 𝑏𝑖𝑐𝑖/𝑇𝑖, and

the combined odds ratio (Mantel and Haenszel 1959) is

𝜓mh =
∑𝑖 𝑎𝑖𝑑𝑖/𝑇𝑖

∑𝑖 𝑊𝑖

(R-195). The standard error (Robins, Breslow, and Greenland 1986) is

𝑠 ln𝜓mh
≈ {

∑𝑖 𝑃𝑖𝑅𝑖

2(∑𝑖 𝑅𝑖)
2 +

∑𝑖 𝑃𝑖𝑆𝑖 + 𝑄𝑖𝑅𝑖

2 ∑𝑖 𝑅𝑖 ∑𝑖 𝑆𝑖
+

∑𝑖 𝑄𝑖𝑆𝑖

2(∑𝑖 𝑆𝑖)
2 }

1/2

where

𝑃𝑖 = (𝑎𝑖 + 𝑑𝑖)/𝑇𝑖

𝑄𝑖 = (𝑏𝑖 + 𝑐𝑖)/𝑇𝑖

𝑅𝑖 = 𝑎𝑖𝑑𝑖/𝑇𝑖

𝑆𝑖 = 𝑏𝑖𝑐𝑖/𝑇𝑖

(R-220).

For the risk ratio (the default), the Mantel–Haenszel-style weight is 𝑊𝑖 = 𝑏𝑖𝑁1𝑖/𝑇𝑖, and the com-

bined risk ratio (Rothman and Boice 1982) is

𝑅mh =
∑𝑖 𝑎𝑖𝑁0𝑖/𝑇𝑖

∑𝑖 𝑊𝑖

(R-196). The standard error (Greenland and Robins 1985) is

𝑠 ln𝑅mh
≈ {

∑𝑖(𝑀1𝑖𝑁1𝑖𝑁0𝑖 − 𝑎𝑖𝑏𝑖𝑇𝑖)/𝑇 2
𝑖

(∑𝑖 𝑎𝑖𝑁0𝑖/𝑇𝑖)(∑𝑖 𝑏𝑖𝑁1𝑖/𝑇𝑖)
}

1/2

(R-216), from which confidence intervals are calculated.

For standardized rates, let 𝑤𝑖 be the user-specified weight within stratum 𝑖. The standardized rate
difference (SRD, the rd option) and rate ratios (SRR, the default) are defined as in Stratified incidence-
rate data (ir with the by() option), where the individual risks are defined𝑅1𝑖 = 𝑎𝑖/𝑁1𝑖 and𝑅0𝑖 = 𝑏𝑖/𝑁0𝑖.

The standard error of SRD is

𝑠SRD ≈ [ 1
(∑𝑖 𝑤𝑖)2 ∑

𝑖
𝑤2

𝑖 {𝑎𝑖(𝑁1𝑖 − 𝑎𝑖)
𝑁3

1𝑖
+ 𝑏𝑖(𝑁0𝑖 − 𝑏𝑖)

𝑁3
0𝑖

}]
1/2

(R-231), from which confidence intervals are calculated. The standard error of ln(SRR) is

𝑠 ln(SRR) ≈ {
∑𝑖 𝑤2

𝑖 𝑎𝑖(𝑁1𝑖 − 𝑎𝑖)/𝑁3
1𝑖

(∑𝑖 𝑤𝑖𝑅1𝑖)2 +
∑𝑖 𝑤2

𝑖 𝑏𝑖(𝑁0𝑖 − 𝑏𝑖)/𝑁3
0𝑖

(∑𝑖 𝑤𝑖𝑅0𝑖)2 }
1/2

(R-231), from which confidence intervals are calculated.

Internally and externally standardized measures are calculated using 𝑤𝑖 = 𝑁1𝑖 and 𝑤𝑖 = 𝑁0𝑖, re-

spectively, and are obtained with the istandard and estandard options, respectively.
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Directly pooled estimates of the odds ratio are available when you specify both the pool and or
options. The directly pooled estimate is a weighted average of stratum-specific log odds-ratios; each

weight, 𝑤𝑖, is inversely proportional to the variance of the log odds-ratio for stratum 𝑖. The variances of
the log odds-ratios are estimated by Woolf’s method, described under Unstratified cumulative incidence

data (cs and csi). The standard error of the directly pooled log odds-ratio is calculated as 1/√∑ 𝑤𝑖, from

which confidence intervals are calculated and then exponentiated (Kahn and Sempos 1989, 113–115).

Direct pooling is also available for risk ratios and risk differences; the variance formulas may be found

in Unstratified cumulative incidence data (cs and csi). The directly pooled risk ratio is provided when

the pool option is specified. The directly pooled risk difference is provided only when you specify the
pool and rd options, and one of the estandard, istandard, and standard() options.

For risk differences, the 𝜒2 test of homogeneity is calculated as ∑(𝑅𝑑𝑖 − �̂�𝑑)2/var(𝑅𝑑𝑖), where 𝑅𝑑𝑖
are the stratum-specific risk differences and �̂�𝑑 is the directly pooled estimate. The number of degrees

of freedom is one less than the number of strata (R-222).

For risk and odds ratios, the same calculation is made, except that it is made in the log scale us-

ing ln(𝑅𝑟𝑖) or ln(𝜓𝑖) (R-222), and ln(�̂�𝑑) may be the log of either the directly pooled estimate or the
Mantel–Haenszel estimate.

Stratified case–control data (cc with by() option, mhodds, tabodds)
Statistics presented for each stratum are calculated independently according to the formulas in Un-

stratified cumulative incidence data (cs and csi) above. The combined odds ratio, 𝜓mh, and the test that

𝜓mh = 1 (𝜒2
mh) are calculated as described in Stratified cumulative incidence data (cs with the by()

option) above.

For standardized weights, let 𝑤𝑖 be the user-specified weight within stratum 𝑖. The standardized odds
ratio (the standard() option) is calculated as

SOR =
∑𝑖 𝑤𝑖𝑎𝑖/𝑐𝑖

∑𝑖 𝑤𝑖𝑏𝑖/𝑑𝑖

(Greenland 1986, 473). The standard error of ln(SOR) is

𝑠 ln(SOR) = {
∑𝑖(𝑤𝑖𝑎𝑖/𝑐𝑖)2( 1

𝑎𝑖
+ 1

𝑏𝑖
+ 1

𝑐𝑖
+ 1

𝑑𝑖
)

(∑𝑖 𝑤𝑖𝑎𝑖/𝑐𝑖)
2 }

1/2

from which confidence intervals are calculated. The internally and externally standardized odds ratios

are calculated using 𝑤𝑖 = 𝑐𝑖 and 𝑤𝑖 = 𝑑𝑖, respectively.

The directly pooled estimate of the odds ratio (the pool option) is calculated as described in Stratified
cumulative incidence data (cs with the by() option) above.

The directly pooled and Mantel–Haenszel 𝜒2 tests of homogeneity are calculated as ∑ {ln(𝑅𝑟𝑖) −
ln(�̂�𝑟)}2/var{ln(𝑅𝑟𝑖)}, where 𝑅𝑟𝑖 are the stratum-specific odds ratios and �̂�𝑟 is the pooled estimate

(Mantel–Haenszel or directly pooled). The number of degrees of freedom is one less than the number

of strata (R-222).

The Breslow–Day 𝜒2 test of homogeneity is available with the bd option. Let 𝜓 be the Man-

tel–Haenszel estimate of the common odds ratio, and let 𝐴𝑖(𝜓) be the fitted count for cell 𝑎; 𝐴𝑖(𝜓)
is found by solving the quadratic equation

𝐴(𝑀0 − 𝑁1 + 𝐴) = (𝜓)(𝑀1 − 𝐴)(𝑁1 − 𝐴)
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and choosing the root that makes all cells in stratum 𝑖 positive. Let Var(𝑎𝑖; 𝜓) be the estimated variance
of 𝑎𝑖 conditioned on the margins and on an odds ratio of 𝜓:

Var(𝑎𝑖; 𝜓) = { 1
𝐴𝑖(𝜓)

+ 1
𝑀1𝑖 − 𝐴𝑖(𝜓)

+ 1
𝑁1𝑖 − 𝐴𝑖(𝜓)

+ 1
𝑀0𝑖 − 𝑁1𝑖 + 𝐴𝑖(𝜓)

}
−1

The Breslow–Day 𝜒2 statistic is then

∑
𝑖

{𝑎𝑖 − 𝐴𝑖(𝜓)}2

Var(𝑎𝑖; 𝜓)

The Tarone 𝜒2 test of homogeneity (the tarone option) is calculated as

∑
𝑖

{𝑎𝑖 − 𝐴𝑖(𝜓)}2

Var(𝑎𝑖; 𝜓)
−

{∑𝑖 𝑎𝑖 − ∑𝑖 𝐴𝑖(𝜓)}2

∑𝑖 Var(𝑎𝑖; 𝜓)

Tarone (1985) provides this correction to the Breslow–Day statistic to ensure that its distribution is

asymptotically 𝜒2. Without the correction, the Breslow–Day statistic does not necessarily follow a 𝜒2

distribution because it is based on the Mantel–Haenszel estimate, 𝜓, which is an inefficient estimator of
the common odds ratio.

When the exposure variable has multiple levels, mhodds calculates an approximate estimate of the
log odds-ratio for a one-unit increase in exposure as the ratio of the score statistic, 𝑈, to its variance, 𝑉
(Clayton and Hills 1993, 103), which are defined below. This is a one-step Newton-Raphson approxima-

tion to the maximum likelihood estimate. Within-stratum estimates are combined with Mantel–Haenszel

weights.

By default, both tabodds and mhodds produce test statistics and confidence intervals based on score
statistics (Clayton and Hills 1993). tabodds reports confidence intervals for the odds of the 𝑖th exposure
level, unless the adjust() or or option is specified. The confidence interval for odds𝑖, 𝑖 = 1, . . . , 𝑘, is
given by

odds𝑖 ⋅ exp(±𝑧√1/𝑎𝑖 + 1/𝑐𝑖)

The score 𝜒2 test of homogeneity of odds is calculated as

𝜒2
𝑘−1 = 𝑇 (𝑇 − 1)

𝑀1𝑀0

𝑘
∑
𝑖=1

(𝑎𝑖 − 𝐸𝑖)2

𝑁𝑖

where 𝐸𝑖 = (𝑀1𝑁𝑖)/𝑇.
Let 𝑙𝑖 denote the value of the exposure at the 𝑖th level. The score 𝜒2 test for trend of odds is calculated

as

𝜒2
1 = 𝑈2

𝑉
where

𝑈 = 𝑀1𝑀0
𝑇

(
𝑘

∑
𝑖=1

𝑎𝑖𝑙𝑖
𝑀1

−
𝑘

∑
𝑖=1

𝑐𝑖𝑙𝑖
𝑀0

)
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and

𝑉 = 𝑀1𝑀0
𝑇

{
∑𝑘

𝑖=1 𝑁𝑖𝑙2𝑖 − (∑𝑘
𝑖=1 𝑁𝑖𝑙𝑖)2/𝑇

𝑇 − 1
}
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John Snow (1813–1858) was born in York, England. From age 14, he worked as an apprentice

and assistant to surgeons in northeast England and Yorkshire. In 1836, Snow moved to London;

he was admitted to the Royal College of Surgeons in 1838 and the Royal College of Physicians in

1850. He made outstanding contributions to the adoption of anesthesia and is considered one of the

originators of modern epidemiology. Snow died following a stroke in 1858.

Snow calculated dosages for ether and chloroform. He personally administered chloroform toQueen

Victoria for the births of her last two children, which helped obstetric anesthesia gain wider accep-

tance.

Snow was skeptical of the miasma theory that cholera was caused by foul air. His essay On the

Mode of Communication of Cholera was first published in 1849 and then greatly enlarged in 1855

with the results of his very detailed investigation of the role of water supply in the epidemic of 1854

in the Soho district of London. Snow identified the source of the outbreak as the public water pump

on Broad Street (now Broadwick Street), leading the local council to remove the pump handle. It

was later discovered that the well had been dug very close to an old cesspit. He also mapped the

clustering of cholera cases around the pump and related mortality to water sources, clearly showing

higher deathrates in areas supplied by the Southwark and Vauxhall Waterworks Company, which

was taking water from sewage-polluted sections of the River Thames. Snow is widely regarded as

a pioneer in public health, epidemiology, and medical geography.� �

https://www.stata.com/giftshop/bookmarks/series8/snow/
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� �
Janet Elizabeth Lane-Claypon (1877–1967) was a pioneer in the use of cohort and case–control

studies. She was born in Lincolnshire county, England, and began her studies at the London School

of Medicine for Women in 1898. From 1907 to 1912, she was at the Lister Institute of Preventive

Medicine, where she was a colleague of Major Greenwood. By the end of her studies, she had

obtained a doctorate in both physiology and medicine.

In 1912, Lane-Claypon published one of the first retrospective cohort studies, examining the weight

gain of babies fed cow’s milk versus babies fed breast milk. Using statistical techniques, she de-

termined that babies fed breast milk gained weight faster; she later employed that knowledge to

become a public health advocate for breast feeding.

She also conducted one of the first case–control studies, examining risk factors associated with

breast cancer. Her study included 500 women without breast cancer and 500 women with breast

cancer. To obtain what was at the time a remarkably large sample, she coordinated data collection

from nine different hospitals. Carefully controlling for variables including occupation and infant

mortality, she determined that factors like age at first pregnancy, age at menopause, and number of

children all influence the incidence of breast cancer; these factors are still considered to be among

the prime determinants.

In conjunction with the Ministry of Health, in 1926 Lane-Claypon published one of the first studies

to contain long-term follow-up results. In that study, she followed patients who had undergone

surgery for breast cancer for up to 10 years after the operation. As is still the case today, her study

showed that the sooner the cancer was treated, the better the woman’s chance for long-term survival.

Notably, her study was also among the first to consider survivorship bias.� �
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Also see
[ST] stcox — Cox proportional hazards model

[R] bitest — Binomial probability test

[R] ci — Confidence intervals for means, proportions, and variances

[R] clogit — Conditional (fixed-effects) logistic regression

[R] dstdize — Direct and indirect standardization

[R] logistic — Logistic regression, reporting odds ratios

[R] poisson — Poisson regression

[R] reri — Relative excess risk due to interaction

[R] symmetry — Symmetry and marginal homogeneity tests

[R] tabulate twoway — Two-way table of frequencies

[META] meta — Introduction to meta

[U] 19 Immediate commands



Error messages — Error messages and return codes

Description
Whenever Stata detects that something is wrong—that what you typed is uninterpretable, that you

are trying to do something you should not be trying to do, or that you requested the impossible—Stata

responds by typing a message describing the problem, together with a return code. For instance,

. lsit
command lsit is unrecognized
r(199);
. list myvar
variable myvar not found
r(111);
. test a=b
last estimates not found
r(301);

In each case, the message is probably sufficient to guide you to a solution. When we typed lsit, Stata
responded with “unrecognized command”. We meant to type list. When we typed list myvar, Stata
responded with “variable myvar not found”. There is no variable named myvar in our data. When we

typed test a=b, Stata responded with “last estimates not found”. test tests hypotheses about previously
fit models, and we have not yet fit a model.

The numbers in parentheses in the r(199), r(111), and r(301)messages are called the return codes.
To find out more about these messages, type search rc #, where # is the number returned in the paren-
theses.

Example 1
. search rc 301
[P] error messages . . . . . . . . . . . . . . . . . . . . Return code 301

last estimates not found;
You typed an estimation command, such as regress, without arguments
or attempted to perform a test or typed predict, but there were no
previous estimation results.

Programmers should see [P] error for details on programming error messages.

Also see
[R] search — Search Stata documentation and other resources
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esize — Effect size based on mean comparison

Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas References Also see

Description
esize calculates effect sizes for comparing the difference between the means of a continuous variable

for two groups. In the first form, esize calculates effect sizes for the difference between the mean of
varname for two groups defined by groupvar. In the second form, esize calculates effect sizes for the
difference between varname1 and varname2, assuming unpaired data.

esizei is the immediate form of esize; see [U] 19 Immediate commands. In the first form, esizei
calculates the effect size for comparing the difference between the means of two groups. In the second

form, esizei calculates the effect size for an 𝐹 test after an ANOVA.

Quick start
Cohen’s 𝑑 and Hedges’s 𝑔 comparing the difference in means of v for two independent groups in catvar

esize twosample v, by(catvar)

Same as above, but with group data stored in v1 and v2
esize unpaired v1==v2

Same as above, but use 90% confidence level

esize unpaired v1==v2, level(90)

Cohen’s 𝑑 and Hedges’s 𝑔 for means of v for groups in catvar1 calculated over each level of catvar2
by catvar2: esize twosample v, by(catvar1)

Menu
esize
Statistics > Summaries, tables, and tests > Classical tests of hypotheses > Effect size based on mean comparison

esizei
Statistics > Summaries, tables, and tests > Classical tests of hypotheses > Effect-size calculator
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Syntax
Effect sizes for two independent samples using groups

esize twosample varname [ if ] [ in ], by(groupvar) [ options ]

Effect sizes for two independent samples using variables

esize unpaired varname1 == varname2 [ if ] [ in ], [ options ]

Immediate form of effect sizes for two independent samples

esizei #obs1 #mean1 #sd1 #obs2 #mean2 #sd2 [ , options ]

Immediate form of effect sizes for F tests after an ANOVA

esizei #df1 #df2 #𝐹 [ , level(#) ]

options Description

Main

cohensd report Cohen’s 𝑑 (1988)
hedgesg report Hedges’s 𝑔 (1981)
glassdelta report Glass’s Δ (Smith and Glass 1977) using each group’s standard deviation

pbcorr report the point-biserial correlation coefficient (Pearson 1909)

all report all estimates of effect size

unequal use unequal variances

welch use Welch’s (1947) approximation

level(#) set confidence level; default is level(95)

by is allowed with esize, and collect is allowed with esize and esizei; see [U] 11.1.10 Prefix commands.

Options

� � �
Main �

by(groupvar) specifies the groupvar that defines the two groups that esize will use to estimate the

effect sizes. Do not confuse the by() option with the by prefix; you can specify both.

cohensd specifies that Cohen’s 𝑑 (1988) be reported.
hedgesg specifies that Hedges’s 𝑔 (1981) be reported.
glassdelta specifies that Glass’s Δ (Smith and Glass 1977) be reported.

pbcorr specifies that the point-biserial correlation coefficient (Pearson 1909) be reported.

all specifies that all estimates of effect size be reported. The default is Cohen’s 𝑑 and Hedges’s 𝑔.
unequal specifies that the data not be assumed to have equal variances.

welch specifies that the approximate degrees of freedom for the test be obtained from Welch’s formula

(1947) rather than from Satterthwaite’s approximation formula (1946), which is the default when

unequal is specified. Specifying welch implies unequal.
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level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is

level(95) or as set by set level; see [U] 20.8 Specifying the width of confidence intervals.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Estimating effect sizes
Immediate form
Video example

Introduction
Whereas 𝑝-values are used to assess the statistical significance of a result, measures of effect size are

used to assess the practical significance of a result. Effect sizes can be broadly categorized as “mea-

sures of group differences” (the d family) and “measures of association” (the 𝑟 family); see Ellis (2010,
table 1.1). The 𝑑 family includes estimators such as Cohen’s 𝑑, Hedges’s 𝑔, and Glass’s Δ. The 𝑟 fam-
ily includes estimators such as the point-biserial correlation coefficient, 𝜂2, 𝜀2, and 𝜔2 (also see estat
esize in [R] regress postestimation). For an introduction to the concepts and calculation of effect sizes,

see Kline (2013) and Thompson (2006). For a more detailed discussion, see Kirk (1996), Ellis (2010),

Cumming (2012), Grissom and Kim (2012), and Kelley and Preacher (2012).

Note that there is much variation in the definitions of measures of effect size (Kline 2013). As Ellis

(2010, 27) cautions, “However, beware the inconsistent terminology. What is labeled here as 𝑔 was

labeled by Hedges and Olkin as 𝑑 and vice versa. For these authors writing in the early 1980s, 𝑔 was the
mainstream effect-size index developed by Cohen and refined by Glass (hence 𝑔 for Glass). However,
since then 𝑔 has become synonymous with Hedges’s equation (not Glass’s) and the reason it is called

Hedges’s 𝑔 and not Hedges’s ℎ is because it was originally named after Glass—even though it was

developed by Larry Hedges. Confused?”

To avoid confusion, esize and esizei closely follow the notation of Hedges (1981), Smithson

(2001), Kline (2013), and Ellis (2010).
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Estimating effect sizes

Example 1: Effect size for two independent samples using by()
Suppose we are interested in question 1 from the fictitious depression.dta: “My statistical software

makes me feel sad”. Wemight have conducted a 𝑡 test to test the null hypothesis that there is no difference
in response by sex. We could then compute various measures of effect size to describe the magnitude of

the effect of sex.

. use https://www.stata-press.com/data/r18/depression
(Fictitious depression inventory data based on the Beck Depression Inventory)
. esize twosample qu1, by(sex) all
Effect size based on mean comparison

Obs per group:
Female = 712

Male = 288

Effect size Estimate [95% conf. interval]

Cohen’s d -.0512417 -.1881184 .0856607
Hedges’s g -.0512032 -.187977 .0855963

Glass’s Delta 1 -.0517793 -.1886587 .0851364
Glass’s Delta 2 -.0499786 -.1868673 .086997

Point-biserial r -.0232208 -.0849629 .0387995

Cohen’s 𝑑, Hedges’s 𝑔, and both estimates of Glass’sΔ indicate that the score for females is 0.05 standard

deviations lower than the score for males. The point-biserial correlation coefficient indicates that there

is a small, negative correlation between the scores for females and males.

Technical note
Glass’s Δ has traditionally been estimated for experimental studies using the control group standard

deviation rather than the pooled standard deviation. Kline (2013) notes that the choice of group becomes

arbitrary for data arising from observational studies and recommends the reporting of Glass’s Δ using

each group standard deviation.
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Example 2: Effect size for two independent samples by a third variable
If we are interested in the same effect sizes from example 1 stratified by race, we could use the by

prefix with the sort option to accomplish this task.

. by race, sort: esize twosample qu1, by(sex)

-> race = Hispanic
Effect size based on mean comparison

Obs per group:
Female = 88

Male = 45

Effect size Estimate [95% conf. interval]

Cohen’s d -.1042883 -.463503 .2553235
Hedges’s g -.1036899 -.4608434 .2538584

-> race = Black
Effect size based on mean comparison

Obs per group:
Female = 259

Male = 95

Effect size Estimate [95% conf. interval]

Cohen’s d -.1720681 -.4073814 .063489
Hedges’s g -.1717011 -.4065127 .0633536

-> race = White
Effect size based on mean comparison

Obs per group:
Female = 365

Male = 148

Effect size Estimate [95% conf. interval]

Cohen’s d .0479511 -.1430932 .2389486
Hedges’s g .0478807 -.1428831 .2385977
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Example 3: Bootstrap confidence intervals for effect sizes
Simulation studies have shown that bootstrap confidence intervals may be preferable to confidence

intervals based on the noncentral 𝑡 distribution when the variable of interest does not have a normal

distribution (Kelley 2005; Algina, Keselman, and Penfield 2006). Bootstrap confidence intervals can be

easily estimated for effect sizes using the bootstrap prefix.

. use https://www.stata-press.com/data/r18/depression
(Fictitious depression inventory data based on the Beck Depression Inventory)
. set seed 12345
. bootstrap r(d) r(g), reps(1000) nodots nowarn: esize twosample qu1, by(sex)
Bootstrap results Number of obs = 1,000

Replications = 1,000
Command: esize twosample qu1, by(sex)
_bs_1: r(d)
_bs_2: r(g)

Observed Bootstrap Normal-based
coefficient std. err. z P>|z| [95% conf. interval]

_bs_1 -.0512417 .0742692 -0.69 0.490 -.1968066 .0943233
_bs_2 -.0512032 .0742134 -0.69 0.490 -.1966587 .0942523

Example 4: Effect sizes for two independent samples using variables
Sometimes, the data of interest are stored in two separate variables. We can calculate effect sizes for

the two groups by using the unpaired version of esize.

. use https://www.stata-press.com/data/r18/fuel

. esize unpaired mpg1==mpg2
Effect size based on mean comparison

Number of obs = 24

Effect size Estimate [95% conf. interval]

Cohen’s d -.5829654 -1.394934 .2416105
Hedges’s g -.5628243 -1.34674 .2332631
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Immediate form

Example 5: Immediate form for effect sizes for two means
Often we do not have access to raw data, but we are given summary statistics in a report or manuscript.

To calculate the effect sizes from summary statistics, we can use the immediate command esizei. For
example, Kline (2013) in table 4.2 shows summary statistics for a hypothetical sample where mean1 =
13, sd1 = 2.74, mean2 = 11, and sd2 = 2.24; there are 30 people in each group. We can estimate the

effect sizes from these summary data using esizei:
. esizei 30 13 2.74 30 11 2.24
Effect size based on mean comparison

Obs per group:
Group 1 = 30
Group 2 = 30

Effect size Estimate [95% conf. interval]

Cohen’s d .7991948 .2695509 1.322465
Hedges’s g .7888081 .2660477 1.305277

Example 6: Immediate form for effect sizes for F tests after an ANOVA
esizei can also be used to compute 𝜂2, 𝜀2, and 𝜔2 for 𝐹 tests after anANOVA. The following example

from Smithson (2001, 623) illustrates the use of esizei for dfnum = 4, dfden = 50, and 𝐹 = 4.2317:

. esizei 4 50 4.2317, level(90)
Effect sizes for linear models

Effect size Estimate [90% conf. interval]

Eta-squared .2529151 .0521585 .3603621
Epsilon-squared .1931483
Omega-squared .1903049

Video example
Tour of effect sizes

https://www.youtube.com/watch?v=h95_wu-OFY8
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Stored results
esize and esizei for comparing two means store the following in r():

Scalars

r(d) Cohen’s 𝑑
r(lb d) lower confidence bound for Cohen’s 𝑑
r(ub d) upper confidence bound for Cohen’s 𝑑
r(g) Hedges’s 𝑔
r(lb g) lower confidence bound for Hedges’s 𝑔
r(ub g) upper confidence bound for Hedges’s 𝑔
r(delta1) Glass’s Δ for group 1

r(lb delta1) lower confidence bound for Glass’s Δ for group 1

r(ub delta1) upper confidence bound for Glass’s Δ for group 1

r(delta2) Glass’s Δ for group 2

r(lb delta2) lower confidence bound for Glass’s Δ for group 2

r(ub delta2) upper confidence bound for Glass’s Δ for group 2

r(r pb) point-biserial correlation coefficient

r(lb r pb) lower confidence bound for the point-biserial correlation coefficient

r(ub r pb) upper confidence bound for the point-biserial correlation coefficient

r(N 1) sample size 𝑛1
r(N 2) sample size 𝑛2
r(df t) degrees of freedom

r(level) confidence level

esizei for 𝐹 tests after ANOVA stores the following in r():

Scalars

r(eta2) 𝜂2

r(lb eta2) lower confidence bound for 𝜂2

r(ub eta2) upper confidence bound for 𝜂2

r(epsilon2) 𝜀2

r(omega2) 𝜔2

r(level) confidence level

Methods and formulas
For the 𝑑 family, the effect-size parameter of interest is the scaled difference between the means given

by

𝛿 = (𝜇1 − 𝜇2)
𝜎

One of the most popular estimators of effect size is Cohen’s 𝑑, given by

Cohen’s 𝑑 = (𝑥1 − 𝑥2)
𝑠∗

where

𝑠∗ = √(𝑛1 − 1)𝑠2
1 + (𝑛2 − 1)𝑠2

2
𝑛1 + 𝑛2 − 2
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Hedges (1981) showed that Cohen’s 𝑑 is biased and proposed the unbiased estimator

Hedges’s 𝑔 = Cohen’s 𝑑 × 𝑐(𝑚)

where 𝑚 = 𝑛1 + 𝑛2 − 2 and

𝑐(𝑚) =
Γ( 𝑚

2 )
√ 𝑚

2 Γ( 𝑚−1
2 )

Glass (Smith and Glass 1977) proposed an estimator for 𝛿 in the context of designed experiments,

Glass’s Δ = (𝑥treated − 𝑥control)
𝑠control

where 𝑠control is the standard deviation for the control group.
As noted above, esize and esizei report two estimates of Glass’s Δ: one using the standard devi-

ation for group 1 and the other using the standard deviation for group 2:

Glass’s Δ1 = (𝑥1 − 𝑥2)
𝑠1

and

Glass’s Δ2 = (𝑥1 − 𝑥2)
𝑠2

For the 𝑟 family, the effect-size parameter of interest is the ratio of the variance attributable to an

effect and the total variance:

𝜂2 = 𝜎2
effect

𝜎2
total

A popular estimator of 𝜂 when there are two groups is the point-biserial correlation coefficient,

𝑟PB = 𝑡√
𝑡2 + df

where 𝑡 is the 𝑡 statistic for the difference between the means of the two groups, and 𝑑𝑓 is the correspond-
ing degrees of freedom. Satterthwaite’s or Welch’s adjustment (see [R] ttest for details) to the degrees

of freedom can be used to calculate 𝑟PB by specifying the unequal or welch option, respectively.
When more than two means are being compared, as in the case of anANOVAwith 𝑝 groups, a popular

estimator of effect size is the correlation ratio denoted 𝜂2 (Fisher 1925; Kerlinger and Lee 2000). 𝜂2

can be computed directly as the ratio of the SSeffect and the SStotal or as a function of the 𝐹 statistic with

numerator degrees of freedom equal to dfnum and denominator degrees of freedom equal to dfden.

̂𝜂2 = 𝐹
𝐹 + dfden/dfnum
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Like its equivalent estimator 𝑅2, 𝜂2 has an upward bias. Less biased estimators of effect size are 𝜀2

and 𝜔2 (Grissom and Kim 2012).

̂𝜀2 = 𝐹 − 1
𝐹 + dfden/dfnum

= ̂𝜂2 − dfnum
dfden

(1 − ̂𝜂2)

�̂�2 = 𝐹 − 1
𝐹 + (dfden + 1)/dfnum

To calculate ̂𝜂2, ̂𝜀2, and �̂�2 directly after anova or regress, see estat esize in [R] regress postes-
timation.

Cohen’s 𝑑, Hedges’s 𝑔, and Glass’s Δ have been shown to have a noncentral 𝑡 distribution (Hedges
1981) with noncentrality parameter equal to

𝜆 = 𝛿√
𝑛1𝑛2

𝑛1 + 𝑛2

Confidence intervals are calculated by finding the noncentrality parameters 𝜆lower and 𝜆upper that cor-

respond to

Pr(df, 𝛿, 𝜆lower) = 1 − 𝛼
2

and

Pr(df, 𝛿, 𝜆upper) = 𝛼
2

using the function npnt(𝑑𝑓,𝑡,𝑝). The noncentrality parameters are then transformed back to the effect-
size scale:

𝛿lower = 𝜆lower√
𝑛1 + 𝑛2

𝑛1𝑛2

and

𝛿upper = 𝜆upper√
𝑛1 + 𝑛2

𝑛1𝑛2

(see Venables [1975]; Steiger and Fouladi [1997]; Cumming and Finch [2001]; Smithson [2001]).

Confidence intervals for the point-biserial correlation coefficient are calculated similarly and trans-

formed back to the effect-size scale as

𝑟lower = 𝜆lower

√𝜆2
lower + df

and

𝑟upper =
𝜆upper

√𝜆2
upper + df
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Following Smithson’s (2001) notation, the 𝐹 statistic is written as

𝐹dfnum,dfden
= 𝑓2(dfnum/dfden)

This equation has a noncentral 𝐹 distribution with noncentrality parameter:

𝜆 = 𝑓2(dfnum + dfden + 1)

where 𝑓2 = 𝜂2/(1 − 𝜂2).
Confidence intervals for ̂𝜂2 are calculated by finding the noncentrality parameters 𝜆lower and 𝜆upper

for a noncentral 𝐹 distribution that correspond to

Pr(dfnum, dfden, 𝐹 , 𝜆lower) = 1 − 𝛼
2

and

Pr(dfnum, dfden, 𝐹 , 𝜆upper) = 𝛼
2

using the function npnF(𝑑𝑓1,𝑑𝑓2,𝑓,𝑝). The noncentrality parameters are transformed back to the ̂𝜂2

scale as

̂𝜂2
lower = 𝜆lower

𝜆lower + dfnum + dfden + 1
and

̂𝜂2
upper =

𝜆upper

𝜆upper + dfnum + dfden + 1

While confidence intervals for ̂𝜀2 can be constructed using the same transformation that links it with ̂𝜂2,

there are several arguments for not using them in practice. See Smithson (2003, 54) for further details.� �
Fred Nichols Kerlinger (1910–1991) was born in New York City. He studied music at New York

University and graduated magna cum laude with a degree in education and philosophy. After gradu-

ation, he joined the USArmy and served as a counterintelligence officer in Japan in 1946. Kerlinger

earned an MA and a PhD in educational psychology from the University of Michigan and held fac-

ulty appointments at several universities, including New York University. He was president of the

American Educational ResearchAssociation and is best known for his popular and influential book

Foundations of Behavioral Research (1964), which introduced Fisher’s (1925) 𝜂2 statistic to behav-

ioral researchers.

William Lee Hays (1926–1995) was born in Clarksville, Texas. He studied mathematics and psy-

chology at Paris Junior College in Paris, Texas, and at East Texas State College. He earned BS and

MS degrees from North Texas State University. Upon completion of his PhD in psychology at the

University of Michigan, he joined the faculty, where he eventually became associate vice president

for academic affairs. In 1977, Hays accepted an appointment as vice president for academic affairs

at the University of Texas at Austin, where he remained until his death in 1995. Hays is best known

for his book Statistics for Psychologists (1963), which introduced the 𝜔2 statistic (and is actually

denoted here by 𝜀2).� �
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Also see
[R] bitest — Binomial probability test

[R] ci — Confidence intervals for means, proportions, and variances

[R] mean — Estimate means
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estat — Postestimation statistics

Description
estat displays scalar- and matrix-valued statistics after estimation; it complements predict, which

calculates variables after estimation. Exactly what statistics estat can calculate depends on the previous
estimation command.

Three sets of statistics are so commonly used that they are available after all estimation commands that

store the model log likelihood. estat ic displaysAkaike’s and Schwarz’s Bayesian information criteria.
estat summarize summarizes the variables used by the command and automatically restricts the sample
to e(sample); it also summarizes the weight variable and cluster structure, if specified. estat vce
displays the covariance or correlation matrix of the parameter estimates of the previous model.

Syntax

Command Reference

Display information criteria

estat ic [ , n(#) ] [R] estat ic

Summarize estimation sample

estat summarize [ eqlist] [ , estat summ options ] [R] estat summarize

Display covariance matrix estimates

estat vce [ , estat vce options ] [R] estat vce

Command-specific

estat subcommand1 [ , options1 ]
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estat classification — Classification statistics and table

Description Quick start Menu for estat Syntax Options
Remarks and examples Stored results Methods and formulas References Also see

Description
estat classification reports various summary statistics, including the classification table.

estat classification requires that the current estimation results be from logistic, logit,
probit, or ivprobit; see [R] logistic, [R] logit, [R] probit, or [R] ivprobit.

Quick start
Display classification table and related statistics for current estimation results

estat classification

Change probability threshold for assignment to positive outcome to 75%

estat classification, cutoff(.75)

Classification for observations with catvar = 2

estat classification if catvar==2

Menu for estat
Statistics > Postestimation
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Syntax
estat classification [ if ] [ in ] [weight ] [ , options ]

options Description

Main

all display summary statistics for all observations in the data

cutoff(#) positive outcome threshold; default is cutoff(0.5)

estat classification is not appropriate with svy estimation results.
collect is allowed; see [U] 11.1.10 Prefix commands.

fweights are allowed; see [U] 11.1.6 weight.

Options

� � �
Main �

all requests that the statistic be computed for all observations in the data, ignoring any if or in restric-
tions specified by the estimation command.

cutoff(#) specifies the value for determining whether an observation has a predicted positive outcome.
An observation is classified as positive if its predicted probability is ≥ #. The default is 0.5.

Remarks and examples
estat classification presents the classification statistics and classification table after logistic,

logit, probit, or ivprobit.

Statistics are produced either for the estimation sample (the default) or for any set of observations.

When weights, if, or in is used with the estimation command, it is not necessary to repeat the qualifier
when you want statistics computed for the estimation sample. Specify if, in, or the all option only
when you want statistics computed for a set of observations other than the estimation sample. Specify

weights only when you want to use a different set of weights.
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Example 1
We illustrate estat classification after logistic; see [R] logistic.

. use https://www.stata-press.com/data/r18/lbw
(Hosmer & Lemeshow data)
. logistic low age lwt i.race smoke ptl ht ui
(output omitted )

. estat classification
Logistic model for low

True
Classified D ~D Total

+ 21 12 33
- 38 118 156

Total 59 130 189
Classified + if predicted Pr(D) >= .5
True D defined as low != 0

Sensitivity Pr( +| D) 35.59%
Specificity Pr( -|~D) 90.77%
Positive predictive value Pr( D| +) 63.64%
Negative predictive value Pr(~D| -) 75.64%

False + rate for true ~D Pr( +|~D) 9.23%
False - rate for true D Pr( -| D) 64.41%
False + rate for classified + Pr(~D| +) 36.36%
False - rate for classified - Pr( D| -) 24.36%

Correctly classified 73.54%

The overall rate of correct classification is estimated to be 73.54, with 90.77% of the normal weight

group correctly classified (specificity) and only 35.59% of the low weight group correctly classified

(sensitivity). Classification is sensitive to the relative sizes of each component group, and always favors

classification into the larger group. This phenomenon is evident here.

By default, estat classification uses a cutoff of 0.5, although you can vary this with the

cutoff() option. You can use the lsens command to review the potential cutoffs; see [R] lsens.
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Stored results
estat classification stores the following in r():

Scalars

r(P corr) percent correctly classified

r(P p1) sensitivity

r(P n0) specificity

r(P p0) false-positive rate given true negative

r(P n1) false-negative rate given true positive

r(P 1p) positive predictive value

r(P 0n) negative predictive value

r(P 0p) false-positive rate given classified positive

r(P 1n) false-negative rate given classified negative

Matrices

r(ctable) classification table

Methods and formulas
Let 𝑗 index observations. Define 𝑐 as the cutoff() specified by the user or, if not specified, as 0.5.

Let 𝑝𝑗 be the predicted probability of a positive outcome and 𝑦𝑗 be the actual outcome, which we will

treat as 0 or 1, although Stata treats it as 0 and non-0, excluding missing observations.

Aprediction is classified as positive if 𝑝𝑗 ≥ 𝑐 and otherwise is classified as negative. The classification
is correct if it is positive and 𝑦𝑗 = 1 or if it is negative and 𝑦𝑗 = 0.

Sensitivity is the fraction of 𝑦𝑗 = 1 observations that are correctly classified. Specificity is the

percentage of 𝑦𝑗 = 0 observations that are correctly classified.

References
Hosmer, D. W., Jr., S. A. Lemeshow, and R. X. Sturdivant. 2013. Applied Logistic Regression. 3rd ed. Hoboken, NJ:

Wiley.

Kohler, U., and F. Kreuter. 2012. Data Analysis Using Stata. 3rd ed. College Station, TX: Stata Press.

Also see
[R] logistic — Logistic regression, reporting odds ratios

[R] logit — Logistic regression, reporting coefficients

[R] probit — Probit regression

[R] ivprobit — Probit model with continuous endogenous covariates

[R] lroc — Compute area under ROC curve and graph the curve

[R] lsens — Graph sensitivity and specificity versus probability cutoff

[R] estat gof — Pearson or Hosmer–Lemeshow goodness-of-fit test

[R] roc — Receiver operating characteristic (ROC) analysis

[U] 20 Estimation and postestimation commands

https://www.stata.com/bookstore/applied-logistic-regression/
https://www.stata-press.com/books/data-analysis-using-stata


estat gof — Pearson or Hosmer–Lemeshow goodness-of-fit test

Description Quick start Menu for estat Syntax Options
Remarks and examples Stored results Methods and formulas References Also see

Description
estat gof reports the Pearson goodness-of-fit test or the Hosmer–Lemeshow goodness-of-fit test.

estat gof requires that the current estimation results be from logistic, logit, or probit; see
[R] logistic, [R] logit, or [R] probit. For estat gof after poisson, see [R] poisson postestimation. For

estat gof after sem, see [SEM] estat gof.

Quick start
Pearson goodness-of-fit test for current estimation results

estat gof

Same as above, but apply to all observations in dataset instead of just those in e(sample)
estat gof, all

Hosmer–Lemeshow goodness-of-fit test

estat gof, group(10)

Same as above, and display table of groups used for the test

estat gof, group(10) table

Menu for estat
Statistics > Postestimation
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Syntax
estat gof [ if ] [ in ] [weight ] [ , options ]

options Description

Main

group(#) perform Hosmer–Lemeshow goodness-of-fit test using # quantiles

all execute test for all observations in the data

outsample adjust degrees of freedom for samples outside estimation sample

table display table of groups used for test

estat gof is not appropriate with svy estimation results.
collect is allowed; see [U] 11.1.10 Prefix commands.

fweights are allowed; see [U] 11.1.6 weight.

Options

� � �
Main �

group(#) specifies the number of quantiles to be used to group the data for the Hosmer–Lemeshow

goodness-of-fit test. group(10) is typically specified. If this option is not given, the Pearson

goodness-of-fit test is computed using the covariate patterns in the data as groups.

all requests that the statistic be computed for all observations in the data, ignoring any if or in restric-
tions specified by the estimation command.

outsample adjusts the degrees of freedom for the Pearson and Hosmer–Lemeshow goodness-of-fit tests

for samples outside the estimation sample. See Samples other than the estimation sample later in this

entry.

table displays a table of the groups used for the Hosmer–Lemeshow or Pearson goodness-of-fit test

with predicted probabilities, observed and expected counts for both outcomes, and totals for each

group.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Samples other than the estimation sample

Introduction
estat gof computes goodness-of-fit tests: either the Pearson 𝜒2 test or the Hosmer–Lemeshow test.

By default, estat gof computes statistics for the estimation sample by using the last model fit by
logistic, logit, or probit. However, samples other than the estimation sample can be specified; see
Samples other than the estimation sample later in this entry.
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Example 1
estat gof, typed without options, presents the Pearson 𝜒2 goodness-of-fit test for the fitted model.

The Pearson 𝜒2 goodness-of-fit test is a test of the observed against expected number of responses using

cells defined by the covariate patterns; see predict with the number option in [R] logistic postestimation

for the definition of covariate patterns.

. use https://www.stata-press.com/data/r18/lbw
(Hosmer & Lemeshow data)
. logistic low age lwt i.race smoke ptl ht ui
(output omitted )

. estat gof
Goodness-of-fit test after logistic model
Variable: low

Number of observations = 189
Number of covariate patterns = 182

Pearson chi2(173) = 179.24
Prob > chi2 = 0.3567

Our model fits reasonably well. However, the number of covariate patterns is close to the number of

observations, making the applicability of the Pearson 𝜒2 test questionable but not necessarily inappro-

priate. Hosmer, Lemeshow, and Sturdivant (2013, 157–160) suggest regrouping the data by ordering

on the predicted probabilities and then forming, say, 10 nearly equal-sized groups. estat gof with the
group() option does this:

. estat gof, group(10)
note: obs collapsed on 10 quantiles of estimated probabilities.
Goodness-of-fit test after logistic model
Variable: low
Number of observations = 189

Number of groups = 10
Hosmer--Lemeshow chi2(8) = 9.65

Prob > chi2 = 0.2904
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Again we cannot reject our model. If we specify the table option, estat gof displays the groups
along with the expected and observed number of positive responses (low-birthweight babies):

. estat gof, group(10) table
note: obs collapsed on 10 quantiles of estimated probabilities.
Goodness-of-fit test after logistic model
Variable: low
Table collapsed on quantiles of estimated probabilities

Group Prob Obs_1 Exp_1 Obs_0 Exp_0 Total

1 0.0827 0 1.2 19 17.8 19
2 0.1276 2 2.0 17 17.0 19
3 0.2015 6 3.2 13 15.8 19
4 0.2432 1 4.3 18 14.7 19
5 0.2792 7 4.9 12 14.1 19

6 0.3138 7 5.6 12 13.4 19
7 0.3872 6 6.5 13 12.5 19
8 0.4828 7 8.2 12 10.8 19
9 0.5941 10 10.3 9 8.7 19

10 0.8391 13 12.8 5 5.2 18

Number of observations = 189
Number of groups = 10

Hosmer--Lemeshow chi2(8) = 9.65
Prob > chi2 = 0.2904

In this table, the column Prob shows the upper boundaries of predicted probabilities for these 10 groups,
which are the 10th, 20th, . . . , and 100th percentiles in this case.

Technical note
estat gof with the group() option puts all observations with the same predicted probabilities into

the same group. If, as in the previous example, we request 10 groups, the groups that estat gof makes
are [ 𝑝0, 𝑝10], (𝑝10, 𝑝20], (𝑝20, 𝑝30], . . . , (𝑝90, 𝑝100], where 𝑝𝑘 is the 𝑘th percentile of the predicted prob-
abilities, with 𝑝0 the minimum and 𝑝100 the maximum.

If there are many ties at the quantile boundaries, as will often happen if all independent variables are

categorical and there are only a few of them, the sizes of the groups will be uneven. If the totals in some

of the groups are small, the 𝜒2 statistic for the Hosmer–Lemeshow test may be unreliable. In this case,

fewer groups should be specified, or the Pearson goodness-of-fit test may be a better choice.

Example 2
The table option can be used without the group() option. We would not want to specify this for

our current model because there were 182 covariate patterns in the data, caused by including the two

continuous variables, age and lwt, in the model. As an aside, we fit a simpler model and specify table
with estat gof:
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. logistic low i.race smoke ui
Logistic regression Number of obs = 189

LR chi2(4) = 18.80
Prob > chi2 = 0.0009

Log likelihood = -107.93404 Pseudo R2 = 0.0801

low Odds ratio Std. err. z P>|z| [95% conf. interval]

race
Black 3.052746 1.498087 2.27 0.023 1.166747 7.987382
Other 2.922593 1.189229 2.64 0.008 1.316457 6.488285

smoke 2.945742 1.101838 2.89 0.004 1.415167 6.131715
ui 2.419131 1.047359 2.04 0.041 1.035459 5.651788

_cons .1402209 .0512295 -5.38 0.000 .0685216 .2869447

Note: _cons estimates baseline odds.
. estat gof, table
Goodness-of-fit test after logistic model
Variable: low

Group Prob Obs_1 Exp_1 Obs_0 Exp_0 Total

1 0.1230 3 4.9 37 35.1 40
2 0.2533 1 1.0 3 3.0 4
3 0.2907 16 13.7 31 33.3 47
4 0.2923 15 12.6 28 30.4 43
5 0.2997 3 3.9 10 9.1 13

6 0.4978 4 4.0 4 4.0 8
7 0.4998 4 4.5 5 4.5 9
8 0.5087 2 1.5 1 1.5 3
9 0.5469 2 4.4 6 3.6 8

10 0.5577 6 5.6 4 4.4 10

11 0.7449 3 3.0 1 1.0 4

Group Prob race smoke ui

1 0.1230 White Nonsmoker 0
2 0.2533 White Nonsmoker 1
3 0.2907 Other Nonsmoker 0
4 0.2923 White Smoker 0
5 0.2997 Black Nonsmoker 0

6 0.4978 Other Nonsmoker 1
7 0.4998 White Smoker 1
8 0.5087 Black Nonsmoker 1
9 0.5469 Other Smoker 0

10 0.5577 Black Smoker 0

11 0.7449 Other Smoker 1

Number of observations = 189
Number of covariate patterns = 11

Pearson chi2(6) = 5.71
Prob > chi2 = 0.4569
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Technical note
logistic, logit, or probit and estat gof keep track of the estimation sample. If you type, for

instance, logistic ... if x==1, then when you type estat gof, the statistics will be calculated on the
x==1 subsample of the data automatically.

You should specify if or in with estat gof only when you wish to calculate statistics for a set of
observations other than the estimation sample. See Samples other than the estimation sample later in this

entry.

If the logistic model was fit with fweights, estat gof properly accounts for the weights in its
calculations. (estat gof allows only fweights.) You do not have to specify the weights when you run
estat gof. Weights should be specified with estat gof only when you wish to use a different set of
weights.

Samples other than the estimation sample
estat gof can be used with samples other than the estimation sample. By default, estat gof re-

members the estimation sample used with the last logistic, logit, or probit command. To override
this, simply use an if or in restriction to select another set of observations, or specify the all option to
force the command to use all the observations in the dataset.

If you use estat gof with a sample that is completely different from the estimation sample (that

is, no overlap), you should also specify the outsample option so that the 𝜒2 statistic properly adjusts

the degrees of freedom upward. For an overlapping sample, the conservative thing to do is to leave the

degrees of freedom the same as they are for the estimation sample.

Example 3
We want to develop a model for predicting low-birthweight babies. One approach would be to divide

our data into two groups, a developmental sample and a validation sample. See Lemeshow and Gall

(1994) and Tilford, Roberson, and Fiser (1995) for more information on developing prediction models

and severity-scoring systems.

We will do this with the low-birthweight data that we considered previously. First, we randomly

divide the data into two samples.

. use https://www.stata-press.com/data/r18/lbw, clear
(Hosmer & Lemeshow data)
. set seed 101
. generate r = runiform()
. sort r
. generate group = 1 if _n <= _N/2
(95 missing values generated)
. replace group = 2 if group==.
(95 real changes made)
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Then, we fit a model using the first sample (group = 1), which is our developmental sample.

. logistic low age lwt i.race smoke ptl ht ui if group==1
Logistic regression Number of obs = 94

LR chi2(8) = 28.03
Prob > chi2 = 0.0005

Log likelihood = -42.351112 Pseudo R2 = 0.2487

low Odds ratio Std. err. z P>|z| [95% conf. interval]

age .922865 .0555349 -1.33 0.182 .8201924 1.03839
lwt .9825782 .0114438 -1.51 0.131 .9604029 1.005265

race
Black 5.975476 4.936135 2.16 0.030 1.183652 30.16621
Other 3.364479 2.760784 1.48 0.139 .6736724 16.803

smoke 3.442716 2.53779 1.68 0.094 .8117831 14.60032
ptl 3.467274 2.337648 1.84 0.065 .9249222 12.99784
ht 5.928512 6.047106 1.74 0.081 .8030021 43.76982
ui 4.045883 2.947396 1.92 0.055 .9703295 16.8697

_cons 3.120871 5.977489 0.59 0.552 .0731049 133.231

Note: _cons estimates baseline odds.

To test calibration in the developmental sample, we calculate the Hosmer–Lemeshow goodness-of-fit

test by using estat gof.

. estat gof, group(10)
note: obs collapsed on 10 quantiles of estimated probabilities.
Goodness-of-fit test after logistic model
Variable: low
Number of observations = 94

Number of groups = 10
Hosmer--Lemeshow chi2(8) = 5.64

Prob > chi2 = 0.6871

We did not specify an if statement with estat gof because we wanted to use the estimation sample.
Because the test is not significant, we are satisfied with the fit of our model.

Running lroc (see [R] lroc) gives a measure of the discrimination:

. lroc, nograph
Logistic model for low
Number of observations = 94
Area under ROC curve = 0.8145
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Now, we test the calibration of our model by performing a goodness-of-fit test on the validation

sample. We specify the outsample option so that the number of degrees of freedom is 10 rather than 8.

. estat gof if group==2, group(10) table outsample
note: obs collapsed on 10 quantiles of estimated probabilities.
Goodness-of-fit test after logistic model
Variable: low
Table collapsed on quantiles of estimated probabilities

Group Prob Obs_1 Exp_1 Obs_0 Exp_0 Total

1 0.0276 0 0.2 10 9.8 10
2 0.0496 2 0.4 7 8.6 9
3 0.0875 1 0.7 9 9.3 10
4 0.1536 4 1.1 5 7.9 9
5 0.2283 4 2.0 6 8.0 10

6 0.2842 4 2.2 5 6.8 9
7 0.4190 3 3.6 7 6.4 10
8 0.5248 5 4.3 4 4.7 9
9 0.6413 5 5.8 5 4.2 10

10 0.9787 4 7.3 5 1.7 9

Number of observations = 95
Number of groups = 10

Hosmer--Lemeshow chi2(10) = 29.30
Prob > chi2 = 0.0011

We must acknowledge that our model does not fit well on the validation sample. The model’s discrimi-

nation in the validation sample is appreciably lower, as well.

. lroc if group==2, nograph
Logistic model for low
Number of observations = 95
Area under ROC curve = 0.6835

Stored results
estat gof stores the following in r():

Scalars

r(N) number of observations

r(m) number of covariate patterns or groups

r(df) degrees of freedom

r(chi2) 𝜒2

r(p) 𝑝-value for 𝜒2 test
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Methods and formulas
Let𝑀 be the total number of covariate patterns among the𝑁 observations. View the data as collapsed

on covariate patterns 𝑗 = 1, 2, . . . ,𝑀, and define𝑚𝑗 as the total number of observations having covariate

pattern 𝑗 and 𝑦𝑗 as the total number of positive responses among observations with covariate pattern 𝑗.
Define 𝑝𝑗 as the predicted probability of a positive outcome in covariate pattern 𝑗.

The Pearson 𝜒2 goodness-of-fit statistic is

𝜒2 =
𝑀

∑
𝑗=1

(𝑦𝑗 − 𝑚𝑗𝑝𝑗)2

𝑚𝑗𝑝𝑗(1 − 𝑝𝑗)

This 𝜒2 statistic has approximately 𝑀 − 𝑘 degrees of freedom for the estimation sample, where 𝑘 is the
number of independent variables, including the constant. For a sample outside the estimation sample,

the statistic has 𝑀 degrees of freedom.

The Hosmer–Lemeshow goodness-of-fit 𝜒2 (Hosmer and Lemeshow 1980; Lemeshow and Hosmer

1982; Hosmer, Lemeshow, and Klar 1988) is calculated similarly, except that rather than using the 𝑀
covariate patterns as the group definition, the quantiles of the predicted probabilities are used to form

groups. Let 𝐺 = # be the number of quantiles requested with group(#). The smallest index 1 ≤ 𝑞(𝑖) ≤
𝑀, such that

𝑊𝑞(𝑖) =
𝑞(𝑖)

∑
𝑗=1

𝑚𝑗 ≥ 𝑁
𝐺

gives 𝑝𝑞(𝑖) as the upper boundary of the 𝑖th quantile for 𝑖 = 1, 2, . . . , 𝐺. Let 𝑞(0) = 1 denote the first

index.

The groups are then

[ 𝑝𝑞(0), 𝑝𝑞(1)], ( 𝑝𝑞(1), 𝑝𝑞(2)], . . . , ( 𝑝𝑞(𝐺−1), 𝑝𝑞(𝐺)]

If the table option is given, the upper boundaries 𝑝𝑞(1), . . . , 𝑝𝑞(𝐺) of the groups appear next to the group

number on the output.

The resulting 𝜒2 statistic has approximately 𝐺 − 2 degrees of freedom for the estimation sample. For

a sample outside the estimation sample, the statistic has 𝐺 degrees of freedom.
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Also see
[R] logistic — Logistic regression, reporting odds ratios
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[R] lroc — Compute area under ROC curve and graph the curve

[R] lsens — Graph sensitivity and specificity versus probability cutoff

[U] 20 Estimation and postestimation commands

https://www.stata-journal.com/article.html?article=st0099
https://www.stata-journal.com/article.html?article=st0099
https://www.stata-journal.com/article.html?article=st0269
https://www.stata-journal.com/article.html?article=st0269
https://doi.org/10.1080/03610928008827941
https://doi.org/10.1002/bimj.4710300805
https://www.stata.com/bookstore/applied-logistic-regression/
https://doi.org/10.1001/jama.1994.03520130087038
https://doi.org/10.1093/oxfordjournals.aje.a113284
https://doi.org/10.1093/oxfordjournals.aje.a113284
https://www.stata-journal.com/article.html?article=gr0071
https://www.stata-journal.com/article.html?article=gr0071
https://www.stata.com/products/stb/journals/stb28.pdf


estat ic — Display information criteria

Description Quick start Menu for estat Syntax Options
Remarks and examples Stored results Methods and formulas References Also see

Description
estat ic computes Akaike’s (AIC), consistent Akaike’s (CAIC), corrected Akaike’s (AICc), and

Schwarz’s Bayesian (BIC) information criteria.

Quick start
Display AIC and BIC

estat ic

Display CAIC and BIC

estat ic, aicconsistent

Display AICc and BIC

estat ic, aiccorrected

Display AIC, BIC, AICc, and CAIC

estat ic, all

Specify 𝑁 to be used in calculating BIC as 500

estat ic, n(500)

Specify 𝑁 and degrees of freedom to be used in calculating all information criteria as 500 and 10, re-

spectively

estat ic, n(500) df(10) all

Menu for estat
Statistics > Postestimation
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Syntax
estat ic [ , options ]

options Description

aiccorrected report AICc instead of AIC

aicconsistent report CAIC instead of AIC

all report all four information criteria: AIC, BIC, AICc, and CAIC

n(#) specify 𝑁 to be used in calculating BIC, AICc, and CAIC;
see [R] IC note

df(#) specify degrees of freedom 𝑘 to be used in calculating AIC, BIC,
AICc, and CAIC

collect is allowed; see [U] 11.1.10 Prefix commands.

Options
aiccorrected specifies that AICc be computed instead of AIC. This information criterion is a second-

order approximation and is recommended for small sample sizes.

Only one of aiccorrected, aicconsistent, or all is allowed.

aicconsistent specifies that CAIC be computed instead ofAIC. This information criterion is a consistent
version of AIC; that is, the probability of selecting the “true model” approaches 1 as sample size

increases.

Only one of aicconsistent, aiccorrected, or all is allowed.

all produces a table showing all four information criteria: AIC, BIC, AICc, and CAIC.

Only one of all, aiccorrected, or aicconsistent is allowed.

n(#) specifies 𝑁 to be used in calculating BIC, AICc, and CAIC; see [R] IC note.

df(#) specifies degrees of freedom 𝑘 to be used in calculating AIC, BIC, AICc, and CAIC. By default, 𝑘 is
the number of estimated parameters.

Remarks and examples
estat ic calculates four information criteria used to compare models fit to the same dataset. Unlike

likelihood-ratio, Wald, and similar testing procedures, the models need not be nested to compare the

information criteria. The information criteria are constructed as a function of the log likelihood ln𝐿, the
number of estimated parameters (degrees of freedom) 𝑘, and, in some cases, the number of observations
𝑁. Because they are based on the log-likelihood function, information criteria are available only after

commands that report the log likelihood.

The use of information criteria is subjective, and no formal inference can be drawn from the reported

values. In a typical approach, a set of potential models is selected, and a superior model is selected from

the values of information criteria. A superior model is the model with the lowest value of information

criterion. For example, given two models, the model with the lowest AIC fits the data better than the

model with the larger AIC. For details, see Methods and formulas.



estat ic — Display information criteria 741

Example 1
In [R]mlogit, we fit a model explaining the type of insurance a person has on the basis of age, gender,

race, and site of study. Here we refit the model with and without the site dummies and compare the

models.

. use https://www.stata-press.com/data/r18/sysdsn1
(Health insurance data)
. mlogit insure age male nonwhite
(output omitted )

. estat ic
Akaike’s information criterion and Bayesian information criterion

Model N ll(null) ll(model) df AIC BIC

. 615 -555.8545 -545.5833 8 1107.167 1142.54

Note: BIC uses N = number of observations. See [R] IC note.
. mlogit insure age male nonwhite i.site
(output omitted )

. estat ic
Akaike’s information criterion and Bayesian information criterion

Model N ll(null) ll(model) df AIC BIC

. 615 -555.8545 -534.3616 12 1092.723 1145.783

Note: BIC uses N = number of observations. See [R] IC note.

TheAIC indicates that the model including the site dummies fits the data better, whereas BIC indicates

the opposite. As is often the case, different model-selection criteria have led to conflicting conclusions.
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Example 2
In example 1, we compared AIC and BIC. Here we focus on comparing AIC and AICc for small sample

size. For simplicity, we are using the same health insurance dataset but running mlogit with the age <
30 condition to reduce the sample size.

. mlogit insure age male nonwhite if age < 30
(output omitted )

. estat ic, all
Information criteria

Model N ll(null) ll(model) df

. 87 -76.93025 -70.36684 8

Note: BIC, AICc, and CAIC use N = number of observations.
See [R] IC note.

Model AIC BIC AICc CAIC

. 156.7337 176.4609 158.5798 184.4609

Legend: AIC is Akaike’s information criterion.
BIC is Bayesian information criterion.
AICc is corrected Akaike’s information criterion.
CAIC is consistent Akaike’s information criterion.

. mlogit insure age male nonwhite i.site if age < 30
(output omitted )

. estat ic, all
Information criteria

Model N ll(null) ll(model) df

. 87 -76.93025 -66.03298 12

Note: BIC, AICc, and CAIC use N = number of observations.
See [R] IC note.

Model AIC BIC AICc CAIC

. 156.066 185.6569 160.2822 197.6569

Legend: AIC is Akaike’s information criterion.
BIC is Bayesian information criterion.
AICc is corrected Akaike’s information criterion.
CAIC is consistent Akaike’s information criterion.

Burnham and Anderson (2002) recommend using AICc when the ratio 𝑁/𝑘 < 40. The AIC suggests

that the model with the site dummies is preferred, whereas AICc reports the opposite result.
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Example 3
As we discuss in the technical note below, for the linear mixed models fit using restricted maximum

likelihood (REML), one needs to be careful when comparing models using the standard information cri-

teria, especially when the fixed-effects specifications differ across models. In this example, we show

how to use n(#) and df(#) to modify the the standard 𝑁 and 𝑘 used in the information criteria when

we compare such models. As in [ME]mixed, we consider the dataset from Munnell (1990) and estimate

a Cobb–Douglas production function, which examines the productivity of public capital in each state’s

private output (Baltagi, Song, and Jung 2001).

Suppose we want to compare two models:

. use https://www.stata-press.com/data/r18/productivity
(Public capital productivity)
. mixed gsp private emp hwy water other unemp || region: || state:, reml
(output omitted )

. estimates store model1

. mixed gsp private emp hwy unemp || region: hwy || state: unemp, reml
(output omitted )

. estimates store model2

The two models differ in both their fixed-effects and random-effects specifications. By default, the

number of degrees of freedom in estat ic is calculated as 𝑘 = 𝑘𝑓+𝑘𝑟, where 𝑘𝑓 and 𝑘𝑟 are the number of

estimated fixed-effects and random-effects parameters, respectively. For REML, Gurka (2006) evaluates

the performance of various information criteria. He discusses using 𝑘 = 𝑘𝑟 and different possible values

for 𝑁. Here, we follow the Vonesh and Chinchilli (1997) approach and choose 𝑁 − 𝑘𝑓. Finally, we run

estat ic to compare the models:

. estimates restore model1
(results model1 are active now)
. estat ic, n(809) df(3)
Akaike’s information criterion and Bayesian information criterion

Model N ll(null) ll(model) df AIC BIC

model1 809 . 1404.71 3 -2803.42 -2789.333

. estimates restore model2
(results model2 are active now)
. estat ic, n(811) df(5)
Akaike’s information criterion and Bayesian information criterion

Model N ll(null) ll(model) df AIC BIC

model2 811 . 1413.557 5 -2817.114 -2793.623

Both AIC and BIC indicate that the second model is preferable.
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Technical note
glm and binreg, ml report a slightly different version of AIC and BIC; see [R] glm for the formulas

used. That version is commonly used within the generalized linear models literature; see, for example,

Hardin and Hilbe (2018). The literature on information criteria is vast; see, among others, Akaike (1973),

Sawa (1978), and Raftery (1995). Judge et al. (1985) discuss the use of information criteria in econo-

metrics. Royston and Sauerbrei (2008, chap. 2) examine the use of information criteria as an alternative

to stepwise procedures for selecting model variables.

For linear mixed models, when restricted maximum likelihood is used, the information criteria with

default degrees of freedom and the number of observations cannot be used to compare models with

varying sets of fixed effects, because the likelihood of restricted maximum likelihood is dependent on the

fixed-effects design matrix (Harville 1974; Gurka 2006). By default, the degrees of freedom in estat
ic is the sum of the dimension of fixed-effect parameters and the number of covariance parameters.

Therefore, only models with the same sets of fixed effects can be compared. However, for each model,

the df(#) option can be specified manually to allow comparison with different sets of fixed effects.

There are also different views on which number should be used as 𝑁 to calculate BIC, AICc, and CAIC.

For example, see Vonesh and Chinchilli (1997) and Kass and Raftery (1995). Use the n(#) option to
pass a desired number of observations to the estat ic command. For details, see [R] IC note.

Stored results
estat ic stores the following in r():

Matrices

r(S) row vector with columns (N, ll(null), ll(model), df, and information criteria)

Methods and formulas
There are twomain large-sample notions of information criteria: efficiency and consistency (Burnham

and Anderson 2002). Efficient criteria target the best finite dimension model under the assumption that

the unknown “true model” has infinite dimension. In contrast, assuming that the true data-generating

model is finite and fixed, the consistent criterion selects the correct model with probability approaching

1 as 𝑁 → ∞. The AIC and AICc belong to the efficient class, while the BIC and CAIC to the consistent

class.

Akaike’s (1974) information criterion is defined as

AIC = −2 ln𝐿 + 2𝑘

where ln𝐿 is the maximized log-likelihood of the model and 𝑘 is the number of parameters estimated.

Some authors define AIC as the expression above divided by the sample size.



estat ic — Display information criteria 745

AIC performs poorly when there are too many parameters in relation to the sample size. Hurvich and

Tsai (1989) derived a second-order variant of AIC called AICc,

AICc = AIC + 2𝑘(𝑘 + 1)
𝑁 − 𝑘 − 1

where 𝑁 is the sample size. See [R] IC note for additional information on calculating and interpreting

𝑁. Compared with AIC, AICc has an additional bias-correction term, and for large 𝑁 and small 𝑘, this
term is negligible. Burnham and Anderson (2002) recommend using AICc when the ratio 𝑁/𝑘 < 40.

Schwarz’s (1978) Bayesian information criterion is another measure of fit defined as

BIC = −2 ln𝐿 + 𝑘 ln𝑁

Bozdogan (1987) proposed a consistent version of AIC called CAIC,

CAIC = −2 ln𝐿 + 𝑘( ln𝑁 + 1)

Burnham and Anderson (2002, chap. 6) argue that employing and comparing consistent and efficient

information criteria in the same situation contrasts with the fact that they were designed to answer dif-

ferent questions. Thus, one needs to be careful when interpreting the results.� �
Hirotugu Akaike (1927–2009) was born in Fujinomiya City, Shizuoka Prefecture, Japan. He was

the son of a silkworm farmer. He gained BA and DSc degrees from the University of Tokyo. Akaike’s

career from 1952 at the Institute of StatisticalMathematics in Japan culminated in service as Director

General; after 1994, he was Professor Emeritus. His best-known work in a prolific career is on what

is now known as the Akaike information criterion (AIC), which was formulated to help selection of

the most appropriate model from a number of candidates.

Gideon E. Schwarz (1933–2007) was a professor of statistics at the Hebrew University, Jerusalem.

He was born in Salzburg, Austria, and obtained an MSc in 1956 from the Hebrew University and

a PhD in 1961 from Columbia University. His interests included stochastic processes, sequential

analysis, probability, and geometry. He is best known for the Bayesian information criterion (BIC).� �
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estat summarize — Summarize estimation sample

Description Quick start Menu for estat Syntax Options Remarks and examples
Stored results Also see

Description
estat summarize summarizes the variables used by the command and automatically restricts the

sample to the estimation sample; it also summarizes the weight variable and cluster structure, if specified.

Quick start
Summary statistics for all variables in the model using estimation sample

estat summarize

Add variable labels to output

estat summarize, labels

Obtain summary of estimation sample for each equation

estat summarize, equation

Ignore weights when calculating summary statistics after weighted estimation

estat summarize, noweights

Menu for estat
Statistics > Postestimation
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Syntax
estat summarize [ eqlist] [ , estat summ options ]

estat summ options Description

equation display summary by equation

group display summary by group; only after sem and gsem
labels display variable labels

noheader suppress the header

noweights ignore weights

display options control row spacing, line width, display of omitted variables
and base and empty cells, and factor-variable labeling

eqlist is rarely used and specifies the variables, with optional equation name, to be summarized. eqlist may be

varlist or (eqname1: varlist) (eqname2: varlist) . . . . varlist may contain time-series operators; see
[U] 11.4.4 Time-series varlists.

collect is allowed; see [U] 11.1.10 Prefix commands.

Options
equation requests that the dependent variables and the independent variables in the equations be dis-

played in the equation-style format of estimation commands, repeating the summary information

about variables entered in more than one equation.

group displays summary information separately for each group. group is only allowed after sem or

gsem with a group() variable specified.

labels displays variable labels.

noheader suppresses the header.

noweights ignores the weights, if any, from the previous estimation command. The default when

weights are present is to perform a weighted summarize on all variables except the weight variable
itself. An unweighted summarize is performed on the weight variable.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
nofvlabel, fvwrap(#), and fvwrapon(style); see [R] Estimation options.

Remarks and examples
Often when fitting a model, you will also be interested in obtaining summary statistics, such as the

sample means and standard deviations of the variables in the model. estat summarize makes this

process simple. The output displayed is similar to that obtained by typing

. summarize varlist if e(sample)

without the need to type the varlist containing the dependent and independent variables.
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Example 1
Continuing with the example in [R] estat ic, here we summarize the variables by using estat

summarize.

. use https://www.stata-press.com/data/r18/sysdsn1
(Health insurance data)
. mlogit insure age male nonwhite i.site
(output omitted )

. estat summarize, noomitted
Estimation sample mlogit Number of obs = 615

Variable Mean Std. dev. Min Max

insure 1.596748 .6225846 1 3

age 44.46832 14.18523 18.11087 86.07254
male .2504065 .4335998 0 1

nonwhite .196748 .3978638 0 1

site
2 .3707317 .4833939 0 1
3 .3138211 .4644224 0 1

The output in the previous example contains all the variables in one table, though mlogit presents
its results in a multiple-equation format. For models in which the same variables appear in all equations,

that is fine; but for other multiple-equation models, we may prefer to have the variables separated by the

equation in which they appear. The equation option makes this possible.
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Example 2
Systems of simultaneous equations typically have different variables in each equation, and the

equation option of estat summarize is helpful in such situations. In example 2 of [R] reg3, we have
a model of supply and demand. We first refit the model and then call estat summarize.

. use https://www.stata-press.com/data/r18/supDem

. reg3 (Demand:quantity price pcompete income) (Supply:quantity price praw),
> endog(price)
(output omitted )

. estat summarize, equation
Estimation sample reg3 Number of obs = 49

Variable Mean Std. dev. Min Max

depvar
quantity 12.61818 2.774952 7.710694 20.04767
quantity 12.61818 2.774952 7.710694 20.04767

demale
price 32.70944 2.882684 26.38185 38.47692

pcompete 5.929975 3.508264 .2076465 11.55491
income 7.811735 4.18859 .5704173 14.00767

Supply
price 32.70944 2.882684 26.38185 38.47692
praw 4.740891 2.962565 .1510276 9.79881

The first block of the table contains statistics on the dependent (or, more accurately, left-hand-side)

variables, and because we specified quantity as the left-hand-side variable in both equations, it is listed

twice. The second block refers to the variables in the first equation we specified, which we labeled

“Demand” in our call to reg3; and the final block refers to the supply equation.

Stored results
estat summarize stores the following in r():

Scalars

r(N groups) number of groups (group only)

Matrices

r(stats) 𝑘 × 4 matrix of means, standard deviations, minimums, and maximums

r(stats[ # ]) 𝑘 × 4 matrix of means, standard deviations, minimums, and maximums for group # (group only)

Also see
[R] estat — Postestimation statistics

[R] estat ic — Display information criteria

[R] estat vce — Display covariance matrix estimates



estat vce — Display covariance matrix estimates

Description Quick start Menu for estat Syntax Options Remarks and examples
Stored results Also see

Description
estat vce displays the covariance or correlation matrix of the parameter estimates of the previous

model.

Quick start
Display variance–covariance matrix of the estimates (VCE) from the previous model

estat vce

Matrix of correlations rather than covariances

estat vce, correlation

Same as above, but report correlations using three decimal places

estat vce, correlation format(%6.3f)

After fitting a multiple-equation model, display VCE for each equation in separate blocks

estat vce, block

Show VCE for equation y1 only
estat vce, equation(y1)

Menu for estat
Statistics > Postestimation
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Syntax
estat vce [ , estat vce options ]

estat vce options Description

covariance display as covariance matrix; the default

correlation display as correlation matrix

equation(spec) display only specified equations

block display submatrices by equation

diag display submatrices by equation; diagonal blocks only

format(% fmt) display format for covariances and correlations

nolines suppress lines between equations

display options control display of omitted variables and base and empty cells

collect is allowed; see [U] 11.1.10 Prefix commands.

Options
covariance displays the matrix as a variance–covariance matrix; this is the default.

correlation displays the matrix as a correlation matrix rather than a variance–covariance matrix. rho
is a synonym.

equation(spec) selects part of the VCE to be displayed. If spec is eqlist, the VCE for the listed equa-
tions is displayed. If spec is eqlist1 \ eqlist2, the part of the VCE associated with the equations in

eqlist1 (rowwise) and eqlist2 (columnwise) is displayed. If spec is *, all equations are displayed.
equation() implies block if diag is not specified.

block displays the submatrices pertaining to distinct equations separately.

diag displays the diagonal submatrices pertaining to distinct equations separately.

format(% fmt) specifies the number format for displaying the elements of the matrix. The default is

format(%10.0g) for covariances and format(%8.4f) for correlations. See [U] 12.5 Formats: Con-

trolling how data are displayed for more information.

nolines suppresses lines between equations.

display options: noomitted, noemptycells, baselevels, allbaselevels; see [R] Estimation op-

tions.

Remarks and examples
estat vce allows you to display the VCE of the parameters of the previously fit model, as either a

covariance matrix or a correlation matrix.
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Example 1
Returning to the example in [R] estat ic, here we display the covariance matrix of the parameters of

the mlogit model by using estat vce.

. use https://www.stata-press.com/data/r18/sysdsn1
(Health insurance data)
. mlogit insure age male nonwhite
(output omitted )

. estat vce, block
Covariance matrix of coefficients of mlogit model
Covariances of equation Indemnity

o. o. o. o.
age male nonwhite _cons

o.age 0
o.male 0 0

o.nonwhite 0 0 0
o._cons 0 0 0 0

Covariances of equation Prepaid (row) by equation Indemnity (column)
o. o. o. o.

age male nonwhite _cons

age 0
male 0 0

nonwhite 0 0 0
_cons 0 0 0 0

Covariances of equation Prepaid
age male nonwhite _cons

age .00003711
male -.00015303 .0402091

nonwhite -.00008948 .00470608 .04795135
_cons -.00159095 -.00398961 -.00628886 .08000462

Covariances of equation Uninsure (row) by equation Indemnity (column)
o. o. o. o.

age male nonwhite _cons

age 0
male 0 0

nonwhite 0 0 0
_cons 0 0 0 0

Covariances of equation Uninsure (row) by equation Prepaid (column)
age male nonwhite _cons

age .00001753 -.00007926 -.00004564 -.00076886
male -.00007544 .02188398 .0023186 -.00145923

nonwhite -.00004577 .00250588 .02813553 -.00263872
_cons -.00077045 -.00130535 -.00257593 .03888032

Covariances of equation Uninsure
age male nonwhite _cons

age .00013022
male -.00050406 .13248095

nonwhite -.00026145 .01505449 .16861327
_cons -.00562159 -.01686629 -.02474852 .28607591
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The block option is particularly useful for multiple-equation estimators. The first block of output here
corresponds to theVCE of the estimated parameters for the first equation—the square roots of the diagonal

elements of this matrix are equal to the standard errors of the first equation’s parameters. Similarly, the

final block corresponds to the VCE of the parameters for the second equation. The middle block shows

the covariances between the estimated parameters of the first and second equations.

Stored results
estat vce stores the following in r():

Matrices

r(V) VCE or correlation matrix

Also see
[R] estat — Postestimation statistics

[R] estat ic — Display information criteria

[R] estat summarize — Summarize estimation sample
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Description Syntax Remarks and examples Also see

Description
estimates allows you to store and manipulate estimation results:

• You can save estimation results in a file for use in later sessions.

• You can store estimation results in memory so that you can

a. switch among separate estimation results and

b. form tables combining separate estimation results.

Syntax

Command Reference

Save and use results from disk

estimates save filename [R] estimates save

estimates use filename [R] estimates save

estimates describe using filename [R] estimates describe

estimates esample: . . . [R] estimates save

Store and restore estimates in memory

estimates store name [R] estimates store

estimates restore name [R] estimates store

estimates query [R] estimates store

estimates dir [R] estimates store

estimates drop namelist [R] estimates store

estimates clear [R] estimates store

Set titles and notes

estimates title: text [R] estimates title

estimates title [R] estimates title

estimates notes: text [R] estimates notes

estimates notes [R] estimates notes

estimates notes list . . . [R] estimates notes

estimates notes drop . . . [R] estimates notes

Report

estimates describe [ name ] [R] estimates describe

estimates replay [ namelist ] [R] estimates replay
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Command, continued Reference, continued

Tables and statistics

estimates table [ namelist ] [R] estimates table

etable [R] etable

estimates selected [ namelist ] [R] estimates selected

estimates stats [ namelist ] [R] estimates stats

estimates for namelist: . . . [R] estimates for

Remarks and examples
estimates is for use after you have fit a model, be it with regress, logistic, etc. You can use

estimates after any estimation command, whether it be an official estimation command of Stata or a
community-contributed one.

estimates has three separate but related capabilities:

1. You can save estimation results in a file on disk so that you can use them later, even in a different

Stata session.

2. You can store up to 300 estimation results in memory so that they are at your fingertips.

3. You can make tables comparing any results you have stored in memory.

Remarks are presented under the following headings:

Saving and using estimation results
Storing and restoring estimation results
Comparing estimation results
Jargon

Saving and using estimation results
After you have fit a model, say, with regress, type

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. regress mpg weight displ foreign
(output omitted )

You can save the results in a file:

. estimates save basemodel
file basemodel.ster saved

Later, say, in a different session, you can reload those results:

. estimates use basemodel

The situation is now nearly identical to what it was immediately after you fit the model. You can

replay estimation results:

. regress
(output omitted )
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You can perform tests:

. test foreign==0
(output omitted )

And you can use any postestimation command or postestimation capability of Stata. The only difference

is that Stata no longer knows what the estimation sample, e(sample) in Stata jargon, was. When you

reload the estimation results, you might not even have the original data in memory. That is okay. Stata

will know to refuse to calculate anything that can be calculated only on the original estimation sample.

If it is important that you use a postestimation command that can be used only on the original estima-

tion sample, there is a way you can do that. You use the original data and then use estimates esample:
to tell Stata what the original sample was.

See [R] estimates save for details.

Storing and restoring estimation results
Storing and restoring estimation results in memory is much like saving them to disk. You type

. estimates store base

to save the current estimation results under the name base, and you type

. estimates restore base

to get them back later. You can find out what you have stored by typing

. estimates dir

Saving estimation results to disk is more permanent than storing them in memory, so why would you

want merely to store them? The answer is that, once they are stored, you can use other estimates
commands to produce tables and reports from them.

See [R] estimates store for details about the estimates store and restore commands.

Comparing estimation results
Let’s say that you have done the following:

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. regress mpg weight displ
(output omitted )

. estimates store base

. regress mpg weight displ foreign
(output omitted )

. estimates store alt



estimates — Save and manipulate estimation results 758

You can now get a table comparing the coefficients:

. estimates table base alt

Variable base alt

weight -.00656711 -.00677449
displacement .00528078 .00192865

foreign -1.6006312
_cons 40.084522 41.847949

estimates table can do much more; see [R] estimates table. etable also produces tables from
stored estimates, customizes the tables, and exports to a variety of formats, including Word, PDF, LATEX,

Excel, and HTML; see [R] etable. Also see [R] estimates stats. estimates statsworks like estimates
table but produces model comparisons in terms of BIC and AIC.

Jargon
You know that if you fit a model, say, by typing

. regress mpg weight displacement

then you can later replay the results by typing

. regress

and you can do tests and calculate other postestimation statistics by typing

. test displacement==0

. estat vif

. predict mpghat

As a result, we often refer to the estimation results or the current estimation results or the most recent

estimation results or the last estimation results or the estimation results in memory.

With estimates store and estimates restore, you can have many estimation results in memory.
One set of those—the set most recently estimated or the set most recently restored—is the current or

active estimation results, which you can replay, which you can test, or from which you can calculate

postestimation statistics.

Current and active are the two words we will use interchangeably from now on.

Also see
[P] estimates — Manage estimation results
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Description Quick start Menu Syntax Option Remarks and examples
Stored results Also see

Description
estimates describe describes the current (active) estimates. Reported are the command line that

produced the estimates, any title that was set by estimates title (see [R] estimates title), and any

notes that were added by estimates notes (see [R] estimates notes).

estimates describe name does the same but reports results for estimates stored by estimates
store (see [R] estimates store).

estimates describe using filename does the same but reports results for estimates saved by

estimates save (see [R] estimates save). If filename contains multiple sets of estimates (saved in it

by estimates save, append), the number of sets of estimates is also reported. If filename is specified
without an extension, .ster is assumed.

Quick start
Describe current estimation results

estimates describe

Describe estimation results stored in m1
estimates describe m1

Describe estimates from first model saved in mymodels.ster
estimates describe using mymodels

Same as above

estimates describe using mymodels, number(1)

Describe estimates from third model saved in mymodels.ster
estimates describe using mymodels, number(3)

Menu
Statistics > Postestimation
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Syntax
estimates describe

estimates describe name

estimates describe using filename [ , number(#) ]

collect is allowed; see [U] 11.1.10 Prefix commands.

Option
number(#) specifies that the #th set of estimation results from filename be described. This assumes that

multiple sets of estimation results have been saved in filename by estimates save, append. The
default is number(1).

Remarks and examples
estimates describe can be used to describe the estimation results currently in memory,

. estimates describe
Estimation results produced by

. regress mpg weight displ if foreign

or to describe results saved by estimates save in a .ster file:

. estimates describe using final
Estimation results ”Final results” saved on 12apr2022 14:20, produced by

. logistic myopic age sex drug1 drug2 if complete==1
Notes:
1. Used file patient.dta
2. ”datasignature myopic age sex drug1 drug2 if complete==1”

reports 148:5(58763):2252897466:3722318443
3. must be reviewed by rgg



estimates describe — Describe estimation results 761

Example 1
. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. regress mpg weight displ if foreign
(output omitted )

. estimates notes: file ‘c(filename)’

. datasignature
74:12(71728):3831085005:1395876116

. estimates notes: datasignature report ‘r(datasignature)’

. estimates save foreign
file foreign.ster saved
. regress mpg weight displ if !foreign
(output omitted )

. estimates describe using foreign
Estimation results saved on 24oct2024 21:13, produced by

. regress mpg weight displ if foreign
Notes:
1. file https://www.stata-press.com/data/r18/auto.dta
2. datasignature report 74:12(71728):3831085005:1395876116

Stored results
estimates describe and estimates describe name store the following in r():

Macros

r(title) title

r(cmdline) original command line

estimates describe using filename stores the above and the following in r():

Scalars

r(datetime) %tc value of date/time file saved
r(nestresults) number of sets of estimation results in file

Also see
[R] estimates — Save and manipulate estimation results
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Description Quick start Syntax Options Remarks and examples Also see

Description
estimates for performs postestimation command on each estimation result specified.

Quick start
Test for no effect of continuous covariate x1 in stored estimates m1 and m2

estimates for m1 m2: test x1==0

Same as above, but test interaction of binary covariate a and x1
estimates for m1 m2: test 0.a#c.x1==1.a#c.x1

Linear combination of coefficients of x1 and x2 in all stored estimates
estimates for _all: lincom x1 + x2

Tables of margins for each level of a and confidence intervals using estimates m1 and m2
estimates for m1 m2: pwcompare i.a, cimargins

Syntax
estimates for namelist [ , options ]: postestimation command

where namelist is a name, a list of names, all, or *. A name may be ., meaning the current (active)
estimates. all and * mean the same thing.

options Description

noheader do not display title

nostop do not stop if command fails

Options
noheader suppresses the display of the header as postestimation command is executed each time.

nostop specifies that execution of postestimation command is to be performed on the remaining models

even if it fails on some.
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Remarks and examples
In the example that follows, we fit a model two different ways, store the results, and then use

estimates for to perform the same test on both of them:

Example 1
. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. generate gpm = 1/mpg
. regress gpm i.foreign i.foreign#c.weight displ
(output omitted )

. estimates store reg

. qreg gpm i.foreign i.foreign#c.weight displ
(output omitted )

. estimates store qreg

. estimates for reg qreg: test 0.foreign#c.weight==1.foreign#c.weight

Model reg

( 1) 0b.foreign#c.weight - 1.foreign#c.weight = 0
F( 1, 69) = 4.87

Prob > F = 0.0307

Model qreg

( 1) 0b.foreign#c.weight - 1.foreign#c.weight = 0
F( 1, 69) = 0.03

Prob > F = 0.8554

Also see
[R] estimates — Save and manipulate estimation results
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Description Quick start Syntax Remarks and examples Also see

Description
estimates notes: text adds a note to the current (active) estimation results.

estimates notes and estimates notes list list the current notes.

estimates notes drop in noterange eliminates the specified notes.

Quick start
Add “My note” to current estimation results

estimates notes: My note

List all notes for current estimation results

estimates notes list

Same as above

estimates notes

Drop notes 1 to 3 from current estimation results

estimates notes drop in 1/3

Drop last note applied to current estimation results

estimates notes drop in l

Syntax
estimates notes: text

estimates notes

estimates notes list [ in noterange ]

estimates notes drop in noterange

where noterange is # or #/# and where # may be a number, the letter f (meaning first), or the letter l
(meaning last).
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Remarks and examples
After adding or removing notes, if estimates have been stored, do not forget to store them again. If

estimates have been saved, do not forget to save them again.

Notes are most useful when you intend to save estimation results in a file; see [R] estimates save. For

instance, after fitting a model, you might type

. estimates note: I think these are final

. estimates save lock2

and later when going through your files, you could type

. estimates use lock2

. estimates notes
1. I think these are final

Up to 9,999 notes can be attached to estimation results. If estimation results are important, we rec-

ommend that you add a note identifying the .dta dataset you used. The best way to do that is to type

. estimates notes: file ‘c(filename)’

because ‘c(filename)’ will expand to include not just the name of the file but also its full path; see
[P] creturn.

If estimation results took a long time to estimate—say, they were produced by cmmprobit or gllamm
(see [CM] cmmprobit and http://www.gllamm.org)—it is also a good idea to add a data signature. A

data signature takes less time to compute than reestimation when you need proof that you really have the

right dataset. The easy way to do that is to type

. datasignature
74:12(71728):3831085005:1395876116

. estimates notes: datasignature reports ‘r(datasignature)’

Now when you ask to see the notes, you will see

. estimates notes
1. I think these are final
2. file C:\project\one\pat4.dta
3. datasignature reports 74:12(71728):3831085005:1395876116

See [D] datasignature.

Notes need not be positive. You might set a note to be, “I need to check that age is defined correctly.”

http://www.gllamm.org
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Example 1
. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. regress mpg weight displ if foreign
(output omitted )

. estimates notes: file ‘c(filename)’

. datasignature
74:12(71728):3831085005:1395876116

. estimates notes: datasignature report ‘r(datasignature)’

. estimates save foreign
file foreign.ster saved
. estimates notes list in 1/2

1. file https://www.stata-press.com/data/r18/auto.dta
2. datasignature report 74:12(71728):3831085005:1395876116

. estimates notes drop in 2
(1 note dropped)

. estimates notes
1. file https://www.stata-press.com/data/r18/auto.dta

Also see
[R] estimates — Save and manipulate estimation results
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Description Quick start Menu Syntax Remarks and examples Also see

Description
estimates replay redisplays the current (active) estimation results, just as typing the name of the

estimation command would do.

estimates replay namelist redisplays each specified estimation result. The active estimation results
are left unchanged.

Quick start
Redisplay current estimation results

estimates replay

Redisplay estimation results stored as m1
estimates replay m1

Redisplay all stored estimation results

estimates replay *

Same as above

estimates replay _all

Menu
Statistics > Postestimation
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Syntax
estimates replay

estimates replay namelist

where namelist is a name, a list of names, all, or *. A name may be ., meaning the current (active)
estimates. all and * mean the same thing.

Remarks and examples
In the example that follows, we fit a model two different ways, store the results, use estimates for

to perform the same test on both of them, and then replay the results:

Example 1
. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. generate gpm = 1/mpg
. regress gpm i.foreign i.foreign#c.weight displ
(output omitted )

. estimates store reg

. qreg gpm i.foreign i.foreign#c.weight displ
(output omitted )

. estimates store qreg

. estimates for reg qreg: test 0.foreign#c.weight==1.foreign#c.weight

Model reg

( 1) 0b.foreign#c.weight - 1.foreign#c.weight = 0
F( 1, 69) = 4.87

Prob > F = 0.0307

Model qreg

( 1) 0b.foreign#c.weight - 1.foreign#c.weight = 0
F( 1, 69) = 0.03

Prob > F = 0.8554
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. estimates replay

Model qreg

Median regression Number of obs = 74
Raw sum of deviations .3777845 (about .05)
Min sum of deviations .1600739 Pseudo R2 = 0.5763

gpm Coefficient Std. err. t P>|t| [95% conf. interval]

foreign
Foreign .0065352 .0109777 0.60 0.554 -.0153647 .0284351

foreign#
c.weight

Domestic .0000147 2.93e-06 5.00 0.000 8.81e-06 .0000205
Foreign .0000155 4.17e-06 3.71 0.000 7.16e-06 .0000238

displacement .0000179 .0000239 0.75 0.457 -.0000298 .0000656
_cons .0003134 .0059612 0.05 0.958 -.0115789 .0122056

. estimates replay reg

Model reg

Source SS df MS Number of obs = 74
F(4, 69) = 61.62

Model .009342436 4 .002335609 Prob > F = 0.0000
Residual .002615192 69 .000037901 R-squared = 0.7813

Adj R-squared = 0.7686
Total .011957628 73 .000163803 Root MSE = .00616

gpm Coefficient Std. err. t P>|t| [95% conf. interval]

foreign
Foreign -.0117756 .0086088 -1.37 0.176 -.0289497 .0053986

foreign#
c.weight

Domestic .0000123 2.30e-06 5.36 0.000 7.75e-06 .0000169
Foreign .00002 3.27e-06 6.12 0.000 .0000135 .0000265

displacement .0000296 .0000187 1.58 0.119 -7.81e-06 .000067
_cons .0053352 .0046748 1.14 0.258 -.0039909 .0146612

Also see
[R] estimates — Save and manipulate estimation results
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Description Quick start Menu Syntax Options Remarks and examples
Stored results Also see

Description
estimates save filename saves the current (active) estimation results in filename.

estimates use filename loads the results saved in filename into the current (active) estimation results.

In both cases, if filename is specified without an extension, .ster is assumed.

estimates esample: (note the colon) resets e(sample). After estimates use filename,

e(sample) is set to contain 0, meaning that none of the observations currently in memory was used

in obtaining the estimates.

estimates esample (without a colon) displays how e(sample) is currently set.

Quick start
Save current estimation results to mymodels.ster

estimates save mymodels

Add current estimation results to existing file mymodels.ster
estimates save mymodels, append

Make active third estimation results saved in mymodels.ster
estimates use mymodels, number(3)

Reset e(sample) to original estimation sample assuming command regress y x1 x2
estimates esample: y x1 x2

Menu
Statistics > Postestimation
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Syntax
estimates save filename [ , append replace ]

estimates use filename [ , number(#) ]

estimates esample: [ varlist ] [ if ] [ in ] [weight ]
[ , replace stringvars(varlist) zeroweight ]

estimates esample

collect is allowed with estimates esample (without a colon); see [U] 11.1.10 Prefix commands.

Options
append, used with estimates save, specifies that results be appended to an existing file. If the file

does not already exist, a new file is created.

replace, used with estimates save, specifies that filename can be replaced if it already exists.

number(#), used with estimates use, specifies that the #th set of estimation results from filename

be loaded. This assumes that multiple sets of estimation results have been saved in filename by

estimates save, append. The default is number(1).

replace, used with estimates esample:, specifies that e(sample) can be replaced even if it is already
set.

stringvars(varlist), used with estimates esample:, specifies string variables. Observations con-
taining variables that contain ”” will be omitted from e(sample).

zeroweight, used with estimates esample:, specifies that observations with zero weights are to be
included in e(sample).

Remarks and examples
See [R] estimates for an overview of the estimates commands.

For a description of estimates save and estimates use, see Saving and using estimation results
in [R] estimates.

The rest of this entry concerns e(sample).

Remarks are presented under the following headings:

Setting e(sample)
Resetting e(sample)
Determining who set e(sample)
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Setting e(sample)
After estimates use filename, the situation is nearly identical to what it was immediately after you

fit the model. The one difference is that e(sample) is set to 0.

e(sample) is Stata’s function to mark which observations among those currently in memory were
used in producing the estimates. For instance, you might type

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. regress mpg weight displ if foreign
(output omitted )

. summarize mpg if e(sample)
(output omitted )

and summarize would report the summary statistics for the observations regress in fact used, which
would exclude not only observations for which foreign = 0 but also any observations for which mpg,
weight, or displ was missing.

If you saved the above estimation results and then reloaded them, however, summarize mpg if
e(sample) would produce

. summarize mpg if e(sample)
Variable Obs Mean Std. dev. Min Max

mpg 0

Stata thinks that none of these observations was used in producing the estimates currently loaded.

What else could Stata think? When you estimates use filename, you do not have to have the original
data in memory. Even if you do have data in memory that look like the original data, they might not be.

Setting e(sample) to 0 is the safe thing to do. There are some postestimation statistics, for instance, that
are appropriate only when calculated on the estimation sample. Setting e(sample) to 0 ensures that if
you ask for one of them, you will get back a null result.

We recommend that you leave e(sample) set to 0. But what if you really need to calculate that

postestimation statistic? Well, you can get it, but you are going to be responsible for setting e(sample)
correctly. Here we just happen to know that all the observations with foreign = 1 were used, so we

can type

. estimates esample: if foreign

If all the observations had been used, we could simply type

. estimates esample:

The safe thing to do, however, is to look at the estimation command—estimates describe will

show it to you—and then type

. estimates esample: mpg weight displ if foreign

We include all observations with foreign = 1, excluding any with missing values in the mpg,
weight, or displ variable, that are to be treated as the estimation sample.
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Resetting e(sample)
estimates esample: will allow you to not only set but also reset e(sample). If e(sample) has

already been set (say that you just fit the model) and you try to set it, you will see

. estimates esample: mpg weight displ if foreign
no; e(sample) already set
r(322);

Here you can specify the replace option:

. estimates esample: mpg weight displ if foreign, replace

We do not recommend resetting e(sample), but the situation can arise where you need to. Imagine
that you estimates use filename, you set e(sample), and then you realize that you set it wrong. Here
you would want to reset it.

Determining who set e(sample)
estimates esample without a colon will report whether and how e(sample) was set. You might

see

. estimates esample
e(sample) set by estimation command

or

. estimates esample
e(sample) set by user

or

. estimates esample
e(sample) not set (0 assumed)

Stored results
estimates esample without the colon saves macro r(who), which will contain cmd, user, or

zero’d.

Also see
[R] estimates — Save and manipulate estimation results
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Description Quick start Menu Syntax Options Remarks and examples
Stored results Also see

Description
estimates selected reports on coefficients from one or more estimation results. It creates a table

that indicates which coefficients were estimated in each model and, if requested, reports the value of

those coefficients. The results may be sorted based on the values of the estimated coefficients or based

on variable names.

Quick start
Compare coefficients for stored estimates m1 and m2

estimates selected m1 m2

Same as above, but display a u for covariates that are not specified in the model
estimates selected m1 m2, display(u)

Compare stored estimates l1 and l2, and order the rows by absolute values of the coefficients
estimates selected l1 l2, sort(coef)

Menu
Statistics > Postestimation

Syntax
estimates selected [ namelist ] [ , options ]

namelist is the name given to previously stored estimation results, a list of names, all, or *. A name

may be ., meaning the current (active) estimates. all and * mean the same thing.

options Description

Main

display(info) display info; default is display(x)
sort(on) sort rows in order of on

Reporting

noabbrev do not abbreviate variable names

display options control row spacing, line width, and display of omitted variables and
base and empty cells

collect is allowed; see [U] 11.1.10 Prefix commands.
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Options

� � �
Main �

display(info) specifies what to display in the table. The default is display(x).

Blank cells in the table indicate that the corresponding covariate does not have a fitted value. For

some covariates without fitted values, a code that indicates the reason for omission is reported in the

table. Base levels of factors and interactions are coded with the letter b. Empty levels of factors and
interactions are coded with the letter e. Covariates omitted because of collinearity are coded with the
letter o.

display(x) displays an x in the cell of the table where a covariate has a fitted value. This is the

default.

display(u) is the same as display(x), except that when a covariate was not specified in the model,
u (for unavailable) is displayed instead of a blank cell.

display(coef [ , eform format(% fmt) ]) specifies that coefficient values be displayed in the ta-
ble.

eform displays coefficients in exponentiated form. For each coefficient, 𝑒𝑏 rather than 𝑏 is dis-
played. This option can be used to display odds ratios, incidence-rate ratios, relative-risk ratios,

hazard ratios, and subhazard ratios after the appropriate estimation command.

format(% fmt) specifies the display format for the coefficients in the table. The default is

format(%9.0g).

sort(on) specifies how to sort the rows of the table. By default, coefficients are displayed in the order

in which they appear in the estimation results.

sort(none) specifies that the rows are not sorted. This is the default. The order of the coefficients
is taken from their order in e(b).

sort(names) orders rows alphabetically by the variable names of the covariates. In the case of

factor variables, main effects and nonfactor variables are displayed first in alphabetical order; then

all two-way interactions are displayed in alphabetical order, then all three-way interactions, and so

on.

sort(coef) orders rows in descending order by the absolute values of the coefficients. When results

from two or more estimation results are displayed, results are sorted first by the ordering for the

first estimation result with rows representing coefficients not in the first estimation result last.

Within the rows representing coefficients not in the first estimation result, the rows are sorted by

the ordering for the second estimation result with rows representing coefficients not in the first or

second estimation results last. And so on.

� � �
Reporting �

noabbrev prevents variable names from being abbreviated in the row titles of the table. Long variable

names are split onto multiple lines if they do not fit.

display options: vsquish, fvwrap(#), fvwrapon(style), and nolstretch; see [R] Estimation op-

tions.
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Remarks and examples
estimates selected produces a table based on estimated coefficients from one or more models.

Results can be sorted by the values of the estimated coefficients or by variable names. Multiple models

are displayed side-by-side, making it easy to compare which covariates were included in each model or

to compare the estimated values of those coefficients.

Example 1: Compare coefficients across models
To compare coefficients from two or more models, we first need to store the results of each model

using estimates store; see [R] estimates store. Then we use estimates selected to obtain a table
comparing which coefficients were estimated in each model. By default, the table reports an x for each
coefficient that was estimated.

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. regress mpg gear turn
(output omitted )

. estimates store small

. regress mpg gear turn length
(output omitted )

. estimates store large

. estimates selected small large

small large

gear_ratio x x
turn x x

length x
_cons x x

Legend:
b - base level
e - empty cell
o - omitted
x - estimated

There is only one difference in the two regress commands; the large model includes length as a

covariate, but the small model does not. Therefore, the above table displays x’s for all but the length
coefficient in the small model. When working with larger models or with more models, this type of

table makes it easy to spot the differences in the model specification.
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By default, the rows of the table in the order that covariates appear in the models. To sort the results

on the covariate names, we add the sort(names) option.

. estimates selected small large, sort(names)

small large

gear_ratio x x
length x
turn x x
_cons x x

Legend:
b - base level
e - empty cell
o - omitted
x - estimated

We could have instead sorted on the values of the estimated coefficients by including the sort(coef)
option.

To display the coefficients values instead of the x’s, we add the display(coef) option.

. estimates selected small large, sort(names) display(coef)

small large

gear_ratio 3.032884 1.35666
length -.1665899
turn -.7330502 -.1219185
_cons 41.21801 53.3487

Legend:
b - base level
e - empty cell
o - omitted

Stored results
estimates selected stores the following in r():

Macros

r(names) names of results used

Matrices

r(coef) matrix 𝑀: 𝑛 × 𝑚
𝑀[𝑖, 𝑗] = 𝑖th coefficient estimate for model 𝑗; 𝑖 = 1, . . . , 𝑛; 𝑗 = 1, . . . , 𝑚

Also see
[R] estimates — Save and manipulate estimation results

[LASSO] lassocoef — Display coefficients after lasso estimation results
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Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas Also see

Description
estimates stats reports model-selection statistics, including the Akaike (AIC), consistent Akaike’s

(CAIC), corrected Akaike’s (AICc), and Schwarz’s Bayesian (BIC) information criteria. These measures

are appropriate for maximum likelihood models.

If estimates stats is used for a non–likelihood-based model, such as qreg, missing values are
reported.

Quick start
Display AIC and BIC for last estimation command

estimates stats

Display AIC and BIC for stored estimates m1 and m2
estimates stats m1 m2

Same as above, but display CAIC instead of AIC

estimates stats m1 m2, aicconsistent

Same as above, but display AICc instead of AIC

estimates stats m1 m2, aiccorrected

Same as above, but display all AIC, BIC, AICc, and CAIC

estimates stats m1 m2, all

Specify 𝑁 = 1,000 for calculation of BIC

estimates stats, n(1000)

Same as above, but use 10 degrees of freedom

estimates stats, n(1000) df(10)

Menu
Statistics > Postestimation
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Syntax
estimates stats [ namelist ] [ , options ]

where namelist is a name, a list of names, all, or *. A name may be ., meaning the current (active)
estimates. all and * mean the same thing.

options Description

aiccorrected report AICc instead of AIC

aicconsistent report CAIC instead of AIC

all report all four information criteria: AIC, BIC, AICc, and CAIC

n(#) specify 𝑁 to be used in calculating BIC, AICc, and CAIC;
see [R] IC note

df(#) specify degrees of freedom 𝑘 to be used in calculating AIC, BIC,
AICc, and CAIC

icdetail produce a table showing the type of 𝑁 used in BIC, AICc, and
CAIC calculation

collect is allowed; see [U] 11.1.10 Prefix commands.

Options
aiccorrected specifies that AICc be computed instead of AIC. This information criterion is a second-

order approximation and is recommended for small sample sizes.

Only one of aiccorrected, aicconsistent, or all is allowed.

aicconsistent specifies that CAIC be computed instead ofAIC. This information criterion is a consistent
version of AIC; that is, the probability of selecting the “true model” approaches 1 as sample size

increases.

Only one of aicconsistent, aiccorrected, or all is allowed.

all produces a table showing all four information criteria: AIC, BIC, AICc, and CAIC.

Only one of all, aiccorrected, or aicconsistent is allowed.

n(#) specifies 𝑁 to be used in calculating BIC, AICc, and CAIC; see [R] IC note.

df(#) specifies degrees of freedom 𝑘 to be used in calculating AIC, BIC, AICc, and CAIC. By default, 𝑘 is
the number of estimated parameters.

icdetail produces a table showing the type of𝑁 used in BIC,AICc, and CAIC calculations. Most estima-

tion commands use the number of observations in the estimation sample for the information criteria.

For some models, however, other types of 𝑁, such as the number of cases in choice models, should

be used. When the default table of estimates stats contains more than one type of 𝑁, specifying

icdetail allows you to see the different types of 𝑁 used for BIC, AICc, and CAIC.
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Remarks and examples
If you type estimates stats without arguments, a table for the most recent estimation results will

be shown:

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. logistic foreign mpg weight displ
(output omitted )

. estimates stats
Akaike’s information criterion and Bayesian information criterion

Model N ll(null) ll(model) df AIC BIC

. 74 -45.03321 -20.59083 4 49.18167 58.39793

Note: BIC uses N = number of observations. See [R] IC note.

Regarding the note at the bottom of the table, 𝑁 is an ingredient in the calculation of BIC, AICc, and

CAIC; see [R] IC note. The note changes if you specify the n() option, which tells estimates stats
what 𝑁 to use. By default, 𝑁 is the number of observations used in fitting the model.

Regarding the table itself, ll(null) is the log likelihood for the constant-only model, ll(model) is
the log likelihood for the model, df is the number of degrees of freedom, and AIC and BIC are theAkaike
and Bayesian information criteria, respectively.

Models with smaller values of an information criterion are considered preferable.

estimates stats can compare estimation results:

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. logistic foreign mpg weight displ
(output omitted )

. estimates store full

. logistic foreign mpg weight
(output omitted )

. estimates store sub

. estimates stats full sub
Akaike’s information criterion and Bayesian information criterion

Model N ll(null) ll(model) df AIC BIC

full 74 -45.03321 -20.59083 4 49.18167 58.39793
sub 74 -45.03321 -27.17516 3 60.35031 67.26251

Note: BIC uses N = number of observations. See [R] IC note.
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You can use option all to compare the models based on all four information criteria

. estimates stats full sub, all
Information criteria

Model N ll(null) ll(model) df

full 74 -45.03321 -20.59083 4
sub 74 -45.03321 -27.17516 3

Note: BIC, AICc, and CAIC use N = number of observations.
See [R] IC note.

Model AIC BIC AICc CAIC

full 49.18167 58.39793 49.76138 62.39793
sub 60.35031 67.26251 60.69317 70.26251

Legend: AIC is Akaike’s information criterion.
BIC is Bayesian information criterion.
AICc is corrected Akaike’s information criterion.
CAIC is consistent Akaike’s information criterion.

All four information criteria suggest that the full model is preferable.

Stored results
estimates stats stores the following in r():

Matrices

r(S) matrix with columns (N, ll(null), ll(model), df, and information criteria) and rows corresponding
to models in the table

Methods and formulas
See [R] IC note.

Also see
[R] estimates — Save and manipulate estimation results
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Description Quick start Menu Syntax Option Remarks and examples
Stored results References Also see

Description
estimates store name stores the current (active) estimation results under the name name.

estimates restore name loads the results stored under name into the current (active) estimation
results.

estimates query tells you whether the current (active) estimates have been stored and, if so, the

name.

estimates dir displays a list of the stored estimates.

estimates drop namelist drops the specified stored estimation results.

estimates clear drops all stored estimation results.

estimates clear, estimates drop all, and estimates drop * do the same thing. estimates
drop and estimates clear do not eliminate the current (active) estimation results.

Quick start
Store estimation results as m1 for use later in the same session

estimates store m1

Restore estimation results from m2
estimates restore m2

Find out whether the current estimation results have been stored

estimates query

Display table of information about all stored results

estimates dir

Drop stored estimation results m3
estimates drop m3

Drop all stored results

estimates clear
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Menu
Statistics > Postestimation

Syntax
estimates store name [ , nocopy ]

estimates restore name

estimates query

estimates dir [ namelist ]

estimates drop namelist

estimates clear

where namelist is a name, a list of names, all, or *. all and * mean the same thing.

collect is allowed with estimates dir; see [U] 11.1.10 Prefix commands.

Option
nocopy, used with estimates store, specifies that the current (active) estimation results are to be

moved into name rather than copied. Typing

. estimates store hold, nocopy

is the same as typing

. estimates store hold

. ereturn clear

except that the former is faster. The nocopy option is sometimes used by programmers.
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Remarks and examples
estimates store stores estimation results in memory so that you can access them later.

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. regress mpg weight displ
(output omitted )

. estimates store myreg

. ... you do other things, including fitting other models ...

. estimates restore myreg

. regress
(same output shown again)

After estimates restore myreg, things are once again just as they were, estimationwise, just after
you typed regress mpg weight displ.

estimates store stores results in memory. When you exit Stata, those stored results vanish. If you

wish to make a permanent copy of your estimation results, see [R] estimates save.

The purpose of making copies in memory is 1) so that you can quickly switch between them and 2)

so that you can make tables comparing estimation results. Concerning the latter, see [R] estimates table,

[R] etable, and [R] estimates stats.

Stored results
estimates dir stores the following in r():

Macros

r(names) names of stored results

References
Jann, B. 2005. Making regression tables from stored estimates. Stata Journal 5: 288–308.

———. 2007. Making regression tables simplified. Stata Journal 7: 227–244.

Also see
[R] estimates — Save and manipulate estimation results

[LASSO] estimates store — Saving and restoring estimates in memory and on disk

https://www.stata-journal.com/article.html?article=st0085
https://www.stata-journal.com/article.html?article=st0085_1
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Description Quick start Menu Syntax Options Remarks and examples
Stored results References Also see

Description
estimates table organizes estimation results from one or more models in a single formatted table.

Quick start
Display a table of coefficients for stored estimates m1 and m2

estimates table m1 m2

Same as above, but include standard errors

estimates table m1 m2, se

Same as above, but display coefficients and standard errors to 2 decimal places

estimates table m1 m2, b(%7.2f) se(%7.2f)

Same as above, but include 𝑝-values displayed to 3 decimal places
estimates table m1 m2, b(%7.2f) se(%7.2f) p(%4.3f)

Table of coefficients for m1 and m2 with sample size and adjusted 𝑅2

estimates table m1 m2, stats(N r2_a)

Same as above, but replace variable names with labels

estimates table m1 m2, stats(N r2_a) varlabel

Table of coefficients with stars to denote significance

estimates table m1 m2, star

Display coefficients in exponentiated form

estimates table m3 m4, eform

Display only a subset of variables and reorder variables in table

estimates table m1 m2, keep(v2 v1 v3 _cons)

Menu
Statistics > Postestimation
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Syntax
estimates table [ namelist ] [ , options ]

namelist is the name given to previously stored estimation results, a list of names, all, or *. A name

may be ., meaning the current (active) estimates. all and * mean the same thing.

options Description

Main

stats(scalarlist) report scalarlist in table

star[ (#1 #2 #3) ] use stars to denote significance

Options

keep(coeflist) report coefficients in order specified

drop(coeflist) omit specified coefficients from table

equations(matchlist) match equations of models as specified

Numerical formats

b[ (% fmt) ] how to format coefficients, which are always reported

se[ (% fmt) ] report standard errors and use optional format

t[ (% fmt) ] report 𝑡 or 𝑧 and use optional format
p[ (% fmt) ] report 𝑝-values and use optional format
stfmt(% fmt) how to format scalar statistics

General format

varwidth(#) use # characters to display variable names and statistics

modelwidth(#) use # characters to display model names

eform display coefficients in exponentiated form

varlabel display variable labels rather than variable names

newpanel display statistics in separate table from coefficients

style(oneline) put vertical line after variable names; the default

style(columns) put vertical line separating every column

style(noline) suppress all vertical lines

coded display compact table

Reporting

display options control row spacing, line width, and display of omitted variables and
base and empty cells

title(string) title for table

collect is allowed; see [U] 11.1.10 Prefix commands.

title() does not appear in the dialog box.
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Options

� � �
Main �

stats(scalarlist) specifies a list of any of or all the names of scalars stored in e() to be displayed in
the table. scalarlist may also contain the following:

aic Akaike’s information criterion

bic Schwarz’s Bayesian information criterion

rank rank of e(V) (# of free parameters in model)

The specified statistics do not have to be available for all estimation results being displayed.

For example, stats(N ll chi2 aic) specifies that e(N), e(ll), e(chi2), and AIC be included. In
Stata, e(N) records the number of observations; e(ll), the log likelihood; and e(chi2), the 𝜒2 test

that all coefficients in the first equation of the model are equal to zero.

star and star(#1 #2 #3) specify that stars (asterisks) are to be used to mark significance. The second
syntax specifies the significance for one, two, and three stars. If you specify simply star, that is
equivalent to specifying star(.05 .01 .001), which means one star (*) if 𝑝 < 0.05, two stars (**)

if 𝑝 < 0.01, and three stars (***) if 𝑝 < 0.001.

The star and star() options may not be combined with the se, t, or p option.

� � �
Options �

keep(coeflist) and drop(coeflist) are alternatives; they specify coefficients to be included or omitted
from the table. The default is to display all coefficients.

If keep() is specified, it specifies not only the coefficients to be included but also the order in which
they appear.

A coeflist is a list of coefficient names, each name of which may be simple (for example, price), an
equation name followed by a colon (for example, mean:), or a full name (for example, mean:price).
Names are separated from each other by blanks.

When full names are not specified, all coefficients that match the partial specification are included.

For instance, drop( cons) would omit cons for all equations.

equations(matchlist) specifies how the equations of the models in namelist are to be matched. The

default is to match equations by name. Matching by name usually works well when all results were

fit by the same estimation command. When you are comparing results from different estimation

commands, however, specifying equations() may be necessary.

The most common usage is equations(1), which indicates that all first equations are to be matched
into one equation named #1.

matchlist has the syntax

term [ , term ... ]

term is

[ eqname = ] #:#. . .:# (syntax 1)

[ eqname = ] # (syntax 2)
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In syntax 1, each # is a number or a period (.). If a number, it specifies the position of the equation in
the corresponding model; 1:3:1 would indicate that equation 1 in the first model matches equation 3
in the second, which matches equation 1 in the third. A period indicates that there is no corresponding

equation in the model; 1:.:1 indicates that equation 1 in the first matches equation 1 in the third.

In syntax 2, you specify just one number, say, 1 or 2, and that is shorthand for 1:1. . .:1 or 2:2. . .:2,
meaning that equation 1 matches across all models specified or that equation 2 matches across all

models specified.

Now that you can specify a term, you can put that together into a matchlist by separating one term

from the other by commas. In what follows, we will assume that three names were specified,

. estimates table alpha beta gamma, ...

equations(1) is equivalent to equations(1:1:1); we would be saying that the first equations

match across the board.

equations(1:.:1)would specify that equation 1 matches in models alpha and gamma but that there
is nothing corresponding in model beta.

equations(1,2) is equivalent to equations(1:1:1, 2:2:2). We would be saying that the first

equations match across the board and so do the second equations.

equations(1, 2:.:2)would specify that the first equations match across the board, that the second
equations match for models alpha and gamma, and that there is nothing equivalent to equation 2 in
model beta.

If equations() is specified, equations not matched by position are matched by name.

� � �
Numerical formats �

b(% fmt) specifies how the coefficients are to be displayed. Youmight specify b(%9.2f) tomake decimal
points line up. There is also a b option, which specifies that coefficients are to be displayed, but that
is just included for consistency with the se, t, and p options. Coefficients are always displayed.

se, t, and p specify that standard errors, 𝑡 or 𝑧 statistics, and 𝑝-values are to be displayed. The default
is not to display them. se(% fmt), t(% fmt), and p(% fmt) specify that each is to be displayed and
specifies the display format to be used to format them.

stfmt(% fmt) specifies the format for displaying the scalar statistics included by the stats() option.

� � �
General format �

varwidth(#) specifies the number of character positions used to display the names of the variables and
statistics. The default is 12.

modelwidth(#) specifies the number of character positions used to display the names of the models.
The default is 12.

eform displays coefficients in exponentiated form. For each coefficient, exp(β) rather than β is dis-

played, and standard errors are transformed appropriately. Display of the intercept, if any, is sup-

pressed.

varlabel specifies that variable labels be displayed instead of variable names.

newpanel specifies that the statistics be displayed in a table separated by a blank line from the table with

coefficients rather than in the style of another equation in the table of coefficients.
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style(stylespec) specifies the style of the coefficient table.

style(oneline) specifies that a vertical line be displayed after the variables but not between the
models. This is the default.

style(columns) specifies that vertical lines be displayed after each column.

style(noline) specifies that no vertical lines be displayed.

coded specifies that a compact table be displayed. This format is especially useful for comparing vari-
ables that are included in a large collection of models.

� � �
Reporting �

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
nofvlabel, fvwrap(#), and fvwrapon(style); see [R] Estimation options.

The following option is available with estimates table but is not shown in the dialog box:

title(string) specifies the title to appear above the table.

Remarks and examples
estimates table lets you format estimation results and organize results from multiple models in a

single table. You achieve this by combining estimates table with estimates store; see [R] esti-
mates store. When combined with putdocx or putpdf, estimates table lets you create customized
tables of results in .docx or .pdf format.

Alternatively, you can use etable to create a table with the results stored with estimates store.
The advantage of using etable is that you can add notes to your table and export it to a variety of file
types, such as HTML and LATEX.

Example 1: Creating the default table
If you type estimates table without arguments, a table of the most recent estimation results will

be shown:

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. regress mpg weight
(output omitted )

. regress mpg weight displ
(output omitted )

. estimates table

Variable Active

weight -.00656711
displacement .00528078

_cons 40.084522

In the above output table, only the results from the second regress command are displayed because

they are the current (active) estimates.
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By default, estimates table displays only coefficient estimates. You can request additional model
statistics by specifying the stats() option. Estimation commands store e-class results. To see a list of
available results from the last estimation command that can be specified in the stats() option, you can
use the ereturn list command.

Example 2: Creating a table with multiple models
If we want to display more than one set of estimation results in a single table, we can use estimates

store to store each set of estimation results in memory so that they can be accessed later by estimates
table. This is one of the primary uses of estimates table—comparing estimation results:

. regress mpg weight displ
(output omitted )

. estimates store base

. regress mpg weight displ i.foreign
(output omitted )

. estimates store alt

. qreg mpg weight displ i.foreign
(output omitted )

. estimates store qreg

. estimates table base alt qreg, stats(r2)

Variable base alt qreg

weight -.00656711 -.00677449 -.00595056
displacement .00528078 .00192865 .00018552

foreign
Foreign -1.6006312 -2.1326005

_cons 40.084522 41.847949 39.213348

r2 .6529307 .66287957

estimates table automatically lines up the point estimates of coefficients on covariates that are com-
mon across each model. The stats(r2) option specifies that the coefficient of determination (𝑅2) be

placed under the models for which it is computed.

The foreign variable was included in the models alt and qreg as a factor variable. Because the
values of foreign are labeled, the value labels are displayed by default. See [D] label for information
about managing value labels.
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Example 3: Creating and exporting a formatted table
We can add estimates of the standard errors to the table and format them along with the original

coefficient estimates by using the b() and se() options.

As shown in example 2, the labeled values of any factor variables are displayed by default. To see the

labels corresponding to the variables that are included in the model rather than the names of the variables,

we can specify the varlabel option.

. estimates table alt, b(%5.4f) se(%5.4f) varlabel

Variable alt

Weight (lbs.) -0.0068
0.0012

Displacement (cu. in.) 0.0019
0.0101

Car origin
Foreign -1.6006

1.1136
Constant 41.8479

2.3507

Legend: b/se

If we wanted this table to appear in a Word document, we could use the putdocx command with the
etable output type to write it to a new document. To create the new document myresults.docx, we
would type the following putdocx commands:

. putdocx begin

. putdocx table results = etable

. putdocx save myresults.docx
successfully created ”myresults.docx”

This creates a table in Word that looks like
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Stored results
estimates table stores the following in r():

Macros

r(names) names of results used

Matrices

r(coef) matrix 𝑀: 𝑛 × 2 ∗ 𝑚
𝑀[𝑖, 2𝑗 − 1] = 𝑖th parameter estimate for model 𝑗;
𝑀[𝑖, 2𝑗] = variance of 𝑀[𝑖, 2𝑗 − 1]; 𝑖 = 1, . . . , 𝑛; 𝑗 = 1, . . . , 𝑚

r(stats) matrix 𝑆: 𝑘 × 𝑚 (if option stats() specified)
𝑆[𝑖, 𝑗] = 𝑖th statistic for model 𝑗; 𝑖 = 1, . . . , 𝑘; 𝑗 = 1, . . . , 𝑚

References
Gallup, J. L. 2012. A new system for formatting estimation tables. Stata Journal 12: 3–28.

Weiss, M. 2010. Stata tip 90: Displaying partial results. Stata Journal 10: 500–502.

Also see
[R] estimates — Save and manipulate estimation results

[R] etable — Create a table of estimation results

[R] table regression — Table of regression results

https://www.stata-journal.com/article.html?article=sg97_4
https://www.stata-journal.com/article.html?article=st0206
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Description Quick start Menu Syntax Remarks and examples Also see

Description
estimates title: (note the colon) sets or clears the title for the current estimation results. The title

is used by estimates table, estimates stats, and estimates dir.

estimates title without the colon displays the current title.

Quick start
Set title for the current estimation results

estimates title: Base model

Display the title of the current estimation results

estimates title

Menu
Statistics > Postestimation

Syntax
estimates title: [ text ]

estimates title

Remarks and examples
After setting the title, if estimates have been stored, do not forget to store them again:

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. regress mpg gear turn
(output omitted )

. estimates store reg

Now let’s add a title:

. estimates title: ”My regression”

. estimates store reg

Also see
[R] estimates — Save and manipulate estimation results
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Description Syntax Options Also see

Description
This entry describes the options common to many estimation commands. Not all the options docu-

mented here work with all estimation commands. See the documentation for the particular estimation

command; if an option is listed there, it is applicable.

Syntax
estimation cmd . . . [ , options ]

options Description

Model

noconstant suppress constant term

offset(varname𝑜) include varname𝑜 in model with coefficient constrained to 1

exposure(varname𝑒) include ln(varname𝑒) in model with coefficient constrained to 1

constraints(constraints) apply specified linear constraints

Reporting

level(#) set confidence level; default is level(95)
lrmodel perform likelihood-ratio model test instead of the default Wald test

nocnsreport do not display constraints

noci suppress confidence intervals

nopvalues suppress 𝑝-values and their test statistics
noomitted do not display omitted collinear variables

vsquish suppress blank space separating factor variables or time-series variables

noemptycells do not display empty interaction cells of factor variables

baselevels report base levels for factor variables and interactions

allbaselevels display all base levels for factor variables and interactions

nofvlabel display factor-variable level values rather than value labels

fvwrap(#) allow # lines when wrapping long value labels

fvwrapon(style) apply style for wrapping long value labels;
style may be word or width

cformat(% fmt) format for coefficients, standard errors, and confidence limits

pformat(% fmt) format for 𝑝-values
sformat(% fmt) format for test statistics

Integration

intmethod(intmethod) integration method for random-effects models

intpoints(#) use # integration (quadrature) points

nolstretch do not automatically widen coefficient table for long variable names

collinear keep collinear variables

coeflegend display legend instead of statistics
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Options

� � �
Model �

noconstant suppresses the constant term (intercept) in the model.

offset(varname𝑜) specifies that varname𝑜 be included in the model with the coefficient constrained to

be 1.

exposure(varname𝑒) specifies a variable that reflects the amount of exposure over which the depvar
events were observed for each observation; ln(varname𝑒) with the coefficient constrained to be 1 is

entered into the log-link function.

constraints(numlist |matname) specifies the linear constraints to be applied during estimation. The
default is to perform unconstrained estimation. See [R] reg3 for the use of constraints in multiple-

equation contexts.

constraints(numlist) specifies the constraints by number after they have been defined by using

the constraint command; see [R] constraint. Some commands (for example, slogit) allow only

constraints(numlist).

constraints(matname) specifies a matrix containing the constraints; see [P] makecns.

� � �
Reporting �

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is

level(95) or as set by set level; see [U] 20.8 Specifying the width of confidence intervals.

lrmodel specifies to conduct a likelihood-ratio test of the full maximum-likelihood model versus the

restricted model that includes only a constant term in the regression equation instead of conducting

the default Wald test that all coefficients are zero. This option can substantially increase estimation

time.

lrmodel may not be specified with the vce(robust), vce(cluster clustvar), vce(jackknife),
vce(bootstrap), or noconstant option.

lrmodel may not be combined with constraints; see constraints(constraints). In some cases, a
likelihood-ratio test is valid for models with constraints. To compute a likelihood-ratio test when

constraints have been applied during estimation, use lrtest; see [R] lrtest.

lrmodel may not be specified with the jackknife, bootstrap, svy, or mi estimate prefix. In

addition, lrmodel may not be specified on replay.

nocnsreport specifies that no constraints be reported. The default is to display user-specified con-

straints above the coefficient table.

noci suppresses confidence intervals from being reported in the coefficient table.

nopvalues suppresses 𝑝-values and their test statistics from being reported in the coefficient table.

noomitted specifies that variables that were omitted because of collinearity not be displayed. The de-
fault is to include in the table any variables omitted because of collinearity and to label them as

“(omitted)”.

vsquish specifies that the blank space separating factor-variable terms or time-series–operated variables
from other variables in the model be suppressed.
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noemptycells specifies that empty cells for interactions of factor variables not be displayed. The default
is to include in the table interaction cells that do not occur in the estimation sample and to label them

as “(empty)”.

baselevels and allbaselevels control whether the base levels of factor variables and interactions
are displayed. The default is to exclude from the table all base categories.

baselevels specifies that base levels be reported for factor variables and for interactions whose

bases cannot be inferred from their component factor variables.

allbaselevels specifies that all base levels of factor variables and interactions be reported.

nofvlabel displays factor-variable level values rather than attached value labels. This option overrides
the fvlabel setting; see [R] set showbaselevels.

fvwrap(#) specifies howmany lines to allow when long value labels must be wrapped. Labels requiring

more than # lines are truncated. This option overrides the fvwrap setting; see [R] set showbaselevels.

fvwrapon(style) specifies whether value labels that wrap will break at word boundaries or break based
on available space.

fvwrapon(word), the default, specifies that value labels break at word boundaries.

fvwrapon(width) specifies that value labels break based on available space.

This option overrides the fvwrapon setting; see [R] set showbaselevels.

cformat(% fmt) specifies how to format coefficients, standard errors, and confidence limits in the coef-

ficient table. The maximum format width is 9. See [R] set cformat.

pformat(% fmt) specifies how to format 𝑝-values in the coefficient table. The maximum format width

is 5. See [R] set cformat.

sformat(% fmt) specifies how to format test statistics in the coefficient table. The maximum format

width is 8. See [R] set cformat.

� � �
Integration �

intmethod(intmethod) specifies the integration method to be used for the random-effects model. It

accepts one of four arguments: mvaghermite, the default for all but a crossed random-effects model,
performs mean and variance adaptive Gauss–Hermite quadrature; mcaghermite performs mode

and curvature adaptive Gauss–Hermite quadrature; ghermite performs nonadaptive Gauss–Hermite
quadrature; and laplace, the default for crossed random-effects models, performs the Laplacian ap-
proximation.

intpoints(#) specifies the number of integration points to use for integration by quadrature. The

default is intpoints(12); the maximum is intpoints(195). Increasing this value improves the
accuracy but also increases computation time. Computation time is roughly proportional to its value.

The following options are not shown in the dialog box:

nolstretch specifies that the width of the coefficient table not be automatically widened to accommo-
date longer variable names. The default, lstretch, is to automatically widen the coefficient table up
to the width of the Results window. Specifying lstretch or nolstretch overrides the setting given
by set lstretch. If set lstretch has not been set, the default is lstretch.

collinear specifies that the estimation command not omit collinear variables. This option is seldom
used because collinear variables make a model unidentified. However, you can add constraints to

a model that will identify it even with collinear variables. For example, if variables x1 and x2 are
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collinear, but you constrain the coefficient on x2 to be a multiple of the coefficient on x1, then your
model is identified even with collinear variables. In such cases, you specify collinear so that both
x1 and x2 are retained in the model.

coeflegend specifies that the legend of the coefficients and how to specify them in an expression be

displayed rather than displaying the statistics for the coefficients.

Also see
[U] 20 Estimation and postestimation commands
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Description Quick start Menu Syntax Options Remarks and examples
Appendix Acknowledgments References Also see

Description
The etable command allows you to easily create a table of estimation results and export it to a variety

of file types. You can create a table complete with a title, notes, stars for indicating significant results,

and more.

Quick start
Create a table from the active estimation results, reporting the coefficients, standard errors, and number

of observations

etable

Same as above, and display stars for significant results and a note indicating what the stars represent

etable, showstars showstarsnote

Create a table with title “My title” and note “My note”

etable, title(”My title”) note(”My note”)

Create a table with stored estimates model1 and model2, along with the number of observations and
adjusted 𝑅2 value for each model

etable, estimates(model1 model2) mstat(N) mstat(r2_a)

Same as above, and export the table to myfile.tex
etable, estimates(model1 model2) mstat(N) mstat(r2_a) export(myfile.tex)

Menu
Statistics > Summaries, tables, and tests > Table of estimation results
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Syntax
etable [ , options ]

options Description

Main

estimates(namelist) work with previously stored estimation results

margins consume results from margins
replay report table without consuming results

column(column header) select column header

name(cname) work with collection cname; default is name(ETable)
append append to the collection

replace replace the collection

Coefficients

keep(coeflist) report coefficients in order specified

cstat(cstat[ , cstat opts ]) report coefficient statistic

Model

mstat(mstat[ , mstat opts ]) report model statistic

Equations

equations(eqlist) report equations in order specified

eqrecode(oldeq = neweq) recode equation

[ no ]showeq display or suppress equations

Stars

stars([ starspec ] [ , stars opts ]) customize rules for star labels

[ no ]showstars display or suppress star labels

[ no ]showstarsnote display or suppress note explaining star labels

Title

title(string) add table title

titlestyles(text styles) change table title styles

Notes

note(string) add table note

notestyles(text styles) change table note styles

Export

export( filename.suffix[ , export opts ]) export table

Options

[ no ]varlabel display or suppress variable names or labels

[ no ]fvlabel display or suppress factor values or labels

[ no ]center center or right-align item cells

label( filename[ , replace ]) specify the collection labels

style( filename[ , override ]) specify the collection style

warn show collect warnings

warn does not appear in the dialog box.
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column header Description

depvar show dependent variable name; the default

dvlabel show variable label for dependent variable

command show command name

title show command title

estimates show estimates name

index show result set index

cstat opts Description

label(string) specify coefficient statistic label

font([ fontfamily ] [ , font opts ]) specify font style

smcl(smcl) specify formatting for SMCL files

latex(latex) specify LATEX macro

shading(sspec) set background color, foreground color, and fill pattern

nformat(% fmt) specify numeric format

sformat(sfmt) specify string format

cidelimiter(char) use character as delimiter for confidence interval limits

cridelimiter(char) use character as delimiter for credible interval limits

mstat opts Description

label(string) specify model statistic label

font([ fontfamily ][ , font opts ]) specify font style

smcl(smcl) specify formatting for SMCL files

latex(latex) specify LATEX macro

shading(sspec) set background color, foreground color, and fill pattern

nformat(% fmt) specify numeric format

sformat(sfmt) specify string format

font opts Description

size(# [ unit ]) specify font size

color(color) specify font color

variant(variant) specify font variant and capitalization

[ no ]bold specify whether to format statistic as bold

[ no ]italic specify whether to format statistic as italic

[ no ]strikeout specify whether to strike out statistic

underline(upattern) specify whether to underline statistic
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stars opts Description

attach(cstat) attach star labels to coefficient statistic cstat

increasing compose stars note with increasing 𝑝-values; the default
decreasing compose stars note with decreasing 𝑝-values
pvname(string) 𝑝-value name for stars note
delimiter(char) use character as delimiter for labels in stars note

nformat(% fmt) numeric format for stars note

prefix(string) prefix for stars note

suffix(string) suffix for stars note

clear remove previous star properties

text styles Description

font([ fontfamily ] [ , text opts ]) font style

smcl(smcl) specify formatting for SMCL files

latex(latex) specify LATEX macro

shading(sspec) set background color, foreground color, and fill pattern

text opts Description

size(# [ unit ]) specify font size

color(color) specify font color

variant(variant) specify font variant and capitalization

[ no ]bold specify whether to format statistic as bold

[ no ]italic specify whether to format statistic as italic

[ no ]strikeout specify whether to strike out statistic

[ no ]underline specify whether to underline statistic

suffix fileformat Output format

docx as(docx) Microsoft Word

html as(html) HTML 5 with CSS

pdf as(pdf) PDF

xlsx as(xlsx) Microsoft Excel 2007/2010 or newer

xls as(xls) Microsoft Excel 1997/2003

tex as(latex) LATEX

smcl as(smcl) SMCL

txt as(txt) plain text

markdown as(markdown) Markdown

md as(markdown) Markdown
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export opts Description

as(fileformat) specify document type

replace overwrite existing file

docx options available when exporting to .docx files
html options available when exporting to .html files
pdf options available when exporting to .pdf files
excel options available when exporting to .xls and .xlsx files
tex options available when exporting to .tex files
smcl option available when exporting to .smcl files
txt option available when exporting to .txt files
md option available when exporting to .markdown and .md files

docx options Description

noisily show the putdocx commands used to export to the Microsoft
Word file

dofile(filename[ , replace ]) save the putdocx commands used for exporting to the named
do-file

html options Description

append append to an existing file

tableonly export only the table to the specified file

cssfile(cssfile) define the styles in cssfile instead of filename

prefix(prefix) use prefix to identify style classes

pdf options Description

noisily show the putpdf commands used to export to the PDF file
dofile(filename[, replace ]) save the putpdf commands used for exporting to the named

do-file

excel options Description

noisily show the putexcel commands used to export to the Excel file
dofile(filename[ , replace ]) save the putexcel commands used for exporting to the named

do-file

sheet(sheetname[ , replace ]) specify the worksheet to use; the default sheet name
is Sheet1

cell(cell) specify the Excel upper-left cell as the starting position to
export the table; the default is cell(A1)

modify modify Excel file

noopen do not open Excel file in memory

noopen does not appear in the dialog box.

tex options Description

append append to an existing file

tableonly export only the table to the specified file
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smcl option Description

append append to an existing file

txt option Description

append append to an existing file

md option Description

append append to an existing file

fontfamily specifies a valid font family.

unit may be in (inch), pt (point), or cm (centimeter). An inch is equivalent to 72 points and 2.54 cen-
timeters. The default is pt.

variant may be allcaps, smallcaps, or normal.

variant(allcaps) changes the text to all uppercase letters; applicable when publishing items from
a collection to Microsoft Word, PDF, LATEX, and HTML files.

variant(smallcaps) changes the text to use large capitals for uppercase letters and smaller capitals
for lowercase letters; applicable when publishing items from a collection toMicrosoftWord, LATEX,

and HTML files.

variant(normal) changes the font variant back to normal and leaves the capitalization unchanged
from the original text; applicable when publishing items from a collection to MicrosoftWord, PDF,

LATEX, and HTML files.

upattern may be any of the patterns listed in the Appendix. For example, underline(none) removes
the underline from the statistic, and underline(single) underlines the statistic. All other upatterns
are available only when publishing items from a collection to Microsoft Word.

smcl specifies the name of the SMCL directive to render text for SMCL output. The supported SMCL

directives are input, error, result, and text.

latex specifies the name of a LATEX macro to render text for LATEX output. Example LATEX macro names

are textbf, textsf, textrm, and texttt. Custom LATEX macros are also allowed. If text is to be

rendered in a cell, title, or note, then latex is translated to the following when you export to LATEX:

\latex {text}

sspec is

[ background(bgcolor) foreground(fgcolor) pattern(fpattern) ]
bgcolor specifies the background color.

fgcolor specifies the foreground color.

fpattern specifies the fill pattern. A complete list of fill patterns is shown in the Appendix.
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bgcolor, fgcolor, and color may be one of the colors listed in the Appendix; a valid RGB value in the

form ### ### ###, for example, 171 248 103; or a valid RRGGBB hex value in the form ######, for

example, ABF867.

sfmt is the specification for a string format in option sformat() and may contain a mix of text and %s.
Here %s refers to the statistic value that is formatted as specified using nformat(). The text will be
placed around the statistic as it is placed around %s in this option. For instance, to place parentheses
around the statistic, you can specify sformat(”(%s)”).

Two text characters must be specified using a special character sequence if you want them to be

displayed in your collection. To include %, type %%. To include \, type \\. For instance, to place a
percent sign after a statistic, you can specify sformat(”%s%%”).

Options

� � �
Main �

estimates(namelist) specifies the estimation results to be included in the table. These are the names
specified with estimates store. By default, etable creates a table with the active estimation re-
sults.

margins creates a table with the results of the immediately preceding margins command.

replay specifies that etable redisplay the table without consuming results.

column(column header) specifies the content to be used in the column headers. column header may

be depvar, dvlabel, command, title, estimates, or index.

depvar specifies that etable use the dependent variable name for the column headers. This name is
obtained from the eclass macro e(depvar). Note that this macro may contain multiple names
after fitting a multivariate model.

dvlabel specifies that etable use the variable label for the dependent variable name for the col-

umn headers. etable uses the variable label associated with the variable name in the eclass
macro e(depvar). If the variable does not have a variable label, the variable name will be used.
column(dvlabel) will not be helpful when the estimation command stores multiple names in

e(depvar).

command specifies that etable use the command name for the column headers. This name is obtained
from the eclass macro e(cmd).

title specifies that etable use the command title for the column headers. This title is obtained from
the eclass macro e(title).

estimates specifies that etable use the name given to previously stored estimation results for the
column headers; these are the names specified with estimates store.

index specifies that etable use the result set index for the column headers.

name(cname) specifies the collection from which estimation results will be obtained, instead of the

current collection. The default is name(ETable).

append specifies that etable append the results into the collection named in name().

replace permits etable to overwrite the existing collection. This option is implied for name(ETable)
when append and replay are not specified.
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� � �
Coefficients �

keep(coeflist) specifies the coefficients to be included in the table and the order in which to display

them. Names are separated from each other by blanks. The default is to display all coefficients.

cstat(cstat[ , cstat opts ]) specifies the coefficient statistic to be included in the table. Optionally,

you may specify the label and style for this statistic. cstat() may be repeated to request multiple
coefficient statistics.

The default is to display the coefficients ( r b) and their standard errors ( r se), both formatted to
three decimals. Standard errors are enclosed in parentheses.

Available coefficient statistics are

cstat Description

r b coefficients reported by estimation

r se standard errors of r b
r z test statistics for r b
r z abs absolute values of r z
r p 𝑝-values for r b
r lb lower bounds of confidence intervals (CIs) for r b
r ub upper bounds of CIs for r b
r ci CIs for r b
r crlb lower bounds of credible intervals for r b
r crub upper bounds of credible intervals for r b
r cri credible intervals of Bayesian estimates

hide hide coefficient statistics

cstat opts are label(string), font([ fontfamily ] [ , font opts ]), smcl(smcl), latex(latex),
shading(sspec), nformat(% fmt), sformat(sfmt), cidelimiter(char), and
cridelimiter(char).

label(string) is used to modify the label for the specified coefficient statistic.

font([ fontfamily ] [ , size(# [ unit ]) color(color) variant(variant) [ no ]bold
[ no ]italic [ no ]strikeout [ no ]underline underline(upattern) ]) specifies the font

style for the coefficient statistic. These font style properties are applicable when exporting

the table to Microsoft Word, Microsoft Excel, PDF, HTML, and LATEX files, unless otherwise

specified.

fontfamily specifies a valid font family. This font style property is applicable when publishing

items from a collection to Microsoft Word, Microsoft Excel, PDF, and HTML files.

size(# [ unit ]) specifies the font size as a number optionally followed by units. This font style
property is applicable when publishing items from a collection toMicrosoftWord, Microsoft

Excel, PDF, and HTML files.

color(color) specifies the text color.

variant(variant) specifies the font variant and capitalization.

bold and nobold specify the font weight. bold changes the font weight to bold; nobold
changes the font weight back to normal.

italic and noitalic specify the font style. italic changes the font style to italic; noitalic
changes the font style back to normal.
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strikeout and nostrikeout specify whether to add a strikeout mark to the coefficient statis-
tic. strikeout adds a strikeout mark to the statistic; nostrikeout changes the statistic

back to normal.

underline(upattern), underline, and nounderline specify how to underline the coefficient

statistic.

Only one of strikeout or underline is allowed when publishing to HTML files.

smcl(smcl) specifies how to render the statistic value for SMCL output. This style property is

applicable only when publishing items from a collection to a SMCL file.

latex(latex) specifies how to render the statistic value for LATEX output. This style property is

applicable only when publishing items from a collection to a LATEX file.

shading(sspec) sets the background color, foreground color, and fill pattern. The background
color is applicable when exporting the table to Microsoft Word, Microsoft Excel, PDF, HTML,

and LATEX files. The foreground color and fill pattern are applicable when exporting the table

to Microsoft Word and Microsoft Excel.

nformat(% fmt) applies the Stata numeric format % fmt to the coefficient statistic.

sformat(sfmt) applies a string format to the coefficient statistic.

cidelimiter(char) changes the delimiter between confidence interval limits for coefficient

statistic r ci. The default is cidelimiter(” ”).

cridelimiter(char) changes the delimiter between credible interval limits for coefficient statis-
tic r cri. The default is cridelimiter(” ”).

� � �
Model �

mstat(mstat[ , mstat opts ]) specifies the model statistics to be included in the table.
mstat may be a result identifier or a named expression. mstat() may be repeated to request multiple

model statistics. The default is to display the number of observations, with zero decimal digits.

result identifier is one of the following:

Identifier Result

N number of observations

aic Akaike’s information criteria

bic Schwarz’s Bayesian information criteria

F 𝐹 statistic

chi2 𝜒2

ll log likelihood of fitted model

r2 𝑅2

r2 a adjusted 𝑅2

rank rank of fitted model

escalar any e() scalar, by default
rscalar any r() scalar with option margins
hide hide model statistics

named expression is specified as name = exp, where name may be any valid Stata name and exp
is a scalar expression, typically an expression that involves one or more scalars in e(). For
example, aic=(-2*e(ll) + 2*e(rank)).
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With option margins, or if you ran a postestimation command like estat, expmay also involve
one or more scalars in r(). For example, suppose you fit a logistic model and also called
estat gof, then you can show its goodness-of-fit statistic with chi2 gof=(r(chi2)).

mstat opts are label(string), font([ fontfamily ] [ , font opts ]), smcl(smcl), latex(latex),
shading(sspec), nformat(% fmt), and sformat(sfmt).

label(string) is used to modify the label for the specified model statistic.

font([ fontfamily ] [ , size(# [ unit ]) color(color) variant(variant) [ no ]bold
[ no ]italic [ no ]strikeout [ no ]underline underline(upattern) ]) specifies the font

style for the model statistic. These font style properties are applicable when exporting the table

to Microsoft Word, Microsoft Excel, PDF, HTML, and LATEX files, unless otherwise specified.

fontfamily specifies a valid font family. This font style property is applicable when publishing

items from a collection to Microsoft Word, Microsoft Excel, PDF, and HTML files.

size(# [ unit ]) specifies the font size as a number optionally followed by units. This font style
property is applicable when publishing items from a collection toMicrosoftWord, Microsoft

Excel, PDF, and HTML files.

color(color) specifies the text color.

variant(variant) specifies the font variant and capitalization.

bold and nobold specify the font weight. bold changes the font weight to bold; nobold
changes the font weight back to normal.

italic and noitalic specify the font style. italic changes the font style to italic; noitalic
changes the font style back to normal.

strikeout and nostrikeout specify whether to add a strikeout mark to the model statistic.
strikeout adds a strikeout mark to the statistic; nostrikeout changes the text back to

normal.

underline(upattern), underline, and nounderline specify how to underline the model

statistic.

Only one of strikeout or underline is allowed when publishing to HTML files.

smcl(smcl) specifies how to render the statistic value for SMCL output. This style property is

applicable only when publishing items from a collection to a SMCL file.

latex(latex) specifies how to render the statistic value for LATEX output. This style property is

applicable only when publishing items from a collection to a LATEX file.

shading(sspec) sets the background color, foreground color, and fill pattern.

nformat(% fmt) applies the Stata numeric format % fmt to the model statistic.

sformat(sfmt) applies a string format to the model statistic.

� � �
Equations �

equations(eqlist) specifies the equations to be included in the table and the order in which they are
reported.

eqrecode(oldeq = neweq) changes the equation name from oldeq to neweq. eqrecode() may be re-
peated to recode multiple equations.
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showeq and noshoweq specify whether equations should be displayed. showeq displays the equations;
noshoweq suppresses the equations.

� � �
Stars �

stars([ #1 ”label1” [ #2 ”label2” [ #3 ”label3” [ #4 ”label4” [ #5 ”label5” ] ] ] ] ]
[ , stars opts ]) manages the display of stars for indicating the significance of results.
The default is stars(.05 ”*” .01 ”**”, attach( r b)), which will display one star (*) for 𝑝-
values less than 0.05 and two stars (**) for 𝑝-values less than 0.01; the stars will be attached to the
coefficients ( r b).

stars opts are attach(cstat), increasing, decreasing, pvname(string), delimiter(char),
nformat(% fmt), prefix(string), suffix(string), and clear.

attach(cstat) specifies that the star labels be attached to coefficient statistic cstat. The default
is attach( r b).

increasing and decreasing control the order of 𝑝-values in the stars note.
increasing specifies that the stars note be composed with increasing 𝑝-values. This is the

default.

decreasing specifies that the stars note be composed with decreasing 𝑝-values.
pvname(string) specifies the name for the 𝑝-value in the stars note that is displayed with

showstarsnote. The default is pvname(p).

delimiter(char) changes the delimiter between labels in the stars note. The default is

cridelimiter(”,”).

nformat(% fmt) specifies the numeric format for the numbers displayed in the stars note. The

default is nformat(%9.0g).

prefix(string) adds a prefix to the stars note.

suffix(string) adds a suffix to the stars note.

clear removes existing star properties.

showstars and noshowstars specify whether star labels should be displayed. showstars displays star
labels; noshowstars suppresses the star labels.

showstarsnote and noshowstarsnote specify whether to display the note explaining what the star

labels represent. showstarsnote displays the note; noshowstarsnote suppresses the note.

showstarsnote is ignored if noshowstars is in effect.

� � �
Title �

title(string) adds the text string as a title to the table.

titlestyles(text styles) changes the style for the table title. text styles are the following:

font([ fontfamily ] [ , size(# [ unit ]) color(color) variant(variant) [ no ]bold
[ no ]italic [ no ]strikeout [ no ]underline ]) specifies the font style. These font style prop-
erties are applicable when exporting the table to Microsoft Word, Microsoft Excel, PDF, HTML,

and LATEX files, unless otherwise specified.

fontfamily specifies a valid font family. This font style property is applicable when publishing

items from a collection to Microsoft Word, Microsoft Excel, PDF, and HTML files.
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size(# [ unit ]) specifies the font size as a number optionally followed by units. This font style
property is applicable when publishing items from a collection to Microsoft Word, Microsoft

Excel, PDF, and HTML files.

color(color) specifies the text color.

variant(variant) specifies the font variant and capitalization.

bold and nobold specify the font weight. bold changes the font weight to bold; nobold changes
the font weight back to normal.

italic and noitalic specify the font style. italic changes the font style to italic; noitalic
changes the font style back to normal.

strikeout and nostrikeout specify whether to add a strikeout mark to the title. strikeout
adds a strikeout mark to the title; nostrikeout changes the title back to normal.

underline and nounderline specify whether to underline the table title. underline adds a

single line under the title; nounderline removes the underline.

Only one of strikeout or underline is allowed when publishing to HTML files.

smcl(smcl) specifies how to render the table title for SMCL output. This style property is applicable

only when publishing items from a collection to a SMCL file.

latex(latex) specifies how to render the table title for LATEX output. This style property is applicable

only when publishing items from a collection to a LATEX file.

shading(sspec) sets the background color, foreground color, and fill pattern. The background color
is applicable when exporting the table to Microsoft Word, Microsoft Excel, PDF, HTML, and LATEX

files. The foreground color and fill pattern are applicable when exporting the table to Microsoft

Word and Microsoft Excel.

� � �
Notes �

note(string) adds the text string as a note to the table. note() may be specified multiple times to add
multiple notes. Each note is placed on a new line.

notestyles(text styles) changes the style for the table notes. text styles are the following:

font([ fontfamily ] [ , size(# [ unit ]) color(color) variant(variant) [ no ]bold
[ no ]italic [ no ]strikeout [ no ]underline ]) specifies the font style. These font style prop-
erties are applicable when exporting the table to Microsoft Word, Microsoft Excel, PDF, HTML,

and LATEX files, unless otherwise specified.

fontfamily specifies a valid font family. This font style property is applicable when publishing

items from a collection to Microsoft Word, Microsoft Excel, PDF, and HTML files.

size(# [ unit ]) specifies the font size as a number optionally followed by units. This font style
property is applicable when publishing items from a collection to Microsoft Word, Microsoft

Excel, PDF, and HTML files.

color(color) specifies the text color.

variant(variant) specifies the font variant and capitalization.

bold and nobold specify the font weight. bold changes the font weight to bold; nobold changes
the font weight back to normal.
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italic and noitalic specify the font style. italic changes the font style to italic; noitalic
changes the font style back to normal.

strikeout and nostrikeout specify whether to add a strikeout mark to the notes. strikeout
adds a strikeout mark to the note; nostrikeout changes the note back to normal.

underline and nounderline specify whether to underline the table notes. underline adds a
single line under the notes; nounderline removes the underline.

Only one of strikeout or underline is allowed when publishing to HTML files.

smcl(smcl) specifies how to render the table notes for SMCL output. This style property is applicable

only when publishing items from a collection to a SMCL file.

latex(latex) specifies how to render the table notes for LATEXoutput. This style property is applicable

only when publishing items from a collection to a LATEX file.

shading(sspec) sets the background color, foreground color, and fill pattern. The background color
is applicable when exporting the table to Microsoft Word, Microsoft Excel, PDF, HTML, and LATEX

files. The foreground color and fill pattern are applicable when exporting the table to Microsoft

Word and Microsoft Excel.

� � �
Export �

export(filename.suffix[ , export opts ]) exports the table to the specified file. export opts are the

following:

as(fileformat) specifies the file format to which the table is to be exported. This option is rarely spec-
ified because, by default, etable determines the format from the suffix of the file being created.

replace permits etable to overwrite an existing file.

noisily specifies that etable show the commands used to export the table to Microsoft Word,

Microsoft Excel, and PDF files. The putdocx, putexcel, or putpdf command used to export

the table will be displayed.

dofile(filename[ , replace ]) specifies that etable save to filename the commands used to export
the table to Microsoft Word, Microsoft Excel, and PDF files.

If filename already exists, it can be overwritten by specifying replace. If filename is specified
without an extension, .do is assumed.

append specifies that etable append the table to an existing file.

This option is applicable when you export the table to an HTML, a LATEX, a SMCL, a txt, or a Mark-

down file. When you export to HTML and LATEX files, the append option implies the tableonly
option. Furthermore, when you export to HTML files, if the target CSS file already exists, etable
will also append to it.

tableonly specifies that only the table be exported to the specified HTML or LATEX document. By

default, etable produces complete HTML and LATEX documents.

When you export to an HTML file, if the cssfile() option is not specified, a CSS filename is

constructed from filename, with the extension replaced with .css.
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cssfile(cssfile) specifies that etable define the styles in cssfile instead of filename when you

export to HTML.

prefix(prefix) specifies that etable use prefix to identify style classes when you export to HTML.

sheet(sheetname [ , replace ]) saves to the worksheet named sheetname. For more information
about this option, see [RPT] putexcel.

cell(cell) specifies an Excel upper-left cell as the starting position to publish the table. The default
is cell(A1).

modify permits putexcel set to modify an Excel file. For more information about this option, see
[RPT] putexcel.

noopen prevents putexcel from opening the Excel file in memory for modification. It does not

appear in the dialog box. For more information about this option, see [RPT] putexcel. This option

is necessary only when you need to force etable to produce do-files as it did when etable was
first introduced in Stata 17.

� � �
Options �

varlabel and novarlabel specify whether variable labels should be displayed. varlabel displays

variable labels; novarlabel displays variable names.

fvlabel and nofvlabel specify whether value labels should be displayed. fvlabel displays value

labels; nofvlabel displays the values of the factor variable.

center and nocenter specify how item cells are horizontally aligned. center specifies that item cells

are centered; nocenter specifies that item cells are right-aligned.

label(filename[ , replace ]) specifies the filename containing the collection labels to use for your

table. Labels in filename will be loaded for the table, and default labels will be used for any labels

not specified in filename.

If you prefer to replace the labels used by etable with those specified in filename, specify replace.
The etable labels will be discarded, and only the labels in filename will be applied.

style(filename[ , override ]) specifies the filename containing the collection styles to use for your
table. This might be a style you saved with collect style save or a predefined style shipped with
Stata. The etable collection styles will be discarded, and only the collection styles in filename will
be applied. Note that the layout specification saved in filename will not be applied; etable will

always use its predefined layout.

If you prefer the etable collection styles but also want to apply any styles in filename, specify

override. If there are conflicts between the default collection styles and those in filename, the ones
in filename will take precedence.

The default is to use only the collection styles set in c(etable style); see [TABLES] set

etable style.

The following option is available with etable but is not shown in the dialog box:

warn specifies that etable display warnings from collect. By default, these warnings are suppressed.
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Remarks and examples
Remarks are presented under the following headings:

Introduction
A first example
Table comparing regression results
Multiple-equation models

Introduction
etable allows you to easily create a table of estimation results and export it to a variety of file types,

without any knowledge of the collection system. You canmake a standard estimation table with the active

estimation results, results from a margins command, or with stored estimates. You can also customize
the table by formatting the results, adding model statistics and coefficient-specific statistics, labeling

statistically significant results, adding a title and notes, and more.

In most cases, you will use etable to easily create a table and export it to another format. How-

ever, you can customize the table beyond the options that are available with etable. When you issue

an etable command, the results are stored in a collection called ETable. This collection is replaced
with each new etable command, unless you specify the append or replay option. You can make addi-
tional changes to the collection with the collect suite of commands. To learn more about the collect
commands, see [TABLES] Intro and the entries discussed therein.

A first example
In its simplest specification, you type etable after fitting a model, and you get a table with coef-

ficients, standard errors, and the number of observations. For example, below, we use data from the

Second National Health and Nutrition Examination Survey (NHANES II) (McDowell et al. 1981). We fit

a simple model for systolic blood pressure and then create our table of estimation results:

. use https://www.stata-press.com/data/r18/nhanes2l
(Second National Health and Nutrition Examination Survey)
. quietly: regress bpsystol age weight i.region
. etable

bpsystol

Age (years) 0.638
(0.011)

Weight (kg) 0.407
(0.012)

Region
MW -0.240

(0.564)
S -0.619

(0.560)
W -0.862

(0.570)
Intercept 71.708

(1.108)
Number of observations 10351

You can also include statistics that pertain to the coefficients, such as test statistics and confidence

intervals, and model statistics, such as the 𝑅2 value and the 𝐹 statistic. You can look at the cstat() and
mstat() options for additional statistics.
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Additionally, you can complete your table with a title, notes, and labels for significant results. For

example, below, we add a title to our table, and we display stars for statistically significant results:

. etable, title(Model for systolic blood pressure) showstars showstarsnote
Model for systolic blood pressure

bpsystol

Age (years) 0.638 **
(0.011)

Weight (kg) 0.407 **
(0.012)

Region
MW -0.240

(0.564)
S -0.619

(0.560)
W -0.862

(0.570)
Intercept 71.708 **

(1.108)
Number of observations 10351

** p<.01, * p<.05

The showstars option displays stars next to the coefficients that are significant either at the 1% or

5% levels, and showstarsnote adds the note we see at the bottom, explaining what the stars represent.
You can look at the stars() option to create your own rules for displaying stars or to specify your own
labels for significance.

Suppose we have finalized our table and we are ready to export it to another format. Below, we export

our table to the file mytable.html:

. etable, title(Model for systolic blood pressure)
> showstars showstarsnote export(mytable.html)
Model for systolic blood pressure

bpsystol

Age (years) 0.638 **
(0.011)

Weight (kg) 0.407 **
(0.012)

Region
MW -0.240

(0.564)
S -0.619

(0.560)
W -0.862

(0.570)
Intercept 71.708 **

(1.108)
Number of observations 10351

** p<.01, * p<.05
(collection ETable exported to file mytable.html)

We could also export this table to a Microsoft Word, Microsoft Excel, LATEX, Markdown, SMCL, PDF,

or plain text file by specifying the appropriate file extension.
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Table comparing regression results
If your goal is to create a table comparing regression results, you can store the results from each model

with estimates store and then specify which of those models you want to include in your table with
the estimates() option.

For example, below, we fit two different models for systolic blood pressure and store them under the

names model1 and model2.
. quietly: regress bpsystol i.sex weight
. estimates store model1
. quietly: regress bpsystol i.sex i.agegrp weight
. estimates store model2

To include results from both of these models in our table, we specify estimates(model1 model2);
the models are presented in the order we list them. Additionally, we report the number of observations

and the 𝑅2 adjusted for degrees of freedom.

. etable, estimates(model1 model2) mstat(N) mstat(r2_a)

bpsystol bpsystol

Sex
Female 1.420 1.041

(0.475) (0.415)
Weight (kg) 0.452 0.436

(0.015) (0.014)
Age group
30--39 1.195

(0.633)
40--49 7.252

(0.684)
50--59 15.942

(0.681)
60--69 22.839

(0.546)
70+ 30.466

(0.741)
Intercept 97.634 86.710

(1.246) (1.116)
Number of observations 10351 10351
Adjusted R-squared 0.08 0.30

We would like to make a few changes to finalize this table. First, because both models have the same

dependent variable, we want to display the index of result sets instead of the variable name. Second,

we add stars for significance and a note explaining what the stars represent. Third, instead of reporting

standard errors, we want to report confidence intervals ( r ci). We format the intervals with one

decimal place and use a comma as the delimiter. etable will automatically report coefficients, unless
you specify cstat(), in which case it will report only the coefficient statistics you specify; therefore,
we add cstat( r b). Finally, we add a title to our table:
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. etable, estimates(model1 model2) mstat(N) mstat(r2_a) column(index)
> showstars showstarsnote cstat(_r_b)
> title(”Models for systolic blood pressure”)
> cstat(_r_ci, nformat(%6.1f) cidelimiter(”,”))
Models for systolic blood pressure

1 2

Sex
Female 1.420 ** 1.041 *

[0.5, 2.4] [0.2, 1.9]
Weight (kg) 0.452 ** 0.436 **

[0.4, 0.5] [0.4, 0.5]
Age group
30--39 1.195

[-0.0, 2.4]
40--49 7.252 **

[5.9, 8.6]
50--59 15.942 **

[14.6, 17.3]
60--69 22.839 **

[21.8, 23.9]
70+ 30.466 **

[29.0, 31.9]
Intercept 97.634 ** 86.710 **

[95.2, 100.1] [84.5, 88.9]
Number of observations 10351 10351
Adjusted R-squared 0.08 0.30

** p<.01, * p<.05

Now our table is complete.

An alternative way to create this table is to build up the estimation table with the append option. For
example, we can fit the first model and create the table. Then, after fitting the second model, we append
the results as follows:

. quietly: regress bpsystol i.sex weight

. etable

. quietly: regress bpsystol i.sex i.agegrp weight

. etable, append mstat(N) mstat(r2_a) column(index)
> showstars showstarsnote cstat(_r_b)
> title(”Models for systolic blood pressure”)
> cstat(_r_ci, nformat(%6.1f) cidelimiter(”,”))
(output omitted )
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Multiple-equation models
When you work with multiple-equation models, there is an additional option that will prove useful

when creating the table of estimation results. For example, below, we fit a multivariate regression with

mvreg:
. mvreg bpsystol bpdiast = age weight
Equation Obs Parms RMSE ”R-sq” F P>F

bpsystol 10,351 3 19.48051 0.3031 2250 0.0000
bpdiast 10,351 3 11.51474 0.2067 1348.469 0.0000

Coefficient Std. err. t P>|t| [95% conf. interval]

bpsystol
age .6379892 .0111315 57.31 0.000 .6161692 .6598091

weight .4069041 .0124786 32.61 0.000 .3824435 .4313646
_cons 71.27096 1.041742 68.42 0.000 69.22894 73.31297

bpdiast
age .187733 .0065797 28.53 0.000 .1748355 .2006306

weight .3116502 .007376 42.25 0.000 .2971918 .3261086
_cons 50.37585 .615764 81.81 0.000 49.16884 51.58287

Next, we create our table of estimation results:

. etable

bpsystol bpdiast

Age (years) 0.638
(0.011)

Weight (kg) 0.407
(0.012)

Intercept 71.271
(1.042)

Age (years) 0.188
(0.007)

Weight (kg) 0.312
(0.007)

Intercept 50.376
(0.616)

Number of observations 10351
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The results for both models are placed in a single column, so below we add the showeq option to

display the equation names (bpsystol and bpdiast). This will help us identify which results correspond
to each model. Note that there are two dependent variables in this model, and both variable names are

displayed in the column header. These names are collected from the returned result e(depvar). Instead
of displaying both names, we will display the index of result sets we have collected for our table by

typing command(index).

. etable, showeq column(index)

1

Systolic blood pressure
Age (years) 0.638

(0.011)
Weight (kg) 0.407

(0.012)
Intercept 71.271

(1.042)
Diastolic blood pressure
Age (years) 0.188

(0.007)
Weight (kg) 0.312

(0.007)
Intercept 50.376

(0.616)
Number of observations 10351
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Appendix

Colors
bgcolor, fgcolor, and color

aliceblue darkslategray lightsalmon palevioletred
antiquewhite darkturquoise lightseagreen papayawhip
aqua darkviolet lightskyblue peachpuff
aquamarine deeppink lightslategray peru
azure deepskyblue lightsteelblue pink
beige dimgray lightyellow plum
bisque dodgerblue lime powderblue
black firebrick limegreen purple
blanchedalmond floralwhite linen red
blue forestgreen magenta rosybrown
blueviolet fuchsia maroon royalblue
brown gainsboro mediumaquamarine saddlebrown
burlywood ghostwhite mediumblue salmon
cadetblue gold mediumorchid sandybrown
chartreuse goldenrod mediumpurple seagreen
chocolate gray mediumseagreen seashell
coral green mediumslateblue sienna
cornflowerblue greenyellow mediumspringgreen silver
cornsilk honeydew mediumturquoise skyblue
crimson hotpink mediumvioletred slateblue
cyan indianred midnightblue slategray
darkblue indigo mintcream snow
darkcyan ivory mistyrose springgreen
darkgoldenrod khaki moccasin steelblue
darkgray lavender navajowhite tan
darkgreen lavenderblush navy teal
darkkhaki lawngreen oldlace thistle
darkmagenta lemonchiffon olive tomato
darkolivegreen lightblue olivedrab turquoise
darkorange lightcoral orange violet
darkorchid lightcyan orangered wheat
darkred lightgoldenrodyellow orchid white
darksalmon lightgray palegoldenrod whitesmoke
darkseagreen lightgreen palegreen yellow
darkslateblue lightpink paleturquoise yellowgreen
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Underline patterns

upattern

none dashLong
single dashLongHeavy
words dotDash
double dashDotHeavy
thick dotDotDash
dotted dashDotDotHeavy
dottedHeavy wave
dash wavyHeavy
dashedHeavy wavyDouble

Shading patterns

fpattern

nil pct20
clear pct25
solid pct30
horzStripe pct35
vertStripe pct37
reverseDiagStripe pct40
diagStripe pct45
horzCross pct50
diagCross pct55
thinHorzStripe pct60
thinVertStripe pct62
thinReverseDiagStripe pct65
thinDiagStripe pct70
thinHorzCross pct75
thinDiagCross pct80
pct5 pct85
pct10 pct87
pct12 pct90
pct15 pct95
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exit — Exit Stata

Description
Typing exit causes Stata to stop processing and return control to the operating system. If the dataset

in memory has changed since the last save command, you must specify the clear option before Stata
will let you exit.

If you wish to use exit in do-files or programs to set return codes or terminate programs, see [P] exit.

Stata for Windows users may also exit Stata by clicking on the Close button or by pressing Alt+F4.

Stata for Mac users may also exit Stata by pressing Command+Q.

Stata for Unix(GUI) users may also exit Stata by clicking on the Close button.

Syntax
exit [ , clear ]

Option
clear permits you to exit, even if the current dataset has not been saved.

Remarks and examples
Type exit to leave Stata and return to the operating system. If the dataset in memory has changed

since the last time it was saved, however, Stata will refuse. At that point, you can either save the dataset
and then type exit, or type exit, clear:

. exit
no; dataset in memory has changed since last saved
r(4);
. exit, clear

Also see
[P] exit — Exit from a program or do-file
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exlogistic — Exact logistic regression

Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas References Also see

Description
exlogistic fits an exact logistic regression model, which produces more accurate inference in small

samples than the standard maximum-likelihood–based logistic regression estimator. It can also better

deal with completely determined outcomes. exlogistic with the group() option conditions on the

number of positive outcomes within stratum and is an alternative to the conditional (fixed-effects) logistic

regression estimator.

Unlike Stata’s other estimation commands, exlogistic must perform hypothesis tests during esti-

mation rather than after estimation with standard postestimation commands.

Quick start
Exact logistic regression of y on x1, x2, and x3

exlogistic y x1 x2 x3

Same as above, but condition on values of x3 to save time and memory
exlogistic y x1 x2, condvars(x3)

Same as above, and allow more memory for computing the conditional distribution of sufficient statistics

exlogistic y x1 x2, condvars(x3) memory(100m)

Using data stored in binomial form with ys successes out of n trials
exlogistic ys x1 x2 x3, binomial(n)

Report coefficients rather than odds ratios

exlogistic y x1 x2 x3, coef

Report conditional scores tests

exlogistic y x1 x2 x3, test(score)

Fit a model with strata identified by svar
exlogistic y x1 x2 x3, group(svar)

Menu
Statistics > Exact statistics > Exact logistic regression
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Syntax
exlogistic depvar indepvars [ if ] [ in ] [weight ] [ , options ]

depvar can be specified as a zero or nonzero variable or the number of positive outcomes within each

trial. For a zero or nonzero variable, zero indicates failure and nonzero indicates success. To specify

depvar as the number of positive outcomes, you must also specify binomial(varname | #).

options Description

Model

condvars(varlist𝑐) condition on variables in varlist𝑐
group(varname) groups or strata are stratified by unique values of varname

binomial(varname | #) data are in binomial form and the number of trials is contained
in varname or in #

estconstant estimate constant term; do not condition on the number of
successes

noconstant suppress constant term

Options

memory(#[ b | k | m | g ]) set limit on memory usage; default is memory(10m)
saving(filename[ , replace ]) save the joint conditional distribution to filename

Reporting

level(#) set confidence level; default is level(95)
coef report estimated coefficients

test(testopt) report 𝑝-value for observed sufficient statistic, conditional scores
test, or conditional probabilities test

mue(varlist𝑚) compute the median unbiased estimates for varlist𝑚
midp use the mid-𝑝-value rule
[ no ]log display or suppress the enumeration log; default is to display

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

coeflegend display legend instead of statistics

indepvars, varlist𝑐, and varlist𝑚 may contain factor variables; see [U] 11.4.3 Factor variables.

by, collect, and statsby are allowed; see [U] 11.1.10 Prefix commands.

fweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Options

� � �
Model �

condvars(varlist𝑐) specifies variables whose parameter estimates are not of interest to you. You

can save substantial computer time and memory by moving such variables from indepvars to

condvars(). Understand that you will get the same results for x1 and x3 whether you type

. exlogistic y x1 x2 x3 x4

or

. exlogistic y x1 x3, condvars(x2 x4)

group(varname) specifies the variable defining the strata, if any. A constant term is assumed for each

stratum identified in varname, and the sufficient statistics for indepvars are conditioned on the ob-

served number of successes within each group. This makes the fitted model equivalent to that fit

by clogit, Stata’s conditional logistic regression command (see [R] clogit). group() may not be
specified with estconstant or noconstant.

binomial(varname | #) indicates that the data are in binomial form and depvar contains the number of

successes. varname contains the number of trials for each observation. If all observations have the

same number of trials, you can instead specify the number as an integer. The number of trials must

be a positive integer at least as great as the number of successes. If binomial() is not specified, the
data are assumed to be Bernoulli, meaning that depvar equaling zero or nonzero records one failure

or success.

estconstant estimates the constant term. By default, the models are assumed to have an intercept

(constant), but the value of the intercept is not calculated. That is, the conditional distribution of

the sufficient statistics for the indepvars is computed given the number of successes in depvar, thus

conditioning out the constant term of the model. Use estconstant if you want the estimate of the
intercept reported. estconstant may not be specified with group().

noconstant; see [R] Estimation options. noconstant may not be specified with group().

� � �
Options �

memory(#[ b | k | m | g ]) sets a limit on the amount of memory exlogistic can use when computing

the conditional distribution of the parameter sufficient statistics. The default is memory(10m), where
m stands for megabyte, or 1,048,576 bytes. The following are also available: b stands for byte; k
stands for kilobyte, which is equal to 1,024 bytes; and g stands for gigabyte, which is equal to 1,024
megabytes. The minimum setting allowed is 1m, and the maximum is 2048m or 2g, but do not attempt
to use more memory than is available on your computer. Also see the first technical note under

example 4 on counting the conditional distribution.

saving(filename [ , replace ]) saves the joint conditional distribution to filename. This distribution
is conditioned on those variables specified in condvars(). Use replace to replace an existing file
with filename. A Stata data file is created containing all the feasible values of the parameter sufficient

statistics. The variable names are the same as those in indepvars, in addition to a variable named f
containing the feasible value frequencies (sometimes referred to as the condition numbers).
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� � �
Reporting �

level(#); see [R]Estimation options. The level() option will not work on replay because confidence
intervals are based on estimator-specific enumerations. To change the confidence level, you must refit

the model.

coef reports the estimated coefficients rather than odds ratios (exponentiated coefficients). coef may
be specified when the model is fit or upon replay. coef affects only how results are displayed and not

how they are estimated.

test(sufficient | score | probability) reports the 𝑝-value associated with the observed sufficient
statistics, the conditional scores tests, or the conditional probabilities tests, respectively. The default

is test(sufficient). If factor variables are included in the specification, the conditional scores
test and the conditional probabilities test are applied to each term providing conditional inference for

several parameters simultaneously. All the statistics are computed at estimation time regardless of

which is specified. Each statistic may thus also be displayed when replaying results after estimation

without having to refit the model; see [R] exlogistic postestimation.

mue(varlist𝑚) specifies that median unbiased estimates (MUEs) be reported for the specified variables.

By default, the conditional maximum likelihood estimates (CMLEs) are reported, except for those pa-

rameters for which the CMLEs are infinite. Specify mue( all) if you wantMUEs for all the indepvars.

midp instructs exlogistic to use the mid-𝑝-value rule when computing the MUEs, 𝑝-values, and con-
fidence intervals. This adjustment is for the discreteness of the distribution and halves the value of

the discrete probability of the observed statistic before adding it to the 𝑝-value. The mid-𝑝-value rule
cannot be applied to MUEs whose corresponding parameter CMLE is infinite.

log and nolog specify whether to display the enumeration log, which shows the progress of computing
the conditional distribution of the sufficient statistics. The enumeration log is displayed by default

unless you used set iterlog off to suppress it; see set iterlog in [R] set iter.

display options: noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
and sformat(% fmt); see [R] Estimation options.

Note that the maximumwidths for cformat(), pformat(), and sformat() differ from those widths

listed in [R] Estimation options. The maximum width for each format is 9 for exlogistic.

The following option is available with exlogistic but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

Remarks and examples
Exact logistic regression is the estimation of the logistic model parameters by using the conditional

distribution of the parameter sufficient statistics. The estimates are referred to as the conditional maxi-

mum likelihood estimates (CMLEs). This technique was first introduced by Cox and Snell (1989) as an

alternative to using maximum likelihood estimation, which can perform poorly for small sample sizes.

For stratified data, exact logistic regression is a small-sample alternative to conditional logistic regres-

sion. See [R] logit, [R] logistic, and [R] clogit to obtain maximum likelihood estimates (MLEs) for the

logistic model and the conditional logistic model. For a comprehensive overview of exact logistic re-

gression, see Mehta and Patel (1995).
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Let 𝑌𝑖 denote a Bernoulli random variable where we observe the outcome 𝑌𝑖 = 𝑦𝑖, 𝑖 = 1, . . . , 𝑛.
Associated with each independent observation is a 1 × 𝑝 vector of covariates, x𝑖. We will denote 𝜋𝑖 =
Pr (𝑌𝑖 | x𝑖) and let the logit function model the relationship between 𝑌𝑖 and x𝑖,

log( 𝜋𝑖
1 − 𝜋𝑖

) = 𝜃 + x𝑖β

where the constant term 𝜃 and the 𝑝 × 1 vector of regression parameters β are unknown. The probability

of observing 𝑌𝑖 = 𝑦𝑖, 𝑖 = 1, . . . , 𝑛, is

Pr(Y = y) =
𝑛

∏
𝑖=1

𝜋𝑦𝑖
𝑖 (1 − 𝜋𝑖)

1−𝑦𝑖

where Y = (𝑌1, . . . , 𝑌𝑛) and y = (𝑦1, . . . , 𝑦𝑛). The MLEs for 𝜃 and βmaximize the log of this function.

The sufficient statistics for 𝜃 and 𝛽𝑗, 𝑗 = 1, . . . , 𝑝, are 𝑀 = ∑𝑛
𝑖=1 𝑌𝑖 and 𝑇𝑗 = ∑𝑛

𝑖=1 𝑌𝑖𝑥𝑖𝑗, respec-

tively, and we observe 𝑀 = 𝑚 and 𝑇𝑗 = 𝑡𝑗. By default, exlogistic tallies the conditional distribution

of T = (𝑇1, . . . , 𝑇𝑝) given 𝑀 = 𝑚. This distribution will have a size of (𝑛
𝑚

). (It would have

a size of 2𝑛 without conditioning on 𝑀 = 𝑚.) Denote one of these vectors T(𝑘) = (𝑡(𝑘)
1 , . . . , 𝑡(𝑘)

𝑝 ),
𝑘 = 1, . . . , 𝑁, with combinatorial coefficient (frequency) 𝑐𝑘, ∑𝑁

𝑘=1 𝑐𝑘 = (𝑛
𝑚). For each independent

variable 𝑥𝑗, 𝑗 = 1, . . . , 𝑝, we reduce the conditional distribution further by conditioning on all other
observed sufficient statistics 𝑇𝑙 = 𝑡𝑙, 𝑙 ≠ 𝑗. The conditional probability of observing 𝑇𝑗 = 𝑡𝑗 has the

form

Pr(𝑇𝑗 = 𝑡𝑗 | 𝑇𝑙 = 𝑡𝑙, 𝑙 ≠ 𝑗, 𝑀 = 𝑚) = 𝑐 𝑒𝑡𝑗𝛽𝑗

∑𝑘 𝑐𝑘𝑒𝑡(𝑘)
𝑗 𝛽𝑗

where the sum is over the subset of T vectors such that (𝑇 (𝑘)
1 = 𝑡1, . . . , 𝑇 (𝑘)

𝑗 = 𝑡(𝑘)
𝑗 , . . . , 𝑇 (𝑘)

𝑝 = 𝑡𝑝) and
𝑐 is the combinatorial coefficient associated with the observed t. The CMLE for 𝛽𝑗 maximizes the log of

this function.

Specifying nuisance variables in condvars() will reduce the size of the conditional distribution by
conditioning on their observed sufficient statistics as well as conditioning on 𝑀 = 𝑚. This reduces

the amount of memory consumed at the cost of not obtaining regression estimates for those variables

specified in condvars().

Inferences from MLEs rely on asymptotics, and if your sample size is small, these inferences may

not be valid. On the other hand, inferences from the CMLEs are exact in that they use the conditional

distribution of the sufficient statistics outlined above.

For small datasets, the dependent variable can be completely determined by the data. Here the MLEs

and the CMLEs are unbounded. When this occurs, exlogistic will compute the MUE, the regression

estimate that places the observed sufficient statistic at the median of the conditional distribution.
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Example 1
One example presented by Mehta and Patel (1995) is data from a prospective study of perinatal in-

fection and human immunodeficiency virus type 1 (HIV-1). We use a variation of this dataset. There

was an investigation (Hutto et al. 1991) into whether the blood serum levels of glycoproteins CD4 and

CD8 measured in infants at 6 months of age might predict their development of HIV infection. The blood

serum levels are coded as ordinal values 0, 1, and 2.

. use https://www.stata-press.com/data/r18/hiv1
(Prospective study of perinatal infection of HIV-1)
. list in 1/5

hiv cd4 cd8

1. Positive 0 0
2. Negative 0 0
3. Positive 0 2
4. Positive 1 0
5. Negative 1 0

We first obtain the MLEs from logistic so that we can compare the estimates and associated statistics
with the CMLEs from exlogistic.

. logistic hiv cd4 cd8, coef
Logistic regression Number of obs = 47

LR chi2(2) = 15.75
Prob > chi2 = 0.0004

Log likelihood = -20.751687 Pseudo R2 = 0.2751

hiv Coefficient Std. err. z P>|z| [95% conf. interval]

cd4 -2.541669 .8392231 -3.03 0.002 -4.186517 -.8968223
cd8 1.658586 .821113 2.02 0.043 .0492344 3.267938

_cons .5132389 .6809007 0.75 0.451 -.8213019 1.84778

. exlogistic hiv cd4 cd8, coef
Enumerating sample-space combinations:
Observation 1: Enumerations = 2
Observation 2: Enumerations = 3
(output omitted )

Observation 46: Enumerations = 601
Observation 47: Enumerations = 326
Exact logistic regression Number of obs = 47

Model score = 13.34655
Pr >= score = 0.0006

hiv Coefficient Suff. 2*Pr(Suff.) [95% conf. interval]

cd4 -2.387632 10 0.0004 -4.699633 -.8221807
cd8 1.592366 12 0.0528 -.0137905 3.907876
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exlogistic produced a log showing how many records are generated as it processes each observa-

tion. The primary purpose of the log is to provide feedback because generating the distribution can be

time consuming, but we also see from the last entry that the joint distribution for the sufficient statistics

for cd4 and cd8 conditioned on the total number of successes has 326 unique values (but a size of(47
14

)

= 341,643,774,795).

The statistics for logistic are based on asymptotics: for a large sample size, each 𝑍 statistic will be

approximately normally distributed (with a mean of zero and a standard deviation of one) if the associated

regression parameter is zero. The question is whether a sample size of 47 is large enough.

On the other hand, the 𝑝-values computed by exlogistic are from the conditional distributions of

the sufficient statistics for each parameter given the sufficient statistics for all other parameters. In this

sense, these 𝑝-values are exact. By default, exlogistic reports the sufficient statistics for the regression
parameters and the probability of observing a more extreme value. These are single-parameter tests for

𝐻0∶ 𝛽cd4 = 0 and 𝐻0∶ 𝛽cd8 = 0 versus the two-sided alternatives. The conditional scores test, located in

the coefficient table header, is testing that both 𝐻0∶ 𝛽cd4 = 0 and 𝐻0∶ 𝛽cd8 = 0. We find these 𝑝-values
to be in fair agreement with the Wald and likelihood-ratio tests from logistic.

The confidence intervals for exlogistic are computed from the exact conditional distributions. The

exact confidence intervals are asymmetrical about the estimate and are wider than the normal-based

confidence intervals from logistic.

Both estimation techniques indicate that the incidence of HIV infection decreases with increasing CD4

blood serum levels and increases with increasing CD8 blood serum levels. The constant term is missing

from the exact logistic coefficient table because we conditioned out its observed sufficient statistic when

tallying the joint distribution of the sufficient statistics for the cd4 and cd8 parameters.

The test() option provides two other test statistics used in exact logistic regression: the conditional
scores test, test(score), and the conditional probabilities test, test(probability). For comparison,
we display the individual parameter conditional scores tests.

. exlogistic, test(score) coef
Exact logistic regression Number of obs = 47

Model score = 13.34655
Pr >= score = 0.0006

hiv Coefficient Score Pr>=Score [95% conf. interval]

cd4 -2.387632 12.88022 0.0003 -4.699633 -.8221807
cd8 1.592366 4.604816 0.0410 -.0137905 3.907876

For the probabilities test, the probability statistic is computed from (1) in Methods and formulas with

β = 0. For this example, the 𝑝-value for the conditional probabilities tests matches the conditional scores
tests, so they are not displayed here.
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Technical note
Typically, the value of 𝜃, the constant term, is of little interest, as well as perhaps some of the param-

eters in β, but we need to include all parameters in the model to correctly specify it. By conditioning
out the nuisance parameters, we can reduce the size of the joint conditional distribution that is used to

estimate the regression parameters of interest. The condvars() option allows you to specify a varlist
of nuisance variables. By default, exlogistic conditions on the sufficient statistic of 𝜃, which is the
number of successes. You can save computation time and computer memory by using the condvars()
option because infeasible values of the sufficient statistics associated with the variables in condvars()
can be omitted from consideration before all 𝑛 observations are processed.

Specifying some of your independent variables in condvars() will not change the estimated regres-
sion coefficients of the remaining independent variables. For instance, in example 1, if we instead type

. exlogistic hiv cd4, condvars(cd8) coef

the regression coefficient for cd4 (as well as all associated inference) will be identical.

Technical note
If you fit a clogit (see [R] clogit) model to the HIV data from example 1, you will find that the

estimates differ from those with exlogistic. (To fit the clogit model, you will have to create a

group variable that includes all observations.) The regression estimates will be different because clogit
conditions on the constant term only, whereas the estimates from exlogistic condition on the sufficient
statistic of the other regression parameter as well as the constant term.

Example 2
The HIV data presented in table IV ofMehta and Patel (1995) are in a binomial form, where the variable

hiv contains the HIV cases that tested positive and the variable n contains the number of individuals with
the same CD4 and CD8 levels, the binomial number-of-trials parameter. Here depvar is hiv, and we use
the binomial(n) option to identify the number-of-trials variable.

. use https://www.stata-press.com/data/r18/hiv_n
(Prospective study of perinatal infection of HIV-1; binomial form)
. list

cd4 cd8 hiv n

1. 0 2 1 1
2. 1 2 2 2
3. 0 0 4 7
4. 1 1 4 12
5. 2 2 1 3

6. 1 0 2 7
7. 2 0 0 2
8. 2 1 0 13
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Further, the cd4 and cd8 variables are coded with ordinal values (0, 1, 2). Another approach is to specify
these variables as factor variables in the model so that indicators for all but the base level of cd4 and of
cd8 will be included in the model. Similar to Mehta and Patel (1995), we will estimate the odds ratio of

level 0 versus 2 and level 1 versus 2 by typing ib2.cd4 and ib2.cd8, indicating that 2 is the base level.

. exlogistic hiv ib2.cd4 ib2.cd8, binomial(n) test(probability)
> saving(dist, replace) nolog
note: saving distribution to file dist.dta.
note: CMLE estimate for 0.cd4 is +inf; computing MUE.
note: CMLE estimate for 1.cd4 is +inf; computing MUE.
note: CMLE estimate for 0.cd8 is -inf; computing MUE.
note: CMLE estimate for 1.cd8 is -inf; computing MUE.
Exact logistic regression Number of obs = 47
Binomial variable: n Model prob. = 0.0000

Pr <= prob. = 0.0011

hiv Odds ratio Prob. Pr<=Prob. [95% conf. interval]

cd4 0.0007 0.0055
0 18.82831* 0.0072 0.0072 1.714079 +inf
1 11.53732* 0.0064 0.0105 1.575285 +inf

cd8 0.0053 0.0323
0 .1056887* 0.0290 0.0290 0 1.072531
1 .0983388* 0.0242 0.0242 0 .9837203

(*) median unbiased estimates (MUE)
. matrix list e(sufficient)
e(sufficient)[1,6]

0. 1. 2b. 0. 1. 2b.
cd4 cd4 cd4 cd8 cd8 cd8

r1 5 8 0 6 4 0
. display e(n_possible)
1091475

Because we included cd4 and cd8 as factor variables, we obtained a conditional probabilities test for

cd4, simultaneously testing both 0.cd4 and 1.cd4, and for cd8, simultaneously testing both 0.cd8 and
1.cd8. The 𝑝-values for the two terms are 0.0055 and 0.0323, respectively.

This example also illustrates instances where the dependent variable is completely determined by the

independent variables and CMLEs are infinite. If we try to obtainMLEs, logisticwill omit each variable
and then terminate with a no-data error, error number 2000.

. use https://www.stata-press.com/data/r18/hiv_n, clear
(Prospective study of perinatal infection of HIV-1; binomial form)
. expand n
(39 observations created)
. capture logistic hiv ib2.cd4 ib2.cd8
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The previous exlogistic command generated the joint conditional distribution of 𝑇0.cd4, 𝑇1.cd4, 𝑇0.cd8,

and 𝑇1.cd8 given 𝑀 = 14 (the number of individuals that tested positive), and for reference, we listed

the observed sufficient statistics that are stored in the matrix e(sufficient). Below, we take that

distribution and further condition on 𝑇1.cd4 = 8, 𝑇0.cd8 = 6, and 𝑇1.cd8 = 4, giving the conditional

distribution of 𝑇0.cd4. Here we see that the observed sufficient statistic 𝑇0.cd4 = 5 is last in the sorted

listing or, equivalently, 𝑇0.cd4 is at the domain boundary of the conditional probability distribution. When

this occurs, the conditional probability distribution is monotonically increasing in 𝛽0.cd4 and a maximum

does not exist.

. use dist, clear

. keep if _1_cd4==8 & _0_cd8==6 & _1_cd8==4
(4,139 observations deleted)
. list, sep(0)

_f_ _0_cd4 _1_cd4 _0_cd8 _1_cd8 _2b_cd4 _2b_cd8

1. 1668667 0 8 6 4 0 0
2. 18945542 1 8 6 4 0 0
3. 55801053 2 8 6 4 0 0
4. 55867350 3 8 6 4 0 0
5. 17423175 4 8 6 4 0 0
6. 1091475 5 8 6 4 0 0

When the CMLEs are infinite, the MUEs are computed (Hirji, Tsiatis, and Mehta 1989). For the 0.cd4
estimate, we compute the value 𝛽

0.cd4 such that

Pr(𝑇0.cd4 ≥ 5 | 𝛽0.cd4 = 𝛽
0.cd4, 𝑇1.cd4 = 8, 𝑇0.cd8 = 6, 𝑇1.cd8 = 4, 𝑀 = 14) = 1/2

using (1) in Methods and formulas.

The output is in agreement with example 1: there is an increase in risk of HIV infection for a CD4 blood

serum level of 0 relative to a level of 2 and for a level of 1 relative to a level of 2; there is a decrease in

risk of HIV infection for a CD8 blood serum level of 0 relative to a level of 2 and for a level of 1 relative

to a level of 2.

We also displayed e(n possible). This is the combinatorial coefficient associatedwith the observed
sufficient statistics. The same value is found in the f variable of the conditional distribution dataset

listed above. The size of the distribution is (47
14

) = 341,643,774,795. This can be verified by summing

the f variable of the generated conditional distribution dataset.

. use dist, clear

. summarize _f_, meanonly

. di %15.1f r(sum)
341643774795.0
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Example 3
One can think of exact logistic regression as a covariate-adjusted exact binomial. To demonstrate this

point, we will use exlogistic to compute a binomial confidence interval for 𝑚 successes of 𝑛 trials

by fitting the constant-only model, and we will compare it with the confidence interval computed by ci
proportions (see [R] ci). We will use the saving() option to retain the dataset containing the feasible
values for the constant term sufficient statistic, namely, the number of successes, 𝑚, given 𝑛 trials and

their associated combinatorial coefficients (𝑛
𝑚

), 𝑚 = 0, 1, . . . , 𝑛.

. input y
y

1. 1
2. 0
3. 1
4. 0
5. 1
6. 1
7. end

. ci proportions y
Binomial exact

Variable Obs Proportion Std. err. [95% conf. interval]

y 6 .6666667 .1924501 .2227781 .9567281
. exlogistic y, estconstant nolog coef saving(binom)
note: saving distribution to file binom.dta.
Exact logistic regression

Number of obs = 6

y Coefficient Suff. 2*Pr(Suff.) [95% conf. interval]

_cons .6931472 4 0.6875 -1.24955 3.096017

We use the postestimation command estat predict to transform the estimated constant term and its

confidence bounds by using the inverse logit function, invlogit() (see [FN]Mathematical functions).

The standard error for the estimated probability is computed using the delta method.

. estat predict

y Predicted Std. err. [95% conf. interval]

Probability 0.6667 0.1925 0.2228 0.9567
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. use binom, replace

. list, sep(0)

_f_ _cons_

1. 1 0
2. 6 1
3. 15 2
4. 20 3
5. 15 4
6. 6 5
7. 1 6

Examining the listing of the generated data, the values contained in the variable cons are the feasible

values of 𝑀, and the values contained in the variable f are the binomial coefficients ( 6

𝑚
) with

total

6
∑
𝑚=0

( 6

𝑚
) = 26 = 64. In the coefficient table, the sufficient statistic for the constant term, labeled

Suff., is 𝑚 = 4. This value is located at record 5 of the dataset. Therefore, the two-tailed probability of

the sufficient statistic is computed as 0.6875 = 2(15 + 6 + 1)/64.
The constant term is the value of 𝜃 that maximizes the probability of observing 𝑀 = 4; see (1) of

Methods and formulas:

Pr(𝑀 = 4|𝜃) = 15𝑒4𝛼

1 + 6𝑒𝛼 + 15𝑒2𝛼 + 20𝑒3𝛼 + 15𝑒4𝛼 + 6𝑒5𝛼 + 𝑒6𝛼

The maximum is at the value 𝜃 = log2, which is demonstrated in the figure below.
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The lower and upper confidence bounds are the values of 𝜃 such that Pr(𝑀 ≥ 4|𝜃) = 0.025 and

Pr(𝑀 ≤ 4|𝜃) = 0.025, respectively. These probabilities are plotted in the figure below for 𝜃 ∈ [−2, 4].
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Example 4
This example demonstrates the group() option, which allows the analysis of stratified data. Here the

logistic model is

log( 𝜋𝑖𝑘
1 − 𝜋𝑖𝑘

) = 𝜃𝑘 + x𝑘𝑖β

where 𝑘 indexes the 𝑠 strata, 𝑘 = 1, . . . , 𝑠, and 𝜃𝑘 is the strata-specific constant term whose sufficient

statistic is 𝑀𝑘 = ∑𝑛𝑘
𝑖=1 𝑌𝑘𝑖.

Mehta and Patel (1995) use a case–control study to demonstrate this model, which is useful in com-

paring the estimates from exlogistic and clogit. This study was intended to determine the role of
birth complications in people with schizophrenia (Garsd 1988). Siblings from seven families took part

in the study, and each individual was classified as normal or schizophrenic. A birth complication index is

recorded for each individual that ranges from 0, an uncomplicated birth, to 15, a very complicated birth.

Some of the frequencies contained in variable f are greater than 1, and these count different births at

different times where the individual has the same birth complications index, found in variable BCindex.
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. use https://www.stata-press.com/data/r18/schizophrenia, clear
(Case-control study on birth complications for people with schizophrenia)
. list, sepby(family)

family BCindex schizo f

1. 1 6 0 1
2. 1 7 0 1
3. 1 3 0 2
4. 1 2 0 3
5. 1 5 0 1
6. 1 0 0 1
7. 1 15 1 1

8. 2 2 1 1
9. 2 0 0 1

10. 3 2 0 1
11. 3 9 1 1
12. 3 1 0 1

13. 4 2 1 1
14. 4 0 0 4

15. 5 3 1 1
16. 5 6 0 1
17. 5 0 1 1

18. 6 3 0 1
19. 6 0 1 1
20. 6 0 0 2

21. 7 2 0 1
22. 7 6 1 1

. exlogistic schizo BCindex [fw=f], group(family) test(score) coef
Enumerating sample-space combinations:
Observation 1: Enumerations = 2
Observation 2: Enumerations = 3
Observation 3: Enumerations = 4
Observation 4: Enumerations = 5
Observation 5: Enumerations = 6
Observation 6: Enumerations = 7
(output omitted )

Observation 21: Enumerations = 72
Observation 22: Enumerations = 40
Exact logistic regression Number of obs = 29
Group variable: family Number of groups = 7

Obs per group:
min = 2
avg = 4.1
max = 10

Model score = 6.328033
Pr >= score = 0.0167

schizo Coefficient Score Pr>=Score [95% conf. interval]

BCindex .3251178 6.328033 0.0167 .0223423 .7408832
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The asymptotic alternative for this model can be estimated using clogit (equivalently, xtlogit, fe)
and is listed below for comparison. We must expand the data because clogit will not accept frequency
weights if they are not constant within the groups.

. expand f
(7 observations created)
. clogit schizo BCindex, group(family) nolog
note: multiple positive outcomes within groups encountered.
Conditional (fixed-effects) logistic regression Number of obs = 29

LR chi2(1) = 5.20
Prob > chi2 = 0.0226

Log likelihood = -6.2819819 Pseudo R2 = 0.2927

schizo Coefficient Std. err. z P>|z| [95% conf. interval]

BCindex .3251178 .1678981 1.94 0.053 -.0039565 .654192

Both techniques compute the same regression estimate for the BCindex, which might not be too surpris-
ing because both estimation techniques condition on the total number of successes in each group. The

difference lies in the 𝑝-values and confidence intervals. The 𝑝-value testing 𝐻0 ∶ 𝛽BCindex = 0 is approx-

imately 0.0167 for the exact conditional scores test and 0.053 for the asymptotic Wald test. Moreover,

the exact confidence interval is asymmetric about the estimate and does not contain zero.

Technical note
The memory() option limits the amount of memory that exlogistic will consume when computing

the conditional distribution of the parameter sufficient statistics. memory() is independent of the data
maximum memory setting (see set max memory in [D]memory), and it is possible for exlogistic to
exceed the memory limit specified in set max memorywithout terminating. By default, a log is provided
that displays the number of enumerations (the size of the conditional distribution) after processing each

observation. Typically, you will see the number of enumerations increase, and then at some point they

will decrease as the multivariate shift algorithm (Hirji, Mehta, and Patel 1987) determines that some of

the enumerations cannot achieve the observed sufficient statistics of the conditioning variables. When

the algorithm is complete, however, it is necessary to store the conditional distribution of the parameter

sufficient statistics as a dataset. It is possible, therefore, to get a memory error when the algorithm has

completed if there is not enough memory to store the conditional distribution.

Technical note
Computing the conditional distributions and reported statistics requires data sorting and numerical

comparisons. If there is at least one single-precision variable specified in the model, exlogistic will
make comparisons with a relative precision of 2−5. Otherwise, a relative precision of 2−11 is used. Be

careful if you use recast to promote a single-precision variable to double precision (see [D] recast).

You might try listing the data in full precision (maybe %20.15g; see [D] format) to make sure that this

is really what you want. See [D] Data types for information on precision of numeric storage types.
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Stored results
exlogistic stores the following in e():

Scalars

e(N) number of observations

e(k groups) number of groups

e(n possible) number of distinct possible outcomes where sum(sufficient) equals observed
e(sufficient)

e(n trials) binomial number-of-trials parameter

e(sum y) sum of depvar

e(k indvars) number of independent variables

e(k condvars) number of conditioning variables

e(condcons) conditioned on the constant(s) indicator

e(midp) mid-𝑝-value rule indicator
e(eps) relative difference tolerance

Macros

e(cmd) exlogistic
e(cmdline) command as typed

e(title) title in estimation output

e(depvar) name of dependent variable

e(indvars) independent variables

e(condvars) conditional variables

e(groupvar) group variable

e(binomial) binomial number-of-trials variable

e(fvvarlist) independent factor variables

e(level) confidence level

e(wtype) weight type

e(wexp) weight expression

e(datasignature) the checksum

e(datasignaturevars) variables used in calculation of checksum

e(properties) b
e(estat cmd) program used to implement estat
e(marginsnotok) predictions disallowed by margins

Matrices

e(b) coefficient vector

e(mue indicators) indicator for elements of e(b) estimated using MUE instead of CMLE

e(se) e(b) standard errors (CMLEs only)

e(ci) matrix of e(level) confidence intervals for e(b)
e(sum y groups) sum of e(depvar) for each group
e(N g) number of observations in each group

e(sufficient) sufficient statistics for e(b)
e(p sufficient) 𝑝-value for e(sufficient)
e(scoretest) conditional scores tests for indepvars

e(p scoretest) 𝑝-values for e(scoretest)
e(probtest) conditional probabilities tests for indepvars

e(p probtest) 𝑝-value for e(probtest)
e(scoretest m) conditional scores tests for model terms

e(p scoretest m) 𝑝-value for e(scoretest m)
e(probtest m) conditional probabilities tests for model terms

e(p probtest m) 𝑝-value for e(probtest m)

Functions

e(sample) marks estimation sample
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Methods and formulas
Methods and formulas are presented under the following headings:

Sufficient statistics
Conditional distribution and CMLE
MUEs and exact confidence intervals
Conditional hypothesis tests
Sufficient-statistic p-value

Sufficient statistics
Let {𝑌1, 𝑌2, . . . , 𝑌𝑛} be a set of 𝑛 independent Bernoulli random variables, each of which can realize

two outcomes, {0, 1}. For each 𝑖 = 1, . . . , 𝑛, we observe 𝑌𝑖 = 𝑦𝑖, and associated with each observation

is the covariate row vector of length 𝑝, x𝑖 = (𝑥𝑖1, . . . , 𝑥𝑖𝑝). Denote β = (𝛽1, . . . , 𝛽𝑝)𝑇 to be the

column vector of regression parameters and 𝜃 to be the constant. The sufficient statistic for 𝛽𝑗 is 𝑇𝑗 =
∑𝑛

𝑖=1 𝑌𝑖𝑥𝑖𝑗, 𝑗 = 1, . . . , 𝑝, and for 𝜃 is 𝑀 = ∑𝑛
𝑖=1 𝑌𝑖. We observe 𝑇𝑗 = 𝑡𝑗, 𝑡𝑗 = ∑𝑛

𝑖=1 𝑦𝑖𝑥𝑖𝑗, and

𝑀 = 𝑚, 𝑚 = ∑𝑛
𝑖=1 𝑦𝑖. The probability of observing (𝑌1 = 𝑦1, 𝑌2 = 𝑦2, . . . , 𝑌𝑛 = 𝑦𝑛) is

Pr(𝑌1 = 𝑦1, . . . , 𝑌𝑛 = 𝑦𝑛 | β,X) = exp(𝑚𝜃 + tβ)
∏𝑛

𝑖=1{1 + exp(𝜃 + x𝑖β)}

where t = (𝑡1, . . . , 𝑡𝑝) and X = (x𝑇
1 , . . . , x𝑇

𝑛)𝑇.

The joint distribution of the sufficient statistics T is obtained by summing over all possible binary

sequences 𝑌1, . . . , 𝑌𝑛 such that T = t and 𝑀 = 𝑚. This probability function is

Pr(𝑇1 = 𝑡1, . . . , 𝑇𝑝 = 𝑡𝑝, 𝑀 = 𝑚 | β,X) = 𝑐(t, 𝑚) exp(𝑚𝜃 + tβ)
∏𝑛

𝑖=1{1 + exp(𝜃 + x𝑖β)}

where 𝑐(t, 𝑚) is the combinatorial coefficient of (t, 𝑚) or the number of distinct binary sequences

𝑌1, . . . , 𝑌𝑛 such that T = t and 𝑀 = 𝑚 (Cox and Snell 1989).

Conditional distribution and CMLE
Without loss of generality, wewill restrict our discussion to computing the CMLE of 𝛽1. If we condition

on observing 𝑀 = 𝑚 and 𝑇2 = 𝑡2, . . . , 𝑇𝑝 = 𝑡𝑝, the probability function of (𝑇1 | 𝛽1, 𝑇2 = 𝑡2, . . . , 𝑇𝑝 =
𝑡𝑝, 𝑀 = 𝑚) is

Pr(𝑇1 = 𝑡1 | 𝛽1, 𝑇2 = 𝑡2, . . . , 𝑇𝑝 = 𝑡𝑝, 𝑀 = 𝑚) = 𝑐(t, 𝑚)𝑒𝑡1𝛽1

∑𝑢 𝑐(𝑢, 𝑡2, . . . , 𝑡𝑝, 𝑚)𝑒𝑢𝛽1
(1)

where the sum in the denominator is over all possible values of 𝑇1 such that 𝑀 = 𝑚 and

𝑇2 = 𝑡2, . . . , 𝑇𝑝 = 𝑡𝑝 and 𝑐(𝑢, 𝑡2, . . . , 𝑡𝑝, 𝑚) is the combinatorial coefficient of (𝑢, 𝑡2, . . . , 𝑡𝑝, 𝑚) (Cox
and Snell 1989). The CMLE for 𝛽1 is the value

̂𝛽1 that maximizes the log of (1). This optimization task is

carried out by ml, using the conditional frequency distribution of (𝑇1 | 𝑇2 = 𝑡2, . . . , 𝑇𝑝 = 𝑡𝑝, 𝑀 = 𝑚)
as a dataset. Generating the joint conditional distribution is efficiently computed using the multivariate

shift algorithm described by Hirji, Mehta, and Patel (1987).
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Difficulties in computing ̂𝛽1 arise if the observed (𝑇1 = 𝑡1, . . . , 𝑇𝑝 = 𝑡𝑝, 𝑀 = 𝑚) lies on the

boundaries of the distribution of (𝑇1 | 𝑇2 = 𝑡2, . . . , 𝑇𝑝 = 𝑡𝑝, 𝑀 = 𝑚), where the conditional probability
function is monotonically increasing (or decreasing) in 𝛽1. Here the CMLE is plus infinity if it is on the

upper boundary, Pr(𝑇1 ≤ 𝑡1| 𝑇2 = 𝑡2, . . . , 𝑇𝑝 = 𝑡𝑝, 𝑀 = 𝑚) = 1, and is minus infinity if it is on the

lower boundary of the distribution, Pr(𝑇1 ≥ 𝑡1| 𝑇2 = 𝑡2, . . . , 𝑇𝑝 = 𝑡𝑝, 𝑀 = 𝑚) = 1. This concept is

demonstrated in example 2. When infinite CMLEs occur, the MUE is computed.

MUEs and exact confidence intervals
The MUE is computed using the technique outlined by Hirji, Tsiatis, and Mehta (1989). First, we find

the values of 𝛽(𝑢)
1 and 𝛽(𝑙)

1 such that

Pr(𝑇1 ≤ 𝑡1 | 𝛽1 = 𝛽(𝑢)
1 , 𝑇2 = 𝑡2, . . . , 𝑇𝑝 = 𝑡𝑝, 𝑀 = 𝑚) =

Pr(𝑇1 ≥ 𝑡1 | 𝛽1 = 𝛽(𝑙)
1 , 𝑇2 = 𝑡2, . . . , 𝑇𝑝 = 𝑡𝑝, 𝑀 = 𝑚) = 1/2

(2)

The MUE is then 𝛽1 = (𝛽(𝑙)
1 + 𝛽(𝑢)

1 ) /2. However, if 𝑇1 is equal to the minimum of the domain of the

conditional distribution, 𝛽(𝑙) does not exist and 𝛽1 = 𝛽(𝑢). If 𝑇1 is equal to the maximum of the domain

of the conditional distribution, 𝛽(𝑢) does not exist and 𝛽1 = 𝛽(𝑙).

Confidence bounds for 𝛽 are computed similarly, except that we substitute 𝛼/2 for 1/2 in (2), where
1 − 𝛼 is the confidence level. Here 𝛽(𝑙)

1 would then be the lower confidence bound and 𝛽(𝑢)
1 would be

the upper confidence bound (see example 3).

Conditional hypothesis tests
To test 𝐻0∶ 𝛽1 = 0 versus 𝐻1 ∶ 𝛽1 ≠ 0, we obtain the exact 𝑝-value from ∑𝑢∈𝐸 𝑓1(𝑢) − 𝑓1(𝑡1)/2

if the mid-𝑝-value rule is used and ∑𝑢∈𝐸 𝑓1(𝑢) otherwise. Here 𝐸 is a critical region, and we define

𝑓1(𝑢) = Pr(𝑇1 = 𝑢 | 𝛽1 = 0, 𝑇2 = 𝑡2, . . . , 𝑇𝑝 = 𝑡𝑝, 𝑀 = 𝑚) for ease of notation. There are two
popular ways to define the critical region: the conditional probabilities test and the conditional scores

test (Mehta and Patel 1995). The critical region when using the conditional probabilities test is all values

of the sufficient statistic for 𝛽1 that have a probability less than or equal to that of the observed 𝑡1,

𝐸𝑝 = {𝑢 ∶ 𝑓1(𝑢) ≤ 𝑓1(𝑡1)}. The critical region of the conditional scores test is defined as all values of
the sufficient statistic for 𝛽1 such that its score is greater than or equal to that of 𝑡1,

𝐸𝑠 = {𝑢 ∶ (𝑢 − 𝜇1)2/𝜎2
1 ≥ (𝑡1 − 𝜇1)2/𝜎2

1}

Here 𝜇1 and 𝜎2
1 are the mean and variance of (𝑇1 | 𝛽1 = 0, 𝑇2 = 𝑡2, . . . , 𝑇𝑝 = 𝑡𝑝, 𝑀 = 𝑚).

The score statistic is defined as

{𝜕ℓ(𝛽)
𝜕𝛽

}
2

[−𝐸 {𝜕2ℓ(𝛽)
𝜕𝛽2 }]

−1

evaluated at 𝐻0∶ 𝛽 = 0, where ℓ is the log of (1). The score test simplifies to (𝑡 − 𝐸 [𝑇 |𝛽])2/var(𝑇 |𝛽)
(Hirji 2006), where themean and variance are computed from the conditional distribution of the sufficient

statistic with 𝛽 = 0 and 𝑡 is the observed sufficient statistic.
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Sufficient-statistic p-value
The 𝑝-value for testing 𝐻0 ∶ 𝛽1 = 0 versus the two-sided alternative when (𝑇1 = 𝑡1|𝑇2 =

𝑡2, . . . , 𝑇𝑝 = 𝑡𝑝) is computed as 2×min(𝑝𝑙, 𝑝𝑢), where

𝑝𝑙 =
∑𝑢≤𝑡1

𝑐(𝑢, 𝑡2, . . . , 𝑡𝑝, 𝑚)
∑𝑢 𝑐(𝑢, 𝑡2, . . . , 𝑡𝑝, 𝑚)

𝑝𝑢 =
∑𝑢≥𝑡1

𝑐(𝑢, 𝑡2, . . . , 𝑡𝑝, 𝑚)
∑𝑢 𝑐(𝑢, 𝑡2, . . . , 𝑡𝑝, 𝑚)

It is the probability of observing a more extreme 𝑇1.
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Postestimation commands estat Remarks and examples Stored results Reference
Also see

Postestimation commands
The following postestimation commands are of special interest after exlogistic:

Command Description

estat predict single-observation prediction

estat se report ORs or coefficients and their asymptotic standard errors

The following standard postestimation commands are also available:

Command Description

estat summarize summary statistics for the estimation sample

estimates cataloging estimation results

etable table of estimation results

estat summarize is not allowed if the binomial() option was specified in exlogistic.

841



exlogistic postestimation — Postestimation tools for exlogistic 842

estat

Description for estat
estat predict computes a predicted probability (or linear predictor), its asymptotic standard error,

and its exact confidence interval for 1 observation. Predictions are carried out by estimating the constant

coefficient after shifting the independent variables and conditioned variables by the values specified in

the at() option or by their medians. Therefore, predictions must be done with the estimation sample in
memory. If a different dataset is used or if the dataset is modified, then an error will result.

estat se reports odds ratio or coefficients and their asymptotic standard errors. The estimates are
stored in the matrix r(estimates).

Menu for estat
Statistics > Postestimation

Syntax for estat

Single-observation prediction

estat predict [ , pred options ]

Report ORs or coefficients and their asymptotic standard errors

estat se [ , coef ]

pred options Description

pr probability; the default

xb linear predictor

at(atspec) use the specified values for the indepvars and condvars()
level(#) set confidence level for the predicted value; default is level(95)
memory(#[ b | k | m | g ]) set limit on memory usage; default is memory(10m)
[ no ]log display or suppress the enumeration log; default is to display

collect is allowed with estat predict; see [U] 11.1.10 Prefix commands.

These statistics are available only for the estimation sample.

Options for estat predict
pr, the default, calculates the probability.

xb calculates the linear predictor.

at(varname = # [ [ varname = # ] [ . . . ] ]) specifies values to use in computing the predicted value. Here
varname is one of the independent variables, indepvars, or the conditioned variables, condvars().
The default is to use the median of each independent and conditioned variable.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is

level(95) or as set by set level; see [U] 20.8 Specifying the width of confidence intervals.
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memory(#[ b | k | m | g ]) sets a limit on the amount of memory estat predict can use when generating
the conditional distribution of the constant parameter sufficient statistic. The default is memory(10m),
where m stands for megabyte, or 1,048,576 bytes. The following are also available: b stands for byte;
k stands for kilobyte, which is equal to 1,024 bytes; and g stands for gigabyte, which is equal to

1,024 megabytes. The minimum setting allowed is 1m and the maximum is 512m or 0.5g, but do not
attempt to use more memory than is available on your computer. Also see Remarks and examples in

[R] exlogistic for details on enumerating the conditional distribution.

log and nolog specify whether to display the enumeration log, which shows the progress of enumerating
the distribution of the observed successes conditioned on the independent variables shifted by the

values specified in at() (or by their medians). See Methods and formulas in [R] exlogistic for details

of the computations. The enumeration log is displayed by default unless you used set iterlog off
to suppress it; see set iterlog in [R] set iter.

Option for estat se
coef requests that the estimated coefficients and their asymptotic standard errors be reported. The default

is to report the odds ratios and their asymptotic standard errors.

Remarks and examples
Predictions must be done using the estimation sample. This is because the prediction is really an

estimated constant coefficient (the intercept) after shifting the independent variables and conditioned

variables by the values specified in at() or by their medians. The justification for this approach can be
seen by rewriting the model as

log( 𝜋𝑖
1 − 𝜋𝑖

) = (𝛼 + x0β) + (x𝑖 − x0)β

where x0 are the specified values for the indepvars (Mehta and Patel 1995). Because the estimation of

the constant term is required, this technique is not appropriate for stratified models that used the group()
option.

Example 1
To demonstrate, we return to the example 2 in [R] exlogistic using data from a prospective study of

perinatal infection and HIV-1. Here there was an investigation into whether the blood serum levels of

CD4 and CD8 measured in infants at 6 months of age might predict their development of HIV infection.

The blood serum levels are coded as ordinal values 0, 1, and 2. These data are used by Mehta and Patel

(1995) as an exposition of exact logistic.

. use https://www.stata-press.com/data/r18/hiv_n
(Prospective study of perinatal infection of HIV-1; binomial form)
. exlogistic hiv ib2.cd4 ib2.cd8, binomial(n) test(probability)
(output omitted )
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. estat predict
Enumerating sample-space combinations:
Observation 1: Enumerations = 3
Observation 2: Enumerations = 12
Observation 3: Enumerations = 5
Observation 4: Enumerations = 5
Observation 5: Enumerations = 5
Observation 6: Enumerations = 35
Observation 7: Enumerations = 15
Observation 8: Enumerations = 15
Observation 9: Enumerations = 9
Observation 10: Enumerations = 9
Observation 11: Enumerations = 5
Observation 12: Enumerations = 18
note: CMLE estimate for _cons is -inf; computing MUE.
Predicted value at 0.cd4 = 0, 1.cd4 = 0, 0.cd8 = 0, 1.cd8 = 1

hiv Predicted Std. err. [95% conf. interval]

Probability 0.0390* N/A 0.0000 0.1962

(*) identifies median unbiased estimates (MUE); because an MUE
is computed, there is no SE estimate

Because we did not specify values by using the at() option, the median values of the indepvars are used
for the prediction. By default, medians are used instead of means because we want to use values that are

observed in the dataset. If the means of the indicators for levels of factor variables (0.cd4–1.cd8) were
used, we would have created floating point variables in (0, 1) that not only do not properly represent the
indicator variables but also would be a source of computational inefficiency in generating the conditional

distribution. Because the MUE is computed for the predicted value, there is no standard error estimate.

From the example discussions in [R] exlogistic, the infants at highest risk are those with a CD4 level of

0 and a CD8 level of 2. Below, we use the at() option to make a prediction at these blood serum levels.

. estat predict, at(cd4=0 cd8=2) nolog
note: 2b.cd8 is a base level; setting all other levels of cd8 to zero implies

2b.cd8 = 1.
note: CMLE estimate for _cons is +inf; computing MUE.
Predicted value at 0.cd4 = 1, 1.cd4 = 0, 0.cd8 = 0, 1.cd8 = 0

hiv Predicted Std. err. [95% conf. interval]

Probability 0.9063* N/A 0.4637 1.0000

(*) identifies median unbiased estimates (MUE); because an MUE
is computed, there is no SE estimate
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Stored results
estat predict stores the following in r():

Scalars

r(imue) 1 if r(pred) is an MUE and 0 if a CMLE

r(pred) estimated probability or the linear effect

r(se) asymptotic standard error of r(pred)

Macros

r(estimate) prediction type: pr or xb
r(level) confidence level

Matrices

r(ci) confidence interval

r(x) indepvars and condvars() values

Reference
Mehta, C. R., andN. R. Patel. 1995. Exact logistic regression: Theory and examples. Statistics inMedicine 14: 2143–2160.

https://doi.org/10.1002/sim.4780141908.

Also see
[R] exlogistic — Exact logistic regression

[U] 20 Estimation and postestimation commands
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expoisson — Exact Poisson regression

Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas References Also see

Description
expoisson fits an exact Poisson regression model, which produces more accurate inference in small

samples than standard maximum-likelihood–based Poisson regression. For stratified data, expoisson
conditions on the number of events in each stratum and is an alternative to fixed-effects Poisson regres-

sion.

Quick start
Exact Poisson regression of y on x1, x2, and x3

expoisson y x1 x2 x3

Add exposure variable evar
expoisson y x1 x2 x3, exposure(evar)

Same as above, but condition on values of x3 to save time and memory
expoisson y x1 x2, exposure(evar) condvars(x3)

Same as above, and allow more memory for computing the conditional distribution of sufficient statistics

expoisson y x1 x2, exposure(evar) condvars(x3) memory(100m)

Report incidence-rate ratios rather than coefficients

expoisson y x1 x2 x3, irr

Report conditional scores tests

expoisson y x1 x2 x3, test(score)

Fit a model with strata identified by svar
expoisson y x1 x2 x3, group(svar)

Menu
Statistics > Exact statistics > Exact Poisson regression

846
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Syntax
expoisson depvar indepvars [ if ] [ in ] [weight ] [ , options ]

options Description

Model

condvars(varlist𝑐) condition on variables in varlist𝑐
group(varname) groups or strata are stratified by unique values of varname

exposure(varname𝑒) include ln(varname𝑒) in model with coefficient constrained to 1

offset(varname𝑜) include varname𝑜 in model with coefficient constrained to 1

Options

memory(#[ b | k | m | g ]) set limit on memory usage; default is memory(25m)
saving(filename[ , replace ]) save the joint conditional distribution to filename

Reporting

level(#) set confidence level; default is level(95)
irr report incidence-rate ratios

test(testopt) report 𝑝-value for observed sufficient statistic, conditional scores
test, or conditional probabilities test

mue(varlist𝑚) compute the median unbiased estimates for varlist𝑚
midp use the mid-𝑝-value rule
[ no ]log display or suppress the enumeration log; default is to display

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

coeflegend display legend instead of statistics

indepvars, varlist𝑐, and varlist𝑚 may contain factor variables; see [U] 11.4.3 Factor variables.

by, collect, and statsby are allowed; see [U] 11.1.10 Prefix commands.

fweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

condvars(varlist𝑐) specifies variables whose parameter estimates are not of interest to you. You

can save substantial computer time and memory by moving such variables from indepvars to

condvars(). Understand that you will get the same results for x1 and x3 whether you type

. expoisson y x1 x2 x3 x4

or

. expoisson y x1 x3, condvars(x2 x4)



expoisson — Exact Poisson regression 848

group(varname) specifies the variable defining the strata, if any. A constant term is assumed for each

stratum identified in varname, and the sufficient statistics for indepvars are conditioned on the ob-

served number of successes within each group (as well as other variables in the model). The group

variable must be integer valued.

exposure(varname𝑒), offset(varname𝑜); see [R] Estimation options.

� � �
Options �

memory(#[ b | k | m | g ]) sets a limit on the amount of memory expoisson can use when computing the
conditional distribution of the parameter sufficient statistics. The default is memory(25m), where
m stands for megabyte, or 1,048,576 bytes. The following are also available: b stands for byte; k
stands for kilobyte, which is equal to 1,024 bytes; and g stands for gigabyte, which is equal to 1,024
megabytes. The minimum setting allowed is 1m and the maximum is 2048m or 2g, but do not attempt
to use more memory than is available on your computer. Also see the first technical note under

example 3 on counting the conditional distribution.

saving(filename [ , replace ]) saves the joint conditional distribution for each independent variable
specified in indepvars. There is one file for each variable, and it is named using the prefix file-

name with the variable name appended. For example, saving(mydata) with an independent vari-
able named X would generate a data file named mydata X.dta. Use replace to replace an existing
file. Each file contains the conditional distribution for one of the independent variables specified in

indepvars conditioned on all other indepvars and those variables specified in condvars(). There are
two variables in each data file: the feasible sufficient statistics for the variable’s parameter and their

associated weights. The weights variable is named w .

� � �
Reporting �

level(#); see [R]Estimation options. The level() option will not work on replay because confidence
intervals are based on estimator-specific enumerations. To change the confidence level, you must refit

the model.

irr reports estimated coefficients transformed to incidence-rate ratios, that is, exp(𝛽) rather than 𝛽.
Standard errors and confidence intervals are similarly transformed. This option affects how results

are displayed, not how they are estimated or stored. irr may be specified at estimation or when

replaying previously estimated results.

test(sufficient | score | probability) reports the 𝑝-value associated with the observed sufficient
statistics, the conditional scores tests, or the conditional probabilities tests, respectively. The default

is test(sufficient). All the statistics are computed at estimation time regardless of which is

specified. Each statistic may thus also be displayed when replaying results after estimation without

having to refit the model; see [R] expoisson postestimation.

mue(varlist𝑚) specifies that median unbiased estimates (MUEs) be reported for the specified variables.

By default, the conditional maximum likelihood estimates (CMLEs) are reported, except for those pa-

rameters for which the CMLEs are infinite. Specify mue( all) if you wantMUEs for all the indepvars.

midp instructs expoisson to use the mid-𝑝-value rule when computing the MUEs, 𝑝-values, and con-
fidence intervals. This adjustment is for the discreteness of the distribution and halves the value of

the discrete probability of the observed statistic before adding it to the 𝑝-value. The mid-𝑝-value rule
cannot be applied to MUEs whose corresponding parameter CMLE is infinite.
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log and nolog specify whether to display the enumeration log, which shows the progress of computing
the conditional distribution of the sufficient statistics. The enumeration log is displayed by default

unless you used set iterlog off to suppress it; see set iterlog in [R] set iter.

display options: noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
and sformat(% fmt); see [R] Estimation options.

Note that the maximumwidths for cformat(), pformat(), and sformat() differ from those widths

listed in [R] Estimation options. The maximum width for each format is 9 for expoisson.

The following option is available with expoisson but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

Remarks and examples
Exact Poisson regression estimates the model parameters by using the conditional distributions of

the parameters’ sufficient statistics, and the resulting parameter estimates are known as CMLEs. Exact

Poisson regression is a small-sample alternative to the maximum-likelihood Poissonmodel. See [R] pois-

son and [XT] xtpoisson to obtain maximum likelihood estimates (MLEs) for the Poisson model and the

fixed-effects Poisson model.

Let 𝑌𝑖 denote a Poisson random variable where we observe the outcome 𝑌𝑖 = 𝑦𝑖, 𝑖 = 1, . . . , 𝑛.
Associated with each independent observation is a 1 × 𝑝 vector of covariates, x𝑖. We will denote 𝜇𝑖 =
𝐸 [𝑌𝑖 | x𝑖] and use the log-linear model to model the relationship between 𝑌𝑖 and x𝑖,

log (𝜇𝑖) = 𝜃 + x𝑖β

where the constant term, 𝜃, and the 𝑝×1 vector of regression parameters,β, are unknown. The probability
of observing 𝑌𝑖 = 𝑦𝑖, 𝑖 = 1, . . . , 𝑛, is

Pr(Y = y) =
𝑛

∏
𝑖=1

𝜇𝑦𝑖
𝑖 𝑒−𝜇𝑖

𝑦𝑖!

where Y = (𝑌1, . . . , 𝑌𝑛) and y = (𝑦1, . . . , 𝑦𝑛). The MLEs for 𝜃 and βmaximize the log of this function.

The sufficient statistics for 𝜃 and 𝛽𝑗, 𝑗 = 1, . . . , 𝑝, are 𝑀 = ∑𝑛
𝑖=1 𝑌𝑖 and 𝑇𝑗 = ∑𝑛

𝑖=1 𝑌𝑖𝑥𝑖𝑗, respec-

tively, and we observe 𝑀 = 𝑚 and 𝑇𝑗 = 𝑡𝑗. expoisson tallies the conditional distribution for each 𝑇𝑗,

given the other sufficient statistics 𝑇𝑙 = 𝑡𝑙, 𝑙 ≠ 𝑗 and 𝑀 = 𝑚. Denote one of these values to be 𝑡(𝑘)
𝑗 ,

𝑘 = 1, . . . , 𝑁, with weight 𝑤𝑘 that accounts for all the generated Y vectors that give rise to 𝑡(𝑘)
𝑗 . The

conditional probability of observing 𝑇𝑗 = 𝑡𝑗 has the form

Pr(𝑇𝑗 = 𝑡𝑗 | 𝑇𝑙 = 𝑡𝑙, 𝑙 ≠ 𝑗, 𝑀 = 𝑚) = 𝑤 𝑒𝑡𝑗𝛽𝑗

∑𝑘 𝑤𝑘𝑒𝑡(𝑘)
𝑗 𝛽𝑗

(1)

where the sum is over the subset of T vectors such that (𝑇 (𝑘)
1 = 𝑡1, . . . , 𝑇 (𝑘)

𝑗 = 𝑡(𝑘)
𝑗 , . . . , 𝑇 (𝑘)

𝑝 = 𝑡𝑝) and
𝑤 is the weight associated with the observed t. The CMLE for 𝛽𝑗 maximizes the log of this function.
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Specifying nuisance variables in condvars() prevents expoisson from estimating their associated

regression coefficients. These variables are still conditional variables when tallying the conditional dis-

tribution for the variables in indepvars.

Inferences from MLEs rely on asymptotics, and if your sample size is small, these inferences may

not be valid. On the other hand, inferences from the CMLEs are exact in that they use the conditional

distribution of the sufficient statistics outlined above.

For small datasets, the dependent variable can be completely determined by the data. Here the MLEs

and the CMLEs are unbounded. When this occurs, expoisson will compute the MUE, the regression

estimate that places the observed sufficient statistic at the median of the conditional distribution.

See [R] exlogistic for a more thorough discussion of exact estimation and related statistics.

Example 1
Armitage, Berry, and Matthews (2002, 499–501) fit a log-linear model to data containing the number

of cerebrovascular accidents experienced by 41 men during a fixed period, each of whom had recovered

from a previous cerebrovascular accident and was hypertensive. Sixteen men received treatment, and in

the original data, there are three age groups (40–49, 50–59, ≥60), but we pool the first two age groups

to simplify the example. Armitage, Berry, and Matthews point out that this was not a controlled trial,

but the data are useful to inquire whether there is evidence of fewer accidents for the treatment group

and if age may be an important factor. The dependent variable count contains the number of accidents,
variable treat is an indicator for the treatment group (1 = treatment, 0 = control), and variable age is
an indicator for the age group (0 = 40−59; 1 = ≥60).

First, we load the dataset, list it, and tabulate the cerebrovascular accident counts by treatment and

age group.

. use https://www.stata-press.com/data/r18/cerebacc
(Cerebrovascular accidents in hypotensive-treated and control groups)
. list

treat count age

1. Control 0 40/59
2. Control 0 >=60
3. Control 1 40/59
4. Control 1 >=60
5. Control 2 40/59

6. Control 2 >=60
7. Control 3 40/59

(output omitted )
35. Treatment 0 40/59

36. Treatment 0 40/59
37. Treatment 0 40/59
38. Treatment 0 40/59
39. Treatment 1 40/59
40. Treatment 1 40/59

41. Treatment 1 40/59
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. tabulate treat age [fw=count]
Hypotensiv

e drug Age group
treatment 40/59 >=60 Total

Control 15 10 25
Treatment 4 0 4

Total 19 10 29

Next, we estimate the CMLE with expoisson and, for comparison, the MLE with poisson.

. expoisson count i.treat i.age
Estimating: 1.treat
Enumerating sample-space combinations:
Observation 1: Enumerations = 11
Observation 2: Enumerations = 11
Observation 3: Enumerations = 11
(output omitted )

Observation 39: Enumerations = 410
Observation 40: Enumerations = 410
Observation 41: Enumerations = 30
Estimating: 1.age
Enumerating sample-space combinations:
Observation 1: Enumerations = 5
Observation 2: Enumerations = 15
Observation 3: Enumerations = 15
(output omitted )

Observation 39: Enumerations = 455
Observation 40: Enumerations = 455
Observation 41: Enumerations = 30
Exact Poisson regression

Number of obs = 41

count Coefficient Suff. 2*Pr(Suff.) [95% conf. interval]

treat
Treatment -1.594306 4 0.0026 -3.005089 -.4701708

age
>=60 -.5112067 10 0.2794 -1.416179 .3429232

. poisson count i.treat i.age, nolog
Poisson regression Number of obs = 41

LR chi2(2) = 10.64
Prob > chi2 = 0.0049

Log likelihood = -38.97981 Pseudo R2 = 0.1201

count Coefficient Std. err. z P>|z| [95% conf. interval]

treat
Treatment -1.594306 .5573614 -2.86 0.004 -2.686714 -.5018975

age
>=60 -.5112067 .4043525 -1.26 0.206 -1.303723 .2813096
_cons .233344 .2556594 0.91 0.361 -.2677391 .7344271
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expoisson generates an enumeration log for each independent variable in indepvars. The conditional
distribution of the parameter sufficient statistic is tallied for each independent variable. The conditional

distribution for treat, for example, has 30 records containing the weights, 𝑤𝑘, and feasible sufficient

statistics, 𝑡(𝑘)
treat. In essence, the set of points (𝑤𝑘, 𝑡(𝑘)

treat), 𝑘 = 1, . . . , 30, tallied by expoisson now become

the data to estimate the regression coefficient for treat, using (1) as the likelihood. Remember that 1
of the 30 (𝑤𝑘, 𝑡(𝑘)

treat) must contain the observed sufficient statistic, 𝑡treat = ∑41
𝑖=1 treat𝑖 × count𝑖 = 4,

and its relative position in the sorted set of points (sorted by 𝑡(𝑘)
treat) is how the sufficient-statistic 𝑝-value

is computed. This algorithm is repeated for the age variable.

The regression coefficients for treat and age are numerically identical for both Poissonmodels. Both
models provide evidence that the treatment reduces the rate of cerebrovascular accidents, ≈ 𝑒−1.59 ≈
0.204, or a reduction of about 80%. There is no evidence that age plays a role in the rate of accidents.

The results based on the sufficient statistic provide stronger evidence that treatment reduces the rate of

cerebrovascular accidents than the corresponding asymptotic statistics. However, the exact confidence

intervals are wider than their asymptotic counterparts.

Example 2
Agresti (2013, 129) used the data from Laird and Olivier (1981) to demonstrate the Poisson model

for modeling rates. The data consist of patient survival after heart valve replacement operations. The

sample consists of 109 patients that are classified by type of heart valve (aortic, mitral) and by age (<55,

≥55). Follow-up observations cover lengths from 3 to 97 months, and the time at risk, or exposure, is

stored in the variable TAR. The response is whether the subject died. First, we take a look at the data and
then estimate the incidence rates (IRs) with expoisson and poisson.

. use https://www.stata-press.com/data/r18/heartvalve
(Heart valve replacement data)
. list

age valve deaths TAR

1. <55 Aortic 4 1259
2. <55 Mitral 1 2082
3. >=55 Aortic 7 1417
4. >=55 Mitral 9 1647

The age variable is coded 0 for age <55 and 1 for age ≥55, and the valve variable is coded 0 for

the aortic valve and 1 for the mitral valve. The total number of deaths, 𝑀 = 21, is small enough that

enumerating the conditional distributions for age and valve type is feasible and asymptotic inferences

associated with standard maximum-likelihood Poisson regression may be questionable.



expoisson — Exact Poisson regression 853

. expoisson deaths i.age i.valve, exposure(TAR) irr
Estimating: 1.age
Enumerating sample-space combinations:
Observation 1: Enumerations = 11
Observation 2: Enumerations = 11
Observation 3: Enumerations = 132
Observation 4: Enumerations = 22
Estimating: 1.valve
Enumerating sample-space combinations:
Observation 1: Enumerations = 17
Observation 2: Enumerations = 17
Observation 3: Enumerations = 102
Observation 4: Enumerations = 22
Exact Poisson regression

Number of obs = 4

deaths IRR Suff. 2*Pr(Suff.) [95% conf. interval]

age
>=55 3.390401 16 0.0194 1.182297 11.86935

valve
Mitral .7190197 10 0.5889 .2729881 1.870068

ln(TAR) 1 (exposure)

. poisson deaths i.age i.valve, exposure(TAR) irr nolog
Poisson regression Number of obs = 4

LR chi2(2) = 7.62
Prob > chi2 = 0.0222

Log likelihood = -8.1747285 Pseudo R2 = 0.3178

deaths IRR Std. err. z P>|z| [95% conf. interval]

age
>=55 3.390401 1.741967 2.38 0.017 1.238537 9.280965

valve
Mitral .7190197 .3150492 -0.75 0.452 .3046311 1.6971
_cons .0018142 .0009191 -12.46 0.000 .0006722 .0048968

ln(TAR) 1 (exposure)

Note: _cons estimates baseline incidence rate.

The CMLE and the MLE are numerically identical. We have strong evidence that the death rate for the

older age group is higher than the younger age group, specifically 3.4 times higher (p = 0.017). This

means that for every death in the younger group each month, we would expect about three deaths in the

older group. The IR estimate for valve type is approximately 0.72, but we do not have enough evidence

to claim that it is different from one. The exact Poisson confidence intervals are a bit wider than the

asymptotic confidence intervals.
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You can use ir (see [R] Epitab) to estimate IRs and exact confidence intervals for one covariate, and
we compare these confidence intervals with those from expoisson, where we estimate the IR by using
age only.

. ir deaths age TAR
Incidence-rate comparison

Age of patient
Exposed Unexposed Total

Number of deaths 16 5 21
Time at risk 3064 3341 6405

Incidence rate .0052219 .0014966 .0032787

Point estimate [95% conf. interval]

Inc. rate diff. .0037254 .00085 .0066007
Inc. rate ratio 3.489295 1.221441 12.17875 (exact)
Attr. frac. ex. .7134092 .1812948 .9178898 (exact)
Attr. frac. pop .5435498

Mid-p-values for tests of incidence-rate difference:
Adj Pr(Exposed Number of deaths <= 16) = 0.9951 (lower one-sided)
Adj Pr(Exposed Number of deaths >= 16) = 0.0049 (upper one-sided)

Two-sided p-value = 0.0099
. expoisson deaths age, exposure(TAR) irr midp nolog
Exact Poisson regression

Number of obs = 4

deaths IRR Suff. 2*Pr(Suff.) [95% conf. interval]

age 3.489295 16 0.0099 1.324926 10.64922
ln(TAR) 1 (exposure)

Note: Mid-p-value computed for the probabilities and CIs.

Both ir and expoisson give identical IRs and 𝑝-values. Both report the two-sided exact 𝑝-value by
using the mid-𝑝-value rule that accounts for the discreteness in the distribution by subtracting 𝑝1/2 =
Pr(𝑇 = 𝑡)/2 from 𝑝𝑙 = Pr(𝑇 ≤ 𝑡) and 𝑝𝑔 = Pr(𝑇 ≥ 𝑡), computing 2 × min(𝑝𝑙 − 𝑝1/2, 𝑝𝑔 − 𝑝1/2). By
default, expoisson will not use the mid-𝑝-value rule (when you exclude the midp option), and here the
two-sided exact 𝑝-value would be 2 × min(𝑝𝑙, 𝑝𝑔) = 0.0158. The confidence intervals differ because

expoisson uses the mid-𝑝-value rule when computing the confidence intervals, yet ir does not. You
can verify this by executing expoisson without the midp option for this example; you will get the same
confidence intervals as ir.
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You can replay expoisson to view the conditional scores test or the conditional probabilities test by

using the test() option.

. expoisson, test(score) irr
Exact Poisson regression

Number of obs = 4

deaths IRR Score Pr>=Score [95% conf. interval]

age 3.489295 6.76528 0.0113 1.324926 10.64922
ln(TAR) 1 (exposure)

Note: Mid-p-value computed for the probabilities and CIs.

All the statistics for expoisson are defined in Methods and formulas of [R] exlogistic. Apart from

enumerating the conditional distributions for the logistic and Poisson sufficient statistics, computation-

ally, the primary difference between exlogistic and expoisson is the weighting values in the likeli-
hood for the parameter sufficient statistics.

Example 3
In this example, we fabricate data that will demonstrate the difference between the CMLE and the

MUE when the CMLE is not infinite. A difference in these estimates will be more pronounced when the

probability of the coefficient sufficient statistic is skewed when plotted as a function of the regression

coefficient.

. clear

. input y x
y x

1. 0 2
2. 1 1
3. 1 0
4. 0 0
5. 0 .5
6. 1 .5
7. 2 .01
8. 3 .001
9. 4 .0001

10. end
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. expoisson y x, test(score)
Enumerating sample-space combinations:
Observation 1: Enumerations = 13
Observation 2: Enumerations = 91
Observation 3: Enumerations = 169
Observation 4: Enumerations = 169
Observation 5: Enumerations = 313
Observation 6: Enumerations = 313
Observation 7: Enumerations = 1469
Observation 8: Enumerations = 5525
Observation 9: Enumerations = 5479
Exact Poisson regression

Number of obs = 9

y Coefficient Score Pr>=Score [95% conf. interval]

x -1.534468 2.955316 0.0810 -3.761718 .0485548

. expoisson y x, test(score) mue(x) nolog
Exact Poisson regression

Number of obs = 9

y Coefficient Score Pr>=Score [95% conf. interval]

x -1.309268* 2.955316 0.0810 -3.761718 .0485548

(*) median unbiased estimates (MUE)

We observe (𝑥𝑖, 𝑦𝑖), 𝑖 = 1, . . . , 9. If we condition on𝑚 = ∑9
𝑖=1 𝑦𝑖 = 12, the conditional distribution

of 𝑇𝑥 = ∑𝑖 𝑌𝑖𝑥𝑖 has a size of 5,479 elements. For each entry in this enumeration, a realization of

𝑌𝑖 = 𝑦(𝑘)
𝑖 , 𝑘 = 1, . . . , 5,479, is generated such that ∑𝑖 𝑦(𝑘)

𝑖 = 12. One of these realizations produces

the observed 𝑡𝑥 = ∑𝑖 𝑦𝑖𝑥𝑖 ≈1.5234.
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Below is a graphical display comparing the CMLE with the MUE. We plot Pr(𝑇𝑥 = 𝑡𝑥 | 𝑀 = 12, 𝛽𝑥)
versus 𝛽𝑥, −6 ≤ 𝛽𝑥 ≤ 1, in the upper panel and the cumulative probabilities, Pr(𝑇𝑥 ≤ 𝑡𝑥 | 𝑀 = 12, 𝛽𝑥)
and Pr(𝑇𝑥 ≥ 𝑡𝑥 | 𝑀 = 12, 𝛽𝑥), in the lower panel.
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The location of the CMLE, indicated by the dashed line, is at the mode of the probability profile, and the

MUE, indicated by the dotted line, is to the right of the mode. If we solve for the 𝛽(𝑢)
𝑥 and 𝛽(𝑙)

𝑥 such that

Pr(𝑇𝑥 ≤ 𝑡𝑥 | 𝑀 = 12, 𝛽(𝑢)
𝑥 ) = 1/2 and Pr(𝑇𝑥 ≥ 𝑡𝑥 | 𝑀 = 12, 𝛽(𝑙)

𝑥 ) = 1/2, the MUE is (𝛽(𝑢)
𝑥 + 𝛽(𝑙)

𝑥 )/2.
As you can see in the lower panel, the MUE cuts through the intersection of these cumulative probability

profiles.

Technical note
The memory() option limits the amount of memory that expoisson will consume when computing

the conditional distribution of the parameter sufficient statistics. memory() is independent of the data
maximum memory setting (see set max memory in [D] memory), and it is possible for expoisson to
exceed the memory limit specified in set max memorywithout terminating. By default, a log is provided
that displays the number of enumerations (the size of the conditional distribution) after processing each

observation. Typically, you will see the number of enumerations increase, and then at some point they

will decrease as the multivariate shift algorithm (Hirji, Mehta, and Patel 1987) determines that some of

the enumerations cannot achieve the observed sufficient statistics of the conditioning variables. When

the algorithm is complete, however, it is necessary to store the conditional distribution of the parameter

sufficient statistics as a dataset. It is possible, therefore, to get a memory error when the algorithm has

completed if there is not enough memory to store the conditional distribution.
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Technical note
Computing the conditional distributions and reported statistics requires data sorting and numerical

comparisons. If there is at least one single-precision variable specified in the model, expoisson will
make comparisons with a relative precision of 2−5. Otherwise, a relative precision of 2−11 is used. Be

careful if you use recast to promote a single-precision variable to double precision (see [D] recast).

You might try listing the data in full precision (maybe %20.15g; see [D] format) to make sure that this

is really what you want. See [D] Data types for information on precision of numeric storage types.

Stored results
expoisson stores the following in e():

Scalars

e(N) number of observations

e(k groups) number of groups

e(relative weight) relative weight for the observed e(sufficient) and e(condvars)
e(sum y) sum of depvar

e(k indvars) number of independent variables

e(k condvars) number of conditioning variables

e(midp) mid-𝑝-value rule indicator
e(eps) relative difference tolerance

Macros

e(cmd) expoisson
e(cmdline) command as typed

e(title) title in estimation output

e(depvar) name of dependent variable

e(indvars) independent variables

e(condvars) conditional variables

e(groupvar) group variable

e(exposure) exposure variable

e(offset) linear offset variable

e(level) confidence level

e(wtype) weight type

e(wexp) weight expression

e(datasignature) the checksum

e(datasignaturevars) variables used in calculation of checksum

e(properties) b
e(estat cmd) program used to implement estat
e(marginsnotok) predictions disallowed by margins

Matrices

e(b) coefficient vector

e(mue indicators) indicator for elements of e(b) estimated using MUE instead of CMLE

e(se) e(b) standard errors (CMLEs only)

e(ci) matrix of e(level) confidence intervals for e(b)
e(sum y groups) sum of e(depvar) for each group
e(N g) number of observations in each group

e(sufficient) sufficient statistics for e(b)
e(p sufficient) 𝑝-value for e(sufficient)
e(scoretest) conditional scores tests for indepvars

e(p scoretest) 𝑝-values for e(scoretest)
e(probtest) conditional probabilities tests for indepvars

e(p probtest) 𝑝-value for e(probtest)
Functions

e(sample) marks estimation sample
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Methods and formulas
Let {𝑌1, 𝑌2, . . . , 𝑌𝑛} be a set of 𝑛 independent Poisson random variables. For each 𝑖 = 1, . . . , 𝑛,

we observe 𝑌𝑖 = 𝑦𝑖 ≥ 0, and associated with each observation is the covariate row vector of length

𝑝, x𝑖 = (𝑥𝑖1, . . . , 𝑥𝑖𝑝). Denote β = (𝛽1, . . . , 𝛽𝑝)𝑇 to be the column vector of regression parameters

and 𝜃 to be the constant. The sufficient statistic for 𝛽𝑗 is 𝑇𝑗 = ∑𝑛
𝑖=1 𝑌𝑖𝑥𝑖𝑗, 𝑗 = 1, . . . , 𝑝, and for 𝜃 is

𝑀 = ∑𝑛
𝑖=1 𝑌𝑖. We observe 𝑇𝑗 = 𝑡𝑗, 𝑡𝑗 = ∑𝑛

𝑖=1 𝑦𝑖𝑥𝑖𝑗, and 𝑀 = 𝑚, 𝑚 = ∑𝑛
𝑖=1 𝑦𝑖. Let 𝜅𝑖 be the

exposure for the 𝑖th observation. Then the probability of observing (𝑌1 = 𝑦1, 𝑌2 = 𝑦2, . . . , 𝑌𝑛 = 𝑦𝑛) is

Pr(𝑌1 = 𝑦1, . . . , 𝑌𝑛 = 𝑦𝑛 | β,X,κ) = exp(𝑚𝜃 + tβ)
exp{∑𝑛

𝑖=1 𝜅𝑖 exp(𝜃 + x𝑖β)}

𝑛
∏
𝑖=1

𝜅𝑦𝑖
𝑖

𝑦𝑖!

where t = (𝑡1, . . . , 𝑡𝑝), X = (x𝑇
1 , . . . , x𝑇

𝑛)𝑇, and κ = (𝜅1, . . . , 𝜅𝑛)𝑇.

The joint distribution of the sufficient statistics (T, 𝑀) is obtained by summing over all possible

sequences 𝑌1 ≥ 0, . . . , 𝑌𝑛 ≥ 0 such that T = t and 𝑀 = 𝑚. This probability function is

Pr(𝑇1 = 𝑡1, . . . , 𝑇𝑝 = 𝑡𝑝, 𝑀 = 𝑚 | β,X,κ) = exp(𝑚𝜃 + tβ)
exp{∑𝑛

𝑖=1 𝜅𝑖 exp(𝜃 + x𝑖β)}
(∑

u

𝑛
∏
𝑖=1

𝜅𝑢𝑖
𝑖

𝑢𝑖!
)

where the sum∑
u
is over all nonnegative vectors u of length 𝑛 such that∑𝑛

𝑖=1 𝑢𝑖 = 𝑚 and∑𝑛
𝑖=1 𝑢𝑖x𝑖 =

t.

Conditional distribution
Without loss of generality, we will restrict our discussion to the conditional distribution of the suffi-

cient statistic for 𝛽1, 𝑇1. If we condition on observing𝑀 = 𝑚 and 𝑇2 = 𝑡2, . . . , 𝑇𝑝 = 𝑡𝑝, the probability

function of (𝑇1 | 𝛽1, 𝑇2 = 𝑡2, . . . , 𝑇𝑝 = 𝑡𝑝, 𝑀 = 𝑚) is

Pr(𝑇1 = 𝑡1 | 𝛽1, 𝑇2 = 𝑡2, . . . , 𝑇𝑝 = 𝑡𝑝, 𝑀 = 𝑚) =
(∑

u
∏𝑛

𝑖=1
𝜅𝑢𝑖

𝑖
𝑢𝑖! ) 𝑒𝑡1𝛽1

∑
v

(∏𝑛
𝑖=1

𝜅𝑣𝑖
𝑖

𝑣𝑖! ) 𝑒𝛽1 ∑𝑖 𝑣𝑖𝑥𝑖1
(2)

where the sum∑
u
is over all nonnegative vectors u of length 𝑛 such that∑𝑛

𝑖=1 𝑢𝑖 = 𝑚 and∑𝑛
𝑖=1 𝑢𝑖x𝑖 =

t, and the sum∑
v
is over all nonnegative vectors v of length 𝑛 such that∑𝑛

𝑖=1 𝑣𝑖 = 𝑚,∑𝑛
𝑖=1 𝑣𝑖𝑥𝑖2 = 𝑡2,

. . . , ∑𝑛
𝑖=1 𝑣𝑖𝑥𝑖𝑝 = 𝑡𝑝. The CMLE for 𝛽1 is the value that maximizes the log of (2). This optimization task

is carried out by ml (see [R] ml), using the conditional distribution of (𝑇1 | 𝑇2 = 𝑡2, . . . , 𝑇𝑝 = 𝑡𝑝, 𝑀 =
𝑚) as a dataset. This dataset consists of the feasible values and weights for 𝑇1,

{(𝑠1,
𝑛

∏
𝑖=1

𝜅𝑣𝑖
𝑖

𝑣𝑖!
) ∶

𝑛
∑
𝑖=1

𝑣𝑖 = 𝑚,
𝑛

∑
𝑖=1

𝑣𝑖𝑥𝑖1 = 𝑠1,
𝑛

∑
𝑖=1

𝑣𝑖𝑥𝑖2 = 𝑡2, . . . ,
𝑛

∑
𝑖=1

𝑣𝑖𝑥𝑖𝑝 = 𝑡𝑝}
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Computing the CMLE, MUE, confidence intervals, conditional hypothesis tests, and sufficient statistic

𝑝-values is discussed in Methods and formulas of [R] exlogistic. The only difference between the two

techniques is the use of the weights; that is, the weights for exact logistic are the combinatorial coeffi-

cients, 𝑐(t, 𝑚), in theMethods and formulas in [R] exlogistic. expoisson and exlogistic use the same
ml likelihood evaluator to compute the CMLEs as well as the same ado-programs and Mata functions to

compute the MUEs and estimate statistics.

References
Agresti, A. 2013. Categorical Data Analysis. 3rd ed. Hoboken, NJ: Wiley.

Armitage, P., G. Berry, and J. N. S. Matthews. 2002. Statistical Methods in Medical Research. 4th ed. Oxford: Blackwell.

Cox, D. R., and E. J. Snell. 1989.Analysis of Binary Data. 2nd ed. London: Chapman and Hall. https://doi.org/10.1201/

9781315137391.

Hirji, K. F., C. R. Mehta, and N. R. Patel. 1987. Computing distributions for exact logistic regression. Journal of the

American Statistical Association 82: 1110–1117. https://doi.org/10.2307/2289388.

Laird, N. M., and D. Olivier. 1981. Covariance analysis of censored survival data using log-linear analysis techniques.

Journal of the American Statistical Association 76: 231–240. https://doi.org/10.2307/2287816.

Also see
[R] expoisson postestimation — Postestimation tools for expoisson
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Postestimation commands estat Remarks and examples Also see

Postestimation commands
The following postestimation command is of special interest after expoisson:

Command Description

estat se report coefficients or IRRs and their asymptotic standard errors

The following standard postestimation commands are also available:

Command Description

estat summarize summary statistics for the estimation sample

estimates cataloging estimation results

etable table of estimation results

estat

Description for estat
estat se reports regression coefficients or incidence-rate asymptotic standard errors. The estimates

are stored in the matrix r(estimates).

Menu for estat
Statistics > Postestimation

Syntax for estat
estat se [ , irr ]

Option for estat
irr requests that the incidence-rate ratios and their asymptotic standard errors be reported. The default

is to report the coefficients and their asymptotic standard errors.

861
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Remarks and examples

Example 1
To demonstrate estat se after expoisson, we use the British physicians smoking data.

. use https://www.stata-press.com/data/r18/smokes
(Cigarette smoking and lung cancer among British physicians (45--49 years))
. expoisson cases smokes, exposure(peryrs) irr nolog
Exact Poisson regression

Number of obs = 7

cases IRR Suff. 2*Pr(Suff.) [95% conf. interval]

smokes 1.077718 797.4 0.0000 1.04552 1.111866
ln(peryrs) 1 (exposure)

. estat se, irr

cases IRR Std. err.

smokes 1.077718 .0168547

Also see
[R] expoisson — Exact Poisson regression

[U] 20 Estimation and postestimation commands



fp — Fractional polynomial regression

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Acknowledgment References Also see

Description
fp <term>: est cmd fits models with the “best”-fitting fractional polynomial substituted for <term>

wherever it appears in est cmd. fp <weight>: regress mpg <weight> foreignwould fit a regression
model of mpg on a fractional polynomial in weight and (linear) foreign.

By specifying option fp(), you may set the exact powers to be used. Otherwise, a search through all
possible fractional polynomials up to the degree set by dimension() with the powers set by powers()
is performed.

fp without arguments redisplays the previous estimation results, just as typing est cmd would. You
can type either one. fp will include a fractional polynomial comparison table.

fp generate creates fractional polynomial power variables for a given set of powers. For instance, fp
<weight>: regress mpg <weight> foreign might produce the fractional polynomial weight(−2,−1)

and store weight−2 in weight 1 and weight−1 in weight 2. Typing fp generate weight^(-2 -1)
would allow you to create the same variables in another dataset.

See [R] mfp for multivariable fractional polynomial models.

Quick start
Fit models with fractional polynomials

Find optimal second-degree fractional polynomial of x1 in regression of y on x2 and x3
fp <x1>: regress y <x1> x2 x3

Same as above, but search only powers of −1, −0.5, 1, and 2.

fp <x1>, power(-1 -.5 1 2): regress y <x1> x2 x3

Same as above, but allow search to include third-degree fractional polynomials

fp <x1>, power(-1 -.5 1 2) dimension(3): regress y <x1> x2 x3

Fit model including x1−2 and x12 without performing search

fp <x1>, fp(-2 2): regress y <x1> x2 x3

Rescale x1 to nonextreme positive values when computing fractional polynomials
fp <x1>, scale: regress y <x1> x2 x3

Same as above, and center fractional polynomial of x1 at its scaled mean
fp <x1>, center scale: regress y <x1> x2 x3

863
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Set fractional polynomial to zero for nonpositive values of x1
fp <x1>, zero: regress y <x1> x2 x3

Same as above, and include an indicator variable in the model for nonpositive values of x1
fp <x1>, catzero: regress y <x1> x2 x3

Create variables corresponding to fractional polynomial powers

Generate x1 1 and x1 2 corresponding to x1−2 and x12

fp generate x1^(-2 2)

Same as above, but generate fractional polynomial variables with automatic scaling and centering

fp generate x1^(-2 2), center scale

Note: In the above examples, regress could be replaced with any estimation command allowing the fp
prefix.

Menu
fp
Statistics > Linear models and related > Fractional polynomials > Fractional polynomial regression

fp generate
Statistics > Linear models and related > Fractional polynomials > Create fractional polynomial variables

Syntax
Estimation

fp <term> [ , est options ] : est cmd

Specify that fractional powers of varname be calculated during estimation

fp <term>(varname) [ , est options ] : est cmd

Replay estimation results

fp [ , replay options ]

Create specified fractional polynomial power variables

fp generate [ type ] [ newvar = ] varname ̂(numlist) [ if ] [ in ] [ , gen options ]

est cmd may be almost any estimation command that stores the e(ll) result. To confirm whether fp
works with a specific est cmd, see the documentation for that est cmd. est cmd may not contain

other prefix commands; see [U] 11.1.10 Prefix commands.
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Instances of <term> (with the angle brackets) that occur within est cmd are replaced in est cmd by a
varlist containing the fractional powers of the variable term. These variables will be named term 1,
term 2, . . . .

fp performs est cmd with this substitution, fitting a fractional polynomial regression in term.

est options Description

Main

powers(# # ... #) powers to be searched; default is powers(-2 -1 -.5 0 .5 1 2 3)
dimension(#) maximum degree of fractional polynomial; default is dimension(2)
fp(# # ...#) use specified fractional polynomial

Options

classic perform automatic scaling and centering and omit comparison table

replace replace existing fractional polynomial power variables named
term 1, term 2, . . .

all generate term 1, term 2, . . . in all observations; default is in
observations if esample()

scale(# a # b) use (term+a)/b; default is to use variable term as is

scale specify a and b automatically

center(# c) report centered-on-c results; default is uncentered results

center specify c to be the mean of (scaled) term

zero set term 1, term 2, . . . to zero if scaled term ≤ 0; default is to issue
an error message

catzero same as zero and include term 0 = (term ≤ 0) among
fractional polynomial power variables

Reporting

replay options specify how results are displayed

replay options Description

Reporting

nocompare do not display model-comparison test results

reporting options any options allowed by est cmd for replaying estimation results

gen options Description

Main

replace replace existing fractional polynomial power variables named
term 1, term 2, . . .

scale(# a # b) use (term+a)/b; default is to use variable term as is

scale specify a and b automatically

center(# c) report centered-on-c results; default is uncentered results

center specify c to be the mean of (scaled) term

zero set term 1, term 2, . . . to zero if scaled term ≤ 0; default is to issue
an error message

catzero same as zero and include term 0 = (term ≤ 0) among
fractional polynomial power variables

collect is allowed with fp and fp generate; see [U] 11.1.10 Prefix commands.
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Options
Options are presented under the following headings:

Options for fp
Options for fp generate

Options for fp

� � �
Main �

powers(# # ... #) specifies that a search be performed and details about the search provided.

powers() works with the dimension() option; see below. The default is powers(-2 -1 -.5 0 .5
1 2 3).

dimension(#) specifies the maximum degree of the fractional polynomial to be searched. The default

is dimension(2).

If the defaults for both powers() and dimension() are used, then the fractional polynomial could
be any of the following 44 possibilities:

term(−2)

term(−1)

⋮
term(3)

term(−2), term(−2)

term(−2), term(−1)

⋮
term(−2), term(3)

term(−1), term(−2)

⋮
term(3), term(3)

fp(# # ... #) specifies that no search be performed and that the fractional polynomial specified be used.
fp() is an alternative to powers() and dimension().

� � �
Options �

classic performs automatic scaling and centering and omits the comparison table. Specifying classic
is equivalent to specifying scale, center, and nocompare.

replace replaces existing fractional polynomial power variables named term 1, term 2, . . . .

all specifies that term 1, term 2, . . . be filled in for all observations in the dataset rather than just for
those in e(sample).

scale(# a # b) specifies that term be scaled in the way specified, namely, that (term+a)/b be calculated.

All values of the scaled term are required to be greater than zero unless you specify options zero or
catzero. Values should not be too large or too close to zero, because by default, cubic powers and
squared reciprocal powers will be considered. When scale(a b) is specified, values in the variable
term are not modified; fp merely remembers to scale the values whenever powers are calculated.



fp — Fractional polynomial regression 867

You will probably not use scale(a b) for values of a and b that you create yourself, although you
could. It is usually easier just to generate a scaled variable. For instance, if term is age, and age in
your data is required to be greater than or equal to 20, you might generate an age5 variable, for use
as term:

. generate age5 = (age-19)/5

scale(a b) is useful when you previously fit a model using automatic scaling (option scale) in one
dataset and now want to create the fractional polynomials in another. In the first dataset, fp with

scale added notes to the dataset concerning the values of a and b. You can see them by typing

. notes

You can then use fp generate, scale(a b) in the second dataset.

The default is to use term as it is used in calculating fractional powers; thus, term’s values are required

to be greater than zero unless you specify options zero or catzero. Values should not be too large,
because by default, cubic powers will be considered.

scale specifies that term be scaled to be greater than zero and not too large in calculating fractional

powers. See Scaling for more details. When scale is specified, values in the variable term are not

modified; fp merely remembers to scale the values whenever powers are calculated.

center(# c) reports results for the fractional polynomial in (scaled) term, centered on c. The default is
to perform no centering.

term(𝑝1,𝑝2,...,𝑝𝑚)-c(𝑝1,𝑝2,...,𝑝𝑚) is reported. This makes the constant coefficient (intercept) easier to

interpret. See Centering for more details.

center performs center(c), where c is the mean of (scaled) term.

zero and catzero specify how nonpositive values of term are to be handled. By default, nonpositive

values of term are not allowed, becausewewill be calculating natural logarithms and fractional powers

of term. Thus, an error message is issued.

zero sets the fractional polynomial value to zero for nonpositive values of (scaled) term.

catzero sets the fractional polynomial value to zero for nonpositive values of (scaled) term and

includes a dummy variable indicating where nonpositive values of (scaled) term appear in the

model.

� � �
Reporting �

nocompare suppresses display of the comparison tests.

reporting options are any options allowed by est cmd for replaying estimation results.
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Options for fp generate

� � �
Main �

replace replaces existing fractional polynomial power variables named term 1, term 2, . . . .

scale(# a # b) specifies that term be scaled in the way specified, namely, that (term+a)/b be calculated.

All values of the scaled term are required to be greater than zero unless you specify options zero or
catzero. Values should not be too large or too close to zero, because by default, cubic powers and
squared reciprocal powers will be considered. When scale(a b) is specified, values in the variable
term are not modified; fp merely remembers to scale the values whenever powers are calculated.

You will probably not use scale(a b) for values of a and b that you create yourself, although you
could. It is usually easier just to generate a scaled variable. For instance, if term is age, and age in
your data is required to be greater than or equal to 20, you might generate an age5 variable, for use
as term:

. generate age5 = (age-19)/5

scale(a b) is useful when you previously fit a model using automatic scaling (option scale) in one
dataset and now want to create the fractional polynomials in another. In the first dataset, fp with

scale added notes to the dataset concerning the values of a and b. You can see them by typing

. notes

You can then use fp generate, scale(a b) in the second dataset.

The default is to use term as it is used in calculating fractional powers; thus, term’s values are required

to be greater than zero unless you specify options zero or catzero. Values should not be too large,
because by default, cubic powers will be considered.

scale specifies that term be scaled to be greater than zero and not too large in calculating fractional

powers. See Scaling for more details. When scale is specified, values in the variable term are not

modified; fp merely remembers to scale the values whenever powers are calculated.

center(# c) reports results for the fractional polynomial in (scaled) term, centered on c. The default is
to perform no centering.

term(𝑝1,𝑝2,...,𝑝𝑚)-c(𝑝1,𝑝2,...,𝑝𝑚) is reported. This makes the constant coefficient (intercept) easier to

interpret. See Centering for more details.

center performs center(c), where c is the mean of (scaled) term.

zero and catzero specify how nonpositive values of term are to be handled. By default, nonpositive

values of term are not allowed, becausewewill be calculating natural logarithms and fractional powers

of term. Thus, an error message is issued.

zero sets the fractional polynomial value to zero for nonpositive values of (scaled) term.

catzero sets the fractional polynomial value to zero for nonpositive values of (scaled) term and

includes a dummy variable indicating where nonpositive values of (scaled) term appear in the

model.



fp — Fractional polynomial regression 869

Remarks and examples
Remarks are presented under the following headings:

Fractional polynomial regression
Scaling
Centering
Examples

Fractional polynomial regression
Regression models based on fractional polynomial functions of a continuous covariate are described

by Royston and Altman (1994).

Fractional polynomials increase the flexibility afforded by the family of conventional polynomial

models. Although polynomials are popular in data analysis, linear and quadratic functions are limited in

their range of curve shapes, whereas cubic and higher-order curves often produce undesirable artifacts

such as edge effects and waves.

Fractional polynomials differ from regular polynomials in that 1) they allow logarithms, 2) they allow

noninteger powers, and 3) they allow powers to be repeated.

We will write a fractional polynomial in 𝑥 as

𝑥(𝑝1,𝑝2,...,𝑝𝑚)′β

We will write 𝑥(𝑝) to mean a regular power except that 𝑥(0) is to be interpreted as meaning ln(𝑥)
rather than 𝑥(0) = 1.

Then if there are no repeated powers in (𝑝1, 𝑝2, . . . , 𝑝𝑚),

𝑥(𝑝1,𝑝2,...,𝑝𝑚)′β = 𝛽0 + 𝛽1𝑥(𝑝1) + 𝛽2𝑥(𝑝2) + · · · + 𝛽𝑚𝑥(𝑝𝑚)

Powers are allowed to repeat in fractional polynomials. Each time a power repeats, it is multiplied by

another ln(𝑥). As an extreme case, consider the fractional polynomial with all-repeated powers, say, 𝑚
of them,

𝑥(𝑝,𝑝,...,𝑝)′β = 𝛽0 + 𝛽1𝑥(𝑝) + 𝛽2𝑥(𝑝) ln(𝑥) + · · · + 𝛽𝑚𝑥(𝑝){ln(𝑥)}𝑚−1

Thus, the fractional polynomial 𝑥(0,0,2)′β would be

𝑥(0,0,2)′β = 𝛽0 + 𝛽1𝑥(0) + 𝛽2𝑥(0) ln(𝑥) + 𝛽3𝑥(2)

= 𝛽0 + 𝛽1 ln(𝑥) + 𝛽2{ln(𝑥)}2 + 𝛽3𝑥2

With this definition, we can obtain a much wider range of shapes than can be obtained with regular

polynomials. The following graphs appeared in Royston and Sauerbrei (2008, sec. 4.5). The first graph

shows the shapes of differing fractional polynomials.
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The second graph shows some of the curve shapes available with different βs for the degree-2 frac-
tional polynomial, 𝑥(−2,2).

Inmodeling a fractional polynomial, Royston and Sauerbrei (2008) recommend choosing powers from

among {−2, −1, −0.5, 0, 0.5, 1, 2, 3}. By default, fp chooses powers from this set, but other powers can

be explicitly specified in the powers() option.

fp <term>: est cmd fits models with the terms of the best-fitting fractional polynomial substituted
for <term> wherever it appears in est cmd. We will demonstrate with auto.dta, which contains repair
records and other information about a variety of vehicles in 1978.

We use fp to find the best fractional polynomial in automobile weight (lbs.) (weight) for the lin-
ear regression of miles per gallon (mpg) on weight and an indicator of whether the vehicle is foreign
(foreign).

By default, fp will fit degree-2 fractional polynomial (FP2) models and choose the fractional powers
from the set {−2, −1, −0.5, 0, 0.5, 1, 2, 3}. Because car weight is measured in pounds and will have a
cubic transformation applied to it, we shrink it to a smaller scale before estimation by dividing by 1,000.
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We modify the existing weight variable for conciseness and to facilitate the comparison of tables.
When applying a data transformation in practice, rather than modifying the existing variables, you should

create new variables that hold the transformed values.

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. replace weight = weight/1000
variable weight was int now float
(74 real changes made)
. fp <weight>: regress mpg <weight> foreign
(fitting 44 models)
(....10%....20%....30%....40%....50%....60%....70%....80%....90%....100%)
Fractional polynomial comparisons:

Test Residual Deviance
weight df Deviance std. dev. diff. P Powers

omitted 4 456.347 5.356 75.216 0.000
linear 3 388.366 3.407 7.236 0.082 1
m = 1 2 381.806 3.259 0.675 0.733 -.5
m = 2 0 381.131 3.268 0.000 -- -2 -2

Note: Test df is degrees of freedom, and P = P > F is sig. level for tests
comparing models vs. model with m = 2 based on deviance difference,
F(df, 68).
Source SS df MS Number of obs = 74

F(3, 70) = 52.95
Model 1696.05949 3 565.353163 Prob > F = 0.0000

Residual 747.399969 70 10.6771424 R-squared = 0.6941
Adj R-squared = 0.6810

Total 2443.45946 73 33.4720474 Root MSE = 3.2676

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

weight_1 15.88527 20.60329 0.77 0.443 -25.20669 56.97724
weight_2 127.9349 47.53106 2.69 0.009 33.13723 222.7326
foreign -2.222515 1.053782 -2.11 0.039 -4.324218 -.1208131
_cons 3.705981 3.367949 1.10 0.275 -3.011182 10.42314

fp begins by showing the model-comparison table. This table shows the best fractional polynomial
model of weight for each examined degree, m, which is obtained by searching through all possible power
combinations. The row labeled omitted describes the null model, which entirely omits weight from
the model. A separate row is provided for the model with a linear function of weight because it is often
the default when including a predictor in the model.

The fractional powers of the models are shown in the Powers column. An estimate of the residual
standard error is given in the Residual std. dev. column. The model deviance, which we define

as twice the negative log likelihood, is given in the Deviance column. The Deviance diff. column
reports the difference in deviance compared with the model with the lowest deviance, which is always

the model with the highest-degree fractional polynomial.

The Test df column displays the degrees of freedom used when testing a model’s fit against the

fit of the model with the lowest deviance. For normal error models such as linear regression, a partial

𝐹 test is performed, and Test df is the numerator degrees of freedom of the 𝐹 test. In other settings,

a likelihood-ratio test is performed, and Test df is the degrees of freedom of the 𝜒2 statistic. In both

cases, the 𝑝-value for the test is reported in column P.
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Under robust variance estimation and some other cases (see [R] lrtest), the likelihood-ratio test cannot

be performed. When the likelihood-ratio test cannot be performed on the model specified in est cmd,

fp still reports the model-comparison table, but the comparison tests are not performed.

fp reports the “best” model as the model with the lowest deviance; however, users may choose a more
efficient model based on the comparison table. They may choose the lowest degree model that the partial

𝐹 test (or likelihood-ratio test) fails to reject in favor of the lowest deviance model.

After the comparison table, the results of the estimation command for the lowest deviance model

are shown. Here the best model has terms weight(−2,−2). However, based on the model-comparison

table, we can reject the model without weight and the linear model at the 0.1 significance level. We

fail to reject the m = 1 model at any reasonable level. We will choose the FP1 model, which includes

weight(−.5).

We use fp again to estimate the parameters for this model. We use the fp() option to specify what
powers we want to use; this option specifies that we do not want to perform a search for the best powers.

We also specify the replace option to overwrite the previously created fractional polynomial power

variables.

. fp <weight>, fp(-.5) replace: regress mpg <weight> foreign
-> regress mpg weight_1 foreign

Source SS df MS Number of obs = 74
F(2, 71) = 79.51

Model 1689.20865 2 844.604325 Prob > F = 0.0000
Residual 754.25081 71 10.6232508 R-squared = 0.6913

Adj R-squared = 0.6826
Total 2443.45946 73 33.4720474 Root MSE = 3.2593

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

weight_1 66.89665 6.021749 11.11 0.000 54.88963 78.90368
foreign -2.095622 1.043513 -2.01 0.048 -4.176329 -.0149157
_cons -17.58651 3.397992 -5.18 0.000 -24.36192 -10.81111

Alternatively, we can use fp generate to create the fractional polynomial variable corresponding to
weight(−.5) and then use regress. We store weight(−.5) in the new variable wgt nsqrt.

. fp generate wgt_nsqrt=weight^(-.5)

. regress mpg wgt_nsqrt foreign
Source SS df MS Number of obs = 74

F(2, 71) = 79.51
Model 1689.20874 2 844.604371 Prob > F = 0.0000

Residual 754.250718 71 10.6232495 R-squared = 0.6913
Adj R-squared = 0.6826

Total 2443.45946 73 33.4720474 Root MSE = 3.2593

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

wgt_nsqrt_1 66.89665 6.021748 11.11 0.000 54.88963 78.90368
foreign -2.095622 1.043513 -2.01 0.048 -4.176328 -.0149155
_cons -17.58651 3.397991 -5.18 0.000 -24.36191 -10.81111
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Scaling
Fractional polynomials are defined only for positive term variables. By default, fp will assume that

the variable x is positive and attempt to compute fractional powers of x. If the positive value assumption

is incorrect, an error will be reported and estimation will not be performed.

If the values of the variable are too large or too small, the reported results of fp may be difficult to
interpret. By default, cubic powers and squared reciprocal powers will be considered in the search for

the best fractional polynomial in term.

We can scale the variable x to 1) make it positive and 2) ensure its magnitude is not too large or too

small.

Suppose you have data on hospital patients with age as a fractional polynomial variable of interest.
age is required to be greater than or equal to 20, so you might generate an age5 variable by typing

. generate age5 = (age-19)/5

Aunit change in age5 is equivalent to a five-year change in age, and the minimum value of age5 is 1/5
instead of 20.

In the automobile example of Fractional polynomial regression, our term variable was automobile

weight (lbs.). Cars weigh in the thousands of pounds, so cubing their weight figures results in large

numbers. We prevented this from being a problem by shrinking the weight by 1,000; that is, we typed

. replace weight = weight/1000

Calendar year is another type of variable that can have a problematically large magnitude. We can

shrink this by dividing by 10, making a unit change correspond to a decade.

. generate decade = calendar_year/10

Youmay also have a variable that measures deviation from zero. Perhaps x has already been demeaned
and is symmetrically about zero. The fractional polynomial in x will be undefined for half of its domain.
We can shift the location of x, making it positive by subtracting its minimum and adding a small number

to it. Suppose x ranges from −4 to 4; we could use

. generate newx = x+5

Rescaling ourselves provides easily communicated results. We can tell exactly how the scaling was

performed and how it should be performed in similar applications.

Alternatively, fp can scale the fractional polynomial variable so that its values are positive and the
magnitude of the values are not too large. This can be done automatically or by directly specifying the

scaling values.

Scaling can be automatically performed with fp by specifying the scale option. If term has non-

positive values, the minimum value of term is subtracted from each observation of term. In this case,

the counting interval, the minimum distance between the sorted values of term, is also added to each

observation of term.

After adjusting the location of term so that its minimum value is positive, creating term∗, automatic

scaling will divide each observation of term by a power of ten. The exponent of this scaling factor is

given by

𝑝 = log10 {max(term∗) − min(term∗)}

𝑝∗ = sign(𝑝)floor (|𝑝|)
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Rather than letting fp automatically choose the scaling of term, you may specify adjustment and

scale factors a and b by using the scale(a b) option. Fractional powers are then calculated using the
(term+a)/b values.

When scale or scale(a b) is specified, values in the variable term are not modified; fp merely

remembers to scale the values whenever powers are calculated.

In addition to fp, both scale and scale(a b) may be used with fp generate.

You will probably not use scale(a b)with fp for values of a and b that you create yourself, although
you could. As we demonstrated earlier, it is usually easier just to generate a scaled variable.

scale(a b) is useful when you previously fit a model using scale in one dataset and now want

to create the fractional polynomials in another. In the first dataset, fp with scale added notes to the
dataset concerning the values of a and b. You can see them by typing

. notes

You can then use fp generate, scale(a b) in the second dataset.

When you apply the scaling rules of a previously fit model to new data with the scale(a b) option, it
is possible that the scaled term may have nonpositive values. fpwill be unable to calculate the fractional
powers of the term in this case and will issue an error.

The options zero and catzero cause fp and fp generate to output zero values for each fractional
polynomial variable when the input (scaled) fractional polynomial variable is nonpositive. Specifying

catzero causes a dummy variable indicating nonpositive values of the (scaled) fractional polynomial
variable to be included in the model. A detailed example of the use of catzero and zero is shown in
example 3 below.

Using the scaling options, we can fit our previous model again using the auto.dta. We specify

scale(0 1000) so that fp will shrink the magnitude of weight in estimating the regression. This is

done for demonstration purposes because our scaling rule is simple. As mentioned before, in practice,

you would probably only use scale(a b) when applying the scaling rules from a previous analysis.

Allowing fp to scale does have the advantage of not altering the original variable, weight.

. use https://www.stata-press.com/data/r18/auto, clear
(1978 automobile data)
. fp <weight>, fp(-.5) scale(0 1000): regress mpg <weight> foreign
-> regress mpg weight_1 foreign

Source SS df MS Number of obs = 74
F(2, 71) = 79.51

Model 1689.20861 2 844.604307 Prob > F = 0.0000
Residual 754.250846 71 10.6232514 R-squared = 0.6913

Adj R-squared = 0.6826
Total 2443.45946 73 33.4720474 Root MSE = 3.2593

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

weight_1 66.89665 6.021749 11.11 0.000 54.88963 78.90368
foreign -2.095622 1.043513 -2.01 0.048 -4.176329 -.0149159
_cons -17.58651 3.397992 -5.18 0.000 -24.36192 -10.81111
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The scaling is clearly indicated in the variable notes for the generated variable weight 1.

. notes weight_1
weight_1:
1. fp term 1 of x^(-.5), where x is weight scaled.
2. Scaling was user specified: x = (weight+a)/b where a=0 and b=1000
3. Fractional polynomial variables created by fp <weight>, fp(-.5)

scale(0 1000): regress mpg <weight> foreign
4. To re-create the fractional polynomial variables, for instance, in

another dataset, type fp gen double weight^(-.5), scale(0 1000)

Centering
The fractional polynomial of term, centered on c is

(term(𝑝1,...,𝑝𝑚) − 𝑐(𝑝1,...,𝑝𝑚)) ′β

The intercept of a centered fractional polynomial can be interpreted as the effect at zero for all the

covariates. When we center the fractional polynomial terms using c, the intercept is now interpreted as

the effect at term = c and zero values for the other covariates.

Suppose we wanted to center the fractional polynomial of 𝑥 with powers (0, 0, 2) at 𝑥 = 𝑐.
(𝑥(0,0,2) − 𝑐(0,0,2)) ′β

= 𝛽0 + 𝛽1 (𝑥(0) − 𝑐(0)) + 𝛽2 {𝑥(0) ln(𝑥) − 𝑐(0) ln(𝑐)} + 𝛽3 (𝑥(2) − 𝑐(2))
= 𝛽0 + 𝛽1{ln(𝑥) − ln(𝑐)} + 𝛽2 [{ln(𝑥)}2 − {ln(𝑐)}2] + 𝛽3 (𝑥2 − 𝑐2)

When center is specified, fp centers based on the sample mean of (scaled) term. Apreviously chosen

value for centering, c, may also be specified in center(c). This would be done when applying the results
of a previous model fitting to a new dataset.

The center and center(c) options may be used in fp or fp generate.

Returning to the model of mileage per gallon based on automobile weight and foreign origin, we refit

the model with the fractional polynomial of weight centered at its scaled mean.
. use https://www.stata-press.com/data/r18/auto, clear
(1978 automobile data)
. fp <weight>, fp(-.5) scale(0 1000) center: regress mpg <weight> foreign
-> regress mpg weight_1 foreign

Source SS df MS Number of obs = 74
F(2, 71) = 79.51

Model 1689.20861 2 844.604307 Prob > F = 0.0000
Residual 754.250846 71 10.6232514 R-squared = 0.6913

Adj R-squared = 0.6826
Total 2443.45946 73 33.4720474 Root MSE = 3.2593

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

weight_1 66.89665 6.021749 11.11 0.000 54.88963 78.90368
foreign -2.095622 1.043513 -2.01 0.048 -4.176329 -.0149159
_cons 20.91163 .4624143 45.22 0.000 19.9896 21.83366

Note that the coefficients for weight 1 and foreign do not change. Only the intercept cons
changes. It can be interpreted as the estimated average miles per gallon of an American-made car of

average weight.
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Examples

Example 1: Linear regression
Consider the serum immunoglobulin G (IgG) dataset from Isaacs et al. (1983), which consists of 298

independent observations in young children. The dependent variable sqrtigg is the square root of the
IgG concentration, and the independent variable age is the age of each child. (Preliminary Box–Cox
analysis shows that a square root transformation removes the skewness in IgG.)

The aim is to find a model that accurately predicts the mean of sqrtigg given age. We use fp to find
the best FP2 model (the default option). We specify center for automatic centering. The age of each
child is small in magnitude and positive, so we do not use the scaling options of fp or scale ourselves.

. use https://www.stata-press.com/data/r18/igg, clear
(Immunoglobulin in children)
. fp <age>, scale center: regress sqrtigg <age>
(fitting 44 models)
(....10%....20%....30%....40%....50%....60%....70%....80%....90%....100%)
Fractional polynomial comparisons:

Test Residual Deviance
age df Deviance std. dev. diff. P Powers

omitted 4 427.539 0.497 108.090 0.000
linear 3 337.561 0.428 18.113 0.000 1
m = 1 2 327.436 0.421 7.987 0.020 0
m = 2 0 319.448 0.416 0.000 -- -2 2

Note: Test df is degrees of freedom, and P = P > F is sig. level for tests
comparing models vs. model with m = 2 based on deviance difference,
F(df, 293).
Source SS df MS Number of obs = 298

F(2, 295) = 64.49
Model 22.2846976 2 11.1423488 Prob > F = 0.0000

Residual 50.9676492 295 .172771692 R-squared = 0.3042
Adj R-squared = 0.2995

Total 73.2523469 297 .246640898 Root MSE = .41566

sqrtigg Coefficient Std. err. t P>|t| [95% conf. interval]

age_1 -.1562156 .027416 -5.70 0.000 -.2101713 -.10226
age_2 .0148405 .0027767 5.34 0.000 .0093757 .0203052
_cons 2.283145 .0305739 74.68 0.000 2.222974 2.343315

The new variables created by fp contain the best-fitting fractional polynomial powers of age, as
centered by fp. For example, age 1 is centered by subtracting the mean of age raised to the power −2.

The variables created by fp and fp generate are centered or scaled as specified by the user, which is
reflected in the estimated regression coefficients and intercept. Centering does have its advantages (see

Centering earlier in this entry). By default, fp will not perform scaling or centering. For a more detailed

discussion, see Royston and Sauerbrei (2008, sec. 4.11).
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The fitted curve has an asymmetric S shape. The best model has powers (−2, 2) and deviance 319.448.
We reject lesser degree models: the null, linear, and natural log power models at the 0.05 level. As many

as 44 models have been fit in the search for the best powers. Now let’s look at models of degree ≤ 4. The

highest allowed degree is specified in dimension(). We overwrite the previously generated fractional

polynomial power variables by including replace.

. fp <age>, dimension(4) center replace: regress sqrtigg <age>
(fitting 494 models)
(....10%....20%....30%....40%....50%....60%....70%....80%....90%....100%)
Fractional polynomial comparisons:

Test Residual Deviance
age df Deviance std. dev. diff. P Powers

omitted 8 427.539 0.497 109.795 0.000
linear 7 337.561 0.428 19.818 0.007 1
m = 1 6 327.436 0.421 9.692 0.149 0
m = 2 4 319.448 0.416 1.705 0.798 -2 2
m = 3 2 319.275 0.416 1.532 0.476 -2 1 1
m = 4 0 317.744 0.416 0.000 -- 0 3 3 3

Note: Test df is degrees of freedom, and P = P > F is sig. level for tests
comparing models vs. model with m = 4 based on deviance difference,
F(df, 289).
Source SS df MS Number of obs = 298

F(4, 293) = 32.63
Model 22.5754541 4 5.64386353 Prob > F = 0.0000

Residual 50.6768927 293 .172958678 R-squared = 0.3082
Adj R-squared = 0.2987

Total 73.2523469 297 .246640898 Root MSE = .41588

sqrtigg Coefficient Std. err. t P>|t| [95% conf. interval]

age_1 .8761824 .1898721 4.61 0.000 .5024962 1.249869
age_2 -.1922029 .0684934 -2.81 0.005 -.3270044 -.0574015
age_3 .2043794 .074947 2.73 0.007 .0568767 .3518821
age_4 -.0560067 .0212969 -2.63 0.009 -.097921 -.0140924
_cons 2.238735 .0482705 46.38 0.000 2.143734 2.333736

It appears that the FP4 model is not significantly different from the other fractional polynomial models

(at the 0.05 level).
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Let’s compare the curve shape from the 𝑚 = 2 model with that from a conventional quartic polyno-

mial whose fit turns out to be significantly better than a cubic (not shown). We use the ability of fp both
to generate the required powers of age, namely, (1, 2, 3, 4) for the quartic and (−2, 2) for the second-
degree fractional polynomial, and to fit the model. The fp() option is used to specify the powers. We

use predict to obtain the fitted values of each regression. We fit both models with fp and graph the
resulting curves with twoway scatter.

. fp <age>, center fp(1 2 3 4) replace: regress sqrtigg <age>
-> regress sqrtigg age_1 age_2 age_3 age_4

Source SS df MS Number of obs = 298
F(4, 293) = 32.65

Model 22.5835458 4 5.64588646 Prob > F = 0.0000
Residual 50.668801 293 .172931061 R-squared = 0.3083

Adj R-squared = 0.2989
Total 73.2523469 297 .246640898 Root MSE = .41585

sqrtigg Coefficient Std. err. t P>|t| [95% conf. interval]

age_1 2.047831 .4595962 4.46 0.000 1.143302 2.952359
age_2 -1.058902 .2822803 -3.75 0.000 -1.614456 -.5033479
age_3 .2284917 .0667591 3.42 0.001 .0971037 .3598798
age_4 -.0168534 .0053321 -3.16 0.002 -.0273475 -.0063594
_cons 2.240012 .0480157 46.65 0.000 2.145512 2.334511

. predict fit1
(option xb assumed; fitted values)
. label variable fit1 ”Quartic”
. fp <age>, center fp(-2 2) replace: regress sqrtigg <age>
-> regress sqrtigg age_1 age_2

Source SS df MS Number of obs = 298
F(2, 295) = 64.49

Model 22.2846976 2 11.1423488 Prob > F = 0.0000
Residual 50.9676492 295 .172771692 R-squared = 0.3042

Adj R-squared = 0.2995
Total 73.2523469 297 .246640898 Root MSE = .41566

sqrtigg Coefficient Std. err. t P>|t| [95% conf. interval]

age_1 -.1562156 .027416 -5.70 0.000 -.2101713 -.10226
age_2 .0148405 .0027767 5.34 0.000 .0093757 .0203052
_cons 2.283145 .0305739 74.68 0.000 2.222974 2.343315

. predict fit2
(option xb assumed; fitted values)
. label variable fit2 ”FP 2”
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. scatter sqrtigg fit1 fit2 age, c(. l l) m(o i i) msize(small)
> lpattern(. -_.) ytitle(”Square root of IgG”) xtitle(”Age (years)”)
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The quartic curve has an unsatisfactory wavy appearance that is implausible for the known behavior of

IgG, the serum level of which increases throughout early life. The fractional polynomial curve (FP2)

increases monotonically and is therefore biologically the more plausible curve. The two models have

approximately the same deviance.

Example 2: Cox regression
Data from Smith et al. (1992) contain times to complete healing of leg ulcers in a randomized, con-

trolled clinical trial of two treatments in 192 elderly patients. Several covariates were available, of which

an important one is mthson, the number of months since the recorded onset of the ulcer. This time is
recorded in whole months, not fractions of a month; therefore, some zero values are recorded.

Because the response variable is time to an event of interest and some (in fact, about one-half) of the

times are censored, using Cox regression to analyze the data is appropriate. We consider fractional poly-

nomials in mthson, adjusting for four other covariates: age; ulcarea, the area of tissue initially affected
by the ulcer; deepppg, a binary variable indicating the presence or absence of deep vein involvement;
and treat, a binary variable indicating treatment type.

We fit fractional polynomials of degrees 1 and 2 with fp. We specify scale to perform automatic

scaling on mthson. This makes it positive and ensures that its magnitude is not too large. (See Scaling
for more details.) The display option nohr is specified before the colon so that the coefficients and not
the hazard ratios are displayed.

The center option is specified to obtain automatic centering. age and ulcarea are also demeaned
by using summarize and then subtracting the returned result r(mean).

In Cox regression, there is no constant term, so we cannot see the effects of centering in the table of

regression estimates. The effects would be present if we were to graph the baseline hazard or survival

function because these functions are defined with all predictors set equal to 0.

In these graphs, we will see the estimated baseline hazard or survival function under no deep vein

involvement or treatment and under mean age, ulcer area, and number of months since the recorded

onset of the ulcer.
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. use https://www.stata-press.com/data/r18/legulcer2, clear
(Leg ulcer clinical trial)
. stset ttevent, fail(healed)
Survival-time data settings

Failure event: healed!=0 & healed<.
Observed time interval: (0, ttevent]

Exit on or before: failure

192 total observations
0 exclusions

192 observations remaining, representing
92 failures in single-record/single-failure data

13,825 total analysis time at risk and under observation
At risk from t = 0

Earliest observed entry t = 0
Last observed exit t = 206

. quietly sum age

. replace age = age - r(mean)
variable age was byte now float
(192 real changes made)
. quietly sum ulcarea
. replace ulcarea = ulcarea - r(mean)
variable ulcarea was int now float
(192 real changes made)
. fp <mthson>, center scale nohr: stcox <mthson> age ulcarea deepppg treat
(fitting 44 models)
(....10%....20%....30%....40%....50%....60%....70%....80%....90%....100%)
Fractional polynomial comparisons:

Test Deviance
mthson df Deviance diff. P Powers

omitted 4 754.345 17.636 0.001
linear 3 751.680 14.971 0.002 1
m = 1 2 738.969 2.260 0.323 -.5
m = 2 0 736.709 0.000 -- .5 .5

Note: Test df is degrees of freedom, and P = P > chi2 is sig. level
for tests comparing models vs. model with m = 2 based on
deviance difference, chi2.

Cox regression with Breslow method for ties
No. of subjects = 192 Number of obs = 192
No. of failures = 92
Time at risk = 13,825

LR chi2(6) = 108.59
Log likelihood = -368.35446 Prob > chi2 = 0.0000

_t Coefficient Std. err. z P>|z| [95% conf. interval]

mthson_1 -2.81425 .6996385 -4.02 0.000 -4.185516 -1.442984
mthson_2 1.541451 .4703143 3.28 0.001 .6196521 2.46325

age -.0261111 .0087983 -2.97 0.003 -.0433556 -.0088667
ulcarea -.0017491 .000359 -4.87 0.000 -.0024527 -.0010455
deepppg -.5850499 .2163173 -2.70 0.007 -1.009024 -.1610758
treat -.1624663 .2171048 -0.75 0.454 -.5879838 .2630513



fp — Fractional polynomial regression 881

The best-fitting fractional polynomial of degree 2 has powers (0.5, 0.5) and deviance 736.709. However,
this model does not fit significantly better than the fractional polynomial of degree 1 (at the 0.05 level),

which has power −0.5 and deviance 738.969. We prefer the model with 𝑚 = 1.

. fp <mthson>, replace center scale nohr fp(-.5): stcox <mthson> age ulcarea
> deepppg treat
-> stcox mthson_1 age ulcarea deepppg treat

Cox regression with Breslow method for ties
No. of subjects = 192 Number of obs = 192
No. of failures = 92
Time at risk = 13,825

LR chi2(5) = 106.33
Log likelihood = -369.48426 Prob > chi2 = 0.0000

_t Coefficient Std. err. z P>|z| [95% conf. interval]

mthson_1 .1985592 .0493922 4.02 0.000 .1017523 .2953662
age -.02691 .0087875 -3.06 0.002 -.0441331 -.0096868

ulcarea -.0017416 .0003482 -5.00 0.000 -.0024241 -.0010591
deepppg -.5740759 .2185134 -2.63 0.009 -1.002354 -.1457975
treat -.1798575 .2175726 -0.83 0.408 -.6062921 .246577

The hazard for healing is much higher for patients whose ulcer is of recent onset than for those who have

had an ulcer for many months.

A more appropriate analysis of this dataset, if one wanted to model all the predictors, possibly with

fractional polynomial functions, would be to use mfp; see [R] mfp.

Example 3: Logistic regression
The zero option permits fitting a fractional polynomial model to the positive values of a covariate,

taking nonpositive values as zero. An application is the assessment of the effect of cigarette smoking as

a risk factor. Whitehall 1 is an epidemiological study, which was examined in Royston and Sauerbrei

(2008), of 18,403 male British Civil Servants employed in London. We examine the data collected in

Whitehall 1 and use logistic regression to model the odds of death based on a fractional polynomial in

the number of cigarettes smoked.

Nonsmokers may be qualitatively different from smokers, so the effect of smoking (regarded as a

continuous variable) may not be continuous between zero cigarettes and one cigarette. To allow for this

possibility, we model the risk as a constant for the nonsmokers and as a fractional polynomial function

of the number of cigarettes for the smokers, adjusted for age.

The dependent variable all10 is an indicator of whether the individual passed away in the 10 years
under study. cigs is the number of cigarettes consumed per day. After loading the data, we demean age
and create a dummy variable, nonsmoker. We then use fp to fit the model.

. use https://www.stata-press.com/data/r18/smoking, clear
(Smoking and mortality data)
. quietly sum age
. replace age = age - r(mean)
variable age was byte now float
(17,260 real changes made)
. generate byte nonsmoker = cond(cigs==0, 1, 0) if cigs < .
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. fp <cigs>, zero: logit all10 <cigs> nonsmoker age
(fitting 44 models)
(....10%....20%....30%....40%....50%....60%....70%....80%....90%....100%)
Fractional polynomial comparisons:

Test Deviance
cigs df Deviance diff. P Powers

omitted 4 9990.804 46.096 0.000
linear 3 9958.801 14.093 0.003 1
m = 1 2 9946.603 1.895 0.388 0
m = 2 0 9944.708 0.000 -- -1 -1

Note: Test df is degrees of freedom, and P = P > chi2 is sig. level
for tests comparing models vs. model with m = 2 based on
deviance difference, chi2.

Logistic regression Number of obs = 17,260
LR chi2(4) = 1029.03
Prob > chi2 = 0.0000

Log likelihood = -4972.3539 Pseudo R2 = 0.0938

all10 Coefficient Std. err. z P>|z| [95% conf. interval]

cigs_1 -1.285867 .3358483 -3.83 0.000 -1.944117 -.6276162
cigs_2 -1.982424 .572109 -3.47 0.001 -3.103736 -.8611106

nonsmoker -1.223749 .1119583 -10.93 0.000 -1.443183 -1.004315
age .1194541 .0045818 26.07 0.000 .1104739 .1284343

_cons -1.591489 .1052078 -15.13 0.000 -1.797693 -1.385286

Omission of the zero option would cause fp to halt with an error message because nonpositive co-
variate values (for example, values of cigs) are invalid unless the scale option is specified.

A closely related approach involves the catzero option. Here we no longer need to have nonsmoker
in the model, because fp creates its own dummy variable cigs 0 to indicate whether the individual does
not smoke on that day.
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. fp <cigs>, catzero replace: logit all10 <cigs> age
(fitting 44 models)
(....10%....20%....30%....40%....50%....60%....70%....80%....90%....100%)
Fractional polynomial comparisons:

Test Deviance
cigs df Deviance diff. P Powers

omitted 5 10175.75 231.047 0.000
linear 3 9958.80 14.093 0.003 1
m = 1 2 9946.60 1.895 0.388 0
m = 2 0 9944.71 0.000 -- -1 -1

Note: Test df is degrees of freedom, and P = P > chi2 is sig. level
for tests comparing models vs. model with m = 2 based on
deviance difference, chi2.

Logistic regression Number of obs = 17,260
LR chi2(4) = 1029.03
Prob > chi2 = 0.0000

Log likelihood = -4972.3539 Pseudo R2 = 0.0938

all10 Coefficient Std. err. z P>|z| [95% conf. interval]

cigs_0 -1.223749 .1119583 -10.93 0.000 -1.443183 -1.004315
cigs_1 -1.285867 .3358483 -3.83 0.000 -1.944117 -.6276162
cigs_2 -1.982424 .572109 -3.47 0.001 -3.103736 -.8611106

age .1194541 .0045818 26.07 0.000 .1104739 .1284343
_cons -1.591489 .1052078 -15.13 0.000 -1.797693 -1.385286

Under both approaches, the comparison table suggests that we can accept the FP1 model instead of

the FP2 model. We estimate the parameters of the accepted model—that is, the one that uses the natural

logarithm of cigs—with fp.

. fp <cigs>, catzero replace fp(0): logit all10 <cigs> age
-> logit all10 cigs_0 cigs_1 age

Logistic regression Number of obs = 17,260
LR chi2(3) = 1027.13
Prob > chi2 = 0.0000

Log likelihood = -4973.3016 Pseudo R2 = 0.0936

all10 Coefficient Std. err. z P>|z| [95% conf. interval]

cigs_0 .1883732 .1553093 1.21 0.225 -.1160274 .4927738
cigs_1 .3469842 .0543552 6.38 0.000 .2404499 .4535185

age .1194976 .0045818 26.08 0.000 .1105174 .1284778
_cons -3.003767 .1514909 -19.83 0.000 -3.300683 -2.70685

The high 𝑝-value for cigs 0 in the output indicates that we cannot reject that there is no extra effect
at zero for nonsmokers.
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Stored results
In addition to the results that est cmd stores, fp stores the following in e():
Scalars

e(fp dimension) degree of fractional polynomial

e(fp center mean) value used for centering or .
e(fp scale a) value used for scaling or .
e(fp scale b) value used for scaling or .
e(fp compare df2) denominator degree of freedom in 𝐹 test

Macros

e(fp cmd) fp, search(): or fp, powers():
e(fp cmdline) full fp command as typed
e(fp variable) fractional polynomial variable

e(fp terms) generated fp variables
e(fp gen cmdline) fp generate command to re-create e(fp terms) variables
e(fp catzero) catzero, if specified
e(fp zero) zero, if specified
e(fp compare type) F or chi2

Matrices

e(fp fp) powers used in fractional polynomial

e(fp compare) results of model comparisons

e(fp compare stat) 𝐹 test statistics

e(fp compare df1) chi2 degrees of freedom or numerator degrees of freedom of 𝐹 test

e(fp compare fp) powers of comparison models

e(fp compare length) encoded string for display of row titles

e(fp powers) powers that are searched

fp generate stores the following in r():
Scalars

r(fp center mean) value used for centering or .
r(fp scale a) value used for scaling or .
r(fp scale b) value used for scaling or .

Macros

r(fp cmdline) full fp generate command as typed
r(fp variable) fractional polynomial variable

r(fp terms) generated fp variables
r(fp catzero) catzero, if specified
r(fp zero) zero, if specified

Matrices

r(fp fp) powers used in fractional polynomial

Methods and formulas
The general definition of a fractional polynomial, accommodating possible repeated powers, may be

written for functions 𝐻1(𝑥), . . . , 𝐻𝑚(𝑥) of 𝑥 > 0 as

𝛽0 +
𝑚

∑
𝑗=1

𝛽𝑗𝐻𝑗(𝑥)

where 𝐻1(𝑥) = 𝑥(𝑝1) and for 𝑗 = 2, . . . , 𝑚,

𝐻𝑗(𝑥) = {𝑥(𝑝𝑗) if 𝑝𝑗 ≠ 𝑝𝑗−1
𝐻𝑗−1(𝑥) ln(𝑥) if 𝑝𝑗 = 𝑝𝑗−1
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For example, a fractional polynomial of degree 3 with powers (1, 3, 3) has 𝐻1(𝑥) = 𝑥, 𝐻2(𝑥) = 𝑥3,

and 𝐻3(𝑥) = 𝑥3 ln(𝑥) and equals 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥3 + 𝛽3𝑥3 ln(𝑥).
We can express a fractional polynomial in vector notation by using H(𝑥) = [𝐻1(𝑥), . . . , 𝐻𝑑(𝑥)]′.

We define 𝑥(𝑝1,𝑝2,...,𝑝𝑚) = [H(𝑥)′, 1]′. Under this notation, we can write

𝑥(1,3,3)′β = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥3 + 𝛽3𝑥3 ln(𝑥)

The fractional polynomial may be centered so that the intercept can be more easily interpreted.

When centering the fractional polynomial of 𝑥 at 𝑐, we subtract 𝑐(𝑝1,𝑝2,...,𝑝𝑚) from 𝑥(𝑝1,𝑝2,...,𝑝𝑚), where

𝑐(𝑝1,𝑝2,...,𝑝𝑑) = [H(𝑥)′, 0]′. The centered fractional polynomial is

(𝑥(𝑝1,...,𝑝𝑑) − 𝑐(𝑝1,...,𝑝𝑑)) ′β

The definition may be extended to allow 𝑥 ≤ 0 values. For these values, the fractional polynomial is

equal to the intercept 𝛽0 or equal to a zero-offset term 𝛼0 plus the intercept 𝛽0.

The deviance 𝐷 of a model is defined as −2 times its maximized log likelihood. For normal error

models, we use the formula

𝐷 = 𝑛(1 − 𝑙 + ln
2𝜋RSS

𝑛
)

where 𝑛 is the sample size, 𝑙 is the mean of the lognormalized weights (𝑙 = 0 if the weights are all equal),

and RSS is the residual sum of squares as fit by regress.

When fp is used to search for the best combination of powers, it reports a table comparing fractional
polynomial models of degree 𝑘 < 𝑚 with the degree 𝑚 fractional polynomial model, which will have

the lowest deviance. The comparison table also includes the linear model, in which <term> is not raised
to a power, and the null model, in which <term> is omitted.

The Test df column of the model comparison table does not correspond to the model degrees of

freedom for the individual models but rather to the degrees of freedom of a test comparing that model

with the model with the lowest deviance. For normal error models, this is the numerator degrees of

freedom of a partial 𝐹 test; for other models, it is the degrees of freedom of the likelihood-ratio 𝜒2 test.

When calculating the test degrees of freedom, the command accounts for the two types of parameters that

are being estimated by fp: coefficients (𝛽𝑗) and powers. Because the powers in a fractional polynomial

are chosen from a finite set rather than from the entire real line, the degrees of freedom defined in this

way are approximate and generally yield somewhat conservative tests (Royston and Altman 1994).

The 𝑝-values reported by fp are calculated differently for normal error models than for other models.
Let 𝐷𝑘 and 𝐷𝑚 be the deviances of the models with degrees 𝑘 and 𝑚, respectively. For normal error

models, a variance ratio 𝐹 is calculated as

𝐹 = 𝑑2
𝑑1

{ exp(𝐷𝑘 − 𝐷𝑚
𝑛

) − 1}

where 𝑑1 is the numerator df, the number of additional parameters estimated by the degree 𝑚 model

over the degree 𝑘 model. 𝑑2 is the denominator degrees of freedom and equals the residual degrees of

freedom of the degree 𝑚 model minus the number of powers estimated, 𝑚. The 𝑝-value is obtained by
referring 𝐹 to an 𝐹 distribution on (𝑑1, 𝑑2) df.

For nonnormal models, the 𝑝-value is obtained by referring 𝐷𝑘 − 𝐷𝑚 to a 𝜒2 distribution on 𝑑1
degrees of freedom, with 𝑑1 defined as above.
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Postestimation commands predict margins fp plot and fp predict
Remarks and examples Methods and formulas Acknowledgment Reference
Also see

Postestimation commands
The following postestimation commands are of special interest after fp:

Command Description

fp plot component-plus-residual plot from most recently fit fractional polynomial model

fp predict create variable containing prediction or SEs of fractional polynomials

The following standard postestimation commands are also available if available after est cmd:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters

estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian infor-
mation criteria (AIC, CAIC, AICc, and BIC, respectively)

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estimates cataloging estimation results

etable table of estimation results

forecast dynamic forecasts and simulations

hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

linktest link test for model specification

lrtest likelihood-ratio test

margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

predict predictions, residuals, influence statistics, and other diagnostic measures

predictnl point estimates, standard errors, testing, and inference for generalized predictions

pwcompare pairwise comparisons of parameters

suest seemingly unrelated estimation

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

887
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predict
The behavior of predict following fp is determined by est cmd. See the corresponding est cmd

postestimation entry for available predict options.

Also see information on fp predict below.

margins
The behavior of margins following fp is determined by est cmd. See the corresponding est cmd

postestimation entry for available margins options.

fp plot and fp predict

Description for fp plot and fp predict
fp plot produces a component-plus-residual plot. The fractional polynomial comprises the compo-

nent, and the residual is specified by the user in residuals(). The component-plus-residuals are plotted
against the fractional polynomial variable. If you only want to plot the component fit, without residuals,

you would specify residuals(none).

fp predict generates the fractional polynomial or the standard error of the fractional polynomial.
The fractional polynomial prediction is equivalent to the fitted values prediction given by predict, xb,
with the covariates other than the fractional polynomial variable set to zero. The standard error may be

quite large if the range of the other covariates is far from zero. In this situation, the covariates would be

centered and their range would include, or come close to including, zero.

These postestimation commands can be used only when the fractional polynomial variables do not

interact with other variables in the specification of est cmd. See [U] 11.4.3 Factor variables for more

information about interactions.

Menu for fp plot and fp predict
fp plot
Statistics > Linear models and related > Fractional polynomials > Component-plus-residual plot

fp predict
Statistics > Linear models and related > Fractional polynomials > Fractional polynomial prediction

Syntax for fp plot and fp predict

Component-plus-residual plot for most recently fit fractional polynomial model

fp plot [ if ] [ in ], residuals(res option) [ graph options ]

Create variable containing the prediction or SEs of fractional polynomials

fp predict [ type ] newvar [ if ] [ in ] [ , predict options ]
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graph options Description

Main
∗ residuals(res option) residual option name to use in predict after est cmd, or

residuals(none) if residuals are not to be graphed
equation(eqno) specify equation

level(#) set confidence level; default is level(95)

Plot

plotopts(scatter options) affect rendition of the component-plus-residual scatter points

Fitted line

lineopts(cline options) affect rendition of the fitted line

CI plot

ciopts(area options) affect rendition of the confidence bands

Add plots

addplot(plot) add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

∗residuals(res option) is required.

predict options Description

Main

fp calculate the fractional polynomial; the default

stdp calculate the standard error of the fractional polynomial

equation(eqno) specify equation

Options for fp plot

� � �
Main �

residuals(res option) specifies what type of residuals to plot in the component-plus-residual plot.

res option is the same option that would be specified to predict after est cmd. Residuals can be
omitted from the plot by specifying residuals(none). residuals() is required.

equation(eqno) is relevant only when you have previously fit a multiple-equation model in est cmd.
It specifies the equation to which you are referring.

equation(#1) would mean that the calculation is to be made for the first equation, equation(#2)
would mean the second, and so on. You could also refer to the equations by their names:

equation(income)would refer to the equation named income, and equation(hours)would refer
to the equation named hours.

If you do not specify equation(), the results are the same as if you specified equation(#1).

level(#); see [R] Estimation options.
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� � �
Plot �

plotopts(scatter options) affects the rendition of the component-plus-residual scatter points; see

[G-2] graph twoway scatter.

� � �
Fitted line �

lineopts(cline options) affects the rendition of the fitted line; see [G-3] cline options.

� � �
CI plot �

ciopts(area options) affects the rendition of the confidence bands; see [G-3] area options.

� � �
Add plots �

addplot(plot) provides a way to add other plots to the generated graph. See [G-3] addplot option.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see

[G-3] saving option).

Options for fp predict

� � �
Main �

fp calculates the fractional polynomial, the linear prediction with other variables set to zero. This is the
default.

stdp calculates the standard error of the fractional polynomial.

equation(eqno) is relevant only when you have previously fit a multiple-equation model in est cmd.
It specifies the equation to which you are referring.

equation(#1) would mean that the calculation is to be made for the first equation, equation(#2)
would mean the second, and so on. You could also refer to the equations by their names:

equation(income)would refer to the equation named income, and equation(hours)would refer
to the equation named hours.

If you do not specify equation(), the results are the same as if you specified equation(#1).

Remarks and examples
After a model is fit using fp, the estimated fractional polynomial may be of interest. This is the linear

combination of the fractional polynomial terms and the constant intercept using the model coefficients

estimated by fp. It is equivalent to the fitted values prediction given by predict,xb, with the covariates
and the fractional polynomial variable set to zero. When these other covariates have been centered, the

prediction is made at the centering values of the covariates.

A component-plus-residual plot is generated by fp plot. The fractional polynomial comprises the
component, and the residual is specified by the user in residuals(). The residuals() option takes the
same argument that would be supplied to predict after est cmd to obtain the desired type of residuals.
If you only want to plot the component fit, without residuals, you would specify residuals(none).
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fp predict generates the fractional polynomial. If the stdp option is specified, the standard error
of the fractional polynomial is generated instead. This standard error may be quite large if the range of

the other covariates is far from zero. In this situation, the covariates would be centered and their range

would include, or come close to including, zero.

These postestimation commands can be used only when the fractional polynomial terms do not in-

teract with other variables in the specification of est cmd. See [U] 11.4.3 Factor variables for more

information about interactions.

Examples

Example 1: fp plot after linear regression
In example 1 of [R] fp, we modeled the mean of the square root of a child’s serum immunoglobulin

G (IgG) level as a fractional polynomial function of the child’s age. An FP2 model with powers (−2, 2)
is chosen.

We load the data and then fit the model with fp. Then, we use fp plot to draw the component-plus-

residual plot. A95% confidence interval is produced for the fractional polynomial in age (the component).

The residuals prediction option for regress is specified in the residuals() option in fp plot so
that the residuals are rendered.

. use https://www.stata-press.com/data/r18/igg
(Immunoglobulin in children)
. fp <age>, scale center: regress sqrtigg <age>
(output omitted )

. fp plot, residuals(residuals)
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Example 2: fp plot after Cox regression
In example 2 of [R] fp, we modeled the time to complete healing of leg ulcers for 192 elderly patients

using a Cox regression. A one-degree fractional polynomial in mthson, the number of months since
the onset of the ulcer, is used as a predictor in the regression. The power −0.5 is used for mthson.
Other covariates are age (age), ulcer area (ulcarea), treatment type, and a binary indicator of deep vein
involvement (deepppg).

We load the data and then demean ulcer area and age. Then, we fit the model with fp and draw the

component-plus-residual plot with fp plot. mgale is specified in the residuals() option to obtain

martingale residuals. See [ST] stcox postestimation for more details.

. use https://www.stata-press.com/data/r18/legulcer2, clear
(Leg ulcer clinical trial)
. quietly stset ttevent, failure(healed)
. quietly summarize age
. replace age = age - r(mean)
variable age was byte now float
(192 real changes made)
. quietly summarize ulcarea
. replace ulcarea = ulcarea - r(mean)
variable ulcarea was int now float
(192 real changes made)
. fp <mthson>, replace center scale nohr fp(-.5): stcox <mthson> age ulcarea
> deepppg treat
(output omitted )

. fp plot, residuals(mgale)
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Example 3: fp plot and fp predict after logistic regression
In example 3 of [R] fp, we used logistic regression to model the odds of death for male civil servants in

Britain conditional on cigarette consumption. The dependent variable all10 is an indicator of whether
the individual passed away in the 10 years under study.
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Nonsmokers may be qualitatively different from smokers, so the effect of smoking (regarded as a

continuous variable) may not be continuous between zero cigarettes and one cigarette. To allow for this

possibility, we model the risk as constant intercept for the nonsmokers and as a fractional polynomial

function of the number of cigarettes for the smokers, cigs, adjusted for age. An FP1 model with power

0 is chosen.

We load the data and demean age. Then, we fit the model using fp and graph the fit of the

model and 95% confidence interval using fp plot. Only the component fit is graphed by specifying
residuals(none).

. use https://www.stata-press.com/data/r18/smoking, clear
(Smoking and mortality data)
. quietly summarize age
. replace age = age - r(mean)
variable age was byte now float
(17,260 real changes made)
. fp <cigs>, catzero replace fp(0): logit all10 <cigs> age
-> logit all10 cigs_0 cigs_1 age

Logistic regression Number of obs = 17,260
LR chi2(3) = 1027.13
Prob > chi2 = 0.0000

Log likelihood = -4973.3016 Pseudo R2 = 0.0936

all10 Coefficient Std. err. z P>|z| [95% conf. interval]

cigs_0 .1883732 .1553093 1.21 0.225 -.1160274 .4927738
cigs_1 .3469842 .0543552 6.38 0.000 .2404499 .4535185

age .1194976 .0045818 26.08 0.000 .1105174 .1284778
_cons -3.003767 .1514909 -19.83 0.000 -3.300683 -2.70685

. fp plot, residuals(none)
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We see a small spike at zero for cigs because of the effect of cigs 0 on the fractional polynomial;
however, the high 𝑝-value for cigs 0 in the model output indicates that we cannot reject that there is no
extra effect at zero for nonsmokers.
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We can also use fp predict to predict the fractional polynomial for nonsmokers and the mean of

age. This is the value at the spike. We store the result in fp0. We see it is equivalent to the sum of the

constant intercept estimate and the estimate of the cigs 0 coefficient.

. fp predict fp0 if cigs == 0
(7,157 missing values generated)
. summarize fp0

Variable Obs Mean Std. dev. Min Max

fp0 10,103 -2.815393 0 -2.815393 -2.815393
. display _b[cigs_0]+_b[_cons]
-2.8153935

Methods and formulas
Let the data consist of triplets (𝑦𝑖, 𝑥𝑖, z𝑖), 𝑖 = 1, . . . , 𝑛, where z𝑖 is the vector of covariates for the 𝑖th

observation and 𝑥𝑖 is the fractional polynomial variable.

fp predict calculates the fractional polynomial at the centering value 𝑥0, ̂𝜂𝑖 = (𝑥𝑖
(𝑝1,...,𝑝𝑑) −

𝑥0
(𝑝1,...,𝑝𝑚))′β̂. This is equivalent to the linear predictor of the model at z𝑖 = 0. The standard er-

ror is calculated from the variance–covariance matrix of β̂, ignoring estimation of the powers. When

𝑥𝑖 ≤ 0, H(𝑥𝑖), and thus 𝑥𝑖
(𝑝1,...,𝑝𝑚), is either undefined or zero. A zero offset term, 𝛼0, may be added

to ̂𝜂𝑖 for these nonpositive 𝑥𝑖 values.

The values ̂𝜂𝑖 represent the behavior of the fractional polynomial model for 𝑥 at fixed values z = 0 of

the (centered) covariates. The 𝑖th component-plus-residual is defined as ̂𝜂𝑖 + 𝑑𝑖, where 𝑑𝑖 is the residual

for the 𝑖th observation. The definition of 𝑑𝑖 will change according to the type of model used and the

preference of the user. fp plot plots ̂𝜂𝑖 + 𝑑𝑖 versus 𝑥𝑖, overlaying ̂𝜂𝑖 and its confidence interval.
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fracreg — Fractional response regression

Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas References Also see

Description
fracreg fits a fractional response model for a dependent variable that is greater than or equal to 0

and less than or equal to 1. It uses a probit, logit, or heteroskedastic probit model for the conditional

mean. These models are often used for outcomes such as rates, proportions, and fractional data.

Quick start
Fractional probit model for y with values between 0 and 1 on continuous variable x1

fracreg probit y x1

Same as above, but use logit distribution

fracreg logit y x1

Fractional probit model for y on x1 and use x2 to model the variance of y
fracreg probit y x1, het(x2)

Menu
Statistics > Fractional outcomes > Fractional regression
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Syntax
Syntax for fractional probit regression

fracreg probit depvar [ indepvars ] [ if ] [ in ] [weight ] [ , options ]

Syntax for fractional logistic regression

fracreg logit depvar [ indepvars ] [ if ] [ in ] [weight ] [ , options ]

Syntax for fractional heteroskedastic probit regression

fracreg probit depvar [ indepvars ] [ if ] [ in ] [weight ],

het(varlist[ , offset(varname𝑜) ]) [ options ]

options Description

Model

noconstant suppress constant term

offset(varname) include varname in model with coefficient constrained to 1

constraints(constraints) apply specified linear constraints
∗ het(varlist[ , offset(varname𝑜) ] independent variables to model the variance and optional

offset variable with fracreg probit

SE/Robust

vce(vcetype) vcetype may be robust, cluster clustvar, bootstrap, or
jackknife

Reporting

level(#) set confidence level; default is level(95)
or report odds ratios; only valid with fracreg logit
nocnsreport do not display constraints

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

nocoef do not display the coefficient table; seldom used

collinear keep collinear variables

coeflegend display legend instead of statistics
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∗het() may be used only with fracreg probit to compute fractional heteroskedastic probit regression.
indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.

bayes, bootstrap, by, collect, fp, jackknife, mi estimate, rolling, statsby, and svy are allowed; see
[U] 11.1.10 Prefix commands. For more details, see [BAYES] bayes: fracreg.

vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix; see [MI] mi estimate.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
vce(), nocoef, and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
nocoef, collinear, and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

noconstant, offset(varname), constraints(constraints); see [R] Estimation options.

het(varlist[ , offset(varname𝑜) ]) specifies the independent variables and, optionally, the offset vari-
able in the variance function. het() may only be used with fracreg probit to compute fractional
heteroskedastic probit regression.

offset(varname𝑜) specifies that selection offset varname𝑜 be included in the model with the coef-

ficient constrained to be 1.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are robust to some
kinds of misspecification (robust), that allow for intragroup correlation (cluster clustvar), and that
use bootstrap or jackknife methods (bootstrap, jackknife); see [R] vce option.

� � �
Reporting �

level(#); see [R] Estimation options.

or reports the estimated coefficients transformed to odds ratios, that is, 𝑒𝑏 rather than 𝑏. Standard errors
and confidence intervals are similarly transformed. This option affects how results are displayed, not

how they are estimated. or may be specified at estimation or when replaying previously estimated
results. This option may only be used with fracreg logit.

nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. These options are

seldom used.
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The following options are available with fracreg but are not shown in the dialog box:

nocoef specifies that the coefficient table not be displayed. This option is sometimes used by program-
mers but is of no use interactively.

collinear, coeflegend; see [R] Estimation options.

Remarks and examples
Fractional response data may occur when the outcome of interest is measured as a fraction, for ex-

ample, a patient’s oxygen saturation or Gini coefficient values. These data are also often observed when

proportions are generated from aggregated binary outcomes. For example, rather than having data on

whether individual students passed an exam, we might simply have data on the proportion of students in

each school that passed.

These models are appropriate when you have a dependent variable that takes values between 0 and 1

and may also be equal to 0 or 1, denoted for conciseness with the notation [0, 1]. If the dependent vari-
able takes only values between 0 and 1, betareg might be a valid alternative. betareg provides more
flexibility in the distribution of the mean of the dependent variable but is misspecified if the dependent

variable is equal to 0 or 1. See [R] betareg for more information.

Thesemodels have been applied to various topics. For example, Papke andWooldridge (1996) studied

the participation rates of employees in firms’ 401(k) retirement plans. Papke and Wooldridge (2008)

also evaluated an education policy by studying the pass rates for an exam administered to fourth grade

Michigan students over time.

Themodels fit by fracreg are quasilikelihood estimators like the generalized linear models described
in [R] glm. Fractional regression is a model of the mean of the dependent variable 𝑦 conditional on

covariates x, which we denote by 𝜇x. Because 𝑦 is in [0, 1], we must ensure that 𝜇x is also in [0, 1]. We

do this by using a probit, logit, or heteroskedastic probit model for 𝜇x.

The key insight from quasilikelihood estimation is that you do not need to know the true distribution

of the entire model to obtain consistent parameter estimates. In fact, the only information that you need

is the correct specification of the conditional mean.

This means that the true model does not need to be, for example, a probit. If the true model is a

probit, then fitting a probit regression via maximum likelihood gives you consistent parameter estimates

and asymptotically efficient standard errors.

By contrast, if the conditional mean of the model is the same as the conditional mean of a probit but

the model is not a probit, the point estimates are consistent, but the standard errors are not asymptotically

efficient. The standard errors are not efficient, because no assumptions about the distribution of the

unobserved components in the model are made. Thus fracreg uses robust standard errors by default.

For further discussion on quasilikelihood estimation in the context of fractional regression, please see

Papke and Wooldridge (1996) and Wooldridge (2010).
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Example 1: Fractional probit model of rates
In this example, we look at the expected participation rate in 401(k) plans for a cross-section of firms.

Participation rate (prate) is defined as the fraction of eligible employees in a firm that participate in a

401(k) plan. We use summarize to see the range of the participation rate.

. use https://www.stata-press.com/data/r18/401k
(Firm-level data on 401k participation)
. summarize prate

Variable Obs Mean Std. dev. Min Max

prate 4,075 .840607 .1874841 .0036364 1

The variable has values between 0 and 1 but also has at least 1 firm for which the participation rate is

exactly 1.

As in Papke and Wooldridge (1996), we surmise that the expected participation rate depends on the

matching rate of employee 401(k) contributions (mrate), the natural log of the total number of employees
(ltotemp), the age of the plan (age), and whether the 401(k) plan is the only retirement plan offered by
the employer (sole). We include ltotemp and age, along with their squares, using factor-variable

notation; see [U] 11.4.3 Factor variables.

If we believe that the functional form of the expected participation rate is a cumulative normal density,

we may use fracreg probit.

. fracreg probit prate mrate c.ltotemp##c.ltotemp c.age##c.age i.sole
Iteration 0: Log pseudolikelihood = -1769.6832
Iteration 1: Log pseudolikelihood = -1675.2763
Iteration 2: Log pseudolikelihood = -1674.6234
Iteration 3: Log pseudolikelihood = -1674.6232
Iteration 4: Log pseudolikelihood = -1674.6232
Fractional probit regression Number of obs = 4,075

Wald chi2(6) = 815.88
Prob > chi2 = 0.0000

Log pseudolikelihood = -1674.6232 Pseudo R2 = 0.0632

Robust
prate Coefficient std. err. z P>|z| [95% conf. interval]

mrate .5859715 .0387616 15.12 0.000 .5100002 .6619429
ltotemp -.6102767 .0615052 -9.92 0.000 -.7308246 -.4897288

c.ltotemp#
c.ltotemp .0313576 .003975 7.89 0.000 .0235667 .0391484

age .0273266 .0031926 8.56 0.000 .0210691 .033584

c.age#c.age -.0003159 .0000875 -3.61 0.000 -.0004874 -.0001443

sole
Only plan .0683196 .0272091 2.51 0.012 .0149908 .1216484

_cons 3.25991 .2323929 14.03 0.000 2.804429 3.715392



fracreg — Fractional response regression 900

Like those obtained from probit, the parameters provide the sign of the marginal effect of the co-
variates on the outcome, but the magnitude is difficult to interpret. We can use margins to estimate

conditional or population-averaged effects; see example 2. The standard errors are robust by default

because the true data-generating process need not be a probit, even though we use the probit likelihood

to obtain our parameter estimates.

Example 2: Changing the distribution of the conditional mean
Continuing with example 1, we may instead believe that the expected participation rate follows a

fractional logistic response. In this case, we should use fractional logistic regression instead of fractional

probit regression to obtain consistent estimates of the parameters of the conditional mean.

. fracreg logit prate mrate c.ltotemp##c.ltotemp c.age##c.age i.sole
Iteration 0: Log pseudolikelihood = -1983.8372
Iteration 1: Log pseudolikelihood = -1682.4496
Iteration 2: Log pseudolikelihood = -1673.6458
Iteration 3: Log pseudolikelihood = -1673.5566
Iteration 4: Log pseudolikelihood = -1673.5566
Fractional logistic regression Number of obs = 4,075

Wald chi2(6) = 817.73
Prob > chi2 = 0.0000

Log pseudolikelihood = -1673.5566 Pseudo R2 = 0.0638

Robust
prate Coefficient std. err. z P>|z| [95% conf. interval]

mrate 1.143516 .074748 15.30 0.000 .9970125 1.290019
ltotemp -1.103275 .1130667 -9.76 0.000 -1.324882 -.8816687

c.ltotemp#
c.ltotemp .0565782 .0072883 7.76 0.000 .0422934 .070863

age .0512643 .0059399 8.63 0.000 .0396223 .0629064

c.age#c.age -.0005891 .0001645 -3.58 0.000 -.0009114 -.0002667

sole
Only plan .1137479 .0507762 2.24 0.025 .0142284 .2132674

_cons 5.747761 .4294386 13.38 0.000 4.906077 6.589445

Like those obtained from logit, the parameters provide the sign of the marginal effect of the co-
variates on the outcome, but the magnitude is again difficult to interpret. As with fracreg probit in
example 1, we would use margins to obtain the marginal effects or other predictions of interest.
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Example 3: Odds ratios from a fractional logit model
When the conditional mean of our outcome is interpretable as a probability, it is possible to adopt an

odds-ratio interpretation of the results of a fractional logit model. In example 2, this is plausible because

expected participation rates can be viewed as estimates of the probability of participation. We obtain the

odds ratios by specifying the option or.

. fracreg logit prate mrate c.ltotemp##c.ltotemp c.age##c.age i.sole, or
Iteration 0: Log pseudolikelihood = -1983.8372
Iteration 1: Log pseudolikelihood = -1682.4496
Iteration 2: Log pseudolikelihood = -1673.6458
Iteration 3: Log pseudolikelihood = -1673.5566
Iteration 4: Log pseudolikelihood = -1673.5566
Fractional logistic regression Number of obs = 4,075

Wald chi2(6) = 817.73
Prob > chi2 = 0.0000

Log pseudolikelihood = -1673.5566 Pseudo R2 = 0.0638

Robust
prate Odds ratio std. err. z P>|z| [95% conf. interval]

mrate 3.137781 .2345429 15.30 0.000 2.710173 3.632857
ltotemp .3317826 .0375136 -9.76 0.000 .2658343 .4140913

c.ltotemp#
c.ltotemp 1.058209 .0077125 7.76 0.000 1.043201 1.073434

age 1.052601 .0062524 8.63 0.000 1.040418 1.064927

c.age#c.age .9994111 .0001644 -3.58 0.000 .999089 .9997333

sole
Only plan 1.12047 .0568932 2.24 0.025 1.01433 1.237716

_cons 313.4879 134.6238 13.38 0.000 135.1083 727.3771

Note: _cons estimates baseline odds.

Among other things, we see that if the 401(k) is the only plan offered by the employer, then the odds

of an employee participating increase by a factor of 1.12. We can also see that if the matching rate

goes from 0 to 1:1 (exactly matching employee contributions) or from 1:1 to 2:1 (doubling employee

contributions), then the odds of participating increase by 3.1.

The use of an odds-ratio interpretation is not appropriate if the conditional mean cannot be viewed

as a probability. For example, if the fractional outcome were a Gini coefficient, we could not interpret

the expected values of our outcomes as probabilities. The Gini coefficient is a measure of inequality

between zero and one and cannot be interpreted as a probability. In this case, using the odds-ratio option

would not be sensible.
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Stored results
fracreg stores the following in e():

Scalars

e(N) number of observations

e(k) number of parameters

e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test

e(k dv) number of dependent variables

e(df m) model degrees of freedom

e(r2 p) pseudo-𝑅2

e(ll) log likelihood

e(ll 0) log likelihood, constant-only model

e(N clust) number of clusters

e(chi2) 𝜒2

e(p) 𝑝-value for model test
e(rank) rank of e(V)
e(ic) number of iterations

e(rc) return code

e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) fracreg
e(cmdline) command as typed

e(estimator) model for conditional mean; logit, probit, or hetprobit
e(depvar) name of dependent variable

e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(clustvar) name of cluster variable

e(offset) offset

e(chi2type) Wald; type of model 𝜒2 test

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(opt) type of optimization

e(which) max or min; whether optimizer is to perform maximization or minimization

e(ml method) type of ml method
e(user) name of likelihood-evaluator program

e(technique) maximization technique

e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(mns) vector of means of the independent variables

e(Cns) constraints matrix

e(ilog) iteration log (up to 20 iterations)

e(gradient) gradient vector

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

Functions

e(sample) marks estimation sample
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In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas
The log-likelihood function for fractional models is of the form

ln𝐿 =
𝑁

∑
𝑗=1

𝑤𝑗𝑦𝑗 ln{𝐺 (x′
𝑗β)} + 𝑤𝑗 (1 − 𝑦𝑗) ln{1 − 𝐺 (x′

𝑗β)}

where 𝑁 is the sample size, 𝑦𝑗 is the dependent variable, 𝑤𝑗 denotes the optional weights, ln𝐿 is maxi-

mized, as described in [R]Maximize, and 𝐺(⋅) can be

Model Functional form for 𝐺 (x′
𝑗β)

probit Φ (x′
𝑗β)

logit exp(x′
𝑗β)/{1 + exp(x′

𝑗β)}
hetprobit Φ {x′

𝑗β/ exp (z′
𝑗𝛄)}

where x𝑗 are the covariates for individual 𝑗, z𝑗 are the covariates used to model the variance of the

outcome for the heteroskedastic probit model, and Φ is the standard normal cumulative density function.
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Also see
[R] fracreg postestimation — Postestimation tools for fracreg

[R] betareg — Beta regression

[R] glm — Generalized linear models

[R] ivfprobit — Fractional probit model with continuous endogenous covariates

[BAYES] bayes: fracreg — Bayesian fractional response regression

[MI] Estimation — Estimation commands for use with mi estimate

[SVY] svy estimation — Estimation commands for survey data

[U] 20 Estimation and postestimation commands
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Postestimation commands predict margins Remarks and examples Also see

Postestimation commands

The following standard postestimation commands are available after fracreg:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters

estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian infor-
mation criteria (AIC, CAIC, AICc, and BIC, respectively)

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estat (svy) postestimation statistics for survey data

estimates cataloging estimation results

etable table of estimation results
∗ forecast dynamic forecasts and simulations
∗ hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

predict conditional means, linear predictions, etc.

predictnl point estimates, standard errors, testing, and inference for generalized predictions

pwcompare pairwise comparisons of parameters

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

∗forecast and hausman are not appropriate with svy estimation results. forecast is also not appropriate with mi estimation
results.

905
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predict

Description for predict
predict creates a new variable containing predictions such as conditional means, linear predictions,

standard errors, and equation-level scores.

Menu for predict
Statistics > Postestimation

Syntax for predict
predict [ type ] newvar [ if ] [ in ] [ , statistic nooffset ]

predict [ type ] stub* [ if ] [ in ], scores

statistic Description

Main

cm conditional mean; the default

xb linear prediction

sigma standard deviation of the error term (for het())
stdp standard error of the linear prediction

Options for predict

� � �
Main �

cm, the default, calculates the conditional mean of the outcome.

xb calculates the linear prediction.

sigma calculates the standard deviation of the error term. It is available only when het() is specified.

stdp calculates the standard error of the linear prediction.

nooffset is relevant only if you specified offset(varname). It modifies the calculations made by

predict so that they ignore the offset variable; the linear prediction is treated as x𝑗b rather than as

x𝑗b + offset𝑗.

scores calculates the equation-level scores. In the case of fracreg probit and fracreg logit,
𝜕ln𝐿/𝜕(x𝑗β) is calculated, and if the option het() was specified with fracreg probit, then
𝜕ln𝐿/𝜕(z𝑗𝛄) is also calculated.
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margins

Description for margins
margins estimates margins of response for conditional means and linear predictions.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist ] [ , options ]
margins [marginlist ] , predict(statistic ...) [ predict(statistic ...) ... ] [ options ]

statistic Description

cm conditional mean; the default

xb linear prediction

sigma standard deviation of the error term (for het())
stdp not allowed with margins
scores not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.

Remarks and examples
Remarks are presented under the following headings:

Obtaining predicted values
Performing hypothesis tests

Obtaining predicted values
Once you have fit a model using fracreg, you can obtain the conditional mean of the fractional re-

sponse by using the predict command for both the estimation sample and other samples; see [U] 20 Es-
timation and postestimation commands and [R] predict.

When you use the fractional probit estimator, fracreg probit, with the option het(), there is an
additional statistic available, sigma. With the sigma option, predict calculates the predicted standard
deviation, 𝜎𝑗 = exp(z𝑗𝛄).
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Performing hypothesis tests

Example 1: Conditional means
In example 1 of [R] fracreg, we fit a fractional probit model to see how participation rate (prate) in

401(k) plans is affected by the matching rate of employer contributions (mrate). To obtain the predicted
conditional means, we use predict and do not specify the default cm option.

. use https://www.stata-press.com/data/r18/401k
(Firm-level data on 401k participation)
. fracreg probit prate mrate c.ltotemp##c.ltotemp c.age##c.age i.sole
Iteration 0: Log pseudolikelihood = -1769.6832
Iteration 1: Log pseudolikelihood = -1675.2763
Iteration 2: Log pseudolikelihood = -1674.6234
Iteration 3: Log pseudolikelihood = -1674.6232
Iteration 4: Log pseudolikelihood = -1674.6232
Fractional probit regression Number of obs = 4,075

Wald chi2(6) = 815.88
Prob > chi2 = 0.0000

Log pseudolikelihood = -1674.6232 Pseudo R2 = 0.0632

Robust
prate Coefficient std. err. z P>|z| [95% conf. interval]

mrate .5859715 .0387616 15.12 0.000 .5100002 .6619429
ltotemp -.6102767 .0615052 -9.92 0.000 -.7308246 -.4897288

c.ltotemp#
c.ltotemp .0313576 .003975 7.89 0.000 .0235667 .0391484

age .0273266 .0031926 8.56 0.000 .0210691 .033584

c.age#c.age -.0003159 .0000875 -3.61 0.000 -.0004874 -.0001443

sole
Only plan .0683196 .0272091 2.51 0.012 .0149908 .1216484

_cons 3.25991 .2323929 14.03 0.000 2.804429 3.715392

. predict mpart
(option cm assumed)

We can then summarize these conditional mean estimates (cmean) over the population to get the popu-
lation average conditional mean participation rate in our sample.

. summarize mpart
Variable Obs Mean Std. dev. Min Max

mpart 4,075 .8405767 .0828094 .6251739 .9964518

The average of the conditional mean of participation rate in our sample is 84% with a range between

62.5% and 99.6%.
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Example 2: Average marginal effects
In example 2 of [R] fracreg, we used the outcome variable and covariates of example 1 but instead

of fitting a fractional probit regression, we fit a fractional logit. Using margins, we explore the average
marginal effect of mrate on prate for both specifications.

Below, we use margins after fracreg logit with the option post to post the average marginal

effects as estimates. We then store our results with the name logit. We do the same with our probit

estimates.

. use https://www.stata-press.com/data/r18/401k, clear
(Firm-level data on 401k participation)
. fracreg logit prate mrate c.ltotemp##c.ltotemp c.age##c.age i.sole, or
Iteration 0: Log pseudolikelihood = -1983.8372
Iteration 1: Log pseudolikelihood = -1682.4496
Iteration 2: Log pseudolikelihood = -1673.6458
Iteration 3: Log pseudolikelihood = -1673.5566
Iteration 4: Log pseudolikelihood = -1673.5566
Fractional logistic regression Number of obs = 4,075

Wald chi2(6) = 817.73
Prob > chi2 = 0.0000

Log pseudolikelihood = -1673.5566 Pseudo R2 = 0.0638

Robust
prate Odds ratio std. err. z P>|z| [95% conf. interval]

mrate 3.137781 .2345429 15.30 0.000 2.710173 3.632857
ltotemp .3317826 .0375136 -9.76 0.000 .2658343 .4140913

c.ltotemp#
c.ltotemp 1.058209 .0077125 7.76 0.000 1.043201 1.073434

age 1.052601 .0062524 8.63 0.000 1.040418 1.064927

c.age#c.age .9994111 .0001644 -3.58 0.000 .999089 .9997333

sole
Only plan 1.12047 .0568932 2.24 0.025 1.01433 1.237716

_cons 313.4879 134.6238 13.38 0.000 135.1083 727.3771

Note: _cons estimates baseline odds.
. margins, dydx(mrate) post
Average marginal effects Number of obs = 4,075
Model VCE: Robust
Expression: Conditional mean of prate, predict()
dy/dx wrt: mrate

Delta-method
dy/dx std. err. z P>|z| [95% conf. interval]

mrate .1450106 .0094558 15.34 0.000 .1264776 .1635436

. estimates store logit

The marginal effects from fracreg logit suggest that a small change in the matching rate of em-
ployers can increase participation by more than 14%.
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. quietly fracreg probit prate mrate c.ltotemp##c.ltotemp c.age##c.age i.sole

. margins, dydx(mrate) post
Average marginal effects Number of obs = 4,075
Model VCE: Robust
Expression: Conditional mean of prate, predict()
dy/dx wrt: mrate

Delta-method
dy/dx std. err. z P>|z| [95% conf. interval]

mrate .1335505 .0087385 15.28 0.000 .1164233 .1506776

. estimates store probit

For the probit model, a change in the matching rate increases participation by more than 13%.

Because we stored our margins results as estimates, we can now produce a table showing both the

logit and probit results.

. estimates table logit probit, se

Variable logit probit

mrate .14501059 .13355046
.00945578 .00873852

Legend: b/se

As indicated by the standard errors in the table, both average marginal effects are significant. The

difference between the two estimates is approximately one percentage point. This relatively small dif-

ference is consistent with the intuition that marginal effects obtained from probit and logit conditional

means give us analogous results.
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Example 3: Average marginal effects for different levels of participation
We can also use margins to find the expected participation rate for various levels of employer match-

ing. Using our probit model, we obtain the following by typing

. quietly fracreg probit prate mrate c.ltotemp##c.ltotemp c.age##c.age i.sole

. margins, at(mrate=(0(.2)2))
Predictive margins Number of obs = 4,075
Model VCE: Robust
Expression: Conditional mean of prate, predict()
1._at: mrate = 0
2._at: mrate = .2
3._at: mrate = .4
4._at: mrate = .6
5._at: mrate = .8
6._at: mrate = 1
7._at: mrate = 1.2
8._at: mrate = 1.4
9._at: mrate = 1.6
10._at: mrate = 1.8
11._at: mrate = 2

Delta-method
Margin std. err. z P>|z| [95% conf. interval]

_at
1 .780858 .0052738 148.06 0.000 .7705216 .7911944
2 .8128364 .003441 236.22 0.000 .8060923 .8195806
3 .8417642 .002672 315.03 0.000 .8365271 .8470013
4 .8675979 .0029882 290.34 0.000 .8617412 .8734547
5 .8903734 .0036591 243.33 0.000 .8832018 .8975451
6 .9101957 .0042293 215.21 0.000 .9019065 .9184849
7 .9272265 .0045767 202.60 0.000 .9182563 .9361966
8 .9416712 .004694 200.61 0.000 .9324711 .9508712
9 .9537652 .0046115 206.82 0.000 .9447268 .9628035
10 .9637608 .004372 220.44 0.000 .9551919 .9723298
11 .9719159 .0040207 241.73 0.000 .9640355 .9797964

Going from no matching to equal matching changes the participation rate from 78% to 91%, and

double matching moves participation all the way to 97.2%.
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We can also see these results in a graph by using marginsplot.

. marginsplot
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Also see
[R] fracreg — Fractional response regression

[U] 20 Estimation and postestimation commands
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Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas References Also see

Description
frontier fits stochastic production or cost frontier models; the default is a production frontier model.

It provides estimators for the parameters of a linear model with a disturbance that is assumed to be

a mixture of two components, which have a strictly nonnegative and symmetric distribution, respec-

tively. frontier can fit models in which the nonnegative distribution component (a measurement of
inefficiency) is assumed to be from a half-normal, exponential, or truncated-normal distribution. See

Kumbhakar and Lovell (2000) for a detailed introduction to frontier analysis.

Quick start
Cobb–Douglas production frontier model of lny1 as a function of lnx1 and lnx2

frontier lny1 lnx1 lnx2

Same as above, but use exponential instead of half-normal distribution for the inefficiency term

frontier lny1 lnx1 lnx2, distribution(exponential)

Include x3 as an explanatory variable in the idiosyncratic error variance function
frontier lny1 lnx1 lnx2, vhet(x3)

Same as above, and include x4 as an explanatory variable in the technical inefficiency variance function
frontier lny1 lnx1 lnx2, vhet(x3) uhet(x4)

Conditional mean model with the mean modeled as a linear function of x3
frontier lny1 lnx1 lnx2, distribution(tnormal) cm(x3)

Cost frontier model of y2 as a function of lnx1 and lnx2
frontier y2 lnx1 lnx2, distribution(tnormal) cost

Menu
Statistics > Linear models and related > Frontier models

913
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Syntax
frontier depvar [ indepvars ] [ if ] [ in ] [weight ] [ , options ]

options Description

Model

noconstant suppress constant term

distribution(hnormal) half-normal distribution for the inefficiency term

distribution(exponential) exponential distribution for the inefficiency term

distribution(tnormal) truncated-normal distribution for the inefficiency term

ufrom(matrix) specify untransformed log likelihood; only with d(tnormal)
cm(varlist [, noconstant ]) fit conditional mean model; only with d(tnormal); use

noconstant to suppress constant term

Model 2

constraints(constraints) apply specified linear constraints

uhet(varlist [, noconstant ]) explanatory variables for technical inefficiency variance
function; use noconstant to suppress constant term

vhet(varlist [, noconstant ]) explanatory variables for idiosyncratic error variance
function; use noconstant to suppress constant term

cost fit cost frontier model; default is production frontier model

SE/Robust
∗ vce(vcetype) vcetype may be oim, robust, cluster clustvar, opg, bootstrap,

or jackknife

Reporting

level(#) set confidence level; default is level(95)
nocnsreport do not display constraints

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

collinear keep collinear variables

coeflegend display legend instead of statistics

∗vce(robust) and vce(cluster clustvar) may not be specified with distribution(tnormal).
indepvars and varlist may contain factor variables; see [U] 11.4.3 Factor variables.

bootstrap, by, collect, fp, jackknife, rolling, and statsby are allowed; see [U] 11.1.10 Prefix commands.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
collinear and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Options

� � �
Model �

noconstant; see [R] Estimation options.

distribution(distname) specifies the distribution for the inefficiency term as half-normal (hnormal),
exponential, or truncated-normal (tnormal). The default is hnormal.

ufrom(matrix) specifies a 1 × 𝐾 matrix of untransformed starting values when the distribution is

truncated-normal (tnormal). frontier can estimate the parameters of the model by maximizing

either the log likelihood or a transformed log likelihood (see Methods and formulas). frontier au-
tomatically transforms the starting values before passing them on to the transformed log likelihood.

The matrix must have the same number of columns as there are parameters to estimate.

cm(varlist [, noconstant ]) may be used only with distribution(tnormal). Here frontier will
fit a conditional mean model in which the mean of the truncated-normal distribution is modeled as

a linear function of the set of covariates specified in varlist. Specifying noconstant suppresses the
constant in the mean function.

� � �
Model 2 �

constraints(constraints); see [R] Estimation options.

By default, when fitting the truncated-normal model or the conditional mean model, frontier max-
imizes a transformed log likelihood. When constraints are applied, frontier will maximize the

untransformed log likelihood with constraints defined in the untransformed metric.

uhet(varlist[ , noconstant ]) specifies that the technical inefficiency component is heteroskedastic,

with the variance function depending on a linear combination of varlist𝑢. Specifying noconstant
suppresses the constant term from the variance function. This option may not be specified with

distribution(tnormal).

vhet(varlist[ , noconstant ]) specifies that the idiosyncratic error component is heteroskedastic, with
the variance function depending on a linear combination of varlist𝑣. Specifying noconstant sup-
presses the constant term from the variance function. This option may not be specified with

distribution(tnormal).

cost specifies that frontier fit a cost frontier model.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), that al-
low for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods

(bootstrap, jackknife); see [R] vce option.

vce(robust) and vce(cluster clustvar) may not be specified with distribution(tnormal).

� � �
Reporting �

level(#), nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.
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� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. These options are

seldom used.

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

The following options are available with frontier but are not shown in the dialog box:

collinear, coeflegend; see [R] Estimation options.

Remarks and examples
Stochastic production frontier models were introduced by Aigner, Lovell, and Schmidt (1977) and

Meeusen and van den Broeck (1977). Since then, stochastic frontier models have become a popular

subfield in econometrics. Kumbhakar and Lovell (2000) provide a good introduction.

frontier fits three stochastic frontier models with distinct parameterizations of the inefficiency term
and can fit stochastic production or cost frontier models.

Let’s review the nature of the stochastic frontier problem. Suppose that a producer has a production

function 𝑓(z𝑖,β). In a world without error or inefficiency, the 𝑖th firm would produce

𝑞𝑖 = 𝑓(z𝑖,β)

Stochastic frontier analysis assumes that each firm potentially produces less than it might due to a

degree of inefficiency. Specifically,

𝑞𝑖 = 𝑓(z𝑖,β)𝜉𝑖

where 𝜉𝑖 is the level of efficiency for firm 𝑖; 𝜉𝑖 must be in the interval (0, 1 ]. If 𝜉𝑖 = 1, the firm is

achieving the optimal output with the technology embodied in the production function 𝑓(z𝑖,β). When

𝜉𝑖 < 1, the firm is not making the most of the inputs z𝑖 given the technology embodied in the production

function 𝑓(z𝑖,β). Because the output is assumed to be strictly positive (that is, 𝑞𝑖 > 0), the degree of

technical efficiency is assumed to be strictly positive (that is, 𝜉𝑖 > 0).

Output is also assumed to be subject to random shocks, implying that

𝑞𝑖 = 𝑓(z𝑖,β)𝜉𝑖exp(𝑣𝑖)

Taking the natural log of both sides yields

ln(𝑞𝑖) = ln{𝑓(z𝑖,β)}+ ln(𝜉𝑖) + 𝑣𝑖

Assuming that there are 𝑘 inputs and that the production function is linear in logs, defining
𝑢𝑖 = − ln(𝜉𝑖) yields

ln(𝑞𝑖) = 𝛽0 +
𝑘

∑
𝑗=1

𝛽𝑗 ln(𝑧𝑗𝑖) + 𝑣𝑖 − 𝑢𝑖

Because 𝑢𝑖 is subtracted from ln(𝑞𝑖), restricting 𝑢𝑖 ≥ 0 implies that 0 < 𝜉𝑖 ≤ 1, as specified above.
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Kumbhakar and Lovell (2000) provide a detailed version of the above derivation, and they show that

performing an analogous derivation in the dual cost function problem allows us to specify the problem

as

ln(𝑐𝑖) = 𝛽0 + 𝛽𝑞 ln(𝑞𝑖) +
𝑘

∑
𝑗=1

𝛽𝑗 ln(𝑝𝑗𝑖) + 𝑣𝑖 + 𝑢𝑖

where 𝑞𝑖 is output, 𝑧𝑗𝑖 are input quantities, 𝑐𝑖 is cost, and the 𝑝𝑗𝑖 are input prices.

Intuitively, the inefficiency effect is required to lower output or raise expenditure, depending on the

specification.

Technical note
The model that frontier actually fits is of the form

𝑦𝑖 = 𝛽0 +
𝑘

∑
𝑗=1

𝛽𝑗𝑥𝑗𝑖 + 𝑣𝑖 − 𝑠𝑢𝑖

where

𝑠 = {1, for production functions

−1, for cost functions

so, in the context of the discussion above, 𝑦𝑖 = ln(𝑞𝑖), and 𝑥𝑗𝑖 = ln(𝑧𝑗𝑖) for a production function;
and for a cost function, 𝑦𝑖 = ln(𝑐𝑖), and the 𝑥𝑗𝑖 are the ln(𝑝𝑗𝑖) and ln(𝑞𝑖). You must take the natural
logarithm of the data before fitting a stochastic frontier production or cost model. frontier performs
no transformations on the data.

Different specifications of the 𝑢𝑖 and the 𝑣𝑖 terms give rise to distinct models. frontier provides
estimators for the parameters of three basic models in which the idiosyncratic component, 𝑣𝑖, is assumed

to be independently 𝑁(0, 𝜎𝑣) distributed over the observations. The basic models differ in their specifi-
cation of the inefficiency term, 𝑢𝑖, as follows:

exponential: the 𝑢𝑖 are independently exponentially distributed with variance 𝜎2
𝑢

hnormal: the 𝑢𝑖 are independently half-normally 𝑁+(0, 𝜎2
𝑢) distributed

tnormal: the 𝑢𝑖 are independently 𝑁+(𝜇, 𝜎2
𝑢) distributed with truncation point at 0

For half-normal or exponential distributions, frontier can fit models with heteroskedastic error

components, conditional on a set of covariates. For a truncated-normal distribution, frontier can also
fit a conditional mean model in which the mean is modeled as a linear function of a set of covariates.
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Example 1: The half-normal and the exponential models
For our first example, we demonstrate the half-normal and exponential models by reproducing a study

found in Greene (2003, 505), which uses data originally published in Zellner and Revankar (1969). In this

study of the transportation equipment manufacturing industry, observations on value added, capital, and

labor are used to estimate a Cobb–Douglas production function. The variable lnv is the log-transformed
value added, lnk is the log-transformed capital, and lnl is the log-transformed labor. OLS estimates

are compared with those from stochastic frontier models using both the half-normal and exponential

distribution for the inefficiency term.

. use https://www.stata-press.com/data/r18/greene9
(Transportation equipment manufacturing industry)
. regress lnv lnk lnl

Source SS df MS Number of obs = 25
F(2, 22) = 397.54

Model 44.1727741 2 22.086387 Prob > F = 0.0000
Residual 1.22225984 22 .055557265 R-squared = 0.9731

Adj R-squared = 0.9706
Total 45.3950339 24 1.89145975 Root MSE = .23571

lnv Coefficient Std. err. t P>|t| [95% conf. interval]

lnk .2454281 .1068574 2.30 0.032 .0238193 .4670368
lnl .805183 .1263336 6.37 0.000 .5431831 1.067183

_cons 1.844416 .2335928 7.90 0.000 1.359974 2.328858

. frontier lnv lnk lnl
Iteration 0: Log likelihood = 2.3357572
Iteration 1: Log likelihood = 2.4673009
Iteration 2: Log likelihood = 2.4695125
Iteration 3: Log likelihood = 2.4695222
Iteration 4: Log likelihood = 2.4695222
Stoc. frontier normal/half-normal model Number of obs = 25

Wald chi2(2) = 743.71
Log likelihood = 2.4695222 Prob > chi2 = 0.0000

lnv Coefficient Std. err. z P>|z| [95% conf. interval]

lnk .2585478 .098764 2.62 0.009 .0649738 .4521218
lnl .7802451 .1199399 6.51 0.000 .5451672 1.015323

_cons 2.081135 .281641 7.39 0.000 1.529128 2.633141

/lnsig2v -3.48401 .6195353 -5.62 0.000 -4.698277 -2.269743
/lnsig2u -3.014599 1.11694 -2.70 0.007 -5.203761 -.8254368

sigma_v .1751688 .0542616 .0954514 .3214633
sigma_u .2215073 .1237052 .074134 .6618486
sigma2 .0797496 .0426989 -.0039388 .163438
lambda 1.264536 .1678684 .9355204 1.593552

LR test of sigma_u=0: chibar2(01) = 0.43 Prob >= chibar2 = 0.256
. predict double u_h, u
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. frontier lnv lnk lnl, distribution(exponential)
Iteration 0: Log likelihood = 2.7270659
Iteration 1: Log likelihood = 2.8551532
Iteration 2: Log likelihood = 2.8604815
Iteration 3: Log likelihood = 2.8604897
Iteration 4: Log likelihood = 2.8604897
Stoc. frontier normal/exponential model Number of obs = 25

Wald chi2(2) = 845.68
Log likelihood = 2.8604897 Prob > chi2 = 0.0000

lnv Coefficient Std. err. z P>|z| [95% conf. interval]

lnk .2624859 .0919988 2.85 0.004 .0821717 .4428002
lnl .7703795 .1109569 6.94 0.000 .5529079 .9878511

_cons 2.069242 .2356159 8.78 0.000 1.607444 2.531041

/lnsig2v -3.527598 .4486176 -7.86 0.000 -4.406873 -2.648324
/lnsig2u -4.002457 .9274575 -4.32 0.000 -5.820241 -2.184674

sigma_v .1713925 .0384448 .1104231 .2660258
sigma_u .1351691 .0626818 .0544692 .3354317
sigma2 .0476461 .0157921 .016694 .0785981
lambda .7886525 .087684 .616795 .9605101

LR test of sigma_u=0: chibar2(01) = 1.21 Prob >= chibar2 = 0.135
. predict double u_e, u
. list state u_h u_e

state u_h u_e

1. Alabama .2011338 .14592865
2. California .14480966 .0972165
3. Connecticut .1903485 .13478797
4. Florida .51753139 .5903303
5. Georgia .10397912 .07140994

6. Illinois .12126696 .0830415
7. Indiana .21128212 .15450664
8. Iowa .24933153 .20073081
9. Kansas .10099517 .06857629

10. Kentucky .05626919 .04152443

11. Louisiana .20332731 .15066405
12. Maine .22263164 .17245793
13. Maryland .13534062 .09245501
14. Massachusetts .15636999 .10932923
15. Michigan .15809566 .10756915

16. Missouri .10288047 .0704146
17. NewJersey .09584337 .06587986
18. NewYork .27787793 .22249416
19. Ohio .22914231 .16981857
20. Pennsylvania .1500667 .10302905

21. Texas .20297875 .14552218
22. Virginia .14000132 .09676078
23. Washington .11047581 .07533251
24. WestVirginia .15561392 .11236153
25. Wisconsin .14067066 .0970861
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The parameter estimates and the estimates of the inefficiency terms closely match those published in

Greene (2003, 505), but the standard errors of the parameter estimates are estimated differently (see the

technical note below).

The output from frontier includes estimates of the standard deviations of the two error compo-

nents, 𝜎𝑣 and 𝜎𝑢, which are labeled sigma v and sigma u, respectively. In the log likelihood, they
are parameterized as ln𝜎2

𝑣 and ln𝜎2
𝑢, and these estimates are labeled /lnsig2v and /lnsig2u in the

output. frontier also reports two other useful parameterizations. The estimate of the total error vari-
ance, 𝜎2

𝑆 = 𝜎2
𝑣 + 𝜎2

𝑢, is labeled sigma2, and the estimate of the ratio of the standard deviation of the
inefficiency component to the standard deviation of the idiosyncratic component, 𝜆 = 𝜎𝑢/𝜎𝑣, is labeled

lambda.

At the bottom of the output, frontier reports the results of a test that there is no technical inefficiency
component in the model. This is a test of the null hypothesis 𝐻0 ∶ 𝜎2

𝑢 = 0 against the alternative

hypotheses 𝐻1 ∶ 𝜎2
𝑢 > 0. If the null hypothesis is true, the stochastic frontier model reduces to an OLS

model with normal errors. However, because the test lies on the boundary of the parameter space of

𝜎2
𝑢, the standard likelihood-ratio test is not valid, and a one-sided generalized likelihood-ratio test must

be constructed; see Gutierrez, Carter, and Drukker (2001). For this example, the output shows LR =

0.43 with a 𝑝-value of 0.256 for the half-normal model and LR = 1.21 with a 𝑝-value of 0.135 for the
exponential model. There are several possible reasons for the failure to reject the null hypothesis, but the

fact that the test is based on an asymptotic distribution and the sample size was 25 is certainly a leading

candidate among those possibilities.

Technical note
frontier maximizes the log-likelihood function of a stochastic frontier model by using the New-

ton–Raphson method, and the estimated variance–covariance matrix is calculated as the inverse of the

negative Hessian (matrix of second partial derivatives); see [R] ml. When comparing the results with

those published using other software, be aware of the difference in the optimization methods, which may

result in different, yet asymptotically equivalent, variance estimates.

Example 2: Models with heteroskedasticity
Often the error terms may not have constant variance. frontier allows you to model heteroskedas-

ticity in either error term as a linear function of a set of covariates. The variance of either the technical

inefficiency or the idiosyncratic component may be modeled as

𝜎2
𝑖 = exp(w𝑖δ)

The default constant included in w𝑖 may be suppressed by appending a noconstant option to the list of
covariates. Also, you can simultaneously specify covariates for both 𝜎𝑢𝑖

and 𝜎𝑣𝑖
.

In this example, we use a sample of 756 observations of fictional firms producing amanufactured good

by using capital and labor. The firms are hypothesized to use a constant returns-to-scale technology, but

the sizes of the firms differ. Believing that this size variation will introduce heteroskedasticity into the

idiosyncratic error term, we estimate the parameters of a Cobb–Douglas production function. To do

this, we use a conditional heteroskedastic half-normal model, with the size of the firm as an explanatory

variable in the variance function for the idiosyncratic error. We also perform a test of the hypothesis that

the firms use a constant returns-to-scale technology.
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. use https://www.stata-press.com/data/r18/frontier1, clear

. frontier lnoutput lnlabor lncapital, vhet(size)
Iteration 0: Log likelihood = -1508.3692
Iteration 1: Log likelihood = -1501.583
Iteration 2: Log likelihood = -1500.3942
Iteration 3: Log likelihood = -1500.3794
Iteration 4: Log likelihood = -1500.3794
Stoc. frontier normal/half-normal model Number of obs = 756

Wald chi2(2) = 9.68
Log likelihood = -1500.3794 Prob > chi2 = 0.0079

lnoutput Coefficient Std. err. z P>|z| [95% conf. interval]

lnoutput
lnlabor .7090933 .2349374 3.02 0.003 .2486244 1.169562

lncapital .3931345 .5422173 0.73 0.468 -.6695919 1.455861
_cons 1.252199 3.14656 0.40 0.691 -4.914946 7.419344

lnsig2v
size -.0016951 .0004748 -3.57 0.000 -.0026256 -.0007645
_cons 3.156091 .9265826 3.41 0.001 1.340023 4.97216

lnsig2u
_cons 1.947487 .1017653 19.14 0.000 1.748031 2.146943

sigma_u 2.647838 .134729 2.396514 2.925518

. test _b[lnlabor] + _b[lncapital] = 1
( 1) [lnoutput]lnlabor + [lnoutput]lncapital = 1

chi2( 1) = 0.03
Prob > chi2 = 0.8622

The output above indicates that the variance of the idiosyncratic error term is a function of firm size.

Also, we failed to reject the hypothesis that the firms use a constant returns-to-scale technology.

Technical note
In small samples, the conditional heteroskedastic estimators will lack precision for the variance pa-

rameters and may fail to converge altogether.

Example 3: The truncated-normal model
Let’s turn our attention to the truncated-normal model. Once again, we will use fictional data. For this

example, we have 1,231 observations on the quantity of output, the total cost of production for each firm,

the prices that each firm paid for labor and capital services, and a categorical variable measuring the qual-

ity of each firm’s management. After taking the natural logarithm of the costs (lncost), prices (lnp k
and lnp l), and output (lnout), we fit a stochastic cost frontier model and specify the distribution for
the inefficiency term to be truncated normal.
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. use https://www.stata-press.com/data/r18/frontier2

. frontier lncost lnp_k lnp_l lnout, distribution(tnormal) cost
Iteration 0: Log likelihood = -2386.9523
Iteration 1: Log likelihood = -2386.5146
Iteration 2: Log likelihood = -2386.2704
Iteration 3: Log likelihood = -2386.2504
Iteration 4: Log likelihood = -2386.2493
Iteration 5: Log likelihood = -2386.2493
Stoc. frontier normal/truncated-normal model Number of obs = 1,231

Wald chi2(3) = 8.82
Log likelihood = -2386.2493 Prob > chi2 = 0.0318

lncost Coefficient Std. err. z P>|z| [95% conf. interval]

lnp_k .3410717 .2363861 1.44 0.149 -.1222366 .80438
lnp_l .6608628 .4951499 1.33 0.182 -.3096131 1.631339
lnout .7528653 .3468968 2.17 0.030 .0729601 1.432771
_cons 2.602609 1.083004 2.40 0.016 .4799595 4.725259

/mu 1.095705 .881517 1.24 0.214 -.632037 2.823446
/lnsigma2 1.5534 .1873464 8.29 0.000 1.186208 1.920592
/lgtgamma 1.257862 .2589522 4.86 0.000 .7503255 1.765399

sigma2 4.727518 .8856833 3.274641 6.825001
gamma .7786579 .0446303 .6792496 .8538846

sigma_u2 3.681119 .7503408 2.210478 5.15176
sigma_v2 1.046399 .2660035 .5250413 1.567756

H0: No inefficiency component: z = 5.595 Prob >= z = 0.0000

In addition to the coefficients, the output reports estimates for several parameters. sigma v2 is the
estimate of 𝜎2

𝑣 . sigma u2 is the estimate of 𝜎2
𝑢. gamma is the estimate of 𝛾 = 𝜎2

𝑢/𝜎2
𝑆. sigma2 is the

estimate of 𝜎2
𝑆 = 𝜎2

𝑣 + 𝜎2
𝑢. Because 𝛾 must be between 0 and 1, the optimization is parameterized in

terms of the logit of 𝛾, and this estimate is reported as lgtgamma. Because 𝜎2
𝑆 must be positive, the

optimization is parameterized in terms of ln(𝜎2
𝑆), whose estimate is reported as lnsigma2. Finally, mu

is the estimate of 𝜇, the mean of the truncated-normal distribution.
In the output above, the generalized log-likelihood test for the presence of the inefficiency term has

been replaced with a test based on the third moment of the OLS residuals. When 𝜇 = 0 and 𝜎𝑢 = 0, the

truncated-normal model reduces to a linear regression model with normally distributed errors. However,

the distribution of the test statistic under the null hypothesis is not well established, because it becomes

impossible to evaluate the log likelihood as 𝜎𝑢 approaches zero, prohibiting the use of the likelihood-ratio

test.

However, Coelli (1995) noted that the presence of an inefficiency term would negatively skew the

residuals from an OLS regression. By identifying negative skewness in the residuals with the presence of

an inefficiency term, Coelli derived a one-sided test for the presence of the inefficiency term. The results

of this test are given at the bottom of the output. For this example, the null hypothesis of no inefficiency

component is rejected.



frontier — Stochastic frontier models 923

In the example below, we fit a truncated model and detect a statistically significant inefficiency term

in the model. We might question whether the inefficiency term is identically distributed over all firms

or whether there might be heterogeneity across firms. frontier provides an extension to the truncated
normal model by allowing the mean of the inefficiency term to be modeled as a linear function of a

set of covariates. In our dataset, we have a categorical variable that measures the quality of a firm’s

management. We refit the model, including the cm() option, specifying a set of binary indicator variables
representing the different categories of the quality-measurement variable as covariates.

. frontier lncost lnp_k lnp_l lnout, distribution(tnormal) cm(i.quality) cost
Iteration 0: Log likelihood = -2386.9523
Iteration 1: Log likelihood = -2384.936
Iteration 2: Log likelihood = -2382.3942
Iteration 3: Log likelihood = -2382.324
Iteration 4: Log likelihood = -2382.3233
Iteration 5: Log likelihood = -2382.3233
Stoc. frontier normal/truncated-normal model Number of obs = 1,231

Wald chi2(3) = 9.31
Log likelihood = -2382.3233 Prob > chi2 = 0.0254

lncost Coefficient Std. err. z P>|z| [95% conf. interval]

lncost
lnp_k .3611204 .2359749 1.53 0.126 -.1013819 .8236227
lnp_l .680446 .4934935 1.38 0.168 -.2867835 1.647675
lnout .7605533 .3466102 2.19 0.028 .0812098 1.439897
_cons 2.550769 1.078911 2.36 0.018 .4361417 4.665396

mu
quality

2 .5056067 .3382907 1.49 0.135 -.1574309 1.168644
3 .783223 .376807 2.08 0.038 .0446947 1.521751
4 .5577511 .3355061 1.66 0.096 -.0998288 1.215331
5 .6792882 .3428073 1.98 0.048 .0073981 1.351178

_cons .6014025 .990167 0.61 0.544 -1.339289 2.542094

/lnsigma2 1.541784 .1790926 8.61 0.000 1.190769 1.892799
/lgtgamma 1.242302 .2588968 4.80 0.000 .734874 1.749731

sigma2 4.67292 .8368852 3.289611 6.637923
gamma .7759645 .0450075 .6758739 .8519189

sigma_u2 3.62602 .7139576 2.226689 5.025351
sigma_v2 1.0469 .2583469 .5405491 1.553251

The conditional mean model was developed in the context of panel-data estimators, and we can apply

frontier’s conditional mean model to panel data.
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Stored results
frontier stores the following in e():

Scalars

e(N) number of observations

e(df m) model degrees of freedom

e(k) number of parameters

e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test

e(k dv) number of dependent variables

e(chi2) 𝜒2

e(ll) log likelihood

e(ll c) log likelihood for 𝐻0 ∶ 𝜎𝑢 = 0
e(z) test for negative skewness of OLS residuals

e(sigma u) standard deviation of technical inefficiency

e(sigma v) standard deviation of 𝑣𝑖
e(p) 𝑝-value for model test
e(chi2 c) LR test statistic

e(p z) 𝑝-value for z
e(rank) rank of e(V)
e(ic) number of iterations

e(rc) return code

e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) frontier
e(cmdline) command as typed

e(depvar) name of dependent variable

e(function) production or cost
e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(chi2type) Wald; type of model 𝜒2 test

e(dist) distribution assumption for 𝑢𝑖
e(het) heteroskedastic components

e(u hetvar) varlist in uhet()
e(v hetvar) varlist in vhet()
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(opt) type of optimization

e(which) max or min; whether optimizer is to perform maximization or minimization

e(ml method) type of ml method
e(user) name of likelihood-evaluator program

e(technique) maximization technique

e(properties) b V
e(predict) program used to implement predict
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(ilog) iteration log (up to 20 iterations)

e(gradient) gradient vector

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

Functions

e(sample) marks estimation sample
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In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas
Consider an equation of the form

𝑦𝑖 = x𝑖β + 𝑣𝑖 − 𝑠𝑢𝑖

where 𝑦𝑖 is the dependent variable, x𝑖 is a 1 × 𝑘 vector of observations on the independent variables

included as indent covariates, β is a 𝑘 × 1 vector of coefficients, and

𝑠 = {1, for production functions

−1, for cost functions

The log-likelihood functions are as follows.

Normal/half-normal model:

ln𝐿 =
𝑁

∑
𝑖=1

{1
2
ln( 2

𝜋
) − ln𝜎𝑆 + lnΦ (−𝑠𝜖𝑖𝜆

𝜎𝑆
) − 𝜖2

𝑖
2𝜎2

𝑆
}

Normal/exponential model:

ln𝐿 =
𝑁

∑
𝑖=1

⎧{
⎨{⎩

− ln𝜎𝑢 + 𝜎2
𝑣

2𝜎2
𝑢

+ lnΦ ⎛⎜
⎝

−𝑠𝜖𝑖 − 𝜎2
𝑣

𝜎𝑢

𝜎𝑣

⎞⎟
⎠

+ 𝑠𝜖𝑖
𝜎𝑢

⎫}
⎬}⎭

Normal/truncated-normal model:

ln𝐿 =
𝑁

∑
𝑖=1

{−1
2
ln (2𝜋) − ln𝜎𝑆 − lnΦ ( 𝜇

𝜎𝑆
√𝛾

)

+ lnΦ [ (1 − 𝛾) 𝜇 − 𝑠𝛾𝜖𝑖

{𝜎2
𝑆𝛾 (1 − 𝛾)}1/2 ] − 1

2
(𝜖𝑖 + 𝑠𝜇

𝜎𝑆
)

2

}

where 𝜎𝑆 = (𝜎2
𝑢 +𝜎2

𝑣)1/2, 𝜆 = 𝜎𝑢/𝜎𝑣, 𝛾 = 𝜎2
𝑢/𝜎2

𝑆, 𝜖𝑖 = 𝑦𝑖 −x𝑖β, andΦ() is the cumulative distribution
function of the standard normal distribution.
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To obtain estimation for 𝑢𝑖, you can use either the mean or the mode of the conditional distribution

𝑓(𝑢|𝜖).

𝐸 (𝑢𝑖 | 𝜖𝑖) = 𝜇∗𝑖 + 𝜎∗ {𝜙(−𝜇∗𝑖/𝜎∗)
Φ(𝜇∗𝑖/𝜎∗)

}

𝑀 (𝑢𝑖 | 𝜖𝑖) = {𝜇∗𝑖 if 𝜇∗𝑖 ≥ 0
0 otherwise

Then, the technical efficiency (𝑠 = 1) or cost efficiency (𝑠 = −1) will be estimated by

𝐸𝑖 = 𝐸 { exp(−𝑠𝑢𝑖) | 𝜖𝑖}

= {1 − Φ (𝑠𝜎∗ − 𝜇∗𝑖/𝜎∗)
1 − Φ (−𝜇∗𝑖/𝜎∗)

} exp(−𝑠𝜇∗𝑖 + 1
2

𝜎2
∗ )

where 𝜇∗𝑖 and 𝜎∗ are defined for the normal/half-normal model as

𝜇∗𝑖 = −𝑠𝜖𝑖𝜎2
𝑢/𝜎2

𝑆

𝜎∗ = 𝜎𝑢𝜎𝑣/𝜎𝑆

for the normal/exponential model as

𝜇∗𝑖 = −𝑠𝜖𝑖 − 𝜎2
𝑣/𝜎𝑢

𝜎∗ = 𝜎𝑣

and for the normal/truncated-normal model as

𝜇∗𝑖 = −𝑠𝜖𝑖𝜎2
𝑢 + 𝜇𝜎2

𝑣
𝜎2

𝑆

𝜎∗ = 𝜎𝑢𝜎𝑣/𝜎𝑆

In the half-normal and exponential models, when heteroskedasticity is assumed, the standard devia-

tions, 𝜎𝑢 or 𝜎𝑣, will be replaced in the above equations by

𝜎2
𝑖 = exp(w𝑖δ)

where w is the vector of explanatory variables in the variance function.

In the conditional meanmodel, the mean parameter of the truncated normal distribution, 𝜇, is modeled
as a linear combination of the set of covariates, w.

𝜇 = w𝑖δ
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Therefore, the log-likelihood function can be rewritten as

ln𝐿 =
𝑁

∑
𝑖=1

⎡
⎢
⎣

−1
2
ln (2𝜋) − ln𝜎𝑆 − lnΦ ⎛⎜⎜

⎝

w𝑖δ

√𝜎2
𝑆𝛾

⎞⎟⎟
⎠

+ lnΦ
⎧{
⎨{⎩

(1 − 𝛾)w𝑖δ − 𝑠𝛾𝜖𝑖

√𝜎2
𝑆𝛾 (1 − 𝛾)

⎫}
⎬}⎭

− 1
2

(𝜖𝑖 + 𝑠w𝑖δ

𝜎𝑆
)

2⎤
⎥
⎦

The 𝑧 test reported in the output of the truncated-normal model is a third-moment test developed by

Coelli (1995) as an extension of a test previously developed by Pagan and Hall (1983). Coelli shows that

under the null of normally distributed errors, the statistic

𝑧 = 𝑚3

( 6𝑚3
2

𝑁 )
1/2

has a standard normal distribution, where 𝑚3 is the third moment from the OLS regression. Because

the residuals are either negatively skewed (production function) or positively skewed (cost function), a

one-sided 𝑝-value is used.
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Postestimation commands predict margins Remarks and examples Reference
Also see

Postestimation commands
The following postestimation commands are available after frontier:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters

estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian infor-
mation criteria (AIC, CAIC, AICc, and BIC, respectively)

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estimates cataloging estimation results

etable table of estimation results

hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

linktest link test for model specification

lrtest likelihood-ratio test

margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

predict predictions and their SEs, technical efficiency, etc.

predictnl point estimates, standard errors, testing, and inference for generalized predictions

pwcompare pairwise comparisons of parameters

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

929
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predict

Description for predict
predict creates a new variable containing predictions such as linear predictions, standard errors, and

estimates of technical efficiency.

Menu for predict
Statistics > Postestimation

Syntax for predict
predict [ type ] newvar [ if ] [ in ] [ , statistic ]

predict [ type ] stub* [ if ] [ in ], scores

statistic Description

Main

xb linear prediction; the default

stdp standard error of the prediction

u estimates of minus the natural log of the technical efficiency via 𝐸 (𝑢𝑖 | 𝜖𝑖)
m estimates of minus the natural log of the technical efficiency via 𝑀 (𝑢𝑖 | 𝜖𝑖)
te estimates of the technical efficiency via 𝐸 {exp(−𝑠𝑢𝑖) | 𝜖𝑖}

𝑠 = { 1, for production functions

−1, for cost functions

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for the estimation
sample.

Options for predict

� � �
Main �

xb, the default, calculates the linear prediction.

stdp calculates the standard error of the linear prediction.

u produces estimates of minus the natural log of the technical efficiency via 𝐸 (𝑢𝑖 | 𝜖𝑖).
m produces estimates of minus the natural log of the technical efficiency via 𝑀 (𝑢𝑖 | 𝜖𝑖).
te produces estimates of the technical efficiency via 𝐸 {exp(−𝑠𝑢𝑖) | 𝜖𝑖}.
scores calculates equation-level score variables.

The first new variable will contain 𝜕ln𝐿/𝜕(x𝑖β).
The second new variable will contain 𝜕ln𝐿/𝜕(lnsig2v).
The third new variable will contain 𝜕ln𝐿/𝜕(lnsig2u).
scores may not be specified after estimation with option distribution(tnormal).
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margins

Description for margins
margins estimates margins of response for linear predictions.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist ] [ , options ]
margins [marginlist ] , predict(statistic ...) [ options ]

statistic Description

xb linear prediction; the default

stdp not allowed with margins
u not allowed with margins
m not allowed with margins
te not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.
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Remarks and examples

Example 1
In example 2 of [R] frontier, we modeled heteroskedasticity by specifying the vhet() option. We

would like to compare the predicted efficiency in that case with respect to a model specification with-

out accounting for the presence of heteroskedasticity in the error term. Kumbhakar and Lovell (2000,

117) show that failing to account for heteroskedasticity associated with firm size may lead to bias in

the estimation of the technical efficiency. By incorrectly assuming homoskedasticity, the estimates for

relatively small firms would be biased upward, while the estimates for relatively large firms would be

biased downward. Let’s refit the model and use the te option of predict:

. use https://www.stata-press.com/data/r18/frontier1

. frontier lnoutput lnlabor lncapital, vhet(size)
(output omitted )

. predict te_vhet, te

Next, we fit the model assuming homoskedasticity and then again predict the technical efficiency with

the te option of predict:

. frontier lnoutput lnlabor lncapital
(output omitted )

. predict te, te

The graph below shows the estimates for technical efficiency for the smaller and larger firms. The

technical efficiency tends to be smaller for smaller firms when the model specification accounts for the

presence of heteroskedasticity, whereas the predictions for the technical efficiency tends to be smaller

for larger firms assuming homoskedasticity. These results agree with the theoretical statement in Kumb-

hakar and Lovell (2000) because the firm size was actually relevant to model heteroskedasticity in the

idiosyncratic component of the error term.
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Example 2
We also test in example 2 of [R] frontier whether the firms use constant returns to scale. We can use

lincom as an alternative to perform an equivalent test based on the normal distribution.

. use https://www.stata-press.com/data/r18/frontier1, clear

. frontier lnoutput lnlabor lncapital, vhet(size)
(output omitted )

. lincom _b[lnlabor] + _b[lncapital]-1
( 1) [lnoutput]lnlabor + [lnoutput]lncapital = 1

lnoutput Coefficient Std. err. z P>|z| [95% conf. interval]

(1) .1022278 .5888511 0.17 0.862 -1.051899 1.256355

The 𝑝-value is exactly the same as the one we obtained with the test command in example 2 of

[R] frontier. However, notice that by using lincom, we obtained an estimate of the deviation from the

constant returns-to-scale assumption, which is not significantly different from zero in this case.

Reference
Kumbhakar, S. C., and C. A. K. Lovell. 2000. Stochastic Frontier Analysis. Cambridge: Cambridge University Press.

https://doi.org/10.1017/CBO9781139174411.

Also see
[R] frontier — Stochastic frontier models

[U] 20 Estimation and postestimation commands

https://doi.org/10.1017/CBO9781139174411


fvrevar — Factor-variables operator programming command

Description Quick start Syntax Options Remarks and examples Stored results
Also see

Description
fvrevar creates a variable list that includes equivalent, temporary variables in place of the factor

variables, interactions, or time-series–operated variables in varlist. The resulting variable list can be

used by commands that do not otherwise support factor variables or time-series–operated variables. The

resulting list also could be used in a program to speed execution at the cost of using more memory.

Quick start
Create temporary indicator variables for the levels of categorical variable a and store names in

r(varlist)
fvrevar i.a

Create temporary variables corresponding to the levels of a, b, and their interaction
fvrevar i.a##i.b

Same as above, and create a temporary variable for the lag of x using tsset data
fvrevar i.a##i.b L.x

Return the list of unoperated variables (a, b, and x) in r(varlist)
fvrevar i.a##i.b L.x, list

Create new variables a 1, a 2, . . . , corresponding to the levels of a
fvrevar i.a, stub(a )

Create new variables ab 1, ab 2, . . . , corresponding to the levels of the interaction between a and b
fvrevar i.a#i.b, stub(ab )

934
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Syntax
fvrevar [ varlist ] [ if ] [ in ] [ , substitute tsonly list stub(stub) ]

You must tsset your data before using fvrevar if varlist contains time-series operators; see [TS] tsset.
collect is allowed; see [U] 11.1.10 Prefix commands.

Options
substitute specifies that equivalent, temporary variables be substituted for any factor variables, in-

teractions, or time-series–operated variables in varlist. substitute is the default action taken by

fvrevar; you do not need to specify the option.

tsonly specifies that equivalent, temporary variables be substituted for only the time-series–operated
variables in varlist.

list specifies that all factor-variable operators and time-series operators be removed from varlist and

the resulting list of base variables be returned in r(varlist). No new variables are created with this

option.

stub(stub) specifies that fvrevar generate named variables instead of temporary variables. The new
variables will be named stub#.

Remarks and examples
fvrevar might create no new variables, one new variable, or many new variables, depending on

the number of factor variables, interactions, and time-series operators appearing in varlist. Any new

variables created are temporary. The new, equivalent varlist is returned in r(varlist). The new varlist

corresponds one to one with the original varlist.

Example 1
Typing

. use https://www.stata-press.com/data/r18/auto2

. fvrevar i.rep78 mpg turn

creates five temporary variables corresponding to the levels of rep78. No new variables are created for

variables mpg and turn because they do not contain factor-variable or time-series operators.

The resulting variable list is

. display ”‘r(varlist)’”
000000 000001 000002 000003 000004 mpg turn

(Your temporary variable names may be different, but that is of no consequence.)

Temporary variables automatically vanish when the program concludes.
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Example 2
Suppose we want to create temporary variables for specific levels of a factor variable. To do this, we

can use the parenthesis notation of factor-variable syntax.

. fvrevar i(2,3)bn.rep78 mpg

creates two temporary variables corresponding to levels 2 and 3 of rep78. Notice that we specified that
neither level 2 nor 3 be set as the base level by using the bn notation. If we did not specify bn, level 2
would have been treated as the base level.

The resulting variable list is

. display ”‘r(varlist)’”
000005 000002 mpg

We can see the results by listing the new variables alongside the original value of rep78.

. list rep78 ‘r(varlist)’ in 1/5

rep78 __000005 __000002 mpg

1. Average 0 1 22
2. Average 0 1 17
3. . . . 22
4. Average 0 1 20
5. Good 0 0 15

If we had needed only the base-variable names, we could have specified

. fvrevar i(2,3)bn.rep78 mpg, list

. display ”‘r(varlist)’”
mpg rep78

The order of the list will probably differ from that of the original list; base variables are listed only once.

Example 3
Now let’s assume we have a varlist containing both an interaction and time-series–operated variables.

If we want to create temporary variables for the entire equivalent varlist, we can specify fvrevar with
no options.

. generate t = _n

. tsset t
time variable: t, 1 to 74

delta: 1 unit
. fvrevar c.turn#i(2,3).rep78 L.mpg

The resulting variable list is

. display ”‘r(varlist)’”
000006 000007 000008
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If we want to create temporary variables only for the time-series–operated variables, we can specify

the tsonly option.

. fvrevar c.turn#i(2,3).rep78 L.mpg, tsonly

The resulting variable list is

. display ”‘r(varlist)’”
2.rep78#c.turn 3.rep78#c.turn __000008

Notice that fvrevar returned the expanded factor-variable list with the tsonly option.

Technical note
fvrevar, substitute avoids creating duplicate variables. Consider

. fvrevar i.rep78 turn mpg i.rep78

i.rep78 appears twice in the varlist. fvrevar will create only one set of new variables for the five

levels of rep78 and will use these new variables once in the resulting r(varlist). Moreover, fvrevar
will do this even across multiple calls:

. fvrevar i.rep78 turn mpg

. fvrevar i.rep78

i.rep78 appears in two separate calls. At the first call, fvrevar creates five temporary variables corre-
sponding to the five levels of rep78. At the second call, fvrevar remembers what it has done and uses
the same temporary variables for i.rep78.

Stored results
fvrevar stores the following in r():

Macros

r(varlist) the modified variable list or list of base-variable names

Also see
[TS] tsrevar — Time-series operator programming command

[P] fvexpand — Expand factor varlists

[P] syntax — Parse Stata syntax

[P] unab — Unabbreviate variable list

[U] 11 Language syntax

[U] 11.4.4 Time-series varlists

[U] 18 Programming Stata



fvset — Declare factor-variable settings

Description Quick start Syntax Options Remarks and examples Stored results

Description
fvset base, fvset design, and fvset clear manage factor-variable settings, which identify the

base level and specify how to accumulate statistics over levels. fvset base declares the base level for
each specified variable; the default for factor variables without a declared base level is the lowest value.

fvset design specifies how the margins command is to accumulate over the levels of a factor variable.
fvset clear removes factor-variable settings for each variable in varlist. fvset clear all removes
all factor-variable settings from all variables.

fvset report reports the current factor-variable settings for each variable in varlist. fvset without
arguments is a synonym for fvset report.

Quick start
Set the base category of categorical variable a1 to 3

fvset base 3 a1

Set the base category of a2, a3, and a4 to each variable’s largest observed value
fvset base last a2 a3 a4

Set the base category of a5 to the most frequent category
fvset base frequent a5

Set a6 to have no base category
fvset base none a6

Restore the default base category (first) for a5
fvset base default a5

Specify that margins should treat a2 as though it is balanced
fvset design asbalanced a2

Clear factor-variable settings for a2 to a4
fvset clear a2-a4

List factor-variable settings for all factor variables

fvset report

938
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Syntax
Declare base settings

fvset base base spec varlist

Declare design settings

fvset design design spec varlist

Clear the current settings

fvset clear varlist

Report the current settings

fvset report [ varlist ] [ , base(base spec) design(design spec) ]

base spec Description

default default base

first lowest level value; the default

last highest level value

frequent most frequent level value

none no base

# nonnegative integer value

design spec Description

default default design

asbalanced accumulate using 1/𝑘, 𝑘 = number of levels

asobserved accumulate using observed relative frequencies; the default

collect is allowed; see [U] 11.1.10 Prefix commands.

Options
base(base spec) restricts fvset report to report only the factor-variable settings for variables with

the specified base spec.

design(design spec) restricts fvset report to report only the factor-variable settings for variables

with the specified design spec.
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Remarks and examples

Example 1
Using auto2.dta, we include factor variable i.rep78 in a regression:

. use https://www.stata-press.com/data/r18/auto2
(1978 automobile data)
. regress mpg i.rep78, baselevels

Source SS df MS Number of obs = 69
F(4, 64) = 4.91

Model 549.415777 4 137.353944 Prob > F = 0.0016
Residual 1790.78712 64 27.9810488 R-squared = 0.2348

Adj R-squared = 0.1869
Total 2340.2029 68 34.4147485 Root MSE = 5.2897

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

rep78
Poor 0 (base)
Fair -1.875 4.181884 -0.45 0.655 -10.22927 6.479274

Average -1.566667 3.863059 -0.41 0.686 -9.284014 6.150681
Good .6666667 3.942718 0.17 0.866 -7.209818 8.543152

Excellent 6.363636 4.066234 1.56 0.123 -1.759599 14.48687

_cons 21 3.740391 5.61 0.000 13.52771 28.47229

We specified the baselevels option so that the base level would be included in the output. By

default, the first level is the base level. We can change the base level to 2:

. fvset base 2 rep78

. regress mpg i.rep78, baselevels
Source SS df MS Number of obs = 69

F(4, 64) = 4.91
Model 549.415777 4 137.353944 Prob > F = 0.0016

Residual 1790.78712 64 27.9810488 R-squared = 0.2348
Adj R-squared = 0.1869

Total 2340.2029 68 34.4147485 Root MSE = 5.2897

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

rep78
Poor 1.875 4.181884 0.45 0.655 -6.479274 10.22927
Fair 0 (base)

Average .3083333 2.104836 0.15 0.884 -3.896559 4.513226
Good 2.541667 2.247695 1.13 0.262 -1.948621 7.031954

Excellent 8.238636 2.457918 3.35 0.001 3.32838 13.14889

_cons 19.125 1.870195 10.23 0.000 15.38886 22.86114
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Let’s set rep78 to have no base level and fit a cell-means regression:

. fvset base none rep78

. regress mpg i.rep78, noconstant
Source SS df MS Number of obs = 69

F(5, 64) = 227.47
Model 31824.2129 5 6364.84258 Prob > F = 0.0000

Residual 1790.78712 64 27.9810488 R-squared = 0.9467
Adj R-squared = 0.9426

Total 33615 69 487.173913 Root MSE = 5.2897

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

rep78
Poor 21 3.740391 5.61 0.000 13.52771 28.47229
Fair 19.125 1.870195 10.23 0.000 15.38886 22.86114

Average 19.43333 .9657648 20.12 0.000 17.504 21.36267
Good 21.66667 1.246797 17.38 0.000 19.1759 24.15743

Excellent 27.36364 1.594908 17.16 0.000 24.17744 30.54983

Example 2
By default, margins assumes that factor variables are to be treated asobserved and accumulates a

margin by using the observed relative frequencies of the factor levels or the sum of the weights if weights

have been specified.

. regress mpg i.foreign
Source SS df MS Number of obs = 74

F(1, 72) = 13.18
Model 378.153515 1 378.153515 Prob > F = 0.0005

Residual 2065.30594 72 28.6848048 R-squared = 0.1548
Adj R-squared = 0.1430

Total 2443.45946 73 33.4720474 Root MSE = 5.3558

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

foreign
Foreign 4.945804 1.362162 3.63 0.001 2.230384 7.661225

_cons 19.82692 .7427186 26.70 0.000 18.34634 21.30751

. margins
Predictive margins Number of obs = 74
Model VCE: OLS
Expression: Linear prediction, predict()

Delta-method
Margin std. err. t P>|t| [95% conf. interval]

_cons 21.2973 .6226014 34.21 0.000 20.05616 22.53843
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Let’s set foreign to always accumulate using equal relative frequencies:

. fvset design asbalanced foreign

. regress mpg i.foreign
Source SS df MS Number of obs = 74

F(1, 72) = 13.18
Model 378.153515 1 378.153515 Prob > F = 0.0005

Residual 2065.30594 72 28.6848048 R-squared = 0.1548
Adj R-squared = 0.1430

Total 2443.45946 73 33.4720474 Root MSE = 5.3558

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

foreign
Foreign 4.945804 1.362162 3.63 0.001 2.230384 7.661225

_cons 19.82692 .7427186 26.70 0.000 18.34634 21.30751

. margins
Adjusted predictions Number of obs = 74
Model VCE: OLS
Expression: Linear prediction, predict()
At: foreign (asbalanced)

Delta-method
Margin std. err. t P>|t| [95% conf. interval]

_cons 22.29983 .6810811 32.74 0.000 20.94211 23.65754

Suppose that we issued the fvset design command earlier in our session and that we cannot remem-
ber which variables we set as asbalanced. We can retrieve this information by using the fvset report
command:

. fvset report, design(asbalanced)
Variable Base Design

foreign asbalanced
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Technical note
margins is aware of a factor variable’s design setting only through the estimation results it is working

with. The design setting is stored by the estimation command; thus changing the design setting between

the estimation command and margins will have no effect. For example, the output from the following

two calls to margins yields the same results:

. fvset clear foreign

. regress mpg i.foreign
Source SS df MS Number of obs = 74

F(1, 72) = 13.18
Model 378.153515 1 378.153515 Prob > F = 0.0005

Residual 2065.30594 72 28.6848048 R-squared = 0.1548
Adj R-squared = 0.1430

Total 2443.45946 73 33.4720474 Root MSE = 5.3558

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

foreign
Foreign 4.945804 1.362162 3.63 0.001 2.230384 7.661225

_cons 19.82692 .7427186 26.70 0.000 18.34634 21.30751

. margins
Predictive margins Number of obs = 74
Model VCE: OLS
Expression: Linear prediction, predict()

Delta-method
Margin std. err. t P>|t| [95% conf. interval]

_cons 21.2973 .6226014 34.21 0.000 20.05616 22.53843

. fvset design asbalanced foreign

. margins
Predictive margins Number of obs = 74
Model VCE: OLS
Expression: Linear prediction, predict()

Delta-method
Margin std. err. t P>|t| [95% conf. interval]

_cons 21.2973 .6226014 34.21 0.000 20.05616 22.53843

Stored results
fvset stores the following in r():

Macros

r(varlist) varlist

r(baselist) base setting for each variable in varlist

r(designlist) design setting for each variable in varlist



gllamm — Generalized linear and latent mixed models

Description Remarks and examples References Also see

Description
GLLAMM stands for generalized linear latent and mixed models, and gllamm is a Stata command for

fitting such models written by Sophia Rabe-Hesketh (University of California–Berkeley) as part of joint

work with Anders Skrondal (Norwegian Institute of Public Health) and Andrew Pickles (King’s College

London).

Remarks and examples
Generalized linear latent and mixed models are a class of multilevel latent variable models, where a

latent variable is a factor or a random effect (intercept or coefficient), or a disturbance (residual). The

gllamm command for fitting such models is not an official command of Stata; it has been independently
developed by highly regarded authors and is itself highly regarded. You can learn more about gllamm
by visiting http://www.gllamm.org.

gllamm is available from the Statistical Software Components (SSC) Archive. To install, type

. ssc describe gllamm

. ssc install gllamm

If you later wish to uninstall gllamm, type ado uninstall gllamm.

References
Miranda,A., and S. Rabe-Hesketh. 2006. Maximum likelihood estimation of endogenous switching and sample selection

models for binary, ordinal, and count variables. Stata Journal 6: 285–308.

Rabe-Hesketh, S., A. Pickles, and C. Taylor. 2000. sg129: Generalized linear latent and mixed models. Stata Technical

Bulletin 53: 47–57. Reprinted in Stata Technical Bulletin Reprints, vol. 9, pp. 293–307. College Station, TX: Stata

Press.

Rabe-Hesketh, S., andA. Skrondal. 2022.Multilevel and Longitudinal Modeling Using Stata. 4th ed. College Station, TX:

Stata Press.

Rabe-Hesketh, S., A. Skrondal, and A. Pickles. 2002. Reliable estimation of generalized linear mixed models using

adaptive quadrature. Stata Journal 2: 1–21.

———. 2003. Maximum likelihood estimation of generalized linear models with covariate measurement error. Stata

Journal 3: 386–411.

Skrondal, A., and S. Rabe-Hesketh. 2004. Generalized Latent Variable Modeling: Multilevel, Longitudinal, and Structural

Equation Models. Boca Raton, FL: Chapman and Hall/CRC.

Zheng, X., and S. Rabe-Hesketh. 2007. Estimating parameters of dichotomous and ordinal item response models with

gllamm. Stata Journal 7: 313–333.

The references above are restricted to works by the primary authors of gllamm. There are many other
books and articles that use or discuss gllamm; see http://www.gllamm.org/pub.html for a list.
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Also see
[ME] meglm — Multilevel mixed-effects generalized linear models

[ME] mixed — Multilevel mixed-effects linear regression

[SEM] Intro 2 — Learning the language: Path diagrams and command language

[SEM] Intro 5 — Tour of models



glm — Generalized linear models

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Acknowledgments References Also see

Description
glm fits generalized linear models. It can fit models by using either IRLS (maximum quasilikelihood)

or Newton–Raphson (maximum likelihood) optimization, which is the default.

See [U] 27 Overview of Stata estimation commands for a description of all of Stata’s estimation

commands, several of which fit models that can also be fit using glm.

Quick start
Model of y as a function of x when y is a proportion

glm y x, family(binomial)

Logit model of y events occurring in 15 trials as a function of x
glm y x, family(binomial 15) link(logit)

Probit model of y events as a function of x using grouped data with group sizes n
glm y x, family(binomial n) link(probit)

Model of discrete y with user-defined family myfamily and link mylink
glm y x, family(myfamily) link(mylink)

Bootstrap standard errors in a model of y as a function of x with a gamma family and log link
glm y x, family(gamma) link(log) vce(bootstrap)

Menu
Statistics > Generalized linear models > Generalized linear models (GLM)
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Syntax
glm depvar [ indepvars ] [ if ] [ in ] [weight ] [ , options ]

options Description

Model

family(familyname) distribution of depvar; default is family(gaussian)
link(linkname) link function; default is canonical link for family() specified

Model 2

noconstant suppress constant term

exposure(varname) include ln(varname) in model with coefficient constrained to 1

offset(varname) include varname in model with coefficient constrained to 1

constraints(constraints) apply specified linear constraints

asis retain perfect predictor variables

mu(varname) use varname as the initial estimate for the mean of depvar

init(varname) synonym for mu(varname)

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, eim, opg,
bootstrap, jackknife, hac kernel, jackknife1, or unbiased

vfactor(#) multiply variance matrix by scalar #

disp(#) quasilikelihood multiplier

scale(x2 | dev | #) set the scale parameter

Reporting

level(#) set confidence level; default is level(95)
eform report exponentiated coefficients

nocnsreport do not display constraints

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

ml use maximum likelihood optimization; the default

irls use iterated, reweighted least-squares optimization of the deviance

maximize options control the maximization process; seldom used

fisher(#) use the Fisher scoring Hessian or expected information matrix (EIM)

search search for good starting values

noheader suppress header table from above coefficient table

notable suppress coefficient table

nodisplay suppress the output; iteration log is still displayed

collinear keep collinear variables

coeflegend display legend instead of statistics
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familyname Description

gaussian Gaussian (normal)

igaussian inverse Gaussian

binomial [ varname𝑁 | #𝑁 ] Bernoulli/binomial

poisson Poisson

nbinomial [ #𝑘 | ml ] negative binomial

gamma gamma

linkname Description

identity identity

log log

logit logit

probit probit

cloglog cloglog

power # power

opower # odds power

nbinomial negative binomial

loglog log–log

logc log-complement

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.

bayes, bootstrap, by, collect, fmm, fp, jackknife, mfp, mi estimate, nestreg, rolling, statsby, stepwise, and
svy are allowed; see [U] 11.1.10 Prefix commands. For more details, see [BAYES] bayes: glm and [FMM] fmm: glm.

vce(bootstrap), vce(jackknife), and vce(jackknife1) are not allowed with the mi estimate prefix; see [MI] mi

estimate.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
aweights are not allowed with the jackknife prefix; see [R] jackknife.
vce(), vfactor(), disp(), scale(), irls, fisher(), noheader, notable, nodisplay, and weights are not allowed

with the svy prefix; see [SVY] svy.
fweights, aweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
noheader, notable, nodisplay, collinear, and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

family( familyname) specifies the distribution of depvar; family(gaussian) is the default.

link(linkname) specifies the link function; the default is the canonical link for the family() specified
(except for family(nbinomial)).
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� � �
Model 2 �

noconstant, exposure(varname), offset(varname), constraints(constraints); see [R] Estima-

tion options. constraints(constraints) is not allowed with irls.

asis forces retention of perfect predictor variables and their associated, perfectly predicted observations
andmay produce instabilities in maximization; see [R] probit. This option is allowed only with option

family(binomial) with a denominator of 1.

mu(varname) specifies varname as the initial estimate for the mean of depvar. This option can be useful
withmodels that experience convergence difficulties, such as family(binomial)models with power
or odds-power links. init(varname) is a synonym.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), that al-
low for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods

(bootstrap, jackknife); see [R] vce option.

In addition to the standard vcetypes, glm allows the following alternatives:

vce(eim) specifies that the EIM estimate of variance be used.

vce(jackknife1) specifies that the one-step jackknife estimate of variance be used.

vce(hac kernel [#]) specifies that a heteroskedasticity- and autocorrelation-consistent (HAC) vari-

ance estimate be used. HAC refers to the general form for combining weighted matrices to form

the variance estimate. There are three kernels built into glm. kernel is a user-written program or

one of

nwest | gallant | anderson
# specifies the number of lags. If # is not specified, 𝑁 − 2 is assumed. If you wish to specify

vce(hac ...), you must tsset your data before calling glm.

vce(unbiased) specifies that the unbiased sandwich estimate of variance be used.

vfactor(#) specifies a scalar by which to multiply the resulting variance matrix. This option allows
you to match output with other packages, which may apply degrees of freedom or other small-sample

corrections to estimates of variance.

disp(#)multiplies the variance of depvar by # and divides the deviance by #. The resulting distributions
are members of the quasilikelihood family. This option is allowed only with option irls.

scale(x2 | dev | #) overrides the default scale parameter. This option is allowed only with Hessian

(information matrix) variance estimates.

By default, scale(1) is assumed for the discrete distributions (binomial, Poisson, and negative bi-
nomial), and scale(x2) is assumed for the continuous distributions (Gaussian, gamma, and inverse
Gaussian).

scale(x2) specifies that the scale parameter be set to the Pearson 𝜒2 (or generalized 𝜒2) statistic

divided by the residual degrees of freedom, which is recommended by McCullagh and Nelder (1989)

as a good general choice for continuous distributions.
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scale(dev) sets the scale parameter to the deviance divided by the residual degrees of freedom.

This option provides an alternative to scale(x2) for continuous distributions and overdispersed or
underdispersed discrete distributions. This option is allowed only with option irls.

scale(#) sets the scale parameter to #. For example, using scale(1) in family(gamma) mod-

els results in exponential-errors regression. Additional use of link(log) rather than the default

link(power -1) for family(gamma) essentially reproduces Stata’s streg, dist(exp) nohr com-
mand (see [ST] streg) if all the observations are uncensored.

� � �
Reporting �

level(#); see [R] Estimation options.

eform displays the exponentiated coefficients and corresponding standard errors and confidence in-

tervals. For family(binomial) link(logit) (that is, logistic regression), exponentiation re-

sults are odds ratios; for family(nbinomial) link(log) (that is, negative binomial regression)

and for family(poisson) link(log) (that is, Poisson regression), exponentiated coefficients are
incidence-rate ratios.

nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Maximization �

ml requests that optimization be carried out using Stata’s ml commands and is the default.

irls requests iterated, reweighted least-squares (IRLS) optimization of the deviance instead of New-

ton–Raphson optimization of the log likelihood. If the irls option is not specified, the optimization
is carried out using Stata’s ml commands, in which case all options of ml maximize are also available.

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. These options are

seldom used.

Setting the optimization method to technique(bhhh) resets the default vcetype to vce(opg).

If option irls is specified, only maximize options iterate(), nolog, trace, and ltolerance()
are allowed. With irls specified, the convergence criterion is satisfied when the absolute

change in deviance from one iteration to the next is less than or equal to ltolerance(), where
ltolerance(1e-6) is the default.

fisher(#) specifies the number of Newton–Raphson steps that should use the Fisher scoring Hessian
or EIM before switching to the observed information matrix (OIM). This option is useful only for

Newton–Raphson optimization (and not when using irls).

search specifies that the command search for good starting values. This option is useful only for New-
ton–Raphson optimization (and not when using irls).
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The following options are available with glm but are not shown in the dialog box:

noheader suppresses the header information from the output. The coefficient table is still displayed.

notable suppresses the table of coefficients from the output. The header information is still displayed.

nodisplay suppresses the output. The iteration log is still displayed.

collinear, coeflegend; see [R] Estimation options. collinear is not allowed with irls.

Remarks and examples
Remarks are presented under the following headings:

General use
Variance estimators
User-defined functions

General use
glm fits generalized linear models of 𝑦 with covariates x:

𝑔{𝐸(𝑦)} = xβ, 𝑦 ∼ 𝐹

𝑔( ) is called the link function, and 𝐹 is the distributional family. Substituting various definitions for 𝑔( )
and 𝐹 results in a surprising array of models. For instance, if 𝑦 is distributed as Gaussian (normal) and
𝑔( ) is the identity function, we have

𝐸(𝑦) = xβ, 𝑦 ∼ Normal

or linear regression. If 𝑔( ) is the logit function and 𝑦 is distributed as Bernoulli, we have

logit{𝐸(𝑦)} = xβ, 𝑦 ∼ Bernoulli

or logistic regression. If 𝑔( ) is the natural log function and 𝑦 is distributed as Poisson, we have

ln{𝐸(𝑦)} = xβ, 𝑦 ∼ Poisson

or Poisson regression, also known as the log-linear model. Other combinations are possible.

Although glm can be used to perform linear regression (and, in fact, does so by default), this regression

should be viewed as an instructional feature; regress produces such estimates more quickly, and many
postestimation commands are available to explore the adequacy of the fit; see [R] regress and [R] regress

postestimation.
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In any case, you specify the link function by using the link() option and specify the distributional
family by using family(). The available link functions are

Link function glm option

identity link(identity)
log link(log)
logit link(logit)
probit link(probit)
complementary log–log link(cloglog)
odds power link(opower #)
power link(power #)
negative binomial link(nbinomial)
log–log link(loglog)
log-complement link(logc)

Define 𝜇 = 𝐸(𝑦) and 𝜂 = 𝑔(𝜇), meaning that 𝑔(⋅) maps 𝐸(𝑦) to 𝜂 = xβ + offset.

Link functions are defined as follows:

identity is defined as 𝜂 = 𝑔(𝜇) = 𝜇.
log is defined as 𝜂 = ln(𝜇).
logit is defined as 𝜂 = ln{𝜇/(1 − 𝜇)}, the natural log of the odds.
probit is defined as 𝜂 = Φ−1(𝜇), where Φ−1( ) is the inverse Gaussian cumulative.
cloglog is defined as 𝜂 = ln{ − ln(1 − 𝜇)}.

opower is defined as 𝜂 = [{𝜇/(1− 𝜇)}𝑛 − 1]/𝑛, the power of the odds. The function is generalized
so that link(opower 0) is equivalent to link(logit), the natural log of the odds.

power is defined as 𝜂 = 𝜇𝑛. Specifying link(power 1) is equivalent to specifying

link(identity). The power function is generalized so that 𝜇0 ≡ ln(𝜇). Thus, link(power 0)
is equivalent to link(log). Negative powers are, of course, allowed.

nbinomial is defined as 𝜂 = ln{𝜇/(𝜇 + 𝑘)}, where 𝑘 = 1 if family(nbinomial) is speci-

fied, 𝑘 = #𝑘 if family(nbinomial #𝑘) is specified, and 𝑘 is estimated via maximum likelihood

if family(nbinomial ml) is specified.

loglog is defined as 𝜂 = −ln{−ln(𝜇)}.
logc is defined as 𝜂 = ln(1 − 𝜇).

The available distributional families are

Family glm option

Gaussian (normal) family(gaussian)
inverse Gaussian family(igaussian)
Bernoulli/binomial family(binomial)
Poisson family(poisson)
negative binomial family(nbinomial)
gamma family(gamma)

family(normal) is a synonym for family(gaussian).
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The binomial distribution can be specified as 1) family(binomial), 2) family(binomial #𝑁),
or 3) family(binomial varname𝑁). In case 2, #𝑁 is the value of the binomial denominator 𝑁, the

number of trials. Specifying family(binomial 1) is the same as specifying family(binomial). In
case 3, varname𝑁 is the variable containing the binomial denominator, allowing the number of trials to

vary across observations.

The negative binomial distribution can be specified as 1) family(nbinomial),
2) family(nbinomial #𝑘), or 3) family(nbinomial ml). Omitting #𝑘 is equivalent to speci-

fying family(nbinomial 1). In case 3, the value of #𝑘 is estimated via maximum likelihood. The

value #𝑘 enters the variance and deviance functions. Typical values range between 0.01 and 2; see the

technical note below.

You do not have to specify both family() and link(); the default link() is the canonical link for
the specified family() (except for nbinomial):

Family Default link

family(gaussian) link(identity)
family(igaussian) link(power -2)
family(binomial) link(logit)
family(poisson) link(log)
family(nbinomial) link(log)
family(gamma) link(power -1)

If you specify both family() and link(), not all combinations make sense. You may choose from the

following combinations:

identity log logit probit cloglog power opower nbinomial loglog logc

Gaussian x x x

inverse Gaussian x x x

binomial x x x x x x x x x

Poisson x x x

negative binomial x x x x

gamma x x x

Technical note
Some family() and link() combinations result in models already fit by Stata. These are

family() link() Options Equivalent Stata command

gaussian identity nothing | irls | irls vce(oim) regress
gaussian identity t(var) vce(hac nwest #) newey, t(var) lag(#) (see note 1)

vfactor(#𝑣)
binomial cloglog nothing | irls vce(oim) cloglog (see note 2)
binomial probit nothing | irls vce(oim) probit (see note 2)
binomial logit nothing | irls | irls vce(oim) logit or logistic (see note 3)
poisson log nothing | irls | irls vce(oim) poisson (see note 3)
nbinomial log nothing | irls vce(oim) nbreg (see note 4)
gamma log scale(1) streg, dist(exp) nohr (see note 5)
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Notes:

1. The variance factor #𝑣 should be set to 𝑛/(𝑛 − 𝑘), where 𝑛 is the number of observations and 𝑘 the

number of regressors. If the number of regressors is not specified, the estimated standard errors will,

as a result, differ by this factor.

2. Because the link is not the canonical link for the binomial family, you must specify the vce(oim)
option if using irls to get equivalent standard errors. If irls is used without vce(oim), the regres-
sion coefficients will be the same but the standard errors will be only asymptotically equivalent. If

no options are specified (nothing), glm will optimize using Newton–Raphson, making it equivalent
to the other Stata command.

See [R] cloglog and [R] probit for more details about these commands.

3. Because the canonical link is being used, the standard errors will be equivalent whether the EIM or the

OIM estimator of variance is used.

4. Family negative binomial, log-link models—also known as negative binomial regression mod-

els—are used for data with an overdispersed Poisson distribution. Although glm can be used to

fit such models, using Stata’s maximum likelihood nbreg command is probably better. In the GLM

approach, you specify family(nbinomial #𝑘) and then search for a #𝑘 that results in the deviance-

based dispersion being 1. You can also specify family(nbinomial ml) to estimate #𝑘 via maximum

likelihood, which will report the same value returned from nbreg. However, nbreg also reports a
confidence interval for it; see [R] nbreg and Rogers (1993). Of course, glm allows links other than
log, and for those links, including the canonical nbinomial link, you will need to use glm.

5. glm can be used to estimate parameters from exponential regressions, but this method requires spec-

ifying scale(1). However, censoring is not available. Censored exponential regression may be

modeled using glm with family(poisson). The log of the original response is entered into a Pois-
son model as an offset, whereas the new response is the censor variable. The result of such modeling

is identical to the log relative hazard parameterization of streg, dist(exp) nohr. See [ST] streg
for details about the streg command.

In general, where there is overlap between a capability of glm and that of some other Stata command,
we recommend using the other Stata command. Our recommendation is not because of some inferiority

of the GLM approach. Rather, those other commands, by being specialized, provide options and ancillary

commands that are missing in the broader glm framework. Nevertheless, glm does produce the same

answers where it should.

Special note. When equivalence is expected, for some datasets, you may still see very slight differences

in the results, most often only in the later digits of the standard errors. When you compare glm output
to an equivalent Stata command, these tiny discrepancies arise for many reasons:

a. glm uses a general methodology for starting values, whereas the equivalent Stata command may be
more specialized in its treatment of starting values.

b. When using a canonical link, glm, irls should be equivalent to the maximum likelihood method of

the equivalent Stata command, yet the convergence criterion is different (one is for deviance, the other

for log likelihood). These discrepancies are easily resolved by adjusting one convergence criterion to

correspond to the other.
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c. When both glm and the equivalent Stata command use Newton–Raphson, small differences may still
occur if the Stata command has a different default convergence criterion from that of glm. Adjusting
the convergence criterion will resolve the difference. See [R]ml and [R]Maximize for more details.

Example 1
In example 1 of [R] logistic, we fit a model based on data from a study of risk factors associated with

low birthweight (Hosmer, Lemeshow, and Sturdivant 2013, 24). We can replicate the estimation by using

glm:

. use https://www.stata-press.com/data/r18/lbw
(Hosmer & Lemeshow data)
. glm low age lwt i.race smoke ptl ht ui, family(binomial) link(logit)
Iteration 0: Log likelihood = -101.0213
Iteration 1: Log likelihood = -100.72519
Iteration 2: Log likelihood = -100.724
Iteration 3: Log likelihood = -100.724
Generalized linear models Number of obs = 189
Optimization : ML Residual df = 180

Scale parameter = 1
Deviance = 201.4479911 (1/df) Deviance = 1.119156
Pearson = 182.0233425 (1/df) Pearson = 1.011241
Variance function: V(u) = u*(1-u) [Bernoulli]
Link function : g(u) = ln(u/(1-u)) [Logit]

AIC = 1.1611
Log likelihood = -100.7239956 BIC = -742.0665

OIM
low Coefficient std. err. z P>|z| [95% conf. interval]

age -.0271003 .0364504 -0.74 0.457 -.0985418 .0443412
lwt -.0151508 .0069259 -2.19 0.029 -.0287253 -.0015763

race
Black 1.262647 .5264101 2.40 0.016 .2309024 2.294392
Other .8620792 .4391532 1.96 0.050 .0013548 1.722804

smoke .9233448 .4008266 2.30 0.021 .137739 1.708951
ptl .5418366 .346249 1.56 0.118 -.136799 1.220472
ht 1.832518 .6916292 2.65 0.008 .4769494 3.188086
ui .7585135 .4593768 1.65 0.099 -.1418484 1.658875

_cons .4612239 1.20459 0.38 0.702 -1.899729 2.822176

glm, by default, presents coefficient estimates, whereas logistic presents the exponentiated coeffi-

cients—the odds ratios. glm’s eform option reports exponentiated coefficients, and glm, like Stata’s
other estimation commands, replays results.



glm — Generalized linear models 956

. glm, eform
Generalized linear models Number of obs = 189
Optimization : ML Residual df = 180

Scale parameter = 1
Deviance = 201.4479911 (1/df) Deviance = 1.119156
Pearson = 182.0233425 (1/df) Pearson = 1.011241
Variance function: V(u) = u*(1-u) [Bernoulli]
Link function : g(u) = ln(u/(1-u)) [Logit]

AIC = 1.1611
Log likelihood = -100.7239956 BIC = -742.0665

OIM
low Odds ratio std. err. z P>|z| [95% conf. interval]

age .9732636 .0354759 -0.74 0.457 .9061578 1.045339
lwt .9849634 .0068217 -2.19 0.029 .9716834 .9984249

race
Black 3.534767 1.860737 2.40 0.016 1.259736 9.918406
Other 2.368079 1.039949 1.96 0.050 1.001356 5.600207

smoke 2.517698 1.00916 2.30 0.021 1.147676 5.523162
ptl 1.719161 .5952579 1.56 0.118 .8721455 3.388787
ht 6.249602 4.322408 2.65 0.008 1.611152 24.24199
ui 2.1351 .9808153 1.65 0.099 .8677528 5.2534

_cons 1.586014 1.910496 0.38 0.702 .1496092 16.8134

Note: _cons estimates baseline odds.

These results are the same as those reported in example 1 of [R] logistic.

Included in the output header are values for the Akaike (1973) information criterion (AIC) and the

Bayesian information criterion (BIC) (Raftery 1995). Both are measures of model fit adjusted for the

number of parameters that can be compared across models. In both cases, a smaller value generally

indicates a better model fit. AIC is based on the log likelihood and thus is available only when New-

ton–Raphson optimization is used. BIC is based on the deviance and thus is always available.

Technical note
The values forAIC and BIC reported in the output after glm are different from those reported by estat

ic:

. estat ic
Akaike’s information criterion and Bayesian information criterion

Model N ll(null) ll(model) df AIC BIC

. 189 . -100.724 9 219.448 248.6237

Note: BIC uses N = number of observations. See [R] IC note.
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There are various definitions of these information criteria (IC) in the literature; glm and estat ic
use different definitions. glm bases its computation of the BIC on deviance, whereas estat ic uses the
likelihood. Both glm and estat ic use the likelihood to compute theAIC; however, theAIC from estat
ic is equal to 𝑁, the number of observations, times the AIC from glm. Refer to Methods and formulas

in this entry and [R] estat ic for the references and formulas used by glm and estat ic, respectively, to
compute AIC and BIC. Inferences based on comparison of IC values reported by glm for different GLM
models will be equivalent to those based on comparison of IC values reported by estat ic after glm.

Example 2
We use data from an early insecticide experiment, given in Pregibon (1980). The variables are ldose,

the log dose of insecticide; n, the number of flour beetles subjected to each dose; and r, the number killed.

. use https://www.stata-press.com/data/r18/ldose

. list, sep(4)

ldose n r

1. 1.6907 59 6
2. 1.7242 60 13
3. 1.7552 62 18
4. 1.7842 56 28

5. 1.8113 63 52
6. 1.8369 59 53
7. 1.861 62 61
8. 1.8839 60 60

The aim of the analysis is to estimate a dose–response relationship between 𝑝, the proportion killed,
and 𝑋, the log dose.

As a first attempt, we will formulate the model as a linear logistic regression of 𝑝 on ldose; that is,
we will take the logit of 𝑝 and represent the dose–response curve as a straight line in 𝑋:

ln{𝑝/(1 − 𝑝)} = 𝛽0 + 𝛽1𝑋
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Because the data are grouped, we cannot use Stata’s logistic command to fit the model. Instead, we
will fit the model by using glm:

. glm r ldose, family(binomial n) link(logit)
Iteration 0: Log likelihood = -18.824848
Iteration 1: Log likelihood = -18.715271
Iteration 2: Log likelihood = -18.715123
Iteration 3: Log likelihood = -18.715123
Generalized linear models Number of obs = 8
Optimization : ML Residual df = 6

Scale parameter = 1
Deviance = 11.23220702 (1/df) Deviance = 1.872035
Pearson = 10.0267936 (1/df) Pearson = 1.671132
Variance function: V(u) = u*(1-u/n) [Binomial]
Link function : g(u) = ln(u/(n-u)) [Logit]

AIC = 5.178781
Log likelihood = -18.71512262 BIC = -1.244442

OIM
r Coefficient std. err. z P>|z| [95% conf. interval]

ldose 34.27034 2.912141 11.77 0.000 28.56265 39.97803
_cons -60.71747 5.180713 -11.72 0.000 -70.87149 -50.56346

We specified family(binomial n), meaning that variable n contains the denominator.

An alternative model, which gives asymmetric sigmoid curves for 𝑝, involves the complementary
log–log, or cloglog, function:

ln{− ln(1 − 𝑝)} = 𝛽0 + 𝛽1𝑋

We fit this model by using glm:

. glm r ldose, family(binomial n) link(cloglog)
Iteration 0: Log likelihood = -14.883594
Iteration 1: Log likelihood = -14.822264
Iteration 2: Log likelihood = -14.822228
Iteration 3: Log likelihood = -14.822228
Generalized linear models Number of obs = 8
Optimization : ML Residual df = 6

Scale parameter = 1
Deviance = 3.446418004 (1/df) Deviance = .574403
Pearson = 3.294675153 (1/df) Pearson = .5491125
Variance function: V(u) = u*(1-u/n) [Binomial]
Link function : g(u) = ln(-ln(1-u/n)) [Complementary log--log]

AIC = 4.205557
Log likelihood = -14.82222811 BIC = -9.030231

OIM
r Coefficient std. err. z P>|z| [95% conf. interval]

ldose 22.04118 1.793089 12.29 0.000 18.52679 25.55557
_cons -39.57232 3.229047 -12.26 0.000 -45.90114 -33.24351

The cloglog model is preferred; the deviance for the logistic model, 11.23, is much higher than the

deviance for the cloglog model, 3.45. This change also is evident by comparing log likelihoods, or

equivalently, AIC values.
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This example also shows the advantage of the glm command—we can vary assumptions easily. Note

the minor difference in what we typed to obtain the logistic and cloglog models:

. glm r ldose, family(binomial n) link(logit)

. glm r ldose, family(binomial n) link(cloglog)

If we were performing this work for ourselves, we would have typed the commands in a more abbreviated

form:

. glm r ldose, f(b n) l(l)

. glm r ldose, f(b n) l(cl)

Technical note
Factor variables may be used with glm. Say that, in the example above, we had ldose, the log dose

of insecticide; n, the number of flour beetles subjected to each dose; and r, the number killed—all

as before—except that now we have results for three different kinds of beetles. Our hypothetical data

include beetle, which contains the values 1 (“Destructive flour”), 2 (“Red flour”), and 3 (“Mealworm”).

. use https://www.stata-press.com/data/r18/beetle

. list, sep(0)

beetle ldose n r

1. Destructive flour 1.6907 59 6
2. Destructive flour 1.7242 60 13
3. Destructive flour 1.7552 62 18
4. Destructive flour 1.7842 56 28
5. Destructive flour 1.8113 63 52

(output omitted )
23. Mealworm 1.861 64 23
24. Mealworm 1.8839 58 22
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Let’s assume that, at first, we wish merely to add a shift factor for the type of beetle. We could type

. glm r i.beetle ldose, family(bin n) link(cloglog)
Iteration 0: Log likelihood = -79.012269
Iteration 1: Log likelihood = -76.94951
Iteration 2: Log likelihood = -76.945645
Iteration 3: Log likelihood = -76.945645
Generalized linear models Number of obs = 24
Optimization : ML Residual df = 20

Scale parameter = 1
Deviance = 73.76505595 (1/df) Deviance = 3.688253
Pearson = 71.8901173 (1/df) Pearson = 3.594506
Variance function: V(u) = u*(1-u/n) [Binomial]
Link function : g(u) = ln(-ln(1-u/n)) [Complementary log--log]

AIC = 6.74547
Log likelihood = -76.94564525 BIC = 10.20398

OIM
r Coefficient std. err. z P>|z| [95% conf. interval]

beetle
Red flour -.0910396 .1076132 -0.85 0.398 -.3019576 .1198783
Mealworm -1.836058 .1307125 -14.05 0.000 -2.09225 -1.579867

ldose 19.41558 .9954265 19.50 0.000 17.46458 21.36658
_cons -34.84602 1.79333 -19.43 0.000 -38.36089 -31.33116
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We find strong evidence that the insecticide works differently on the mealworm. We now check whether

the curve is merely shifted or also differently sloped:

. glm r beetle##c.ldose, family(bin n) link(cloglog)
Iteration 0: Log likelihood = -67.270188
Iteration 1: Log likelihood = -65.149316
Iteration 2: Log likelihood = -65.147978
Iteration 3: Log likelihood = -65.147978
Generalized linear models Number of obs = 24
Optimization : ML Residual df = 18

Scale parameter = 1
Deviance = 50.16972096 (1/df) Deviance = 2.787207
Pearson = 49.28422567 (1/df) Pearson = 2.738013
Variance function: V(u) = u*(1-u/n) [Binomial]
Link function : g(u) = ln(-ln(1-u/n)) [Complementary log--log]

AIC = 5.928998
Log likelihood = -65.14797776 BIC = -7.035248

OIM
r Coefficient std. err. z P>|z| [95% conf. interval]

beetle
Red flour -.79933 4.470882 -0.18 0.858 -9.562098 7.963438
Mealworm 17.78741 4.586429 3.88 0.000 8.798172 26.77664

ldose 22.04118 1.793089 12.29 0.000 18.52679 25.55557

beetle#c.ldose
Red flour .3838708 2.478477 0.15 0.877 -4.473855 5.241596
Mealworm -10.726 2.526412 -4.25 0.000 -15.67768 -5.774321

_cons -39.57232 3.229047 -12.26 0.000 -45.90114 -33.24351

We find that the (complementary log–log) dose–response curve for the mealworm has roughly half the

slope of that for the destructive flour beetle.

See [U] 26Working with categorical data and factor variables; what is said there concerning linear

regression is applicable to any GLM model.
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Variance estimators
glm offers many variance options and gives different types of standard errors when used in various

combinations. We highlight some of them here, but for a full explanation, see Hardin and Hilbe (2018).

Example 3
Continuingwith our flour beetle data, we rerun themost recently displayedmodel, this time requesting

estimation via IRLS.

. use https://www.stata-press.com/data/r18/beetle

. glm r beetle##c.ldose, f(bin n) l(cloglog) ltol(1e-13) irls
Iteration 1: Deviance = 54.41414
Iteration 2: Deviance = 50.19424
Iteration 3: Deviance = 50.16973
(output omitted )

Generalized linear models Number of obs = 24
Optimization : MQL Fisher scoring Residual df = 18

(IRLS EIM) Scale parameter = 1
Deviance = 50.16972096 (1/df) Deviance = 2.787207
Pearson = 49.28422528 (1/df) Pearson = 2.738013
Variance function: V(u) = u*(1-u/n) [Binomial]
Link function : g(u) = ln(-ln(1-u/n)) [Complementary log--log]

BIC = -7.035248

EIM
r Coefficient std. err. z P>|z| [95% conf. interval]

beetle
Red flour -.79933 4.586649 -0.17 0.862 -9.788997 8.190337
Mealworm 17.78741 4.624834 3.85 0.000 8.7229 26.85192

ldose 22.04118 1.799356 12.25 0.000 18.5145 25.56785

beetle#c.ldose
Red flour .3838708 2.544068 0.15 0.880 -4.602411 5.370152
Mealworm -10.726 2.548176 -4.21 0.000 -15.72033 -5.731665

_cons -39.57232 3.240274 -12.21 0.000 -45.92314 -33.2215

Note our use of the ltol() option, which, although unrelated to our discussion on variance estimation,
was used so that the regression coefficients would match those of the previous Newton–Raphson (NR)

fit.
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Because IRLS uses the EIM for optimization, the variance estimate is also based on EIM. If we want

optimization via IRLS but the variance estimate based on OIM, we specify glm, irls vce(oim):

. glm r beetle##c.ldose, f(b n) l(cl) ltol(1e-15) irls vce(oim) noheader nolog

OIM
r Coefficient std. err. z P>|z| [95% conf. interval]

beetle
Red flour -.79933 4.470882 -0.18 0.858 -9.562098 7.963438
Mealworm 17.78741 4.586429 3.88 0.000 8.798172 26.77664

ldose 22.04118 1.793089 12.29 0.000 18.52679 25.55557

beetle#c.ldose
Red flour .3838708 2.478477 0.15 0.877 -4.473855 5.241596
Mealworm -10.726 2.526412 -4.25 0.000 -15.67768 -5.774321

_cons -39.57232 3.229047 -12.26 0.000 -45.90114 -33.24351

This approach is identical to NR except for the convergence path. Because the cloglog link is not the

canonical link for the binomial family, EIM and OIM produce different results. Both estimators, however,

are asymptotically equivalent.

Going back to NR, we can also specify vce(robust) to get the Huber/White/sandwich estimator of

variance:

. glm r beetle##c.ldose, f(b n) l(cl) vce(robust) noheader nolog

Robust
r Coefficient std. err. z P>|z| [95% conf. interval]

beetle
Red flour -.79933 5.733049 -0.14 0.889 -12.0359 10.43724
Mealworm 17.78741 5.158477 3.45 0.001 7.676977 27.89784

ldose 22.04118 .8998551 24.49 0.000 20.27749 23.80486

beetle#c.ldose
Red flour .3838708 3.174427 0.12 0.904 -5.837892 6.605633
Mealworm -10.726 2.800606 -3.83 0.000 -16.21508 -5.236912

_cons -39.57232 1.621306 -24.41 0.000 -42.75003 -36.39462

The sandwich estimator gets its name from the form of the calculation—it is the multiplication of

three matrices, with the outer two matrices (the “bread”) set to the OIM variance matrix. When irls
is used along with vce(robust), the EIM variance matrix is instead used as the bread. Using a result

from McCullagh and Nelder (1989), Newson (1999) points out that the EIM and OIM variance matrices

are equivalent under the canonical link. Thus if irls is specified with the canonical link, the resulting
variance is labeled “Robust”. When the noncanonical link for the family is used, which is the case

in the example below, the EIM and OIM variance matrices differ, so the resulting variance is labeled

“Semirobust”.
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. glm r beetle##c.ldose, f(b n) l(cl) irls ltol(1e-15) vce(robust) noheader
> nolog

Semirobust
r Coefficient std. err. z P>|z| [95% conf. interval]

beetle
Red flour -.79933 6.288963 -0.13 0.899 -13.12547 11.52681
Mealworm 17.78741 5.255307 3.38 0.001 7.487194 28.08762

ldose 22.04118 .9061566 24.32 0.000 20.26514 23.81721

beetle#c.ldose
Red flour .3838708 3.489723 0.11 0.912 -6.455861 7.223603
Mealworm -10.726 2.855897 -3.76 0.000 -16.32345 -5.128542

_cons -39.57232 1.632544 -24.24 0.000 -42.77205 -36.3726

The outer product of the gradient (OPG) estimate of variance is one that avoids the calculation of

second derivatives. It is equivalent to the “middle” part of the sandwich estimate of variance and can be

specified by using glm, vce(opg), regardless of whether NR or IRLS optimization is used.

. glm r beetle##c.ldose, f(b n) l(cl) vce(opg) noheader nolog

OPG
r Coefficient std. err. z P>|z| [95% conf. interval]

beetle
Red flour -.79933 6.664045 -0.12 0.905 -13.86062 12.26196
Mealworm 17.78741 6.838505 2.60 0.009 4.384183 31.19063

ldose 22.04118 3.572983 6.17 0.000 15.03826 29.0441

beetle#c.ldose
Red flour .3838708 3.700192 0.10 0.917 -6.868372 7.636114
Mealworm -10.726 3.796448 -2.83 0.005 -18.1669 -3.285097

_cons -39.57232 6.433101 -6.15 0.000 -52.18097 -26.96368

The OPG estimate of variance is a component of the BHHH (Berndt et al. 1974) optimization technique.

This method of optimization is also available with glm with the technique() option; however, the

technique() option is not allowed with the irls option.

Example 4
The Newey–West (1987) estimator of variance is a sandwich estimator with the “middle” of the

sandwich modified to account for possible autocorrelation between the observations. These estimators

are a generalization of those given by the Stata command newey for linear regression. See [TS] newey
for more details.
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For example, consider the dataset given in [TS] newey, which has time-series measurements on usr
and idle. We want to perform a linear regression with Newey–West standard errors.

. use https://www.stata-press.com/data/r18/idle2

. list usr idle time

usr idle time

1. 0 100 1
2. 0 100 2
3. 0 97 3
4. 1 98 4
5. 2 94 5

(output omitted )
29. 1 98 29
30. 1 98 30

Examining Methods and formulas of [TS] newey, we see that the variance estimate is multiplied by a

correction factor of 𝑛/(𝑛 − 𝑘), where 𝑘 is the number of regressors. glm, vce(hac . . .) does not make
this correction, so to get the same standard errors, we must use the vfactor() option within glm to make
the correction manually.

. display 30/28
1.0714286
. tsset time
Time variable: time, 1 to 30

Delta: 1 unit
. glm usr idle, vce(hac nwest 3) vfactor(1.0714286)
Iteration 0: Log likelihood = -71.743396
Generalized linear models Number of obs = 30
Optimization : ML Residual df = 28

Scale parameter = 7.493297
Deviance = 209.8123165 (1/df) Deviance = 7.493297
Pearson = 209.8123165 (1/df) Pearson = 7.493297
Variance function: V(u) = 1 [Gaussian]
Link function : g(u) = u [Identity]
HAC kernel (lags): Newey--West (3)

AIC = 4.916226
Log likelihood = -71.74339627 BIC = 114.5788

HAC
usr Coefficient std. err. z P>|z| [95% conf. interval]

idle -.2281501 .0690928 -3.30 0.001 -.3635694 -.0927307
_cons 23.13483 6.327033 3.66 0.000 10.73407 35.53558

The glm command above reproduces the results given in [TS] newey. We may now generalize this output

to models other than simple linear regression and to different kernel weights.
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. glm usr idle, fam(gamma) link(log) vce(hac gallant 3)
Iteration 0: Log likelihood = -61.76593
Iteration 1: Log likelihood = -60.963233
Iteration 2: Log likelihood = -60.95097
Iteration 3: Log likelihood = -60.950965
Generalized linear models Number of obs = 30
Optimization : ML Residual df = 28

Scale parameter = .431296
Deviance = 9.908506707 (1/df) Deviance = .3538752
Pearson = 12.07628677 (1/df) Pearson = .431296
Variance function: V(u) = u^2 [Gamma]
Link function : g(u) = ln(u) [Log]
HAC kernel (lags): Gallant (3)

AIC = 4.196731
Log likelihood = -60.95096484 BIC = -85.32502

HAC
usr Coefficient std. err. z P>|z| [95% conf. interval]

idle -.0796609 .0184647 -4.31 0.000 -.115851 -.0434708
_cons 7.771011 1.510198 5.15 0.000 4.811078 10.73094

glm also offers variance estimators based on the bootstrap (resampling your data with replacement)
and the jackknife (refitting the model with each observation left out in succession). Also included is

the one-step jackknife estimate, which, instead of performing full reestimation when each observation is

omitted, calculates a one-step NR estimate, with the full data regression coefficients as starting values.

. set seed 1

. glm usr idle, fam(gamma) link(log) vce(bootstrap, reps(100) nodots)
Generalized linear models Number of obs = 30
Optimization : ML Residual df = 28

Scale parameter = .431296
Deviance = 9.908506707 (1/df) Deviance = .3538752
Pearson = 12.07628677 (1/df) Pearson = .431296
Variance function: V(u) = u^2 [Gamma]
Link function : g(u) = ln(u) [Log]

AIC = 4.196731
Log likelihood = -60.95096484 BIC = -85.32502

Observed Bootstrap Normal-based
usr coefficient std. err. z P>|z| [95% conf. interval]

idle -.0796609 .016657 -4.78 0.000 -.1123081 -.0470137
_cons 7.771011 1.378037 5.64 0.000 5.070108 10.47192

See Hardin and Hilbe (2018) for a full discussion of the variance options that go with glm and, in par-
ticular, of how the different variance estimators are modified when vce(cluster clustvar) is specified.
Finally, not all variance options are supported with all types of weights. See help glm for a current table
of the variance options that are supported with the different weights.
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User-defined functions
glm may be called with a community-contributed link function, variance (family) function,

Newey–West kernel-weight function, or any combination of the three.

Syntax of link functions

program progname
version 18.0 // (or version 18.5 for StataNow)
args todo eta mu return

if ‘todo’ == -1 {
/* Set global macros for output */
global SGLM_lt ”title for link function”
global SGLM_lf ”subtitle showing link definition”
exit

}
if ‘todo’ == 0 {

/* set 𝜂 = 𝑔(𝜇) */
/* Intermediate calculations go here */
generate double ‘eta’ = . . .
exit

}
if ‘todo’ == 1 {

/* set 𝜇 = 𝑔−1(𝜂) */
/* Intermediate calculations go here */
generate double ‘mu’ = . . .
exit

}
if ‘todo’ == 2 {

/* set return= 𝜕𝜇/𝜕𝜂 */
/* Intermediate calculations go here */
generate double ‘return’ = . . .
exit

}
if ‘todo’ == 3 {

/* set return= 𝜕2𝜇/𝜕𝜂2 */
/* Intermediate calculations go here */
generate double ‘return’ = . . .
exit

}
display as error ”Unknown call to glm link function”
exit 198

end
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Syntax of variance functions

program progname
version 18.0 // (or version 18.5 for StataNow)
args todo eta mu return

if ‘todo’ == -1 {
/* Set global macros for output */
/* Also check that depvar is in proper range */
/* Note: For this call, eta contains indicator for whether each obs. is in est. sample */
global SGLM_vt ”title for variance function”
global SGLM_vf ”subtitle showing function definition”
global SGLM_mu ”program to call to enforce boundary conditions on 𝜇”
exit

}
if ‘todo’ == 0 {

/* set 𝜂 to initial value. */
/* Intermediate calculations go here */
generate double ‘eta’ = . . .
exit

}
if ‘todo’ == 1 {

/* set return = 𝑉 (𝜇) */
/* Intermediate calculations go here */
generate double ‘return’ = . . .
exit

}
if ‘todo’ == 2 {

/* set return = 𝜕𝑉 (𝜇)/𝜕𝜇 */
/* Intermediate calculations go here */
generate double ‘return’ = . . .
exit

}
if ‘todo’ == 3 {

/* set return = squared deviance (per observation) */
/* Intermediate calculations go here */
generate double ‘return’ = . . .
exit

}
if ‘todo’ == 4 {

/* set return = Anscombe residual */
/* Intermediate calculations go here */
generate double ‘return’ = . . .
exit

}
if ‘todo’ == 5 {

/* set return = log likelihood */
/* Intermediate calculations go here */
generate double ‘return’ = . . .
exit

}
if ‘todo’ == 6 {

/* set return = adjustment for deviance residuals */
/* Intermediate calculations go here */
generate double ‘return’ = . . .
exit

}
display as error ”Unknown call to glm variance function”
exit 198

end
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Syntax of Newey–West kernel-weight functions

program progname, rclass
version 18.0 // (or version 18.5 for StataNow)
args G j
/* G is the maximum lag */
/* j is the current lag */

/* Intermediate calculations go here */

return scalar wt = computed weight
return local setype ”Newey-West”
return local sewtype ”name of kernel”

end

Global macros available for community-contributed programs

Global macro Description

SGLM V program name of variance (family) evaluator
SGLM L program name of link evaluator
SGLM y dependent variable name
SGLM m binomial denominator
SGLM a negative binomial 𝑘
SGLM p power if power() or opower() is used, or

an argument from a user-specified link function
SGLM s1 indicator; set to one if scale is equal to one
SGLM ph value of scale parameter

Example 5
Suppose that we wish to perform Poisson regression with a log-link function. Although this regression

is already possible with standard glm, we will write our own version for illustrative purposes.

Because we want a log link, 𝜂 = 𝑔(𝜇) = ln(𝜇), and for a Poisson family the variance function is
𝑉 (𝜇) = 𝜇.

The Poisson density is given by

𝑓(𝑦𝑖) = 𝑒−exp(𝜇𝑖)𝑒𝜇𝑖𝑦𝑖

𝑦𝑖!

resulting in a log likelihood of

𝐿 =
𝑛

∑
𝑖=1

{−𝑒𝜇𝑖 + 𝜇𝑖𝑦𝑖 − ln(𝑦𝑖!)}

The squared deviance of the 𝑖th observation for the Poisson family is given by

𝑑2
𝑖 = {

2 ̂𝜇𝑖 if 𝑦𝑖 = 0

2{𝑦𝑖ln(𝑦𝑖/ ̂𝜇𝑖) − (𝑦𝑖 − ̂𝜇𝑖)} otherwise
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We now have enough information to write our own Poisson-log glm module. We create the file

mylog.ado, which contains

program mylog
version 18.0 // (or version 18.5 for StataNow)
args todo eta mu return

if ‘todo’ == -1 {
global SGLM_lt ”My Log” // Titles for output
global SGLM_lf ”ln(u)”
exit

}
if ‘todo’ == 0 {

gen double ‘eta’ = ln(‘mu’) // 𝜂 = ln(𝜇)
exit

}
if ‘todo’ == 1 {

gen double ‘mu’ = exp(‘eta’) // 𝜇 = exp(𝜂)
exit

}
if ‘todo’ == 2 {

gen double ‘return’ = ‘mu’ // 𝜕𝜇/𝜕𝜂 = exp(𝜂) = 𝜇
exit

}
if ‘todo’ == 3 {

gen double ‘return’ = ‘mu’ // 𝜕2𝜇/𝜕𝜂2 = exp(𝜂) = 𝜇
exit

}
di as error ”Unknown call to glm link function”
exit 198

end

and we create the file mypois.ado, which contains

program mypois
version 18.0 // (or version 18.5 for StataNow)
args todo eta mu return

if ‘todo’ == -1 {
local y ”$SGLM y”
local touse ”‘eta’” // ‘eta’ marks estimation sample here

capture assert ‘y’>=0 if ‘touse’ // check range of 𝑦
if _rc {

di as error ‘”dependent variable ‘y’ has negative values”’
exit 499

}
global SGLM vt ”My Poisson” // Titles for output
global SGLM vf ”u”
global SGLM mu ”glim_mu 0 .” // see note 1
exit

}
if ‘todo’ == 0 { // Initialization of 𝜂; see note 2

gen double ‘eta’ = ln(‘mu’)
exit

}
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if ‘todo’ == 1 {
gen double ‘return’ = ‘mu’ // 𝑉 (𝜇) = 𝜇
exit

}
if ‘todo’ == 2 { // 𝜕 𝑉 (𝜇)/𝜕𝜇

gen byte ‘return’ = 1
exit

}
if ‘todo’ == 3 { // squared deviance, defined above

local y ”$SGLM y”
if ”‘y’” == ”” {

local y ”‘e(depvar)’”
}
gen double ‘return’ = cond(‘y’==0, 2*‘mu’, /*

*/ 2*(‘y’*ln(‘y’/‘mu’)-(‘y’-‘mu’)))
exit

}
if ‘todo’ == 4 { // Anscombe residual; see note 3

local y ”$SGLM y”
if ”‘y’” == ”” {

local y ”‘e(depvar)’”
}
gen double ‘return’ = 1.5*(‘y’^(2/3)-‘mu’^(2/3)) / ‘mu’^(1/6)
exit

}
if ‘todo’ == 5 { // log likelihood; see note 4

local y ”$SGLM y”
if ”‘y’” == ”” {

local y ”‘e(depvar)’”
}
gen double ‘return’ = -‘mu’+‘y’*ln(‘mu’)-lngamma(‘y’+1)
exit

}
if ‘todo’ == 6 { // adjustment to residual; see note 5

gen double ‘return’ = 1/(6*sqrt(‘mu’))
exit

}
di as error ”Unknown call to glm variance function”
error 198

end

Notes:

1. glim mu is a Stata program that will, at each iteration, bring ̂𝜇 back into its plausible range, should it

stray out of it. Here glim mu is called with the arguments zero and missing, meaning that zero is the
lower bound of ̂𝜇 and there exists no upper bound—such is the case for Poisson models.

2. Here the initial value of 𝜂 is easy because we intend to fit this model with our user-defined log link.
In general, however, the initialization may need to vary according to the link to obtain convergence.

If so, the global macro SGLM L is used to determine which link is being utilized.

3. The Anscombe formula is given here because we know it. If we were not interested in Anscombe

residuals, we could merely set ‘return’ to missing. Also, the local macro y is set either to SGLM y
if it is in current estimation or to e(depvar) if this function is being accessed by predict.

4. If we were not interested in ML estimation, we could omit this code entirely and just leave an exit
statement in its place. Similarly, if we were not interested in deviance or IRLS optimization, we could

set ‘return’ in the deviance portion of the code (‘todo’==3) to missing.
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5. This code defines the term to be added to the predicted residuals if the adjusted option is specified.
Again, if we were not interested, we could set ‘return’ to missing.

We can now test our Poisson-log module by running it on the airline data presented in [R] poisson.

. use https://www.stata-press.com/data/r18/airline

. list airline injuries n XYZowned

airline injuries n XYZowned

1. 1 11 0.0950 1
2. 2 7 0.1920 0
3. 3 7 0.0750 0
4. 4 19 0.2078 0
5. 5 9 0.1382 0

6. 6 4 0.0540 1
7. 7 3 0.1292 0
8. 8 1 0.0503 0
9. 9 3 0.0629 1

. generate lnN=ln(n)

. glm injuries XYZowned lnN, f(mypois) l(mylog) scale(1)
Iteration 0: Log likelihood = -22.557572
Iteration 1: Log likelihood = -22.332861
Iteration 2: Log likelihood = -22.332276
Iteration 3: Log likelihood = -22.332276
Generalized linear models Number of obs = 9
Optimization : ML Residual df = 6

Scale parameter = 1
Deviance = 12.70432823 (1/df) Deviance = 2.117388
Pearson = 12.7695081 (1/df) Pearson = 2.128251
Variance function: V(u) = u [My Poisson]
Link function : g(u) = ln(u) [My Log]

AIC = 5.629395
Log likelihood = -22.33227605 BIC = -.4790192

OIM
injuries Coefficient std. err. z P>|z| [95% conf. interval]

XYZowned .6840668 .3895877 1.76 0.079 -.0795111 1.447645
lnN 1.424169 .3725155 3.82 0.000 .6940517 2.154286

_cons 4.863891 .7090501 6.86 0.000 3.474178 6.253603

(Standard errors scaled using dispersion equal to square root of 1.)

These are precisely the results given in [R] poisson and are those that would have been given had we run

glm, family(poisson) link(log). The only minor adjustment we needed to make was to specify the
scale(1) option. If scale() is left unspecified, glm assumes scale(1) for discrete distributions and
scale(x2) for continuous ones. By default, glm assumes that any user-defined family is continuous

because it has no way of checking. Thus, we needed to specify scale(1) because our model is discrete.

Because we were careful in defining the squared deviance, we could have fit this model with IRLS.

Because log is the canonical link for the Poisson family, we would not only get the same regression

coefficients but also the same standard errors.
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Example 6
Suppose now that we wish to use our log link (mylog.ado) with glm’s binomial family. This task

requires some modification because our current function is not equipped to deal with the binomial de-

nominator, which we are allowed to specify. This denominator is accessible to our link function through

the global macro SGLM m. We now make the modifications and store them in mylog2.ado.

program mylog2 // <-- changed
version 18.0 // (or version 18.5 for StataNow)
args todo eta mu return
if ‘todo’ == -1 {

global SGLM_lt ”My Log, Version 2” // <-- changed
if ”$SGLM m” == ”1” { // <-- changed

global SGLM lf ”ln(u)” // <-- changed
} // <-- changed
else global SGLM lf ”ln(u/$SGLM m)” // <-- changed
exit

}
if ‘todo’ == 0 {

gen double ‘eta’ = ln(‘mu’/$SGLM m) // <-- changed
exit

}
if ‘todo’ == 1 {

gen double ‘mu’ = $SGLM m*exp(‘eta’) // <-- changed
exit

}
if ‘todo’ == 2 {

gen double ‘return’ = ‘mu’
exit

}
if ‘todo’ == 3 {

gen double ‘return’ = ‘mu’
exit

}
di as error ”Unknown call to glm link function”
exit 198

end

We can now run our new log link with glm’s binomial family. Using the flour beetle data from earlier,

we have
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. use https://www.stata-press.com/data/r18/beetle, clear

. glm r ldose, f(bin n) l(mylog2) irls
Iteration 1: Deviance = 2212.108
Iteration 2: Deviance = 452.9352
Iteration 3: Deviance = 429.95
Iteration 4: Deviance = 429.2745
Iteration 5: Deviance = 429.2192
Iteration 6: Deviance = 429.2082
Iteration 7: Deviance = 429.2061
Iteration 8: Deviance = 429.2057
Iteration 9: Deviance = 429.2056
Iteration 10: Deviance = 429.2056
Iteration 11: Deviance = 429.2056
Iteration 12: Deviance = 429.2056
Generalized linear models Number of obs = 24
Optimization : MQL Fisher scoring Residual df = 22

(IRLS EIM) Scale parameter = 1
Deviance = 429.205599 (1/df) Deviance = 19.50935
Pearson = 413.088142 (1/df) Pearson = 18.77673
Variance function: V(u) = u*(1-u/n) [Binomial]
Link function : g(u) = ln(u/n) [My Log, Version 2]

BIC = 359.2884

EIM
r Coefficient std. err. z P>|z| [95% conf. interval]

ldose 8.478908 .4702808 18.03 0.000 7.557175 9.400642
_cons -16.11006 .8723167 -18.47 0.000 -17.81977 -14.40035

For a more detailed discussion on user-defined functions, and for an example of a user-defined

Newey–West kernel weight, see Hardin and Hilbe (2018).� �
John Ashworth Nelder (1924–2010) was born in Somerset, England. He studied mathematics and

statistics at Cambridge and worked as a statistician at the National Vegetable Research Station and

then Rothamsted Experimental Station. In retirement, he was actively affiliated with Imperial Col-

lege London. Nelder was especially well known for his contributions to the theory of linear models

and to statistical computing. He was the principal architect of generalized and hierarchical general-

ized linear models and of the programs GenStat and GLIM.

Robert WilliamMaclaganWedderburn (1947–1975) was born in Edinburgh and studied mathemat-

ics and statistics at Cambridge. At Rothamsted Experimental Station, he developed the theory of

generalized linear models with Nelder and originated the concept of quasilikelihood. He died of

anaphylactic shock from an insect bite on a canal holiday.� �
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Stored results
glm, ml stores the following in e():

Scalars

e(N) number of observations

e(k) number of parameters

e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test

e(k dv) number of dependent variables

e(df m) model degrees of freedom

e(df) residual degrees of freedom

e(phi) scale parameter

e(aic) model AIC

e(bic) model BIC

e(ll) log likelihood, if NR

e(N clust) number of clusters

e(chi2) 𝜒2

e(p) 𝑝-value for model test
e(deviance) deviance

e(deviance s) scaled deviance

e(deviance p) Pearson deviance

e(deviance ps) scaled Pearson deviance

e(dispers) dispersion

e(dispers s) scaled dispersion

e(dispers p) Pearson dispersion

e(dispers ps) scaled Pearson dispersion

e(nbml) 1 if negative binomial parameter estimated via ML, 0 otherwise
e(vf) factor set by vfactor(), 1 if not set
e(power) power set by link(power #) or link(opower #)
e(rank) rank of e(V)
e(ic) number of iterations

e(rc) return code

e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) glm
e(cmdline) command as typed

e(depvar) name of dependent variable

e(varfunc) program to calculate variance function

e(varfunct) variance title

e(varfuncf) variance function

e(link) program to calculate link function

e(linkt) link title

e(linkf) link function

e(m) number of binomial trials

e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(clustvar) name of cluster variable

e(offset) linear offset variable

e(chi2type) Wald; type of model 𝜒2 test

e(cons) noconstant, if specified
e(hac kernel) HAC kernel

e(hac lag) HAC lag

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(opt) ml or irls
e(opt1) optimization title, line 1

e(opt2) optimization title, line 2
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e(which) max or min; whether optimizer is to perform maximization or minimization

e(ml method) type of ml method
e(user) name of likelihood-evaluator program

e(technique) maximization technique

e(properties) b V
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(ilog) iteration log (up to 20 iterations)

e(gradient) gradient vector

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

glm, irls stores the following in e():

Scalars

e(N) number of observations

e(k) number of parameters

e(k eq model) number of equations in overall model test

e(df m) model degrees of freedom

e(df) residual degrees of freedom

e(phi) scale parameter

e(disp) dispersion parameter

e(bic) model BIC

e(N clust) number of clusters

e(deviance) deviance

e(deviance s) scaled deviance

e(deviance p) Pearson deviance

e(deviance ps) scaled Pearson deviance

e(dispers) dispersion

e(dispers s) scaled dispersion

e(dispers p) Pearson dispersion

e(dispers ps) scaled Pearson dispersion

e(nbml) 1 if negative binomial parameter estimated via ML, 0 otherwise
e(vf) factor set by vfactor(), 1 if not set
e(power) power set by link(power #) or link(opower #)
e(rank) rank of e(V)
e(rc) return code

Macros

e(cmd) glm
e(cmdline) command as typed

e(depvar) name of dependent variable
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e(varfunc) program to calculate variance function

e(varfunct) variance title

e(varfuncf) variance function

e(link) program to calculate link function

e(linkt) link title

e(linkf) link function

e(m) number of binomial trials

e(wtype) weight type

e(wexp) weight expression

e(clustvar) name of cluster variable

e(offset) linear offset variable

e(cons) noconstant, if specified
e(hac kernel) HAC kernel

e(hac lag) HAC lag

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(opt) ml or irls
e(opt1) optimization title, line 1

e(opt2) optimization title, line 2

e(properties) b V
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas
The canonical reference on GLM is McCullagh and Nelder (1989). The term “generalized linear

model” is from Nelder and Wedderburn (1972). Many people use the acronym GLIM for GLM mod-

els because of the classic GLM software tool GLIM, by Baker and Nelder (1985). See Dobson and Barnett

(2018) for a concise introduction and overview. See Rabe-Hesketh and Everitt (2007) for more examples

of GLM using Stata. Hoffmann (2004) focuses on applying generalized linear models, using real-world

datasets, along with interpreting computer output, which for the most part is obtained using Stata.
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This discussion highlights the details of parameter estimation and predicted statistics. For a more de-

tailed treatment, and for information on variance estimation, see Hardin and Hilbe (2018). glm supports
estimation with survey data. For details on VCEs with survey data, see [SVY] Variance estimation.

glm obtains results by IRLS, as described in McCullagh and Nelder (1989), or by maximum likelihood

using Newton–Raphson. The implementation here, however, allows user-specified weights, which we

denote as 𝑣𝑗 for the 𝑗th observation. Let 𝑀 be the number of “observations” ignoring weights. Define

𝑤𝑗 =
⎧{
⎨{⎩

1 if no weights are specified

𝑣𝑗 if fweights or iweights are specified
𝑀𝑣𝑗/(∑𝑘 𝑣𝑘) if aweights or pweights are specified

The number of observations is then 𝑁 = ∑𝑗 𝑤𝑗 if fweights are specified and 𝑁 = 𝑀 otherwise. Each

IRLS step is performed by regress using 𝑤𝑗 as the weights.

Let 𝑑2
𝑗 denote the squared deviance residual for the 𝑗th observation:

For the Gaussian family, 𝑑2
𝑗 = (𝑦𝑗 − ̂𝜇𝑗)2.

For the Bernoulli family (binomial with denominator 1),

𝑑2
𝑗 = {−2ln(1 − ̂𝜇𝑗) if 𝑦𝑗 = 0

−2ln( ̂𝜇𝑗) otherwise

For the binomial family with denominator 𝑚𝑗,

𝑑2
𝑗 =

⎧
{
⎨
{
⎩

2𝑦𝑗ln(𝑦𝑗/ ̂𝜇𝑗) + 2(𝑚𝑗 − 𝑦𝑗)ln{(𝑚𝑗 − 𝑦𝑗)/(𝑚𝑗 − ̂𝜇𝑗)} if 0 < 𝑦𝑗 < 𝑚𝑗

2𝑚𝑗ln{𝑚𝑗/(𝑚𝑗 − ̂𝜇𝑗)} if 𝑦𝑗 = 0

2𝑦𝑗ln(𝑦𝑗/ ̂𝜇𝑗) if 𝑦𝑗 = 𝑚𝑗

For the Poisson family,

𝑑2
𝑗 = {

2 ̂𝜇𝑗 if 𝑦𝑗 = 0

2{𝑦𝑗ln(𝑦𝑗/ ̂𝜇𝑗) − (𝑦𝑗 − ̂𝜇𝑗)} otherwise

For the gamma family, 𝑑2
𝑗 = −2{ln(𝑦𝑗/ ̂𝜇𝑗) − (𝑦𝑗 − ̂𝜇𝑗)/ ̂𝜇𝑗}.

For the inverse Gaussian, 𝑑2
𝑗 = (𝑦𝑗 − ̂𝜇𝑗)2/( ̂𝜇2

𝑗 𝑦𝑗).
For the negative binomial,

𝑑2
𝑗 = {

2ln(1 + 𝑘 ̂𝜇𝑗)/𝑘 if 𝑦𝑗 = 0

2𝑦𝑗ln(𝑦𝑗/ ̂𝜇𝑗) − 2{(1 + 𝑘𝑦𝑗)/𝑘}ln{(1 + 𝑘𝑦𝑗)/(1 + 𝑘 ̂𝜇𝑗)} otherwise

Let 𝜙 = 1 if the scale parameter is set to one; otherwise, define 𝜙 = ̂𝜙0(𝑛 − 𝑘)/𝑛, where ̂𝜙0 is the

estimated scale parameter and 𝑘 is the number of covariates in the model (including intercept).
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Let ln𝐿𝑗 denote the log likelihood for the 𝑗th observation:
For the Gaussian family,

ln𝐿𝑗 = −1
2

[{
(𝑦𝑗 − ̂𝜇𝑗)2

𝜙
} + ln(2𝜋𝜙)]

For the binomial family with denominator 𝑚𝑗 (Bernoulli if all 𝑚𝑗 = 1),

ln𝐿𝑗 = 𝜙 ×

⎧
{
{
⎨
{
{
⎩

ln{Γ(𝑚𝑗 + 1)} − ln{Γ(𝑦𝑗 + 1)} − ln{Γ(𝑚𝑗 − 𝑦𝑗 + 1)} if 0 < 𝑦𝑗 < 𝑚𝑗
+(𝑚𝑗 − 𝑦𝑗) ln(1 − ̂𝜇𝑗/𝑚𝑗) + 𝑦𝑗 ln( ̂𝜇𝑗/𝑚𝑗)

𝑚𝑗 ln(1 − ̂𝜇𝑗/𝑚𝑗) if 𝑦𝑗 = 0

𝑚𝑗 ln( ̂𝜇𝑗/𝑚𝑗) if 𝑦𝑗 = 𝑚𝑗

For the Poisson family,

ln𝐿𝑗 = 𝜙 [𝑦𝑗 ln( ̂𝜇𝑗) − ̂𝜇𝑗 − ln{Γ(𝑦𝑗 + 1)}]

For the gamma family, ln𝐿𝑗 = −𝑦𝑗/ ̂𝜇𝑗 + ln(1/ ̂𝜇𝑗).
For the inverse Gaussian,

ln𝐿𝑗 = −1
2

{
(𝑦𝑗 − ̂𝜇𝑗)2

𝑦𝑗 ̂𝜇2
𝑗

+ 3 ln(𝑦𝑗) + ln(2𝜋)}

For the negative binomial (let 𝑚 = 1/𝑘),

ln𝐿𝑗 =𝜙 [ ln{Γ(𝑚 + 𝑦𝑗)} − ln{Γ(𝑦𝑗 + 1)} − ln{Γ(𝑚)}
−𝑚 ln(1 + ̂𝜇𝑗/𝑚) + 𝑦𝑗 ln{ ̂𝜇𝑗/( ̂𝜇𝑗 + 𝑚)}]

The overall deviance reported by glm is 𝐷2 = ∑𝑗 𝑤𝑗𝑑2
𝑗 . The dispersion of the deviance is 𝐷2

divided by the residual degrees of freedom.

The Akaike information criterion (AIC) and Bayesian information criterion (BIC) are given by

AIC = −2 ln𝐿 + 2𝑘
𝑁

BIC = 𝐷2 − (𝑁 − 𝑘) ln(𝑁)

where ln𝐿 = ∑𝑗 𝑤𝑗 ln𝐿𝑗 is the overall log likelihood.

The Pearson deviance reported by glm is ∑𝑗 𝑤𝑗𝑟2
𝑗 . The corresponding Pearson dispersion is the

Pearson deviance divided by the residual degrees of freedom. glm also calculates the scaled versions of
all of these quantities by dividing by the estimated scale parameter.
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Postestimation commands
The following postestimation commands are available after glm:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters
∗ estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian infor-

mation criteria (AIC, CAIC, AICc, and BIC, respectively)

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estat (svy) postestimation statistics for survey data

estimates cataloging estimation results

etable table of estimation results
† forecast dynamic forecasts and simulations
† hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

linktest link test for model specification
∗† lrtest likelihood-ratio test

margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

predict predictions, residuals, influence statistics, and other diagnostic measures

predictnl point estimates, standard errors, testing, and inference for generalized predictions

pwcompare pairwise comparisons of parameters

suest seemingly unrelated estimation

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

∗estat ic and lrtest are not appropriate after glm, irls.
†forecast, hausman, and lrtest are not appropriate with svy estimation results. forecast is also not appropriate with mi

estimation results.
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predict

Description for predict
predict creates a new variable containing predictions such as expected values, linear predictions,

standard errors, residuals, Cook’s distance, diagonals of the “hat” matrix, weighted averages, differences

between the observed and fitted outcomes, and equation-level scores.

Menu for predict
Statistics > Postestimation

Syntax for predict
predict [ type ] newvar [ if ] [ in ] [ , statistic options ]

statistic Description

Main

mu expected value of 𝑦; the default
xb linear prediction 𝜂 = xβ̂
eta synonym of xb
stdp standard error of the linear prediction

anscombe Anscombe (1953) residuals

cooksd Cook’s distance

deviance deviance residuals

hat diagonals of the “hat” matrix

likelihood a weighted average of standardized deviance and standardized Pearson residuals

pearson Pearson residuals

response differences between the observed and fitted outcomes

score first derivative of the log likelihood with respect to x𝑗β
working working residuals

options Description

Options

nooffset modify calculations to ignore offset variable

adjusted adjust deviance residual to speed up convergence

standardized multiply residual by the factor (1 − ℎ)−1/2

studentized multiply residual by one over the square root of the estimated scale parameter

modified modify denominator of residual to be a reasonable estimate of the variance of
depvar

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for the estimation
sample.

mu, xb, stdp, and score are the only statistics allowed with svy estimation results.
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Options for predict

� � �
Main �

mu, the default, specifies that predict calculate the expected value of 𝑦, equal to 𝑔−1(xβ̂) [𝑛𝑔−1(xβ̂)
for the binomial family].

xb calculates the linear prediction 𝜂 = xβ̂.

eta is a synonym for xb.

stdp calculates the standard error of the linear prediction.

anscombe calculates the Anscombe (1953) residuals to produce residuals that closely follow a normal

distribution.

cooksd calculates Cook’s distance, which measures the aggregate change in the estimated coefficients
when each observation is left out of the estimation.

deviance calculates the deviance residuals. Deviance residuals are recommended by McCullagh and

Nelder (1989) and by others as having the best properties for examining the goodness of fit of a GLM.

They are approximately normally distributed if the model is correct. They may be plotted against the

fitted values or against a covariate to inspect the model’s fit. Also see the pearson option below.

hat calculates the diagonals of the “hat” matrix, analogous to linear regression.

likelihood calculates a weighted average of standardized deviance and standardized Pearson residuals.

pearson calculates the Pearson residuals. Pearson residuals often have markedly skewed distributions
for nonnormal family distributions. Also see the deviance option above.

response calculates the differences between the observed and fitted outcomes.

score calculates the equation-level score, 𝜕ln𝐿/𝜕(x𝑗β).
working calculates the working residuals, which are response residuals weighted according to the deriva-

tive of the link function.

� � �
Options �

nooffset is relevant only if you specified offset(varname) for glm. It modifies the calculations made
by predict so that they ignore the offset variable; the linear prediction is treated as x𝑗b rather than

as x𝑗b + offset𝑗.

adjusted adjusts the deviance residual to speed up the convergence to the limiting normal distribution.
The adjustment deals with adding to the deviance residual a higher-order term that depends on the

variance function family. This option is allowed only when deviance is specified.

standardized requests that the residual be multiplied by the factor (1−ℎ)−1/2, where ℎ is the diagonal

of the hatmatrix. This operation is done to account for the correlation between depvar and its predicted

value.

studentized requests that the residual be multiplied by one over the square root of the estimated scale
parameter.
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modified requests that the denominator of the residual be modified to be a reasonable estimate of the
variance of depvar. The base residual is multiplied by the factor (𝑘/𝑤)−1/2, where 𝑘 is either one or
the user-specified dispersion parameter and 𝑤 is the specified weight (or one if left unspecified).

margins

Description for margins
margins estimates margins of response for expected values and linear predictions.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist ] [ , options ]
margins [marginlist ] , predict(statistic ...) [ predict(statistic ...) ... ] [ options ]

statistic Description

mu expected value of 𝑦; the default
xb linear prediction 𝜂 = xβ̂
eta synonym for xb
stdp not allowed with margins
anscombe not allowed with margins
cooksd not allowed with margins
deviance not allowed with margins
hat not allowed with margins
likelihood not allowed with margins
pearson not allowed with margins
response not allowed with margins
score not allowed with margins
working not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.

Remarks and examples
Remarks are presented under the following headings:

Predictions
Other postestimation commands
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Predictions

Example 1
After glm estimation, predict may be used to obtain various predictions based on the model. In

example 2 of [R] glm, we mentioned that the complementary log–log link seemed to fit the data better

than the logit link. Now, we go back and obtain the fitted values and deviance residuals:

. use https://www.stata-press.com/data/r18/ldose

. glm r ldose, family(binomial n) link(logit)
(output omitted )

. predict mu_logit
(option mu assumed; predicted mean r)
. predict dr_logit, deviance
. quietly glm r ldose, f(binomial n) l(cloglog)
. predict mu_cl
(option mu assumed; predicted mean r)
. predict dr_cl, d
. format mu_logit dr_logit mu_cl dr_cl %9.5f
. list r mu_logit dr_logit mu_cl dr_cl, sep(4)

r mu_logit dr_logit mu_cl dr_cl

1. 6 3.45746 1.28368 5.58945 0.18057
2. 13 9.84167 1.05969 11.28067 0.55773
3. 18 22.45139 -1.19611 20.95422 -0.80330
4. 28 33.89761 -1.59412 30.36942 -0.63439

5. 52 50.09584 0.60614 47.77644 1.28883
6. 53 53.29092 -0.12716 54.14273 -0.52366
7. 61 59.22216 1.25107 61.11331 -0.11878
8. 60 58.74297 1.59398 59.94723 0.32495

In six of the eight cases, |dr logit| > |dr cl|. The above represents only one of the many available
options for predict. See Hardin and Hilbe (2018) for a more in-depth examination.

Other postestimation commands

Technical note
After glm estimation, you may perform any of the postestimation commands that you would per-

form after any other kind of estimation in Stata; see [U] 20 Estimation and postestimation commands.

Below, we test the joint significance of all the interaction terms.
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. use https://www.stata-press.com/data/r18/beetle, clear

. glm r beetle##c.ldose, family(binomial n) link(cloglog)
(output omitted )

. testparm i.beetle beetle#c.ldose
( 1) [r]2.beetle = 0
( 2) [r]3.beetle = 0
( 3) [r]2.beetle#c.ldose = 0
( 4) [r]3.beetle#c.ldose = 0

chi2( 4) = 249.69
Prob > chi2 = 0.0000

If you wanted to print the variance–covariance matrix of the estimators, you would type estat vce.

If you use the linktest postestimation command, you must also specify the family() and link()
options; see [R] linktest.

Methods and formulas
We follow the terminology used in Methods and formulas of [R] glm.

The deviance residual calculated by predict following glm is 𝑟𝐷
𝑗 = sign(𝑦𝑗 − ̂𝜇𝑗)√𝑑2

𝑗 .

The Pearson residual calculated by predict following glm is

𝑟𝑃
𝑗 =

𝑦𝑗 − ̂𝜇𝑗

√𝑉 ( ̂𝜇𝑗)

where 𝑉 ( ̂𝜇𝑗) is the family-specific variance function.

𝑉 ( ̂𝜇𝑗) =

⎧
{{{{
⎨
{{{{
⎩

̂𝜇𝑗(1 − ̂𝜇𝑗/𝑚𝑗) if binomial or Bernoulli (𝑚𝑗 = 1)

̂𝜇2
𝑗 if gamma

1 if Gaussian

̂𝜇3
𝑗 if inverse Gaussian

̂𝜇𝑗 + 𝑘 ̂𝜇2
𝑗 if negative binomial

̂𝜇𝑗 if Poisson

The response residuals are given by 𝑟𝑅
𝑗 = 𝑦𝑗 − ̂𝜇𝑗. The working residuals are

𝑟𝑊
𝑗 = (𝑦𝑗 − ̂𝜇𝑗) ( 𝜕𝜂

𝜕𝜇
)

𝑗

and the score residuals are

𝑟𝑆
𝑗 =

𝑦𝑗 − ̂𝜇𝑗

𝑉 ( ̂𝜇𝑗)
( 𝜕𝜂

𝜕𝜇
)

−1

𝑗

Define 𝑊 = 𝑉 ( ̂𝜇) and 𝑋 to be the covariate matrix. ℎ𝑗, then, is the 𝑗th diagonal of the hat matrix given
by

𝐻 = 𝑊 1/2𝑋(𝑋𝑇𝑊𝑋)−1𝑋𝑇𝑊 1/2
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As a result, the likelihood residuals are given by

𝑟𝐿
𝑗 = sign(𝑦𝑗 − ̂𝜇𝑗) {ℎ𝑗(𝑟𝑃

𝑗
′)2 + (1 − ℎ𝑗)(𝑟𝐷

𝑗
′)2}1/2

where 𝑟𝑃
𝑗

′ and 𝑟𝐷
𝑗

′ are the standardized Pearson and standardized deviance residuals, respectively. By

standardized, we mean that the residual is divided by {1 − ℎ𝑗}1/2.

Cook’s distance is an overall measure of the change in the regression coefficients caused by omitting

the 𝑖th observation from the analysis. Computationally, Cook’s distance is obtained as

𝐶𝑗 =
(𝑟𝑃

𝑗
′)2ℎ𝑗

𝑘(1 − ℎ𝑗)

where 𝑘 is the number of regressors, including the constant.
Anscombe residuals are given by

𝑟𝐴
𝑗 =

𝐴(𝑦𝑗) − 𝐴( ̂𝜇𝑗)
𝐴′( ̂𝜇𝑗){𝑉 ( ̂𝜇𝑗)}1/2

where

𝐴(⋅) = ∫ 𝑑𝜇
𝑉 1/3(𝜇)

Deviance residuals may be adjusted (predict, adjusted) to make the following correction:

𝑟𝐷
𝑗

𝑎 = 𝑟𝐷
𝑗 + 1

6
𝜌3(𝜃)

where 𝜌3(𝜃) is a family-specific correction. See Hardin and Hilbe (2018) for the exact forms of 𝜌3(𝜃)
for each family.
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Description Menu Syntax Options Remarks and examples
Stored results Methods and formulas References Also see

Description
gmm performs generalized method of moments (GMM) estimation. With the interactive version of the

command, you enter the residual equation for each moment condition directly into the dialog box or on

the command line by using substitutable expressions. The moment-evaluator program version gives you

greater flexibility in exchange for increased complexity; with this version, you write a program in an

ado-file that calculates the moments based on a vector of parameters passed to it.

gmm can fit both single- and multiple-equation models. It allows moment conditions of the form

𝐸{z𝑖𝑢𝑖(β)} = 0, where z𝑖 is a vector of instruments, and 𝑢𝑖(β) is an error term, as well as more general
moment conditions of the form 𝐸{h𝑖(z𝑖;β)} = 0. gmm works with cross-sectional, time-series, and

longitudinal (panel) data.

Menu
Statistics > Endogenous covariates > Generalized method of moments estimation

989
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Syntax
Interactive version

gmm ([reqname1:]rexp1) ([reqname2:]rexp2). . .[ if ] [ in ] [weight ] [ , options ]

Moment-evaluator program version

gmm moment prog [ if ] [ in ] [weight ] , { equations(namelist) | nequations(#) }

{ parameters(namelist) | nparameters(#) } [ options ] [ program options ]

reqname𝑗 is the 𝑗th residual equation name,
rexp𝑗 is the substitutable expression for the 𝑗th residual equation, and
moment prog is a moment-evaluator program.

options Description

Model

derivative([ reqname | # ]/name = dexp𝑗𝑘)
specify derivative of reqname (or #) with respect to parameter name;
can be specified more than once (interactive version only)

∗ twostep use two-step GMM estimator; the default
∗ onestep use one-step GMM estimator
∗ igmm use iterative GMM estimator

variables(varlist) specify variables in model

nocommonesample do not restrict estimation sample to be the same for all equations

Instruments

instruments([reqlist:]varlist[, noconstant])
specify instruments; can be specified more than once

xtinstruments([reqlist:]varlist, lags(#1/#2))
specify panel-style instruments; can be specified more than once

Weight matrix

wmatrix(wmtype[, independent])
specify weight matrix; wmtype may be robust, cluster clustvar,
hac hacspec, or unadjusted

center center moments in weight-matrix computation

winitial(iwtype[, independent])
specify initial weight matrix; iwtype may be unadjusted,
identity, xt xtspec, or the name of a Stata matrix

SE/Robust

vce(vcetype[, independent])
vcetype may be robust, cluster clustvar, bootstrap,
jackknife, hac hacspec, or unadjusted

quickderivatives use alternative method of computing numerical derivatives
for VCE
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Reporting

level(#) set confidence level; default is level(95)
title(string) display string as title above the table of parameter estimates

title2(string) display string as subtitle

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Optimization

from(initial values) specify initial values for parameters
‡ igmmiterate(#) specify maximum number of iterations for iterated GMM estimator
‡ igmmeps(#) specify # for iterated GMM parameter convergence criterion;

default is igmmeps(1e-6)
‡ igmmweps(#) specify # for iterated GMM weight-matrix convergence criterion;

default is igmmweps(1e-6)
optimization options control the optimization process; seldom used

coeflegend display legend instead of statistics

∗You can specify at most one of these options.
‡These options may be specified only when igmm is specified.

program options Description

Model

evaluator options additional options to be passed to the moment-evaluator program
∗ hasderivatives moment-evaluator program can calculate parameter-level derivatives
∗ haslfderivatives moment-evaluator program can calculate linear-form derivatives
† equations(namelist) specify residual equation names
† nequations(#) specify number of residual equations
‡ parameters(namelist) specify parameter names
‡ nparameters(#) specify number of parameters

∗You may not specify both hasderivatives and haslfderivatives.
†You must specify equations(namelist) or nequations(#); you may specify both.
‡You must specify parameters(namelist) or nparameters(#); you may specify both.

rexp𝑗 and dexp𝑗𝑘 may contain factor variables and time-series operators; see [U] 11.4.3 Factor variables and [U] 11.4.4 Time-

series varlists.

bootstrap, by, collect, jackknife, rolling, and statsby are allowed; see [U] 11.1.10 Prefix commands.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
aweights are not allowed with the jackknife prefix; see [R] jackknife.
aweights, fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

rexp𝑗 and dexp𝑗𝑘 are substitutable expressions, that is, Stata expressions that also contain parameters

to be estimated. The parameters are enclosed in curly braces and must satisfy the naming requirements

for variables; {beta} is an example of a parameter. The notation {lcname:varlist} is allowed for linear
combinations of multiple covariates and their parameters. For example, {xb: mpg price turn cons}
defines a linear combination of the variables mpg, price, turn, and cons (the constant term). See

Substitutable expressions under Remarks and examples below.
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Options

� � �
Model �

derivative([ reqname | # ]/name = dexp𝑗𝑘) specifies the derivative of residual equation reqname or #
with respect to parameter name. If reqname or # is not specified, gmm assumes that the derivative

applies to the first residual equation.

For a moment condition of the form 𝐸{z𝑗𝑖𝑢𝑗𝑖(β)} = 0, derivative(j/𝛽𝑘 = dexp𝑗𝑘) is to contain a
substitutable expression for 𝜕𝑢𝑗𝑖/𝜕𝛽𝑘. If you specified m as the reqname, then for a moment condition
of the form 𝐸{z𝑚𝑖𝑢𝑚𝑖(β)} = 0, you can specify derivative(m/𝛽𝑘 = dexp𝑚𝑘), where 𝑚 is the

index of m.

dexp𝑗𝑘 uses the same substitutable expression syntax as is used to specify residual equations. If you

declare a linear combination in a residual equation, you provide the derivative for the linear combina-

tion; gmm then applies the chain rule for you. See Specifying derivatives under Remarks and examples
below for examples.

If you do not specify the derivative() option, gmm calculates derivatives numerically. You must
either specify no derivatives or specify a derivative for each of the 𝑘 parameters that appears in each

of the 𝑗 residual equations unless the derivative is identically zero. You cannot specify some analytic
derivatives and have gmm compute the rest numerically.

twostep, onestep, and igmm specify which estimator is to be used. You can specify at most one of

these options. twostep is the default.

twostep requests the two-step GMM estimator. gmm obtains parameter estimates based on the initial
weight matrix, computes a new weight matrix based on those estimates, and then reestimates the

parameters based on that weight matrix.

onestep requests the one-step GMM estimator. The parameters are estimated based on an initial

weight matrix, and no updating of the weight matrix is performed except when calculating the appro-

priate variance–covariance (VCE) matrix.

igmm requests the iterativeGMM estimator. gmm obtains parameter estimates based on the initial weight
matrix, computes a new weight matrix based on those estimates, reestimates the parameters based

on that weight matrix, computes a new weight matrix, and so on, to convergence. Convergence is

declared when the relative change in the parameter vector is less than igmmeps(), the relative change
in the weight matrix is less than igmmweps(), or igmmiterate() iterations have been completed.
Hall (2005, sec. 2.4 and 3.6) mentions that there may be gains to finite-sample efficiency from using

the iterative estimator.

variables(varlist) specifies the variables in the model. gmm ignores observations for which any of

these variables has a missing value. If you do not specify variables(), then gmm assumes all the
observations are valid and issues an error message if any residual equations evaluate to missing for

any observations at the initial value of the parameter vector.

nocommonesample requests that gmm not restrict the estimation sample to be the same for all equations.
By default, gmm will restrict the estimation sample to observations that are available for all equations
in the model, mirroring the behavior of other multiple-equation estimators such as nlsur, sureg, or
reg3. For certain models, however, different equations can have different numbers of observations.
For these models, you should specify nocommonesample. See Dynamic panel-data models below for

one application of this option. You cannot specify weights if you specify nocommonesample.
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� � �
Instruments �

instruments([reqlist:]varlist[, noconstant]) specifies a list of instrumental variables to be used.

If you specify a single residual equation, then you do not need to specify the equations to which

the instruments apply; you can omit the reqlist and simply specify instruments(varlist). By de-
fault, a constant term is included in varlist; to omit the constant term, specify instruments(varlist,
noconstant).

If your model has multiple moment conditions of the form

𝐸
⎧{
⎨{⎩

z1𝑖𝑢1𝑖(β)
· · ·

z𝑞𝑖𝑢𝑞𝑖(β)

⎫}
⎬}⎭

= 0

then you can specify multiple corresponding residual equations. Then, specify the reqname or an

reqlist to indicate the residual equations for which the list of variables is to be used as instruments if

you do not want that list applied to all the residual equations. For example, you might type

gmm (main:rexp1) (rexp2) (rexp3), instruments(z1 z2) ///
instruments(2: z3) instruments(main 3: z4)

Variables z1 and z2will be used as instruments for all three equations, z3will be used as an instrument
for the second equation, and z4 will be used as an instrument for the first and third equations. Notice
that we chose to supply a name for the first residual equation but not the second two, identifying each

by its equation number.

varlist may contain factor variables and time-series operators; see [U] 11.4.3 Factor variables and

[U] 11.4.4 Time-series varlists, respectively.

xtinstruments([reqlist:]varlist, lags(#1/#2)) is for use with panel-data models in which the set of
available instruments depends on the time period. As with instruments(), you can prefix the list of
variables with residual equation names or numbers to target instruments to specific equations. Unlike

with instruments(), a constant term is not included in varlist. You must xtset your data before
using this option; see [XT] xtset.

If you specify

gmm . . ., xtinstruments(x, lags(1/.)) . . .

then for panel 𝑖 and period 𝑡, gmm uses 𝑥𝑖,𝑡−1, 𝑥𝑖,𝑡−2, . . . , 𝑥𝑖1 as instruments. More generally, speci-

fying xtinstruments(x, lags(#1, #2)) uses 𝑥𝑖,𝑡−#1
, . . . , 𝑥𝑖,𝑡−#2

as instruments; setting #2 = .
requests all available lags. #1 and #2 must be zero or positive integers.

gmm automatically excludes observations for which no valid instruments are available. It does, how-
ever, include observations for which only a subset of the lags is available. For example, if you request

that lags one through three be used, then gmm will include the observations for the second and third
time periods even though fewer than three lags are available as instruments.

� � �
Weight matrix �

wmatrix(wmtype[ , independent ]) specifies the type of weight matrix to be used in conjunction with
the two-step and iterated GMM estimators.

wmatrix(robust), the default, requests a weight matrix that is appropriate when the errors are in-
dependent but not necessarily identically distributed.

wmatrix(cluster clustvar) requests a weight matrix that accounts for arbitrary correlation among
observations within clusters identified by clustvar.



gmm — Generalized method of moments estimation 994

wmatrix(hac hacspec) requests a heteroskedasticity- and autocorrelation-consistent (HAC) weight
matrix. The full syntax of hacspec is one of the following:

wmatrix(hac kernel [ # ]) requests a HAC weight matrix using the specified kernel (see below)

with optional # lags. The bandwidth of a kernel is equal to #+ 1. If # is not specified, a kernel

with 𝑁 − 2 lags is used, where 𝑁 is the sample size.

wmatrix(hac kernel opt [ # ]) requests a HAC weight matrix using the specified kernel (see be-
low), and the lag order is selected using Newey and West’s (1994) optimal lag-selection algo-

rithm. # is an optional tuning parameter that affects the lag order selected; see the discussion

in Methods and formulas.

kernel may be one of the following:

bartlett or nwest requests the Bartlett (Newey–West) kernel.

parzen or gallant requests the Parzen (Gallant 1987) kernel.

quadraticspectral or andrews requests the quadratic spectral (Andrews 1991) kernel.

wmatrix(unadjusted) requests a weight matrix that is suitable when the errors are homoskedastic.
In some applications, the GMM estimator so constructed is known as the (nonlinear) two-stage

least-squares (2SLS) estimator.

independent creates a weight matrix that assumes moment conditions are independent. It is often
used to replicate other models that can be motivated outside the GMM framework, such as the

estimation of a system of equations by system-wide 2SLS. independent has no effect if only one
residual equation is specified.

wmatrix() has no effect if onestep is also specified.

center requests that the sample moments be centered (demeaned) when computing GMM weight matri-

ces. By default, centering is not done.

winitial(iwtype[ , independent ]) specifies theweightmatrix to use to obtain the first-step parameter
estimates.

winitial(unadjusted), the default, requests a weight matrix that assumes the moment conditions
are independent and identically distributed. This matrix is of the form (Z′Z)−1, whereZ represents

all the instruments specified in the instruments() option. To avoid a singular weight matrix, you
should specify at least 𝑞 − 1 moment conditions of the form 𝐸{zℎ𝑖𝑢ℎ𝑖(β)} = 0, where 𝑞 is the
number of moment conditions, or you should specify independent.

winitial(identity) requests that the identity matrix be used.

winitial(xt xtspec) is for use with dynamic panel-data models in which one of the residual equa-
tions is specified in first-differences form. xtspec is a string consisting of the letters “L” and “D”,

the length of which is equal to the number of residual equations in the model. You specify “L” for

a residual equation if that residual equation is written in levels, and you specify “D” for a residual

equation if it is written in first differences; xtspec is not case sensitive. When you specify this

option, you can specify at most one residual equation in levels and one residual equation in first

differences. See the examples listed in Dynamic panel-data models under Remarks and examples

below.

winitial(matname) requests that Stata matrixmatname be used. You cannot specify independent
if you specify winitial(matname).
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independent creates a weight matrix that assumes moment conditions are independent. Elements of
the weight matrix corresponding to covariances between two moment conditions are set equal to

zero. independent has no effect if only one residual equation is specified.

� � �
SE/Robust �

vce(vcetype[ , independent ]) specifies the type of standard error reported, which includes types that
are robust to some kinds of misspecification (robust), that allow for intragroup correlation (cluster
clustvar), and that use bootstrap or jackknife methods (bootstrap, jackknife); see [R] vce option.

vce(unadjusted) specifies that an unadjusted (nonrobust) VCE matrix be used; this, along with the
twostep option, results in the “optimal two-step GMM” estimates often discussed in textbooks.

The default vcetype is based on the wmtype specified in the wmatrix() option. If wmatrix() is

specified but vce() is not, then vcetype is set equal to wmtype. To override this behavior and obtain
an unadjusted (nonrobust) VCE matrix, specify vce(unadjusted).

The syntax for vcetypes other than bootstrap and jackknife is identical to those for wmatrix().

vce(bootstrap) or vce(jackknife) results in standard errors based on the bootstrap or jackknife,
respectively. See [R] vce option, [R] bootstrap, and [R] jackknife for more information on these

VCEs.

quickderivatives requests that an alternative method be used to compute the numerical derivatives
for the VCE. This option has no effect if you specify the derivatives(), hasderivatives, or
haslfderivatives option.

The VCE depends on a matrix of partial derivatives that gmm must compute numerically unless you
supply analytic derivatives. This Jacobian matrix will be especially large if your model has many

instruments, residual equations, or parameters.

By default, gmm computes each element of the Jacobian matrix individually, searching for an optimal
step size each time. Although this procedure results in accurate derivatives, it is computationally

taxing: gmm may have to evaluate the moments of your model five or more times for each element of
the Jacobian matrix.

When you specify the quickderivatives option, gmm computes all derivatives corresponding to a
parameter at once, using a fixed step size proportional to the parameter’s value. This method requires

just two evaluations of the model’s moments to compute an entire column of the Jacobian matrix and

therefore has the most impact when you specify many instruments or residual equations.

Most of the time, the two methods produce virtually identical results, but the quickderivatives
method may fail if a residual equation is highly nonlinear or if instruments differ by orders of magni-

tude. In the rare case where you specify quickderivatives and obtain suspiciously large or small
standard errors, try refitting your model without this option.

� � �
Reporting �

level(#); see [R] Estimation options.

title(string) specifies an optional title that will be displayed just above the table of parameter esti-

mates.

title2(string) specifies an optional subtitle that will be displayed between the title specified in

title() and the table of parameter estimates. If title2() is specified but title() is not, title2()
has the same effect as title().
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display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Optimization �

from(initial values) specifies the initial values to begin the estimation. You can specify a parameter
name, its initial value, another parameter name, its initial value, and so on, or you can specify a 1× 𝑘
matrix, where 𝑘 is the number of parameters in the model. For example, to initialize alpha to 1.23
and delta to 4.57, you would type

gmm ..., from(alpha 1.23 delta 4.57) ...

or equivalently

matrix define initval = (1.23, 4.57)
gmm ..., from(initval) ...

Initial values declared in the from() option override any that are declared within substitutable expres-
sions. If you specify a parameter that does not appear in your model, gmm exits with an error message.
If you specify a matrix, the values must be in the same order in which the parameters are declared in

your model.

igmmiterate(#), igmmeps(#), and igmmweps(#) control the iterative process for the iterative GMM

estimator. These options can be specified only if you also specify igmm.

igmmiterate(#) specifies the maximum number of iterations to perform with the iterative GMM

estimator. The default is the number set using set maxiter, which is 300 by default.

igmmeps(#) specifies the convergence criterion used for successive parameter estimates when the

iterative GMM estimator is used. The default is igmmeps(1e-6). Convergence is declared when
the relative difference between successive parameter estimates is less than igmmeps() and the

relative difference between successive estimates of the weight matrix is less than igmmweps().

igmmweps(#) specifies the convergence criterion used for successive estimates of the weight ma-

trix when the iterative GMM estimator is used. The default is igmmweps(1e-6). Convergence
is declared when the relative difference between successive parameter estimates is less than

igmmeps() and the relative difference between successive estimates of the weight matrix is less
than igmmweps().

optimization options: technique(), conv maxiter(), conv ptol(), conv vtol(),
conv nrtol(), tracelevel(). technique() specifies the optimization technique to use; gn (the
default), nr, dfp, and bfgs are allowed. conv maxiter() specifies the maximum number of iter-

ations; conv ptol(), conv vtol(), and conv nrtol() specify the convergence criteria for the

parameters, gradient, and scaled Hessian, respectively. tracelevel() allows you to obtain addi-

tional details during the iterative process. See [M-5] optimize( ).
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The following options pertain only to the moment-evaluator program version of gmm.

� � �
Model �

evaluator options refer to any options allowed by your moment prog.

hasderivatives and haslfderivatives indicate that you have written your moment-evaluator pro-
gram to compute derivatives. You may specify one or the other but not both. If you do not specify

either of these options, gmm computes the derivatives numerically.

hasderivatives indicates that your moment-evaluator program computes parameter-level deriva-

tives.

haslfderivatives indicates that your moment-evaluator program computes equation-level deriva-

tives and is useful only when you specify the parameters of your model using the {lcname:varlist}
syntax of the parameters() option.

See Details of moment-evaluator programs below for more information.

equations(namelist) specifies the names of the residual equations in the model. If you specify both
equations() and nequations(), the number of names in the former must match the number spec-
ified in the latter.

nequations(#) specifies the number of residual equations in the model. If you do not specify names
with the equations() option, gmm numbers the residual equations 1, 2, 3, . . . . If you specify both
equations() and nequations(), the number of names in the former must match the number spec-
ified in the latter.

parameters(namelist) specifies the names of the parameters in the model. The names of the parameters
must comply with the naming conventions of Stata’s variables; see [U] 11.3 Naming conventions.

Alternatively, you can use parameter equation notation to specify linear combinations of parame-

ters. Each linear combination is of the form {lcname:varlist}, where varlist is one or more variable
names. Specify the system variable cons in varlist to include a constant term. Distinguish between
{lcname:varlist}, in which lcname identifies the linear combination, and (reqname:rexp), in which
reqname identifies the residual equation. When you use linear-combination syntax, gmm prepends

each element of the parameter vector passed to your evaluator program with lcname: to generate

unique names.

If you specify both parameters() and nparameters(), the number of names in the former must
match the number specified in the latter.

nparameters(#) specifies the number of parameters in the model. If you do not specify names with
the parameters() option, gmm names them b1, b2, . . . , b#. If you specify both parameters() and
nparameters(), the number of names in the former must match the number specified in the latter.

The following option is available with gmm but is not shown in the dialog box:

coeflegend; see [R] Estimation options.



gmm — Generalized method of moments estimation 998

Remarks and examples
Remarks are presented under the following headings:

Introduction
Substitutable expressions
The weight matrix and two-step estimation
Obtaining standard errors
Factor-variable coefficients in multiple residual functions
Parameter interpretation using margins
Exponential (Poisson) regression models
Specifying derivatives
Exponential regression models with panel data
Rational-expectations models
System estimators
Dynamic panel-data models
Details of moment-evaluator programs

Introduction
The GMM estimator is a workhorse of modern econometrics and is discussed in all the leading text-

books, including Cameron and Trivedi (2005, 2022), Davidson and MacKinnon (1993), Greene (2018,

500–534), Ruud (2000), Hayashi (2000), Wooldridge (2010), Hamilton (1994), and Baum (2006). An

excellent treatise on GMM with a focus on time-series applications is Hall (2005). The collection of

papers by Mátyás (1999) provides both theoretical and applied aspects of GMM. Here we give a brief

introduction to the methodology and emphasize how the various options of gmm are used.

The starting point for the GMM estimator is the analogy principle, which says we can estimate a

parameter by replacing a population moment condition with its sample analogue. For example, the mean

of an independent and identically distributed (i.i.d.) population is defined as the value 𝜇 such that the

first (central) population moment is zero; that is, 𝜇 solves 𝐸(𝑦 − 𝜇) = 0, where 𝑦 is a random draw

from the population. The analogy principle tells us that to obtain an estimate, ̂𝜇, of 𝜇, we replace the
population-expectations operator with its sample analogue (Manski 1988; Wooldridge 2010),

𝐸(𝑦 − 𝜇) = 0 ⟶ 1
𝑁

𝑁
∑
𝑖=1

(𝑦𝑖 − ̂𝜇) = 0 ⟶ ̂𝜇 = 1
𝑁

𝑁
∑
𝑖=1

𝑦𝑖

where 𝑁 denotes sample size, and 𝑦𝑖 represents the 𝑖th observation of 𝑦 in our dataset. The estimator

̂𝜇 is known as the method of moments (MM) estimator because we started with a population moment

condition and then applied the analogy principle to obtain an estimator that depends on the observed

data.

Ordinary least-squares (OLS) regression can also be viewed as an MM estimator. In the model

𝑦 = x′β + 𝑢

we assume that 𝑢 has mean zero conditional on x: 𝐸(𝑢|x) = 0. This conditional expectation implies the

unconditional expectation 𝐸(x𝑢) = 0 because, with the law of iterated expectations,

𝐸(x𝑢) = 𝐸x {𝐸(x𝑢|x)} = 𝐸x {x𝐸(𝑢|x)} = 0

(Using the law of iterated expectations to derive unconditional expectations based on conditional expec-

tations, perhaps motivated by subject theory, is extremely common in GMM estimation.) Continuing, we

see that

𝐸(x𝑢) = 𝐸 {x(𝑦 − x′β)} = 0
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Applying the analogy principle, we obtain

𝐸 {x(𝑦 − x′β)} ⟶ 1
𝑁

𝑁
∑
𝑖=1

x𝑖(𝑦𝑖 − x′
𝑖β) = 0

so that

β̂ = (∑
𝑖
x𝑖x

′
𝑖)

−1
∑

𝑖
x𝑖𝑦𝑖

which is just the more familiar formula β̂ = (X′X)−1
X′y written with summation notation.

In both of the previous examples, the number of parameters we were estimating equaled the number of

moment conditions. In the first example, we estimated one parameter, 𝜇, and had one moment condition
𝐸(𝑦 − 𝜇) = 0. In the second example, the parameter vector β had 𝑘 elements, as did the vector of

regressors x, yielding 𝑘 moment conditions. Ignoring peculiar cases, we see that a model of 𝑚 equations

in 𝑚 unknowns has a unique solution; and because the residual equations in these examples were linear,

we could solve for the parameters analytically. If the moment conditions had been nonlinear, we would

have had to use numerical techniques to solve for the parameters, but that is not a significant limitation

with modern computers.

What if we have more moment conditions than parameters? Say we have 𝑞 moment conditions and
𝑘 parameters. A model of 𝑞 > 𝑘 equations in 𝑘 unknowns does not have a unique solution. Any size-𝑘
subset of the moment conditions would yield a consistent parameter estimate, though the parameter

estimate would in general be different depending on which 𝑘 moment conditions we used.
For concreteness, let’s return to our regression model,

𝑦 = x′β + 𝑢

Now, however, we no longer wish to assume that𝐸(x𝑢) = 0; we suspect that the error term 𝑢 affects one

or more elements of x. Thus, we can no longer use the OLS estimator. Suppose we have a vector z with

the properties that 𝐸(z𝑢) = 0, that the rank of 𝐸(z′z) equals 𝑞, and that the rank of 𝐸(z′x) = 𝑘. The
first assumption simply states that z is not correlated with the error term. The second assumption rules

out perfect collinearity among the elements of z. The third assumption, known as the rank condition in

econometrics, ensures that z is sufficiently correlated with x and that the estimator is feasible. If some

elements of x are not correlated with 𝑢, then they should also appear in z.
If 𝑞 < 𝑘, then the rank of 𝐸(z′x) < 𝑘, which violates the rank condition.
If 𝑞 = 𝑘, then we can use the simpler MM estimator we already discussed; we would obtain what

is sometimes called the simple instrumental-variables estimator β̂ = (∑𝑖 z𝑖x
′
𝑖)

−1
∑𝑖 z𝑖𝑦𝑖. The rank

condition ensures that ∑𝑖 z𝑖x
′
𝑖 is invertible, at least in the population.

If 𝑞 > 𝑘, the GMM estimator chooses the value, β̂, that minimizes a quadratic function of the moment
conditions. We could define

β̂ ≡ arg minβ { 1
𝑁

∑
𝑖
z𝑖𝑢𝑖(β)}

′
{ 1

𝑁
∑

𝑖
z𝑖𝑢𝑖(β)}

where for our linear regression example 𝑢𝑖(β) = 𝑦𝑖 − x′
𝑖β. This estimator tries to make the moment

conditions as close to zero as possible. This simple estimator, however, applies equal weight to each of

the moment conditions; and as we will see later, we can obtain more efficient estimators by choosing to

weight some moment conditions more highly than others.
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Consider the quadratic function

𝑄(β) = { 1
𝑁

∑
𝑖
z𝑖𝑢𝑖(β)}

′
W{ 1

𝑁
∑

𝑖
z𝑖𝑢𝑖(β)}

where W is a symmetric positive-definite matrix known as a weight matrix. Then we define the GMM

estimator as

β̂ ≡ arg minβ 𝑄(β) (1)

Continuing with our regression model example, if we choose

W = ( 1
𝑁

∑
𝑖
z𝑖z

′
𝑖)

−1

then we obtain

β̂ = {( 1
𝑁

∑
𝑖
x𝑖z

′
𝑖) ( 1

𝑁
∑

𝑖
z𝑖z

′
𝑖)

−1
( 1

𝑁
∑

𝑖
z𝑖x

′
𝑖)}

−1

×

( 1
𝑁

∑
𝑖
x𝑖z

′
𝑖) ( 1

𝑁
∑

𝑖
z𝑖z

′
𝑖)

−1
( 1

𝑁
∑

𝑖
z𝑖𝑦𝑖)

which is the well-known two-stage least-squares (2SLS) estimator. Our choice of weight matrix here was

based on the assumption that 𝑢 was homoskedastic. A feature of GMM estimation is that by selecting

different weight matrices, we can obtain estimators that can tolerate heteroskedasticity, clustering, auto-

correlation, and other features of 𝑢. See [R] ivregress for more information about the 2SLS and linear

GMM estimators.

Returning to the case where the model is “just identified”, meaning that 𝑞 = 𝑘, if we apply the GMM

estimator, we will obtain the same estimate, β̂, regardless of our choice ofW. Because 𝑞 = 𝑘, if a unique
solution exists, it will set all the sample moment conditions jointly to zero, soW has no impact on the

value of β that minimizes the objective function.

We will highlight other features of the GMM estimator and the gmm command as we proceed through
examples. First, though, we discuss how to specify moment conditions by using substitutable expres-

sions.

Substitutable expressions
To use the interactive version of gmm, you define the moment conditions by using substitutable expres-

sions. Your moment conditions are of the form 𝐸 {𝑧′
𝑖𝑢𝑖(β)} = 0, where 𝑢𝑖(β) is a residual expression

that depends on the parameter vector β as well as variables in your dataset, though we suppress express-

ing the variables for notational simplicity.

gmm requires you to write a substitutable expression for 𝑢𝑖(β). This substitutable expression is the
right-hand side of themodel written in terms of𝑢, or in the language of Stata syntax, a “residual equation”.
For example, suppose you want to fit the function 𝑦 = 𝑓(x;β) + 𝑢. In this example, 𝑢𝑖(β) = 𝑢 =
𝑦 − 𝑓(x;β), so you would type

gmm (y - expression for 𝑓(x;β)), ...

Note that we are not restricted to models with additive error terms.
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In general, there are three rules to follow when defining substitutable expressions:

1. Parameters of the model are bound in curly braces: {b0}, {param}, etc. Parameter names must
follow the same conventions as variable names. See [U] 11.3 Naming conventions.

2. Initial values for parameters are given by including an equal sign and the initial value inside the

curly braces: {b0=1}, {param=3.571}, etc.

You can also specify initial values by using the from() option. Initial values specified in from()
override whatever initial values are given within the substitutable expression. If you do not specify

an initial value for a parameter, it is initialized to 0.

3. Linear combinations of variables can be included using the notation {lcname:varlist}: {xb: mpg
price weight}, {score: w x z}, etc. Parameters of linear combinations are initialized to 0.

Substitutable expressions may use any mathematical expression involving scalars and variables. See

[U] 13.2 Operators and [U] 13.3 Functions for more information on expressions.

The notation {xb:x1 x2 x3} tells gmm that you want a linear combination of the variables x1, x2, and
x3. We named this linear combination xb, so gmm will name the three parameters xb:x1, xb:x2, and
xb:x3, which corresponds to the three variables x1, x2, and x3 in the xb equation. Specify cons to
include a constant term in a linear combination. Factor variables and time-series operators are allowed;

see [U] 11.4.3 Factor variables and [U] 11.4.4 Time-series varlists.

Once we have declared the variables in the linear combination xb, we can refer to the linear com-
bination in our substitutable expression by using the notation xb:. The colon is not optional; it tells
gmm that you are referring to a previously declared linear combination, not an individual parameter. This
shorthand notation is also handy when specifying derivatives, as we will show later.

Example 1: OLS regression
In Introduction, we stated that OLS is an MM estimator. Say that we want to fit the model

mpg = 𝛽0 + 𝛽1weight + 𝛽2length + 𝑢

where 𝑢 is an i.i.d. error term. Recall that the moment condition for OLS regression is 𝐸(x𝑢) = 0, where

x, the list of instruments, is the same as the list of regressors in the model. Writing this in the form

required for a gmm substitutable expression, we have

𝑢 = mpg − 𝛽0 − 𝛽1weight − 𝛽2length

The right-hand side of the equation is the substitutable expression that we will provide to gmm. We give

𝛽0, 𝛽1, and 𝛽2 the parameter names b0, b1, and b2 and enclose them in curly braces. Because linear

combinations declared in substitutable expressions do not include a constant term by default, we include

our own (b0). We specify the regressors, weight and length, with their respective parameters and also
in the instruments() option. gmm includes a constant term in the instrument list by default, so we do

not need to add an additional term there. Thus, our command is
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. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. gmm (mpg - {b1}*weight - {b2}*length - {b0}), instruments(weight length)
Step 1:
Iteration 0: GMM criterion Q(b) = 475.4138
Iteration 1: GMM criterion Q(b) = 2.696e-20
Iteration 2: GMM criterion Q(b) = 3.329e-27
Step 2:
Iteration 0: GMM criterion Q(b) = 5.109e-28
Iteration 1: GMM criterion Q(b) = 7.237e-32
note: model is exactly identified.
GMM estimation
Number of parameters = 3
Number of moments = 3
Initial weight matrix: Unadjusted Number of obs = 74
GMM weight matrix: Robust

Robust
Coefficient std. err. z P>|z| [95% conf. interval]

/b1 -.0038515 .0019472 -1.98 0.048 -.0076678 -.0000351
/b2 -.0795935 .0677528 -1.17 0.240 -.2123866 .0531996
/b0 47.88487 7.50599 6.38 0.000 33.1734 62.59634

Instruments for equation 1: weight length _cons

Because the number of moments equals the number of parameters we are estimating, the model is said

to be “just identified” or “exactly identified”. Therefore, the choice of weight matrix has no impact on

the solution to (1), and the criterion function 𝑄(β) achieves its minimum value at 0.

The OLS estimator is a one-step GMM estimator, but we did not bother to specify the onestep option,
because the model is just identified. Doing a second step of GMM estimation affects neither the point

estimates nor the standard errors, so to keep the syntax as simple as possible, we did not include the

onestep option. The first step of estimation resulted in 𝑄(β) = 0 as expected, and the second step of

estimation did not change the minimized value of𝑄(β). (The final iterations of the first and second steps
result in 𝑄(β) values of 0 for all practical purposes.)

When you do not specify either the wmatrix() or the vce() option, gmm reports heteroskedasticity-
robust standard errors. The parameter estimates reported here match those that we would obtain from

the command

. regress mpg weight length, vce(robust)

The standard errors reported by that regress command would be larger than those reported by gmm
by a factor of sqrt(74/71) because regress makes a small-sample adjustment to the estimated vari-

ance matrix while gmm does not. Likewise, if we had specified the vce(unadjusted) option with our
gmm command, then our standard errors would differ by a factor of sqrt(74/71) from those reported by

regress without the vce(robust) option.

We could have submitted our substitutable expression using the notation for linear combinations of

parameters. If we select xb as the name of our parameter equation, we could type

. gmm (mpg - {xb: weight length _cons}), instruments(weight length)
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and obtain identical results. With this syntax, instead of having parameters b1, b2, and b0, we would have
parameters xb:weight, xb:length, and xb: cons. Note that cons allows you to include a constant
in a linear combination, so this time, we do not have to specify a separate parameter from our varlist.

Factor variables and time-series–operated variables are allowed in the linear combinations. For ex-

ample,

. regress mpg i.foreign i.foreign#c.weight, vce(robust)

produces the same results as

. gmm (mpg - {xb:i.foreign i.foreign#c.weight _cons}),
> instruments(i.foreign i.foreign#c.weight)

See [U] 11.4.3 Factor variables and [U] 11.4.4 Time-series varlists for an introduction to factor

variables and time-series operators. See example 4 for an example of factor-variable syntax with gmm.
See example 15 for an example using time-series–operated variables.

Example 2: Instrumental-variables regression
In Introduction, we mentioned that 2SLS can be viewed as a GMM estimator. In example 1 of

[R] ivregress, we fit by a 2SLS model of rental rates (rent) as a function of the value of owner-occupied
housing (hsngval) and the percentage of the population living in urban areas (pcturban):

rent = 𝛽0 + 𝛽1hsngval + 𝛽2pcturban + 𝑢

We argued that random shocks that affect rental rates likely also affect housing values, so we treated

hsngval as an endogenous variable. As additional instruments, we used family income, faminc, and
three regional dummies (reg2–reg4).

To replicate the results of ivregress 2sls by using gmm, we type

. use https://www.stata-press.com/data/r18/hsng2, clear
(1980 Census housing data)
. gmm (rent - {xb:hsngval pcturban _cons}),
> instruments(pcturban faminc reg2-reg4) vce(unadjusted) onestep
Step 1:
Iteration 0: GMM criterion Q(b) = 56115.03
Iteration 1: GMM criterion Q(b) = 110.91583
Iteration 2: GMM criterion Q(b) = 110.91583
GMM estimation
Number of parameters = 3
Number of moments = 6
Initial weight matrix: Unadjusted Number of obs = 50

Coefficient Std. err. z P>|z| [95% conf. interval]

hsngval .0022398 .0003284 6.82 0.000 .0015961 .0028836
pcturban .081516 .2987652 0.27 0.785 -.5040531 .6670851

_cons 120.7065 15.22839 7.93 0.000 90.85942 150.5536

Instruments for equation 1: pcturban faminc reg2 reg3 reg4 _cons

We specified vce(unadjusted) so that we would obtain an unadjusted VCEmatrix and our standard
errors would match those reported in [R] ivregress.
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Note how we specified the instruments() option. In Introduction, we mentioned that the moment
conditions for the 2SLS estimator are 𝐸(z𝑢) = 0, and we mentioned that if some elements of x (the

regressors) are not endogenous, then they should also appear in z. In this model, we assume the re-

gressor pcturban is exogenous, so we included it in the list of instrumental variables. Commands like
ivregress, ivprobit, and ivtobit accept standard varlists, so they can deduce the exogenous regres-
sors in the model. Because gmm accepts arbitrary functions in the form of substitutable expressions, it

has no way of discerning the exogenous variables of the model on its own.

Also notice that we specified the onestep option. The 2SLS estimator is a one-step GMM estimator

that is based on a weight matrix that assumes the error terms are i.i.d. Unlike the previous example, this

example had more instruments than parameters, so the minimized value of 𝑄(β) is nonzero. We discuss

the weight matrix and its relationship to two-step estimation next.

The weight matrix and two-step estimation

Recall our definition of the GMM estimator given in (1). The estimator, β̂, depends on the choice of

the weight matrix,W. Under relatively mild assumptions, our estimator, β̂, is consistent regardless of the
choice ofW, so how are we to decide whatW to use? The most common solution is to use the two-step

estimator, which we now describe.

A key result in Hansen’s (1982) seminal paper is that if we denote by S the covariance matrix of the

moment conditions, then the optimal (in a way we make precise later) GMM estimator is the one that uses

a weight matrix equal to the inverse of the moment covariance matrix. That is, if we let S = Cov(z𝑢),
then we want to useW = S−1. But how do we obtain S in the first place?

If we assume that the errors are i.i.d., then

Cov(z𝑢) = 𝐸(𝑢2zz′) = 𝜎2𝐸(zz′)

where 𝜎2 is the variance of 𝑢. Because 𝜎2 is a positive scalar, we can ignore it when solving (1). Thus,

we compute

Ŵ1 = ( 1
𝑁

∑
𝑖
z𝑖z

′
𝑖)

−1
(2)

which does not depend on any unknown model parameters. (Notice that Ŵ1 is the same weight matrix

used in 2SLS.) Given Ŵ1, we can solve (1) to obtain an initial estimate, say, β̂1.

Our estimate, β̂1, is consistent, so by Slutsky’s theorem, the sample residuals �̂� computed at this value
of β will also be consistent. Using virtually the same arguments used to justify the Huber/Eicker/White

heteroskedasticity-robust VCE, if we assume that the residuals are independent though not identically

distributed, we can estimate S as

Ŝ = 1
𝑁

∑
𝑖

�̂�2
𝑖 z𝑖z

′
𝑖

Then, in the second step, we re-solve (1), using Ŵ2 = ̂S−1, which yields the two-step GMM estimate β̂2.

If the residuals exhibit clustering, you can specify wmatrix(cluster varname) so that gmm computes
a weight matrix that does not assume the 𝑢𝑖’s are independent within clusters identified by varname.

You can specify wmatrix(hac . . .) to obtain weight matrices that are suitable for when the 𝑢𝑖’s exhibit

autocorrelation as well as heteroskedasticity.
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We could take the point estimates from the second round of estimation and use them to compute

yet another weight matrix, Ŵ3, say, re-solve (1) yet again, and so on, stopping when the parameters or

weight matrix do not change much from one iteration to the next. This procedure is known as the iterative

GMM estimator and is obtained with the igmm option. Asymptotically, the two-step and iterative GMM

estimators have the same distribution. However, Hall (2005, 90) suggests that the iterative estimator may

have better finite-sample properties.

Instead of computing Ŵ1 as in (2), we could simply choose Ŵ1 = I, the identity matrix.

The initial estimate, β̂1, would still be consistent. You can request this behavior by specifying the

winitial(identity) option. However, if you specify all of your moment conditions of the form

𝐸(z𝑢) = 0, we recommend using the default winitial(unadjusted) instead; the rescaling of the

moment conditions implied by using a homoskedastic initial weight matrix makes the numerical rou-

tines used to solve (1) more stable.

If you fit a model with more than one of the moment conditions of the form𝐸 {ℎ(z;β)} = 0, then you

must use winitial(identity) or winitial(unadjusted, independent). With moment conditions

of that form, you do not specify a list of instruments, and gmm cannot evaluate (2)—the matrix expression

in parentheses would necessarily be singular, so it cannot be inverted.

Example 3: Two-step linear GMM estimator
From the previous discussion and the comments in Introduction, we see that the linear 2SLS estimator

is a one-step GMM estimator where we use the weight matrix defined in (2) that assumes the errors are

i.i.d. If we use the 2SLS estimate of β to obtain the sample residuals, compute a new weight matrix based

on those residuals, and then do a second step of GMM estimation, we obtain the linear two-step GMM

estimator as implemented by ivregress gmm.

In example 3 of [R] ivregress, we fit the model of rental rates as discussed in example 2 above. We

now allow the residuals to be heteroskedastic, though we will maintain our assumption that they are

independent. We type

. gmm (rent - {xb:hsngval pcturban _cons}), instruments(pcturban faminc reg2-reg4)
Step 1:
Iteration 0: GMM criterion Q(b) = 56115.03
Iteration 1: GMM criterion Q(b) = 110.91583
Iteration 2: GMM criterion Q(b) = 110.91583
Step 2:
Iteration 0: GMM criterion Q(b) = .2406087
Iteration 1: GMM criterion Q(b) = .13672801
Iteration 2: GMM criterion Q(b) = .13672801
GMM estimation
Number of parameters = 3
Number of moments = 6
Initial weight matrix: Unadjusted Number of obs = 50
GMM weight matrix: Robust

Robust
Coefficient std. err. z P>|z| [95% conf. interval]

hsngval .0014643 .0004473 3.27 0.001 .0005877 .002341
pcturban .7615482 .2895105 2.63 0.009 .1941181 1.328978

_cons 112.1227 10.80234 10.38 0.000 90.95052 133.2949

Instruments for equation 1: pcturban faminc reg2 reg3 reg4 _cons
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By default, gmm computes a heteroskedasticity-robust weight matrix before the second step of estima-
tion, though we could have specified wmatrix(robust) if we wanted to be explicit. Because we did not
specify the vce() option, gmm used a heteroskedasticity-robust one. Our results match those in exam-
ple 3 of [R] ivregress. Moreover, the only substantive difference between this example and example 2 is

that here we did not specify the onestep option, so we obtain the two-step estimates.

Obtaining standard errors
This section is a bit more theoretical and can be skipped on first reading. However, the information

is sufficiently important that you should return to this section at some point.

So far in our discussion, we have focused on point estimation without much mention of how we

obtain the standard errors of the estimates. We also mentioned that if we choose W to be the inverse

of the covariance matrix of the moment conditions, then we obtain the “optimal” GMM estimator. We

elaborate those points now.

Using mostly standard statistical arguments, we can show that for the GMM estimator defined in (1),

the variance of β̂ is given by

Var(β̂) = 1
𝑁

{G(β̂)′WG(β̂)}
−1
G(β̂)′WSWG(β̂) {G(β̂)′WG(β̂)}

−1
(3)

where

G(β̂) = 1
𝑁

∑
𝑖
z𝑖

𝜕𝑢𝑖
𝜕β

∣
β=β̂

or G(β̂) = 1
𝑁

∑
𝑖

𝜕h𝑖
𝜕β

∣
β=β̂

as the case may be and S = 𝐸(z𝑢𝑢′z′).
Assuming the vce(unadjusted) option is not specified, gmm reports standard errors based on the

robust variance matrix defined in (3). For the two-step estimator,W is the weight matrix requested with

the wmatrix() option, and it is calculated based on the residuals obtained after the first estimation step.
The second-step point estimates and residuals are obtained, and S is calculated based on the specification

of the vce() option. For the iterated estimator, W is calculated based on the second-to-last round of

estimation, while S is based on the residuals obtained after the last round of estimation. Computation of

the covariance matrix for the one-step estimator is, perhaps surprisingly, more involved; we discuss the

covariance matrix with the one-step estimator in the technical note at the end of this section.

If the model is exactly identified, the matrix G(β̂) is square, and (3) simplifies to the following:

Var(β̂) = 1
𝑁
G(β̂)−1S(G(β̂)′)−1

If we choose the weight matrix to be the inverse of the covariance matrix of the moment conditions

so thatW = S−1, then (3) simplifies substantially:

Var(β̂) = 1
𝑁

{G(β̂)′WG(β̂)}
−1

(4)

The GMM estimator constructed using this choice of weight matrix along with the covariance matrix in

(4) is known as the “optimal” GMM estimator. One can show that if in factW = S−1, then the variance in

(4) is smaller than the variance in (3) of any other GMM estimator based on the same moment conditions

but with a different choice of weight matrix. Thus, the optimal GMM estimator is also known as the

efficient GMM estimator because it has the smallest variance of any estimator based on the given moment

conditions.
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To obtain standard errors from gmm based on the optimal GMM estimator, you specify the

vce(unadjusted) option. We call that VCE unadjusted because we do not recompute the residuals

after estimation to obtain the matrix S required in (3) or allow for the fact that those residuals may not be

i.i.d. Some statistical packages by default report standard errors based on (4) and offer standard errors

based on (3) only as an option or not at all. While the optimal GMM estimator is theoretically appealing,

Cameron and Trivedi (2005, 177) suggest that in finite samples, it need not perform better than the GMM

estimator that uses (3) to obtain standard errors.

Technical note
Computing the covariance matrix of the parameters after using the one-step estimator is actually a bit

more complex than after using the two-step or iterative estimator. We can illustrate most of the intricacies

by using linear regression with moment conditions of the form 𝐸{x(𝑦 − x′β)} = 0.

If you specify winitial(unadjusted) and vce(unadjusted), then the initial weight matrix will
be computed as

Ŵ1 = ( 1
𝑁

∑
𝑖
x𝑖x

′
𝑖)

−1

(5)

Moreover, for linear regression, we can show that

G(β̂) = 1
𝑁

∑
𝑖
x𝑖x

′
𝑖

so that (4) becomes

Var(β̂) = 1
𝑁

⎧{
⎨{⎩

( 1
𝑁

∑
𝑖
x𝑖x

′
𝑖) ( 1

𝑁
∑

𝑖
x𝑖x

′
𝑖)

−1

( 1
𝑁

∑
𝑖
x𝑖x

′
𝑖)

⎫}
⎬}⎭

−1

= (∑
𝑖
x𝑖x

′
𝑖)

−1

= (X′X)−1

(6)

However, we know that the nonrobust covariance matrix for the OLS estimator is actually �̂�2(X′X)−1.

What is missing from (6) is the scalar �̂�2, the estimated variance of the residuals. When you use the

one-step estimator and specify winitial(unadjusted), the weight matrix (5) does not include the �̂�2

term because gmm does not have a consistent estimate of β from which it can then estimate 𝜎2. The point

estimates are still correct because multiplying the weight matrix by a scalar factor does not affect the

solution to the minimization problem.

To circumvent this issue, if you specify winitial(unadjusted) and vce(unadjusted), gmm uses
the estimated β̂ (which is consistent) to obtain a new unadjusted weight matrix that does include the term

�̂�2 so that evaluating (4) will yield correct standard errors.

If you use the two-step or iterated GMM estimator, this extra effort is not needed to obtain standard

errors because the first-step (and subsequent steps’) estimate ofβ is consistent and can be used to estimate

𝜎2 or some other weight matrix based on the wmatrix() option. Straightforward algebra shows that this
extra effort is also not needed if you request any type of adjusted (robust) covariance matrix with the

one-step estimator.
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Asimilar issue arises when you specify winitial(identity) and vce(unadjusted)with the one-
step estimator. Again the solution is to compute an unadjusted weight matrix after obtaining β̂ so that

(4) provides the correct standard errors.

We have illustrated the problem and solution using a single-equation linear model. However, the

problem arises whenever you use the one-step estimator with an unadjustedVCE, regardless of the number

of equations, and gmm handles all the details automatically. Computation of Hansen’s 𝐽 statistic presents

an identical issue, and gmm takes care of that as well.

If you supply your own initial weight matrix by using winitial(matname), then the standard errors
(as well as the 𝐽 statistic reported by estat overid) are based on that weight matrix. You should verify
that the weight matrix you provide will yield appropriate statistics.

Factor-variable coefficients in multiple residual functions
The long example in this section uses gmm to replicate the results produced by regress with factor

variables and margins. It illustrates how to refer to the coefficients on factor variables in linear combi-

nations in subsequent residual functions. The example also shows how to use gmm to address the two-step
estimation problem, or the inconsistency of standard errors produced by two-step estimators that depend

on previously estimated parameters.

Example 4: Means of linear combinations of factor variables
The mean of a variable when everyone in a population receives a given treatment level is known

as a potential-outcome mean. We use regress and margins to estimate the potential-outcome means
of a mother’s smoking behavior while pregnant on the birthweight of her baby after controlling for the

mother’s age and an indicator for whether the mother had a prenatal visit in the first trimester. We use

an extract of data from Cattaneo (2010) in which bweight is the baby’s birthweight in grams, mbsmoke
is a binary variable indicating whether a mother smoked while pregnant, mage is the mother’s age, and
prenatal1 is a binary variable indicating whether the mother had a prenatal visit in the first trimester.
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We use regress to estimate the regression coefficients.

. use https://www.stata-press.com/data/r18/cattaneo2
(Excerpt from Cattaneo (2010) Journal of Econometrics 155: 138-154)
. regress bweight ibn.mbsmoke ibn.mbsmoke#(c.mage i.prenatal1),
> noconstant vce(robust)
Linear regression Number of obs = 4,642

F(6, 4636) = 27751.75
Prob > F = 0.0000
R-squared = 0.9726
Root MSE = 565.08

Robust
bweight Coefficient std. err. t P>|t| [95% conf. interval]

mbsmoke
Nonsmoker 3073.201 48.68899 63.12 0.000 2977.748 3168.655

Smoker 3217.973 93.637 34.37 0.000 3034.4 3401.546

mbsmoke#
c.mage

Nonsmoker 9.737189 1.825552 5.33 0.000 6.158237 13.31614
Smoker -4.962403 3.852613 -1.29 0.198 -12.51536 2.590552

mbsmoke#
prenatal1
Nonsmoker #

Yes 95.11727 26.82039 3.55 0.000 42.53654 147.698
Smoker#Yes 64.61752 39.72317 1.63 0.104 -13.25879 142.4938

We used factor variables to interact mbsmoke with the other covariates to allow for separate coeffi-

cients for smoking and nonsmoking mothers.

The postestimation command margins uses the estimated regression coefficients to estimate the

potential-outcome means of bweight, first assuming that no mother smoked and then assuming that

all mothers smoked.

. margins i.mbsmoke, vce(unconditional)
Predictive margins Number of obs = 4,642
Expression: Linear prediction, predict()

Unconditional
Margin std. err. t P>|t| [95% conf. interval]

mbsmoke
Nonsmoker 3407.506 9.346894 364.56 0.000 3389.181 3425.83

Smoker 3138.23 21.20463 148.00 0.000 3096.659 3179.801

Note that the standard errors for the estimated means account for the estimation error in the estimated

coefficients used to compute them.
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Before using gmm to simultaneously estimate the regression coefficients and the potential-outcome

means, we demonstrate the equivalence of point estimates from gmm and regress and illustrate the two-
step estimation problem. First, we use gmm to estimate just the regression coefficients. Note that we

specify the factor variables in the linear combination xb: and in the instrument list.

. gmm (eq1: bweight - {xb:ibn.mbsmoke ibn.mbsmoke#(c.mage i.prenatal1)}),
> instruments(eq1: ibn.mbsmoke ibn.mbsmoke#(c.mage i.prenatal1), noconstant)
> coeflegend onestep
Step 1:
Iteration 0: GMM criterion Q(b) = 11316945
Iteration 1: GMM criterion Q(b) = 7.143e-19
Iteration 2: GMM criterion Q(b) = 2.051e-26
note: model is exactly identified.
GMM estimation
Number of parameters = 6
Number of moments = 6
Initial weight matrix: Unadjusted Number of obs = 4,642

Coefficient Legend

mbsmoke
Nonsmoker 3073.201 _b[0bn.mbsmoke]

Smoker 3217.973 _b[1.mbsmoke]

mbsmoke#
c.mage

Nonsmoker 9.737189 _b[0bn.mbsmoke#c.mage]
Smoker -4.962403 _b[1.mbsmoke#c.mage]

mbsmoke#
prenatal1
Nonsmoker #

Yes 95.11727 _b[0bn.mbsmoke#1.prenatal1]
Smoker#Yes 64.61752 _b[1.mbsmoke#1.prenatal1]

Instruments for equation eq1: 0.mbsmoke 1.mbsmoke 0.mbsmoke#c.mage
1.mbsmoke#c.mage 0o.mbsmoke#0b.prenatal1 0.mbsmoke#1.prenatal1
1o.mbsmoke#0b.prenatal1 1.mbsmoke#1.prenatal1

We specified the coeflegend option to learn the names of the coefficients on the factor variables in
the linear combination. As expected, the point estimates are the same as those reported by regress.

Next, we illustrate the effect of the two-step estimation problem if we calculate the potential-outcome

means by hand. We can calculate the mean when no mothers smoke by accessing these coefficients and

then estimate the standard errors in the estimated means:

. generate mean0 = _b[xb:0.mbsmoke] + _b[xb:0.mbsmoke#c.mage]*mage
> + _b[xb:0.mbsmoke#1.prenatal1]*prenatal1
. mean mean0
Mean estimation Number of obs = 4,642

Mean Std. err. [95% conf. interval]

mean0 3407.506 1.085503 3405.378 3409.634
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The estimated potential-outcome mean for no mothers smoking is the same as that reported by

margins, but the standard error is much smaller because mean ignores the estimation error in the co-

efficients. This underscores the importance of accounting for the estimation error when estimating the

standard errors.

Now, we use gmm to estimate the coefficients and the potential-outcome means simultaneously.

. gmm (eq1: bweight - {xb:ibn.mbsmoke ibn.mbsmoke#(c.mage i.prenatal1)})
> (eq2: {xb:0.mbsmoke} + {xb:0bn.mbsmoke#c.mage}*mage
> + {xb:0bn.mbsmoke#1.prenatal1}*1.prenatal1 - {m0})
> (eq3: {xb:1.mbsmoke} + {xb:1.mbsmoke#c.mage}*mage
> + {xb:1.mbsmoke#1.prenatal1}*1.prenatal1 - {m1}),
> instruments(eq1: ibn.mbsmoke ibn.mbsmoke#(c.mage i.prenatal1),
> noconstant)
> instruments(eq2 eq3:) winitial(identity) onestep
Step 1:
Iteration 0: GMM criterion Q(b) = 5.819e+09
Iteration 1: GMM criterion Q(b) = 3.108e-13
Iteration 2: GMM criterion Q(b) = 1.010e-22
note: model is exactly identified.
GMM estimation
Number of parameters = 8
Number of moments = 8
Initial weight matrix: Identity Number of obs = 4,642

Robust
Coefficient std. err. z P>|z| [95% conf. interval]

mbsmoke
Nonsmoker 3073.201 48.65751 63.16 0.000 2977.834 3168.568

Smoker 3217.973 93.57647 34.39 0.000 3034.566 3401.379

mbsmoke#
c.mage

Nonsmoker 9.737189 1.824372 5.34 0.000 6.161485 13.31289
Smoker -4.962403 3.850123 -1.29 0.197 -12.5085 2.583699

mbsmoke#
prenatal1
Nonsmoker #

Yes 95.11727 26.80305 3.55 0.000 42.58425 147.6503
Smoker#Yes 64.61752 39.69749 1.63 0.104 -13.18813 142.4232

/m0 3407.506 9.340852 364.80 0.000 3389.198 3425.813
/m1 3138.23 21.19093 148.09 0.000 3096.696 3179.763

Instruments for equation eq1: 0.mbsmoke 1.mbsmoke 0.mbsmoke#c.mage
1.mbsmoke#c.mage 0o.mbsmoke#0b.prenatal1 0.mbsmoke#1.prenatal1
1o.mbsmoke#0b.prenatal1 1.mbsmoke#1.prenatal1

Instruments for equation eq2: _cons
Instruments for equation eq3: _cons

This output has five noteworthy features.

1. We specify three different residual equations. The first, eq1:, defines the moment conditions for
the regression using the covariates as instruments; eq2: is the moment condition for the potential
outcome when no mothers smoke; and eq3: is the moment condition for the potential outcome
when all mothers smoke.
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2. In eq2: and eq3:, we refer to the individual coefficients on the factor variables in the linear

combination xb: by enclosing their names in curly braces.

3. The instruments() option is repeatable. We first specify that the covariates in the regression

are the instruments for the residual equation eq1: and then specify that only the unit variable, also
known as the constant, is an instrument for each of eq2: and eq3:.

4. The point estimates and the standard errors match those reported by regress and margins, after
accounting for the small-sample adjustment performed by regress.

5. Although the point estimates match, the standard errors reported by gmm are much larger than those
reported by mean because gmm takes into account that the regression coefficients are estimated.

Parameter interpretation using margins
In the last section, we demonstrated how to use gmm to estimate potential-outcome means in a lin-

ear regression model jointly with the coefficients of the models. However, you can also estimate the

potential-outcome mean, or any other predictive margins, by using the margins command after gmm.
Using margins after gmm can allow more flexibility in the predictive margins that we estimate and is

also more convenient. See Obtaining margins of responses in [R] margins for more information about

predictive margins.

Example 5: Predicting treatment effects after estimation
In example 4, we used gmm to estimate potential-outcome means of a mother’s smoking behavior on

her baby’s birthweight (in grams) after controlling for age and whether she had a prenatal visit in the first

trimester. Here we demonstrate how to use margins after gmm to estimate the potential-outcome means.
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First, we load the data and reestimate the regression coefficients.

. use https://www.stata-press.com/data/r18/cattaneo2
(Excerpt from Cattaneo (2010) Journal of Econometrics 155: 138-154)
. gmm (eq1: bweight - {xb:ibn.mbsmoke ibn.mbsmoke#(c.mage i.prenatal1)}),
> instruments(eq1: ibn.mbsmoke ibn.mbsmoke#(c.mage i.prenatal1), noconstant)
> onestep
Step 1:
Iteration 0: GMM criterion Q(b) = 11316945
Iteration 1: GMM criterion Q(b) = 7.143e-19
Iteration 2: GMM criterion Q(b) = 2.051e-26
note: model is exactly identified.
GMM estimation
Number of parameters = 6
Number of moments = 6
Initial weight matrix: Unadjusted Number of obs = 4,642

Robust
Coefficient std. err. z P>|z| [95% conf. interval]

mbsmoke
Nonsmoker 3073.201 48.65752 63.16 0.000 2977.834 3168.568

Smoker 3217.973 93.57647 34.39 0.000 3034.566 3401.379

mbsmoke#
c.mage

Nonsmoker 9.737189 1.824372 5.34 0.000 6.161484 13.31289
Smoker -4.962403 3.850123 -1.29 0.197 -12.5085 2.583699

mbsmoke#
prenatal1
Nonsmoker #

Yes 95.11727 26.80305 3.55 0.000 42.58425 147.6503
Smoker#Yes 64.61752 39.69749 1.63 0.104 -13.18813 142.4232

Instruments for equation eq1: 0.mbsmoke 1.mbsmoke 0.mbsmoke#c.mage
1.mbsmoke#c.mage 0o.mbsmoke#0b.prenatal1 0.mbsmoke#1.prenatal1
1o.mbsmoke#0b.prenatal1 1.mbsmoke#1.prenatal1

Now, we use margins to estimate the potential-outcome means. We specify vce(unconditional)
to obtain standard errors for the potential-outcome means of the population rather than the sample. When

we specify this option, the standard errors for the estimated means will account for the estimation error

in the estimated coefficients from gmm.

. margins i.mbsmoke, vce(unconditional)
Predictive margins Number of obs = 4,642
Expression: Linear prediction, predict()

Unconditional
Margin std. err. z P>|z| [95% conf. interval]

mbsmoke
Nonsmoker 3407.506 9.341858 364.76 0.000 3389.196 3425.815

Smoker 3138.23 21.19321 148.08 0.000 3096.692 3179.768
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Our point estimates of the potential-outcome means exactly match those that appear as \m0 and \m1
in example 4. However, the standard errors are slightly higher because gmm and margins use different
values in the denominator for the formula for the robust covariance matrix. gmm uses 𝑁 while margins
uses 𝑁 − 1, so the standard errors differ by a factor of √{𝑁/(𝑁 − 1)} = √4,642/4,641 ≈ 1.0002.

More details about the calculation of the standard errors are provided in Marginal predictions with un-

conditional standard errors in the Methods and formulas.

In addition to potential-outcome means, we can use margins to estimate the average treatment effect
(ATE) of the mother’s smoking behavior on birthweight. We use the contrast operator r. to instruct

margins to difference the potential-outcome means and estimate a treatment effect. We specify the

contrast(nowald) option to suppress the Wald test that margins displays by default for contrasts.

. margins r.mbsmoke, vce(unconditional) contrast(nowald)
Contrasts of predictive margins Number of obs = 4,642
Expression: Linear prediction, predict()

Unconditional
Contrast std. err. [95% conf. interval]

mbsmoke
(Smoker vs Nonsmoker) -269.2759 23.16069 -314.67 -223.8818

The ATE of −269.28 is interpreted as the difference between the average birthweight if all mothers in

the population smoked and the average birthweight if all mothers in the population did not smoke. The

average birthweight if all mothers were to smoke would be 269.28 grams less than if they did not smoke.

Exponential (Poisson) regression models
Exponential regression models are frequently encountered in applied work. For example, they can be

used as alternatives to linear regression models on log-transformed dependent variables, obviating the

need for post-hoc transformations to obtain predicted values in the original metric of the dependent vari-

able. When the dependent variable represents a discrete count variable, exponential regression models

are also known as Poisson regression models; see Cameron and Trivedi (2013).

For now, we consider models of the form

𝑦 = exp(x′β) + 𝑢 (7)

where 𝑢 is a zero-mean additive error term so that 𝐸(𝑦) = exp(x′β). Because the error term is additive,

if x represents strictly exogenous regressors, then we have the population moment condition

𝐸[x{𝑦 − exp(x′β)}] = 0 (8)

Moreover, because the number of parameters in the model is equal to the number of instruments, there

is no point to using the two-step GMM estimator.
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Example 6: Exponential regression
Cameron and Trivedi (2022, 584) fit a model of the number of doctor visits based on whether the

patient has private insurance, whether the patient has a chronic disease, gender, and income. Here we fit

that model by using gmm. To allow for potential excess dispersion, we will obtain a robust VCE matrix,

which is the default for gmm anyway. We type

. use https://www.stata-press.com/data/r18/docvisits

. gmm (docvis - exp({xb:private chronic female income _cons})),
> instruments(private chronic female income) onestep
Step 1:
Iteration 0: GMM criterion Q(b) = 16.853973
Iteration 1: GMM criterion Q(b) = 2.2706472
Iteration 2: GMM criterion Q(b) = .19088097
Iteration 3: GMM criterion Q(b) = .00041101
Iteration 4: GMM criterion Q(b) = 3.939e-09
Iteration 5: GMM criterion Q(b) = 6.572e-19
note: model is exactly identified.
GMM estimation
Number of parameters = 5
Number of moments = 5
Initial weight matrix: Unadjusted Number of obs = 4,412

Robust
Coefficient std. err. z P>|z| [95% conf. interval]

private .7986654 .1089891 7.33 0.000 .5850507 1.01228
chronic 1.091865 .0559888 19.50 0.000 .9821291 1.201601
female .4925481 .0585298 8.42 0.000 .3778317 .6072644
income .003557 .0010824 3.29 0.001 .0014356 .0056784
_cons -.2297263 .1108607 -2.07 0.038 -.4470093 -.0124434

Instruments for equation 1: private chronic female income _cons

Our point estimates agree with those reported by Cameron and Trivedi (2022) to at least six signifi-

cant digits; the small discrepancies are attributable to different optimization techniques and convergence

criteria being used by gmm and poisson. The standard errors differ by a factor of sqrt(4412/4411) be-
cause gmm uses 𝑁 in the denominator of the formula for the robust covariance matrix, while the robust

covariance matrix estimator used by poisson uses 𝑁 − 1.

Technical note
That the GMM and maximum likelihood estimators of the exponential regression model coincide is

not a general property of these two classes of estimators. The maximum likelihood estimator solves the

score equations

1
𝑁

𝑁
∑
𝑖=1

𝜕 ln ℓ𝑖
𝜕β

= 0

where ℓ𝑖 is the likelihood for the 𝑖th observation. These score equations can be viewed as the sample
analogues of the population moment conditions

𝐸 (𝜕 ln ℓ𝑖
𝜕β

) = 0

establishing that maximum likelihood estimators represent a subset of the class of GMM estimators.
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For the Poisson model,

ln ℓ𝑖 = −exp(x′
𝑖β) + 𝑦𝑖x

′
𝑖β − ln 𝑦𝑖!

so the score equations are

1
𝑁

𝑁
∑
𝑖=1

x𝑖 {𝑦𝑖 − exp(x′
𝑖β)} = 0

which are just the sample moment conditions implied by (8) that we used in the previous example. That

is why our results using gmm match Cameron and Trivedi’s (2022) results using poisson.

On the other hand, an intuitive set of moment conditions to consider for GMM estimation of a probit

model is

𝐸[x{𝑦 − Φ(x′β)}] = 0

whereΦ() is the standard normal cumulative distribution function. Differentiating the likelihood function
for the maximum-likelihood probit estimator, we can show that the corresponding score equations are

1
𝑁

𝑁
∑
𝑖=1

[x𝑖 {𝑦𝑖
𝜙(x′

𝑖β)
Φ(x′

𝑖β)
− (1 − 𝑦𝑖)

𝜙(x′
𝑖β)

1 − Φ(x′
𝑖β)

}] = 0

where 𝜙() is the standard normal density function. These two moment conditions are not equivalent, so
the maximum likelihood and GMM probit estimators are distinct.

Example 7: Comparison of GMM and maximum likelihood
Using the automobile dataset, we fit a probit model of foreign on gear ratio, length, and

headroom using first the score equations and then the intuitive set of GMM equations. We type

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. gmm (foreign*normalden({xb:gear_ratio length headroom _cons})/
> normal({xb:}) - (1-foreign)*normalden({xb:})/(1-normal({xb:}))),
> instruments(gear_ratio length headroom) onestep
(output omitted )

. estimates store ml

. gmm (foreign - normal({xb:gear_ratio length headroom _cons})),
> instruments(gear_ratio length headroom) onestep
(output omitted )

. estimates store gmm

. estimates table ml gmm, b se

Variable ml gmm

gear_ratio 2.9586277 2.8489213
.64042341 .63570247

length -.02148933 -.02056033
.01382043 .01396954

headroom .01136927 .02240761
.27278528 .2849891

_cons -6.0222289 -5.8595615
3.5594588 3.5188029

Legend: b/se
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The coefficients on gear ratio and length are close for the two estimators. The GMM estimate of

the coefficient on headroom is twice that of the maximum likelihood estimate, though the relatively

large standard errors imply that this difference is not significant. You can verify that the coefficients

in the column marked “ml” match those you would obtain with probit. We have not discussed the

differences among standard errors based on the various GMM andmaximum-likelihood covariancematrix

estimators to avoid tedious algebra. However, you can verify that the robust covariance matrix after one-

step GMM estimation differs by only a finite-sample adjustment factor of (𝑁/𝑁 − 1) from the robust

covariance matrix reported by probit. Both the maximum likelihood and GMM probit estimators require

the normality assumption, and the maximum likelihood estimator is efficient if that normality assumption

is correct; therefore, in this example, there is no reason to prefer the GMM estimator.

We can modify (8) easily to allow for endogenous regressors. Suppose that 𝑥𝑗 is endogenous in the

sense that 𝐸(𝑢|𝑥𝑗) ≠ 0. Then, (8) is no longer a valid moment condition. However, suppose we have

some variables other than x such that 𝐸(𝑢|z) = 0. We can instead use the moment conditions

𝐸(z𝑢) = 𝐸[z{𝑦 − exp(x′β)}] = 0

As usual, if some elements of x are exogenous, then they should appear in z as well.

Example 8: Exponential regression with endogenous regressors
Returning to the model discussed in example 6, we treat income as endogenous; unobservable factors

that determine a person’s income may also affect the number of times a person visits a doctor. We use

a person’s age and race as instruments. These are valid instruments if we believe that age and race

influence a person’s income but do not have a direct impact on the number of doctor visits. (Whether

this belief is justified is another matter; we test that belief in [R] gmm postestimation.) Because we

have more instruments (seven) than parameters (five), we have an overidentified model. Therefore, the

choice of weight matrix does matter. We will use the default two-step GMM estimator. In the first step,

we will use a weight matrix that assumes the errors are i.i.d. In the second step, we will use a weight

matrix that assumes heteroskedasticity. When you specify twostep, these are the defaults for the first-
and second-step weight matrices, so we do not have to use the winitial() or wmatrix() options. We

will again obtain a robust VCE, which is also the default. We type

. use https://www.stata-press.com/data/r18/docvisits

. gmm (docvis - exp({xb:private chronic female income _cons})),
> instruments(private chronic female age black hispanic) twostep
Step 1:
Iteration 0: GMM criterion Q(b) = 16.910173
Iteration 1: GMM criterion Q(b) = .82276104
Iteration 2: GMM criterion Q(b) = .21832032
Iteration 3: GMM criterion Q(b) = .12685935
Iteration 4: GMM criterion Q(b) = .12672369
Iteration 5: GMM criterion Q(b) = .12672365
Step 2:
Iteration 0: GMM criterion Q(b) = .00234641
Iteration 1: GMM criterion Q(b) = .00215957
Iteration 2: GMM criterion Q(b) = .00215911
Iteration 3: GMM criterion Q(b) = .00215911
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GMM estimation
Number of parameters = 5
Number of moments = 7
Initial weight matrix: Unadjusted Number of obs = 4,412
GMM weight matrix: Robust

Robust
Coefficient std. err. z P>|z| [95% conf. interval]

private .535335 .1599039 3.35 0.001 .2219291 .8487409
chronic 1.090126 .0617659 17.65 0.000 .9690668 1.211185
female .6636579 .0959884 6.91 0.000 .4755241 .8517918
income .0142855 .0027162 5.26 0.000 .0089618 .0196092
_cons -.5983477 .138433 -4.32 0.000 -.8696713 -.327024

Instruments for equation 1: private chronic female age black hispanic _cons

Once we control for the endogeneity of income, we find that its coefficient has quadrupled in size. Addi-

tionally, access to private insurance has less of an impact on the number of doctor visits and gender has

more of an impact.

Technical note
Although you may be tempted to try, you cannot, as you can in a Poisson model, replace x in the

moment conditions for the probit (or logit) model with a vector of instruments, z, if you have endogenous

regressors. See Wilde (2008).

Mullahy (1997) considers a slightly more complicated version of the exponential regression model

that incorporates nonadditive unobserved heterogeneity. His model can be written as

𝑦𝑖 = exp(x′
𝑖β)𝜂𝑖 + 𝜖𝑖

where 𝜂𝑖 > 0 is an unobserved heterogeneity term that may be correlated with x𝑖. One result from his

article is that instead of using the additive moment condition (8), we can use the multiplicative moment

condition

𝐸 {z𝑦 − exp(x′β)
exp(x′β)

} = 𝐸[z{𝑦exp(−x′β) − 1}] = 0

Windmeijer and Santos Silva (1997) discuss the use of additive versus multiplicative moment conditions

with endogenous regressors and note that a set of instruments that satisfies the additive moment con-

ditions will not also satisfy the multiplicative moment conditions. They remark that the decision about

which to use is an empirical issue that can at least partially be settled by using the test of overidentifying

restrictions that is implemented by estat overid after gmm to see whether the instruments for a given
model are valid. See [R] gmm postestimation for information on the test of overidentifying restrictions.

Specifying derivatives
By default, gmm calculates derivatives numerically, and the method used produces accurate results

for the vast majority of applications. However, if you refit the same model repeatedly or else have the

derivatives available, then gmm will run more quickly if you supply it with analytic derivatives.
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When you use the interactive version of gmm, you specify derivatives using substitutable expressions
in much the same way you specify the residual equations. There are three rules you must follow:

1. As with the substitutable expressions that define residual equations, you bind parameters of the

model in curly braces: {b0}, {param}, etc.

2. You must specify a derivative for each parameter that appears in each residual equation. If a

parameter does not appear in a residual equation, then you do not specify a derivative for that

parameter in that residual equation.

3. If you declare a linear combination in an equation, then you specify a derivative with respect to

that linear combination. gmm applies the chain rule to obtain the derivatives with respect to the

individual parameters encompassed by that linear combination.

Example 9: Derivatives for a single-equation model
Consider a simple exponential regression model with one exogenous regressor and a constant term.

We have

𝑢𝑖 = 𝑦𝑖 − exp(𝛽0 + 𝛽1𝑥𝑖)

Now,
𝜕𝑢𝑖
𝜕𝛽0

= −exp(𝛽0 + 𝛽1𝑥𝑖) and
𝜕𝑢𝑖
𝜕𝛽1

= −𝑥𝑖 exp(𝛽0 + 𝛽1𝑥𝑖)

In Stata, we type

. gmm (docvis - exp({b0} + {b1}*income)), instruments(income)
> deriv(/b0 = -1*exp({b0} + {b1}*income))
> deriv(/b1 = -1*income*exp({b0}+{b1}*income)) onestep
Step 1:
Iteration 0: GMM criterion Q(b) = 9.1548611
Iteration 1: GMM criterion Q(b) = 3.5146131
Iteration 2: GMM criterion Q(b) = .01344695
Iteration 3: GMM criterion Q(b) = 3.690e-06
Iteration 4: GMM criterion Q(b) = 4.606e-13
Iteration 5: GMM criterion Q(b) = 1.502e-26
note: model is exactly identified.
GMM estimation
Number of parameters = 2
Number of moments = 2
Initial weight matrix: Unadjusted Number of obs = 4,412

Robust
Coefficient std. err. z P>|z| [95% conf. interval]

/b0 1.204888 .0462355 26.06 0.000 1.114268 1.295507
/b1 .0046702 .0009715 4.81 0.000 .0027662 .0065743

Instruments for equation 1: income _cons

Notice how we specified the derivative() option for each parameter. We simply specified a slash,

the name of the parameter, an equal sign, then a substitutable expression that represents the derivative.

Because our model has only one residual equation, we do not need to specify equation numbers in the

derivative() options.
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When you specify a linear combination of variables, your derivative should be with respect to the

entire linear combination. For example, say we have the residual equation

𝑢𝑖 = 𝑦 − exp(x′
𝑖β + 𝛽0)

for which we would type

. gmm (y - exp({xb: x1 x2 x3} + {b0}) ...

Then, in addition to the derivative 𝜕𝑢𝑖/𝜕𝛽0, we are to compute and specify

𝜕𝑢𝑖
𝜕x′

𝑖β
= −exp(x′

𝑖β + 𝛽0)

Using the chain rule, 𝜕𝑢𝑖/𝜕𝛽𝑗 = 𝜕𝑢𝑖/𝜕(x′
𝑖β) × 𝜕(x′

𝑖β)/𝜕𝛽𝑗 = −𝑥𝑖𝑗exp(x′
𝑖β+ 𝛽0). Stata does this last

calculation automatically. It knows the variables in the linear combination, so all it needs is the derivative

of the residual equation with respect to the linear combination. This allows you to change the variables

in your linear combination without having to change the derivatives.

Example 10: Derivatives with a linear combination
We refit the model described in the example illustrating exponential regression with endogenous re-

gressors, now providing analytic derivatives. We type

. gmm (docvis - exp({xb:private chronic female income _cons})),
> instruments(private chronic female age black hispanic)
> derivative(/xb = -1*exp({xb:}))
Step 1:
Iteration 0: GMM criterion Q(b) = 16.910173
Iteration 1: GMM criterion Q(b) = .82270871
Iteration 2: GMM criterion Q(b) = .21831995
Iteration 3: GMM criterion Q(b) = .12685934
Iteration 4: GMM criterion Q(b) = .12672369
Iteration 5: GMM criterion Q(b) = .12672365
Step 2:
Iteration 0: GMM criterion Q(b) = .00234641
Iteration 1: GMM criterion Q(b) = .00215957
Iteration 2: GMM criterion Q(b) = .00215911
Iteration 3: GMM criterion Q(b) = .00215911
GMM estimation
Number of parameters = 5
Number of moments = 7
Initial weight matrix: Unadjusted Number of obs = 4,412
GMM weight matrix: Robust

Robust
Coefficient std. err. z P>|z| [95% conf. interval]

private .535335 .159904 3.35 0.001 .221929 .848741
chronic 1.090126 .0617659 17.65 0.000 .9690668 1.211185
female .6636579 .0959885 6.91 0.000 .475524 .8517918
income .0142855 .0027162 5.26 0.000 .0089618 .0196092
_cons -.5983477 .138433 -4.32 0.000 -.8696714 -.327024

Instruments for equation 1: private chronic female age black hispanic _cons
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In the first derivative() option, we specified the name of the linear combination, xb, instead of an
individual parameter’s name. We already declared the variables of our linear combination in the substi-

tutable expression for the residual equation, so in our substitutable expressions for the derivatives, we

can use the shorthand notation {xb:} to refer to it.

Our point estimates are identical to those we obtained earlier. The standard errors and confidence

intervals differ by only trivial amounts.

Exponential regression models with panel data
In addition to supporting cross-sectional and time-series data, gmm also works with panel-data mod-

els. Here we illustrate gmm’s panel-data capabilities by expanding our discussion of exponential regres-
sion models to allow for panel data. This also provides us the opportunity to demonstrate the moment-

evaluator program version of gmm. Our discussion is based on Blundell, Griffith, andWindmeijer (2002).

Also see Wooldridge (1999) for further discussion of nonlinear panel-data models.

First, we expand (7) for panel data. With individual heterogeneity term 𝜂𝑖, we have

𝐸(𝑦𝑖𝑡|x𝑖𝑡, 𝜂𝑖) = exp(x′
𝑖𝑡β + 𝜂𝑖) = 𝜇𝑖𝑡𝜈𝑖

where 𝜇𝑖𝑡 = exp(x′
𝑖𝑡β) and 𝜈𝑖 = exp(𝜂𝑖). Note that there is no constant term in this model, because its

effect cannot be disentangled from 𝜈𝑖. With an additive idiosyncratic error term, we have the regression

model

𝑦𝑖𝑡 = 𝜇𝑖𝑡𝜈𝑖 + 𝜖𝑖𝑡

We do not impose the assumption 𝐸(x𝑖𝑡𝜂𝑖) = 0, so 𝜂𝑖 can be considered a fixed effect in the sense that

it may be correlated with the regressors.

As discussed by Blundell, Griffith, and Windmeijer (2002), if x𝑖𝑡 is strictly exogenous, meaning

𝐸(x𝑖𝑡𝜖𝑖𝑠) = 0 for all 𝑡 and 𝑠, then we can estimate the parameters of the model by using the sample
moment conditions

∑
𝑖

∑
𝑡
x𝑖𝑡 (𝑦𝑖𝑡 − 𝜇𝑖𝑡

𝑦𝑖
𝜇𝑖

) = 0 (9)

where 𝑦𝑖 and 𝜇𝑖 are the means of 𝑦𝑖𝑡 and 𝜇𝑖𝑡 for panel 𝑖, respectively. Because 𝜇𝑖 depends on the

parameters of the model, it must be recomputed each time gmm needs to evaluate the residual equation.
Therefore, we cannot use the substitutable expression version of gmm. Instead, we must use the moment-
evaluator program version.
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The moment-evaluator program version of gmm functions much like the function-evaluator program
versions of nl and nlsur. The program you write is passed one or more variables to be filled in with

the residuals evaluated at the parameter values specified in an option passed to your program. For the

fixed-effects Poisson model with strictly exogenous regressors, our first crack at a function-evaluator

program is

program gmm_poi
version 18.0 // (or version 18.5 for StataNow)
syntax varlist if, at(name)
quietly {

tempvar mu mubar ybar
generate double ‘mu’ = exp(x1*‘at’[1,1] + x2*‘at’[1,2] ///

+ x3*‘at’[1,3]) ‘if’
egen double ‘mubar’ = mean(‘mu’) ‘if’, by(id)
egen double ‘ybar’ = mean(y) ‘if’, by(id)
replace ‘varlist’ = y - ‘mu’*‘ybar’/‘mubar’ ‘if’

}
end

You can save your program in an ado-file named name.ado, where name is the name you use for your
program; here wewould save the program in the ado-file gmm poi.ado. Alternatively, if you are working
from within a do-file, you can simply define the program before calling gmm. The syntax statement

declares we are expecting to receive a varlist that will contain the names of variables whose values we

are to replace with the values of the residual equations and an if expression that will mark the estimation
sample; because our model has one residual equation, varlist will consist of one variable. at() is a

required option to our program, and it will contain the name of a matrix containing the parameter values

at which we are to evaluate the residual equation. All moment-evaluator programsmust accept the varlist,

if condition, and at() option.

The first part of our program computes 𝜇𝑖𝑡. In the model we will fit shortly, we have three regressors,

named x1, x2, and x3. The ‘at’ vector will have three elements, one for each of those variables. Notice
that we included ‘if’ at the end of each statement that affects variables to restrict the computations to
the relevant estimation sample. The two egen statements compute 𝜇𝑖 and 𝑦𝑖; in the example dataset

we will use shortly, the panel variable is named id, and for simplicity, we hardcoded that variable into
our program as well. Finally, we compute the residual equation, which is the portion of (9) bound in

parentheses.

Example 11: Panel Poisson with strictly exogenous regressors
To fit our model, we type

. use https://www.stata-press.com/data/r18/poisson1

. gmm gmm_poi, nequations(1) parameters(b1 b2 b3)
> instruments(x1 x2 x3, noconstant) vce(cluster id) onestep
Step 1:
Iteration 0: GMM criterion Q(b) = 51.99142
Iteration 1: GMM criterion Q(b) = .04345191
Iteration 2: GMM criterion Q(b) = 8.720e-06
Iteration 3: GMM criterion Q(b) = 7.115e-13
Iteration 4: GMM criterion Q(b) = 5.130e-27
note: model is exactly identified.
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GMM estimation
Number of parameters = 3
Number of moments = 3
Initial weight matrix: Unadjusted Number of obs = 409

(Std. err. adjusted for 45 clusters in id)

Robust
Coefficient std. err. z P>|z| [95% conf. interval]

/b1 1.94866 .1000265 19.48 0.000 1.752612 2.144709
/b2 -2.966119 .0923592 -32.12 0.000 -3.14714 -2.785099
/b3 1.008634 .1156561 8.72 0.000 .781952 1.235315

Instruments for equation 1: x1 x2 x3

All three of our regressors are strictly exogenous, so they can serve as their own regressors. There

is no constant term in the model (it would be unidentified), so we exclude a constant term from our

list of instruments. We have one residual equation as indicated by nequations(1), and we have three
parameters, named b1, b2, and b3. The order in which you declare parameters in the parameters()
option determines the order in which they appear in the ‘at’ vector in the moment-evaluator program.
We specified vce(cluster id) to obtain standard errors that allow for correlation among observations

within each panel.

The program we just wrote is sufficient to fit the model to the poisson1 dataset, but if we want to
fit that model to other datasets, we need to change the variable names and perhaps account for having a

different number of parameters as well. Despite those limitations, if you just want to fit a single model,

that program is adequate.

Next, we take advantage of the ability to specify full equation names in the parameters() option
and rewrite our evaluator program so that we can more easily change the variables in our model. This

approach is particularly useful if some of the residual equations are linear in the parameters because then

we can use matrix score (see [P] matrix score) to evaluate those moments.

Our new evaluator program is

program gmm_poieq
version 18.0 // (or version 18.5 for StataNow)
syntax varlist if, at(name)
quietly {

tempvar mu mubar ybar
matrix score double ‘mu’ = ‘at’ ‘if’, eq(#1)
replace ‘mu’ = exp(‘mu’)
egen double ‘mubar’ = mean(‘mu’) ‘if’, by(id)
egen double ‘ybar’ = mean(y) ‘if’, by(id)
replace ‘varlist’ = y - ‘mu’*‘ybar’/‘mubar’ ‘if’

}
end

Rather than using generate to compute the temporary variable ‘mu’, we used matrix score to

obtain the linear combination x′
𝑖𝑡β and then called replace to compute exp(x′

𝑖𝑡β).
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Example 12: Panel Poisson using matrix score
To fit our model, we type

. use https://www.stata-press.com/data/r18/poisson1

. gmm gmm_poieq, nequations(1) parameters({y:x1 x2 x3})
> instruments(x1 x2 x3, noconstant) vce(cluster id) onestep
Step 1:
Iteration 0: GMM criterion Q(b) = 51.99142
Iteration 1: GMM criterion Q(b) = .04345191
Iteration 2: GMM criterion Q(b) = 8.720e-06
Iteration 3: GMM criterion Q(b) = 7.115e-13
Iteration 4: GMM criterion Q(b) = 5.130e-27
note: model is exactly identified.
GMM estimation
Number of parameters = 3
Number of moments = 3
Initial weight matrix: Unadjusted Number of obs = 409

(Std. err. adjusted for 45 clusters in id)

Robust
Coefficient std. err. z P>|z| [95% conf. interval]

x1 1.94866 .1000265 19.48 0.000 1.752612 2.144709
x2 -2.966119 .0923592 -32.12 0.000 -3.14714 -2.785099
x3 1.008634 .1156561 8.72 0.000 .781952 1.235315

Instruments for equation 1: x1 x2 x3

Instead of specifying simple parameter names in the parameters() option, we specified a linear

combination name and the variables associated with that combination. We named our linear combination

y, but you could use any valid Stata name. When we use this syntax, the rows of the coefficient table are

grouped by the equation names.

Say we wanted to refit our model using just x1 and x3 as regressors. We do not need to make any

changes to gmm poieq. We just change the specification of the parameters() option:

. gmm gmm_poieq, nequations(1) parameters(y:x1 y:x3)
> instruments(x1 x3, noconstant) vce(cluster id) onestep

In this evaluator program, we have still hardcoded the name of the dependent variable. The next two

examples include methods to tackle that shortcoming.

Technical note
Say we specify the parameters() option like this:

. gmm ..., parameters({y1:x1 x2 _cons} {y2:_cons} {y3:x1 _cons})

Then, the ‘at’ vector passed to our program will have the following column names attached to it:

‘at’[1,6]
y1: y1: y1: y2: y3: y3:
x1 x2 _cons _cons x1 _cons
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Typing

. matrix score double eq1 = ‘at’, eq(#1)

is equivalent to typing

. generate double eq1 = x1*‘at’[1,1] + x2*‘at’[1,2] + ‘at’[1,3]

with one important difference. If we change some of the variables in the parameters() option when we
call gmm, matrix score will compute the correct linear combination. If we were to use the generate
statement instead, then every time we wanted to change the variables in our model, we would have to

modify that statement as well.

The command

. matrix score double alpha = ‘at’, eq(#2)

is equivalent to

. scalar alpha = ‘at’[1,4]

Thus, even if you specify linear combination and variable names in the parameters() option, you can
still have scalar parameters in your model.

When past values of the idiosyncratic error term affect the value of a regressor, we say that regressor

is predetermined. When one or more regressors are predetermined, sample moment condition (8) is

no longer valid. However, Chamberlain (1992) shows that a simple alternative is to consider moment

conditions of the form

∑
𝑖

𝑇
∑
𝑡=2

x𝑖,𝑡−1 (𝑦𝑖,𝑡−1 − 𝜇𝑖,𝑡−1
𝑦𝑖𝑡
𝜇𝑖𝑡

) = 0 (10)

Also see Wooldridge (1997) and Windmeijer (2000) for other moment conditions that can be used with

predetermined regressors.

Example 13: Panel Poisson with predetermined regressors
Here we refit the previous model, treating all the regressors as predetermined and using the moment

conditions in (10). Our moment-evaluator program is

program gmm_poipre
version 18.0 // (or version 18.5 for StataNow)
syntax varlist if, at(name) mylhs(varlist)
quietly {

tempvar mu
matrix score double ‘mu’ = ‘at’ ‘if’, eq(#1)
replace ‘mu’ = exp(‘mu’)
replace ‘varlist’ = L.‘mylhs’ - L.‘mu’*‘mylhs’/‘mu’ ‘if’

}
end

To compute the residual equation, we used lag-operator notation so that Stata properly handles gaps in

our panel dataset. We also made our program accept an additional option that we will use to pass in the

dependent variable. When we specify this option in our gmm statement, it will get passed to our evaluator
program because gmm will not recognize the option as one of its own. Equation (10) shows that we are
to use the first lags of the regressors as instruments, so we type
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. gmm gmm_poipre, mylhs(y) nequations(1) vce(cluster id) onestep
> parameters({y:x1 x2 x3}) instruments(L.(x1 x2 x3), noconstant)
note: 45 missing values returned for equation 1 at initial values.
Step 1:
Iteration 0: GMM criterion Q(b) = 76.652367
Iteration 1: GMM criterion Q(b) = 1.9118192
Iteration 2: GMM criterion Q(b) = .06634724
Iteration 3: GMM criterion Q(b) = .0000233
Iteration 4: GMM criterion Q(b) = 2.998e-12
Iteration 5: GMM criterion Q(b) = 4.888e-26
note: model is exactly identified.
GMM estimation
Number of parameters = 3
Number of moments = 3
Initial weight matrix: Unadjusted Number of obs = 364

(Std. err. adjusted for 45 clusters in id)

Robust
Coefficient std. err. z P>|z| [95% conf. interval]

x1 2.088246 .2513626 8.31 0.000 1.595584 2.580907
x2 -2.905504 .2133908 -13.62 0.000 -3.323742 -2.487266
x3 1.121081 .201654 5.56 0.000 .7258459 1.516315

Instruments for equation 1: L.x1 L.x2 L.x3

Here, like earlier with strictly exogenous regressors, the number of instruments equals the number of

parameters, so there is no gain to using the two-step or iterated estimator. However, if you do have more

instruments than parameters, you will most likely want to use one of those other estimators instead.

The note at the top of the output is given because we have 45 panels in our dataset. Our residual

equation includes lagged terms and therefore cannot be evaluated for the first time period within each

panel. Notes like this can be ignored once you know why they occurred. If you receive a note that you

were not expecting, you should first investigate the cause of the note before trusting the results.

Instead of making our program accept the mylhs() option, we could have used Stata’s coleq macro
function to determine the dependent variable based on the column names attached to the ‘at’ vector; see
[P] macro. Then, we could refit our model with a different dependent variable by changing the lcname

used in the parameters() option. In the next example, we take this approach.

In the previous example, we used x𝑖,𝑡−1 as instruments. A more efficient GMM estimator would also

use x𝑖,𝑡−2, x𝑖,𝑡−3, . . . , x𝑖,1 as instruments in period 𝑡 as well. gmm’s xtinstruments() option allows

you to specify instrument lists that grow as 𝑡 increases. Later, we discuss the xtinstruments() option
in detail in the context of linear dynamic panel-data models.

When a regressor is contemporaneously correlated with the idiosyncratic error term, we say that re-

gressor is endogenous. Windmeijer (2000) shows that we can use the moment condition

∑
𝑖

𝑇
∑
𝑡=3

x𝑖,𝑡−2 ( 𝑦𝑖𝑡
𝜇𝑖𝑡

−
𝑦𝑖,𝑡−1

𝜇𝑖,𝑡−1
)

Here we use the second lag of the endogenous regressor as an instrument. If a variable is strictly exoge-

nous, it can of course serve as its own instrument.
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Example 14: Panel Poisson with endogenous regressors
Here we refit the model, treating x3 as endogenous and x1 and x2 as strictly exogenous. Our moment-

evaluator program is

program gmm_poiend
version 18.0 // (or version 18.5 for StataNow)
syntax varlist if, at(name)
quietly {

tempvar mu
matrix score double ‘mu’ = ‘at’ ‘if’, eq(#1)
replace ‘mu’ = exp(‘mu’)
local mylhs : coleq ‘at’
local mylhs : word 1 of ‘mylhs’
replace ‘varlist’ = ‘mylhs’/‘mu’ - L.‘mylhs’/L.‘mu’ ‘if’

}
end

Now, we call gmm using x1, x2, and L2.x3 as instruments:

. use https://www.stata-press.com/data/r18/poisson2

. gmm gmm_poiend, nequations(1) vce(cluster id) onestep
> parameters(y:x1 y:x2 y:x3) instruments(x1 x2 L2.x3, noconstant)
note: 500 missing values returned for equation 1 at initial values.
Step 1:
Iteration 0: GMM criterion Q(b) = 61.832288
Iteration 1: GMM criterion Q(b) = .03402584
Iteration 2: GMM criterion Q(b) = .01101288
Iteration 3: GMM criterion Q(b) = 6.339e-06
Iteration 4: GMM criterion Q(b) = 1.620e-12
Iteration 5: GMM criterion Q(b) = 1.312e-25
note: model is exactly identified.
GMM estimation
Number of parameters = 3
Number of moments = 3
Initial weight matrix: Unadjusted Number of obs = 3,766

(Std. err. adjusted for 500 clusters in id)

Robust
Coefficient std. err. z P>|z| [95% conf. interval]

x1 1.8141 .2688318 6.75 0.000 1.2872 2.341001
x2 -2.982671 .1086666 -27.45 0.000 -3.195653 -2.769688
x3 4.126518 6.369334 0.65 0.517 -8.357147 16.61018

Instruments for equation 1: x1 x2 L2.x3

The note at the top of the output is given because that we have 500 panels in our dataset. As in the

previous example, our residual equation includes lagged terms and therefore cannot be evaluated for the

first time period within each panel. Instead of using just x𝑖,𝑡−2 as an instrument, we could use all further

lags of x𝑖𝑡 as instruments as well.
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Rational-expectations models
Macroeconomic models typically assume that agents’ expectations about the future are formed ratio-

nally. By rational expectations, we mean that agents use all information available when forming their

forecasts, so the forecast error is uncorrelated with the information available when the forecast was made.

Say that at time 𝑡, people make a forecast, ̂𝑦𝑡+1, of variable 𝑦 in the next period. IfΩ𝑡 denotes all available

information at time 𝑡, then rational expectations implies that 𝐸 {( ̂𝑦𝑡+1 − 𝑦𝑡+1)|Ω𝑡} = 0. If Ω𝑡 denotes

observable variables such as interest rates or prices, then this conditional expectation can serve as the

basis of a moment condition for GMM estimation.

Example 15: Fitting a Euler equation
In a well-known article, Hansen and Singleton (1982) consider a model of portfolio decision making

and discuss parameter estimation using GMM. We will consider a simple example with one asset in which

the agent can invest. Aconsumer wants to maximize the present value of his or her lifetime utility derived

from buying a good. On the one hand, the consumer is impatient, so he or she would rather buy today

than wait until tomorrow. On the other hand, by buying less today, the consumer can invest more money,

earning more interest that can be used to buy more of the good tomorrow. Thus, there is a tradeoff

between having cake today or sacrificing a bit today to have more cake tomorrow.

If we assume a specific form for the agent’s utility function, known as the constant relative-risk aver-

sion utility function, we can show that the Euler equation is

𝐸 [z𝑡 {1 − 𝛽(1 + 𝑟𝑡+1)(𝑐𝑡+1/𝑐𝑡)−𝛾}] = 0

where 𝛽 and 𝛾 are the parameters to estimate, 𝑟𝑡 is the return to the financial asset, and 𝑐𝑡 is consumption

in period 𝑡. 𝛽 measures the agent’s discount factor. If 𝛽 is near 1, the agent is patient and is more willing

to forgo consumption this period. If 𝛽 is close to 0, the agent is less patient and prefers to consume more

now. The parameter 𝛾 characterizes the agent’s utility function. If 𝛾 = 0, the utility function is linear.

As 𝛾 tends toward 1, the utility function tends toward 𝑢 = log(𝑐).
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We have data on three-month Treasury bills (𝑟𝑡) and consumption expenditures (𝑐𝑡). As instruments,

we will use lagged rates of return and past growth rates of consumption. We will use the two-step

estimator and a weight matrix that allows for heteroskedasticity and autocorrelation up to four lags with

the Bartlett kernel. In Stata, we type

. use https://www.stata-press.com/data/r18/cr

. generate cgrowth = c / L.c
(1 missing value generated)
. gmm (1 - {b=1}*(1+F.r)*(F.c/c)^(-1*{gamma=1})),
> inst(L.r L2.r cgrowth L.cgrowth) wmat(hac nw 4) twostep
note: 1 missing value returned for equation 1 at initial values.
Step 1:
Iteration 0: GMM criterion Q(b) = .00226482
Iteration 1: GMM criterion Q(b) = .00054369
Iteration 2: GMM criterion Q(b) = .00053904
Iteration 3: GMM criterion Q(b) = .00053904
Step 2:
Iteration 0: GMM criterion Q(b) = .0600729
Iteration 1: GMM criterion Q(b) = .0596369
Iteration 2: GMM criterion Q(b) = .0596369
GMM estimation
Number of parameters = 2
Number of moments = 5
Initial weight matrix: Unadjusted Number of obs = 239
GMM weight matrix: HAC Bartlett 4

HAC
Coefficient std. err. z P>|z| [95% conf. interval]

/b .9204617 .0134646 68.36 0.000 .8940716 .9468518
/gamma -4.222361 1.473895 -2.86 0.004 -7.111143 -1.333579

HAC standard errors based on Bartlett kernel with 4 lags.
Instruments for equation 1: L.r L2.r cgrowth L.cgrowth _cons

The note at the top of the output is given because the forward operator in our substitutable expression

says that residuals cannot be computed for the last observation. In addition, two observations are omitted

because the L2.r instrument has missing values in the first two time periods. Therefore, of the 242

observations in our dataset, 239 are used to fit the model. Our estimate of 𝛽 is near 1, in line with

expectations and published results. However, our estimate of 𝛾 implies risk-loving behavior and therefore
a poorly specified model.

Also notice our use of the forward operator to refer to the values of 𝑟 and 𝑐 one period ahead; time-
series operators are allowed in substitutable expressions as long as you have previously tsset (see

[TS] tsset) your data. See [U] 13.10 Time-series operators for more information on time-series op-

erators.

System estimators
In many economic models, two or more variables are determined jointly through a system of si-

multaneous equations. Indeed, some of the earliest work in econometrics, including that of the Cowles

Commission, was centered around estimation of the parameters of simultaneous equations. The 2SLS and
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instrumental-variables estimators we have already discussed are used in some circumstances to estimate

such parameters. Here we focus on the joint estimation of all the parameters of systems of equations,

and we begin with the well-known three-stage least-squares (3SLS) estimator.

Recall that the 2SLS estimator is based on the moment conditions 𝐸(z𝑢) = 0. The 2SLS estimator can

be used to estimate the parameters of one equation of a system of structural equations. Moreover, with the

2SLS estimator, we do not even need to specify the structural relationship among all the endogenous vari-

ables; we need to specify only the equation on which interest focuses and simply assume reduced-form

relationships among the endogenous regressors of the equation of interest and the exogenous variables

of the model. If we are willing to specify the complete system of structural equations, then assuming

our model is correctly specified, by estimating all the equations jointly, we can obtain estimates that are

more efficient than equation-by-equation 2SLS.

In [R] reg3, we fit a simple two-equation macroeconomic model,

consump = 𝛽0 + 𝛽1wagepriv + 𝛽2wagegovt + 𝜖1 (11)

wagepriv = 𝛽3 + 𝛽4consump + 𝛽5govt + 𝛽6capital1 + 𝜖2 (12)

where consump represents aggregate consumption; wagepriv and wagegovt are total wages paid by

the private and government sectors, respectively; govt is government spending; and capital1 is the
previous period’s capital stock. We are not willing to assume that 𝜖1 and 𝜖2 are independent, so we must

treat both consump and wagepriv as endogenous. Suppose that a random shock makes 𝜖2 positive.

Then by (12), wagepriv will be higher than it otherwise would. Moreover, 𝜖1 will be either higher or

lower, depending on the correlation between it and 𝜖2. The shock to 𝜖2 has made both wagepriv and
𝜖1 move, which implies that in (11), wagepriv is an endogenous regressor. A similar argument shows

that consump is an endogenous regressor in the second equation. In our model, wagegovt, govt, and
capital1 are all exogenous variables.

Let z1 and z2 denote the instruments for the first and second equations, respectively; we will discuss

what comprises them shortly. We have two sets of moment conditions:

𝐸 { z1(consump − 𝛽0 − 𝛽1wagepriv − 𝛽2wagegovt)
z2(wagepriv − 𝛽3 − 𝛽4consump − 𝛽5govt − 𝛽6capital1)} = 0 (13)

One of the defining characteristics of 3SLS is that the errors are homoskedastic conditional on the instru-

mental variables. Using this assumption, we have

𝐸 [{z1𝜖1
z2𝜖2

} {z′
1𝜖1 z′

2𝜖2}] = {𝜎11𝐸(z1z
′
1) 𝜎12𝐸(z1z

′
2)

𝜎21𝐸(z2z
′
1) 𝜎22𝐸(z2z

′
2)} (14)

where 𝜎𝑖𝑗 = cov(𝜖𝑖, 𝜖𝑗). Let 𝚺 denote the 2 × 2 matrix with typical element 𝜎𝑖𝑗.

The second defining characteristic of the 3SLS estimator is that it uses all the exogenous variables as

instruments for all equations; here z1 = z2 = (wagegovt, govt, capital1, 1), where the 1 indicates a
constant term. From our discussion on the weight matrix and two-step estimation, we want to use the

sample analogue of the matrix inverse of the right-hand side of (14) as our weight matrix.

To implement the 3SLS estimator, we apparently need to know𝚺 or at least have a consistent estimator

of it. The solution is to fit (11) and (11) by 2SLS, use the sample residuals 𝜖1 and 𝜖2 to estimate 𝚺, then

estimate the parameters of (13) via GMM by using the weight matrix just discussed.
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Example 16: 3SLS estimation
3SLS is easier to do using gmm than it sounds. The 3SLS estimator is a two-step GMM estimator. In the

first step, we do the equivalent of 2SLS on each equation, and then we compute a weight matrix based on

(14). Finally, we perform a second step of GMM with this weight matrix.

In Stata, we type

. use https://www.stata-press.com/data/r18/klein, clear

. gmm (eq1: consump - {xb: wagepriv wagegovt _cons})
> (eq2: wagepriv - {xc: consump govt capital1 _cons}),
> instruments(eq1: wagegovt govt capital1)
> instruments(eq2: wagegovt govt capital1)
> winitial(unadjusted, independent) wmatrix(unadjusted) twostep
Step 1:
Iteration 0: GMM criterion Q(b) = 4195.4487
Iteration 1: GMM criterion Q(b) = .22175631
Iteration 2: GMM criterion Q(b) = .22175631 (backed up)
Step 2:
Iteration 0: GMM criterion Q(b) = .09716589
Iteration 1: GMM criterion Q(b) = .07028208
Iteration 2: GMM criterion Q(b) = .07028208
GMM estimation
Number of parameters = 7
Number of moments = 8
Initial weight matrix: Unadjusted Number of obs = 22
GMM weight matrix: Unadjusted

Coefficient Std. err. z P>|z| [95% conf. interval]

xb
wagepriv .8012754 .1279329 6.26 0.000 .5505314 1.052019
wagegovt 1.029531 .3048424 3.38 0.001 .432051 1.627011

_cons 19.3559 3.583772 5.40 0.000 12.33184 26.37996

xc
consump .4026076 .2567312 1.57 0.117 -.1005764 .9057916

govt 1.177792 .5421253 2.17 0.030 .1152461 2.240338
capital1 -.0281145 .0572111 -0.49 0.623 -.1402462 .0840173

_cons 14.63026 10.26693 1.42 0.154 -5.492552 34.75306

Instruments for equation eq1: wagegovt govt capital1 _cons
Instruments for equation eq2: wagegovt govt capital1 _cons

The independent suboption of the winitial() option tells gmm to assume that the residuals are in-

dependent across moment conditions; this suboption sets 𝜎21 = 𝜎12 = 0 in (14). Assuming both ho-

moskedasticity and cross-equation independence is equivalent to fitting the two equations of our model

independently by 2SLS. The wmatrix() option controls how the weight matrix is computed on the basis

of the first-step parameter estimates before the second step of estimation; here we request a weight matrix

that assumes conditional homoskedasticity but that does not impose the cross-equation independence like

the initial weight matrix we used. In this example, we also illustrated how to name residual equations

and how equation names can be used in the instruments() option. Our results are identical to those in
[R] reg3.



gmm — Generalized method of moments estimation 1032

We could have specified our instruments with the syntax

instruments(wagegovt govt capital1)

because gmm uses the variables listed in the instruments() option for all equations unless you specify
which equations the list of instruments is to be used with. However, we wanted to emphasize that the

same instruments are being used for both equations; in a moment, we will discuss an estimator that does

not use the same instruments in all equations.

In the previous example, if we omit the twostep option, the resulting coefficients will be equivalent
to equation-by-equation 2SLS, which Wooldridge (2010, 216) calls the “system 2SLS estimator”. Elimi-

nating the twostep option makes the wmatrix() option irrelevant, so that option can be eliminated as
well.

So far, we have developed the traditional 3SLS estimator. Wooldridge (2010, chap. 8) discusses the

“GMM 3SLS” estimator, which extends the traditional 3SLS estimator by allowing for heteroskedasticity

and different instruments for different equations.

Generalizing (14) to an arbitrary number of equations, we have

𝐸 (Z′εε′Z) = 𝐸 (Z′𝚺Z) (15)

where

Z =
⎡
⎢⎢
⎣

z1 0 · · · 0

0 z2 · · · 0

⋮ ⋮ ⋱ ⋮
0 0 · · · z𝑚

⎤
⎥⎥
⎦

and 𝚺 is now 𝑚 × 𝑚. Equation (15) is the multivariate analogue of a homoskedasticity assumption; for

each equation, the error variance is constant for all observations, as is the covariance between any two

equations’ errors.

We can relax this homoskedasticity assumption by considering different weight matrices. For exam-

ple, if we continue to assume that observations are independent but not necessarily identically distributed,

then by specifying wmatrix(robust), we would obtain a weight matrix that allows for heteroskedas-
ticity:

𝑊 = 1
𝑁

∑
𝑖
Z′

𝑖 ̂𝜖𝑖 ̂𝜖′
𝑖Z𝑖

This is the weight matrix in Wooldridge’s (2010, 218) Procedure 8.1, “GMM with Optimal Weighting

Matrix”. By default, gmm would report standard errors based on his covariance matrix (8.27); specify-
ing vce(unadjusted) would provide the optimal GMM standard errors. If you have multiple obser-

vations for each individual or firm in your dataset, you could specify wmatrix(cluster id), where id
identifies individuals or firms. This would allow arbitrary within-individual correlation, though it does

not account for an individual-specific fixed or random effect. In both cases, we would continue to use

winitial(unadjusted, independent) so that the first-step estimates are the system 2SLS estimates.

Wooldridge (2010, sec. 9.6) discusses instances where it is necessary to use different instruments

in different equations. The GMM 3SLS estimator with different instruments in different equations but

with conditional homoskedasticity is what Hayashi (2000, 275) calls the “full-information instrumental-

variables efficient” (FIVE) estimator. Implementing the FIVE estimator is easy with gmm. For example,
say we have a two-equation system where kids, age, income, and education are all valid instruments
for the first equation but where education is not a valid instrument for the second equation. Then, our
syntax would take the form
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gmm (rexp 1) (rexp 2), instruments(1:kids age income education) ///
instruments(2:kids age income)

The following syntax is equivalent:

gmm (rexp1) (rexp2), instruments(kids age income)
instruments(1:education)

Because we did not specify a list of equations in the second example’s first instruments() option,

those variables are used as instruments in both equations. You can use whichever syntax you prefer. The

first requires a bit more typing but is arguably more transparent.

If all the regressors in the model are exogenous, then the traditional 3SLS estimator is the seemingly

unrelated regression (SUR) estimator. Here you would specify all the regressors as instruments.

Dynamic panel-data models
Commands in Stata that work with panel data expect the data to be in the “long” format, meaning

that each row of the dataset consists of one subobservation that is a member of a logical observation

(represented by the panel identifier variable). See [D] reshape for a discussion of the long versus “wide”

data forms. gmm is no exception in this respect when used with panel data. From a theoretical perspective,

however, it is sometimes easier to view GMM estimators for panel data as system estimators in which we

have 𝑁 observations on a system of 𝑇 equations, where 𝑁 and 𝑇 are the number of observations and

panels, respectively, rather than a single-equation estimator with 𝑁𝑇 observations. Usually, each of the

𝑇 equations will in fact be the same, though we will want to specify different instruments for each of

these equations.

In a dynamic panel-data model, lagged values of the dependent variable are included as regressors.

Here we consider a simple model with one lag of the dependent variable 𝑦 as a regressor and a vector of
strictly exogenous regressors, x𝑖𝑡:

𝑦𝑖𝑡 = 𝜌𝑦𝑖,𝑡−1 + x′
𝑖𝑡β + 𝑢𝑖 + 𝜖𝑖𝑡 (16)

𝑢𝑖 can be either a fixed- or a random-effect term in the sense that we do not require x𝑖𝑡 to be independent

of it. Even with the assumption that 𝜖𝑖𝑡 is i.i.d., the presence of both 𝑦𝑖,𝑡−1 and 𝑢𝑖 in (16) renders both

the standard fixed- and random-effects estimators to be inconsistent because of the well-known Nickell

(1981) bias. OLS regression of 𝑦𝑖𝑡 on 𝑦𝑖,𝑡−1 and x𝑖𝑡 also produces inconsistent estimates because 𝑦𝑖,𝑡−1
will be correlated with the error term.

Technical note
Stata has the xtabond, xtdpd, and xtdpdsys commands (see [XT] xtabond, [XT] xtdpd, and

[XT] xtdpdsys) to fit equations like (16); for everyday use, those commands are preferred because they

offer features such as Windmeijer (2005) bias-corrected standard errors to account for the bias of tra-

ditional two-step GMM standard errors seen in dynamic panel-data models and, being linear estimators,

only require you to specify variable names instead of complete equations. However, using gmm has sev-
eral pedagogical advantages, including the ability to tie those model-specific commands into a more

general framework, a clear illustration of how certain types of instrument matrices for panel-data models

are formed, and demonstrations of several advanced features of gmm.

First-differencing (16) removes the panel-specific 𝑢𝑖 term:

𝑦𝑖𝑡 − 𝑦𝑖,𝑡−1 = 𝜌(𝑦𝑖,𝑡−1 − 𝑦𝑖,𝑡−2) + (x𝑖𝑡 − x𝑖,𝑡−1)′β + (𝜖𝑖𝑡 − 𝜖𝑖,𝑡−1) (17)
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However, now (𝑦𝑖,𝑡−1 − 𝑦𝑖,𝑡−2) is correlated with (𝜖𝑖𝑡 − 𝜖𝑖,𝑡−1). Thus, we need an instrument that is
correlated with the former but not the latter. The lagged variables in (17) mean that the equation is not

estimable for 𝑡 < 3, so consider when 𝑡 = 3. We have

𝑦𝑖3 − 𝑦𝑖2 = 𝜌(𝑦𝑖2 − 𝑦𝑖1) + (x𝑖3 − x𝑖2)′β + (𝜖𝑖3 − 𝜖𝑖2) (18)

In the Arellano–Bond (1991) estimator, lagged levels of the dependent variable are used as instruments.

With our assumption that the 𝜖𝑖𝑡 are i.i.d., (16) intimates that 𝑦𝑖1 can serve as an instrumental variable

when we fit (18).

Next, consider (17) when 𝑡 = 4. We have

𝑦𝑖4 − 𝑦𝑖3 = 𝜌(𝑦𝑖3 − 𝑦𝑖2) + (x𝑖4 − x𝑖3)′β + (𝜖𝑖4 − 𝜖𝑖3)

Now, (16) shows that both 𝑦𝑖1 and 𝑦𝑖2 are uncorrelated with the error term (𝜖𝑖4 − 𝜖𝑖3), so we have two
instruments available. For 𝑡 = 5, you can show that 𝑦𝑖1, 𝑦𝑖2, and 𝑦𝑖3 can serve as instruments. As

may now be apparent, one of the key features of these dynamic panel-data models is that the available

instruments depend on the time period, 𝑡, as was the case for some of the panel Poisson models we

considered earlier. Because the x𝑖𝑡 are strictly exogenous by assumption, they can serve as their own

instruments.

The initial weight matrix that is appropriate for the GMM dynamic panel-data estimator is slightly

more involved than the unadjusted matrix that we have used in most of our previous examples and that

assumes the errors are i.i.d. First, rewrite (17) for panel 𝑖 as

y𝑖 − y𝐿
𝑖 = 𝜌 (y𝐿

𝑖 − y𝐿𝐿
𝑖 ) + (X𝑖 − X𝐿

𝑖 )β + (ε𝑖 − ε𝐿
𝑖 )

where y𝑖 = (𝑦𝑖3, . . . , 𝑦𝑖𝑇) and y𝐿
𝑖 = (𝑦𝑖2, . . . , 𝑦𝑖,𝑇 −1), y𝐿𝐿

𝑖 = (𝑦𝑖1, . . . , 𝑦𝑖,𝑇 −2), and X𝑖, X
𝐿
𝑖 , ε𝑖, and ε

𝐿
𝑖

are defined analogously. Let Z denote the full matrix of instruments for panel 𝑖, including the variables
specified in both the instruments() and xtinstruments() options; the exact structure is detailed in
Methods and formulas.

By assumption, 𝜖𝑖𝑡 is i.i.d., so the first difference (𝜖𝑖𝑡 − 𝜖𝑖,𝑡−1) is necessarily autocorrelated with

correlation −0.5. Therefore, we should not use a weight matrix that assumes the errors are independent.

For dynamic panel-data models, we can show that the appropriate initial weight matrix is

Ŵ = ( 1
𝑁

∑
𝑖
Z′

𝑖H𝐷Z𝑖)
−1

where

H𝐷 =
⎡
⎢
⎢
⎢
⎣

1 −0.5 0 . . . 0 0
−0.5 1 −0.5 . . . 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 . . . 1 −0.5
0 0 0 . . . −0.5 1

⎤
⎥
⎥
⎥
⎦

We can obtain this initial weight matrix by specifying winitial(xt D). The letter D indicates that the
equation we are estimating is specified in first differences.
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Example 17: Arellano–Bond estimator
Say we want to fit the model

n𝑖𝑡 = 𝜌 n𝑖,𝑡−1 + 𝛽1w𝑖𝑡 + 𝛽2w𝑖,𝑡−1 + 𝛽3k𝑖𝑡 + 𝛽4k𝑖,𝑡−1 + 𝑢𝑖 + 𝜖𝑖𝑡 (19)

where we assume that w𝑖𝑡 and k𝑖𝑡 are strictly exogenous. First-differencing, our residual equation is

𝜖∗
𝑖𝑡 = (𝜖𝑖𝑡 − 𝜖𝑖,𝑡−1) =n𝑖𝑡 − n𝑖,𝑡−1 − 𝜌 (n𝑖,𝑡−1 − n𝑖,𝑡−2) − 𝛽1(w𝑖𝑡 − w𝑖,𝑡−1)

− 𝛽2(w𝑖,𝑡−1 − w𝑖,𝑡−2) − 𝛽3(k𝑖𝑡 − k𝑖,𝑡−1) − 𝛽4(k𝑖,𝑡−1 − k𝑖,𝑡−2)
(20)

In Stata, we type

. use https://www.stata-press.com/data/r18/abdata

. gmm (D.n - {rho}*LD.n - {xb:D.w LD.w D.k LD.k}),
> xtinstruments(n, lags(2/.)) instruments(D.w LD.w D.k LD.k, noconstant)
> deriv(/rho = -1*LD.n) deriv(/xb = -1) winitial(xt D) onestep
Step 1:
Iteration 0: GMM criterion Q(b) = .0011455
Iteration 1: GMM criterion Q(b) = .00009103
Iteration 2: GMM criterion Q(b) = .00009103
GMM estimation
Number of parameters = 5
Number of moments = 32
Initial weight matrix: XT D Number of obs = 751

(Std. err. adjusted for 140 clusters in id)

Robust
Coefficient std. err. z P>|z| [95% conf. interval]

rho
_cons .8041712 .1199819 6.70 0.000 .5690111 1.039331

xb
w

D1. -.5600476 .1619472 -3.46 0.001 -.8774583 -.242637
LD. .3946699 .1092229 3.61 0.000 .1805969 .6087429

k
D1. .3520286 .0536546 6.56 0.000 .2468676 .4571897
LD. -.2160435 .0679689 -3.18 0.001 -.3492601 -.0828269

Instruments for equation 1:
XT-style: L(2/.).n
Standard: D.w LD.w D.k LD.k

Because w and k are strictly exogenous, we specified their variants that appear in (20) in the

instruments() option; because there is no constant term in the model, we specified noconstant to
omit the constant from the instrument list.

We specified xtinstruments(n, lags(2/.)) to tell gmm what instruments to use for the lagged

dependent variable included as a regressor in (19). On the basis of our previous discussion, lags two

and higher of n𝑖𝑡 can serve as instruments. The lags(2/.) suboption tells gmm that the first available
instrument for n𝑖𝑡 is the lag-two value n𝑖,𝑡−2. The “.” tells gmm to use all further lags of n𝑖𝑡 as instruments

as well. The instrument matrices in dynamic panel-data models can become large if the dataset has many

time periods per panel. In those cases, you could specify, for example, lags(2/4) to use just lags two
through four instead of using all available lags.
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Our results are identical to those we would obtain using xtabond with the syntax

xtabond n L(0/1).w L(0/1).k, lags(1) noconstant vce(robust)

If we had left off the vce(robust) option in our call to xtabond, we would have had to specify

vce(unadjusted) in our call to gmm to obtain the same standard errors.

Technical note
gmm automatically excludes observations for which there are no valid observations for the panel-style

instruments. However, it keeps in the estimation sample those observations for which fewer than themax-

imum number of instruments you requested are available. For example, if you specify the lags(2/4)
suboption, you have requested three instruments, but gmm will keep observations even if only one or two
instruments are available.

Example 18: Two-step Arellano–Bond estimator
Here we refit the model from example 17, using the two-step GMM estimator.

. gmm (D.n - {rho}*LD.n - {xb:D.w LD.w D.k LD.k}),
> xtinstruments(n, lags(2/.)) instruments(D.w LD.w D.k LD.k, noconstant)
> deriv(/rho = -1*LD.n) deriv(/xb = -1) winitial(xt D) wmatrix(robust)
> vce(unadjusted)
Step 1:
Iteration 0: GMM criterion Q(b) = .0011455
Iteration 1: GMM criterion Q(b) = .00009103
Iteration 2: GMM criterion Q(b) = .00009103
Step 2:
Iteration 0: GMM criterion Q(b) = .44107941
Iteration 1: GMM criterion Q(b) = .4236729
Iteration 2: GMM criterion Q(b) = .4236729 (backed up)
GMM estimation
Number of parameters = 5
Number of moments = 32
Initial weight matrix: XT D Number of obs = 751
GMM weight matrix: Robust

Coefficient Std. err. z P>|z| [95% conf. interval]

rho
_cons .8044783 .0534763 15.04 0.000 .6996667 .90929

xb
w

D1. -.5154978 .0335506 -15.36 0.000 -.5812557 -.4497399
LD. .4059309 .0637294 6.37 0.000 .2810235 .5308384

k
D1. .3556204 .0390892 9.10 0.000 .2790071 .4322337
LD. -.2204521 .046439 -4.75 0.000 -.3114709 -.1294332

Instruments for equation 1:
XT-style: L(2/.).n
Standard: D.w LD.w D.k LD.k
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Our results match those you would obtain with the command

xtabond n L(0/1).(w k), lags(1) noconstant twostep

Technical note
If we had specified vce(robust) in our call to gmm, we would have obtained the traditional sandwich-

based robust covariance matrix, but our standard errors would not match those we would obtain by

specifying vce(robust)with the xtabond command. The xtabond, xtdpd, and xtdpdsys commands
implement a bias-corrected robust VCE for the two-step GMM dynamic panel-data estimator. Traditional

VCEs computed after the two-step dynamic panel-data estimator have been shown to exhibit often-severe

bias; see Windmeijer (2005).

Neither of the two dynamic panel-data examples (17 and 18) we have fit so far include a constant

term. When a constant term is included, the dynamic panel-data estimator is in fact a two-equation

system estimator. For notational simplicity, consider a simple model containing just a constant term and

one lag of the dependent variable:

𝑦𝑖𝑡 = 𝛼 + 𝜌𝑦𝑖,𝑡−1 + 𝑢𝑖 + 𝜖𝑖𝑡

First-differencing to remove the 𝑢𝑖 term, we have

𝑦𝑖𝑡 − 𝑦𝑖,𝑡−1 = 𝜌(𝑦𝑖,𝑡−1 − 𝑦𝑖,𝑡−2) + (𝜖𝑖𝑡 − 𝜖𝑖,𝑡−1) (21)

This has also eliminated the constant term. If we assume 𝐸(𝑢𝑖) = 0, which is reasonable if a constant
term is included in the model, then we can recover 𝛼 by including the moment condition

𝑦𝑖𝑡 = 𝛼 + 𝜌𝑦𝑖,𝑡−1 + 𝜖′
𝑖𝑡 (22)

where 𝜖′
𝑖𝑡 = 𝑢𝑖 + 𝜖𝑖𝑡. The parameter 𝜌 continues to be identified by (21), so the only instrument we use

with (22) is a constant term. As before, the error term (𝜖𝑖,𝑡 − 𝜖𝑖,𝑡−1) is necessarily autocorrelated with
correlation coefficient −0.5, though the error term 𝜖′

𝑖𝑡 is white noise. Therefore, our initial weight matrix

should be

Ŵ = ( 1
𝑁

∑
𝑖
Z′

𝑖HZ𝑖)
−1

where

H = [H𝐷 0

0 I
]

and I is a conformable identity matrix.

One complication arises concerning the relevant estimation sample. Looking at (21), we apparently

lose the first two observations from each panel because of the presence of 𝑦𝑖,𝑡−2, but in (22), we need

to sacrifice only one observation for 𝑦𝑖,𝑡−1. For most multiple-equation models, we need to use the

same estimation sample for all equations. However, in dynamic panel-data models, we can use more

observations to fit the equation in level form [(22) here] than the equation in first differences [equation

(21)]. To request this behavior, we specify the nocommonesample option to gmm. That option tells gmm to
use as many observations as possible for each equation, ignoring the loss of observations due to lagging

or differencing.
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Example 19: Arellano–Bond estimator with constant term
Here we fit the model

n𝑖𝑡 = 𝛼 + 𝜌 n𝑖,𝑡−1 + 𝑢𝑖 + 𝜖𝑖𝑡

Without specifying derivatives, our command would be

. gmm (D.n - {rho}*LD.n) (n - {alpha} - {rho}*L.n),
> xtinstruments(1: n, lags(2/.)) instruments(1:, noconstant) onestep
> winitial(xt DL) vce(unadj) nocommonesample

We would specify winitial(xt DL) to obtain the required initial weight matrix. The notation DL in-
dicates that our first residual equation is in first differences and that the second residual equation is in

levels (not first-differenced). We exclude a constant in the instrument list for the first equation because

first-differencing removed the constant term. Because we do not specify the instruments() option for
the second residual equation, a constant is used by default.

This example also provides us the opportunity to illustrate how to specify derivatives for multiple-

equation GMMmodels. Within the derivative() option, instead of specifying just the parameter name,
now you must specify the equation name or number, a slash, and the parameter name to which the deriva-

tive applies. In Stata, we type

. gmm (D.n - {rho}*LD.n) (n - {alpha} - {rho}*L.n),
> xtinstruments(1: n, lags(2/.)) instruments(1:, noconstant)
> derivative(1/rho = -1*LD.n) derivative(2/alpha = -1)
> derivative(2/rho = -1*L.n) winitial(xt DL) vce(unadj) nocommonesample onestep
Step 1:
Iteration 0: GMM criterion Q(b) = .09894466
Iteration 1: GMM criterion Q(b) = .00023508
Iteration 2: GMM criterion Q(b) = .00023508
GMM estimation
Number of parameters = 2
Number of moments = 29
Initial weight matrix: XT DL Number of obs = *

Coefficient Std. err. z P>|z| [95% conf. interval]

/rho 1.023349 .0608293 16.82 0.000 .9041259 1.142572
/alpha -.0690864 .0660343 -1.05 0.295 -.1985112 .0603384

* Number of observations for equation 1: 751
Number of observations for equation 2: 891

Instruments for equation 1:
XT-style: L(2/.).n

Instruments for equation 2:
Standard: _cons

These results are identical to those we would obtain by typing

xtabond n, lags(1)

Because we specified nocommonesample, gmm did not report the number of observations used in the
header of the output. In this dataset, there are in fact 1,031 observations on 140 panels. In the second

equation, the presence of the lagged value of n reduces the sample size for that equation to 1031−140 =
891. In the first equation, we lose the first two observations per panel because of lagging and differencing,

which leads to 751 usable observations. These tallies are listed after the coefficient table in the output.
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Technical note
Specifying

xtinstruments(x1 x2 x3, lags(1/3))

differs from

instruments(L(1/3).(x1 x2 x3))

in how observations are excluded from the estimation sample. When you use the latter syntax, gmmmust
exclude the first three observations from each panel when computing the residual equation: you requested

that three lags of each regressor be used as instruments, so the first residual that could be interacted with

those instruments is the one for 𝑡 = 4. On the other hand, when you use xtinstruments(), you are
telling gmm that you would like to use up to the first three lags of x1, x2, and x3 as instruments but that
using just one lag is acceptable. Because most panel datasets have a relatively modest number of obser-

vations per panel, dynamic instrument lists are typically used so that the number of usable observations

is maximized. Dynamic instrument lists also accommodate the fact that there are more valid instruments

for later time periods than earlier time periods.

Specifying panel-style instruments using the xtinstruments() option also affects how the standard

instruments specified in the instruments() option are treated. To illustrate, we will suppose that we
have a balanced panel dataset with 𝑇 = 5 observations per panel and that we specify

. gmm ..., xtinstruments(w, lags(1/2)) instruments(x)

We will lose the first observation because we need at least one lag of w to serve as an instrument. Our
instrument matrix for panel 𝑖 will therefore be

Z𝑖 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑤𝑖1 0 0 0
0 𝑤𝑖1 0 0
0 𝑤𝑖2 0 0
0 0 𝑤𝑖2 0
0 0 𝑤𝑖3 0
0 0 0 𝑤𝑖3
0 0 0 𝑤𝑖4

𝑥𝑖2 𝑥𝑖3 𝑥𝑖4 𝑥𝑖5
1 1 1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(23)

The vector of ones in the final row represents the constant term implied by the instruments() option.
Because we lost the first observation, the residual vector u𝑖 will be 4× 1. Thus, our moment conditions

for the 𝑖th panel can be written in matrix notation as

𝐸{Z𝑖u𝑖(β)} = 𝐸
⎧
{
⎨
{
⎩

Z𝑖
⎡
⎢⎢
⎣

𝑢𝑖2(β)
𝑢𝑖3(β)
𝑢𝑖4(β)
𝑢𝑖5(β)

⎤
⎥⎥
⎦

⎫
}
⎬
}
⎭

= 0

The moment conditions corresponding to the final two rows of (23) say that

𝐸 {
𝑇 =4
∑
𝑡=2

𝑥𝑖𝑡𝑢𝑖𝑡(β)} = 0 and 𝐸 {
𝑇 =4
∑
𝑡=2

𝑢𝑖𝑡(β)} = 0
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Because we specified panel-style instruments with the xtinstruments() option, gmm no longer uses

moment conditions for strictly exogenous variables of the form 𝐸{𝑥𝑖𝑡𝑢𝑖𝑡(β)} = 0 for each 𝑡. Instead,
the moment conditions now stipulate that the average (over 𝑡) of 𝑥𝑖𝑡𝑢𝑖𝑡(β) has expectation zero. This
corresponds to the approach proposed by Arellano and Bond (1991, 280) and others.

When you request panel-style instruments with the xtinstruments() option, the number of instru-
ments in the Z𝑖 matrix increases quadratically in the number of periods. The dynamic panel-data estima-

tors we have discussed in this section are designed for datasets that contain a large number of panels and

a modest number of time periods. When the number of time periods is large, estimators that use standard

(non-panel-style) instruments are more appropriate.

We have focused on theArellano–Bond dynamic panel-data estimator because of its relative simplic-

ity. gmm can additionally fit any models that can be formulated using the xtdpd and xtdpdsys com-

mands; see [XT] xtdpd and [XT] xtdpdsys. The key is to determine the appropriate instruments to use

for the level and difference equations. You may find it useful to fit a version of your model with those

commands to determine what instruments and XT-style instruments to use. We conclude this section with

an example using the Arellano–Bover/Blundell–Bond estimator.

Example 20: Arellano–Bover/Blundell–Bond estimator
We fit a small model that includes one lag of the dependent variable n as a regressor as well as the

contemporaneous and first lag of w, which we assume are strictly exogenous. When we apply virtually

all the syntax issues we have discussed so far, the gmm command is

. gmm (n - {rho}*L.n - {w}*w - {lagw}*L.w - {c})
> (D.n - {rho}*LD.n - {w}*D.w - {lagw}*LD.w),
> xtinst(1: D.n, lags(1/1)) xtinst(2: n, lags(2/.))
> inst(2: D.w LD.w, noconstant)
> deriv(1/rho = -1*L.n) deriv(1/w = -1*w)
> deriv(1/lagw = -1*L.w) deriv(1/c = -1)
> deriv(2/rho = -1*LD.n) deriv(2/w = -1*D.w)
> deriv(2/lagw = -1*LD.w)
> winit(xt LD) wmatrix(robust) vce(unadjusted) nocommonesample
Step 1:
Iteration 0: GMM criterion Q(b) = .10170339
Iteration 1: GMM criterion Q(b) = .00022772
Iteration 2: GMM criterion Q(b) = .00022772
Step 2:
Iteration 0: GMM criterion Q(b) = .59965014
Iteration 1: GMM criterion Q(b) = .56578186
Iteration 2: GMM criterion Q(b) = .56578186
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GMM estimation
Number of parameters = 4
Number of moments = 39
Initial weight matrix: XT LD Number of obs = *
GMM weight matrix: Robust

Coefficient Std. err. z P>|z| [95% conf. interval]

/rho 1.122738 .0206512 54.37 0.000 1.082263 1.163214
/w -.6719909 .0246148 -27.30 0.000 -.7202351 -.6237468

/lagw .571274 .0403243 14.17 0.000 .4922398 .6503083
/c .154309 .17241 0.90 0.371 -.1836084 .4922263

* Number of observations for equation 1: 891
Number of observations for equation 2: 751

Instruments for equation 1:
XT-style: LD.n
Standard: _cons

Instruments for equation 2:
XT-style: L(2/.).n
Standard: D.w LD.w

Alternatively, we could have fit this model with xtdpdsys by typing the following:

xtdpdsys n L(0/1).w, lags(1) twostep

Details of moment-evaluator programs
In examples 11, 12, 13, and 14, we used moment-evaluator programs to evaluate moment conditions

that could not be specified using the interactive version of gmm. In example 13, we also showed how to

pass additional information to an evaluator program. Here we discuss how to make moment-evaluator

programs provide derivatives and accept weights.

The complete specification for a moment-evaluator program’s syntax statement is
syntax varlist if [weight], at(name) options [derivatives(varlist)]

The macro ‘varlist’ contains the list of variables that we are to fill in with the values of our residual
equations. The macro ‘if’ represents an if condition that restricts the estimation sample. The macro
‘at’ represents a vector containing the parameter values at which we are to evaluate our residual equa-
tions. options represent other options that you specify in your call to gmm and want to have passed to
your moment-evaluator programs. In example 13, we included the mylhs() option so that we could pass
the name of the dependent variable to our evaluator program.

Two new elements of the syntax statement allow for weights and derivatives. weight specifies the
types of weights your program allows. The interactive version of gmm allows for fweights, aweights,
and pweights. However, unless you explicitly allow your moment evaluator program to accept weights,

you cannot specify weights in your call to gmm with the moment-evaluator program version.

The derivatives() option is used to pass to your program a set of variables that you are to fill in

with the derivatives of your residual equations with respect to the parameters.

To indicate that your program can calculate derivatives, you specify either the hasderivatives
or the haslfderivatives option to gmm. The hasderivatives option indicates that your program

calculates parameter-level derivatives; that method requires more work but can be applied to any GMM
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problem. The haslfderivatives option requires less work but can be used only when the model’s

residual equations satisfy certain restrictions and when you use the {lcname:varlist} syntax with the

parameters() option.

We first consider how to write the derivative computation logic to work with the hasderivatives
option and provide an example; then, we do the same for the haslfderivatives option.

Say that you specify 𝑘 parameters in the nparameters() or parameters() option and 𝑞 equa-

tions in the nequations() or equations() option and that you specify hasderivatives. Then,

‘derivatives’ will contain 𝑘 × 𝑞 variables. The first 𝑘 variables are for the derivatives of the first

residual equation with respect to the 𝑘 parameters, the second 𝑘 variables are for the derivatives of the

second residual equation, and so on.

Example 21: Specifying derivatives with simple parameter names
To focus on how to specify derivatives, we return to the simple moment-evaluator program we used in

example 11, in which we had three regressors, and extend it to supply derivatives. The residual equation

corresponding to moment condition (9) is

𝑢𝑖𝑡(β) = 𝑦𝑖𝑡 − 𝜇𝑖𝑡
𝑦𝑖
𝜇𝑖

where 𝜇𝑖𝑡, 𝜇𝑖, and 𝑦𝑖 were defined previously. Now,

𝜕
𝜕𝛽𝑗

𝑢𝑖𝑡(β) = −𝜇𝑖𝑡
𝑦𝑖
𝜇2

𝑖
(𝑥(𝑗)

𝑖𝑡 𝜇𝑖 − 1
𝑇

𝑙=𝑇
∑
𝑙=1

𝑥(𝑗)
𝑖𝑙 𝜇𝑖𝑙) (24)

where 𝑥(𝑗)
𝑖𝑡 represents the 𝑗th element of x𝑖𝑡.

Our moment-evaluator program is

program gmm_poideriv
version 18.0 // (or version 18.5 for StataNow)
syntax varlist if, at(name) [derivatives(varlist)]
quietly {

// Calculate residuals as before
tempvar mu mubar ybar
generate double ‘mu’ = exp(x1*‘at’[1,1] + x2*‘at’[1,2] ///

+ x3*‘at’[1,3]) ‘if’
egen double ‘mubar’ = mean(‘mu’) ‘if’, by(id)
egen double ‘ybar’ = mean(y) ‘if’, by(id)
replace ‘varlist’ = y - ‘mu’*‘ybar’/‘mubar’ ‘if’
// Did -gmm- request derivatives?
if ”‘derivatives’” == ”” {

exit // no, so we are done
}
// Calculate derivatives
// We need the panel means of x1*mu, x2*mu, and x3*mu
tempvar work x1mubar x2mubar x3mubar
generate double ‘work’ = x1*‘mu’ ‘if’
egen double ‘x1mubar’ = mean(‘work’) ‘if’, by(id)
replace ‘work’ = x2*‘mu’ ‘if’
egen double ‘x2mubar’ = mean(‘work’) ‘if’, by(id)
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replace ‘work’ = x3*‘mu’ ‘if’
egen double ‘x3mubar’ = mean(‘work’) ‘if’, by(id)
local d1: word 1 of ‘derivatives’
local d2: word 2 of ‘derivatives’
local d3: word 3 of ‘derivatives’
replace ‘d1’ = -1*‘mu’*‘ybar’/‘mubar’^2*(x1*‘mubar’ - ‘x1mubar’)
replace ‘d2’ = -1*‘mu’*‘ybar’/‘mubar’^2*(x2*‘mubar’ - ‘x2mubar’)
replace ‘d3’ = -1*‘mu’*‘ybar’/‘mubar’^2*(x3*‘mubar’ - ‘x3mubar’)

}
end

The derivatives() option is made optional in the syntax statement by placing it in square brackets.
If gmm needs to evaluate your residual equations but does not need derivatives at that time, then the

derivatives() option will be empty. In our program, we check to see whether that is the case and,
if so, exit without calculating derivatives. As is often the case with [R] ml as well, the portion of our

program devoted to derivatives is longer than the code to compute the objective function.

The first part of our derivative code computes the term

1
𝑇

𝑙=𝑇
∑
𝑙=1

𝑥(𝑗)
𝑖𝑙 𝜇𝑖𝑙 (25)

for 𝑥(𝑗)
𝑖𝑡 = x1, x2, and, x3. The ‘derivatives’ macro contains three variable names corresponding

to the three parameters of the ‘at’ matrix. We extract those names into local macros ‘d1’, ‘d2’, and
‘d3’ and then fill in the variables those macros represent with the derivatives shown in (24).

With our program written, we fit our model by typing

. use https://www.stata-press.com/data/r18/poisson1, clear

. gmm gmm_poideriv, nequations(1) parameters(b1 b2 b3)
> instruments(x1 x2 x3, noconstant) vce(cluster id) onestep hasderivatives
Step 1:
Iteration 0: GMM criterion Q(b) = 51.99142
Iteration 1: GMM criterion Q(b) = .04345191
Iteration 2: GMM criterion Q(b) = 8.720e-06
Iteration 3: GMM criterion Q(b) = 7.115e-13
Iteration 4: GMM criterion Q(b) = 5.130e-27
note: model is exactly identified.
GMM estimation
Number of parameters = 3
Number of moments = 3
Initial weight matrix: Unadjusted Number of obs = 409

(Std. err. adjusted for 45 clusters in id)

Robust
Coefficient std. err. z P>|z| [95% conf. interval]

/b1 1.94866 .1000265 19.48 0.000 1.752612 2.144709
/b2 -2.966119 .0923592 -32.12 0.000 -3.14714 -2.785099
/b3 1.008634 .1156561 8.72 0.000 .781952 1.235315

Instruments for equation 1: x1 x2 x3
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Our results are identical to those in example 11. Another way to verify that our program calculates

derivatives correctly would be to type

. gmm gmm_poideriv, nequations(1) parameters(b1 b2 b3)
> instruments(x1 x2 x3, noconstant) vce(cluster id) onestep

Without the hasderivatives or haslfderivatives option, gmmwill not request derivatives from your

program, even if it contains code to compute them. If you have trouble obtaining convergence with the

hasderivatives or haslfderivatives option but do not have trouble without specifying one of them,
then you need to recheck your derivatives.

After example 11, we remarked that the evaluator programwould have to be changed to accommodate

different regressors. We then showed how you can specify parameters using the syntax {lcname:varlist}
and then use matrix score to compute linear combinations of variables. To specify derivatives when
you specify parameters using this notation, ensure that your residual equations satisfy the “linear-form

restriction” analogous to the restrictions of linear-form evaluators used by ml. See [R] ml and Pitblado,

Poi, and Gould (2024) for more information about linear-form evaluators.

AGMM residual equation satisfies the linear-form restriction if the equation can be written in terms of a

single observation in the dataset and if the equation for observation 𝑖 does not depend on any observations
𝑗 ≠ 𝑖. Cross-sectional models satisfy the linear-form restriction. Time-series models satisfy the linear-

form restriction only when no lags or leads are used.

Panel-data models often do not satisfy the linear-form restriction. For example, recall moment con-

dition (9) for a panel Poisson model. That residual equation included panel-level mean terms 𝑦𝑖 and 𝜇𝑖,

so the residual equation for an individual observation depends on all the observations in the same panel.

When a residual equation does not satisfy the linear-form restriction, neither will its derivatives. To

apply the chain rule, we need a way to multiply the lcname-level derivative by each of the variables in

the equation to obtain parameter-level derivatives. In (24), for example, there is no way to factor out

each 𝑥(𝑗)
𝑖𝑡 variable and obtain an lcname-level derivative that we then multiply by each of the 𝑥(𝑗)

𝑖𝑡 s.

Suppose we do have a model with 𝑞 = 2 moment conditions, both of which do satisfy the linear-form

restriction, and we specify the parameters() option like this:

. gmm ..., parameters({eq1:x1 x2 _cons} {eq2:_cons} {eq3:x1 x2 _cons})

We have specified 𝑛 = 3 lcnames in the parameters() option: eq1, eq2, and eq3. When we specify

the haslfderivatives option, gmm will pass 𝑛 × 𝑞 = 3 × 2 = 6 variables in the derivatives()
option. The first three variables are to be filled with

𝜕
𝜕eq1

𝑢1𝑖(β) 𝜕
𝜕eq2

𝑢1𝑖(β) and
𝜕

𝜕eq3
𝑢1𝑖(β)

where 𝑢1𝑖(β) is the 𝑖th observation for the first moment equation. Then, the second three variables are
to be filled with

𝜕
𝜕eq1

𝑢2𝑖(β) 𝜕
𝜕eq2

𝑢2𝑖(β) and
𝜕

𝜕eq3
𝑢2𝑖(β)

where 𝑢2𝑖(β) is the second moment equation. In this example, we filled in a total of six variables with
derivatives. If we instead used the hasderivatives option, we would have filled 𝑘 × 𝑞 = 7 × 2 = 14

variables; moreover, if we wanted to change the number of variables in our model, we would have

modified our evaluator program.
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Example 22: Specifying derivatives with linear-form residual equations
In examples 9 and 10, we showed how to specify derivatives with an exponential regression model

when using the interactive version of gmm. Here we show how to write a moment-evaluator program for

the exponential regression model, including derivatives.

The residual equation for observation 𝑖 is

𝑢𝑖 = 𝑦𝑖 − exp(x′
𝑖β)

where x𝑖 may include a constant term. The derivative with respect to the linear combination x
′
𝑖β is

𝜕𝑢𝑖
𝜕x′

𝑖β
= − exp(x′

𝑖β)

To verify that this residual equation satisfies the linear-form restriction, we see that for the 𝑗th element
of β, we have

𝜕𝑢𝑖
𝜕𝛽𝑗

= −𝑥𝑖𝑗 exp(x′
𝑖β) = 𝜕𝑢𝑖

𝜕x′
𝑖β

× 𝑥𝑖𝑗

so that given 𝜕𝑢𝑖/𝜕x′
𝑖β, gmm can apply the chain rule to obtain the derivatives with respect to the indi-

vidual parameters.

Our moment-evaluator program is

program gmm_poideriv2
version 18.0 // (or version 18.5 for StataNow)
syntax varlist if, at(name) [derivatives(varlist)]
quietly {

tempvar mu
matrix score double ‘mu’ = ‘at’ ‘if’, eq(#1)
replace ‘mu’ = exp(‘mu’)
local depvar : coleq ‘at’
local depvar : word 1 of ‘depvar’
replace ‘varlist’ = ‘depvar’ - ‘mu’ ‘if’
// Did -gmm- request derivatives?
if ”‘derivatives’” == ”” {

exit // no, so we are done
}
// Calculate derivatives
// The derivatives macro only has one variable
// for this model.
replace ‘derivatives’ = -1*‘mu’ ‘if’

}
end
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To fit our model of doctor visits treating income as an endogenous regressor, we type

. use https://www.stata-press.com/data/r18/docvisits

. gmm gmm_poideriv2, nequations(1)
> instruments(private chronic female age black hispanic)
> parameters({docvis:private chronic female income _cons}) haslfderivatives
Step 1:
Iteration 0: GMM criterion Q(b) = 16.910173
Iteration 1: GMM criterion Q(b) = .82270871
Iteration 2: GMM criterion Q(b) = .21831995
Iteration 3: GMM criterion Q(b) = .12685934
Iteration 4: GMM criterion Q(b) = .12672369
Iteration 5: GMM criterion Q(b) = .12672365
Step 2:
Iteration 0: GMM criterion Q(b) = .00234641
Iteration 1: GMM criterion Q(b) = .00215957
Iteration 2: GMM criterion Q(b) = .00215911
Iteration 3: GMM criterion Q(b) = .00215911
GMM estimation
Number of parameters = 5
Number of moments = 7
Initial weight matrix: Unadjusted Number of obs = 4,412
GMM weight matrix: Robust

Robust
Coefficient std. err. z P>|z| [95% conf. interval]

private .535335 .159904 3.35 0.001 .221929 .848741
chronic 1.090126 .0617659 17.65 0.000 .9690668 1.211185
female .6636579 .0959885 6.91 0.000 .475524 .8517918
income .0142855 .0027162 5.26 0.000 .0089618 .0196092
_cons -.5983477 .138433 -4.32 0.000 -.8696714 -.327024

Instruments for equation 1: private chronic female age black hispanic _cons

Our results match those shown in example 10.

We can change the variables in our model just by changing the parameters() and instruments()
options; we do not need to make any changes to the moment-evaluator program, because we used linear-

form derivatives.

Depending on your model, allowing your moment-evaluator program to accept weights may be as

easy as modifying the syntax command to allow them, or it may require significantly more work. If

your program uses only commands such as generate and replace, then just modifying the syntax
command is all you need to do; gmm takes care of applying the weights to the observation-level residuals
when computing the sample moments, derivatives, and weight matrices. On the other hand, if your

moment-evaluator program computes residuals using statistics that depend on multiple observations,

then you must apply the weights passed to your program when computing those statistics.

In our examples of panel Poisson with strictly exogenous regressors (11 and 21), we used the statistics

𝜇𝑖 and 𝑦𝑖 when computing the residuals. If we are to allow weights with our moment-evaluator program,

then we must incorporate those weights when computing 𝜇𝑖 and 𝑦𝑖. Moreover, looking at the derivative

in (24), we see that the term highlighted in (25) is in fact a sample mean, so we must incorporate weights

when computing it.
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Example 23: Panel Poisson with derivatives and weights
Here we modify the program in example 21 to accept frequency weights. One complication arises:

we had been using egen to compute 𝜇𝑖 and 𝑦𝑖. egen does not accept weights, so we must compute 𝜇𝑖
and 𝑦𝑖 ourselves, incorporating any weights the user may specify. Our program is

program gmm_poiderivfw
version 18.0 // (or version 18.5 for StataNow)
syntax varlist if [fweight/], at(name) [derivatives(varlist)]
quietly {

if ”‘exp’” == ”” { // no weights
local exp 1 // weight each observation equally

}
// Calculate residuals as before
tempvar mu mubar ybar sumwt
generate double ‘mu’ = exp(x1*‘at’[1,1] + x2*‘at’[1,2] ///

+ x3*‘at’[1,3]) ‘if’
bysort id: generate double ‘sumwt’ = sum(‘exp’)
by id: generate double ‘mubar’ = sum(‘mu’*‘exp’)
by id: generate double ‘ybar’ = sum(y*‘exp’)
by id: replace ‘mubar’ = ‘mubar’[_N] / ‘sumwt’[_N]
by id: replace ‘ybar’ = ‘ybar’[_N] / ‘sumwt’[_N]
replace ‘varlist’ = y - ‘mu’*‘ybar’/‘mubar’ ‘if’
// Did -gmm- request derivatives?
if ”‘derivatives’” == ”” {

exit // no, so we are done
}
// Calculate derivatives
// We need the panel means of x1*mu, x2*mu, and x3*mu
tempvar work x1mubar x2mubar x3mubar
generate double ‘work’ = x1*‘mu’ ‘if’
by id: generate double ‘x1mubar’ = sum(‘work’*‘exp’)
by id: replace ‘x1mubar’ = ‘x1mubar’[_N] / ‘sumwt’[_N]
replace ‘work’ = x2*‘mu’ ‘if’
by id: generate double ‘x2mubar’ = sum(‘work’*‘exp’)
by id: replace ‘x2mubar’ = ‘x2mubar’[_N] / ‘sumwt’[_N]
replace ‘work’ = x3*‘mu’ ‘if’
by id: generate double ‘x3mubar’ = sum(‘work’*‘exp’)
by id: replace ‘x3mubar’ = ‘x3mubar’[_N] / ‘sumwt’[_N]
local d1: word 1 of ‘derivatives’
local d2: word 2 of ‘derivatives’
local d3: word 3 of ‘derivatives’
replace ‘d1’ = -1*‘mu’*‘ybar’/‘mubar’^2*(x1*‘mubar’ - ‘x1mubar’)
replace ‘d2’ = -1*‘mu’*‘ybar’/‘mubar’^2*(x2*‘mubar’ - ‘x2mubar’)
replace ‘d3’ = -1*‘mu’*‘ybar’/‘mubar’^2*(x3*‘mubar’ - ‘x3mubar’)

}
end

Our syntax command now indicates that fweights are allowed. The first part of our code looks at the
macro ‘exp’. If it is empty, then the user did not specify weights in their call to gmm; and we set the
macro equal to 1 so that we weight each observation equally. After we compute 𝜇𝑖𝑡, we calculate 𝜇𝑖 and

𝑦𝑖, accounting for weights. To compute frequency-weighted means for each panel, we just multiply each

observation by its respective weight, sum over all observations in the panel, then divide by the sum of the

weights for the panel. (See [U] 20.24Weighted estimation for information on how to handle aweights
and pweights.) We use the same procedure to compute the frequency-weighted variant of expression

(25) in the derivative calculations. To use our program, we type
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. use https://www.stata-press.com/data/r18/poissonwts

. gmm gmm_poiderivfw [fw=fwt], nequations(1) parameters(b1 b2 b3)
> instruments(x1 x2 x3, noconstant) vce(cluster id) onestep hasderivatives
Step 1:
Iteration 0: GMM criterion Q(b) = 49.8292
Iteration 1: GMM criterion Q(b) = .11136736
Iteration 2: GMM criterion Q(b) = .00008519
Iteration 3: GMM criterion Q(b) = 7.110e-11
Iteration 4: GMM criterion Q(b) = 5.596e-23
note: model is exactly identified.
GMM estimation
Number of parameters = 3
Number of moments = 3
Initial weight matrix: Unadjusted Number of obs = 819

(Std. err. adjusted for 45 clusters in id)

Robust
Coefficient std. err. z P>|z| [95% conf. interval]

/b1 1.967766 .111795 17.60 0.000 1.748652 2.186881
/b2 -3.060838 .0935561 -32.72 0.000 -3.244205 -2.877472
/b3 1.037594 .1184227 8.76 0.000 .80549 1.269698

Instruments for equation 1: x1 x2 x3

Testing whether our program works correctly with frequency weights is easy. A frequency-weighted

dataset is just a compact form of a larger dataset in which identical observations are omitted and a

frequency-weight variable is included to tell us how many times each observation in the smaller dataset

appears in the larger dataset. Therefore, we can expand our smaller dataset by the frequency-weight

variable and then refit our model without specifying frequency weights. If we obtain the same results,

our program works correctly. When we type

. expand fw

. gmm gmm_poiderivfw, nequations(1) parameters(b1 b2 b3)
> instruments(x1 x2 x3, noconstant) vce(cluster id) onestep

we obtain the same results as before.

Stored results
gmm stores the following in e():
Scalars

e(N) number of observations

e(k) number of parameters

e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test

e(k aux) number of auxiliary parameters

e(n moments) number of moments

e(n eq) number of equations in moment-evaluator program

e(Q) criterion function

e(J) Hansen 𝐽 𝜒2 statistic

e(J df) 𝐽 statistic degrees of freedom

e(k i) number of parameters in equation 𝑖
e(has xtinst) 1 if panel-style instruments specified, 0 otherwise
e(N clust) number of clusters
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e(type) 1 if interactive version, 2 if moment-evaluator program version

e(rank) rank of e(V)
e(ic) number of iterations used by iterative GMM estimator

e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) gmm
e(cmdline) command as typed

e(title) title specified in title()
e(title 2) title specified in title2()
e(clustvar) name of cluster variable

e(inst i) equation 𝑖 instruments
e(eqnames) equation names

e(winit) initial weight matrix used

e(winitname) name of user-supplied initial weight matrix

e(estimator) onestep, twostep, or igmm
e(rhs) variables specified in variables()
e(params i) equation 𝑖 parameters
e(wmatrix) wmtype specified in wmatrix()
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(params) parameter names

e(sexp i) substitutable expression for equation 𝑖
e(evalprog) moment-evaluator program

e(evalopts) options passed to moment-evaluator program

e(nocommonesample) nocommonesample, if specified
e(technique) optimization technique

e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(marginsprop) signals to the margins command
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(init) initial values of the estimators

e(Wuser) user-supplied initial weight matrix

e(W) weight matrix used for final round of estimation

e(S) moment covariance matrix used in robust VCE computations

e(G) averages of derivatives of moment conditions

e(N byequation) number of observations per equation, if nocommonesample specified
e(V) variance–covariance matrix

e(V modelbased) model-based variance

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.
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Methods and formulas
Let 𝑞 denote the number of moment conditions. For observation 𝑖, 𝑖 = 1, . . . , 𝑁, write the 𝑗th moment

equation as z𝑖𝑗𝑢𝑖𝑗(β𝑗) for 𝑗 = 1, . . . , 𝑞. z𝑖𝑗 is a 1 × 𝑚𝑗 vector, where 𝑚𝑗 is the number of instruments

specified for equation 𝑗. Let 𝑚 = 𝑚1 + · · · + 𝑚𝑞.

Our notation can incorporate moment conditions of the form ℎ𝑖𝑗(w𝑖𝑗;β𝑗) with instruments w𝑖𝑗 by

defining z𝑖𝑗 = 1 and 𝑢𝑖𝑗(β𝑗) = ℎ𝑖𝑗(w𝑖𝑗;β𝑗), so except when necessary, we do not distinguish between
the two types of moment conditions. We could instead use notation so that all our moment conditions

are of the form ℎ𝑖𝑗(w𝑖𝑗;β𝑗), or we could adopt notation that explicitly combines both forms of moment
equations. However, because moment conditions of the form z′

𝑖𝑗𝑢𝑖𝑗(β𝑗) are arguably more common, we
use that notation.

Let β denote a 𝑘 × 1 vector of parameters, consisting of all the unique parameters of β1, . . . ,β𝑞.

Then, we can stack the moment conditions and write them more compactly as Z′
𝑖u𝑖(β), where

Z′
𝑖 =

⎡
⎢⎢
⎣

z𝑖1 0 · · · 0

0 z𝑖2 · · · 0

⋮ ⋮ ⋱ ⋮
0 0 · · · z𝑖𝑞

⎤
⎥⎥
⎦

and u𝑖(β) =
⎡
⎢
⎢
⎣

𝑢𝑖1(β1)
𝑢𝑖2(β2)

⋮
𝑢𝑖𝑞(β𝑞)

⎤
⎥
⎥
⎦

The GMM estimator β̂ is the value of β that minimizes

𝑄(β) = {𝑁−1
𝑁

∑
𝑖=1

Z′
𝑖u𝑖(β)}

′

W{𝑁−1
𝑁

∑
𝑖=1

Z′
𝑖u𝑖(β)} (A1)

for 𝑞 × 𝑞 weight matrixW.

By default, gmm minimizes (A1) using the Gauss–Newton method. See Hayashi (2000, 498) for a

derivation. This technique is typically faster than quasi-Newton methods and does not require second-

order derivatives.

Methods and formulas are presented under the following headings:

Initial weight matrix
Weight matrix
Variance–covariance matrix
Hansen’s J statistic
Panel-style instruments
Marginal predictions with unconditional standard errors

Initial weight matrix
If you specify winitial(unadjusted), then we create matrix 𝚲 with typical submatrix

𝚲𝑟𝑠 = 𝑁−1
𝑁

∑
𝑖=1

z′
𝑖𝑟z𝑖𝑠

for 𝑟 = 1, . . . , 𝑞 and 𝑠 = 1, . . . , 𝑞. If you include the independent suboption, then we set 𝚲𝑟𝑠 = 0 for

𝑟 ≠ 𝑠. The weight matrixW equals 𝚲−1.

If you specify winitial(identity), then we setW = I𝑞.
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If you specify winitial(xt xtspec), then you must specify one or two items in xtspec, one for each
equation. gmm allows you to specify at most two moment equations when you specify winitial(xt
xtspec), one in first-differences, and one in levels. We create the block-diagonal matrix H with typical

block H𝑗. If the 𝑗th element of xtspec is “L”, then H𝑗 is the identity matrix of suitable dimension. If the

𝑗th element of xtspec is “D”, then

H𝑗 =
⎡
⎢
⎢
⎢
⎣

1 −0.5 0 . . . 0 0
−0.5 1 −0.5 . . . 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 . . . 1 −0.5
0 0 0 . . . −0.5 1

⎤
⎥
⎥
⎥
⎦

Then,

𝚲𝐻 = 𝑁−1
𝐺

𝑔=𝑁𝐺

∑
𝑔=1

Z′
𝑔HZ𝑔

where 𝑔 indexes panels in the dataset, 𝑁𝐺 is the number of panels, Z𝑔 is the full instrument matrix for

panel 𝑔, andW = 𝚲−1
𝐻 . See Panel-style instruments below for a discussion of how Z𝑔 is formed.

If you specify winitial(matname), then we setW equal to Stata matrix matname.

Weight matrix
Specification of the weight matrix applies only to the two-step and iterative estimators. When you

use the onestep option, the wmatrix() option is ignored.

We first evaluate (A1) using the initial weight matrix described above and then compute u𝑖(β̂). In all
cases,W = 𝚲−1. If you specify wmatrix(unadjusted), then we create 𝚲 to have typical submatrix

𝚲𝑟𝑠 = 𝜎𝑟𝑠 𝑁−1
𝑁

∑
𝑖=1

z′
𝑖𝑟z𝑖𝑠

where

𝜎𝑟𝑠 = 𝑁−1
𝑁

∑
𝑖=1

𝑢𝑖𝑟(β̂)𝑢𝑖𝑠(β̂)

and 𝑟 and 𝑠 index moment equations. For all types of weight matrices, if the independent suboption is
specified, then 𝚲𝑟𝑠 = 0 for 𝑟 ≠ 𝑠, where 𝚲𝑟𝑠 measures the covariance between moment conditions for

equations 𝑟 and 𝑠.
If you specify wmatrix(robust), then

𝚲 = 𝑁−1
𝑁

∑
𝑖=1

Z𝑖u𝑖(β̂)u′
𝑖(β̂)Z′

𝑖

If you specify wmatrix(cluster clustvar), then

𝚲 = 𝑁−1
𝑐=𝑁𝐶

∑
𝑐=1

q𝑐q
′
𝑐

where 𝑐 indexes clusters, 𝑁𝐶 is the number of clusters, and

q𝑐 = ∑
𝑖∈𝑐𝑗

Z𝑖u𝑖(β̂)
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If you specify wmatrix(hac kernel [ #]), then

𝚲 =𝑁−1
𝑁

∑
𝑖=1

Z𝑖u𝑖(β̂)u𝑖(β̂)′Z′
𝑖 +

𝑁−1
𝑙=𝑁−1
∑
𝑙=1

𝑁
∑

𝑖=𝑙+1
𝐾(𝑙, 𝜆) {Z𝑖u𝑖(β̂)u′

𝑖−𝑙(β̂)Z′
𝑖−𝑙 + Z𝑖−𝑙u𝑖−𝑙(β̂)u′

𝑖(β̂)Z′
𝑖}

where 𝜆 = # if # is specified and 𝜆 = 𝑁 − 2 otherwise. Define 𝑧 = 𝑙/(𝜆 + 1). If kernel is bartlett
or nwest, then

𝐾(𝑙, 𝜆) = {1 − 𝑧 0 ≤ 𝑧 ≤ 1
0 otherwise

If kernel is parzen or gallant, then

𝐾(𝑙, 𝜆) =
⎧{
⎨{⎩

1 − 6𝑧2 + 6𝑧3 0 ≤ 𝑧 ≤ 0.5
2(1 − 𝑧)3 0.5 < 𝑧 ≤ 1
0 otherwise

If kernel is quadraticspectral or andrews, then

𝐾(𝑙, 𝜆) = {1 𝑧 = 0
3{sin(𝜃)/𝜃 − cos(𝜃)}/𝜃2 otherwise

where 𝜃 = 6𝜋𝑧/5.
If wmatrix(hac kernel opt) is specified, then gmm uses Newey and West’s (1994) automatic lag-

selection algorithm, which proceeds as follows. Define h to be an 𝑚 × 1 vector of ones. Note that this

definition of h is slightly different from the one used by ivregress. There the element of h correspond-
ing to the constant term equals 0, effectively ignoring the effect of the constant in determining the optimal

lag length. Here we include the effect of the constant term. Now, define

𝑓𝑖 = {Z′
𝑖u𝑖(β)}′

h

�̂�𝑗 = 𝑁−1
𝑁

∑
𝑖=𝑗+1

𝑓𝑖𝑓𝑖−𝑗 𝑗 = 0, . . . , 𝜆∗

̂𝑠(𝑞) = 2
𝑗=𝜆∗

∑
𝑗=1

�̂�𝑗𝑗𝑞

̂𝑠(0) = �̂�0 + 2
𝑗=𝜆∗

∑
𝑗=1

�̂�𝑗

̂𝛾 = 𝑐𝛾 {( ̂𝑠(𝑞)

̂𝑠(0) )
2

}
1/(2𝑞+1)

𝜆 = ̂𝛾𝑁1/(2𝑞+1)

where 𝑞, 𝜆∗, and 𝑐𝛾 depend on the kernel specified:

Kernel 𝑞 𝜆∗ 𝑐𝛾
Bartlett/Newey–West 1 int{20(𝑇 /100)2/9} 1.1447

Parzen/Gallant 2 int{20(𝑇 /100)4/25} 2.6614

Quadratic spectral/Andrews 2 int{20(𝑇 /100)2/25} 1.3221
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Here int(𝑥) denotes the integer obtained by truncating 𝑥 toward zero. For the Bartlett and Parzen kernels,
the optimal lag is min{int(𝜆), 𝜆∗}. For the quadratic spectral kernel, the optimal lag is min{𝜆, 𝜆∗}.

If wmatrix(hac kernel opt #) is specified, then gmm uses # instead of 20 in the definition of 𝜆∗ above

to select the optimal lag.

Variance–covariance matrix
If you specify vce(unadjusted), then the VCE matrix is computed as

Var(β̂) = 𝑁−1 {G(β̂)′WG(β̂)}
−1

(A2)

where

G(β̂) = 𝑁−1
𝑁

∑
𝑖=1

Z′
𝑖

𝜕u𝑖(β)
𝜕β′ ∣

β=β̂
(A3)

For the two-step and iterated estimators, we use the weight matrix W that was used to compute the

final-round estimate β̂.

When you do not specify analytic derivatives, gmm must compute the Jacobian matrix (A3) numer-
ically. By default, gmm computes each element of the matrix individually by using the Mata deriv()
function; see [M-5] deriv( ). This procedure results in accurate derivatives but can be slow if your model

has many instruments or parameters.

When you specify the quickderivatives option, gmm computes all derivatives corresponding to

parameter 𝛽𝑗, 𝑗 = 1, . . . , 𝑞, at once, using two-sided derivatives with a step size of |𝛽𝑗|𝜖1/3, where 𝜖
is the machine precision of a double precision number (approximately 2.22045 × 10−16). This method

requires just two evaluations of the model’s moments to compute an entire column of (A3) and therefore

has the most impact when you specify many instruments or moment equations so that (A3) has many

rows.

For the one-step estimator, how the unadjusted VCE is computed depends on the type of initial weight

matrix requested and the form of the moment equations. If you specify two or more moment equations

of the form ℎ𝑖𝑗(w𝑖𝑗;β𝑗), then gmm issues a note and computes a heteroskedasticity-robust VCE because
here the matrix Z′Z is necessarily singular; moreover, here you must use the identity matrix as the

initial weight matrix. Otherwise, if you specify winitial(unadjusted) or winitial(identity),
then gmm first computes an unadjusted weight matrix based on β̂ before evaluating (A2). If you spec-

ify winitial(matname), then (A2) is evaluated on the basis of matname; the user is responsible for
verifying that the VCE and other statistics so produced are appropriate.

All types of robust VCEs computed by gmm take the form

Var(β̂) = 𝑁−1 {G(β̂)′WG(β̂)}
−1
G(β̂)′WSWG(β̂) {G(β̂)′WG(β̂)}

−1

For the one-step estimator,W represents the initial weight matrix requested using the winitial() op-
tion, and S is computed on the basis of the specification of the vce() option. The formulas for the S
matrix are identical to the ones that define the 𝚲 matrix in Weight matrix above, except that S is com-

puted after the moment equations are reevaluated using the final estimate of β̂. For the two-step and
iterated GMM estimators, computation of W is controlled by the wmatrix() option on the basis of the
penultimate estimate of β̂.

For details on computation of the VCEmatrix with dynamic panel-data models, see Panel-style instru-

ments below.
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Hansen’s J statistic
Hansen’s (1982) 𝐽 test of overidentifying restrictions is 𝐽 = 𝑁 × 𝑄(β̂). 𝐽 ∼ 𝜒2(𝑚 − 𝑘). If 𝑚 < 𝑘,

gmm issues an error message without estimating the parameters. If 𝑚 = 𝑘, the model is just-identified
and 𝐽 is saved as missing (“.”). For the two-step and iterated GMM estimators, the 𝐽 statistic is based

on the last-computed weight matrix as determined by the wmatrix() option. For the one-step estimator,
gmm recomputes a weight matrix as described in the second paragraph of Variance–covariance matrix

above. To obtain Hansen’s 𝐽 statistic, you use estat overid; see [R] gmm postestimation.

Panel-style instruments
Here we discuss several issues that arise only when you specify panel-style instruments by using the

xtinstruments() option. When you specify the xtinstruments() option, we can no longer consider
the instruments for one observation in isolation; instead, we must consider the instrument matrix for an

entire panel at once. In the following discussion, we let 𝑇 denote the number of time periods in a panel.

To accommodate unbalanced datasets, conceptually we simply use zeros as instruments and residuals for

time periods that are missing in a panel.

We consider the case where you specify both an equation in levels and an equation in differences,

yielding two residual equations. Let 𝑢𝐿
𝑝𝑡(β) denote the residual for the level equation for panel 𝑝 in

period 𝑡, and let 𝑢𝐷
𝑝𝑡(β) denote the residual for the corresponding difference equation. Now, define the

(2𝑇 − 1) × 1 vector u𝑝(β) as

u𝑝(β) = [𝑢𝐿
𝑝1(β), 𝑢𝐿

𝑝2(β), . . . , 𝑢𝐿
𝑝𝑇(β), 𝑢𝐷

𝑝2(β), 𝑢𝐷
𝑝3(β), . . . , 𝑢𝐷

𝑝𝑇(β)]

The 𝑇 +1 element of u𝑝 is 𝑢𝐷
𝑝2(β) because we lose the first observation of the difference equation because

of differencing.

We write the moment conditions for the 𝑝th panel as Z𝑝u𝑝(β). To see how Z𝑝 is defined, we will

let w𝐿
𝑝𝑡 and w

𝐷
𝑝𝑡 denote the vectors of panel-style instruments for the level and difference equations,

respectively, and let time be denoted by 𝑡; we discuss their dimensions momentarily. Also let x𝐿
𝑝𝑡 and x

𝐷
𝑝𝑡

denote the vectors of instruments specified in instruments() for the level and difference equations at
time 𝑡. Without loss of generality, for our discussion, we assume that you specify the level equation first.

Then, Z𝑝 has the form

Z𝑝 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

w𝐿
1 0 · · · 0 0 0 · · · 0

0 w𝐿
2 · · · 0 0 0 · · · 0

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 · · · w𝐿

𝑇 0 0 · · · 0

x𝐿
1 x𝐿

2 · · · x𝐿
𝑇 0 0 · · · 0

0 0 · · · 0 w𝐷
1 0 · · · 0

0 0 · · · 0 0 w𝐷
2 · · · 0

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 · · · 0 0 0 · · · w𝐷

𝑇
0 0 · · · 0 x𝐷

1 x𝐷
2 · · · x𝐷

𝑇

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(A4)

To see how the w vectors are formed, we will suppose you specify

xtinstruments(1: d, lags(a/b))
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Then, w𝐿
𝑡 will be a (𝑏 − 𝑎 + 1) × 1 vector consisting of 𝑑𝑡−𝑎, . . . , 𝑑𝑡−𝑏. If (𝑡 − 𝑎) ≤ 0, then instead,

we set w𝐿
𝑡 = 0. If (𝑡 − 𝑎) > 0 but (𝑡 − 𝑏) ≤ 0, then we create w𝐿

𝑡 to consist of 𝑑𝑡−𝑎, . . . , 𝑑1. With this

definition, (𝑏 − 𝑎 + 1) defines the maximum number of lags of 𝑑 used, but gmm will proceed with fewer
lags if all (𝑏 − 𝑎 + 1) lags are not available. If you specify two panel-style instruments, d and e, say,
then w𝐿

𝑡 will consist of 𝑑𝑡−𝑎, . . . , 𝑑𝑡−𝑏, 𝑒𝑡−𝑎, . . . , 𝑒𝑡−𝑏. w
𝐷
𝑡 is handled analogously.

The x𝐿
𝑡 vectors are simply 𝑗 × 1 vectors, where 𝑗 is the number of regular instruments specified with

the instruments() option; these vectors include a “1” unless you specify the noconstant suboption.

Looking carefully at (A4), you will notice that for dynamic panel-data models, moment conditions

corresponding to the instruments x𝐿
𝑝𝑡 take the form

𝐸 [
𝑡=𝑇
∑
𝑡=1

x𝐿
𝑝𝑡𝑢𝐿

𝑝𝑡(β)] = 0

and likewise for x𝐷
𝑝𝑡. Instead of having separate moment conditions for each time period, there is one

moment condition equal to the average of individual periods’ moments. See Arellano and Bond (1991,

280). To include separate moment conditions for each time period, instead of specifying, say,

instruments(1: x)

you could instead first generate a variable called one equal to unity for all observations and specify

xtinstruments(1: x one)

(Creating the variable one is necessary because a constant is not automatically included in variable lists
specified in xtinstruments().)

Unbalanced panels are essentially handled by including zeros in rows and columns of Z𝑝 and u𝑝(β)
corresponding to missing time periods. However, the numbers of instruments and moment conditions

reported by gmm do not reflect this trickery and instead reflect the numbers of instruments and moment
conditions that are not manipulated in this way. Moreover, gmm includes code to work through these

situations efficiently without actually having to fill in zeros.

When you specify winitial(xt . . .), the one-step unadjusted VCE is computed as

Var(β̂) = �̂�2
1𝚲𝐻

where 𝚲𝐻 is as defined previously,

�̂�2
1 = (𝑁 − 𝑘)−1

𝑝=𝑃

∑
𝑝=1

u𝐷
𝑝 (β̂)′u𝐷

𝑝 (β̂)

and u𝐷
𝑝 (β̂) = [𝑢𝐷

𝑝2(β̂), . . . , 𝑢𝐷
𝑝𝑇(β̂)]. Here we use (𝑁 − 𝑘)−1 instead of 𝑁−1 to match xtdpd.

Marginal predictions with unconditional standard errors
Here we describe how margins computes unconditional standard errors when used with the

vce(unconditional) option after gmm. These standard errors account for the estimation of parame-
ters in gmm before margins is used to make marginal predictions. They also account for variation in the
covariates over the population.
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marginswith the vce(unconditional) option uses linearization to estimate the unconditional vari-
ance of β̂. Linearization uses the variance estimator for the total of a score variable for the marginal

prediction 𝑝(β̂) as an approximate estimator for Var{𝑝(β̂)}. See [SVY] Variance estimation for more

details. Our derivation of the standard errors here is similar to the derivation of the standard errors for

two-step 𝑀 estimators. See Wooldridge (2010, sec. 12.4) for the latter.

Let x𝑖 be a vector of covariate values, which includes all variables used in calculating the moment

conditions, and let 𝑓(x𝑖,β) be a scalar-valued function returning the value of the predictions of interest.
Let 𝛿𝑖(𝑆𝑝) indicate whether observation 𝑖 is in the subpopulation of interest, 𝑆𝑝,

𝛿𝑖(𝑆𝑝) = {1, 𝑖 ∈ 𝑆𝑝
0, 𝑖 ∉ 𝑆𝑝

margins computes ̂𝜃 = 𝑝(β̂) via

̂𝜃 = 1
𝑤⋅

𝑁
∑
𝑖=1

𝛿𝑖(𝑆𝑝)𝑤𝑖𝑓(x𝑖, β̂)

where

𝑤⋅ =
𝑁

∑
𝑖=1

𝛿𝑖(𝑆𝑝)𝑤𝑖

and 𝑤𝑖 is the weight for the 𝑖th observation.

In minimizing (A1), we see that the GMM estimator β̂ is the value of β that solves the score equations

0 = G(β)′W{𝑁−1
𝑁

∑
𝑖=1

Z′
𝑖u𝑖(β)}

where G(β) was defined in (A3).

By the mean-value theorem, for some points β1, . . . ,β𝑞 between β and β̂, we have

0 = G(β̂)′W[{𝑁−1
𝑁

∑
𝑖=1

Z′
𝑖u𝑖(β)} + G𝑚 (β̂ − β)]

where

G𝑚(𝑗,𝑙) = 𝑁−1
𝑁

∑
𝑖=1

⎡⎢
⎣

𝜕 {Z′
𝑖u𝑖(β𝑗)}𝑙
𝜕β′

𝑗

⎤⎥
⎦𝑗,𝑙

So we have

√
𝑁 (β̂ − β) = − {G(β̂)′WG𝑚}

−1
G(β̂)′W{𝑁−0.5

𝑁
∑
𝑖=1

Z′
𝑖u𝑖(β)} (A5)

The margin ̂𝜃 is the solution to the score equations

1
𝑁

𝑁
∑
𝑖=1

𝑠𝑖(𝜃, β̂) = 0



gmm — Generalized method of moments estimation 1057

where

𝑠𝑖(𝜃,β) = 𝑤𝑖𝛿𝑖(𝑆𝑝) {𝑓(x𝑖,β) − 𝜃}

When we do a mean-value expansion about point 𝜃1 between 𝜃 and ̂𝜃, we get

0 = 1
𝑁

𝑁
∑
𝑖=1

𝑠𝑖(𝜃, β̂) − 𝑤⋅( ̂𝜃 − 𝜃)

So we have
√

𝑁( ̂𝜃 − 𝜃) = 𝑤⋅
−1𝑁−0.5

𝑁
∑
𝑖=1

𝑠𝑖(𝜃, β̂)

Using the mean-value theorem again, for point β𝑚 between β and β̂, we have

𝑤⋅
−1𝑁−0.5

𝑁
∑
𝑖=1

𝑠𝑖(𝜃, β̂) = 𝑤⋅
−1 {𝑁−0.5

𝑁
∑
𝑖=1

𝑠𝑖(𝜃,β) +
√

𝑁J(β𝑚) (β̂ − β)}

where J(β𝑚) is the Jacobian of the margin at β𝑚,

J(β𝑚) = {𝑁−1
𝑁

∑
𝑖=1

𝑤𝑖𝛿𝑖(𝑆𝑝)
𝜕𝑓(x𝑖,β𝑚)

𝜕β′
𝑚

}

Using (A5), we get

√
𝑁( ̂𝜃 − 𝜃) = 𝑤⋅

−1𝑁−0.5 [
𝑁

∑
𝑖=1

𝑠𝑖(𝜃,β) − J(β𝑚) {G(β̂)′WG𝑚}
−1
G(β̂)′W{

𝑁
∑
𝑖=1

Z′
𝑖u𝑖(β)}]

̂𝜃 is asymptotically normal, and a consistent estimator of its variance is given by

V̂ar{
√

𝑁( ̂𝜃 − 𝜃)} =
𝑁

∑
𝑖=1

𝑤⋅
−2 [𝑠𝑖( ̂𝜃, β̂) − J(β̂) {G(β̂)′WG(β̂)}

−1
G(β̂)′WZ′

𝑖u𝑖(β̂)]
2

See Wooldridge (2010, sec 12.4 and 12.5) for details.

gmm returns 𝑁−1 {G(β̂)′WG(β̂)}
−1

as the model-based variance. The scores are

−G(β̂)′WZ′
𝑖u𝑖(β̂) and may be predicted in postestimation; see [R] gmm postestimation. These scores

correspond to derivatives of the criterion function 𝑄(𝛽), scaled by −1/2. See Cameron and Trivedi

(2005, sec. 6.3.2) for more details.

margins estimates the asymptotic standard error of ̂𝜃 from the model-based variance, the scores, and

its own predictions of 𝑠𝑖 and the Jacobian J(β̂).
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Also see
[R] gmm postestimation — Postestimation tools for gmm

[R] ivregress — Single-equation instrumental-variables regression

[R] ml — Maximum likelihood estimation

[R] mlexp — Maximum likelihood estimation of user-specified expressions

[R] nl — Nonlinear least-squares estimation

[R] nlsur — Estimation of nonlinear systems of equations

[XT] xtabond —Arellano–Bond linear dynamic panel-data estimation

[XT] xtdpd — Linear dynamic panel-data estimation

[XT] xtdpdsys —Arellano–Bover/Blundell–Bond linear dynamic panel-data estimation

[U] 20 Estimation and postestimation commands
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Postestimation commands predict margins estat Remarks and examples
Stored results References Also see

Postestimation commands
The following postestimation command is of special interest after gmm:

Command Description

estat overid perform test of overidentifying restrictions

The following standard postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters

estat vce variance–covariance matrix of the estimators (VCE)

estimates cataloging estimation results

etable table of estimation results

hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations of pa-
rameters

margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations of
parameters

predict residuals

predictnl point estimates, standard errors, testing, and inference for generalized predictions

pwcompare pairwise comparisons of parameters

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses
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predict

Description for predict
predict creates a new variable containing predictions such as linear predictions, residuals, and

scores.

Menu for predict
Statistics > Postestimation

Syntax for predict
predict [ type ] newvar [ if ] [ in ] [ , xb equation(eqno | eqname) ]

predict [ type ] newvar [ if ] [ in ], residuals [ equation(eqno | eqname) ]

predict [ type ] { stub* | newvar1 . . . newvar𝑞 } [ if ] [ in ] [ , residuals ]

predict [ type ] stub* [ if ] [ in ], scores

Residuals are available both in and out of sample; type predict ... if e(sample) ... if wanted only for the estimation
sample.

Scores are available only for observations within the estimation sample.

You specify one new variable and (optionally) equation(), or you specify stub* or 𝑞 or 𝑝 new variables, where 𝑞 is the
number of moment equations and 𝑝 is the number of parameters in the model.

Option for predict

� � �
Main �

xb, the default, calculates the linear prediction.

residuals calculates the residuals, the predicted values of the moment equations. This option requires
that the length of the new variable list be equal to the number of moment equations, 𝑞. Otherwise,
use stub* to have predict generate enumerated variables with prefix stub. If equation() is not

specified, the 𝑗th new variable will contain the residuals for the 𝑗th moment equation.
equation(eqno | eqname) with xb refers to a linear prediction in the model, whereas

equation(eqno | eqname) with residuals refers to a moment equation.
For xb, specifying equation(#1) indicates that the calculation is to be made for the first linear

prediction within curly braces. Specifying equation(xb1) would indicate that the calculation is to
be made for the linear prediction xb1, assuming there is a linear prediction named xb1 in the model,
for instance, {xb1:varlist}.
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For residuals, specifying equation(#1) indicates that the calculation is to be made for the first
moment equation. Specifying equation(demand) would indicate that the calculation is to be made
for the moment equation named demand, assuming there is a moment equation named demand in the
model.

If you specify one new variable name and omit equation(), results are the same as if you had

specified equation(#1).

For more information on using predict after multiple-equation estimation commands, see [R] pre-
dict.

scores calculates the parameter-level score equations, the first derivatives of the GMM criterion func-

tion with respect to the parameters scaled by −0.5. This option requires that the length of the new

variable list be equal to the number of parameters, 𝑝. Otherwise, use stub* to have predict generate
enumerated variables with prefix stub. The 𝑗th new variable will contain the 𝑗th score of the model.

margins

Description for margins
margins estimates margins of response for linear predictions.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist ] [ , options ]
margins [marginlist ] , predict(statistic ...) [ predict(statistic ...) ... ] [ options ]

statistic Description

xb linear prediction; the default

residuals not allowed with margins

xb defaults to the first equation.

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.
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estat

Description for estat
estat overid reports Hansen’s 𝐽 statistic, which is used to determine the validity of the overidenti-

fying restrictions in a GMM model. If the model is correctly specified in the sense that 𝐸{z𝑖𝑢𝑖(β)} = 0,

then the sample analog to that condition should hold at the estimated value of β. Hansen’s 𝐽 statistic

is valid only if the weight matrix is optimal, meaning that it equals the inverse of the covariance matrix

of the moment conditions. Therefore, estat overid only reports Hansen’s 𝐽 statistic after two-step or

iterated estimation, or if you specified winitial(matname) when calling gmm. In the latter case, it is
your responsibility to determine the validity of the 𝐽 statistic.

Menu for estat
Statistics > Postestimation

Syntax for estat
estat overid

collect is allowed with estat overid; see [U] 11.1.10 Prefix commands.

Remarks and examples
As we noted in Introduction of [R] gmm, underlying generalized method of moments (GMM) estima-

tors is a set of 𝑙 moment conditions, 𝐸{z𝑖𝑢𝑖(β)} = 0. When 𝑙 is greater than the number of parameters,
𝑘, any size-𝑘 subset of the moment conditions would yield a consistent parameter estimate. We remarked

that the parameter estimates we would obtain would in general depend on which 𝑘 moment conditions

we used. However, if all our moment conditions are indeed valid, then the parameter estimates should

not differ too much regardless of which 𝑘 moment conditions we used to estimate the parameters. The

test of overidentifying restrictions is a model specification test based on this observation. The test of

overidentifying restrictions requires that the number of moment conditions be greater than the number

of parameters in the model.

Recall that the GMM criterion function is

𝑄 = { 1
𝑁

∑
𝑖
z𝑖𝑢𝑖(β)}

′

W{ 1
𝑁

∑
𝑖
z𝑖𝑢𝑖(β)}

The test of overidentifying restrictions is remarkably simple. If W is an optimal weight matrix, under

the null hypothesis 𝐻0 ∶ 𝐸{z𝑖𝑢𝑖(β)} = 0, the test statistic 𝐽 = 𝑁 × 𝑄 ∼ 𝜒2(𝑙 − 𝑘). A large test statistic

casts doubt on the null hypothesis.
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For the test to be valid, W must be optimal, meaning that W must be the inverse of the covariance

matrix of the moment conditions:

W−1 = 𝐸{z𝑖𝑢𝑖(β)𝑢′
𝑖(β)z′

𝑖}

Therefore, estat overid works only after the two-step and iterated estimators, or if you supplied your
own initial weight matrix by using the winitial(matname) option to gmm and used the one-step esti-
mator.

Often the overidentifying restrictions test is interpreted as a test of the validity of the instruments z.

However, other forms of model misspecification can sometimes lead to a significant test statistic. See

Hall (2005, sec. 5.1) for a discussion of the overidentifying restrictions test and its behavior in correctly

and misspecified models.

Example 1
In example 6 of [R] gmm, we fit an exponential regression model of the number of doctor visits based

on the person’s gender, income, possession of private health insurance, and presence of a chronic disease.

We argued that the variable incomemay be endogenous; we used the person’s age and race as additional
instrumental variables. Here we refit the model and test the specification of the model. We type

. use https://www.stata-press.com/data/r18/docvisits

. gmm (docvis - exp({xb:private chronic female income} + {b0})),
> instruments(private chronic female age black hispanic)
(output omitted )

. estat overid
Test of overidentifying restriction:
Hansen’s J chi2(2) = 9.52598 (p = 0.0085)

The 𝐽 statistic is significant even at the 1% significance level, so we conclude that our model is mis-

specified. One possibility is that age and race directly affect the number of doctor visits, so we are not

justified in excluding them from the model.

A simple technique to explore whether any of the instruments is invalid is to examine the statistics

𝑟𝑗 = W
1/2
𝑗𝑗 { 1

𝑁

𝑁
∑
𝑖=1

𝑧𝑖𝑗𝑢𝑖(β̂)}

for 𝑗 = 1, . . . , 𝑘, whereW𝑗𝑗 denotes the 𝑗th diagonal element ofW, 𝑢𝑖(β̂) denotes the sample residuals,
and 𝑘 is the number of instruments. If all the instruments are valid, then the scaled sample moments

should at least be on the same order of magnitude. If one (or more) instrument’s 𝑟𝑗 is large in absolute

value relative to the others, then that could be an indication that instrument is not valid.
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In Stata, we type

. predict double r if e(sample), residuals // obtain residual from the model

. matrix W = e(W) // retrieve weight matrix

. local i 1

. // loop over each instrument and compute r_j

. foreach var of varlist private chronic female age black hispanic {
2. generate double r‘var’ = r*‘var’*sqrt(W[‘i’, ‘i’])
3. local ‘++i’
4. }

. summarize r*
Variable Obs Mean Std. dev. Min Max

r 4,412 .0344373 8.26176 -151.1847 113.059
rprivate 4,412 .007988 3.824118 -72.66254 54.33852
rchronic 4,412 .0026947 2.0707 -43.7311 32.703
rfemale 4,412 .0028168 1.566397 -12.7388 24.43621

rage 4,412 .0360978 4.752986 -89.74112 55.58143

rblack 4,412 -.0379317 1.062027 -24.39747 27.34512
rhispanic 4,412 -.017435 1.08567 -5.509386 31.53512

We notice that the 𝑟𝑗 statistics for age, black, and hispanic are larger than those for the other instru-
ments in our model, supporting our suspicion that age and race may have a direct impact on the number

of doctor visits.

Stored results
estat overid stores the following in r():

Scalars

r(J) Hansen’s 𝐽 statistic

r(J df) 𝐽 statistic degrees of freedom

r(J p) 𝐽 statistic 𝑝-value

References
Hall, A. R. 2005. Generalized Method of Moments. Oxford: Oxford University Press.

Lindsey, C. 2016. Testing model specification and using the program version of gmm. The Stata Blog: Not Elsewhere
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grmeanby — Graph means and medians by categorical variables

Description Quick start Menu Syntax Options Remarks and examples
References

Description
grmeanby graphs the (optionally weighted) means or medians of varname according to the values of

the variables in varlist. The variables in varlistmay be string or numeric and, if numeric, may be labeled.

Quick start
Graph means of v1 for each level of categorical variables cvar1, cvar2, and cvar3

grmeanby cvar1 cvar2 cvar3, sum(v1)

Same as above, but graph medians

grmeanby cvar1 cvar2 cvar3, sum(v1) median

Same as above, but use + as the marker
grmeanby cvar1 cvar2 cvar3, sum(v1) median msymbol(+)

Menu
Statistics > Summaries, tables, and tests > Summary and descriptive statistics > Graph means/medians by groups
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Syntax
grmeanby varlist [ if ] [ in ] [weight ] , summarize(varname) [ options ]

options Description

Main
∗ summarize(varname) graph mean (or median) of varname

median graph medians; default is to graph means

Plot

cline options change look of the lines

marker options change look of markers (color, size, etc.)

marker label options add marker labels; change look or position

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in
[G-3] twoway options

∗summarize(varname) is required.
aweights and fweights are allowed; see [U] 11.1.6 weight.

Options

� � �
Main �

summarize(varname) is required; it specifies the name of the variable whose mean or median is to be
graphed.

median specifies that the graph is to be of medians, not means.

� � �
Plot �

cline options affect the rendition of the lines through the markers, including their color, pattern, and

width; see [G-3] cline options.

marker options affect the rendition of markers drawn at the plotted points, including their shape, size,

color, and outline; see [G-3] marker options.

marker label options specify if and how the markers are to be labeled; see [G-3]marker label options.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see

[G-3] saving option).
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Remarks and examples
The idea of graphing means of categorical variables was shown in Chambers and Hastie (1992, 3).

Because this was shown in the context of an S function for making such graphs, it doubtless has roots

going back further than that. grmeanby is, in any case, another implementation of what we will assume
is their idea.

Example 1
Using a variation of our auto dataset, we graph the mean of mpg by foreign, rep77, rep78, and

make:

. use https://www.stata-press.com/data/r18/auto1
(Automobile models)
. grmeanby foreign rep77 rep78 make, sum(mpg)

BuickOlds

Merc.

AMC

Toyota
Fiat

Volvo
Cad.

RenaultDatsun

Plym.

Dodge
Pont.

Honda

Linc.

Audi

Chev.

BMW

Mazda

Peugeot

Subaru

Ford

VW
Exc

Fair

Good

Average
Poor

Good

Exc

AveragePoor

Fair

Domestic

Foreign

10

15

20

25

30

35

foreign rep77 rep78 make

Means of mpg, Mileage (mpg)

If we had wanted a graph of medians rather than means, we could have typed

. grmeanby foreign rep77 rep78 make, sum(mpg) median

References
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hausman — Hausman specification test

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Acknowledgment References Also see

Description
hausman performs Hausman’s (1978) specification test.

Quick start
Hausman test for stored models consistent and efficient

hausman consistent efficient

Same as above, but compare fixed-effects and random-effects linear regression models

hausman fixed random, sigmamore

Endogeneity test after ivprobit and probit with estimates stored in iv and noiv
hausman iv noiv, equations(1:1)

Test of independence of irrelevant alternatives for model with all alternatives all andmodel with omitted
alternative omitted

hausman omitted all, alleqs constant

Menu
Statistics > Postestimation

1070
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Syntax
hausman name-consistent [ name-efficient ] [ , options ]

name-consistent and name-efficient are names under which estimation results were stored via estimates
store; see [R] estimates store. A period (.) may be used to refer to the last estimation results, even
if these were not already stored. Not specifying name-efficient is equivalent to specifying the last

estimation results as “.”.

options Description

Main

constant include estimated intercepts in comparison; default is to exclude

alleqs use all equations to perform test; default is first equation only

skipeqs(eqlist) skip specified equations when performing test

equations(matchlist) associate/compare the specified (by number) pairs of equations

force force performance of test, even though assumptions are not met

df(#) use # degrees of freedom

sigmamore base both (co)variance matrices on disturbance variance
estimate from efficient estimator

sigmaless base both (co)variance matrices on disturbance variance
estimate from consistent estimator

Advanced

tconsistent(string) consistent estimator column header

tefficient(string) efficient estimator column header

collect is allowed; see [U] 11.1.10 Prefix commands.

Options

� � �
Main �

constant specifies that the estimated intercept(s) be included in the model comparison; by default, they
are excluded. The default behavior is appropriate for models in which the constant does not have a

common interpretation across the two models.

alleqs specifies that all the equations in the models be used to perform the Hausman test; by default,

only the first equation is used.

skipeqs(eqlist) specifies in eqlist the names of equations to be excluded from the test. Equation num-

bers are not allowed in this context, because the equation names, along with the variable names, are

used to identify common coefficients.
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equations(matchlist) specifies, by number, the pairs of equations that are to be compared.

The matchlist in equations() should follow the syntax

#𝑐:#𝑒 [,#𝑐:#𝑒[,. . .]]

where #𝑐 (#𝑒) is an equation number of the always-consistent (efficient under 𝐻0) estimator. For

instance, equations(1:1), equations(1:1, 2:2), or equations(1:2).

If equations() is not specified, then equations are matched on equation names.

equations() handles the situation in which one estimator uses equation names and the other does
not. For instance, equations(1:2)means that equation 1 of the always-consistent estimator is to be
tested against equation 2 of the efficient estimator. equations(1:1, 2:2) means that equation 1 is
to be tested against equation 1 and that equation 2 is to be tested against equation 2. If equations()
is specified, the alleqs and skipeqs options are ignored.

force specifies that the Hausman test be performed, even though the assumptions of the Hausman test
seem not to be met, for example, because the estimators were pweighted or the data were clustered.

df(#) specifies the degrees of freedom for the Hausman test. The default is the matrix rank of the

variance of the difference between the coefficients of the two estimators.

sigmamore and sigmaless specify that the two covariance matrices used in the test be based on a

common estimate of disturbance variance (𝜎2).

sigmamore specifies that the covariance matrices be based on the estimated disturbance variance

from the efficient estimator. This option provides a proper estimate of the contrast variance for

so-called tests of exogeneity and overidentification in instrumental-variables regression.

sigmaless specifies that the covariance matrices be based on the estimated disturbance variance

from the consistent estimator.

These options can be specified only when both estimators store e(sigma) or e(rmse), or with
the xtreg command. e(sigma e) is stored after the xtreg command with the fe or mle option.

e(rmse) is stored after the xtreg command with the re option.

sigmamore or sigmaless are recommended when comparing fixed-effects and random-effects linear
regression because they are much less likely to produce a non–positive-definite-differenced covari-

ance matrix (although the tests are asymptotically equivalent whether or not one of the options is

specified).

� � �
Advanced �

tconsistent(string) and tefficient(string) are formatting options. They allow you to specify the

headers of the columns of coefficients that default to the names of the models. These options will be

of interest primarily to programmers.
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Remarks and examples
hausman is a general implementation of Hausman’s (1978) specification test, which compares an

estimator ̂𝜃1 that is known to be consistent with an estimator
̂𝜃2 that is efficient under the assumption being

tested. The null hypothesis is that the estimator ̂𝜃2 is indeed an efficient (and consistent) estimator of the

true parameters. If this is the case, there should be no systematic difference between the two estimators.

If there exists a systematic difference in the estimates, you have reason to doubt the assumptions on

which the efficient estimator is based.

The assumption of efficiency is violated if the estimator is pweighted or the data are clustered, so
hausman cannot be used. The test can be forced by specifying the force option with hausman. For an
alternative to using hausman in these cases, see [R] suest.

To use hausman, you

. (compute the always-consistent estimator)

. estimates store name-consistent

. (compute the estimator that is efficient under H 0)

. hausman name-consistent .

Alternatively, you can turn this around:

. (compute the estimator that is efficient under H 0)

. estimates store name-efficient

. (fit the less-efficient model)

. (compute the always-consistent estimator)

. hausman . name-efficient

You can, of course, also compute and store both the always-consistent and efficient-under-𝐻0 esti-

mators and perform the Hausman test with

. hausman name-consistent name-efficient

Example 1
We are studying the factors that affect the wages of young women in the United States between 1968

and 1988, and we have a panel-data sample of individual women over that time span.

. use https://www.stata-press.com/data/r18/nlswork4
(National Longitudinal Survey of Young Women, 14-24 years old in 1968)
. describe
Contains data from https://www.stata-press.com/data/r18/nlswork4.dta
Observations: 28,534 National Longitudinal Survey of

Young Women, 14-24 years old in
1968

Variables: 6 29 Jan 2022 16:35
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

idcode int %8.0g NLS ID
year byte %8.0g Interview year
age byte %8.0g Age in current year
msp byte %8.0g 1 if married, spouse present
ttl_exp float %9.0g Total work experience
ln_wage float %9.0g ln(wage/GNP deflator)

Sorted by: idcode year



hausman — Hausman specification test 1074

We believe that a random-effects specification is appropriate for individual-level effects in our model.

We fit a fixed-effects model that will capture all temporally constant individual-level effects.

. xtreg ln_wage age msp ttl_exp, fe
Fixed-effects (within) regression Number of obs = 28,494
Group variable: idcode Number of groups = 4,710
R-squared: Obs per group:

Within = 0.1373 min = 1
Between = 0.2571 avg = 6.0
Overall = 0.1800 max = 15

F(3, 23781) = 1262.01
corr(u_i, Xb) = 0.1476 Prob > F = 0.0000

ln_wage Coefficient Std. err. t P>|t| [95% conf. interval]

age -.005485 .000837 -6.55 0.000 -.0071256 -.0038443
msp .0033427 .0054868 0.61 0.542 -.0074118 .0140971

ttl_exp .0383604 .0012416 30.90 0.000 .0359268 .0407941
_cons 1.593953 .0177538 89.78 0.000 1.559154 1.628752

sigma_u .37674223
sigma_e .29751014

rho .61591044 (fraction of variance due to u_i)

F test that all u_i=0: F(4709, 23781) = 7.76 Prob > F = 0.0000

We assume that this model is consistent for the true parameters and store the results by using

estimates store under a name, fixed:

. estimates store fixed

Now we fit a random-effects model as a fully efficient specification of the individual effects under

the assumption that they are random and follow a normal distribution. We then compare these estimates

with the previously stored results by using the hausman command.

. xtreg ln_wage age msp ttl_exp, re
Random-effects GLS regression Number of obs = 28,494
Group variable: idcode Number of groups = 4,710
R-squared: Obs per group:

Within = 0.1373 min = 1
Between = 0.2552 avg = 6.0
Overall = 0.1797 max = 15

Wald chi2(3) = 5100.33
corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000

ln_wage Coefficient Std. err. z P>|z| [95% conf. interval]

age -.0069749 .0006882 -10.13 0.000 -.0083238 -.0056259
msp .0046594 .0051012 0.91 0.361 -.0053387 .0146575

ttl_exp .0429635 .0010169 42.25 0.000 .0409704 .0449567
_cons 1.609916 .0159176 101.14 0.000 1.578718 1.641114

sigma_u .32648519
sigma_e .29751014

rho .54633481 (fraction of variance due to u_i)
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. hausman fixed ., sigmamore
Coefficients

(b) (B) (b-B) sqrt(diag(V_b-V_B))
fixed . Difference Std. err.

age -.005485 -.0069749 .0014899 .0004803
msp .0033427 .0046594 -.0013167 .0020596

ttl_exp .0383604 .0429635 -.0046031 .0007181

b = Consistent under H0 and Ha; obtained from xtreg.
B = Inconsistent under Ha, efficient under H0; obtained from xtreg.

Test of H0: Difference in coefficients not systematic
chi2(3) = (b-B)’[(V_b-V_B)^(-1)](b-B)

= 260.40
Prob > chi2 = 0.0000

Under the current specification, our initial hypothesis that the individual-level effects are adequately

modeled by a random-effects model is resoundingly rejected. This result is based on the rest of our model

specification, and random effects might be appropriate for some alternate model of wages.� �
Jerry Allen Hausman (1946– ) is anAmerican economist and econometrician. He was born in West

Virginia and went on to study economics at Brown and Oxford. He joined the MIT faculty in 1972

and continues to teach there. He currently researches new goods and their effects on consumer

welfare and its measurement in the Consumer Price Index along with regulation and competition in

the telecommunications industry.

Hausman is best known for his many contributions to econometrics. In 1978, he published his now

famous paper giving the Hausman specification test. The work remains one of the most widely

cited econometrics papers. He has also done extensive work in applied microeconomics pertaining

to government’s role in the economy, including antitrust regulation, public finance, and taxation.

In 1980, Hausman received the Frisch Medal, a biennial award from the Econometric Society rec-

ognizing exceptional applied work, for his paper with David Wise on attrition bias. In 1985, he

won the John Bates Clark Award from the American Economics Association, which is given for

outstanding contributions to economics by an economist under 40 years of age. In 2012, the Ad-

vances in Econometrics book series devoted an entire volume to Hausman and his contributions to

econometrics.� �
Example 2

Astringent assumption of multinomial and conditional logit models is that outcome categories for the

model have the property of independence of irrelevant alternatives (IIA). Stated simply, this assumption

requires that the inclusion or exclusion of categories does not affect the relative risks associated with the

regressors in the remaining categories.
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One classic example of a situation in which this assumption would be violated involves the choice

of transportation mode; see McFadden (1974). For simplicity, postulate a transportation model with the

four possible outcomes: rides a train to work, takes a bus to work, drives the Ford to work, and drives

the Chevrolet to work. Clearly, “drives the Ford” is a closer substitute to “drives the Chevrolet” than it is

to “rides a train” (at least for most people). This means that excluding “drives the Ford” from the model

could be expected to affect the relative risks of the remaining options and that the model would not obey

the IIA assumption.

Using the data presented in [R] mlogit, we will use a simplified model to test for IIA. The choice of

insurance type among indemnity, prepaid, and uninsured is modeled as a function of age and gender. The

indemnity category is allowed to be the base category, and the model including all three outcomes is fit.

The results are then stored under the name allcats.

. use https://www.stata-press.com/data/r18/sysdsn3
(Health insurance data)
. mlogit insure age male
Iteration 0: Log likelihood = -555.85446
Iteration 1: Log likelihood = -551.32973
Iteration 2: Log likelihood = -551.32802
Iteration 3: Log likelihood = -551.32802
Multinomial logistic regression Number of obs = 615

LR chi2(4) = 9.05
Prob > chi2 = 0.0598

Log likelihood = -551.32802 Pseudo R2 = 0.0081

insure Coefficient Std. err. z P>|z| [95% conf. interval]

Indemnity (base outcome)

Prepaid
age -.0100251 .0060181 -1.67 0.096 -.0218204 .0017702

male .5095747 .1977893 2.58 0.010 .1219147 .8972346
_cons .2633838 .2787575 0.94 0.345 -.2829708 .8097383

Uninsure
age -.0051925 .0113821 -0.46 0.648 -.0275011 .0171161

male .4748547 .3618462 1.31 0.189 -.2343508 1.18406
_cons -1.756843 .5309602 -3.31 0.001 -2.797506 -.7161803

. estimates store allcats

Under the IIA assumption, we would expect no systematic change in the coefficients if we excluded

one of the outcomes from the model. (For an extensive discussion, see Hausman and McFadden [1984].)

We reestimate the parameters, excluding the uninsured outcome, and perform a Hausman test against the

fully efficient full model.
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. mlogit insure age male if insure != ”Uninsure”:insure
Iteration 0: Log likelihood = -394.8693
Iteration 1: Log likelihood = -390.4871
Iteration 2: Log likelihood = -390.48643
Iteration 3: Log likelihood = -390.48643
Multinomial logistic regression Number of obs = 570

LR chi2(2) = 8.77
Prob > chi2 = 0.0125

Log likelihood = -390.48643 Pseudo R2 = 0.0111

insure Coefficient Std. err. z P>|z| [95% conf. interval]

Indemnity (base outcome)

Prepaid
age -.0101521 .0060049 -1.69 0.091 -.0219214 .0016173

male .5144003 .1981735 2.60 0.009 .1259874 .9028133
_cons .2678043 .2775563 0.96 0.335 -.276196 .8118046

. hausman . allcats, alleqs constant
Coefficients

(b) (B) (b-B) sqrt(diag(V_b-V_B))
. allcats Difference Std. err.

age -.0101521 -.0100251 -.0001269 .
male .5144003 .5095747 .0048256 .0123338
_cons .2678043 .2633838 .0044205 .

b = Consistent under H0 and Ha; obtained from mlogit.
B = Inconsistent under Ha, efficient under H0; obtained from mlogit.

Test of H0: Difference in coefficients not systematic
chi2(3) = (b-B)’[(V_b-V_B)^(-1)](b-B)

= 0.08
Prob > chi2 = 0.9944
(V_b-V_B is not positive definite)

The syntax of the if condition on the mlogit command simply identified the ”Uninsured” category
with the insure value label; see [U] 12.6.3 Value labels. On examining the output from hausman, we
see that there is no evidence that the IIA assumption has been violated.

Because the Hausman test is a standardized comparison of model coefficients, using it with mlogit
requires that the base outcome be the same in both competing models. In particular, if the most-frequent

category (the default base outcome) is being removed to test for IIA, you must use the baseoutcome()
option in mlogit to manually set the base outcome to something else. Or you can use the equation()
option of the hausman command to align the equations of the two models.

Having the missing values for the square root of the diagonal of the covariance matrix of the differ-

ences is not comforting, but it is also not surprising. This covariance matrix is guaranteed to be positive

definite only asymptotically (it is a consequence of the assumption that one of the estimators is effi-

cient), and assurances are not made about the diagonal elements. Negative values along the diagonal are

possible, and the fourth column of the table is provided mainly for descriptive use.
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We can also perform the Hausman IIA test against the remaining alternative in the model:

. mlogit insure age male if insure != ”Prepaid”:insure
Iteration 0: Log likelihood = -132.59913
Iteration 1: Log likelihood = -131.78009
Iteration 2: Log likelihood = -131.76808
Iteration 3: Log likelihood = -131.76807
Multinomial logistic regression Number of obs = 338

LR chi2(2) = 1.66
Prob > chi2 = 0.4356

Log likelihood = -131.76807 Pseudo R2 = 0.0063

insure Coefficient Std. err. z P>|z| [95% conf. interval]

Indemnity (base outcome)

Uninsure
age -.0041055 .0115807 -0.35 0.723 -.0268033 .0185923

male .4591074 .3595663 1.28 0.202 -.2456296 1.163844
_cons -1.801774 .5474476 -3.29 0.001 -2.874752 -.7287968

. hausman . allcats, alleqs constant
Coefficients

(b) (B) (b-B) sqrt(diag(V_b-V_B))
. allcats Difference Std. err.

age -.0041055 -.0051925 .001087 .0021355
male .4591074 .4748547 -.0157473 .
_cons -1.801774 -1.756843 -.0449311 .1333421

b = Consistent under H0 and Ha; obtained from mlogit.
B = Inconsistent under Ha, efficient under H0; obtained from mlogit.

Test of H0: Difference in coefficients not systematic
chi2(3) = (b-B)’[(V_b-V_B)^(-1)](b-B)

= -0.18
Warning: chi2 < 0 ==> model fitted on these data

fails to meet the asymptotic assumptions
of the Hausman test; see suest for a
generalized test.

Here the 𝜒2 statistic is actually negative. Wemight interpret this result as strong evidence that we can-

not reject the null hypothesis. Such a result is not an unusual outcome for the Hausman test, particularly

when the sample is relatively small—there are only 45 uninsured individuals in this dataset.

Are we surprised by the results of the Hausman test in this example? Not really. Judging from the

𝑧 statistics on the original multinomial logit model, we were struggling to identify any structure in the
data with the current specification. Even when we were willing to assume IIA and computed the efficient

estimator under this assumption, few of the effects could be identified as statistically different from those

on the base category. Trying to base a Hausman test on a contrast (difference) between two poor estimates

is just asking too much of the existing data.
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In example 2, we encountered a case in which the Hausman was not well defined. Unfortunately,

in our experience this happens fairly often. Stata provides an alternative to the Hausman test that over-

comes this problem through an alternative estimator of the variance of the difference between the two

estimators. This other estimator is guaranteed to be positive semidefinite. This alternative estimator also

allows a widening of the scope of problems to which Hausman-type tests can be applied by relaxing the

assumption that one of the estimators is efficient. For instance, you can perform Hausman-type tests to

clustered observations and survey estimators. See [R] suest for details.

Stored results
hausman stores the following in r():

Scalars

r(chi2) 𝜒2

r(df) degrees of freedom for the statistic

r(p) 𝑝-value for the 𝜒2

r(rank) rank of (V b-V B)^(-1)

Methods and formulas
The Hausman statistic is distributed as 𝜒2 and is computed as

𝐻 = (𝛽𝑐 − 𝛽𝑒)′(𝑉𝑐 − 𝑉𝑒)−1(𝛽𝑐 − 𝛽𝑒)

where
𝛽𝑐 is the coefficient vector from the consistent estimator

𝛽𝑒 is the coefficient vector from the efficient estimator

𝑉𝑐 is the covariance matrix of the consistent estimator

𝑉𝑒 is the covariance matrix of the efficient estimator

When the difference in the variance matrices is not positive definite, a Moore–Penrose generalized

inverse is used. As noted in Gouriéroux and Monfort (1995, 125–128), the choice of generalized inverse

is not important asymptotically.

The number of degrees of freedom for the statistic is the rank of the difference in the variancematrices.

When the difference is positive definite, this is the number of common coefficients in the models being

compared.

Acknowledgment
Portions of hausman are based on an early implementation by Jeroen Weesie of the Department of

Sociology at Utrecht University, The Netherlands.
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heckman — Heckman selection model

Description Quick start
Menu Syntax
Options for Heckman selection model (ML) Options for Heckman selection model (two-step)
Remarks and examples Stored results
Methods and formulas References
Also see

Description
heckman fits regression models with selection by using either Heckman’s two-step consistent estima-

tor or full maximum likelihood.

Quick start
Heckman model of y on x1 with v1 predicting selection when binary variable selected indicates se-

lection status

heckman y x1, select(selected = v1 x1)

Same as above, and generate v2 containing the inverse of Mills’s ratio

heckman y x1, select(selected = v1 x1) mills(v2)

Same as above

heckman y x1, select(selected = v1 x1) nshazard(v2)

Fit a Heckman model using the two-step estimation method

heckman y x1, select(selected = v1 x1) twostep

Same as above, and display first-stage probit estimates

heckman y x1, select(selected = v1 x1) twostep first

Menu
Statistics > Sample-selection models > Heckman selection model

1081
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Syntax
Basic syntax

heckman depvar [ indepvars ], select(varlist𝑠) [ twostep ]
or

heckman depvar [ indepvars ], select(depvar𝑠 = varlist𝑠) [ twostep ]

Full syntax for maximum likelihood estimates only

heckman depvar [ indepvars ] [ if ] [ in ] [weight ] ,
select( [ depvar𝑠 = ] varlist𝑠 [ , noconstant offset(varname𝑜) ] ) [ heckman ml options ]

Full syntax for Heckman’s two-step consistent estimates only

heckman depvar [ indepvars ] [ if ] [ in ], twostep
select( [ depvar𝑠 = ] varlist𝑠 [ , noconstant ] ) [ heckman ts options ]

heckman ml options Description

Model

mle use maximum likelihood estimator; the default
∗ select() specify selection equation: dependent and independent

variables; whether to have constant term and offset variable

noconstant suppress constant term

offset(varname) include varname in model with coefficient constrained to 1

constraints(constraints) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, opg, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)
first report first-step probit estimates

lrmodel perform the likelihood-ratio model test instead of the default Wald test

nshazard(newvar) generate nonselection hazard variable

mills(newvar) synonym for nshazard()
nocnsreport do not display constraints

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

collinear keep collinear variables

coeflegend display legend instead of statistics

∗select( ) is required.
The full specification is select( [ depvar𝑠 = ] varlist𝑠 [ , noconstant offset(varname𝑜) ] ).
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heckman ts options Description

Model
∗ twostep produce two-step consistent estimate
∗ select() specify selection equation: dependent and independent

variables; whether to have constant term

noconstant suppress constant term

rhosigma truncate 𝜌 to [ −1, 1 ] with consistent 𝜎
rhotrunc truncate 𝜌 to [ −1, 1 ]
rholimited truncate 𝜌 in limited cases
rhoforce do not truncate 𝜌

SE

vce(vcetype) vcetype may be conventional, bootstrap, or jackknife

Reporting

level(#) set confidence level; default is level(95)
first report first-step probit estimates

nshazard(newvar) generate nonselection hazard variable

mills(newvar) synonym for nshazard()
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

coeflegend display legend instead of statistics

∗twostep and select( ) are required.
The full specification is select( [ depvar𝑠 = ] varlist𝑠 [ , noconstant ] ).

indepvars and varlist𝑠 may contain factor variables; see [U] 11.4.3 Factor variables.

depvar, indepvars, varlist𝑠, and depvar𝑠 may contain time-series operators; see [U] 11.4.4 Time-series varlists.

bayes, bootstrap, by, collect, fp, jackknife, rolling, statsby, and svy are allowed; see [U] 11.1.10 Prefix com-

mands. For more details, see [BAYES] bayes: heckman.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
twostep, vce(), first, lrmodel, and weights are not allowed with the svy prefix; see [SVY] svy.
pweights, fweights, and iweights are allowed with maximum likelihood estimation; see [U] 11.1.6 weight. No weights

are allowed if twostep is specified.
collinear and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Options for Heckman selection model (ML)

� � �
Model �

mle requests that the maximum likelihood estimator be used. This is the default.

select( [ depvar𝑠 = ] varlist𝑠 [ , noconstant offset(varname𝑜) ] ) specifies the variables and op-

tions for the selection equation. It is an integral part of specifying a Heckman model and is required.

The selection equation should contain at least one variable that is not in the outcome equation.

If depvar𝑠 is specified, it should be coded as 0 or 1, with 0 indicating an observation not selected and

1 indicating a selected observation. If depvar𝑠 is not specified, observations for which depvar is not

missing are assumed selected, and those for which depvar is missing are assumed not selected.

noconstant suppresses the selection constant term (intercept).

offset(varname𝑜) specifies that selection offset varname𝑜 be included in the model with the coef-

ficient constrained to be 1.

noconstant, offset(varname), constraints(constraints); see [R] Estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), that al-
low for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods

(bootstrap, jackknife); see [R] vce option.

� � �
Reporting �

level(#); see [R] Estimation options.

first specifies that the first-step probit estimates of the selection equation be displayed before estima-
tion.

lrmodel; see [R] Estimation options.

nshazard(newvar) and mills(newvar) are synonyms; either will create a new variable containing

the nonselection hazard—what Heckman (1979) referred to as the inverse of the Mills ratio—from

the selection equation. The nonselection hazard is computed from the estimated parameters of the

selection equation.

nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. These options are

seldom used.

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).
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The following options are available with heckman but are not shown in the dialog box:

collinear, coeflegend; see [R] Estimation options.

Options for Heckman selection model (two-step)

� � �
Model �

twostep specifies that Heckman’s (1979) two-step efficient estimates of the parameters, standard errors,
and covariance matrix be produced.

select( [ depvar𝑠 = ] varlist𝑠 [ , noconstant ] ) specifies the variables and options for the selection

equation. It is an integral part of specifying a Heckman model and is required. The selection equation

should contain at least one variable that is not in the outcome equation.

If depvar𝑠 is specified, it should be coded as 0 or 1, with 0 indicating an observation not selected and

1 indicating a selected observation. If depvar𝑠 is not specified, observations for which depvar is not

missing are assumed selected, and those for which depvar is missing are assumed not selected.

noconstant suppresses the selection constant term (intercept).

noconstant; see [R] Estimation options.

rhosigma, rhotrunc, rholimited, and rhoforce are rarely used options to specify how the two-step

estimator (option twostep) handles unusual cases in which the two-step estimate of 𝜌 is outside the

admissible range for a correlation, [ −1, 1 ]. When abs(𝜌) > 1, the two-step estimate of the coefficient

variance–covariance matrix may not be positive definite and thus may be unusable for testing. The

default is rhosigma.

rhosigma specifies that 𝜌 be truncated, as with the rhotrunc option, and that the estimate of 𝜎 be

made consistent with ̂𝜌, the truncated estimate of 𝜌. So, �̂� = β𝑚 ̂𝜌; see Methods and formulas for

the definition of β𝑚. Both the truncated 𝜌 and the new estimate of �̂� are used in all computations to

estimate the two-step covariance matrix.

rhotrunc specifies that 𝜌 be truncated to lie in the range [ −1, 1 ]. If the two-step estimate is less than
−1, 𝜌 is set to −1; if the two-step estimate is greater than 1, 𝜌 is set to 1. This truncated value of 𝜌 is
used in all computations to estimate the two-step covariance matrix.

rholimited specifies that 𝜌 be truncated only in computing the diagonal matrixD as it entersVtwostep

and Q; see Methods and formulas. In all other computations, the untruncated estimate of 𝜌 is used.
rhoforce specifies that the two-step estimate of 𝜌 be retained, even if it is outside the admissible

range for a correlation. This option may, in rare cases, lead to a non–positive-definite covariance

matrix.

These options have no effect when estimation is by maximum likelihood, the default. They also have

no effect when the two-step estimate of 𝜌 is in the range [ −1, 1 ].

� � �
SE �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived

from asymptotic theory (conventional) and that use bootstrap or jackknife methods (bootstrap,
jackknife); see [R] vce option.

vce(conventional), the default, uses the two-step variance estimator derived by Heckman.
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� � �
Reporting �

level(#); see [R] Estimation options.

first specifies that the first-step probit estimates of the selection equation be displayed before estima-
tion.

nshazard(newvar) and mills(newvar) are synonyms; either will create a new variable containing

the nonselection hazard—what Heckman (1979) referred to as the inverse of the Mills ratio—from

the selection equation. The nonselection hazard is computed from the estimated parameters of the

selection equation.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

The following option is available with heckman but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

Remarks and examples
The Heckman selection model (Gronau 1974; Lewis 1974; Heckman 1976) assumes that there exists

an underlying regression relationship,

𝑦𝑗 = x𝑗β + 𝑢1𝑗 regression equation

The dependent variable, however, is not always observed. Rather, the dependent variable for obser-

vation 𝑗 is observed if

z𝑗𝛄 + 𝑢2𝑗 > 0 selection equation

where

𝑢1 ∼ 𝑁(0, 𝜎)
𝑢2 ∼ 𝑁(0, 1)

corr(𝑢1, 𝑢2) = 𝜌

When 𝜌 ≠ 0, standard regression techniques applied to the first equation yield biased results. heckman
provides consistent, asymptotically efficient estimates for all the parameters in such models.

In one classic example, the first equation describes the wages of women. Women choose whether to

work, and thus, from our point of view as researchers, whether we observe their wages in our data. If

women made this decision randomly, we could ignore that not all wages are observed and use ordinary

regression to fit a wage model. Such an assumption of random participation, however, is unlikely to be

true; women who would have low wages may be unlikely to choose to work, and thus the sample of

observed wages is biased upward. In the jargon of economics, women choose not to work when their

personal reservation wage is greater than the wage offered by employers. Thus, women who choose not

to work might have even higher offer wages than those who do work—they may have high offer wages,

but they have even higher reservation wages. We could tell a story that competency is related to wages,

but competency is rewarded more at home than in the labor force.
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In any case, in this problem—which is the paradigm for most such problems—a solution can be

found if there are some variables that strongly affect the chances for observation (the reservation wage)

but not the outcome under study (the offer wage). Such a variable might be the number of children in

the home. (Theoretically, we do not need such identifying variables, but without them, we depend on

functional form to identify the model. It would be difficult for anyone to take such results seriously

because the functional form assumptions have no firm basis in theory.)

Example 1
In the syntax for heckman, depvar and indepvars are the dependent variable and regressors for the

underlying regression model to be fit (y = Xβ), and varlist𝑠 are the variables (Z) thought to determine
whether depvar is observed or unobserved (selected or not selected). In our female wage example, the

number of children at home would be included in the second list. By default, heckman assumes that

missing values (see [U] 12.2.1Missing values) of depvar imply that the dependent variable is unobserved

(not selected). With some datasets, it is more convenient to specify a binary variable (depvar𝑠) that

identifies the observations for which the dependent is observed/selected (depvar𝑠≠ 0) or not observed

(depvar𝑠= 0); heckman will accommodate either type of data. Here we have a (fictional) dataset on

2,000 women, 1,343 of whom work:

. use https://www.stata-press.com/data/r18/womenwk

. summarize age educ married children wage
Variable Obs Mean Std. dev. Min Max

age 2,000 36.208 8.28656 20 59
education 2,000 13.084 3.045912 10 20

married 2,000 .6705 .4701492 0 1
children 2,000 1.6445 1.398963 0 5

wage 1,343 23.69217 6.305374 5.88497 45.80979

We will assume that the hourly wage is a function of education and age, whereas the likelihood of

working (the likelihood of the wage being observed) is a function of marital status, the number of children

at home, and (implicitly) the wage (via the inclusion of age and education, which we think determine the

wage):
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. heckman wage educ age, select(married children educ age)
Iteration 0: Log likelihood = -5178.7009
Iteration 1: Log likelihood = -5178.3049
Iteration 2: Log likelihood = -5178.3045
Heckman selection model Number of obs = 2,000
(regression model with sample selection) Selected = 1,343

Nonselected = 657
Wald chi2(2) = 508.44

Log likelihood = -5178.304 Prob > chi2 = 0.0000

wage Coefficient Std. err. z P>|z| [95% conf. interval]

wage
education .9899537 .0532565 18.59 0.000 .8855729 1.094334

age .2131294 .0206031 10.34 0.000 .1727481 .2535108
_cons .4857752 1.077037 0.45 0.652 -1.625179 2.59673

select
married .4451721 .0673954 6.61 0.000 .3130794 .5772647
children .4387068 .0277828 15.79 0.000 .3842534 .4931601

education .0557318 .0107349 5.19 0.000 .0346917 .0767718
age .0365098 .0041533 8.79 0.000 .0283694 .0446502

_cons -2.491015 .1893402 -13.16 0.000 -2.862115 -2.119915

/athrho .8742086 .1014225 8.62 0.000 .6754241 1.072993
/lnsigma 1.792559 .027598 64.95 0.000 1.738468 1.84665

rho .7035061 .0512264 .5885365 .7905862
sigma 6.004797 .1657202 5.68862 6.338548
lambda 4.224412 .3992265 3.441942 5.006881

LR test of indep. eqns. (rho = 0): chi2(1) = 61.20 Prob > chi2 = 0.0000

heckman assumes that wage is the dependent variable and that the first variable list (educ and age) are
the determinants of wage. The variables specified in the select() option (married, children, educ,
and age) are assumed to determine whether the dependent variable is observed (the selection equation).
Thus, we fit the model

wage = 𝛽0 + 𝛽1educ + 𝛽2age + 𝑢1

and we assumed that wage is observed if

𝛾0 + 𝛾1married + 𝛾2children + 𝛾3educ + 𝛾4age + 𝑢2 > 0

where 𝑢1 and 𝑢2 have correlation 𝜌.
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The reported results for the wage equation are interpreted exactly as though we observed wage data

for all women in the sample; the coefficients on age and education level represent the estimated marginal

effects of the regressors in the underlying regression equation. The results for the two ancillary param-

eters require some explanation. heckman does not directly estimate 𝜌; to constrain 𝜌 within its valid

limits, and for numerical stability during optimization, it estimates the inverse hyperbolic tangent of 𝜌:

atanh 𝜌 = 1
2
ln(1 + 𝜌

1 − 𝜌
)

This estimate is reported as /athrho. In the bottom panel of the output, heckman undoes this trans-
formation for you: the estimated value of 𝜌 is 0.7035061. The standard error for 𝜌 is computed using the
delta method, and its confidence intervals are the transformed intervals of /athrho.

Similarly, 𝜎, the standard error of the residual in the wage equation, is not directly estimated; for
numerical stability, heckman instead estimates ln𝜎. The untransformed sigma is reported at the end of
the output: 6.004797.

Finally, some researchers—especially economists—are used to the selectivity effect summarized

not by 𝜌 but by 𝜆 = 𝜌𝜎. heckman reports this, too, along with an estimate of the standard error and

confidence interval.

Technical note
If each of the equations in the model had contained many regressors, the heckman command could

have become long. An alternate way of specifying our wagemodel would be to use Stata’s global macros.

The following lines are an equivalent way of specifying our model:

. global wageeq ”wage educ age”

. global seleq ”married children educ age”

. heckman $wageeq, select($seleq)
(output omitted )

Technical note
The reported model 𝜒2 test is a Wald test that all coefficients in the regression model (except the

constant) are 0. heckman is an estimation command, so you can use test, testnl, or lrtest to perform
tests against whatever nested alternate model you choose; see [R] test, [R] testnl, and [R] lrtest.

The estimation of 𝜌 and 𝜎 in the forms atanh𝜌 and ln𝜎 extends the range of these parameters to infinity
in both directions, thus avoiding boundary problems during the maximization. Tests of 𝜌 must be made

in the transformed units. However, because atanh(0) = 0, the reported test for atanh 𝜌 = 0 is equivalent

to the test for 𝜌 = 0.

The likelihood-ratio test reported at the bottom of the output is an equivalent test for 𝜌 = 0 and is

computationally the comparison of the joint likelihood of an independent probit model for the selection

equation and a regression model on the observed wage data against the Heckman model likelihood.

Because 𝜒2 = 61.20, this clearly justifies the Heckman selection equation with these data.
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Example 2
This command supports the Huber/White/sandwich estimator of variance under the vce(robust)

and vce(cluster clustvar) options or when pweights are used for population-weighted data; see

[U] 20.22 Obtaining robust variance estimates. We can obtain robust standard errors for our wage

model by specifying clustering on county of residence (the county variable).

. heckman wage educ age, select(married children educ age) vce(cluster county)
Iteration 0: Log pseudolikelihood = -5178.7009
Iteration 1: Log pseudolikelihood = -5178.3049
Iteration 2: Log pseudolikelihood = -5178.3045
Heckman selection model Number of obs = 2,000
(regression model with sample selection) Selected = 1,343

Nonselected = 657
Wald chi2(1) = .

Log pseudolikelihood = -5178.304 Prob > chi2 = .
(Std. err. adjusted for 10 clusters in county)

Robust
wage Coefficient std. err. z P>|z| [95% conf. interval]

wage
education .9899537 .0600061 16.50 0.000 .8723438 1.107564

age .2131294 .020995 10.15 0.000 .17198 .2542789
_cons .4857752 1.302103 0.37 0.709 -2.066299 3.03785

select
married .4451721 .0731472 6.09 0.000 .3018062 .5885379
children .4387068 .0312386 14.04 0.000 .3774802 .4999333

education .0557318 .0110039 5.06 0.000 .0341645 .0772991
age .0365098 .004038 9.04 0.000 .0285954 .0444242

_cons -2.491015 .1153305 -21.60 0.000 -2.717059 -2.264972

/athrho .8742086 .1403337 6.23 0.000 .5991596 1.149258
/lnsigma 1.792559 .0258458 69.36 0.000 1.741902 1.843216

rho .7035061 .0708796 .5364513 .817508
sigma 6.004797 .155199 5.708189 6.316818
lambda 4.224412 .5186709 3.207835 5.240988

Wald test of indep. eqns. (rho = 0): chi2(1) = 38.81 Prob > chi2 = 0.0000

The robust standard errors tend to be a bit larger, but we notice no systematic differences. This finding

is not surprising because the data were not constructed to have any county-specific correlations or any

other characteristics that would deviate from the assumptions of the Heckman model.
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Example 3
Stata also produces Heckman’s (1979) two-step efficient estimator of the model with the twostep

option. Maximum likelihood estimation of the parameters can be time consuming with large datasets,

and the two-step estimates may provide a good alternative in such cases. Continuing with the women’s

wage model, we can obtain the two-step estimates with Heckman’s consistent covariance estimates by

typing

. heckman wage educ age, select(married children educ age) twostep
Heckman selection model -- two-step estimates Number of obs = 2,000
(regression model with sample selection) Selected = 1,343

Nonselected = 657
Wald chi2(2) = 442.54
Prob > chi2 = 0.0000

wage Coefficient Std. err. z P>|z| [95% conf. interval]

wage
education .9825259 .0538821 18.23 0.000 .8769189 1.088133

age .2118695 .0220511 9.61 0.000 .1686502 .2550888
_cons .7340391 1.248331 0.59 0.557 -1.712645 3.180723

select
married .4308575 .074208 5.81 0.000 .2854125 .5763025
children .4473249 .0287417 15.56 0.000 .3909922 .5036576

education .0583645 .0109742 5.32 0.000 .0368555 .0798735
age .0347211 .0042293 8.21 0.000 .0264318 .0430105

_cons -2.467365 .1925635 -12.81 0.000 -2.844782 -2.089948

/mills
lambda 4.001615 .6065388 6.60 0.000 2.812821 5.19041

rho 0.67284
sigma 5.9473529

Technical note
The Heckman selection model depends strongly on the model being correct, much more so than ordi-

nary regression. Running a separate probit or logit for sample inclusion followed by a regression, referred

to in the literature as the two-part model (Manning, Duan, and Rogers 1987)—not to be confused with

Heckman’s two-step procedure—is an especially attractive alternative if the regression part of the model

arose because of taking a logarithm of zero values. When the goal is to analyze an underlying regression

model or to predict the value of the dependent variable that would be observed in the absence of selection,

however, the Heckman model is more appropriate. When the goal is to predict an actual response, the

two-part model is usually the better choice.

The Heckman selection model can be unstable when the model is not properly specified or if a specific

dataset simply does not support the model’s assumptions. For example, let’s examine the solution to

another simulated problem.
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. use https://www.stata-press.com/data/r18/twopart

. heckman yt x1 x2 x3, select(z1 z2) nonrtol
Iteration 0: Log likelihood = -111.94996
Iteration 1: Log likelihood = -110.82258
Iteration 2: Log likelihood = -110.17707
Iteration 3: Log likelihood = -107.70663 (not concave)
Iteration 4: Log likelihood = -107.07729 (not concave)
(output omitted )

Iteration 36: Log likelihood = -104.0825
Heckman selection model Number of obs = 150
(regression model with sample selection) Selected = 63

Nonselected = 87
Wald chi2(3) = 8.84e+08

Log likelihood = -104.0825 Prob > chi2 = 0.0000

yt Coefficient Std. err. z P>|z| [95% conf. interval]

yt
x1 .8974192 .0002164 4146.52 0.000 .896995 .8978434
x2 -2.525303 .0001244 -2.0e+04 0.000 -2.525546 -2.525059
x3 2.855786 .0002695 1.1e+04 0.000 2.855258 2.856314

_cons .6975003 .0907873 7.68 0.000 .5195604 .8754402

select
z1 -.6826482 .0889871 -7.67 0.000 -.8570598 -.5082367
z2 1.003678 .1308344 7.67 0.000 .7472471 1.260108

_cons -.3605665 .1219011 -2.96 0.003 -.5994883 -.1216447

/athrho 16.11489 260.7581 0.06 0.951 -494.9617 527.1914
/lnsigma -.5396877 .1303548 -4.14 0.000 -.7951785 -.284197

rho 1 1.05e-11 -1 1
sigma .5829302 .0759878 .4515006 .7526184
lambda .5829302 .0759878 .433997 .7318635

LR test of indep. eqns. (rho = 0): chi2(1) = 25.67 Prob > chi2 = 0.0000

The model has converged to a value of 𝜌 that is 1.0—within machine-rounding tolerances. Given the

form of the likelihood for the Heckman selectionmodel, this implies a division by zero, and it is surprising

that the model solution turns out as well as it does. Reparameterizing 𝜌 has allowed the estimation to

converge, but we clearly have problems with the estimates. Moreover, if this had occurred in a large

dataset, waiting for convergence might take considerable time.

This dataset was not intentionally developed to cause problems. It is actually generated by a “Heck-

man process” and when generated starting from different random values can be easily estimated. The

luck of the draw here merely led to data that, despite the source, did not support the assumptions of the

Heckman model.

The two-step model is generally more stable when the data are problematic. It even tolerates estimates

of 𝜌 less than −1 and greater than 1. For these reasons, the two-step model may be preferred when

exploring a large dataset. Still, if the maximum likelihood estimates cannot converge, or converge to

a value of 𝜌 that is at the boundary of acceptable values, there is scant support for fitting a Heckman

selectionmodel on the data. Heckman (1979) discusses the implications of 𝜌 being exactly 1 or 0, together
with the implications of other possible covariance relationships among the model’s determinants.



heckman — Heckman selection model 1093

Stored results
heckman (maximum likelihood) stores the following in e():

Scalars

e(N) number of observations

e(N selected) number of selected observations

e(N nonselected) number of nonselected observations

e(k) number of parameters

e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test

e(k aux) number of auxiliary parameters

e(k dv) number of dependent variables

e(df m) model degrees of freedom

e(ll) log likelihood

e(ll 0) log likelihood, constant-only model

e(N clust) number of clusters

e(lambda) 𝜆
e(selambda) standard error of 𝜆
e(sigma) sigma

e(chi2) 𝜒2

e(chi2 c) 𝜒2 for comparison test

e(p) 𝑝-value for model test
e(p c) 𝑝-value for comparison test
e(rho) 𝜌
e(rank) rank of e(V)
e(rank0) rank of e(V) for constant-only model
e(ic) number of iterations

e(rc) return code

e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) heckman
e(cmdline) command as typed

e(depvar) names of dependent variables

e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(title2) secondary title in estimation output

e(clustvar) name of cluster variable

e(offset1) offset for regression equation

e(offset2) offset for selection equation

e(mills) variable containing nonselection hazard (inverse of Mills’s ratio)

e(chi2type) Wald or LR; type of model 𝜒2 test

e(chi2 ct) Wald or LR; type of model 𝜒2 test corresponding to e(chi2 c)
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(opt) type of optimization

e(which) max or min; whether optimizer is to perform maximization or minimization

e(method) ml
e(ml method) type of ml method
e(user) name of likelihood-evaluator program

e(technique) maximization technique

e(properties) b V
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved
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Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(ilog) iteration log (up to 20 iterations)

e(gradient) gradient vector

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

heckman (two-step) stores the following in e():

Scalars

e(N) number of observations

e(N selected) number of selected observations

e(N nonselected) number of nonselected observations

e(df m) model degrees of freedom

e(lambda) 𝜆
e(selambda) standard error of 𝜆
e(sigma) sigma

e(chi2) 𝜒2

e(p) 𝑝-value for comparison test
e(rho) 𝜌
e(rank) rank of e(V)
e(fconverged) 1 if first-stage model converged, 0 otherwise

Macros

e(cmd) heckman
e(cmdline) command as typed

e(depvar) names of dependent variables

e(title) title in estimation output

e(title2) secondary title in estimation output

e(mills) variable containing nonselection hazard (inverse of Mills’s ratio)

e(chi2type) Wald or LR; type of model 𝜒2 test

e(vce) vcetype specified in vce()
e(rhometh) rhosigma, rhotrunc, rholimited, or rhoforce
e(method) twostep
e(properties) b V
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of the estimators

Functions

e(sample) marks estimation sample
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In addition to the above, the following is stored in r():
Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.� �
James Joseph Heckman (1944– ) was born in Chicago in 1944 and studied mathematics at Colorado

College and economics at Princeton. He has taught economics at Columbia and (since 1973) at

the University of Chicago. He has worked on developing a scientific basis for economic policy

evaluation, with emphasis on models of individuals or disaggregated groups and the problems and

possibilities created by heterogeneity, diversity, and unobserved counterfactual states. In 2000, he

shared the Nobel Prize in Economics with Daniel L. McFadden.� �
Methods and formulas

Cameron and Trivedi (2022, 974–981) and Greene (2018, 950–957) provide good introductions to

the Heckman selection model. Adkins and Hill (2011, sec. 16.8) describe the two-step estimator with

an application using Stata. Jones (2007, 35–40) illustrates Heckman estimation with an application to

health economics.

Regression estimates using the nonselection hazard (Heckman 1979) provide starting values for max-

imum likelihood estimation.

The regression equation is

𝑦𝑗 = x𝑗β + 𝑢1𝑗

The selection equation is

z𝑗𝛄 + 𝑢2𝑗 > 0

where

𝑢1 ∼ 𝑁(0, 𝜎)
𝑢2 ∼ 𝑁(0, 1)

corr(𝑢1, 𝑢2) = 𝜌

The log likelihood for observation 𝑗, ln𝐿𝑗 = 𝑙𝑗, is

𝑙𝑗 =

⎧{{
⎨{{⎩

𝑤𝑗 lnΦ {
z𝑗𝛄 + (𝑦𝑗 − x𝑗β)𝜌/𝜎

√1 − 𝜌2
} −

𝑤𝑗

2
(

𝑦𝑗 − x𝑗β

𝜎
)

2

− 𝑤𝑗 ln(
√

2𝜋𝜎) 𝑦𝑗 observed

𝑤𝑗lnΦ(−z𝑗𝛄) 𝑦𝑗 not observed

where Φ(⋅) is the standard cumulative normal and 𝑤𝑗 is an optional weight for observation 𝑗.
In the maximum likelihood estimation, 𝜎 and 𝜌 are not directly estimated. Directly estimated are ln𝜎

and atanh 𝜌:
atanh 𝜌 = 1

2
ln(1 + 𝜌

1 − 𝜌
)
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The standard error of 𝜆 = 𝜌𝜎 is approximated through the propagation of error (delta) method; that is,

Var(𝜆) ≈ DVar{(atanh 𝜌 ln𝜎)}D′

where D is the Jacobian of 𝜆 with respect to atanh 𝜌 and ln𝜎.
With maximum likelihood estimation, this command supports the Huber/White/sandwich estimator

of the variance and its clustered version using vce(robust) and vce(cluster clustvar), respectively.
See [P] robust, particularly Maximum likelihood estimators and Methods and formulas.

The maximum likelihood version of heckman also supports estimation with survey data. For details

on VCEs with survey data, see [SVY] Variance estimation.

The two-step estimates are computed using Heckman’s (1979) procedure.

Probit estimates of the selection equation

Pr(𝑦𝑗 observed | z𝑗) = Φ(z𝑗𝛄)

are obtained. From these estimates, the nonselection hazard—what Heckman (1979) referred to as the

inverse of the Mills ratio, 𝑚𝑗—for each observation 𝑗 is computed as

𝑚𝑗 =
𝜙(z𝑗�̂�)
Φ(z𝑗�̂�)

where 𝜙 is the normal density. We also define

𝛿𝑗 = 𝑚𝑗(𝑚𝑗 + �̂� z𝑗)

Following Heckman, the two-step parameter estimates of β are obtained by augmenting the regres-

sion equation with the nonselection hazard m. Thus, the regressors become [X m ], and we obtain the
additional parameter estimate β𝑚 on the variable containing the nonselection hazard.

A consistent estimate of the regression disturbance variance is obtained using the residuals from the

augmented regression and the parameter estimate on the nonselection hazard,

�̂�2 =
e′e + β2

𝑚 ∑𝑁
𝑗=1 𝛿𝑗

𝑁

The two-step estimate of 𝜌 is then

̂𝜌 =
β𝑚
�̂�

Heckman derived consistent estimates of the coefficient covariance matrix on the basis of the aug-

mented regression.
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LetW = [Xm ] and R be a square, diagonal matrix of dimension 𝑁, with (1 − ̂𝜌 2𝛿𝑗) as the diagonal
elements. The conventional VCE is

Vtwostep = �̂�2(W′W)−1(W′RW + Q)(W′W)−1

where

Q = 𝜌 2(W′DZ)Vp(Z′DW)

where D is the square, diagonal matrix of dimension 𝑁 with 𝛿𝑗 as the diagonal elements; Z is the data

matrix of selection equation covariates; and V𝑝 is the variance–covariance estimate from the probit

estimation of the selection equation.
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Also see
[R] heckman postestimation — Postestimation tools for heckman

[R] heckoprobit — Ordered probit model with sample selection

[R] heckpoisson — Poisson regression with sample selection

[R] heckprobit — Probit model with sample selection

[R] regress — Linear regression

[R] tobit — Tobit regression

[BAYES] bayes: heckman — Bayesian Heckman selection model

[CAUSAL] etregress — Linear regression with endogenous treatment effects

[ERM] eregress — Extended linear regression

[SVY] svy estimation — Estimation commands for survey data

[XT] xtheckman — Random-effects regression with sample selection

[U] 20 Estimation and postestimation commands
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Postestimation commands predict margins Remarks and examples Reference
Also see

Postestimation commands
The following postestimation commands are available after heckman:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters
∗ estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian infor-

mation criteria (AIC, CAIC, AICc, and BIC, respectively)

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estat (svy) postestimation statistics for survey data

estimates cataloging estimation results

etable table of estimation results
† hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

∗ † lrtest likelihood-ratio test

margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

predict linear predictions and their SEs, probabilities, etc.

predictnl point estimates, standard errors, testing, and inference for generalized predictions

pwcompare pairwise comparisons of parameters
∗ suest seemingly unrelated estimation

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

∗estat ic, lrtest, and suest are not appropriate after heckman, twostep.
†hausman and lrtest are not appropriate with svy estimation results.
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predict

Description for predict
predict creates a new variable containing predictions such as linear predictions, standard errors,

probabilities, expected values, and nonselection hazards.

Menu for predict
Statistics > Postestimation

Syntax for predict
After ML or twostep

predict [ type ] newvar [ if ] [ in ] [ , statistic nooffset ]

After ML

predict [ type ] stub* [ if ] [ in ], scores

statistic Description

Main

xb linear prediction; the default

stdp standard error of the prediction

stdf standard error of the forecast

xbsel linear prediction for selection equation

stdpsel standard error of the linear prediction for selection equation

pr(a,b) Pr(𝑦𝑗 | 𝑎 < 𝑦𝑗 < 𝑏)
e(a,b) 𝐸(𝑦𝑗 | 𝑎 < 𝑦𝑗 < 𝑏)
ystar(a,b) 𝐸(𝑦∗

𝑗), 𝑦∗
𝑗 = max{𝑎,min(𝑦𝑗, 𝑏)}

ycond 𝐸(𝑦𝑗|𝑦𝑗 observed)
yexpected 𝐸(𝑦∗

𝑗), 𝑦𝑗 taken to be 0 where unobserved

nshazard or mills nonselection hazard (also called the inverse of Mills’s ratio)

psel Pr(𝑦𝑗 observed)

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for the estimation
sample.

stdf is not allowed with svy estimation results.

where a and b may be numbers or variables; a missing (a ≥ .) means −∞, and b missing (b ≥ .) means
+∞; see [U] 12.2.1 Missing values.
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Options for predict

� � �
Main �

xb, the default, calculates the linear prediction x𝑗b.

stdp calculates the standard error of the prediction, which can be thought of as the standard error of the
predicted expected value or mean for the observation’s covariate pattern. The standard error of the

prediction is also referred to as the standard error of the fitted value.

stdf calculates the standard error of the forecast, which is the standard error of the point prediction for
1 observation. It is commonly referred to as the standard error of the future or forecast value. By

construction, the standard errors produced by stdf are always larger than those produced by stdp;
see Methods and formulas in [R] regress postestimation.

xbsel calculates the linear prediction for the selection equation.

stdpsel calculates the standard error of the linear prediction for the selection equation.

pr(a,b) calculates Pr(a < x𝑗b + 𝑢1 < b), the probability that 𝑦𝑗|x𝑗 would be observed in the interval

(a, b).
a and b may be specified as numbers or variable names; lb and ub are variable names;

pr(20,30) calculates Pr(20 < x𝑗b + 𝑢1 < 30); pr(lb,ub) calculates Pr(lb < x𝑗b + 𝑢1 < ub);
and pr(20,ub) calculates Pr(20 < x𝑗b + 𝑢1 < ub).
a missing (a ≥ .) means −∞; pr(.,30) calculates Pr(−∞ < x𝑗b + 𝑢𝑗 < 30);
pr(lb,30) calculates Pr(−∞ < x𝑗b + 𝑢𝑗 < 30) in observations for which lb ≥ .
and calculates Pr(𝑙𝑏 < x𝑗b + 𝑢𝑗 < 30) elsewhere.
b missing (b ≥ .) means +∞; pr(20,.) calculates Pr(+∞ > x𝑗b + 𝑢𝑗 > 20);
pr(20,ub) calculates Pr(+∞ > x𝑗b + 𝑢𝑗 > 20) in observations for which ub ≥ .
and calculates Pr(20 < x𝑗b + 𝑢𝑗 < ub) elsewhere.

e(a,b) calculates 𝐸(x𝑗b + 𝑢1 | a < x𝑗b + 𝑢1 < b), the expected value of 𝑦𝑗|x𝑗 conditional on 𝑦𝑗|x𝑗
being in the interval (a, b), meaning that 𝑦𝑗|x𝑗 is truncated.

a and b are specified as they are for pr().

ystar(a,b) calculates 𝐸(𝑦∗
𝑗), where 𝑦∗

𝑗 = 𝑎 if x𝑗b+𝑢𝑗 ≤ 𝑎, 𝑦∗
𝑗 = 𝑏 if x𝑗b+𝑢𝑗 ≥ 𝑏, and 𝑦∗

𝑗 = x𝑗b+𝑢𝑗
otherwise, meaning that 𝑦∗

𝑗 is censored. a and b are specified as they are for pr().

ycond calculates the expected value of the dependent variable conditional on the dependent variable

being observed, that is, selected; 𝐸(𝑦𝑗 | 𝑦𝑗 observed).
yexpected calculates the expected value of the dependent variable (𝑦∗

𝑗 ), where that value is taken to be

0 when it is expected to be unobserved; 𝑦∗
𝑗 = Pr(𝑦𝑗 observed)𝐸(𝑦𝑗 | 𝑦𝑗 observed).

The assumption of 0 is valid formany cases where nonselection implies nonparticipation (for example,

unobserved wage levels, insurance claims from those who are uninsured) but may be inappropriate

for some problems (for example, unobserved disease incidence).

nshazard and mills are synonyms; both calculate the nonselection hazard—what Heckman (1979)

referred to as the inverse of the Mills ratio—from the selection equation.

psel calculates the probability of selection (or being observed):
Pr(𝑦𝑗 observed) = Pr(z𝑗𝛄 + 𝑢2𝑗 > 0).
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scores, not available with twostep, calculates equation-level score variables.

The first new variable will contain 𝜕ln𝐿/𝜕(x𝑗β).
The second new variable will contain 𝜕ln𝐿/𝜕(z𝑗𝛄).
The third new variable will contain 𝜕ln𝐿/𝜕(atanh 𝜌).
The fourth new variable will contain 𝜕ln𝐿/𝜕(ln𝜎).

nooffset is relevant when you specify offset(varname) for heckman. It modifies the calculations
made by predict so that they ignore the offset variable; the linear prediction is treated as x𝑗b rather

than as x𝑗b + offset𝑗.

margins

Description for margins
margins estimates margins of response for linear predictions, probabilities, expected values, and

nonselection hazards.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist ] [ , options ]
margins [marginlist ] , predict(statistic ...) [ predict(statistic ...) ... ] [ options ]

statistic Description

xb linear prediction; the default

xbsel linear prediction for selection equation

pr(a,b) Pr(𝑦𝑗 | 𝑎 < 𝑦𝑗 < 𝑏)
e(a,b) 𝐸(𝑦𝑗 | 𝑎 < 𝑦𝑗 < 𝑏)
ystar(a,b) 𝐸(𝑦∗

𝑗), 𝑦∗
𝑗 = max{𝑎,min(𝑦𝑗, 𝑏)}

∗ ycond 𝐸(𝑦𝑗|𝑦𝑗 observed)
∗ yexpected 𝐸(𝑦∗

𝑗), 𝑦𝑗 taken to be 0 where unobserved

nshazard or mills nonselection hazard (also called the inverse of Mills’s ratio)

psel Pr(𝑦𝑗 observed)
stdp not allowed with margins
stdf not allowed with margins
stdpsel not allowed with margins

∗ycond and yexpected are not allowed with margins after heckman, twostep.

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.
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Remarks and examples

Example 1
The default statistic produced by predict after heckman is the expected value of the dependent

variable from the underlying distribution of the regression model. In the wage model of [R] heckman,

this is the expected wage rate among all women, regardless of whether they were observed to participate

in the labor force:

. use https://www.stata-press.com/data/r18/womenwk

. heckman wage educ age, select(married children educ age) vce(cluster county)
(output omitted )

. predict heckwage
(option xb assumed; fitted values)

It is instructive to compare these predicted wage values from the Heckman model with an ordinary

regression model—a model without the selection adjustment:

. regress wage educ age
Source SS df MS Number of obs = 1,343

F(2, 1340) = 227.49
Model 13524.0337 2 6762.01687 Prob > F = 0.0000

Residual 39830.8609 1,340 29.7245231 R-squared = 0.2535
Adj R-squared = 0.2524

Total 53354.8946 1,342 39.7577456 Root MSE = 5.452

wage Coefficient Std. err. t P>|t| [95% conf. interval]

education .8965829 .0498061 18.00 0.000 .7988765 .9942893
age .1465739 .0187135 7.83 0.000 .109863 .1832848

_cons 6.084875 .8896182 6.84 0.000 4.339679 7.830071

. predict regwage
(option xb assumed; fitted values)
. summarize heckwage regwage

Variable Obs Mean Std. dev. Min Max

heckwage 2,000 21.15532 3.83965 14.6479 32.85949
regwage 2,000 23.12291 3.241911 17.98218 32.66439

Because this dataset was concocted, we know the true coefficients of the wage regression equation to be

1, 0.2, and 1, respectively. We can compute the true mean wage for our sample.

. generate truewage = 1 + .2*age + 1*educ

. summarize truewage
Variable Obs Mean Std. dev. Min Max

truewage 2,000 21.3256 3.797904 15 32.8

Whereas the mean of the predictions from heckman is within 18 cents of the true mean wage, ordinary
regression yields predictions that are on average about $1.80 per hour too high because of the selection

effect. The regression predictions also show somewhat less variation than the true wages.
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The coefficients from heckman are so close to the true values that they are not worth testing. Con-
versely, the regression equation is significantly off but seems to give the right sense. Would we be led far

astray if we relied on the OLS coefficients? The effect of age is off by more than 5 cents per year of age,

and the coefficient on education level is off by about 10%. We can test the OLS coefficient on education

level against the true value by using test.

. test educ = 1
( 1) education = 1

F( 1, 1340) = 4.31
Prob > F = 0.0380

The OLS coefficient on education is substantially lower than the true parameter; moreover, the difference

from the true parameter is also statistically significant beyond the 5% level. We can perform a similar

test for the OLS age coefficient:

. test age = .2
( 1) age = .2

F( 1, 1340) = 8.15
Prob > F = 0.0044

We find even stronger evidence that the OLS regression results are biased away from the true parameters.

Example 2
Several other interesting aspects of the Heckman model can be explored with predict. Continuing

with our wage model, we can obtain the expected wages for women conditional on participating in the

labor force with the ycond option. Let’s get these predictions and compare them with actual wages for

women participating in the labor force.

. use https://www.stata-press.com/data/r18/womenwk, clear

. heckman wage educ age, select(married children educ age)
(output omitted )

. predict hcndwage, ycond

. summarize wage hcndwage if wage != .
Variable Obs Mean Std. dev. Min Max

wage 1,343 23.69217 6.305374 5.88497 45.80979
hcndwage 1,343 23.68239 3.335087 16.18337 33.7567

We see that the average predictions from heckman are close to the observed levels but do not have the
same mean. These conditional wage predictions are available for all observations in the dataset but can

be directly compared only with observed wages, where individuals are participating in the labor force.
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What if wewere interested inmaking predictions about meanwages for all women? Here the expected

wage is 0 for those who are not expected to participate in the labor force, with expected participation de-

termined by the selection equation. These values can be obtainedwith the yexpected option of predict.
For comparison, a variable can be generated where the wage is set to 0 for nonparticipants.

. predict hexpwage, yexpected

. generate wage0 = wage
(657 missing values generated)
. replace wage0 = 0 if wage == .
(657 real changes made)
. summarize hexpwage wage0

Variable Obs Mean Std. dev. Min Max

hexpwage 2,000 15.92511 5.979336 2.492469 32.45858
wage0 2,000 15.90929 12.27081 0 45.80979

Again we note that the predictions from heckman are close to the observed mean hourly wage rate
for all women. Why aren’t the predictions using ycond and yexpected equal to their observed sam-
ple equivalents? For the Heckman model, unlike linear regression, the sample moments implied by the

optimal solution to the model likelihood do not require that these predictions match observed data. Prop-

erly accounting for the additional variation from the selection equation requires that the model use more

information than just the sample moments of the observed wages.

Reference
Heckman, J. J. 1979. Sample selection bias as a specification error. Econometrica 47: 153–161. https://doi.org/10.2307/

1912352.

Also see
[R] heckman — Heckman selection model

[U] 20 Estimation and postestimation commands
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heckoprobit — Ordered probit model with sample selection

Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas References Also see

Description
heckoprobit fits maximum-likelihood ordered probit models with sample selection.

Quick start
Ordered probit model of y on x with selection indicated by binary variable selected and predicted by v

heckoprobit y x, select(selected = v x)

Add indicator variables for each level of categorical variable a
heckoprobit y x i.a, select(selected = v x i.a)

Account for complex sampling design using svyset data
svy: heckoprobit y x, select(selected = v x)

Menu
Statistics > Sample-selection models > Ordered probit model with selection
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Syntax
heckoprobit depvar indepvars [ if ] [ in ] [weight ] ,

select( [ depvar𝑠 = ] varlist𝑠 [ , noconstant offset(varname𝑜) ] ) [ options ]

options Description

Model
∗ select() specify selection equation: dependent and independent

variables; whether to have constant term and offset variable

offset(varname) include varname in model with coefficient constrained to 1

constraints(constraints) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, opg, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)
first report first-step probit estimates

noheader do not display header above parameter table

nofootnote do not display footnotes below parameter table

nocnsreport do not display constraints

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

collinear keep collinear variables

coeflegend display legend instead of statistics

∗select() is required.
The full specification is select( [ depvar𝑠 = ] varlist𝑠 [ , noconstant offset(varname𝑜) ] ).

indepvars and varlist𝑠 may contain factor variables; see [U] 11.4.3 Factor variables.

depvar, indepvars, depvar𝑠, and varlist𝑠 may contain time-series operators; see [U] 11.4.4 Time-series varlists.

bayes, bootstrap, by, collect, jackknife, rolling, statsby, and svy are allowed; see [U] 11.1.10 Prefix commands.
For more details, see [BAYES] bayes: heckoprobit.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
vce(), first, and weights are not allowed with the svy prefix; see [SVY] svy.
pweights, fweights, and iweights are allowed; see [U] 11.1.6 weight.
collinear and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Options

� � �
Model �

select( [ depvar𝑠 = ] varlist𝑠 [ , noconstant offset(varname𝑜) ] ) specifies the variables and op-

tions for the selection equation. It is an integral part of specifying a selection model and is required.

The selection equation should contain at least one variable that is not in the outcome equation.

If depvar𝑠 is specified, it should be coded as 0 or 1, 0 indicating an observation not selected and 1

indicating a selected observation. If depvar𝑠 is not specified, observations for which depvar is not

missing are assumed selected, and those for which depvar is missing are assumed not selected.

noconstant suppresses the selection constant term (intercept).

offset(varname𝑜) specifies that selection offset varname𝑜 be included in the model with the coef-

ficient constrained to be 1.

offset(varname), constraints(constraints); see [R] Estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), that al-
low for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods

(bootstrap, jackknife); see [R] vce option.

� � �
Reporting �

level(#); see [R] Estimation options.

first specifies that the first-step probit estimates of the selection equation be displayed before estima-
tion.

noheader suppresses the header above the parameter table.

nofootnote suppresses the footnotes displayed below the parameter table.

nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. These options are

seldom used.

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

The following options are available with heckoprobit but are not shown in the dialog box:

collinear, coeflegend; see [R] Estimation options.
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Remarks and examples
heckoprobit estimates the parameters of a regression model for an ordered categorical outcome

from a nonrandom sample known as a selected sample. Selected samples suffer from “selection on

unobservables” because the errors that determine whether a case is missing are correlated with the errors

that determine the outcome.

For ordered categorical regression from samples that do not suffer from selection on unobservables,

see [R] oprobit or [R] ologit. For regression of a continuous outcome variable from a selected sample,

see [R] heckman.

Even thoughwe are interested inmodeling a single ordinal outcome, there are two dependent variables

in the ordered probit sample-selection model because we must also model the sample-selection process.

First, there is the ordinal outcome 𝑦𝑗. Second, there is a binary variable that indicates whether each

case in the sample is observed or unobserved. To handle the sample-selection problem, we model both

dependent variables jointly. Both variables are categorical. Their categorical values are determined by

the values of linear combinations of covariates and normally distributed error terms relative to certain

cutpoints that partition the real line. The error terms used in the determination of selection and the ordinal

outcome value may be correlated.

The probability that the ordinal outcome 𝑦𝑗 is equal to the value 𝑣ℎ is given by the probability that

x𝑗β + 𝑢1𝑗 falls within the cutpoints 𝜅ℎ−1 and 𝜅ℎ,

Pr(𝑦𝑗 = 𝑣ℎ) = Pr(𝜅ℎ−1 < x𝑗β + 𝑢1𝑗 ≤ 𝜅ℎ)

where x𝑗 is the outcome covariates, β is the coefficients, and 𝑢1𝑗 is a random-error term. The observed

outcome values 𝑣1, . . . , 𝑣𝐻 are integers such that 𝑣𝑖 < 𝑣𝑚 for 𝑖 < 𝑚. 𝜅0 is taken as−∞ and 𝜅𝐻 is taken

as +∞.

We model the selection process for the outcome by

𝑠𝑗 = 1(z𝑗𝛄 + 𝑢2𝑗 > 0)

where 𝑠𝑗 = 1 if we observed 𝑦𝑗 and 0 otherwise, z𝑗 is the covariates used tomodel the selection process,𝛄
is the coefficients for the selection process, 1(⋅) denotes the indicator function, and 𝑢2𝑗 is a random-error

term.

(𝑢1𝑗, 𝑢2𝑗) have bivariate normal distribution with mean zero and variance matrix

[1 𝜌
𝜌 1]

When 𝜌 ≠ 0, standard ordered probit techniques applied to the outcome equation yield inconsistent

results. heckoprobit provides consistent, asymptotically efficient estimates for all the parameters in
such models.

De Luca and Perotti (2011) describe the maximum likelihood estimator used in heckoprobit.
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Example 1
We have a simulated dataset containing a sample of 5,000 women, 3,480 of whomwork. The outcome

of interest is a woman’s job satisfaction, and we suspect that unobservables that determine job satisfaction

and the unobservables that increase the likelihood of employment are correlated. Women may make a

decision to work based on how satisfying their job would be. We estimate the parameters of an ordered

probit sample-selection model for the outcome of job satisfaction (satisfaction) with selection on
employment (work). Age (age) and years of education (education) are used as outcome covariates, and
we also expect that they affect selection. Additional covariates for selection are marital status (married)
and the number of children at home (children).

Here we estimate the parameters of the model with heckoprobit. We use the factorial interaction

of married and children in select(). This specifies that the number of children and marital status
affect selection, and it allows the effect of the number of children to differ among married and nonmar-

ried women. The factorial interaction is specified using factor-variable notation, which is described in

[U] 11.4.3 Factor variables.

. use https://www.stata-press.com/data/r18/womensat
(Job satisfaction, female)
. heckoprobit satisfaction education age,
> select(work=education age i.married##c.children)
Fitting oprobit model:
Iteration 0: Log likelihood = -3934.1474
Iteration 1: Log likelihood = -3571.886
Iteration 2: Log likelihood = -3570.2616
Iteration 3: Log likelihood = -3570.2616
Fitting selection model:
Iteration 0: Log likelihood = -3071.0775
Iteration 1: Log likelihood = -2565.5092
Iteration 2: Log likelihood = -2556.8369
Iteration 3: Log likelihood = -2556.8237
Iteration 4: Log likelihood = -2556.8237
Comparison: Log likelihood = -6127.0853
Fitting full model:
Iteration 0: Log likelihood = -6127.0853
Iteration 1: Log likelihood = -6093.8868
Iteration 2: Log likelihood = -6083.215
Iteration 3: Log likelihood = -6083.0376
Iteration 4: Log likelihood = -6083.0372
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Ordered probit model with sample selection Number of obs = 5,000
Selected = 3,480
Nonselected = 1,520

Wald chi2(2) = 842.42
Log likelihood = -6083.037 Prob > chi2 = 0.0000

Coefficient Std. err. z P>|z| [95% conf. interval]

satisfaction
education .1536381 .0068266 22.51 0.000 .1402583 .1670179

age .0334463 .0024049 13.91 0.000 .0287329 .0381598

work
education .0512494 .0068095 7.53 0.000 .037903 .0645958

age .0288084 .0026528 10.86 0.000 .023609 .0340078
1.married .6120876 .0700055 8.74 0.000 .4748794 .7492958
children .5140995 .0288529 17.82 0.000 .4575489 .5706501

married#
c.children

1 -.1337573 .035126 -3.81 0.000 -.202603 -.0649117

_cons -2.203036 .125772 -17.52 0.000 -2.449545 -1.956528

/cut1 1.728757 .1232063 14.03 0.000 1.487277 1.970237
/cut2 2.64357 .116586 22.67 0.000 2.415066 2.872075
/cut3 3.642911 .1178174 30.92 0.000 3.411993 3.873829

/athrho .7430919 .0780998 9.51 0.000 .5900191 .8961646

rho .6310096 .0470026 .5299093 .7144252

LR test of indep. eqns. (rho = 0): chi2(1) = 88.10 Prob > chi2 = 0.0000

The output shows several iteration logs. The first iteration log corresponds to running the ordered

probit model for those observations in the sample where we have observed the outcome. The second

iteration log corresponds to running the selection probit model, which models whether we observe our

outcome of interest. If 𝜌 = 0, the sum of the log likelihoods from these two models will equal the log

likelihood of the ordered probit sample-selection model; this sum is printed in the iteration log as the

comparison log likelihood. The final iteration log is for fitting the full ordered probit sample-selection

model.

The Wald test in the header is highly significant, indicating a good model fit. All the covariates

are statistically significant. The likelihood-ratio test in the footer indicates that we can reject the null

hypothesis that the errors for outcome and selection are uncorrelated. This means that we should use the

ordered probit sample-selection model instead of the simple ordered probit model.

The positive estimate of 0.63 for 𝜌 indicates that unobservables that increase job satisfaction tend to

occur with unobservables that increase the chance of having a job.
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Stored results
heckoprobit stores the following in e():
Scalars

e(N) number of observations

e(N selected) number of selected observations

e(N nonselected) number of nonselected observations

e(N cd) number of completely determined observations

e(k cat) number of categories

e(k) number of parameters

e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test

e(k aux) number of auxiliary parameters

e(k dv) number of dependent variables

e(df m) model degrees of freedom

e(ll) log likelihood

e(ll c) log likelihood, comparison model

e(N clust) number of clusters

e(chi2) 𝜒2

e(chi2 c) 𝜒2 for comparison test

e(p) 𝑝-value for model test
e(p c) 𝑝-value for comparison test
e(rho) 𝜌
e(rank) rank of e(V)
e(ic) number of iterations

e(rc) return code

e(converged) 1 if converged, 0 otherwise
Macros

e(cmd) heckoprobit
e(cmdline) command as typed

e(depvar) names of dependent variables

e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(clustvar) name of cluster variable

e(offset1) offset for regression equation

e(offset2) offset for selection equation

e(chi2type) Wald or LR; type of model 𝜒2 test

e(chi2 ct) type of comparison 𝜒2 test

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(opt) type of optimization

e(which) max or min; whether optimizer is to perform maximization or minimization

e(ml method) type of ml method
e(user) name of likelihood-evaluator program

e(technique) maximization technique

e(properties) b V
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(marginsdefault) default predict() specification for margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(ilog) iteration log (up to 20 iterations)

e(gradient) gradient vector
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e(cat) category values

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():
Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas
De Luca and Perotti (2011) provide an introduction to this model.

The ordinal outcome equation is

𝑦𝑗 =
𝐻

∑
ℎ=1

𝑣ℎ1 (𝜅ℎ−1 < x𝑗β + 𝑢1𝑗 ≤ 𝜅ℎ)

where x𝑗 is the outcome covariates, β is the coefficients, and 𝑢1𝑗 is a random-error term. The observed

outcome values 𝑣1, . . . , 𝑣𝐻 are integers such that 𝑣𝑖 < 𝑣𝑚 for 𝑖 < 𝑚. 𝜅1, . . . , 𝜅𝐻−1 are real numbers

such that 𝜅𝑖 < 𝜅𝑚 for 𝑖 < 𝑚. 𝜅0 is taken as −∞ and 𝜅𝐻 is taken as +∞.

The selection equation is

𝑠𝑗 = 1(z𝑗𝛄 + 𝑢2𝑗 > 0)
where 𝑠𝑗 = 1 if we observed 𝑦𝑗 and 0 otherwise, z𝑗 is the covariates used to model the selection process,

𝛄 is the coefficients for the selection process, and 𝑢2𝑗 is a random-error term.

(𝑢1𝑗, 𝑢2𝑗) have bivariate normal distribution with mean zero and variance matrix

[1 𝜌
𝜌 1]

Let 𝑎𝑗 = 𝑧𝑗𝛄 + offset
𝛾
𝑗 and 𝑏𝑗 = 𝑥𝑗β + offset

𝛽
𝑗 . This yields the log likelihood

ln𝐿 = ∑
𝑗∉𝑆

𝑤𝑗 ln{Φ (−𝑎𝑗)} +
𝐻

∑
ℎ=1

∑
𝑗∈𝑆

𝑦𝑗=𝑣ℎ

𝑤𝑗 ln{Φ2 (𝑎𝑗, 𝜅ℎ − 𝑏𝑗, −𝜌) − Φ2 (𝑎𝑗, 𝜅ℎ−1 − 𝑏𝑗, −𝜌)}

where 𝑆 is the set of observations for which 𝑦𝑗 is observed, Φ2(⋅) is the cumulative bivariate normal
distribution function (with mean [ 0 0 ]′), Φ(⋅) is the standard cumulative normal, and 𝑤𝑗 is an optional

weight for observation 𝑗.
In the maximum likelihood estimation, 𝜌 is not directly estimated. Directly estimated is atanh 𝜌:

atanh 𝜌 = 1
2
ln(1 + 𝜌

1 − 𝜌
)

From the form of the likelihood, it is clear that if 𝜌 = 0, the log likelihood for the ordered probit

sample-selectionmodel is equal to the sum of the ordered probit model for the outcome 𝑦 and the selection
model. We can perform a likelihood-ratio test by comparing the log likelihood of the full model with the

sum of the log likelihoods for the ordered probit and selection models.
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Postestimation commands predict margins Remarks and examples
Methods and formulas Also see

Postestimation commands
The following postestimation commands are available after heckoprobit:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters

estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian infor-
mation criteria (AIC, CAIC, AICc, and BIC, respectively)

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estat (svy) postestimation statistics for survey data

estimates cataloging estimation results

etable table of estimation results
∗ hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

∗ lrtest likelihood-ratio test

margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

predict probabilities, linear predictions and their SEs, etc.

predictnl point estimates, standard errors, testing, and inference for generalized predictions

pwcompare pairwise comparisons of parameters

suest seemingly unrelated estimation

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

∗hausman and lrtest are not appropriate with svy estimation results.

1115
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predict

Description for predict
predict creates a new variable containing predictions such as probabilities, linear predictions, and

standard errors.

Menu for predict
Statistics > Postestimation

Syntax for predict
predict [ type ] { stub* | newvar | newvarlist } [ if ] [ in ] [ , statistic
outcome(outcome) nooffset ]

predict [ type ] stub* [ if ] [ in ], scores

statistic Description

Main

pmargin marginal probabilities; the default

p1 bivariate probabilities of levels with selection

p0 bivariate probabilities of levels with no selection

pcond1 probabilities of levels conditional on selection

pcond0 probabilities of levels conditional on no selection

psel selection probability

xb linear prediction

stdp standard error of the linear prediction

xbsel linear prediction for selection equation

stdpsel standard error of the linear prediction for selection equation

If you do not specify outcome(), pmargin (with one new variable specified) assumes outcome(#1).

You specify one or 𝑘 new variables with pmargin, where 𝑘 is the number of outcomes.

You specify one new variable with psel, xb, stdp, xbsel, and stdpsel.

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for the estimation
sample.



heckoprobit postestimation — Postestimation tools for heckoprobit 1117

Options for predict

� � �
Main �

pmargin, the default, calculates the predicted marginal probabilities.

You specify one or 𝑘 new variables, where 𝑘 is the number of categories of the outcome variable 𝑦𝑗.

If you specify the outcome() option, you must specify one new variable. If you specify one new

variable and do not specify outcome(), outcome(#1) is assumed.

When outcome() is specified, the marginal probability that 𝑦𝑗 is equal to the level outcome() is

calculated. When outcome() is not specified, the marginal probabilities for each outcome level are
calculated.

p1 calculates the predicted bivariate probabilities of outcome levels with selection.

You specify one or 𝑘 new variables, where 𝑘 is the number of categories of the outcome variable 𝑦𝑗.

If you specify the outcome() option, you must specify one new variable. If you specify one new

variable and do not specify outcome(), outcome(#1) is assumed.

When outcome() is specified, the bivariate probability that 𝑦𝑗 is equal to the level outcome() and
that 𝑦𝑗 is observed is calculated. When outcome() is not specified, the bivariate probabilities for

each outcome level and selection are calculated.

p0 calculates the predicted bivariate probabilities of outcome levels with no selection.

You specify one or 𝑘 new variables, where 𝑘 is the number of categories of the outcome variable 𝑦𝑗.

If you specify the outcome() option, you must specify one new variable. If you specify one new

variable and do not specify outcome(), outcome(#1) is assumed.

When outcome() is specified, the bivariate probability that 𝑦𝑗 is equal to the level outcome() and
that 𝑦𝑗 is not observed is calculated. When outcome() is not specified, the bivariate probabilities for
each outcome level and no selection are calculated.

pcond1 calculates the predicted probabilities of outcome levels conditional on selection.

You specify one or 𝑘 new variables, where 𝑘 is the number of categories of the outcome variable 𝑦𝑗.

If you specify the outcome() option, you must specify one new variable. If you specify one new

variable and do not specify outcome(), outcome(#1) is assumed.

When outcome() is specified, the probability that 𝑦𝑗 is equal to the level outcome() given that 𝑦𝑗
is observed is calculated. When outcome() is not specified, the probabilities for each outcome level
conditional on selection are calculated.

pcond0 calculates the predicted probabilities of outcome levels conditional on no selection.

You specify one or 𝑘 new variables, where 𝑘 is the number of categories of the outcome variable 𝑦𝑗.

If you specify the outcome() option, you must specify one new variable. If you specify one new

variable and do not specify outcome(), outcome(#1) is assumed.

When outcome() is specified, the probability that 𝑦𝑗 is equal to the level outcome() given that 𝑦𝑗
is not observed is calculated. When outcome() is not specified, the probabilities for each outcome
level conditional on no selection are calculated.

psel calculates the predicted univariate (marginal) probability of selection.

xb calculates the linear prediction for the outcome variable, which is x𝑗β if offset() was not specified
and x𝑗β + offset

𝛽
𝑗 if offset() was specified.
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stdp calculates the standard error of the prediction, which can be thought of as the standard error of the
predicted expected value or mean for the observation’s covariate pattern. The standard error of the

prediction is also referred to as the standard error of the fitted value.

xbsel calculates the linear prediction for the selection equation, which is z𝑗𝛄 if offset() was not

specified in select() and z𝑗𝛄 + offset
𝛾
𝑗 if offset() was specified in select().

stdpsel calculates the standard error of the linear prediction for the selection equation.

outcome(outcome) specifies for which outcome the predicted probabilities are to be calculated.

outcome() should contain either one value of the dependent variable or one of #1, #2, . . . , with
#1 meaning the first category of the dependent variable, #2 meaning the second category, etc.

nooffset is relevant only if you specified offset(varname) for heckoprobit. It modifies the calcu-
lations made by predict so that they ignore the offset variable; the linear prediction is treated as x𝑗b

rather than as x𝑗b + offset𝑗.

scores calculates equation-level score variables.

The first new variable will contain 𝜕ln𝐿/𝜕(x𝑗β).
The second new variable will contain 𝜕ln𝐿/𝜕(z𝑗𝛄).
When the dependent variable takes 𝑘 different values, new variables three through 𝑘 + 1 will contain

𝜕ln𝐿/𝜕(𝜅𝑗−2).
The last new variable will contain 𝜕ln𝐿/𝜕(atanh 𝜌).
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margins

Description for margins
margins estimates margins of response for probabilities and linear predictions.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist ] [ , options ]
margins [marginlist ] , predict(statistic ...) [ predict(statistic ...) ... ] [ options ]

statistic Description

default marginal probabilities for each outcome

pmargin marginal probabilities

p1 bivariate probabilities of levels with selection

p0 bivariate probabilities of levels with no selection

pcond1 probabilities of levels conditional on selection

pcond0 probabilities of levels conditional on no selection

psel selection probability

xb linear prediction

xbsel linear prediction for selection equation

stdp not allowed with margins
stdpsel not allowed with margins

pmargin, p1, p0, pcond1, and pcond0 default to the first outcome.

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.
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Remarks and examples

Example 1
In example 1 of [R] heckoprobit, we examined a simulated dataset of 5,000 women, 3,480 of whom

work and can thus report job satisfaction. Using job satisfaction (satisfaction) as the outcome vari-
able and employment (work) as the selection variable, we estimated the parameters of an ordered probit
sample-selection model. Covariates age (age), years of education (education), number of children
(children), and marital status (married) are expected to affect selection. The outcome, job satisfac-
tion, is affected by age (age) and education (education).

We first reestimate the parameters of the regression, but this time we request a robust variance esti-

mator:

. use https://www.stata-press.com/data/r18/womensat
(Job satisfaction, female)
. heckoprobit satisfaction education age,
> select(work=education age i.married##c.children) vce(robust)
(output omitted )

We then use margins (see [R] margins) to estimate the average marginal effect of education on the

probability of having low job satisfaction.

. margins, dydx(education) vce(unconditional)
Average marginal effects Number of obs = 5,000
dy/dx wrt: education
1._predict: Pr(satisfaction=1), predict(pmargin outcome(1))
2._predict: Pr(satisfaction=2), predict(pmargin outcome(2))
3._predict: Pr(satisfaction=3), predict(pmargin outcome(3))
4._predict: Pr(satisfaction=4), predict(pmargin outcome(4))

Unconditional
dy/dx std. err. z P>|z| [95% conf. interval]

education
_predict

1 -.0234776 .0019176 -12.24 0.000 -.027236 -.0197192
2 -.0230858 .0015143 -15.24 0.000 -.0260538 -.0201178
3 -.0020603 .001142 -1.80 0.071 -.0042987 .000178
4 .0486238 .0018593 26.15 0.000 .0449795 .052268

The estimated average marginal effect of education on the probability of having low job satisfaction

is approximately −0.023.
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Methods and formulas
The ordinal outcome equation is

𝑦𝑗 =
𝐻

∑
ℎ=1

𝑣ℎ1 (𝜅ℎ−1 < x𝑗β + 𝑢1𝑗 ≤ 𝜅ℎ)

where x𝑗 is the outcome covariates, β is the coefficients, and 𝑢1𝑗 is a random-error term. The observed

outcome values 𝑣1, . . . , 𝑣𝐻 are integers such that 𝑣𝑖 < 𝑣𝑚 for 𝑖 < 𝑚. 𝜅1, . . . , 𝜅𝐻−1 are real numbers

such that 𝜅𝑖 < 𝜅𝑚 for 𝑖 < 𝑚. 𝜅0 is taken as −∞ and 𝜅𝐻 is taken as +∞.

The selection equation is

𝑠𝑗 = 1(z𝑗𝛄 + 𝑢2𝑗 > 0)

where 𝑠𝑗 = 1 if we observed 𝑦𝑗 and 0 otherwise, z𝑗 is the covariates used to model the selection process,

𝛄 is the coefficients for the selection process, and 𝑢2𝑗 is a random-error term.

(𝑢1𝑗, 𝑢2𝑗) have bivariate normal distribution with mean zero and variance matrix

[1 𝜌
𝜌 1]

The probability of selection is

Pr(𝑠𝑗 = 1) = Φ(z𝑗𝛄 + offset
𝛾
𝑗 )

Φ(⋅) is the standard cumulative normal distribution function.
The probability of selection and the outcome 𝑦𝑗 = 𝑣ℎ is

Pr(𝑦𝑗 = 𝑣ℎ, 𝑠𝑗 = 1) = Φ2 (z𝑗𝛄 + offset
𝛾
𝑗 , 𝜅ℎ − 𝑥𝑗β − offset

𝛽
𝑗 , −𝜌)

− Φ2 (z𝑗𝛄 + offset
𝛾
𝑗 , 𝜅ℎ−1 − x𝑗β − offset

𝛽
𝑗 , −𝜌)

Φ2(⋅) is the cumulative bivariate normal distribution function (with mean [ 0 0 ]′).
The probability of 𝑦𝑗 not being selected and the outcome 𝑦𝑗 = 𝑣ℎ is

Pr(𝑦𝑗 = 𝑣ℎ, 𝑠𝑗 = 0) = Φ2 (−z𝑗𝛄 − offset
𝛾
𝑗 , 𝜅ℎ − 𝑥𝑗β − offset

𝛽
𝑗 , 𝜌)

− Φ2 (−z𝑗𝛄 − offset
𝛾
𝑗 , 𝜅ℎ−1 − x𝑗β − offset

𝛽
𝑗 , 𝜌)

The probability of outcome 𝑦𝑗 = 𝑣ℎ given selection is

Pr(𝑦𝑗 = 𝑣ℎ|𝑠𝑗 = 1) =
Pr(𝑦𝑗 = 𝑣ℎ, 𝑠𝑗 = 1)

Pr(𝑠𝑗 = 1)

The probability of outcome 𝑦𝑗 = 𝑣ℎ given 𝑦𝑗 is not selected is

Pr(𝑦𝑗 = 𝑣ℎ|𝑠𝑗 = 0) =
Pr(𝑦𝑗 = 𝑣ℎ, 𝑠𝑗 = 0)

Pr(𝑠𝑗 = 0)
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The marginal probabilities of the outcome 𝑦𝑗 are

Pr(𝑦𝑗 = 𝑣1) = Φ(𝜅1 − 𝑥𝑗β − offset
𝛽
𝑗 )

Pr(𝑦𝑗 = 𝑣𝐻) = 1 − Φ(𝜅𝐻−1 − 𝑥𝑗β − offset
𝛽
𝑗 )

Pr(𝑦𝑗 = 𝑣ℎ) = Φ(𝜅ℎ − 𝑥𝑗β − offset
𝛽
𝑗 ) − Φ(𝜅ℎ−1 − 𝑥𝑗β − offset

𝛽
𝑗 )

Also see
[R] heckoprobit — Ordered probit model with sample selection

[U] 20 Estimation and postestimation commands



heckpoisson — Poisson regression with sample selection

Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas References Also see

Description
heckpoisson fits a Poisson regression model with endogenous sample selection. This is sometimes

called nonignorability of selection, missing not at random, or selection bias. Unlike the standard Poisson

model, there is no assumption of equidispersion.

Quick start
Poissonmodel of y on x1with z1 predicting selection when binary variable selected indicates selection

status

heckpoisson y x1, select(selected = z1)

Add categorical variable a using factor-variables syntax
heckpoisson y x1 i.a, select(selected = z1 i.a)

Report results as incidence-rate ratios

heckpoisson y x1 i.a, select(selected = z1 i.a) irr

Add robust standard errors

heckpoisson y x1 i.a, select(selected = z1 i.a) vce(robust)

Include exposure variable expose to account for different exposure levels
heckpoisson y x1 i.a, select(selected = z1 i.a) exposure(expose)

Menu
Statistics > Sample-selection models > Poisson model with sample selection

1123
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Syntax
heckpoisson depvar indepvars [ if ] [ in ] [weight ] ,

select( [ depvar𝑠 = ] indepvars𝑠 [ , noconstant offset(varname𝑜𝑠) ] ) [ options ]

options Description

Model
∗ select() specify selection equation: dependent and independent

variables; whether to have constant term and offset variable

noconstant suppress constant term

exposure(varname𝑒) include ln(varname𝑒) in model with coefficient constrained to 1

offset(varname𝑜) include varname𝑜 in model with coefficient constrained to 1

constraints(constraints) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, opg, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)
irr report incidence-rate ratios

nocnsreport do not display constraints

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Integration

intpoints(#) set the number of integration (quadrature) points; default is
intpoints(25)

Maximization

maximize options control the maximization process; seldom used

collinear keep collinear variables

coeflegend display legend instead of statistics

∗select( ) is required.
The full specification is select([ depvar𝑠 = ] indepvars𝑠 [ , noconstant offset(varname𝑜𝑠) ]).

indepvars and indepvars𝑠 may contain factor variables; see [U] 11.4.3 Factor variables.

indepvars and indepvars𝑠 may contain time-series operators; see [U] 11.4.4 Time-series varlists.

bootstrap, by, collect, jackknife, rolling, statsby, and svy are allowed; see [U] 11.1.10 Prefix commands.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
collinear and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Options

� � �
Model �

select([ depvar𝑠 = ] indepvars𝑠 [ , noconstant offset(varname𝑜𝑠) ]) specifies the variables and

options for the selection equation. It is an integral part of specifying a sample-selection model and is

required.

If depvar𝑠 is specified, it should be coded as 0 or 1, with 0 indicating an observation not selected and

1 indicating a selected observation. If depvar𝑠 is not specified, then observations for which depvar is

not missing are assumed selected and those for which depvar is missing are assumed not selected.

noconstant suppresses the selection constant term (intercept).

offset(varname𝑜𝑠) specifies that selection offset varname𝑜𝑠 be included in the model with the co-

efficient constrained to be 1.

noconstant, exposure(varname𝑒), offset(varname𝑜), constraints(constraints); see [R] Esti-
mation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), that al-
low for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods

(bootstrap, jackknife); see [R] vce option.

� � �
Reporting �

level(#); see [R] Estimation options.

irr reports estimated coefficients transformed to incidence-rate ratios, that is, 𝑒𝛽𝑖 rather than 𝛽𝑖. Stan-

dard errors and confidence intervals are similarly transformed. This option affects how results are

displayed, not how they are estimated or stored. irr may be specified at estimation or when replay-
ing previously estimated results.

nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Integration �

intpoints(#) specifies the number of integration points to use for quadrature. The default is

intpoints(25), which means that 25 quadrature points are used. The maximum number of allowed

integration points is 128.

The more integration points, the more accurate the approximation to the log likelihood. However,

computation time increases with the number of quadrature points and is roughly proportional to the

number of points used.
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� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. These options are

seldom used.

The following options are available with heckpoisson but are not shown in the dialog box:

collinear, coeflegend; see [R] Estimation options.

Remarks and examples
When analyzing observational data, we must consider the possibility that we cannot treat the obser-

vations for which we have data as if they were selected at random. Suppose we are interested in the

number of after-school tutoring sessions a child attends. If unobservable variables that affect which stu-

dents attend the sessions, for example, family stability, also affect the number of visits we observe, then

a condition known as endogenous sample selection is present. This phenomenon is sometimes simply

referred to as sample selection or called missing not at random, nonignorability of selection, or selection

bias. When endogenous sample selection occurs, conventional estimation techniques are not appropriate.

Cameron and Trivedi (2022, 974–981) and Greene (2018, 950–957) provide good introductions to the

concept of endogenous sample selection.

The venerable Heckman estimator handles endogenous sample selection when the outcome of interest

is modeled by linear regression; see [R] heckman. However, the Heckman estimator is not appropriate

for count outcomes because its linear model for the outcome could produce negative predicted values

and does not restrict the predicted values to integers.

There are different methods for estimating the parameters of a count-data model with endogenous

sample selection. heckpoisson implements the maximum likelihood estimator derived in Terza (1998);

see also Cameron and Trivedi (2013, chap. 10) for a discussion of this estimator.

The model consists of one equation for the count outcome, 𝑦, and one equation for a binary selection
indicator, 𝑠. The indicator 𝑠 is always observed and takes values of 0 or 1. But the outcome 𝑦 is observed
only if 𝑠 = 1, that is, we have complete information about the covariates of interest and selection status.

However, the value of the primary outcome of interest, 𝑦, is sometimes unknown.
More formally, the count outcome 𝑦 is assumed to have a Poisson distribution, conditional on the

covariates, with conditional mean

𝐸(𝑦𝑗|x𝑗, 𝜖1𝑗) = exp(x𝑗β + 𝜖1𝑗) Poisson regression equation

However, we only observe 𝑦 for observation 𝑗 if 𝑠𝑗 = 1:

𝑠𝑗 = {1, if w𝑗𝛾 + 𝜖2𝑗 > 0

0, otherwise
selection equation

where

𝜖1 ∼ 𝑁(0, 𝜎)
𝜖2 ∼ 𝑁(0, 1)

corr(𝜖1, 𝜖2) = 𝜌
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When 𝜌 ≠ 0, standard Poisson regression based on the observed 𝑦 yields biased estimates.

heckpoisson provides consistent, asymptotically efficient estimates for the parameters in such mod-

els.

Unlike the standard Poisson regression, the Poisson model with sample selection allows underdisper-

sion and overdispersion.

Example 1: Poisson model with sample selection
Suppose we want to know the effect of research and development (R&D) expenditures on the number

of patents obtained by a firm in the last two years. The patent dataset contains fictional data on the

number of patents (npatents) of 10,000 firms in different sectors. After reading in the data, we tabulate
the frequencies of npatents against an indicator for whether a firm applied for patents (applied).

. use https://www.stata-press.com/data/r18/patent
(Fictional data on patents and R&D)
. tabulate npatents applied, missing
Number of
patents
(last 2 Applied for patent

yrs) Not apply Apply Total

0 0 1,127 1,127
1 0 1,455 1,455
2 0 1,131 1,131
3 0 710 710
4 0 479 479
5 0 266 266
6 0 126 126
7 0 98 98
8 0 66 66
9 0 42 42

10 0 19 19
11 0 24 24
12 0 5 5
13 0 7 7
14 0 5 5
15 0 10 10
17 0 1 1
18 0 1 1
19 0 2 2
22 0 1 1
. 4,425 0 4,425

Total 4,425 5,575 10,000

The output shows that npatents is missing for about half of the sample because some firms did not
apply for any patents. Some firms prefer to keep their discoveries as trade secrets instead of applying for

patents. The sample selection will be endogenous if the unobservable variables that affect which firms

apply for patents also affect the number of patents obtained. Therefore, we do not want to use a standard

Poisson model for these data.

We model npatents as a function of R&D expenditures (expenditure) and a categorical variable
indicating whether the firm is in the information technology (IT) sector (tech). We model the selection

indicator applied as a function of expenditure, tech, and firm size (size), which is excluded from
the outcome model.
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. heckpoisson npatents expenditure i.tech,
> select(applied = expenditure size i.tech)
Initial: Log likelihood = -17442.266
Rescale: Log likelihood = -17442.266
Rescale eq: Log likelihood = -17442.266
(setting technique to bhhh)
Iteration 0: Log likelihood = -17442.266
Iteration 1: Log likelihood = -17441.444
Iteration 2: Log likelihood = -17440.72
Iteration 3: Log likelihood = -17440.438
Iteration 4: Log likelihood = -17440.438
Poisson regression with endogenous selection Number of obs = 10,000
(25 quadrature points) Selected = 5,575

Nonselected = 4,425
Wald chi2(2) = 443.90

Log likelihood = -17440.44 Prob > chi2 = 0.0000

npatents Coefficient Std. err. z P>|z| [95% conf. interval]

npatents
expenditure .497821 .0507866 9.80 0.000 .398281 .597361

tech
IT sector .5833501 .0300366 19.42 0.000 .5244795 .6422207

_cons -1.855143 .208204 -8.91 0.000 -2.263216 -1.447071

applied
expenditure .1369954 .0447339 3.06 0.002 .0493185 .2246723

size .2774201 .0469132 5.91 0.000 .1854718 .3693683

tech
IT sector .2750208 .0277032 9.93 0.000 .2207236 .329318

_cons -1.660778 .2631227 -6.31 0.000 -2.176489 -1.145066

/athrho 1.161677 .2847896 4.08 0.000 .6034999 1.719855
/lnsigma -.3029685 .0499674 -6.06 0.000 -.4009028 -.2050342

rho .8215857 .0925557 .5395353 .9378455
sigma .7386224 .036907 .6697151 .8146195

Wald test of indep. eqns. (rho = 0): chi2(1) = 16.64 Prob > chi2 = 0.0000

The coefficient estimates reported by heckpoisson can be interpreted similarly to those reported by
poisson. For example, the positive coefficient on expenditure tells us that increasing R&D expendi-

tures is associated with an increasing number of patents. However, the magnitude of the effect cannot be

directly determined by the coefficients. The best way to obtain interpretable effects is by using margins.
See example 1 in [R] heckpoisson postestimation for more information.

The estimated correlation between the selection errors and outcome errors is 0.8, and the Wald test in

the footer indicates that we can reject the null hypothesis of zero correlation. This positive and signifi-

cant correlation estimate implies that unobservable factors that increase the number of patents a firm is

awarded tend to occur with unobservable factors that also increase the chance of a firm being willing to

apply for patents.
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Technical note
In practice, we rely on the strength of the relationship between size and applied and the fact that

size does not appear in the model for npatents to pin down the parameter estimates. Technically, we
do not need this exclusion restriction, but identification from the functional form alone tends to be weak.

For a discussion of this point, see Cameron and Trivedi (2022, 977–981).

Example 2: Obtaining incidence-rate ratios
In some cases, we may wish to view the parameters as incidence-rate ratios (IRRs). That is, we want

to hold all the 𝑥’s in the model constant except one, say, the 𝑖th. The IRR for a one-unit change in 𝑥𝑖 is

𝑒 ln(𝐸)+𝛽1𝑥1+···+𝛽𝑖(𝑥𝑖+1)+···+𝛽𝑘𝑥𝑘+𝑒1

𝑒 ln(𝐸)+𝛽1𝑥1+···+𝛽𝑖𝑥𝑖+···+𝛽𝑘𝑥𝑘+𝑒1
= 𝑒𝛽𝑖

For instance, we may want to know the relative incidence rate of patents as the expenditure changes or

the relative incidence rate of patents as sectors change from non-IT to IT.

We can use option irr to display the coefficient estimates transformed to IRRs. This option may be

specified when we originally fit our model or on replay. Because we have already fit the model, we

specify irr below using the replay syntax.

. heckpoisson, irr
Poisson regression with endogenous selection Number of obs = 10,000
(25 quadrature points) Selected = 5,575

Nonselected = 4,425
Wald chi2(2) = 443.90

Log likelihood = -17440.44 Prob > chi2 = 0.0000

npatents IRR Std. err. z P>|z| [95% conf. interval]

npatents
expenditure 1.645133 .0835508 9.80 0.000 1.489262 1.817316

tech
IT sector 1.792032 .0538265 19.42 0.000 1.689579 1.900697

_cons .1564305 .0325695 -8.91 0.000 .1040154 .2352583

applied
expenditure .1369954 .0447339 3.06 0.002 .0493185 .2246723

size .2774201 .0469132 5.91 0.000 .1854718 .3693683

tech
IT sector .2750208 .0277032 9.93 0.000 .2207236 .329318

_cons -1.660778 .2631227 -6.31 0.000 -2.176489 -1.145066

/athrho 1.161677 .2847896 4.08 0.000 .6034999 1.719855
/lnsigma -.3029685 .0499674 -6.06 0.000 -.4009028 -.2050342

rho .8215857 .0925557 .5395353 .9378455
sigma .7386224 .036907 .6697151 .8146195

Note: Estimates are transformed only in the first equation to incidence-rate
ratios.

Note: _cons estimates baseline incidence rate.
Wald test of indep. eqns. (rho = 0): chi2(1) = 16.64 Prob > chi2 = 0.0000
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The IRR for IT is about 1.8, meaning that the expected number of patents in the IT sector is 1.8 times

more than in the non-IT sector.

Stored results
heckpoisson stores the following in e():

Scalars

e(N) number of observations

e(N selected) number of selected observations

e(N nonselected) number of nonselected observations

e(k) number of parameters

e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test

e(k aux) number of auxiliary parameters

e(k dv) number of dependent variables

e(df m) model degrees of freedom

e(ll) log likelihood

e(N clust) number of clusters

e(chi2) 𝜒2

e(chi2 c) 𝜒2 for comparison, 𝜌 = 0 test

e(n quad) number of quadrature points

e(p) 𝑝-value for model test
e(p c) 𝑝-value for comparison test
e(rank) rank of e(V)
e(ic) number of iterations

e(rc) return code

e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) heckpoisson
e(cmdline) command as typed

e(depvar) name of dependent variable

e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(title2) secondary title in estimation output

e(clustvar) name of cluster variable

e(offset1) offset for regression equation

e(offset2) offset for selection equation

e(chi2type) Wald; type of model 𝜒2 test

e(chi2 ct) Wald; type of comparison 𝜒2 test

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(opt) type of optimization

e(which) max or min; whether optimizer is to perform maximization or minimization

e(ml method) type of ml method
e(user) name of likelihood-evaluator program

e(technique) maximization technique

e(properties) b V
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved
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Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(ilog) iteration log (up to 20 iterations)

e(gradient) gradient vector

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas
heckpoisson implements Terza’s maximum likelihood estimator for the parameters of a count-data

model with endogenous sample selection (Terza 1998).

Suppose that the count outcome 𝑦𝑗 has covariates x𝑗 and that 𝑦𝑗 has a Poisson distribution, conditional

on x𝑗, with conditional mean

𝐸(𝑦𝑗|x𝑗, 𝜖1𝑗) = 𝜇𝑗 = exp(x𝑗β + 𝜖1𝑗)

and

Pr(𝑌 = 𝑦𝑗|x𝑗, 𝜖1𝑗) =
𝜇𝑦𝑗

𝑗 𝑒−𝜇𝑗

𝑦𝑗!

We only observe 𝑦𝑗 when 𝑠𝑗, the selection outcome, which is the binary outcome from a latent-variable

model with covariates w𝑗, is equal to 1.

𝑠𝑗 = {1, if w𝑗𝛾 + 𝜖2𝑗 > 0

0, otherwise

The error terms 𝜖1 and 𝜖2 are assumed to have bivariate normal distribution with zero mean and

covariance matrix

[𝜎2 𝜎𝜌
𝜎𝜌 1 ]

where 𝜎 and 𝜌 have their usual interpretation for the bivariate normal distribution. A nonzero 𝜌 implies

that the selected sample is not representative of the whole population and therefore that inference based

on standard Poisson regression using the observed sample is incorrect.

In maximum likelihood estimation, ln 𝜎 and atanh 𝜌 are estimated rather than directly estimating 𝜎
and 𝜌.

atanh 𝜌 = 1
2
ln(1 + 𝜌

1 − 𝜌
)
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The joint log likelihood is given by

ln 𝐿(θ) =
𝑁

∑
𝑖=1

[𝑠𝑗 × ln{Pr(𝑦𝑗, 𝑠𝑗 = 1)|x𝑗,w𝑗,θ} + (1 − 𝑠𝑗) × ln{Pr(𝑠𝑗 = 0|w𝑗,θ)}]

where θ denotes (β, 𝛾, 𝜌, 𝜎) for notational simplicity.
The joint probability Pr(𝑦𝑗, 𝑠𝑗 = 1|x𝑗,w𝑗,θ) can be obtained by integrating the conditional probabil-

ity Pr(𝑦𝑗, 𝑠𝑗 = 1|x𝑗,w𝑗,θ, 𝜖1) over 𝜖1. More precisely,

Pr(𝑦𝑗, 𝑠𝑗 = 1|x𝑗,w𝑗,θ) = ∫
∞

−∞
Pr(𝑦𝑗|x𝑗, 𝜖1)Φ (

w𝑗𝛾 + 𝜌/𝜎𝜖1

√1 − 𝜌2
) 𝜙(𝜖1/𝜎)𝑑𝜖1 (1)

where 𝜙(⋅) is the standard normal density function and Φ(⋅) is the standard normal cumulative density
function. Pr(𝑠𝑗 = 0|w𝑗,θ) is similarly derived.

Pr(𝑠𝑗 = 0|w𝑗,θ) = ∫
∞

−∞
Φ (−

w𝑗𝛾 + 𝜌/𝜎𝜖1

√1 − 𝜌2
) 𝜙(𝜖1/𝜎)𝑑𝜖1 (2)

The integrations in (1) and (2) have no closed form and must be approximated using Gauss–Hermite

quadrature.

This command supports the Huber/White/sandwich estimator of the variance and its clustered version

using vce(robust) and vce(cluster clustvar), respectively. See [P] robust, particularly Maximum

likelihood estimators and Methods and formulas.

heckpoisson also supports estimation with survey data. For details on VCEs with survey data, see

[SVY] Variance estimation.
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Also see
[R] heckpoisson postestimation — Postestimation tools for heckpoisson

[R] heckman — Heckman selection model

[R] heckoprobit — Ordered probit model with sample selection

[R] heckprobit — Probit model with sample selection

[R] poisson — Poisson regression

[CAUSAL] etpoisson — Poisson regression with endogenous treatment effects

[SVY] svy estimation — Estimation commands for survey data

[U] 20 Estimation and postestimation commands
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Postestimation commands predict margins Remarks and examples
Methods and formulas Also see

Postestimation commands
The following postestimation commands are available after heckpoisson:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters

estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian infor-
mation criteria (AIC, CAIC, AICc, and BIC, respectively)

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estat (svy) postestimation statistics for survey data

estimates cataloging estimation results

etable table of estimation results
∗ forecast dynamic forecasts and simulations
∗ hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

∗ lrtest likelihood-ratio test

margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

predict number of events, incidence rates, probabilities, etc.

predictnl point estimates, standard errors, testing, and inference for generalized predictions

pwcompare pairwise comparisons of parameters

suest seemingly unrelated estimation

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

∗forecast, hausman, and lrtest are not appropriate with svy estimation results.
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predict

Description for predict
predict creates new variables containing predictions such as number of events, incidence rates,

conditional predicted number of events, probabilities, linear predictions, and equation-level scores.

Menu for predict
Statistics > Postestimation

Syntax for predict
predict [ type ] newvar [ if ] [ in ] [ , statistic nooffset ]

predict [ type ] stub* [ if ] [ in ], scores

statistic Description

Main

n number of events; the default

ir incidence rate

ncond predicted number of events conditional on 𝑦𝑗 being observed

pr(n) Pr(𝑦𝑗 = n)
pr(a,b) Pr(a ≤ 𝑦𝑗 ≤ b)
psel Pr(𝑦𝑗 observed)
xb linear prediction

xbsel linear prediction for selection equation

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for the estimation
sample.

Options for predict

� � �
Main �

n, the default, calculates the predicted number of events, which is exp(x𝑗𝛽 + 𝜎2/2) if neither offset()
nor exposure() was specified when the model was fit; is exp(x𝑗𝛽 + 𝜎2/2 + offset𝑗) if offset()
was specified; or is exp(x𝑗𝛽 + 𝜎2/2) × exposure𝑖 if exposure() was specified.

ir calculates the incidence rate exp(x𝑗𝛽 + 𝜎2/2), which is the predicted number of events when expo-
sure is 1. Specifying ir is equivalent to specifying n when neither offset() nor exposure() was
specified when the model was fit.

ncond calculates the predicted number of events conditional on 𝑦𝑗 being observed, which is

exp(x𝑗β + 𝜎2/2)Φ(w𝑗𝛾 + 𝜌𝜎)/Φ(w𝑗𝛾).
pr(n) calculates the probability Pr(𝑦𝑗 = n), where n is a nonnegative integer that may be specified as a

number or a variable.
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pr(a,b) calculates the probability Pr(a ≤ 𝑦𝑗 ≤ b), where a and b are nonnegative integers that may be
specified as numbers or variables;

b missing (b ≥ .) means +∞;

pr(20,.) calculates Pr(𝑦𝑗 ≥ 20);
pr(20,b) calculates Pr(𝑦𝑗 ≥ 20) in observations for which b ≥ . and calculates
Pr(20 ≤ 𝑦𝑗 ≤ b) elsewhere.
pr(.,b) produces a syntax error. Amissing value in an observation of the variable a causes a missing

value in that observation for pr(a,b).

psel calculates the probability of selection (or being observed):
Pr(𝑦𝑗 observed) = Pr(w𝑗𝛾 + 𝜖2𝑗 > 0)

xb calculates the linear prediction for the dependent count variable, which is x𝑗β if neither offset()
nor exposure() was specified; x𝑗β+ offset

𝛽
𝑗 if offset() was specified; or x𝑗β+ ln(exposure𝑗) if

exposure() was specified.

xbsel calculates the linear prediction for the selection equation, which is w𝑗𝛄 if offset() was not

specified in select() and is w𝑗𝛄 + offset
𝛾
𝑗 if offset() was specified in select().

nooffset is relevant only if you specified offset() or exposure() when you fit the model. It modi-
fies the calculations made by predict so that they ignore the offset or exposure variable; the linear
prediction is treated as x𝑗β rather than as x𝑗β + offset𝑗 or x𝑗β + ln(exposure𝑗).

scores calculates equation-level score variables.

The first new variable will contain 𝜕 ln 𝐿/𝜕(x𝑗β).
The second new variable will contain 𝜕 ln 𝐿/𝜕(w𝑗𝛄).
The third new variable will contain 𝜕 ln 𝐿/𝜕 atanh 𝜌.
The fourth new variable will contain 𝜕 ln 𝐿/𝜕 ln 𝜎.
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margins

Description for margins
margins estimates margins of response for number of events, incidence rates, conditional predicted

number of events, probabilities, and linear predictions.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist ] [ , options ]
margins [marginlist ] , predict(statistic ...) [ predict(statistic ...) ... ] [ options ]

statistic Description

n number of events; the default

ir incidence rate

ncond predicted number of events conditional on 𝑦𝑗 being observed

pr(n) Pr(𝑦𝑗 = n)
pr(a,b) Pr(a ≤ 𝑦𝑗 ≤ b)
psel Pr(𝑦𝑗 observed)
xb linear prediction

xbsel linear prediction for selection equation

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.

Remarks and examples

Example 1: Obtaining margins for a count model with selection
In example 1 of [R] heckpoisson, we fit a model for the number of patents. In that example, we are

interested in the effect of R&D expenditures on the number of patents received by a firm. We continue

that example to determine the magnitude of the effect of R&D expenditures on the number of patents

and compare this effect for IT and non-IT sectors.

After reading in the data and fitting the model, we use margins to estimate the effect of an increase of
a million dollars in R&D expenditures (expenditure) on the number of patents (npatents) for firms
in the IT and non-IT sectors (tech).

To do this, we use the at() option of margins. We use the observed values in our first scenario,

so we tell margins to set expenditure equal to itself. For our second scenario, we tell margins to

set expenditure equal to the observed value plus 1 because expenditures are measured in millions of
dollars. We include the post option so that we can perform additional calculations later.
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. use https://www.stata-press.com/data/r18/patent
(Fictional data on patents and R&D)
. quietly heckpoisson npatents expenditure i.tech,
> select(applied = expenditure size i.tech)
. margins i.tech, at(expenditure = generate(expenditure))
> at(expenditure = generate(expenditure+1)) post
Predictive margins Number of obs = 10,000
Model VCE: OIM
Expression: Predicted number of events, predict()
1._at: expenditure = expenditure
2._at: expenditure = expenditure+1

Delta-method
Margin std. err. z P>|z| [95% conf. interval]

_at#tech
1 #

Non-IT se.. 1.276213 .0556644 22.93 0.000 1.167112 1.385313
1#IT sector 2.287013 .080119 28.55 0.000 2.129983 2.444044

2 #
Non-IT se.. 2.099539 .131364 15.98 0.000 1.84207 2.357007
2#IT sector 3.76244 .2226221 16.90 0.000 3.326109 4.198771

The output indicates that the expected number of patents for non-IT firms is about 1.28 compared with

2.29 for firms in the IT sector.

The second scenario shows the expected number of patents after our hypothetical increase in R&D

expenditures. In the non-IT sector, the expected number of patents received would be about 2.10 com-

pared with 3.76 in the IT sector. It appears that increasing expenditures may have a larger effect for IT

firms—the difference between the two scenarios is 1.47 for IT firms and only 0.82 for non-IT firms. We

can test whether the effect of increasing expenditures is different for IT and non-IT firms. We use lincom
to obtain an estimate of the difference in the differences between scenarios for the two sectors and a test

of its significance. We ask for the differences by referring to the scenarios as 1. at and 2. at and by
referring to the sector using the value that corresponds to the IT sector indicator, 1.tech for IT firms and
0.tech otherwise.

. lincom (_b[2._at#1.tech] - _b[1._at#1.tech]) -
> (_b[2._at#0.tech] - _b[1._at#0.tech])
( 1) 1bn._at#0bn.tech - 1bn._at#1.tech - 2._at#0bn.tech + 2._at#1.tech = 0

Coefficient Std. err. z P>|z| [95% conf. interval]

(1) .6521006 .0917299 7.11 0.000 .4723134 .8318878

We find that the expected effect of increasing R&D expenditures by one million dollars is 0.65 patents

larger for IT firms than for non-IT firms, and this difference is significantly different from 0.
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Methods and formulas
Suppose that the count outcome 𝑦𝑗 has covariates x𝑗 and the selection outcome 𝑠𝑗 has covariates w𝑗.

𝑦𝑗 is assumed to have a Poisson distribution, conditional on x𝑗, with conditional mean

𝐸(𝑦𝑗|x𝑗, 𝜖1𝑗) = 𝜇𝑗 = exp(x𝑗β + 𝜖1𝑗)

𝑠𝑗 is a binary outcome from a latent-variable model:

𝑠𝑗 = {1, if w𝑖𝛾 + 𝜖2𝑗 > 0

0, otherwise

The expectation of 𝑦𝑗 conditional on covariates x𝑗 for the whole population is

𝐸(𝑦𝑗|x𝑗) = exp(x𝑗β + 𝜎2/2)

Furthermore, if we want the expectation of 𝑦𝑗 only if it was observed, then the formula is

𝐸(𝑦𝑗|x𝑗,w𝑗, 𝑠𝑗 = 1) = exp(x𝑗β + 𝜎2/2)
Φ(w𝑗𝛾 + 𝜌𝜎)

Φ(w𝑗𝛾)

We note that if 𝜌 = 0, this expectation is the same as its population version.

We can also predict the probability of 𝑦𝑗 conditional on x𝑗. Note that although 𝑦𝑗 is Poisson-distributed

conditional on 𝜖1 and x𝑗, the distribution of 𝑦𝑗 is unknown unconditional on 𝜖1.

Pr(𝑦𝑗 = 𝑛|x𝑗) = ∫
∞

−∞
Pr(𝑦𝑗 = 𝑛|x𝑗, 𝜖1)𝜙(𝜖1/𝜎)𝑑𝜖1

As in the implementation of log likelihood, we approximate this integral by Gauss–Hermite quadrature.

Also see
[R] heckpoisson — Poisson regression with sample selection

[U] 20 Estimation and postestimation commands
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Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas References Also see

Description
heckprobit fits maximum-likelihood probit models with sample selection.

Quick start
Probit model of y on x with sample selection indicated by binary variable selected and predicted by v

heckprobit y x, select(selected = v x)

Suppress iteration log

heckprobit y x, select(selected = v x) nolog

With cluster–robust standard errors for clustering by levels of cvar
heckprobit y x, select(selected = v x) vce(cluster cvar)

Menu
Statistics > Sample-selection models > Probit model with sample selection
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Syntax
heckprobit depvar indepvars [ if ] [ in ] [weight ] ,

select( [ depvar𝑠 = ] varlist𝑠 [ , noconstant offset(varname𝑜) ] ) [ options ]

options Description

Model
∗ select() specify selection equation: dependent and independent

variables; whether to have constant term and offset variable

noconstant suppress constant term

offset(varname) include varname in model with coefficient constrained to 1

constraints(constraints) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, opg, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)
first report first-step probit estimates

lrmodel perform the likelihood-ratio model test instead of the default Wald test

nocnsreport do not display constraints

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

collinear keep collinear variables

coeflegend display legend instead of statistics

∗select( ) is required.
The full specification is select( [ depvar𝑠 = ] varlist𝑠 [ , noconstant offset(varname𝑜) ] ).

indepvars and varlist𝑠 may contain factor variables; see [U] 11.4.3 Factor variables.

depvar, indepvars, depvar𝑠, and varlist𝑠 may contain time-series operators; see [U] 11.4.4 Time-series varlists.

bayes, bootstrap, by, collect, fp, jackknife, rolling, statsby, and svy are allowed; see [U] 11.1.10 Prefix com-

mands. For more details, see [BAYES] bayes: heckprobit.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
vce(), first, lrmodel, and weights are not allowed with the svy prefix; see [SVY] svy.
pweights, fweights, and iweights are allowed; see [U] 11.1.6 weight.
collinear and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Options

� � �
Model �

select( [ depvar𝑠 = ] varlist𝑠 [ , noconstant offset(varname𝑜) ] ) specifies the variables and op-

tions for the selection equation. It is an integral part of specifying a selection model and is required.

The selection equation should contain at least one variable that is not in the outcome equation.

If depvar𝑠 is specified, it should be coded as 0 or 1, 0 indicating an observation not selected and 1

indicating a selected observation. If depvar𝑠 is not specified, observations for which depvar is not

missing are assumed selected, and those for which depvar is missing are assumed not selected.

noconstant suppresses the selection constant term (intercept).

offset(varname𝑜) specifies that selection offset varname𝑜 be included in the model with the coef-

ficient constrained to be 1.

noconstant, offset(varname), constraints(constraints); see [R] Estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), that al-
low for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods

(bootstrap, jackknife); see [R] vce option.

� � �
Reporting �

level(#); see [R] Estimation options.

first specifies that the first-step probit estimates of the selection equation be displayed before estima-
tion.

lrmodel, nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. These options are

seldom used.

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

The following options are available with heckprobit but are not shown in the dialog box:

collinear, coeflegend; see [R] Estimation options.
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Remarks and examples
The probit model with sample selection (Van de Ven and Van Pragg 1981) assumes that there exists

an underlying relationship

𝑦∗
𝑗 = x𝑗β + 𝑢1𝑗 latent equation

such that we observe only the binary outcome

𝑦probit𝑗 = (𝑦∗
𝑗 > 0) probit equation

The dependent variable, however, is not always observed. Rather, the dependent variable for observation

𝑗 is observed if

𝑦select𝑗 = (z𝑗𝛄 + 𝑢2𝑗 > 0) selection equation

where

𝑢1 ∼ 𝑁(0, 1)
𝑢2 ∼ 𝑁(0, 1)

corr(𝑢1, 𝑢2) = 𝜌

When 𝜌 ≠ 0, standard probit techniques applied to the first equation yield biased results. heckprobit
provides consistent, asymptotically efficient estimates for all the parameters in such models.

For the model to be well identified, the selection equation should have at least one variable that is not

in the probit equation. Otherwise, the model is identified only by functional form, and the coefficients

have no structural interpretation.

Example 1
We use the data from Pindyck and Rubinfeld (1998). In this dataset, the variables are whether children

attend private school (private), number of years the family has been at the present residence (years),
log of property tax (logptax), log of income (loginc), and whether one voted for an increase in property
taxes (vote).

In this example, we alter the meaning of the data. Here we assume that we observe whether children

attend private school only if the family votes for increasing the property taxes. This assumption is not

true in the dataset, and we make it only to illustrate the use of this command.

We observe whether children attend private school only if the head of household voted for an increase

in property taxes. We assume that the vote is affected by the number of years in residence, the current

property taxes paid, and the household income. We wish to model whether children are sent to private

school on the basis of the number of years spent in the current residence and the current property taxes

paid.
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. use https://www.stata-press.com/data/r18/school

. heckprobit private years logptax, select(vote=years loginc logptax)
Fitting probit model:
Iteration 0: Log likelihood = -17.122381
Iteration 1: Log likelihood = -16.243974
(output omitted )

Iteration 5: Log likelihood = -15.883655
Fitting selection model:
Iteration 0: Log likelihood = -63.036914
Iteration 1: Log likelihood = -58.534843
Iteration 2: Log likelihood = -58.497292
Iteration 3: Log likelihood = -58.497288
Comparison: Log likelihood = -74.380943
Fitting starting values:
Iteration 0: Log likelihood = -40.895684
Iteration 1: Log likelihood = -16.654497
(output omitted )

Iteration 6: Log likelihood = -15.753765
Fitting full model:
Iteration 0: Log likelihood = -75.010619 (not concave)
Iteration 1: Log likelihood = -74.287758
Iteration 2: Log likelihood = -74.250143
Iteration 3: Log likelihood = -74.245088
Iteration 4: Log likelihood = -74.244973
Iteration 5: Log likelihood = -74.244973
Probit model with sample selection Number of obs = 95

Selected = 59
Nonselected = 36

Wald chi2(2) = 1.04
Log likelihood = -74.24497 Prob > chi2 = 0.5935

Coefficient Std. err. z P>|z| [95% conf. interval]

private
years -.1142596 .1461715 -0.78 0.434 -.4007505 .1722313

logptax .3516101 1.016483 0.35 0.729 -1.64066 2.34388
_cons -2.780667 6.905827 -0.40 0.687 -16.31584 10.75451

vote
years -.0167511 .0147735 -1.13 0.257 -.0457067 .0122045
loginc .9923023 .4430008 2.24 0.025 .1240368 1.860568

logptax -1.278783 .5717545 -2.24 0.025 -2.399401 -.1581646
_cons -.5458205 4.070417 -0.13 0.893 -8.523692 7.432051

/athrho -.8663164 1.450017 -0.60 0.550 -3.708298 1.975665

rho -.6994978 .7405281 -.9987983 .9622674

LR test of indep. eqns. (rho = 0): chi2(1) = 0.27 Prob > chi2 = 0.6020
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The output shows several iteration logs. The first iteration log corresponds to running the probit model

for those observations in the sample where we have observed the outcome. The second iteration log

corresponds to running the selection probit model, which models whether we observe our outcome of

interest. If 𝜌 = 0, the sum of the log likelihoods from these two models will equal the log likelihood

of the probit model with sample selection; this sum is printed in the iteration log as the comparison log

likelihood. The third iteration log shows starting values for the iterations.

The final iteration log is for fitting the full probit model with sample selection. A likelihood-ratio

test of the log likelihood for this model and the comparison log likelihood is presented at the end of the

output. If we had specified the vce(robust) option, this test would be presented as a Wald test instead

of as a likelihood-ratio test.

Example 2
In example 1, we could have obtained robust standard errors by specifying the vce(robust) option.

We do this here and also eliminate the iteration logs by using the nolog option:

. heckprobit private years logptax, sel(vote=years loginc logptax) vce(robust)
> nolog
Probit model with sample selection Number of obs = 95

Selected = 59
Nonselected = 36

Wald chi2(2) = 2.55
Log pseudolikelihood = -74.24497 Prob > chi2 = 0.2798

Robust
Coefficient std. err. z P>|z| [95% conf. interval]

private
years -.1142596 .1113968 -1.03 0.305 -.3325934 .1040741

logptax .3516101 .7358211 0.48 0.633 -1.090573 1.793793
_cons -2.780667 4.786652 -0.58 0.561 -12.16233 6.600998

vote
years -.0167511 .0173344 -0.97 0.334 -.0507259 .0172237
loginc .9923023 .4228042 2.35 0.019 .1636213 1.820983

logptax -1.278783 .5095156 -2.51 0.012 -2.277415 -.2801506
_cons -.5458205 4.54389 -0.12 0.904 -9.451682 8.360041

/athrho -.8663164 1.63062 -0.53 0.595 -4.062272 2.329639

rho -.6994978 .8327621 -.9994078 .9812312

Wald test of indep. eqns. (rho = 0): chi2(1) = 0.28 Prob > chi2 = 0.5952

Regardless of whether we specify the vce(robust) option, the outcome is not significantly different

from the outcome obtained by fitting the probit and selection models separately. This result is not sur-

prising because the selection mechanism estimated was invented for the example rather than borne from

any economic theory.
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Stored results
heckprobit stores the following in e():

Scalars

e(N) number of observations

e(N selected) number of selected observations

e(N nonselected) number of nonselected observations

e(k) number of parameters

e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test

e(k aux) number of auxiliary parameters

e(k dv) number of dependent variables

e(df m) model degrees of freedom

e(ll) log likelihood

e(ll 0) log likelihood, constant-only model

e(ll c) log likelihood, comparison model

e(N clust) number of clusters

e(chi2) 𝜒2

e(chi2 c) 𝜒2 for comparison test

e(p) 𝑝-value for model test
e(p c) 𝑝-value for comparison test
e(rho) 𝜌
e(rank) rank of e(V)
e(rank0) rank of e(V) for constant-only model
e(ic) number of iterations

e(rc) return code

e(converged) 1 if converged, 0 otherwise
Macros

e(cmd) heckprobit
e(cmdline) command as typed

e(depvar) names of dependent variables

e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(clustvar) name of cluster variable

e(offset1) offset for regression equation

e(offset2) offset for selection equation

e(chi2type) Wald or LR; type of model 𝜒2 test

e(chi2 ct) type of comparison 𝜒2 test

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(opt) type of optimization

e(which) max or min; whether optimizer is to perform maximization or minimization

e(ml method) type of ml method
e(user) name of likelihood-evaluator program

e(technique) maximization technique

e(properties) b V
e(predict) program used to implement predict
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(ilog) iteration log (up to 20 iterations)

e(gradient) gradient vector

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance
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Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas
Van de Ven and Van Pragg (1981) provide an introduction and an explanation of this model.

The probit equation is

𝑦𝑗 = (x𝑗β + 𝑢1𝑗 > 0)

The selection equation is

z𝑗𝛄 + 𝑢2𝑗 > 0

where

𝑢1 ∼ 𝑁(0, 1)
𝑢2 ∼ 𝑁(0, 1)

corr(𝑢1, 𝑢2) = 𝜌

The log likelihood is

ln𝐿 = ∑
𝑗∈𝑆

𝑦𝑗≠0

𝑤𝑗 ln{Φ2 (𝑥𝑗𝛽 + offset
𝛽
𝑗 , 𝑧𝑗𝛾 + offset

𝛾
𝑗 , 𝜌)}

+ ∑
𝑗∈𝑆

𝑦𝑗=0

𝑤𝑗 ln{Φ2 (−𝑥𝑗𝛽 + offset
𝛽
𝑗 , 𝑧𝑗𝛾 + offset

𝛾
𝑗 , −𝜌)}

+ ∑
𝑗∉𝑆

𝑤𝑗 ln{1 − Φ (𝑧𝑗𝛾 + offset
𝛾
𝑗 )}

where 𝑆 is the set of observations for which 𝑦𝑗 is observed, Φ2(⋅) is the cumulative bivariate normal
distribution function (with mean [ 0 0 ]′), Φ(⋅) is the standard cumulative normal, and 𝑤𝑗 is an optional

weight for observation 𝑗.
In the maximum likelihood estimation, 𝜌 is not directly estimated. Directly estimated is atanh 𝜌:

atanh 𝜌 = 1
2
ln(1 + 𝜌

1 − 𝜌
)

From the form of the likelihood, it is clear that if 𝜌 = 0, the log likelihood for the probit model with

sample selection is equal to the sum of the probit model for the outcome 𝑦 and the selection model. We

can perform a likelihood-ratio test by comparing the likelihood of the full model with the sum of the log

likelihoods for the probit and selection models.
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This command supports the Huber/White/sandwich estimator of the variance and its clustered version

using vce(robust) and vce(cluster clustvar), respectively. See [P] robust, particularly Maximum

likelihood estimators and Methods and formulas.

heckprobit also supports estimation with survey data. For details on VCEs with survey data, see

[SVY] Variance estimation.
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Postestimation commands predict margins Remarks and examples Also see

Postestimation commands
The following postestimation commands are available after heckprobit:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters

estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian infor-
mation criteria (AIC, CAIC, AICc, and BIC, respectively)

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estat (svy) postestimation statistics for survey data

estimates cataloging estimation results

etable table of estimation results
∗ hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

∗ lrtest likelihood-ratio test

margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

predict probabilities, linear predictions and their SEs, etc.

predictnl point estimates, standard errors, testing, and inference for generalized predictions

pwcompare pairwise comparisons of parameters

suest seemingly unrelated estimation

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

∗hausman and lrtest are not appropriate with svy estimation results.
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predict

Description for predict
predict creates a new variable containing predictions such as probabilities, linear predictions, and

standard errors.

Menu for predict
Statistics > Postestimation

Syntax for predict
predict [ type ] newvar [ if ] [ in ] [ , statistic nooffset ]

predict [ type ] stub* [ if ] [ in ], scores

statistic Description

Main

pmargin Φ(x𝑗b), success probability; the default
p11 Φ2(x𝑗b, z𝑗g, 𝜌), predicted probability Pr(𝑦probit𝑗 = 1, 𝑦select𝑗 = 1)
p10 Φ2(x𝑗b, −z𝑗g, −𝜌), predicted probability Pr(𝑦probit𝑗 = 1, 𝑦select𝑗 = 0)
p01 Φ2(−x𝑗b, z𝑗g, −𝜌), predicted probability Pr(𝑦probit𝑗 = 0, 𝑦select𝑗 = 1)
p00 Φ2(−x𝑗b, −z𝑗g, 𝜌), predicted probability Pr(𝑦probit𝑗 = 0, 𝑦select𝑗 = 0)
psel Φ(z𝑗g), selection probability
pcond Φ2(x𝑗b, z𝑗g, 𝜌)/Φ(z𝑗g), probability of success conditional on selection
xb linear prediction

stdp standard error of the linear prediction

xbsel linear prediction for selection equation

stdpsel standard error of the linear prediction for selection equation

Φ(⋅) is the standard normal distribution function, and Φ2(⋅) is the bivariate normal distribution function.
These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for the estimation

sample.
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Options for predict

� � �
Main �

pmargin, the default, calculates the univariate (marginal) predicted probability of success
Pr(𝑦probit𝑗 = 1).

p11 calculates the bivariate predicted probability Pr(𝑦probit𝑗 = 1, 𝑦select𝑗 = 1).

p10 calculates the bivariate predicted probability Pr(𝑦probit𝑗 = 1, 𝑦select𝑗 = 0).

p01 calculates the bivariate predicted probability Pr(𝑦probit𝑗 = 0, 𝑦select𝑗 = 1).

p00 calculates the bivariate predicted probability Pr(𝑦probit𝑗 = 0, 𝑦select𝑗 = 0).

psel calculates the univariate (marginal) predicted probability of selection Pr(𝑦select𝑗 = 1).
pcond calculates the conditional (on selection) predicted probability of success

Pr(𝑦probit𝑗 = 1, 𝑦select𝑗 = 1)/Pr(𝑦select𝑗 = 1).
xb calculates the probit linear prediction x𝑗b.

stdp calculates the standard error of the prediction, which can be thought of as the standard error of the
predicted expected value or mean for the observation’s covariate pattern. The standard error of the

prediction is also referred to as the standard error of the fitted value.

xbsel calculates the linear prediction for the selection equation.

stdpsel calculates the standard error of the linear prediction for the selection equation.

scores calculates equation-level score variables.

The first new variable will contain 𝜕ln𝐿/𝜕(x𝑗β).
The second new variable will contain 𝜕ln𝐿/𝜕(z𝑗𝛄).
The third new variable will contain 𝜕ln𝐿/𝜕(atanh 𝜌).

nooffset is relevant only if you specified offset(varname) for heckprobit. It modifies the calcula-
tions made by predict so that they ignore the offset variable; the linear prediction is treated as x𝑗b

rather than as x𝑗b + offset𝑗.
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margins

Description for margins
margins estimates margins of response for probabilities and linear predictions.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist ] [ , options ]
margins [marginlist ] , predict(statistic ...) [ predict(statistic ...) ... ] [ options ]

statistic Description

pmargin Φ(x𝑗b), success probability; the default
p11 Φ2(x𝑗b, z𝑗g, 𝜌), predicted probability Pr(𝑦probit𝑗 = 1, 𝑦select𝑗 = 1)
p10 Φ2(x𝑗b, −z𝑗g, −𝜌), predicted probability Pr(𝑦probit𝑗 = 1, 𝑦select𝑗 = 0)
p01 Φ2(−x𝑗b, z𝑗g, −𝜌), predicted probability Pr(𝑦probit𝑗 = 0, 𝑦select𝑗 = 1)
p00 Φ2(−x𝑗b, −z𝑗g, 𝜌), predicted probability Pr(𝑦probit𝑗 = 0, 𝑦select𝑗 = 0)
psel Φ(z𝑗g), selection probability
pcond Φ2(x𝑗b, z𝑗g, 𝜌)/Φ(z𝑗g), probability of success conditional on selection
xb linear prediction

xbsel linear prediction for selection equation

stdp not allowed with margins
stdpsel not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.
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Remarks and examples

Example 1
It is instructive to compare the marginal predicted probabilities with the predicted probabilities that we

would obtain by ignoring the selection mechanism. To compare the two approaches, we will synthesize

data so that we know the “true” predicted probabilities.

First, we need to generate correlated error terms, which we can do using a standard Cholesky decom-

position approach. For our example, we will clear any data from memory and then generate errors that

have a correlation of 0.5 by using the following commands. We set the seed so that interested readers

can type in these same commands and obtain the same results.

. set seed 12309

. set obs 5000
Number of observations (_N) was 0, now 5,000.
. generate c1 = rnormal()
. generate c2 = rnormal()
. matrix P = (1,.5\.5,1)
. matrix A = cholesky(P)
. local fac1 = A[2,1]
. local fac2 = A[2,2]
. generate u1 = c1
. generate u2 = ‘fac1’*c1 + ‘fac2’*c2

We can check that the errors have the correct correlation by using the correlate command. We will

also normalize the errors so that they have a standard deviation of one, so we can generate a bivariate

probit model with known coefficients. We do that with the following commands:

. correlate u1 u2
(obs=5,000)

u1 u2

u1 1.0000
u2 0.5012 1.0000

. summarize u1
(output omitted )

. replace u1 = u1/r(sd)
(5,000 real changes made)
. summarize u2
(output omitted )

. replace u2 = u2/r(sd)
(5,000 real changes made)
. drop c1 c2
. generate x1 = runiform()-.5
. generate x2 = runiform()+1/3
. generate y1s = 0.5 + 4*x1 + u1
. generate y2s = 3 - 3*x2 + .5*x1 + u2
. generate y1 = (y1s>0)
. generate y2 = (y2s>0)
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Wehave now created two dependent variables, y1 and y2, which are defined by our specified coefficients.
We also included error terms for each equation, and the error terms are correlated. We run heckprobit
to verify that the data have been correctly generated according to the model

𝑦1 = 0.5 + 4𝑥1 + 𝑢1

𝑦2 = 3 + 0.5𝑥1 − 3𝑥2 + 𝑢2

where we assume that 𝑦1 is observed only if 𝑦2 = 1.

. heckprobit y1 x1, sel(y2 = x1 x2) nolog
Probit model with sample selection Number of obs = 5,000

Selected = 3,182
Nonselected = 1,818

Wald chi2(1) = 947.76
Log likelihood = -3612.401 Prob > chi2 = 0.0000

Coefficient Std. err. z P>|z| [95% conf. interval]

y1
x1 4.015564 .130436 30.79 0.000 3.759914 4.271214

_cons .4795158 .0471276 10.17 0.000 .3871473 .5718842

y2
x1 .5361114 .0711951 7.53 0.000 .3965715 .6756513
x2 -3.017537 .0817541 -36.91 0.000 -3.177772 -2.857302

_cons 2.990145 .0765942 39.04 0.000 2.840024 3.140267

/athrho .5339516 .0854577 6.25 0.000 .3664575 .7014457

rho .4883959 .0650735 .3508892 .6052846

LR test of indep. eqns. (rho = 0): chi2(1) = 41.36 Prob > chi2 = 0.0000

Now that we have verified that we have generated data according to a known model, we can obtain

and then compare predicted probabilities from the probit model with sample selection and a (usual) probit

model.

. predict pmarg
(option pmargin assumed; Pr(y1=1))
. probit y1 x1 if y2==1
(output omitted )

. predict phat
(option pr assumed; Pr(y1))
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Using the (marginal) predicted probabilities from the probit model with sample selection (pmarg)
and the predicted probabilities from the (usual) probit model (phat), we can also generate the “true”
predicted probabilities from the synthesized y1s variable and then compare the predicted probabilities:

. generate ptrue = normal(y1s)

. summarize pmarg ptrue phat
Variable Obs Mean Std. dev. Min Max

pmarg 5,000 .6089004 .3249993 .0632337 .99354
ptrue 5,000 .5967872 .3534232 2.78e-07 1
phat 5,000 .6588519 .3113716 .0910951 .997021

Here we see that ignoring the selection mechanism (comparing the phat variable with the true ptrue
variable) results in predicted probabilities that are much higher than the true values. Looking at the

marginal predicted probabilities from the model with sample selection, however, results in more accurate

predictions.

Also see
[R] heckprobit — Probit model with sample selection

[U] 20 Estimation and postestimation commands



help — Display help in Stata

Description Menu Syntax Options Remarks and examples Also see

Description
The help command displays help information about the specified command or topic. help launches

a new Viewer to display help for the specified command or topic or displays help on the console in Stata

for Unix(console). If help is not followed by a command or a topic name, Stata displays advice for using
the help system and documentation.

Menu
Help > Stata command...

Syntax
help [ command or topic name ] [ , nonew name(viewername) marker(markername) ]

Options
nonew specifies that a newViewer window not be opened for the help topic if a Viewer window is already

open. The default is for a new Viewer window to be opened each time help is typed so that multiple
help files may be viewed at once. nonew causes the help file to be displayed in the topmost open

Viewer.

name(viewername) specifies that help be displayed in a Viewer window named viewername. If the

named window already exists, its contents will be replaced. If the named window does not exist, it

will be created.

marker(markername) specifies that the help file be opened to the position of markername within the
help file.

Remarks and examples
To obtain help for any Stata command, type help command or select Help > Stata command... and

fill in command.
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help is best explained by examples.

To obtain help for . . . type

regress help regress
postestimation tools for regress help regress postestimation or

help regress post
graph option xlabel() help graph xlabel()
Stata function strpos() help strpos()
Mata function optimize() help mata optimize()

Tips:

• help displays advice for using the help system and documentation.

• help guide displays a table of contents for basic Stata concepts.

• help estimation commands displays an alphabetical listing of all Stata estimation commands.

• help functions displays help on Stata functions by category.

• help mata functions displays a subject table of contents for Mata’s functions.

• help ts glossary displays the glossary for the time-series manual, and similarly for the other
Stata specialty manuals.

If you type help topic and help for topic is not found, Stata will automatically perform a search for

topic.

For instance, try typing help forecasting. A forecasting help file is not found, so Stata executes

search forecasting and displays the results in the Viewer.

See [U] 4 Stata’s help and search facilities for a complete description of how to use help.

Technical note
When you type help topic, Stata first looks along the adopath for topic.sthlp; see [U] 17.5 Where

does Stata look for ado-files?.

Video examples
Quick help in Stata

Also see
[R] net search — Search the Internet for installable packages

[R] search — Search Stata documentation and other resources

[GSM] 4 Getting help

[GSW] 4 Getting help

[GSU] 4 Getting help

[U] 4 Stata’s help and search facilities

https://www.youtube.com/watch?v=UpXNMeTzmuI


hetoprobit — Heteroskedastic ordered probit regression

Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas References Also see

Description
hetoprobit fits a heteroskedastic ordered probit model for an ordinal dependent variable.

hetoprobit is a generalization of oprobit that allows the variance to be modeled as a function of

independent variables and to differ between subjects or groups in the population.

Quick start
Heteroskedastic ordinal probit model of y on x1, using x2 to model the variance

hetoprobit y x1, het(x2)

With robust standard errors

hetoprobit y x1, het(x2) vce(robust)

Perform a Wald test on the variance instead of a likelihood-ratio (LR) test

hetoprobit y x1, het(x2) waldhet

Menu
Statistics > Ordinal outcomes > Heteroskedastic ordered probit regression
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Syntax
hetoprobit depvar [ indepvars ] [ if ] [ in ] [weight ] ,

het(varlist[ , offset(varname𝑜) ]) [ options ]

options Description

Model
∗ het(varlist[. . .]) independent variables to model the variance and optional

offset variable

offset(varname) include varname in model with coefficient constrained to 1

constraints(constraints) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, opg, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)
waldhet perform Wald test on variance instead of LR test

nocnsreport do not display constraints

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

noheader do not display header above coefficient table

notable do not display coefficient table

collinear keep collinear variables

coeflegend display legend instead of statistics

∗het() is required. The full specification is het(varlist [ , offset(varname𝑜) ]).
indepvars and varlist may contain factor variables; see [U] 11.4.3 Factor variables.

depvar, indepvars, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.

bayes, bootstrap, by, collect, fp, jackknife, rolling, statsby, and svy are allowed; see [U] 11.1.10 Prefix com-

mands. For more details, see [BAYES] bayes: hetoprobit.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
noheader, notable, collinear, and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Options

� � �
Model �

het(varlist [ , offset(varname𝑜) ]) specifies the independent variables and, optionally, the offset vari-
able in the variance function. het() is required.

offset(varname𝑜) specifies that offset varname𝑜 be included in the variance model with the coef-

ficient constrained to be 1.

offset(varname), constraints(constraints); see [R] Estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), that al-
low for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods

(bootstrap, jackknife); see [R] vce option.

� � �
Reporting �

level(#); see [R] Estimation options.

waldhet specifies that a Wald test of whether lnsigma = 0 be performed instead of the LR test.

nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. These options are

seldom used.

The following options are available with hetoprobit but are not shown in the dialog box:

noheader suppresses the header above the coefficient table.

notable suppresses the display of the coefficient table.

collinear, coeflegend; see [R] Estimation options.

Remarks and examples
hetoprobit fits a maximum-likelihood heteroskedastic ordered probit model, which is a generaliza-

tion of the ordered probit model (see [R] oprobit).

In ordinal regression models, the outcome is an ordinal variable—a variable that is categorical and

ordered, for instance, “poor”, “good”, and “excellent”. The specific values of the ordinal variable are

irrelevant. It matters only that larger values are assumed to correspond to “higher” outcomes. To simplify

the discussion in this entry, we assume without loss of generality that the dependent variable takes on the

integer values 0, 1, . . . , 𝐻, for some value 𝐻 > 1.
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In ordered probit models, an underlying score is estimated as a linear function of the independent

variables and a set of cutpoints. The probability of observing outcome 𝑦𝑗 = ℎ, where ℎ = 0, 1, . . . , 𝐻,

corresponds to the probability that the value of the linear function, plus random error, is within the range

of the cutpoints associated with the outcome

Pr(𝑦𝑗 = ℎ) = Pr(𝜅ℎ < 𝛽1𝑥1𝑗 + 𝛽2𝑥2𝑗 + · · · + 𝛽𝑘𝑥𝑘𝑗 + 𝑢𝑗 ≤ 𝜅ℎ+1)
= Φ (𝜅ℎ+1 − x𝑗β) − Φ (𝜅ℎ − x𝑗β)

where x𝑗 = (𝑥1𝑗, 𝑥2𝑗, . . . , 𝑥𝑘𝑗) are the 𝑘 independent variables that model the mean function; β is a

column vector of unknown parameters in the mean function; 𝑢𝑗, where 𝑗 = 1, . . . , 𝑁, are normally

distributed error terms; 𝜅ℎ, where ℎ = 1, . . . , 𝐻, are the unknown cutpoints that separate the different

possible values of ℎ; and Φ(⋅) is the cumulative distribution function of the standard normal distribution.
Also, by convention, to complete the intervals for the lowest and highest values of the outcome, 𝜅0 =
−∞ and 𝜅𝐻+1 = ∞.

In conventional ordinal probit models, the error term is assumed i.i.d. normal with unit variance for all

observations. hetoprobit generalizes the ordered probit model by representing the variance of the error
term 𝑢𝑗 as a multiplicative function of explanatory variables z𝑗 = (𝑧1𝑗, 𝑧2𝑗, . . . , 𝑧𝑚𝑗). This approach was
introduced by Harvey (1976), though we depart from Harvey slightly by modeling standard deviation

rather than variance. More specifically, we model the natural logarithm of the standard deviation as a

linear combination of the explanatory variables,

ln𝜎𝑗 = z𝑗𝛄

where 𝛄 is a column vector of unknown parameters in the variance function.

With this generalization, the error variance may differ between subjects or between groups in the

population, and

Pr(𝑦𝑗 = ℎ) = Φ {
𝜅ℎ+1 − x𝑗β

exp(z𝑗𝛄)
} − Φ {

𝜅ℎ − x𝑗β

exp(z𝑗𝛄)
}

For the model to be identifiable, there can be no constant term in z𝑗𝛄. Also, as with [R] oprobit, there
is no constant term in x𝑗β. The role of the constant is subsumed by the cutpoints.

We estimate the coefficients 𝛽1, 𝛽2, . . . , 𝛽𝑘 and 𝛾1, 𝛾2, . . . , 𝛾𝑚 together with the cutpoints 𝜅1, 𝜅2,

. . . , 𝜅𝐻. If the model has no independent variables in x𝑗, only the cutpoints and the 𝛄 parameters are

estimated.

Modeling of heteroskedastic variance has both constructive and defensive uses. It is known that

differences in variance between subjects or between groups in the population can cause biased coefficient

estimates and can complicate comparison of distinct groups. Thus, incorporating a model for variance

can be necessary for proper inference, even if the variance function itself is not a topic of interest to

the researcher. For discussion, see Williams (2010) and the references cited therein. There are also

cases where modeling the differences between variances of different subjects or different groups in the

population is one of the principal purposes of the study. We will discuss such a scenario in the examples

below. See Reardon et al. (2017) and Alvarez and Brehm (1995) for additional examples.
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Example 1: Modeling heteroskedasticity of reported health status
In this example, we will use a slightly modified subset of data from the 2015 Eating & Health Module

of the American Time Use Survey (ATUS), conducted by the US Bureau of Labor Statistics. Our analysis

will not account for the survey design. The ATUS measures the amount of time people spend doing

various activities, such as working, caring for children, volunteering, and socializing. Of interest to us

is an ordinal response variable, health, which contains individuals’ self-assessments of their overall
health status on a five-point scale: 1 for “poor”, 2 for “fair”, 3 for “good”, 4 for “very good”, and 5 for

“excellent”.

We want to examine the role that age and other factors play in an individual’s self-assessment of

health. Age is a natural variable to include when modeling mean or typical health status. But we also

suspect that the variation in health status is greater in an older population, as compared with a youthful

population, which consists mainly of healthy individuals. If our suspicion is true, quantifying the rela-

tionship between variation in health status and age may have value, for example, in planning a healthcare

strategy that is appropriately tailored both for the older Medicare population and for a younger cohort.

Thus, we will use hetoprobit to model heteroskedasticity induced by age. In modeling the variance
term, in addition to age, we will include a factor variable, exercise, which indicates whether or not
an individual exercised during the previous week. For purposes of illustration, imagine that we are not

interested in exercise as a topic in its own right, but we are concerned that health variability among those

who exercise may differ from the variability among those who do not. Therefore, we include exercise
in the variance term to help insulate our estimation results against a possible hidden bias.
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Our model will include three explanatory variables for the mean function: age, bmi (body mass

index), and exercise.

. use https://www.stata-press.com/data/r18/eathealth15
(2015 ATUS Eating & Health Module extract)
. hetoprobit health age bmi i.exercise, het(age i.exercise)
(output omitted )

Fitting ordered probit model:
Iteration 0: Log likelihood = -2905.7943
Iteration 1: Log likelihood = -2717.2752
Iteration 2: Log likelihood = -2716.9679
Iteration 3: Log likelihood = -2716.9679
Fitting full model:
Iteration 0: Log likelihood = -2716.9679
Iteration 1: Log likelihood = -2708.6752
Iteration 2: Log likelihood = -2708.5492
Iteration 3: Log likelihood = -2708.5491
Heteroskedastic ordered probit regression Number of obs = 2,009

LR chi2(3) = 366.91
Log likelihood = -2708.5491 Prob > chi2 = 0.0000

health Coefficient Std. err. z P>|z| [95% conf. interval]

health
age -.0083348 .0015969 -5.22 0.000 -.0114646 -.005205
bmi -.0564072 .0057392 -9.83 0.000 -.0676558 -.0451586

exercise
Yes .6493794 .0732137 8.87 0.000 .5058833 .7928755

lnsigma
age .0041401 .0011611 3.57 0.000 .0018643 .0064159

exercise
Yes -.0773166 .0423038 -1.83 0.068 -.1602305 .0055973

/cut1 -3.903773 .2913163 -4.474742 -3.332803
/cut2 -2.776111 .2262442 -3.219541 -2.33268
/cut3 -1.576396 .174352 -1.918119 -1.234672
/cut4 -.4189882 .1524084 -.7177031 -.1202733

LR test of lnsigma=0: chi2(2) = 16.84 Prob > chi2 = 0.0002

The LR test at the bottom of the output is a test of homogeneity of the variance function. The 𝜒2(2)
statistic of 16.84 is significant, indicating that heteroskedasticity is present. If you prefer the Wald test

for heteroskedasticity, you can specify the waldhet option. The coefficients for the variance function
are reported in the section of the table labeled lnsigma. Our results indicate that age is a significant
contributor to the variance function but that exercise is not significant at a 0.05 level.

The LR test for the model that appears above the coefficient table is a joint test for inclusion of age,
bmi, and exercise in the mean function. The null model for this test is the model consisting only of
cutpoints and the heteroskedastic term. Coefficients for the mean function are reported in the section of

the table labeled health. In this example, age, bmi, and exercise are significant components of the
linear predictor of the mean.
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The signs of the coefficients in the fitted model are directly interpretable. For example, the negative

value for the coefficient of bmi implies that higher values of bmi predict lower values of health status.
However, because of the probit link and the fact that we estimate variance with a log transformation, the

numerical relationships between the coefficients of the model and the outcome variables are nonlinear.

Postestimation commands recognize and account for these nonlinearities.

Example 2: Predict the probability of a poor health rating
Ordered probit models allow us to look at the probabilities of different outcomes of interest. Suppose

we are interested in predictions of a reported health status of ”poor” (health = 1) and how it differs

across levels of bmi. First, we obtain the predicted probability of poor health.

. predict pr1, pr outcome(1)

We can now visualize how the predicted probability of poor health status differs across the range of

bmi values in our sample.

. twoway scatter pr1 bmi, ytitle(”Pr(poor health)”)
> title(”Effect of BMI on probability of poor health”)
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We see that predicted probabilities of poor health increase as body mass index increases.

Example 3: Predictive margins and average marginal effect
The graph above plots the predicted probability of poor health for each individual in our dataset. We

may also want to evaluate how the average predicted probability changes across levels of the covariates

in the model. For instance, we can use the margins command to obtain the expected probability of

having poor health across a range of ages.
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. margins, at(age = (30(10)70)) predict(outcome(1))
Predictive margins Number of obs = 2,009
Model VCE: OIM
Expression: Pr(health==1), predict(outcome(1))
1._at: age = 30
2._at: age = 40
3._at: age = 50
4._at: age = 60
5._at: age = 70

Delta-method
Margin std. err. z P>|z| [95% conf. interval]

_at
1 .0225765 .0037522 6.02 0.000 .0152224 .0299306
2 .0299079 .0038887 7.69 0.000 .0222862 .0375297
3 .0388244 .0041936 9.26 0.000 .0306051 .0470438
4 .0494246 .0049748 9.93 0.000 .0396742 .0591751
5 .0617532 .0064443 9.58 0.000 .0491226 .0743839

Based on ourmodel, what would we expect if everyonewas 30 years old but had the same distributions

of bmi and exercise that we observed in our data? The first line in this table reports that the average

predicted probability of poor health is 0.0226 in this case. The second line shows the average predicted

probability of poor health if we set age = 40, and so on. We find that for age = 70, the average probability
of reporting a poor health status has increased to 0.0618. We can visualize this by typing marginsplot
after margins.

. marginsplot
Variables that uniquely identify margins: age
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We have focused on the prediction of poor health. We could instead simultaneously obtain average

predicted probabilities of poor, fair, good, very good, and excellent health status and plot them across

our requested age range. In that case, we would type

. margins, at(age = (30(10)70))

. marginsplot
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We might also be interested in characterizing the relationship between bmi and the probability of

reporting poor health. The coefficients and cutpoints reported in hetoprobit are not easily interpreted.
We can, however, use margins to estimate the average marginal effect of bmi on the probability of

reporting poor health. Because the average marginal effect depends on the value of bmi, we estimate it
across a range of bmi values by typing

. margins, dydx(bmi) at(bmi = (20(5)35)) predict(outcome(1))
Average marginal effects Number of obs = 2,009
Model VCE: OIM
Expression: Pr(health==1), predict(outcome(1))
dy/dx wrt: bmi
1._at: bmi = 20
2._at: bmi = 25
3._at: bmi = 30
4._at: bmi = 35

Delta-method
dy/dx std. err. z P>|z| [95% conf. interval]

bmi
_at
1 .0015875 .0001721 9.23 0.000 .0012503 .0019248
2 .0024512 .0002665 9.20 0.000 .0019288 .0029736
3 .0036447 .0004377 8.33 0.000 .0027868 .0045027
4 .0052124 .0007013 7.43 0.000 .0038379 .006587

The average marginal effect of bmi on the probability of reporting poor health increases as bmi itself
increases.

Example 4: Interpreting the variance function
From the output of our hetoprobit command, we determined that variance of health status is affected

by age. Let’s consider to what extent. In this example, we assess the effect of age on the variance by

using the margins command. We use the predict(sigma) option to obtain the average predicted

standard deviation of the errors. We will look at ages 15 and 85, which are the youngest and oldest ages,

respectively, in our dataset.

. margins, predict(sigma) at(age = (15,85)) noatlegend
Predictive margins Number of obs = 2,009
Model VCE: OIM
Expression: Heteroskedastic standard deviation, predict(sigma)

Delta-method
Margin std. err. z P>|z| [95% conf. interval]

_at
1 1.014732 .0320905 31.62 0.000 .9518354 1.077628
2 1.355853 .1398144 9.70 0.000 1.081822 1.629884

Variation increases with age. The expected standard deviation of the error term changes from 1.015

at age 15 to 1.356 at age 85.
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Stored results
hetoprobit stores the following in e():

Scalars

e(N) number of observations

e(k cat) number of categories

e(k) number of parameters

e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test

e(k aux) number of auxiliary parameters

e(k dv) number of dependent variables

e(df m) model degrees of freedom (𝑥𝛽 term)

e(ll) log likelihood

e(ll 0) log likelihood, cutpoint-only (heteroskedastic) model

e(ll c) log likelihood, comparison (homoskedastic) model

e(N clust) number of clusters

e(chi2) 𝜒2

e(chi2 c) 𝜒2 for heteroskedasticity test

e(p) 𝑝-value for model test
e(p c) 𝑝-value for heteroskedasticity test
e(df m c) degrees of freedom for heteroskedasticity test

e(rank) rank of e(V)
e(ic) number of iterations

e(rc) return code

e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) hetoprobit
e(cmdline) command as typed

e(depvar) name of dependent variable

e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(clustvar) name of cluster variable

e(offset1) offset for ordered probit equation

e(offset2) offset for variance equation

e(chi2type) LR; type of model 𝜒2 test

e(chi2 ct) LR or Wald; type of heteroskedasticity test corresponding to e(chi2 c)
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(opt) type of optimization

e(which) max or min; whether optimizer is to perform maximization or minimization

e(ml method) type of ml method
e(user) name of likelihood-evaluator program

e(technique) maximization technique

e(properties) b V
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(marginsdefault) default predict() specification for margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved
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Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(ilog) iteration log (up to 20 iterations)

e(gradient) gradient vector

e(cat) category values

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():
Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas
hetoprobit fits a cumulative probit model with heteroskedastic variance using maximum likelihood

estimation. Namely, the model is that, for a subject with explanatory variables x and z,

Pr(𝑌 ≤ ℎ) = Φ {
𝜅ℎ+1 − xβ

exp(z𝛄)
}

where 𝑌 is an ordinal outcome taking on values ℎ = 0, 1, . . . , 𝐻, and Φ(⋅) is the cdf of the standard
normal distribution. The value 𝜅ℎ+1 is a cutpoint that separates the region corresponding to 𝑌 = ℎ from

regions for higher-valued categories. The effects β and the effects 𝛄 are the same for each cumulative

probability.

The log-likelihood function is

ln𝐿 =
𝑁

∑
𝑗=1

𝑤𝑗

𝐻
∑
ℎ=0

𝐼ℎ(𝑦𝑗) ln [Φ {
𝜅ℎ+1 − x𝑗β

exp(z𝑗𝛄)
} − Φ {

𝜅ℎ − x𝑗β

exp(z𝑗𝛄)
}]

where

𝐼ℎ(𝑦𝑗) = {1 if 𝑦𝑗 = ℎ
0 otherwise

and 𝑦𝑗, where 𝑗 = 1, . . . , 𝑁, is an observed value of 𝑌; 𝑤𝑗 are optional weights; 𝜅0 = −∞ and 𝜅𝐻+1 =
∞; and all other terminology is defined in Remarks and examples above.

The log-likelihood function is maximized as described in [R]Maximize.

This command supports the Huber/White/sandwich estimator of the variance and its clustered version

using vce(robust) and vce(cluster clustvar), respectively. See [P] robust, particularly Maximum

likelihood estimators and Methods and formulas.

hetoprobit also supports estimation with survey data. For details on VCEs with survey data, see

[SVY] Variance estimation.
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Postestimation commands predict margins Remarks and examples
Methods and formulas Also see

Postestimation commands
The following postestimation commands are available after hetoprobit:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters

estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian infor-
mation criteria (AIC, CAIC, AICc, and BIC, respectively)

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estat (svy) postestimation statistics for survey data

estimates cataloging estimation results

etable table of estimation results
∗ forecast dynamic forecasts and simulations
∗ hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

linktest link test for model specification
∗ lrtest likelihood-ratio test

margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

predict probabilities, linear predictions, etc.

predictnl point estimates, standard errors, testing, and inference for generalized predictions

pwcompare pairwise comparisons of parameters

suest seemingly unrelated estimation

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

∗forecast, hausman, and lrtest are not appropriate with svy estimation results.

1169
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predict

Description for predict
predict creates a new variable containing predictions such as probabilities, linear predictions, and

standard deviations.

Menu for predict
Statistics > Postestimation

Syntax for predict
predict [ type ] { stub* | newvar | newvarlist } [ if ] [ in ] [ , statistic
outcome(outcome) nooffset ]

predict [ type ] stub* [ if ] [ in ], scores

statistic Description

Main

pr predicted probabilities; the default

xb linear prediction

stdp standard error of the linear prediction

sigma standard deviation of the error term

You specify one or 𝑘 new variables with pr, where 𝑘 is the number of outcomes. If you specify one new variable and you do
not specify outcome(), then outcome(#1) is assumed.

You specify one new variable with xb, stdp, or sigma.

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for the estimation
sample.

Options for predict

� � �
Main �

pr, the default, computes the predicted probabilities for all outcomes or for a specific outcome. To com-
pute probabilities for all outcomes, you specify 𝑘 new variables, where 𝑘 is the number of categories
of the dependent variable. Alternatively, you can specify stub*; in which case, pr will store predicted
probabilities in variables stub1, stub2, . . . , stub𝑘. To compute the probability for a specific outcome,
you specify one new variable and, optionally, the outcome value in option outcome(); if you omit
outcome(), the first outcome value, outcome(#1), is assumed.

Say that you fit a model by typing estimation cmd y x1 x2, and y takes on four values. Then,

you could type predict p1 p2 p3 p4 to obtain all four predicted probabilities; alternatively, you

could type predict p* to generate the four predicted probabilities. To compute specific probabil-

ities one at a time, you can type predict p1, outcome(#1) (or simply predict p1), predict p2,
outcome(#2), and so on. See option outcome() for other ways to refer to outcome values.
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xb calculates the linear prediction. The linear prediction is defined by ignoring the contribution of the
estimated cutpoints.

stdp calculates the standard error of the linear prediction.

sigma calculates the standard deviation of the error term.

outcome(outcome) specifies for which outcome the predicted probabilities are to be calculated.

outcome() should contain either one value of the dependent variable or one of #1, #2, . . . , with #1
meaning the first category of the dependent variable, #2meaning the second category, etc. outcome()
is available only with the default pr option.

nooffset is relevant only if you specified offset(varname) for hetoprobit or within the het()
option. nooffsetmodifies the calculations made by predict so that they ignore the offset variable:
the linear prediction is treated as x𝑗b rather than as x𝑗b+offset𝑏𝑗 , and the prediction of ln(𝜎) is treated
as z𝑗g rather than as z𝑗g + offset

𝑔
𝑗 . nooffset is not allowed with scores.

scores calculates equation-level score variables.

The first new variable will contain 𝜕ln𝐿/𝜕(x𝑗β).
The next new variable will contain 𝜕ln𝐿/𝜕(z𝑗𝛄).
The next new variable will contain 𝜕ln𝐿/𝜕𝜅1.

The next new variable (if any) will contain 𝜕ln𝐿/𝜕𝜅2.

. . .

The last new variable will contain 𝜕ln𝐿/𝜕𝜅𝐻, where 𝜅ℎ for ℎ = 1, 2, . . . , 𝐻 refers to the ℎth cutpoint.
If the linear predictor had no indepvars, the first new variable will contain 𝜕ln𝐿/𝜕(z𝑗𝛄).
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margins

Description for margins
margins estimates margins of response for probabilities, linear predictions, and standard deviations.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist ] [ , options ]
margins [marginlist ] , predict(statistic ...) [ predict(statistic ...) ... ] [ options ]

statistic Description

Main

default probabilities for each outcome

pr probability for a specified outcome

xb linear prediction

stdp not allowed with margins
sigma standard deviation of the error term

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.

Remarks and examples
See [U] 20 Estimation and postestimation commands for an overview of postestimation commands,

including information on obtaining the variance–covariance matrix of the estimators, predicted values,

and hypothesis tests.

Once you have fit a model with hetoprobit, you may use the predict command to obtain the

predicted probabilities for both the estimation sample and other samples. With the pr option, predict
calculates the predicted probability of one or all ordinal value outcomes. With the xb option, predict
calculates the linear prediction, x𝑗b, where x𝑗 are the independent variables in the 𝑗th observation and
b is the estimated parameter vector. The linear prediction is defined ignoring the contribution of the

cutpoints. With the sigma option, predict calculates the predicted standard deviations of the error

term, 𝜎𝑗 = exp(z𝑗g), where g is the estimated coefficient vector for the variance model.
See example 2 in [R] hetoprobit for an example of predict after hetoprobit. In example 3 and

example 4, we demonstrate how to use margins to obtain marginal effects, to compute expected prob-
abilities of outcome levels across values of covariates, and to characterize the variance as a function of

covariates.
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Methods and formulas
For definitions of the terminology used in this section, see Remarks and examples in [R] hetoprobit.

For outcome ℎ, the statistic pr is the estimated predicted probability

P̂r(𝑦𝑗 = ℎ) = Φ {
̂𝜅ℎ+1 − x𝑗b

exp(z𝑗g)
} − Φ {

̂𝜅ℎ − x𝑗b

exp(z𝑗g)
}

where x𝑗b and z𝑗g are the linear predictions of the regression and variance models, respectively, for the

𝑗th subject.
The statistic sigma is the estimated standard deviation of the modeled heteroskedastic error, namely,

�̂�𝑗 = exp(z𝑗g)

If you specified offset(varname) with hetoprobit or within the het() option (and if you do not
specify option nooffset with predict), then the specified offsets are applied by predict. Namely,
the linear prediction is computed as x𝑗b+ offset𝑏𝑗; the prediction of ln(𝜎) is computed as z𝑗g+ offset

𝑔
𝑗 ;

and all other statistics are based on the resulting predictions. If you specify nooffset with predict,
then the linear prediction is x𝑗b and the prediction of ln(𝜎) is z𝑗g, regardless of whether you specified

the offset() option with hetoprobit or within het().

Also see
[R] hetoprobit — Heteroskedastic ordered probit regression

[U] 20 Estimation and postestimation commands



hetprobit — Heteroskedastic probit model

Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas References Also see

Description
hetprobit fits a maximum-likelihood heteroskedastic probit model.

Quick start
Heteroskedastic probit model of y on x1, using x2 to model the variance

hetprobit y x1, het(x2)

With robust standard errors

hetprobit y x1, het(x2) vce(robust)

After fitting a model, reprint the table as a coefficient legend

hetprobit, coeflegend

Menu
Statistics > Binary outcomes > Heteroskedastic probit regression

1174
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Syntax
hetprobit depvar [ indepvars ] [ if ] [ in ] [weight ] ,

het(varlist[ , offset(varname𝑜) ]) [ options ]

options Description

Model
∗ het(varlist[. . .]) independent variables to model the variance and optional

offset variable

noconstant suppress constant term

offset(varname) include varname in model with coefficient constrained to 1

asis retain perfect predictor variables

constraints(constraints) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, opg, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)
lrmodel perform the likelihood-ratio model test instead of the default Wald test

waldhet perform Wald test on variance instead of LR test

nocnsreport do not display constraints

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

collinear keep collinear variables

coeflegend display legend instead of statistics

∗het() is required. The full specification is het(varlist [ , offset(varname𝑜) ]).
indepvars and varlist may contain factor variables; see [U] 11.4.3 Factor variables.

depvar, indepvars, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.

bayes, bootstrap, by, collect, fp, jackknife, rolling, statsby, and svy are allowed; see [U] 11.1.10 Prefix com-

mands. For more details, see [BAYES] bayes: hetprobit.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
vce(), lrmodel, and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
collinear and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Options

� � �
Model �

het(varlist [ , offset(varname𝑜) ]) specifies the independent variables and, optionally, the offset vari-
able in the variance function. het() is required.

offset(varname𝑜) specifies that selection offset varname𝑜 be included in the model with the coef-

ficient constrained to be 1.

noconstant, offset(varname); see [R] Estimation options.

asis forces the retention of perfect predictor variables and their associated perfectly predicted observa-
tions and may produce instabilities in maximization; see [R] probit.

constraints(constraints); see [R] Estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), that al-
low for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods

(bootstrap, jackknife); see [R] vce option.

� � �
Reporting �

level(#), lrmodel; see [R] Estimation options.

waldhet specifies that a Wald test of whether lnsigma = 0 be performed instead of the LR test.

nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. These options are

seldom used.

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

The following options are available with hetprobit but are not shown in the dialog box:

collinear, coeflegend; see [R] Estimation options.
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Remarks and examples
Remarks are presented under the following headings:

Introduction
Robust standard errors

Introduction
hetprobit fits a maximum-likelihood heteroskedastic probit model, which is a generalization of the

probit model. Let 𝑦𝑗, 𝑗 = 1, . . . , 𝑁, be a binary outcome variable taking on the value 0 (failure) or 1

(success). In the probit model, the probability that 𝑦𝑗 takes on the value 1 is modeled as a nonlinear

function of a linear combination of the 𝑘 independent variables x𝑗 = (𝑥1𝑗, 𝑥2𝑗, . . . , 𝑥𝑘𝑗),

Pr(𝑦𝑗 = 1) = Φ(x𝑗b)

in which Φ(⋅) is the cumulative distribution function (CDF) of a standard normal random variable, that is,

a normally distributed (Gaussian) random variable withmean 0 and variance 1. The linear combination of

the independent variables, x𝑗b, is commonly called the index function, or index. Heteroskedastic probit

generalizes the probit model by generalizing Φ(⋅) to a normal CDF with a variance that is no longer

fixed at 1 but can vary as a function of the independent variables. hetprobit models the variance as a
multiplicative function of these 𝑚 variables z𝑗 = (𝑧1𝑗, 𝑧2𝑗, . . . , 𝑧𝑚𝑗), following Harvey (1976):

𝜎2
𝑗 = { exp(z𝑗𝛄)}2

Thus, the probability of success as a function of all the independent variables is

Pr(𝑦𝑗 = 1) = Φ{x𝑗b/ exp(z𝑗𝛄)}

From this expression, it is clear that, unlike the index x𝑗b, no constant term can be present in z𝑗𝛄 if the

model is to be identifiable.

Suppose that the binary outcomes 𝑦𝑗 are generated by thresholding an unobserved random variable,

𝑤, which is normally distributed with mean x𝑗b and variance 1 such that

𝑦𝑗 = {1 if 𝑤𝑗 > 0
0 if 𝑤𝑗 ≤ 0

This process gives the probit model:

Pr(𝑦𝑗 = 1) = Pr(𝑤𝑗 > 0) = Φ(x𝑗b)

Now, suppose that the unobserved 𝑤𝑗 are heteroskedastic with variance

𝜎2
𝑗 = { exp(z𝑗𝛄)}2

Relaxing the homoskedastic assumption of the probit model in this manner yields our multiplicative

heteroskedastic probit model:

Pr(𝑦𝑗 = 1) = Φ{x𝑗b/ exp(z𝑗𝛄)}
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Example 1
For this example, we generate simulated data for a simple heteroskedastic probit model and then

estimate the coefficients with hetprobit:

. set obs 1000
Number of observations (_N) was 0, now 1,000.
. set seed 1234567
. generate x = 1-2*runiform()
. generate xhet = runiform()
. generate sigma = exp(1.5*xhet)
. generate p = normal((0.3+2*x)/sigma)
. generate y = cond(runiform()<=p,1,0)
. hetprobit y x, het(xhet)
Fitting probit model:
Iteration 0: Log likelihood = -688.33746
Iteration 1: Log likelihood = -610.48362
Iteration 2: Log likelihood = -610.3626
Iteration 3: Log likelihood = -610.3626
Fitting full model:
Iteration 0: Log likelihood = -610.3626
Iteration 1: Log likelihood = -600.8767
Iteration 2: Log likelihood = -600.10154
Iteration 3: Log likelihood = -600.01544
Iteration 4: Log likelihood = -600.01521
Iteration 5: Log likelihood = -600.01521
Heteroskedastic probit model Number of obs = 1,000

Zero outcomes = 451
Nonzero outcomes = 549
Wald chi2(1) = 54.20

Log likelihood = -600.0152 Prob > chi2 = 0.0000

y Coefficient Std. err. z P>|z| [95% conf. interval]

y
x 1.782479 .2421117 7.36 0.000 1.307949 2.257009

_cons .3140616 .0871121 3.61 0.000 .1433249 .4847982

lnsigma
xhet 1.31152 .3011689 4.35 0.000 .7212402 1.901801

LR test of lnsigma=0: chi2(1) = 20.69 Prob > chi2 = 0.0000



hetprobit — Heteroskedastic probit model 1179

Above, we created two variables, x and xhet, and then simulated the model

Pr(y = 1) = 𝐹{(𝛽0 + 𝛽1x)/ exp(𝛾1xhet)}

for 𝛽0 = 0.3, 𝛽1 = 2, and 𝛾1 = 1.5. According to hetprobit’s output, all coefficients are significant,
and, as we would expect, the Wald test of the full model versus the constant-only model—for example,

the index consisting of 𝛽0 + 𝛽1x versus that of just 𝛽0—is significant with 𝜒2(1) = 54. Likewise, the

likelihood-ratio test of heteroskedasticity, which tests the full model with heteroskedasticity against the

full model without, is significant with 𝜒2(1) = 21. See [R]Maximize for more explanation of the output.

For this simple model, hetprobit took five iterations to converge. As stated elsewhere (Greene 2018,
764), this is a difficult model to fit, and it is not uncommon for it to require many iterations or for the

optimizer to print out warnings and informative messages during the optimization. Slow convergence

is especially common for models in which one or more of the independent variables appear in both the

index and variance functions.

Technical note
Stata interprets a value of 0 as a negative outcome (failure) and treats all other values (except missing)

as positive outcomes (successes). Thus if your dependent variable takes on the values 0 and 1, then 0 is

interpreted as failure and 1 as success. If your dependent variable takes on the values 0, 1, and 2, then 0

is still interpreted as failure, but both 1 and 2 are treated as successes.

Robust standard errors
If you specify the vce(robust) option, hetprobit reports robust standard errors as described in

[U] 20.22 Obtaining robust variance estimates. To illustrate the effect of this option, we will reestimate

our coefficients by using the same model and data in our example, this time adding vce(robust) to our
hetprobit command.

Example 2
. hetprobit y x, het(xhet) vce(robust) nolog
Heteroskedastic probit model Number of obs = 1,000

Zero outcomes = 451
Nonzero outcomes = 549
Wald chi2(1) = 50.49

Log pseudolikelihood = -600.0152 Prob > chi2 = 0.0000

Robust
y Coefficient std. err. z P>|z| [95% conf. interval]

y
x 1.782479 .2508447 7.11 0.000 1.290832 2.274126

_cons .3140616 .087195 3.60 0.000 .1431625 .4849607

lnsigma
xhet 1.31152 .3059137 4.29 0.000 .7119406 1.9111

Wald test of lnsigma=0: chi2(1) = 18.38 Prob > chi2 = 0.0000
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The vce(robust) standard errors for two of the three parameters are larger than the previously reported
conventional standard errors. This is to be expected, even though (by construction) we have perfect model

specification because this option trades off efficient estimation of the coefficient variance–covariance

matrix for robustness against misspecification.

Specifying the vce(cluster clustvar) option relaxes the usual assumption of independence between
observations to the weaker assumption of independence just between clusters; that is, hetprobit,
vce(cluster clustvar) is robust with respect to within-cluster correlation. This option is less effi-

cient than the xtgee population-averaged models because hetprobit inefficiently sums within cluster
for the standard error calculation rather than attempting to exploit what might be assumed about the

within-cluster correlation.

Stored results
hetprobit stores the following in e():

Scalars

e(N) number of observations

e(N f) number of zero outcomes

e(N s) number of nonzero outcomes

e(k) number of parameters

e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test

e(k dv) number of dependent variables

e(df m) model degrees of freedom

e(ll) log likelihood

e(ll 0) log likelihood, constant-only model

e(ll c) log likelihood, comparison model

e(N clust) number of clusters

e(chi2) 𝜒2

e(chi2 c) 𝜒2 for heteroskedasticity test

e(p c) 𝑝-value for heteroskedasticity test
e(df m c) degrees of freedom for heteroskedasticity test

e(p) 𝑝-value for model test
e(rank) rank of e(V)
e(rank0) rank of e(V) for constant-only model
e(ic) number of iterations

e(rc) return code

e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) hetprobit
e(cmdline) command as typed

e(depvar) name of dependent variable

e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(clustvar) name of cluster variable

e(offset1) offset for probit equation

e(offset2) offset for variance equation

e(chi2type) Wald or LR; type of model 𝜒2 test

e(chi2 ct) Wald or LR; type of model 𝜒2 test corresponding to e(chi2 c)
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(opt) type of optimization

e(which) max or min; whether optimizer is to perform maximization or minimization
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e(method) ml
e(ml method) type of ml method
e(user) name of likelihood-evaluator program

e(technique) maximization technique

e(properties) b V
e(predict) program used to implement predict
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(ilog) iteration log (up to 20 iterations)

e(gradient) gradient vector

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():
Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas
The heteroskedastic probit model is a generalization of the probit model because it allows the scale

of the inverse link function to vary from observation to observation as a function of the independent

variables.

The log-likelihood function for the heteroskedastic probit model is

ln𝐿 = ∑
𝑗∈𝑆

𝑤𝑗 lnΦ{x𝑗β/ exp(z𝛄)} + ∑
𝑗∉𝑆

𝑤𝑗 ln[1 − Φ{x𝑗β/ exp(z𝛄)}]

where 𝑆 is the set of all observations 𝑗 such that 𝑦𝑗 ≠ 0 and 𝑤𝑗 denotes the optional weights. ln𝐿 is

maximized as described in [R]Maximize.

This command supports the Huber/White/sandwich estimator of the variance and its clustered version

using vce(robust) and vce(cluster clustvar), respectively. See [P] robust, particularly Maximum

likelihood estimators and Methods and formulas.

hetprobit also supports estimation with survey data. For details on VCEs with survey data, see

[SVY] Variance estimation.
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Also see
[R] hetprobit postestimation — Postestimation tools for hetprobit

[R] hetoprobit — Heteroskedastic ordered probit regression

[R] logistic — Logistic regression, reporting odds ratios

[R] probit — Probit regression

[BAYES] bayes: hetprobit — Bayesian heteroskedastic probit regression

[SVY] svy estimation — Estimation commands for survey data

[XT] xtprobit — Random-effects and population-averaged probit models

[U] 20 Estimation and postestimation commands



hetprobit postestimation — Postestimation tools for hetprobit

Postestimation commands predict margins Remarks and examples Also see

Postestimation commands
The following postestimation commands are available after hetprobit:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters

estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian infor-
mation criteria (AIC, CAIC, AICc, and BIC, respectively)

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estat (svy) postestimation statistics for survey data

estimates cataloging estimation results

etable table of estimation results
∗ forecast dynamic forecasts and simulations
∗ hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

linktest link test for model specification
∗ lrtest likelihood-ratio test

margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

predict probabilities, linear predictions, etc.

predictnl point estimates, standard errors, testing, and inference for generalized predictions

pwcompare pairwise comparisons of parameters

suest seemingly unrelated estimation

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

∗forecast, hausman, and lrtest are not appropriate with svy estimation results.
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predict

Description for predict
predict creates a new variable containing predictions such as probabilities, linear predictions, and

standard deviations.

Menu for predict
Statistics > Postestimation

Syntax for predict
predict [ type ] newvar [ if ] [ in ] [ , statistic nooffset ]

predict [ type ] stub* [ if ] [ in ], scores

statistic Description

Main

pr probability of a positive outcome; the default

xb linear prediction

sigma standard deviation of the error term

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for the estimation
sample.

Options for predict

� � �
Main �

pr, the default, calculates the probability of a positive outcome.

xb calculates the linear prediction.

sigma calculates the standard deviation of the error term.

nooffset is relevant only if you specified offset(varname) for hetprobit. It modifies the calcula-
tions made by predict so that they ignore the offset variable; the linear prediction is treated as x𝑗b

rather than as x𝑗b + offset𝑗.

scores calculates equation-level score variables.

The first new variable will contain 𝜕ln𝐿/𝜕(x𝑗β).
The second new variable will contain 𝜕ln𝐿/𝜕(z𝑗𝛄).



hetprobit postestimation — Postestimation tools for hetprobit 1185

margins

Description for margins
margins estimates margins of response for probabilities, linear predictions, and standard deviations.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist ] [ , options ]
margins [marginlist ] , predict(statistic ...) [ predict(statistic ...) ... ] [ options ]

statistic Description

pr probability of a positive outcome; the default

xb linear prediction

sigma standard deviation of the error term

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.

Remarks and examples
Once you have fit a model, you can use the predict command to obtain the predicted probabilities for

both the estimation sample and other samples; see [U] 20 Estimation and postestimation commands

and [R] predict. predict without arguments calculates the predicted probability of a positive outcome.
With the xb option, predict calculates the index function combination, x𝑗b, where x𝑗 are the indepen-

dent variables in the 𝑗th observation and b is the estimated parameter vector. With the sigma option,
predict calculates the predicted standard deviation, 𝜎𝑗 = exp(z𝑗𝛄).
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Example 1
We use predict to compute the predicted probabilities and standard deviations based on the model

in example 2 in [R] hetprobit to compare these with the actual values:

. predict phat
(option pr assumed; Pr(y))
. generate diff_p = phat - p
. summarize diff_p

Variable Obs Mean Std. dev. Min Max

diff_p 1,000 .0082805 .0103027 -.0169849 .0396469
. predict sigmahat, sigma
. generate diff_s = sigmahat - sigma
. summarize diff_s

Variable Obs Mean Std. dev. Min Max

diff_s 1,000 -.2579493 .2126614 -.7661171 -.000025

Also see
[R] hetprobit — Heteroskedastic probit model

[U] 20 Estimation and postestimation commands
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Description Quick start
Menu Syntax
Options for maximum likelihood estimation Options for two-step GLS estimation
Remarks and examples Stored results
Methods and formulas References
Also see

Description
hetregress fits a multiplicative heteroskedastic linear regression by modeling the variance as an

exponential function of the specified variables using either maximum likelihood (ML; the default) or

Harvey’s two-step generalized least-squares (GLS) method.

Quick start
Heteroskedastic regression model of y on x1, using x2 to model the variance

hetregress y x1, het(x2)

Using Harvey’s two-step GLS estimator instead of the default ML

hetregress y x1, het(x2) twostep

With robust standard errors

hetregress y x1, het(x2) vce(robust)

Perform a Wald test on the variance instead of a likelihood-ratio (LR) test

hetregress y x1, het(x2) waldhet

Menu
Statistics > Linear models and related > Heteroskedastic linear regression
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Syntax
Maximum likelihood estimation

hetregress depvar [ indepvars ] [ if ] [ in ] [weight ] [ , ml options ]

Two-step GLS estimation

hetregress depvar [ indepvars ] [ if ] [ in ], twostep het(varlist) [ ts options ]

ml options Description

Model

mle use maximum likelihood estimator; the default

het(varlist) independent variables to model the variance

noconstant suppress constant term

constraints(constraints) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, opg, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)
lrmodel perform the LR model test instead of

the default Wald model test

waldhet perform Wald test on variance instead of LR test

nocnsreport do not display constraints

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

collinear keep collinear variables

coeflegend display legend instead of statistics
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ts options Description

Model
∗ twostep use two-step GLS estimator; default is maximum likelihood
∗ het(varlist) independent variables to model the variance

noconstant suppress constant term

SE

vce(vcetype) vcetype may be conventional, bootstrap, or jackknife

Reporting

level(#) set confidence level; default is level(95)
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

coeflegend display legend instead of statistics

∗twostep and het() are required.

indepvars and varlist may contain factor variables; see [U] 11.4.3 Factor variables.

depvar, indepvars, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.

bayes, bootstrap, by, collect, fp, jackknife, rolling, statsby, and svy are allowed; see [U] 11.1.10 Prefix com-

mands. For more details, see [BAYES] bayes: hetregress.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
aweights are not allowed with the jackknife prefix; see [R] jackknife.
vce(), lrmodel, twostep, and weights are not allowed with the svy prefix; see [SVY] svy.
aweights, fweights, iweights, and pweights are allowed with maximum likelihood estimation; see [U] 11.1.6 weight.

collinear and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options for maximum likelihood estimation

� � �
Model �

mle requests that the maximum likelihood estimator be used. This is the default.

het(varlist) specifies the independent variables in the variance function. When the het() option is not
specified, homoskedasticity is assumed and the waldhet option is not allowed.

noconstant, constraints(constraints); see [R] Estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), that al-
low for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods

(bootstrap, jackknife); see [R] vce option.
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� � �
Reporting �

level(#), lrmodel; see [R] Estimation options.

waldhet specifies that the Wald test of whether lnsigma2 = 0 be performed instead of the LR test.

nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. These options are

seldom used.

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

The following options are available with hetregress but are not shown in the dialog box:

collinear, coeflegend; see [R] Estimation options.

Options for two-step GLS estimation

� � �
Model �

twostep specifies that the model be fit using Harvey’s two-step GLS estimator. This option requires that
the independent variables be specified in the het() option to model the variance.

het(varlist) specifies the independent variables in the variance function.

noconstant; see [R] Estimation options.

� � �
SE �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived

from asymptotic theory (conventional) and that use bootstrap or jackknife methods (bootstrap,
jackknife); see [R] vce option.

vce(conventional), the default, uses the two-step variance estimator derived by Heckman.

� � �
Reporting �

level(#); see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

The following option is available with hetregress but is not shown in the dialog box:

coeflegend; see [R] Estimation options.
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Remarks and examples
Remarks are presented under the following headings:

Introduction
Maximum likelihood estimation
Two-step GLS estimation

Introduction
hetregress fits a multiplicative heteroskedastic linear regression model using eitherML or Harvey’s

two-step GLSmethod. Multiplicative heteroskedasticity occurs when the variances of the error terms are

assumed to be a multiplicative function of one or more variables. When variables are not specified in the

het() option, hetregress fits a homoskedastic linear regression model.

Heteroskedasticity arises in a regression when the variances of the error terms are not constant across

observations. For example, wages may be heteroskedastic when predicted by age group. While there is

little variability in wages among workers in their teens and early 20s, wages among workers in their 50s

may vary greatly because of a variety of factors. Heteroskedasticity is often found in time-series data and

cross-sectional measurements and is a common issue in econometrics, social science, and many other

fields. For more detailed information on how to detect the presence of heteroskedasticity, see Tests for

violation of assumptions in [R] regress postestimation.

We can use hetregress when the variance is assumed to have a form that is an exponential function

of a linear combination of one or more variables. This is known as multiplicative heteroskedasticity and

includes most of the useful formulations for variance as special cases. For example, in the special case

of groupwise heteroskedasticity, the sample can be divided into groups where each group has a different

variance.

Amodel with multiplicative heteroskedasticity can be written as

𝑦𝑖 = x𝑖β + 𝜖𝑖; 𝜎2
𝑖 = exp(z𝑖α) (1)

where 𝑦𝑖, 𝑖 = 1, . . . , 𝑛, is the dependent variable; x𝑖 = (𝑥1𝑖, 𝑥2𝑖, . . . , 𝑥𝑘𝑖) are the 𝑘 independent vari-

ables that model the mean function; and z𝑖 = (𝑧1𝑖, 𝑧2𝑖, . . . , 𝑧𝑚𝑖) are the 𝑚 variables that model the

variance function. β’s are unknown parameters in the mean function, and α’s are unknown parameters
in the variance function. 𝜖𝑖’s are errors that are independent and identically distributed with mean 0

and variance 𝜎2
𝑖 . Groupwise heteroskedasticity is modeled using (1) but where the z𝑖’s are all indicator

(dummy) variables for groups.

Harvey (1976) introduced two methods for dealing with multiplicative heteroskedasticity: ML esti-

mation and two-step GLS estimation. By default, hetregress fits the multiplicative heteroskedastic

regression model using ML. If the twostep option is specified, hetregress fits the model using the

two-step GLS method. The ML estimates are more efficient than those obtained by the GLS estimator if

the mean and variance function are correctly specified and the errors are normally distributed. By con-

trast, the two-step GLS estimates are more robust if the variance function is incorrect or the errors are

nonnormal.

If the form of the variance is completely unknown, we may be better off using the OLS estimator

instead of the ML and GLS estimators because it remains unbiased. However, we should then use the

robust standard errors to correct for heteroskedasticity. Using robust standard errors for the OLS estimator

allows us to make appropriate inferences without specifying any form for the variance. We discuss three

modifications of the robust variance calculation in Robust standard errors of [R] regress.
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If the form of the variance is known and does not contain any unknown parameters, we can use the

weighted least-squares estimator, also called the generalized least-squares estimator. For example, we

can use weighted least squares to correct for heteroskedasticity if the variance is proportional to one

of the regressors. See section 9.5.2 of Greene (2018) for details, and also see Weighted regression in

[R] regress.

Greene (2018) and Hill, Griffiths, and Lim (2018) compare the ML estimator and the GLS estimator

with the robust OLS estimator. If the form of the heteroskedasticity is specified correctly, theML and GLS

estimators are more efficient than the robust OLS estimator. However, if the form of the heteroskedasticity

is misspecified, the robust OLS estimator may be more efficient than the ML and GLS estimators.

Maximum likelihood estimation

Example 1: Multiplicative heteroskedasticity
Consider the following dataset from a study of household expenditure on food described in Hill,

Griffiths, and Lim (2018, chap. 8). We want to investigate the relationship between average household

expenditure on food and household income by fitting a model of weekly food expenditure (food exp)
on weekly income (income) using OLS.

. use https://www.stata-press.com/data/r18/foodexp
(Household expenditure on food)
. regress food_exp income
(output omitted )

However, we suspect that the variance for low-income families may be lower than that for high-

income families, because low-income families usually have less money to spend on food, while high-

income families can choose to spend more or less on food. We plot the least-squares residuals against

the value of income by using the rvpplot command after regress.

. rvpplot income, yline(0)
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The graph confirms our suspicions about a relationship between income and the residuals. We believe

that the variance is some power function of income. Therefore, we fit a multiplicative heteroskedastic
regression model. The model for each observation is

food exp𝑖 = 𝛽0 + 𝛽1 × income𝑖 + 𝜖𝑖

and the variance function can be written as

𝜎2
𝑖 = 𝜎2 × income𝛾

𝑖

where 𝛾 is an unknown parameter of the variance function. To ensure that we will get positive values for
the variance 𝜎2

𝑖 for all possible values of the unknown parameter 𝛾, we rewrite this function so that 𝜎2
𝑖

is an exponential function of a linear combination of ln(income𝑖) and a constant term:

𝜎2
𝑖 = exp{𝛼0 + 𝛼1 × ln(income𝑖)}

where 𝛼0 = ln(𝜎2) and 𝛼1 = 𝛾.
To fit this model using hetregress, we first create a variable that contains the logarithm of income

(logincome) and use it in the het() option to model the variance function. The constant term in the

variance function is always assumed.

. generate double logincome = ln(income)

. hetregress food_exp income, het(logincome)
Fitting full model:
Iteration 0: Log likelihood = -227.889
Iteration 1: Log likelihood = -226.61039
Iteration 2: Log likelihood = -225.72188
Iteration 3: Log likelihood = -225.71519
Iteration 4: Log likelihood = -225.71519
Heteroskedastic linear regression Number of obs = 40
ML estimation

Wald chi2(1) = 135.11
Log likelihood = -225.7152 Prob > chi2 = 0.0000

food_exp Coefficient Std. err. z P>|z| [95% conf. interval]

food_exp
income 10.63444 .9148876 11.62 0.000 8.841295 12.42759
_cons 76.07294 7.369143 10.32 0.000 61.62969 90.5162

lnsigma2
logincome 2.769762 .4481606 6.18 0.000 1.891383 3.648141

_cons .4684052 1.310337 0.36 0.721 -2.099809 3.036619

LR test of lnsigma2=0: chi2(1) = 19.59 Prob > chi2 = 0.0000

The LR test at the bottom of the output is a test for the parameters of the variance function. The 𝜒2(1)
statistic of 19.59 is significant, indicating that heteroskedasticity is present. If we had preferred theWald

test for heteroskedasticity instead of the LR test, we would have specified the waldhet option.

In addition to the estimated parameters for the mean function (under food exp), hetregress re-

ports estimated parameters and test statistics for the variance function. The significant 𝑧 statistic for
logincome also suggests the presence of heteroskedasticity. Relating the output back to our model,

exp(0.47) ≈ 1.60 is our estimate of 𝜎2. The coefficient for logincome is 2.77. This is our estimate of
𝛾, and it can be interpreted as the multiplicative factor of the variance associated with income.
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We can obtain more formal results by using nlcom:

. nlcom (sigma2: exp(_b[lnsigma2:_cons]))
sigma2: exp(_b[lnsigma2:_cons])

food_exp Coefficient Std. err. z P>|z| [95% conf. interval]

sigma2 1.597445 2.093191 0.76 0.445 -2.505135 5.700024

Here sigma2 refers to 𝜎2 in the variance function given above.

Two-step GLS estimation

Example 2: Groupwise heteroskedasticity
Here we will use a dataset of 725 faculty members’ salaries described in DeMaris (2004) to determine

whether there is evidence of a difference in salaries between male faculty and female faculty. In addition

to sex (female), other variables that might affect the salaries are prior experience (priorexp), years in
rank (yrrank), years at the university (yrbg), and marketability of discipline (salfac). We will treat

female as a factor variable and all other variables as continuous variables.
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We could fit this model with regress by including main effects and the interaction terms between
female and all other variables (by using factor-variable notation).

. use https://www.stata-press.com/data/r18/salary, clear
(DeMaris (2004) - Faculty salaries)
. regress salary i.female##(c.priorexp c.yrrank c.yrbg c.salfac)

Source SS df MS Number of obs = 725
F(9, 715) = 135.23

Model 8.9287e+10 9 9.9207e+09 Prob > F = 0.0000
Residual 5.2453e+10 715 73360978.8 R-squared = 0.6299

Adj R-squared = 0.6253
Total 1.4174e+11 724 195773163 Root MSE = 8565.1

salary Coefficient Std. err. t P>|t| [95% conf. interval]

1.female 5735.113 4987.433 1.15 0.251 -4056.65 15526.88
priorexp 1042.845 82.62092 12.62 0.000 880.6366 1205.054
yrrank -47.80904 99.85936 -0.48 0.632 -243.8617 148.2436

yrbg 1009.12 75.5161 13.36 0.000 860.8607 1157.38
salfac 33601.3 2531.61 13.27 0.000 28631.02 38571.58

female#
c.priorexp

1 -662.7972 159.6171 -4.15 0.000 -976.1715 -349.4228

female#
c.yrrank

1 -447.8621 218.8695 -2.05 0.041 -877.5659 -18.15833

female#c.yrbg
1 115.4784 157.9372 0.73 0.465 -194.5976 425.5545

female#
c.salfac

1 -7618.157 5142.204 -1.48 0.139 -17713.78 2477.467

_cons 2137.718 2634.266 0.81 0.417 -3034.103 7309.539

However, we believe that the variances differ between female faculty and male faculty. In this case,

we will use estat hettest to perform the Breusch and Pagan (1979) test for heteroskedasticity. See

Tests for violation of assumptions in [R] regress postestimation for more detailed information.

. estat hettest i.female
Breusch--Pagan/Cook--Weisberg test for heteroskedasticity
Assumption: Normal error terms
Variable: i.female
H0: Constant variance

chi2(1) = 11.80
Prob > chi2 = 0.0006

The results above suggest the presence of heteroskedasticity with respect to sex. This is a case

of groupwise heteroskedasticity and can be modeled using hetregress by treating the sex variable

(female) as a factor variable (i.female) in the het() option.
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We add the twostep option to obtain two-step GLS estimates instead of ML estimates.

. hetregress salary i.female##(c.priorexp c.yrrank c.yrbg c.salfac),
> het(i.female) twostep
Heteroskedastic linear regression Number of obs = 725
Two-step GLS estimation

Wald chi2(9) = 1270.02
Prob > chi2 = 0.0000

salary Coefficient Std. err. z P>|z| [95% conf. interval]

salary
1.female 5735.113 4459.648 1.29 0.198 -3005.635 14475.86
priorexp 1042.845 89.0886 11.71 0.000 868.2348 1217.456
yrrank -47.80904 107.6765 -0.44 0.657 -258.8511 163.233

yrbg 1009.12 81.4276 12.39 0.000 849.5253 1168.716
salfac 33601.3 2729.788 12.31 0.000 28251.01 38951.59

female#
c.priorexp

1 -662.7972 142.2286 -4.66 0.000 -941.5601 -384.0342

female#
c.yrrank

1 -447.8621 191.2937 -2.34 0.019 -822.7908 -72.93342

female#c.yrbg
1 115.4784 138.9659 0.83 0.406 -156.8898 387.8467

female#
c.salfac

1 -7618.157 4544.735 -1.68 0.094 -16525.67 1289.359

_cons 2137.718 2840.48 0.75 0.452 -3429.52 7704.956

lnsigma2
1.female -.5676939 .1808783 -3.14 0.002 -.9222088 -.2131789

_cons 17.90879 .0982708 182.24 0.000 17.71618 18.1014

Wald test of lnsigma2=0: chi2(1) = 9.85 Prob > chi2 = 0.0017

TheWald test for heteroskedasticity is reported at the bottom of the coefficient table instead of the LR

test because there is no likelihood computed for the two-step GLS estimation.

Compared with the OLS results obtained using regress, the estimated coefficients for the mean func-
tion are not affected by heteroskedasticity, but their standard errors are. Also, the estimated variance in

salaries for female faculty is about exp(−0.6) ≈ 0.5 times the estimated variance in salaries for male

faculty.

The results above suggest that priorexp, yrbg, and salfac have significant effects on the salary of
male faculty. We see also that the effects of priorexp and yrrank on salaries are significantly different
between males and females. For example, each additional year of experience for male faculty increases

their salary by $1,042.85, and the estimated difference in effect is $662.80 less for female faculty than

for male faculty.
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To obtain an estimate for female faculty of the effect of experience on salary, we can use lincom.

. lincom priorexp + 1.female#c.priorexp
( 1) [salary]priorexp + [salary]1.female#c.priorexp = 0

salary Coefficient Std. err. z P>|z| [95% conf. interval]

(1) 380.0481 110.8702 3.43 0.001 162.7465 597.3497

We see that each additional year of experience increases salary by only $380.05 and that this effect is

significant.

We can estimate the effect of each of the other variables on the salaries of female faculty if we wish.

. lincom yrrank + 1.female#c.yrrank
( 1) [salary]yrrank + [salary]1.female#c.yrrank = 0

salary Coefficient Std. err. z P>|z| [95% conf. interval]

(1) -495.6711 158.1108 -3.13 0.002 -805.5627 -185.7796

The effect of yrrank is associated with a decrease in salary. The effect is significant for female faculty
but not for male faculty.

Stored results
hetregress (ML) stores the following in e():

Scalars

e(N) number of observations

e(k) number of parameters

e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test

e(k dv) number of dependent variables

e(df m) model degrees of freedom

e(ll) log likelihood, full model

e(ll 0) log likelihood, constant-only model

e(ll c) log likelihood, comparison model

e(N clust) number of clusters

e(chi2) 𝜒2 for mean model test

e(chi2 c) 𝜒2 for heteroskedasticity test

e(p c) 𝑝-value for heteroskedasticity test
e(df m c) degrees of freedom for heteroskedasticity test

e(p) 𝑝-value for the mean model test
e(rank) rank of e(V)
e(rank0) rank of e(V) for constant-only model
e(ic) number of iterations

e(rc) return code

e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) hetregress
e(cmdline) command as typed

e(depvar) name of dependent variable

e(wtype) weight type

e(wexp) weight expression
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e(title) title in estimation output

e(title2) secondary title in estimation output

e(clustvar) name of cluster variable

e(chi2type) Wald or LR; type of model 𝜒2 test

e(chi2 ct) Wald or LR; type of heteroskedastic 𝜒2 test corresponding to e(chi2 c)
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(opt) type of optimization

e(which) max or min; whether optimizer is to perform maximization or minimization

e(method) ml
e(ml method) type of ml method
e(user) name of likelihood-evaluator program

e(technique) maximization technique

e(properties) b V
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(ilog) iteration log (up to 20 iterations)

e(gradient) gradient vector

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

hetregress (two-step GLS) stores the following in e():

Scalars

e(N) number of observations

e(k) number of parameters

e(df m) model degrees of freedom

e(chi2) 𝜒2 for mean model test

e(chi2 c) 𝜒2 for heteroskedasticity test

e(p c) 𝑝-value for heteroskedasticity test
e(df m c) degrees of freedom for heteroskedasticity test

e(p) 𝑝-value for the mean model test
e(rank) rank of e(V)

Macros

e(cmd) hetregress
e(cmdline) command as typed

e(depvar) name of dependent variable

e(title) title in estimation output

e(title2) secondary title in estimation output

e(chi2type) Wald; type of model 𝜒2 test

e(chi2 ct) Wald; type of heteroskedastic 𝜒2 test corresponding to e(chi2 c)
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e(vce) vcetype specified in vce()
e(method) twostep
e(properties) b V
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of the estimators

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas
Methods and formulas are presented under the following headings:

Maximum likelihood estimation
Two-step GLS estimation

Maximum likelihood estimation
By default, hetregress fits a multiplicative heteroskedastic regression using ML estimation. The

log-likelihood function is

ln 𝐿 =
𝑛

∑
𝑖=1

𝑤𝑖
2

{(𝑦𝑖 − x𝑖β)2

exp(z𝑖α)
− ln(2𝜋) − z𝑖α}

where 𝑦𝑖, 𝑖 = 1, . . . , 𝑛, is the dependent variable; x𝑖 = (𝑥1𝑖, 𝑥2𝑖, . . . , 𝑥𝑘𝑖) are the 𝑘 independent vari-

ables that model the mean function; z𝑖 = (𝑧1𝑖, 𝑧2𝑖, . . . , 𝑧𝑚𝑖) are the 𝑚 variables that model the variance

function; and 𝑤𝑖 are the weights. β is a column vector of unknown parameters in the mean function,

and α is a column vector of unknown parameters in the variance function. The GLS estimates β̂
GLS

and

α̂GLS (described below) are used as the initial values in ML estimation. The ln 𝐿 function is maximized

as described in [R]Maximize.

This command supports the Huber/White/sandwich estimator of the variance and its clustered version

using vce(robust) and vce(cluster clustvar), respectively. See [P] robust, particularly Maximum

likelihood estimators and Methods and formulas.

hetregress also supports estimation with survey data. For details on VCEs with survey data, see

[SVY] Variance estimation.
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Two-step GLS estimation
hetregress uses two-step GLS estimation when the twostep option is specified. Harvey (1976)

describes the procedure in detail, but here are the main steps.

1. Use OLS to estimate regression coefficients β and compute residuals e𝑖, 𝑖 = 1, . . . , 𝑛.

2. Use OLS to regress the log-squared residuals, ln(e2
𝑖 ), on z and estimate α.

3. Perform correction for the OLS estimates of α to obtain α̂𝑐 and their covariance matrix based on

Harvey (1976).

4. Compute 𝜎𝑖
2 = exp(z𝑖α̂𝑐), 𝑖 = 1, . . . , 𝑛.

5. Refit the original regression model using 𝜎𝑖
2
’s as weights to obtain the GLS estimates α̂GLS and

β̂
GLS

.
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Also see
[R] hetregress postestimation — Postestimation tools for hetregress

[R] regress — Linear regression

[BAYES] bayes: hetregress — Bayesian heteroskedastic linear regression

[SVY] svy estimation — Estimation commands for survey data

[U] 20 Estimation and postestimation commands
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Postestimation commands predict margins Remarks and examples Also see

Postestimation commands
The following postestimation commands are available after hetregress:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters
∗ estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian infor-

mation criteria (AIC, CAIC, AICc, and BIC, respectively)

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)
∗ estat (svy) postestimation statistics for survey data

estimates cataloging estimation results

etable table of estimation results
† forecast dynamic forecasts and simulations
† hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

linktest link test for model specification
∗† lrtest likelihood-ratio test

margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

predict linear predictions and their SEs, etc.

predictnl point estimates, standard errors, testing, and inference for generalized predictions

pwcompare pairwise comparisons of parameters
∗ suest seemingly unrelated estimation

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

∗estat ic, estat (svy), lrtest, and suest are not appropriate after hetregress, twostep.
†forecast, hausman, and lrtest are not appropriate with svy estimation results.
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predict

Description for predict
predict creates a new variable containing predictions such as linear predictions, standard errors, and

standard deviations.

Menu for predict
Statistics > Postestimation

Syntax for predict
After ML or two-step

predict [ type ] newvar [ if ] [ in ] [ , statistic ]

After ML

predict [ type ] stub* [ if ] [ in ], scores

statistic Description

Main

xb linear prediction; the default

stdp standard error of the linear prediction

sigma standard deviation of the error term

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for the estimation
sample.

Options for predict

� � �
Main �

xb, the default, calculates the linear prediction.

stdp calculates the standard errors of the linear prediction.

sigma calculates the standard deviations of the error term.

scores calculates equation-level score variables.

The first new variable will contain the derivative of the log likelihood with respect to the regression

equation, 𝜕 ln𝐿/𝜕(x𝑖β).
The second new variable will contain the derivative of the log likelihood with respect to the scale

equation (lnsigma2), 𝜕 ln𝐿/𝜕(z𝑖α).
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margins

Description for margins
margins estimates margins of response for linear predictions and of standard deviations.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist ] [ , options ]
margins [marginlist ] , predict(statistic ...) [ predict(statistic ...) ... ] [ options ]

statistic Description

xb linear prediction; the default

stdp not allowed with margins
sigma standard deviation of the error term

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.

Remarks and examples
Once you have fit a heteroskedastic regression model, you can use the predict command to obtain

the predicted values both for the estimation sample and for other samples; see [U] 20 Estimation and

postestimation commands and [R] predict. predict without arguments calculates the linear predic-
tion from the fitted model x𝑖b, where x𝑖 are the independent variables in the 𝑗th observation and b is the
estimated parameter vector for the mean model. With the stdp option, predict calculates the standard
error of the linear prediction. With the sigma option, predict calculates the predicted standard devia-
tions of the error term, �̂�𝑗 = exp(0.5 × z𝑖a), where g is the estimated parameter vector for the variance
model.
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Example 1: Predicting heteroskedastic standard deviation
We can use predict to compute the predicted values of the standard deviations for female and male

faculty based on the model from example 2 in [R] hetregress.

. use https://www.stata-press.com/data/r18/salary
(DeMaris (2004) - Faculty salaries)
. hetregress salary i.female##(c.priorexp c.yrrank c.yrbg c.salfac),
> het(i.female) twostep
(output omitted )

. predict sigma, sigma

. tabulate female, summarize(sigma)
Summary of Heteroskedastic standard

1 = female; deviation
0 = male Mean Std. dev. Freq.

0 7741.8481 0 511
1 5828.6973 0 214

Total 7177.1388 873.22924 725

The predicted standard deviation for male faculty is 7742/5829 ≈ 1.3 times the size for female

faculty. We could have obtained the same results using margins with the predict(sigma) option.

Example 2: Marginal means
We can use margins to compute the adjusted mean salary for male and female faculty when other

factors are fixed at their means:

. margins female, atmeans
Adjusted predictions Number of obs = 725
Model VCE: Conventional
Expression: Linear prediction, predict()
At: priorexp = 2.89931 (mean)

yrrank = 7.397241 (mean)
yrbg = 12.52966 (mean)
salfac = .9399862 (mean)

Delta-method
Margin std. err. z P>|z| [95% conf. interval]

female
0 49036.29 420.3711 116.65 0.000 48212.37 49860.2
1 43822.74 569.9368 76.89 0.000 42705.69 44939.8

If everyone in the population were male faculty while holding all other factors at their mean values,

the average salary would be $49,036. If, instead, everyone were female faculty, the average salary would

be $43,823.

Also see
[R] hetregress — Heteroskedastic linear regression

[U] 20 Estimation and postestimation commands
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Description Quick start Menu Syntax Options Remarks and examples
References Also see

Description
histogram draws histograms of varname, which is assumed to be the name of a continuous variable

unless the discrete option is specified.

hist is a synonym for histogram.

Quick start
Histogram of v1

histogram v1

Add a normal density curve to the graph

histogram v1, normal

Add a kernal density estimate to the graph

histogram v1, normal kdensity

Add “My Title” as the title of the graph

histogram v1, normal kdensity title(”My Title”)

Specify the number of bins as 10

histogram v1, bins(10)

Specify the width of the bins as 2

histogram v1, width(2)

Specify that v2 should be treated as discrete
histogram v2, discrete

Same as above, but with narrower bars and space between the bars

histogram v2, discrete barwidth(.8)

Add labels to the bars on the 𝑥 axis

histogram v2, discrete barwidth(.8) xlabel(1 ”Category 1” ///
2 ”Category 2” 3 ”Category 3” 4 ”Category 4”)

Show frequencies on the 𝑦 axis
histogram v1, frequency

Show percentages on the 𝑦 axis
histogram v1, percent

Produce histograms for each value of categorical variable catvar
histogram v1, by(catvar)

Same as above, but with histograms arranged in a single column

histogram v1, by(cvar, cols(1))

1205
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Menu
Graphics > Histogram

Syntax
histogram varname [ if ] [ in ] [weight ] [ , [ continuous opts | discrete opts ] options ]

continuous opts Description

Main

bins(#) set number of bins to #

width(#) set width of bins to #

start(#) set lower limit of first bin to #

discrete opts Description

Main

discrete specify that data are discrete

width(#) set width of bins to #

start(#) set theoretical minimum value to #

options Description

Main

density draw as density; the default

fraction draw as fractions

frequency draw as frequencies

percent draw as percentages

bar options rendition of bars

binrescale recalculate bin sizes when by() is specified
addlabels add height labels to bars

addlabopts(marker label options) affect rendition of labels

Density plots

normal add a normal density to the graph

normopts(line options) affect rendition of normal density

kdensity add a kernel density estimate to the graph

kdenopts(kdensity options) affect rendition of kernel density

Add plots

addplot(plot) add other plots to the histogram

Y axis, X axis, Titles, Legend, Overall, By

twoway options any options documented in [G-3] twoway options

fweights are allowed; see [U] 11.1.6 weight.
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Options
Options are presented under the following headings:

Options for use in the continuous case
Options for use in the discrete case
Options for use in the continuous and discrete cases

Options for use in the continuous case

� � �
Main �

bins(#) and width(#) are alternatives. They specify how the data are to be aggregated into bins:

bins() by specifying the number of bins (from which the width can be derived) and width() by

specifying the bin width (from which the number of bins can be derived).

If neither option is specified, results are the same as if bins(k) had been specified, where

𝑘 = min{sqrt(𝑁), 10 ln(𝑁)/ln(10)}

and where 𝑁 is the (weighted) number of observations.

start(#) specifies the theoretical minimum of varname. The default is start(m), where m is the

observed minimum value of varname.

Specify start() when you are concerned about sparse data, for instance, if you know that varname

can have a value of 0, but you are concerned that 0 may not be observed.

start(#), if specified, must be less than or equal to m, or else an error will be issued.

Options for use in the discrete case

� � �
Main �

discrete specifies that varname is discrete and that you want each unique value of varname to have its
own bin (bar of histogram).

width(#) is rarely specified in the discrete case; it specifies the width of the bins. The default is

width(d), where d is the observed minimum difference between the unique values of varname.

Specify width() if you are concerned that your data are sparse. For example, in theory varname

could take on the values, say, 1, 2, 3, . . . , 9, but because of the sparseness, perhaps only the values

2, 4, 7, and 8 are observed. Here the default width calculation would produce width(2), and you
would want to specify width(1).

start(#) is also rarely specified in the discrete case; it specifies the theoretical minimum value of

varname. The default is start(m), where m is the observed minimum value.

As with width(), specify start(#) if you are concerned that your data are sparse. In the previous
example, you might also want to specify start(1). start() does nothing more than add white

space to the left side of the graph.

The value of # in start() must be less than or equal to m, or an error will be issued.
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Options for use in the continuous and discrete cases

� � �
Main �

density, fraction, frequency, and percent specify whether you want the histogram scaled to den-

sity units, fractional units, frequencies, or percentages. density is the default.

density scales the height of the bars so that the sum of their areas equals 1.

fraction scales the height of the bars so that the sum of their heights equals 1.

frequency scales the height of the bars so that each bar’s height is equal to the number of observations
in the category. Thus the sum of the heights is equal to the total number of observations.

percent scales the height of the bars so that the sum of their heights equals 100.

bar options are any of the options allowed by graph twoway bar; see [G-2] graph twoway bar.

One of the most useful bar options is barwidth(#), which specifies the width of the bars in varname
units. By default, histogram draws the bars so that adjacent bars just touch. If youwant gaps between
the bars, do not specify histogram’s width() option—which would change how the histogram is

calculated—but specify the bar option barwidth() or the histogram option gap, both of which
affect only how the bar is rendered.

The bar option horizontal cannot be used with the addlabels option.

binrescale specifies that bin size and plot range be recalculated for each group when by() is specified.
If normal is specified, the mean and standard deviation of each overlaid normal density plot are

recalculated in each group. Similarly, if kdensity is specified, the scaling of the overlaid kernel

density plot is recalculated in each group.

addlabels specifies that the top of each bar be labeled with the density, fraction, or frequency, as deter-
mined by the density, fraction, and frequency options.

addlabopts(marker label options) specifies how to render the labels atop the bars. See

[G-3] marker label options. Do not specify the marker label option mlabel(varname), which
specifies the variable to be used; this is specified for you by histogram.

addlabopts() will accept more options than those documented in [G-3] marker label options. All

options allowed by twoway scatter are also allowed by addlabopts(); see [G-2] graph twoway

scatter. One particularly useful option is yvarformat(); see [G-3] advanced options.

� � �
Density plots �

normal specifies that the histogram be overlaid with an appropriately scaled normal density. The normal

will have the same mean and standard deviation as the data.

normopts(line options) specifies details about the rendition of the normal curve, such as the color and
style of line used. See [G-2] graph twoway line.

kdensity specifies that the histogram be overlaid with an appropriately scaled kernel density estimate

of the density. By default, the estimate will be produced using the Epanechnikov kernel with an

“optimal” half-width. This default corresponds to the default of kdensity; see [R] kdensity. How
the estimate is produced can be controlled using the kdenopts() option described below.
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kdenopts(kdensity options) specifies details about how the kernel density estimate is to be produced

along with details about the rendition of the resulting curve, such as the color and style of line used;

see [G-2] graph twoway kdensity. The kernel density estimate is described in [R] kdensity. As an

example, if you wanted to produce kernel density estimates by using the Gaussian kernel with optimal

half-width, you would specify kdenopts(gauss) and if you also wanted a half-width of 5, you would
specify kdenopts(gauss width(5)).

� � �
Add plots �

addplot(plot) allows adding more graph twoway plots to the graph; see [G-3] addplot option.

� � �
Y axis, X axis, Titles, Legend, Overall, By �

twoway options are any of the options documented in [G-3] twoway options. This includes, most impor-

tantly, options for titling the graph (see [G-3] title options), options for saving the graph to disk (see

[G-3] saving option), and the by() option, which will allow you to simultaneously graph histograms

for different subsets of the data (see [G-3] by option).

Remarks and examples
Remarks are presented under the following headings:

Histograms of continuous variables
Overlaying normal and kernel density estimates
Histograms of discrete variables
Use with by()
Video example

For an example of editing a histogram with the Graph Editor, see Pollock (2011, 29–31).

Histograms of continuous variables
histogram assumes that the variable is continuous, so you need type only histogram followed by

the variable name:

. use https://www.stata-press.com/data/r18/sp500
(S&P 500)
. histogram volume
(bin=15, start=4103, width=1280.3533)
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The small values reported for density on the 𝑦 axis are correct; if you added up the area of the bars, you
would get 1. Nevertheless, many people are used to seeing histograms scaled so that the bar heights sum

to 1,

. histogram volume, fraction
(bin=15, start=4103, width=1280.3533)
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and others are used to seeing histograms so that the bar height reflects the number of observations,

. histogram volume, frequency
(bin=15, start=4103, width=1280.3533)
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Regardless of the scale you prefer, you can specify other options to make the graph look more im-

pressive:

. summarize volume
Variable Obs Mean Std. dev. Min Max

volume 248 12320.68 2585.929 4103 23308.3
. histogram volume, freq
> xaxis(1 2)
> ylabel(0(10)60)
> xlabel(12321 ”mean”
> 9735 ”-1 s.d.”
> 14907 ”+1 s.d.”
> 7149 ”-2 s.d.”
> 17493 ”+2 s.d.”
> 20078 ”+3 s.d.”
> 22664 ”+4 s.d.”
> , axis(2) grid)
> xlabel(, axis(1) nogrid)
> xtitle(””, axis(2))
> subtitle(”S&P 500, January 2001 to December 2001”)
> note(”Source: Yahoo! Finance and Commodity Systems, Inc.”)
(bin=15, start=4103, width=1280.3533)
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For an explanation of the xaxis() option—it created the upper and lower 𝑥 axis—see

[G-3] axis choice options. For an explanation of the ylabel() and xlabel() options, see

[G-3] axis label options. For an explanation of the subtitle() and note() options, see

[G-3] title options.
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Overlaying normal and kernel density estimates
Specifying normal will overlay a normal density over the histogram. It would be enough to type

. histogram volume, normal

but we will add the option to our more impressive rendition:

. summarize volume
Variable Obs Mean Std. dev. Min Max

volume 248 12320.68 2585.929 4103 23308.3
. histogram volume, freq normal
> xaxis(1 2)
> ylabel(0(10)60)
> xlabel(12321 ”mean”
> 9735 ”-1 s.d.”
> 14907 ”+1 s.d.”
> 7149 ”-2 s.d.”
> 17493 ”+2 s.d.”
> 20078 ”+3 s.d.”
> 22664 ”+4 s.d.”
> , axis(2) grid)
> xlabel(, axis(1) nogrid)
> xtitle(””, axis(2))
> subtitle(”S&P 500, January 2001 to December 2001”)
> note(”Source: Yahoo! Finance and Commodity Systems, Inc.”)
(bin=15, start=4103, width=1280.3533)
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If we instead wanted to overlay a kernel density estimate, we could specify kdensity in place of

normal.
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Histograms of discrete variables
Specify histogram’s discrete option when you wish to treat the data as discrete—when you wish

each unique value of the variable to be assigned its own bin. For instance, in the automobile data, mpg
is a continuous variable, but the mileage ratings have been measured to integer precision. If we were to

type

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. histogram mpg
(bin=8, start=12, width=3.625)

mpg would be treated as continuous and categorized into eight bins by the default number-of-bins calcu-
lation, which is based on the number of observations, 74.

Adding the discrete option makes a histogram with a bin for each of the 21 unique values.

. histogram mpg, discrete
(start=12, width=1)
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Just as in the continuous case, the 𝑦 axis was reported in density, andwe could specify the fraction or
frequency options if we wanted it to be reported differently. Below, we specify frequency, we specify
addlabels to add a report of frequencies printed above the bars, and we specify xlabel(12(2)42) to
label the values 12, 14, . . . , 42 on the 𝑥 axis:

. histogram mpg, discrete freq addlabels xlabel(12(2)42)
(start=12, width=1)
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Use with by()
histogram may be used with graph twoway’s by(); for example,

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. histogram mpg, discrete by(foreign)
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Here results would be easier to compare if the graphs were presented in one column:

. histogram mpg, discrete by(foreign, col(1))
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col(1) is a by() suboption—see [G-3] by option—and there are other useful suboptions, such

as total, which will add an overall total histogram. total is a suboption of by(), not an option of
histogram, so you would type

. histogram mpg, discrete by(foreign, total)

and not histogram mpg, discrete by(foreign) total.

As another example, Lipset (1993) reprinted data from the New York Times (November 5, 1992)

collected by theVoter Research and Surveys based on questionnaires completed by 15,490US presidential

voters from 300 polling places on election day in 1992.

. sysuse voter, clear
(1992 US presidential voters)
. histogram candi [fweight=pop], discrete fraction by(inc, total)
> gap(40) xlabel(2 3 4, valuelabel)
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We specified gap(40) to reduce the width of the bars by 40%. We also used xlabel()’s valuelabel
suboption, which caused our bars to be labeled “Clinton”, “Bush”, and “Perot”, rather than 2, 3, and 4;

see [G-3] axis label options.

Video example
Histograms in Stata
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[R] spikeplot — Spike plots and rootograms

[G-2] graph twoway histogram — Histogram plots
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Description Remarks and examples Methods and formulas References Also see

Description
This entry discusses a statistical issue that arises when using the Bayesian (BIC), consistent Akaike’s

(CAIC), and corrected Akaike’s (AICc) information criteria to compare models.

Stata calculates BIC, CAIC, and AICc using 𝑁 = e(N), unless e(N ic) has been set; in that instance,
it uses 𝑁 = e(N ic). For example, choice-model cm commands set e(N ic) to the number of cases
because these commands use a data arrangement in which multiple Stata observations represent a single

statistical observation, which is called a case.

Sometimes, it would be better if a different 𝑁 than e(N) were used. Commands that calculate BIC,

CAIC, and AICc have an n() option, allowing you to specify the 𝑁 to be used.

In summary,

1. if you are comparing results estimated by the same estimation command, using the default BIC,

CAIC, orAICc calculation is probably fine. There is an issue, but most researchers would ignore it.

2. if you are comparing results estimated by different estimation commands, you need to be on your

guard.

(a) If the different estimation commands share the same definitions of observations, indepen-

dence, and the like, you are back to case 1.

(b) If they differ in these regards, you need to think about the value of 𝑁 that should be used.

For example, logit and xtlogit differ in that the former assumes independent observations
and the latter, independent panels.

(c) If estimation commands differ in the events being used over which the likelihood function is

calculated, the information criteria may not be comparable at all. We say information criteria

because this would apply equally to the Akaike information criterion (AIC) and its possible

extensions AICc and CAIC, as well as to the BIC. For instance, streg and stcox produce

such incomparable results. The events used by streg are the actual survival times, whereas
the events used by stcox are failures within risk pools, conditional on the times at which
failures occurred.

Remarks and examples
Remarks are presented under the following headings:

Background
The problem of determining N
The problem of conformable likelihoods
The first problem does not arise with AIC; the second problem does
Calculating BIC, AICc, and CAIC correctly
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Background
The AIC and the BIC are two popular measures for comparing maximum likelihood models. AIC and

BIC are defined as

AIC = −2 ln𝐿 + 2𝑘

BIC = −2 ln𝐿 + 𝑘 ln𝑁

where

ln𝐿 = maximized log-likelihood

𝑘 = number of parameters estimated

𝑁 = number of observations

However, when sample size is small,AIC is biased, and Burnham andAnderson (2002) suggest to use

AICc,

AICc = AIC + 2𝑘(𝑘 + 1)
𝑁 − 𝑘 − 1

CAIC is a consistent version of AIC and was proposed in Bozdogan (1987),

CAIC = −2 ln𝐿 + 𝑘( ln𝑁 + 1)

All four information criteria—AIC, BIC, CAIC, andAICc—can be viewed as measures that combine fit

and complexity. Fit is measured negatively by−2 ln𝐿; the larger the value, the worse the fit. Complexity
is measured positively, for example, by 2𝑘 (AIC) or 𝑘 ln𝑁 (BIC).

Given two models fit on the same data, the model with the smaller value of the information criterion

is considered to be better.

There is substantial literature on these measures: see Akaike (1974); Raftery (1995); Sakamoto, Ishig-

uro, andKitagawa (1986); Schwarz (1978); Burnham andAnderson (2002); andHurvich andTsai (1989).

When Stata calculates the above measures, it uses the rank of e(V) for 𝑘, and it uses e(N) for 𝑁.

e(V) and e(N) are Stata notation for results stored by the estimation command. e(V) is the vari-

ance–covariance matrix of the estimated parameters, and e(N) is the number of observations in the

dataset used in calculating the result.

The problem of determining N
The difference between AIC and the other three information criteria is that AIC uses the constant 2 to

weight 𝑘, whereas the complexity term for BIC, CAIC, and AICc depends on 𝑁.

Determining what value of 𝑁 should be used is problematic. Despite appearances, the definition “𝑁
is the number of observations” is not easy to make operational. 𝑁 does not appear in the likelihood

function itself, 𝑁 is not the output of a standard statistical formula, and what is an observation is often

subjective.
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Example 1
Oftenwhat ismeant by𝑁 is obvious. Consider a simple logit model. What ismeant by𝑁 is the number

of observations that is statistically independent and that corresponds to 𝑀, the number of observations

in the dataset used in the calculation. We will write 𝑁 = 𝑀.

But now assume that the same dataset has a grouping variable and the data are thought to be clustered

within group. To keep the problem simple, let’s pretend that there are 𝐺 groups and 𝑚 observations

within group, so that 𝑀 = 𝐺 × 𝑚. Because you are worried about intragroup correlation, you fit your

model with xtlogit, grouping on the grouping variable. Now, you wish to calculate BIC. What is the 𝑁
that should be used? 𝑁 = 𝑀 or 𝑁 = 𝐺?

That is a deep question. If the observations really are independent, then you should use 𝑁 = 𝑀. If

the observations within group are not just correlated but are duplicates of one another, and they had to

be so, then you should use 𝑁 = 𝐺 (Kass and Raftery 1995). Between those two extremes, you should

probably use a number between 𝑁 and 𝐺, but determining what that number should be from measured

correlations is difficult. Using 𝑁 = 𝑀 is conservative in that, if anything, it overweights complexity.

Conservativeness, however, is subjective, too: using 𝑁 = 𝐺 could be considered more conservative in

that fewer constraints are being placed on the data.

When the estimated correlation is high, our reaction would be that using 𝑁 = 𝐺 is probably more

reasonable. Our first reaction, however, would be that using BIC to compare models is probably a misuse

of the measure.

Stata uses 𝑁 = 𝑀. An informal survey of web-based literature suggests that 𝑁 = 𝑀 is the popular

choice.

There is another reason, not so good, to choose 𝑁 = 𝑀. It makes across-model comparisons more

likely to be valid when performed without thinking about the issue. Say that you wish to compare the

logit and xtlogit results. Thus, you need to calculate

BIC𝑝 = −2 ln𝐿𝑝 + 𝑘 ln𝑁𝑝

BIC𝑥 = −2 ln𝐿𝑥 + 𝑘 ln𝑁𝑥

Whatever 𝑁 you use, you must use the same 𝑁 in both formulas. Stata’s choice of 𝑁 = 𝑀 at least

meets that test.

Example 2
In the above example, using 𝑁 = 𝑀 is reasonable. Now, let’s look at when using 𝑁 = 𝑀 is wrong,

even if popular.

Consider a model fit by stcox. Using 𝑁 = 𝑀 is certainly wrong if for no other reason than 𝑀 is

not even a well-defined number. The same data can be represented by different datasets with different

numbers of observations. For example, in one dataset, there might be one observation per subject. In

another, the same subjects could have two records each, the first recording the first half of the time at risk

and the second recording the remaining part. All statistics calculated by Stata on either dataset would be

the same, but 𝑀 would be different.
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Deciding on the right definition, however, is difficult. Viewed one way, 𝑁 in the Cox regression case

should be the number of risk pools, 𝑅, because the Cox regression calculation is made on the basis of the
independent risk pools. Viewed another way, 𝑁 should be the number of subjects, 𝑁subj, because, even

though the likelihood function is based on risk pools, the parameters estimated are at the subject level.

You can decide which argument you prefer.

For parametric survival models, in single-record data, 𝑁 = 𝑀 is unambiguously correct. For multi-

record data, there is an argument for 𝑁 = 𝑀 and for 𝑁 = 𝑁subj.

The problem of conformable likelihoods
The problem of conformable likelihoods does not concern𝑁. Researchers sometimes use information

criteria such as BIC and AIC to make comparisons across models. For that to be valid, the likelihoods

must be conformable; that is, the likelihoods must all measure the same thing.

It is common to think of the likelihood function as the Pr(data | parameters), but in fact, the likelihood
is

Pr(particular events in the data | parameters)

You must ensure that the events are the same.

For instance, they are not the same in the semiparametric Cox regression and the various parametric

survival models. In Cox regression, the events are, at each failure time, that the subjects observed to fail

in fact failed, given that failures occurred at those times. In the parametric models, the events are that

each subject failed exactly when the subject was observed to fail.

The formula for AIC, AICc, CAIC, and BIC can be written as

measure = −2 ln𝐿 + complexity

When you are comparing models, if the likelihoods are measuring different events, even if the models

obtain estimates of the same parameters, differences in the information measures are irrelevant.

The first problem does not arise with AIC; the second problem does
Regardless of model, the problem of defining 𝑁 never arises with AIC because 𝑁 is not used in the

AIC calculation. AIC uses a constant 2 to weight complexity as measured by 𝑘, rather than ln𝑁.

However, for all four information criteria—AIC, AICc, CAIC, and BIC—the likelihood functions must

be conformable; that is, they must be measuring the same event.
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Calculating BIC, AICc, and CAIC correctly
When using BIC,AICc, or CAIC to compare results, and especially when using them to compare results

from different models, you should think carefully about how 𝑁 should be defined. Then, specify that

number by using the n() option:
. estimates stats full sub, all n(74)
Information criteria

Model N ll(null) ll(model) df

full 74 -45.03321 -20.59083 4
sub 74 -45.03321 -27.17516 3

Model AIC BIC AICc CAIC

full 49.18167 58.39793 49.76138 62.39793
sub 60.35031 67.26251 60.69317 70.26251

Legend: AIC is Akaike’s information criterion.
BIC is Bayesian information criterion.
AICc is corrected Akaike’s information criterion.
CAIC is consistent Akaike’s information criterion.

Both estimates stats and estat ic allow the n() option; see [R] estimates stats and [R] estat ic.

Methods and formulas
AIC, BIC, CAIC, and AICc are defined as

AIC = −2 ln𝐿 + 2𝑘

BIC = −2 ln𝐿 + 𝑘 ln𝑁

CAIC = −2 ln𝐿 + 𝑘( ln𝑁 + 1)

AICc = AIC + 2𝑘(𝑘 + 1)
𝑁 − 𝑘 − 1

where ln𝐿 is the maximized log-likelihood of the model; 𝑘 is the model degrees of freedom calculated as

the rank of variance–covariance matrix of the parameters e(V), unless the df() option is specified; and
𝑁 is the number of observations used in estimation or, more precisely, the number of independent terms

in the likelihood. Operationally, 𝑁 is defined as e(N), unless the estimation command returns e(N ic)
or the n() option is specified with estimates stats or estat ic.
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icc — Intraclass correlation coefficients

Description Quick start Menu
Syntax Options for one-way RE model Options for two-way RE and ME models
Remarks and examples Stored results Methods and formulas
References Also see

Description
icc estimates intraclass correlations for one-way random-effects models, two-way random-effects

models, or two-way mixed-effects models for both individual and average measurements. Intraclass

correlations measuring consistency of agreement or absolute agreement of the measurements may be

estimated.

Quick start
Individual and average absolute-agreement intraclass correlation coefficients (ICCs) for ratings y of tar-

gets identified by tid in a one-way random-effects model
icc y tid

Same as above, but test that the individual and average ICCs are equal to 0.5

icc y tid, testvalue(.5)

Absolute-agreement ICCs for targets identified by tid and raters identified by rid in a two-way random-
effects model

icc y tid rid

Same as above, but estimate consistency-of-agreement ICCs

icc y tid rid, consistency

Consistency-of-agreement ICCs when estimating random effects for targets and fixed effects for raters in

a mixed-effects model

icc y tid rid, mixed

Same as above, but estimate absolute-agreement ICCs

icc y tid rid, mixed absolute

Same as above, but report 90% confidence intervals and test that ICCs are equal to 0.3

icc y tid rid, mixed absolute level(90) testvalue(.3)

Menu
Statistics > Summaries, tables, and tests > Summary and descriptive statistics > Intraclass correlations
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Syntax
Calculate intraclass correlations for one-way random-effects model

icc depvar target [ if ] [ in ] [ , oneway options ]

Calculate intraclass correlations for two-way random-effects model

icc depvar target rater [ if ] [ in ] [ , twoway re options ]

Calculate intraclass correlations for two-way mixed-effects model

icc depvar target rater [ if ] [ in ], mixed [ twoway me options ]

oneway options Description

Main

absolute estimate absolute agreement; the default

testvalue(#) test whether intraclass correlations equal #;
default is testvalue(0)

Reporting

level(#) set confidence level; default is level(95)
format(% fmt) display format for statistics and confidence intervals;

default is format(%9.0g)

twoway re options Description

Main

absolute estimate absolute agreement; the default

consistency estimate consistency of agreement

testvalue(#) test whether intraclass correlations equal #;
default is testvalue(0)

Reporting

level(#) set confidence level; default is level(95)
format(% fmt) display format for statistics and confidence intervals;

default is format(%9.0g)
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twoway me options Description

Main
∗ mixed estimate intraclass correlations for a mixed-effects model

consistency estimate consistency of agreement; the default

absolute estimate absolute agreement

testvalue(#) test whether intraclass correlations equal #;
default is testvalue(0)

Reporting

level(#) set confidence level; default is level(95)
format(% fmt) display format for statistics and confidence intervals;

default is format(%9.0g)
∗ mixed is required.

bootstrap, by, collect, jackknife, and statsby are allowed; see [U] 11.1.10 Prefix commands.

Options for one-way RE model

� � �
Main �

absolute specifies that intraclass correlations measuring absolute agreement of the measurements be
estimated. This is the default for random-effects models.

testvalue(#) tests whether intraclass correlations equal #. The default is testvalue(0).

� � �
Reporting �

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is

level(95) or as set by set level; see [R] level.

format(% fmt) specifies how the intraclass correlation estimates and confidence intervals are to be for-

matted. The default is format(%9.0g).

Options for two-way RE and ME models

� � �
Main �

mixed is required to calculate two-waymixed-effects models. mixed specifies that intraclass correlations
for a mixed-effects model be estimated.

absolute specifies that intraclass correlations measuring absolute agreement of the measurements be
estimated. This is the default for random-effects models. Only one of absolute or consistency
may be specified.

consistency specifies that intraclass correlations measuring consistency of agreement of the mea-

surements be estimated. This is the default for mixed-effects models. Only one of absolute or

consistency may be specified.

testvalue(#) tests whether intraclass correlations equal #. The default is testvalue(0).
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� � �
Reporting �

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is

level(95) or as set by set level; see [R] level.

format(% fmt) specifies how the intraclass correlation estimates and confidence intervals are to be for-

matted. The default is format(%9.0g).

Remarks and examples
Remarks are presented under the following headings:

Introduction
One-way random effects
Two-way random effects
Two-way mixed effects
Adoption study
Relationship between ICCs
Tests against nonzero values

Introduction
In some disciplines, such as psychology and sociology, data are often measured with error that can

seriously affect statistical interpretation of the results. Thus, it is important to assess the amount of mea-

surement error by evaluating the consistency or reliability of measurements. The intraclass correlation

coefficient (ICC) is often used to measure the consistency or homogeneity of measurements.

Several versions of ICCs are introduced in the literature depending on the experimental design and

goals of the study (see, for example, Shrout and Fleiss [1979] and McGraw andWong [1996a]). Follow-

ing Shrout and Fleiss (1979), we describe various forms of ICCs in the context of a reliability study of

ratings of different targets (or objects of measurements) by several raters.

Consider 𝑛 targets (for example, students, patients, athletes) that are randomly sampled from a popu-

lation of interest. Each target is rated independently by a set of 𝑘 raters (for example, teachers, doctors,

judges). One rating per target and rater is obtained. It is of interest to determine the extent of the agree-

ment of the ratings.

As noted by Shrout and Fleiss (1979) and McGraw and Wong (1996a), you need to answer several

questions to decide what version of ICC is appropriate to measure the agreement in your study:

1. Is a one-way or two-way analysis-of-variance model appropriate for your study?

2. Are differences between raters’ mean ratings relevant to the reliability of interest?

3. Is the unit of analysis an individual rating or the mean rating over several raters?

4. Is the consistency of agreement or the absolute agreement of ratings of interest?
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Three types of analysis-of-variance models are considered for the reliability study: one-way random

effects, two-way random effects, and two-way mixed effects. Mixed models contain both fixed effects

and random effects. In the one-way random-effects model, each target is rated by a different set of 𝑘
independent raters, who are randomly drawn from the population of raters. The target is the only random

effect in this model; the effects due to raters and possibly due to rater-and-target interaction cannot be

separated from random error. In the two-way random-effects model, each target is rated by the same

set of 𝑘 independent raters, who are randomly drawn from the population of raters. The random effects

in this model are target and rater and possibly their interaction, although in the absence of repeated

measurements for each rater on each target, the effect of an interaction cannot be separated from random

error. In the two-way mixed-effects model, each target is rated by the same set of 𝑘 independent raters.

Because they are the only raters of interest, rater is a fixed effect. The random effects are target and

possibly target-and-rater interaction, but again the interaction effect cannot be separated from random

error without repeated measurements for each rater and target. The definition of ICC depends on the

chosen random-effects model; see Methods and formulas for details.

In summary, use a one-way model if there are no systematic differences in measurements due to raters

and use a two-way model otherwise. If you want to generalize your results to a population of raters from

which the observed raters are sampled, use a two-way random-effects model, treating raters as random. If

you are interested only in the effects of the observed 𝑘 raters, use a two-waymixed-effects model, treating
raters as fixed. For example, suppose you compare judges’ ratings of targets from different groups. If you

use the combined data from 𝑘 judges to compare the groups, the random-effects model is appropriate. If
you compare groups separately for each judge and then pool the differences, the mixed-effects model is

appropriate.

The definition of ICC also depends on the unit of analysis in a study—whether the agreement is

measured between individual ratings (individual ICC) or between the averages of ratings over several

raters (average ICC). The data on individual ratings are more common. The data on average ratings are

typically used when individual ratings are deemed unreliable. The average ICC can also be used when

teams of raters are used to rate a target. For example, the ratings of teams of physicians may be evaluated

in this manner. When the unit of analysis is an average rating, you should remember that the interpretation

of ICC pertains to average ratings and not individual ratings.

Finally, depending onwhether consistency of agreement or absolute agreement is of interest, two types

of ICC are used: consistency-of-agreement ICC (CA-ICC) and absolute-agreement ICC (AA-ICC). Under

consistency of agreement, the scores are considered consistent if the scores from any two raters differ

by the same constant value for all targets. This implies that raters give the same ranking to all targets.

Under absolute agreement, the scores are considered in absolute agreement if the scores from all raters

match exactly.

For example, suppose we observe three targets and two raters. The ratings are (2,4), (4,6), and (6,8),

with rater 1 giving the scores (2,4,6) and rater 2 giving the scores (4,6,8), two points higher than rater 1.

The CA-ICC between individual ratings is 1 because the scores from rater 1 and rater 2 differ by a constant

value (two points) for all targets. That rater 1 gives lower scores than rater 2 is deemed irrelevant under

the consistency measure of agreement. The raters have the same difference of opinion on every target,

and the variation between raters that is caused by this difference is not relevant. On the other hand, the

AA-ICC between individual ratings is 8/12 = 0.67, where 8 is the estimated between-target variance and

12 is the estimated total variance of ratings.



icc — Intraclass correlation coefficients 1228

Either CA-ICC or AA-ICC can serve as a useful measure of agreement depending on whether rater

variability is relevant for determining the degree of agreement. As McGraw and Wong (1996a) point

out, CA-ICC is useful when comparative judgments are made about objects of measurement. The CA-ICC

represents correlation when the rater is fixed; the AA-ICC represents correlation when the rater is random.

See Shrout and Fleiss (1979) and McGraw and Wong (1996a) for more detailed guidelines about the

choice of appropriate ICC.

Shrout and Fleiss (1979) and McGraw and Wong (1996a) describe 10 versions of ICCs based on

the concepts above: individual and average AA-ICCs for a one-way model (consistency of agreement is

not defined for this model); individual and average AA-ICCs and CA-ICCs for a two-way random-effects

model; and individual and average AA-ICCs and CA-ICCs for a two-way mixed-effects model. Although

each of these ICCs has its own definition and interpretation, the estimators for some are identical, leading

to the same estimates of those ICCs; see Relationship between ICCs andMethods and formulas for details.

The icc command calculates ICCs for each of the three analysis-of-variance models. You can use

option absolute to compute AA-ICCs or option consistency to compute CA-ICCs. By default, icc
computes ICCs corresponding to the correlation between ratings and between average ratings made on

the same target: AA-ICC for a random-effects model and CA-ICC for a mixed-effects model. As pointed

out by Shrout and Fleiss (1979), although the data on average ratings might be needed for reliability, the

generalization of interest might be individuals. For this reason, icc reports ICCs for both units, individual
and average, for each model.

In addition to estimates of ICCs, icc provides confidence intervals and one-sided 𝐹 tests. The 𝐹 test

of 𝐻𝑜∶ 𝜌 = 0 versus 𝐻𝑎∶ 𝜌 > 0 is the same for the individual and average ICCs, so icc reports one test.
This is not true, however, for nonzero null hypotheses (see Tests against nonzero values for details), so

icc reports a separate test in this case.

The icc command requires data in long form; see [D] reshape for how to convert data in wide form

to long form. The data must also be balanced and contain one observation per target and rater. For

unbalanced data, icc omits all targets with fewer than 𝑘 ratings from computation. Under one-way

models, 𝑘 is determined as the largest number of observed ratings for a target. Under two-way models,

𝑘 is the number of unique raters. If multiple observations per target and rater are detected, icc issues an
error.

We demonstrate the use of icc using datasets from Shrout and Fleiss (1979) and McGraw and Wong

(1996a). In the next three sections, we use an example from table 2 of Shrout and Fleiss (1979) with

six targets and four judges. For instructional purposes, we analyze these data under each of the three

different models: one-way random effects, two-way random effects, and two-way mixed effects.
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One-way random effects
In the one-way random-effects model, we assume that the 𝑛 targets being rated are randomly selected

from the population of potential targets. Each is rated by a different set of 𝑘 raters randomly drawn

from the population of potential raters. McGraw and Wong (1996a) describe an example of this setting,

where behavioral genetics data are used to assess familial resemblance. Family units can be viewed as

“targets”, and children can be viewed as “raters”. By taking a measurement on a child of the family

unit, we obtain the “rating” of the family unit by the “child-rater”. In this case, we can use ICC to assess

similarity between children within a family or, in other words, assess if there is a family effect in these

data.

As we mentioned in the introduction, only AA-ICC is defined for a one-way model. The consistency

of agreement is not defined in this case, as each target is evaluated by a different set of raters. Thus, there

is no between-rater variability in this model.

In a one-way model, the AA-ICC corresponds to the correlation coefficient between ratings within a

target. It is also a ratio of the between-target variance of ratings to the total variance of ratings, the sum

of the between-target and error variances.

Example 1: One-way random-effects ICCs
Consider data from table 2 of Shrout and Fleiss (1979) stored in judges.dta. The data contain 24

ratings of 𝑛 = 6 targets by 𝑘 = 4 judges. We list the first eight observations:

. use https://www.stata-press.com/data/r18/judges
(Ratings of targets by judges)
. list in 1/8, sepby(target)

rating target judge

1. 9 1 1
2. 2 1 2
3. 5 1 3
4. 8 1 4

5. 6 2 1
6. 1 2 2
7. 3 2 3
8. 2 2 4

For a moment, let’s ignore that targets are rated by the same set of judges. Instead, we assume that a

different set of four judges is used to rate each target. In this case, the only systematic variation in the

data is due to targets, so the one-way random-effects model is appropriate.
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We use icc to estimate the intraclass correlations for these data. To compute ICCs for a one-way

model, we specify the dependent variable rating followed by the target variable target:

. icc rating target
Intraclass correlations
One-way random-effects model
Absolute agreement
Random effects: target Number of targets = 6

Number of raters = 4

rating ICC [95% conf. interval]

Individual .1657418 -.1329323 .7225601
Average .4427971 -.8844422 .9124154

F test that
ICC=0.00: F(5.0, 18.0) = 1.79 Prob > F = 0.165

Note: ICCs estimate correlations between individual measurements
and between average measurements made on the same target.

icc reports the AA-ICCs for both individual and average ratings. The individual AA-ICC corresponds

to ICC(1) in McGraw and Wong (1996a) or ICC(1,1) in Shrout and Fleiss (1979). The average AA-ICC

corresponds to ICC(𝑘) in McGraw and Wong (1996a) or ICC(1,𝑘) in Shrout and Fleiss (1979).

The estimated correlation between individual ratings is 0.17, indicating little similarity between rat-

ings within a target, low reliability of individual target ratings, or no target effect. The estimated intraclass

correlation between ratings averaged over 𝑘 = 4 judges is higher, 0.44. (The average ICC will typically

be higher than the individual ICC.) The estimated intraclass correlation measures the similarity or relia-

bility of mean ratings from groups of four judges. We do not have statistical evidence that either ICC is

different from zero based on reported confidence intervals and the one-sided 𝐹 test.

Note that although the estimates of ICCs cannot be negative in this setting, the lower bound of the

computed confidence interval may be negative. A common ad-hoc way of handling this is to truncate the

lower bound at zero.

The estimates of both the individual and the average AA-ICC are also computed by the loneway com-
mand (see [R] loneway), which performs a one-way analysis of variance.

Technical note
Mean rating is commonly used when individual rating is unreliable because the reliability of a mean

rating is always higher than the reliability of the individual rating when the individual reliability is posi-

tive.

In the previous example, we estimated low reliability of the individual ratings of a target, 0.17. The

reliability increased to 0.44 for the ratings averaged over four judges. What if we had more judges?
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We can use the Spearman–Brown formula (Spearman 1910; Brown 1910) to compute the 𝑚-average

ICC based on the individual ICC:

ICC(𝑚) = 𝑚ICC(1)
1 + (𝑚 − 1)ICC(1)

Using this formula for the previous example, we find that the mean reliability over, say, 10 judges is

10 × 0.17/(1 + 9 × 0.17) = 0.67.

Alternatively, we can invert the Spearman–Brown formula to determine the number of judges (or

the number of ratings of a target) we need to achieve the desired reliability. Suppose we would like an

average reliability of 0.9, then

𝑚 = ICC(𝑚){(1 − ICC(1))}
ICC(1){1 − ICC(𝑚)}

= 0.9(1 − 0.17)
0.17(1 − 0.9)

= 44

See, for example, Bliese (2000) for other examples.

Two-way random effects
As before, we assume that the targets being rated are randomly selected from the population of poten-

tial targets. We now also assume that each target is evaluated by the same set of 𝑘 raters, who have been
randomly sampled from the population of raters. In this scenario, we want to generalize our findings

to the population of raters from which the observed 𝑘 raters were sampled. For example, suppose we

want to estimate the reliability of doctors’ evaluations of patients with a certain condition. Unless the

reliability at a specific hospital is of interest, the doctors may be interchanged with others in the relevant

population of doctors.

As for a one-way model, the AA-ICC corresponds to the correlation between measurements on the

same target and is also a ratio of the between-target variance to the total variance of measurements in a

two-way random-effects model. The total variance is now the sum of the between-target, between-rater,

and error variances. Unlike a one-way model, the CA-ICC can be computed for a two-way random-

effects model when the consistency of agreement is of interest rather than the absolute agreement. The

CA-ICC is also the ratio of the between-target variance to the total variance, but the total variance does not

include the between-rater variance because the between-rater variability is irrelevant for the consistency

of agreement.

Again, the two versions, individual and average, are available for each ICC.

Example 2: Two-way random-effects ICCs
Continuing with example 1, recall that we previously ignored that each target is rated by the same

set of four judges and instead assumed different sets of judges. We return to the original data setting.

We want to evaluate the agreement between judges’ ratings of targets in a population represented by the

observed set of four judges.
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In a two-way model, we must specify both the target and the rater variables. In icc, we now addi-

tionally specify the rater variable judge following the target variable target; the random-effects model
is assumed by default.

. icc rating target judge
Intraclass correlations
Two-way random-effects model
Absolute agreement
Random effects: target Number of targets = 6
Random effects: judge Number of raters = 4

rating ICC [95% conf. interval]

Individual .2897638 .0187865 .7610844
Average .6200505 .0711368 .927232

F test that
ICC=0.00: F(5.0, 15.0) = 11.03 Prob > F = 0.000

Note: ICCs estimate correlations between individual measurements
and between average measurements made on the same target.

As for a one-way random-effects model, icc by default reports AA-ICCs that correspond to the correlation
between ratings on a target. Notice that both individual and average ICCs are larger in the two-way

random-effects model than in the previous one-way model—0.29 versus 0.17 and 0.62 versus 0.44,

respectively. We also have statistical evidence to reject the null hypothesis that neither ICC is zero based

on confidence intervals and the 𝐹 test. If a one-way model is used when a two-way model is appropriate,

the true ICC will generally be underestimated.

The individual AA-ICC corresponds to ICC(𝐴,1) in McGraw and Wong (1996a) or ICC(2,1) in Shrout

and Fleiss (1979). The average AA-ICC corresponds to ICC(𝐴,𝑘) in McGraw andWong (1996a) or ICC(2,𝑘)
in Shrout and Fleiss (1979).

Instead of the absolute agreement, we can also assess the consistency of agreement. The individual and

average CA-ICCs are considered in McGraw and Wong (1996a) and denoted as ICC(C,1) and ICC(C,𝑘), re-
spectively. These ICCs are not considered in Shrout and Fleiss (1979) because they are not correlations in

the strict sense. Although CA-ICCs do not estimate correlation, they can provide useful information about

the reliability of the raters. McGraw and Wong (1996a) note that the practical value of the individual

and average CA-ICCs in the two-way random-effects model setting is well documented in measurement

theory, citing Hartmann (1982) and Suen (1988).

To estimate the individual and average CA-ICCs, we specify the consistency option:

. icc rating target judge, consistency
Intraclass correlations
Two-way random-effects model
Consistency of agreement
Random effects: target Number of targets = 6
Random effects: judge Number of raters = 4

rating ICC [95% conf. interval]

Individual .7148407 .3424648 .9458583
Average .9093155 .6756747 .9858917

F test that
ICC=0.00: F(5.0, 15.0) = 11.03 Prob > F = 0.000
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We estimate that the consistency of agreement of ratings in the considered population of raters is high,

0.71, based on the individual CA-ICC. On the other hand, the absolute agreement of ratings is low, 0.29,

based on the individual AA-ICC from the previous output.

The measure of consistency of agreement among means, the average CA-ICC, is equivalent to Cron-

bach’s alpha (Cronbach 1951); see [MV] alpha. The individual CA-ICC can also be equivalent to the

Pearson’s correlation coefficient between raters when 𝑘 = 2; see McGraw andWong (1996a) for details.

In the next example, we will see that the actual estimates of the individual and average AA-ICCs

and CA-ICCs are the same whether we examine a random-effects model or a mixed-effects model. The

differences between these ICCs are in their definitions and interpretations.

Two-way mixed effects
As in a two-way random-effects model, we assume that the targets are randomly selected from the

population of potential targets and that each is evaluated by the same set of 𝑘 raters. In a mixed-effects

model, however, we assume that these raters are the only raters of interest. So as before, the targets are

random, but now the raters are fixed.

In the two-way mixed-effects model, the fixed effect of the rater does not contribute to the between-

rater random variance component to the total variance. As such, the definitions and interpretations of

ICCs are different in a mixed-effects model than in a random-effects model. However, the estimates

of ICCs as well as test statistics and confidence intervals are the same. The only exceptions are average

AA-ICCs and CA-ICCs. These are not estimable in a two-way mixed-effects model including an interaction

term between target and rater; see Relationship between ICCs and Methods and formulas for details.

In a two-way mixed-effects model, the CA-ICC corresponds to the correlation between measurements

on the same target. As pointed out by Shrout and Fleiss (1979), when the rater variance is ignored, the

correlation coefficient is interpreted in terms of rater consistency rather than rater absolute agreement.

Formally, the CA-ICC is the ratio of the covariance between measurements on the target to the total vari-

ance of the measurements. The AA-ICC corresponds to the same ratio, but includes a variance of the fixed

factor, rater, in its denominator.

Example 3: Two-way mixed-effects ICCs
Continuing with example 2, suppose that we are now interested in assessing the agreement of ratings

from only the observed four judges. The judges are now fixed effects, and the appropriate model is a

two-way mixed-effects model.
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To estimate ICCs for a two-way mixed-effects model, we specify the mixed option with icc:

. icc rating target judge, mixed
Intraclass correlations
Two-way mixed-effects model
Consistency of agreement
Random effects: target Number of targets = 6
Fixed effects: judge Number of raters = 4

rating ICC [95% conf. interval]

Individual .7148407 .3424648 .9458583
Average .9093155 .6756747 .9858917

F test that
ICC=0.00: F(5.0, 15.0) = 11.03 Prob > F = 0.000

Note: ICCs estimate correlations between individual measurements
and between average measurements made on the same target.

Aswe described in the introduction, icc by default reports ICCs corresponding to the correlations. So, for
a mixed-effects model, icc reports CA-ICCs by default. The individual and average CA-ICCs are denoted
as ICC(3,1) and ICC(3,𝑘) in Shrout and Fleiss (1979) and ICC(𝐶,1) and ICC(𝐶,𝑘) in McGraw and Wong

(1996a).

Our estimates of the individual and average CA-ICCs are identical to the CA-ICC estimates obtained

under the two-way random-effects model in example 2, but our interpretation of the results is different.

Under a mixed-effects model, 0.71 and 0.91 are the estimates, respectively, of the correlation between

individual measurements and the correlation between average measurements made on the same target.

We can also estimate the AA-ICCs in this setting by specifying the absolute option:

. icc rating target judge, mixed absolute
Intraclass correlations
Two-way mixed-effects model
Absolute agreement
Random effects: target Number of targets = 6
Fixed effects: judge Number of raters = 4

rating ICC [95% conf. interval]

Individual .2897638 .0187865 .7610844
Average .6200505 .0711368 .927232

F test that
ICC=0.00: F(5.0, 15.0) = 11.03 Prob > F = 0.000

The intraclass correlation estimates match the individual and average AA-ICCs obtained under the two-

way random-effects model in example 2; but in a mixed-effects model, they do not represent correlations.

We demonstrate the use of an individual AA-ICC in a mixed-effects setting in the next example.

The AA-ICCs under a mixed-effects model are not considered by Shrout and Fleiss (1979). They are

denoted as ICC(𝐴,1) and ICC(𝐴,𝑘) in McGraw and Wong (1996a).
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Adoption study
In this section, we consider the adoption study described in McGraw and Wong (1996a). Adoption

studies commonly include two effects of interest. One is the mean difference between the adopted child

and its biological parents. It is used to determine if characteristics of adopted children differ on average

from those of their biological parents. Another effect of interest is the correlation between genetically

paired individuals and genetically unrelated individuals who live together. This effect is used to evaluate

the impact of genetic differences on individual differences.

As discussed in McGraw and Wong (1996a), a consistent finding from adoption research using IQ as

a trait characteristic is that while adopted children typically have higher IQs than their biological parents,

their IQs correlate better with those of their biological parents than with those of their adoptive parents.

Both effects are important, and there is additional need to reconcile the two findings. McGraw andWong

(1996a) propose to use the individual AA-ICC for this purpose.

Example 4: Absolute-agreement ICC in a mixed-effects model
The adoption.dta dataset contains the data from table 6 ofMcGraw andWong (1996a) on IQ scores:

. use https://www.stata-press.com/data/r18/adoption
(Biological mother and adopted child IQ scores)
. describe
Contains data from https://www.stata-press.com/data/r18/adoption.dta
Observations: 20 Biological mother and adopted

child IQ scores
Variables: 5 15 May 2022 13:50

(_dta has notes)

Variable Storage Display Value
name type format label Variable label

family byte %9.0g Adoptive family ID
mc byte %9.0g mcvalues Whether mother or child
iq3 int %9.0g IQ scores, mother-child

difference of 3 pts
iq9 int %9.0g IQ scores, mother-child

difference of 9 pts
iq15 int %9.0g IQ scores, mother-child

difference of 15 pts

Sorted by:
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The family variable contains adoptive family identifiers, the mc variable records a mother or a child,
and the iq3, iq9, and iq15 variables record IQ scores with differences between mother and child mean

IQ scores of 3, 9, and 15 points, respectively.

. by mc, sort: summarize iq*

-> mc = Mother
Variable Obs Mean Std. dev. Min Max

iq3 10 97 15.0037 62 116
iq9 10 91 15.0037 56 110

iq15 10 85 15.0037 50 104

-> mc = Child
Variable Obs Mean Std. dev. Min Max

iq3 10 100 15.0037 65 119
iq9 10 100 15.0037 65 119

iq15 10 100 15.0037 65 119

The variances of the mother and child IQ scores are the same.

Children are fixed effects, so the mixed-effects model is appropriate for these data. We want to com-

pare individual CA-ICC with individual AA-ICC for each of the three IQ variables. We could issue a sep-

arate icc command for each of the three IQ variables to obtain the intraclass correlations. Instead, we

use reshape to convert our data to long form with one iq variable and the new diff variable recording
mean differences:

. reshape long iq, i(family mc) j(diff)
(j = 3 9 15)
Data Wide -> Long

Number of observations 20 -> 60
Number of variables 5 -> 4
j variable (3 values) -> diff
xij variables:

iq3 iq9 iq15 -> iq
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We can now use the by prefix with icc to estimate intraclass correlations for the three groups of

interest:

. by diff, sort: icc iq family mc, mixed

-> diff = 3
Intraclass correlations
Two-way mixed-effects model
Consistency of agreement
Random effects: family Number of targets = 10
Fixed effects: mc Number of raters = 2

iq ICC [95% conf. interval]

Individual .7142152 .1967504 .920474
Average .8332853 .3288078 .9585904

F test that
ICC=0.00: F(9.0, 9.0) = 6.00 Prob > F = 0.007

Note: ICCs estimate correlations between individual measurements
and between average measurements made on the same target.

-> diff = 9
Intraclass correlations
Two-way mixed-effects model
Consistency of agreement
Random effects: family Number of targets = 10
Fixed effects: mc Number of raters = 2

iq ICC [95% conf. interval]

Individual .7142152 .1967504 .920474
Average .8332853 .3288078 .9585904

F test that
ICC=0.00: F(9.0, 9.0) = 6.00 Prob > F = 0.007

Note: ICCs estimate correlations between individual measurements
and between average measurements made on the same target.

-> diff = 15
(output omitted )

The estimated CA-ICCs are the same in all three groups and are equal to the corresponding estimates of

the Pearson’s correlation coefficients because mothers’and childrens’ IQ scores have the same variability.

The scores differ only in means, and mean differences are irrelevant when measuring the consistency of

agreement.
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The AA-ICCs, however, differ across the three groups:

. by diff, sort: icc iq family mc, mixed absolute

-> diff = 3
Intraclass correlations
Two-way mixed-effects model
Absolute agreement
Random effects: family Number of targets = 10
Fixed effects: mc Number of raters = 2

iq ICC [95% conf. interval]

Individual .7204023 .2275148 .9217029
Average .8374812 .3706917 .9592564

F test that
ICC=0.00: F(9.0, 9.0) = 6.00 Prob > F = 0.007

-> diff = 9
Intraclass correlations
Two-way mixed-effects model
Absolute agreement
Random effects: family Number of targets = 10
Fixed effects: mc Number of raters = 2

iq ICC [95% conf. interval]

Individual .6203378 .0293932 .8905025
Average .7656895 .0571077 .9420802

F test that
ICC=0.00: F(9.0, 9.0) = 6.00 Prob > F = 0.007

-> diff = 15
Intraclass correlations
Two-way mixed-effects model
Absolute agreement
Random effects: family Number of targets = 10
Fixed effects: mc Number of raters = 2

iq ICC [95% conf. interval]

Individual .4854727 -.1194157 .8466905
Average .6536272 -.2712191 .9169815

F test that
ICC=0.00: F(9.0, 9.0) = 6.00 Prob > F = 0.007

As the mean differences increase, the AA-ICCs decrease. Their attenuation reflects the difference in

means between biological mother and child IQs while still measuring their agreement. Notice that for

small mean differences, the estimates of AA-ICCs and CA-ICCs are very similar.

Note that our estimates match those given in McGraw and Wong (1996b), who correct the original

table 6 of McGraw and Wong (1996a).
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Relationship between ICCs
In examples 2 and 3, we saw that the estimates of AA-ICCs and CA-ICCs are the same for two-way

random-effects and two-way mixed-effects models. In this section, we consider the relationship between

various forms of ICCs in more detail; also see Methods and formulas.

There are 10 different versions of ICCs, but only 6 different estimators are needed to compute them.

These estimators include the two estimators for the individual and average AA-ICCs in a one-way model,

the two estimators for the individual and average AA-ICCs in two-way models, and the two estimators for

the individual and average CA-ICCs in two-way models.

Only individual and average AA-ICCs are defined for the one-way model. The estimates of AA-ICCs

based on the one-way model will typically be smaller than individual and average estimates of AA-ICCs

and CA-ICCs based on two-way models. The estimates of individual and average CA-ICCs will typically

be larger than the estimates of individual and average AA-ICCs.

Although AA-ICCs and CA-ICCs have the same respective estimators in two-way random-effects and

mixed-effects models, their definitions and interpretations are different. The AA-ICCs based on a random-

effects model contain the between-rater variance component in the denominator of the variance ratio. The

AA-ICCs based on a mixed-effects model contain the variance of the fixed-factor rater instead of the ran-

dom between-rater variability. The AA-ICCs in a random-effects model represent correlations between

any two measurements made on a target. The AA-ICCs in a mixed-effects model measure absolute agree-

ment of measurements treating raters as fixed. The CA-ICCs for random-effects and mixed-effects models

have the same definition but different interpretations. The CA-ICCs represent correlations between any

two measurements made on a target in a mixed-effects model but estimate the degree of consistency

among measurements treating raters as random in a random-effects model. The difference in the defini-

tions of AA-ICCs and CA-ICCs is that CA-ICCs do not contain the between-rater variance in the denominator

of the variance ratio.

For two-way models, the definitions and interpretations (but not the estimators) of ICCs also depend

on whether the model contains an interaction between target and rater. For two-way models with inter-

action, ICCs include an additional variance component for the target-rater interaction in the denominator

of the variance ratio. This component cannot be separated from random error because there is only one

observation per target and rater.

Also, under a two-way mixed-effects model including interaction, the interaction components are not

mutually independent, as they are in a two-way random-effects model. The considered version of the

mixed-effects model places a constraint on the interaction effects—the sum of the interaction effects

over levels of the fixed factor is zero; see, for example, chapter 7 in Kuehl (2000) for an introductory

discussion of mixed models. In this version of the model, there is a correlation between the interaction

effects. Specifically, the two interaction effects for the same target and two different raters are negatively

correlated. As a result, the estimated intraclass correlation can be negative under a two-waymixed-effects

model with interaction. Also, average AA-ICC and average CA-ICC cannot be estimated in a two-way

mixed-effects model including interaction; see Methods and formulas and McGraw and Wong (1996a)

for details.

Tests against nonzero values
It may be of interest to test whether the intraclass correlation is equal to a value other than zero.

icc supports testing against positive values through the use of the testvalue() option. Specifying

testvalue(#) provides a one-sided hypothesis test of 𝐻𝑜 ∶ 𝜌 = # versus 𝐻𝑎 ∶ 𝜌 > #. The test is

provided separately for both individual and average ICCs.
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Example 5: Testing ICC against a nonzero value
We return to the two-way random-effects model for the judge and target data from Shrout and Fleiss

(1979). Suppose we want to test whether the individual and average AA-ICCs are each equal to 0.2. We

specify the testvalue(0.2) option with icc:
. use https://www.stata-press.com/data/r18/judges, clear
(Ratings of targets by judges)
. icc rating target judge, testvalue(0.2)
Intraclass correlations
Two-way random-effects model
Absolute agreement
Random effects: target Number of targets = 6
Random effects: judge Number of raters = 4

rating ICC [95% conf. interval]

Individual .2897638 .0187865 .7610844
Average .6200505 .0711368 .927232

F test that
ICC(1)=0.20: F(5.0, 5.3) = 1.54 Prob > F = 0.317
ICC(k)=0.20: F(5.0, 9.4) = 4.35 Prob > F = 0.026

Note: ICCs estimate correlations between individual measurements
and between average measurements made on the same target.

We reject the null hypothesis that the average AA-ICC, labeled as ICC(𝑘) in the output, is equal to 0.2, but
we do not have statistical evidence to reject the null hypothesis that the individual AA-ICC, labeled as

ICC(1), is equal to 0.2.

Stored results
icc stores the following in r():

Scalars

r(N target) number of targets

r(N rater) number of raters

r(icc i) intraclass correlation for individual measurements

r(icc i F) 𝐹 test statistic for individual ICC

r(icc i df1) numerator degrees of freedom for r(icc i F)
r(icc i df2) denominator degrees of freedom for r(icc i F)
r(icc i p) 𝑝-value for F test of individual ICC
r(icc i lb) lower endpoint for confidence intervals of individual ICC

r(icc i ub) upper endpoint for confidence intervals of individual ICC

r(icc avg) intraclass correlation for average measurements

r(icc avg F) 𝐹 test statistic for average ICC

r(icc avg df1) numerator degrees of freedom for r(icc avg F)
r(icc avg df2) denominator degrees of freedom for r(icc avg F)
r(icc avg p) 𝑝-value for 𝐹 test of average ICC

r(icc avg lb) lower endpoint for confidence intervals of average ICC

r(icc avg ub) upper endpoint for confidence intervals of average ICC

r(testvalue) null hypothesis value

r(level) confidence level

Macros

r(model) analysis-of-variance model

r(depvar) name of dependent variable
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r(target) target variable

r(rater) rater variable

r(type) type of ICC estimated (absolute or consistency)

Methods and formulas
We observe 𝑦𝑖𝑗, where 𝑖 = 1, . . . , 𝑛 and 𝑗 = 1, . . . , 𝑘. 𝑦𝑖𝑗 is the 𝑗th rating on the 𝑖th target. Let

𝛼 = 1 − 𝑙/100, where 𝑙 is the significance level specified by the user.
Methods and formulas are presented under the following headings:

Mean squares
One-way random effects
Two-way random effects
Two-way mixed effects

Mean squares
The mean squares within targets are

WMS = ∑
𝑖

∑
𝑗

(𝑦𝑖𝑗 − 𝑦𝑖⋅)
2

𝑛(𝑘 − 1)

where 𝑦𝑖⋅ = ∑𝑗 𝑦𝑖𝑗/𝑘.

The mean squares between targets are

BMS = ∑
𝑖

(𝑦𝑖⋅ − 𝑦⋅⋅)
2

𝑛 − 1

where 𝑦⋅⋅ = ∑𝑖 𝑦𝑖⋅/𝑛.
These are the only mean squares needed to estimate ICC in the one-way random-effects model. For

the two-way models, we need two additional mean squares.

The mean squares between raters are

JMS = ∑
𝑗

(𝑦⋅𝑗 − 𝑦⋅⋅)
2

𝑘 − 1

where 𝑦⋅𝑗 = ∑𝑖 𝑦𝑖𝑗/𝑛 and 𝑦⋅⋅ = ∑𝑗 𝑦⋅𝑗/𝑘.

The residual or error mean square is

EMS =
∑𝑖 ∑𝑗(𝑦𝑖𝑗 − 𝑦)2 − (𝑘 − 1)JMS − (𝑛 − 1)BMS

(𝑛 − 1)(𝑘 − 1)
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One-way random effects
Under the one-way random-effects model, we observe

𝑦𝑖𝑗 = 𝜇 + 𝑟𝑖 + 𝜖𝑖𝑗 (M1)

where 𝜇 is the mean rating, 𝑟𝑖 is the target random effect, and 𝜖𝑖𝑗 is random error. The 𝑟𝑖s are

i.i.d. 𝑁(0, 𝜎2
𝑟); 𝜖𝑖𝑗s are i.i.d. 𝑁(0, 𝜎2

𝜖 ) and are independent of 𝑟𝑖s. There is no rater effect separate from

the residual error because each target is evaluated by a different set of raters.

The individual AA-ICC is the correlation between individual measurements on the same target:

𝜌1 = ICC(1) = Corr(𝑦𝑖𝑗, 𝑦𝑖𝑗′) = 𝜎2
𝑟

𝜎2
𝑟 + 𝜎2

𝜖

The average AA-ICC is the correlation between average measurements of size 𝑘 made on the same

target:

𝜌𝑘 = ICC(𝑘) = Corr(𝑦𝑖., 𝑦′
𝑖.) = 𝜎2

𝑟
𝜎2

𝑟 + 𝜎2
𝜖 /𝑘

They are estimated by

̂𝜌1 = ̂ICC(1) = BMS − WMS

BMS + (𝑘 − 1)WMS

̂𝜌𝑘 = ̂ICC(𝑘) = BMS − WMS

BMS

Confidence intervals. Let 𝐹obs = BMS/WMS, let 𝐹𝑙 be the (1 − 𝛼/2) × 100th percentile of the

𝐹𝑛−1,𝑛(𝑘−1) distribution, and let 𝐹𝑢 be the (1 − 𝛼/2) × 100th percentile of the 𝐹𝑛(𝑘−1),𝑛−1 distribu-

tion. Let 𝐹𝐿 = 𝐹obs/𝐹𝑙 and 𝐹𝑈 = 𝐹obs𝐹𝑢.

A (1 − 𝛼) × 100% confidence interval for 𝜌1 is

( 𝐹𝐿 − 1
𝐹𝑙 + 𝑘 − 1

, 𝐹𝑈 − 1
𝐹𝑈 + 𝑘 − 1

) (1)

A (1 − 𝛼) × 100% confidence interval for 𝜌𝑘 is

(1 − 1
𝐹𝐿

, 1 − 1
𝐹𝑈

) (2)

Hypothesis tests. Consider a one-sided hypothesis test of 𝐻𝑜∶ ICC = 𝜌0 versus 𝐻𝑎∶ ICC > 𝜌0.

The test statistic for 𝜌1 is

𝐹𝜌1
= BMS

WMS

1 − 𝜌0
1 + (𝑘 − 1)𝜌0

(3)

The test statistic for 𝜌𝑘 is

𝐹𝜌𝑘
= BMS

WMS
(1 − 𝜌0) (4)

Under the null hypothesis, both 𝐹𝜌1
and 𝐹𝜌𝑘

have the 𝐹𝑛−1,𝑛(𝑘−1) distribution. When 𝜌0 = 0, the

two test statistics coincide.
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Two-way random effects
In this setting, the target is evaluated by the same set of raters, who are randomly drawn from the

population of raters. The underlying models with and without interaction are

𝑦𝑖𝑗 = 𝜇 + 𝑟𝑖 + 𝑐𝑗 + (𝑟𝑐)𝑖𝑗 + 𝜖𝑖𝑗 (M2)

𝑦𝑖𝑗 = 𝜇 + 𝑟𝑖 + 𝑐𝑗 + 𝜖𝑖𝑗 (M2A)

where 𝑦𝑖𝑗 is the rating of the 𝑖th target by the 𝑗th rater, 𝜇 is the mean rating, 𝑟𝑖 is the target random effect,

𝑐𝑗 is the rater random effect, (𝑟𝑐)𝑖𝑗 is the target-rater random effect, and 𝜖𝑖𝑗 is random error. The 𝑟𝑖s

are i.i.d. 𝑁(0, 𝜎2
𝑟), 𝑐𝑗s are i.i.d. 𝑁(0, 𝜎2

𝑐 ), (𝑟𝑐)𝑖𝑗s are i.i.d. 𝑁(0, 𝜎2
𝑟𝑐), and 𝜖𝑖𝑗s are i.i.d. 𝑁(0, 𝜎2

𝜖 ). Each
effect is mutually independent of the others.

Below, we provide formulas for ICCs for model (M2). The corresponding ICCs for model (M2A) can

be obtained by setting 𝜎2
𝑟𝑐 = 0.

The individual AA-ICC is the correlation between individual measurements on the same target:

𝜌𝐴,1 = ICC(𝐴,1) = Corr(𝑦𝑖𝑗, 𝑦𝑖𝑗′) = 𝜎2
𝑟

𝜎2
𝑟 + 𝜎2

𝑐 + (𝜎2
𝑟𝑐 + 𝜎2

𝜖 )

The average AA-ICC is the correlation between average measurements of size 𝑘 made on the same

target:

𝜌𝐴,𝑘 = ICC(𝐴,𝑘) = Corr(𝑦𝑖., 𝑦′
𝑖.) = 𝜎2

𝑟
𝜎2

𝑟 + (𝜎2
𝑐 + 𝜎2

𝑟𝑐 + 𝜎2
𝜖 )/𝑘

The consistency-of-agreement intraclass correlation for individual measurements, individual CA-ICC,

is

𝜌𝐶,1 = ICC(𝐶,1) = 𝜎2
𝑟

𝜎2
𝑟 + (𝜎2

𝑟𝑐 + 𝜎2
𝜖 )

The consistency-of-agreement intraclass correlation for average measurements of size 𝑘, average
CA-ICC, is

𝜌𝐶,𝑘 = ICC(𝐶,𝑘) = 𝜎2
𝑟

𝜎2
𝑟 + (𝜎2

𝑟𝑐 + 𝜎2
𝜖 )/𝑘

With one observation per target and rater, 𝜎2
𝑟𝑐 and 𝜎2

𝜖 cannot be estimated separately.

The estimators of intraclass correlations, confidence intervals, and test statistics are the same for

models (M2) and (M2A). The estimators of ICCs are

̂𝜌𝐴,1 = ̂ICC(𝐴,1) = BMS − EMS

BMS + (𝑘 − 1)EMS + 𝑘
𝑛 (JMS − EMS)

̂𝜌𝐴,𝑘 = ̂ICC(𝐴,𝑘) = BMS − EMS

BMS + 1
𝑛 (JMS − EMS)

̂𝜌𝐶,1 = ̂ICC(𝐶,1) = BMS − EMS

BMS + (𝑘 − 1)EMS

̂𝜌𝐶,𝑘 = ̂ICC(𝐶,k) = BMS − EMS

BMS
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Confidence intervals. Let 𝑎 = 𝑘 ̂𝜌𝐴,1/{𝑛(1 − ̂𝜌𝐴,1)}, 𝑏 = 1 + 𝑘 ̂𝜌𝐴,1(𝑛 − 1)/{𝑛(1 − ̂𝜌𝐴,1)}, and

𝑣 = (𝑎JMS + 𝑏EMS)2

𝑎2JMS
2

𝑘−1 + 𝑏2EMS
2

(𝑛−1)(𝑘−1)

(5)

Let 𝐹𝑙 be the (1−𝛼/2)×100th percentile of the 𝐹𝑛−1,𝑣 distribution and 𝐹𝑢 be the (1−𝛼/2)×100th

percentile of the 𝐹𝑣,𝑛−1 distribution.

A (1 − 𝛼) × 100% confidence interval for 𝜌𝐴,1 is given by (𝐿, 𝑈), where

𝐿 = 𝑛(BMS − 𝐹𝑙EMS)
𝐹𝑙 {𝑘JMS + (𝑘𝑛 − 𝑘 − 𝑛)EMS} + 𝑛BMS

𝑈 = 𝑛(𝐹𝑢BMS − EMS)
𝑘JMS + (𝑘𝑛 − 𝑘 − 𝑛)EMS + 𝑛𝐹𝑢BMS

(6)

A (1 − 𝛼) × 100% confidence intervals for 𝜌𝐴,𝑘 is a special case of (6) with 𝑘 = 1, where 𝑎 =
̂𝜌𝐴,𝑘/{𝑛(1 − ̂𝜌𝐴,𝑘)}, 𝑏 = 1 + ̂𝜌𝐴,𝑘(𝑛 − 1)/{𝑛(1 − ̂𝜌𝐴,𝑘)}, and 𝑣 is defined in (5).
To define confidence intervals for 𝜌𝐶,1 and 𝜌𝐶,𝑘, let 𝐹obs = BMS/EMS, 𝐹𝑙 be the (1 − 𝛼/2) ×

100th percentile of the 𝐹𝑛−1,(𝑛−1)(𝑘−1) distribution, and 𝐹𝑢 be the (1 − 𝛼/2) × 100th percentile of the

𝐹(𝑛−1)(𝑘−1),𝑛−1 distribution. Let 𝐹𝐿 = 𝐹obs/𝐹𝑙 and 𝐹𝐿 = 𝐹obs𝐹𝑢.

A (1 − 𝛼) × 100% confidence intervals for 𝜌𝐶,1 and 𝜌𝐶,𝑘 are then as given by (1) and (2) for

model (M1).

Hypothesis tests. Consider a one-sided hypothesis test of 𝐻𝑜 ∶ ICC = 𝜌0 versus 𝐻𝑎 ∶ ICC > 𝜌0. Let

𝑎 = 𝑘𝜌0/{𝑛(1 − 𝜌0)} and 𝑏 = 1 + 𝑘𝜌0(𝑛 − 1)/{𝑛(1 − 𝜌0)}.
The test statistic for 𝜌𝐴,1 is

𝐹𝜌𝐴,1
= BMS

𝑎JMS + 𝑏EMS

Under the null hypothesis, 𝐹𝜌𝐴,1
has the 𝐹𝑛−1,𝑣 distribution, where 𝑣 is defined in (5).

The test statistic for 𝜌𝐴,𝑘 is defined similarly, except 𝑎 = 𝜌0/{𝑛(1 − 𝜌0)} and 𝑏 = 1 +
𝜌0(𝑛 − 1)/{𝑛(1−𝜌0)}. Under the null hypothesis, 𝐹𝜌𝐴,𝑘

has the 𝐹𝑛−1,𝑣 distribution, where 𝑣 is defined
in (5). When 𝜌0 = 0, then 𝑎 = 0, 𝑏 = 1, and the two test statistics coincide.

The test statistics for 𝜌𝐶,1 and 𝜌𝐶,𝑘 are defined by (3) and (4), respectively, with WMS replaced by

EMS. Under the null hypothesis, both 𝐹𝜌𝐶,1
and 𝐹𝜌𝐶,𝑘

have the 𝐹𝑛−1,(𝑛−1)(𝑘−1) distribution. They also

both have the same value when 𝜌0 = 0.

Two-way mixed effects
In this setting, every target is evaluated by the same set of judges, who are the only judges of interest.

The underlying models with and without interaction are

𝑦𝑖𝑗 = 𝜇 + 𝑟𝑖 + 𝑐𝑗 + (𝑟𝑐)𝑖𝑗 + 𝜖𝑖𝑗 (M3)

𝑦𝑖𝑗 = 𝜇 + 𝑟𝑖 + 𝑐𝑗 + 𝜖𝑖𝑗 (M3A)
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where 𝑦𝑖𝑗 is the rating of the 𝑖th target by the 𝑗th rater, 𝜇 is the mean rating, 𝑟𝑖 is the target random effect,

𝑐𝑗 is the rater random effect, (𝑟𝑐)𝑖𝑗 is an interaction effect between target and rater, and 𝜖𝑖𝑗 is random

error. The 𝑟𝑖s are i.i.d. 𝑁(0, 𝜎2
𝑟), (𝑟𝑐)𝑖𝑗s are 𝑁(0, 𝜎2

𝑟𝑐), and 𝜖𝑖𝑗s are i.i.d. 𝑁(0, 𝜎2
𝜖 ). Each random effect

is mutually independent of the others. The 𝑐𝑗s are fixed such that ∑𝑗 𝑐𝑗 = 0. The variance of 𝑐𝑗s is

𝜃2
𝑐 = ∑ 𝑐2

𝑗 /(𝑘 − 1).
In the presence of an interaction, two versions of a mixed-effects model may be considered. One

assumes that (𝑟𝑐)𝑖𝑗s are i.i.d. 𝑁(0, 𝜎2
𝑟𝑐). Another assumes that (𝑟𝑐)𝑖𝑗s are 𝑁(0, 𝜎2

𝑟𝑐) with an additional
constraint that ∑𝑗(𝑟𝑐)𝑖𝑗 = 0 (for example, Kuehl [2000]), so only interaction terms involving different

targets are independent. The latter model is considered here.

We now define the intraclass correlations for individual measurements for model (M3).

The individual CA-ICC, the correlation between individual measurements on the same target, is

𝜌𝐶,1 = ICC(𝐶,1) = Corr(𝑦𝑖𝑗, 𝑦𝑖𝑗′) = 𝜎2
𝑟 − 𝜎2

𝑟𝑐/(𝑘 − 1)
𝜎2

𝑟 + (𝜎2
𝑟𝑐 + 𝜎2

𝜖 )

The absolute-agreement intraclass correlation for individual measurements, individual AA-ICC, is

𝜌𝐴,1 = ICC(𝐴,1) = 𝜎2
𝑟 − 𝜎2

𝑟𝑐/(𝑘 − 1)
𝜎2

𝑟 + 𝜃2
𝑐 + (𝜎2

𝑟𝑐 + 𝜎2
𝜖 )

Shrout and Fleiss (1979) show that the individual ICC could be negative in this case—a phenomenon

first pointed out by Sitgreaves (1960). This can happen when the interaction term has a high variance

relative to the targets and there are not many raters.

The individual intraclass correlations for model (M3A) have similar definitions with 𝜎2
𝑟𝑐 = 0. The

individual CA-ICC is the correlation between individual measurements on the same target, Corr(𝑦𝑖𝑗, 𝑦𝑖𝑗′).
We now discuss the intraclass correlations that correspond to average measurements. Neither average

AA-ICC, 𝜌𝐴,𝑘, nor average CA-ICC, 𝜌𝐶,𝑘, can be estimated under model (M3) (Shrout and Fleiss 1979;

McGraw and Wong 1996a). The problem is that in this model, 𝜎2
𝑟 , which is the covariance between two

means based on 𝑘 raters, cannot be estimated.
Specifically, the parameter 𝜎2

𝑟 appears only in the expectation of the between-target mean squares

BMS. Under the restriction ∑𝑗(𝑟𝑐)𝑖𝑗 = 0,

𝐸(BMS) = 𝑘𝜎2
𝑟 + 𝜎2

𝜖

Note that 𝜎2
𝑟𝑐 does not appear in the expectation of between-target mean squares. With one observation

per target and rater, 𝜎2
𝑟𝑐 and 𝜎2

𝜖 cannot be estimated separately (only their sum 𝜎2
𝑟𝑐 +𝜎2

𝜖 can be estimated),

so BMS alone cannot be used to estimate 𝜎2
𝑟 .

Under model (M3A), however, there is no interaction (and thus no interaction variance component

𝜎2
𝑟𝑐), so 𝜌𝐴,𝑘 or 𝜌𝐶,𝑘 can be estimated.

The average AA-ICC, the absolute-agreement intraclass correlation for average measurements of size

𝑘, is

𝜌𝐴,𝑘 = ICC(𝐴,𝑘) = 𝜎2
𝑟

𝜎2
𝑟 + (𝜃2

𝑐 + 𝜎2
𝜖 )/𝑘

The average CA-ICC, the correlation between average measurements of size 𝑘made on the same target,
is

𝜌𝐶,𝑘 = ICC(𝐶,𝑘) = Corr(𝑦𝑖., 𝑦′
𝑖.) = 𝜎2

𝑟
𝜎2

𝑟 + 𝜎2
𝜖 /𝑘
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The estimators of ICCs, their confidence intervals, and hypothesis tests are as described for two-way

random-effects models, except 𝜌𝐴,𝑘 and 𝜌𝐶,𝑘 are not defined under model (M3).
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Inequality — Inequality, poverty, and other distributional summaries

Description Remarks and examples References

Description
There are different approaches for measuring inequality and poverty, and different methods for sum-

marizing the distribution of earnings, income, and wealth. Stata has some official features for these types

of analyses. For example, the roctab command has an option to report Gini and Pietra indices, which
are measures of income inequality; see [R] roctab. With the cumul command, you can obtain the cumu-
lative distribution function of, for example, household expenditures; see [R] cumul. Additionally, you

may want to look at the shape of income distributions; see [R] kdensity and [R] histogram.

However, you might also be interested in the generalized Lorenz curve or a welfare index, which can-

not be obtained from any official Stata commands. Fortunately, Stata users have developed an excellent

suite of commands that create these graphs and report these types of indices, along with many other re-

lated measures. In this entry, we demonstrate how to find and install community-contributed commands

related to inequality, poverty, and distributional summaries of earnings, income, and wealth.

Remarks and examples
Suppose you are in search of a command to report inequality indices; you could type the following:

. search inequality

First, you will see official resources related to this keyword, including frequently asked questions

(FAQs) and Stata Journal articles. Then, you will see community-contributed additions to Stata that are

available from the Internet, which typically include additions published in the Stata Journal and those

posted on the Statistical Software Components (SSC)Archive, provided by http://repec.org. For example,

in the output from search, we find ineqdec0, which calculates inequality indices with decomposition
by subgroup.

Search of web resources from Stata and other users

(output omitted )

ineqdec0 from http://fmwww.bc.edu/RePEc/bocode/i
’INEQDEC0’: module to calculate inequality indices with decomposition by
subgroup / ineqdec0 is a stripped-down version of ineqdeco (q.v.). /
Unlike the latter, it will provide estimates using samples /containing
zero or negative values for the variable of / interest. But as a result

ineqdecgini from http://fmwww.bc.edu/RePEc/bocode/i
’INEQDECGINI’: module to estimate Gini coefficient with optional
decomposition by subgroups / ineqdecgini estimates the Gini coefficient
(a.k.a. Gini index) / of inequality plus, optionally, a decomposition by
population / subgroup into components representing inequality within /

(output omitted )

(end of search)

1247

http://repec.org
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Let’s take a closer look at this package:

1. Click on ineqdec0 from http://fmwww.bc.edu/RePEc/bocode/i.

2. Click on ineqdec0.hlp.

This leads us to the help file, where we could learn more about which indices are computed with this

package. This particular command supports fweights and aweights, but not all community-contributed
commands do; it is important to look at the help file and confirm whether the command is a good fit for

the analysis you want to perform. If it is, you can install it:

3. Click on the back button.

4. Click on click here to install.

Once you see a message indicating that the installation is complete, you may now use this command.

Another thing to keep in mind when installing packages is whether they are designed to work with

complex survey data. This particular command is not. We can click on the back button once to return to

the description of ineqdec0 and then once more to return to the search results. Scrolling up, we come
across

Search of official help files, FAQs, Examples, and Stata Journals

(output omitted )

SJ-16-2 st0427_1 . . . . . . . . . . . . . . . . Software update for conindex
. . . . . . . . . O. O’Donnell, S. O’Neill, T. Van Ourti, and B. Walsh

(help conindex if installed)
Q2/16 SJ 16(2):521--522
program can now be used on data from complex survey designs
(output omitted )

(end of search)

This is an update for a package called conindex; this updated version of the command can be used with
data from complex survey designs. The original version of the package was introduced in Stata Journal

Volume 16 Number 1 (March 2016), and this update was published the following quarter. If we scroll

up a bit more in the search results, we will find an even more recent update:

Search of official help files, FAQs, Examples, and Stata Journals

(output omitted )

SJ-18-3 st0427_2 . . . . . . . . . . . . . . . . Software update for conindex
. . . . . . . . . O. O’Donnell, S. O’Neill, T. Van Ourti, and B. Walsh
(help conindex if installed)
Q3/18 SJ 18(3):758--759
uses the community-contributed lorenz command and fix a small bug
in the graph option

(output omitted )

(end of search)

It is best to install the most recent version, which we can do as follows:

1. Click on st0427 2.

2. Click on click here to install.
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The examples above demonstrate how to install community-contributed commands related to mea-

sures of inequality, but you would follow the same steps to find and install commands related to poverty

measures, indices of social welfare, and the like.

For example, type the following:

. search poverty

In the list of results, you will find glcurve, which can be used to draw Lorenz curves, concentration

curves, and other related curves. We can install this command as follows:

1. Click on glcurve from http://fmwww.bc.edu/RePEc/bocode/g.

2. Click on click here to install.

These are just a few examples of the many community-contributed commands that are available.

You can use search to find more community-contributed commands used to obtain other measures of
inequality and poverty, and distributional summaries of earnings, income, and wealth.� �
Max Otto Lorenz (1876–1959) was born in Burlington, Iowa. He did his undergraduate studies at

the University of Iowa and received his PhD from the University of Wisconsin–Madison in 1906.

In 1905, he published his only article, “Methods of measuring the concentration of wealth”, in a

scientific journal. In the article, he introduces what we now call the Lorenz curve, a term first

introduced in a statistics textbook in 1912.

Lorenz worked his whole life in governmental statistical institutions. He was the Deputy Commis-

sioner of Labor and Industrial Statistics for Wisconsin, worked for the US Bureau of the Census and

the Bureau of Railway Economics, and was the Director of the Bureau of Statistics and the Bureau

of Transport and Economic Statistics.

His hobbies included calendar reform and Interlingua, a proposed international language.� �
References
Chávez Juárez, F. W., and I. Soloaga. 2014. iop: Estimating ex-ante inequality of opportunity. Stata Journal 14: 830–846.

Cox, N. J. 1999. gr35: Diagnostic plots for assessing Singh–Maddala and Dagum distributions fitted by MLE. Stata

Technical Bulletin 48: 2–4. Reprinted in Stata Technical Bulletin Reprints, vol. 8, pp. 72–74. College Station, TX: Stata

Press.

Foster, J., S. Seth, M. Lokshin, and Z. Sajaia. 2013.AUnified Approach to Measuring Poverty and Inequality: Theory and

Practice. Washington, DC: World Bank. https://doi.org/10.1596/978-0-8213-8461-9.

Goldstein, R. 1995. sg31: Measures of diversity: Absolute and relative. Stata Technical Bulletin 23: 23–26. Reprinted in

Stata Technical Bulletin Reprints, vol. 4, pp. 150–154. College Station, TX: Stata Press.

Guinea-Martin, D., and R. Mora. 2022. Computing decomposable multigroup indices of segregation. Stata Journal 22:

521–556.

Jann, B. 2016a. Assessing inequality using percentile shares. Stata Journal 16: 264–300.

———. 2016b. Estimating Lorenz and concentration curves. Stata Journal 16: 837–866.

Jenkins, S. P. 1999a. sg104: Analysis of income distributions. Stata Technical Bulletin 48: 4–18. Reprinted in Stata

Technical Bulletin Reprints, vol. 8, pp. 243–260. College Station, TX: Stata Press.

———. 1999b. sg106: Fitting Singh–Maddala and Dagum distributions bymaximum likelihood. Stata Technical Bulletin

48: 19–25. Reprinted in Stata Technical Bulletin Reprints, vol. 8, pp. 261–268. College Station, TX: Stata Press.

———. 2020. Comparing distributions of ordinal data. Stata Journal 20: 505–531.

https://www.stata.com/giftshop/bookmarks/series8/lorenz/
https://www.stata-journal.com/article.html?article=st0361
https://www.stata.com/products/stb/journals/stb48.pdf
https://doi.org/10.1596/978-0-8213-8461-9
https://www.stata.com/products/stb/journals/stb23.pdf
https://doi.org/10.1177/1536867X221124471
https://www.stata-journal.com/article.html?article=st0432
https://www.stata-journal.com/article.html?article=st0457
https://www.stata.com/products/stb/journals/stb48.pdf
https://www.stata.com/products/stb/journals/stb48.pdf
https://doi.org/10.1177/1536867X20953565


Inequality — Inequality, poverty, and other distributional summaries 1250

Jenkins, S. P., and P. Van Kerm. 1999a. sg107: Generalized Lorenz curves and related graphs. Stata Technical Bulletin

48: 25–29. Reprinted in Stata Technical Bulletin Reprints, vol. 8, pp. 269–274. College Station, TX: Stata Press.

———. 1999b. sg107.1: Generalized Lorenz curves and related graphs. Stata Technical Bulletin 49: 23. Reprinted in

Stata Technical Bulletin Reprints, vol. 9, p. 171. College Station, TX: Stata Press.

———. 2001. Generalized Lorenz curves and related graphs: An update for Stata 7. Stata Journal 1: 107–112.

———. 2004. gr0001 1: Software Updates: Generalized Lorenz curves and related graphs. Stata Journal 4: 490.

———. 2006. gr0001 2: Software Updates: Generalized Lorenz curves and related graphs. Stata Journal 6: 597.

———. 2007. gr0001 3: Software Updates: Generalized Lorenz curves and related graphs. Stata Journal 7: 280.

Jolliffe, D., and B. Krushelnytskyy. 1999. sg115: Bootstrap standard errors for indices of inequality. Stata Technical

Bulletin 51: 28–32. Reprinted in Stata Technical Bulletin Reprints, vol. 9, pp. 191–196. College Station, TX: Stata

Press.

Jolliffe, D., and A. Semykina. 1999. sg117: Robust standard errors for the Foster–Greer–Thorbecke class of poverty

indices. Stata Technical Bulletin 51: 34–36. Reprinted in Stata Technical Bulletin Reprints, vol. 9, pp. 200–203. College

Station, TX: Stata Press.

Kleiber, C., and S. Kotz. 2003. Statistical Size Distributions in Economics and Actuarial Sciences. Hoboken, NJ: Wiley.

https://doi.org/10.1002/0471457175.

López-Feldman, A. 2006. Decomposing inequality and obtaining marginal effects. Stata Journal 6: 106–111.

———. 2008. Software Updates: Decomposing inequality and obtaining marginal effects. Stata Journal 8: 594.

Lorenz, M. O. 1905. Methods of measuring the concentration of wealth. American Statistical Association 9: 209–219.

https://doi.org/10.2307/2276207.

O’Donnell, O., S. O’Neill, T.VanOurti, and B.Walsh. 2016a. conindex: Estimation of concentration indices. Stata Journal

16: 112–138.

———. 2016b. st0427 1: Software Updates: conindex: Estimation of concentration indices. Stata Journal 16: 521–522.

———. 2018. st0427 2: Software Updates: conindex: Estimation of concentration indices. Stata Journal 18: 758–759.

Savegnago, M. 2016. igmobil: A command for intergenerational mobility analysis in Stata. Stata Journal 16: 386–401.

Suppa, N. 2023. mpitb: A toolbox for multidimensional poverty indices. Stata Journal 23: 625–657.

Van Kerm, P. 1999. sg108: Computing poverty indices. Stata Technical Bulletin 48: 29–33. Reprinted in Stata Technical

Bulletin Reprints, vol. 8, pp. 274–278. College Station, TX: Stata Press.

https://www.stata.com/products/stb/journals/stb48.pdf
https://www.stata.com/products/stb/journals/stb49.pdf
https://www.stata-journal.com/article.html?article=gr0001
https://www.stata-journal.com/article.html?article=up0009
https://www.stata-journal.com/article.html?article=up0017
https://www.stata-journal.com/article.html?article=up0018
https://www.stata.com/products/stb/journals/stb51.pdf
https://www.stata.com/products/stb/journals/stb51.pdf
https://www.stata.com/products/stb/journals/stb51.pdf
https://doi.org/10.1002/0471457175
https://www.stata-journal.com/article.html?article=st0100
https://www.stata-journal.com/article.html?article=up0023
https://doi.org/10.2307/2276207
https://www.stata-journal.com/article.html?article=st0427
https://www.stata-journal.com/article.html?article=up0051
https://www.stata-journal.com/article.html?article=up0060
https://www.stata-journal.com/article.html?article=st0437
https://doi.org/10.1177/1536867X231195286
https://www.stata.com/products/stb/journals/stb48.pdf


intreg — Interval regression

Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas References Also see

Description
intreg fits a linear model with an outcome measured as point data, interval data, left-censored data,

or right-censored data. As such, it is a generalization of the model fit by tobit.

Quick start
Regression on x1 and x2 of an interval-measured dependent variable with lower endpoint y lower and

upper endpoint y upper
intreg y_lower y_upper x1 x2

With robust standard errors

intreg y_lower y_upper x1 x2, vce(robust)

Model heteroskedasticity in the conditional variance as a function of x3
intreg y_lower y_upper x1 x2, het(x3)

Adjust for complex survey design using svyset data
svy: intreg y_lower y_upper x1 x2

Menu
Statistics > Linear models and related > Censored regression > Interval regression

1251
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Syntax
intreg depvar1 depvar2 [ indepvars ] [ if ] [ in ] [weight ] [ , options ]

depvar1 and depvar2 should have the following form:

Type of data depvar1 depvar2

point data 𝑎 = [ 𝑎, 𝑎 ] 𝑎 𝑎
interval data [ 𝑎, 𝑏 ] 𝑎 𝑏
left-censored data ( −∞, 𝑏 ] . 𝑏
right-censored data [ 𝑎, +∞ ) 𝑎 .
missing . .

options Description

Model

noconstant suppress constant term

het(varlist[ , noconstant]) independent variables to model the variance; use noconstant
to suppress constant term

offset(varname) include varname in model with coefficient constrained to 1

constraints(constraints) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, opg,
bootstrap, or jackknife

Reporting

level(#) set confidence level; default is level(95)
nocnsreport do not display constraints

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

collinear keep collinear variables

coeflegend display legend instead of statistics

indepvars and varlist may contain factor variables; see [U] 11.4.3 Factor variables.

depvar1, depvar2, indepvars, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.

bayes, bootstrap, by, collect, fmm, fp, jackknife, mfp, nestreg, rolling, statsby, stepwise, and svy are allowed;
see [U] 11.1.10 Prefix commands. For more details, see [BAYES] bayes: intreg and [FMM] fmm: intreg.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
aweights are not allowed with the jackknife prefix; see [R] jackknife.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
aweights, fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
collinear and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Options

� � �
Model �

noconstant; see [R] Estimation options.

het(varlist [ , noconstant]) specifies that the logarithm of the standard deviation be modeled as a

linear combination of varlist. The constant is included unless noconstant is specified.

offset(varname), constraints(constraints); see [R] Estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), that al-
low for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods

(bootstrap, jackknife); see [R] vce option.

� � �
Reporting �

level(#), nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. These options are

seldom used.

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

The following options are available with intreg but are not shown in the dialog box:

collinear, coeflegend; see [R] Estimation options.

Remarks and examples
intreg fits a linear model to an outcome that may be either observed exactly or unobserved but known

to fall within some interval. The values of the outcome variablemay be observed (point data), unobserved

but known to fall within an interval with fixed endpoints (interval-censored data), unobserved but known

to fall within an interval that has a fixed upper endpoint (left-censored data), or unobserved but known

to fall within an interval that has a fixed lower endpoint (right-censored data). Such censored data arise

naturally in many contexts, such as wage data. Often, you know only that, for example, a person’s salary

is between $30,000 and $40,000.

The interval regression model fit by intreg is a generalization of the models fit by tobit because
it extends censoring beyond left-censored data or right-censored data; see Cameron and Trivedi (2022,

965–967) for additional discussion of these data types. See Wooldridge (2020, sec. 17.4) for an intro-

duction to censored and truncated regression models.



intreg — Interval regression 1254

Regardless of the type of censoring, intreg requires the outcome to be stored in the dataset as interval
data. That is, two dependent variables, depvar1 and depvar2, are used to hold the endpoints of the

interval. If the data are left-censored, the lower endpoint is −∞ and is represented by a missing value in

depvar1. If the data are right-censored, the upper endpoint is +∞ and is represented by a missing value

in depvar2. Point data are represented by the two endpoints being equal. Truly missing values of the

dependent variable must be represented by missing values in both depvar1 and depvar2.

Example 1: Interval regression
womenwage2.dta contains the yearly wages of working women in interval form. Women were asked

to indicate a category for their yearly income from employment. The categories were $5,000 or less,

$5,001–$10,000, . . . , $25,001–$30,000, $30,001–$40,000, $40,001–$50,000, and more than $50,000.

The lower and upper endpoints of the wage categories (in $1,000s) are recorded in variables wage1 and
wage2. Below, we list the first 10 observations in wage1 and wage2.

. use https://www.stata-press.com/data/r18/womenwage2
(Wages of women, fictional data)
. list wage1 wage2 in 1/10

wage1 wage2

1. . 5
2. 5 10
3. 5 10
4. 10 15
5. 15 20

6. 20 25
7. 25 30
8. 30 40
9. 40 50

10. 50 .

We see, for example, that the first respondent made $5,000 or less in a year, that the second respondent

made between $5,001 and $10,000 in a year, and so on. The tenth respondent made at least $50,000 a

year.
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We now fit an interval regression model of women’s wages using social and demographic characteris-

tics as explanatory variables. The variables include the subject’s age (age), years of schooling (school),
job tenure (tenure), a dummy for living in a rural area (rural), and a dummy for never being married
(nev mar).

. intreg wage1 wage2 age c.age#c.age i.nev_mar i.rural school tenure
Fitting constant-only model:
Iteration 0: Log likelihood = -967.24956
Iteration 1: Log likelihood = -967.1368
Iteration 2: Log likelihood = -967.1368
Fitting full model:
Iteration 0: Log likelihood = -856.65324
Iteration 1: Log likelihood = -856.33294
Iteration 2: Log likelihood = -856.33293
Interval regression Number of obs = 488

Uncensored = 0
Left-censored = 14

Right-censored = 6
Interval-cens. = 468

LR chi2(6) = 221.61
Log likelihood = -856.33293 Prob > chi2 = 0.0000

Coefficient Std. err. z P>|z| [95% conf. interval]

age .7914438 .4433604 1.79 0.074 -.0775265 1.660414

c.age#c.age -.0132624 .0073028 -1.82 0.069 -.0275757 .0010509

1.nev_mar -.2075022 .8119581 -0.26 0.798 -1.798911 1.383906
1.rural -3.043044 .7757324 -3.92 0.000 -4.563452 -1.522637
school 1.334721 .1357873 9.83 0.000 1.068583 1.600859
tenure .8000664 .1045077 7.66 0.000 .5952351 1.004898
_cons -12.70238 6.367117 -1.99 0.046 -25.1817 -.2230583

/lnsigma 1.987823 .0346543 57.36 0.000 1.919902 2.055744

sigma 7.299626 .2529634 6.82029 7.81265

Because the conditional mean modeled by interval regression is linear, the coefficients are interpreted

the same way they are in ordinary least-squares regression; see [R] regress. For example, residing in a

rural area lowers the expected income by $3,043 and each additional year of schooling raises the expected

income by $1,335.
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Technical note
Instead of using intervals to record wages, we could treat the outcome as categorical with a higher

category corresponding to a higher wage. Here we fit an ordered probit model for wagecat, created
based on groups defined by the intervals, by using oprobit (see [R] oprobit) with the same covariates:

. oprobit wagecat age c.age#c.age i.nev_mar i.rural school tenure
Iteration 0: Log likelihood = -881.1491
Iteration 1: Log likelihood = -764.31729
Iteration 2: Log likelihood = -763.31191
Iteration 3: Log likelihood = -763.31049
Iteration 4: Log likelihood = -763.31049
Ordered probit regression Number of obs = 488

LR chi2(6) = 235.68
Prob > chi2 = 0.0000

Log likelihood = -763.31049 Pseudo R2 = 0.1337

wagecat Coefficient Std. err. z P>|z| [95% conf. interval]

age .1674519 .0620333 2.70 0.007 .0458689 .289035

c.age#c.age -.0027983 .0010214 -2.74 0.006 -.0048001 -.0007964

1.nev_mar -.0046417 .1126737 -0.04 0.967 -.225478 .2161946
1.rural -.5270036 .1100449 -4.79 0.000 -.7426875 -.3113196
school .2010587 .0201189 9.99 0.000 .1616263 .2404911
tenure .0989916 .0147887 6.69 0.000 .0700063 .127977

/cut1 2.650637 .8957245 .8950495 4.406225
/cut2 3.941018 .8979167 2.181134 5.700903
/cut3 5.085205 .9056582 3.310148 6.860263
/cut4 5.875534 .9120933 4.087864 7.663204
/cut5 6.468723 .918117 4.669247 8.268199
/cut6 6.922726 .9215455 5.11653 8.728922
/cut7 7.34471 .9237628 5.534168 9.155252
/cut8 7.963441 .9338881 6.133054 9.793828

We can directly compare the log likelihoods for the intreg and oprobit models because both like-
lihoods are discrete. If we had point data in our intreg estimation, the likelihood would be a mixture
of discrete and continuous terms, and we could not compare it directly with the oprobit likelihood.
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Here the oprobit log likelihood is significantly larger (that is, less negative), so it fits better than

the intreg model. The intreg model assumes normality, but the distribution of wages is skewed and
definitely nonnormal. Normality is more closely approximated if we model the log of wages.

. generate logwage1 = log(wage1)
(14 missing values generated)
. generate logwage2 = log(wage2)
(6 missing values generated)
. intreg logwage1 logwage2 age c.age#c.age i.nev_mar i.rural school tenure
Fitting constant-only model:
Iteration 0: Log likelihood = -889.23647
Iteration 1: Log likelihood = -889.06346
Iteration 2: Log likelihood = -889.06346
Fitting full model:
Iteration 0: Log likelihood = -773.81968
Iteration 1: Log likelihood = -773.36566
Iteration 2: Log likelihood = -773.36563
Interval regression Number of obs = 488

Uncensored = 0
Left-censored = 14

Right-censored = 6
Interval-cens. = 468

LR chi2(6) = 231.40
Log likelihood = -773.36563 Prob > chi2 = 0.0000

Coefficient Std. err. z P>|z| [95% conf. interval]

age .0645589 .0249954 2.58 0.010 .0155689 .1135489

c.age#c.age -.0010812 .0004115 -2.63 0.009 -.0018878 -.0002746

1.nev_mar -.0058151 .0454867 -0.13 0.898 -.0949674 .0833371
1.rural -.2098361 .0439454 -4.77 0.000 -.2959675 -.1237047
school .0804832 .0076783 10.48 0.000 .0654341 .0955323
tenure .0397144 .0058001 6.85 0.000 .0283464 .0510825
_cons .7084023 .3593193 1.97 0.049 .0041495 1.412655

/lnsigma -.906989 .0356265 -25.46 0.000 -.9768157 -.8371623

sigma .4037381 .0143838 .3765081 .4329373

The log likelihood of this intreg model is close to the oprobit log likelihood, and the 𝑧 statistics for
both models are similar.

Stored results
intreg stores the following in e():

Scalars

e(N) number of observations

e(N unc) number of uncensored observations

e(N lc) number of left-censored observations

e(N rc) number of right-censored observations

e(N int) number of interval observations

e(k) number of parameters
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e(k aux) number of auxiliary parameters

e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test

e(k dv) number of dependent variables

e(df m) model degrees of freedom

e(ll) log likelihood

e(ll 0) log likelihood, constant-only model

e(N clust) number of clusters

e(chi2) 𝜒2

e(p) 𝑝-value for model 𝜒2 test

e(sigma) sigma

e(se sigma) standard error of sigma

e(rank) rank of e(V)
e(rank0) rank of e(V) for constant-only model
e(ic) number of iterations

e(rc) return code

e(converged) 1 if converged, 0 otherwise
Macros

e(cmd) intreg
e(cmdline) command as typed

e(depvar) names of dependent variables

e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(clustvar) name of cluster variable

e(offset) linear offset variable

e(chi2type) Wald or LR; type of model 𝜒2 test

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(het) heteroskedasticity, if het() specified
e(ml score) program used to implement scores
e(opt) type of optimization

e(which) max or min; whether optimizer is to perform maximization or minimization

e(ml method) type of ml method
e(user) name of likelihood-evaluator program

e(technique) maximization technique

e(properties) b V
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(ilog) iteration log (up to 20 iterations)

e(gradient) gradient vector

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():
Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.
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Methods and formulas
The regression equation of interest is

𝑦𝑗 = x𝑗β + 𝜖𝑗

where 𝑦𝑗 is a continuous outcome for the 𝑗th observation—either observed or unobserved—with covari-

ates x𝑗 and corresponding coefficients β. The model assumes that the error term is normally distributed;

𝜖 ∼ 𝑁(0, 𝜎2).
For observations 𝑗 ∈ 𝒞, we observe 𝑦𝑗, that is, point data. Observations 𝑗 ∈ ℐ are intervals; we

know only that the unobserved 𝑦𝑗 is in the interval [ 𝑦1𝑗, 𝑦2𝑗 ]. For these observations, the likelihood
contribution is Pr(𝑦1𝑗 ≤ 𝑌𝑗 ≤ 𝑦2𝑗), where 𝑌𝑗 denotes the random variable representing the dependent

variable in the model. Observations 𝑗 ∈ ℒ are left-censored; we know only that the unobserved 𝑦𝑗 is
less than or equal to 𝑦ℒ𝑗, a censoring value that we do know. Similarly, observations 𝑗 ∈ ℛ are right-

censored; we know only that the unobserved 𝑦𝑗 is greater than or equal to 𝑦ℛ𝑗. The likelihoods for these
censored observations contain terms of the form Pr(𝑌𝑗 ≤ 𝑦ℒ𝑗) for left-censored data and Pr(𝑌𝑗 ≥ 𝑦ℛ𝑗)
for right-censored data.

The log likelihood is

ln𝐿 = − 1
2

∑
𝑗∈𝒞

𝑤𝑗 {(
𝑦𝑗 − x𝑗β

𝜎
)

2

+ log2𝜋𝜎2}

+ ∑
𝑗∈ℒ

𝑤𝑗 logΦ(
𝑦ℒ𝑗 − x𝑗β

𝜎
)

+ ∑
𝑗∈ℛ

𝑤𝑗 log{1 − Φ(
𝑦ℛ𝑗 − x𝑗β

𝜎
)}

+ ∑
𝑗∈ℐ

𝑤𝑗 log{Φ(
𝑦2𝑗 − x𝑗β

𝜎
) − Φ(

𝑦1𝑗 − x𝑗β

𝜎
)}

where Φ() is the cumulative standard normal distribution and 𝑤𝑗 is the weight for the 𝑗th observation. If
no weights are specified, 𝑤𝑗 = 1. If aweights are specified, 𝑤𝑗 = 1, and 𝜎 is replaced by 𝜎/√𝑎𝑗 in the

above, where 𝑎𝑗 are the aweights normalized to sum to 𝑁.

When the het() option is specified, 𝜎 is modeled as 𝑙𝑛(𝜎) = 𝑧′
𝑗𝛾, where 𝑧 represents the variables

in het() and 𝛾 is a vector of the estimated parameters to model the variance.
Note that the likelihood for intreg subsumes that of the tobit models; see [R] tobit.

Maximization is as described in [R] Maximize. intreg stores the estimated 𝜎 in e(b) in the log

metric; therefore, if you want to provide an initial value for 𝜎 or to specify a constraint on it, ensure you

do so on the log scale.

This command supports the Huber/White/sandwich estimator of the variance and its clustered version

using vce(robust) and vce(cluster clustvar), respectively. See [P] robust, particularly Maximum

likelihood estimators and Methods and formulas.

intreg also supports estimation with survey data. For details on VCEs with survey data, see

[SVY] Variance estimation.
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Postestimation commands predict margins Remarks and examples Also see

Postestimation commands
The following postestimation commands are available after intreg:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters

estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian infor-
mation criteria (AIC, CAIC, AICc, and BIC, respectively)

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estat (svy) postestimation statistics for survey data

estimates cataloging estimation results

etable table of estimation results
∗ hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

∗ lrtest likelihood-ratio test

margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

predict linear, censored, and truncated predictions

predictnl point estimates, standard errors, testing, and inference for generalized predictions

pwcompare pairwise comparisons of parameters

suest seemingly unrelated estimation

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

∗hausman and lrtest are not appropriate with svy estimation results.
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predict

Description for predict
predict creates a new variable containing predictions such as linear predictions, standard errors,

probabilities, and expected values.

Menu for predict
Statistics > Postestimation

Syntax for predict
predict [ type ] newvar [ if ] [ in ] [ , statistic nooffset ]

predict [ type ] stub* [ if ] [ in ], scores

statistic Description

Main

xb linear prediction; the default

stdp standard error of the prediction

stdf standard error of the forecast

pr(a,b) Pr(a < 𝑦𝑗 < b)
e(a,b) 𝐸(𝑦𝑗| a < 𝑦𝑗 < b)
ystar(a,b) 𝐸(𝑦∗

𝑗), 𝑦∗
𝑗 = max{𝑎,min(𝑦𝑗, 𝑏)}

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for the estimation
sample.

stdf is not allowed with svy estimation results.

where a and b may be numbers or variables; a missing (a ≥ .) means −∞, and b missing (b ≥ .) means
+∞; see [U] 12.2.1 Missing values.

Options for predict

� � �
Main �

xb, the default, calculates the linear prediction.

stdp calculates the standard error of the prediction, which can be thought of as the standard error of the
predicted expected value or mean for the observation’s covariate pattern. The standard error of the

prediction is also referred to as the standard error of the fitted value.

stdf calculates the standard error of the forecast, which is the standard error of the point prediction for
1 observation. It is commonly referred to as the standard error of the future or forecast value. By

construction, the standard errors produced by stdf are always larger than those produced by stdp;
see Methods and formulas in [R] regress postestimation.
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pr(a,b) calculates Pr(a < x𝑗β + 𝜖𝑗 < b), the probability that 𝑦𝑗|x𝑗 would be observed in the interval

(a, b).
a and b may be specified as numbers or variable names; lb and ub are variable names;

pr(20,30) calculates Pr(20 < x𝑗β + 𝜖𝑗 < 30);
pr(lb,ub) calculates Pr(lb < x𝑗β + 𝜖𝑗 < ub); and
pr(20,ub) calculates Pr(20 < x𝑗β + 𝜖𝑗 < ub).
a missing (a ≥ .) means −∞; pr(.,30) calculates Pr(−∞ < x𝑗β + 𝜖𝑗 < 30);
pr(lb,30) calculates Pr(−∞ < x𝑗β + 𝜖𝑗 < 30) in observations for which lb ≥ .
and calculates Pr(𝑙𝑏 < x𝑗β + 𝜖𝑗 < 30) elsewhere.
b missing (b ≥ .) means +∞; pr(20,.) calculates Pr(+∞ > x𝑗β + 𝜖𝑗 > 20);
pr(20,ub) calculates Pr(+∞ > x𝑗β + 𝜖𝑗 > 20) in observations for which ub ≥ .
and calculates Pr(20 < x𝑗β + 𝜖𝑗 < ub) elsewhere.

e(a,b) calculates 𝐸(x𝑗β + 𝜖𝑗 | a < x𝑗β + 𝜖𝑗 < b), the expected value of 𝑦𝑗|x𝑗 conditional on 𝑦𝑗|x𝑗
being in the interval (a, b), meaning that 𝑦𝑗|x𝑗 is truncated.

a and b are specified as they are for pr().

ystar(a,b) calculates 𝐸(𝑦∗
𝑗), where 𝑦∗

𝑗 = 𝑎 if x𝑗β+𝜖𝑗 ≤ 𝑎, 𝑦∗
𝑗 = 𝑏 if x𝑗β+𝜖𝑗 ≥ 𝑏, and 𝑦∗

𝑗 = x𝑗β+𝜖𝑗
otherwise, meaning that 𝑦∗

𝑗 is censored. a and b are specified as they are for pr().

nooffset is relevant only if you specified offset(varname). It modifies the calculations made by

predict so that they ignore the offset variable; the linear prediction is treated as x𝑗β rather than as

x𝑗β + offset𝑗.

scores calculates equation-level score variables.

The first new variable will contain 𝜕ln𝐿/𝜕(x𝑗β).
The second new variable will contain 𝜕ln𝐿/𝜕 ln𝜎.
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margins

Description for margins
margins estimates margins of response for linear predictions, probabilities, and expected values.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist ] [ , options ]
margins [marginlist ] , predict(statistic ...) [ predict(statistic ...) ... ] [ options ]

statistic Description

xb linear prediction; the default

pr(a,b) Pr(a < 𝑦𝑗 < b)
e(a,b) 𝐸(𝑦𝑗| a < 𝑦𝑗 < b)
ystar(a,b) 𝐸(𝑦∗

𝑗), 𝑦∗
𝑗 = max{𝑎,min(𝑦𝑗, 𝑏)}

stdp not allowed with margins
stdf not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.
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Remarks and examples

Example 1: Marginal predictions
Continuing with example 1 of [R] intreg, we compute women’s expected wages conditional on a

woman’s wage being higher than $5,000. To do this, we can use the e(a,b) option.

. use https://www.stata-press.com/data/r18/womenwage2
(Wages of women, fictional data)
. intreg wage1 wage2 age c.age#c.age i.nev_mar i.rural school tenure
(output omitted )

. predict w1, e(5,.)

. summarize w1
Variable Obs Mean Std. dev. Min Max

w1 488 18.02362 4.583738 8.717687 35.31161

The predicted wages range from $8,718 to $35,312.

We can also examine whether the probability of earning more than $5,000 varies with age. We can

use margins to compute the marginal means of the predicted probabilities at different ages.

. margins, predict(pr(5,.)) at(age=(20(5)50))
Predictive margins Number of obs = 488
Model VCE: OIM
Expression: Pr(y>5), predict(pr(5,.))
1._at: age = 20
2._at: age = 25
3._at: age = 30
4._at: age = 35
5._at: age = 40
6._at: age = 45
7._at: age = 50

Delta-method
Margin std. err. z P>|z| [95% conf. interval]

_at
1 .8912598 .0151773 58.72 0.000 .8615127 .9210068
2 .9104568 .0103467 87.99 0.000 .8901775 .930736
3 .9160005 .0120025 76.32 0.000 .892476 .9395251
4 .9096667 .0136693 66.55 0.000 .8828753 .9364581
5 .8894289 .0206992 42.97 0.000 .8488593 .9299985
6 .8491103 .0447429 18.98 0.000 .7614159 .9368048
7 .7781644 .0970557 8.02 0.000 .5879387 .9683902
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We can visualize these results by using marginsplot:

. marginsplot
Variables that uniquely identify margins: age

.6

.7

.8

.9

1

P
r(

y>
5)

20 25 30 35 40 45 50
Age in current year

Predictive margins with 95% CIs

The probability increases until age 30 and decreases thereafter.

Also see
[R] intreg — Interval regression

[U] 20 Estimation and postestimation commands



ivfprobit — Fractional probit model with continuous endogenous covariates

Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas References Also see

Description
ivfprobit fits a model for a fractional dependent variable, such as a rate or proportion, where one

or more of the covariates are endogenous. The dependent variable must be greater than or equal to 0 and

less than or equal to 1. ivfprobit assumes all endogenous covariates are continuous.

Quick start
Fractional probit regression of y1 on x and endogenous regressor y2 that is instrumented using z

ivfprobit y1 x (y2 = z)

Same as above, but with endogenous regressors y2 and y3, using z1, z2, and z3 as instruments
ivfprobit y1 x (y2 y3 = z1 z2 z3)

Menu
Statistics > Endogenous covariates > Fractional probit with endogenous covariates
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Syntax
ivfprobit depvar [varlist1] (varlist2 = varlistiv) [ if ] [ in ] [weight ] [ , options ]

varlist1 is the list of exogenous variables.

varlist2 is the list of endogenous variables.

varlistiv is the list of exogenous variables used with varlist1 as instruments for varlist2.

options Description

Model

noconstant suppress constant term

constraints(numlist) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be robust, cluster clustvar,
bootstrap, or jackknife

Reporting

level(#) set confidence level; default is level(95)
first report first-stage regression

nocnsreport do not display constraints

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process

coeflegend display legend instead of statistics

varlist1 and varlistiv may contain factor variables; see [U] 11.4.3 Factor variables.

depvar, varlist1, varlist2, and varlistiv may contain time-series operators; see [U] 11.4.4 Time-series varlists.

bootstrap, by, collect, fp, jackknife, rolling, statsby, and svy are allowed; see [U] 11.1.10 Prefix commands.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed. See [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Options

� � �
Model �

noconstant, constraints(numlist); see [R] Estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are robust to some
kinds of misspecification (robust), that allow for intragroup correlation (cluster clustvar), and that
use bootstrap or jackknife methods (bootstrap, jackknife); see [R] vce option.

� � �
Reporting �

level(#); see [R] Estimation options.

first requests that the parameters for the reduced-form equations showing the relationships between

the endogenous variables and instruments be displayed. The default is not to show these parameter

estimates.

nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R]Maximize.

The following option is available with ivfprobit but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

Remarks and examples
Remarks are presented under the following headings:

Model setup
Model identification
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Model setup
ivfprobit fits models for fractional dependent variables when one or more of the covariates is en-

dogenous. Fractional variables can take any value in the interval [0, 1]; thus, ivfprobit is useful for
modeling outcomes such as rates and proportions.

Formally, we can write the model fit by ivfprobit as

𝐸(𝑦1𝑖|x1𝑖, x2𝑖, y2𝑖, 𝑢𝑖) = Φ(y2𝑖β + x1𝑖𝛄 + 𝑢𝑖)
y2𝑖 = x𝑖1𝚷1 + x𝑖2𝚷2 + 𝑣𝑖

(1)

where subscript 𝑖 denotes the observation, y2𝑖 is a 1 × 𝑝 vector of continuous endogenous variables,

x1𝑖 is a 1 × 𝑘1 vector of exogenous covariates, and x2𝑖 is a 1 × 𝑘2 vector of excluded instruments.

Endogeneity arises from the possible correlation between 𝑢𝑖 and 𝑣𝑖. The coefficients in vectors β and

𝛄 are the parameters of interest. Matrices 𝚷1 and 𝚷2 contain the coefficients of the first stage for the

reduced-form equation.

To obtain parameter estimates, ivfprobitmaximizes the same likelihood as ivprobit but does not
require a binary dependent variable and does not require the joint density of the errors in the model to

be specified correctly; see [R] ivprobit for more information. ivfprobit fits the model via quasilike-
lihood estimation rather than maximum likelihood estimation. The key insight behind quasilikelihood

estimation is that we do not need to know the true distribution of the entire model to obtain consistent

parameter estimates. In fact, the only requirement is the correct specification of the conditional mean

given in (1) after integrating over 𝑢𝑖. Specifying the full distribution of the model correctly is required

only if we want to obtain asymptotically efficient standard errors from maximum likelihood estimation.

ivfprobit does not assume that the true model is a probit model that accounts for endogeneity, such
as the one fit by ivprobit. Therefore, the standard errors provided by maximum likelihood estimation

are not appropriate. Instead, ivfprobit takes the maximum quasilikelihood approach and reports robust

standard errors by default.

For further discussion on quasilikelihood estimation in the context of fractional regression, see Papke

and Wooldridge (1996) and Wooldridge (2010).

Example 1
We use a corporate 401(k) participation dataset and fit a fractional probit regression of the 401(k) par-

ticipation rate (prate), on corporate employment size (ltotemp) and its square, an indicator of whether
the 401(k) is the sole pension plan (sole), and plan matching rate (mrate). The plan matching rate is
endogenous and is instrumented using the age of the plan (age) and its square.

Our outcome variable prate has values between 0 and 1, including 1,351 firms with participation

rates of 1. We assume that the functional form of the expected participation rate, after integrating over

𝑢𝑖, is a cumulative normal density as in (1).
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We use ivfprobit to fit the fractional probit model, accounting for endogeneity of mrate.

. use https://www.stata-press.com/data/r18/401k
(Firm-level data on 401k participation)
. ivfprobit prate c.ltotemp##c.ltotemp i.sole (mrate = c.age##c.age)
Fitting exogenous fractional probit model:
Iteration 0: Log pseudolikelihood = -1769.7046
Iteration 1: Log pseudolikelihood = -1675.4223
Iteration 2: Log pseudolikelihood = -1674.7663
Iteration 3: Log pseudolikelihood = -1674.7661
Iteration 4: Log pseudolikelihood = -1674.7661
Fitting full model:
Iteration 0: Log pseudolikelihood = -3712.498
Iteration 1: Log pseudolikelihood = -3712.4767
Iteration 2: Log pseudolikelihood = -3712.4767
Fractional probit model with endogenous regressors

Number of obs = 4,075
Wald chi2(4) = 907.06

Log pseudolikelihood = -3712.4767 Prob > chi2 = 0.0000

Robust
Coefficient std. err. z P>|z| [95% conf. interval]

mrate 1.907922 .0946094 20.17 0.000 1.722491 2.093353
ltotemp -.4229273 .0744177 -5.68 0.000 -.5687833 -.2770713

c.ltotemp#
c.ltotemp .0217492 .0046476 4.68 0.000 .01264 .0308583

sole
Only plan -.1733119 .0366136 -4.73 0.000 -.2450733 -.1015504

_cons 1.904103 .3199032 5.95 0.000 1.277104 2.531102

corr(e.mrate,
e.prate) -.5690386 .0431738 -.6476498 -.4784406

sd(e.mrate) .3989664 .0061807 .3870345 .4112661

Wald test of exogeneity: chi2(1) = 102.40 Prob > chi2 = 0.0000
Endogenous: mrate
Exogenous: ltotemp c.ltotemp#c.ltotemp 1.sole age c.age#c.age

We find a positive effect of mrate on the participation rate. Additionally, we see that the correlation

between the unobservables, corr(e.mrate, e.prate), is different from zero. This means there is

evidence to support our endogeneity conjecture.

Model identification
As in the basic linear instrumental-variables model, the order condition for identification requires that

the number of excluded exogenous variables (that is, the additional instruments) be at least as great as

the number of included endogenous variables (𝑘2 ≥ 𝑝). ivfprobit checks this for you and issues an
error message if the order condition is not met.

ivfprobit, like probit and ivprobit, checks the exogenous and endogenous variables to see if any
of them predict the outcome variable perfectly. It will drop any offending variables and observations and

then fit the model on the remaining data. Instruments that are perfect predictors do not affect estimation,

so they are not checked. See Model identification in [R] probit for more information.



ivfprobit — Fractional probit model with continuous endogenous covariates 1272

Stored results
ivfprobit stores the following in e():

Scalars

e(N) number of observations

e(k) number of parameters

e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test

e(k dv) number of dependent variables

e(df m) model degrees of freedom

e(ll) log likelihood

e(N clust) number of clusters

e(endog ct) number of endogenous covariates

e(p) model Wald 𝑝-value
e(p exog) exogeneity test Wald 𝑝-value
e(chi2) model Wald 𝜒2

e(chi2 exog) Wald 𝜒2 test of exogeneity

e(rank) rank of e(V)
e(ic) number of iterations

e(rc) return code

e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) ivfprobit
e(cmdline) command as typed

e(depvar) name of dependent variable

e(endog) names of endogenous variables

e(exog) names of exogenous variables

e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(clustvar) name of cluster variable

e(chi2type) Wald; type of model 𝜒2 test

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(opt) type of optimization

e(which) max or min; whether optimizer is to perform maximization or minimization

e(ml method) type of ml method
e(user) name of likelihood-evaluator program

e(technique) maximization technique

e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(footnote) program used to implement the footnote display

e(marginsok) predictions allowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(ilog) iteration log (up to 20 iterations)

e(gradient) gradient vector

e(Sigma) �̂�
e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

Functions

e(sample) marks estimation sample
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In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas
See Methods and formulas in [R] ivprobit.
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Postestimation commands predict margins estat Remarks and examples
Stored results Methods and formulas Also see

Postestimation commands
The following postestimation commands are of special interest after ivfprobit:

Command Description

estat correlation report the correlation matrix of the errors of the dependent variable and the
endogenous variables

estat covariance report the covariance matrix of the errors of the dependent variable and the
endogenous variables

These commands are not appropriate after the svy prefix.

The following standard postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters

estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian
information criteria (AIC, CAIC, AICc, and BIC, respectively)

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estat (svy) postestimation statistics for survey data

estimates cataloging estimation results

etable table of estimation results
∗ forecast dynamic forecasts and simulations

lincom point estimates, standard errors, testing, and inference for linear combina-
tions of parameters

margins marginal means, predictive margins, marginal effects, and average marginal
effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combi-
nations of parameters

predict conditional means, linear predictions, etc.

predictnl point estimates, standard errors, testing, and inference for generalized pre-
dictions

pwcompare pairwise comparisons of parameters

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

∗forecast is not appropriate with svy estimation results.
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predict

Description for predict
predict creates a new variable containing predictions such as conditional means, linear predictions,

and standard errors.

Menu for predict
Statistics > Postestimation

Syntax for predict
predict [ type ] newvar [ if ] [ in ] [ , statistic asfmethod ]

predict [ type ] { stub* | newvarlist } [ if ] [ in ], scores

statistic Description

Main

cm conditional mean; the default

xb linear prediction

stdp standard error of the linear prediction

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for the estimation
sample.

asfmethod Description

Main

asf average structural function; the default

fixedasf fixed average structural function

Options for predict

� � �
Main �

cm, the default, calculates the conditional mean.

xb calculates the linear prediction.

stdp calculates the standard error of the linear prediction.

asf and fixedasf determine how the average structural function (ASF) of the conditional mean is com-

puted. These options are not allowed with xb or stdp.

asf is the default estimator when the cm statistic is specified. asf computes theASF of the conditional
mean. It is the prediction conditional on the errors of the endogenous variable equations. Put

another way, it is the conditional mean accounting for the correlation of the endogenous covariates

with the errors of the main equation. Derivatives and contrasts based on asf have a structural

interpretation. See margins below for computing derivatives and contrasts.
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fixedasf calculates a fixed ASF. It is the prediction using only the coefficients and variables of

the outcome equation. fixedasf does not condition on the errors of the endogenous variable

equations. Contrasts between two fixed counterfactuals averaged over the whole sample have a

potential-outcome interpretation. Intuitively, it is as if the values of the covariates were fixed at a

value exogenously by fiat. See margins below for computing derivatives and contrasts.

To be clear, derivatives and contrasts between two fixed counterfactuals using the default asf option
also have a potential-outcome interpretation. And, unlike fixedasf, they retain that interpretation
when computed over subpopulations for both linear and nonlinear models.

scores calculates the equation-level score variables.

For models with one endogenous regressor, four new variables are created.

The first new variable will contain 𝜕 ln𝐿/𝜕(z𝑖δ).
The second new variable will contain 𝜕 ln𝐿/𝜕(x𝑖𝚷).
The third new variable will contain 𝜕 ln𝐿/𝜕 atanh 𝜌.
The fourth new variable will contain 𝜕 ln𝐿/𝜕 ln𝜎.

For models with 𝑝 endogenous regressors, 𝑝 + {(𝑝 + 1)(𝑝 + 2)}/2 new variables are created.

The first new variable will contain 𝜕 ln𝐿/𝜕(z𝑖δ).
The second through (𝑝 + 1)th new variables will contain 𝜕 ln𝐿/𝜕(x𝑖𝚷𝑘), 𝑘 = 1, . . . , 𝑝, where
𝚷𝑘 is the 𝑘th column of 𝚷.

The remaining score variables will contain the partial derivatives of ln𝐿 with respect to 𝑠21, 𝑠31,

. . . , 𝑠𝑝+1,1, 𝑠22, . . . , 𝑠𝑝+1,2, . . . , 𝑠𝑝+1,𝑝+1, where 𝑠𝑚,𝑛 denotes the (𝑚, 𝑛) element of the Cholesky
decomposition of the error covariance matrix.
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margins

Description for margins
margins estimates margins of response for linear predictions and probabilities.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist ] [ , options ]
margins [marginlist ] , predict(statistic ...) [ predict(statistic ...) ... ] [ options ]

statistic Description

Main

cm conditional mean; the default

xb linear prediction

stdp not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.



ivfprobit postestimation — Postestimation tools for ivfprobit 1278

estat

Description for estat
estat correlation displays the correlation matrix of the errors of the dependent variable and the

endogenous variables.

estat covariance displays the covariance matrix of the errors of the dependent variable and the

endogenous variables.

Menu for estat
Statistics > Postestimation

Syntax for estat
Correlation matrix

estat correlation [ , border(bspec) left(#) format(% fmt) ]

Covariance matrix

estat covariance [ , border(bspec) left(#) format(% fmt) ]

Options for estat

� � �
Main �

border(bspec) sets the border style of the matrix display. The default is border(all).

left(#) sets the left indent of the matrix display. The default is left(2).

format(% fmt) specifies the format for displaying the individual elements of the matrix. The default is
format(%9.0g).
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Remarks and examples
Remarks are presented under the following headings:

Marginal effects
Obtaining predicted values

Marginal effects

Example 1
We can obtain marginal effects by using the margins command after ivfprobit. We will calculate

average marginal effects by using the 401(k) participation model of example 1 in [R] ivfprobit.

. use https://www.stata-press.com/data/r18/401k
(Firm-level data on 401k participation)
. ivfprobit prate c.ltotemp##c.ltotemp i.sole (mrate = c.age##c.age)
(output omitted )

. margins, dydx(mrate) predict(cm)
Average marginal effects Number of obs = 4,075
Model VCE: Robust
Expression: Conditional mean of prate, predict(cm)
dy/dx wrt: mrate

Delta-method
dy/dx std. err. z P>|z| [95% conf. interval]

mrate .5288314 .0442438 11.95 0.000 .4421152 .6155477

The marginal effect from ivfprobit suggests that a $1 increase in the matching rate (per dollar) given
by employers can increase participation by approximately 50%.

Obtaining predicted values
After fitting yourmodel with ivfprobit, you can obtain the conditional mean, or the linear prediction

and its standard error for both the estimation sample and other samples, by using the predict command;
see [U] 20 Estimation and postestimation commands and [R] predict.

Stored results
estat correlation stores the following results in r():

Matrices

r(corr) correlation matrix of the errors

estat covariance stores the following results in r():

Matrices

r(cov) covariance matrix of the errors
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Methods and formulas
Recall that the model fit by ivfprobit is given by two equations:

𝐸[𝑦1𝑖|x1𝑖, x2𝑖, y2𝑖, 𝑢𝑖] = Φ(y2𝑖β + x1𝑖𝛄 + 𝑢𝑖)
y2𝑖 = x𝑖1𝚷1 + x𝑖2𝚷2 + 𝑣𝑖

The linear prediction for observation 𝑖 is calculated as y2𝑖
̂𝛽+x1𝑖�̂�. The predicted conditional mean is

given by Φ(�̂�𝑖), where Φ(⋅) is the standard normal distribution function and �̂�𝑖 is the plugin estimator

of

𝑚𝑖 = y2𝑖β + x1𝑖𝛄 + 𝜌𝑣𝑖/𝜎
√1 − 𝜌2

where 𝜎 is the standard deviation of 𝑣𝑖 and 𝜌 is the correlation coefficient between 𝑢𝑖 and 𝑣𝑖. The ASF

uses �̂�𝑖 instead of y2𝑖β̂ + x1𝑖�̂� to evaluate Φ(⋅) and account for endogeneity in the model. The fixed
ASF is evaluated at y2𝑖β̂ + x1𝑖�̂�.

Also see
[R] ivfprobit — Fractional probit model with continuous endogenous covariates

[U] 20 Estimation and postestimation commands
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Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas References Also see

Description
ivpoisson estimates the parameters of a Poisson regression model in which some of the covariates

are endogenous. The model is also known as an exponential conditional mean model in which some of

the covariates are endogenous. The model may be specified using either additive or multiplicative error

terms. The model is frequently used to model count outcomes and is also used to model nonnegative

outcome variables.

Quick start
Two-step GMM estimation of the Poisson regression of y1 on x and endogenous regressor y2 that is

instrumented using z
ivpoisson gmm y1 x (y2 = z)

Same as above, but specify multiplicative errors rather than additive

ivpoisson gmm y1 x (y2 = z), multiplicative

Use iterative GMM estimation

ivpoisson gmm y1 x (y2 = z), igmm

Specify a weight matrix that allows for correlation within clusters identified by cvar
ivpoisson gmm y1 x (y2 = z), wmatrix(cluster cvar)

Use the control-function estimator

ivpoisson cfunction y1 x (y2 = z)

Menu
Statistics > Endogenous covariates > Poisson model with endogenous covariates

Syntax
Generalized method of moments estimator

ivpoisson gmm depvar [varlist1] [ (varlist2 = varlistiv) ] [ if ] [ in ] [weight ]
[ , reg err opt options ]

Control-function estimator

ivpoisson cfunction depvar [varlist1] (varlist2 = varlistiv) [ if ] [ in ] [weight ]
[ , options ]

1281



ivpoisson — Poisson model with continuous endogenous covariates 1282

reg err opt Description

Model

additive add regression errors to the conditional mean term; the default

multiplicative multiply regression errors by the conditional mean term

options Description

Model

noconstant suppress constant term

exposure(varname𝑒) include ln(varname𝑒) in model with coefficient constrained to 1

offset(varname𝑜) include varname𝑜 in model with coefficient constrained to 1
∗ twostep use two-step GMM estimator; the default for ivpoisson gmm
∗ onestep use one-step GMM estimator; the default for ivpoisson cfunction
∗ igmm use iterative GMM estimator

Weight matrix

wmatrix(wmtype) specify weight matrix; wmtype may be robust, cluster clustvar,
or unadjusted

center center moments in weight-matrix computation

winitial(iwtype[, independent])
specify initial weight matrix; iwtype may be unadjusted,
identity, or the name of a Stata matrix
(independent may not be specified with ivpoisson gmm)

SE/Robust

vce(vcetype) vcetype may be robust, cluster clustvar, bootstrap,
jackknife, or unadjusted

Reporting

level(#) set confidence level; default is level(95)
irr report incidence-rate ratios

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Optimization

from(initial values) specify initial values for parameters
† igmmiterate(#) specify maximum number of iterations for iterated GMM estimator
† igmmeps(#) specify # for iterated GMM parameter convergence criterion;

default is igmmeps(1e-6)
† igmmweps(#) specify # for iterated GMM weight-matrix convergence criterion;

default is igmmweps(1e-6)
optimization options control the optimization process; seldom used
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∗You can specify at most one of these options.
†These options may be specified only when igmm is specified.
varlist1 and varlistiv may contain factor variables; see [U] 11.4.3 Factor variables.

depvar, varlist1, varlist2, and varlistiv may contain time-series operators; see [U] 11.4.4 Time-series varlists.

bootstrap, by, collect, jackknife, rolling, and statsby are allowed; see [U] 11.1.10 Prefix commands.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
aweights are not allowed with the jackknife prefix; see [R] jackknife.
aweights, fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

noconstant, exposure(varname𝑒), offset(varname𝑜); see [R] Estimation options.

additive, the default, specifies that the regression errors be added to the conditional mean term and

have mean 0.

multiplicative specifies that the regression errors be multiplied by the conditional mean term and

have mean 1.

twostep, onestep, and igmm specify which estimator is to be used.

twostep requests the two-step GMM estimator. gmm obtains parameter estimates based on the initial
weight matrix, computes a new weight matrix based on those estimates, and then reestimates the

parameters based on that weight matrix. twostep is the default for ivpoisson gmm.

onestep requests the one-step GMM estimator. The parameters are estimated based on an initial

weight matrix, and no updating of the weight matrix is performed except when calculating the appro-

priate variance–covariance (VCE) matrix. onestep is the default for ivpoisson cfunction.

igmm requests the iterativeGMM estimator. gmm obtains parameter estimates based on the initial weight
matrix, computes a new weight matrix based on those estimates, reestimates the parameters based

on that weight matrix, computes a new weight matrix, and so on, to convergence. Convergence is

declared when the relative change in the parameter vector is less than igmmeps(), the relative change
in the weight matrix is less than igmmweps(), or igmmiterate() iterations have been completed.
Hall (2005, sec. 2.4 and 3.6) mentions that there may be gains to finite-sample efficiency from using

the iterative estimator.

� � �
Weight matrix �

wmatrix(wmtype) specifies the type of weight matrix to be used in conjunction with the two-step and
iterated GMM estimators.

Specifying wmatrix(robust) requests a weight matrix that is appropriate when the errors are inde-
pendent but not necessarily identically distributed. wmatrix(robust) is the default.

Specifying wmatrix(cluster clustvar) requests a weight matrix that accounts for arbitrary correla-
tion among observations within clusters identified by clustvar.

Specifying wmatrix(unadjusted) requests a weight matrix that is suitable when the errors are ho-
moskedastic.

wmatrix() cannot be specified if onestep is also specified.
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center requests that the sample moments be centered (demeaned) when computing GMM weight matri-

ces. By default, centering is not done.

winitial(wmtype[ , independent ]) specifies the weight matrix to use to obtain the first-step param-
eter estimates.

Specifying winitial(unadjusted) requests a weight matrix that assumes the error functions are
independent and identically distributed. This matrix is of the form (Z′Z)−1, where Z represents all

the exogenous regressors and instrumental variables.

winitial(identity) requests that the identity matrix be used.

winitial(matname) requests that Stata matrix matname be used.

Including the independent suboption creates a weight matrix that assumes error functions are inde-
pendent. Elements of the weight matrix corresponding to covariances between any two error functions

are set equal to zero. This suboption only applies to ivpoisson cfunction.

winitial(unadjusted) is the default for ivpoisson gmm.

winitial(unadjusted, independent) is the default for ivpoisson cfunction.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are robust to some
kinds of misspecification (robust), that allow for intragroup correlation (cluster clustvar), and that
use bootstrap or jackknife methods (bootstrap, jackknife); see [R] vce option.

vce(unadjusted) specifies that an unadjusted (nonrobust) VCE matrix be used; this, along with

the twostep option, results in the “optimal two-step GMM” estimates often discussed in textbooks.

vce(unadjusted) may not be set in ivpoisson cfunction.

The default vcetype is based on thewmtype specified in the wmatrix() option. If wmatrix() is speci-
fied but vce() is not, then vcetype is set equal towmtype. To override this behavior in ivpoisson gmm
and obtain an unadjusted (nonrobust) VCE matrix, specify vce(unadjusted). The default vcetype
for ivpoisson cfunction is robust.

Specifying vce(bootstrap) or vce(jackknife) results in standard errors based on the bootstrap
or jackknife, respectively. See [R] vce option, [R] bootstrap, and [R] jackknife for more information

on these VCEs.

The syntax for vcetypes is identical to those for wmatrix().

� � �
Reporting �

level(#); see [R] Estimation options.

irr reports estimated coefficients transformed to incidence-rate ratios, that is, 𝑒𝛽𝑖 rather than 𝛽𝑖. Stan-

dard errors and confidence intervals are similarly transformed. This option affects how results are

displayed, not how they are estimated or stored. irr may be specified at estimation or when replay-
ing previously estimated results. irr is not allowed with additive.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.
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� � �
Optimization �

from(initial values) specifies the initial values to begin the estimation. You can specify a 1× 𝑘 matrix,
where 𝑘 is the number of parameters in the model, or you can specify a parameter name, its initial

value, another parameter name, its initial value, and so on. For example, to initialize the coefficient

for male to 1.23 and the constant cons to 4.57, you would type

ivpoisson ..., from(male 1.23 _cons 4.57) ...

Initial values declared using this option override any that are declaredwithin substitutable expressions.

If you specify a parameter that does not appear in your model, ivpoisson exits with error code 480.
If you specify a matrix, the values must be in the same order in which the parameters are declared in

your model. ivpoisson ignores the row and column names of the matrix.

igmmiterate(#), igmmeps(#), and igmmweps(#) control the iterative process for the iterative GMM

estimator for ivpoisson. These options can be specified only if you also specify igmm.

igmmiterate(#) specifies the maximum number of iterations to perform with the iterative GMM

estimator. The default is the number set using set maxiter, which is 300 by default.

igmmeps(#) specifies the convergence criterion used for successive parameter estimates when the

iterative GMM estimator is used. The default is igmmeps(1e-6). Convergence is declared when
the relative difference between successive parameter estimates is less than igmmeps() and the

relative difference between successive estimates of the weight matrix is less than igmmweps().

igmmweps(#) specifies the convergence criterion used for successive estimates of the weight ma-

trix when the iterative GMM estimator is used. The default is igmmweps(1e-6). Convergence
is declared when the relative difference between successive parameter estimates is less than

igmmeps() and the relative difference between successive estimates of the weight matrix is less
than igmmweps().

optimization options: technique(), conv maxiter(), conv ptol(), conv vtol(),
conv nrtol(), and tracelevel(). technique() specifies the optimization technique to use; gn
(the default), nr, dfp, and bfgs are allowed. conv maxiter() specifies the maximum number of it-

erations; conv ptol(), conv vtol(), and conv nrtol() specify the convergence criteria for the
parameters, gradient, and scaled Hessian, respectively. tracelevel() allows you to obtain addi-

tional details during the iterative process. See [M-5] optimize( ).

Remarks and examples
ivpoisson estimates the parameters of a Poisson regression model in which some of the covariates

are endogenous. A regressor is endogenous if it is related to the unobserved error term. The model is

also known as an exponential conditional mean model in which some of the covariates are endogenous.

The model may be specified using either additive or multiplicative error terms.

The model is frequently used to model count outcomes and is also used to model nonnegative outcome

variables. Poisson regression is a special exponential conditional mean model. See [R] poisson for more

information on Poisson regression.

The exponential conditional mean model has an error form representation in which the dependent

variable 𝑦 is a function of the exogenous covariates x, endogenous covariates y2, and an error 𝜖. The
covariates x are independent of 𝜖, while y2 are not.

ivpoisson allows 𝜖 to enter either additively,

𝑦𝑖 = exp(x′
𝑖β1 + y′

2,𝑖β2) + 𝜖𝑖
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or multiplicatively,

𝑦𝑖 = exp(x′
𝑖β1 + y′

2,𝑖β2)𝜖𝑖

Mullahy (1997), Cameron and Trivedi (2013), Windmeijer and Santos Silva (1997), and Wooldridge

(2010) discuss the generalized method of moments (GMM) estimators implemented in ivpoisson. GMM

is frequently used in modern econometrics. Many econometric and statistical models can be expressed

as conditions on the population moments. The parameter estimates produced by GMM estimators make

the sample-moment conditions as true as possible given the data. See [R] gmm for further information

on GMM estimation and how Stata performs it.

The rest of the discussion is presented under the following headings:

GMM estimator for additive model
GMM estimator for multiplicative model
CF estimator for multiplicative model

GMM estimator for additive model
The GMM estimator uses additional variables, known as instruments and denoted by z𝑖, to specify mo-

ment conditions that hold in the population. The GMM parameter estimates make the sample versions of

these population-moment conditions as close to true as possible. The instrumental variables are assumed

to be correlated with the endogenous covariates y2,𝑖 but independent of the errors 𝜖𝑖.

Under additive errors, the dependent variable 𝑦𝑖 is determined by exogenous covariates x𝑖, endoge-

nous covariates y2,𝑖, and zero-mean error 𝜖𝑖 as

𝑦𝑖 = exp(x′
𝑖β1 + y′

2,𝑖β2) + 𝜖𝑖

This leads to the following error function

𝑢(𝑦𝑖, x𝑖, y2,𝑖,β1,β2) = 𝑦𝑖 − exp(x′
𝑖β1 + y′

2,𝑖β2)

The population-moment conditions for GMM estimation are 𝐸 { ̃z𝑖𝑢(𝑦𝑖, x𝑖, y2,𝑖,β1,β2)} = 0, where

the vector ̃z𝑖 is partitioned as (x′
𝑖, z′

𝑖). The sample-moment conditions are formed by replacing the expec-
tation with the corresponding sample mean. The GMM estimator solves a minimization problem to make

the sample-moment conditions as close to zero as possible. Details on how estimation is performed are

given in Methods and formulas.

Now, we will demonstrate how ivpoisson gmm works in the additive error setting with an example.

Example 1: ivpoisson gmm with additive errors
This example uses simulated data based on the following story. Anewswebsite randomly samples 500

young adults in a major city. The website wants to model the number of times the sampled individuals

visit its website (visits) based on their overall time spent on the Internet (time) and the number of
times they receive an ad for the website through email or viewing another website (ad). The website also
suspects the gender of the individual may matter, so an exogenous dummy variable, female, is included
in the model.

We suspect time spent on the Internet is correlated with unobserved factors that additively affect the

number of times an individual visits the website. So we treat time as an endogenous regressor. Two

instruments are used for this variable. The time spent on the phone (phone) is one instrument. The other
instrument is the time spent interacting with friends and family that live out of town (frfam).
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We model the number of visits the website receives using an exponential conditional mean model

with additive errors and use ivpoisson gmm to estimate the parameters of the regression in the output
below. To allow for heteroskedasticity of the errors, we use robust standard errors, which is the default;

see Obtaining standard errors in [R] gmm for a discussion of why robust standard errors is the default.

. use https://www.stata-press.com/data/r18/website
(Visits to website)
. ivpoisson gmm visits ad female (time = phone frfam)
Step 1:
Iteration 0: GMM criterion Q(b) = .33829416
Iteration 1: GMM criterion Q(b) = .00362656
Iteration 2: GMM criterion Q(b) = .00131886
Iteration 3: GMM criterion Q(b) = .00131876
Step 2:
Iteration 0: GMM criterion Q(b) = .00027102
Iteration 1: GMM criterion Q(b) = .00025811
Iteration 2: GMM criterion Q(b) = .00025811
Exponential mean model with endogenous regressors
Number of parameters = 4 Number of obs = 500
Number of moments = 5
Initial weight matrix: Unadjusted
GMM weight matrix: Robust

Robust
visits Coefficient std. err. z P>|z| [95% conf. interval]

time .0589294 .0107942 5.46 0.000 .0377732 .0800857
ad .137344 .010157 13.52 0.000 .1174366 .1572515

female -.0247707 .0376218 -0.66 0.510 -.098508 .0489666
_cons 1.041505 .0385848 26.99 0.000 .9658807 1.11713

Endogenous: time
Exogenous: ad female phone frfam

We find significant coefficients for all covariates but female. At fixed values of the other covariates,
increased time spent on the Internet will raise the expected number of website visits. Receiving additional

advertisements will also cause an increase in the expected number of website visits.

GMM estimator for multiplicative model
Under multiplicative errors, the dependent variable 𝑦𝑖 is determined by exogenous covariates x𝑖, en-

dogenous covariates y2,𝑖, and unit-mean errors 𝜖𝑖 as

𝑦𝑖 = exp(x′
𝑖β1 + y′

2,𝑖β2)𝜖𝑖

This setting yields a different error function than the additive error case. This ratio formulation is

𝑢(𝑦𝑖, x𝑖, y2,𝑖,β1,β2) = 𝑦𝑖/ exp(x′
𝑖β1 + y′

2,𝑖β2) − 1

Given the instrumental variables z, the population-moment conditions for GMM estimation are

𝐸 { ̃z𝑖𝑢(𝑦𝑖, x𝑖, y2,𝑖,β1,β2)} = 0. The vector ̃z𝑖 is partitioned as (x′
𝑖, z′

𝑖). As above, the sample-moment
conditions are the sample analogs of the population-moment conditions, and the GMM estimator solves

a minimization problem to make the sample-moment conditions as close to zero as possible. Details on

how estimation is performed are given in Methods and formulas.
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Example 2: ivpoisson gmm with multiplicative errors
In this example, we observe a simulated random sample of 5,000 households. We model the number

of trips taken by members of the household in the 24-hour period immediately prior to the interview

time by using an exponential conditional mean model with multiplicative errors. Exogenous covariates

include the distance to the central business district from the household (cbd), the distance from the

household to a public transit node (ptn), whether there is a full-time worker in the household (worker),
and whether the examined period is on a weekend (weekend). We suspect that the endogenous regressor,

the transportation cost of the household in the prior week (tcost), is correlated with unobserved factors
that affect the number of trips taken. This transportation cost includes gasoline and bus, train tickets, etc.

The ratio of the cost of a public transit day pass in the sampled area to the national average cost of

such a pass (pt) is also observed. This is used as an instrument for transportation cost.

In the output below, we estimate the parameters of the regression with ivpoisson gmm. To allow for

heteroskedasticity of the errors, we use robust standard errors, which is the default.

. use https://www.stata-press.com/data/r18/trip
(Household trips)
. ivpoisson gmm trips cbd ptn worker weekend (tcost = pt), multiplicative
Step 1:
Iteration 0: GMM criterion Q(b) = .04949852
Iteration 1: GMM criterion Q(b) = .00011194
Iteration 2: GMM criterion Q(b) = 1.563e-08
Iteration 3: GMM criterion Q(b) = 3.685e-16
Step 2:
Iteration 0: GMM criterion Q(b) = 2.287e-16
Iteration 1: GMM criterion Q(b) = 1.342e-31
note: model is exactly identified.
Exponential mean model with endogenous regressors
Number of parameters = 6 Number of obs = 5,000
Number of moments = 6
Initial weight matrix: Unadjusted
GMM weight matrix: Robust

Robust
trips Coefficient std. err. z P>|z| [95% conf. interval]

tcost .0352185 .0098182 3.59 0.000 .0159752 .0544617
cbd -.008398 .0020172 -4.16 0.000 -.0123517 -.0044444
ptn -.0113146 .0021819 -5.19 0.000 -.015591 -.0070383

worker .6623018 .0519909 12.74 0.000 .5604015 .764202
weekend .3009323 .0362682 8.30 0.000 .2298479 .3720167
_cons .2654423 .1550127 1.71 0.087 -.0383769 .5692616

Endogenous: tcost
Exogenous: cbd ptn worker weekend pt

We find that all coefficients are significant. At fixed values of the other covariates, we see that addi-

tional mileage from the central business district and public transit nodes reduces the expected number of

trips taken. Individuals who live farther away from the central business district may still be out of the

house the same amount of time, but they will take fewer trips because the transit time has increased. The

situation is similar for those who live farther from public transit.
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To interpret the other parameters, we will look at the partial effects of their respective independent

variables. The partial effects of a change in an independent variable on the modeled conditional expecta-

tion function vary over the data because the model is nonlinear. However, under the multiplicative error

model, the ratio of the new value to the old value after a discrete change in an independent variable is

constant over the data.

Let w = (x′, y′
2)′. If we add 1 to the 𝑗th independent variable in w, the functional form of the model

implies that
𝐸(𝑦|w, 𝑤𝑗 + 1, 𝜖)

𝐸(𝑦|w, 𝑤𝑗, 𝜖)
=

𝐸(𝑦|𝑤1, . . . , 𝑤𝑗 + 1, . . . , 𝑤𝑘, 𝜖)
𝐸(𝑦|𝑤1, . . . , 𝑤𝑗, . . . , 𝑤𝑘, 𝜖)

= 𝑒𝛽𝑗

When 𝑦 is a count variable, this normalized effect is called the incidence-rate ratio (IRR) for a one-unit
change in 𝑤𝑗.

More generally, the IRR for a Δ𝑤𝑗 change in 𝑤𝑗 is 𝑒𝛽𝑗Δ𝑤𝑗 under a multiplicative-error exponential

conditional mean model. We can calculate incidence-rate ratios for different changes in the covariates

by using lincom; see [R] lincom.

Here we replay the ivpoisson results by typing the command name and we specify the irr option
to get the incidence-rate ratios. Each significance test for a coefficient equaling zero becomes a test for

the incidence-rate ratio equaling one.

. ivpoisson, irr
Exponential mean model with endogenous regressors
Number of parameters = 6 Number of obs = 5,000
Number of moments = 6
Initial weight matrix: Unadjusted
GMM weight matrix: Robust

Robust
trips IRR std. err. z P>|z| [95% conf. interval]

tcost 1.035846 .0101701 3.59 0.000 1.016103 1.055972
cbd .9916371 .0020003 -4.16 0.000 .9877243 .9955655
ptn .9887491 .0021573 -5.19 0.000 .9845299 .9929864

worker 1.939251 .1008234 12.74 0.000 1.751376 2.14728
weekend 1.351118 .0490026 8.30 0.000 1.258409 1.450657
_cons 1.304008 .2021377 1.71 0.087 .9623501 1.766962

Note: _cons estimates baseline incidence rate.
Endogenous: tcost
Exogenous: cbd ptn worker weekend pt

Holding other covariates and the error constant, the expected number of trips made from houses with

a full-time worker is nearly twice that of those houses without a full-time worker. Similarly, the expected

number of trips made during a weekend day is close to 35% higher than the expected number of trips

made on other days. For each additional dollar of weekly transportation cost, the expected number of

household trips is increased by approximately 3.6%.
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CF estimator for multiplicative model
Control-function (CF) estimators can be used to account for endogenous covariates. As Wooldridge

(2010, sec. 18.5) describes, CF estimators assume a certain structural relationship between the endoge-

nous covariates and the exogenous covariates and use functions of first-stage parameter estimates to

control for the endogeneity in the second stage.

Wooldridge (2010, sec. 18.5) notes that the VCE of the second-stage estimator must be adjusted to

account for estimates from the first stage. ivpoisson cfunction solves this problem by stacking the

moment conditions that define each stage and applying a single GMM estimator. See Newey (1984) and

Wooldridge (2010, sec. 14.2) for a description of this technique. No adjustment to the VCE is necessary

because there is only one stage.

The CF estimator augments the original multiplicative model with an estimated term that controls for

the endogeneity of y2,𝑖. When y2,𝑖 is exogenous, the coefficient on this control term is zero. Let z be

instrumental variables, and the vector ̃z𝑖 be (x′
𝑖, z′

𝑖).
The augmented model is

𝑦𝑖 = exp(x′
𝑖β1 + y′

2,𝑖β2 + v′
𝑖ρ + 𝑐𝑖)

where

y2,𝑖 = B ̃z′
𝑖 + v𝑖

The term v′
𝑖ρ controls for the endogeneity of y2,𝑖, and we normalize 𝐸{ exp(𝑐𝑖)} = 1. The coefficient

vector ρ measures the strength of the endogeneity of y2,𝑖; y2,𝑖 is exogenous when ρ = 0.

ivpoisson cfunction estimates β1 and β2 and the auxiliary parameters ρ and B by GMM; see

Methods and formulas for details.

Example 3: Control-function estimator
We return to the previous example, where we estimated the parameters of an exponential conditional

mean model for the number of trips taken by a household in a 24-hour period. We will estimate the

parameters of the regression with the CF estimator method and compare our results with those obtained

with the GMM estimator in example 2.
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In the output below, we estimate the parameters of the regression with the ivpoisson cfunction
command.

. ivpoisson cfunction trips cbd ptn worker weekend (tcost = pt)
Step 1:
Iteration 0: GMM criterion Q(b) = .00056156
Iteration 1: GMM criterion Q(b) = 2.366e-07
Iteration 2: GMM criterion Q(b) = 5.552e-14
Iteration 3: GMM criterion Q(b) = 9.759e-27
note: model is exactly identified.
Exponential mean model with endogenous regressors
Number of parameters = 13 Number of obs = 5,000
Number of moments = 13
Initial weight matrix: Unadjusted
GMM weight matrix: Robust

Robust
trips Coefficient std. err. z P>|z| [95% conf. interval]

trips
cbd -.0082567 .0020005 -4.13 0.000 -.0121777 -.0043357
ptn -.0113719 .0021625 -5.26 0.000 -.0156102 -.0071335

worker .6903044 .0521642 13.23 0.000 .5880645 .7925444
weekend .2978149 .0356474 8.35 0.000 .2279472 .3676825
tcost .0320718 .0092738 3.46 0.001 .0138955 .0502481
_cons .2145986 .1359327 1.58 0.114 -.0518246 .4810218

tcost
cbd .0165466 .0043693 3.79 0.000 .0079829 .0251102
ptn -.040652 .0045946 -8.85 0.000 -.0496573 -.0316467

worker 1.550985 .0996496 15.56 0.000 1.355675 1.746294
weekend .0423009 .0779101 0.54 0.587 -.1104002 .1950019

pt .7739176 .0150072 51.57 0.000 .7445041 .8033312
_cons 12.13934 .1123471 108.05 0.000 11.91915 12.35954

/c_tcost .1599984 .0111752 14.32 0.000 .1380954 .1819014

Endogenous: tcost
Exogenous: cbd ptn worker weekend pt

The output table presents results for the estimated coefficients in each of three equations. First, in the

trips equation, we see the results for the estimated coefficients in the equation for the dependent variable
trips. Second, in the tcost equation, we see the estimated coefficients in the regression of tcost on
the instrumental and exogenous variables. Third, the /c tcost ancillary parameter corresponds to the
estimate of 𝜌, the coefficient on the residual variable included to control for the endogeneity of tcost.

We find that all coefficients are significant in the exponential conditional mean equation, trips. The
coefficient estimates in the trips equation are similar to the estimates obtained by the GMM estimator

in example 2. That the estimated coefficient on the tcost control variable is significantly different from
zero suggests that tcost is endogenous.
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Stored results
ivpoisson stores the following in e():

Scalars

e(N) number of observations

e(k) number of parameters

e(k eq) number of equations

e(k aux) number of auxiliary parameters

e(k dv) number of dependent variables

e(Q) criterion function

e(J) Hansen 𝐽 𝜒2 statistic

e(J df) 𝐽 statistic degrees of freedom

e(N clust) number of clusters

e(rank) rank of e(V)
e(ic) number of iterations used by iterative GMM estimator

e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) ivpoisson
e(cmdline) command as typed

e(depvar) dependent variable of regression

e(endog) names of endogenous variables

e(exog) names of exogenous variables

e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(clustvar) name of cluster variable

e(offset1) offset variable for first equation

e(winit) initial weight matrix used

e(winitname) name of user-supplied initial weight matrix

e(estimator) gmm or cfunction
e(additive) additive if additive errors specified
e(multiplicative) multiplicative if multiplicative errors specified
e(gmmestimator) onestep, twostep, or igmm
e(wmatrix) wmtype specified in wmatrix()
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(technique) optimization technique

e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(footnote) program used to implement footnote display

e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix

e(init) initial values of the estimators

e(Wuser) user-supplied initial weight matrix

e(W) weight matrix used for final round of estimation

e(S) moment covariance matrix used in robust VCE computations

e(V modelbased) model-based variance

Functions

e(sample) marks estimation sample
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In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas
The estimators in ivpoisson are GMM estimators that can be expressed in terms of error functions and

the instruments that are used to form the moment conditions. When offsets 𝑜𝛽
𝑗 are used in the outcome

variable equation, the following formulas apply with x′
𝑗β1 changed to x

′
𝑗β1 + 𝑜𝛽

𝑗 .

The error functions for the GMM estimators are given in the text.

Here we provide some details about the form of the error function used by the CF estimator.

Recall that the multiplicative model is

𝑦𝑖 = exp(x′
𝑖β1 + y′

2,𝑖β2)𝜖𝑖

We parameterize the endogenous variables in the form

y2,𝑖 = B ̃z′
𝑖 + v𝑖

This allows us to decompose 𝜖𝑖 as

𝜖𝑖 = exp(v′
𝑖ρ + 𝑐𝑖)

Given this setup, we obtain the following conditional mean:

𝐸(𝑦|x𝑖, z𝑖, y2,𝑖, v𝑖) = exp(x′
𝑖β1 + y′

2,𝑖β2 + v′
𝑖ρ)

We estimate v𝑖 as the residuals of the linear regression of y2,𝑖 on ̃z𝑖. The estimates of v𝑖 are used

as additional covariates in the exponential conditional mean model for 𝑦 to estimate β1, β2, and ρ. In
essence, the estimates of v𝑖 control for the endogeneity.

The error functions for the endogenous covariates are defined as

u𝑒𝑛,𝑖(y2,𝑖, ̃z𝑖,B) = y2,𝑖 − B ̃z′
𝑖

Now, we define the error function for the dependent variable as

𝑢𝑦(𝑦𝑖, x𝑖, y2,𝑖,u𝑒𝑛,𝑖,β1,β2,ρ) = 𝑦𝑖/ exp(x′
𝑖β1 + y′

2,𝑖β2 + u′
𝑒𝑛,𝑖ρ) − 1

u𝑒𝑛,𝑖 will be vector valued if we have multiple endogenous covariates y2,𝑖. Call the dimension of y2,𝑖
𝑔. u𝑒𝑛,𝑖 and 𝑢𝑦,𝑖 define 𝑔 + 1 separate error functions. We will use variables ̃z𝑖 to instrument each

error function in u𝑒𝑛,𝑖. So for error function 𝑗 = 1, . . . , 𝑔, we have the error function 𝑢𝑒𝑛,𝑖,𝑗 and the

population-moment conditions 𝐸 ( ̃z𝑖𝑢𝑒𝑛,𝑖,𝑗) = 0.
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We calculate v̂𝑜𝑖 previous to estimation as the residuals of the linear regression of y2,𝑖 on ̃z𝑖. We

use variables x𝑖, y2,𝑖, and v̂𝑜𝑖 to instrument the error function 𝑢𝑦. This leads to the population-moment

conditions 𝐸 {(x′
𝑖, y′

2,𝑖, v̂′
𝑜𝑖)𝑢𝑦,𝑖} = 0

Details of GMM estimation can be found in Methods and formulas of [R] gmm. Determination of the

weight matrixW𝑁 is discussed there.

Under the GMM estimation, the GMM estimators β̂1 and β̂2 are the values of β1 and β2 that minimize

𝑄(β1,β2) = { 1
𝑁

∑
𝑖

̃z𝑖𝑢𝑖(𝑦𝑖, x𝑖, y2,𝑖,β1,β2)}
′
W𝑁 { 1

𝑁
∑

𝑖
̃z𝑖𝑢𝑖(𝑦𝑖, x𝑖, y2,𝑖,β1,β2)} (1)

for 𝑞 × 𝑞 weight matrixW𝑁, where 𝑞 is the dimension of ̃z𝑖. The error functions 𝑢𝑖 were defined in the

text.

In the CF method, we have multiple error functions as defined above. We can stack the moment

conditions and write them more compactly as Z′
𝑖u𝑖(B,β1,β2,ρ), where

Z𝑖 =
⎡
⎢
⎢
⎢
⎣

x′
𝑖 0 0 · · · 0

0 y′
2,𝑖 0 · · · 0

0 0 ̃z𝑖 · · · 0

⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 · · · ̃z𝑖

⎤
⎥
⎥
⎥
⎦

and

u𝑖(B,β1,β2,ρ) = [𝑢𝑦(𝑦𝑖, x𝑖, y2,𝑖,u𝑒𝑛,𝑖,β1,β2,ρ)
u𝑒𝑛(y2,𝑖, ̃z𝑖,B) ]

The matrix Z𝑖 has 𝑔 + 1 rows and 𝑘 + 𝑔𝑧 columns, where 𝑘 is the number of covariates for 𝑦𝑖 and 𝑧
is the number of exogenous covariates in ̃z𝑖.

The GMM estimators B̂, β̂1, β̂2, and ρ̂ are the values of B, β1, β2, and ρ that minimize

𝑄(B,β1,β2,ρ) =

{𝑁−1
𝑁

∑
𝑖=1

Z′
𝑖u𝑖(B,β1,β2,ρ)}

′

W𝑁 {𝑁−1
𝑁

∑
𝑖=1

Z′
𝑖u𝑖(B,β1,β2,ρ)}

(2)

for (𝑘 + 𝑔𝑧) × (𝑘 + 𝑔𝑧) weight matrixW𝑁.

By default, ivpoisson minimizes (1) and (2) using the Gauss–Newton method. See Hayashi (2000,
498) for a derivation. This technique is typically faster than quasi-Newton methods and does not require

second-order derivatives.
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Postestimation commands predict margins estat
Remarks and examples Stored results Methods and formulas Reference
Also see

Postestimation commands
The following postestimation command is of special interest after ivpoisson:

Command Description

estat overid perform test of overidentifying restrictions

The following standard postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estimates cataloging estimation results

etable table of estimation results

forecast dynamic forecasts and simulations

hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

predict number of events, linear predictions, residuals, etc.

predictnl point estimates, standard errors, testing, and inference for generalized predictions

pwcompare pairwise comparisons of parameters

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

1296
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predict

Description for predict
predict creates a new variable containing predictions such as numbers of events, linear predictions,

and residuals.

Menu for predict
Statistics > Postestimation

Syntax for predict
predict [ type ] newvar [ if ] [ in ] [ , statistic nooffset ]

statistic Description

Main

n number of events; the default

xbtotal linear prediction, using residual estimates for ivpoisson cfunction
xb linear prediction

residuals residuals

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted
only for the estimation sample.

Options for predict

� � �
Main �

n, the default, calculates the predicted number of events via the exponential-form estimate. This is

exp(x′
𝑗β1+y′

2,𝑗β2) if neither offset() nor exposure()was specified, exp(x′
𝑗β1+y′

2,𝑗β2+offset𝑗)
if offset() was specified, or exp(x′

𝑗β1 + y′
2,𝑗β2) × exposure𝑗 if exposure() was specified.

After generalized method of moments estimation, the exponential-form estimate is not a consistent

estimate of the conditional mean of 𝑦𝑗, because it is not corrected for 𝐸(𝜖𝑗|y2,𝑗). More details are

found in Methods and formulas.

After control-function estimation, we correct the exponential-form estimate for 𝐸(𝜖𝑗|y2,𝑗) by using
the estimated residuals of y2,𝑗 and the c * auxiliary parameters. This supplements the direct effect
of y2,𝑗 and x𝑗 through β1 and β2 with the indirect effects of y2,𝑗, x𝑗, and the instruments z𝑗 through

the endogenous error 𝜖𝑗. Thus, the exponential-form estimate consistently estimates the conditional

mean of 𝑦𝑗.

xbtotal calculates the linear prediction, which is x′
𝑗β1 + y′

2,𝑗β2 if neither offset() nor exposure()
was specified, x′

𝑗β1 +y′
2,𝑗β2 +offset𝑗 if offset() was specified, or x

′
𝑗β1 +y′

2,𝑗β2 + ln(exposure𝑗)
if exposure() was specified.

After control-function estimation, the estimate of the linear form x′
𝑗β1 includes the estimated residuals

of the endogenous regressors with coefficients from the c * auxiliary parameters.
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xb calculates the linear prediction, which is x′
𝑗β1 + y′

2,𝑗β2 if neither offset() nor exposure() was
specified, x′

𝑗β1 + y′
2,𝑗β2 + offset𝑗 if offset() was specified, or x

′
𝑗β1 + y′

2,𝑗β2 + ln(exposure𝑗) if
exposure() was specified. See nooffset below.

residuals calculates the residuals. Under additive errors, these are calculated as 𝑦𝑗 − exp(x′
𝑗β1 +

y′
2,𝑗β2). Under multiplicative errors, they are calculated as 𝑦𝑗/ exp(x′

𝑗β1 + y′
2,𝑗β2) − 1.

When offset() or exposure() is specified, x′
𝑗β1 is not used directly in the residuals. x

′
𝑗β1 +offset𝑗

is used if offset() was specified. x′
𝑗β1 + ln(exposure𝑗) is used if exposure() was specified. See

nooffset below.

After control-function estimation, the estimate of the linear form x′
𝑗β1 includes the estimated residuals

of the endogenous regressors with coefficients from the c * auxiliary parameters.

nooffset is relevant only if you specified offset() or exposure()when you fit the model. It modifies
the calculations made by predict so that they ignore the offset or exposure variable. nooffset
removes the offset from calculations involving both the treat() equation and the dependent count
variable.

margins

Description for margins
margins estimates margins of response for numbers of events and linear predictions.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist ] [ , options ]
margins [marginlist ] , predict(statistic ...) [ predict(statistic ...) ... ] [ options ]

statistic Description

n number of events; the default

xbtotal linear prediction, using residual estimates for ivpoisson cfunction
xb linear prediction

residuals not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.
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estat

Description for estat
estat overid reports Hansen’s 𝐽 statistic, which is used to determine the validity of the overidenti-

fying restrictions in a GMMmodel. ivpoisson gmm uses GMM estimation to obtain parameter estimates.

Under additive and multiplicative errors, Hansen’s 𝐽 statistic can be accurately reported when more in-

struments than endogenous regressors are specified. It is not appropriate to report the 𝐽 statistic after

ivpoisson cfunction, because a just-identified model is fit.

If the model is correctly specified in the sense that 𝐸 { ̃z𝑖𝑢(𝑦𝑖, x𝑖, y2,𝑖,β)} = 0, then the sample ana-

log to that condition should hold at the estimated value of β1 and β2. The ̃z𝑖 variables are the exogenous

regressors x𝑖 and instrumental variables z𝑖 used in ivpoisson gmm. The y2,𝑖 are the endogenous regres-

sors. The 𝑢 function is the error function, which will have a different form for multiplicative and additive

errors in the regression.

Hansen’s 𝐽 statistic is valid only if the weight matrix is optimal, meaning that it equals the inverse

of the covariance matrix of the moment conditions. Therefore, estat overid only reports Hansen’s

𝐽 statistic after two-step or iterated estimation or if you specified winitial(matname) when calling

ivpoisson gmm. In the latter case, it is your responsibility to determine the validity of the 𝐽 statistic.

Menu for estat
Statistics > Postestimation

Syntax for estat
estat overid

Remarks and examples
estat overid reports Hansen’s 𝐽 statistic, which is used to determine the validity of the overidenti-

fying restrictions in a GMM model. It is not appropriate to use it after ivpoisson cfunction, because
a just-identified model is fit.

Recall that the GMM criterion function is

𝑄(β) = { 1
𝑁

∑
𝑖

̃z𝑖𝑢(𝑦𝑖, x𝑖, y2,𝑖,β1,β2)}
′
W𝑁 { 1

𝑁
∑

𝑖
̃z𝑖𝑢(𝑦𝑖, x𝑖, y2,𝑖,β1,β2)}

Our 𝑢 function within this formula will change depending on whether we use additive or multiplicative

errors. The ̃z vector contains the exogenous regressors and instrumental variables used. ivpoisson gmm
estimates regression coefficients to minimize 𝑄.

Let 𝑙 be the dimension of ̃z and 𝑘 the number of regressors. IfW𝑁 is an optimal weight matrix, under

the null hypothesis 𝐻0 ∶ 𝐸 { ̃z𝑖𝑢(𝑦𝑖, x𝑖, y2,𝑖,β1,β2)} = 0, the test statistic 𝐽 = 𝑁 × 𝑄 ∼ 𝜒2(𝑙 − 𝑘). A
large test statistic casts doubt on the null hypothesis.

Because the weight matrix W𝑁 must be optimal, estat overid works only after the two-step and
iterated estimation or if you supplied your own initial weight matrix by using the winitial(matname)
option of ivpoisson gmm and used the one-step estimator.
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Often, the overidentifying restrictions test is interpreted as a test of the validity of the instruments z.

However, other forms of model misspecification can sometimes lead to a significant test statistic. See

Hall (2005, sec. 5.1) for a discussion of the overidentifying restrictions test and its behavior in correctly

specified and misspecified models.

Note that ivpoisson gmm defaults to the two-step estimator when other options are not specified to
override the default. Thus, it is appropriate to perform the 𝐽 test after the regression of example 1 in

[R] ivpoisson.

Example 1: Specification test
Recall example 1 of [R] ivpoisson. We estimated the parameters of an exponential conditional mean

model for the number of visits to a website. Additive errors were used. Exogenous regressors included

the gender of an individual and the number of ads received from the website.

An endogenous regressor, time spent on the Internet, was also included in the model. Two instruments

were used. One of the instruments measured the time spent interacting with friends and out-of-town

family. The other measured the time spent on the phone.

We will reestimate the parameters of the regression here and then test the specification.

. use https://www.stata-press.com/data/r18/website
(Visits to website)
. ivpoisson gmm visits ad female (time = phone frfam)
(output omitted )

. estat overid
Test of overidentifying restriction:
Hansen’s J chi2(1) = .129055 (p = 0.7194)

We have two instruments for one endogenous variable, so the 𝐽 statistic has one degree of freedom.

The 𝐽 statistic is not significant. We fail to reject the null hypothesis that the model is correctly specified.

Stored results
estat overid stores the following in r():

Scalars

r(J) Hansen’s 𝐽 statistic

r(J df) 𝐽 statistic degrees of freedom

r(J p) 𝐽 statistic 𝑝-value
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Methods and formulas
The vector x𝑖 contains the exogenous regressors, and z𝑖 the instruments. The vector ̃z𝑖 is partitioned

as (x𝑖, z𝑖). The vector y2,𝑖 contains the endogenous regressors.

Under multiplicative errors, the conditional mean of 𝑦𝑖 is

𝐸(𝑦𝑖|y2,𝑖, ̃z𝑖) = 𝐸{𝐸(𝑦𝑖|x𝑖, y2,𝑖, 𝜖𝑖)|y2,𝑖, ̃z𝑖}
= 𝐸 { exp (x′

𝑖β1 + y′
2,𝑖β2) 𝜖𝑖|y2,𝑖, ̃z𝑖}

= exp (x′
𝑖β1 + y′

2,𝑖β2) 𝐸(𝜖𝑖|y2,𝑖, ̃z𝑖)

Under the CF estimator,

𝐸(𝜖𝑖|y2,𝑖, ̃z𝑖) = 𝐸 {𝐸(𝜖𝑖|v𝑖, 𝑐𝑖)|y2,𝑖, ̃z𝑖}
= 𝐸 { exp(v′

𝑖ρ + 𝑐𝑖)|y2,𝑖, ̃z𝑖}
= exp{(y2,𝑖 − B ̃z′

𝑖)′ρ} 𝐸(𝑐𝑖|y2,𝑖, ̃z𝑖)
= exp{(y2,𝑖 − B ̃z′

𝑖)′ρ}

Thus under the CF estimator, we estimate the conditional mean of 𝑦𝑖 as

𝐸(𝑦𝑖|y2,𝑖, ̃z𝑖) = exp (x′
𝑖β1 + y′

2,𝑖β2 + (y2,𝑖 − B ̃z′
𝑖)′ρ)

The CF estimator explicitly models the functional form of the endogeneity of y2,𝑖 and 𝜖𝑖 with the

instruments and exogenous regressors ̃z𝑖. This allows it to correct the exponential-form estimator for the

𝐸(𝜖𝑖|y2,𝑖, z̃𝑖) term.
In contrast, the GMM estimator does not model the functional form of the endogeneity of y2,𝑖 and

𝜖𝑖. Therefore, 𝐸(𝜖𝑖|y2,𝑖, ̃z𝑖) is not estimated, and the exponential-form estimator under GMM estimation

simply ignores this term. Noting that because ̃z𝑖 and 𝜖𝑖 are independent, 𝐸(𝜖𝑖|y2,𝑖, z̃𝑖) = 𝐸(𝜖𝑖|y2,𝑖), we
can obviously see that ignoring the term will lead to inconsistent estimation of the conditional mean of

𝑦𝑖. 𝑦2,𝑖 and 𝜖𝑖 are not independent, so 𝐸(𝜖𝑖|𝑦2,𝑖) may vary based on 𝑦2,𝑖.

In the additive errors setting, a similar derivation will show that the exponential-form estimator ob-

tained from GMM estimation is inconsistent for the conditional mean of 𝑦𝑖.

Reference
Hall, A. R. 2005. Generalized Method of Moments. Oxford: Oxford University Press.

Also see
[R] ivpoisson — Poisson model with continuous endogenous covariates

[U] 20 Estimation and postestimation commands



ivprobit — Probit model with continuous endogenous covariates

Description Quick start Menu
Syntax Options for ML estimator Options for two-step estimator
Remarks and examples Stored results Methods and formulas
Acknowledgments References Also see

Description
ivprobit fits models for binary dependent variables where one or more of the covariates are endoge-

nous and errors are normally distributed. By default, ivprobit uses maximum likelihood, but Newey’s

(1987) minimum 𝜒2 (two-step) estimator can be requested. Both estimators assume that the endogenous

covariates are continuous and so are not appropriate for use with discrete endogenous covariates.

Quick start
Probit regression of y1 on x and endogenous regressor y2 that is instrumented using z

ivprobit y1 x (y2 = z)

With robust standard errors

ivprobit y1 x (y2 = z), vce(robust)

Use Newey’s two-step estimator

ivprobit y1 x (y2 = z), twostep

Same as above, and show first-stage regression results

ivprobit y1 x (y2 = z), twostep first

Menu
Statistics > Endogenous covariates > Probit model with endogenous covariates

1302
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Syntax
Maximum likelihood estimator

ivprobit depvar [varlist1] (varlist2 = varlistiv) [ if ] [ in ] [weight ] [ , mle options ]

Two-step estimator

ivprobit depvar [varlist1] (varlist2 = varlistiv) [ if ] [ in ] [weight ], twostep

[ tse options ]

varlist1 is the list of exogenous variables.

varlist2 is the list of endogenous variables.

varlistiv is the list of exogenous variables used with varlist1 as instruments for varlist2.

mle options Description

Model

mle use conditional maximum-likelihood estimator; the default

asis retain perfect predictor variables

constraints(constraints) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, opg, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)
first report first-stage regression

nocnsreport do not display constraints

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process

coeflegend display legend instead of statistics
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tse options Description

Model
∗ twostep use Newey’s two-step estimator; the default is mle
asis retain perfect predictor variables

SE

vce(vcetype) vcetype may be twostep, bootstrap, or jackknife

Reporting

level(#) set confidence level; default is level(95)
first report first-stage regression

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

coeflegend display legend instead of statistics

∗twostep is required.

varlist1 and varlistiv may contain factor variables; see [U] 11.4.3 Factor variables.

depvar, varlist1, varlist2, and varlistiv may contain time-series operators; see [U] 11.4.4 Time-series varlists.

bootstrap, by, collect, jackknife, rolling, statsby, and svy are allowed; see [U] 11.1.10 Prefix commands. fp is
allowed with the maximum likelihood estimator.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
vce(), first, twostep, and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed with the maximum likelihood estimator. fweights are allowed with

Newey’s two-step estimator. See [U] 11.1.6 weight.

coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options for ML estimator

� � �
Model �

mle requests that the conditional maximum-likelihood estimator be used. This is the default.

asis requests that all specified variables and observations be retained in the maximization process. This
option is typically not used and may introduce numerical instability. Normally, ivprobit omits any
endogenous or exogenous variables that perfectly predict success or failure in the dependent variable.

The associated observations are also excluded. For more information, see Model identification in

[R] probit.

constraints(constraints); see [R] Estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), that al-
low for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods

(bootstrap, jackknife); see [R] vce option.
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� � �
Reporting �

level(#); see [R] Estimation options.

first requests that the parameters for the reduced-form equations showing the relationships between

the endogenous variables and instruments be displayed. For the two-step estimator, first shows the
first-stage regressions. For the maximum likelihood estimator, these parameters are estimated jointly

with the parameters of the probit equation. The default is not to show these parameter estimates.

nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R]Maximize.

The following option is available with ivprobit but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

Options for two-step estimator

� � �
Model �

twostep is required and requests that Newey’s (1987) efficient two-step estimator be used to obtain the
coefficient estimates.

asis requests that all specified variables and observations be retained in the maximization process. This
option is typically not used and may introduce numerical instability. Normally, ivprobit omits any
endogenous or exogenous variables that perfectly predict success or failure in the dependent variable.

The associated observations are also excluded. For more information, see Model identification in

[R] probit.

� � �
SE �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (twostep) and that use bootstrap or jackknife methods (bootstrap, jackknife);
see [R] vce option.

� � �
Reporting �

level(#); see [R] Estimation options.

first requests that the parameters for the reduced-form equations showing the relationships between

the endogenous variables and instruments be displayed. For the two-step estimator, first shows the
first-stage regressions. For the maximum likelihood estimator, these parameters are estimated jointly

with the parameters of the probit equation. The default is not to show these parameter estimates.
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display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

The following option is available with ivprobit but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

Remarks and examples
Remarks are presented under the following headings:

Model setup
Model identification

Model setup
ivprobit fits models with dichotomous dependent variables and endogenous covariates. You can use

it to fit a probit model when you suspect that one or more of the covariates are correlated with the error

term. ivprobit is to probit modeling what ivregress is to linear regression analysis; see [R] ivregress
for more information.

Formally, the model is

𝑦∗
1𝑖 =y2𝑖β + x1𝑖𝛄 + 𝑢𝑖

y2𝑖 =x1𝑖𝚷1 + x2𝑖𝚷2 + v𝑖

where 𝑖 = 1, . . . , 𝑁, y2𝑖 is a 1 × 𝑝 vector of endogenous variables, x1𝑖 is a 1 × 𝑘1 vector of exogenous

variables, x2𝑖 is a 1× 𝑘2 vector of additional instruments, and the equation for y2𝑖 is written in reduced

form. By assumption, (𝑢𝑖,v𝑖) ∼ 𝑁(0, 𝚺), where 𝜎11 is normalized to one to identify the model. β and

𝛄 are vectors of structural parameters, and 𝚷1 and 𝚷2 are matrices of reduced-form parameters. This

is a recursive model: y2𝑖 appears in the equation for 𝑦∗
1𝑖, but 𝑦∗

1𝑖 does not appear in the equation for y2𝑖.

We do not observe 𝑦∗
1𝑖; instead, we observe

𝑦1𝑖 = {0 𝑦∗
1𝑖 < 0

1 𝑦∗
1𝑖 ≥ 0

The order condition for identification of the structural parameters requires that 𝑘2 ≥ 𝑝. Presumably, 𝚺
is not block diagonal between 𝑢𝑖 and v𝑖; otherwise, y2𝑖 would not be endogenous.

Technical note
This model is derived under the assumption that (𝑢𝑖,v𝑖) is independent and identically distributed

multivariate normal for all 𝑖. The vce(cluster clustvar) option can be used to control for a lack of

independence. As with most probit models, if 𝑢𝑖 is heteroskedastic, point estimates will be inconsistent.
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Example 1
We have hypothetical data on 500 two-parent households, and we wish to model whether the woman

is employed. We have a variable, fem work, that is equal to 1 if she has a job and 0 otherwise. Her
decision to work is a function of the number of children at home (kids), number of years of schooling
completed (fem educ), and other household income measured in thousands of dollars (other inc). We

suspect that unobservable shocks affecting the woman’s decision to hold a job also affect the household’s

other income. Therefore, we treat other inc as endogenous. As an instrument, we use the number of
years of schooling completed by the man (male educ).

The syntax for specifying the exogenous, endogenous, and instrumental variables is identical to that

used in ivregress; see [R] ivregress for details.

. use https://www.stata-press.com/data/r18/laborsup

. ivprobit fem_work fem_educ kids (other_inc = male_educ)
Fitting exogenous probit model:
Iteration 0: Log likelihood = -344.63508
Iteration 1: Log likelihood = -252.10819
Iteration 2: Log likelihood = -252.04529
Iteration 3: Log likelihood = -252.04529
Fitting full model:
Iteration 0: Log likelihood = -2368.2142
Iteration 1: Log likelihood = -2368.2062
Iteration 2: Log likelihood = -2368.2062
Probit model with endogenous regressors Number of obs = 500

Wald chi2(3) = 163.88
Log likelihood = -2368.2062 Prob > chi2 = 0.0000

Coefficient Std. err. z P>|z| [95% conf. interval]

other_inc -.0542756 .0060854 -8.92 0.000 -.0662028 -.0423485
fem_educ .211111 .0268648 7.86 0.000 .1584569 .2637651

kids -.1820929 .0478267 -3.81 0.000 -.2758315 -.0883542
_cons .3672086 .4480724 0.82 0.412 -.5109971 1.245414

corr(e.othe~c,
e.fem_work) .3720375 .1300518 .0946562 .5958136

sd(e.other_~c) 16.66621 .5270318 15.66461 17.73186

Wald test of exogeneity (corr = 0): chi2(1) = 6.70 Prob > chi2 = 0.0096
Endogenous: other_inc
Exogenous: fem_educ kids male_educ

ivprobit used the default maximum likelihood estimator. The header of the output contains the

sample size as well as a Wald statistic and 𝑝-value for the test of the hypothesis that all the slope coeffi-
cients are jointly zero. Below, the table of coefficients, Stata reminds us that the endogenous variable is

other inc and that fem educ, kids, and male educ were used as instruments.

At the bottom of the output is a Wald test of the exogeneity of the endogenous variables. We reject

the null hypothesis of no endogeneity. If there is no endogeneity, a standard probit regression would be

preferable (see [R] probit).



ivprobit — Probit model with continuous endogenous covariates 1308

Below we fit our model with Newey’s (1987) minimum 𝜒2 estimator using the twostep option.

Example 2
Refitting our labor-supply model with the two-step estimator yields

. ivprobit fem_work fem_educ kids (other_inc = male_educ), twostep
Checking reduced-form model...
Two-step probit with endogenous regressors Number of obs = 500

Wald chi2(3) = 93.97
Prob > chi2 = 0.0000

Coefficient Std. err. z P>|z| [95% conf. interval]

other_inc -.058473 .0093364 -6.26 0.000 -.0767719 -.040174
fem_educ .227437 .0281628 8.08 0.000 .1722389 .282635

kids -.1961748 .0496323 -3.95 0.000 -.2934522 -.0988973
_cons .3956061 .4982649 0.79 0.427 -.5809752 1.372187

Wald test of exogeneity: chi2(1) = 6.50 Prob > chi2 = 0.0108
Endogenous: other_inc
Exogenous: fem_educ kids male_educ

All the coefficients have the same signs as their counterparts in the maximum likelihood model. The

Wald test at the bottom of the output confirms our earlier finding of endogeneity.

Technical note
In a standard probit model, the error is assumed to have a variance of 1. In the probit model with

endogenous covariates, we assume that (𝑢𝑖,v𝑖) is multivariate normal with covariance matrix

Var(𝑢𝑖,v𝑖) = 𝚺 = [ 1 𝚺′
21

𝚺21 𝚺22
]

From the properties of themultivariate normal distribution, it follows that Var(𝑢𝑖|v𝑖) = 1−𝚺′
21𝚺−1

22 𝚺21.

Newey’s estimator and other two-step probit estimators yield estimates of β/𝜎 and 𝛄/𝜎, where 𝜎 is

the square root of Var(𝑢𝑖|v𝑖), instead of estimates of β and 𝛄. Hence, we cannot directly compare

the estimates obtained from Newey’s estimator with those obtained from maximum likelihood, which

estimateβ,𝛄, and 𝜎 separately. SeeWooldridge (2010, 585–594) for a discussion about the interpretation

of the estimates and the computation of marginal effects of two-step probit estimators under endogeneity.

Model identification
As in the linear simultaneous-equation model, the order condition for identification requires that the

number of excluded exogenous variables (that is, the additional instruments) be at least as great as the

number of included endogenous variables. ivprobit checks this for you and issues an error message if
the order condition is not met.

Like probit, logit, and logistic, ivprobit checks the exogenous and endogenous variables

to see if any of them predict the outcome variable perfectly. It will then omit offending variables and

observations and fit the model on the remaining data. Instruments that are perfect predictors do not affect

estimation, so they are not checked. See Model identification in [R] probit for more information.
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ivprobit will also occasionally display messages such as
Note: 4 failures and 0 successes completely determined.

For an explanation of this message, see [R] logit.

Stored results
ivprobit, mle stores the following in e():

Scalars

e(N) number of observations

e(N cds) number of completely determined successes

e(N cdf) number of completely determined failures

e(k) number of parameters

e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test

e(k dv) number of dependent variables

e(df m) model degrees of freedom

e(ll) log likelihood

e(N clust) number of clusters

e(endog ct) number of endogenous covariates

e(p) model Wald 𝑝-value
e(p exog) exogeneity test Wald 𝑝-value
e(chi2) model Wald 𝜒2

e(chi2 exog) Wald 𝜒2 test of exogeneity

e(rank) rank of e(V)
e(ic) number of iterations

e(rc) return code

e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) ivprobit
e(cmdline) command as typed

e(depvar) name of dependent variable

e(endog) names of endogenous variables

e(exog) names of exogenous variables

e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(clustvar) name of cluster variable

e(chi2type) Wald; type of model 𝜒2 test

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(asis) asis, if specified
e(method) ml
e(opt) type of optimization

e(which) max or min; whether optimizer is to perform maximization or minimization

e(ml method) type of ml method
e(user) name of likelihood-evaluator program

e(technique) maximization technique

e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(footnote) program used to implement the footnote display

e(marginsok) predictions allowed by margins
e(marginsprop) signals to the margins command
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved
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Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(rules) information about perfect predictors

e(ilog) iteration log (up to 20 iterations)

e(gradient) gradient vector

e(Sigma) �̂�
e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

ivprobit, twostep stores the following in e():

Scalars

e(N) number of observations

e(N cds) number of completely determined successes

e(N cdf) number of completely determined failures

e(df m) model degrees of freedom

e(df exog) degrees of freedom for 𝜒2 test of exogeneity

e(p) model Wald 𝑝-value
e(p exog) exogeneity test Wald 𝑝-value
e(chi2) model Wald 𝜒2

e(chi2 exog) Wald 𝜒2 test of exogeneity

e(rank) rank of e(V)

Macros

e(cmd) ivprobit
e(cmdline) command as typed

e(depvar) name of dependent variable

e(endog) names of endogenous variables

e(exog) names of exogenous variables

e(wtype) weight type

e(wexp) weight expression

e(chi2type) Wald; type of model 𝜒2 test

e(vce) vcetype specified in vce()
e(asis) asis, if specified
e(method) twostep
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(footnote) program used to implement the footnote display

e(marginsok) predictions allowed by margins
e(marginsprop) signals to the margins command
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(rules) information about perfect predictors

e(V) variance–covariance matrix of the estimators
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Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():
Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas
Fitting limited-dependent variable models with endogenous covariates has received considerable

attention in the econometrics literature. Building on the results of Amemiya (1978, 1979), Newey

(1987) developed an efficient method of estimation that encompasses both Rivers and Vuong’s (1988)

simultaneous-equations probit model and Smith and Blundell’s (1986) simultaneous-equations tobit

model. An efficient alternative to two-step estimation, and ivprobit’s default, is to use maximum

likelihood. For compactness, we write the model as

𝑦∗
1𝑖 = z𝑖δ + 𝑢𝑖 (1)

y2𝑖 = x𝑖𝚷 + v𝑖 (2)

where z𝑖 = (y2𝑖,x1𝑖), x𝑖 = (x1𝑖,x2𝑖), δ = (β′, 𝛄′)′, and 𝚷 = (𝚷′
1, 𝚷′

2)′.

Deriving the likelihood function is straightforward because we can write the joint density

𝑓 (𝑦1𝑖,y2𝑖|x𝑖) as 𝑓 (𝑦1𝑖|y2𝑖,x𝑖) 𝑓 (y2𝑖|x𝑖). When there is an endogenous regressor, the log likelihood

for observation 𝑖 is

ln𝐿𝑖 = 𝑤𝑖 [𝑦1𝑖 lnΦ (𝑚𝑖) + (1 − 𝑦1𝑖) ln {1 − Φ (𝑚𝑖)} + ln𝜙 (𝑦2𝑖 − x𝑖𝚷
𝜎

) − ln𝜎]

where

𝑚𝑖 = z𝑖δ + 𝜌 (𝑦2𝑖 − x𝑖𝚷) /𝜎
(1 − 𝜌2)

1
2

Φ(⋅) and 𝜙(⋅) are the standard normal distribution and density functions, respectively; 𝜎 is the standard

deviation of 𝑣𝑖; 𝜌 is the correlation coefficient between 𝑢𝑖 and 𝑣𝑖; and 𝑤𝑖 is the weight for observation 𝑖
or one if no weights were specified. Instead of estimating 𝜎 and 𝜌, we estimate ln𝜎 and atanh 𝜌, where

atanh 𝜌 = 1
2
ln(1 + 𝜌

1 − 𝜌
)

For multiple endogenous covariates, let

Var(𝑢𝑖,v𝑖) = 𝚺 = [ 1 𝚺′
21

𝚺21 𝚺22
]

As in any probit model, we have imposed the normalization Var(𝑢𝑖) = 1 to identify the model. The log

likelihood for observation 𝑖 is

ln𝐿𝑖 = 𝑤𝑖[𝑦1𝑖 lnΦ (𝑚𝑖) + (1 − 𝑦1𝑖) ln {1 − Φ (𝑚𝑖)} + ln𝑓(y2𝑖|x𝑖)]
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where

ln𝑓(y2𝑖|x𝑖) = −𝑝
2
ln2𝜋 − 1

2
ln |𝚺22| − 1

2
(y2𝑖 − x𝑖𝚷) 𝚺−1

22 (y2𝑖 − x𝑖𝚷)′

and

𝑚𝑖 = (1 − 𝚺′
21𝚺−1

22 𝚺21)− 1
2 {z𝑖δ + (y2𝑖 − x𝑖𝚷) 𝚺−1

22 𝚺21}

With maximum likelihood estimation, this command supports the Huber/White/sandwich estimator

of the variance and its clustered version using vce(robust) and vce(cluster clustvar), respectively.
See [P] robust, particularly Maximum likelihood estimators and Methods and formulas.

The maximum likelihood version of ivprobit also supports estimation with survey data. For details
on VCEs with survey data, see [SVY] Variance estimation.

The two-step estimates are obtained using Newey’s (1987) minimum 𝜒2 estimator. The reduced-form

equation for 𝑦∗
1𝑖 is

𝑦∗
1𝑖 = (x𝑖𝚷 + v𝑖)β + x1𝑖𝛄 + 𝑢𝑖

= x𝑖α + v𝑖β + 𝑢𝑖

= x𝑖α + 𝜈𝑖

where 𝜈𝑖 = v𝑖β + 𝑢𝑖. Because 𝑢𝑖 and v𝑖 are jointly normal, 𝜈𝑖 is also normal. Note that

α = [𝚷1
𝚷2

]β + [I
0
] 𝛄 = 𝐷(𝚷)δ

where 𝐷(𝚷) = (𝚷, I1) and I1 is defined such that x𝑖I1 = x1𝑖. Letting ẑ𝑖 = (x𝑖�̂�,x1𝑖), ẑ𝑖δ =
x𝑖𝐷(�̂�)δ, where 𝐷(�̂�) = (�̂�, I1). Thus, one estimator of α is 𝐷(�̂�)δ; denote this estimator by D̂δ.

α could also be estimated directly as the solution to

maxα,λ

𝑁
∑
𝑖=1

𝑙(𝑦1𝑖,x𝑖α + v̂𝑖λ) (3)

where 𝑙(⋅) is the log likelihood for probit. Denote this estimator by α̃. The inclusion of the v̂𝑖λ term

follows because the multivariate normality of (𝑢𝑖,v𝑖) implies that, conditional on y2𝑖, the expected value

of 𝑢𝑖 is nonzero. Because v𝑖 is unobservable, the least-squares residuals from fitting (2) are used.

Amemiya (1978) shows that the estimator of δ defined by

maxδ (α̃ − D̂δ)′�̂�
−1

(α̃ − D̂δ)

where �̂� is a consistent estimator of the covariance of
√

𝑁(α̃− D̂δ), is asymptotically efficient relative
to all other estimators that minimize the distance between α̃ and 𝐷(�̂�)δ. Thus, an efficient estimator of
δ is

̂δ = (D̂
′
�̂�

−1
D̂)−1D̂

′
�̂�

−1
α̃ (4)

and

Var( ̂δ) = (D̂
′
�̂�

−1
D̂)−1 (5)

To implement this estimator, we need �̂�
−1
.
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Consider the two-step maximum likelihood estimator that results from first fitting (2) by OLS and

computing the residuals v̂𝑖 = y2𝑖 − x𝑖�̂�. The estimator is then obtained by solving

maxδ,λ

𝑁
∑
𝑖=1

𝑙(𝑦1𝑖, z𝑖δ + v̂𝑖λ)

This is the two-step instrumental-variables (2SIV) estimator proposed by Rivers and Vuong (1988), and

its role will become apparent shortly.

From Proposition 5 of Newey (1987),
√

𝑁(α̃ − D̂δ)
𝑑

⟶𝑁(0, 𝛀), where

𝛀 = J−1
𝛼𝛼 + (λ − β)′𝚺22(λ − β)Q−1

and 𝚺22 = 𝐸{v′
𝑖v𝑖}. J

−1
𝛼𝛼 is simply the covariance matrix of α̃, ignoring that �̂� is an estimated param-

eter matrix. Moreover, Newey shows that the covariance matrix from an OLS regression of y2𝑖(λ̂ − β̂)
on x𝑖 is a consistent estimator of the second term. λ̂ can be obtained from solving (3), and the 2SIV

estimator yields a consistent estimate, β̂.

Mechanically, estimation proceeds in several steps.

1. Each of the endogenous right-hand-side variables is regressed on all the exogenous variables, and

the fitted values and residuals are calculated. The matrix �̂� = 𝐷(�̂�) is assembled from the

estimated coefficients.

2. probit is used to solve (3) and obtain α̃ and λ̂. The portion of the covariance matrix correspond-
ing to α, J−1

𝛼𝛼, is also saved.

3. The 2SIV estimator is evaluated, and the parameters β̂ corresponding to y2𝑖 are collected.

4. y2𝑖(λ̂ − β̂) is regressed on x𝑖. The covariance matrix of the parameters from this regression is

added to J−1
𝛼𝛼, yielding �̂�.

5. Evaluating (4) and (5) yields the estimates ̂δ and Var( ̂δ).

6. A Wald test of the null hypothesis 𝐻0 ∶ λ = 0, using the 2SIV estimates, serves as our test of

exogeneity.

The two-step estimates are not directly comparable with those obtained from the maximum likelihood

estimator or from probit. The argument is the same for Newey’s efficient estimator as for Rivers and
Vuong’s (1988) 2SIV estimator, so we consider the simpler 2SIV estimator. From the properties of the

normal distribution,

𝐸(𝑢𝑖|v𝑖) = v𝑖𝚺−1
22 𝚺21 and Var(𝑢𝑖|v𝑖) = 1 − 𝚺′

21𝚺−1
22 𝚺21

We write 𝑢𝑖 as 𝑢𝑖 = v𝑖𝚺
−1
22 𝚺21 + 𝑒𝑖 = v𝑖λ + 𝑒𝑖, where 𝑒𝑖 ∼ 𝑁(0, 1 − 𝜌2), 𝜌2 = 𝚺′

21𝚺−1
22 𝚺21, and 𝑒𝑖

is independent of v𝑖. In the second stage of 2SIV, we use a probit regression to estimate the parameters

of

𝑦1𝑖 = z𝑖δ + v𝑖λ + 𝑒𝑖

Because v𝑖 is unobservable, we use the sample residuals from the first-stage regressions.

Pr(𝑦1𝑖 = 1|z𝑖,v𝑖) = Pr(z𝑖δ + v𝑖λ + 𝑒𝑖 > 0|z𝑖,v𝑖) = Φ {(1 − 𝜌2)− 1
2 (z𝑖δ + v𝑖λ)}
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Hence, as mentioned previously, 2SIV and Newey’s estimator do not estimate δ and λ but rather

δ𝜌 = 1
(1 − 𝜌2) 1

2
δ and λ𝜌 = 1

(1 − 𝜌2) 1
2
λ
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Postestimation commands predict margins estat
Remarks and examples Stored results Methods and formulas References
Also see

Postestimation commands
The following postestimation commands are of special interest after ivprobit:

Command Description

estat classification report various summary statistics, including the classification table

estat correlation report the correlation matrix of the errors of the dependent variable and the
endogenous variables

estat covariance report the covariance matrix of the errors of the dependent variable and the
endogenous variables

lroc compute area under ROC curve and graph the curve

lsens graph sensitivity and specificity versus probability cutoff

These commands are not appropriate after the two-step estimator or the svy prefix.

The following standard postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters
∗ estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian

information criteria (AIC, CAIC, AICc, and BIC, respectively)

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estat (svy) postestimation statistics for survey data

estimates cataloging estimation results

etable table of estimation results
∗ † forecast dynamic forecasts and simulations

† hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combina-
tions of parameters

∗ † lrtest likelihood-ratio test

margins marginal means, predictive margins, marginal effects, and average marginal
effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combi-
nations of parameters

predict linear predictions and their SEs, probabilities, etc.

predictnl point estimates, standard errors, testing, and inference for generalized pre-
dictions

pwcompare pairwise comparisons of parameters
∗ suest seemingly unrelated estimation

1315
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test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

∗estat ic, forecast, lrtest, and suest are not appropriate after ivprobit, twostep.
†forecast, hausman, and lrtest are not appropriate with svy estimation results.

predict

Description for predict
predict creates a new variable containing predictions such as structural functions, linear predictions,

standard errors, and probabilities.

Menu for predict
Statistics > Postestimation

Syntax for predict
After ML

predict [ type ] newvar [ if ] [ in ] [ , statistic asfmethod rules asif ]

predict [ type ] { stub* | newvarlist } [ if ] [ in ], scores

After twostep

predict [ type ] newvar [ if ] [ in ] [ , twostep statistic ]

statistic Description

Main

xb linear prediction excluding endogeneity; the default

pr probability of a positive outcome

stdp standard error of the linear prediction

asfmethod Description

Main

asf average structural function; the default

fixedasf fixed average structural function

twostep statistic Description

Main

xb linear prediction; the default

stdp standard error of the linear prediction

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for the estimation
sample.
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Options for predict

� � �
Main �

xb, the default, calculates the linear prediction.

pr calculates the probability of a positive outcome. Results depend on how the endogeneity complication

is handled, which is determined by the asf or fixedasf option. pr is not available with the two-step
estimator.

stdp calculates the standard error of the linear prediction.

asf and fixedasf determine how the average structural function (ASF) of the specified statistic is com-

puted. These options are not allowed with xb or stdp.

asf is the default for the ML estimator when the pr statistic is specified. asf computes theASF of the
specified statistic. It is the statistic conditional on the errors of the endogenous variable equations.

Put another way, it is the statistic accounting for the correlation of the endogenous covariates

with the errors of the main equation. Derivatives and contrasts based on asf have a structural

interpretation. See margins for computing derivatives and contrasts.

fixedasf calculates a fixed ASF. It is the specified statistic using only the coefficients and variables
of the outcome equation. fixedasf does not condition on the errors of the endogenous variable
equations. Contrasts between two fixed counterfactuals averaged over the whole sample have a

potential-outcome interpretation. Intuitively, it is as if the values of the covariates were fixed at a

value exogenously by fiat. See margins for computing derivatives and contrasts.

To be clear, derivatives and contrasts between two fixed counterfactuals using the default asf option
also have a potential-outcome interpretation. And, unlike fixedasf, they retain that interpretation
when computed over subpopulations for both linear and nonlinear models.

rules requests that Stata use any rules that were used to identify the model when making the prediction.
By default, Stata calculates missing for excluded observations. rules is not available with the two-
step estimator.

asif requests that Stata ignore the rules and the exclusion criteria and calculate predictions for all ob-
servations possible using the estimated parameters from the model. asif is not available with the

two-step estimator.

scores, not available with twostep, calculates equation-level score variables.

For models with one endogenous regressor, four new variables are created.

The first new variable will contain 𝜕 ln𝐿/𝜕(z𝑖δ).
The second new variable will contain 𝜕 ln𝐿/𝜕(x𝑖𝚷).
The third new variable will contain 𝜕 ln𝐿/𝜕 atanh 𝜌.
The fourth new variable will contain 𝜕 ln𝐿/𝜕 ln𝜎.
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For models with 𝑝 endogenous regressors, 𝑝 + {(𝑝 + 1)(𝑝 + 2)}/2 new variables are created.

The first new variable will contain 𝜕 ln𝐿/𝜕(z𝑖δ).
The second through (𝑝 + 1)th new score variables will contain 𝜕 ln𝐿/𝜕(x𝑖𝚷𝑘), 𝑘 = 1, . . . , 𝑝,
where 𝚷𝑘 is the 𝑘th column of 𝚷.

The remaining score variables will contain the partial derivatives of ln𝐿 with respect to 𝑠21, 𝑠31,

. . . , 𝑠𝑝+1,1, 𝑠22, . . . , 𝑠𝑝+1,2, . . . , 𝑠𝑝+1,𝑝+1, where 𝑠𝑚,𝑛 denotes the (𝑚, 𝑛) element of the Cholesky
decomposition of the error covariance matrix.

margins

Description for margins
margins estimates margins of response for linear predictions and probabilities.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist ] [ , options ]
margins [marginlist ] , predict(statistic ...) [ predict(statistic ...) ... ] [ options ]

After ML

statistic Description

Main

xb linear prediction excluding endogeneity; the default

pr probability of a positive outcome

stdp not allowed with margins

After twostep

statistic Description

Main

xb linear prediction; the default

stdp not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.
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estat

Description for estat
estat correlation displays the correlation matrix of the errors of the dependent variable and the

endogenous variables.

estat covariance displays the covariance matrix of the errors of the dependent variable and the

endogenous variables.

estat correlation and estat covariance are not allowed after the ivprobit two-step estimator.

Menu for estat
Statistics > Postestimation

Syntax for estat
Correlation matrix

estat correlation [ , border(bspec) left(#) format(% fmt) ]

Covariance matrix

estat covariance [ , border(bspec) left(#) format(% fmt) ]

Options for estat

� � �
Main �

border(bspec) sets border style of the matrix display. The default is border(all).

left(#) sets the left indent of the matrix display. The default is left(2).

format(% fmt) specifies the format for displaying the individual elements of the matrix. The default is
format(%9.0g).
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Remarks and examples
Remarks are presented under the following headings:

Marginal effects
Obtaining predicted values

Marginal effects
Below, we discuss the interpretation of the predicted probability, pr, with the asf and fixedasf

options for the ML estimator using margins.

The model is defined by two equations. The first is the equation for the outcome of interest, given by

𝑦∗
1𝑖 = y2𝑖β + x1𝑖𝛄 + 𝑢𝑖

where we do not observe 𝑦∗
1𝑖; instead, we observe

𝑦1𝑖 = {0 𝑦∗
1𝑖 < 0

1 𝑦∗
1𝑖 ≥ 0

The second is the equation for the endogenous covariates, y2𝑖,

y2𝑖 = x1𝑖𝚷1 + x2𝑖𝚷2 + v𝑖

This last equation is the difference between a standard probit model and the model fit by ivprobit.
y2𝑖 is modeled as an exogenous component, x1𝑖𝚷1 + x2𝑖𝚷2, and a component that is correlated with

𝑢𝑖 and causes the endogeneity problem, v𝑖. The ASF predicted probability conditions on an estimate of

v̂𝑖. It is given by

Φ(�̂�𝑖) = ̂𝑃 (𝑦1𝑖|x1𝑖,x2𝑖, 𝑦2𝑖, v̂𝑖)

�̂�𝑖 =y2𝑖θ̂1 + x1𝑖θ̂2 + v̂𝑖θ̂3

Because the correlation between v𝑖 and 𝑢𝑖 is the problem we intended to address, conditioning on v𝑖
purges the model of endogeneity. Using the ASF, we can get derivatives and contrast. See Wooldridge

(2010) and Blundell and Powell (2003) for an in-depth discussion of ASFs and their interpretation.
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The fixed ASF, estimated when the fixedasf option is specified, has a different interpretation. Sup-
pose we wanted to analyze 1(y2𝑖β + x1𝑖𝛄 + 𝑢𝑖 > 0) at two different values of y2, the original y2 and
y2 + 1. 1(⋅) is an indicator function that evaluates to 1 if the condition in parentheses is satisfied and 0
otherwise. We want the average difference at these two points for the given values of the other covariates.

The values of the covariates are not arrived at via the model; they are fixed by fiat. You can think of

them as potential outcomes. The difference of the two values of y2 is given by

1 {(y2𝑖 + 1)β + x1𝑖𝛄 + 𝑢𝑖 > 0} − 1 (y2𝑖β + x1𝑖𝛄 + 𝑢𝑖 > 0)

If we average over the distribution of 𝑢, we obtain

Φ {(y2𝑖 + 1)β + x1𝑖𝛄} − Φ (y2𝑖β + x1𝑖𝛄)

We do not account for endogeneity because the values of the covariates are given and fixed. If the

research question you are pursuing after fitting the model has this interpretation, fixedasf gives you an
adequate prediction. If, however, you do not want to treat the covariates as fixed, you should account for

endogeneity and use asf predictions.

Example 1
We can obtain marginal effects by using the margins command after ivprobit. Continuing with

example 1 in [R] ivprobit, we calculate the difference in the probability of a woman working, fem work,
if other inc increases by 10% versus the probability when other inc is unchanged. The effect we get
has anASF interpretation. The probabilities are estimated conditional on the residual from the endogenous

variable. In other words, the computed effects condition on the level of endogeneity in the model. See

Wooldridge (2010) for a discussion about the interpretation of the estimates and the computation of

marginal effects of probit estimators under endogeneity.

. use https://www.stata-press.com/data/r18/laborsup

. ivprobit fem_work fem_educ kids (other_inc = male_educ)
(output omitted )

. margins, at(other_inc = generate(other_inc))
> at(other_inc = generate(other_inc*1.10))
> contrast(at(r) nowald) predict(pr)
Contrasts of predictive margins Number of obs = 500
Model VCE: OIM
Expression: Average structural function probabilities, predict(pr)
1._at: other_inc = other_inc
2._at: other_inc = other_inc*1.10

Delta-method
Contrast std. err. [95% conf. interval]

_at
(2 vs 1) -.0762151 .0100472 -.0959073 -.0565229

Here we see that a 10% increase in other inc leads to an average decrease of 0.076 in the probability
of fem work. The effect we get has an ASF interpretation. The probabilities are estimated conditional

on the residual from the endogenous variable. In other words, the computed effects condition on the

level of endogeneity in the model. See Wooldridge (2010) for a discussion about the interpretation of the

estimates and the computation of marginal effects of probit estimators under endogeneity.
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Obtaining predicted values
After fitting your model with ivprobit, you can obtain the linear prediction and its standard error for

both the estimation sample and other samples by using the predict command; see [U] 20 Estimation

and postestimation commands and [R] predict. If you use the maximum likelihood estimator, you can

also obtain the predicted probability or the linear prediction with an ASF or fixed ASF interpretation.

predict’s pr option calculates the probability of a positive outcome, remembering any rules used to
identify the model, and calculates missing for excluded observations. predict’s rules option uses the
rules in predicting probabilities, whereas predict’s asif option ignores both the rules and the exclusion
criteria and calculates probabilities for all possible observations by using the estimated parameters from

the model. See Obtaining predicted values in [R] probit postestimation for an example.

Stored results
estat correlation stores the following results in r():

Matrices

r(corr) correlation matrix of the errors

estat covariance stores the following results in r():

Matrices

r(cov) covariance matrix of the errors

Methods and formulas
The linear prediction is calculated as z𝑖

̂δ, where ̂δ is the estimated value of δ, and z𝑖 and δ are defined
in (1a) of [R] ivprobit. The probability of a positive outcome is evaluated at 𝑚𝑖, Φ(𝑚𝑖), where Φ(⋅) is
the standard normal distribution function and 𝑚𝑖 is defined in Methods and formulas of [R] ivprobit.

TheASF uses �̂�𝑖 instead of y2𝑖β̂+ x1𝑖�̂� to evaluate Φ(⋅) and account for endogeneity in the model. The
fixed ASF is evaluated at y2𝑖β̂ + x1𝑖�̂�.
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[U] 20 Estimation and postestimation commands
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Description
ivqregress fits a linear instrumental-variables quantile regression (IVQR) model that accounts for

endogenous covariates using two estimators: the inverse quantile regression (IQR) estimator proposed

in Chernozhukov and Hansen (2006) and the smoothed estimating equations (SEE) estimator outlined in

Kaplan and Sun (2017).

Quick start
Use the IQR estimator to fit the median IVQR model of y1 on exogenous x1 and endogenous y2 with

instruments z1 and z2
ivqregress iqr y1 x1 (y2 = z1 z2)

Same as above, but estimate the 0.75 quantile

ivqregress iqr y1 x1 (y2 = z1 z2), quantile(0.75)

Same as above, but estimate the 0.1, 0.2, . . . , 0.9 quantiles

ivqregress iqr y1 x1 (y2 = z1 z2), quantile(10(10)90)

Use the SEE estimator to estimate the 0.6 quantile regression of y1 on exogenous x1 and endogenous y2
and y3 with instruments z1 and z2

ivqregress smooth y1 x1 (y2 y3 = z1 z2), quantile(0.6)

Same as above, but estimate the 0.1, 0.2, . . . , 0.9 quantiles

ivqregress smooth y1 x1 (y2 y3 = z1 z2), quantile(10(10)90)

IQR options to control optimization

Use 50 grid points in the IQR estimator to fit the 0.5 and 0.75 IVQR model

ivqregress iqr y1 x1 (y2 = z1 z2), ngrid(50) quantile(50 75)

Same as above, but construct grid points between 1 and 5 for all the quantiles

ivqregress iqr y1 x1 (y2 = z1 z2), ngrid(50) quantile(50 75) bound(1 5)

Same as above, but construct grid points using different bounds for different quantiles

ivqregress iqr y1 x1 (y2 = z1 z2), ngrid(50) quantile(50 75) ///
bound(1 5, at(50)) bound(2 6, at(75))

1323
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SEE options to control optimization

Use 2 as the initial bandwidth in the SEE estimator to fit the 0.5 and 0.75 IVQR model

ivqregress smooth y x1 (d1 d2 = z1 z2), quantile(50 75) ///
initbwidth(2)

Same as above, but use different initial bandwidths for different quantiles

ivqregress smooth y x1 (d1 d2 = z1 z2), quantile(50 75) ///
initbwidth(2, at(50)) initbwidth(1, at(75))

Menu
Statistics > Endogenous covariates > Quantile regression with endogenous covariates

Syntax
Inverse quantile regression (IQR) estimator

ivqregress iqr depvar [ varlist1 ] (varname = varlistiv) [ if ] [ in ] [ , options
IQR options ]

Smoothed estimating equations (SEE) estimator

ivqregress smooth depvar [ varlist1 ] (varlist2 = varlistiv) [ if ] [ in ] [ , options
SEE options ]

varlist1 is the list of exogenous variables.

varname is an endogenous variable.

varlist2 is the list of endogenous variables.

varlistiv is the list of exogenous variables used with varlist1 as instruments for varlist2 and varname.
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options Description

Model

quantile(numlist) estimate quantiles specified in numlist; default is
quantile(0.5)

SE/Robust

vce([ vcetype ][ , vceopts ]) technique used to estimate standard errors; vcetype may be
robust (the default) or bootstrap

Reporting

level(#) set confidence level; default is level(95)
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Optimization

[ no ]log suppress or display the iteration log

verbose display a verbose iteration log

coeflegend display legend instead of statistics

IQR options Description

Options

bound(#min #max[ , at(#𝑞) ]) specify the lower and upper bounds for the grid
in the #𝑞th quantile estimation; may be repeated

ngrid(#𝑔) use #𝑔 grid points; default is ngrid(30)

SEE options Description

Options

initbwidth(#𝑏[ , at(#𝑞) ]) specify initial bandwidth #𝑏 to smooth the estimating equations
for the #𝑞th quantile estimation; default is the theoretical
optimal bandwidth; may be repeated

iterate(#) perform maximum of # iterations when solving the estimating
equation; default is iterate(100)

nosearchbwidth do not search for feasible bandwidth if the initial bandwidth is
not feasible; default is to search for feasible bandwidth

tolerance(#) specify the tolerance for the coefficient vector; default is
tolerance(1e-9)

ztolerance(#) specify the tolerance to determine whether the proposed solution
for a zero-finding problem is sufficiently close to 0; default is
ztolerance(1e-9)

vceopts Description

kernel(kernel) use a nonparametric kernel density estimator;
default is epanechnikov

bwidth(# | bwrule) specify the bandwidth to be used by the kernel density estimator;
default is silverman, which is Silverman’s rule of thumb
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kernel Description

epanechnikov Epanechnikov kernel function; the default

epan2 alternative Epanechnikov kernel function

biweight biweight kernel function

cosine cosine trace kernel function

gaussian Gaussian kernel function

parzen Parzen kernel function

rectangle rectangle kernel function

triangle triangle kernel function

bwrule Description

silverman Silverman’s rule of thumb; the default

hsheather Hall–Sheather’s bandwidth

bofinger Bofinger’s bandwidth

varlist1, varname, varlist2, and varlistiv may contain factor variables; see [U] 11.4.3 Factor variables.

bootstrap, by, collect, rolling, and statsby are allowed; see [U] 11.1.10 Prefix commands.

coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

quantile(numlist) specifies the quantiles to be estimated and should contain numbers between 0 and
1, exclusive. Numbers larger than 1 are interpreted as percentages. The default is quantile(0.5),
which corresponds to the median.

� � �
Options �

The following options apply only to the IQR estimator.

bound(#min #max[ , at(#𝑞) ]) specifies the lower bound (#min) and the upper bound (#max) for the

grid in the #𝑞th quantile estimation. By default, the bounds are determined by the two-stage quan-

tile regression, extending the two-stage median regression in Amemiya (1982). This option is

repeatable as long as different quantiles #𝑞 are given in each specification.

The specified bound is required to be wider than the #level confidence interval (CI) that is robust to

the weak instruments, which is also known as dual CI. The value of #level can be specified in the

level() option; the default is 95% CI.

The grid points are #𝑔 equally spaced points between #min and #max, where #𝑔 is specified by the

ngrid() option.

ngrid(#𝑔) specifies the number of grid points in the IQR estimator. The default is ngrid(30); that
is, 30 grid points are used.
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The following options apply only to the SEE estimator.

initbwidth(#𝑏[ , at(#𝑞) ]) specifies initial bandwidth #𝑏 to smooth the estimating equations for the

#𝑞th quantile estimation. The default is the theoretical optimal bandwidth that minimizes the mean

squared errors of the estimating equations; see Kaplan and Sun (2017). This option is repeatable

as long as different quantiles #𝑞 are given in each specification.

iterate(#) specifies the maximum number of iterations to perform when solving the estimating

equation; the default is iterate(100).

nosearchbwidth specifies to not search for a feasible bandwidth if the initial bandwidth is not es-
timable; the default is to search for a feasible bandwidth.

tolerance(#) specifies the tolerance used to determine whether successive estimates of the solution
have converged. The default is tolerance(1e-9).

ztolerance(#) specifies the tolerance used to determine whether the proposed solution to a zero-
finding problem is sufficiently close to 0; the default is ztolerance(1e-9).

� � �
SE/Robust �

vce([ vcetype ] [ , vceopts ]) specifies the type of VCE to compute and the density estimation method to
use in computing the VCE.

vcetype specifies the type of standard error reported, which includes types that are robust to some kinds

of misspecification (robust) and that use bootstrap methods (bootstrap); see [R] vce option.

vceopts available with vcetype robust are the following:

kernel(kernel) specifies the kernel method to be used by the nonparametric density estima-

tor. The available kernel functions are epanechnikov, epan2, biweight, cosine, gaussian,
parzen, rectangle, and triangle. The default is epanechnikov. See [R] kdensity for the
kernel function forms.

bwidth(# | bwrule) specifies the bandwidth to be used by the nonparametric density estimator.
If specified as a number, it is used as the bandwidth for the nonparametric density estimator.

Otherwise, bwrule specifies the method used to compute the bandwidth. Available methods are

silverman for Silverman’s rule of thumb, hsheather for the Hall–Sheather bandwidth, and
bofinger for the Bofinger bandwidth.

See [R] kdensity for Silverman’s rule of thumb. See Koenker (2005, sec. 4.10) for a description

of the Hall–Sheather and Bofinger bandwidth formulas.

� � �
Reporting �

level(#); see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.
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� � �
Optimization �

log and nolog specify whether to display the log showing the progress of the estimation. By default,
for the IQR estimator, one dot is shown for each grid point; for the SEE estimator, one line is shown

for each bandwidth. The iteration log is displayed by default unless you used set iterlog off to
suppress it; see set iterlog in [R] set iter.

verbose displays a verbose log showing the iterations of each computation step. For the IQR estimator,
each line is shown for each grid point. For the SEE estimator, iteration logs are shown when solving

the estimating equations.

The following option is available with ivqregress but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

Remarks and examples
Remarks are presented under the following headings:

Overview
When quantile regression matters
Examples

Overview
ivqregress fits a linear IVQRmodel when some covariates are endogenous. The general IVQRmodel

was first proposed by Chernozhukov and Hansen (2005). ivqregress is based on the linear IVQRmodel
described in Chernozhukov and Hansen (2006, 2008). For an introduction to the IVQR model, see Cher-

nozhukov, Hansen, and Wüthrich (2018). ivqregress implements two estimators: the IQR estimator

proposed in Chernozhukov and Hansen (2006) and the SEE estimator outlined in Kaplan and Sun (2017).

In empirical applications, we are usually interested in the effects of some covariate on the outcome

variable. The traditional linear regression model is an excellent way to model how the covariate affects

the outcome’s conditional mean. However, sometimes we would like to study features of the outcome

distribution other than the mean to have a complete picture of the effects of covariates. For example, a

policymaker may want to learn how participation in a 401(k) would affect the lower-level, median, and

upper-level conditional quantiles of net wealth.

Quantile regression in Koenker and Bassett (1978) can help us grasp a better picture than regular linear

regression by estimating the effects on different quantiles of the outcome’s conditional distribution. For

a general discussion, see [R] qreg. For an illustration of when quantile regression matters, see When

quantile regression matters below.

In practice, some covariates of interest are often endogenous for reasons such as self-selection, omis-

sion of some relevant variable, and measurement error. For example, participation in a voluntary savings

plan for retirement, such as participation in a 401(k) program, may be endogenous because the people

who do and do not participate may have different saving preferences, which will affect net wealth growth.

Endogenous covariates make quantile regression estimates inconsistent, as is the case for the linear

regression model. Analogous to the instrumental-variable least-squares estimator, there are IVQR model

estimators to consistently estimate the effects at different quantiles. For a discussion of instrumental-

variables estimation, see [R] ivregress.
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ivqregress fits a quantile regression model that accounts for endogenous covariates using two esti-
mators: the IQR estimator proposed in Chernozhukov and Hansen (2006) and the SEE estimator outlined

in Kaplan and Sun (2017). Intuitively, ivqregress can be thought of as the ivregress version of qreg.

Here we outline the Stata commands to fit, visualize, infer, and diagnose the IVQRmodel. In particular,

these Stata commands can be grouped into the following categories.

Estimation: ivqregress iqr fits the IVQR model by the IQR estimator proposed in
Chernozhukov and Hansen (2006, 2008).

ivqregress smooth fits the IVQR model by the SEE estimator proposed in
Kaplan and Sun (2017).

Visualization: estat coefplot allows us to visualize how one covariate’s effects vary at
different quantiles of the outcome.

Inference: estat endogeffects tests if
1. the endogenous variable does not affect the outcome variable,

2. the effects of the endogenous variable do not vary across estimated quantiles,

3. the effects of the endogenous variable are greater than zero across estimated
quantiles, and

4. the variable is exogenous instead of endogenous.

estat dualci provides CIs that are robust to weak instruments for the
effects of the endogenous variable. It is allowed only after ivqregress iqr.

Diagnosis: estat waldplot helps diagnose the convergence of the IQR estimator
(ivqregress iqr). In particular, estat waldplot allows us to visualize the
optimization process during the computation in ivqregress iqr and shows
if the searching domain contains the true value of the parameter with a
predefined probability level.

In addition, some other classical postestimation tools are also available; see [R] ivqregress postestima-

tion.

When quantile regression matters
Here is an example illustrating the advantages of quantile regressions. Suppose we have a simple

model 𝐸(𝑦|𝑥) = 𝛽0 + 𝑥𝛽1, where 𝑦 is the outcome variable and 𝑥 is a covariate. For simplicity, we

assume 𝑥 can only take values in {0, 1, 2, 3, 4, 5, 6}. By definition, 𝛽1 fully characterizes the effects of

increasing one unit of 𝑥 on the conditional mean of outcome 𝑦; that is, 𝛽1 = 𝐸(𝑦|𝑥 = 𝑎 +1) − 𝐸(𝑦|𝑥 =
𝑎). Now we consider two scenarios of the data-generating process.

1. The probability density function of the outcome conditional on 𝑥 = 𝑎 + 1, 𝑓(𝑦|𝑥 = 𝑎 + 1), is
only location shifted relative to 𝑓(𝑦|𝑥 = 𝑎). In this case, 𝛽1 summarizes the effect of 𝑥 not only

on the conditional mean but also on each conditional quantile of 𝑦. This case is illustrated in the
left panel of figure 1.
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2. The probability density function of the outcome conditional on 𝑥 = 𝑎 + 1, 𝑓(𝑦|𝑥 = 𝑎 + 1), is
both location shifted and rescaled relative to 𝑓(𝑦|𝑥 = 𝑎). In this case, 𝛽1 summarizes the effect

of 𝑥 only on the conditional mean but not on conditional quantiles of 𝑦. This case is illustrated in
the right panel of figure 1.
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Figure 1.

In the left panel, we see that each conditional density is parallel relative to each other, and only the

location has been shifted. In this case, 𝛽1 captures the shift in both conditional mean and any conditional

quantiles of the outcome. As a result, running a linear regression provides as much information on 𝛽1 as

quantile regression.

In contrast, in the right panel, conditional density for each level of 𝑥 has different locations and dif-

ferent shapes. Thus, 𝛽1 can only summarize the shifts in conditional mean, which are generally different

from the shifts in conditional quantiles. Quantile regression becomes necessary to learn about the effects

of 𝑥 on the conditional quantiles of the outcome.

Examples

Example 1: IVQR with the IQR estimator
Suppose that we want to estimate the effect of 401(k) participation (p401k) on different conditional

quantiles of net financial assets (assets). We use data reported by Chernozhukov and Hansen (2004).

These data are from a sample of households in the 1990 Survey of Income and Program Participation

(SIPP). For the head of household, we have data on income (income), age (age), number of people in the
family (familysize), years of education (educ), marital status (married), whether participated in an
IRA (ira), whether received a pension benefit (pension), and whether owned a home (ownhome).

We suspect 401(k) participation is endogenous because it may depend on unobserved factors such as

saving preference that also impact financial assets. Using 401(k) eligibility (e401k) as an instrument
for 401(k) participation, we use ivqregress to estimate how p401k affects the entire range of assets’
conditional distribution. One concern about using e401k as an instrument is that choosing to work for
a company that offers a 401(k) program is not randomly assigned. Poterba, Venti, and Wise (1995)

suggest that after conditioning on income, we can take working for a company that offers a 401(k) plan

as exogenous.
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The IVQR model we want to fit is

assets𝑖 = p401k𝑖𝛼(𝑈) + covariates′
𝑖β(𝑈)

where the distribution of 𝑈 conditional on the instrument e401k and the covariates is assumed to be

uniform between 0 and 1. The covariates income, age, familysize, and educ are included in the

model as continuous variables. The covariates i.married, i.ira, i.pension, and i.ownhome are

included as categorical (factor) variables. As discussed above, e401k is the instrument for p401k. The
coefficients 𝛼(𝑈) and β(𝑈) are random because they depend on the unobserved random variable 𝑈. In
practice, 𝑈 can be considered a ranking variable for the asset. When 𝑈 is set to a fixed level 𝜏, we fit
an IVQR model at a specific quantile index 𝜏. For example, when 𝜏 = 0.5, we estimate how 401(k)

participation affects the median of net financial assets conditional on other covariates.

The objective of the analysis is to estimate the quantile treatment effects of 401k participation on net

financial assets. By definition, the 𝜏th conditional quantile of the asset when everyone participates in a
401(k) plan is

assets401(k) = 𝛼(𝜏) + covariates′
𝑖β(𝜏)

In contrast, the 𝜏th conditional quantile of the asset when everyone does not participate in a 401(k) plan
is

assetsno 401(k) = covariates′
𝑖β(𝜏)

Thus, the coefficient 𝛼(𝜏) can fully summarize the quantile treatment effect of p401k on assets. That
is

𝛼(𝜏) = assets401(k) − assetsno 401(k)

In this example, we use the IQR estimator (ivqregress iqr) to estimate the effect of 401(k) partic-
ipation on the conditional median of the net financial assets. The dependent variable is assets. The
endogenous variable i.p401k and the instrument i.e401k are specified in parentheses; the other co-
variates follow as a regular variable list. ivqregress fits the IV median regression model by default.

The estimation result is stored as est iqr for later use.
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. use https://www.stata-press.com/data/r18/assets2
(Excerpt from Chernozhukov and Hansen (2004))
. ivqregress iqr assets (i.p401k = i.e401k) income age familysize
> i.married i.ira i.pension i.ownhome educ
Initial grid:
Quantile = 0.50: .........10.........20.........30 done
Adaptive grid:
Quantile = 0.50: .........10.........20.........30 done
IV median regression Number of obs = 9,913
Estimator: Inverse quantile regression Wald chi2(9) = 1289.75

Prob > chi2 = 0.0000

Robust
assets Coefficient std. err. z P>|z| [95% conf. interval]

p401k
Yes 5313.397 573.2818 9.27 0.000 4189.786 6437.009

income .1577512 .0124889 12.63 0.000 .1332735 .1822289
age 99.96526 8.561923 11.68 0.000 83.1842 116.7463

familysize -197.8251 54.36773 -3.64 0.000 -304.3838 -91.26627

married
Married -1359.124 227.3366 -5.98 0.000 -1804.696 -913.5528

ira
Yes 22629.61 1022.706 22.13 0.000 20625.15 24634.08

pension
Receives .. -693.8347 210.6176 -3.29 0.001 -1106.638 -281.0317

ownhome
Yes -30.29657 154.7265 -0.20 0.845 -333.555 272.9618
educ -96.43983 32.09465 -3.00 0.003 -159.3442 -33.53547
_cons -4998.673 570.1315 -8.77 0.000 -6116.11 -3881.236

Endogenous: 1.p401k
Exogenous: income age familysize 1.married 1.ira 1.pension 1.ownhome educ

1.e401k
. estimates store est_iqr

The coefficient for p401k is 5,313. It means participation in a 401(k) would increase the median net
financial assets by $5,313, conditional on other covariates, relative to a scenario where no one partici-

pates. We store the estimation result as est iqr for later use.

After ivqregress iqr, we can use estat dualci to obtain the dual CI, which is robust to weak

instruments, for the coefficient on the endogenous variable.

. estat dualci
Dual confidence interval Number of obs = 9,913

Robust Dual
assets Coefficient std. err. z P>|z| [95% conf. interval]

p401k
Yes 5313.397 573.2818 9.27 0.000 3683.916 7304.986
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The dual CI is usually wider than the regular CI, but it provides a more robust inference if the instruments

are weak. In this example, we see that the dual 95% CI is [3684, 7305], which is wider than the regular

95% CI [4190, 6437].

Example 2: IVQR with the smooth estimator
In this example, we use ivqregress to fit the IVQRmodel as in example 1 but using the SEE estimator

(ivqregress smooth). The model specification is the same as in example 1. The estimation result is
stored as est smooth for later use.

. ivqregress smooth assets (i.p401k = i.e401k) income age familysize
> i.married i.ira i.pension i.ownhome educ
Fitting smoothed IV quantile regression:
Quantile = .5:
Step 1: Bandwidth = 1302.9736 GMM criterion Q(b) = 2.617e-08
Step 2: Bandwidth = 6079.6881 GMM criterion Q(b) = 2.391e-12
Step 3: Bandwidth = 1438.3068 GMM criterion Q(b) = 8.068e-13
IV median regression Number of obs = 9,913
Estimator: Smoothed estimating equations Wald chi2(9) = 1243.05

Prob > chi2 = 0.0000

Robust
assets Coefficient std. err. z P>|z| [95% conf. interval]

p401k
Yes 5364.468 573.3728 9.36 0.000 4240.678 6488.258

income .1679934 .013419 12.52 0.000 .1416925 .1942942
age 113.6318 9.352867 12.15 0.000 95.30052 131.9631

familysize -228.7766 57.61072 -3.97 0.000 -341.6916 -115.8617

married
Married -1362.56 238.5988 -5.71 0.000 -1830.205 -894.9153

ira
Yes 22402.04 1043.504 21.47 0.000 20356.81 24447.27

pension
Receives .. -713.996 220.476 -3.24 0.001 -1146.121 -281.8709

ownhome
Yes -12.71396 161.3703 -0.08 0.937 -328.994 303.5661
educ -102.2889 34.18527 -2.99 0.003 -169.2908 -35.28701
_cons -5672.645 619.7049 -9.15 0.000 -6887.244 -4458.045

Endogenous: 1.p401k
Exogenous: income age familysize 1.married 1.ira 1.pension 1.ownhome educ

1.e401k
. estimates store est_smooth

The interpretation of the coefficient estimates is the same as in example 1. For example, the coefficient

for p401k is 5,364. So participation in a 401(k) would increase the median of net financial assets by

$5,364, conditional on other covariates, relative to a scenario where no one participates.
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Now we can compare the coefficient on p401k between the SEE estimator and the IQR estimator.

. estimates table est_iqr est_smooth, keep(i.p401k) se

Variable est_iqr est_smooth

p401k
Yes 5313.3974 5364.468

573.28183 573.37279

Legend: b/se

We see that the point estimates from these two estimators are similar but not the same. It is normal

to see different results from the IQR and SEE estimators because these two estimators approximate the

original exact estimating equation differently. On one hand, the IQR estimator tries to find the solution by

an exhaustive grid search. The estimation result critically depends on the range and finesse of grid points.

On the other hand, the SEE estimator uses a kernel method to smooth the original estimating equation.

Its result depends on how well the SEE approximates the original, mainly controlled by the bandwidth.

Both the IQR and SEE estimators have their advantages and weaknesses. The IQR estimator is nu-

merically stable, and it allows computing the dual CI, which is robust to weak instruments (use estat
dualci). However, the IQR becomes computationally intensive when there is more than one endogenous
variable. Thus, ivqregress iqr allows only one endogenous variable. In contrast, the SEE estimator

can handle multiple endogenous variables within a reasonable computation time. However, it does not

allow estat dualci for inference that is robust to weak instruments. Suppose there is only one endoge-
nous variable in the model. We recommend using both estimators, comparing the results, and using the

IQR estimator as a benchmark because it can provide valid inference even if the instrument is weak. If

there is more than one endogenous variable, only ivqregress smooth is available.

Example 3: IVQR at different quantiles
In the first two examples, we estimated the 401(k) participation (p401k) treatment effect on the con-

ditional median of net financial assets (assets). From a policy designer’s point of view, we may be

more interested in estimating the treatment effect of p401k on other conditional quantiles of assets.
For example, we can ask questions like 1) how 401(k) participation affects the lower quantile of assets

and 2) whether 401(k) participation is unambiguously beneficial for the asset’s lower and upper condi-

tional quantiles. In addition, we might also want to know whether the 401(k) participation is endogenous

in our model. In this example, we will show how to use ivqregress to fit the IVQR model at different

quantiles and how to use the postestimation tools to answer the above questions.
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First, we use the IQR estimator to fit the model at different quantiles. In particular, we specify the

quantile(10(10)90) option to fit the IVQR model at the 10th, 20th, . . . , 90th quantiles.

. ivqregress iqr assets (i.p401k = i.e401k) income age familysize
> i.married i.ira i.pension i.ownhome educ, quantile(10(10)90)
Initial grid:
Quantile = 0.10: .........10.........20.........30 done
Quantile = 0.20: .........10.........20.........30 done
Quantile = 0.30: .........10.........20.........30 done
Quantile = 0.40: .........10.........20.........30 done
Quantile = 0.50: .........10.........20.........30 done
Quantile = 0.60: .........10.........20.........30 done
Quantile = 0.70: .........10.........20.........30 done
Quantile = 0.80: .........10.........20.........30 done
Quantile = 0.90: .........10.........20.........30 done
Adaptive grid:
Quantile = 0.10: .........10.........20.........30 done
Quantile = 0.20: .........10.........20.........30 done
Quantile = 0.30: .........10.........20.........30 done
Quantile = 0.40: .........10.........20.........30 done
Quantile = 0.50: .........10.........20.........30 done
Quantile = 0.60: .........10.........20.........30 done
Quantile = 0.70: .........10.........20.........30 done
Quantile = 0.80: .........10.........20.........30 done
Quantile = 0.90: .........10.........20.........30 done
IV quantile regression Number of obs = 9,913
Estimator: Inverse quantile regression Wald chi2(81) = 5121.46

Prob > chi2 = 0.0000

Robust
assets Coefficient std. err. z P>|z| [95% conf. interval]

q10
p401k
Yes 3240.08 475.6184 6.81 0.000 2307.885 4172.275

income .0303072 .0123138 2.46 0.014 .0061725 .0544419
age 131.5908 15.13725 8.69 0.000 101.9223 161.2592

familysize -329.2838 123.4665 -2.67 0.008 -571.2737 -87.29385

married
Married -1504.648 380.0373 -3.96 0.000 -2249.508 -759.7886

ira
Yes 7864.15 344.2198 22.85 0.000 7189.492 8538.809

pension
Receives .. 63.88643 326.6017 0.20 0.845 -576.2412 704.0141

ownhome
Yes 969.6861 300.4319 3.23 0.001 380.8503 1558.522
educ -301.1635 52.02897 -5.79 0.000 -403.1384 -199.1885
_cons -7455.806 1192.112 -6.25 0.000 -9792.302 -5119.311

(output omitted )
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q90
p401k
Yes 15983.42 3046.028 5.25 0.000 10013.32 21953.53

income .8247356 .0570029 14.47 0.000 .713012 .9364593
age 485.8734 48.99224 9.92 0.000 389.8504 581.8965

familysize -646.4962 185.913 -3.48 0.001 -1010.879 -282.1134

married
Married -3265.007 753.4701 -4.33 0.000 -4741.782 -1788.233

ira
Yes 68543.44 4952.261 13.84 0.000 58837.18 78249.69

pension
Receives .. -4656.177 869.4887 -5.36 0.000 -6360.343 -2952.01

ownhome
Yes 400.1957 680.2776 0.59 0.556 -933.124 1733.515
educ 48.4205 106.2844 0.46 0.649 -159.8931 256.7341
_cons -20594.85 2260.983 -9.11 0.000 -25026.3 -16163.41

Endogenous: 1.p401k
Exogenous: income age familysize 1.married 1.ira 1.pension 1.ownhome educ

1.e401k

The results show the estimates for the effect of 401(k) participation on each conditional quantile of

the asset. The interpretation of the coefficient is similar to example 1, except we are looking at different

conditional quantiles. For example, for quantile q90, the estimate for the coefficient on p401k is 15,983.
Thus, 401(k) participation would increase the 90% conditional quantile of net financial assets by $15,983.

In addition to looking at the numerical estimates from the coefficient table, we can use estat
coefplot to visualize the trend of p401k’s treatment effect from the lower to the upper quantile. By

default, estat coefplot shows the first endogenous variable, which is 1.p401k in our example. We

specify the name() option for later reference of this graph and add a subtitle indicating which estimator
we used.

. estat coefplot, name(cp_iqr) subtitle(IQR estimator)
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The dots in the plot show the point estimates of p401k’s treatment effect on different conditional

quantiles of assets, and the gray bound shows the 95% pointwise CI. We see that there is an upward

trend of p401k’s treatment effect. At lower-level quantiles such as the 10th, 20th, . . . , 40th quantiles,
the treatment effect is relatively flat. However, we see the treatment effect increases significantly in the

upper-level quantiles. The red line shows the two-stage least-squares estimates, which can be used as a

benchmark.

estat coefplot is a good way to visualize the treatment effect’s trend. If we want to test some hy-
potheses regarding the trend and the model statistically, we can use estat endogeffects. For example,
we are interested in testing the following hypotheses:

No effect: 401(k) participation does not affect net financial assets for all
the estimated quantiles.

Constant effect: 401(k) participation’s treatment effect is constant for all
the estimated quantiles.

Dominance: 401(k) participation is unambiguously positive for all the estimated
quantiles; that is, the coefficient values are strictly positive.

Exogeneity: 401(k) participation is exogenous.

We will use estat endogeffects to show the Kolmogorov–Smirnov statistic and the 95% critical

value for each hypothesis. We can reject the null hypothesis if the test statistic is greater than the critical

value; otherwise, we cannot reject the null hypothesis. We specify the rseed() option to make the results
reproducible because the critical values are generated from a bootstrap sample.

. estat endogeffects, rseed(12345671)
Tests for endogenous effects Replications = 100

Null hypothesis KS statistic 95% critical value

No effect 11.271 2.554
Constant effect 5.395 2.446
Dominance 0.000 2.467
Exogeneity 4.145 2.478

Note: If the KS statistic < critical value, there is
insufficient evidence to reject the null
hypothesis. (KS = Kolmogorov--Smirnov)

In particular, we see that the test statistics are greater than the critical values in testing the hypotheses

of no effect, constant effect, and exogeneity. Thus, with a 95% confidence level, we can reject these

three hypotheses. In other words, we find that 401(k) participation has some effect, treatment is not

constant across different quantiles, and 401(k) participation is endogenous. In contrast, we cannot reject

the dominance hypothesis. Thus, we find that 401(k) participation is unambiguously beneficial for all

the estimated quantiles of assets.

The test results are consistent with the result of the coefficient plot produced by estat coefplot,
where we saw that the treatment effects are positive (dominance and no effect hypotheses) and upward

trended (constant effect hypothesis).
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For comparison, we can also use the SEE estimator to fit the model.

. ivqregress smooth assets (i.p401k = i.e401k) income age familysize
> i.married i.ira i.pension i.ownhome educ, quantile(10(10)90)
Fitting smoothed IV quantile regression:
Quantile = .1:
Step 1: Bandwidth = 1327.0069 GMM criterion Q(b) = 9.224e-11
Step 2: Bandwidth = 1311.3131 GMM criterion Q(b) = 1.995e-10
Quantile = .2:
Step 1: Bandwidth = 1272.5204 GMM criterion Q(b) = 2.089e-10
Step 2: Bandwidth = 1237.7195 GMM criterion Q(b) = 3.075e-19
Quantile = .3:
Step 1: Bandwidth = 1504.4065 GMM criterion Q(b) = 5.407e-13
Step 2: Bandwidth = 1486.4224 GMM criterion Q(b) = 1.136e-10
Quantile = .4:
Step 1: Bandwidth = 1362.7753 GMM criterion Q(b) = 5.511e-17
Step 2: Bandwidth = 1362.6479 GMM criterion Q(b) = 8.561e-16
Quantile = .5:
Step 1: Bandwidth = 1302.9736 GMM criterion Q(b) = 2.617e-08
Step 2: Bandwidth = 6079.6881 GMM criterion Q(b) = 2.391e-12
Step 3: Bandwidth = 1438.3068 GMM criterion Q(b) = 8.068e-13
Quantile = .6:
Step 1: Bandwidth = 1533.5129 GMM criterion Q(b) = 2.679e-18
Step 2: Bandwidth = 1520.1182 GMM criterion Q(b) = 1.141e-19
Quantile = .7:
Step 1: Bandwidth = 2044.8617 GMM criterion Q(b) = 1.391e-10
Step 2: Bandwidth = 1977.2482 GMM criterion Q(b) = 1.827e-11
Quantile = .8:
Step 1: Bandwidth = 2503.7256 GMM criterion Q(b) = 3.623e-10
Step 2: Bandwidth = 2458.6714 GMM criterion Q(b) = 2.317e-10
Quantile = .9:
Step 1: Bandwidth = 3560.2178 GMM criterion Q(b) = 4.301e-12
Step 2: Bandwidth = 3529.3557 GMM criterion Q(b) = 2.932e-10
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IV quantile regression Number of obs = 9,913
Estimator: Smoothed estimating equations Wald chi2(81) = 4932.84

Prob > chi2 = 0.0000

Robust
assets Coefficient std. err. z P>|z| [95% conf. interval]

q10
p401k
Yes 3191.667 486.2193 6.56 0.000 2238.695 4144.639

income .0318585 .0123707 2.58 0.010 .0076124 .0561046
age 128.9268 15.42632 8.36 0.000 98.69178 159.1618

familysize -329.8374 125.4774 -2.63 0.009 -575.7687 -83.90615

married
Married -1480.013 386.4611 -3.83 0.000 -2237.463 -722.5635

ira
Yes 7914.049 342.9506 23.08 0.000 7241.878 8586.22

pension
Receives .. -5.356704 334.9869 -0.02 0.987 -661.919 651.2056

ownhome
Yes 1043.279 308.722 3.38 0.001 438.1945 1648.363
educ -289.8807 53.06713 -5.46 0.000 -393.8904 -185.8711
_cons -7631.313 1214.725 -6.28 0.000 -10012.13 -5250.496

(output omitted )

q90
p401k
Yes 15525.23 3035.965 5.11 0.000 9574.848 21475.61

income .8311508 .0574108 14.48 0.000 .7186277 .9436738
age 486.9876 51.61654 9.43 0.000 385.821 588.1541

familysize -586.2617 193.5936 -3.03 0.002 -965.6983 -206.8252

married
Married -3877.165 781.2296 -4.96 0.000 -5408.347 -2345.983

ira
Yes 67888.86 4902.106 13.85 0.000 58280.91 77496.81

pension
Receives .. -4829.506 898.9147 -5.37 0.000 -6591.346 -3067.665

ownhome
Yes 715.6272 722.8727 0.99 0.322 -701.1773 2132.432
educ 14.5293 110.8781 0.13 0.896 -202.7878 231.8464
_cons -19953.21 2326.698 -8.58 0.000 -24513.45 -15392.96

Endogenous: 1.p401k
Exogenous: income age familysize 1.married 1.ira 1.pension 1.ownhome educ

1.e401k

After ivqregress smooth, we can also use estat coefplot to visualize the treatment effect and
estat endogeffects to test some hypotheses of particular interest in the context of the IVQR model.
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First, we use estat coefplot to plot the coefficients and then use graph combine so that we can
visually compare this plot with the coefficients plot for the IQR estimates.

. estat coefplot, name(cp_smooth) subtitle(SEE estimator)

. graph combine cp_iqr cp_smooth, xcommon ycommon altshrink
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The left and right panels of the figure show the coefficient plots for the IQR and SEE estimates, respec-

tively. We see that both estimators produce similar trends for the coefficients on 1.p401k at different
quantiles.

Next, we can use estat endogeffects to see if we draw the same conclusion regarding the four

hypotheses of interest as we did with the IQR estimator.

. estat endogeffects, rseed(12345671)
Tests for endogenous effects Replications = 100

Null hypothesis KS statistic 95% critical value

No effect 11.507 2.593
Constant effect 5.351 2.391
Dominance 0.000 2.556
Exogeneity 4.195 2.526

Note: If the KS statistic < critical value, there is
insufficient evidence to reject the null
hypothesis. (KS = Kolmogorov--Smirnov)

The results alignwith those produced after ivqregress iqr. That is, the treatment effects are positive
(dominance and no effect hypotheses), upward trended (constant effect hypothesis), and endogenous

(exogeneity hypothesis).
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Example 4: Robustness checks and diagnostics for the IQR estimator
In this example, we will take a closer look at the IQR estimator and show how to use estat waldplot

to inspect the convergence visually. Nevertheless, let’s first briefly discuss the intuition and algorithm

behind the IQR estimator.

The IVQR model satisfies the following conditional probability:

Pr(𝑦 ≤ 𝑑𝛼(𝜏) + x′β(𝜏)|x, z) = 𝜏

where 𝑦 is the outcome variable, 𝑑 is an endogenous variable, x is a vector of exogenous covariates, and z
is a vector of instruments. The coefficients𝛼(𝜏) andβ(𝜏) are indexed with the quantile level 𝜏 to indicate
that they are for the model of the 𝜏 conditional quantile of the outcome 𝑦. We cannot fit the above model

using the regular quantile regression because the conditional set is on x and z but the covariates contain

x and 𝑑. Now suppose we know the value of 𝛼(𝜏). We can then rewrite this conditional probability as

Pr(𝑦 − 𝑑𝛼(𝜏) ≤ x′β(𝜏) + z′0|x, z) = 𝜏

By the definition of quantile regression, we can fit this model by running a quantile regression of the

transformed outcome variable, 𝑦 − 𝑑𝛼(𝜏), on the covariates x and instruments z. Notice that if 𝛼(𝜏)
is the true value, the coefficient on the instruments, which we denote as 𝛾(𝜏), should be 0. In other

words, to solve the original moment conditional for the IVQRmodel, we need to find a 𝛼(𝜏) such that the
auxiliary quantile regression of 𝑦 − 𝑑𝛼(𝜏) on x and z produces 0s for the coefficients on the instrument
z. In practice, we want 𝛾(𝜏) as close to 0 as possible, where the closeness to 0 can be measured by the
Wald statistic on 𝛾(𝜏).

Based on the above intuition, here is an outline of the IQR estimator’s algorithm.

1. Define a grid of 𝐴 = {𝛼1, . . . , 𝛼𝐽} (see IQR default grid algorithm in Methods and formulas).

2. For each 𝛼𝑗 in 𝐴, run an auxiliary quantile regression of 𝑦 − 𝑑𝛼𝑗 on covariates x and instruments

z.

3. IQR finds 𝛼𝑘 ∈ 𝐴 as a solution such that the coefficient on z is as close to 0 as possible in the

corresponding auxiliary quantile regression, where the Wald statistic measures the closeness to 0.

4. The grid points boundary must be wider than the dual CI, which is robust to weak instruments;

otherwise, ivqregress iqr will error out. Dual CI means it covers the true value of 𝛼(𝜏) with
95% probability (see Chernozhukov and Hansen [2008] and estat dualci).
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We can use estat waldplot to visualize the above procedure. Using the estimation result in ex-

ample 1, we first restore the result est iqr and then use estat waldplot to plot the Wald statistics

corresponding to each grid point.

. estimates restore est_iqr
(results est_iqr are active now)
. estat waldplot
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Convergence diagnostic plot

The horizontal axis shows the grid points for 𝛼, and the vertical axis shows the values of the Wald

statistics. The dots in the plot show the Wald statistics corresponding to each grid point. The red line is

the 95% critical value of the Wald test. Thus, only the Wald statistics below the red line will not reject

the hypothesis that 𝛄𝑗 equals 0. Respectively, the 95% dual CI corresponds to the 𝛼’s for which theWald

statistics are below the critical value. See example 1 for the use of estat dualci to show the numerical

values of the dual CI.

By default, ivqregress iqr uses the dual CI to generate the lower and upper bounds for the grid

points to make sure that the grid covers the true value of parameter𝛼with a large probability. Sometimes,

wemaywant to customize the bounds. For example, supposewewant to search grid points between 3,000

and 6,000. We can use the bound() option for this purpose.

. ivqregress iqr assets (i.p401k = i.e401k) income age familysize
> i.married i.ira i.pension i.ownhome educ, bound(3000 6000)
Initial grid:
Quantile = 0.50: .........10.........20.........30
convergence not achieved

The grid interval should be wider than the 95% dual confidence interval.
Try to set a wider bound using option bound(). Use estat waldplot for
diagnosis.

r(430);

We see that ivqregress iqr stops with a “convergence not achieved” error message. The reason is that
the specified bound is too narrow to cover the true value of the parameter with a 95% probability.
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We can now use estat waldplot to further visualize the issue.

. estat waldplot
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Convergence diagnostic plot

The graph shows that the upper bound of 6,000 is too small becausewe need theWald statistics to intersect

with the 95% critical value at the lower and upper bounds.
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We can increase the upper bound and see if the IQR estimator converges. For example, below we

increase the upper bound to 8,000.

. ivqregress iqr assets (i.p401k = i.e401k) income age familysize
> i.married i.ira i.pension i.ownhome educ, bound(3000 8000)
Initial grid
quantile = 0.50: .........10.........20.........30
Adaptive grid
quantile = 0.50: .........10.........20.........30
IV median regression Number of obs = 9,913
Estimator: Inverse quantile regression Wald chi2(9) = 1290.41

Prob > chi2 = 0.0000

Robust
assets Coefficient std. err. z P>|z| [95% conf. interval]

p401k
Yes 5332.937 574.5175 9.28 0.000 4206.903 6458.971

income .157381 .012478 12.61 0.000 .1329246 .1818374
age 99.78981 8.553978 11.67 0.000 83.02432 116.5553

familysize -199.6165 54.3519 -3.67 0.000 -306.1442 -93.08872

married
Married -1351.309 227.0824 -5.95 0.000 -1796.382 -906.2357

ira
Yes 22631.85 1022.023 22.14 0.000 20628.72 24634.98

pension
Receives .. -694.1447 210.533 -3.30 0.001 -1106.782 -281.5077

ownhome
Yes -30.67158 154.6947 -0.20 0.843 -333.8676 272.5244
educ -96.30363 32.0715 -3.00 0.003 -159.1626 -33.44465
_cons -4983.758 569.4043 -8.75 0.000 -6099.77 -3867.746

Endogenous: 1.p401k
Exogenous: income age familysize 1.married 1.ira 1.pension 1.ownhome educ

1.e401k
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Now that the IQR estimator converges, we can redraw the Wald plot to confirm that the proposed grid

points interval is indeed wider than the dual CI.

. estat waldplot
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Stored results
ivqregress iqr and ivqregress smooth store the following in e():
Scalars

e(N) number of observations

e(q#) the quantiles requested

e(n q) number of quantiles requested

e(bwidth q#) bandwidth used in standard errors for q #th quantile

e(sm init bwidth q#) initial bandwidth used in smoothing the indicator function in q#th quantile estima-
tion (smooth only)

e(sm bwidth q#) bandwidth used in smoothing the indicator function in q#th quantile estimation
(smooth only)

e(convcode) 0 if converged; otherwise, return code for why nonconvergence
e(p) 𝑝-value for model test
e(df m) model degrees of freedom

e(chi2) 𝜒2

e(rank) rank of e(V)
Macros

e(cmd) ivqregress
e(cmdline) command as typed

e(depvar) name of dependent variable

e(inst) names of instrumental variables

e(bwrule) method to compute the bandwidth in standard errors

e(kernel) kernel function

e(title) title in estimation output

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(estimator) iqr or smooth
e(exogr) exogenous regressors

e(endog) endogenous regressors

e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
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e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of the estimators

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():
Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas
Methods and formulas are presented under the following headings:

The model
The IQR estimator

The IQR algorithm
The IQR default grid algorithm

The SEE estimator
The bandwidth selection algorithm

The robust standard errors

The model
The general IVQR model was first proposed by Chernozhukov and Hansen (2005). ivqregress fits

a linear IVQR model described in Chernozhukov and Hansen (2006, 2008). For notational simplicity,

we drop the observational subscript 𝑖 to refer to a random variable and add the subscript 𝑖 to refer to a
realization of a random variable.

We can write the linear IVQR model in the form of a “random coefficients” model as

𝑦 = d′α(𝑢) + x′β(𝑢)

where

1. 𝑦 is a scalar outcome variable, d is a vector of endogenous variables, x is a vector of exogenous
variables, and 𝑢 is the unobserved error term;

2. d depends on the exogenous covariates x, and the instrumental variables z and unobserved error

term are correlated with 𝑢;

3. 𝑢 is a scalar random variable that characterizes the heterogeneity of the outcome and captures

all the unobservables in the outcome from item 1 above. Conditional on z and x, 𝑢 is uniformly

distributed between 0 and 1;

4. α(⋅) and β(⋅) are random coefficient vectors that depend on 𝑢;

5. the function 𝜏 → d′α(𝜏) + x′β(𝜏) is strictly increasing in 𝜏; and

6. the observable variables are {𝑦𝑖, x𝑖,d𝑖, z𝑖}𝑁
𝑖=1 with a sample of size 𝑁.
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Under some regularity conditions (see Chernozhukov and Hansen [2005]), the IVQR model satisfies

the conditional probability

Pr{𝑦 ≤ d′α(𝜏) + x′β(𝜏)|x, z} = 𝜏 (1)

By the definition of probability and the law of iterated expectation, (1) implies the following uncondi-

tional moment condition:

𝐸 ([𝜏 − 𝐼{𝑦 ≤ d′α(𝜏) + x′β(𝜏)}] Ψ) = 0 (2)

where 𝐼(⋅) is the indicator function, Ψ = (d̂′, x′)′, and d̂ is some function of x and z and can be treated

as instruments for d. In practice, d̂ is the linear prediction of d using x and z.

Equation (2) can be used as the estimating equation for the IVQR model. However, the objective

function based on (2) is nonconvex and nonsmooth because of the indicator function. Thus, it is compu-

tationally challenging to fit the IVQR model by directly using (2).

ivqregress implements two estimators that approximately solve the original moment condition in
(2). In particular, ivqregress iqr implements the IQR estimator proposed in Chernozhukov andHansen
(2006), and ivqregress smooth implements the SEE estimator outlined in Kaplan and Sun (2017). Here
are the main ideas behind these two estimators.

The IQR estimator reduces the original 𝑝-dimensional (where 𝑝 is the dimension of x and d) nonconvex
problem into a low-dimensional nonconvex problem. Then, it solves the problem by doing an exhaustive

grid search over a high-quality grid. The grid is high quality in the sense that it covers the true value of

the parameter for 𝛼(𝜏) with a high probability (Chernozhukov and Hansen 2008). As a byproduct, the
IQR estimator can also provide the CI that is robust to the weak instruments, which is also known as dual

CI (see estat dualci). However, the IQR estimator becomes computationally intensive if there is more
than one endogenous variable. As a result, ivqregress iqr allows only one endogenous variable.

The SEE estimator smooths the original moment condition in (2) using a kernel method to approximate

the indicator function. Thus, the optimization problem reduces to solving a system of smooth nonlinear

equations. One advantage of the SEE estimator compared with the IQR estimator is that it can handle

more than one endogenous variable. However, it cannot provide the dual CI, which is robust to weak

instruments like the IQR estimator.

While the IQR and SEE estimators are consistent for the IVQRmodel, their results are generally differ-

ent. The reason is that the two estimators approximate the original moment condition in different ways.

On one hand, the IQR estimator tries to find the solution by an exhaustive grid search. The estimation

result critically depends on the range and finesse of grid points. On the other hand, the SEE estimator

uses a kernel method to smooth the original estimating equation. Its result depends on how well the SEE

estimator approximates the original, mainly controlled by the bandwidth.

In practice, suppose there is only one endogenous variable in the model. We recommend using both

estimators, comparing the results, and using the IQR estimator as a benchmark because it can provide

valid inference even if the instruments are weak.

The IQR estimator
Before diving into the details, we discuss the intuition of the IQR estimator. The IVQR model satisfies

the conditional probability

Pr{𝑦 ≤ 𝑑𝛼(𝜏) + x′β(𝜏)|x, z} = 𝜏
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We cannot fit the above model using regular quantile regression because the conditional set is on x and

z, but the covariates contain x and 𝑑. Now suppose we know the value of 𝛼(𝜏). We can then rewrite this

conditional probability as

Pr{𝑦 − 𝑑𝛼(𝜏) ≤ x′β(𝜏) + z′ ∗ 0|x, z} = 𝜏

By the definition of quantile regression, we can fit this model by running a quantile regression of the

transformed outcome variable, 𝑦 − 𝑑𝛼(𝜏), on the covariates x and instruments z. Notice that if 𝛼(𝜏)
is the actual value, the coefficient on the instruments, which we denote as 𝛾(𝜏), should be 0. In other
words, to solve the original moment conditional for the IVQRmodel, we need to find a 𝛼(𝜏) such that the
auxiliary quantile regression of 𝑦−𝑑𝛼(𝜏) on x and z produces zeros for the coefficients on the instruments
z. In practice, we want 𝛾(𝜏) as close to 0 as possible, where the closeness to 0 can be measured by the
Wald statistic on 𝛾(𝜏).

Based on the above intuition, here is an outline of the IQR estimator’s algorithm.

The IQR algorithm

1. Compute d̂, which is the linear projection of d on x and z. d̂ can be treated as instruments for d.

2. Define a grid of 𝐴 = {𝛼1, . . . , 𝛼𝐽}. For the algorithm of the default grid generation, see The IQR

default grid algorithm.

3. For each 𝛼𝑗 in 𝐴, run an auxiliary quantile regression of 𝑦 − 𝑑𝛼𝑗 on covariates x and instruments

d̂.

4. IQR finds 𝛼𝑘 ∈ 𝐴 as a solution such that the coefficient on ̂d is as close to 0 as possible in the

corresponding auxiliary quantile regression, where the Wald statistic measures the closeness to 0.

5. The grid points boundary must be wider than the dual CI, which is robust to weak instruments;

otherwise, ivqregress iqr will error out. Dual CI means it covers the true value of 𝛼(𝜏) with
#

level
probability (see Chernozhukov and Hansen [2008] and estat dualci). The level() op-

tion specifies the confidence level #
level

; the default is level(95).

The IQR default grid algorithm

The default grid algorithm can be divided into two stages: 1) the initial grid generation based on the

two-stage quantile regression, which extends the two-stage median regression in Amemiya (1982); and

2) the adaptive grid that depends on the dual CI, which is robust to weak instruments (Chernozhukov and

Hansen 2008).

1. Initial grid based on two-stage quantile regression

(a) Run a quantile regression of 𝑦 on x and d̂. Denote ̃𝛼 as the point estimate for the coefficient

on ̂d and ̃𝑠 as its standard errors. ̃𝑠 is computed by assuming the error term is normally

distributed.

(b) Compute the lower and upper bounds of the grid. The lower bound is lb = α̃ − 4 ̃𝑠, and the
upper bound is ub = α̃ + 4 ̃𝑠.

(c) By default, the grid points are #𝑔 equally spaced points between lb and ub, where the

ngrid() option specifies the number of grid points #𝑔.



ivqregress — Instrumental-variables quantile regression 1349

2. Adaptive grid based on the dual CI

(a) Given the initial grid, go through the steps 3–5 in The IQR algorithm.

(b) Obtain the dual CI based on the initial grid.

(c) Use the dual CI as the bound for the adaptive grid points and generate #𝑔 equally spaced

points.

The SEE estimator
The basic idea of the SEE estimator is to replace the indicator function in (2) with a smooth function.

To be precise, we replace the moment condition in (2) with

𝐸 ([𝜏 − ̃𝐼{𝑦 − d′α(𝜏) − x′β(𝜏) ≤ 0}] Ψ) = 0 (3)

where ̃𝐼(𝑣/ℎ) = max[0, min{1, (1 − 𝑣/ℎ)/2}] and ℎ is the bandwidth. By default, the bandwidth is

computed using the theoretical optimal bandwidth that minimizes the mean squared errors of the esti-

mating equations. See proposition 2 in Kaplan and Sun (2017) for the optimal bandwidth.

Because ̃𝐼(⋅) is a smooth function, the SEE estimator reduces to solve a system of smooth nonlinear

equations. Let 𝐹(𝜃) denote the left-hand side of (3), where 𝜃 = {α(𝜏),β(𝜏)}. Let 𝜃(𝑖) denote the
proposed solution at iteration 𝑖, and let 𝜃(𝑖 − 1) denote the proposed solution at the previous iteration.
The convergence is declared if mreldif(𝜃(𝑖), 𝜃(𝑖 − 1)) < itol or 𝐹(𝜃)′𝐹(𝜃) < ztol, where itol and ztol

can be specified by using the tolerance() and ztolerance() options, respectively. The maximum
number of iterations can be specified by using the iterate() option.

By default, the SEE estimator searches for the bandwidth as follows.

The bandwidth selection algorithm

Denote ̂𝜃0 as the initial values for the parameters 𝛼(𝜏) and 𝛽(𝜏). Denote ĥopt( ̂𝜃0) as the optimal
bandwidths based on the initial values ̂𝜃0. ĥopt( ̂𝜃0) is a vector with elements (ℎ1, ℎ2, ℎ3), where ℎ1 is

a nonparametrically estimated bandwidth, ℎ2 assumes Gaussian distribution, and ℎ3 uses the Silverman

rule of thumb. Regardless of the assumption used, each element in ĥopt( ̂𝜃0) requires initial estimates of
the error term 𝜖 = 𝑦−d′𝛼(𝜏)−x′𝛽(𝜏). Thus, the optimal bandwidth is a function of the initial estimates
for 𝛼(𝜏) and 𝛽(𝜏). For details, see section 5.4 in Kaplan (2022).

1. Let ̂𝜃0 be the estimates of a quantile regression of 𝑦 on d and x.

2. Based on ̂𝜃0, compute the optimal bandwidths ĥopt( ̂𝜃0).

3. Define the initial bandwidth set as h0 = {ĥopt( ̂𝜃0), ℎinit}, where ℎinit is the bandwidth in the

initbwidth() option if specified. h0 = ĥopt( ̂𝜃0) if initbwidth() is not specified.
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4. Find the smallest element in h0 such that it solves (3). The estimates for 𝛼(𝜏) are within the dual
CI with #level probability (see Chernozhukov and Hansen [2008]).

(a) If a valid bandwidth is found, go to step 5.

(b) Otherwise, do a bisection search of the bandwidth with the upper bound as 100 × min(h0)
and the lower bound as min(h0)/100.

If a valid bandwidth is found, denote it as ℎ∗.

5. Update ̂𝜃0 as the solution for the SEE estimator based on bandwidth ℎ∗. Repeat steps 2–4 based

on the updated ̂𝜃0.

By default, steps 1–5 are used to select the bandwidth. If the nosearchbwidth and initbwidth()
options are both specified, steps 2, 4b, and 5 are omitted. Thus, in this case, ivqregress smoothwill try
to solve (3) with the specified initial bandwidth without searching for the optimal or feasible bandwidths.

If only the nosearchbwidth option is specified, step 4b is omitted.

The robust standard errors
The robust asymptotic variance–covariance estimator for the IQR and SEE estimators can be estimated

as follows (see Chernozhukov and Hansen [2006] and de Castro et al. [2019]). Let 𝜃 = {α(𝜏),β(𝜏)}
be the true values of parameters and ̂𝜃 = {α̂(𝜏), β̂(𝜏)} be the IQR or the SEE estimator. For any finite

collection of quantile indices 𝜏𝑗, 𝑗 ∈ 𝑇

[
√

𝑛{θ̂(𝜏) − θ(𝜏)}]𝑗∈𝑇 → 𝑁(0, [J(𝜏𝑘)−1S(𝜏𝑗, 𝜏𝑘){J(𝜏𝑗)−1}′]𝑘,𝑗∈𝑇)

where

J(𝜏) = 𝐸 {𝑓𝜖(𝜏)(0|x,d, z)Ψ[d′, x′]}

S(𝜏𝑗, 𝜏𝑘) = {min(𝜏𝑗, 𝜏𝑘) − 𝜏𝑗𝜏𝑘}𝐸(ΨΨ′)

and 𝑓𝜖(𝜏)(0|x,d, z) is the conditional density of 𝜖(𝜏) evaluated at 0, with 𝜖𝑖(𝜏) = 𝑦𝑖 − d′
𝑖α(𝜏) − x′

𝑖β(𝜏).
The components in the variance can be obtained by their sample counterparts. In particular, S(⋅) can

be estimated as

̂S(𝜏𝑘, 𝜏𝑗) = {min(𝜏𝑘, 𝜏𝑗) − 𝜏𝑘𝜏𝑗}
1
𝑁

𝑁
∑
𝑖=1

Ψ𝑖Ψ′
𝑖

J(⋅) can be estimated as

Ĵ(𝜏) = 1
𝑁ℎ𝑁

𝑁
∑

𝑖
𝐾 {−𝜖𝑖(𝜏)

ℎ𝑛
} Ψ𝑖[d′

𝑖, x′
𝑖]

where 𝜖𝑖(𝜏) = 𝑦𝑖 − d′
𝑖α̂(𝜏) − x′

𝑖β̂(𝜏), 𝐾(⋅) is a kernel function, and ℎ𝑛 is the bandwidth.

vce(vcetype, kernel()) specifies the kernel function form 𝐾(⋅). See [R] kdensity for the function
forms of the eight kernels.

vce(vcetype, bwidth()) specifies which bandwidth to use: silverman specifies to use ℎs,

hsheather specifies to use ℎk with ℎ1 replaced by ℎhs, and bofinger specifies to use ℎk with ℎ1 re-

placed by ℎbo.
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Silverman’s rule of thumb bandwidth is

ℎs = 0.9min{𝜎(𝜖), 𝑀
1.349

} 𝑁− 1
5

where 𝜎(𝜖) is the standard deviation of ̂𝜖 and 𝑀 is the interquartile range of ̂𝜖.
The bandwidth in Koenker (2005, 81) is

ℎk = min{𝜎(𝜖), 𝑀
1.349

} {Φ−1(𝜏 + ℎ1) − Φ−1(𝜏 − ℎ1)}

whereΦ−1(⋅) is the inverse cumulative standard normal distribution and ℎ1 can be one of the bandwidths

in Hall and Sheather (1988) (ℎhs) or Bofinger (1975) (ℎbo). In particular,

ℎhs = 𝑁−1/3Φ−1 (1 − 𝛼
2

)
2/3

[3
2

×
𝜙 {Φ−1(𝜏)}2

2Φ−1(𝜏)2 + 1
]

1/3

ℎbo = 𝑁−1/5 [9
2

×
𝜙 {Φ−1(𝜏)}4

{2Φ−1(𝜏)2 + 1}2 ]
1/5

where 𝜙(⋅) is the standard normal probability density function.
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Postestimation commands predict margins estat
Remarks and examples Stored results Methods and formulas References
Also see

Postestimation commands
The following postestimation commands are of special interest after ivqregress:

Command Description

estat coefplot plot coefficients and their confidence intervals at different quantiles

estat endogeffects perform tests of endogeneity
∗ estat dualci report dual confidence intervals for endogenous variable
∗ estat waldplot plot Wald statistics corresponding to each grid point

∗estat dualci and estat waldplot work only after ivqregress iqr.

The following postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estimates cataloging estimation results

etable table of estimation results

forecast dynamic forecasts and simulations

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

predict linear predictions and residuals

predictnl point estimates, standard errors, testing, and inference for generalized predictions

pwcompare pairwise comparisons of parameters

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

1353
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predict

Description for predict
predict creates a new variable containing predictions such as linear predictors and residuals.

Menu for predict
Statistics > Postestimation

Syntax for predict
predict [ type ] newvar [ if ] [ in ] [ , statistic equation([ eqno ]) ]

statistic Description

Main

xb linear predictor; the default

residuals residuals

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for the estimation
sample.

Options for predict

� � �
Main �

xb, the default, calculates the linear predictor.

residuals calculates the residuals, that is, 𝑦𝑗 − x𝑗b.

equation([ eqno ]) specifies the equation to which you are making the calculation.
equation() is filled in with one eqno. equation(#1) would mean that the calculation is to be

made for the first equation, equation(#2) would mean the second, and so on. You could also re-
fer to the equations by their names. equation(p50) would refer to the equation named p50 and

equation(p90) to the equation named p90.

If you do not specify equation(), results are the same as if you had specified equation(#1).
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margins

Description for margins
margins estimates margins of response for linear predictors.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist ] [ , options ]
margins [marginlist ] , predict(statistic ...) [ options ]

statistic Description

xb linear predictor; the default

residuals not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.
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estat

Description for estat
estat coefplot plots the estimated coefficients and their confidence intervals (CIs) after

ivqregress.

estat endogeffects tests four hypotheses for the coefficients on the endogenous variables; see

Chernozhukov and Hansen (2006). In particular, estat endogeffects provides tests for the following
null hypotheses:

1. No effect: the endogenous variables do not affect the outcome variable.

2. Constant effect: the effects of the endogenous variables do not vary across estimated quantiles.

3. Dominance: the effects of the endogenous variables are greater than 0 across estimated quantiles.

4. Exogeneity: the variables are exogenous instead of endogenous.

estat dualci computes the dual CIs for the coefficients on the endogenous variable (one for each
quantile) after ivqregress iqr; see Chernozhukov and Hansen (2008). The dual CI is robust to the
weak instruments, and it is usually wider than the traditional CI.

estat waldplot plots the Wald statistic corresponding to each grid point after ivqregress iqr.

Menu for estat
Statistics > Postestimation

Syntax for estat

Plot coefficients and their CIs at different quantiles

estat coefplot [ varname ] [ , coefplot options ]

Perform tests of endogeneity

estat endogeffects [ varlist ] [ , endogeffects options ]

Report dual CIs for endogenous variable

estat dualci [ , level(#) display options ]

Plot Wald statistics corresponding to each grid point

estat waldplot [ , waldplot options ]

varname is one of the endogenous regressors or exogenous variables specified when fitting ivqregress.
By default, varname is the endogenous variable specified with ivqregress iqr or the first endoge-
nous variable specified with ivqregress smooth.
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varlist contains one or more of the endogenous variables specified when fitting a model with

ivqregress; the default is the first endogenous variable.

coefplot options Description

noci do not plot the CIs

no2sls do not plot the 2SLS estimates

Plot

connect options change look of lines or connecting method

marker options change look of markers (color, size, etc.)

CI plot

ciopts(area options) affect rendition of the pointwise CIs

Line options

lineopts(cline options) affect rendition of reference line identifying the 2SLS estimates

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

endogeffects options Description

all test four hypotheses; the default

noeffect test of no effect

constant test of constant effect

dominance test of stochastic dominance

exogeneity test of exogeneity

level(#) confidence level of a test; default is level(95)
rseed(#) set random-number seed to #

reps(#) perform # bootstrap replications; default is reps(100)

waldplot options Description

quantile(#) plot Wald statistics for the #th quantile estimation

level(#) set confidence level; default is level(95)

Plot

connect options change look of lines or connecting method

marker options change look of markers (color, size, etc.)

CI plot

ciopts(area options) affect rendition of the dual CI plot

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options
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Options for estat
Options for estat are presented under the following headings:

Options for estat coefplot
Options for estat endogeffects
Options for estat dualci
Options for estat waldplot

Options for estat coefplot

noci removes plots of the pointwise CIs. The default is to plot the CIs.

no2sls removes the plot of the 2SLS estimates. The default is to plot the 2SLS reference line.

� � �
Plot �

connect options specify how points on a graph are to be connected; [G-3] connect options.

marker options affect the rendition of markers drawn at the plotted points, including their shape, size,

color, and outline; see [G-3] marker options.

� � �
CI plot �

ciopts(area options) affects rendition of the pointwise CIs; see [G-3] area options.

� � �
Line options �

lineopts(cline options) affects rendition of reference line identifying the 2SLS estimates; see

[G-3] cline options.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see

[G-3] saving option).

Options for estat endogeffects

all provides tests for all the four hypotheses, which is the default. If this option is specified with one
of the options noeffect, constant, dominance, or exogeneity, then tests for all four hypotheses
will be performed.

noeffect provides a test for the null hypothesis of no effect, that is, a test that the specified endogenous
variables do not affect the outcome variable.

constant provides a test for the null hypothesis of constant effect, that is, a test that the effects of the
specified endogenous variables do not vary across estimated quantiles.

dominance provides a test for the null hypothesis of dominance, that is, a test that the effects of the

specified endogenous variables are greater than 0 across estimated quantiles.

exogeneity provides a test for the null hypothesis of exogeneity, that is, a test that the specified variables
are exogenous instead of endogenous.

level(#) specifies the confidence level, as a percentage, for CIs. The default is level(95) or as set by
set level; see [U] 20.8 Specifying the width of confidence intervals.
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rseed(#) sets the random-number seed. Specifying this option makes the results reproducible because
the critical values are drawn from a bootstrap sample.

reps(#) specifies the number of bootstrap replications to get the critical values of the test. The default
is reps(100).

Options for estat dualci

level(#) specifies the confidence level, as a percentage, for the dual CIs. The default is level(95) or
as set by set level; see [U] 20.8 Specifying the width of confidence intervals.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

Options for estat waldplot

quantile(#) specifies to plot the Wald statistics for each grid points in the #th quantile estimation; the

default is the first equation.

level(#) specifies the confidence level, as a percentage, for the dual CIs. The default is level(95) or
as set by set level; see [U] 20.8 Specifying the width of confidence intervals.

� � �
Plot �

connect options specify how points on a graph are to be connected; [G-3] connect options.

marker options affect the rendition of markers drawn at the plotted points, including their shape, size,

color, and outline; see [G-3] marker options.

� � �
CI plot �

ciopts(area options) affects rendition of the pointwise dual CI plot; see [G-3] area options.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see

[G-3] saving option).

Remarks and examples
For examples of using estat coefplot and estat endogeffects, see example 3 in [R] ivqregress.

For an example of using estat dualci, see example 1 in [R] ivqregress. For an example of using estat
waldplot, see example 4 in [R] ivqregress.

Example 1
In example 1 in [R] ivqregress, we fit an instrumental-variables quantile regression (IVQR) model to

estimate the effects of 401(k) participation on the conditional median of the net financial assets. Sup-

pose that now we want to know the median of the net financial assets when everyone does or does not

participate in a 401(k) conditional on other covariates; we can use margins to find the answer.
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We specify i.p401k immediately after margins to obtain the median of the assets under 401(k)

participation and under no 401(k) participation. The at() option specifies the values of other covariates
when computing the median. In particular, the continuous variables such as income, age, familysize,
and educ are fixed at the sample mean, and people are assumed to be married, participate in an IRA,

receive pension benefits, and own a home.

. use https://www.stata-press.com/data/r18/assets2
(Excerpt from Chernozhukov and Hansen (2004))
. ivqregress iqr assets (i.p401k = i.e401k) income age familysize
> i.married i.ira i.pension i.ownhome educ
(output omitted )

. margins i.p401k, at((mean) income age familysize educ
> married = 1 ira = 1 pension = 1 ownhome = 1)
Adjusted predictions Number of obs = 9,913
Model VCE: Robust
Expression: Linear predictor, predict()
At: income = 37208.4 (mean)

age = 41.05891 (mean)
familysize = 2.865328 (mean)
married = 1
ira = 1
pension = 1
ownhome = 1
educ = 13.20629 (mean)

Delta-method
Margin std. err. z P>|z| [95% conf. interval]

p401k
No 23681.37 1007.612 23.50 0.000 21706.49 25656.26

Yes 28994.77 1123.076 25.82 0.000 26793.58 31195.96

The results show that the conditional median of assets when everyone participates in a 401(k) is

$28,995. In contrast, the conditional median of assets when no one participates in a 401(k) is only

$23,681. The difference between these two medians is $5,313, which is the quantile treatment effect of

p401k and is the same as the coefficient’s value.

Stored results
estat endogeffects stores the following in r():

Scalars

r(N reps) number of replications

r(level) confidence level

Macros

r(endog) tested endogenous regressors

Matrices

r(table) matrix containing test statistics and critical values
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estat dualci stores the following in r():
Scalars

r(N) number of observations

r(level) confidence level for the dual CI

Matrices

r(table) matrix containing test statistics, 𝑝-values, and confidence errors, test statistics, 𝑝-values,
and confidence intervals

Methods and formulas
Methods and formulas are presented under the following headings:

Tests of effects of endogenous variables
Dual CI

Tests of effects of endogenous variables
estat endogeffects implements the general inference procedure outlined in section 4 of Cher-

nozhukov and Hansen (2006). It tests the following null hypotheses:

1. No effect: the endogenous variables do not affect the outcome variable.

2. Constant effect: the effects of the endogenous variables do not vary across estimated quantiles.

3. Dominance: the effects of the endogenous variables are greater than 0 across estimated quantiles.

4. Exogeneity: the variables are exogenous instead of endogenous.

It is convenient to write each null hypothesis in the following form:

R(𝜏){θ(𝜏) − r(𝜏)} = 0 for each 𝜏 ∈ 𝑇

where R(𝜏) is a 𝑞 × 𝑝 matrix of rank 𝑞 when 𝑞 is smaller than the dimension of θ(𝜏). θ(𝜏) is the 𝑝 × 1

coefficient vector for the IVQR model in the 𝜏th quantile, r(𝜏) ∈ 𝑅𝑝, and 𝑇 is a set of estimated quantile

indexes. This form is different from the classical setting because θ(⋅) and r(⋅) are functions, which need
to be estimated in some cases.

Based on the IVQR model estimates θ̂(⋅), we focus on the basic inference process

v𝑛(⋅) = R(⋅){θ̂(⋅) − ̂r(⋅)}

where ̂r(⋅) is either a vector of constants or a vector of estimates from the classical quantile regression.

We use the Kolmogorov–Smirnov statistic 𝑆𝑛 = 𝑓{
√

𝑛v𝑛(⋅)}, which is a function of v𝑛(⋅).

𝑆𝑛 =
√

𝑛 sup𝜏∈𝑇||v𝑛(𝜏)||�̂�(𝜏)

where ||v||A =
√
v′Av. For the choice of �̂�(𝜏), see section 4.4 in Chernozhukov and Hansen (2006). In

essence, �̂�(𝜏) is the empirical variance of the estimating scores implied by the IVQR model.
The null hypothesis is rejected if

𝑆𝑛 > 𝑐(1 − 𝛼)
where the critical value 𝑐(1− 𝛼) with confidence level 1− 𝛼 can be obtained using the bootstrap resam-

pling procedure described in section 4.3 of Chernozhukov and Hansen (2006).
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Now we describe the formal definition of the four hypotheses. For notational simplicity, we assume

that there is one endogenous variable but the case of multiple endogenous variables can be extended

easily. Let 𝛼(𝜏) denote the endogenous coefficient for the 𝜏th quantile estimation. In this case, R =
(1, 0, . . . , 0) for the four hypotheses considered.

1. No effect: the null hypothesis is that the endogenous variable has no impact on the outcome:

𝛼(𝜏) = 0. In this case,

𝐻0 ∶ 𝛼(𝜏) = 0 for all 𝜏 ∈ 𝑇
𝐻1 ∶ 𝛼(𝜏) ≠ 0 for some 𝜏 ∈ 𝑇

and ̂𝑟(⋅) = 0.

2. Constant effect: the null hypothesis of a constant effect is that the endogenous variable only affects

the location of the outcome but not other moments. That is, 𝛼(𝜏) = 𝑐 for all 𝜏 ∈ 𝑇, where 𝑐 is a
constant. In this case,

𝐻0 ∶ 𝛼(𝜏) = 𝑐 for all 𝜏 ∈ 𝑇
𝐻1 ∶ 𝛼(𝜏) ≠ 𝑐 for some 𝜏 ∈ 𝑇

and ̂𝑟(⋅) is the estimate of endogenous coefficient for one of the quantile indexes.

3. Dominance: the dominance test tests whether the effects of endogenous variable are unambigu-

ously beneficial. That is, 𝛼(𝜏) > 0 for all 𝜏 ∈ 𝑇. For this hypothesis, we use the one-sided

Kolmogorov–Smirnov statistic

𝑆𝑛 =
√

𝑛 sup𝜏∈𝑇 max(−𝛼(𝜏), 0)

In this case,

𝐻0 ∶ 𝛼(𝜏) > 0 for all 𝜏 ∈ 𝑇
𝐻1 ∶ 𝛼(𝜏) ≤ 0 for some 𝜏 ∈ 𝑇

and ̂𝑟(⋅) = 0.

4. Exogeneity: if all the covariates are exogenous, we can fit the model by the regular quantile re-

gression and denote 𝜂(𝜏) as the quantile regression estimator. The difference between 𝜃(𝜏) and
𝜂(𝜏) can be used to formulate a Hausman test of exogeneity. In this case, the null and alternative
are defined as

𝐻0 ∶ 𝛼(𝜏) = R𝜂(𝜏) for all 𝜏 ∈ 𝑇
𝐻1 ∶ 𝛼(𝜏) ≠ R𝜂(𝜏) for some 𝜏 ∈ 𝑇

and ̂r(𝜏) = ̂𝜂(𝜏), where ̂𝜂(𝜏) is the regular quantile regression estimate.
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Dual CI
estat dualci computes the dual CI proposed in Chernozhukov and Hansen (2008) for the coefficient

on the endogenous variable in the IVQR model. The dual CI is robust to the weak instrument, and it is

usually wider than the classical CI. estat dualci is allowed only after ivqregress iqr. If you have
not read about the methods for the inverse quantile regression (IQR) estimator, see The IQR estimator in

Methods and formulas of [R] ivqregress.

Suppose we know the true value of the coefficient on the endogenous covariates, which we denote

as 𝛼(𝜏), and let 𝑊𝑛{𝛼(𝜏)} be the Wald statistic for the coefficient on the instruments in the auxiliary

quantile regression. Then by proposition 1 in Chernozhukov and Hansen (2008),

𝑊𝑛{𝛼(𝜏)} →𝑑 𝜒2(1)

and for the confidence region CR𝑝{α(𝜏)} = {α ∈ 𝐴 ∶ 𝑊𝑛(𝛼) < 𝑐𝑝}, where 𝑃{𝜒2(1) < 𝑐𝑝} = 𝑝, and

𝑃 [α(𝜏) ∈ CR𝑝{α(𝜏)}] = 𝑃 [𝑊𝑛{α(𝜏)} < 𝑐𝑝] = 𝑝

Intuitively, 𝑊𝑛{𝛼(𝜏)} is the Wald statistic for testing whether the coefficients for the instruments

are 0. When 𝛼 equals the true value 𝛼(𝜏), 𝑊(⋅) is 𝜒2 distributed with the degree of freedom of 1. Thus,

a valid CI for 𝛼 can be constructed by the inversion of the Wald statistic. That is,

CR𝑝{𝛼(𝜏)} = {𝛼 ∈ 𝐴 ∶ 𝑊𝑛(α) < 𝑐𝑝}

covers the true value of 𝛼(𝜏) with probability approaching 𝑝.
In practice, the dual CI is constructed by the lower and upper limits of the grid points such that the

corresponding Wald statistic is smaller than the critical value 𝑐𝑝.
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Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas References Also see

Description
ivregress fits linear models where one or more of the regressors are endogenously determined.

ivregress supports estimation via two-stage least squares (2SLS), limited-information maximum like-

lihood (LIML), and generalized method of moments (GMM).

Quick start
2SLS estimation of a linear regression of y1 on x1 and endogenous regressor y2 that is instrumented by

z1
ivregress 2sls y1 x1 (y2 = z1)

Same as above, but with two endogenous regressors, y2 and y3 instrumented by z1 and z2
ivregress 2sls y1 x1 (y2 y3 = z1 z2)

With robust standard errors

ivregress 2sls y1 x1 (y2 y3 = z1 z2), vce(robust)

Report small-sample statistics

ivregress 2sls y1 x1 (y2 y3 = z1 z2), small

Use LIML estimation

ivregress liml y1 x1 (y2 y3 = z1 z2)

Use GMM estimation

ivregress gmm y1 x1 (y2 y3 = z1 z2)

Also specify a weight matrix that allows for correlation within clusters identified by cvar
ivregress gmm y1 x1 (y2 y3 = z1 z2), wmatrix(cluster cvar)

Menu
Statistics > Endogenous covariates > Linear regression with endogenous covariates

1364
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Syntax
ivregress estimator depvar [ varlist1 ] (varlist2 = varlistiv) [ if ] [ in ] [weight ]

[ , options ]

varlist1 is the list of exogenous variables.

varlist2 is the list of endogenous variables.

varlistiv is the list of exogenous variables used with varlist1 as instruments for varlist2.

estimator Description

2sls two-stage least squares (2SLS)

liml limited-information maximum likelihood (LIML)

gmm generalized method of moments (GMM)

options Description

Model

noconstant suppress constant term

hascons has user-supplied constant

GMM1

wmatrix(wmtype) wmtype may be robust, cluster clustvar, hac hacspec, or unadjusted
center center moments in weight matrix computation

igmm use iterative instead of two-step GMM estimator

eps(#)2 specify # for parameter convergence criterion; default is eps(1e-6)
weps(#)2 specify # for weight matrix convergence criterion; default is weps(1e-6)
optimization options2 control the optimization process; seldom used

SE/Robust

vce(vcetype) vcetype may be unadjusted, robust, cluster clustvar, bootstrap,
jackknife, or hac hacspec

Reporting

level(#) set confidence level; default is level(95)
first report first-stage regression

small make degrees-of-freedom adjustments and report small-sample statistics

noheader display only the coefficient table

depname(depname) substitute dependent variable name

eform(string) report exponentiated coefficients and use string to label them

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

perfect do not check for collinearity between endogenous regressors and
excluded instruments

coeflegend display legend instead of statistics
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1These options may be specified only when gmm is specified.
2These options may be specified only when igmm is specified.
varlist1, varlist2, and varlistiv may contain factor variables; see [U] 11.4.3 Factor variables.

depvar, varlist1, varlist2, and varlistiv may contain time-series operators; see [U] 11.4.4 Time-series varlists.

bootstrap, by, collect, fmm, jackknife, rolling, statsby, and svy are allowed; see [U] 11.1.10 Prefix commands.
For more details, see [FMM] fmm: ivregress.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
aweights are not allowed with the jackknife prefix; see [R] jackknife.
hascons, vce(), noheader, depname(), and weights are not allowed with the svy prefix; see [SVY] svy.
aweights, fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
perfect and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

noconstant; see [R] Estimation options.

hascons indicates that a user-defined constant or its equivalent is specified among the independent vari-
ables.

� � �
GMM �

wmatrix(wmtype) specifies the type of weight matrix to be used in conjunction with the GMM estimator.

wmatrix(robust), the default, requests a weight matrix that is optimal when the error term is het-

eroskedastic.

wmatrix(cluster clustvar) requests a weight matrix that accounts for arbitrary correlation among
observations within clusters identified by clustvar.

wmatrix(hac hacspec) requests a heteroskedasticity- and autocorrelation-consistent (HAC) weight
matrix. The full syntax of hacspec is one of the following:

wmatrix(hac kernel [ # ]) requests a HAC weight matrix using the specified kernel (see below)

with optional # lags. The bandwidth of a kernel is equal to #+ 1. If # is not specified, a kernel

with 𝑁 − 2 lags is used, where 𝑁 is the sample size.

wmatrix(hac kernel opt [ # ]) requests a HAC weight matrix using the specified kernel (see be-
low), and the lag order is selected using Newey and West’s (1994) optimal lag-selection algo-

rithm. # is an optional tuning parameter that affects the lag order selected; see the discussion

in Methods and formulas.

kernel may be one of the following:

bartlett or nwest requests the Bartlett (Newey–West) kernel.

parzen or gallant requests the Parzen (Gallant 1987) kernel.

quadraticspectral or andrews requests the quadratic spectral (Andrews 1991) kernel.

wmatrix(unadjusted) requests a weight matrix that is suitable when the errors are homoskedastic.
The GMM estimator with this weight matrix is equivalent to the 2SLS estimator.

center requests that the sample moments be centered (demeaned) when computing GMM weight matri-

ces. By default, centering is not done.
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igmm requests that the iterative GMM estimator be used instead of the default two-step GMM estimator.

Convergence is declared when the relative change in the parameter vector from one iteration to the

next is less than eps() or the relative change in the weight matrix is less than weps().

eps(#) specifies the convergence criterion for successive parameter estimates when the iterative GMM

estimator is used. The default is eps(1e-6). Convergence is declared when the relative difference
between successive parameter estimates is less than eps() and the relative difference between suc-
cessive estimates of the weight matrix is less than weps().

weps(#) specifies the convergence criterion for successive estimates of the weight matrix when the iter-
ative GMM estimator is used. The default is weps(1e-6). Convergence is declared when the relative
difference between successive parameter estimates is less than eps() and the relative difference be-
tween successive estimates of the weight matrix is less than weps().

optimization options: iterate(#), [no]log. iterate() specifies the maximum number of iterations

to perform in conjunction with the iterative GMM estimator. The default is the number set using set
maxiter, which is 300 by default. log/nolog specifies whether to show the iteration log; see set
iterlog in [R] set iter. These options are seldom used.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are robust to some
kinds of misspecification (robust), that allow for intragroup correlation (cluster clustvar), and that
use bootstrap or jackknife methods (bootstrap, jackknife); see [R] vce option.

vce(unadjusted), the default for 2sls and liml, specifies that an unadjusted (nonrobust) VCE

matrix be used. The default for gmm is based on the wmtype specified in the wmatrix() option;
see wmatrix() above. If wmatrix() is specified with gmm but vce() is not, then vcetype is set
equal to wmtype. To override this behavior and obtain an unadjusted (nonrobust) VCE matrix,

specify vce(unadjusted).

vce(hac hacspec) specifies that a HAC covariance matrix be used. The syntax is identical to that for
wmatrix().

� � �
Reporting �

level(#); see [R] Estimation options.

first requests that the first-stage regression results be displayed.

small requests that the degrees-of-freedom adjustment 𝑁/(𝑁 − 𝑘) be made to the variance–covariance
matrix of parameters and that small-sample 𝐹 and 𝑡 statistics be reported, where 𝑁 is the sample size

and 𝑘 is the number of parameters estimated. By default, no degrees-of-freedom adjustment is made,

and Wald and 𝑧 statistics are reported. Even with this option, no degrees-of-freedom adjustment is

made to the weight matrix when the GMM estimator is used.

noheader suppresses the display of the summary statistics at the top of the output, displaying only the
coefficient table.

depname(depname) is used only in programs and ado-files that use ivregress to fit models other than
instrumental-variables regression. depname() may be specified only at estimation time. depname

is recorded as the identity of the dependent variable, even though the estimates are calculated using

depvar. This method affects the labeling of the output—not the results calculated—but could affect

later calculations made by predict, where the residual would be calculated as deviations from dep-

name rather than depvar. depname() is most typically used when depvar is a temporary variable (see
[P] macro) used as a proxy for depname.
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eform(string) is used only in programs and ado-files that use ivregress to fit models other than

instrumental-variables regression. eform() specifies that the coefficient table be displayed in “ex-
ponentiated form”, as defined in [R] Maximize, and that string be used to label the exponentiated

coefficients in the table.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

The following options are available with ivregress but are not shown in the dialog box:

perfect requests that ivregress not check for collinearity between the endogenous regressors and

excluded instruments, allowing one to specify “perfect” instruments. This option cannot be used

with the LIML estimator. This option may be required when using ivregress to implement other

estimators.

coeflegend; see [R] Estimation options.

Remarks and examples
ivregress performs instrumental-variables regression and weighted instrumental-variables regres-

sion. For a general discussion of instrumental variables, see Baum (2006), Cameron and Trivedi (2005;

2022, chap. 7) Davidson and MacKinnon (1993), Greene (2018, chap. 8), and Wooldridge (2010, 2020).

See Hall (2005) for a lucid presentation of GMM estimation. Angrist and Pischke (2009, chap. 4) offer

a casual yet thorough introduction to instrumental-variables estimators, including their use in estimating

treatment effects. Some of the earliest work on simultaneous systems can be found in Cowles Com-

mission monographs—Koopmans and Marschak (1950) and Koopmans and Hood (1953)—with the

first developments of 2SLS appearing in Theil (1953) and Basmann (1957). However, Stock and Watson

(2019, 401–402) present an example of the method of instrumental variables that was first published in

1928 by Philip Wright.

The syntax for ivregress assumes that you want to fit one equation from a system of equations or

an equation for which you do not want to specify the functional form for the remaining equations of

the system. To fit a full system of equations, using either 2SLS equation-by-equation or three-stage least

squares, see [R] reg3. An advantage of ivregress is that you can fit one equation of a multiple-equation
system without specifying the functional form of the remaining equations.
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Formally, the model fit by ivregress is

𝑦𝑖 = y𝑖β1 + x1𝑖β2 + 𝑢𝑖 (1)

y𝑖 = x1𝑖𝚷1 + x2𝑖𝚷2 + v𝑖 (2)

Here 𝑦𝑖 is the dependent variable for the 𝑖th observation, y𝑖 represents the endogenous regressors (varlist2
in the syntax diagram), x1𝑖 represents the included exogenous regressors (varlist1 in the syntax diagram),

and x2𝑖 represents the excluded exogenous regressors (varlistiv in the syntax diagram). x1𝑖 and x2𝑖 are

collectively called the instruments. 𝑢𝑖 and v𝑖 are zero-mean error terms, and the correlations between 𝑢𝑖
and the elements of v𝑖 are presumably nonzero.

The rest of the discussion is presented under the following headings:

2SLS and LIML estimators
GMM estimator
Video example

2SLS and LIML estimators
The most common instrumental-variables estimator is 2SLS.

Example 1: 2SLS estimator
We have state data from the 1980 census on the median dollar value of owner-occupied housing

(hsngval) and the median monthly gross rent (rent). We want to model rent as a function of hsngval
and the percentage of the population living in urban areas (pcturban):

rent𝑖 = 𝛽0 + 𝛽1hsngval𝑖 + 𝛽2pcturban𝑖 + 𝑢𝑖

where 𝑖 indexes states and 𝑢𝑖 is an error term.

Because random shocks that affect rental rates in a state probably also affect housing values, we treat

hsngval as endogenous. We believe that the correlation between hsngval and 𝑢 is not equal to zero.

On the other hand, we have no reason to believe that the correlation between pcturban and 𝑢 is nonzero,

so we assume that pcturban is exogenous.

Because we are treating hsngval as an endogenous regressor, we must have one or more additional
variables available that are correlated with hsngval but uncorrelated with 𝑢. Moreover, these excluded

exogenous variables must not affect rent directly, because if they do then they should be included in the
regression equation we specified above. In our dataset, we have a variable for family income (faminc)
and for region of the country (region) that we believe are correlated with hsngval but not the error term.
Together, pcturban, faminc, and factor variables 2.region, 3.region, and 4.region constitute our
set of instruments.

To fit the equation in Stata, we specify the dependent variable and the list of included exogenous vari-

ables. In parentheses, we specify the endogenous regressors, an equal sign, and the excluded exogenous

variables. Only the additional exogenous variables must be specified to the right of the equal sign; the

exogenous variables that appear in the regression equation are automatically included as instruments.
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Here we fit our model with the 2SLS estimator:

. use https://www.stata-press.com/data/r18/hsng
(1980 Census housing data)
. ivregress 2sls rent pcturban (hsngval = faminc i.region)
Instrumental-variables 2SLS regression Number of obs = 50

Wald chi2(2) = 90.76
Prob > chi2 = 0.0000
R-squared = 0.5989
Root MSE = 22.166

rent Coefficient Std. err. z P>|z| [95% conf. interval]

hsngval .0022398 .0003284 6.82 0.000 .0015961 .0028836
pcturban .081516 .2987652 0.27 0.785 -.504053 .667085

_cons 120.7065 15.22839 7.93 0.000 90.85942 150.5536

Endogenous: hsngval
Exogenous: pcturban faminc 2.region 3.region 4.region

As we would expect, states with higher housing values have higher rental rates. The proportion of a

state’s population that is urban does not have a significant effect on rents.

Technical note
In a simultaneous-equations framework, we could write the model we just fit as

hsngval𝑖 = 𝜋0 + 𝜋1faminc𝑖 + 𝜋22.region𝑖 + 𝜋33.region𝑖 + 𝜋44.region𝑖 + 𝑣𝑖

rent𝑖 = 𝛽0 + 𝛽1hsngval𝑖 + 𝛽2pcturban𝑖 + 𝑢𝑖

which here happens to be recursive (triangular), because hsngval appears in the equation for rent
but rent does not appear in the equation for hsngval. In general, however, systems of simultaneous
equations are not recursive. Because this system is recursive, we could fit the two equations individually

via OLS if we were willing to assume that 𝑢 and 𝑣 were independent. For a more detailed discussion of
triangular systems, see Kmenta (1997, 719–720).

Historically, instrumental-variables estimation and systems of simultaneous equations were taught

concurrently, and older textbooks describe instrumental-variables estimation solely in the context of

simultaneous equations. However, in recent decades, the treatment of endogeneity and instrumental-

variables estimation has taken on a much broader scope, while interest in the specification of complete

systems of simultaneous equations has waned. Most recent textbooks, such as Cameron and Trivedi

(2005), Davidson and MacKinnon (1993), and Wooldridge (2010, 2020), treat instrumental-variables

estimation as an integral part of the modern economists’ toolkit and introduce it long before shorter dis-

cussions on simultaneous equations.

In addition to the 2SLSmember of the 𝜅-class estimators, ivregress implements the LIML estimator.

Both theoretical and Monte Carlo exercises indicate that the LIML estimator may yield less bias and

confidence intervals with better coverage rates than the 2SLS estimator. See Poi (2006) and Stock,Wright,

and Yogo (2002) (and the papers cited therein) for Monte Carlo evidence.
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Example 2: LIML estimator
Here we refit our model with the LIML estimator:

. ivregress liml rent pcturban (hsngval = faminc i.region)
Instrumental-variables LIML regression Number of obs = 50

Wald chi2(2) = 75.71
Prob > chi2 = 0.0000
R-squared = 0.4901
Root MSE = 24.992

rent Coefficient Std. err. z P>|z| [95% conf. interval]

hsngval .0026686 .0004173 6.39 0.000 .0018507 .0034865
pcturban -.1827391 .3571132 -0.51 0.609 -.8826681 .5171899

_cons 117.6087 17.22625 6.83 0.000 83.84587 151.3715

Endogenous: hsngval
Exogenous: pcturban faminc 2.region 3.region 4.region

These results are qualitatively similar to the 2SLS results, although the coefficient on hsngval is about
19% higher.

GMM estimator
Since the celebrated paper of Hansen (1982), the GMM has been a popular method of estimation in

economics and finance, and it lends itself well to instrumental-variables estimation. The basic principle

is that we have some moment or orthogonality conditions of the form

𝐸(z𝑖𝑢𝑖) = 0 (3)

From (1), we have 𝑢𝑖 = 𝑦𝑖 − y𝑖β1 − x1𝑖β2. What are the elements of the instrument vector z𝑖? By

assumption, x1𝑖 is uncorrelated with 𝑢𝑖, as are the excluded exogenous variables x2𝑖, and so we use

z𝑖 = [x1𝑖 x2𝑖]. The moment conditions are simply the mathematical representation of the assumption
that the instruments are exogenous—that is, the instruments are orthogonal to (uncorrelated with) 𝑢𝑖.

If the number of elements in z𝑖 is just equal to the number of unknown parameters, then we can apply

the analogy principle to (3) and solve

1
𝑁

∑
𝑖
z𝑖𝑢𝑖 = 1

𝑁
∑

𝑖
z𝑖 (𝑦𝑖 − y𝑖β1 − x1𝑖β2) = 0 (4)

This equation is known as the method of moments estimator. Here, where the number of instruments

equals the number of parameters, the method of moments estimator coincides with the 2SLS estimator,

which also coincides with what has historically been called the indirect least-squares estimator (Judge et

al. 1985, 595).
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The “generalized” in GMM addresses the case in which the number of instruments (columns of z𝑖)

exceeds the number of parameters to be estimated. Here there is no unique solution to the population

moment conditions defined in (3), so we cannot use (4). Instead, we define the objective function

𝑄(β1,β2) = ( 1
𝑁

∑
𝑖
z𝑖𝑢𝑖)

′

W( 1
𝑁

∑
𝑖
z𝑖𝑢𝑖) (5)

where W is a positive-definite matrix with the same number of rows and columns as the number of

columns of z𝑖. W is known as the weight matrix, and we specify its structure with the wmatrix()
option. The GMM estimator of (β1,β2) minimizes 𝑄(β1,β2); that is, the GMM estimator chooses β1
and β2 to make the moment conditions as close to zero as possible for a givenW. For a more general

GMM estimator, see [R] gmm. gmm does not restrict you to fitting a single linear equation, though the
syntax is more complex.

A well-known result is that if we define the matrix S0 to be the covariance of z𝑖𝑢𝑖 and setW = S−1
0 ,

then we obtain the optimal two-step GMM estimator, where by optimal estimator we mean the one that

results in the smallest variance given the moment conditions defined in (3).

Suppose that the errors 𝑢𝑖 are heteroskedastic but independent among observations. Then

S0 = 𝐸(z𝑖𝑢𝑖𝑢𝑖z
′
𝑖) = 𝐸(𝑢2

𝑖 z𝑖z
′
𝑖)

and the sample analogue is

Ŝ = 1
𝑁

∑
𝑖

�̂�2
𝑖 z𝑖z

′
𝑖 (6)

To implement this estimator, we need estimates of the sample residuals �̂�𝑖. ivregress gmm obtains the
residuals by estimating β1 and β2 by 2SLS and then evaluates (6) and setsW = Ŝ−1. Equation (6) is the

same as the center term of the “sandwich” robust covariance matrix available from most Stata estimation

commands through the vce(robust) option.

Example 3: GMM estimator
Here we refit our model of rents by using the GMM estimator, allowing for heteroskedasticity in 𝑢𝑖:

. ivregress gmm rent pcturban (hsngval = faminc i.region), wmatrix(robust)
Instrumental-variables GMM regression Number of obs = 50

Wald chi2(2) = 112.09
Prob > chi2 = 0.0000
R-squared = 0.6616

GMM weight matrix: Robust Root MSE = 20.358

Robust
rent Coefficient std. err. z P>|z| [95% conf. interval]

hsngval .0014643 .0004473 3.27 0.001 .0005877 .002341
pcturban .7615482 .2895105 2.63 0.009 .1941181 1.328978

_cons 112.1227 10.80234 10.38 0.000 90.95052 133.2949

Endogenous: hsngval
Exogenous: pcturban faminc 2.region 3.region 4.region

Because we requested that a heteroskedasticity-consistent weight matrix be used during estimation but

did not specify the vce() option, ivregress reported standard errors that are robust to heteroskedastic-
ity. Had we specified vce(unadjusted), we would have obtained standard errors that would be correct
only if the weight matrixW does in fact converge to S−1

0 .
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Technical note
Many software packages that implement GMM estimation use the same heteroskedasticity-consistent

weight matrix we used in the previous example to obtain the optimal two-step estimates but do not use

a heteroskedasticity-consistent VCE, even though they may label the standard errors as being “robust”.

To replicate results obtained from other packages, you may have to use the vce(unadjusted) option.
See Methods and formulas below for a discussion of robust covariance matrix estimation in the GMM

framework.

By changing our definition of S0, we can obtain GMM estimators suitable for use with other types of

data that violate the assumption that the errors are independent and identically distributed. For example,

you may have a dataset that consists of multiple observations for each person in a sample. The observa-

tions that correspond to the same person are likely to be correlated, and the estimation technique should

account for that lack of independence. Say that in your dataset, people are identified by the variable

personid and you type

. ivregress gmm ..., wmatrix(cluster personid)

Here ivregress estimates S0 as

Ŝ = 1
𝑁

∑
𝑐∈𝐶

q𝑐q
′
𝑐

where 𝐶 denotes the set of clusters and

q𝑐 = ∑
𝑖∈𝑐𝑗

�̂�𝑖z𝑖

where 𝑐𝑗 denotes the 𝑗th cluster. This weight matrix accounts for the within-person correlation among
observations, so the GMM estimator that uses this version of S0 will be more efficient than the estimator

that ignores this correlation.

Example 4: GMM estimator with clustering
We have data from the National Longitudinal Survey on young women’s wages as reported in a series

of interviews from 1968 through 1988, and wewant to fit a model of wages as a function of each woman’s

age and age squared, job tenure, birth year, and level of education. We believe that random shocks that

affect a woman’s wage also affect her job tenure, so we treat tenure as endogenous. As additional in-

struments, we use her union status, number of weeks worked in the past year, and a dummy indicating

whether she lives in a metropolitan area. Because we have several observations for each woman (corre-

sponding to interviews done over several years), we want to control for clustering on each person.
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. use https://www.stata-press.com/data/r18/nlswork
(National Longitudinal Survey of Young Women, 14-24 years old in 1968)
. ivregress gmm ln_wage age c.age#c.age birth_yr grade
> (tenure = union wks_work msp), wmatrix(cluster idcode)
Instrumental-variables GMM regression Number of obs = 18,625

Wald chi2(5) = 1807.17
Prob > chi2 = 0.0000
R-squared = .

GMM weight matrix: Cluster (idcode) Root MSE = .46951
(Std. err. adjusted for 4,110 clusters in idcode)

Robust
ln_wage Coefficient std. err. z P>|z| [95% conf. interval]

tenure .099221 .0037764 26.27 0.000 .0918194 .1066227
age .0171146 .0066895 2.56 0.011 .0040034 .0302259

c.age#c.age -.0005191 .000111 -4.68 0.000 -.0007366 -.0003016

birth_yr -.0085994 .0021932 -3.92 0.000 -.012898 -.0043008
grade .071574 .0029938 23.91 0.000 .0657062 .0774417
_cons .8575071 .1616274 5.31 0.000 .5407231 1.174291

Endogenous: tenure
Exogenous: age c.age#c.age birth_yr grade union wks_work msp

Both job tenure and years of schooling have significant positive effects on wages.

Time-series data are often plagued by serial correlation. In these cases, we can construct a weight

matrix to account for the fact that the error in period 𝑡 is probably correlated with the errors in periods
𝑡 − 1, 𝑡 − 2, etc. A HAC weight matrix can be used to account for both serial correlation and potential

heteroskedasticity.

To request a HACweight matrix, you specify the wmatrix(hac kernel [ # | opt ]) option. kernel spec-
ifies which of three kernels to use: bartlett, parzen, or quadraticspectral. kernel determines the
amount of weight given to lagged values when computing the HAC matrix, and # denotes the maximum

number of lags to use. Many texts refer to the bandwidth of the kernel instead of the number of lags; the

bandwidth is equal to the number of lags plus one. If neither opt nor # is specified, then 𝑁 − 2 lags are

used, where 𝑁 is the sample size.

If you specify wmatrix(hac kernel opt), then ivregress uses Newey andWest’s (1994) algorithm

for automatically selecting the number of lags to use. Although the authors’ Monte Carlo simulations

do show that the procedure may result in size distortions of hypothesis tests, the procedure is still useful

when little other information is available to help choose the number of lags.

For more on GMM estimation, see Baum (2006); Baum, Schaffer, and Stillman (2003, 2007); Cameron

and Trivedi (2005); Davidson and MacKinnon (1993); Hayashi (2000); or Wooldridge (2010). See

Newey and West (1987) and Wang and Wu (2012) for an introduction to HAC covariance matrix estima-

tion.

Video example
Instrumental variables regression using Stata

https://www.youtube.com/watch?v=lbnswRJ1qV0&index=1&list=UUVk4G4nEtBS4tLOyHqustDA
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Stored results
ivregress stores the following in e():

Scalars

e(N) number of observations

e(mss) model sum of squares

e(df m) model degrees of freedom

e(rss) residual sum of squares

e(df r) residual degrees of freedom

e(r2) 𝑅2

e(r2 a) adjusted 𝑅2

e(F) 𝐹 statistic

e(rmse) root mean squared error

e(N clust) number of clusters

e(chi2) 𝜒2

e(kappa) 𝜅 used in LIML estimator

e(J) value of GMM objective function

e(wlagopt) lags used in HAC weight matrix (if Newey–West algorithm used)

e(vcelagopt) lags used in HAC VCE matrix (if Newey–West algorithm used)

e(hac lag) HAC lag

e(rank) rank of e(V)
e(k endog) number of endogenous regressors (after factor-variable expansion)

e(iterations) number of GMM iterations (0 if not applicable)

Macros

e(cmd) ivregress
e(cmdline) command as typed

e(depvar) name of dependent variable

e(endog) names of endogenous variables

e(exog) names of exogenous variables

e(constant) noconstant or hasconstant if specified
e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(clustvar) name of cluster variable

e(hac kernel) HAC kernel

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(estimator) 2sls, liml, or gmm
e(exogr) exogenous regressors

e(wmatrix) wmtype specified in wmatrix()
e(moments) centered if center specified
e(small) small if small-sample statistics
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(footnote) program used to implement footnote display

e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(W) weight matrix used to compute GMM estimates

e(S) moment covariance matrix used to compute GMM variance–covariance matrix

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance
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Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas
Methods and formulas are presented under the following headings:

Notation
2SLS and LIML estimators
GMM estimator

Notation
Items printed in lowercase and italicized (for example, 𝑥) are scalars. Items printed in lowercase and

boldfaced (for example, x) are vectors. Items printed in uppercase and boldfaced (for example, X) are

matrices.

The model is

y = Yβ1 + X1β2 + u = Xβ + u

Y = X1𝚷1 + X2𝚷2 + V = Z𝚷 + V

where y is an 𝑁 × 1 vector of the left-hand-side variable; 𝑁 is the sample size; Y is an 𝑁 × 𝑝 matrix of
𝑝 endogenous regressors; X1 is an 𝑁 × 𝑘1 matrix of 𝑘1 included exogenous regressors; X2 is an 𝑁 × 𝑘2
matrix of 𝑘2 excluded exogenous variables, X = [Y X1], Z = [X1 X2]; u is an 𝑁 × 1 vector of errors;

V is an 𝑁 × 𝑝 matrix of errors; β = [β1 β2] is a 𝑘 = (𝑝 + 𝑘1) × 1 vector of parameters; and 𝚷 is a

(𝑘1 + 𝑘2) × 𝑝 vector of parameters. If a constant term is included in the model, then one column of X1
contains all ones.

Let v be a column vector of weights specified by the user. If no weights are specified, v = 1. Let w

be a column vector of normalized weights. If no weights are specified or if the user specified fweights
or iweights, w = v; otherwise, w = {v/(1′v)}(1′1). Let D denote the 𝑁 × 𝑁 matrix with w on the

main diagonal and zeros elsewhere. If no weights are specified, D is the identity matrix.

The weighted number of observations 𝑛 is defined as 1′w. For iweights, this is truncated to an

integer. The sum of the weights is 1′v. Define 𝑐 = 1 if there is a constant in the regression and zero

otherwise.

The order condition for identification requires that 𝑘2 ≥ 𝑝: the number of excluded exogenous vari-
ables must be at least as great as the number of endogenous regressors.

In the following formulas, if weights are specified, X′
1X1, X

′X, X′y, y′y, Z′Z, Z′X, and Z′y are

replaced with X′
1DX1, X

′DX, X′Dy, y′Dy, Z′DZ, Z′DX, and Z′Dy, respectively. We suppress the D

below to simplify the notation.
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2SLS and LIML estimators
Define the 𝜅-class estimator of β as

b = {X′(I − 𝜅MZ)X}−1
X′(I − 𝜅MZ)y

where MZ = I − Z(Z′Z)−1Z′. The 2SLS estimator results from setting 𝜅 = 1. The LIML estimator

results from selecting 𝜅 to be the minimum eigenvalue of (Y′MZY)−1/2Y′MX1
Y(Y′MZY)−1/2, where

MX1
= I − X1(X′

1X1)−1X′
1.

The total sum of squares (TSS) equals y′y if there is no intercept and y′y − {(1′y)2/𝑛} otherwise.

The degrees of freedom is 𝑛 − 𝑐. The error sum of squares (ESS) is defined as y′y − 2bX′y + b′X′Xb.

The model sum of squares (MSS) equals TSS − ESS. The degrees of freedom is 𝑘 − 𝑐.
The mean squared error, 𝑠2, is defined as ESS/(𝑛−𝑘) if small is specified and ESS/𝑛 otherwise. The

root mean squared error is 𝑠, its square root.
If 𝑐 = 1 and small is not specified, aWald statistic,𝑊, of the joint significance of the 𝑘−1 parameters

of β except the constant term is calculated; 𝑊 ∼ 𝜒2(𝑘 − 1). If 𝑐 = 1 and small is specified, then an 𝐹
statistic is calculated as 𝐹 = 𝑊/(𝑘 − 1); 𝐹 ∼ 𝐹(𝑘 − 1, 𝑛 − 𝑘).

The 𝑅2 is defined as 𝑅2 = 1 − ESS/TSS.
The adjusted 𝑅2 is 𝑅2

a = 1 − (1 − 𝑅2)(𝑛 − 𝑐)/(𝑛 − 𝑘).

The unadjusted (default) variance estimate is Var(b) = 𝑠2{X′(I − 𝜅MZ)X}−1
.

For a general discussion of robust variance estimates in regression, see A general notation for the

robust variance calculation in [R] regress. ivregress uses the same definitions for terms discussed in
Robust calculation for regress in its robust variance calculation, except for the following.

The vector of scores is given by

u𝑗 = (𝑦𝑗 − x𝑗b)x̂𝑗

where x̂′
𝑗 = Pz𝑗

′ and P = (X′Z)(Z′Z)−1. When the formulas in [R] regress are applied, 𝑞𝑐 is given by

its regressionlike definition. If small is not specified, then 𝑘 = 0 in the formulas given in [R] regress.

ivregress 2sls and ivregress liml also support estimation with survey data. For details on VCEs
with survey data, see [SVY] Variance estimation.

GMM estimator
We obtain an initial consistent estimate of β by using the 2SLS estimator; see above. Using this

estimate of β, we compute the weight matrixW and calculate the GMM estimator

bGMM = {X′ZWZ′X}−1
X′ZWZ′y

The variance of bGMM is

Var(bGMM) = 𝑛{X′ZWZ′X}−1
X′ZWŜWZ′X{X′ZWZ′X}−1

Var(bGMM) is of the sandwich form DMD; see [P] robust. If the user specifies the small option,

ivregress implements a small-sample adjustment by multiplying the VCE by 𝑁/(𝑁 − 𝑘).
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If vce(unadjusted) is specified, then we set Ŝ = W−1 and the VCE reduces to the “optimal” GMM

variance estimator

Var(β
GMM

) = 𝑛{X′ZWZ′X}−1

However, ifW−1 is not a good estimator of 𝐸(z𝑖𝑢𝑖𝑢𝑖z
′
𝑖), then the optimal GMM estimator is inefficient,

and inference based on the optimal variance estimator could be misleading.

W is calculated using the residuals from the initial 2SLS estimates, whereas S is estimated using the

residuals based on bGMM. The wmatrix() option affects the form of W, whereas the vce() option

affects the form of S. Except for different residuals being used, the formulas forW−1 and S are identical,

so we focus on estimatingW−1.

If wmatrix(unadjusted) is specified, then

W−1 = 𝑠2

𝑛
∑

𝑖
z𝑖z

′
𝑖

where 𝑠2 = ∑𝑖 𝑢2
𝑖 /𝑛. This weight matrix is appropriate if the errors are homoskedastic.

If wmatrix(robust) is specified, then

W−1 = 1
𝑛

∑
𝑖

𝑢2
𝑖 z𝑖z

′
𝑖

which is appropriate if the errors are heteroskedastic.

If wmatrix(cluster clustvar) is specified, then

W−1 = 1
𝑛

∑
𝑐
q𝑐q

′
𝑐

where 𝑐 indexes clusters,
q𝑐 = ∑

𝑖∈𝑐𝑗

𝑢𝑖z𝑖

and 𝑐𝑗 denotes the 𝑗th cluster.

If wmatrix(hac kernel [ # ]) is specified, then

W−1 = 1
𝑛

∑
𝑖

𝑢2
𝑖 z𝑖z

′
𝑖 + 1

𝑛

𝑙=𝑛−1
∑
𝑙=1

𝑖=𝑛
∑

𝑖=𝑙+1
𝐾(𝑙, 𝑚)𝑢𝑖𝑢𝑖−𝑙 (z𝑖z

′
𝑖−𝑙 + z𝑖−𝑙z

′
𝑖)

where 𝑚 = # if # is specified and 𝑚 = 𝑛 − 2 otherwise. Define 𝑧 = 𝑙/(𝑚 + 1). If kernel is nwest, then

𝐾(𝑙, 𝑚) = {1 − 𝑧 0≤z ≤1

0 otherwise

If kernel is gallant, then

𝐾(𝑙, 𝑚) =
⎧{
⎨{⎩

1 − 6𝑧2 + 6𝑧3 0 ≤z ≤0.5

2(1 − 𝑧)3 0.5 < 𝑧 ≤ 1
0 otherwise
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If kernel is quadraticspectral, then

𝐾(𝑙, 𝑚) = {1 𝑧 = 0
3 {sin(𝜃)/𝜃 − cos(𝜃)} /𝜃2 otherwise

where 𝜃 = 6𝜋𝑧/5.
If wmatrix(hac kernel opt) is specified, then ivregress uses Newey andWest’s (1994) automatic

lag-selection algorithm, which proceeds as follows. Define h to be a (𝑘1 + 𝑘2) × 1 vector containing

ones in all rows except for the row corresponding to the constant term (if present); that row contains a

zero. Define

𝑓𝑖 = (𝑢𝑖z𝑖)h

�̂�𝑗 = 1
𝑛

𝑛
∑

𝑖=𝑗+1
𝑓𝑖𝑓𝑖−𝑗 𝑗 = 0, . . . , 𝑚∗

̂𝑠 (𝑞) = 2
𝑚∗

∑
𝑗=1

�̂�𝑗𝑗𝑞

̂𝑠 (0) = �̂�0 + 2
𝑚∗

∑
𝑗=1

�̂�𝑗

̂𝛾 = 𝑐𝛾 {( ̂𝑠 (𝑞)

̂𝑠 (0) )
2

}
1/2𝑞+1

𝑚 = ̂𝛾𝑛1/(2𝑞+1)

where 𝑞, 𝑚∗, and 𝑐𝛾 depend on the kernel specified:

Kernel 𝑞 𝑚∗ 𝑐𝛾

Bartlett 1 int{20(𝑇 /100)2/9} 1.1447

Parzen 2 int{20(𝑇 /100)4/25} 2.6614

Quadratic spectral 2 int{20(𝑇 /100)2/25} 1.3221

where int(𝑥) denotes the integer obtained by truncating 𝑥 toward zero. For the Bartlett and Parzen

kernels, the optimal lag is min{int(𝑚), 𝑚∗}. For the quadratic spectral, the optimal lag is min{𝑚, 𝑚∗}.
If wmatrix(hac kernel opt #) is specified, then ivregress uses # instead of 20 in the definition of

𝑚∗ above to select the optimal lag.

If center is specified, when computing weight matrices ivregress replaces the term 𝑢𝑖𝑧𝑖 in the

formulas above with 𝑢𝑖z𝑖 − 𝑢z, where 𝑢z = ∑𝑖 𝑢𝑖z𝑖/𝑁.
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+This command includes features that are part of StataNow.

Postestimation commands predict margins estat
Remarks and examples Stored results Methods and formulas Acknowledgments
References Also see

Postestimation commands
The following postestimation commands are of special interest after ivregress:

Command Description

estat endogenous perform tests of endogeneity

estat firststage report “first-stage” regression statistics

estat overid perform tests of overidentifying restrictions
+estat weakrobust perform inference robust to weak instruments
∗ estat sbknown perform tests for a structural break with a known break date
∗ estat single perform tests for a structural break with an unknown break date

These commands are not appropriate with svy estimation results.
+This command is part of StataNow.
∗estat sbknown and estat sbsingle work only after ivregress 2sls.

The following postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estat (svy) postestimation statistics for survey data

estimates cataloging estimation results

etable table of estimation results
† forecast dynamic forecasts and simulations
† hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

predict linear predictions and their SEs, probabilities, etc.

predictnl point estimates, standard errors, testing, and inference for generalized predictions

pwcompare pairwise comparisons of parameters

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

†forecast and hausman are not appropriate with svy estimation results.
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predict

Description for predict
predict creates a new variable containing predictions such as linear predictions, residuals, standard

errors, probabilities, and expected values.

Menu for predict
Statistics > Postestimation

Syntax for predict
predict [ type ] newvar [ if ] [ in ] [ , statistic ]

predict [ type ] stub* [ if ] [ in ], scores

statistic Description

Main

xb linear prediction; the default

residuals residuals

stdp standard error of the prediction

stdf standard error of the forecast

pr(a,b) Pr(a < 𝑦𝑗 < b) under exogeneity and normal errors
e(a,b) 𝐸(𝑦𝑗| a < 𝑦𝑗 < b) under exogeneity and normal errors
ystar(a,b) 𝐸(𝑦∗

𝑗), 𝑦∗
𝑗 = max{𝑎,min(𝑦𝑗, 𝑏)} under exogeneity and normal errors

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for the estimation
sample.

stdf is not allowed with svy estimation results.

where a and b may be numbers or variables; a missing (a ≥ .) means −∞, and b missing (b ≥ .) means
+∞; see [U] 12.2.1 Missing values.

Options for predict

� � �
Main �

xb, the default, calculates the linear prediction.

residuals calculates the residuals, that is, 𝑦𝑗 − x𝑗b. These are based on the estimated equation when

the observed values of the endogenous variables are used—not the projections of the instruments onto

the endogenous variables.

stdp calculates the standard error of the prediction, which can be thought of as the standard error of the
predicted expected value or mean for the observation’s covariate pattern. This is also referred to as

the standard error of the fitted value.
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stdf calculates the standard error of the forecast, which is the standard error of the point prediction for
1 observation. It is commonly referred to as the standard error of the future or forecast value. By

construction, the standard errors produced by stdf are always larger than those produced by stdp;
see Methods and formulas in [R] regress postestimation.

pr(a,b) calculates Pr(a < x𝑗b + 𝑢𝑗 < b), the probability that 𝑦𝑗|x𝑗 would be observed in the interval

(a, b) under exogeneity and assuming errors are normally distributed.
a and b may be specified as numbers or variable names; lb and ub are variable names;

pr(20,30) calculates Pr(20 < x𝑗b + 𝑢𝑗 < 30);
pr(lb,ub) calculates Pr(lb < x𝑗b + 𝑢𝑗 < ub); and
pr(20,ub) calculates Pr(20 < x𝑗b + 𝑢𝑗 < ub).
a missing (a ≥ .) means −∞; pr(.,30) calculates Pr(−∞ < x𝑗b + 𝑢𝑗 < 30);
pr(lb,30) calculates Pr(−∞ < x𝑗b + 𝑢𝑗 < 30) in observations for which lb ≥ .
and calculates Pr(𝑙𝑏 < x𝑗b + 𝑢𝑗 < 30) elsewhere.
b missing (b ≥ .) means +∞; pr(20,.) calculates Pr(+∞ > x𝑗b + 𝑢𝑗 > 20);
pr(20,ub) calculates Pr(+∞ > x𝑗b + 𝑢𝑗 > 20) in observations for which ub ≥ .
and calculates Pr(20 < x𝑗b + 𝑢𝑗 < ub) elsewhere.

e(a,b) calculates 𝐸(x𝑗b + 𝑢𝑗 | a < x𝑗b + 𝑢𝑗 < b), the expected value of 𝑦𝑗|x𝑗 conditional on 𝑦𝑗|x𝑗
being in the interval (a, b), meaning that 𝑦𝑗|x𝑗 is truncated. a and b are specified as they are for pr().
Exogeneity and normally distributed errors are assumed.

ystar(a,b) calculates 𝐸(𝑦∗
𝑗), where 𝑦∗

𝑗 = 𝑎 if x𝑗b+𝑢𝑗 ≤ 𝑎, 𝑦∗
𝑗 = 𝑏 if x𝑗b+𝑢𝑗 ≥ 𝑏, and 𝑦∗

𝑗 = x𝑗b+𝑢𝑗
otherwise, meaning that 𝑦∗

𝑗 is censored. a and b are specified as they are for pr(). Exogeneity and
normally distributed errors are assumed.

scores calculates the scores for the model. A new score variable is created for each endogenous regres-

sor, as well as an equation-level score that applies to all exogenous variables and constant term (if

present).
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margins

Description for margins
margins estimates margins of response for linear predictions, probabilities, and expected values.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist ] [ , options ]
margins [marginlist ] , predict(statistic ...) [ predict(statistic ...) ... ] [ options ]

statistic Description

xb linear prediction; the default

pr(a,b) Pr(a < 𝑦𝑗 < b) under exogeneity and normal errors
e(a,b) 𝐸(𝑦𝑗| a < 𝑦𝑗 < b) under exogeneity and normal errors
ystar(a,b) 𝐸(𝑦∗

𝑗), 𝑦∗
𝑗 = max{𝑎,min(𝑦𝑗, 𝑏)} under exogeneity and normal errors

stdp not allowed with margins
stdf not allowed with margins
residuals not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.
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estat

Description for estat
estat endogenous performs tests to determine whether endogenous regressors in the model are in

fact exogenous. After GMM estimation, the 𝐶 (difference-in-Sargan) statistic is reported. After 2SLS

estimation with an unadjusted VCE, the Durbin (1954) and Wu–Hausman (Wu 1974; Hausman 1978)

statistics are reported. After 2SLS estimation with a robust VCE, Wooldridge’s (1995) robust score test

and a robust regression-based test are reported. In all cases, if the test statistic is significant, then the

variables being tested must be treated as endogenous. estat endogenous is not available after LIML

estimation.

estat firststage reports various statistics that measure the relevance of the excluded exogenous
variables. By default, which statistics are reported depends on whether the equation has one or more than

one endogenous regressor.

estat overid performs tests of overidentifying restrictions. If the 2SLS estimator was used, Sargan’s
(1958) and Basmann’s (1960) 𝜒2 tests are reported, as is Wooldridge’s (1995) robust score test; if the

LIML estimator was used, Anderson and Rubin’s (1950) 𝜒2 test and Basmann’s 𝐹 test are reported; and

if the GMM estimator was used, Hansen’s (1982) 𝐽 statistic 𝜒2 test is reported. In all of these cases, a

rejection of the test indicates that the instruments may not be valid.

estat weakrobust is part of StataNow. It performs hypothesis tests on the coefficients of endoge-
nous regressors that are robust to weak instruments. For just-identified models, the Anderson–Rubin

(1949) test is reported. For overidentified models, if a homoskedastic VCE was used in estimation,

the conditional likelihood-ratio (CLR) test of Moreira (2003) is reported. If a heteroskedastic or clus-

ter–robust VCE was used instead, an appropriate generalization of the CLR test is used (see Finlay and

Magnusson [2009]). When there is only one endogenous regressor, the confidence intervals associated

with any of these tests can be requested.

Menu for estat
Statistics > Postestimation

Syntax for estat

Perform tests of endogeneity

estat endogenous [ varlist ] [ , lags(#) forceweights forcenonrobust ]

Report “first-stage” regression statistics

estat firststage [ , all forcenonrobust ]

Perform tests of overidentifying restrictions

estat overid [ , lags(#) forceweights forcenonrobust ]

Perform inference robust to weak instruments (StataNow)

estat weakrobust [ , weak options ]
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weak options Description

betanull(null spec) specify the null hypothesis on the endogenous regressors

ar performAnderson–Rubin test

clr perform conditional likelihood-ratio test

ci report confidence interval instead of test

level(#) set confidence level; default is level(95)
reps(#) perform # replications for simulations; default is reps(25000)
rseed(#) set random-number seed for simulations to #

bound(#min #max) specify bounds of confidence interval grid

ngrid(#) use # grid points for the confidence interval; default is ngrid(500)
noadaptgrid suppress adaptive grid expansion

[ no ]log suppress or display the iteration log

iterate(#) perform maximum of # adaptive iterations; default is iterate(20)

collect is allowed with estat endogenous, estat firststage, estat overid, and estat weakrobust; see
[U] 11.1.10 Prefix commands.

Options for estat
Options for estat are presented under the following headings:

Options for estat endogenous
Options for estat firststage
Options for estat overid
Options for estat weakrobust (StataNow)

Options for estat endogenous
lags(#) specifies the number of lags to use for prewhitening when computing the heteroskedasticity-

and autocorrelation-consistent (HAC) version of the score test of endogeneity. Specifying lags(0)
requests no prewhitening. This option is valid only when the model was fit via 2SLS and a HAC

covariance matrix was requested when the model was fit. The default is lags(1).

forceweights requests that the tests of endogeneity be computed even though aweights, pweights,
or iweights were used in the previous estimation. By default, these tests are conducted only after
unweighted or frequency-weighted estimation. The reported critical values may be inappropriate for

weighted data, so the user must determine whether the critical values are appropriate for a given

application.

forcenonrobust requests that the Durbin and Wu–Hausman tests be performed after 2SLS estimation

even though a robust VCE was used at estimation time. This option is available only if the model was

fit by 2SLS.

Options for estat firststage
all requests that all first-stage goodness-of-fit statistics be reported regardless of whether the model

contains one or more endogenous regressors. By default, if the model contains one endogenous re-

gressor, then the first-stage 𝑅2, adjusted 𝑅2, partial 𝑅2, and 𝐹 statistics are reported, whereas if the

model contains multiple endogenous regressors, then Shea’s partial 𝑅2 and adjusted partial 𝑅2 are

reported instead.
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forcenonrobust requests that the minimum eigenvalue statistic and its critical values be reported even

though a robust VCE was used at estimation time. The reported critical values assume that the errors

are independent and identically distributed (i.i.d.) normal, so the user must determine whether the

critical values are appropriate for a given application.

Options for estat overid
lags(#) specifies the number of lags to use for prewhiteningwhen computing the heteroskedasticity- and

autocorrelation-consistent (HAC) version of the score test of overidentifying restrictions. Specifying

lags(0) requests no prewhitening. This option is valid only when the model was fit via 2SLS and a
HAC covariance matrix was requested when the model was fit. The default is lags(1).

forceweights requests that the tests of overidentifying restrictions be computed even though aweights,
pweights, or iweights were used in the previous estimation. By default, these tests are conducted
only after unweighted or frequency-weighted estimation. The reported critical values may be inap-

propriate for weighted data, so the user must determine whether the critical values are appropriate for

a given application.

forcenonrobust requests that the Sargan and Basmann tests of overidentifying restrictions be per-

formed after 2SLS or LIML estimation even though a robust VCE was used at estimation time. These

tests assume that the errors are i.i.d. normal, so the user must determine whether the critical values

are appropriate for a given application.

Options for estat weakrobust (StataNow)
betanull(null spec) specifies the null hypothesis of the test on the coefficients of the endogenous

regressors. By default, the null hypothesis is that the coefficients of all endogenous regressors are

zero. The null hypothesis can be specified using numlist, a list of equalities, or a matrix. When

using numlist, you must specify the null values for all endogenous regressors in the order given in the

estimation command and specify the copy suboption if there is more than one endogenous regressor.
When you use a list of equalities or a matrix, null values are set to zero for endogenous regressors

you did not specify. When you use a matrix, null values are assigned to coefficients by matrix column

names.

null spec is one of

# [ # . . . , copy ]

varname = # [ varname = # [ . . . ] ] [ , skip ]

matname [ , skip copy ]
skip specifies that any variables that are not endogenous regressors in the model be ignored. The
default action is to issue an error message.

copy specifies that the list of null values be assigned into the null hypothesis by position rather
than by name.

ar requests that an Anderson–Rubin test be performed. The associated confidence interval of the test
can be requested with option ci. By default, the Anderson–Rubin test is performed when the model
is just identified. If both ar and clr are specified, both tests are performed.

clr requests that a CLR test be performed. The associated confidence interval of the test can be requested
with option ci. By default, a CLR test is performed when the model is overidentified. If both ar and
clr are specified, both tests are performed.
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ci requests that a confidence interval be returned instead of a test statistic and a 𝑝-value. This applies to
all tests specified by the user. Option ci is available only when there is a single endogenous regressor.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is

level(95) or as set by set level; see [U] 20.8 Specifying the width of confidence intervals.

reps(#) specifies the number of replications to use in simulating critical values when 𝑝-values cannot
be computed analytically. The default is reps(25000).

rseed(#) sets the random-number seed. This option can be used to reproduce results for simulating

critical values when 𝑝-values cannot be computed analytically. rseed(#) is equivalent to typing set
seed # prior to calling estat weakrobust; see [R] set seed.

bound(#min #max) specifies the lower (#min) and the upper bound (#max) for the grid used to approximate
confidence intervals when they cannot be computed analytically. The specified bounds will be the

starting bounds for the adaptive grid expansion procedure or, if noadaptgrid is specified, the fixed
bounds of the grid. By default, the lower bound is set to five standard errors below the coefficient

estimated by ivregress, and the upper bound is five standard errors above.

ngrid(#) specifies the starting number of gridpoints for approximating confidence intervals. The default
is ngrid(500). Higher values will increase computation time but improve precision, which may be
helpful when the confidence interval is wide. If noadaptgrid is specified, ngrid() specifies the

fixed number of gridpoints.

noadaptgrid requests that the default method for computing confidence intervals, where the grid is

adaptively expanded, be turned off and the interval be estimated with a fixed grid. noadaptgrid is
equivalent to specifying iterate(0).

log and nolog specify whether to display the iteration log showing the progress of the adaptive gridding
procedure. The iteration log is displayed by default unless you used set iterlog off to suppress it;
see set iterlog in [R] set iter.

iterate(#) specifies the maximum number of iterations for the adaptive grid expansion procedure.

Each iteration expands the grid by half the width of the starting bounds in each direction, and the

procedure stops when the maximum number of iterations is reached or when the confidence interval

has finite endpoints and was unchanged by the most recent expansion. The default is iterate(20).

Remarks and examples
Remarks are presented under the following headings:

estat endogenous
estat firststage
estat overid
estat weakrobust (StataNow)

estat endogenous
Anatural question to ask is whether a variable presumed to be endogenous in the previously fit model

could instead be treated as exogenous. If the endogenous regressors are in fact exogenous, then the

OLS estimator is more efficient; and depending on the strength of the instruments and other factors,

the sacrifice in efficiency by using an instrumental-variables estimator can be significant. Thus, unless

an instrumental-variables estimator is really needed, OLS should be used instead. estat endogenous
provides several tests of endogeneity after 2SLS and GMM estimation.
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Example 1
In example 1 of [R] ivregress, we fit a model of the average rental rate for housing in a state as

a function of the percentage of the population living in urban areas and the average value of houses.

We treated hsngval as endogenous because unanticipated shocks that affect rental rates probably affect
house prices as well. We used family income and region dummies as additional instruments for hsngval.
Here we test whether we could treat hsngval as exogenous.

. use https://www.stata-press.com/data/r18/hsng
(1980 Census housing data)
. ivregress 2sls rent pcturban (hsngval = faminc i.region)
(output omitted )

. estat endogenous
Tests of endogeneity
H0: Variables are exogenous
Durbin (score) chi2(1) = 12.8473 (p = 0.0003)
Wu-Hausman F(1,46) = 15.9067 (p = 0.0002)

Because we did not specify any variable names after the estat endogenous command, Stata by default
tested all the endogenous regressors (namely, hsngval) in our model. The null hypothesis of the Durbin
and Wu–Hausman tests is that the variable under consideration can be treated as exogenous. Here both

test statistics are highly significant, so we reject the null of exogeneity; wemust continue to treat hsngval
as endogenous.

The difference between the Durbin and Wu–Hausman tests of endogeneity is that the former uses

an estimate of the error term’s variance based on the model assuming the variables being tested are

exogenous, while the latter uses an estimate of the error variance based on the model assuming the

variables being tested are endogenous. Under the null hypothesis that the variables being tested are

exogenous, both estimates of the error variance are consistent. What we label theWu–Hausman statistic

is Wu’s (1974) “𝑇2” statistic, which Hausman (1978) showed can be calculated very easily via linear

regression. Baum, Schaffer, and Stillman (2003, 2007) provide a lucid discussion of these tests.

When you fit a model with multiple endogenous regressors, you can test the exogeneity of a subset

of the regressors while continuing to treat the others as endogenous. For example, say you have three

endogenous regressors, y1, y2, and y3, and you fit your model by typing

. ivregress depvar ... (y1 y2 y3 = ...)

Suppose you are confident that y1 must be treated as endogenous, but you are undecided about y2 and
y3. To test whether y2 and y3 can be treated as exogenous, you would type

. estat endogenous y2 y3

The Durbin and Wu–Hausman tests assume that the error term is i.i.d. Therefore, if you requested a

robustVCE at estimation time, estat endogenouswill instead reportWooldridge’s (1995) score test and

a regression-based test of exogeneity. Both these tests can tolerate heteroskedastic and autocorrelated

errors, while only the regression-based test is amenable to clustering.
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Example 2
We refit our housing model, requesting robust standard errors, and then test the exogeneity of

hsngval:

. use https://www.stata-press.com/data/r18/hsng
(1980 Census housing data)
. ivregress 2sls rent pcturban (hsngval = faminc i.region), vce(robust)
(output omitted )

. estat endogenous
Tests of endogeneity
H0: Variables are exogenous
Robust score chi2(1) = 2.10428 (p = 0.1469)
Robust regression F(1,46) = 4.31101 (p = 0.0435)

Wooldridge’s score test does not reject the null hypothesis that hsngval is exogenous at conventional
significance levels (𝑝 = 0.1469). However, the regression-based test does reject the null hypothesis at

the 5% significance level (𝑝 = 0.0435). Typically, these two tests yield the same conclusion; the fact

that our dataset has only 50 observations could be contributing to the discrepancy. Here we would be

inclined to continue to treat hsngval as endogenous. Even if hsngval is exogenous, the 2SLS estimates
are still consistent. On the other hand, if hsngval is in fact endogenous, the OLS estimates would not be
consistent. Moreover, as we will see in our discussion of the estat overid command, our additional
instruments may be invalid. To test whether an endogenous variable can be treated as exogenous, we

must have a valid set of instruments to use to fit the model in the first place!

Unlike the Durbin and Wu–Hausman tests, Wooldridge’s score and the regression-based tests do not

allow you to test a subset of the endogenous regressors in the model; you can test only whether all the

endogenous regressors are in fact exogenous.

After GMM estimation, estat endogenous calculates what Hayashi (2000, 220) calls the 𝐶 statistic,

also known as the difference-in-Sargan statistic. The 𝐶 statistic can be made robust to heteroskedastic-

ity, autocorrelation, and clustering; and the version reported by estat endogenous is determined by

the weight matrix requested via the wmatrix() option used when fitting the model with ivregress.
Additionally, the test can be used to determine the exogeneity of a subset of the endogenous regressors,

regardless of the type of weight matrix used.

If you fit your model using the LIML estimator, you can use the hausman command to carry out a

traditional Hausman (1978) test between the OLS and LIML estimates.

estat firststage
For an excluded exogenous variable to be a valid instrument, it must be sufficiently correlated with

the included endogenous regressors but uncorrelated with the error term. In recent decades, researchers

have paid considerable attention to the issue of instruments that are only weakly correlated with the

endogenous regressors. In such cases, the usual 2SLS, GMM, and LIML estimators are biased toward the

OLS estimator, and inference based on the standard errors reported by, for example, ivregress can be
severely misleading. For more information on the theory behind instrumental-variables estimation with

weak instruments, see Nelson and Startz (1990); Staiger and Stock (1997); Hahn and Hausman (2003);

the survey article by Stock, Wright, and Yogo (2002); and Angrist and Pischke (2009, chap. 4).
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When the instruments are only weakly correlated with the endogenous regressors, some Monte Carlo

evidence suggests that the LIML estimator performs better than the 2SLS and GMM estimators; see, for

example, Poi (2006) and Stock, Wright, and Yogo (2002) (and the papers cited therein). On the other

hand, the LIML estimator often results in confidence intervals that are somewhat larger than those from

the 2SLS estimator.

Moreover, using more instruments is not a solution, because the biases of instrumental-variables es-

timators increase with the number of instruments. See Hahn and Hausman (2003).

estat firststage produces several statistics for judging the explanatory power of the instruments
and is most easily explained with examples.

Example 3
Again building on themodel fit in example 1 of [R] ivregress, we now explore the degree of correlation

between the additional instruments faminc, 2.region, 3.region, and 4.region and the endogenous
regressor hsngval:

. use https://www.stata-press.com/data/r18/hsng
(1980 Census housing data)
. ivregress 2sls rent pcturban (hsngval = faminc i.region)
(output omitted )

. estat firststage
First-stage regression summary statistics

Adjusted Partial
Variable R-sq. R-sq. R-sq. F(4,44) Prob > F

hsngval 0.6908 0.6557 0.5473 13.2978 0.0000

Minimum eigenvalue statistic = 13.2978
Critical Values # of endogenous regressors: 1
H0: Instruments are weak # of excluded instruments: 4

5% 10% 20% 30%
2SLS relative bias 16.85 10.27 6.71 5.34

10% 15% 20% 25%
2SLS size of nominal 5% Wald test 24.58 13.96 10.26 8.31
LIML size of nominal 5% Wald test 5.44 3.87 3.30 2.98

To understand these results, recall that the first-stage regression is

hsngval𝑖 = 𝜋0 + 𝜋1pcturban𝑖 + 𝜋2faminc + 𝜋32.region + 𝜋43.region + 𝜋54.region + 𝑣𝑖

where 𝑣𝑖 is an error term. The column marked “R-sq.” is the simple 𝑅2 from fitting the first-stage

regression by OLS, and the column marked “Adjusted R-sq.” is the adjusted 𝑅2 from that regression.

Higher values purportedly indicate stronger instruments, and instrumental-variables estimators exhibit

less bias when the instruments are strongly correlated with the endogenous variable.

Looking at just the 𝑅2 and adjusted 𝑅2 can be misleading, however. If hsngval were strongly

correlated with the included exogenous variable pcturban but only weakly correlated with the additional
instruments, then these statistics could be large even though a weak-instrument problem is present.
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The partial𝑅2 statistic measures the correlation between hsngval and the additional instruments after
partialing out the effect of pcturban. Unlike the 𝑅2 and adjusted 𝑅2 statistics, the partial 𝑅2 statistic

will not be inflated because of strong correlation between hsngval and pcturban. Bound, Jaeger, and
Baker (1995) and others have promoted using this statistic.

The column marked “F(4, 44)” is an 𝐹 statistic for the joint significance of 𝜋2, 𝜋3, 𝜋4, and 𝜋5, the

coefficients on the additional instruments. Its 𝑝-value is listed in the column marked “Prob > F”. If the

𝐹 statistic is not significant, then the additional instruments have no significant explanatory power for

hsngval after controlling for the effect of pcturban. However, Hall, Rudebusch, and Wilcox (1996)

usedMonte Carlo simulation to show that simply having an 𝐹 statistic that is significant at the typical 5%

or 10% level is not sufficient. Stock, Wright, and Yogo (2002) suggest that the 𝐹 statistic should exceed

10 for inference based on the 2SLS estimator to be reliable when there is one endogenous regressor.

estat firststage also presents the Cragg and Donald (1993) minimum eigenvalue statistic as a fur-

ther test of weak instruments. Stock andYogo (2005) discuss two characterizations of weak instruments:

first, weak instruments cause instrumental-variables estimators to be biased; second, hypothesis tests of

parameters estimated by instrumental-variables estimators may suffer from severe size distortions. The

test statistic in our example is 13.30, which is identical to the 𝐹 statistic just discussed because our model

contains one endogenous regressor.

The null hypothesis of each of Stock andYogo’s tests is that the set of instruments is weak. To perform

these tests, we must first choose either the largest relative bias of the 2SLS estimator we are willing to

tolerate or the largest rejection rate of a nominal 5% Wald test we are willing to tolerate. If the test

statistic exceeds the critical value, we can conclude that our instruments are not weak.

The row marked “2SLS relative bias” contains critical values for the test that the instruments are weak

based on the bias of the 2SLS estimator relative to the bias of the OLS estimator. For example, from past

experience we might know that the OLS estimate of a parameter 𝛽 may be 50% too high. Saying that we

are willing to tolerate a 10% relative bias means that we are willing to tolerate a bias of the 2SLS estimator

no greater than 5% (that is, 10% of 50%). In our rental rate model, if we are willing to tolerate a 10%

relative bias, then we can conclude that our instruments are not weak because the test statistic of 13.30

exceeds the critical value of 10.27. However, if we were willing to tolerate only a relative bias of 5%,

we would conclude that our instruments are weak because 13.30 < 16.85.

The rows marked “2SLS Size of nominal 5%Wald test” and “LIML Size of nominal 5%Wald test” con-

tain critical values pertaining to Stock and Yogo’s (2005) second characterization of weak instruments.

This characterization defines a set of instruments to be weak if a Wald test at the 5% level can have an

actual rejection rate of no more than 10%, 15%, 20%, or 25%. Using the current example, suppose that

we are willing to accept a rejection rate of at most 10%. Because 13.30 < 24.58, we cannot reject the

null hypothesis of weak instruments. On the other hand, if we use the LIML estimator instead, then we

can reject the null hypothesis because 13.30 > 5.44.

Technical note
Stock and Yogo (2005) tabulated critical values for 2SLS relative biases of 5%, 10%, 20%, and 30%

for models with 1, 2, or 3 endogenous regressors and between 3 and 30 excluded exogenous variables

(instruments). They also provide critical values for worst-case rejection rates of 5%, 10%, 20%, and 25%

for nominal 5%Wald tests of the endogenous regressors with 1 or 2 endogenous regressors and between

1 and 30 instruments. If the model previously fit by ivregress has more instruments or endogenous
regressors than these limits, the critical values are not shown. Stock and Yogo did not consider GMM

estimators.
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When the model being fit contains more than one endogenous regressor, the 𝑅2 and 𝐹 statistics de-

scribed above can overstate the relevance of the excluded instruments. Suppose that there are two en-

dogenous regressors, 𝑌1 and 𝑌2, and that there are two additional instruments, 𝑧1 and 𝑧2. Say that 𝑧1 is

highly correlated with both 𝑌1 and 𝑌2 but 𝑧2 is not correlated with either 𝑌1 or 𝑌2. Then, the first-stage

regression of 𝑌1 on 𝑧1 and 𝑧2 (along with the included exogenous variables) will produce large 𝑅2 and 𝐹
statistics, as will the regression of 𝑌2 on 𝑧1, 𝑧2, and the included exogenous variables. Nevertheless, the

lack of correlation between 𝑧2 and 𝑌1 and 𝑌2 is problematic. Here, although the order condition indicates

that the model is just identified (the number of excluded instruments equals the number of endogenous

regressors), the irrelevance of 𝑧2 implies that themodel is in fact not identified. Even if themodel is overi-

dentified, including irrelevant instruments can adversely affect the properties of instrumental-variables

estimators, because their biases increase as the number of instruments increases.

Example 4
estat firststage presents different statistics when the model contains multiple endogenous regres-

sors. For illustration, we refit our model of rental rates, assuming that both hsngval and faminc are
endogenously determined. We use i.region along with popden, a measure of population density, as
additional instruments.

. ivregress 2sls rent pcturban (hsngval faminc = i.region popden)
(output omitted )

. estat firststage
Shea’s partial R-squared

Shea’s Shea’s
Variable partial R-sq. adj. partial R-sq.

hsngval 0.3477 0.2897
faminc 0.1893 0.1173

Minimum eigenvalue statistic = 2.51666
Critical Values # of endogenous regressors: 2
H0: Instruments are weak # of excluded instruments: 4

5% 10% 20% 30%
2SLS relative bias 11.04 7.56 5.57 4.73

10% 15% 20% 25%
2SLS size of nominal 5% Wald test 16.87 9.93 7.54 6.28
LIML size of nominal 5% Wald test 4.72 3.39 2.99 2.79

Consider the endogenous regressor hsngval. Part of its variation is attributable to its correlation with
the other regressors pcturban and faminc. The other component of hsngval’s variation is peculiar to
it and orthogonal to the variation in the other regressors. Similarly, we can think of the instruments as

predicting the variation in hsngval in two ways, one stemming from the fact that the predicted values

of hsngval are correlated with the predicted values of the other regressors and one from the variation

in the predicted values of hsngval that is orthogonal to the variation in the predicted values of the other
regressors.

What really matters for instrumental-variables estimation is whether the component of hsngval that is
orthogonal to the other regressors can be explained by the component of the predicted value of hsngval
that is orthogonal to the predicted values of the other regressors in the model. Shea’s (1997) partial
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𝑅2 statistic measures this correlation. Because the bias of instrumental-variables estimators increases

as more instruments are used, Shea’s adjusted partial 𝑅2 statistic is often used instead, as it makes a

degrees-of-freedom adjustment for the number of instruments, analogous to the adjusted 𝑅2 measure

used in OLS regression. Although what constitutes a “low” value for Shea’s partial 𝑅2 depends on the

specifics of the model being fit and the data used, these results, taken in isolation, do not strike us as

being a particular cause for concern.

However, with this specification the minimum eigenvalue statistic is low. We cannot reject the null

hypothesis of weak instruments for either of the characterizations we have discussed.

By default, estat firststage determines which statistics to present based on the number of en-

dogenous regressors in the model previously fit. However, you can specify the all option to obtain all
the statistics.

Technical note
If the previous estimationwas conducted using aweights, pweights, or iweights, then the first-stage

regression summary statistics are computed using those weights. However, in these cases the minimum

eigenvalue statistic and its critical values are not available.

If the previous estimation included a robust VCE, then the first-stage 𝐹 statistic is based on a robust

VCE as well; for example, if you fit your model with a HAC VCE using the Bartlett kernel and four lags,

then the 𝐹 statistic reported is based on regression results using a HAC VCE using the Bartlett kernel and

four lags. By default, the minimum eigenvalue statistic and its critical values are not displayed. You

can use the forcenonrobust option to obtain them in these cases; the minimum eigenvalue statistic is

computed using the weights, though the critical values reported may not be appropriate.

estat overid
In addition to the requirement that instrumental variables be correlated with the endogenous regres-

sors, the instruments must also be uncorrelated with the structural error term. If the model is overidenti-

fied, meaning that the number of additional instruments exceeds the number of endogenous regressors,

then we can test whether the instruments are uncorrelated with the error term. If the model is just iden-

tified, then we cannot perform a test of overidentifying restrictions.

The estimator you used to fit the model determines which tests of overidentifying restrictions estat
overid reports. If you used the 2SLS estimator without a robust VCE, estat overid reports Sargan’s
(1958) and Basmann’s (1960) 𝜒2 tests. If you used the 2SLS estimator and requested a robust VCE,

Wooldridge’s robust score test of overidentifying restrictions is performed instead; without a robust VCE,

Wooldridge’s test statistic is identical to Sargan’s test statistic. If you used the LIML estimator, estat
overid reports the Anderson–Rubin (1950) likelihood-ratio test and Basmann’s (1960) 𝐹 test. estat
overid reports Hansen’s (1982) 𝐽 statistic if you used the GMM estimator. Davidson and MacKinnon

(1993, 235–236) give a particularly clear explanation of the intuition behind tests of overidentifying

restrictions. Also see Judge et al. (1985, 614–616) for a summary of tests of overidentifying restrictions

for the 2SLS and LIML estimators.

Tests of overidentifying restrictions actually test two different things simultaneously. One, as we have

discussed, is whether the instruments are uncorrelated with the error term. The other is that the equation

is misspecified and that one or more of the excluded exogenous variables should in fact be included in

the structural equation. Thus, a significant test statistic could represent either an invalid instrument or an

incorrectly specified structural equation.
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Example 5
Here we refit the model that treated just hsngval as endogenous using 2SLS, and then we perform

tests of overidentifying restrictions:

. ivregress 2sls rent pcturban (hsngval = faminc i.region)
(output omitted )

. estat overid
Tests of overidentifying restrictions:
Sargan (score) chi2(3) = 11.2877 (p = 0.0103)
Basmann chi2(3) = 12.8294 (p = 0.0050)

Both test statistics are significant at the 5% test level, which means that either one or more of our

instruments are invalid or that our structural model is specified incorrectly.

One possibility is that the error term in our structural model is heteroskedastic. Both Sargan’s and

Basmann’s tests assume that the errors are i.i.d.; if the errors are not i.i.d., then these tests are not valid.

Here we refit the model by requesting heteroskedasticity-robust standard errors, and then we use estat
overid to obtainWooldridge’s score test of overidentifying restrictions, which is robust to heteroskedas-

ticity.

. ivregress 2sls rent pcturban (hsngval = faminc i.region), vce(robust)
(output omitted )

. estat overid
Test of overidentifying restrictions:
Score chi2(3) = 6.8364 (p = 0.0773)

Here we no longer reject the null hypothesis that our instruments are valid at the 5% significance level,

though we do reject the null at the 10% level. You can verify that the robust standard error on the

coefficient for hsngval is more than twice as large as its nonrobust counterpart and that the robust

standard error for pcturban is nearly 50% larger.

Technical note
The test statistic for the test of overidentifying restrictions performed after GMM estimation is simply

the sample size times the value of the objective function 𝑄(β1,β2) defined in (5) of [R] ivregress, eval-
uated at the GMM parameter estimates. If the weight matrixW is optimal, meaning thatW = Var (z𝑖𝑢𝑖),
then𝑄(β1,β2) 𝐴∼𝜒2(𝑞), where 𝑞 is the number of overidentifying restrictions. However, if the estimated
W is not optimal, then the test statistic will not have an asymptotic 𝜒2 distribution.

Like the Sargan and Basmann tests of overidentifying restrictions for the 2SLS estimator, the An-

derson–Rubin and Basmann tests after LIML estimation are predicated on the errors’ being i.i.d. If the

previous LIML results were reported with robust standard errors, then estat overid by default issues
an error message and refuses to report the Anderson–Rubin and Basmann test statistics. You can use

the forcenonrobust option to override this behavior. You can also use forcenonrobust to obtain the
Sargan and Basmann test statistics after 2SLS estimation with robust standard errors.

By default, estat overid issues an error message if the previous estimation was conducted using
aweights, pweights, or iweights. You can use the forceweights option to override this behavior,
though the test statistics may no longer have the expected 𝜒2 distributions.
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estat weakrobust (StataNow)
Instrumental-variables methods require that the instruments be correlated with the endogenous re-

gressors. In principle, this is a low bar: even instruments only weakly correlated with the endogenous

regressors allow for valid asymptotic inference using standard instrumental-variables methods. But weak

instruments can lead to misleading inference in practice, even in relatively large samples. This is espe-

cially the case when models are overidentified or there is a high degree of endogeneity.

When instruments are weak, first-stage coefficients are small relative to the variance of their estimates.

This causes the distribution of instrumental-variables estimators to be highly nonnormal and thus poorly

approximated by standard inference methods. (See Andrews, Stock, and Sun [2019].)

The linear instrumental-variables model fit by ivregress is written in matrix form as

y = Yβ1 + X1β2 + u

Y = X1𝚷1 + X2𝚷2 + V

where y is a vector with the values of the dependent variable in the sample, Y is a matrix of endogenous

regressors, X1 is a matrix of included exogenous regressors, and X2 is a matrix of excluded exogenous

regressors. The first equation is referred to as the structural equation, and the second equation is referred

to as the first-stage equation. By substituting the endogenous regressors Y into the structural equation

and reparameterizing, we derive the reduced-form equation

y = X1δ1 + X2δ2 + ε

where δ1 ≡ 𝚷1β1 + β2 and δ2 ≡ 𝚷2β1.

The principle of the tests performed by estat weakrobust is that the reduced-form and first-stage

equations are free of endogeneity. The estimates of δ1, δ2, 𝚷1, and 𝚷2 can be tested for consistency

with a null hypothesis about β1, our parameter of interest. (In practice, the exogenous covariates X2
are partialled out for simplicity.) estat weakrobust performs tests of the form β1 = r1, where r1 is a

constant vector of the same dimension as β1.

When the model is just identified, meaning there are no more instruments than there are endogenous

regressors, the test of Anderson and Rubin (1949), or the associated confidence interval, is reported by

default. When the model has been fit with a heteroskedastic, cluster–robust, or HAC VCE, an appropriate

version of the Anderson–Rubin test or confidence interval is reported. In all cases, the Anderson–Rubin

test statistic takes on a 𝜒2 distribution, and critical values and 𝑝-values can be exactly computed.
When the model is overidentified and has been fit with a homoskedastic VCE, the CLR test of Mor-

eira (2003), or its associated confidence interval, is reported by default. The CLR test has better power

properties than the Anderson–Rubin test in the overidentified case. When the model is fit with a nonho-

moskedasticVCE, a generalization of the CLR test proposed by Finlay andMagnusson (2009) is used. This

test is equivalent to the GMM quasi-LR statistic of Kleibergen (2007) in the linear instrumental-variables

case considered here.

Regardless of the VCE specified, the CLR test statistic has a nonstandard distribution. However, when

the model has been fit with a homoskedastic VCE and there is only a single endogenous regressor, the

𝑝-value for the CLR statistic can be computed exactly using the method of Andrews, Moreira, and Stock

(2007). Otherwise, the 𝑝-value for the CLR test statistic is obtained by simulation.
Both the Anderson–Rubin and the CLR tests (and their CIs) can be requested for any model, even

though only one test (or CI) is computed and reported by default. In the just-identified case, the CLR test

is equivalent to the Anderson–Rubin test.
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Example 6
We revisit the model of average rental rate as a function of average housing values and the proportion

of the population living in urban areas, this time supposing we do not have access to faminc, the variable
for median family income. We may suspect that our region indicator variables are weak instruments for

hsngval and therefore perform inference robust to weak instruments using estat weakrobust.

. ivregress 2sls rent pcturban (hsngval = i.region), vce(robust)
(output omitted )

. estat weakrobust, rseed(12345)
Test robust to weak instruments
Model VCE: Robust
( 1) hsngval = 0
Cond. likelihood-ratio (CLR) test = 5.48

Prob > CLR = 0.0255
Notes: CLR test reported by default because

model is overidentified.
p-value computed by simulation
(25,000 replications).

Here estat weakrobust reports a CLR test because there are more instruments than there are en-

dogenous regressors. We find evidence to reject the null hypothesis that the coefficient on hsngval is
zero, but the 𝑝-value is substantially larger than the 𝑝-value of 0.003 that is reported by ivregress.
Note that because the model is fit with a nonhomoskedastic VCE and a CLR test is being reported, the

𝑝-value is computed by simulation. We have included a random-number seed using the rseed() option
for reproducibility, but this is optional.

We can request a confidence interval that is robust to weak instruments for hsngval with the ci
option:

. estat weakrobust, ci rseed(12345)
Searching for CI bounds:
Iteration 0: Grid points = 500
Iteration 1: Grid points = 1,000
(CI computed using 1,000 grid points on [-.003591, .006664])
Confidence interval robust to weak instruments
Model VCE: Robust

CLR
Coefficient [95% conf. interval]

hsngval .0015365 .0002263 .002857

Notes: CLR CI reported by default because model is
overidentified.
Computed using simulation (25,000
replications).

The confidence interval comes close to containing zero. Indeed, if we specified a confidence level of

99% using level(99), zero would be included. Accounting for the possibility of weak instruments, we
may conclude that we cannot rule out a zero coefficient on hsngval.

The ci option, which computes Anderson–Rubin and CLR confidence intervals, is available only in

the single-endogenous regressor case. When the model has been fit with a homoskedastic VCE or is

just identified, confidence intervals can be computed directly by inverting the relevant test. When the
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model has been fit with a nonhomoskedastic VCE and is overidentified, there is no closed form for the

endpoints of the conditional likelihood confidence interval, so a gridding procedure is used to estimate

the confidence intervals.

The coefficient on the endogenous regressor, as fit by ivregress, is reported next to the confidence
interval in the output of estat weakrobust, ci for reference. However, there is generally no guarantee
that the estimated coefficient will be contained in the reported confidence interval. An exception is that

when the model has been fit with homoskedastic errors, the CLR confidence set will contain the LIML

estimator. In the just-identified case, the Anderson–Rubin confidence set will also contain the LIML

estimator. See Moreira (2003) for a discussion.

Technical note
Unlike conventional confidence intervals, the confidence “intervals” produced by inverting Ander-

son–Rubin and CLR tests are not always finite intervals and may not be intervals at all. Confidence

intervals can take one of five forms:

1. Finite interval [𝑎, 𝑏]. When instruments are strong and the model is well identified, both Ander-

son–Rubin and CLR confidence intervals typically take this form.

2. Union of finite intervals [𝑎1, 𝑏1]∪ [𝑎2, 𝑏2]∪⋯∪[𝑎𝑚, 𝑏𝑚]. Confidence intervals can take this form
when the model VCE is nonhomoskedastic.

3. Union of (possibly infinite) intervals (−∞, 𝑏1] ∪ ⋯ ∪ [𝑎𝑚, +∞). Confidence sets may take this
form when instruments are weak. When the model VCE is homoskedastic, this form may only be

the union of two infinite intervals.

4. Real line (−∞, +∞). Confidence sets may take this form when instruments are weak.

5. Empty set ∅. An empty confidence interval means the test rejects every possible null value for the
endogenous regressor, thus rejecting the model. The only case in which the model can be rejected

in this way is when the model is overidentified and an Anderson–Rubin confidence interval is

used. In other cases, an empty confidence interval means the grid used to estimate the confidence

interval was too narrow, and the bounds should be widened using the bound() option.

For detailed discussion of unconventional confidence intervals in inference that is robust to weak

instruments, see Mikusheva and Poi (2006), Mikusheva (2010), and Kleibergen (2007).

Stored results
After 2SLS estimation, estat endogenous stores the following in r():

Scalars

r(durbin) Durbin 𝜒2 statistic

r(p durbin) 𝑝-value for Durbin 𝜒2 statistic

r(wu) Wu–Hausman 𝐹 statistic

r(p wu) 𝑝-value for Wu–Hausman 𝐹 statistic

r(df) degrees of freedom

r(wudf r) denominator degrees of freedom for Wu–Hausman 𝐹
r(r score) robust score statistic

r(p r score) 𝑝-value for robust score statistic
r(hac score) HAC score statistic

r(p hac score) 𝑝-value for HAC score statistic

r(lags) lags used in prewhitening

r(regF) regression-based 𝐹 statistic
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r(p regF) 𝑝-value for regression-based 𝐹 statistic

r(regFdf n) regression-based 𝐹 numerator degrees of freedom

r(regFdf r) regression-based 𝐹 denominator degrees of freedom

After GMM estimation, estat endogenous stores the following in r():

Scalars

r(C) 𝐶 𝜒2 statistic

r(p C) 𝑝-value for 𝐶 𝜒2 statistic

r(df) degrees of freedom

estat firststage stores the following in r():

Scalars

r(mineig) minimum eigenvalue statistic

Matrices

r(mineigcv) critical values for minimum eigenvalue statistic

r(multiresults) Shea’s partial 𝑅2 statistics

r(singleresults) first-stage 𝑅2 and 𝐹 statistics

After 2SLS estimation, estat overid stores the following in r():

Scalars

r(lags) lags used in prewhitening

r(df) 𝜒2 degrees of freedom

r(score) score 𝜒2 statistic

r(p score) 𝑝-value for score 𝜒2 statistic

r(basmann) Basmann 𝜒2 statistic

r(p basmann) 𝑝-value for Basmann 𝜒2 statistic

r(sargan) Sargan 𝜒2 statistic

r(p sargan) 𝑝-value for Sargan 𝜒2 statistic

After LIML estimation, estat overid stores the following in r():

Scalars

r(ar) Anderson–Rubin (1950) 𝜒2 statistic

r(p ar) 𝑝-value for Anderson–Rubin (1950) 𝜒2 statistic

r(ar df) 𝜒2 degrees of freedom

r(basmann) Basmann 𝐹 statistic

r(p basmann) 𝑝-value for Basmann 𝐹 statistic

r(basmann df n) 𝐹 numerator degrees of freedom

r(basmann df d) 𝐹 denominator degrees of freedom

After GMM estimation, estat overid stores the following in r():

Scalars

r(HansenJ) Hansen’s 𝐽 𝜒2 statistic

r(p HansenJ) 𝑝-value for Hansen’s 𝐽 𝜒2 statistic

r(J df) 𝜒2 degrees of freedom

After estimation of a just-identified model, or when ar is specified, estat weakrobust stores the
following in r():

Scalars

r(archi2) Anderson–Rubin (1949) 𝜒2 statistic

r(p archi2) 𝑝-value for Anderson–Rubin (1949) 𝜒2 statistic

r(archi2 df) 𝜒2 degrees of freedom

r(arF) Anderson–Rubin (1949) 𝐹 statistic

r(p arF) 𝑝-value for Anderson–Rubin (1949) 𝐹 statistic

r(arF df n) 𝐹 numerator degrees of freedom
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r(arF df d) 𝐹 denominator degrees of freedom

r(ar ngrid) number of gridpoints used for Anderson–Rubin (1949) confidence interval

Macros

r(bound) user-specified grid bounds

Matrices

r(betanull) values of the null hypothesis for endogenous regressors

r(table) matrix containing coefficient with reported confidence interval (omitted if CI is empty)

r(ar ci) matrix containing the bounds of the Anderson–Rubin (1949) confidence interval

r(ar finalbound) matrix containing the final upper and lower bounds used by the gridding procedure

After estimation of an overidentified model, or when clr is specified, estat weakrobust stores the
following in r():

Scalars

r(clr) CLR statistic of Moreira (2003)

r(p clr) 𝑝-value for CLR statistic

r(J) 𝐽 statistic of Finlay and Magnusson (2009) (when model VCE is nonhomoskedastic)

r(rk) rank statistic of Kleibergen and Paap (2006) (when model VCE is nonhomoskedastic)

r(reps) number of simulation replications (when results are simulated)

r(rseed) random seed used (when results are simulated)

r(clr ngrid) number of gridpoints used for CLR confidence interval

Macros

r(bound) user-specified grid bounds

r(rngstate) random-number state used (when results are simulated)

Matrices

r(betanull) values of the null hypothesis for endogenous regressors

r(Sbar) 𝑆 statistic of Moreira (2003) (when model VCE is homoskedastic)

r(Tbar) 𝑇 statistic of Moreira (2003) (when model VCE is homoskedastic)

r(table) matrix containing coefficient with reported confidence interval (omitted if CI is empty)

r(clr ci) matrix containing the bounds of the CLR confidence interval

r(clr finalbound) matrix containing the final upper and lower bounds used by the gridding procedure

Methods and formulas
Methods and formulas are presented under the following headings:

Notation
estat endogenous
estat firststage
estat overid
estat weakrobust (StataNow)

Homoskedastic errors
Nonhomoskedastic errors
Confidence intervals

Notation
Recall from [R] ivregress that the model is

y = Yβ1 + X1β2 + u = Xβ + u

Y = X1𝚷1 + X2𝚷2 + V = Z𝚷 + V
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where y is an 𝑁 × 1 vector of the left-hand-side variable, 𝑁 is the sample size, Y is an 𝑁 × 𝑝 matrix of
𝑝 endogenous regressors, X1 is an 𝑁 × 𝑘1 matrix of 𝑘1 included exogenous regressors, X2 is an 𝑁 × 𝑘2
matrix of 𝑘2 excluded exogenous variables, X = [Y X1], Z = [X1 X2], u is an 𝑁 × 1 vector of errors,

V is an 𝑁 × 𝑝 matrix of errors, β = [β1 β2] is a 𝑘 = (𝑝 + 𝑘1) × 1 vector of parameters, and 𝚷 is a

(𝑘1 + 𝑘2) × 𝑝 vector of parameters. If a constant term is included in the model, then one column of X1
contains all ones.

estat endogenous
Partition Y as Y = [Y1 Y2], where Y1 represents the 𝑝1 endogenous regressors whose endogeneity is

being tested and Y2 represents the 𝑝2 endogenous regressors whose endogeneity is not being tested. If

the endogeneity of all endogenous regressors is being tested,Y = Y1 and 𝑝2 = 0. After GMM estimation,

estat endogenous refits the model treating Y1 as exogenous using the same type of weight matrix as

requested at estimation time with the wmatrix() option; denote the Sargan statistic from this model by

𝐽𝑒 and the estimated weight matrix byW𝑒. Let S𝑒 = W−1
𝑒 . estat endogenous removes from S𝑒 the

rows and columns corresponding to the variables represented by Y1; denote the inverse of the resulting

matrix byW′
𝑒. Next, estat endogenous fits the model treating both Y1 and Y2 as endogenous, using

the weight matrixW′
𝑒; denote the Sargan statistic from this model by 𝐽𝑐. Then,𝐶 = (𝐽𝑒 −𝐽𝑐) ∼ 𝜒2(𝑝1).

If one simply used the 𝐽 statistic from the original model fit by ivregress in place of 𝐽𝑐, then in finite

samples 𝐽𝑒 − 𝐽 might be negative. The procedure used by estat endogenous is guaranteed to yield
𝐶 ≥ 0; see Hayashi (2000, 220).

Let û𝑐 denote the residuals from the model treating both Y1 and Y2 as endogenous, and let û𝑒 denote

the residuals from the model treating only Y2 as endogenous. Then, Durbin’s (1954) statistic is

𝐷 =
û′

𝑒P𝑍𝑌1
û𝑒 − û′

𝑐P𝑍û𝑐

û′
𝑒 ̂u𝑒/𝑁

where P𝑍 = Z(Z′Z)−1Z′ and P𝑍𝑌1
= [Z Y1]([Z Y1]′[Z Y1])−1[Z Y1]′ 𝐷 ∼ 𝜒2(𝑝1). The

Wu–Hausman (Wu 1974; Hausman 1978) statistic is

𝑊𝐻 =
(û′

𝑒P𝑍𝑌1
û𝑒 − û′

𝑐P𝑍û𝑐)/𝑝1

{û′
𝑒û𝑒 − (û′

𝑒P𝑍𝑌1
û𝑒 − û′

𝑐P𝑍û𝑐)} /(𝑁 − 𝑘1 − 𝑝 − 𝑝1)

𝑊𝐻 ∼ 𝐹(𝑝1, 𝑁 − 𝑘1 − 𝑝 − 𝑝1). Baum, Schaffer, and Stillman (2003, 2007) discuss these tests in more
detail.

Next, we describe Wooldridge’s (1995) score test. The nonrobust version of Wooldridge’s test is

identical to Durbin’s test. Suppose a robust covariance matrix was used at estimation time. Let ̂e denote
the sample residuals obtained by fitting the model via OLS, treating Y as exogenous. We then regress

each variable represented in Y on Z; call the residuals for the 𝑗th regression ̂r𝑗, 𝑗 = 1, . . . , 𝑝. Define
�̂�𝑖𝑗 = ̂𝑒𝑖 ̂𝑟𝑖𝑗, 𝑖 = 1, . . . , 𝑁. We then run the regression

1 = 𝜃1k̂1 + · · · + 𝜃𝑝k̂𝑝 + ε

where 1 is an 𝑁 × 1 vector of ones and ε is a regression error term. 𝑁 − RSS ∼ 𝜒2(𝑝), where RSS is the
residual sum of squares from the regression just described. If instead a HAC VCE was used at estimation

time, then before running the final regression we prewhiten the k̂𝑗 series by using a VAR(𝑞) model, where
𝑞 is the number of lags specified with the lags() option.
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The regression-based test proceeds as follows. Following Hausman (1978, 1259), we regress Y on Z

and obtain the residuals V̂. Next, we fit the augmented regression

y = Yβ1 + X1β2 + V̂𝛄 + ε

by OLS regression, where ε is a regression error term. A test of the exogeneity of Y is equivalent to a test

of𝛄 = 0. As Cameron andTrivedi (2005, 276) suggest, this test can bemade robust to heteroskedasticity,

autocorrelation, or clustering by using the appropriate robustVCEwhen testing𝛄 = 0. When a nonrobust

VCE is used, this test is equivalent to the Wu–Hausman test described earlier. One cannot simply fit this

augmented regression via 2SLS to test the endogeneity of a subset of the endogenous regressors; Davidson

andMacKinnon (1993, 229–231) discuss a test of𝛄 = 0 for the homoskedastic version of the augmented

regression fit by 2SLS, but an appropriate robust test is not apparent.

estat firststage
When the structural equation includes one endogenous regressor, estat firststage fits the regres-

sion

Y = X1π1 + X2π2 + v

via OLS. The 𝑅2 and adjusted 𝑅2 from that regression are reported in the output, as well as the 𝐹 statistic

from the Wald test of 𝐻0 ∶ π2 = 0. To obtain the partial 𝑅2 statistic, estat firststage fits the

regression

MX1
y = MX1

X2ξ + ε

by OLS, where ε is a regression error term, ξ is a 𝑘2×1 parameter vector, andMX1
= I−X1(X′

1X1)−1X′
1;

that is, the partial𝑅2 is the𝑅2 between y andX2 after eliminating the effects ofX1. If the model contains

multiple endogenous regressors and the all option is specified, these statistics are calculated for each
endogenous regressor in turn.

To calculate Shea’s partial 𝑅2, let y1 denote the endogenous regressor whose statistic is being calcu-

lated and Y0 denote the other endogenous regressors. Define ỹ1 as the residuals obtained from regress-

ing y1 on Y0 and X1. Let ŷ1 denote the fitted values obtained from regressing y1 on X1 and X2; that

is, ŷ1 are the fitted values from the first-stage regression for y1, and define the columns of Ŷ0 analo-

gously. Finally, let ̃ŷ1 denote the residuals from regressing ŷ1 on Ŷ0 and X1. Shea’s partial 𝑅2 is the

simple 𝑅2 from the regression of ỹ1 on ̃ŷ1; denote this as 𝑅2
𝑆. Shea’s adjusted partial 𝑅2 is equal to

1− (1− 𝑅2
𝑆)(𝑁 − 1)/(𝑁 − 𝑘𝑍 + 1) if a constant term is included and 1− (1− 𝑅2

𝑆)(𝑁 − 1)/(𝑁 − 𝑘𝑍)
if there is no constant term included in the model, where 𝑘𝑍 = 𝑘1 + 𝑘2. For one endogenous regressor,

one instrument, no exogenous regressors, and a constant term, 𝑅2
𝑆 equals the adjusted 𝑅2

𝑆.

The Stock and Yogo minimum eigenvalue statistic, first proposed by Cragg and Donald (1993) as a

test for underidentification, is the minimum eigenvalue of the matrix

G = 1
𝑘𝑍

�̂�
−1/2
VV Y′M′

X1
X2(X′

2MX1
X2)−1X′

2MX1
Y�̂�

−1/2
VV

where

�̂�VV = 1
𝑁 − 𝑘𝑍

Y′MZY

MZ = I − Z(Z′Z)−1Z′, and Z = [X1 X2]. Critical values are obtained from the tables in Stock and

Yogo (2005).
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estat overid
The Sargan (1958) and Basmann (1960)𝜒2 statistics are calculated by running the auxiliary regression

û = Zδ + e

where û are the sample residuals from the model and e is an error term. Then, Sargan’s statistic is

𝑆 = 𝑁 (1 −
̂e′ ̂e
û′û

)

where ̂e are the residuals from that auxiliary regression. Basmann’s statistic is calculated as

𝐵 = 𝑆𝑁 − 𝑘𝑍
𝑁 − 𝑆

Both 𝑆 and 𝐵 are distributed 𝜒2(𝑚), where 𝑚, the number of overidentifying restrictions, is equal to

𝑘𝑍 − 𝑘, where 𝑘 is the number of endogenous regressors.
Wooldridge’s (1995) score test of overidentifying restrictions is identical to Sargan’s (1958) statistic

under the assumption of i.i.d. and therefore is not recomputed unless a robust VCEwas used at estimation

time. If a heteroskedasticity-robust VCE was used, Wooldridge’s test proceeds as follows. Let Ŷ denote

the 𝑁 × 𝑘 matrix of fitted values obtained by regressing the endogenous regressors on X1 and X2.

Let Q denote an 𝑁 × 𝑚 matrix of excluded exogenous variables; the test statistic to be calculated is

invariant to whichever 𝑚 of the 𝑘2 excluded exogenous variables is chosen. Define the 𝑖th element of
k̂𝑗, 𝑖 = 1, . . . , 𝑁, 𝑗 = 1, . . . , 𝑚, as

𝑘𝑖𝑗 = ̂𝑞𝑖𝑗�̂�𝑖

where ̂𝑞𝑖𝑗 is the 𝑖th element of q̂𝑗, the residuals from regressing the 𝑗th column ofQ on Ŷ andX1. Finally,

fit the regression

1 = 𝜃1k̂1 + · · · + 𝜃𝑚k̂𝑚 + ε

where 1 is an 𝑁 × 1 vector of ones and ε is a regression error term, and calculate the residual sum of

squares, RSS. Then, the test statistic is𝑊 = 𝑁 −RSS. 𝑊 ∼ 𝜒2(𝑚). If a HACVCEwas used at estimation,

then the k̂𝑗 are prewhitened using a VAR(𝑝) model, where 𝑝 is specified using the lags() option.
The Anderson–Rubin (AR; 1950) test of overidentifying restrictions for use after the LIML estimator

is calculated as AR = 𝑁(𝜅 − 1), where 𝜅 is the minimal eigenvalue of a certain matrix defined in

Methods and formulas of [R] ivregress. AR ∼ 𝜒2(𝑚). (Some texts define this statistic as𝑁 ln(𝜅) because
ln(𝑥) ≈ (𝑥 − 1) for 𝑥 near 1.) Basmann’s 𝐹 statistic for use after the LIML estimator is calculated as

𝐵𝐹 = (𝜅 − 1)(𝑁 − 𝑘𝑍)/𝑚. 𝐵𝐹 ∼ 𝐹(𝑚, 𝑁 − 𝑘𝑍).
Hansen’s 𝐽 statistic is simply the sample size times the value of the GMM objective function defined

in (5) of [R] ivregress, evaluated at the estimated parameter values. Under the null hypothesis that the

overidentifying restrictions are valid, 𝐽 ∼ 𝜒2(𝑚).
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� �
JohnDenis Sargan (1924–1996) was born inYorkshire, UK. He pioneered the theory of instrumental-

variables (IV) estimation in an article published in 1958. In the article, he also developed overidenti-

fication tests, developed significance tests, and discussed possible instruments for applied work. A

year later, he wrote an article extending the theory to models containing autoregressive errors. This

extension was one of his many contributions to time-series econometric analysis. For example, in

1964 he published a paper inwhich he developedmisspecification tests for dynamic equations, along

with an IV estimator for models with nonlinear parameters, and a model with a long-run equilibrium.

His paper laid the foundation for other econometric methods, such as cointegration analysis, and

established what would be known as the London School of Economics (LSE) approach to econo-

metric modeling. He spent twenty years at this institution, supervising the doctoral work of many

econometricians who themselves made important contributions to econometrics. In addition to Sar-

gan’s many lasting contributions to econometrics, he also left a lasting impression on his students

and colleagues through his generosity.� �
estat weakrobust (StataNow)

In estat weakrobust (StataNow) of Remarks and examples, we reintroduced the model fit by

ivregress, written in matrix form as

y = Yβ1 + X1β2 + u

Y = X1𝚷1 + X2𝚷2 + V

The first equation is referred to as the structural equation, and the second equation is referred to as the

first-stage equation.

We then derived the reduced-form equation. Below, we write the model in the form of the reduced-

form equation and the first-stage equations

y = X1δ1 + X2δ2 + ε

Y = X1𝚷1 + X2𝚷2 + V

where δ1 ≡ 𝚷1β1 +β2 and δ2 ≡ 𝚷2β1. The reduced-form coefficients δ1 and δ2 are 𝑘1 ×1 and 𝑘2 ×1,

respectively. Without loss of generality, we can rewrite the model to omit included exogenous regressors

X1 by considering y, Y, X2, ε, and V to have been replaced by their partialled-out equivalents:

y = X2δ2 + ε

Y = X2𝚷2 + V

Our null hypothesis β1 = r1 implies that δ2 − 𝚷2r1 = 0.

Homoskedastic errors

Let �̂� = 1/𝑁 [ ̂𝜖′ ̂𝜖 ̂𝜖′V̂

V̂′ ̂𝜖 V̂′V̂
] be the estimated (𝑝 + 1) × (𝑝 + 1) covariance matrix of (ε′,V′)′. When

the model is assumed to have homoskedastic errors, we can proceed by computing the statistics

𝑆 = (X′
2X2)−1/2X′

2(y − Yr1)(b′
0�̂�b0)−1/2
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and

𝑇 = (X′
2X2)−1/2X′

2[y,Y′]′�̂�
−1
A0(A′

0�̂�
−1
A0)−1/2

where b0 = [1, −r1] and A0 = [r1, I𝑝]′.

The Anderson–Rubin (1949) statistic is computed as AR = 𝑆′ 𝑆 and follows a 𝜒2(𝑘2) distribution.
When themodel has been fit with the small option in ivregress, an𝐹 version of the statistic is returned,

which is distributed 𝐹(𝑘2, 𝑁 −𝑘1 −𝑘2). This 𝐹 statistic is computed using 𝑁/(𝑁 −𝑘1 −𝑘2)�̂� in place

of �̂�.

The CLR statistic is computed as CLR = 𝑆′ 𝑆 − 𝜆min
, where 𝜆min

is the minimum eigenvalue of

the matrix (𝑆, 𝑇)′(𝑆, 𝑇). When the model is fit with the small option in ivregress, the statistic is
computed using 𝑁/(𝑁 − 𝑘1 − 𝑘2)�̂�. When the model is just identified, CLR ∼ 𝜒2(𝑘2). When the

model is overidentified, CLR has a nonstandard distribution. The numerical method of Andrews, Moreira,

and Stock (2007) is used to obtain 𝑝-values in the single-endogenous regressor case. In the multiple-
endogenous regressor case, 𝑝-values are obtained by simulation conditional on 𝑇, as outlined in Moreira

(2003).

Nonhomoskedastic errors

When the model is fit with a nonhomoskedastic VCE, let

�̂� = [ �̂�δ �̂�δ𝚷
�̂�𝚷δ �̂�𝚷

]

be the 𝑘2(𝑝 + 1) × 𝑘2(𝑝 + 1) estimated covariance matrix of {δ′
2,Vec(𝚷2)′}′, where Vec(⋅) is the

column-major vectorization operator.

We compute the Anderson–Rubin statistic as

AR(r1) = (y − Yr1)′X2(X′
2X2)−1�̂�(r1)−1(X′

2X2)−1X′
2(y − Yr1)

where �̂�(r1) = (b0 ⊗ I𝑘)′�̂�(b0 ⊗ I𝑘).
As in the homoskedastic case, AR takes on a 𝜒2(𝑘2) distribution under the null. When the model is

fit with the small option, the statistic is computed using a small-sample adjustment, and an 𝐹 version of

the statistic is returned.

To compute the CLR test statistic, let 𝐽(r1) be defined as in Finlay and Magnusson (2009) (or, equiv-

alently, as in Kleibergen [2007]), and let rk(r1) be the rank statistic of Kleibergen and Paap (2006) (the
forms of these statistics are omitted here for brevity). The test statistic is given by

CLR(r1) = 1
2

[AR(r1) − rk(r1) + √{AR(r1) + rk(r1)}2 − 4𝐽(r1)rk(r1)]

In the just-identified case, CLR is equal to AR and has a 𝜒2(𝑘2) distribution. Otherwise, CLR has a

nonstandard distribution, and 𝑝-values are obtained by simulation, as outlined in Kleibergen (2007).

When the model is fit with the small option, the statistic is computed using a small-sample adjustment.

Confidence intervals

Confidence intervals are obtained by inverting the relevant tests. When the model is fit with a ho-

moskedastic VCE, or when it is just identified, the Anderson–Rubin test can be inverted analytically, so

the bounds of the resulting interval (or union of intervals) are computed as a closed form (see Miku-

sheva [2010] for details). When the model VCE is nonhomoskedastic and the model is overidentified, the

Anderson–Rubin confidence interval is obtained by a gridding procedure.
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The CLR test is equivalent to the Anderson–Rubin test in the just-identified case, so its confidence

intervals can be computed in the same way. In the overidentified case when errors are homoskedastic,

the CLR test is inverted numerically using the method of Mikusheva (2010). When errors are nonho-

moskedastic, a gridding procedure is used to obtain a confidence interval.
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Description
ivtobit fits tobit models where one or more of the covariates are endogenously determined. By

default, ivtobit uses maximum likelihood estimation, but Newey’s (1987) minimum 𝜒2 (two-step)

estimator can be requested. Both estimators assume that the endogenous covariates are continuous and

so are not appropriate for use with discrete endogenous covariates.

Quick start
Tobit regression of y1 on x and endogenous regressor y2 that is instrumented by z where y1 is left-

censored at its observed minimum

ivtobit y1 x (y2 = z), ll

Same as above, but specify that y1 is left-censored at 0 and right-censored at 20
ivtobit y1 x (y2 = z), ll(0) ul(20)

Use Newey’s two-step estimator

ivtobit y1 x (y2 = z), ll(0) ul(20) twostep

Same as above, and show first-stage regression results

ivtobit y1 x (y2 = z), ll(0) ul(20) twostep first

Menu
Statistics > Endogenous covariates > Tobit model with endogenous covariates
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Syntax
Maximum likelihood estimator

ivtobit depvar [varlist1] (varlist2 = varlistiv) [ if ] [ in ] [weight ] ,
ll[(#)] ul[(#)] [mle options ]

Two-step estimator

ivtobit depvar [varlist1] (varlist2 = varlistiv) [ if ] [ in ] [weight ] , twostep

ll[(#)] ul[(#)] [ tse options ]

varlist1 is the list of exogenous variables.

varlist2 is the list of endogenous variables.

varlistiv is the list of exogenous variables used with varlist1 as instruments for varlist2.

mle options Description

Model
∗ ll[(#)] left-censoring limit
∗ ul[(#)] right-censoring limit

mle use conditional maximum-likelihood estimator; the default

constraints(constraints) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, opg, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)
first report first-stage regression

nocnsreport do not display constraints

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process

coeflegend display legend instead of statistics

∗You must specify at least one of ll[(#)] and ul[(#)].
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tse options Description

Model
∗ twostep use Newey’s two-step estimator; the default is mle
∗ ll[(#)] left-censoring limit
∗ ul[(#)] right-censoring limit

SE

vce(vcetype) vcetype may be twostep, bootstrap, or jackknife

Reporting

level(#) set confidence level; default is level(95)
first report first-stage regression

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

coeflegend display legend instead of statistics

∗twostep is required. You must specify at least one of ll[(#)] and ul[(#)].

varlist1 and varlistiv may contain factor variables; see [U] 11.4.3 Factor variables.

depvar, varlist1, varlist2, and varlistiv may contain time-series operators; see [U] 11.4.4 Time-series varlists.

bootstrap, by, collect, jackknife, rolling, statsby, and svy are allowed; see [U] 11.1.10 Prefix commands. fp is
allowed with the maximum likelihood estimator.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
vce(), first, twostep, and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed with the maximum likelihood estimator. fweights are allowed with

Newey’s two-step estimator. See [U] 11.1.6 weight.

coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options for ML estimator

� � �
Model �

ll[ (#) ] and ul[ (#) ] indicate the lower and upper limits for censoring, respectively. You may specify
one or both. Observations with depvar ≤ ll() are left-censored; observations with depvar ≥ ul()
are right-censored; and remaining observations are not censored. You do not have to specify the

censoring values at all. It is enough to type ll, ul, or both. When you do not specify a censoring

value, ivtobit assumes that the lower limit is the minimum observed in the data (if ll is specified)
and that the upper limit is the maximum (if ul is specified).

mle requests that the conditional maximum-likelihood estimator be used. This is the default.

constraints(constraints); see [R] Estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), that al-
low for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods

(bootstrap, jackknife); see [R] vce option.
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� � �
Reporting �

level(#); see [R] Estimation options.

first requests that the parameters for the reduced-form equations showing the relationships between

the endogenous variables and instruments be displayed. For the two-step estimator, first shows the
first-stage regressions. For the maximum likelihood estimator, these parameters are estimated jointly

with the parameters of the tobit equation. The default is not to show these parameter estimates.

nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R]Maximize.

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

The following option is available with ivtobit but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

Options for two-step estimator

� � �
Model �

twostep is required and requests that Newey’s (1987) efficient two-step estimator be used to obtain the
coefficient estimates.

ll[ (#) ] and ul[ (#) ] indicate the lower and upper limits for censoring, respectively. You may specify
one or both. Observations with depvar ≤ ll() are left-censored; observations with depvar ≥ ul()
are right-censored; and remaining observations are not censored. You do not have to specify the

censoring values at all. It is enough to type ll, ul, or both. When you do not specify a censoring

value, ivtobit assumes that the lower limit is the minimum observed in the data (if ll is specified)
and that the upper limit is the maximum (if ul is specified).

� � �
SE �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (twostep) and that use bootstrap or jackknife methods (bootstrap, jackknife);
see [R] vce option.
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� � �
Reporting �

level(#); see [R] Estimation options.

first requests that the parameters for the reduced-form equations showing the relationships between

the endogenous variables and instruments be displayed. For the two-step estimator, first shows the
first-stage regressions. For the maximum likelihood estimator, these parameters are estimated jointly

with the parameters of the tobit equation. The default is not to show these parameter estimates.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

The following option is available with ivtobit but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

Remarks and examples
ivtobit fits models with censored dependent variables and endogenous covariates. You can use

it to fit a tobit model when you suspect that one or more of the covariates is correlated with the error

term. ivtobit is to tobit what ivregress is to linear regression analysis; see [R] ivregress for more
information.

Formally, the model is

𝑦∗
1𝑖 =y2𝑖β + x1𝑖𝛄 + 𝑢𝑖

y2𝑖 =x1𝑖𝚷1 + x2𝑖𝚷2 + v𝑖

where 𝑖 = 1, . . . , 𝑁; y2𝑖 is a 1 × 𝑝 vector of endogenous variables; x1𝑖 is a 1 × 𝑘1 vector of exogenous

variables; x2𝑖 is a 1× 𝑘2 vector of additional instruments; and the equation for y2𝑖 is written in reduced

form. By assumption, (𝑢𝑖,v𝑖) ∼ 𝑁(0, 𝚺). β and 𝛄 are vectors of structural parameters, and 𝚷1 and

𝚷2 are matrices of reduced-form parameters. We do not observe 𝑦∗
1𝑖; instead, we observe

𝑦1𝑖 =
⎧{
⎨{⎩

𝑎 𝑦∗
1𝑖 < 𝑎

𝑦∗
1𝑖 𝑎 ≤ 𝑦∗

1𝑖 ≤ 𝑏
𝑏 𝑦∗

1𝑖 > 𝑏

The order condition for identification of the structural parameters is that 𝑘2 ≥ 𝑝. Presumably, 𝚺 is not

block diagonal between 𝑢𝑖 and v𝑖; otherwise, y2𝑖 would not be endogenous.

Technical note
This model is derived under the assumption that (𝑢𝑖,v𝑖) is independent and identically distributed

multivariate normal for all 𝑖. The vce(cluster clustvar) option can be used to control for a lack of

independence. As with the standard tobit model without endogeneity, if 𝑢𝑖 is heteroskedastic, point

estimates will be inconsistent.
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Example 1: Estimation and parameter interpretation
We model the number of hours per week that high school boys spend using social media (hsocial).

The data collection process caused the observations on the number of hours spent to be censored at 12

hours. A tobit-type model is therefore reasonable for our data.

We model each boy’s number of hours spent using social media as a function of whether he has a

smartphone (sphone), whether he has a computer at home (computer), the year in high school in which
he is enrolled (year), and the hours per week he spends studying (hstudy).

We believe that there are unobservable variables that simultaneously affect hstudy and hsocial,
which is to say that hstudy is endogenous. Because hstudy is endogenous, we must model it as well.
Our model for the endogenous hstudy always includes the exogenous covariates used to model the

outcome hsocial. We must also include at least one covariate in the model for the endogenous hstudy
that was not included in the model for the outcome hsocial.

We use ivtobit with the default maximum-likelihood estimator to model the endogenous variable
hstudy as a function of the highest educational degree attained by their parents (pedu), the time spent
watching television (tvhours), and the exogenous covariates used to model hsocial.

. use https://www.stata-press.com/data/r18/smedia
(Fictional data on hours spent on social media)
. ivtobit hsocial i.sphone i.computer i.year (hstudy = tvhours i.pedu), ul(12)
Fitting exogenous tobit model
Fitting full model
Iteration 0: Log likelihood = -3240.5279
Iteration 1: Log likelihood = -3186.8824
Iteration 2: Log likelihood = -3173.1147
Iteration 3: Log likelihood = -3172.8561
Iteration 4: Log likelihood = -3172.856
Tobit model with endogenous regressors Number of obs = 1,324

Uncensored = 928
Limits: Lower = -inf Left-censored = 0

Upper = 12 Right-censored = 396
Wald chi2(6) = 11610.73

Log likelihood = -3172.856 Prob > chi2 = 0.0000

Coefficient Std. err. z P>|z| [95% conf. interval]

hstudy -.9610518 .0327204 -29.37 0.000 -1.025183 -.8969211
1.sphone 6.041781 .0625236 96.63 0.000 5.919237 6.164325

1.computer 2.51903 .0629128 40.04 0.000 2.395723 2.642337

year
2 .4439009 .0802309 5.53 0.000 .2866513 .6011505
3 .8574705 .080476 10.65 0.000 .6997404 1.015201
4 1.478215 .0816582 18.10 0.000 1.318168 1.638262

_cons 8.955813 .2069144 43.28 0.000 8.550268 9.361357

corr(e.hstudy,
e.hsocial) .4667975 .0340342 .3975006 .5308

sd(e.hsocial) .9709836 .0266364 .9201559 1.024619
sd(e.hstudy) .9701792 .0188547 .9339197 1.007847

Wald test of exogeneity (corr = 0): chi2(1) = 135.19 Prob > chi2 = 0.0000
Endogenous: hstudy
Exogenous: 1.sphone 1.computer 2.year 3.year 4.year tvhours 2.pedu 3.pedu
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The coefficients in the table tell us how much the linear prediction for the outcome changes when

there is a change in a covariate.

Below the table, we see a Wald test for whether the correlation between the residuals from the main

equation (predicting hstudy) and the residuals from the auxiliary equation (predicting hsocial) is 0.
The correlation itself is 0.47 and shown in the table as corr(e.hstudy,e.hsocial). If the test statistic
is not significant, there is not sufficient information in the sample to reject the null hypothesis of no

endogeneity. In our example, we reject the null hypothesis that supports our choice of a tobit model that

accounts for endogeneity.

Technical note
In the tobit model with endogenous covariates, we assume that (𝑢𝑖,v𝑖) is multivariate normal with

covariance matrix

Var(𝑢𝑖,v𝑖) = 𝚺 = [ 𝜎2
𝑢 𝚺′

21
𝚺21 𝚺22

]

Using the properties of the multivariate normal distribution, Var(𝑢𝑖|v𝑖) ≡ 𝜎2
𝑢|𝑣 = 𝜎2

𝑢 − 𝚺′
21𝚺−1

22 𝚺21.

Calculating the marginal effects on the conditional expected values of the observed and latent dependent

variables and on the probability of censoring requires an estimate of 𝜎2
𝑢. Unlike the default maximum-

likelihood estimator, the two-step estimator identifies only 𝜎2
𝑢|𝑣, not 𝜎2

𝑢, so only the linear prediction and

its standard error are available after you have used the twostep option.

Stored results
ivtobit, mle stores the following in e():

Scalars

e(N) number of observations

e(N unc) number of uncensored observations

e(N lc) number of left-censored observations

e(N rc) number of right-censored observations

e(llopt) minimum of depvar or contents of ll()
e(ulopt) maximum of depvar or contents of ul()
e(k) number of parameters

e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test

e(k dv) number of dependent variables

e(df m) model degrees of freedom

e(ll) log likelihood

e(N clust) number of clusters

e(endog ct) number of endogenous covariates

e(p) model Wald 𝑝-value
e(p exog) exogeneity test Wald 𝑝-value
e(chi2) model Wald 𝜒2

e(chi2 exog) Wald 𝜒2 test of exogeneity

e(rank) rank of e(V)
e(ic) number of iterations

e(rc) return code

e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) ivtobit
e(cmdline) command as typed
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e(depvar) name of dependent variable

e(endog) names of endogenous variables

e(exog) names of exogenous variables

e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(clustvar) name of cluster variable

e(chi2type) Wald; type of model 𝜒2 test

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(method) ml
e(opt) type of optimization

e(which) max or min; whether optimizer is to perform maximization or minimization

e(ml method) type of ml method
e(user) name of likelihood-evaluator program

e(technique) maximization technique

e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(footnote) program used to implement the footnote display

e(marginsok) predictions allowed by margins
e(marginsprop) signals to the margins command
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(ilog) iteration log (up to 20 iterations)

e(gradient) gradient vector

e(Sigma) �̂�
e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

ivtobit, twostep stores the following in e():

Scalars

e(N) number of observations

e(N unc) number of uncensored observations

e(N lc) number of left-censored observations

e(N rc) number of right-censored observations

e(llopt) contents of ll()
e(ulopt) contents of ul()
e(df m) model degrees of freedom

e(df exog) degrees of freedom for 𝜒2 test of exogeneity

e(p) model Wald 𝑝-value
e(p exog) exogeneity test Wald 𝑝-value
e(chi2) model Wald 𝜒2



ivtobit — Tobit model with continuous endogenous covariates 1417

e(chi2 exog) Wald 𝜒2 test of exogeneity

e(rank) rank of e(V)
Macros

e(cmd) ivtobit
e(cmdline) command as typed

e(depvar) name of dependent variable

e(endog) names of endogenous variables

e(exog) names of exogenous variables

e(wtype) weight type

e(wexp) weight expression

e(chi2type) Wald; type of model 𝜒2 test

e(vce) vcetype specified in vce()
e(method) twostep
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(footnote) program used to implement the footnote display

e(marginsok) predictions allowed by margins
e(marginsprop) signals to the margins command
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():
Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas
The estimation procedure used by ivtobit is similar to that used by ivprobit. For compactness,

we write the model as

𝑦∗
1𝑖 = z𝑖δ + 𝑢𝑖

y2𝑖 = x𝑖𝚷 + v𝑖

where z𝑖 = (y2𝑖,x1𝑖), x𝑖 = (x1𝑖,x2𝑖), δ = (β′, 𝛄′)′, and 𝚷 = (𝚷′
1, 𝚷′

2)′. We do not observe 𝑦∗
1𝑖;

instead, we observe

𝑦1𝑖 =
⎧{
⎨{⎩

𝑎 𝑦∗
1𝑖 < 𝑎

𝑦∗
1𝑖 𝑎 ≤ 𝑦∗

1𝑖 ≤ 𝑏
𝑏 𝑦∗

1𝑖 > 𝑏

(𝑢𝑖,v𝑖) is distributed multivariate normal with mean zero and covariance matrix

𝚺 = [ 𝜎2
𝑢 𝚺′

21
𝚺21 𝚺22

]
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Using the properties of the multivariate normal distribution, we can write 𝑢𝑖 = v′
𝑖α + 𝜖𝑖, where α =

𝚺−1
22 𝚺21; 𝜖𝑖 ∼ 𝑁(0; 𝜎2

𝑢|𝑣), where 𝜎2
𝑢|𝑣 = 𝜎2

𝑢 − 𝚺′
21𝚺−1

22 𝚺21; and 𝜖𝑖 is independent of v𝑖, z𝑖, and x𝑖.

The likelihood function is straightforward to derive because we can write the joint density

𝑓 (𝑦1𝑖,y2𝑖|x𝑖) as 𝑓 (𝑦1𝑖|y2𝑖,x𝑖) 𝑓 (y2𝑖|x𝑖). We have that

ln𝑓(y2𝑖|x𝑖) = −1
2

(𝑝 ln2𝜋 + ln |𝚺22| + v′
𝑖𝚺

−1
22 v𝑖)

and

ln𝑓(𝑦1𝑖|y2𝑖,x𝑖) =

⎧{{
⎨{{⎩

ln{1 − Φ ( 𝑚𝑖−𝑎
𝜎𝑢|𝑣

)} 𝑦1𝑖 = 𝑎

− 1
2 { ln2𝜋 + ln𝜎2

𝑢|𝑣 + (𝑦1𝑖−𝑚𝑖)2

𝜎2
𝑢|𝑣

} 𝑎 < 𝑦1𝑖 < 𝑏

lnΦ ( 𝑚𝑖−𝑏
𝜎𝑢|𝑣

) 𝑦1𝑖 = 𝑏

where

𝑚𝑖 = z𝑖δ + (y2𝑖 − x𝑖𝚷)𝚺−1
22 𝚺21

and Φ(⋅) is the normal distribution function so that the log likelihood for observation 𝑖 is

ln𝐿𝑖 = 𝑤𝑖 { ln𝑓(𝑦1𝑖|y2𝑖,x𝑖) + ln𝑓(y2𝑖|x𝑖)}

where 𝑤𝑖 is the weight for observation 𝑖 or one if no weights were specified. Instead of estimating 𝜎𝑢|𝑣
and 𝜎𝑣 directly, we estimate ln𝜎𝑢|𝑣 and ln𝜎𝑣.

With maximum likelihood estimation, this command supports the Huber/White/sandwich estimator

of the variance and its clustered version using vce(robust) and vce(cluster clustvar), respectively.
See [P] robust, particularly Maximum likelihood estimators and Methods and formulas.

The maximum likelihood version of ivtobit also supports estimation with survey data. For details
on VCEs with survey data, see [SVY] Variance estimation.

The two-step estimates are obtained using Newey’s (1987) minimum 𝜒2 estimator. For more details

on the minimum 𝜒2 estimator, see [R] ivprobit.
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Also see
[R] ivtobit postestimation — Postestimation tools for ivtobit

[R] gmm — Generalized method of moments estimation

[R] ivprobit — Probit model with continuous endogenous covariates

[R] ivregress — Single-equation instrumental-variables regression

[R] regress — Linear regression

[R] tobit — Tobit regression

[ERM] eintreg — Extended interval regression

[SVY] svy estimation — Estimation commands for survey data

[XT] xtintreg — Random-effects interval-data regression models

[XT] xttobit — Random-effects tobit models

[U] 20 Estimation and postestimation commands
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Postestimation commands predict margins estat
Remarks and examples Stored results Methods and formulas References
Also see

Postestimation commands
The following postestimation commands are of special interest after ivtobit:

Command Description

estat correlation report the correlation matrix of the errors of the dependent variable and the en-
dogenous variables

estat covariance report the covariance matrix of the errors of the dependent variable and the en-
dogenous variables

These commands are not appropriate after the two-step estimator or with svy estimation results.

The following standard postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters
∗ estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian in-

formation criteria (AIC, CAIC, AICc, and BIC, respectively)

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estat (svy) postestimation statistics for survey data

estimates cataloging estimation results

etable table of estimation results
∗ † forecast dynamic forecasts and simulations

† hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

∗ † lrtest likelihood-ratio test

margins marginal means, predictive margins, marginal effects, and average marginal ef-
fects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

predict linear predictions and their SEs, probabilities, etc.

predictnl point estimates, standard errors, testing, and inference for generalized predictions

pwcompare pairwise comparisons of parameters
∗ suest seemingly unrelated estimation

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

∗estat ic, forecast, lrtest, and suest are not appropriate after ivtobit, twostep.
†forecast, hausman, and lrtest are not appropriate with svy estimation results.

1420
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predict

Description for predict
predict creates a new variable containing predictions such as structural functions, linear predictions,

standard errors, probabilities, and expected values.

Menu for predict
Statistics > Postestimation

Syntax for predict
After ML

predict [ type ] newvar [ if ] [ in ] [ , statistic asfmethod ]

predict [ type ] { stub* | newvarlist } [ if ] [ in ], scores

After twostep

predict [ type ] newvar [ if ] [ in ] [ , twostep statistic ]

statistic Description

Main

xb linear prediction excluding endogeneity; the default

mean linear prediction accounting for endogeneity

stdp standard error of the linear prediction

stdf standard error of the forecast

pr(a,b) Pr(𝑎 < 𝑦𝑗 < 𝑏) accounting for endogeneity
e(a,b) 𝐸(𝑦𝑗|𝑎 < 𝑦𝑗 < 𝑏) accounting for endogeneity
ystar(a,b) 𝐸(𝑦∗

𝑗), 𝑦∗
𝑗 = max{𝑎,min(𝑦𝑗, 𝑏)} accounting for endogeneity

stdf is not allowed with svy estimation results.
where a and b may be numbers or variables; a missing (a ≥ .) means −∞, and b missing (b ≥ .) means +∞; see

[U] 12.2.1 Missing values.

asfmethod Description

Main

asf average structural function; the default

fixedasf fixed average structural function

twostep statistic Description

Main

xb linear prediction; the default

stdp standard error of the linear prediction

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for the estimation
sample.
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Options for predict

� � �
Main �

xb, the default, calculates the linear prediction.

mean calculates the linear prediction. Results depend on how the endogeneity complication is handled,

which is determined by the asf or fixedasf option. mean is not available with the two-step estimator.

stdp calculates the standard error of the linear prediction. It can be thought of as the standard error of
the predicted expected value or mean for the observation’s covariate pattern. The standard error of

the prediction is also referred to as the standard error of the fitted value.

stdf calculates the standard error of the forecast, which is the standard error of the point prediction for
1 observation. It is commonly referred to as the standard error of the future or forecast value. By

construction, the standard errors produced by stdf are always larger than those produced by stdp;
see Methods and formulas in [R] regress postestimation.

pr(a,b) calculates Pr(a < 𝑦𝑗 < b|z𝑗), the probability that 𝑦𝑗|z𝑗 would be observed in the interval

(a, b).
a and b may be specified as numbers or variable names; lb and ub are variable names;

pr(20,30) calculates Pr(20 < 𝑦𝑗 < 30|z𝑗);
pr(lb,ub) calculates Pr(lb < 𝑦𝑗 < ub|z𝑗); and
pr(20,ub) calculates Pr(20 < 𝑦𝑗 < ub|z𝑗).
a missing (a ≥ .) means −∞; pr(.,30) calculates Pr(−∞ < 𝑦𝑗 < 30|z𝑗);
pr(lb,30) calculates Pr(−∞ < 𝑦𝑗 < 30|z𝑗) in observations for which lb ≥ .
and calculates Pr(𝑙𝑏 < 𝑦𝑗 < 30|z𝑗) elsewhere.
b missing (b ≥ .) means +∞; pr(20,.) calculates Pr(+∞ > 𝑦𝑗 > 20|z𝑗);
pr(20,ub) calculates Pr(+∞ > 𝑦𝑗 > 20|z𝑗) in observations for which ub ≥ .
and calculates Pr(20 < 𝑦𝑗 < ub|z𝑗) elsewhere.
Results depend on how the endogeneity complication is handled, which is determined by the asf or
fixedasf option.

pr(a,b) is not available with the two-step estimator.

e(a,b) calculates 𝐸(𝑦𝑗 ∣ 𝑎 < 𝑦𝑗 < 𝑏), the expected value of 𝑦𝑗|z𝑗 conditional on 𝑦𝑗|z𝑗 being in the

interval (𝑎, 𝑏), meaning that 𝑦𝑗|z𝑗 is truncated. 𝑎 and 𝑏 are specified as they are for pr(). Results
depend on how the endogeneity complication is handled, which is determined by the asf or fixedasf
option. e(a,b) is not available with the two-step estimator.

ystar(a,b) calculates 𝐸(𝑦∗
𝑗), where 𝑦∗

𝑗 = 𝑎 if z𝑖δ+𝑢𝑗 ≤ 𝑎, 𝑦∗
𝑗 = 𝑏 if z𝑖δ+𝑢𝑗 ≥ 𝑏, and 𝑦∗

𝑗 = z𝑖δ+𝑢𝑗
otherwise, meaning that 𝑦∗

𝑗 is censored. 𝑎 and 𝑏 are specified as they are for pr(). Results depend on
how the endogeneity complication is handled, which is determined by the asf or fixedasf option.
ystar(a,b) is not available with the two-step estimator.
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asf and fixedasf determine how the average structural function (ASF) of the specified statistic is com-

puted. These options are not allowed with xb, stdp, or stdf.

asf is the default for the ML estimator when the mean, pr(a,b), e(a,b), or ystar(a,b) statistic
is specified. asf computes the ASF of the specified statistic. It is the statistic conditional on the
errors of the endogenous variable equations. Put another way, it is the statistic accounting for the

correlation of the endogenous covariates with the errors of the main equation. Derivatives and

contrasts based on asf have a structural interpretation. See margins for computing derivatives
and contrasts.

fixedasf calculates a fixed ASF. It is the specified statistic using only the coefficients and variables
of the outcome equation. fixedasf does not condition on the errors of the endogenous variable
equations. Contrasts between two fixed counterfactuals averaged over the whole sample have a

potential-outcome interpretation. Intuitively, it is as if the values of the covariates were fixed at a

value exogenously by fiat. See margins for computing derivatives and contrasts.

To be clear, derivatives and contrasts between two fixed counterfactuals using the default asf option
also have a potential-outcome interpretation. And, unlike fixedasf, they retain that interpretation
when computed over subpopulations for both linear and nonlinear models.

scores, not available with twostep, calculates equation-level score variables.

For models with one endogenous regressor, five new variables are created.

The first new variable will contain 𝜕 ln𝐿/𝜕(z𝑖δ).
The second new variable will contain 𝜕 ln𝐿/𝜕(x𝑖𝚷).
The third new variable will contain 𝜕 ln𝐿/𝜕𝛼.
The fourth new variable will contain 𝜕 ln𝐿/𝜕 ln𝜎𝑢|𝑣.

The fifth new variable will contain 𝜕 ln𝐿/𝜕 ln𝜎𝑣.

For models with 𝑝 endogenous regressors, 𝑝 + {(𝑝 + 1)(𝑝 + 2)}/2 + 1 new variables are created.

The first new variable will contain 𝜕 ln𝐿/𝜕(z𝑖δ).
The second through (𝑝 + 1)th new score variables will contain 𝜕 ln𝐿/𝜕(x𝑖𝚷𝑘), 𝑘 = 1, . . . , 𝑝,
where 𝚷𝑘 is the 𝑘th column of 𝚷.

The remaining score variables will contain the partial derivatives of ln𝐿 with respect to the (𝑝 +
1)(𝑝 + 2)/2 ancillary parameters.
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margins

Description for margins
margins estimates margins of response for linear predictions, probabilities, and expected values.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist ] [ , options ]
margins [marginlist ] , predict(statistic ...) [ predict(statistic ...) ... ] [ options ]

After ML

statistic Description

Main

xb linear prediction excluding endogeneity; the default

mean linear prediction accounting for endogeneity

stdp not allowed with margins
stdf not allowed with margins
pr(a,b) Pr(𝑎 < 𝑦𝑗 < 𝑏) accounting for endogeneity
e(a,b) 𝐸(𝑦𝑗|𝑎 < 𝑦𝑗 < 𝑏) accounting for endogeneity
ystar(a,b) 𝐸(𝑦∗

𝑗), 𝑦∗
𝑗 = max{𝑎,min(𝑦𝑗, 𝑏)} accounting for endogeneity

After twostep

statistic Description

Main

xb linear prediction; the default

stdp not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.
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estat

Description for estat
estat correlation displays the correlation matrix of the errors of the dependent variable and the

endogenous variables.

estat covariance displays the covariance matrix of the errors of the dependent variable and the

endogenous variables.

estat correlation and estat covariance are not allowed after the ivprobit two-step estimator.

Menu for estat
Statistics > Postestimation

Syntax for estat
Correlation matrix

estat correlation [ , border(bspec) left(#) format(% fmt) ]

Covariance matrix

estat covariance [ , border(bspec) left(#) format(% fmt) ]

Options for estat

� � �
Main �

border(bspec) sets border style of the matrix display. The default is border(all).

left(#) sets the left indent of the matrix display. The default is left(2).

format(% fmt) specifies the format for displaying the individual elements of the matrix. The default is
format(%9.0g).
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Remarks and examples
Remarks are presented under the following headings:

Marginal effects
Obtaining predicted values

Marginal effects
Below, we discuss the interpretation of predictions with the asf and fixedasf options for the ML

estimator using margins.

The model is defined by two equations. The first is the equation for the outcome of interest, given by

𝑦∗
1𝑖 = y2𝑖β + x1𝑖𝛄 + 𝑢𝑖

where we do not observe 𝑦∗
1𝑖; instead, we observe

𝑦1𝑖 =
⎧{
⎨{⎩

𝑎 𝑦∗
1𝑖 < 𝑎

𝑦∗
1𝑖 𝑎 ≤ 𝑦∗

1𝑖 ≤ 𝑏
𝑏 𝑦∗

1𝑖 > 𝑏

The second is the equation for the endogenous covariates, y2𝑖,

y2𝑖 = x1𝑖𝚷1 + x2𝑖𝚷2 + v𝑖

This last equation is the difference between a standard tobit model and the model fit by ivtobit. y2𝑖
is modeled by an exogenous component, x1𝑖𝚷1 + x2𝑖𝚷2, and a component that is correlated with 𝑢𝑖
and causes the endogeneity problem, v𝑖. The ASF linear prediction conditions on an estimate of v̂𝑖. It is

given by

�̂�𝑖 =𝐸 (𝑦1𝑖|x1𝑖,x2𝑖, 𝑦2𝑖, v̂𝑖)

�̂�𝑖 =y2𝑖θ̂1 + x1𝑖θ̂2 + v̂𝑖θ̂3

Because the correlation between v𝑖 and 𝑢𝑖 is the problem we intended to address, conditioning on v𝑖
purges the model of endogeneity. Using the ASF, we can get derivatives and contrast. See Wooldridge

(2010) and Blundell and Powell (2003) for an in-depth discussion of ASFs and their interpretation.
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The fixed ASF, estimated when the fixedasf option is specified, has a different interpretation. Sup-
pose we wanted to analyze y2𝑖β+x1𝑖𝛄+𝑢𝑖 at two different values of y2, the original y2 and y2 +1. We

want the average difference at these two points for the given values of the other covariates. The values of

the covariates are not arrived at via the model; they are fixed by fiat. You can think of them as potential

outcomes. The difference of the two values of y2 is given by

{(y2𝑖 + 1)β + x1𝑖𝛄 + 𝑢𝑖} − (y2𝑖β + x1𝑖𝛄 + 𝑢𝑖)

If we average over the distribution of 𝑢, we obtain

𝐸 {(y2𝑖 + 1)β + x1𝑖𝛄} − 𝐸 (y2𝑖β + x1𝑖𝛄)

We do not account for endogeneity because the values of the covariates are given and fixed. If the

research question you are pursuing after fitting the model has this interpretation, fixedasf gives you an
adequate prediction. If, however, you do not want to treat the covariates as fixed, you should account for

endogeneity and use asf predictions.

Example 1: Obtaining marginal effects
We can obtain average marginal effects by using the margins command after ivtobit. For the

social-media model of example 1 in [R] ivtobit, suppose that we wanted to know the average marginal

effects on the probability of spending more than 12 hours using social media. Average marginal effects

are equivalent to estimating how a change in a covariate affects every individual in our sample and taking

the average of these effects. The effect of each covariate is estimated with all other covariates kept at

their observed values.

. use https://www.stata-press.com/data/r18/smedia
(Fictional data on hours spent on social media)
. ivtobit hsocial i.sphone i.computer i.year (hstudy = tvhours i.pedu), ul(12)
(output omitted )

. margins, dydx(*) predict(p(12, .))
Average marginal effects Number of obs = 1,324
Model VCE: OIM
Expression: Pr(hsocial>12), predict(p(12, .))
dy/dx wrt: hstudy 1.sphone 1.computer 2.year 3.year 4.year

Delta-method
dy/dx std. err. z P>|z| [95% conf. interval]

hstudy -.1508219 .0044544 -33.86 0.000 -.1595523 -.1420914
1.sphone .3943071 .0085181 46.29 0.000 .3776119 .4110022

1.computer .3993489 .0082484 48.42 0.000 .3831824 .4155154

year
2 .0663908 .0120746 5.50 0.000 .042725 .0900567
3 .1334667 .012488 10.69 0.000 .1089908 .1579426
4 .2343393 .0123729 18.94 0.000 .2100888 .2585897

Note: dy/dx for factor levels is the discrete change from the base level.
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Having a smartphone increases the probability of spending more than 12 hours on social media by 0.39,

on average. Any additional study time decreases the probability of spending more than 12 hours using

social media by 0.15, on average. The other average marginal effects are interpreted similarly. All

effects above have a structural interpretation because we are conditioning on the level of endogeneity.

See Wooldridge (2010) and Blundell and Powell (2003) for an in-depth discussion of ASFs and their

interpretation.

Obtaining predicted values
After fitting your model with ivtobit, you can obtain the linear prediction and its standard error for

both the estimation sample and other samples by using the predict command. If you used the ML esti-

mator, you can also obtain the linear prediction, the conditional expected values of the observed and latent

dependent variables, and the probability of observing the dependent variable in a specified interval—each

of these can be computed with an ASF or a fixed ASF interpretation. In addition, with the ML estimator,

you can obtain the standard error of the forecast. See [U] 20 Estimation and postestimation commands

and [R] predict.

Stored results
estat correlation stores the following results in r():

Matrices

r(corr) correlation matrix of the errors

estat covariance stores the following results in r():

Matrices

r(cov) covariance matrix of the errors

Methods and formulas
The linear prediction is calculated as z𝑖

̂δ, where ̂δ is the estimated value of δ, and z𝑖 and δ are defined
in (1𝑎) of [R] ivtobit. Expected values and probabilities are calculated using the same formulas as those
used by the standard tobit model. However, when we use the default asf option with mean, pr(a,b),
e(a,b), or ystar(a,b), instead of evaluating the standard normal cumulative density and probability
density at the linear prediction, we evaluate expected values and probabilities at �̂�𝑖, where �̂�𝑖 is defined

in Methods and formulas of [R] ivtobit. Using �̂�𝑖 instead of z𝑖
̂δ in the formulas produces theASF, which

accounts for endogeneity. The fixed ASF, obtained with the fixedasf option, evaluates the statistic at
z𝑖

̂δ.
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Also see
[R] ivtobit — Tobit model with continuous endogenous covariates

[U] 20 Estimation and postestimation commands



jackknife — Jackknife estimation

Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas References Also see

Description
jackknife performs jackknife estimation of the specified statistics (or expressions) for a Stata com-

mand or a user-written program. Statistics are jackknifed by estimating the command once for each

observation or cluster in the dataset, leaving the associated observation or cluster out of the calculations.

jackknife is designed for use with nonestimation commands, functions of coefficients, or user-written
programs. To jackknife coefficients, we recommend using the vce(jackknife) option when allowed
by the estimation command.

Quick start
Jackknife estimate of the standard deviation of v1 returned by summarize in r(sd)

jackknife sd=r(sd), rclass: summarize v1

Jackknife estimate of the statistic r(mystat) returned by rclass program myprog1 that returns the sample
size in r(N)

jackknife stat=r(mystat), rclass: myprog1 v1

Same as above, and save the results from each replication in mydata.dta
jackknife stat=r(mystat), rclass saving(mydata): myprog1 v1

Jackknife estimate of a difference in coefficients estimated by regress
jackknife diff=(_b[x2]-_b[x1]): regress y x1 x2 x3

Jackknife estimate of the statistic e(mystat) returned by eclass program myprog2 that returns the sample
size in e(N)

jackknife stat=e(mystat), eclass: myprog2 y x1 x2 x3

Jackknife estimates of coefficients stored in e(b) by myprog2
jackknife _b, eclass: myprog2 y x1 x2 x3

Add variables containing the pseudovalues of the coefficients to the dataset

jackknife _b, eclass keep: myprog2 y x1 x2 x3

Menu
Statistics > Resampling > Jackknife estimation

1430
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Syntax
jackknife exp list [ , options eform option ] : command

options Description

Main

eclass number of observations used is stored in e(N)
rclass number of observations used is stored in r(N)
n(exp) specify exp that evaluates to the number of observations used

Options

cluster(varlist) variables identifying sample clusters

idcluster(newvar) create new cluster ID variable

saving( filename, . . .) save results to filename; save statistics in double precision;

save results to filename every # replications

keep keep pseudovalues

mse use MSE formula for variance estimation

Reporting

level(#) set confidence level; default is level(95)
notable suppress table of results

noheader suppress table header

nolegend suppress table legend

verbose display the full table legend

nodots suppress replication dots

dots(#) display dots every # replications

noisily display any output from command

trace trace command

title(text) use text as title for jackknife results

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

eform option display coefficient table in exponentiated form

Advanced

nodrop do not drop observations

reject(exp) identify invalid results

coeflegend display legend instead of statistics

command is any command that follows standard Stata syntax. All weight types supported by command are allowed except
aweights; see [U] 11.1.6 weight.

collect and svy are allowed; see [U] 11.1.10 Prefix commands.

coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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exp list contains (name: elist)
elist

eexp

elist contains newvar = (exp)
(exp)

eexp is specname

[eqno]specname
specname is b

b[]
se
se[]

eqno is # #
name

exp is a standard Stata expression; see [U] 13 Functions and expressions.

Distinguish between [ ], which are to be typed, and [ ], which indicate optional arguments.

Options

� � �
Main �

eclass, rclass, and n(exp) specify where command stores the number of observations on which it

based the calculated results. We strongly advise you to specify one of these options.

eclass specifies that command store the number of observations in e(N).

rclass specifies that command store the number of observations in r(N).

n(exp) specifies an expression that evaluates to the number of observations used. Specifying

n(r(N)) is equivalent to specifying the rclass option. Specifying n(e(N)) is equivalent to specify-
ing the eclass option. If command stores the number of observations in r(N1), specify n(r(N1)).

If you specify no options, jackknife will assume eclass or rclass, depending on which of e(N)
and r(N) is not missing (in that order). If both e(N) and r(N) are missing, jackknife assumes that
all observations in the dataset contribute to the calculated result. If that assumption is incorrect, the

reported standard errors will be incorrect. For instance, say that you specify

. jackknife coef=_b[x2]: myreg y x1 x2 x3

where myreg uses e(n) instead of e(N) to identify the number of observations used in calculations.
Further assume that observation 42 in the dataset has x3 equal to missing. The 42nd observation plays
no role in obtaining the estimates, but jackknife has no way of knowing that and will use the wrong
𝑁. If, on the other hand, you specify

. jackknife coef=_b[x2], n(e(n)): myreg y x1 x2 x3

jackknife will notice that observation 42 plays no role. The n(e(n)) option is specified because
myreg is an estimation command but it stores the number of observations used in e(n) (instead of
the standard e(N)). When jackknife runs the regression omitting the 42nd observation, jackknife
will observe that e(n) has the same value as when jackknife previously ran the regression using
all the observations. Thus jackknife will know that myreg did not use the observation.
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� � �
Options �

cluster(varlist) specifies the variables identifying sample clusters. If cluster() is specified, one

cluster is left out of each call to command, instead of 1 observation.

idcluster(newvar) creates a new variable containing a unique integer identifier for each resampled

cluster, starting at 1 and leading up to the number of clusters. This option may be specified only when
the cluster() option is specified. idcluster() helps identify the cluster to which a pseudovalue
belongs.

saving( filename[ , suboptions ]) creates a Stata data file (.dta file) consisting of (for each statistic in
exp list) a variable containing the replicates.

double specifies that the results for each replication be saved as doubles, meaning 8-byte reals. By
default, they are saved as floats, meaning 4-byte reals. This option may be used without the
saving() option to compute the variance estimates by using double precision.

every(#) specifies that results be written to disk every #th replication. every() should be specified
only in conjunction with saving() when command takes a long time for each replication. This
option will allow recovery of partial results should some other software crash your computer. See

[P] postfile.

replace specifies that filename be overwritten if it exists. This option does not appear in the dialog
box.

keep specifies that new variables be added to the dataset containing the pseudovalues of the requested

statistics. For instance, if you typed

. jackknife coef=_b[x2], eclass keep: regress y x1 x2 x3

new variable coef would be added to the dataset containing the pseudovalues for b[x2]. Let 𝑏 be
the value of b[x2] when all observations are used to fit the model, and let 𝑏(𝑗) be the value when
the 𝑗th observation is omitted. The pseudovalues are defined as

pseudovalue𝑗 = 𝑁 {𝑏 − 𝑏(𝑗)} + 𝑏(𝑗)

where 𝑁 is the number of observations used to produce 𝑏.
When the cluster() option is specified, each cluster is given at most one nonmissing pseudovalue.
The keep option implies the nodrop option.

mse specifies that jackknife compute the variance by using deviations of the replicates from the ob-

served value of the statistics based on the entire dataset. By default, jackknife computes the variance
by using deviations of the pseudovalues from their mean.

� � �
Reporting �

level(#); see [R] Estimation options.

notable suppresses the display of the table of results.

noheader suppresses the display of the table header. This option implies nolegend.

nolegend suppresses the display of the table legend. The table legend identifies the rows of the table
with the expressions they represent.

verbose specifies that the full table legend be displayed. By default, coefficients and standard errors are
not displayed.
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nodots and dots(#) specify whether to display replication dots. By default, one dot character is dis-
played for each successful replication. An “x” is displayed if command returns an error or if any value

in exp list is missing. You can also control whether dots are displayed using set dots; see [R] set.

nodots suppresses display of the replication dots.

dots(#) displays dots every # replications. dots(0) is a synonym for nodots.

noisily specifies that any output from command be displayed. This option implies the nodots option.

trace causes a trace of the execution of command to be displayed. This option implies the noisily
option.

title(text) specifies a title to be displayed above the table of jackknife results; the default title is

Jackknife results or what is produced in e(title) by an estimation command.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

eform option causes the coefficient table to be displayed in exponentiated form; see [R] eform option.

command determines which eform option is allowed (eform(string) and eform are always allowed).

command determines which of the following are allowed (eform(string) and eform are always al-
lowed):

eform option Description

eform(string) use string for the column title

eform exponentiated coefficient, string is exp(b)
hr hazard ratio, string is Haz. ratio
shr subhazard ratio, string is SHR
irr incidence-rate ratio, string is IRR
or odds ratio, string is Odds ratio
rrr relative-risk ratio, string is RRR

� � �
Advanced �

nodrop prevents observations outside e(sample) and the if and in qualifiers from being dropped

before the data are resampled.

reject(exp) identifies an expression that indicates when results should be rejected. When exp is true,

the resulting values are reset to missing values.

The following option is available with jackknife but is not shown in the dialog box:

coeflegend; see [R] Estimation options.
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Remarks and examples
Remarks are presented under the following headings:

Introduction
Using jackknife
Jackknifed standard deviation
Collecting multiple statistics
Collecting coefficients

Introduction
Although the jackknife—developed in the late 1940s and early 1950s—is of largely historical interest

today, it is still useful in searching for overly influential observations. This feature is often forgotten. In

any case, the jackknife is

• an alternative, first-order unbiased estimator for a statistic;

• a data-dependent way to calculate the standard error of the statistic and to obtain significance levels

and confidence intervals; and

• a way of producing measures called pseudovalues for each observation, reflecting the observation’s

influence on the overall statistic.

The idea behind the simplest form of the jackknife—the one implemented here—is to repeatedly calcu-

late the statistic in question, each time omitting just one of the dataset’s observations. Assume that our

statistic of interest is the sample mean. Let 𝑦𝑗 be the 𝑗th observation of our data on some measurement
𝑦, where 𝑗 = 1, . . . , 𝑁 and 𝑁 is the sample size. If 𝑦 is the sample mean of 𝑦 using the entire dataset and
𝑦(𝑗) is the mean when the 𝑗th observation is omitted, then

𝑦 =
(𝑁 − 1) 𝑦(𝑗) + 𝑦𝑗

𝑁

Solving for 𝑦𝑗, we obtain

𝑦𝑗 = 𝑁 𝑦 − (𝑁 − 1) 𝑦(𝑗)

These are the pseudovalues that jackknife calculates. To move this discussion beyond the sample

mean, let ̂𝜃 be the value of our statistic (not necessarily the sample mean) using the entire dataset, and
let ̂𝜃(𝑗) be the computed value of our statistic with the 𝑗th observation omitted. The pseudovalue for the
𝑗th observation is

̂𝜃∗
𝑗 = 𝑁 ̂𝜃 − (𝑁 − 1) ̂𝜃(𝑗)

The mean of the pseudovalues is the alternative, first-order unbiased estimator mentioned above, and the

standard error of the mean of the pseudovalues is an estimator for the standard error of ̂𝜃 (Tukey 1958).
The jackknife estimate of variance has been largely replaced by the bootstrap estimate (see [R] boot-

strap), which is widely viewed as more efficient and robust. The use of jackknife pseudovalues to detect

outliers is too often forgotten and is something the bootstrap does not provide. See Mosteller and Tukey

(1977, 133–163) and Mooney and Duval (1993, 22–27) for more information.
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Using jackknife
Typing

. jackknife exp list: command

executes command once for each observation in the dataset, leaving the associated observation out of the

calculations that make up exp list.

command defines the statistical command to be executed. Most Stata commands and user-written

programs can be used with jackknife, as long as they follow standard Stata syntax and allow the if
qualifier; see [U] 11 Language syntax. The by prefix may not be part of command.

exp list specifies the statistics to be collected from the execution of command. If command changes

the contents in e(b), exp list is optional and defaults to b.

When the cluster() option is given, clusters are omitted instead of observations, and 𝑁 is the num-

ber of clusters instead of the sample size.

Example 1
As our first example, we will show that the jackknife standard error of the sample mean is equiv-

alent to the standard error of the sample mean computed using the classical formula in the ci means
command. We use the double option to compute the standard errors with the same precision as the ci
means command.

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. jackknife r(mean), double: summarize mpg
(running summarize on estimation sample)
Jackknife replications (74): .........10.........20.........30.........40......
> ...50.........60.........70.... done
Jackknife results Number of obs = 74

Replications = 74
Command: summarize mpg
_jk_1: r(mean)

n(): r(N)

Jackknife
Coefficient std. err. t P>|t| [95% conf. interval]

_jk_1 21.2973 .6725511 31.67 0.000 19.9569 22.63769

. ci means mpg
Variable Obs Mean Std. err. [95% conf. interval]

mpg 74 21.2973 .6725511 19.9569 22.63769
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Jackknifed standard deviation

Example 2
Mosteller and Tukey (1977, 139–140) request a 95% confidence interval for the standard deviation

of the 11 values:

0.1, 0.1, 0.1, 0.4, 0.5, 1.0, 1.1, 1.3, 1.9, 1.9, 4.7

Stata’s summarize command calculates the mean and standard deviation and stores them as r(mean)
and r(sd). To obtain the jackknifed standard deviation of the 11 values and save the pseudovalues as a
new variable, sd, we would type

. clear

. input x
x

1. 0.1
2. 0.1
3. 0.1
4. 0.4
5. 0.5
6. 1.0
7. 1.1
8. 1.3
9. 1.9

10. 1.9
11. 4.7
12. end
. jackknife sd=r(sd), rclass keep: summarize x
(running summarize on estimation sample)
Jackknife replications (11): .........10. done
Jackknife results Number of obs = 11

Replications = 11
Command: summarize x

sd: r(sd)
n(): r(N)

Jackknife
Coefficient std. err. t P>|t| [95% conf. interval]

sd 1.343469 .624405 2.15 0.057 -.047792 2.73473

Interpreting the output, the standard deviation reported by summarize mpg is 1.34. The jackknife stan-
dard error is 0.62. The 95% confidence interval for the standard deviation is −0.048 to 2.73.
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By specifying keep, jackknife creates in our dataset a new variable, sd, for the pseudovalues.

. list, sep(4)

x sd

1. .1 1.139977
2. .1 1.139977
3. .1 1.139977
4. .4 .8893147

5. .5 .824267
6. 1 .632489
7. 1.1 .6203189
8. 1.3 .6218889

9. 1.9 .835419
10. 1.9 .835419
11. 4.7 7.703949

The jackknife estimate is the average of the sd variable, so sd contains the individual values of our

statistic. We can see that the last observation is substantially larger than the others. The last observation

is certainly an outlier, but whether that reflects the considerable information it contains or indicates that

it should be excluded from analysis depends on the context of the problem. Mosteller and Tukey created

the data by sampling from an exponential distribution, so the observation is informative.

Example 3
Let’s repeat the example above using the automobile dataset, obtaining the standard error of the stan-

dard deviation of mpg.

. use https://www.stata-press.com/data/r18/auto, clear
(1978 automobile data)
. jackknife sd=r(sd), rclass keep: summarize mpg
(running summarize on estimation sample)
Jackknife replications (74): .........10.........20.........30.........40......
> ...50.........60.........70.... done
Jackknife results Number of obs = 74

Replications = 74
Command: summarize mpg

sd: r(sd)
n(): r(N)

Jackknife
Coefficient std. err. t P>|t| [95% conf. interval]

sd 5.785503 .6072509 9.53 0.000 4.575254 6.995753
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Let’s look at sd more carefully:

. summarize sd, detail
pseudovalues: r(sd)

Percentiles Smallest
1% 2.870471 2.870471
5% 2.870471 2.870471
10% 2.906255 2.870471 Obs 74
25% 3.328489 2.870471 Sum of wgt. 74
50% 3.948335 Mean 5.817374

Largest Std. dev. 5.22377
75% 6.844418 17.34316
90% 9.597018 19.7617 Variance 27.28777
95% 17.34316 19.7617 Skewness 4.07202
99% 38.60905 38.60905 Kurtosis 23.37823
. list make mpg sd if sd > 30

make mpg sd

71. VW Diesel 41 38.60905

Here the VW Diesel is the only diesel car in our dataset.

Collecting multiple statistics

Example 4
jackknife is not limited to collecting just one statistic. For instance, we can use summarize,

detail and then obtain the jackknife estimate of the standard deviation and skewness. summarize,
detail stores the standard deviation in r(sd) and the skewness in r(skewness), so we might type

. use https://www.stata-press.com/data/r18/auto, clear
(1978 automobile data)
. jackknife sd=r(sd) skew=r(skewness), rclass: summarize mpg, detail
(running summarize on estimation sample)
Jackknife replications (74): .........10.........20.........30.........40......
> ...50.........60.........70.... done
Jackknife results Number of obs = 74

Replications = 74
Command: summarize mpg, detail

sd: r(sd)
skew: r(skewness)
n(): r(N)

Jackknife
Coefficient std. err. t P>|t| [95% conf. interval]

sd 5.785503 .6072509 9.53 0.000 4.575254 6.995753
skew .9487176 .3367242 2.82 0.006 .2776272 1.619808
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Collecting coefficients

Example 5
jackknife can also collect coefficients from estimation commands. For instance, using auto.dta,

we might wish to obtain the jackknife standard errors of the coefficients from a regression in which we

model the mileage of a car by its weight and trunk space. To do this, we could refer to the coefficients

as b[weight], b[trunk], se[weight], and se[trunk] in the exp list, or we could simply use

the extended expressions b. In fact, jackknife assumes b by default when used with estimation

commands.

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. jackknife: regress mpg weight trunk
(running regress on estimation sample)
Jackknife replications (74): .........10.........20.........30.........40......
> ...50.........60.........70.... done
Linear regression Number of obs = 74

Replications = 74
F(2, 73) = 78.10
Prob > F = 0.0000
R-squared = 0.6543
Adj R-squared = 0.6446
Root MSE = 3.4492

Jackknife
mpg Coefficient std. err. t P>|t| [95% conf. interval]

weight -.0056527 .0010216 -5.53 0.000 -.0076887 -.0036167
trunk -.096229 .1486236 -0.65 0.519 -.3924354 .1999773
_cons 39.68913 1.873324 21.19 0.000 35.9556 43.42266

If you are going to use jackknife to estimate standard errors of model coefficients, we recommend
using the vce(jackknife) option when it is allowed with the estimation command; see [R] vce option.

. regress mpg weight trunk, vce(jackknife, nodots)
Linear regression Number of obs = 74

Replications = 74
F(2, 73) = 78.10
Prob > F = 0.0000
R-squared = 0.6543
Adj R-squared = 0.6446
Root MSE = 3.4492

Jackknife
mpg Coefficient std. err. t P>|t| [95% conf. interval]

weight -.0056527 .0010216 -5.53 0.000 -.0076887 -.0036167
trunk -.096229 .1486236 -0.65 0.519 -.3924354 .1999773
_cons 39.68913 1.873324 21.19 0.000 35.9556 43.42266
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Technical note
When the jackknife prefix is used with a user-defined program and when the expression list is b,

jackknife calls

set coeftabresults off

before entering the replication loop to prevent Stata from performing unnecessary calculations. This

means that, provided option noisily is not specified, estimation commands will not build or post the
coefficient table matrix r(table).

If your program calls an estimation command and needs r(table) to exist to perform properly, then

your program will need to call

set coeftabresults on

before calling other estimation commands.� �
John Wilder Tukey (1915–2000) was born in Massachusetts. He studied chemistry at Brown and

mathematics at Princeton and afterward worked at both Princeton and Bell Labs, as well as being

involved in a great many government projects, consultancies, and committees. He made outstand-

ing contributions to several areas of statistics, including time series, multiple comparisons, robust

statistics, and exploratory data analysis. Tukey was extraordinarily energetic and inventive, not least

in his use of terminology: he is credited with inventing the terms bit and software, in addition to

ANOVA, boxplot, data analysis, hat matrix, jackknife, stem-and-leaf plot, trimming, and winsorizing,

amongmany others. Tukey’s direct and indirect impacts mark him as one of the greatest statisticians

of all time.� �
Stored results

jackknife stores the following in e():

Scalars

e(N) sample size

e(N reps) number of complete replications

e(N misreps) number of incomplete replications

e(N clust) number of clusters

e(k eq) number of equations in e(b)
e(k extra) number of extra equations

e(k exp) number of expressions

e(k eexp) number of extended expressions ( b or se)
e(df r) degrees of freedom

Macros

e(cmdname) command name from command

e(cmd) same as e(cmdname) or jackknife
e(command) command

e(cmdline) command as typed

e(prefix) jackknife
e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(cluster) cluster variables

e(pseudo) new variables containing pseudovalues

e(nfunction) e(N), r(N), n() option, or empty

https://www.stata.com/giftshop/bookmarks/series3/tukey/
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e(exp#) expression for the #th statistic

e(mse) from mse option
e(vce) jackknife
e(vcetype) title used to label Std. err.

e(properties) b V

Matrices

e(b) observed statistics

e(b jk) jackknife estimates

e(V) jackknife variance–covariance matrix

e(V modelbased) model-based variance

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

When exp list is b, jackknife will also carry forward most of the results already in e() from com-

mand.

Methods and formulas
Let ̂𝜃 be the observed value of the statistic, that is, the value of the statistic calculated using the original

dataset. Let ̂𝜃(𝑗) be the value of the statistic computed by leaving out the jth observation (or cluster); thus

𝑗 = 1, 2, . . . , 𝑁 identifies an individual observation (or cluster), and𝑁 is the total number of observations

(or clusters). The jth pseudovalue is given by

̂𝜃∗
𝑗 = ̂𝜃(𝑗) + 𝑁{ ̂𝜃 − ̂𝜃(𝑗)}

When the mse option is specified, the standard error is estimated as

ŝe = {𝑁 − 1
𝑁

𝑁
∑
𝑗=1

( ̂𝜃(𝑗) − ̂𝜃)2}
1/2

and the jackknife estimate is

𝜃(.) = 1
𝑁

𝑁
∑
𝑗=1

̂𝜃(𝑗)

Otherwise, the standard error is estimated as

ŝe = { 1
𝑁(𝑁 − 1)

𝑁
∑
𝑗=1

( ̂𝜃∗
𝑗 − 𝜃∗)2}

1/2

𝜃∗ = 1
𝑁

𝑁
∑
𝑗=1

̂𝜃∗
𝑗

where 𝜃∗
is the jackknife estimate. The variance–covariance matrix is similarly computed.
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Postestimation commands
The following postestimation commands are available after jackknife:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters

estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian infor-
mation criteria (AIC, CAIC, AICc, and BIC, respectively)

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estimates cataloging estimation results

etable table of estimation results

hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

predict predictions, residuals, influence statistics, and other diagnostic measures

predictnl point estimates, standard errors, testing, and inference for generalized predictions

pwcompare pairwise comparisons of parameters

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

The postestimation command is allowed only if it may be used after command.

predict
The syntax of predict (and whether predict is even allowed) following jackknife depends on

the command used with jackknife.

margins
The syntax of margins (and whether margins is even allowed) following jackknife depends on

the command used with jackknife.

Also see
[R] jackknife — Jackknife estimation

[U] 20 Estimation and postestimation commands
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kappa — Interrater agreement

Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas References

Description
kap and kappa calculate the kappa-statistic measure of interrater agreement. kap calculates the statis-

tic for two unique raters or at least two nonunique raters. kappa calculates only the statistic for nonunique
raters, but it handles the case where data have been recorded as rating frequencies. kapwgt defines

weights used by kap in measuring the importance of disagreements.

Quick start
Calculate interrater agreement for values rater1 and rater2

kap rater1 rater2

Add table of assessments

kap rater1 rater2, tab

Same as above, and apply frequency weights defined by wvar
kap rater1 rater2 [fweight=wvar], tab

Agreement for values from three nonunique raters stored in rater1, rater2, and rater3
kap rater1 rater2 rater3

Add values from an additional three raters stored in rater4, rater5, and rater6
kap rater1-rater6

Use weights 1 − |𝑖 − 𝑗|/(𝑘 − 1) to weight disagreements between rater 1 and rater 2
kap rater1 rater2, wgt(w)

Number of times each subject classified in categories stored in poor, fair, and good
kappa poor fair good

1445



kappa — Interrater agreement 1446

Menu
kap: two unique raters
Statistics > Epidemiology and related > Other > Interrater agreement, two unique raters

kapwgt
Statistics > Epidemiology and related > Other > Define weights for the above (kap)

kap: nonunique raters
Statistics > Epidemiology and related > Other > Interrater agreement, nonunique raters

kappa
Statistics > Epidemiology and related > Other > Interrater agreement, nonunique raters with frequencies

Syntax
Interrater agreement, two unique raters

kap varname1 varname2 [ if ] [ in ] [weight ] [ , options ]

Weights for weighting disagreements

kapwgt wgtid [ 1 \ # 1 [ \ # # 1 ... ] ]

Interrater agreement, nonunique raters, variables record ratings for each rater

kap varname1 varname2 varname3 [. . .] [ if ] [ in ] [weight ]

Interrater agreement, nonunique raters, variables record frequency of ratings

kappa varlist [ if ] [ in ]

options Description

Main

tab display table of assessments

wgt(wgtid) specify how to weight disagreements; see Options for alternatives

absolute treat rating categories as absolute

collect is allowed with kap and kappa; see [U] 11.1.10 Prefix commands.

fweights are allowed; see [U] 11.1.6 weight.
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Options

� � �
Main �

tab displays a tabulation of the assessments by the two raters.

wgt(wgtid) specifies that wgtid be used to weight disagreements. You can define your own weights by
using kapwgt; wgt() then specifies the name of the user-defined matrix. For instance, you might

define

. kapwgt mine 1 \ .8 1 \ 0 .8 1 \ 0 0 .8 1

and then

. kap rata ratb, wgt(mine)

Also, two prerecorded weights are available.

wgt(w) specifies weights 1−|𝑖−𝑗|/(𝑘 −1), where 𝑖 and 𝑗 index the rows and columns of the ratings
by the two raters and 𝑘 is the maximum number of possible ratings.

wgt(w2) specifies weights 1 − {(𝑖 − 𝑗)/(𝑘 − 1)}2.

absolute is relevant only if wgt() is also specified. The absolute option modifies how 𝑖, 𝑗, and 𝑘 are
defined and how corresponding entries are found in a user-defined weightingmatrix. When absolute
is not specified, 𝑖 and 𝑗 refer to the row and column index, not to the ratings themselves. Say that the

ratings are recorded as {0, 1, 1.5, 2}. There are four ratings; 𝑘 = 4, and 𝑖 and 𝑗 are still 1, 2, 3, and 4
in the formulas above. Index 3, for instance, corresponds to rating = 1.5. This system is convenient

but can, with some data, lead to difficulties.

When absolute is specified, all ratings must be integers, and they must be coded from the set

{1, 2, 3, . . .}. Not all values need be used; integer values that do not occur are simply assumed to
be unobserved.

Remarks and examples
Remarks are presented under the following headings:

Two raters
More than two raters

The kappa-statistic measure of agreement is scaled to be 0 when the amount of agreement is what

would be expected to be observed by chance and 1 when there is perfect agreement. For intermediate

values, Landis and Koch (1977a, 165) suggest the following interpretations:

below 0.0 Poor
0.00–0.20 Slight
0.21–0.40 Fair
0.41–0.60 Moderate
0.61–0.80 Substantial
0.81–1.00 Almost perfect
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Two raters

Example 1
Consider the classification by two radiologists of 85 xeromammograms as normal, benign disease,

suspicion of cancer, or cancer (a subset of the data from Boyd et al. [1982] and discussed in the context

of kappa in Altman [1991, 403–405]).

. use https://www.stata-press.com/data/r18/rate2
(Altman p. 403)
. tabulate rada radb
Radiologist

A’s Radiologist B’s assessment
assessment Normal Benign Suspect Cancer Total

Normal 21 12 0 0 33
Benign 4 17 1 0 22

Suspect 3 9 15 2 29
Cancer 0 0 0 1 1

Total 28 38 16 3 85

Our dataset contains two variables: rada, radiologist A’s assessment, and radb, radiologist B’s assess-
ment. Each observation is a patient.

We can obtain the kappa measure of interrater agreement by typing

. kap rada radb
Expected

Agreement agreement Kappa Std. err. Z Prob>Z

63.53% 30.82% 0.4728 0.0694 6.81 0.0000

If each radiologist had made his determination randomly (but with probabilities equal to the overall

proportions), we would expect the two radiologists to agree on 30.8% of the patients. In fact, they agreed

on 63.5% of the patients, or 47.3% of the way between random agreement and perfect agreement. The

amount of agreement indicates that we can reject the hypothesis that they are making their determinations

randomly.
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Example 2: Weighted kappa, prerecorded weight w
There is a difference between two radiologists disagreeing about whether a xeromammogram indicates

cancer or the suspicion of cancer and disagreeing about whether it indicates cancer or is normal. The

weighted kappa attempts to deal with this. kap provides two “prerecorded” weights, w and w2:

. kap rada radb, wgt(w)
Ratings weighted by:

1.0000 0.6667 0.3333 0.0000
0.6667 1.0000 0.6667 0.3333
0.3333 0.6667 1.0000 0.6667
0.0000 0.3333 0.6667 1.0000

Expected
Agreement agreement Kappa Std. err. Z Prob>Z

86.67% 69.11% 0.5684 0.0788 7.22 0.0000

The w weights are given by 1−|𝑖−𝑗|/(𝑘 −1), where 𝑖 and 𝑗 index the rows of columns of the ratings
by the two raters and 𝑘 is the maximum number of possible ratings. The weighting matrix is printed

above the table. Here the rows and columns of the 4×4 matrix correspond to the ratings normal, benign,

suspicious, and cancerous.

Aweight of 1 indicates that an observation should count as perfect agreement. Thematrix has 1s down

the diagonals—when both radiologists make the same assessment, they are in agreement. A weight of,

say, 0.6667 means that they are in two-thirds agreement. In our matrix, they get that score if they are “one

apart”—one radiologist assesses cancer and the other is merely suspicious, or one is suspicious and the

other says benign, and so on. An entry of 0.3333 means that they are in one-third agreement, or, if you

prefer, two-thirds disagreement. That is the score attached when they are “two apart”. Finally, they are

in complete disagreement when the weight is zero, which happens only when they are three apart—one

says cancer and the other says normal.

Example 3: Weighted kappa, prerecorded weight w2
The other prerecorded weight is w2, where the weights are given by 1 − {(𝑖 − 𝑗)/(𝑘 − 1)}2:

. kap rada radb, wgt(w2)
Ratings weighted by:

1.0000 0.8889 0.5556 0.0000
0.8889 1.0000 0.8889 0.5556
0.5556 0.8889 1.0000 0.8889
0.0000 0.5556 0.8889 1.0000

Expected
Agreement agreement Kappa Std. err. Z Prob>Z

94.77% 84.09% 0.6714 0.1079 6.22 0.0000

The w2 weight makes the categories even more alike and is probably inappropriate here.
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Example 4: Weighted kappa, user-defined weights
In addition to using prerecorded weights, we can define our own weights with the kapwgt command.

For instance, we might feel that suspicious and cancerous are reasonably similar, that benign and normal

are reasonably similar, but that the suspicious/cancerous group is nothing like the benign/normal group:

. kapwgt xm 1 \ .8 1 \ 0 0 1 \ 0 0 .8 1

. kapwgt xm
1.0000
0.8000 1.0000
0.0000 0.0000 1.0000
0.0000 0.0000 0.8000 1.0000

We name the weights xm, and after the weight name, we enter the lower triangle of the weighting matrix,
using \ to separate rows. We have four outcomes, so we continued entering numbers until we had defined

the fourth row of the weighting matrix. If we type kapwgt followed by a name and nothing else, it shows
us the weights recorded under that name. Satisfied that we have entered them correctly, we now use the

weights to recalculate kappa:

. kap rada radb, wgt(xm)
Ratings weighted by:

1.0000 0.8000 0.0000 0.0000
0.8000 1.0000 0.0000 0.0000
0.0000 0.0000 1.0000 0.8000
0.0000 0.0000 0.8000 1.0000

Expected
Agreement agreement Kappa Std. err. Z Prob>Z

80.47% 52.67% 0.5874 0.0865 6.79 0.0000

Technical note
In addition to using weights for weighting the differences in categories, you can specify Stata’s

traditional weights for weighting the data. In the examples above, we have 85 observations in our

dataset—one for each patient. If we only knew the table of outcomes—that there were 21 patients

rated normal by both radiologists, etc.—it would be easier to enter the table into Stata and work from it.

The easiest way to enter the data is with tabi; see [R] tabulate twoway.

. tabi 21 12 0 0 \ 4 17 1 0 \ 3 9 15 2 \ 0 0 0 1, replace
col

row 1 2 3 4 Total

1 21 12 0 0 33
2 4 17 1 0 22
3 3 9 15 2 29
4 0 0 0 1 1

Total 28 38 16 3 85
Pearson chi2(9) = 77.8111 Pr = 0.000
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tabi reported the Pearson 𝜒2 for this table, but we do not care about it. The important thing is that, with

the replace option, tabi left the table in memory:

. list in 1/5

row col pop

1. 1 1 21
2. 1 2 12
3. 1 3 0
4. 1 4 0
5. 2 1 4

The variable row is radiologist A’s assessment, col is radiologist B’s assessment, and pop is the number
so assessed by both. Thus,

. kap row col [fweight=pop]
Expected

Agreement agreement Kappa Std. err. Z Prob>Z

63.53% 30.82% 0.4728 0.0694 6.81 0.0000

If we are going to keep these data, the names row and col are not indicative of what the data reflect. We

could type (see [U] 12.6 Dataset, variable, and value labels)

. rename row rada

. rename col radb

. label var rada ”Radiologist A’s assessment”

. label var radb ”Radiologist B’s assessment”

. label define assess 1 normal 2 benign 3 suspect 4 cancer

. label values rada assess

. label values radb assess

. label data ”Altman, page 403”

kap’s tab option, which can be used with or without weighted data, shows the table of assessments:

. kap rada radb [fweight=pop], tab
Radiologist

A’s Radiologist B’s assessment
assessment normal benign suspect cancer Total

normal 21 12 0 0 33
benign 4 17 1 0 22

suspect 3 9 15 2 29
cancer 0 0 0 1 1

Total 28 38 16 3 85
Expected

Agreement agreement Kappa Std. err. Z Prob>Z

63.53% 30.82% 0.4728 0.0694 6.81 0.0000
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Technical note
You have data on individual patients. There are two raters, and the possible ratings are 1, 2, 3, and 4,

but neither rater ever used rating 3:

. use https://www.stata-press.com/data/r18/rate2no3, clear

. tabulate ratera raterb
Rater B

Rater A 1 2 4 Total

1 6 4 3 13
2 5 3 3 11
4 1 1 26 28

Total 12 8 32 52

Here kapwould determine that the ratings are from the set {1, 2, 4} because those were the only values
observed. kap would expect a user-defined weighting matrix to be 3 × 3, and if it were not, kap would
issue an error message. In the formula-based weights, the calculation would be based on 𝑖, 𝑗 = 1, 2, 3
corresponding to the three observed ratings {1, 2, 4}.

Specifying the absolute option would clarify that the ratings are 1, 2, 3, and 4; it just so happens that
rating 3 was never assigned. If a user-defined weighting matrix were also specified, kap would expect
it to be 4 × 4 or larger (larger because we can think of the ratings being 1, 2, 3, 4, 5, . . . and it just so
happens that ratings 5, 6, . . .were never observed, just as rating 3 was not observed). In the formula-based

weights, the calculation would be based on 𝑖, 𝑗 = 1, 2, 4.
. kap ratera raterb, wgt(w)
Ratings weighted by:

1.0000 0.5000 0.0000
0.5000 1.0000 0.5000
0.0000 0.5000 1.0000

Expected
Agreement agreement Kappa Std. err. Z Prob>Z

79.81% 57.17% 0.5285 0.1169 4.52 0.0000
. kap ratera raterb, wgt(w) absolute
Ratings weighted by:

1.0000 0.6667 0.0000
0.6667 1.0000 0.3333
0.0000 0.3333 1.0000

Expected
Agreement agreement Kappa Std. err. Z Prob>Z

81.41% 55.08% 0.5862 0.1209 4.85 0.0000

If all conceivable ratings are observed in the data, specifying absolute makes no difference. For

instance, if rater A assigns ratings {1, 2, 4} and rater B assigns {1, 2, 3, 4}, the complete set of assigned
ratings is {1, 2, 3, 4}, the same that absolute would specify. Without absolute, it makes no difference
whether the ratings are coded {1, 2, 3, 4}, {0, 1, 2, 3}, {1, 7, 9, 100}, {0, 1, 1.5, 2.0}, or otherwise.
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More than two raters
For more than two raters, the mathematics are such that the two raters are not considered unique. For

instance, if there are three raters, there is no assumption that the three raters who rate the first subject are

the same as the three raters who rate the second. Although we call this the “more than two raters” case,

it can be used with two raters when the raters’ identities vary.

The nonunique rater case can be usefully broken down into three subcases: 1) there are two possible

ratings, which we will call positive and negative; 2) there are more than two possible ratings, but the

number of raters per subject is the same for all subjects; and 3) there are more than two possible ratings,

and the number of raters per subject varies. kappa handles all these cases. To emphasize that there is
no assumption of constant identity of raters across subjects, the variables specified contain counts of the

number of raters rating the subject into a particular category.� �
Jacob Cohen (1923–1998) was born in New York City. After studying psychology at City College

of New York and New York University, he worked as a medical psychologist until 1959 when he

became a full professor in the Department of Psychology at New York University. He made many

contributions to research methods, including the kappa measure. He persistently emphasized the

value of multiple regression and the importance of power and ofmeasuring effects rather than testing

significance.� �
Example 5: Two ratings

Fleiss, Levin, and Paik (2003, 612) offer the following hypothetical ratings by different sets of raters

on 25 subjects:
No. of No. of No. of No. of

Subject raters pos. ratings Subject raters pos. ratings

1 2 2 14 4 3
2 2 0 15 2 0
3 3 2 16 2 2
4 4 3 17 3 1
5 3 3 18 2 1
6 4 1 19 4 1
7 3 0 20 5 4
8 5 0 21 3 2
9 2 0 22 4 0
10 4 4 23 3 0
11 5 5 24 3 3
12 3 3 25 2 2
13 4 4

We have entered these data into Stata, and the variables are called subject, raters, and pos. kappa,
however, requires that we specify variables containing the number of positive ratings and negative rat-

ings, that is, pos and raters-pos:
. use https://www.stata-press.com/data/r18/p612
. generate neg = raters-pos
. kappa pos neg
Two-outcomes, multiple raters:

Kappa Z Prob>Z

0.5415 5.28 0.0000
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We would have obtained the same results if we had typed kappa neg pos.

Example 6: More than two ratings, constant number of raters, kappa
Each of 10 subjects is rated into one of three categories by five raters (Fleiss, Levin, and Paik 2003,

615):

. use https://www.stata-press.com/data/r18/p615, clear

. list

subject cat1 cat2 cat3

1. 1 1 4 0
2. 2 2 0 3
3. 3 0 0 5
4. 4 4 0 1
5. 5 3 0 2

6. 6 1 4 0
7. 7 5 0 0
8. 8 0 4 1
9. 9 1 0 4

10. 10 3 0 2

We obtain the kappa statistic:

. kappa cat1-cat3
Outcome Kappa Z Prob>Z

Category 1 0.2917 2.92 0.0018
Category 2 0.6711 6.71 0.0000
Category 3 0.3490 3.49 0.0002

combined 0.4179 5.83 0.0000

The first part of the output shows the results of calculating kappa for each of the categories separately

against an amalgam of the remaining categories. For instance, the cat1 line is the two-rating kappa,

where positive is cat1 and negative is cat2 or cat3. The test statistic, however, is calculated differently
(seeMethods and formulas). The combined kappa is the appropriately weighted average of the individual

kappas. There is considerably less agreement about the rating of subjects into the first category than there

is for the second.
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Example 7: More than two ratings, constant number of raters, kap
Now, suppose that we have the same data as in the previous example but that the data are organized

differently:

. use https://www.stata-press.com/data/r18/p615b

. list

subject rater1 rater2 rater3 rater4 rater5

1. 1 1 2 2 2 2
2. 2 1 1 3 3 3
3. 3 3 3 3 3 3
4. 4 1 1 1 1 3
5. 5 1 1 1 3 3

6. 6 1 2 2 2 2
7. 7 1 1 1 1 1
8. 8 2 2 2 2 3
9. 9 1 3 3 3 3

10. 10 1 1 1 3 3

Here we would use kap rather than kappa because the variables record ratings for each rater.

. kap rater1 rater2 rater3 rater4 rater5
There are 5 raters per subject:

Outcome Kappa Z Prob>Z

1 0.2917 2.92 0.0018
2 0.6711 6.71 0.0000
3 0.3490 3.49 0.0002

combined 0.4179 5.83 0.0000

It does not matter which rater is which when there are more than two raters.
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Example 8: More than two ratings, varying number of raters, kappa
In this unfortunate case, kappa can be calculated, but there is no test statistic for testing against 𝜅 > 0.

We do nothing differently—kappa calculates the total number of raters for each subject, and, if it is not
a constant, kappa suppresses the calculation of test statistics.

. use https://www.stata-press.com/data/r18/rvary

. list

subject cat1 cat2 cat3

1. 1 1 3 0
2. 2 2 0 3
3. 3 0 0 5
4. 4 4 0 1
5. 5 3 0 2

6. 6 1 4 0
7. 7 5 0 0
8. 8 0 4 1
9. 9 1 0 2

10. 10 3 0 2

. kappa cat1-cat3
Outcome Kappa Z Prob>Z

Category 1 0.2685 . .
Category 2 0.6457 . .
Category 3 0.2938 . .

combined 0.3816 . .
Note: Number of ratings per subject vary; cannot calculate test

statistics.

Example 9: More than two ratings, varying number of raters, kap
This case is similar to the previous example, but the data are organized differently:

. use https://www.stata-press.com/data/r18/rvary2

. list

subject rater1 rater2 rater3 rater4 rater5

1. 1 1 2 2 . 2
2. 2 1 1 3 3 3
3. 3 3 3 3 3 3
4. 4 1 1 1 1 3
5. 5 1 1 1 3 3

6. 6 1 2 2 2 2
7. 7 1 1 1 1 1
8. 8 2 2 2 2 3
9. 9 1 3 . . 3

10. 10 1 1 1 3 3
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Here we specify kap instead of kappa because the variables record ratings for each rater.

. kap rater1-rater5
There are between 3 and 5 (median = 5.00) raters per subject:

Outcome Kappa Z Prob>Z

1 0.2685 . .
2 0.6457 . .
3 0.2938 . .

combined 0.3816 . .
Note: Number of ratings per subject vary; cannot calculate test

statistics.

Stored results
kap and kappa store the following in r():

Scalars

r(N) number of subjects (kap only) r(kappa) kappa

r(prop o) observed proportion of agreement (kap
only)

r(z) 𝑧 statistic

r(prop e) expected proportion of agreement (kap
only)

r(se) standard error for kappa statistic

Methods and formulas
The kappa statistic was first proposed by Cohen (1960). The generalization for weights reflecting

the relative seriousness of each possible disagreement is due to Cohen (1968). The analysis-of-variance

approach for 𝑘 = 2 and 𝑚 ≥ 2 is due to Landis and Koch (1977b). See Altman (1991, 403–409) or

Dunn (2000, chap. 2) for an introductory treatment and Fleiss, Levin, and Paik (2003, chap. 18) for a

more detailed treatment. All formulas below are as presented in Fleiss, Levin, and Paik (2003). Let 𝑚
be the number of raters, and let 𝑘 be the number of rating outcomes.

Methods and formulas are presented under the following headings:

kap: m = 2
kappa: m > 2, k = 2
kappa: m > 2, k > 2



kappa — Interrater agreement 1458

kap: m = 2
Define 𝑤𝑖𝑗 (𝑖 = 1, . . . , 𝑘 and 𝑗 = 1, . . . , 𝑘) as the weights for agreement and disagreement (wgt()),

or, if the data are not weighted, define 𝑤𝑖𝑖 = 1 and 𝑤𝑖𝑗 = 0 for 𝑖 ≠ 𝑗. If wgt(w) is specified, 𝑤𝑖𝑗 =
1 − |𝑖 − 𝑗|/(𝑘 − 1). If wgt(w2) is specified, 𝑤𝑖𝑗 = 1 − {(𝑖 − 𝑗)/(𝑘 − 1)}2

.

The observed proportion of agreement is

𝑝𝑜 =
𝑘

∑
𝑖=1

𝑘
∑
𝑗=1

𝑤𝑖𝑗𝑝𝑖𝑗

where 𝑝𝑖𝑗 is the fraction of ratings 𝑖 by the first rater and 𝑗 by the second. The expected proportion of
agreement is

𝑝𝑒 =
𝑘

∑
𝑖=1

𝑘
∑
𝑗=1

𝑤𝑖𝑗𝑝𝑖⋅𝑝⋅𝑗

where 𝑝𝑖⋅ = ∑𝑗 𝑝𝑖𝑗 and 𝑝⋅𝑗 = ∑𝑖 𝑝𝑖𝑗.

Kappa is given by ̂𝜅 = (𝑝𝑜 − 𝑝𝑒)/(1 − 𝑝𝑒).
The standard error of ̂𝜅 for testing against 0 is

̂𝑠0 = 1
(1 − 𝑝𝑒)

√
𝑛

([∑
𝑖

∑
𝑗

𝑝𝑖⋅𝑝⋅𝑗{𝑤𝑖𝑗 − (𝑤𝑖⋅ + 𝑤⋅𝑗)}2] − 𝑝2
𝑒)

1/2

where 𝑛 is the number of subjects being rated, 𝑤𝑖⋅ = ∑𝑗 𝑝⋅𝑗𝑤𝑖𝑗, and 𝑤⋅𝑗 = ∑𝑖 𝑝𝑖⋅𝑤𝑖𝑗. The test statistic

𝑍 = ̂𝜅/ ̂𝑠0 is assumed to be distributed 𝑁(0, 1).

kappa: m > 2, k = 2
Each subject 𝑖, 𝑖 = 1, . . . , 𝑛, is found by 𝑥𝑖 of𝑚𝑖 raters to be positive (the choice as to what is labeled

positive is arbitrary).

The overall proportion of positive ratings is 𝑝 = ∑𝑖 𝑥𝑖/(𝑛𝑚), where 𝑚 = ∑𝑖 𝑚𝑖/𝑛. The between-
subjects mean square is (approximately)

𝐵 = 1
𝑛

∑
𝑖

(𝑥𝑖 − 𝑚𝑖𝑝)2

𝑚𝑖

and the within-subject mean square is

𝑊 = 1
𝑛(𝑚 − 1)

∑
𝑖

𝑥𝑖(𝑚𝑖 − 𝑥𝑖)
𝑚𝑖

Kappa is then defined as

̂𝜅 = 𝐵 − 𝑊
𝐵 + (𝑚 − 1)𝑊
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The standard error for testing against 0 (Fleiss and Cuzick 1979) is approximately equal to and is

calculated as

̂𝑠0 = 1
(𝑚 − 1)

√
𝑛𝑚𝐻

{2(𝑚𝐻 − 1) + (𝑚 − 𝑚𝐻)(1 − 4𝑝𝑞)
𝑚𝑝𝑞

}
1/2

where 𝑚𝐻 is the harmonic mean of 𝑚𝑖 and 𝑞 = 1 − 𝑝.
The test statistic 𝑍 = ̂𝜅/ ̂𝑠0 is assumed to be distributed 𝑁(0, 1).

kappa: m > 2, k > 2
Let 𝑥𝑖𝑗 be the number of ratings on subject 𝑖, 𝑖 = 1, . . . , 𝑛, into category 𝑗, 𝑗 = 1, . . . , 𝑘. Define 𝑝𝑗 as

the overall proportion of ratings in category 𝑗, 𝑞𝑗 = 1− 𝑝𝑗, and let ̂𝜅𝑗 be the kappa statistic given above

for 𝑘 = 2 when category 𝑗 is compared with the amalgam of all other categories. Kappa is

𝜅 =
∑
𝑗

𝑝𝑗𝑞𝑗 ̂𝜅𝑗

∑
𝑗

𝑝𝑗𝑞𝑗

(Landis and Koch 1977b). In the case where the number of raters per subject, ∑𝑗 𝑥𝑖𝑗, is a constant 𝑚 for

all 𝑖, Fleiss, Nee, and Landis (1979) derived the following formulas for the approximate standard errors.
The standard error for testing ̂𝜅𝑗 against 0 is

̂𝑠𝑗 = { 2
𝑛𝑚(𝑚 − 1)

}
1/2

and the standard error for testing 𝜅 is

𝑠 =
√

2
∑
𝑗

𝑝𝑗𝑞𝑗√𝑛𝑚(𝑚 − 1)
{(∑

𝑗
𝑝𝑗𝑞𝑗)

2
− ∑

𝑗
𝑝𝑗𝑞𝑗(𝑞𝑗 − 𝑝𝑗)}

1/2
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kdensity — Univariate kernel density estimation

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Acknowledgments References Also see

Description
kdensity produces kernel density estimates and graphs the result.

Quick start
Graph of the kernel density estimate for v1

kdensity v1

Add a normal curve

kdensity v1, normal

With a kernel bandwidth of 2

kdensity v1, bwidth(2)

Gaussian kernel function for v1
kdensity v1, kernel(gaussian)

Kernel density estimate for v1 and v2 in the same graph area
twoway kdensity v1 || kdensity v2

Separate graphs of kernel density estimate of v1 for each level of catvar
twoway kdensity v1, by(catvar)

Kernel density estimates of v1 for catvar = 0 and 1 in the same graph area

twoway kdensity v1 if catvar==0 || kdensity v1 if catvar==1

Menu
Statistics > Nonparametric analysis > Kernel density estimation

1461
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Syntax
kdensity varname [ if ] [ in ] [weight ] [ , options ]

options Description

Main

kernel(kernel) specify kernel function; default is kernel(epanechnikov)
bwidth(#) half-width of kernel

generate(newvar𝑥 newvar𝑑) store the estimation points in newvar𝑥 and the density
estimate in newvar𝑑

n(#) estimate density using # points; default is min(𝑁, 50)

at(var𝑥) estimate density using the values specified by var𝑥
nograph suppress graph

Kernel plot

cline options affect rendition of the plotted kernel density estimate

Density plots

normal add normal density to the graph

normopts(cline options) affect rendition of normal density

student(#) add Student’s 𝑡 density with # degrees of freedom to the graph

stopts(cline options) affect rendition of the Student’s 𝑡 density

Add plots

addplot(plot) add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

kernel Description

epanechnikov Epanechnikov kernel function; the default

epan2 alternative Epanechnikov kernel function

biweight biweight kernel function

cosine cosine trace kernel function

gaussian Gaussian kernel function

parzen Parzen kernel function

rectangle rectangle kernel function

triangle triangle kernel function

collect is allowed; see [U] 11.1.10 Prefix commands.

fweights, aweights, and iweights are allowed; see [U] 11.1.6 weight.
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Options

� � �
Main �

kernel(kernel) specifies the kernel function for use in calculating the kernel density estimate. The

default kernel is the Epanechnikov kernel (epanechnikov).

bwidth(#) specifies the half-width of the kernel, the width of the density window around each point.

If bwidth() is not specified, the “optimal” width is calculated and used. The optimal width is the
width that would minimize the mean integrated squared error if the data were Gaussian and a Gaussian

kernel were used, so it is not optimal in any global sense. In fact, for multimodal and highly skewed

densities, this width is usually too wide and oversmooths the density (Silverman 1986).

generate(newvar𝑥 newvar𝑑) stores the results of the estimation. newvar𝑥 will contain the points at

which the density is estimated. newvar𝑑 will contain the density estimate.

n(#) specifies the number of points at which the density estimate is to be evaluated. The default is

min(𝑁, 50), where 𝑁 is the number of observations in memory.

at(var𝑥) specifies a variable that contains the values at which the density should be estimated. This op-
tion allows you to more easily obtain density estimates for different variables or different subsamples

of a variable and then overlay the estimated densities for comparison.

nograph suppresses the graph. This option is often used with the generate() option.

� � �
Kernel plot �

cline options affect the rendition of the plotted kernel density estimate. See [G-3] cline options.

� � �
Density plots �

normal requests that a normal density be overlaid on the density estimate for comparison.

normopts(cline options) specifies details about the rendition of the normal curve, such as the color and
style of line used. See [G-3] cline options.

student(#) specifies that a Student’s 𝑡 density with # degrees of freedom be overlaid on the density

estimate for comparison.

stopts(cline options) affects the rendition of the Student’s 𝑡 density. See [G-3] cline options.

� � �
Add plots �

addplot(plot) provides a way to add other plots to the generated graph. See [G-3] addplot option.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see

[G-3] saving option).



kdensity — Univariate kernel density estimation 1464

Remarks and examples
Kernel density estimators approximate the density 𝑓(𝑥) from observations on 𝑥. Histograms do this,

too, and the histogram itself is a kind of kernel density estimate. The data are divided into nonoverlapping

intervals, and counts are made of the number of data points within each interval. Histograms are bar

graphs that depict these frequency counts—the bar is centered at the midpoint of each interval—and its

height reflects the average number of data points in the interval.

In more general kernel density estimates, the range is still divided into intervals, and estimates of the

density at the center of intervals are produced. One difference is that the intervals are allowed to overlap.

We can think of sliding the interval—called a window—along the range of the data and collecting the

center-point density estimates. The second difference is that, rather than merely counting the number of

observations in a window, a kernel density estimator assigns a weight between 0 and 1—based on the

distance from the center of the window—and sums the weighted values. The function that determines

these weights is called the kernel.

Kernel density estimates have the advantages of being smooth and of being independent of the choice

of origin (corresponding to the location of the bins in a histogram).

See Salgado-Ugarte, Shimizu, and Taniuchi (1993) and Fox (1990) for discussions of kernel density

estimators that stress their use as exploratory data-analysis tools.

Cox (2007) gives a lucid introductory tutorial on kernel density estimation with several Stata produced

examples. He provides tips and tricks for working with skewed or bounded distributions and applying

the same techniques to estimate the intensity function of a point process.

Example 1: Histogram and kernel density estimate
Goeden (1978) reports data consisting of 316 length observations of coral trout. Wewish to investigate

the underlying density of the lengths. To begin on familiar ground, we might draw a histogram. In

[R] histogram, we suggest setting the bins to min(
√

𝑛, 10 ⋅ log10𝑛), which for 𝑛 = 316 is roughly 18:

. use https://www.stata-press.com/data/r18/trocolen

. histogram length, bins(18)
(bin=18, start=226, width=19.777778)
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The kernel density estimate, on the other hand, is smooth.

. kdensity length
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kernel = epanechnikov, bandwidth = 20.1510

Kernel density estimate

Kernel density estimators are, however, sensitive to an assumption, just as are histograms. In histograms,

we specify a number of bins. For kernel density estimators, we specify a width. In the graph above, we

used the default width. kdensity is smarter than twoway histogram in that its default width is not a
fixed constant. Even so, the default width is not necessarily best.

kdensity stores the width in the returned scalar bwidth, so typing display r(bwidth) reveals it.
Doing this, we discover that the width is approximately 20.

Widths are similar to the inverse of the number of bins in a histogram in that smaller widths provide

more detail. The units of the width are the units of 𝑥, the variable being analyzed. The width is specified
as a half-width, meaning that the kernel density estimator with half-width 20 corresponds to sliding a

window of size 40 across the data.

We can specify half-widths for ourselves by using the bwidth() option. Smaller widths do not smooth
the density as much:

. kdensity length, bwidth(10)
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. kdensity length, bwidth(15)
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Example 2: Different kernels can produce different results
When widths are held constant, different kernels can produce surprisingly different results. This is

really an attribute of the kernel and width combination; for a given width, some kernels are more sensitive

than others at identifying peaks in the density estimate.

We can see this when using a dataset with lots of peaks. In the automobile dataset, we characterize

the density of weight, the weight of the vehicles. Below, we compare the Epanechnikov and Parzen
kernels.



kdensity — Univariate kernel density estimation 1467

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. kdensity weight, kernel(epanechnikov) nograph generate(x epan)
. kdensity weight, kernel(parzen) nograph generate(x2 parzen)
. label var epan ”Epanechnikov density estimate”
. label var parzen ”Parzen density estimate”
. line epan parzen x, sort ytitle(”Density”) legend(pos(6))
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We did not specify a width, so we obtained the default width. That width is not a function of the selected

kernel, but of the data. See Methods and formulas for the calculation of the optimal width.

Example 3: Density with overlaid normal density
In examining the density estimates, we may wish to overlay a normal density or a Student’s 𝑡 density

for comparison. Using automobile weights, we can get an idea of the distance from normality by using

the normal option.

. kdensity weight, kernel(epanechnikov) normal
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kernel = epanechnikov, bandwidth = 295.7504

Kernel density estimate
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Example 4: Compare two densities
We also may want to compare two or more densities. In this example, we will compare the density

estimates of the weights for the foreign and domestic cars.

. use https://www.stata-press.com/data/r18/auto, clear
(1978 automobile data)
. kdensity weight, nograph generate(x fx)
. kdensity weight if foreign==0, nograph generate(fx0) at(x)
. kdensity weight if foreign==1, nograph generate(fx1) at(x)
. label var fx0 ”Domestic cars”
. label var fx1 ”Foreign cars”
. line fx0 fx1 x, sort ytitle(Density)
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Technical note
Although all the examples we included had densities of less than 1, the density may exceed 1.

The probability density 𝑓(𝑥) of a continuous variable, 𝑥, has the units and dimensions of the recip-
rocal of 𝑥. If 𝑥 is measured in meters, 𝑓(𝑥) has units 1/meter. Thus, the density is not measured on a
probability scale, so it is possible for 𝑓(𝑥) to exceed 1.

To see this, think of a uniform density on the interval 0 to 1. The area under the density curve is 1:

this is the product of the density, which is constant at 1, and the range, which is 1. If the variable is then

transformed by doubling, the area under the curve remains 1 and is the product of the density, constant

at 0.5, and the range, which is 2. Conversely, if the variable is transformed by halving, the area under

the curve also remains at 1 and is the product of the density, constant at 2, and the range, which is 0.5.

(Strictly, the range is measured in certain units, and the density is measured in the reciprocal of those

units, so the units cancel on multiplication.)
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Stored results
kdensity stores the following in r():
Scalars

r(bwidth) kernel bandwidth

r(n) number of points at which the estimate was evaluated

r(scale) density bin width

Macros

r(kernel) name of kernel

Methods and formulas
Akernel density estimate is formed by summing the weighted values calculated with the kernel func-

tion 𝐾, as in

̂𝑓𝐾 = 1
𝑞ℎ

𝑛
∑
𝑖=1

𝑤𝑖𝐾 (𝑥 − 𝑋𝑖
ℎ

)

where 𝑞 = ∑𝑖 𝑤𝑖 if weights are frequency weights (fweight) or analytic weights (aweight), and 𝑞 = 1

if weights are importance weights (iweights). Analytic weights are rescaled so that ∑𝑖 𝑤𝑖 = 𝑛 (see

[U] 11 Language syntax). If weights are not used, then 𝑤𝑖 = 1, for 𝑖 = 1, . . . , 𝑛. kdensity includes
seven different kernel functions. The Epanechnikov is the default function if no other kernel is specified

and is the most efficient in minimizing the mean integrated squared error.

Kernel Formula

Biweight 𝐾[𝑧] = {
15
16 (1 − 𝑧2)2 if |𝑧| < 1
0 otherwise

Cosine 𝐾[𝑧] = {1 + cos(2𝜋𝑧) if |𝑧| < 1/2
0 otherwise

Epanechnikov 𝐾[𝑧] = {
3
4 (1 − 1

5 𝑧2)/
√

5 if |𝑧| <
√

5
0 otherwise

Epan2 𝐾[𝑧] = {
3
4 (1 − 𝑧2) if |𝑧| < 1
0 otherwise

Gaussian 𝐾[𝑧] = 1√
2𝜋 𝑒−𝑧2/2

Parzen 𝐾[𝑧] =
⎧
{
⎨
{
⎩

4
3 − 8𝑧2 + 8|𝑧|3 if |𝑧| ≤ 1/2
8(1 − |𝑧|)3/3 if 1/2 < |𝑧| ≤ 1
0 otherwise

Rectangular 𝐾[𝑧] = {1/2 if |𝑧| < 1
0 otherwise

Triangular 𝐾[𝑧] = {1 − |𝑧| if |𝑧| < 1
0 otherwise
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From the definitions given in the table, we can see that the choice of ℎ will drive how many values

are included in estimating the density at each point. This value is called the window width or bandwidth.

If the window width is not specified, it is determined as

𝑚 = min(√variance𝑥,
interquartile range𝑥

1.349
)

ℎ = 0.9𝑚
𝑛1/5

where 𝑥 is the variable for which we wish to estimate the kernel and 𝑛 is the number of observations.

Most researchers agree that the choice of kernel is not as important as the choice of bandwidth. There

is a great deal of literature on choosing bandwidths under various conditions; see, for example, Parzen

(1962) or Tapia and Thompson (1978). Also see Newton (1988) for a comparison with sample spectral

density estimation in time-series applications.

Acknowledgments
We gratefully acknowledge the previous work by Isaías H. Salgado-Ugarte of the Universidad Na-

cional Autónoma de México, Makoto Shimizu of the University of Tokyo, and Toru Taniuchi formerly

of the University of Tokyo; see Salgado-Ugarte, Shimizu, and Taniuchi (1993). Their article provides a

good overview of the subject of univariate kernel density estimation and presents arguments for its use

in exploratory data analysis.

References
Cox, N. J. 2005. Speaking Stata: Density probability plots. Stata Journal 5: 259–273.

———. 2007. Kernel estimation as a basic tool for geomorphological data analysis. Earth Surface Processes and Land-

forms 32: 1902–1912. https://doi.org/10.1002/esp.1518.

Fiorio, C. V. 2004. Confidence intervals for kernel density estimation. Stata Journal 4: 168–179.

Fox, J. 1990. “Describing univariate distributions”. InModern Methods of Data Analysis, edited by J. Fox and J. S. Long,

58–125. Newbury Park, CA: Sage.

Goeden, G. B. 1978. Amonograph of the coral trout, Plectropomus leopardus (Lacépède). Queensland Fisheries Services

Research Bulletin 1: 1–42.

Kohler, U., and F. Kreuter. 2012. Data Analysis Using Stata. 3rd ed. College Station, TX: Stata Press.

López-de-Ullibarri, I. 2015. Bandwidth selection in kernel distribution function estimation. Stata Journal 15: 784–795.

Newton, H. J. 1988. TIMESLAB: ATime Series Analysis Laboratory. Belmont, CA: Wadsworth.

Parzen, E. 1962. On estimation of a probability density function and mode. Annals of Mathematical Statistics 33:

1065–1076. https://doi.org/10.1214/aoms/1177704472.

Royston, P., and N. J. Cox. 2005. Amultivariable scatterplot smoother. Stata Journal 5: 405–412.

Salgado-Ugarte, I. H., and M.A. Pérez-Hernández. 2003. Exploring the use of variable bandwidth kernel density estima-

tors. Stata Journal 3: 133–147.

Salgado-Ugarte, I. H., M. Shimizu, and T. Taniuchi. 1993. snp6: Exploring the shape of univariate data using kernel den-

sity estimators. Stata Technical Bulletin 16: 8–19. Reprinted in Stata Technical Bulletin Reprints, vol. 3, pp. 155–173.

College Station, TX: Stata Press.

Scott, D. W. 2015. Multivariate Density Estimation: Theory, Practice, and Visualization. 2nd ed. Hoboken, NJ: Wiley.

https://doi.org/10.1002/9781118575574.

Silverman, B. W. 1986. Density Estimation for Statistics and Data Analysis. London: Chapman and Hall.

Simonoff, J. S. 1996. Smoothing Methods in Statistics. New York: Springer. https://doi.org/10.1007/978-1-4612-4026-6.

https://www.stata-journal.com/article.html?article=gr0012
https://doi.org/10.1002/esp.1518
https://www.stata-journal.com/article.html?article=st0064
https://www.stata-press.com/books/data-analysis-using-stata
https://www.stata-journal.com/article.html?article=st0404
https://doi.org/10.1214/aoms/1177704472
https://www.stata-journal.com/article.html?article=gr0017
https://www.stata-journal.com/article.html?article=st0036
https://www.stata-journal.com/article.html?article=st0036
https://www.stata.com/products/stb/journals/stb16.pdf
https://www.stata.com/products/stb/journals/stb16.pdf
https://doi.org/10.1002/9781118575574
https://doi.org/10.1007/978-1-4612-4026-6


kdensity — Univariate kernel density estimation 1471

Tapia, R. A., and J. R. Thompson. 1978. Nonparametric Probability Density Estimation. Baltimore: Johns Hopkins Uni-

versity Press.

Van Kerm, P. 2003. Adaptive kernel density estimation. Stata Journal 3: 148–156.

———. 2012. Kernel-smoothed cumulative distribution function estimation with akdensity. Stata Journal 12: 543–548.

Wand, M. P., and M. C. Jones. 1995. Kernel Smoothing. London: Chapman and Hall. https://doi.org/10.1201/b14876.

Also see
[R] histogram — Histograms for continuous and categorical variables

[R] makespline — Spline generation

[R] npregress kernel — Nonparametric kernel regression

[R] npregress series — Nonparametric series regression

https://www.stata-journal.com/article.html?article=st0037
https://www.stata-journal.com/article.html?article=st0037_3
https://doi.org/10.1201/b14876


ksmirnov — Kolmogorov–Smirnov equality-of-distributions test

Description Quick start Menu Syntax
Options for two-sample test Remarks and examples Stored results Methods and formulas
References Also see

Description
ksmirnov performs one- and two-sample Kolmogorov–Smirnov tests of the equality of distributions.

A one-sample test compares the distribution of the tested variable with the specified distribution. A two-

sample test tests the equality of the distributions of two samples.

When testing for normality, please see [R] sktest and [R] swilk.

Quick start
One-sample test comparing the distribution of v1with a Student’s 𝑡 distributionwith 5 degrees of freedom

ksmirnov v1 = t(5,v1)

Two-sample test comparing distributions of v2 in two groups defined by catvar
ksmirnov v2, by(catvar)

Same as above, but calculate an exact 𝑝-value
ksmirnov v2, by(catvar) exact

Menu
Statistics > Nonparametric analysis > Tests of hypotheses > Kolmogorov–Smirnov test

1472
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Syntax
One-sample Kolmogorov–Smirnov test

ksmirnov varname = exp [ if ] [ in ]

Two-sample Kolmogorov–Smirnov test

ksmirnov varname [ if ] [ in ] , by(groupvar) [ exact ]

In the first syntax, varname is the variable whose distribution is being tested, and exp must evaluate to

the corresponding (theoretical) cumulative. In the second syntax, groupvar must take on two distinct

values. The distribution of varname for the first value of groupvar is compared with that of the second

value.

collect is allowed; see [U] 11.1.10 Prefix commands.

Options for two-sample test

� � �
Main �

by(groupvar) is required. It specifies a binary variable that identifies the two groups.

exact specifies that the exact 𝑝-value be computed.

Remarks and examples

Example 1: Two-sample test
Say that we have data on x that resulted from two different experiments, labeled as group==1 and

group==2. Our data contain

. use https://www.stata-press.com/data/r18/ksxmpl

. list

group x

1. 2 2
2. 1 0
3. 2 3
4. 1 4
5. 1 5

6. 2 8
7. 2 10
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We wish to use the two-sample Kolmogorov–Smirnov test to determine if there are any differences in

the distribution of x for these two groups:

. ksmirnov x, by(group)
Two-sample Kolmogorov--Smirnov test for equality of distribution functions
Smaller group D p-value

1 0.5000 0.424
2 -0.1667 0.909
Combined K-S 0.5000 0.785

The first line tests the hypothesis that x for group 1 contains smaller values than for group 2. The largest
difference between the distribution functions is 0.5. The approximate asymptotic 𝑝-value for this is 0.424,
which is not significant.

The second line tests the hypothesis that x for group 1 contains larger values than for group 2. The
largest difference between the distribution functions in this direction is 0.1667. The approximate asymp-

totic 𝑝-value for this small difference is 0.909.
Finally, the approximate asymptotic 𝑝-value for the combined test is 0.785. The approximate 𝑝-values

ksmirnov calculates are based on the five-term approximation of the asymptotic distributions derived

by Smirnov (1933). These approximations are not good for small samples (𝑛 < 50). They are too

conservative.

An exact 𝑝-value can be calculated using the exact option:
. ksmirnov x, by(group) exact
Two-sample Kolmogorov--Smirnov test for equality of distribution functions
Smaller group D p-value Exact

1 0.5000 0.424
2 -0.1667 0.909
Combined K-S 0.5000 0.785 0.657

Example 2: One-sample test
Let’s now test whether x in the example above is distributed normally. Kolmogorov–Smirnov is not

a particularly powerful test in testing for normality, and we do not endorse such use of it; see [R] sktest

and [R] swilk for better tests.

In any case, we will test against a normal distribution with the same mean and standard deviation:

. summarize x
Variable Obs Mean Std. dev. Min Max

x 7 4.571429 3.457222 0 10
. ksmirnov x = normal((x-4.571429)/3.457222)
One-sample Kolmogorov--Smirnov test against theoretical distribution

normal((x-4.571429)/3.457222)
Smaller group D p-value

x 0.1650 0.683
Cumulative -0.1250 0.803
Combined K-S 0.1650 0.991
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Because Stata has no way of knowing that we based this calculation on the calculated mean and standard

deviation of x, the 𝑝-values will be slightly conservative in addition to being approximations. Neverthe-
less, they clearly indicate that the data cannot be distinguished from normally distributed data.

Stored results
ksmirnov stores the following in r():

Scalars

r(D 1) 𝐷 from line 1

r(p 1) 𝑝-value from line 1

r(D 2) 𝐷 from line 2

r(p 2) 𝑝-value from line 2

r(D) combined 𝐷
r(p) combined 𝑝-value
r(p exact) exact combined 𝑝-value

Macros

r(group1) name of group from line 1

r(group2) name of group from line 2

Methods and formulas
In general, the Kolmogorov–Smirnov test (Kolmogorov 1933; Smirnov 1933; also see Conover

[1999], 428–465) is not very powerful against differences in the tails of distributions. In return for

this, it is fairly powerful for alternative hypotheses that involve lumpiness or clustering in the data.

The directional hypotheses are evaluated with the statistics

𝐷+ = max𝑥{𝐹(𝑥) − 𝐺(𝑥)}

𝐷− = min𝑥{𝐹(𝑥) − 𝐺(𝑥)}

where 𝐹(𝑥) and 𝐺(𝑥) are the empirical distribution functions for the sample being compared. The

combined statistic is

𝐷 = max( |𝐷+| , |𝐷−| )

The 𝑝-value for this statistic may be obtained by evaluating the asymptotic limiting distribution. Let 𝑚
be the sample size for the first sample, and let 𝑛 be the sample size for the second sample. Smirnov

(1933) shows that

lim𝑚,𝑛→∞ Pr{√𝑚𝑛/(𝑚 + 𝑛)𝐷𝑚,𝑛 ≤ 𝑧} = 1 − 2
∞

∑
𝑖=1

( − 1)𝑖−1
exp( − 2𝑖2𝑧2)

The first five terms form the approximation 𝑃𝑎 used by Stata. The exact 𝑝-value is calculated by a

counting algorithm; see Gibbons and Chakraborti (2011, 236–238).
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� �
Andrei Nikolayevich Kolmogorov (1903–1987), of Russia, was one of the great mathematicians

of the twentieth century, making outstanding contributions in many different branches, including

set theory, measure theory, probability and statistics, approximation theory, functional analysis,

classical dynamics, and theory of turbulence. He was a faculty member at Moscow State University

for more than 60 years.

Nikolai Vasilyevich Smirnov (1900–1966) was a Russian statistician whose work included con-

tributions in nonparametric statistics, order statistics, and goodness of fit. After army service and

the study of philosophy and philology, he turned to mathematics and eventually rose to be head of

mathematical statistics at the Steklov Mathematical Institute in Moscow.� �
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kwallis — Kruskal–Wallis equality-of-populations rank test

Description Quick start Menu Syntax
Option Remarks and examples Stored results Methods and formulas
References Also see

Description
kwallis performs a Kruskal–Wallis test of the hypothesis that several samples are from the same

population. This test is a multisample generalization of the two-sample Wilcoxon (Mann–Whitney)

rank-sum test.

Quick start
Test the equality of distribution of v1 across all levels of categorical variable cvar

kwallis v1, by(cvar)

Same as above, but perform the test only for observations with v2 = 1

kwallis v1 if v2==1, by(cvar)

Menu
Statistics > Nonparametric analysis > Tests of hypotheses > Kruskal–Wallis rank test

Syntax
kwallis varname [ if ] [ in ] , by(groupvar)

collect is allowed; see [U] 11.1.10 Prefix commands.

Option
by(groupvar) is required. It specifies a variable that identifies the groups.

Remarks and examples

Example 1
We have data on the 50 states. The data contain the median age of the population, medage, and

the region of the country, region, for each state. We wish to test for the equality of the median age

distribution across all four regions simultaneously:
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. use https://www.stata-press.com/data/r18/census
(1980 Census data by state)
. kwallis medage, by(region)
Kruskal--Wallis equality-of-populations rank test

region Obs Rank sum

NE 9 376.50
N Cntrl 12 294.00
South 16 398.00
West 13 206.50

chi2(3) = 17.041
Prob = 0.0007

chi2(3) with ties = 17.062
Prob = 0.0007

From the output, we see that we can reject the hypothesis that the populations are the same at any level

below 0.07%.

Stored results
kwallis stores the following in r():
Scalars

r(df) degrees of freedom

r(chi2) 𝜒2

r(chi2 adj) 𝜒2 adjusted for ties

Methods and formulas
The Kruskal–Wallis test (Kruskal andWallis 1952, 1953; also see Altman [1991, 213–215]; Conover

[1999, 288–297]; and Riffenburgh [2012, sec. 11.6]) is a multiple-sample generalization of the two-

sampleWilcoxon (also calledMann–Whitney) rank-sum test (Wilcoxon 1945; Mann andWhitney 1947).

Samples of sizes 𝑛𝑗, 𝑗 = 1, . . . , 𝑚, are combined and ranked in ascending order of magnitude. Tied

values are assigned the average ranks. Let 𝑛 denote the overall sample size, and let 𝑅𝑗 = ∑𝑛𝑗
𝑖=1 𝑅(𝑋𝑗𝑖)

denote the sum of the ranks for the 𝑗th sample. The Kruskal–Wallis one-way analysis-of-variance test,

𝐻, is defined as

𝐻 = 1
𝑆2 {

𝑚
∑
𝑗=1

𝑅2
𝑗

𝑛𝑗
− 𝑛(𝑛 + 1)2

4
}

where

𝑆2 = 1
𝑛 − 1

{ ∑
all ranks

𝑅(𝑋𝑗𝑖)2 − 𝑛(𝑛 + 1)2

4
}

If there are no ties, this equation simplifies to

𝐻 = 12
𝑛(𝑛 + 1)

𝑚
∑
𝑗=1

𝑅2
𝑗

𝑛𝑗
− 3(𝑛 + 1)

The sampling distribution of 𝐻 is approximately 𝜒2 with 𝑚 − 1 degrees of freedom.
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� �
William Henry Kruskal (1919–2005) was born in New York City. He studied mathematics and

statistics atAntioch College, Harvard, and Columbia, and joined the University of Chicago in 1951.

He made many outstanding contributions to linear models, nonparametric statistics, government

statistics, and the history and methodology of statistics.

WilsonAllenWallis (1912–1998) was born in Philadelphia. He studied psychology and economics

at the Universities of Minnesota and Chicago and at Columbia. He taught at Yale, Stanford, and

Chicago, before moving as president (later chancellor) to the University of Rochester in 1962. He

also served in several Republican administrations. Wallis served as editor of the Journal of the

American Statistical Association, coauthored a popular introduction to statistics, and contributed to

nonparametric statistics.� �
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Also see
[R] nptrend — Tests for trend across ordered groups

[R] oneway — One-way analysis of variance
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[R] signrank — Equality tests on matched data
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ladder — Ladder of powers

Description Quick start Menu Syntax
Options for ladder Options for gladder Options for qladder Remarks and examples
Stored results Methods and formulas Acknowledgment References
Also see

Description
ladder searches a subset of the ladder of powers (Tukey 1977) for a transform that converts varname

into a normally distributed variable.

gladder and qladder each display a graph matrix. gladder displays nine histograms of transforms
of varname according to the ladder of powers. qladder displays the quantiles of transforms of varname
according to the ladder of powers against the quantiles of a normal distribution.

Quick start
Table showing Tukey’s ladder of powers transformations for v

ladder v

Same as above, but with separate tables for each level of the categorical variable catvar
by catvar: ladder v

Display transformations graphically using histograms

gladder v

Same as above, but using quantile plots

qladder v

Menu
ladder
Statistics > Summaries, tables, and tests > Distributional plots and tests > Ladder of powers

gladder
Statistics > Summaries, tables, and tests > Distributional plots and tests > Ladder-of-powers histograms

qladder
Statistics > Summaries, tables, and tests > Distributional plots and tests > Ladder-of-powers quantile–normal
plots
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Syntax
Ladder of powers

ladder varname [ if ] [ in ] [ , generate(newvar) noadjust ]

Ladder-of-powers histograms

gladder varname [ if ] [ in ] [ , histogram options combine options ]

Ladder-of-powers quantile–normal plots

qladder varname [ if ] [ in ] [ , qnorm options combine options ]

by and collect are allowed with ladder; see [U] 11.1.10 Prefix commands.

Options for ladder

� � �
Main �

generate(newvar) saves the transformed values corresponding to the minimum 𝜒2 value from the

table. We do not recommend using generate() because it is literal in interpreting the minimum,

thus ignoring nearly equal but perhaps more interpretable transforms.

noadjust is the noadjust option to sktest; see [R] sktest.

Options for gladder
histogram options affect the rendition of the histograms across all relevant transformations; see [R] his-

togram. Here the normal option is assumed, so you must supply the nonormal option to suppress
the overlaid normal density. Also, gladder does not allow the width(#) option of histogram.

combine options are any of the options documented in [G-2] graph combine. These include options for

titling the graph (see [G-3] title options) and for saving the graph to disk (see [G-3] saving option).

Options for qladder
qnorm options affect the rendition of the quantile–normal plots across all relevant transformations. See

[R] Diagnostic plots.

combine options are any of the options documented in [G-2] graph combine. These include options for

titling the graph (see [G-3] title options) and for saving the graph to disk (see [G-3] saving option).
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Remarks and examples

Example 1: ladder
We have data on the mileage rating of 74 automobiles and wish to find a transform that makes the

variable normally distributed:

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. ladder mpg
Transformation Formula chi2(2) Prob > chi2

Cubic mpg^3 43.59 0.000
Square mpg^2 27.03 0.000
Identity mpg 10.95 0.004
Square root sqrt(mpg) 4.94 0.084
Log log(mpg) 0.87 0.647
1/(Square root) 1/sqrt(mpg) 0.20 0.905
Inverse 1/mpg 2.36 0.307
1/Square 1/(mpg^2) 11.99 0.002
1/Cubic 1/(mpg^3) 24.30 0.000

If we had typed ladder mpg, gen(mpgx), the variable mpgx containing 1/√
mpg would have been au-

tomatically generated for us. This is the perfect example of why you should not, in general, specify the

generate() option. We also cannot reject the hypothesis that the inverse of mpg is normally distributed
and that 1/mpg—gallons per mile—has a better interpretation. It is a measure of energy consumption.
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Example 2: gladder
gladder explores the same transforms as ladder but presents results graphically:

. gladder mpg, fraction
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Histograms by transformation

Technical note
gladder is useful pedagogically, but be careful when using it for research work, especially with

many observations. For instance, consider the following data on the average July temperature in degrees

Fahrenheit for 954 US cities:

. use https://www.stata-press.com/data/r18/citytemp
(City temperature data)
. ladder tempjuly
Transformation Formula chi2(2) Prob > chi2

Cubic tempjuly^3 47.49 0.000
Square tempjuly^2 19.70 0.000
Identity tempjuly 3.83 0.147
Square root sqrt(tempjuly) 1.83 0.400
Log log(tempjuly) 5.40 0.067
1/(Square root) 1/sqrt(tempjuly) 13.72 0.001
Inverse 1/tempjuly 26.36 0.000
1/Square 1/(tempjuly^2) 64.44 0.000
1/Cubic 1/(tempjuly^3) 116.16 0.000
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From the table, we see that there is certainly a difference in normality between the square and square-

root transform. If, however, you can see the difference between the transforms in the diagram below,

you have better eyes than we do:

. gladder tempjuly, l1title(””) ylabel(none) xlabel(none)

Cubic Square Identity

Square root Log 1/Square root

Inverse 1/Square 1/Cubic

Average July temperature
Histograms by transformation
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Example 3: qladder
Abetter graph for seeing normality is the quantile–normal graph, which can be produced by qladder.

. qladder tempjuly, ylabel(none) xlabel(none)

Cubic Square Identity

Square root Log 1/Square root

Inverse 1/Square 1/Cubic

Average July temperature
Quantile–normal plots by transformation

This graph shows that for the square transform, the upper tail—and only the upper tail—diverges

from what would be expected. This divergence is detected by sktest (see [R] sktest) as a problem with

skewness, as we would learn from using sktest to examine tempjuly squared and square rooted.
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Stored results
ladder stores the following in r():

Scalars

r(N) number of observations

r(invcube) 𝜒2 for inverse-cubic transformation

r(P invcube) 𝑝-value for normality test after inverse-cubic transformation
r(invsq) 𝜒2 for inverse-square transformation

r(P invsq) 𝑝-value for normality test after inverse-square transformation
r(inv) 𝜒2 for inverse transformation

r(P inv) 𝑝-value for normality test after inverse transformation
r(invsqrt) 𝜒2 for inverse-root transformation

r(P invsqrt) 𝑝-value for normality test after inverse-root transformation
r(log) 𝜒2 for log transformation

r(P log) 𝑝-value for normality test after log transformation
r(sqrt) 𝜒2 for square-root transformation

r(P sqrt) 𝑝-value for normality test after square-root transformation
r(ident) 𝜒2 for untransformed data

r(P ident) 𝑝-value for normality test of untransformed data
r(square) 𝜒2 for square transformation

r(P square) 𝑝-value for normality test after square transformation
r(cube) 𝜒2 for cubic transformation

r(P cube) 𝑝-value for normality test after cubic transformation

Methods and formulas
For ladder, results are as reported by sktest; see [R] sktest. If generate() is specified, the trans-

form with the minimum 𝜒2 value is chosen.

gladder sets the number of bins to min(
√

𝑛, 10 log10𝑛), rounded to the closest integer, where 𝑛 is

the number of unique values of varname. See [R] histogram for a discussion of the optimal number of

bins.

Also see Findley (1990) for a ladder-of-powers variable transformation program that produces one-

way graphswith overlaid box plots, in addition to histogramswith overlaid normals. Buchner and Findley

(1990) discuss ladder-of-powers transformations as one aspect of preliminary data analysis. Also see

Hamilton (1992, 18–23) and Hamilton (2013, 129–132).

Acknowledgment
qladder was written by Jeroen Weesie of the Department of Sociology at Utrecht University, The

Netherlands.
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Also see
[R] boxcox — Box–Cox regression models

[R] Diagnostic plots — Distributional diagnostic plots
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[R] sktest — Skewness and kurtosis tests for normality
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level — Set default confidence level

Description Syntax Option Remarks and examples Also see

Description
set level specifies the default confidence level for confidence intervals for all commands that report

confidence intervals. The initial value is 95, meaning 95% confidence intervals.

Syntax
set level # [ , permanently ]

# is any number between 10.00 and 99.99 and may be specified with at most two digits after the decimal

point.

Option
permanently specifies that, in addition to making the change right now, the level setting be remem-

bered and become the default setting when you invoke Stata.

Remarks and examples
To change the level of confidence intervals reported by a particular command, you need not reset the

default confidence level. All commands that report confidence intervals have a level(#) option. When

you do not specify the option, the confidence intervals are calculated for the default level set by set
level, or for 95% if you have not reset set level.

Example 1
We use the ci means command to obtain the confidence interval for the mean of mpg:

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. ci means mpg

Variable Obs Mean Std. err. [95% conf. interval]

mpg 74 21.2973 .6725511 19.9569 22.63769

To obtain 90% confidence intervals, we would type

. ci means mpg, level(90)
Variable Obs Mean Std. err. [90% conf. interval]

mpg 74 21.2973 .6725511 20.17683 22.41776

or

. set level 90

. ci means mpg
Variable Obs Mean Std. err. [90% conf. interval]

mpg 74 21.2973 .6725511 20.17683 22.41776
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If we opt for the second alternative, the next time that we fit a model (say, with regress), 90% confidence

intervals will be reported. If we wanted 95% confidence intervals, we could specify level(95) on the
estimation command, or we could reset the default by typing set level 95.

The current setting of level() is stored as the c-class value c(level); see [P] creturn.

Also see
[R] query — Display system parameters

[P] creturn — Return c-class values

[U] 20 Estimation and postestimation commands

[U] 20.8 Specifying the width of confidence intervals
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Description Remarks and examples Also see

Description
This entry provides a quick reference for the size limits in Stata. Note that most of these limits are so

high that you will never encounter them.

Remarks and examples
Remarks are presented under the following headings:

Maximum size limits
Determining which edition of Stata you are running

Maximum size limits
Stata/MP and

Stata/BE Stata/SE

# of observations 2,147,483,619 1,099,511,627,775 (MP) (1)

2,147,483,619 (SE) (1)

# of variables 2,048 120,000 (MP)

32,767 (SE)

# of RHS variables 798 65,532 (MP)

10,998 (SE)

# characters in a command 264,408 4,227,159

# options for a command 256 256

# of elements in a numlist 2,500 2,500

# of interacted continuous variables 64 64

# of interacted factor variables 8 8

# of unique time-series operators in
a command 100 100

# seasonal suboperators per time-series
operator 8 8

# of dyadic operators in an expression 800 800

# of numeric literals in an expression 300 300

# of string literals in an expression 512 512

length of string in string expression (bytes) 2,000,000,000 2,000,000,000

# of sum functions in an expression 5 5

# of pairs of nested parentheses 249 249

# of characters in a macro (2) 264,392 15,480,200 (MP)

4,227,143 (SE)
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Stata/MP and

continued Stata/BE Stata/SE

# of nested do-files 64 64

# of lines in a program 3,500 3,500

# of bytes in a program 135,600 135,600

length of a variable name (characters) 32 32

length of ado-command name (characters) 32 32

length of a global macro name (characters) 32 32

length of a local macro name (characters) 31 31

length of a str# variable (bytes) 2,045 2,045

length of a strL variable (bytes) 2,000,000,000 2,000,000,000

anova
# of variables in one anova term 8 8

# of terms in the repeated() option 4 4

char
length of one characteristic (bytes) 67,784 67,784

constraint
# of constraints 1,999 1,999

encode and decode
# of unique values 65,536 65,536

estimates hold
# of stored estimation results 300 300

estimates store
# of stored estimation results 300 300

exlogistic and expoisson
maximum memory specification in memory(#) 2gb 2gb

frames
# of frames 100 100

grmeanby
# of unique values in varlist N/2 N/2

graph
minimum graph size (inches) 1 1

maximum graph size (inches) 100 100

graph twoway
# of variables in a plot 100 100

# of styles in an option’s stylelist 20 20

import sas
# of variables 2,048 32,766

import spss
# of variables 2,048 32,766
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Stata/MP and

continued Stata/BE Stata/SE

infile (free format)
record length without dictionary none none

infile (fixed format)
record length with a dictionary 524,275 524,275

infix (fixed format)
record length with a dictionary 524,275 524,275

label
length of dataset label (characters) 80 80

length of variable label (characters) 80 80

length of value label string (bytes) 32,000 32,000

length of name of value label (characters) 32 32

# of codings within one value label 65,536 65,536

label language
# of different languages 100 100

macro
# of nested macros 20 20

manova
# of variables in single manova term 8 8

matrix (3)
dimension of single matrix 800 × 800 65,534 × 65,534 (MP)

11,000 × 11,000 (SE)

maximize options

iterate() maximum 16,000 16,000

mprobit
# of categories in a depvar 30 30

net
# of description lines in .pkg file 100 100

nlogit and nlogittree
# of levels in model 8 8

notes
length of one note (bytes) 67,784 67,784

# of notes attached to dta 9,999 9,999

# of notes attached to each variable 9,999 9,999

numlist

# of elements in the numeric list 2,500 2,500

pctile
# of percentiles 4,096 4,096
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Stata/MP and

continued Stata/BE Stata/SE

putdocx and putpdf
# of tables added to a document 10,000 10,000

reg3, sureg, and other system estimators

# of equations 800 65,534 (MP)

11,000 (SE)

set adosize
memory ado-files may consume 1000K 1000K

set scrollbufsize
memory for Results window buffer 2000K 2000k

slogit
# of categories in a depvar 30 30

snapshot
length of label (characters) 80 80

# of saved snapshots 1,000 1,000

stcox
# of variables in strata() option 5 5

stcurve
# of curves plotted on the same graph 10 10

tabdisp
# of by variables 4 4

# of margins, i.e., sum of rows,
columns, supercolumns, and by groups 3,000 3,000

tabulate oneway
# of rows in one-way table 3,000 12,000

tabulate twoway
# of rows & cols in two-way table 300 × 20 1,200 × 80

tabulate, summarize()
# of cells (rows X cols) 375 375

teffects
# of treatments 20 20

xt estimation commands (e.g., xtgee,
xtgls, xtpoisson, xtprobit, xtreg
with mle option, and xtpcse when
neither option hetonly nor option
independent is specified)

# of time periods within panel 800 65,534 (MP)

11,000 (SE)

# of integration points accepted 195 195
by intpoints(#)
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(1) For Stata/MP, the maximum number of observations is 1,099,511,627,775, and for Stata/SE, the max-

imum number is 2,147,483,619. In practice, both editions are limited by memory.

(2) The maximum length of the contents of a macro are fixed in Stata/BE and settable in Stata/SE

and Stata/MP. The currently set maximum length is recorded in c(macrolen); type display
c(macrolen). The maximum length can be changed with set maxvar. If you set maxvar to a larger
value, the maximum length increases; if you set maxvar to a smaller value, the maximum length

decreases. The relationship between them is maximum length = 129 × maxvar + 200.

(3) In Mata, matrices are limited only by the amount of memory on your computer.

Determining which edition of Stata you are running
Type

. about

The response will be Stata/MP, Stata/SE, or Stata/BE. Other information is also shown, including your

serial number. See [R] about.

Also see
[R] about — Display information about your Stata

[D] compress — Compress data in memory

[D] Data types — Quick reference for data types

[D] import — Overview of importing data into Stata

[D] infile (fixed format) — Import text data in fixed format with a dictionary

[D] infile (free format) — Import unformatted text data

[D] memory — Memory management

[D] obs — Increase the number of observations in a dataset



lincom — Linear combinations of parameters

Description Quick start Menu Syntax Options
Remarks and examples Stored results References Also see

Description
lincom computes point estimates, standard errors, 𝑡 or 𝑧 statistics, 𝑝-values, and confidence inter-

vals for linear combinations of parameters after any estimation command, including survey estimation.

Results can optionally be displayed as odds ratios, hazard ratios, incidence-rate ratios, or relative-risk

ratios.

Quick start
Point estimate and confidence interval for sum of coefficients of x1 and x2

lincom x1 + x2

Same as above, but report results as a relative-risk ratio

lincom x1 + x2, rrr

Same as above, but use coefficients from second equation of a multiequation model

lincom [2]x1 + [2]x2, rrr

Difference between coefficients of first and third level of categorical variable a
lincom 1.a - 3.a

Sum of coefficients of x1 and x2 after a model adjusted for complex survey design
lincom x1 + x2

Menu
Statistics > Postestimation

1495



lincom — Linear combinations of parameters 1496

Syntax
lincom exp [ , options ]

options Description

eform generic label; exp(b)
or odds ratio

hr hazard ratio

shr subhazard ratio

irr incidence-rate ratio

rrr relative-risk ratio

level(#) set confidence level; default is level(95)
display options control column formats

df(#) use 𝑡 distribution with # degrees of freedom for computing 𝑝-values
and confidence intervals

exp is any linear combination of parameters that is a valid syntax for test; see [R] test. exp must not
contain an equal sign.

collect is allowed; see [U] 11.1.10 Prefix commands.

df(#) does not appear in the dialog box.

Options
eform, or, hr, shr, irr, and rrr all report coefficient estimates as exp( ̂𝛽) rather than ̂𝛽. Standard

errors and confidence intervals are similarly transformed. or is the default after logistic. The only
difference in these options is how the output is labeled.

Option Label Explanation Example commands

eform exp(b) Generic label cloglog
or Odds ratio Odds ratio logistic, logit
hr Haz. ratio Hazard ratio stcox, streg
shr SHR Subhazard ratio stcrreg
irr IRR Incidence-rate ratio poisson
rrr RRR Relative-risk ratio mlogit

exp may not contain any additive constants when you use the eform, or, hr, irr, or rrr option.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is

level(95) or as set by set level; see [U] 20.8 Specifying the width of confidence intervals.

display options: cformat(% fmt), pformat(% fmt), and sformat(% fmt); see [R] Estimation options.

The following option is available with lincom but is not shown in the dialog box:

df(#) specifies that the 𝑡 distribution with # degrees of freedom be used for computing 𝑝-values and
confidence intervals. The default is to use e(df r) degrees of freedom or the standard normal dis-

tribution if e(df r) is missing.
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Remarks and examples
Remarks are presented under the following headings:

Using lincom
Odds ratios and incidence-rate ratios
Multiple-equation models

Using lincom
After fitting a model and obtaining estimates for coefficients 𝛽1, 𝛽2, . . . , 𝛽𝑘, you may want to view

estimates for linear combinations of the 𝛽𝑖, such as 𝛽1 − 𝛽2. lincom can display estimates for any linear
combination of the form 𝑐0 + 𝑐1𝛽1 + 𝑐2𝛽2 + · · · + 𝑐𝑘𝛽𝑘.

lincom works after any estimation command for which test works. Any valid expression for test
syntax 1 (see [R] test) is a valid expression for lincom.

lincom is useful for viewing odds ratios, hazard ratios, etc., for one group (that is, one set of covari-
ates) relative to another group (that is, another set of covariates). See the examples below.

Example 1
We perform a linear regression:

. use https://www.stata-press.com/data/r18/regress

. regress y x1 x2 x3
Source SS df MS Number of obs = 148

F(3, 144) = 96.12
Model 3259.3561 3 1086.45203 Prob > F = 0.0000

Residual 1627.56282 144 11.3025196 R-squared = 0.6670
Adj R-squared = 0.6600

Total 4886.91892 147 33.2443464 Root MSE = 3.3619

y Coefficient Std. err. t P>|t| [95% conf. interval]

x1 1.457113 1.07461 1.36 0.177 -.666934 3.581161
x2 2.221682 .8610358 2.58 0.011 .5197797 3.923583
x3 -.006139 .0005543 -11.08 0.000 -.0072345 -.0050435

_cons 36.10135 4.382693 8.24 0.000 27.43863 44.76407

To see the difference of the coefficients of x2 and x1, we type

. lincom x2 - x1
( 1) - x1 + x2 = 0

y Coefficient Std. err. t P>|t| [95% conf. interval]

(1) .7645682 .9950282 0.77 0.444 -1.20218 2.731316
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The expression can be any linear combination.

. lincom 3*x1 + 500*x3
( 1) 3*x1 + 500*x3 = 0

y Coefficient Std. err. t P>|t| [95% conf. interval]

(1) 1.301825 3.396624 0.38 0.702 -5.411858 8.015507

Nonlinear expressions are not allowed.

. lincom x2/x1
not possible with test
r(131);

For information about estimating nonlinear expressions, see [R] nlcom.

Technical note
lincom uses the same shorthands for coefficients as does test (see [R] test). When you type x1,

for instance, lincom knows that you mean the coefficient of x1. The formal syntax for referencing this
coefficient is actually b[x1], or alternatively, coef[x1]. So, more formally, in the last example we
could have typed

. lincom 3*_b[x1] + 500*_b[x3]

Odds ratios and incidence-rate ratios
After logistic regression, the or option can be specified with lincom to display odds ratios for any

effect. Incidence-rate ratios after commands such as poisson can be similarly obtained by specifying
the irr option.

Example 2
Consider the low birthweight dataset from Hosmer, Lemeshow, and Sturdivant (2013, 24). We fit a

logistic regression model of low birthweight (variable low) on the following variables:

Variable Description Coding

age age in years

race race 1 if white, 2 if black, 3 if other

smoke smoking status 1 if smoker, 0 if nonsmoker

ht history of hypertension 1 if yes, 0 if no

ui uterine irritability 1 if yes, 0 if no

lwd maternal weight before pregnancy 1 if weight < 110 lb., 0 otherwise

ptd history of premature labor 1 if yes, 0 if no

c.age##lwd age main effects, lwd main effects,
and their interaction

smoke##lwd smoke main effects, lwd main effects,
and their interaction
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We first fit a model without the interaction terms by using logit.

. use https://www.stata-press.com/data/r18/lbw3
(Hosmer & Lemeshow data)
. logit low age lwd i.race smoke ptd ht ui
Iteration 0: Log likelihood = -117.336
Iteration 1: Log likelihood = -99.3982
Iteration 2: Log likelihood = -98.780418
Iteration 3: Log likelihood = -98.777998
Iteration 4: Log likelihood = -98.777998
Logistic regression Number of obs = 189

LR chi2(8) = 37.12
Prob > chi2 = 0.0000

Log likelihood = -98.777998 Pseudo R2 = 0.1582

low Coefficient Std. err. z P>|z| [95% conf. interval]

age -.0464796 .0373888 -1.24 0.214 -.1197603 .0268011
lwd .8420615 .4055338 2.08 0.038 .0472299 1.636893

race
Black 1.073456 .5150753 2.08 0.037 .0639273 2.082985
Other .815367 .4452979 1.83 0.067 -.0574008 1.688135

smoke .8071996 .404446 2.00 0.046 .0145001 1.599899
ptd 1.281678 .4621157 2.77 0.006 .3759478 2.187408
ht 1.435227 .6482699 2.21 0.027 .1646414 2.705813
ui .6576256 .4666192 1.41 0.159 -.2569313 1.572182

_cons -1.216781 .9556797 -1.27 0.203 -3.089878 .656317

To get the odds ratio for black smokers relative to white nonsmokers (the reference group), we type

. lincom 2.race + smoke, or
( 1) [low]2.race + [low]smoke = 0

low Odds ratio Std. err. z P>|z| [95% conf. interval]

(1) 6.557805 4.744692 2.60 0.009 1.588176 27.07811

lincom computed exp(𝛽2.race + 𝛽smoke) = 6.56. To see the odds ratio for white smokers relative to

black nonsmokers, we type

. lincom smoke - 2.race, or
( 1) - [low]2.race + [low]smoke = 0

low Odds ratio Std. err. z P>|z| [95% conf. interval]

(1) .7662425 .4430176 -0.46 0.645 .2467334 2.379603
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Now let’s add the interaction terms to the model (Hosmer and Lemeshow 1989, table 4.10). This

time, we will use logistic rather than logit. By default, logistic displays odds ratios.

. logistic low i.race ht ui ptd c.age##lwd smoke##lwd
Logistic regression Number of obs = 189

LR chi2(10) = 42.66
Prob > chi2 = 0.0000

Log likelihood = -96.00616 Pseudo R2 = 0.1818

low Odds ratio Std. err. z P>|z| [95% conf. interval]

race
Black 2.95383 1.532789 2.09 0.037 1.068277 8.167465
Other 2.137589 .9919138 1.64 0.102 .8608708 5.307752

ht 3.893141 2.575201 2.05 0.040 1.064768 14.2346
ui 2.071284 .9931388 1.52 0.129 .8092926 5.301192
ptd 3.426633 1.615282 2.61 0.009 1.360252 8.632089
age .9194513 .041896 -1.84 0.065 .8408967 1.005344

1.lwd .1772934 .3312384 -0.93 0.354 .0045539 6.902367

lwd#c.age
1 1.15883 .09602 1.78 0.075 .9851215 1.36317

smoke
Smoker 3.168096 1.452378 2.52 0.012 1.289956 7.78076

smoke#lwd
Smoker#1 .2447849 .2003996 -1.72 0.086 .0491956 1.217988

_cons .599443 .6519163 -0.47 0.638 .0711271 5.051971

Note: _cons estimates baseline odds.

Hosmer and Lemeshow (1989, table 4.13) consider the effects of smoking (smoke = 1) and lowmaternal

weight before pregnancy (lwd = 1). The effect of smoking among non–low-weight mothers (lwd = 0) is

given by the odds ratio 3.17 for smoke in the logistic output. The effect of smoking among low-weight
mothers is given by

. lincom 1.smoke + 1.smoke#1.lwd
( 1) [low]1.smoke + [low]1.smoke#1.lwd = 0

low Odds ratio Std. err. z P>|z| [95% conf. interval]

(1) .7755022 .574951 -0.34 0.732 .1813465 3.316323

We did not have to specify the or option. After logistic, lincom assumes or by default.

The effect of low weight (lwd = 1) is more complicated because we fit an age × lwd interaction. We

must specify the age of mothers for the effect. The effect among 30-year-old nonsmokers is given by

. lincom 1.lwd + 30*1.lwd#c.age
( 1) [low]1.lwd + 30*[low]1.lwd#c.age = 0

low Odds ratio Std. err. z P>|z| [95% conf. interval]

(1) 14.7669 13.5669 2.93 0.003 2.439264 89.39633
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lincom computed exp(𝛽lwd + 30𝛽agelwd) = 14.8. It may seem odd that we entered it as 1.lwd
+ 30*1.lwd#c.age, but remember that these terms are just lincom’s (and test’s) shorthands for
b[1.lwd] and b[1.lwd#c.age]. We could have typed

. lincom _b[1.lwd] + 30*_b[1.lwd#c.age]
( 1) [low]1.lwd + 30*[low]1.lwd#c.age = 0

low Odds ratio Std. err. z P>|z| [95% conf. interval]

(1) 14.7669 13.5669 2.93 0.003 2.439264 89.39633

Multiple-equation models
lincom also works with multiple-equation models. The only difference is how you refer to the coef-

ficients. Recall that for multiple-equation models, coefficients are referenced using the syntax

[eqno]varname

where eqno is the equation number or equation name and varname is the corresponding variable name

for the coefficient; see [U] 13.5 Accessing coefficients and standard errors and [R] test for details.

Example 3
Let’s consider example 4 from [R] mlogit (Tarlov et al. 1989; Wells et al. 1989).

. use https://www.stata-press.com/data/r18/sysdsn1
(Health insurance data)
. mlogit insure age male nonwhite i.site, nolog
(output omitted )

To see the estimate of the sum of the coefficient of male and the coefficient of nonwhite for the Prepaid
outcome, we type

. lincom [Prepaid]male + [Prepaid]nonwhite
( 1) [Prepaid]male + [Prepaid]nonwhite = 0

insure Coefficient Std. err. z P>|z| [95% conf. interval]

(1) 1.53647 .3272489 4.70 0.000 .8950741 2.177866

To view the estimate as a ratio of relative risks (see [R] mlogit for the definition and interpretation), we

specify the rrr option.

. lincom [Prepaid]male + [Prepaid]nonwhite, rrr
( 1) [Prepaid]male + [Prepaid]nonwhite = 0

insure RRR Std. err. z P>|z| [95% conf. interval]

(1) 4.648154 1.521103 4.70 0.000 2.447517 8.827451
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Stored results
lincom stores the following in r():

Scalars

r(estimate) point estimate

r(se) estimate of standard error

r(df) degrees of freedom

r(t) or r(z) 𝑡 or 𝑧 statistic

r(p) 𝑝-value
r(lb) lower bound of confidence interval

r(ub) upper bound of confidence interval

r(level) confidence level

References
Hosmer, D. W., Jr., and S. A. Lemeshow. 1989.Applied Logistic Regression. New York: Wiley.

Hosmer, D. W., Jr., S. A. Lemeshow, and R. X. Sturdivant. 2013. Applied Logistic Regression. 3rd ed. Hoboken, NJ:

Wiley.

Tarlov, A. R., J. E. Ware, Jr., S. Greenfield, E. C. Nelson, E. Perrin, and M. Zubkoff. 1989. The medical outcomes study.

An application of methods for monitoring the results of medical care. Journal of theAmerican MedicalAssociation 262:

925–930. https://doi.org/10.1001/jama.1989.03430070073033.

Wells, K. B., R. D. Hays, M. A. Burnam, W. H. Rogers, S. Greenfield, and J. E. Ware, Jr. 1989. Detection of depressive

disorder for patients receiving prepaid or fee-for-service care. Results from the Medical Outcomes Survey. Journal of
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Also see
[R] nlcom — Nonlinear combinations of parameters

[R] test — Test linear hypotheses after estimation

[R] testnl — Test nonlinear hypotheses after estimation

[SVY] svy postestimation — Postestimation tools for svy

[U] 13.5 Accessing coefficients and standard errors

[U] 20 Estimation and postestimation commands

https://www.stata.com/bookstore/applied-logistic-regression/
https://doi.org/10.1001/jama.1989.03430070073033
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Description Quick start Menu Syntax
Option Remarks and examples Stored results Methods and formulas
References Also see

Description
linktest performs a link test for model specification.

Quick start
Specification link test after a single-equation estimation command without options

linktest

After tobit estimated with right-censoring limit at 24
linktest, ul(24)

After stcox estimated with Efron method for tied failures
linktest, efron

Perform test on full dataset when estimation used a subset of observations

linktest if e(sample) < .

Menu
Statistics > Postestimation

Syntax
linktest [ if ] [ in ] [ , cmd options ]

When if and in are not specified, the link test is performed on the same sample as the previous estimation.
collect is allowed; see [U] 11.1.10 Prefix commands.

Option

� � �
Main �

cmd options must be the same options specified with the underlying estimation command, except the

display options may differ.
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Remarks and examples
The form of the link test implemented here is based on an idea of Tukey (1949), which was further de-

scribed by Pregibon (1980), elaborating on work in his unpublished thesis (Pregibon 1979). SeeMethods

and formulas below for more details.

Example 1
We want to explain the mileage ratings of cars in our automobile dataset by using the weight, engine

displacement, and whether the car is manufactured outside the United States:

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. regress mpg weight displ foreign

Source SS df MS Number of obs = 74
F(3, 70) = 45.88

Model 1619.71935 3 539.906448 Prob > F = 0.0000
Residual 823.740114 70 11.7677159 R-squared = 0.6629

Adj R-squared = 0.6484
Total 2443.45946 73 33.4720474 Root MSE = 3.4304

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

weight -.0067745 .0011665 -5.81 0.000 -.0091011 -.0044479
displacement .0019286 .0100701 0.19 0.849 -.0181556 .0220129

foreign -1.600631 1.113648 -1.44 0.155 -3.821732 .6204699
_cons 41.84795 2.350704 17.80 0.000 37.15962 46.53628

On the basis of the 𝑅2, we are reasonably pleased with this model.

If our model really is specified correctly, then if we were to regress mpg on the prediction and the

prediction squared, the prediction squared would have no explanatory power. This is what linktest
does:

. linktest
Source SS df MS Number of obs = 74

F(2, 71) = 76.75
Model 1670.71514 2 835.357572 Prob > F = 0.0000

Residual 772.744316 71 10.8837228 R-squared = 0.6837
Adj R-squared = 0.6748

Total 2443.45946 73 33.4720474 Root MSE = 3.299

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

_hat -.4127198 .6577736 -0.63 0.532 -1.724283 .8988434
_hatsq .0338198 .015624 2.16 0.034 .0026664 .0649732
_cons 14.00705 6.713276 2.09 0.041 .6211539 27.39294

We find that the prediction squared does have explanatory power, so our specification is not as good

as we thought.
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Although linktest is formally a test of the specification of the dependent variable, it is often inter-
preted as a test that, conditional on the specification, the independent variables are specified incorrectly.

We will follow that interpretation and now include weight squared in our model:

. regress mpg weight c.weight#c.weight displ foreign
Source SS df MS Number of obs = 74

F(4, 69) = 39.37
Model 1699.02634 4 424.756584 Prob > F = 0.0000

Residual 744.433124 69 10.7888859 R-squared = 0.6953
Adj R-squared = 0.6777

Total 2443.45946 73 33.4720474 Root MSE = 3.2846

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

weight -.0173257 .0040488 -4.28 0.000 -.0254028 -.0092486

c.weight#
c.weight 1.87e-06 6.89e-07 2.71 0.008 4.93e-07 3.24e-06

displacement -.0101625 .0106236 -0.96 0.342 -.031356 .011031
foreign -2.560016 1.123506 -2.28 0.026 -4.801349 -.3186832
_cons 58.23575 6.449882 9.03 0.000 45.36859 71.10291

Now, we perform the link test on our new model:

. linktest
Source SS df MS Number of obs = 74

F(2, 71) = 81.08
Model 1699.39489 2 849.697445 Prob > F = 0.0000

Residual 744.06457 71 10.4797827 R-squared = 0.6955
Adj R-squared = 0.6869

Total 2443.45946 73 33.4720474 Root MSE = 3.2372

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

_hat 1.141987 .7612218 1.50 0.138 -.3758456 2.659821
_hatsq -.0031916 .0170194 -0.19 0.852 -.0371272 .0307441
_cons -1.50305 8.196444 -0.18 0.855 -17.84629 14.84019

We now pass the link test.
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Example 2
Above, we followed a standard misinterpretation of the link test—when we discovered a problem,

we focused on the explanatory variables of our model. We might consider varying exactly what the

link test tests. The link test told us that our dependent variable was misspecified. For those with an

engineering background, mpg is indeed a strange measure. It would make more sense to model energy
consumption—gallons per mile—in terms of weight and displacement:

. gen gpm = 1/mpg

. regress gpm weight displ foreign
Source SS df MS Number of obs = 74

F(3, 70) = 76.33
Model .009157962 3 .003052654 Prob > F = 0.0000

Residual .002799666 70 .000039995 R-squared = 0.7659
Adj R-squared = 0.7558

Total .011957628 73 .000163803 Root MSE = .00632

gpm Coefficient Std. err. t P>|t| [95% conf. interval]

weight .0000144 2.15e-06 6.72 0.000 .0000102 .0000187
displacement .0000186 .0000186 1.00 0.319 -.0000184 .0000557

foreign .0066981 .0020531 3.26 0.002 .0026034 .0107928
_cons .0008917 .0043337 0.21 0.838 -.0077515 .009535

This model looks every bit as reasonable as our original model:

. linktest
Source SS df MS Number of obs = 74

F(2, 71) = 117.06
Model .009175219 2 .004587609 Prob > F = 0.0000

Residual .002782409 71 .000039189 R-squared = 0.7673
Adj R-squared = 0.7608

Total .011957628 73 .000163803 Root MSE = .00626

gpm Coefficient Std. err. t P>|t| [95% conf. interval]

_hat .6608413 .515275 1.28 0.204 -.3665877 1.68827
_hatsq 3.275857 4.936655 0.66 0.509 -6.567553 13.11927
_cons .008365 .0130468 0.64 0.523 -.0176496 .0343795

Specifying the model in terms of gallons per mile also solves the specification problem and results in a

more parsimonious specification.
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Example 3
The link test can be used with any single-equation estimation procedure, not solely regression. Let’s

turn our problem around and attempt to explain whether a car is manufactured outside the United States

by its mileage rating and weight. To save paper, we will specify logit’s nolog option, which suppresses
the iteration log:

. logit foreign mpg weight, nolog
Logistic regression Number of obs = 74

LR chi2(2) = 35.72
Prob > chi2 = 0.0000

Log likelihood = -27.175156 Pseudo R2 = 0.3966

foreign Coefficient Std. err. z P>|z| [95% conf. interval]

mpg -.1685869 .0919175 -1.83 0.067 -.3487418 .011568
weight -.0039067 .0010116 -3.86 0.000 -.0058894 -.001924
_cons 13.70837 4.518709 3.03 0.002 4.851859 22.56487

When we run linktest after logit, the result is another logit specification:

. linktest, nolog
Logistic regression Number of obs = 74

LR chi2(2) = 36.83
Prob > chi2 = 0.0000

Log likelihood = -26.615714 Pseudo R2 = 0.4090

foreign Coefficient Std. err. z P>|z| [95% conf. interval]

_hat .8438531 .2738759 3.08 0.002 .3070661 1.38064
_hatsq -.1559115 .1568642 -0.99 0.320 -.4633596 .1515366
_cons .2630557 .4299598 0.61 0.541 -.57965 1.105761

The link test reveals no problems with our specification.

If there had been a problem, we would have been virtually forced to accept the misinterpretation of

the link test—we would have reconsidered our specification of the independent variables. When using

logit, we have no control over the specification of the dependent variable other than to change likelihood
functions.

We admit to having seen a dataset once for which the link test rejected the logit specification. We did

change the likelihood function, refitting the model using probit, and satisfied the link test. Probit has
thinner tails than logit. In general, however, you will not be so lucky.
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Technical note
You should specify the same options with linktest that you do with the estimation command, al-

though you do not have to follow this advice as literally as we did in the preceding example. logit’s
nolog option merely suppresses a part of the output, not what is estimated. We specified nolog both
times to save space.

If you are testing a tobit model, you must specify the censoring points just as you do with the tobit
command.

If you are not sure which options are important, duplicate exactly what you specified on the estimation

command.

If you do not specify if exp or in range with linktest, Stata will by default perform the link test

on the same sample as the previous estimation. Suppose that you omitted some data when performing

your estimation but want to calculate the link test on all the data, which you might do if you believe the

model is appropriate for all the data. You would type linktest if e(sample) < . to do this.

Stored results
linktest stores the following in r():

Scalars

r(t) 𝑡 statistic on hatsq
r(df) degrees of freedom

linktest is not an estimation command in the sense that it leaves previous estimation results un-
changed. For instance, after running a regression and performing the link test, typing regress without
arguments after the link test still replays the original regression.

For integrating an estimation command with linktest, linktest assumes that the name of the esti-
mation command is stored in e(cmd) and that the name of the dependent variable is stored in e(depvar).
After estimation, it assumes that the number of degrees of freedom for the 𝑡 test is given by e(df m) if
the macro is defined.

If the estimation command reports 𝑧 statistics instead of 𝑡 statistics, linktest will also report

𝑧 statistics. The 𝑧 statistic, however, is still returned in r(t), and r(df) is set to a missing value.

Methods and formulas
The link test is based on the idea that if a regression or regression-like equation is properly specified,

you should be able to find no additional independent variables that are significant except by chance. One

kind of specification error is called a link error. In regression, this means that the dependent variable

needs a transformation or “link” function to properly relate to the independent variables. The idea of a

link test is to add an independent variable to the equation that is especially likely to be significant if there

is a link error.
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Let

y = 𝑓(Xβ)

be the model and β̂ be the parameter estimates. linktest calculates

hat = Xβ̂

and

hatsq = hat2

The model is then refit with these two variables, and the test is based on the significance of hatsq.
This is the form suggested by Pregibon (1979) based on an idea of Tukey (1949). Pregibon (1980)

suggests a slightly different method that has come to be known as “Pregibon’s goodness-of-link test”.

We prefer the older version because it is universally applicable, straightforward, and a good second-order

approximation. It can be applied to any single-equation estimation technique, whereas Pregibon’s more

recent tests are estimation-technique specific.

References
Pregibon, D. 1979. Data analytic methods for generalized linear models. PhD diss., University of Toronto.

———. 1980. Goodness of link tests for generalized linear models. Journal of the Royal Statistical Society, C ser., 29:

15–24. https://doi.org/10.2307/2346405.

Tukey, J. W. 1949. One degree of freedom for non-additivity. Biometrics 5: 232–242. https://doi.org/10.2307/3001938.

Also see
[R] regress postestimation — Postestimation tools for regress

https://doi.org/10.2307/2346405
https://doi.org/10.2307/3001938


lnskew0 — Find zero-skewness log or Box–Cox transform

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Acknowledgment Reference Also see

Description
lnskew0 creates newvar = ln(±exp − 𝑘), choosing 𝑘 and the sign of exp so that the skewness of

newvar is zero.

bcskew0 creates newvar = (exp𝜆 − 1)/𝜆, the Box–Cox power transformation (Box and Cox 1964),
choosing 𝜆 so that the skewness of newvar is zero. exp must be strictly positive.

Quick start
Generate newv1, the zero-skewness log transform of continuous variable v1

lnskew0 newv1 = v1

Same as above, but transform ratio of v1 to v2
lnskew0 newv1 = v1/v2

Zero-skewness Box–Cox transform, newv2, of v2
bcskew0 newv2 = v2

Same as above, and change the value for convergence to 0.0001 from the default 0.001

bcskew0 newv2 = v2, zero(.0001)

Menu
lnskew0
Data > Create or change data > Other variable-creation commands > Zero-skewness log transform

bcskew0
Data > Create or change data > Other variable-creation commands > Box–Cox transform

1510
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Syntax
Zero-skewness log transform

lnskew0 newvar = exp [ if ] [ in ] [ , options ]

Zero-skewness Box–Cox transform

bcskew0 newvar = exp [ if ] [ in ] [ , options ]

options Description

Main

delta(#) increment for derivative of skewness function; default is
delta(0.02) for lnskew0 and delta(0.01) for bcskew0

zero(#) value for determining convergence; default is zero(0.001)
level(#) compute the confidence interval at confidence level #; by default,

no confidence interval is calculated

collect is allowed with lnskew0 and bcskew0; see [U] 11.1.10 Prefix commands.

Options

� � �
Main �

delta(#) specifies the increment used for calculating the derivative of the skewness function with re-
spect to 𝑘 (lnskew0) or 𝜆 (bcskew0). The default values are 0.02 for lnskew0 and 0.01 for bcskew0.

zero(#) specifies a value for skewness to determine convergence that is small enough to be considered
zero and is, by default, 0.001.

level(#) specifies the confidence level for the confidence interval for 𝑘 (lnskew0) or 𝜆 (bcskew0).
The confidence interval is calculated only if level() is specified. # is specified as an integer; 95
means 95% confidence intervals. The level() option is honored only if the number of observations
exceeds 7.
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Remarks and examples

Example 1: lnskew0
Using our automobile dataset (see [U] 1.2.2 Example datasets), we want to generate a new variable

equal to ln(mpg−𝑘) to be approximately normally distributed. mpg records the miles per gallon for each
of our cars. One feature of the normal distribution is that it has skewness 0.

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. lnskew0 lnmpg = mpg

Transform k [95% conf. interval] Skewness

ln(mpg-k) 5.383659 (not calculated) -7.05e-06

This created the new variable lnmpg = ln(mpg − 5.384):
. describe lnmpg
Variable Storage Display Value

name type format label Variable label

lnmpg float %9.0g ln(mpg-5.383659)

Because we did not specify the level() option, no confidence interval was calculated. At the outset,
we could have typed

. use https://www.stata-press.com/data/r18/auto, clear
(1978 automobile data)
. lnskew0 lnmpg = mpg, level(95)

Transform k [95% conf. interval] Skewness

ln(mpg-k) 5.383659 -17.12339 9.892416 -7.05e-06

The confidence interval is calculated under the assumption that ln(mpg − 𝑘) really does have a nor-
mal distribution. It would be perfectly reasonable to use lnskew0, even if we did not believe that the
transformed variable would have a normal distribution—if we literally wanted the zero-skewness trans-

form—although, then the confidence interval would be an approximation of unknown quality to the true

confidence interval. If we now wanted to test the believability of the confidence interval, we could also

test our new variable lnmpg by using swilk (see [R] swilk) with the lnnormal option.
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Technical note
lnskew0 and bcskew0 report the resulting skewness of the variable merely to reassure you of the

accuracy of its results. In our example above, lnskew0 found 𝑘 such that the resulting skewness was

−7×10−6, a number close enough to zero for all practical purposes. If wewanted tomake it even smaller,

we could specify the zero() option. Typing lnskew0 new=mpg, zero(1e-8) changes the estimated 𝑘
to 5.383552 from 5.383659 and reduces the calculated skewness to −2 × 10−11.

When you request a confidence interval, lnskew0 may report the lower confidence interval as ‘.’,
which should be taken as indicating the lower confidence limit 𝑘𝐿 = −∞. (This cannot happen with

bcskew0.)

As an example, consider a sample of size 𝑛 on 𝑥 and assume that the skewness of 𝑥 is positive, but not

significantly so, at the desired significance level—say, 5%. Then, no matter how large and negative you

make 𝑘𝐿, there is no value extreme enough to make the skewness of ln(𝑥−𝑘𝐿) equal the corresponding
percentile (97.5 for a 95% confidence interval) of the distribution of skewness in a normal distribution of

the same sample size. You cannot do this because the distribution of ln(𝑥−𝑘𝐿) tends to that of 𝑥—apart

from location and scale shift—as 𝑥 → ∞. This “problem” never applies to the upper confidence limit,

𝑘𝑈, because the skewness of ln(𝑥 − 𝑘𝑈) tends to −∞ as 𝑘 tends upward to the minimum value of 𝑥.

Example 2: bcskew0
In example 1, using lnskew0 with a variable such as mpg is probably undesirable. mpg has a natural

zero, and we are shifting that zero arbitrarily. On the other hand, use of lnskew0 with a variable such
as temperature measured in Fahrenheit or Celsius would be more appropriate because the zero is indeed

arbitrary.

For a variable like mpg, it makes more sense to use the Box–Cox power transform (Box and Cox

1964):

𝑦(𝜆) = 𝑦𝜆 − 1
𝜆

𝜆 is free to take on any value, but 𝑦(1) = 𝑦 − 1, 𝑦(0) = ln(𝑦), and 𝑦(−1) = 1 − 1/𝑦.
bcskew0 works like lnskew0:

. bcskew0 bcmpg = mpg, level(95)
Transform L [95% conf. interval] Skewness

(mpg^L-1)/L -.3673283 -1.212752 .4339645 .0001898

The 95% confidence interval includes 𝜆 = −1 (𝜆 is labeled L in the output), which has a rather more
pleasing interpretation—gallons per mile—than (mpg−0.3673 −1)/(−0.3673). The confidence interval,
however, is calculated assuming that the power transformed variable is normally distributed. It makes

perfect sense to use bcskew0, evenwhen you do not believe that the transformed variablewill be normally
distributed, but then the confidence interval is an approximation of unknown quality. If you believe

that the transformed data are normally distributed, you can alternatively use boxcox to estimate 𝜆; see
[R] boxcox.
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Stored results
lnskew0 and bcskew0 store the following in r():

Scalars

r(gamma) 𝑘 (lnskew0)
r(lambda) 𝜆 (bcskew0)
r(lb) lower bound of confidence interval

r(ub) upper bound of confidence interval

r(skewness) resulting skewness of transformed variable

Methods and formulas
Skewness is as calculated by summarize; see [R] summarize. Newton’s method with numeric, un-

centered derivatives is used to estimate 𝑘 (lnskew0) and 𝜆 (bcskew0). For lnskew0, the initial value is
chosen so that the minimum of 𝑥 − 𝑘 is 1, and thus ln(𝑥 − 𝑘) is 0. bcskew0 starts with 𝜆 = 1.

Acknowledgment
lnskew0 and bcskew0 were written by Patrick Royston of theMRC Clinical Trials Unit, London, and

coauthor of the Stata Press book Flexible Parametric Survival Analysis Using Stata: Beyond the Cox

Model.

Reference
Box, G. E. P., and D. R. Cox. 1964. An analysis of transformations. Journal of the Royal Statistical Society, B ser., 26:

211–252. https://doi.org/10.1111/j.2517-6161.1964.tb00553.x.

Also see
[R] boxcox — Box–Cox regression models

[R] ladder — Ladder of powers

[R] swilk — Shapiro–Wilk and Shapiro–Francia tests for normality

https://www.stata-press.com/books/fpsaus.html
https://www.stata-press.com/books/fpsaus.html
https://doi.org/10.1111/j.2517-6161.1964.tb00553.x


log — Echo copy of session to file

Description Quick start Menu
Syntax Options for use with both log and cmdlog Options for use with log
Option for use with set logtype Remarks and examples Stored results
Reference Also see

Description
log and its subcommands tell Stata to open a log file and create a record of what you type and any

output that appears in the Results window, to suspend or resume logging, to check logging status, and

to close the log file. The default format is Stata Markup and Control Language (SMCL) but can be plain

text. You can have up to five SMCL and five text logs open at a time. cmdlog and its subcommands are
similar to log but create a command log recording only what you type and can be only plain text. That
is, cmdlog is designed only for interactive use. You can have only one command log open at a time.

set logtype, set logmsg, and set linesize are commands to control system parameters that re-

late to logs.

Quick start
Begin recording your Stata session in mylog.smcl

log using mylog

Same as above, but use a text format that can be read by a word processor

log using mylog, text

Save a subset of output to mylog2.smcl while mylog.smcl is still open
log using mylog2, name(mylog2)

Close mylog2.smcl and keep mylog.smcl open
log close mylog2

Create a do-file from commands typed interactively

cmdlog using mydo.do

Menu
File > Log

1515
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Syntax
Report status of log file

log

log query [ logname | all ]

Open log file

log using filename [ , append replace [ text | smcl ] name(logname) [ nomsg | msg ] ]

Close log

log close [ logname | all ]

Temporarily suspend logging or resume logging

log { off | on } [ logname ]

Report status of command log file

cmdlog

Open command log file

cmdlog using filename [ , append replace ]

Close command log, temporarily suspend logging, or resume logging

cmdlog {close | on | off }

Set default format for logs

set logtype { text | smcl } [ , permanently ]

Set default for display of log messages

set logmsg { on | off }

Specify screen width

set linesize #

In addition to using the log command, you may access the capabilities of log by selecting File > Log
from the menu and choosing one of the options in the list.

collect is allowed with log query, log, and cmdlog; see [U] 11.1.10 Prefix commands.
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Options for use with both log and cmdlog
append specifies that results be appended to an existing file. If the file does not already exist, a new file

is created.

replace specifies that filename, if it already exists, be overwritten. When you do not specify either

replace or append, the file is assumed to be new. If the specified file already exists, an error message
is issued and logging is not started.

Options for use with log
text and smcl specify the format in which the log is to be recorded. The default is complicated to

describe but is what you would expect:

If you specify the file as filename.smcl, the default is to write the log in SMCL format (regardless of

the value of set logtype).

If you specify the file as filename.log, the default is to write the log in text format (regardless of the
value of set logtype).

If you type filename without an extension and specify neither the smcl option nor the text option,
the default is to write the file according to the value of set logtype. If you have not set logtype,
then the default is SMCL. Also, the filename you specified will be fixed to read filename.smcl if a
SMCL log is being created or filename.log if a text log is being created.

If you specify either the text or smcl option, then what you specify determines how the log is written.

If filename was specified without an extension, the appropriate extension is added for you.

If you open multiple log files, you may choose a different format for each file.

name(logname) specifies an optional name you may use to refer to the log while it is open. You can
start multiple log files, give each a different logname, and then close, temporarily suspend, or resume

them each individually. The default logname is <unnamed>.

nomsg and msg specify whether to display or suppress the default message at the top and bottom of the

log file.

nomsg suppresses the default message displayed at the top and bottom of the log file. This message

consists of the log name (if specified in name(), otherwise unnamed), log path, log type, and date
opened or closed.

msg displays the default message at the top and bottom of the log file. This option is for use when

set logmsg is turned off.

Option for use with set logtype
permanently specifies that, in addition to making the change right now, the logtype setting be remem-

bered and become the default setting when you invoke Stata.

Remarks and examples
A full log is a file containing what you type and Stata’s output that is shown in the Results window.

To begin logging your session, you type log using filename. If filename contains embedded spaces,
remember to enclose it in double quotation marks.
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When the default log format is SMCL, logwill add the extension .smcl if filename is specified without
one. If text is specified or the default log type is changed to text, log adds the extension .log.

We recommend using SMCL because it preserves fonts and colors. SMCL logs can be viewed and

printed from the Viewer window, as can any text file; see [R] view. Users of console Stata can use

translate to produce printable versions of log files. translate also converts SMCL logs to text or

other formats, such as PostScript or PDF; see [R] translate.

When you open a full log, the default is to show the name of the file and a time and date stamp:

. log using myfile

name: <unnamed>
log: C:\data\proj1\myfile.smcl

log type: smcl
opened on: 12 Jan 2023, 12:28:23
.

The above information will appear in the log. If you do not want this information to appear, precede the

command by quietly:

. quietly log using myfile

quietly will not suppress any error messages or anything else you need to know.

Similarly, when you close a full log, the default is to show the full information,

. log close
name: <unnamed>
log: C:\data\proj1\myfile.smcl

log type: smcl
closed on: 12 Jan 2023, 12:32:41

and that information will also appear in the log. If you want to suppress that, type quietly log close.
Alternatively, specifying nomsg with log using will suppress these messages.

If you do not specify name(logname), Stata will use the name <unnamed>, as shown above. However,
you can start multiple log files by specifying the name() option with each new log using command.
To control a specific log, type, for example, log close logname; to close all log files at one time, type
log close all.

Stata also lets you log only your commands using cmdlog. Command logs are always text files, which
makes them easy to convert to do-files. The default extension is .txt instead of .do to keep you from
accidentally overwriting your important do-files. However, cmdlog will allow you to specify .do as the
extension of filename.

You can have only one command log open at a time. However, you can have full logs open while

logging your commands. Moreover, the text file you create for your command log does not count against

the limit of five text logs.

set logtype specifies the default format in which full logs are to be recorded. Initially, full logs are
recorded in SMCL format.

set logmsg specifies whether the default message is displayed at the top and bottom of the log file.

The default is on. Specifying set logmsg off suppresses the default message from both log using and
log close just as if the nomsg option were used with log using.
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set linesize specifies the maximum width, in characters, of Stata output. Most commands in Stata

do not respect linesize, because it is not important for most commands. Most users never need to set
linesize, because it will automatically be reset if you resize your Results window. This is also why
there is no permanently option allowed with set linesize. set linesize is for use with commands
such as list and display and is typically used by programmers whowish the output of those commands
to be wider or narrower than the current width of the Results window.

Stored results
log and cmdlog store the following in r():

Macros

r(name) logname

r(filename) name of file

r(status) on or off
r(type) smcl or text

log query all stores the following in r():

Scalars

r(numlogs) number of open log files

For each open log file, log query all also stores

r(name#) logname

r(filename#) name of file

r(status#) on or off
r(type#) smcl or text

where # varies between 1 and the value of r(numlogs). Be aware that # will not necessarily represent the order in which
the log files were first opened, nor will it necessarily remain constant for a given log file upon multiple calls to log query.

Reference
Hansen, M. R. 2015. graphlog: Creating log files with embedded graphics. Stata Journal 15: 594–596.

Also see
[R] query — Display system parameters

[R] translate — Print and translate logs

[GSM] 16 Saving and printing results by using logs

[GSW] 16 Saving and printing results by using logs

[GSU] 16 Saving and printing results by using logs

[U] 15 Saving and printing output—log files

https://www.stata-journal.com/article.html?article=gr0064


logistic — Logistic regression, reporting odds ratios

Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas References Also see

Description
logistic fits a logistic regression model of depvar on indepvars, where depvar is a 0/1 variable

(or, more precisely, a 0/non-0 variable). Without arguments, logistic redisplays the last logistic
estimates. logistic displays estimates as odds ratios; to view coefficients, type logit after running
logistic. To obtain odds ratios for any covariate pattern relative to another, see [R] lincom.

Quick start
Report odds ratios from logistic regression of y on x1 and x2

logistic y x1 x2

Add indicators for values of categorical variable a
logistic y x1 x2 i.a

Same as above, and apply frequency weights defined by wvar
logistic y x1 x2 i.a [fweight=wvar]

Show base level of a
logistic y x1 x2 i.a, baselevels

Menu
Statistics > Binary outcomes > Logistic regression

1520
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Syntax
logistic depvar indepvars [ if ] [ in ] [weight ] [ , options ]

options Description

Model

noconstant suppress constant term

offset(varname) include varname in model with coefficient constrained to 1

asis retain perfect predictor variables

constraints(constraints) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim, opg, robust, cluster clustvar, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)
coef report estimated coefficients

nocnsreport do not display constraints

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

collinear keep collinear variables

coeflegend display legend instead of statistics

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.

bayes, bootstrap, by, collect, fp, jackknife, mfp, mi estimate, nestreg, rolling, statsby, stepwise, and svy
are allowed; see [U] 11.1.10 Prefix commands. For more details, see [BAYES] bayes: logistic.

vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix; see [MI] mi estimate.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
collinear and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

noconstant, offset(varname), constraints(constraints); see [R] Estimation options.

asis forces retention of perfect predictor variables and their associated perfectly predicted observations
and may produce instabilities in maximization; see [R] probit.
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� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), that al-
low for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods

(bootstrap, jackknife); see [R] vce option.

� � �
Reporting �

level(#); see [R] Estimation options.

coef causes logistic to report the estimated coefficients rather than the odds ratios (exponentiated

coefficients). coef may be specified when the model is fit or may be used later to redisplay results.
coef affects only how results are displayed and not how they are estimated.

nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. These options are

seldom used.

The following options are available with logistic but are not shown in the dialog box:

collinear, coeflegend; see [R] Estimation options.

Remarks and examples
Remarks are presented under the following headings:

logistic and logit
Robust estimate of variance
Video examples

logistic and logit
logistic provides an alternative and preferred way to fit maximum-likelihood logit models, the

other choice being logit ([R] logit).

First, let’s dispose of some confusing terminology. We use the words logit and logistic to mean

the same thing: maximum likelihood estimation. To some, one or the other of these words connotes

transforming the dependent variable and using weighted least squares to fit the model, but that is not

how we use either word here. Thus, the logit and logistic commands produce the same results.
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The logistic command is generally preferred to the logit command because logistic presents
the estimates in terms of odds ratios rather than coefficients. To some people, this may seem disadvan-

tageous, but you can type logit without arguments after logistic to see the underlying coefficients.
You should be cautious when interpreting the odds ratio of the constant term. Usually, this odds ratio

represents the baseline odds of the model when all predictor variables are set to zero. However, you must

verify that a zero value for all predictor variables in the model actually makes sense before continuing

with this interpretation.

Nevertheless, [R] logit is still worth reading because logistic shares the same features as logit,
including omitting variables due to collinearity or one-way causation.

For an introduction to logistic regression, see Lemeshow and Hosmer (2005), Pagano and Gauvreau

(2022, 455–478), or Pampel (2021); for a complete but nonmathematical treatment, see Kleinbaum and

Klein (2010); and for a thorough discussion, see Hosmer, Lemeshow, and Sturdivant (2013). See Gould

(2000) for a discussion of the interpretation of logistic regression. See Dupont (2009) or Hilbe (2009)

for a discussion of logistic regression with examples using Stata. For a discussion using Stata with an

emphasis on model specification, see Vittinghoff et al. (2012).

Stata has a variety of commands for performing estimation when the dependent variable is dichoto-

mous or polytomous. See Long and Freese (2014) for a book devoted to fitting these models with Stata.

See help estimation commands for a complete list of all of Stata’s estimation commands.

Example 1
Consider the following dataset from a study of risk factors associated with low birthweight described

in Hosmer, Lemeshow, and Sturdivant (2013, 24).

. use https://www.stata-press.com/data/r18/lbw
(Hosmer & Lemeshow data)
. describe
Contains data from https://www.stata-press.com/data/r18/lbw.dta
Observations: 189 Hosmer & Lemeshow data

Variables: 11 15 Jan 2022 05:01

Variable Storage Display Value
name type format label Variable label

id int %8.0g Identification code
low byte %8.0g Birthweight<2500g
age byte %8.0g Age of mother
lwt int %8.0g Weight at last menstrual period
race byte %8.0g race Race
smoke byte %9.0g smoke Smoked during pregnancy
ptl byte %8.0g Premature labor history (count)
ht byte %8.0g Has history of hypertension
ui byte %8.0g Presence, uterine irritability
ftv byte %8.0g Number of visits to physician

during 1st trimester
bwt int %8.0g Birthweight (grams)

Sorted by:

We want to investigate the causes of low birthweight. Here race is a categorical variable indicating

whether a person is white (race = 1), black (race = 2), or some other race (race = 3). We want

indicator (dummy) variables for race included in the regression, so we will use factor variables.
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. logistic low age lwt i.race smoke ptl ht ui
Logistic regression Number of obs = 189

LR chi2(8) = 33.22
Prob > chi2 = 0.0001

Log likelihood = -100.724 Pseudo R2 = 0.1416

low Odds ratio Std. err. z P>|z| [95% conf. interval]

age .9732636 .0354759 -0.74 0.457 .9061578 1.045339
lwt .9849634 .0068217 -2.19 0.029 .9716834 .9984249

race
Black 3.534767 1.860737 2.40 0.016 1.259736 9.918406
Other 2.368079 1.039949 1.96 0.050 1.001356 5.600207

smoke 2.517698 1.00916 2.30 0.021 1.147676 5.523162
ptl 1.719161 .5952579 1.56 0.118 .8721455 3.388787
ht 6.249602 4.322408 2.65 0.008 1.611152 24.24199
ui 2.1351 .9808153 1.65 0.099 .8677528 5.2534

_cons 1.586014 1.910496 0.38 0.702 .1496092 16.8134

Note: _cons estimates baseline odds.

The odds ratios are for a one-unit change in the variable. If we wanted the odds ratio for age to be in
terms of 4-year intervals, we would type

. generate age4 = age/4

. logistic low age4 lwt i.race smoke ptl ht ui
(output omitted)

After logistic, we can type logit to see the model in terms of coefficients and standard errors:

. logit
Logistic regression Number of obs = 189

LR chi2(8) = 33.22
Prob > chi2 = 0.0001

Log likelihood = -100.724 Pseudo R2 = 0.1416

low Coefficient Std. err. z P>|z| [95% conf. interval]

age4 -.1084012 .1458017 -0.74 0.457 -.3941673 .1773649
lwt -.0151508 .0069259 -2.19 0.029 -.0287253 -.0015763

race
Black 1.262647 .5264101 2.40 0.016 .2309024 2.294392
Other .8620792 .4391532 1.96 0.050 .0013548 1.722804

smoke .9233448 .4008266 2.30 0.021 .137739 1.708951
ptl .5418366 .346249 1.56 0.118 -.136799 1.220472
ht 1.832518 .6916292 2.65 0.008 .4769494 3.188086
ui .7585135 .4593768 1.65 0.099 -.1418484 1.658875

_cons .4612239 1.20459 0.38 0.702 -1.899729 2.822176

If we wanted to see the logistic output again, we would type logistic without arguments.
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Example 2
We can specify the confidence interval for the odds ratios with the level() option, and we can do this

either at estimation time or when replaying the model. For instance, to see our first model in example 1

with narrower, 90% confidence intervals, we might type

. logistic, level(90)
Logistic regression Number of obs = 189

LR chi2(8) = 33.22
Prob > chi2 = 0.0001

Log likelihood = -100.724 Pseudo R2 = 0.1416

low Odds ratio Std. err. z P>|z| [90% conf. interval]

age4 .8972675 .1308231 -0.74 0.457 .7059409 1.140448
lwt .9849634 .0068217 -2.19 0.029 .9738063 .9962483

race
Black 3.534767 1.860737 2.40 0.016 1.487028 8.402379
Other 2.368079 1.039949 1.96 0.050 1.149971 4.876471

smoke 2.517698 1.00916 2.30 0.021 1.302185 4.867819
ptl 1.719161 .5952579 1.56 0.118 .9726876 3.038505
ht 6.249602 4.322408 2.65 0.008 2.003487 19.49478
ui 2.1351 .9808153 1.65 0.099 1.00291 4.545424

_cons 1.586014 1.910496 0.38 0.702 .2186791 11.50288

Note: _cons estimates baseline odds.

Robust estimate of variance
If you specify vce(robust), Stata reports the robust estimate of variance described in [U] 20.22 Ob-

taining robust variance estimates. Here is the model previously fit with the robust estimate of variance:

. logistic low age lwt i.race smoke ptl ht ui, vce(robust)
Logistic regression Number of obs = 189

Wald chi2(8) = 29.02
Prob > chi2 = 0.0003

Log pseudolikelihood = -100.724 Pseudo R2 = 0.1416

Robust
low Odds ratio std. err. z P>|z| [95% conf. interval]

age .9732636 .0329376 -0.80 0.423 .9108015 1.040009
lwt .9849634 .0070209 -2.13 0.034 .9712984 .9988206

race
Black 3.534767 1.793616 2.49 0.013 1.307504 9.556051
Other 2.368079 1.026563 1.99 0.047 1.012512 5.538501

smoke 2.517698 .9736417 2.39 0.017 1.179852 5.372537
ptl 1.719161 .7072902 1.32 0.188 .7675715 3.850476
ht 6.249602 4.102026 2.79 0.005 1.726445 22.6231
ui 2.1351 1.042775 1.55 0.120 .8197749 5.560858

_cons 1.586014 1.939482 0.38 0.706 .144345 17.42658

Note: _cons estimates baseline odds.
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Also, you can specify vce(cluster clustvar) and then, within cluster, relax the assumption of inde-
pendence. To illustrate this, we have made some fictional additions to the low-birthweight data.

Say that these data are not a random sample of mothers but instead are a random sample of mothers

from a random sample of hospitals. In fact, that may be true—we do not know the history of these data.

Hospitals specialize, and it would not be too incorrect to say that some hospitals specialize in more

difficult cases. We are going to show two extremes. In one, all hospitals are alike, but we are going to

estimate under the possibility that they might differ. In the other, hospitals are strikingly different. In

both cases, we assume that patients are drawn from 20 hospitals.

In both examples, we will fit the same model, and we will type the same command to fit it. Below

are the same data we have been using but with a new variable, hospid, that identifies from which of the

20 hospitals each patient was drawn (and which we have made up):

. use https://www.stata-press.com/data/r18/hospid1, clear

. logistic low age lwt i.race smoke ptl ht ui, vce(cluster hospid)
Logistic regression Number of obs = 189

Wald chi2(8) = 49.67
Prob > chi2 = 0.0000

Log pseudolikelihood = -100.724 Pseudo R2 = 0.1416
(Std. err. adjusted for 20 clusters in hospid)

Robust
low Odds ratio std. err. z P>|z| [95% conf. interval]

age .9732636 .0397476 -0.66 0.507 .898396 1.05437
lwt .9849634 .0057101 -2.61 0.009 .9738352 .9962187

race
Black 3.534767 2.013285 2.22 0.027 1.157563 10.79386
Other 2.368079 .8451325 2.42 0.016 1.176562 4.766257

smoke 2.517698 .8284259 2.81 0.005 1.321062 4.79826
ptl 1.719161 .6676221 1.40 0.163 .8030814 3.680219
ht 6.249602 4.066275 2.82 0.005 1.74591 22.37086
ui 2.1351 1.093144 1.48 0.138 .7827337 5.824014

_cons 1.586014 1.661913 0.44 0.660 .2034094 12.36639

Note: _cons estimates baseline odds.

The standard errors are similar to the standard errors we have previously obtained, whether we used the

robust or conventional estimators. In this example, we invented the hospital IDs randomly.
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Here are the results of the estimation with the same data but with a different set of hospital IDs:

. use https://www.stata-press.com/data/r18/hospid2

. logistic low age lwt i.race smoke ptl ht ui, vce(cluster hospid)
Logistic regression Number of obs = 189

Wald chi2(8) = 7.19
Prob > chi2 = 0.5167

Log pseudolikelihood = -100.724 Pseudo R2 = 0.1416
(Std. err. adjusted for 20 clusters in hospid)

Robust
low Odds ratio std. err. z P>|z| [95% conf. interval]

age .9732636 .0293064 -0.90 0.368 .9174862 1.032432
lwt .9849634 .0106123 -1.41 0.160 .9643817 1.005984

race
Black 3.534767 3.120338 1.43 0.153 .6265521 19.9418
Other 2.368079 1.297738 1.57 0.116 .8089594 6.932114

smoke 2.517698 1.570287 1.48 0.139 .7414969 8.548655
ptl 1.719161 .6799153 1.37 0.171 .7919045 3.732161
ht 6.249602 7.165454 1.60 0.110 .660558 59.12808
ui 2.1351 1.411977 1.15 0.251 .5841231 7.804266

_cons 1.586014 1.946253 0.38 0.707 .1431423 17.573

Note: _cons estimates baseline odds.

Note the strikingly larger standard errors. What happened? In these data, women most likely to have

low-birthweight babies are sent to certain hospitals, and the decision on likeliness is based not just on age,

smoking history, etc., but on other things that doctors can see but that are not recorded in our data. Thus,

merely because a woman is at one of the centers identifies her to be more likely to have a low-birthweight

baby.

Video examples
Logistic regression, part 1: Binary predictors

Logistic regression, part 2: Continuous predictors

Logistic regression, part 3: Factor variables

https://www.youtube.com/watch?v=rSU1L3-xRk0
https://www.youtube.com/watch?v=vmZ_uaFImzQ
https://www.youtube.com/watch?v=vCSh613UMic
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Stored results
logistic stores the following in e():

Scalars

e(N) number of observations

e(N cds) number of completely determined successes

e(N cdf) number of completely determined failures

e(k) number of parameters

e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test

e(k dv) number of dependent variables

e(df m) model degrees of freedom

e(r2 p) pseudo-𝑅2

e(ll) log likelihood

e(ll 0) log likelihood, constant-only model

e(N clust) number of clusters

e(chi2) 𝜒2

e(p) 𝑝-value for model test
e(rank) rank of e(V)
e(ic) number of iterations

e(rc) return code

e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) logistic
e(cmdline) command as typed

e(depvar) name of dependent variable

e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(clustvar) name of cluster variable

e(offset) linear offset variable

e(chi2type) Wald or LR; type of model 𝜒2 test

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(opt) type of optimization

e(which) max or min; whether optimizer is to perform maximization or minimization

e(ml method) type of ml method
e(user) name of likelihood-evaluator program

e(technique) maximization technique

e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(ilog) iteration log (up to 20 iterations)

e(gradient) gradient vector

e(mns) vector of means of the independent variables

e(rules) information about perfect predictors

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

Functions

e(sample) marks estimation sample
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In addition to the above, the following is stored in r():
Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas
Define x𝑗 as the (row) vector of independent variables, augmented by 1, and b as the corresponding

estimated parameter (column) vector. The logistic regression model is fit by logit; see [R] logit for
details of estimation.

The odds ratio corresponding to the 𝑖th coefficient is 𝜓𝑖 = exp(𝑏𝑖). The standard error of the odds
ratio is 𝑠𝜓

𝑖 = 𝜓𝑖𝑠𝑖, where 𝑠𝑖 is the standard error of 𝑏𝑖 estimated by logit.

Define 𝐼𝑗 = x𝑗b as the predicted index of the 𝑗th observation. The predicted probability of a positive
outcome is

𝑝𝑗 =
exp(𝐼𝑗)

1 + exp(𝐼𝑗)

This command supports the Huber/White/sandwich estimator of the variance and its clustered version

using vce(robust) and vce(cluster clustvar), respectively. See [P] robust, particularly Maximum

likelihood estimators and Methods and formulas.

logistic also supports estimation with survey data. For details on VCEs with survey data, see

[SVY] Variance estimation.
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Postestimation commands predict margins Remarks and examples
Methods and formulas References Also see

Postestimation commands
The following postestimation commands are of special interest after logistic:

Command Description

estat classification report various summary statistics, including the classification table

estat gof Pearson or Hosmer–Lemeshow goodness-of-fit test

lroc compute area under ROC curve and graph the curve

lsens graph sensitivity and specificity versus probability cutoff

These commands are not appropriate with svy estimation results.

The following standard postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters

estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian
information criteria (AIC, CAIC, AICc, and BIC, respectively)

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estat (svy) postestimation statistics for survey data

estimates cataloging estimation results

etable table of estimation results
∗ forecast dynamic forecasts and simulations
∗ hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combina-
tions of parameters

linktest link test for model specification
∗ lrtest likelihood-ratio test

margins marginal means, predictive margins, marginal effects, and average marginal
effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combi-
nations of parameters

predict probabilities, influence statistics, residuals, etc.

predictnl point estimates, standard errors, testing, and inference for generalized pre-
dictions

pwcompare pairwise comparisons of parameters

suest seemingly unrelated estimation

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

∗forecast, hausman, and lrtest are not appropriate with svy estimation results. forecast is also not appropriate with mi
estimation results.

1531
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predict

Description for predict
predict creates a new variable containing predictions such as probabilities, linear predictions, stan-

dard errors, influence statistics, deviance residuals, leverages, sequential numbers, Pearson residuals,

and the equation-level score.

Menu for predict
Statistics > Postestimation

Syntax for predict
predict [ type ] newvar [ if ] [ in ] [ , statistic nooffset rules asif ]

statistic Description

Main

pr probability of a positive outcome; the default

xb linear prediction

stdp standard error of the prediction
∗ dbeta Pregibon (1981) Δ ̂𝛽 influence statistic
∗ deviance deviance residual
∗ dx2 Hosmer, Lemeshow, and Sturdivant (2013) Δ 𝜒2 influence statistic
∗ ddeviance Hosmer, Lemeshow, and Sturdivant (2013) Δ 𝐷 influence statistic
∗ hat Pregibon (1981) leverage
∗ number sequential number of the covariate pattern
∗ residuals Pearson residuals; adjusted for number sharing covariate pattern
∗ rstandard standardized Pearson residuals; adjusted for number sharing covariate pattern

score first derivative of the log likelihood with respect to x𝑗β

Unstarred statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for the
estimation sample. Starred statistics are calculated only for the estimation sample, even when if e(sample) is not
specified.

pr, xb, stdp, and score are the only options allowed with svy estimation results.
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Options for predict

� � �
Main �

pr, the default, calculates the probability of a positive outcome.

xb calculates the linear prediction.

stdp calculates the standard error of the linear prediction.

dbeta calculates the Pregibon (1981) Δ ̂𝛽 influence statistic, a standardized measure of the difference

in the coefficient vector that is due to deletion of the observation along with all others that share the

same covariate pattern. In Hosmer, Lemeshow, and Sturdivant (2013, 154–155) jargon, this statistic

is 𝑀-asymptotic; that is, it is adjusted for the number of observations that share the same covariate

pattern.

deviance calculates the deviance residual.

dx2 calculates the Hosmer, Lemeshow, and Sturdivant (2013, 191)Δ𝜒2 influence statistic, reflecting the

decrease in the Pearson 𝜒2 that is due to deletion of the observation and all others that share the same

covariate pattern.

ddeviance calculates the Hosmer, Lemeshow, and Sturdivant (2013, 191)Δ𝐷 influence statistic, which

is the change in the deviance residual that is due to deletion of the observation and all others that share

the same covariate pattern.

hat calculates the Pregibon (1981) leverage or the diagonal elements of the hat matrix adjusted for the
number of observations that share the same covariate pattern.

number numbers the covariate patterns—observations with the same covariate pattern have the same

number. Observations not used in estimation have number set to missing. The first covariate pattern
is numbered 1, the second 2, and so on.

residuals calculates the Pearson residual as given by Hosmer, Lemeshow, and Sturdivant (2013, 155)
and adjusted for the number of observations that share the same covariate pattern.

rstandard calculates the standardized Pearson residual as given by Hosmer, Lemeshow, and Sturdivant
(2013, 191) and adjusted for the number of observations that share the same covariate pattern.

score calculates the equation-level score, 𝜕ln𝐿/𝜕(x𝑗β).

� � �
Options �

nooffset is relevant only if you specified offset(varname) for logistic. It modifies the calculations
made by predict so that they ignore the offset variable; the linear prediction is treated as x𝑗b rather

than as x𝑗b + offset𝑗.

rules requests that Stata use any rules that were used to identify the model when making the prediction.
By default, Stata calculates missing for excluded observations. See example 1 in [R] logit postesti-

mation.

asif requests that Stata ignore the rules and the exclusion criteria and calculate predictions for all ob-
servations possible by using the estimated parameter from the model. See example 1 in [R] logit

postestimation.
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margins

Description for margins
margins estimates margins of response for probabilities and linear predictions.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist ] [ , options ]
margins [marginlist ] , predict(statistic ...) [ predict(statistic ...) ... ] [ options ]

statistic Description

pr probability of a positive outcome; the default

xb linear prediction

stdp not allowed with margins
dbeta not allowed with margins
deviance not allowed with margins
dx2 not allowed with margins
ddeviance not allowed with margins
hat not allowed with margins
number not allowed with margins
residuals not allowed with margins
rstandard not allowed with margins
score not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.
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Remarks and examples
predict is used after logistic to obtain predicted probabilities, residuals, and influence statistics

for the estimation sample. The suggested diagnostic graphs below are from Hosmer, Lemeshow, and

Sturdivant (2013), where they are more elaborately explained. Also see Collett (2003, 129–168) for a

thorough discussion of model checking.

Remarks are presented under the following headings:

predict without options
predict with the xb and stdp options
predict with the residuals option
predict with the number option
predict with the deviance option
predict with the rstandard option
predict with the hat option
predict with the dx2 option
predict with the ddeviance option
predict with the dbeta option

predict without options
Typing predict newvar after estimation calculates the predicted probability of a positive outcome.

In example 1 of [R] logistic, we ran the model logistic low age lwt i.race smoke ptl ht ui. We

obtain the predicted probabilities of a positive outcome by typing

. use https://www.stata-press.com/data/r18/lbw
(Hosmer & Lemeshow data)
. logistic low age lwt i.race smoke ptl ht ui
(output omitted )

. predict p
(option pr assumed; Pr(low))
. summarize p low

Variable Obs Mean Std. dev. Min Max

p 189 .3121693 .1913915 .0272559 .8391283
low 189 .3121693 .4646093 0 1

predict with the xb and stdp options
predict with the xb option calculates the linear combination 𝑥𝑗b, where 𝑥𝑗 are the independent

variables in the 𝑗th observation and b is the estimated parameter vector. This is sometimes known as the
index function because the cumulative distribution function indexed at this value is the probability of a

positive outcome.

With the stdp option, predict calculates the standard error of the prediction, which is not adjusted
for replicated covariate patterns in the data. The influence statistics described below are adjusted for

replicated covariate patterns in the data.



logistic postestimation — Postestimation tools for logistic 1536

predict with the residuals option
predict can calculate more than predicted probabilities. The Pearson residual is defined as the square

root of the contribution of the covariate pattern to the Pearson 𝜒2 goodness-of-fit statistic, signed ac-

cording to whether the observed number of positive responses within the covariate pattern is less than or

greater than expected. For instance,

. predict r, residuals

. summarize r, detail
Pearson residual

Percentiles Smallest
1% -1.750923 -2.283885
5% -1.129907 -1.750923
10% -.9581174 -1.636279 Obs 189
25% -.6545911 -1.636279 Sum of wgt. 189
50% -.3806923 Mean -.0242299

Largest Std. dev. .9970949
75% .8162894 2.23879
90% 1.510355 2.317558 Variance .9941981
95% 1.747948 3.002206 Skewness .8618271
99% 3.002206 3.126763 Kurtosis 3.038448

We notice the prevalence of a few large positive residuals:

. sort r

. list id r low p age race in -5/l

id r low p age race

185. 33 2.224501 1 .1681123 19 White
186. 57 2.23879 1 .166329 15 White
187. 16 2.317558 1 .1569594 27 Other
188. 77 3.002206 1 .0998678 26 White
189. 36 3.126763 1 .0927932 24 White

predict with the number option
Covariate patterns play an important role in logistic regression. Two observations are said to share the

same covariate pattern if the independent variables for the two observations are identical. Although we

might think of having individual observations, the statistical information in the sample can be summa-

rized by the covariate patterns, the number of observations with that covariate pattern, and the number

of positive outcomes within the pattern. Depending on the model, the number of covariate patterns can

approach or be equal to the number of observations, or it can be considerably less.

Stata calculates all the residual and diagnostic statistics in terms of covariate patterns, not observa-

tions. That is, all observations with the same covariate pattern are given the same residual and diagnostic

statistics. Hosmer, Lemeshow, and Sturdivant (2013, 154–155) argue that such “𝑀-asymptotic” statistics

are more useful than “𝑁-asymptotic” statistics.

To understand the difference, think of an observed positive outcome with predicted probability of 0.8.

Taking the observation in isolation, the residual must be positive—we expected 0.8 positive responses

and observed 1. This may indeed be the correct residual, but not necessarily. Under the 𝑀-asymptotic

definition, we ask how many successes we observed across all observations with this covariate pattern.
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If that number were, say, six, and there were a total of 10 observations with this covariate pattern, then

the residual is negative for the covariate pattern—we expected eight positive outcomes but observed

six. predict makes this kind of calculation and then attaches the same residual to all observations in
the covariate pattern.

Occasionally, you might want to find all observations sharing a covariate pattern. number allows you
to do this:

. predict pattern, number

. summarize pattern
Variable Obs Mean Std. dev. Min Max

pattern 189 89.2328 53.16573 1 182

We previously fit the model logistic low age lwt i.race smoke ptl ht ui over 189 observations.
There are 182 covariate patterns in our data.

predict with the deviance option
The deviance residual is defined as the square root of the contribution to the likelihood-ratio test

statistic of a saturated model versus the fitted model. It has slightly different properties from the Pearson

residual (see Hosmer, Lemeshow, and Sturdivant [2013, 155–157]):

. predict d, deviance

. summarize d, detail
deviance residual

Percentiles Smallest
1% -1.843472 -1.911621
5% -1.33477 -1.843472
10% -1.148316 -1.843472 Obs 189
25% -.8445325 -1.674869 Sum of wgt. 189
50% -.5202702 Mean -.1228811

Largest Std. dev. 1.049237
75% .9129041 1.894089
90% 1.541558 1.924457 Variance 1.100898
95% 1.673338 2.146583 Skewness .6598857
99% 2.146583 2.180542 Kurtosis 2.036938
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predict with the rstandard option
Pearson residuals do not have a standard deviation equal to 1. rstandard generates Pearson residuals

normalized to have an expected standard deviation equal to 1.

. predict rs, rstandard

. summarize r rs
Variable Obs Mean Std. dev. Min Max

r 189 -.0242299 .9970949 -2.283885 3.126763
rs 189 -.0279135 1.026406 -2.4478 3.149081

. correlate r rs
(obs=189)

r rs

r 1.0000
rs 0.9998 1.0000

Remember that we previously created r containing the (unstandardized) Pearson residuals. In these data,
whether we use standardized or unstandardized residuals does not matter much.

predict with the hat option
hat calculates the leverage of a covariate pattern—a scaled measure of distance in terms of the inde-

pendent variables. Large values indicate covariate patterns far from the average covariate pattern that can

have a large effect on the fitted model even if the corresponding residual is small. Consider the following

graph:

. predict h, hat

. scatter h r, xline(0) ytitle(”Leverage”)
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The points to the left of the vertical line are observed negative outcomes; here our data contain al-

most as many covariate patterns as observations, so most covariate patterns are unique. In such unique

patterns, we observe either 0 or 1 success and expect 𝑝, thus forcing the sign of the residual. If we had
fewer covariate patterns—if we did not have continuous variables in our model—there would be no such

interpretation, and we would not have drawn the vertical line at 0.
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Points on the left and right edges of the graph represent large residuals—covariate patterns that are not

fit well by our model. Points at the top of our graph represent high leverage patterns. When analyzing

the influence of observations on the model, we are most interested in patterns with high leverage and

small residuals—patterns that might otherwise escape our attention.

predict with the dx2 option
There are many ways to measure influence, and hat is one example. dx2 measures the decrease in

the Pearson 𝜒2 goodness-of-fit statistic that would be caused by deleting an observation (and all others

sharing the covariate pattern):

. predict dx2, dx2

. scatter dx2 p
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Paraphrasing Hosmer, Lemeshow, and Sturdivant (2013, 195–197), the points going from the top left

to the bottom right correspond to covariate patterns with the number of positive outcomes equal to the

number in the group; the points on the other curve correspond to 0 positive outcomes. In our data, most

of the covariate patterns are unique, so the points tend to lie along one or the other curves; the points that

are off the curves correspond to the few repeated covariate patterns in our data in which all the outcomes

are not the same.

We examine this graph for large values of dx2—there are two at the top left.

predict with the ddeviance option
Another measure of influence is the change in the deviance residuals due to deletion of a covariate

pattern:

. predict dd, ddeviance

As with dx2, we typically graph ddeviance against the probability of a positive outcome. We direct

you to Hosmer, Lemeshow, and Sturdivant (2013, 195) for an example and for the interpretation of this

graph.
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predict with the dbeta option
One of the more direct measures of influence of interest to model fitters is the Pregibon (1981) dbeta

measure, ameasure of the change in the coefficient vector that would be caused by deleting an observation

(and all others sharing the covariate pattern):

. predict db, dbeta

. scatter db p
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One observation has a large effect on the estimated coefficients. We can easily find this point:

. sort db

. list in l

189. id low age lwt race smoke ptl ht ui ftv bwt
188 0 25 95 White Smoker 3 0 1 0 3637

p r pattern d rs h
.8391283 -2.283885 117 -1.911621 -2.4478 .1294439

dx2 dd db
5.991726 4.197658 .8909163
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Hosmer, Lemeshow, and Sturdivant (2013, 196) suggest a graph that combines two of the influence

measures:

. scatter dx2 p [aw=db], title(”Symbol size proportional to dBeta”) mfcolor(none)
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Symbol size proportional to dBeta

We can easily spot the most influential points by the dbeta and dx2 measures.

Methods and formulas
Let 𝑗 index observations. Define 𝑀𝑗 for each observation as the total number of observations sharing

𝑗’s covariate pattern. Define 𝑌𝑗 as the total number of positive responses among observations sharing 𝑗’s
covariate pattern.

The Pearson residual for the 𝑗th observation is defined as

𝑟𝑗 =
𝑌𝑗 − 𝑀𝑗𝑝𝑗

√𝑀𝑗𝑝𝑗(1 − 𝑝𝑗)

For 𝑀𝑗 > 1, the deviance residual 𝑑𝑗 is defined as

𝑑𝑗 = ±(2[𝑌𝑗 ln(
𝑌𝑗

𝑀𝑗𝑝𝑗
) + (𝑀𝑗 − 𝑌𝑗) ln{

𝑀𝑗 − 𝑌𝑗

𝑀𝑗(1 − 𝑝𝑗)
}])

1/2

where the sign is the same as the sign of (𝑌𝑗 − 𝑀𝑗𝑝𝑗). In the limiting cases, the deviance residual is

given by

𝑑𝑗 =
⎧{
⎨{⎩

−√2𝑀𝑗| ln(1 − 𝑝𝑗)| if 𝑌𝑗 = 0

√2𝑀𝑗| ln𝑝𝑗| if 𝑌𝑗 = 𝑀𝑗

The unadjusted diagonal elements of the hat matrix ℎU𝑗 are given by ℎU𝑗 = (XVX′)𝑗𝑗, where 𝑉 is the

estimated covariance matrix of parameters. The adjusted diagonal elements ℎ𝑗 created by hat are then
ℎ𝑗 = 𝑀𝑗𝑝𝑗(1 − 𝑝𝑗)ℎU𝑗.

The standardized Pearson residual 𝑟S𝑗 is 𝑟𝑗/√1 − ℎ𝑗.
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The Pregibon (1981) Δ ̂𝛽𝑗 influence statistic is

Δ ̂𝛽𝑗 =
𝑟2

𝑗 ℎ𝑗

(1 − ℎ𝑗)2

The corresponding change in the Pearson 𝜒2 is 𝑟2
S𝑗. The corresponding change in the deviance residual

is Δ𝐷𝑗 = 𝑑2
𝑗 /(1 − ℎ𝑗).
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logit — Logistic regression, reporting coefficients

Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas References Also see

Description
logit fits a logit model for a binary response by maximum likelihood; it models the probability of

a positive outcome given a set of regressors. depvar equal to nonzero and nonmissing (typically depvar

equal to one) indicates a positive outcome, whereas depvar equal to zero indicates a negative outcome.

Also see [R] logistic; logistic displays estimates as odds ratios. Many users prefer the logistic
command to logit. Results are the same regardless of which you use—both are the maximum-

likelihood estimator. Several auxiliary commands that can be run after logit, probit, or logistic
estimation are described in [R] logistic postestimation.

Quick start
Logit model of y on x1 and x2

logit y x1 x2

Add indicators for categorical variable a
logit y x1 x2 i.a

With cluster–robust standard errors for clustering by levels of cvar
logit y x1 x2 i.a, vce(cluster cvar)

Save separate coefficient estimates for each level of cvar to myresults.dta
statsby _b, by(cvar) saving(myresults): logit y x1 x2 i.a

Adjust for complex survey design using svyset data
svy: logit y x1 x2 i.a

Menu
Statistics > Binary outcomes > Logistic regression

1543
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Syntax
logit depvar [ indepvars ] [ if ] [ in ] [weight ] [ , options ]

options Description

Model

noconstant suppress constant term

offset(varname) include varname in model with coefficient constrained to 1

asis retain perfect predictor variables

constraints(constraints) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim, opg, robust, cluster clustvar, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)
or report odds ratios

nocnsreport do not display constraints

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

nocoef do not display coefficient table; seldom used

collinear keep collinear variables

coeflegend display legend instead of statistics

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.

bayes, bootstrap, by, collect, fmm, fp, jackknife, mfp, mi estimate, nestreg, rolling, statsby, stepwise, and
svy are allowed; see [U] 11.1.10 Prefix commands. For more details, see [BAYES] bayes: logit and [FMM] fmm: logit.

vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix; see [MI] mi estimate.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
vce(), nocoef, and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
nocoef, collinear, and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Options

� � �
Model �

noconstant, offset(varname), constraints(constraints); see [R] Estimation options.

asis forces retention of perfect predictor variables and their associated perfectly predicted observations
and may produce instabilities in maximization; see [R] probit.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), that al-
low for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods

(bootstrap, jackknife); see [R] vce option.

� � �
Reporting �

level(#); see [R] Estimation options.

or reports the estimated coefficients transformed to odds ratios, that is, 𝑒𝑏 rather than 𝑏. Standard errors
and confidence intervals are similarly transformed. This option affects how results are displayed, not

how they are estimated. or may be specified at estimation or when replaying previously estimated
results.

nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. These options are

seldom used.

The following options are available with logit but are not shown in the dialog box:

nocoef specifies that the coefficient table not be displayed. This option is sometimes used by program
writers but is of no use interactively.

collinear, coeflegend; see [R] Estimation options.

Remarks and examples
Remarks are presented under the following headings:

Basic usage
Model identification
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Basic usage
logit fits maximum likelihood models with dichotomous dependent (left-hand-side) variables coded

as 0/1 (or, more precisely, coded as 0 and not-0).

For grouped data or data in binomial form, a probit model can be fit using glm with the

family(binomial) and link(logit) options.

Example 1
We have data on the make, weight, and mileage rating of 22 foreign and 52 domestic automobiles.

We wish to fit a logit model explaining whether a car is foreign on the basis of its weight and mileage.

Here is an overview of our data:

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. keep make mpg weight foreign
. describe
Contains data from https://www.stata-press.com/data/r18/auto.dta
Observations: 74 1978 automobile data

Variables: 4 13 Apr 2022 17:45
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

make str18 %-18s Make and model
mpg int %8.0g Mileage (mpg)
weight int %8.0gc Weight (lbs.)
foreign byte %8.0g origin Car origin

Sorted by: foreign
Note: Dataset has changed since last saved.

. inspect foreign
foreign: Car origin Number of observations

Total Integers Nonintegers
# Negative - - -
# Zero 52 52 -
# Positive 22 22 -
#
# # Total 74 74 -
# # Missing -

0 1 74
(2 unique values)

foreign is labeled and all values are documented in the label.

The variable foreign takes on two unique values, 0 and 1. The value 0 denotes a domestic car, and 1
denotes a foreign car.

The model that we wish to fit is

Pr(foreign = 1) = 𝐹(𝛽0 + 𝛽1weight + 𝛽2mpg)

where 𝐹(𝑧) = 𝑒𝑧/(1 + 𝑒𝑧) is the cumulative logistic distribution.
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To fit this model, we type

. logit foreign weight mpg
Iteration 0: Log likelihood = -45.03321
Iteration 1: Log likelihood = -29.238536
Iteration 2: Log likelihood = -27.244139
Iteration 3: Log likelihood = -27.175277
Iteration 4: Log likelihood = -27.175156
Iteration 5: Log likelihood = -27.175156
Logistic regression Number of obs = 74

LR chi2(2) = 35.72
Prob > chi2 = 0.0000

Log likelihood = -27.175156 Pseudo R2 = 0.3966

foreign Coefficient Std. err. z P>|z| [95% conf. interval]

weight -.0039067 .0010116 -3.86 0.000 -.0058894 -.001924
mpg -.1685869 .0919175 -1.83 0.067 -.3487418 .011568

_cons 13.70837 4.518709 3.03 0.002 4.851859 22.56487

We find that heavier cars are less likely to be foreign and that cars yielding better gas mileage are also

less likely to be foreign, at least holding the weight of the car constant.

Technical note
Stata interprets a value of 0 as a negative outcome (failure) and treats all other values (except missing)

as positive outcomes (successes). Thus if your dependent variable takes on the values 0 and 1, then 0 is

interpreted as failure and 1 as success. If your dependent variable takes on the values 0, 1, and 2, then 0

is still interpreted as failure, but both 1 and 2 are treated as successes.

If you prefer a more formal mathematical statement, when you type logit 𝑦 𝑥, Stata fits the model

Pr(𝑦𝑗 ≠ 0 ∣ x𝑗) =
exp(x𝑗β)

1 + exp(x𝑗β)

Model identification
The logit command has one more feature, and it is probably the most useful. logit automatically

checks the model for identification and, if it is underidentified, drops whatever variables and observations

are necessary for estimation to proceed. (logistic, probit, and ivprobit do this as well.)
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Example 2
Have you ever fit a logit model where one or more of your independent variables perfectly predicted

one or the other outcome?

For instance, consider the following data:

Outcome 𝑦 Independent variable 𝑥
0 1

0 1

0 0

1 0

Say that we wish to predict the outcome on the basis of the independent variable. The outcome is always

zero whenever the independent variable is one. In our data, Pr(𝑦 = 0 ∣ 𝑥 = 1) = 1, which means

that the logit coefficient on 𝑥 must be minus infinity with a corresponding infinite standard error. At this

point, you may suspect that we have a problem.

Unfortunately, not all such problems are so easily detected, especially if you have a lot of independent

variables in your model. If you have ever had such difficulties, you have experienced one of the more

unpleasant aspects of computer optimization. The computer has no idea that it is trying to solve for

an infinite coefficient as it begins its iterative process. All it knows is that at each step, making the

coefficient a little bigger, or a little smaller, works wonders. It continues on its merry way until either

1) the whole thing comes crashing to the ground when a numerical overflow error occurs or 2) it reaches

some predetermined cutoff that stops the process. In the meantime, you have been waiting. The estimates

that you finally receive, if you receive any at all, may be nothing more than numerical roundoff.

Stata watches for these sorts of problems, alerts us, fixes them, and properly fits the model.

Let’s return to our automobile data. Among the variables we have in the data is one called repair,
which takes on three values. A value of 1 indicates that the car has a poor repair record, 2 indicates an

average record, and 3 indicates a better-than-average record. Here is a tabulation of our data:

. use https://www.stata-press.com/data/r18/repair, clear
(1978 automobile data)
. tabulate foreign repair

Repair
Car origin 1 2 3 Total

Domestic 10 27 9 46
Foreign 0 3 9 12

Total 10 30 18 58

All the cars with poor repair records (repair = 1) are domestic. If we were to attempt to predict

foreign on the basis of the repair records, the predicted probability for the repair = 1 category would

have to be zero. This in turn means that the logit coefficient must be minus infinity, and that would set

most computer programs buzzing.
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Let’s try Stata on this problem.

. logit foreign b3.repair
note: 1.repair != 0 predicts failure perfectly;

1.repair omitted and 10 obs not used.
Iteration 0: Log likelihood = -26.992087
Iteration 1: Log likelihood = -22.483187
Iteration 2: Log likelihood = -22.230498
Iteration 3: Log likelihood = -22.229139
Iteration 4: Log likelihood = -22.229138
Logistic regression Number of obs = 48

LR chi2(1) = 9.53
Prob > chi2 = 0.0020

Log likelihood = -22.229138 Pseudo R2 = 0.1765

foreign Coefficient Std. err. z P>|z| [95% conf. interval]

repair
1 0 (empty)
2 -2.197225 .7698003 -2.85 0.004 -3.706005 -.6884436

_cons -1.85e-17 .4714045 -0.00 1.000 -.9239359 .9239359

Remember that all the cars with poor repair records (repair = 1) are domestic, so the model cannot

be fit, or at least it cannot be fit if we restrict ourselves to finite coefficients. Stata noted that fact “note:

1.repair !=0 predicts failure perfectly”. This is Stata’s mathematically precise way of saying what we

said in English. When repair is 1, the car is domestic.

Stata then went on to say “1.repair omitted and 10 obs not used”. This is Stata eliminating the problem.

First 1.repair had to be removed from the model because it would have an infinite coefficient. Then,

the 10 observations that led to the problem had to be eliminated, as well, so as not to bias the remaining

coefficients in the model. The 10 observations that are not used are the 10 domestic cars that have poor

repair records.

Stata then fit what was left of the model, using the remaining observations. Because no observations

remained for cars with poor repair records, Stata reports “(empty)” in the row for repair = 1.

Technical note
Stata is pretty smart about catching problems like this. It will catch “one-way causation by a dummy

variable”, as we demonstrated above.

Stata also watches for “two-way causation”, that is, a variable that perfectly determines the outcome,

both successes and failures. Here Stata says, “so-and-so predicts outcome perfectly” and stops. Statistics

dictates that no model can be fit.

Stata also checks your data for collinear variables; it will say, “so-and-so omitted because of collinear-

ity”. No observations need to be eliminated in this case, and model fitting will proceed without the

offending variable.
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It will also catch a subtle problem that can arise with continuous data. For instance, if we were

estimating the chances of surviving the first year after an operation, and if we included in our model age,
and if all the persons over 65 died within the year, Stata would say, “age> 65 predicts failure perfectly”.

It would then inform us about the fix-up it takes and fit what can be fit of our model.

logit (and logistic, probit, and ivprobit) will also occasionally display messages such as

Note: 4 failures and 0 successes completely determined.

There are two causes for a message like this. The first—and most unlikely—case occurs when a

continuous variable (or a combination of a continuous variable with other continuous or dummy vari-

ables) is simply a great predictor of the dependent variable. Consider Stata’s auto.dta dataset with 6
observations removed.

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. drop if foreign==0 & gear_ratio > 3.1
(6 observations deleted)
. logit foreign mpg weight gear_ratio, nolog
Logistic regression Number of obs = 68

LR chi2(3) = 72.64
Prob > chi2 = 0.0000

Log likelihood = -6.4874814 Pseudo R2 = 0.8484

foreign Coefficient Std. err. z P>|z| [95% conf. interval]

mpg -.4944907 .2655508 -1.86 0.063 -1.014961 .0259792
weight -.0060919 .003101 -1.96 0.049 -.0121698 -.000014

gear_ratio 15.70509 8.166234 1.92 0.054 -.300436 31.71061
_cons -21.39527 25.41486 -0.84 0.400 -71.20747 28.41694

Note: 4 failures and 0 successes completely determined.

There are no missing standard errors in the output. If you receive the “completely determined” message

and have one or more missing standard errors in your output, see the second case discussed below.

Note gear ratio’s large coefficient. logit thought that the 4 observations with the smallest pre-
dicted probabilities were essentially predicted perfectly.

. predict p
(option pr assumed; Pr(foreign))
. sort p
. list p in 1/4

p

1. 1.34e-10
2. 6.26e-09
3. 7.84e-09
4. 1.49e-08

If this happens to you, you do not have to do anything. Computationally, the model is sound. The

second case discussed below requires careful examination.
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The second case occurs when the independent terms are all dummy variables or continuous ones with

repeated values (for example, age). Here one or more of the estimated coefficients will have missing

standard errors. For example, consider this dataset consisting of 6 observations.

. use https://www.stata-press.com/data/r18/logitxmpl, clear

. list, separator(0)

y x1 x2

1. 0 0 0
2. 0 0 0
3. 0 1 0
4. 1 1 0
5. 0 0 1
6. 1 0 1

. logit y x1 x2
Iteration 0: Log likelihood = -3.819085
Iteration 1: Log likelihood = -2.9527336
Iteration 2: Log likelihood = -2.8110282
Iteration 3: Log likelihood = -2.7811973
Iteration 4: Log likelihood = -2.7746107
Iteration 5: Log likelihood = -2.7730128
(output omitted )

Iteration 296: Log likelihood = -2.7725887 (not concave)
Iteration 297: Log likelihood = -2.7725887 (not concave)
Iteration 298: Log likelihood = -2.7725887 (not concave)
Iteration 299: Log likelihood = -2.7725887 (not concave)
Iteration 300: Log likelihood = -2.7725887 (not concave)
convergence not achieved
Logistic regression Number of obs = 6

LR chi2(1) = 2.09
Prob > chi2 = 0.1480

Log likelihood = -2.7725887 Pseudo R2 = 0.2740

y Coefficient Std. err. z P>|z| [95% conf. interval]

x1 18.3704 2 9.19 0.000 14.45047 22.29033
x2 18.3704 . . . . .

_cons -18.3704 1.414214 -12.99 0.000 -21.14221 -15.5986

Note: 2 failures and 0 successes completely determined.
convergence not achieved
r(430);

Three things are happening here. First, logit iterates almost forever and then declares nonconver-
gence. Second, logit can fit the outcome (y = 0) for the covariate pattern x1 = 0 and x2 = 0 (that

is, the first two observations) perfectly. This observation is the “2 failures and 0 successes completely

determined”. Third, if this observation is excluded, then x1, x2, and the constant are collinear.

This is the cause of the nonconvergence, the message “completely determined”, and the missing stan-

dard errors. It happens when you have a covariate pattern (or patterns) with only one outcome and there

is collinearity when the observations corresponding to this covariate pattern are excluded.
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If this happens to you, confirm the causes. First, identify the covariate pattern with only one outcome.

(For your data, replace x1 and x2 with the independent variables of your model.)

. egen pattern = group(x1 x2)

. quietly logit y x1 x2, iterate(100)
convergence not achieved
. predict p
(option pr assumed; Pr(y))
. summarize p

Variable Obs Mean Std. dev. Min Max

p 6 .3333333 .2581989 1.05e-08 .5

If successes were completely determined, that means that there are predicted probabilities that are almost

1. If failures were completely determined, that means that there are predicted probabilities that are almost

0. The latter is the case here, so we locate the corresponding value of pattern:

. tabulate pattern if p < 1e-7
group(x1

x2) Freq. Percent Cum.

1 2 100.00 100.00

Total 2 100.00

Once we omit this covariate pattern from the estimation sample, logit can deal with the collinearity:

. logit y x1 x2 if pattern != 1, nolog
note: x2 omitted because of collinearity.
Logistic regression Number of obs = 4

LR chi2(1) = 0.00
Prob > chi2 = 1.0000

Log likelihood = -2.7725887 Pseudo R2 = 0.0000

y Coefficient Std. err. z P>|z| [95% conf. interval]

x1 0 2 0.00 1.000 -3.919928 3.919928
x2 0 (omitted)

_cons 0 1.414214 0.00 1.000 -2.771808 2.771808
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We omit the collinear variable. Then we must decide whether to include or omit the observations with

pattern = 1. We could include them,

. logit y x1, nolog
Logistic regression Number of obs = 6

LR chi2(1) = 0.37
Prob > chi2 = 0.5447

Log likelihood = -3.6356349 Pseudo R2 = 0.0480

y Coefficient Std. err. z P>|z| [95% conf. interval]

x1 1.098612 1.825742 0.60 0.547 -2.479776 4.677001
_cons -1.098612 1.154701 -0.95 0.341 -3.361784 1.164559

or exclude them,

. logit y x1 if pattern != 1, nolog
Logistic regression Number of obs = 4

LR chi2(1) = 0.00
Prob > chi2 = 1.0000

Log likelihood = -2.7725887 Pseudo R2 = 0.0000

y Coefficient Std. err. z P>|z| [95% conf. interval]

x1 0 2 0.00 1.000 -3.919928 3.919928
_cons 0 1.414214 0.00 1.000 -2.771808 2.771808

If the covariate pattern that predicts outcome perfectly is meaningful, you may want to exclude these

observations from the model. Here you would report that covariate pattern such and such predicted

outcome perfectly and that the best model for the rest of the data is . . . . But, more likely, the perfect

prediction was simply the result of having too many predictors in the model. Then you would omit the

extraneous variables from further consideration and report the best model for all the data.

Stored results
logit stores the following in e():
Scalars

e(N) number of observations

e(N cds) number of completely determined successes

e(N cdf) number of completely determined failures

e(k) number of parameters

e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test

e(k dv) number of dependent variables

e(df m) model degrees of freedom

e(r2 p) pseudo-𝑅2

e(ll) log likelihood

e(ll 0) log likelihood, constant-only model

e(N clust) number of clusters

e(chi2) 𝜒2

e(p) 𝑝-value for model test
e(rank) rank of e(V)
e(ic) number of iterations

e(rc) return code

e(converged) 1 if converged, 0 otherwise
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Macros

e(cmd) logit
e(cmdline) command as typed

e(depvar) name of dependent variable

e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(clustvar) name of cluster variable

e(offset) linear offset variable

e(chi2type) Wald or LR; type of model 𝜒2 test

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(opt) type of optimization

e(which) max or min; whether optimizer is to perform maximization or minimization

e(ml method) type of ml method
e(user) name of likelihood-evaluator program

e(technique) maximization technique

e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(ilog) iteration log (up to 20 iterations)

e(gradient) gradient vector

e(mns) vector of means of the independent variables

e(rules) information about perfect predictors

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas
Cramer (2003, chap. 9) surveys the prehistory and history of the logit model. The word “logit” was

coined by Berkson (1944) and is analogous to the word “probit”. For an introduction to probit and logit,

see, for example, Aldrich and Nelson (1984), Cameron and Trivedi (2022), Jones (2007), Long (1997),

Long and Freese (2014), Pampel (2021), or Powers and Xie (2008).

The likelihood function for logit is

ln𝐿 = ∑
𝑗∈𝑆

𝑤𝑗 ln𝐹(x𝑗b) + ∑
𝑗∉𝑆

𝑤𝑗 ln{1 − 𝐹(x𝑗b)}
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where 𝑆 is the set of all observations 𝑗, such that 𝑦𝑗 ≠ 0, 𝐹(𝑧) = 𝑒𝑧/(1 + 𝑒𝑧), and 𝑤𝑗 denotes the

optional weights. ln𝐿 is maximized as described in [R]Maximize.

This command supports the Huber/White/sandwich estimator of the variance and its clustered version

using vce(robust) and vce(cluster clustvar), respectively. See [P] robust, particularly Maximum

likelihood estimators and Methods and formulas. The scores are calculated as u𝑗 = {1− 𝐹(x𝑗b)}x𝑗 for

the positive outcomes and −𝐹(x𝑗b)x𝑗 for the negative outcomes.

logit also supports estimationwith survey data. For details onVCEs with survey data, see [SVY]Vari-
ance estimation.� �
Joseph Berkson (1899–1982) was born in New York City and studied at the College of the City of

NewYork, Columbia, and Johns Hopkins, earning both an MD and a doctorate in statistics. He then

worked at Johns Hopkins before moving to the Mayo Clinic in 1931 as a biostatistician. Among

many other contributions, his most influential one drew upon a long-sustained interest in the logistic

function, especially his 1944 paper on bioassay, in which he introduced the term “logit”. Berkson

was a frequent participant in controversy—sometimes humorous, sometimes bitter—on subjects

such as the evidence for links between smoking and various diseases and the relative merits of

probit and logit methods and of different calculation methods.� �
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Postestimation commands predict margins Remarks and examples
Methods and formulas References Also see

Postestimation commands
The following postestimation commands are of special interest after logit:

Command Description

estat classification report various summary statistics, including the classification table

estat gof Pearson or Hosmer–Lemeshow goodness-of-fit test

lroc compute area under ROC curve and graph the curve

lsens graph sensitivity and specificity versus probability cutoff

lassogof calculate goodness-of-fit predictions

These commands are not appropriate with svy estimation results.

The following standard postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters

estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian
information criteria (AIC, CAIC, AICc, and BIC, respectively)

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estat (svy) postestimation statistics for survey data

estimates cataloging estimation results

etable table of estimation results
∗ forecast dynamic forecasts and simulations
∗ hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combina-
tions of parameters

linktest link test for model specification
∗ lrtest likelihood-ratio test

margins marginal means, predictive margins, marginal effects, and average marginal
effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combi-
nations of parameters

predict probabilities, influence statistics, residuals, etc.

predictnl point estimates, standard errors, testing, and inference for generalized pre-
dictions

pwcompare pairwise comparisons of parameters

suest seemingly unrelated estimation

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

1557
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∗forecast, hausman, and lrtest are not appropriate with svy estimation results. forecast is also not appropriate with mi
estimation results.

predict

Description for predict
predict creates a new variable containing predictions such as probabilities, linear predictions, stan-

dard errors, influence statistics, deviance residuals, leverages, sequential numbers, Pearson residuals,

and the equation-level score.

Menu for predict
Statistics > Postestimation

Syntax for predict
predict [ type ] newvar [ if ] [ in ] [ , statistic nooffset rules asif ]

statistic Description

Main

pr probability of a positive outcome; the default

xb linear prediction

stdp standard error of the prediction
∗ dbeta Pregibon (1981) Δ ̂𝛽 influence statistic
∗ deviance deviance residual
∗ dx2 Hosmer, Lemeshow, and Sturdivant (2013) Δ 𝜒2 influence statistic
∗ ddeviance Hosmer, Lemeshow, and Sturdivant (2013) Δ 𝐷 influence statistic
∗ hat Pregibon (1981) leverage
∗ number sequential number of the covariate pattern
∗ residuals Pearson residuals; adjusted for number sharing covariate pattern
∗ rstandard standardized Pearson residuals; adjusted for number sharing covariate pattern

score first derivative of the log likelihood with respect to x𝑗β

Unstarred statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for the
estimation sample. Starred statistics are calculated only for the estimation sample, even when if e(sample) is not
specified.

pr, xb, stdp, and score are the only options allowed with svy estimation results.

Options for predict

� � �
Main �

pr, the default, calculates the probability of a positive outcome.

xb calculates the linear prediction.

stdp calculates the standard error of the linear prediction.
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dbeta calculates the Pregibon (1981) Δ ̂𝛽 influence statistic, a standardized measure of the difference

in the coefficient vector that is due to deletion of the observation along with all others that share the

same covariate pattern. In Hosmer, Lemeshow, and Sturdivant (2013, 154–155) jargon, this statistic

is 𝑀-asymptotic; that is, it is adjusted for the number of observations that share the same covariate

pattern.

deviance calculates the deviance residual.

dx2 calculates the Hosmer, Lemeshow, and Sturdivant (2013, 191)Δ𝜒2 influence statistic, reflecting the

decrease in the Pearson 𝜒2 that is due to deletion of the observation and all others that share the same

covariate pattern.

ddeviance calculates the Hosmer, Lemeshow, and Sturdivant (2013, 191)Δ𝐷 influence statistic, which

is the change in the deviance residual that is due to deletion of the observation and all others that share

the same covariate pattern.

hat calculates the Pregibon (1981) leverage or the diagonal elements of the hat matrix adjusted for the
number of observations that share the same covariate pattern.

number numbers the covariate patterns—observations with the same covariate pattern have the same

number. Observations not used in estimation have number set to missing. The first covariate pattern
is numbered 1, the second 2, and so on.

residuals calculates the Pearson residual as given by Hosmer, Lemeshow, and Sturdivant (2013, 155)
and adjusted for the number of observations that share the same covariate pattern.

rstandard calculates the standardized Pearson residual as given by Hosmer, Lemeshow, and Sturdivant
(2013, 191) and adjusted for the number of observations that share the same covariate pattern.

score calculates the equation-level score, 𝜕ln𝐿/𝜕(x𝑗β).

� � �
Options �

nooffset is relevant only if you specified offset(varname) for logit. It modifies the calculations
made by predict so that they ignore the offset variable; the linear prediction is treated as x𝑗b rather

than as x𝑗b + offset𝑗.

rules requests that Stata use any rules that were used to identify the model when making the prediction.
By default, Stata calculates missing for excluded observations.

asif requests that Stata ignore the rules and exclusion criteria and calculate predictions for all observa-
tions possible by using the estimated parameter from the model.
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margins

Description for margins
margins estimates margins of response for probabilities and linear predictions.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist ] [ , options ]
margins [marginlist ] , predict(statistic ...) [ predict(statistic ...) ... ] [ options ]

statistic Description

pr probability of a positive outcome; the default

xb linear prediction

stdp not allowed with margins
dbeta not allowed with margins
deviance not allowed with margins
dx2 not allowed with margins
ddeviance not allowed with margins
hat not allowed with margins
number not allowed with margins
residuals not allowed with margins
rstandard not allowed with margins
score not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.

Remarks and examples
Once you have fit a logit model, you can obtain the predicted probabilities by using the predict

command for both the estimation sample and other samples; see [U] 20 Estimation and postestimation

commands and [R] predict. Here we will make only a few more comments.

predict without arguments calculates the predicted probability of a positive outcome, that is,

Pr(𝑦𝑗 = 1) = 𝐹(x𝑗b). With the xb option, predict calculates the linear combination x𝑗b, where

x𝑗 are the independent variables in the 𝑗th observation and b is the estimated parameter vector. This

is sometimes known as the index function because the cumulative distribution function indexed at this

value is the probability of a positive outcome.

In both cases, Stata remembers any rules used to identify the model and calculates missing for ex-

cluded observations, unless rules or asif is specified. For information about the other statistics avail-
able after predict, see [R] logistic postestimation.



logit postestimation — Postestimation tools for logit 1561

Example 1: Predicted probabilities
In example 2 of [R] logit, we fit the logit model logit foreign b3.repair. To obtain predicted

probabilities, type

. use https://www.stata-press.com/data/r18/repair
(1978 automobile data)
. logit foreign b3.repair
note: 1.repair != 0 predicts failure perfectly

1.repair omitted and 10 obs not used
(output omitted )

. predict p
(option pr assumed; Pr(foreign))
(10 missing values generated)
. summarize foreign p

Variable Obs Mean Std. dev. Min Max

foreign 58 .2068966 .4086186 0 1
p 48 .25 .1956984 .1 .5

Stata remembers any rules used to identify the model and sets predictions to missing for any excluded

observations. logit omitted the variable 1.repair from our model and excluded 10 observations. Thus

when we typed predict p, those same 10 observations were again excluded, and their predictions were
set to missing.

predict’s rules option uses the rules in the prediction. During estimation, we were told “1.repair !=
0 predicts failure perfectly”, so the rule is that when 1.repair is not zero, we should predict 0 probability
of success or a positive outcome:

. predict p2, rules
(option pr assumed; Pr(foreign))
. summarize foreign p p2

Variable Obs Mean Std. dev. Min Max

foreign 58 .2068966 .4086186 0 1
p 48 .25 .1956984 .1 .5

p2 58 .2068966 .2016268 0 .5

predict’s asif option ignores the rules and exclusion criteria and calculates predictions for all ob-
servations possible by using the estimated parameters from the model:

. predict p3, asif
(option pr assumed; Pr(foreign))
. summarize foreign p p2 p3

Variable Obs Mean Std. dev. Min Max

foreign 58 .2068966 .4086186 0 1
p 48 .25 .1956984 .1 .5

p2 58 .2068966 .2016268 0 .5
p3 58 .2931035 .2016268 .1 .5
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Which is right? What predict does by default is the most conservative approach. If many ob-

servations had been excluded because of a simple rule, we could be reasonably certain that the rules
prediction is correct. The asif prediction is correct only if the exclusion is a fluke, and we would be
willing to exclude the variable from the analysis anyway. Then, however, we would refit the model to

include the excluded observations.

Example 2: Predictive margins
We can use the command margins, contrast after logit to make comparisons on the probability

scale. Let’s fit a model predicting low birthweight from characteristics of the mother:

. use https://www.stata-press.com/data/r18/lbw, clear
(Hosmer & Lemeshow data)
. logit low age i.race i.smoke ptl i.ht i.ui
Iteration 0: Log likelihood = -117.336
Iteration 1: Log likelihood = -103.81846
Iteration 2: Log likelihood = -103.40486
Iteration 3: Log likelihood = -103.40384
Iteration 4: Log likelihood = -103.40384
Logistic regression Number of obs = 189

LR chi2(7) = 27.86
Prob > chi2 = 0.0002

Log likelihood = -103.40384 Pseudo R2 = 0.1187

low Coefficient Std. err. z P>|z| [95% conf. interval]

age -.0403293 .0357127 -1.13 0.259 -.1103249 .0296663

race
Black 1.009436 .5025122 2.01 0.045 .0245302 1.994342
Other 1.001908 .4248342 2.36 0.018 .1692485 1.834568

smoke
Smoker .9631876 .3904357 2.47 0.014 .1979477 1.728427

ptl .6288678 .3399067 1.85 0.064 -.0373371 1.295073
1.ht 1.358142 .6289555 2.16 0.031 .125412 2.590872
1.ui .8001832 .4572306 1.75 0.080 -.0959724 1.696339
_cons -1.184127 .9187461 -1.29 0.197 -2.984837 .6165818

The coefficients are log odds-ratios: conditional on the other predictors, smoking during pregnancy

is associated with an increase of 0.96 in the log odds of low birthweight. The model is linear in the log

odds-scale, so the estimate of 0.96 has the same interpretation, whatever the values of the other predictors

might be. We could convert 0.96 to an odds ratio by replaying the results with logit, or.
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But what if we want to talk about the probability of low birthweight, and not the odds? Then we will

need the command margins, contrast. We will use the r. contrast operator to compare each level

of smoke with a reference level. (smoke has only two levels, so there will be only one comparison: a
comparison of smokers with nonsmokers.)

. margins r.smoke, contrast
Contrasts of predictive margins Number of obs = 189
Model VCE: OIM
Expression: Pr(low), predict()

df chi2 P>chi2

smoke 1 6.32 0.0119

Delta-method
Contrast std. err. [95% conf. interval]

smoke
(Smoker vs Nonsmoker) .1832779 .0728814 .0404329 .3261229

We see that maternal smoking is associated with an 18.3% increase in the probability of low birth-

weight. (We received a contrast in the probability scale because predicted probabilities are the default

when margins is used after logit.)

The contrast of 18.3% is a difference of margins that are computed by averaging over the predictions

for observations in the estimation sample. If the values of the other predictors were different, the contrast

for smoke would be different, too. Let’s estimate the contrast for 25-year-old mothers:

. margins r.smoke, contrast at(age=25)
Contrasts of predictive margins Number of obs = 189
Model VCE: OIM
Expression: Pr(low), predict()
At: age = 25

df chi2 P>chi2

smoke 1 6.19 0.0129

Delta-method
Contrast std. err. [95% conf. interval]

smoke
(Smoker vs Nonsmoker) .1808089 .0726777 .0383632 .3232547

Specifying a maternal age of 25 changed the contrast to 18.1%. Our contrast of probabilities changed
because the logit model is nonlinear in the probability scale. A contrast of log odds would not have

changed.
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Methods and formulas
See Methods and formulas in [R] logistic postestimation for details on predictions. For all other

postestimation commands, see Methods and formulas in the entries for the corresponding commands.
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Also see
[R] logit — Logistic regression, reporting coefficients

[R] estat classification — Classification statistics and table

[R] estat gof — Pearson or Hosmer–Lemeshow goodness-of-fit test

[R] lroc — Compute area under ROC curve and graph the curve

[R] lsens — Graph sensitivity and specificity versus probability cutoff

[LASSO] lassogof — Goodness of fit after lasso for prediction

[U] 20 Estimation and postestimation commands
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loneway — Large one-way ANOVA, random effects, and reliability

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Acknowledgment References Also see

Description
loneway fits one-way analysis-of-variance (ANOVA) models. loneway relaxes the restriction imposed

by oneway that factors must have fewer than 376 levels. The command additionally reports the intraclass
correlation, its standard error, and confidence interval; the estimated reliability of the group-averaged

mean; the standard deviation of the group effect; and the standard deviation of the within-group effect.

Quick start
One-way ANOVAmodel of y for factor a

loneway y a

Report an exact 95% confidence interval for the intraclass correlation

loneway y a, exact

Same as above, but report a 90% confidence interval

loneway y a, exact level(90)

Menu
Statistics > Linear models and related > ANOVA/MANOVA > Large one-way ANOVA

1565
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Syntax
loneway response var group var [ if ] [ in ] [weight ] [ , options ]

options Description

Main

mean expected value of 𝐹 distribution; default is 1
median median of 𝐹 distribution; default is 1
exact exact confidence intervals (groups must be equal with no weights)

level(#) set confidence level; default is level(95)

by and collect are allowed; see [U] 11.1.10 Prefix commands.

aweights are allowed; see [U] 11.1.6 weight.

Options

� � �
Main �

mean specifies that the expected value of the 𝐹𝑘−1,𝑁−𝑘 distribution be used as the reference point 𝐹𝑚 in

the estimation of 𝜌 instead of the default value of 1.
median specifies that the median of the 𝐹𝑘−1,𝑁−𝑘 distribution be used as the reference point 𝐹𝑚 in the

estimation of 𝜌 instead of the default value of 1.
exact requests that exact confidence intervals be computed, as opposed to the default asymptotic con-

fidence intervals. This option is allowed only if the groups are equal in size and weights are not

used.

level(#) specifies the confidence level, as a percentage, for confidence intervals of the coefficients.

The default is level(95) or as set by set level; see [U] 20.8 Specifying the width of confidence
intervals.

Remarks and examples
loneway and oneway both fitANOVAmodels, but loneway presents different ancillary statistics from

oneway:
Feature oneway loneway

Fit one-way model x x
on 375 or fewer levels x x
on more than 375 levels x

Bartlett’s test for equal variance x
Multiple-comparison tests x
Intraclass correlation and SE x
Intraclass correlation confidence interval x
Est. reliability of group-averaged mean x
Est. SD of group effect x
Est. SD within group x
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Remarks are presented under the following headings:

The one-way ANOVAmodel
𝑅2

The random-effects ANOVAmodel
Intraclass correlation
Estimated reliability of the group-averaged score

The one-way ANOVA model

Example 1
loneway’s output looks like that of oneway, except that loneway presents more information at the

end. Using our automobile dataset, we have created a (numeric) variable called manufacturer grp
identifying the manufacturer of each car, and within each manufacturer we have retained a maximum of

four models, selecting those with the lowest mpg. We can compute the intraclass correlation of mpg for

all manufacturers with at least four models as follows:

. use https://www.stata-press.com/data/r18/auto7
(1978 automobile data)
. loneway mpg manufacturer_grp if nummake == 4

One-way analysis of variance for mpg: Mileage (mpg)
Number of obs = 36

R-squared = 0.5228
Source SS df MS F Prob > F

Between manufactur~p 621.88889 8 77.736111 3.70 0.0049
Within manufactur~p 567.75 27 21.027778

Total 1189.6389 35 33.989683
Intraclass Asy.
correlation S.E. [95% conf. interval]

0.40270 0.18770 0.03481 0.77060
Estimated SD of manufactur~p effect 3.765247
Estimated SD within manufactur~p 4.585605
Est. reliability of a manufactur~p mean 0.72950

(evaluated at n=4.00)

In addition to the standard one-wayANOVA output, loneway produces the 𝑅2, the estimated standard

deviation of the group effect, the estimated standard deviation within group, the intragroup correlation,

the estimated reliability of the group-averaged mean, and, for unweighted data, the asymptotic standard

error and confidence interval for the intragroup correlation.

𝑅2

The 𝑅2 is, of course, simply the underlying 𝑅2 for a regression of response var on the levels of

group var, or mpg on the various manufacturers here.
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The random-effects ANOVA model
loneway assumes that we observe a variable, 𝑦𝑖𝑗, measured for 𝑛𝑖 elements within 𝑘 groups or classes

such that

𝑦𝑖𝑗 = 𝜇 + 𝛼𝑖 + 𝜖𝑖𝑗, 𝑖 = 1, 2, . . . , 𝑘, 𝑗 = 1, 2, . . . , 𝑛𝑖

and 𝛼𝑖 and 𝜖𝑖𝑗 are independent zero-mean random variables with variance 𝜎2
𝛼 and 𝜎2

𝜖 , respectively. This

is the random-effects ANOVA model, also known as the components-of-variance model, in which it is

typically assumed that the 𝑦𝑖𝑗 are normally distributed.

The interpretation with respect to our example is that the observed value of our response variable,

mpg, is created in two steps. First, the 𝑖th manufacturer is chosen, and a value, 𝛼𝑖, is determined—the

typical mpg for that manufacturer less the overall mpg 𝜇. Then a deviation, 𝜖𝑖𝑗, is chosen for the 𝑗th model
within this manufacturer. This is how much that particular automobile differs from the typical mpg value
for models from this manufacturer.

For our sample of 36 car models, the estimated standard deviations are 𝜎𝛼 = 3.8 and 𝜎𝜖 = 4.6.

Thus, a little more than half of the variation in mpg between cars is attributable to the car model, with
the rest attributable to differences between manufacturers. These standard deviations differ from those

that would be produced by a (standard) fixed-effects regression in that the regression would require the

sum within each manufacturer of the 𝜖𝑖𝑗, 𝜖𝑖. for the 𝑖th manufacturer, to be zero, whereas these estimates
merely impose the constraint that the sum is expected to be zero.

Intraclass correlation
There are various estimators of the intraclass correlation, such as the pairwise estimator, which is

defined as the Pearson product-moment correlation computed over all possible pairs of observations that

can be constructed within groups. For a discussion of various estimators, see Donner (1986). loneway
computes what is termed the analysis of variance, or ANOVA, estimator. This intraclass correlation is the

theoretical upper bound on the variation in response var that is explainable by group var, of which 𝑅2

is an overestimate because of the serendipity of fitting. This correlation is comparable to an 𝑅2—you

do not have to square it.

In our example, the intra-manu correlation, the correlation of mpg within manufacturer, is 0.40. Be-
cause aweights were not used and the default correlation was computed (that is, the mean and median
options were not specified), loneway also provided the asymptotic confidence interval and standard error
of the intraclass correlation estimate.

Estimated reliability of the group-averaged score
The estimated reliability of the group-averaged score or mean has an interpretation similar to that of

the intragroup correlation; it is a comparable number if we average response var by group var, or mpg
by manu in our example. It is the theoretical upper bound of a regression of manufacturer-averaged mpg
on characteristics of manufacturers. Why would we want to collapse our 36-observation dataset into a

9-observation dataset of manufacturer averages? Because the 36 observations might be a mirage. When

General Motors builds cars, do they sometimes put a Pontiac label and sometimes a Chevrolet label on

them, so that it appears in our data as if we have two cars when we really have only one, replicated? If

that were the case, and if it were the case for many other manufacturers, then we would be forced to admit

that we do not have data on 36 cars; we instead have data on nine manufacturer-averaged characteristics.
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Stored results
loneway stores the following in r():
Scalars

r(N) number of observations r(rho t) estimated reliability

r(rho) intraclass correlation r(se) asymp. SE of intraclass correlation

r(lb) lower bound of 95% CI for rho r(sd w) estimated SD within group

r(ub) upper bound of 95% CI for rho r(sd b) estimated SD of group effect

Methods and formulas
The mean squares in the loneway’s ANOVA table are computed as

MS𝛼 = ∑
𝑖

𝑤𝑖⋅(𝑦𝑖⋅ − 𝑦⋅⋅)
2/(𝑘 − 1)

and

MS𝜖 = ∑
𝑖

∑
𝑗

𝑤𝑖𝑗(𝑦𝑖𝑗 − 𝑦𝑖⋅)
2/(𝑁 − 𝑘)

in which

𝑤𝑖⋅ = ∑
𝑗

𝑤𝑖𝑗 𝑤⋅⋅ = ∑
𝑖

𝑤𝑖⋅ 𝑦𝑖⋅ = ∑
𝑗

𝑤𝑖𝑗𝑦𝑖𝑗/𝑤𝑖⋅ and 𝑦.. = ∑
𝑖

𝑤𝑖⋅𝑦𝑖⋅/𝑤⋅⋅

The corresponding expected values of these mean squares are

𝐸(MS𝛼) = 𝜎2
𝜖 + 𝑔𝜎2

𝛼 and 𝐸(MS𝜖) = 𝜎2
𝜖

in which

𝑔 =
𝑤⋅⋅ − ∑𝑖 𝑤2

𝑖⋅/𝑤⋅⋅

𝑘 − 1
In the unweighted case, we get

𝑔 =
𝑁 − ∑𝑖 𝑛2

𝑖 /𝑁
𝑘 − 1

As expected, 𝑔 = 𝑚 for the case of no weights and equal group sizes in the data, that is, 𝑛𝑖 = 𝑚 for all

𝑖. Replacing the expected values with the observed values and solving yields theANOVA estimates of 𝜎2
𝛼

and 𝜎2
𝜖 . Substituting these into the definition of the intraclass correlation

𝜌 = 𝜎2
𝛼

𝜎2
𝛼 + 𝜎2

𝜖

yields the ANOVA estimator of the intraclass correlation:

𝜌𝐴 = 𝐹obs − 1
𝐹obs − 1 + 𝑔

𝐹obs is the observed value of the 𝐹 statistic from the ANOVA table. For no weights and equal 𝑛𝑖, 𝜌𝐴 =
roh, which is the intragroup correlation defined by Kish (1965). Two slightly different estimators are

available through the mean and median options (Gleason 1997). If either of these options is specified,
the estimate of 𝜌 becomes

𝜌 = 𝐹obs − 𝐹𝑚
𝐹obs + (𝑔 − 1)𝐹𝑚
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For the mean option, 𝐹𝑚 = 𝐸(𝐹𝑘−1,𝑁−𝐾) = (𝑁 − 𝑘)/(𝑁 − 𝑘 − 2), that is, the expected value of the
ANOVA table’s 𝐹 statistic. For the median option, 𝐹𝑚 is simply the median of the 𝐹 statistic. Setting

𝐹𝑚 to 1 gives 𝜌𝐴, so for large samples, these different point estimators are essentially the same. Also,

because the intraclass correlation of the random-effects model is by definition nonnegative, for any of

the three possible point estimators, 𝜌 is truncated to zero if 𝐹obs is less than 𝐹𝑚.

For no weighting, interval estimators for 𝜌𝐴 are computed. If the groups are equal sized (all 𝑛𝑖 equal)

and the exact option is specified, the following exact (assuming that the 𝑦𝑖𝑗 are normally distributed)

100(1 − 𝛼)% confidence interval is computed:

{ 𝐹obs − 𝐹𝑚𝐹𝑢
𝐹obs + (𝑔 − 1)𝐹𝑚𝐹𝑢

, 𝐹obs − 𝐹𝑚𝐹𝑙
𝐹obs + (𝑔 − 1)𝐹𝑚𝐹𝑙

}

with 𝐹𝑚 = 1, 𝐹𝑙 = 𝐹𝛼/2,𝑘−1,𝑁−𝑘, and 𝐹𝑢 = 𝐹1−𝛼/2,𝑘−1,𝑁−𝑘, 𝐹⋅,𝑘−1,𝑁−𝑘 being the cumulative distri-

bution function for the 𝐹 distribution with 𝑘 − 1 and 𝑁 − 𝑘 degrees of freedom. If mean or median is
specified, 𝐹𝑚 is defined as above. If the groups are equal sized and exact is not specified, the following
asymptotic 100(1 − 𝛼)% confidence interval for 𝜌𝐴 is computed,

[𝜌𝐴 − 𝑧𝛼/2√𝑉 (𝜌𝐴), 𝜌𝐴 + 𝑧𝛼/2√𝑉 (𝜌𝐴)]

where 𝑧𝛼/2 is the 100(1−𝛼/2) percentile of the standard normal distribution and√𝑉 (𝜌𝐴) is the asymp-
totic standard error of 𝜌 defined below. This confidence interval is also available for unequal groups. It
is not applicable and, therefore, not computed for the estimates of 𝜌 provided by the mean and median
options. Again, because the intraclass coefficient is nonnegative, if the lower bound is negative for either

confidence interval, it is truncated to zero. As might be expected, the coverage probability of a truncated

interval is higher than its nominal value.

The asymptotic standard error of 𝜌𝐴, assuming that the 𝑦𝑖𝑗 are normally distributed, is also computed

when appropriate, namely, for unweighted data and when 𝜌𝐴 is computed (neither the mean option nor
the median option is specified):

𝑉 (𝜌𝐴) = 2(1 − 𝜌)2

𝑔2 (𝐴 + 𝐵 + 𝐶)

with

𝐴 = {1 + 𝜌(𝑔 − 1)}2

𝑁 − 𝑘

𝐵 = (1 − 𝜌){1 + 𝜌(2𝑔 − 1)}
𝑘 − 1

𝐶 = 𝜌2{∑ 𝑛2
𝑖 − 2𝑁−1 ∑ 𝑛3

𝑖 + 𝑁−2(∑ 𝑛2
𝑖 )2}

(𝑘 − 1)2

and 𝜌𝐴 is substituted for 𝜌 (Donner 1986).



loneway — Large one-way ANOVA, random effects, and reliability 1571

The estimated reliability of the group-averaged score, known as the Spearman–Brown prediction

formula in the psychometric literature (Winer, Brown, and Michels 1991, 1014), is

𝜌𝑡 = 𝑡𝜌
1 + (𝑡 − 1)𝜌

for group size 𝑡. loneway computes 𝜌𝑡 for 𝑡 = 𝑔.
The estimated standard deviation of the group effect is 𝜎𝛼 = √(MS𝛼 − MS𝜖)/𝑔. This deviation comes

from the assumption that an observation is derived by adding a group effect to a within-group effect.

The estimated standard deviation within group is the square root of the mean square due to error, or√
MS𝜖.

Acknowledgment
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[R] anova —Analysis of variance and covariance

[R] icc — Intraclass correlation coefficients
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Description Quick start Menu Syntax Options
Remarks and examples Methods and formulas Acknowledgment References Also see

Description
lowess carries out a locally weighted regression of yvar on xvar, displays the graph, and optionally

saves the smoothed variable.

Warning: lowess is computationally intensive and may therefore take a long time to run on a slow
computer. Lowess calculations on 1,000 observations, for instance, require performing 1,000 regressions.

Quick start
Locally weighted regression of y1 on x

lowess y1 x

Same as above, but with a bandwidth of 0.4

lowess y1 x, bwidth(.4)

With running-mean smoothing

lowess y1 x, mean

Without the tricube weighting function

lowess y1 x, noweight

Generate a new variable v containing the smoothed values of y1
lowess y1 x, generate(v)

Adjust the mean of the smoothed values to equal the mean of the unsmoothed values

lowess y1 x, adjust

Lowess smoothing of categorical variable y2 on x in terms of the log of the odds ratio
lowess y2 x, logit

Menu
Statistics > Nonparametric analysis > Lowess smoothing
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Syntax
lowess yvar xvar [ if ] [ in ] [ , options ]

options Description

Main

mean running-mean smooth; default is running-line least squares

noweight suppress weighted regressions; default is tricube weighting function

bwidth(#) use # for the bandwidth; default is bwidth(0.8)
logit transform dependent variable to logits

adjust adjust smoothed mean to equal mean of dependent variable

nograph suppress graph

generate(newvar) create newvar containing smoothed values of yvar

Plot

marker options change look of markers (color, size, etc.)

marker label options add marker labels; change look or position

Smoothed line

lineopts(cline options) affect rendition of the smoothed line

Add plots

addplot(plot) add other plots to generated graph

Y axis, X axis, Titles, Legend, Overall, By

twoway options any of the options documented in [G-3] twoway options

yvar and xvar may contain time-series operators; see [U] 11.4.4 Time-series varlists.

Options

� � �
Main �

mean specifies running-mean smoothing; the default is running-line least-squares smoothing.

noweight prevents the use of Cleveland’s (1979) tricube weighting function; the default is to use the
weighting function.

bwidth(#) specifies the bandwidth. Centered subsets of bwidth()×𝑁 observations are used for calcu-

lating smoothed values for each point in the data except for the end points, where smaller, uncentered

subsets are used. The greater the bwidth(), the greater the smoothing. The default is 0.8.

logit transforms the smoothed yvar into logits. Predicted values less than 0.0001 or greater than 0.9999
are set to 1/𝑁 and 1 − 1/𝑁, respectively, before taking logits.

adjust adjusts the mean of the smoothed yvar to equal the mean of yvar bymultiplying by an appropriate
factor. This option is useful when smoothing binary (0/1) data.

nograph suppresses displaying the graph.

generate(newvar) creates newvar containing the smoothed values of yvar.
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� � �
Plot �

marker options affect the rendition of markers drawn at the plotted points, including their shape, size,

color, and outline; see [G-3] marker options.

marker label options specify if and how the markers are to be labeled; see [G-3]marker label options.

� � �
Smoothed line �

lineopts(cline options) affects the rendition of the lowess-smoothed line; see [G-3] cline options.

� � �
Add plots �

addplot(plot) provides a way to add other plots to the generated graph; see [G-3] addplot option.

� � �
Y axis, X axis, Titles, Legend, Overall, By �

twoway options are any of the options documented in [G-3] twoway options. These include options

for titling the graph (see [G-3] title options), options for saving the graph to disk (see [G-3] sav-

ing option), and the by() option (see [G-3] by option).

Remarks and examples
By default, lowess provides locally weighted scatterplot smoothing. The basic idea is to create a

new variable (newvar) that, for each yvar 𝑦𝑖, contains the corresponding smoothed value. The smoothed

values are obtained by running a regression of yvar on xvar by using only the data (𝑥𝑖, 𝑦𝑖) and a few
of the data near this point. In lowess, the regression is weighted so that the central point (𝑥𝑖, 𝑦𝑖) gets
the highest weight and points that are farther away (based on the distance |𝑥𝑗 − 𝑥𝑖|) receive less weight.
The estimated regression line is then used to predict the smoothed value ̂𝑦𝑖 for 𝑦𝑖 only. The procedure

is repeated to obtain the remaining smoothed values, which means that a separate weighted regression is

performed for every point in the data.

Lowess is a desirable smoother because of its locality—it tends to follow the data. Polynomial

smoothing methods, for instance, are global in that what happens on the extreme left of a scatterplot

can affect the fitted values on the extreme right.
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Example 1
The amount of smoothing is affected by bwidth(#). You are warned to experiment with different

values. For instance,

. use https://www.stata-press.com/data/r18/lowess1
(Example data for lowess)
. lowess h1 depth
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Now compare that with

. lowess h1 depth, bwidth(.4)
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In the first case, the default bandwidth of 0.8 is used, meaning that 80% of the data are used in smoothing

each point. In the second case, we explicitly specified a bandwidth of 0.4. Smaller bandwidths follow

the original data more closely.
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Example 2
Two lowess options are especially useful with binary (0/1) data: adjust and logit. adjust adjusts

the resulting curve (by multiplication) so that the mean of the smoothed values is equal to the mean of

the unsmoothed values. logit specifies that the smoothed curve be in terms of the log of the odds ratio:

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. lowess foreign mpg, ylabel(0 ”Domestic” 1 ”Foreign”) jitter(5) adjust
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. lowess foreign mpg, logit yline(0)
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With binary data, if you do not use the logit option, it is a good idea to specify graph’s jitter()
option; see [G-2] graph twoway scatter. Because the underlying data (whether the car was manufactured

outside the United States here) take on only two values, raw data points are more likely to be on top of

each other, thus making it impossible to tell how many points there are. graph’s jitter() option adds
some noise to the data to shift the points around. This noise affects only the location of points on the

graph, not the lowess curve.

When you specify the logit option, the display of the raw data is suppressed.

Technical note
lowess can be used for more than just lowess smoothing. Lowess can be usefully thought of as a

combination of two smoothing concepts: the use of predicted values from regression (rather than means)

for imputing a smoothed value and the use of the tricube weighting function (rather than a constant

weighting function). lowess allows you to combine these concepts freely. You can use line smoothing
without weighting (specify noweight), mean smoothing with tricube weighting (specify mean), or mean
smoothing without weighting (specify mean and noweight).

Methods and formulas
Let 𝑦𝑖 and 𝑥𝑖 be the two variables, and assume that the data are ordered so that 𝑥𝑖 ≤ 𝑥𝑖+1 for 𝑖 =

1, . . . , 𝑁 − 1. For each 𝑦𝑖, a smoothed value 𝑦𝑠
𝑖 is calculated.

The subset used in calculating 𝑦𝑠
𝑖 is indices 𝑖− = max(1, 𝑖 − 𝑘) through 𝑖+ = min(𝑖 + 𝑘, 𝑁), where

𝑘 = ⌊(𝑁 × bwidth − 0.5)/2⌋. The weights for each of the observations between 𝑗 = 𝑖−, . . . , 𝑖+ are

either 1 (noweight) or the tricube (default),

𝑤𝑗 = {1 − (
|𝑥𝑗 − 𝑥𝑖|

Δ
)

3

}
3

where Δ = 1.0001max(𝑥𝑖+
− 𝑥𝑖, 𝑥𝑖 − 𝑥𝑖−

). The smoothed value 𝑦𝑠
𝑖 is then the (weighted) mean or the

(weighted) regression prediction at 𝑥𝑖.� �
William Swain Cleveland (1943– ) studied mathematics and statistics at Princeton and Yale. He

worked for several years at Bell Labs in New Jersey and now teaches statistics and computer science

at Purdue. He has made key contributions in many areas of statistics, including graphics and data

visualization, time series, environmental applications, and analysis of Internet traffic data.� �
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lpoly — Kernel-weighted local polynomial smoothing

Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas References Also see

Description
lpoly performs a kernel-weighted local polynomial regression of yvar on xvar and displays a graph

of the smoothed values with (optional) confidence bands.

Quick start
Kernel-weighted local polynomial regression of y on x

lpoly y x

Same as above, but specify a bandwidth of 2

lpoly y x, bwidth(2)

Same as above, but specify a degree of 1

lpoly y x, bwidth(2) degree(1)

Same as above, but use the alternative Epanechnikov kernel

lpoly y x, bwidth(2) degree(1) kernel(epan2)

Same as above, but create a new variable for the smoothing grid g and smoothed values s
lpoly y x, bwidth(2) degree(1) kernel(epan2) generate(g s)

With 95% confidence bands

lpoly y x, ci

Use twoway to graph multiple local polynomial fits
twoway scatter y x || ///

lpoly y x, degree(1) kernel(epan2) || ///
lpoly y x, degree(1) kernel(epan2) bwidth(1) || ///
lpoly y x, degree(1) kernel(epan2) bwidth(7) ||

Menu
Statistics > Nonparametric analysis > Local polynomial smoothing

1579
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Syntax
lpoly yvar xvar [ if ] [ in ] [weight ] [ , options ]

options Description

Main

kernel(kernel) specify kernel function; default is kernel(epanechnikov)
bwidth(# | varname) specify kernel bandwidth

degree(#) specify degree of the polynomial smooth; default is degree(0)
generate([ newvar𝑥 ] newvar𝑠) store smoothing grid in newvar𝑥 and smoothed points in

newvar𝑠
n(#) obtain the smooth at # points; default is min(𝑁, 50)

at(varname) obtain the smooth at the values specified by varname

nograph suppress graph

noscatter suppress scatterplot only

SE/CI

ci plot confidence bands

level(#) set confidence level; default is level(95)
se(newvar) store standard errors in newvar

pwidth(#) specify pilot bandwidth for standard error calculation

var(# | varname) specify estimates of residual variance

Scatterplot

marker options change look of markers (color, size, etc.)

marker label options add marker labels; change look or position

Smoothed line

lineopts(cline options) affect rendition of the smoothed line

CI plot

ciopts(cline options) affect rendition of the confidence bands

Add plots

addplot(plot) add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options
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kernel Description

epanechnikov Epanechnikov kernel function; the default

epan2 alternative Epanechnikov kernel function

biweight biweight kernel function

cosine cosine trace kernel function

gaussian Gaussian kernel function

parzen Parzen kernel function

rectangle rectangle kernel function

triangle triangle kernel function

collect is allowed; see [U] 11.1.10 Prefix commands.

fweights and aweights are allowed; see [U] 11.1.6 weight.

Options

� � �
Main �

kernel(kernel) specifies the kernel function for use in calculating the weighted local polynomial esti-
mate. The default is kernel(epanechnikov).

bwidth(# | varname) specifies the half-width of the kernel—the width of the smoothing window around

each point. If bwidth() is not specified, a rule-of-thumb (ROT) bandwidth estimator is calculated

and used. A local variable bandwidth may be specified in varname, in conjunction with an explicit

smoothing grid using the at() option.

degree(#) specifies the degree of the polynomial to be used in the smoothing. The default is degree(0),
meaning local-mean smoothing.

generate( [ newvar𝑥 ] newvar𝑠) stores the smoothing grid in newvar𝑥 and the smoothed values in

newvar𝑠. If at() is not specified, then both newvar𝑥 and newvar𝑠 must be specified. Otherwise,

only newvar𝑠 is to be specified.

n(#) specifies the number of points at which the smooth is to be calculated. The default is min(𝑁, 50),
where 𝑁 is the number of observations.

at(varname) specifies a variable that contains the values at which the smooth should be calculated. By
default, the smoothing is done on an equally spaced grid, but you can use at() to instead perform
the smoothing at the observed x’s, for example. This option also allows you to more easily obtain

smooths for different variables or different subsamples of a variable and then overlay the estimates

for comparison.

nograph suppresses drawing the graph of the estimated smooth. This option is often used with the

generate() option.

noscatter suppresses superimposing a scatterplot of the observed data over the smooth. This option is
useful when the number of resulting points would be so large as to clutter the graph.
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� � �
SE/CI �

ci plots confidence bands, using the confidence level specified in level().

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is

level(95) or as set by set level; see [U] 20.8 Specifying the width of confidence intervals.

se(newvar) stores the estimates of the standard errors in newvar. This option requires specifying

generate() or at().

pwidth(#) specifies the pilot bandwidth to be used for standard error computations. The default is

chosen to be 1.5 times the value of the ROT bandwidth selector. If you specify pwidth() without

specifying se() or ci, then the ci option is assumed.

var(# | varname) specifies an estimate of a constant residual variance or a variable containing estimates
of the residual variances at each grid point required for standard error computation. By default, the

residual variance at each smoothing point is estimated by the normalized weighted residual sum of

squares obtained from locally fitting a polynomial of order 𝑝 + 2, where 𝑝 is the degree specified

in degree(). var(varname) is allowed only if at() is specified. If you specify var() without

specifying se() or ci, then the ci option is assumed.

� � �
Scatterplot �

marker options affect the rendition of markers drawn at the plotted points, including their shape, size,

color, and outline; see [G-3] marker options.

marker label options specify if and how the markers are to be labeled; see [G-3]marker label options.

� � �
Smoothed line �

lineopts(cline options) affects the rendition of the smoothed line; see [G-3] cline options.

� � �
CI plot �

ciopts(cline options) affects the rendition of the confidence bands; see [G-3] cline options.

� � �
Add plots �

addplot(plot) provides a way to add other plots to the generated graph; see [G-3] addplot option.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see

[G-3] saving option).

Remarks and examples
Remarks are presented under the following headings:

Introduction
Local polynomial smoothing
Choice of a bandwidth
Confidence bands
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Introduction
The last 25 years or so has seen a significant outgrowth in the literature on scatterplot smoothing, other-

wise known as univariate nonparametric regression. Of most appeal is the idea of making no assumptions

about the functional form for the expected value of a response given a regressor, but instead allowing the

data to “speak for themselves”. Various methods and estimators fall into the category of nonparametric

regression, including local mean smoothing as described independently by Nadaraya (1964) and Wat-

son (1964), the Gasser and Müller (1979) estimator, locally weighted scatterplot smoothing (LOWESS)

as described by Cleveland (1979), wavelets (for example, Donoho [1995]), and splines (Eubank 1999),

to name a few. Much of the vast literature focuses on automating the amount of smoothing to be per-

formed and dealing with the bias/variance tradeoff inherent to this type of estimation. For example, for

Nadaraya–Watson the amount of smoothing is controlled by choosing a bandwidth.

Smoothing via local polynomials is by no means a new idea but instead one that has been rediscov-

ered in recent years in articles such as Fan (1992). A natural extension of the local mean smoothing of

Nadaraya–Watson, local polynomial regression involves fitting the response to a polynomial form of the

regressor via locally weighted least squares. Higher-order polynomials have better bias properties than

the zero-degree local polynomials of the Nadaraya–Watson estimator; in general, higher-order polyno-

mials do not require bias adjustment at the boundary of the regression space. For a definitive reference

on local polynomial smoothing, see Fan and Gijbels (1996).

Local polynomial smoothing
Consider a set of scatterplot data {(𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛)} from the model

𝑦𝑖 = 𝑚(𝑥𝑖) + 𝜎(𝑥𝑖)𝜖𝑖 (1)

for some unknown mean and variance functions 𝑚(⋅) and 𝜎2(⋅), and symmetric errors 𝜖𝑖 with 𝐸(𝜖𝑖) = 0

and Var(𝜖𝑖) = 1. The goal is to estimate 𝑚(𝑥0) = 𝐸[𝑌 |𝑋 = 𝑥0], making no assumption about the
functional form of 𝑚(⋅).

lpoly estimates 𝑚(𝑥0) as the constant term (intercept) of a regression, weighted by the kernel func-

tion specified in kernel(), of yvar on the polynomial terms (xvar−𝑥0), (xvar−𝑥0)2, . . . , (xvar−𝑥0)𝑝

for each smoothing point 𝑥0. The degree of the polynomial, 𝑝, is specified in degree(), the amount of
smoothing is controlled by the bandwidth specified in bwidth(), and the chosen kernel function is spec-
ified in kernel().
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Example 1
Consider the motorcycle data as examined (among other places) in Fan and Gijbels (1996). The data

consist of 133 observations and measure the acceleration (accel measured in grams [g]) of a dummy’s
head during impact over time (time measured in milliseconds). For these data, we use lpoly to fit

a local cubic polynomial with the default bandwidth (obtained using the ROT method) and the default

Epanechnikov kernel.

. use https://www.stata-press.com/data/r18/motorcycle
(Motorcycle data from Fan & Gijbels (1996))
. lpoly accel time, degree(3)
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kernel = epanechnikov, degree = 3, bandwidth = 3.08

Local polynomial smooth

Technical note
lpoly allows specifying in degree() both odd and even orders of the polynomial to be used for

the smoothing. However, the odd-order, 2𝑘 + 1, polynomial approximations are preferable. They have

an extra parameter compared with the even-order, 2𝑘, approximations, which leads to a significant bias
reduction and there is no increase of variability associated with adding this extra parameter. Using an

odd order when estimating the regression function is therefore usually sufficient. For a more thorough

discussion, see Fan and Gijbels (1996).
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Choice of a bandwidth
The choice of a bandwidth is crucial for many smoothing techniques, including local polynomial

smoothing. In general, using a large bandwidth gives smooths with a large bias, whereas a small band-

width may result in highly variable smoothed values. Various techniques exist for optimal bandwidth

selection. By default, lpoly uses the ROTmethod to estimate the bandwidth used for the smoothing; see
Methods and formulas for details.

Example 2
Using the motorcycle data, we demonstrate how a local linear polynomial fit changes using different

bandwidths.

. lpoly accel time, degree(1) kernel(epan2) bwidth(1)
> generate(at smooth1) nograph
. lpoly accel time, degree(1) kernel(epan2) bwidth(7) at(at)
> generate(smooth2) nograph
. label variable smooth1 ”Smooth: width = 1”
. label variable smooth2 ”Smooth: width = 7”
. lpoly accel time, degree(1) kernel(epan2) at(at) addplot(line smooth* at)
> legend(label(2 ”Smooth: width = 3.42 (ROT)”) cols(2) pos(6))
> note(”kernel = epan2, degree = 1”)
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From this graph, we can see that the local linear polynomial fit with larger bandwidth (width = 7)
corresponds to a smoother line but fails to fit the curvature of the scatterplot data. The smooth obtained

using the width equal to one seems to fit most data points, but the corresponding line has several spikes

indicating larger variability. The smooth obtained using the ROT bandwidth estimator seems to have a

good tradeoff between the fit and variability in this example.

In the above, we also demonstrated how the generate() and addplot() options may be used to

produce overlaid plots obtained from lpoly with different options. The nograph option saves time

when you need to save only results with generate().
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However, to avoid generating variables manually, one can use twoway lpoly instead; see [G-2] graph
twoway lpoly for more details.

. twoway scatter accel time ||
> lpoly accel time, degree(1) kernel(epan2) lpattern(solid) ||
> lpoly accel time, degree(1) kernel(epan2) bwidth(1) ||
> lpoly accel time, degree(1) kernel(epan2) bwidth(7) ||
> , legend(label(2 ”Smooth: width = 3.42 (ROT)”)
> label(3 ”Smooth: width = 1”)
> label(4 ”Smooth: width = 7”) cols(2) pos(6))
> title(”Local polynomial smooth”) note(”kernel = epan2, degree = 1”)
> xtitle(”Time (msec)”) ytitle(”Acceleration (g)”)
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The ROT estimate is commonly used as an initial guess for the amount of smoothing; this approach

may be sufficient when the choice of a bandwidth is less important. In other cases, you can pick your

own bandwidth.

When the shape of the regression function has a combination of peaked and flat regions, a variable

bandwidth may be preferable over the constant bandwidth to allow for different degrees of smoothness in

different regions. The bwidth() option allows you to specify the values of the local variable bandwidths
as those stored in a variable in your data.

Similar issues with bias and variability arise when choosing a pilot bandwidth (the pwidth() option)
used to compute standard errors of the local polynomial smoother. The default value is chosen to be

1.5 × ROT. For a review of methods for pilot bandwidth selection, see Fan and Gijbels (1996).
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Confidence bands
The established asymptotic normality of the local polynomial estimators under certain conditions

allows the construction of approximate confidence bands. lpoly offers the ci option to plot these bands.

Example 3
Let us plot the confidence bands for the local polynomial fit from example 1.

. lpoly accel time, degree(3) kernel(epan2) ci legend(cols(2) pos(6))
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You can obtain graphs with overlaid confidence bands by using twoway lpolyci; see [G-2] graph
twoway lpolyci for examples.

Constructing the confidence intervals involves computing standard errors obtained by taking a square

root of the estimate of the conditional variance of the local polynomial estimator at each grid point 𝑥0.

Estimating the conditional variance requires fitting a polynomial of a higher order locally by using a

different bandwidth, the pilot bandwidth. The value of the pilot bandwidth may be supplied by using

pwidth(). By default, the value of 1.5×ROT is used. Also, estimates of the residual variance 𝜎2(𝑥0) at
each grid point, 𝑥0, are required to obtain the estimates of the conditional variances. These estimates may

be supplied by using the var() option. By default, they are computed using the normalized weighted
residual sum of squares from a local polynomial fit of a higher order. See Methods and formulas for

details. The standard errors may be saved by using se().

Stored results
lpoly stores the following in r():

Scalars

r(degree) smoothing polynomial degree r(bwidth) bandwidth of the smooth

r(ngrid) number of successful regressions r(pwidth) pilot bandwidth

r(N) sample size

Macros

r(kernel) name of kernel
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Methods and formulas
Consider model (1), written in matrix notation,

y = 𝑚(x) + ε

where y and x are the 𝑛×1 vectors of scatterplot values, ε is the 𝑛×1 vector of errors with zero mean and
covariance matrix 𝚺 = diag{𝜎(𝑥𝑖)}I𝑛, and 𝑚() and 𝜎() are some unknown functions. Define 𝑚(𝑥0) =
𝐸[𝑌 |𝑋 = 𝑥0] and 𝜎2(𝑥0) = Var[𝑌 |𝑋 = 𝑥0] to be the conditional mean and conditional variance of
random variable 𝑌 (residual variance), respectively, for some realization 𝑥0 of random variable 𝑋.

The method of local polynomial smoothing is based on the approximation of 𝑚(𝑥) locally by a

𝑝th order polynomial in (𝑥 − 𝑥0) for some 𝑥 in the neighborhood of 𝑥0. For the scatterplot data

{(𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛)}, the 𝑝th-order local polynomial smooth �̂�(𝑥0) is equal to ̂𝛽0, an estimate of

the intercept of the weighted linear regression,

̂𝛽 = (X𝑇WX)−1X𝑇Wy (2)

where ̂𝛽 = ( ̂𝛽0, ̂𝛽1, . . . , ̂𝛽𝑝)𝑇 is the vector of estimated regression coefficients (with

{ ̂𝛽𝑗 = (𝑗!)−1�̂�(𝑗)(𝑥)|𝑥=𝑥0
, 𝑗 = 0, . . . , 𝑝} also representing estimated coefficients from a corresponding

Taylor expansion); X = {(𝑥𝑖 − 𝑥0)𝑗}𝑛,𝑝
𝑖,𝑗=1,0 is a design matrix; andW = diag{𝐾ℎ(𝑥𝑖 − 𝑥0)}𝑛×𝑛 is a

weight matrix with weights 𝐾ℎ(⋅) defined as 𝐾ℎ(𝑥) = ℎ−1𝐾(𝑥/ℎ), with 𝐾(⋅) being a kernel function
and ℎ defining a bandwidth. The kernels are defined in Methods and formulas of [R] kdensity.

The default bandwidth is obtained using the ROTmethod of bandwidth selection. The ROT bandwidth

is the plugin estimator of the asymptotically optimal constant bandwidth. This is the bandwidth that

minimizes the conditional weighted mean integrated squared error. The ROT plugin bandwidth selector

for the smoothing bandwidth ℎ is defined as follows; assuming constant residual variance 𝜎2(𝑥0) = 𝜎2

and odd degree 𝑝:

ℎ̂ = 𝐶0,𝑝(𝐾)[
�̂�2 ∫ 𝑤0(𝑥)𝑑𝑥

𝑛 ∫{�̂�(𝑝+1)(𝑥)}2𝑤0(𝑥)𝑓(𝑥)𝑑𝑥
]

1/(2𝑝+3)

(3)

where 𝐶0,𝑝(𝐾) is a constant, as defined in Fan and Gijbels (1996), that depends on the kernel function
𝐾(⋅), and the degree of a polynomial 𝑝 and 𝑤0 is chosen to be an indicator function on the interval

[minx + 0.05 × range
x
,maxx − 0.05 × range

x
] with minx, maxx, and rangex being, respectively, the

minimum, maximum, and the range of x. To obtain the estimates of a constant residual variance, �̂�2,

and (𝑝 + 1)th order derivative of 𝑚(𝑥), denoted as �̂�(𝑝+1)(𝑥), a polynomial in x of order (𝑝 + 3) is fit
globally to y. �̂�2 is estimated as a standardized residual sum of squares from this fit.

The expression for the asymptotically optimal constant bandwidth used in constructing the ROT band-

width estimator is derived for the odd-order polynomial approximations. For even-order polynomial fits

the expression would depend not only on 𝑚(𝑝+1)(𝑥) but also on 𝑚(𝑝+2)(𝑥) and the design density and
its derivative, 𝑓(𝑥) and 𝑓 ′(𝑥). Therefore, the ROT bandwidth selector would require estimation of these
additional quantities. Instead, for an even-degree 𝑝 of the local polynomial, lpoly uses the value of the
ROT estimator (3) computed using degree 𝑝 + 1. As such, for even degrees this is not a plugin estimator

of the asymptotically optimal constant bandwidth.
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The estimates of the conditional variance of local polynomial estimators are obtained using

V̂ar{�̂�(𝑥0)|𝑋 = 𝑥0} = �̂�2
𝑚(𝑥0) = (X𝑇WX)−1(X𝑇W2X)(X𝑇WX)−1�̂�2(𝑥0) (4)

where �̂�2(𝑥0) is estimated by the normalized weighted residual sum of squares from the (𝑝 + 2)th order
polynomial fit using pilot bandwidth ℎ⋆.

When the bias is negligible the normal-approximation method yields a (1 − 𝛼) × 100% confidence

interval for 𝑚(𝑥0),

{�̂�(𝑥0) − 𝑧(1−𝛼/2)�̂�𝑚(𝑥0), �̂�(𝑥0) + 𝑧(1−𝛼/2)�̂�𝑚(𝑥0)}

where 𝑧(1−𝛼/2) is the (1− 𝛼/2)th quantile of the standard Gaussian distribution, and �̂�(𝑥0) and �̂�𝑚(𝑥0)
are as defined in (2) and (4), respectively.
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Also see
[R] kdensity — Univariate kernel density estimation

[R] lowess — Lowess smoothing

[R] makespline — Spline generation

[R] npregress intro — Introduction to nonparametric regression

[R] smooth — Robust nonlinear smoother

[G-2] graph twoway lpoly — Local polynomial smooth plots

[G-2] graph twoway lpolyci — Local polynomial smooth plots with CIs



lroc — Compute area under ROC curve and graph the curve

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description
lroc graphs the ROC curve and calculates the area under the curve.

lroc requires that the current estimation results be from logistic, logit, probit, or ivprobit;
see [R] logistic, [R] logit, [R] probit, or [R] ivprobit.

Quick start
Graph and compute area under ROC curve for current estimation results

lroc

Add “My Title” as title of graph

lroc, title(My Title)

Suppress graph

lroc, nograph

Menu
Statistics > Binary outcomes > Postestimation > ROC curve after logistic/logit/probit/ivprobit

1591
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Syntax
lroc [ depvar ] [ if ] [ in ] [weight ] [ , options ]

options Description

Main

all compute area under ROC curve and graph curve for all observations

nograph suppress graph

Advanced

beta(matname) row vector containing model coefficients

Plot

cline options change look of the line

marker options change look of markers (color, size, etc.)

marker label options add marker labels; change look or position

Reference line

rlopts(cline options) affect rendition of the reference line

Add plots

addplot(plot) add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

collect is allowed; see [U] 11.1.10 Prefix commands.

fweights are allowed; see [U] 11.1.6 weight.
lroc is not appropriate with svy estimation results.

Options

� � �
Main �

all requests that the statistic be computed for all observations in the data, ignoring any if or in restric-
tions specified by the estimation command.

nograph suppresses graphical output.

� � �
Advanced �

beta(matname) specifies a row vector containing model coefficients. The columns of the row vector

must be labeled with the corresponding names of the independent variables in the data. The dependent

variable depvar must be specified immediately after the command name. See Models other than the

last fitted model later in this entry.

� � �
Plot �

cline options, marker options, and marker label options affect the rendition of the ROC curve—the

plotted points connected by lines. These options affect the size and color of markers, whether and

how the markers are labeled, and whether and how the points are connected; see [G-3] cline options,

[G-3] marker options, and [G-3] marker label options.
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� � �
Reference line �

rlopts(cline options) affects the rendition of the reference line; see [G-3] cline options.

� � �
Add plots �

addplot(plot) provides a way to add other plots to the generated graph; see [G-3] addplot option.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see

[G-3] saving option).

Remarks and examples
Remarks are presented under the following headings:

Introduction
Samples other than the estimation sample
Models other than the last fitted model

Introduction
Stata also has a suite of commands for performing both parametric and nonparametric receiver oper-

ating characteristic (ROC) analysis. See [R] roc for an overview of these commands.

lroc graphs the ROC curve—a graph of sensitivity versus one minus specificity as the cutoff 𝑐 is var-
ied—and calculates the area under it. Sensitivity is the fraction of observed positive-outcome cases that

are correctly classified; specificity is the fraction of observed negative-outcome cases that are correctly

classified. When the purpose of the analysis is classification, you must choose a cutoff.

The curve starts at (0, 0), corresponding to 𝑐 = 1, and continues to (1, 1), corresponding to 𝑐 = 0. A

model with no predictive power would be a 45∘ line. The greater the predictive power, the more bowed

the curve, and hence the area beneath the curve is often used as a measure of the predictive power. A

model with no predictive power has area 0.5; a perfect model has area 1.

The ROC curve was first discussed in signal detection theory (Peterson, Birdsall, and Fox 1954) and

then was quickly introduced into psychology (Tanner and Swets 1954). It has since been applied in other

fields, particularly medicine (for instance, Metz [1978]). For a classic text on ROC techniques, see Green

and Swets (1966).

lsens also plots sensitivity and specificity; see [R] lsens.

Example 1
Hardin andHilbe (2018) examine data from theNational Canadian Registry of Cardiovascular Disease

(FASTRAK), sponsored by Hoffman-La Roche Canada. They model death within 48 hours based on

whether a patient suffers an anterior infarct (heart attack) rather than an inferior infarct using a logistic

regression and evaluate the model using an ROC curve. We replicate their analysis here.

Both anterior and inferior refer to sites on the heart where damage occurs. The model is also adjusted

for hcabg, whether the subject has had a cardiac bypass surgery (CABG); age, a four-category age-group
indicator; and killip, a four-level risk indicator.

We load the data and then estimate the parameters of the logistic regression with logistic. Factor-
variable notation is used for each predictor, because they are categorical; see [U] 11.4.3 Factor variables.
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. use https://www.stata-press.com/data/r18/heart
(Heart attacks)
. logistic death i.site i.hcabg i.killip i.age
Logistic regression Number of obs = 4,483

LR chi2(8) = 211.37
Prob > chi2 = 0.0000

Log likelihood = -636.62553 Pseudo R2 = 0.1424

death Odds ratio Std. err. z P>|z| [95% conf. interval]

site
Anterior 1.901333 .3185757 3.83 0.000 1.369103 2.640464

1.hcabg 2.105275 .7430694 2.11 0.035 1.054076 4.204801

killip
2 2.251732 .4064423 4.50 0.000 1.580786 3.207453
3 2.172105 .584427 2.88 0.004 1.281907 3.680487
4 14.29137 5.087654 7.47 0.000 7.112964 28.71423

age
60--69 1.63726 .5078582 1.59 0.112 .8914261 3.007115
70--79 4.532029 1.206534 5.68 0.000 2.689568 7.636647
>=80 8.893222 2.41752 8.04 0.000 5.219991 15.15125

_cons .0063961 .0016541 -19.54 0.000 .0038529 .010618

Note: _cons estimates baseline odds.

The odds ratios for a unit change in each covariate are reported by logistic. At fixed values of
the other covariates, patients who enter Canadian hospitals with an anterior infarct have nearly twice the

odds of death within 48 hours than those with an inferior infarct. Those who have had a previous CABG

have approximately twice the risk of death of those who have not. Those with higher Killip risks and

those who are older are also at greater risk of death.

We use lroc to draw the ROC curve for the model. The area under the curve of approximately 0.8

indicates acceptable discrimination for the model.



lroc — Compute area under ROC curve and graph the curve 1595

. lroc
Logistic model for death
Number of observations = 4483
Area under ROC curve = 0.7965
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Area under ROC curve = 0.7965

Samples other than the estimation sample
lroc can be used with samples other than the estimation sample. By default, lroc remembers the

estimation sample used with the last logistic, logit, probit, or ivprobit command. To override
this, simply use an if or in restriction to select another set of observations, or specify the all option to
force the command to use all the observations in the dataset.

See example 3 in [R] estat gof for an example of using lroc with a sample other than the estimation
sample.

Models other than the last fitted model
By default, lroc uses the last model fit by logistic, logit, probit, or ivprobit. You may also

directly specify the model to lroc by inputting a vector of coefficients with the beta() option and

passing the name of the dependent variable depvar to lroc.

Example 2
Suppose that someone publishes the following logistic model of low birthweight:

Pr(low = 1) = 𝐹(−0.02 age − 0.01 lwt + 1.3 black + 1.1 smoke + 0.5 ptl + 1.8 ht + 0.8 ui + 0.5)

where 𝐹 is the cumulative logistic distribution. These coefficients are not odds ratios; they are the equiv-

alent of what logit produces.

We can see whether this model fits our data. First, we enter the coefficients as a row vector and label

its columns with the names of the independent variables plus cons for the constant (see [P] matrix

define and [P] matrix rownames).
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. use https://www.stata-press.com/data/r18/lbw3, clear
(Hosmer & Lemeshow data)
. matrix input b = (-.02, -.01, 1.3, 1.1, .5, 1.8, .8, .5)
. matrix colnames b = age lwt black smoke ptl ht ui _cons

Here we use lroc to examine the predictive ability of the model:

. lroc low, beta(b) nograph
Logistic model for low
Number of observations = 189
Area under ROC curve = 0.7275

The area under the curve indicates that this model does have some predictive power. We can obtain a

graph of sensitivity and specificity as a function of the cutoff probability by typing

. lsens low, beta(b)
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See [R] lsens.

Stored results
lroc stores the following in r():
Scalars

r(N) number of observations

r(area) area under the ROC curve

Methods and formulas
The ROC curve is a graph of sensitivity against (1− specificity). This is guaranteed to be a monotone

nondecreasing function because the number of correctly predicted successes increases and the number

of correctly predicted failures decreases as the classification cutoff 𝑐 decreases.
The area under the ROC curve is the area on the bottom of this graph and is determined by integrating

the curve. The vertices of the curve are determined by sorting the data according to the predicted index,

and the integral is computed using the trapezoidal rule.



lroc — Compute area under ROC curve and graph the curve 1597

References
Green, D. M., and J. A. Swets. 1966. Signal Detection Theory and Psychophysics. New York: Wiley.

Hardin, J. W., and J. M. Hilbe. 2018. Generalized Linear Models and Extensions. 4th ed. College Station, TX: Stata Press.

Hosmer, D. W., Jr., S. A. Lemeshow, and R. X. Sturdivant. 2013. Applied Logistic Regression. 3rd ed. Hoboken, NJ:

Wiley.

Metz, C. E. 1978. Basic principles of ROC analysis. Seminars in Nuclear Medicine 8: 283–298. https://doi.org/10.1016/

s0001-2998(78)80014-2.

Peterson, W. W., T. G. Birdsall, and W. C. Fox. 1954. The theory of signal detectability. Transactions IRE Professional

Group on Information Theory PGIT-4: 171–212. https://doi.org/10.1109/TIT.1954.1057460.

Tanner,W. P., Jr., and J.A. Swets. 1954.Adecision-making theory of visual detection. Psychological Review 61: 401–409.

https://doi.org/10.1037/h0058700.

Also see
[R] logistic — Logistic regression, reporting odds ratios

[R] logit — Logistic regression, reporting coefficients

[R] probit — Probit regression

[R] ivprobit — Probit model with continuous endogenous covariates

[R] lsens — Graph sensitivity and specificity versus probability cutoff

[R] estat classification — Classification statistics and table

[R] estat gof — Pearson or Hosmer–Lemeshow goodness-of-fit test

[R] roc — Receiver operating characteristic (ROC) analysis

[U] 20 Estimation and postestimation commands
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Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description
lrtest performs a likelihood-ratio test of the null hypothesis that the parameter vector of a statistical

model satisfies some smooth constraint. To conduct the test, both the unrestricted and the restricted

models must be fit using the maximum likelihood method (or some equivalent method), and the results

of at least one must be stored using estimates store.

lrtest also supports composite models. In a composite model, we assume that the log likelihood and
dimension (number of free parameters) of the full model are obtained as the sum of the log-likelihood

values and dimensions of the constituting models.

Quick start
Likelihood-ratio test that the coefficients for x2 and x3 are equal to 0

logit y x1 x2 x3
estimates store full

logit y x1 if e(sample)
estimates store restricted

lrtest full restricted

Display additional information, including AIC and BIC

lrtest full restricted, stats

Likelihood-ratio test that the coefficients for x1 and x3 are equal
constraint 1 x1=x3
logit y x1 x2 x3, constraints(1)
estimates store constrained

lrtest full constrained

Compare stored estimates full with the last model run
lrtest full

Menu
Statistics > Postestimation
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Syntax
lrtest modelspec1 [modelspec2 ] [ , options ]

modelspec1 and modelspec2 specify the restricted and unrestricted model in any order. modelspec# is

name | . | (namelist)
name is the name under which estimation results were stored using estimates store (see [R] esti-
mates store), and “.” refers to the last estimation results, whether or not these were already stored.
If modelspec2 is not specified, the last estimation result is used; this is equivalent to specifying

modelspec2 as “.”.

If namelist is specified for a composite model, modelspec1 and modelspec2 cannot have names in

common; for example, lrtest (A B C) (C D E) is not allowed because both model specifications

include C.

options Description

stats display statistical information about the two models

dir display descriptive information about the two models

df(#) override the automatic degrees-of-freedom calculation; seldom used

force force testing even when apparently invalid

collect is allowed; see [U] 11.1.10 Prefix commands.

Options
stats displays statistical information about the unrestricted and restricted models, including the infor-

mation indices of Akaike and Schwarz.

dir displays descriptive information about the unrestricted and restricted models; see estimates dir
in [R] estimates store.

df(#) is seldom specified; it overrides the automatic degrees-of-freedom calculation.

force forces the likelihood-ratio test calculations to take place in situations where lrtest would nor-
mally refuse to do so and issue an error. Such situations arise when one or more assumptions of the

test are violated, for example, if the models were fit with vce(robust), vce(cluster clustvar),
or pweights; when the dependent variables in the two models differ; when the null log likelihoods
differ; when the samples differ; or when the estimation commands differ. If you use the force option,
there is no guarantee as to the validity or interpretability of the resulting test.

Remarks and examples
The standard way to use lrtest is to do the following:

1. Fit either the restricted model or the unrestricted model by using one of Stata’s estimation commands

and then store the results using estimates store name.

2. Fit the alternative model (the unrestricted or restricted model) and then type ‘lrtest name .’.
lrtest determines for itself which of the twomodels is the restricted model by comparing the degrees
of freedom.
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Often, you may want to store the alternative model with estimates store name2, for instance, if

you plan additional tests against models yet to be fit. The likelihood-ratio test is then obtained as lrtest
name name2.

Remarks are presented under the following headings:

Nested models
Composite models

Nested models
lrtestmay be used with any estimation command that reports a log likelihood, including heckman,

logit, poisson, stcox, and streg. You must check that one of the model specifications implies a
statistical model that is nested within the model implied by the other specification. Usually, this means

that both models are fit with the same estimation command (for example, both are fit by logit, with
the same dependent variables) and that the set of covariates of one model is a subset of the covariates

of the other model. Second, lrtest is valid only for models that are fit by maximum likelihood or

by some equivalent method, so it does not apply to models that were fit with probability weights or

clusters. Specifying the vce(robust) option similarly would indicate that you are worried about the
valid specification of the model, so you would not use lrtest. Third, lrtest assumes that under

the null hypothesis, the test statistic is (approximately) distributed as 𝜒2. This assumption is not true

for likelihood-ratio tests of “boundary conditions”, such as tests for the presence of overdispersion or

random effects (Gutierrez, Carter, and Drukker 2001).

Example 1
We have data on infants born with low birthweights along with the characteristics of the mother (Hos-

mer, Lemeshow, and Sturdivant 2013; see also [R] logistic). We fit the following model:

. use https://www.stata-press.com/data/r18/lbw
(Hosmer & Lemeshow data)
. logistic low age lwt i.race smoke ptl ht ui
Logistic regression Number of obs = 189

LR chi2(8) = 33.22
Prob > chi2 = 0.0001

Log likelihood = -100.724 Pseudo R2 = 0.1416

low Odds ratio Std. err. z P>|z| [95% conf. interval]

age .9732636 .0354759 -0.74 0.457 .9061578 1.045339
lwt .9849634 .0068217 -2.19 0.029 .9716834 .9984249

race
Black 3.534767 1.860737 2.40 0.016 1.259736 9.918406
Other 2.368079 1.039949 1.96 0.050 1.001356 5.600207

smoke 2.517698 1.00916 2.30 0.021 1.147676 5.523162
ptl 1.719161 .5952579 1.56 0.118 .8721455 3.388787
ht 6.249602 4.322408 2.65 0.008 1.611152 24.24199
ui 2.1351 .9808153 1.65 0.099 .8677528 5.2534

_cons 1.586014 1.910496 0.38 0.702 .1496092 16.8134

Note: _cons estimates baseline odds.
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We now wish to test the constraint that the coefficients on age, lwt, ptl, and ht are all zero or, equiva-
lently here, that the odds ratios are all 1. One solution is to type

. test age lwt ptl ht
( 1) [low]age = 0
( 2) [low]lwt = 0
( 3) [low]ptl = 0
( 4) [low]ht = 0

chi2( 4) = 12.38
Prob > chi2 = 0.0147

This test is based on the inverse of the information matrix and is therefore based on a quadratic approxi-

mation to the likelihood function; see [R] test. Amore precise test would be to refit the model, applying

the proposed constraints, and then calculate the likelihood-ratio test.

We first save the current model:

. estimates store full

We then fit the constrained model, which here is the model omitting age, lwt, ptl, and ht:

. logistic low i.race smoke ui
Logistic regression Number of obs = 189

LR chi2(4) = 18.80
Prob > chi2 = 0.0009

Log likelihood = -107.93404 Pseudo R2 = 0.0801

low Odds ratio Std. err. z P>|z| [95% conf. interval]

race
Black 3.052746 1.498087 2.27 0.023 1.166747 7.987382
Other 2.922593 1.189229 2.64 0.008 1.316457 6.488285

smoke 2.945742 1.101838 2.89 0.004 1.415167 6.131715
ui 2.419131 1.047359 2.04 0.041 1.035459 5.651788

_cons .1402209 .0512295 -5.38 0.000 .0685216 .2869447

Note: _cons estimates baseline odds.

That done, lrtest compares this model with the model we previously stored:

. lrtest full .
Likelihood-ratio test
Assumption: . nested within full
LR chi2(4) = 14.42
Prob > chi2 = 0.0061

Let’s compare results. test reported that age, lwt, ptl, and ht were jointly significant at the 1.5%

level; lrtest reports that they are significant at the 0.6% level. Given the quadratic approximation

made by test, we could argue that lrtest’s results are more accurate.

lrtest explicates the assumption that, from a comparison of the degrees of freedom, it has assessed that

the last fit model (.) is nested within the model stored as full. In other words, full is the unconstrained
model and . is the constrained model.

The names in “(Assumption: . nested in full)” are actually links. Click on a name, and the

results for that model are replayed.
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Aside: The nestreg command provides a simple syntax for performing likelihood-ratio tests for

nested model specifications; see [R] nestreg. In the previous example, we fit a full logistic model,
used estimates store to store the fullmodel, fit a constrained logisticmodel, and used lrtest to
report a likelihood-ratio test between two models. To do this with one call to nestreg, use the lrtable
option.

Technical note
lrtest determines the degrees of freedom of a model as the rank of the (co)variance matrix e(V).

There are two issues here. First, the numerical determination of the rank of a matrix is a subtle problem

that can, for instance, be affected by the scaling of the variables in the model. The rank of a matrix

depends on the number of (independent) linear combinations of coefficients that sum exactly to zero. In

the world of numerical mathematics, it is hard to tell whether a very small number is really nonzero or is

a real zero that happens to be slightly off because of roundoff error from the finite precision with which

computers make floating-point calculations. Whether a small number is being classified as one or the

other, typically on the basis of a threshold, affects the determined degrees of freedom. Although Stata

generally makes sensible choices, it is bound to make mistakes occasionally. The moral of this story is

to make sure that the calculated degrees of freedom is as you expect before interpreting the results.

Technical note
Asecond issue involves regress and related commands such as anova. Mainly for historical reasons,

regress does not treat the residual variance, 𝜎2, the same way that it treats the regression coefficients.

Type estat vce after regress, and you will see the regression coefficients, not �̂�2. Most estimation

commands for models with ancillary parameters (for example, streg and heckman) treat all parame-
ters as equals. There is nothing technically wrong with regress here; we are usually focused on the

regression coefficients, and their estimators are uncorrelated with �̂�2. But, formally, 𝜎2 adds a degree of

freedom to the model, which does not matter if you are comparing two regression models by a likelihood-

ratio test. This test depends on the difference in the degrees of freedom, and hence being “off by 1” in

each does not matter. But, if you are comparing a regression model with a larger model—for example,

a heteroskedastic regression model fit by arch—the automatic determination of the degrees of freedom

is incorrect, and you must specify the df(#) option.

Example 2
Returning to the low-birthweight data in example 1, we nowwish to test that the coefficient on 2.race

(black) is equal to that on 3.race (other). The base model is still stored under the name full, so we
need only fit the constrained model and perform the test. With 𝑧 as the index of the logit model, the base
model is

𝑧 = 𝛽0 + 𝛽1age + 𝛽2lwt + 𝛽32.race + 𝛽43.race + · · ·

If 𝛽3 = 𝛽4, this can be written as

𝑧 = 𝛽0 + 𝛽1age + 𝛽2lwt + 𝛽3(2.race + 3.race) + · · ·
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We can fit the constrained model as follows:

. constraint 1 2.race = 3.race

. logistic low age lwt i.race smoke ptl ht ui, constraints(1)
Logistic regression Number of obs = 189

Wald chi2(7) = 25.17
Log likelihood = -100.9997 Prob > chi2 = 0.0007
( 1) [low]2.race - [low]3.race = 0

low Odds ratio Std. err. z P>|z| [95% conf. interval]

age .9716799 .0352638 -0.79 0.429 .9049649 1.043313
lwt .9864971 .0064627 -2.08 0.038 .9739114 .9992453

race
Black 2.728186 1.080207 2.53 0.011 1.255586 5.927907
Other 2.728186 1.080207 2.53 0.011 1.255586 5.927907

smoke 2.664498 1.052379 2.48 0.013 1.228633 5.778414
ptl 1.709129 .5924776 1.55 0.122 .8663666 3.371691
ht 6.116391 4.215585 2.63 0.009 1.58425 23.61385
ui 2.09936 .9699702 1.61 0.108 .8487997 5.192407

_cons 1.309371 1.527398 0.23 0.817 .1330839 12.8825

Note: _cons estimates baseline odds.

Comparing this model with our original model, we obtain

. lrtest full .
Likelihood-ratio test
Assumption: . nested within full
LR chi2(1) = 0.55
Prob > chi2 = 0.4577

By comparison, typing test 2.race=3.race after fitting our base model results in a significance level
of 0.4572. Alternatively, we can first store the restricted model, here using the name equal. Next,

lrtest is invoked specifying the names of the restricted and unrestricted models (we do not care about
the order). This time, we also add the option stats requesting a table of model statistics, including the
model selection indices AIC and BIC.

. estimates store equal

. lrtest equal full, stats
Likelihood-ratio test
Assumption: equal nested within full
LR chi2(1) = 0.55
Prob > chi2 = 0.4577
Akaike’s information criterion and Bayesian information criterion

Model N ll(null) ll(model) df AIC BIC

equal 189 . -100.9997 8 217.9994 243.9334
full 189 -117.336 -100.724 9 219.448 248.6237

Note: BIC uses N = number of observations. See [R] IC note.
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Composite models
lrtest supports composite models; that is, models that can be fit by fitting a series of simpler models

or by fittingmodels on subsets of the data. Theoretically, a compositemodel is one inwhich the likelihood

function, 𝐿(𝜃), of the parameter vector, 𝜃, can be written as the product

𝐿(𝜃) = 𝐿1(𝜃1) × 𝐿2(𝜃2) × · · · × 𝐿𝑘(𝜃𝑘)

of likelihood terms with 𝜃 = (𝜃1, . . . , 𝜃𝑘) a partitioning of the full parameter vector. In such a case, the
full-model likelihood 𝐿(𝜃) is maximized by maximizing the likelihood terms 𝐿𝑗(𝜃𝑗) in turn. Obviously,
log𝐿( ̂𝜃) = ∑𝑘

𝑗=1 log𝐿𝑗( ̂𝜃𝑗). The degrees of freedom for the composite model is obtained as the sum of

the degrees of freedom of the constituting models.

Example 3
As an example of the application of composite models, we consider a test of the hypothesis that the

coefficients of a statistical model do not differ between different portions (“regimes”) of the covariate

space. Economists call a test for such a hypothesis a Chow test.

We continue the analysis of the data on children of low birthweight by using logistic regression mod-

eling and study whether the regression coefficients are the same among the three races: white, black, and

other. A likelihood-ratio Chow test can be obtained by fitting the logistic regression model for each of

the races and then comparing the combined results with those of the model previously stored as full.
Because the full model included dummies for the three races, this version of the Chow test allows the

intercept of the logistic regression model to vary between the regimes (races).

. logistic low age lwt smoke ptl ht ui if 1.race, nolog
Logistic regression Number of obs = 96

LR chi2(6) = 13.86
Prob > chi2 = 0.0312

Log likelihood = -45.927061 Pseudo R2 = 0.1311

low Odds ratio Std. err. z P>|z| [95% conf. interval]

age .9869674 .0527757 -0.25 0.806 .8887649 1.096021
lwt .9900874 .0106101 -0.93 0.353 .9695089 1.011103

smoke 4.208697 2.680133 2.26 0.024 1.20808 14.66222
ptl 1.592145 .7474264 0.99 0.322 .6344379 3.995544
ht 2.900166 3.193537 0.97 0.334 .3350554 25.1032
ui 1.229523 .9474768 0.27 0.789 .2715165 5.567715

_cons .4891008 .993785 -0.35 0.725 .0091175 26.23746

Note: _cons estimates baseline odds.
. estimates store white
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. logistic low age lwt smoke ptl ht ui if 2.race, nolog
Logistic regression Number of obs = 26

LR chi2(6) = 10.12
Prob > chi2 = 0.1198

Log likelihood = -12.654157 Pseudo R2 = 0.2856

low Odds ratio Std. err. z P>|z| [95% conf. interval]

age .8735313 .1377846 -0.86 0.391 .6412332 1.189983
lwt .9747736 .016689 -1.49 0.136 .9426065 1.008038

smoke 16.50373 24.37044 1.90 0.058 .9133647 298.2083
ptl 4.866916 9.33151 0.83 0.409 .1135573 208.5895
ht 85.05605 214.6382 1.76 0.078 .6049308 11959.27
ui 67.61338 133.3313 2.14 0.033 1.417399 3225.322

_cons 48.7249 169.9216 1.11 0.265 .0523961 45310.94

Note: _cons estimates baseline odds.
. estimates store black
. logistic low age lwt smoke ptl ht ui if 3.race, nolog
Logistic regression Number of obs = 67

LR chi2(6) = 14.06
Prob > chi2 = 0.0289

Log likelihood = -37.228444 Pseudo R2 = 0.1589

low Odds ratio Std. err. z P>|z| [95% conf. interval]

age .9263905 .0665386 -1.06 0.287 .8047407 1.06643
lwt .9724499 .015762 -1.72 0.085 .9420424 1.003839

smoke .7979034 .6340585 -0.28 0.776 .1680885 3.787586
ptl 2.845675 1.777944 1.67 0.094 .8363053 9.682908
ht 7.767503 10.00537 1.59 0.112 .6220764 96.98826
ui 2.925006 2.046473 1.53 0.125 .7423107 11.52571

_cons 49.09444 113.9165 1.68 0.093 .5199275 4635.769

Note: _cons estimates baseline odds.
. estimates store other

We are now ready to perform the likelihood-ratio Chow test:

. lrtest (full) (white black other), stats
Likelihood-ratio test
Assumption: full nested within (white, black, other)
LR chi2(12) = 9.83
Prob > chi2 = 0.6310
Akaike’s information criterion and Bayesian information criterion

Model N ll(null) ll(model) df AIC BIC

full 189 -117.336 -100.724 9 219.448 248.6237
white 96 -52.85752 -45.92706 7 105.8541 123.8046
black 26 -17.71291 -12.65416 7 39.30831 48.11499
other 67 -44.26039 -37.22844 7 88.45689 103.8897

Note: BIC uses N = number of observations. See [R] IC note.
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We cannot reject the hypothesis that the logistic regression model applies to each of the races at any

reasonable significance level. By specifying the stats option, we can verify the degrees of freedom of

the test: 12 = 7+ 7+ 7− 9. We can obtain the same test by fitting an expanded model with interactions

between all covariates and race.

. logistic low race##c.(age lwt smoke ptl ht ui)
Logistic regression Number of obs = 189

LR chi2(20) = 43.05
Prob > chi2 = 0.0020

Log likelihood = -95.809661 Pseudo R2 = 0.1835

low Odds ratio Std. err. z P>|z| [95% conf. interval]

race
Black 99.62137 402.0829 1.14 0.254 .0365434 271578.9
Other 100.3769 309.586 1.49 0.135 .2378638 42358.38

age .9869674 .0527757 -0.25 0.806 .8887649 1.096021
lwt .9900874 .0106101 -0.93 0.353 .9695089 1.011103

smoke 4.208697 2.680133 2.26 0.024 1.20808 14.66222
ptl 1.592145 .7474264 0.99 0.322 .6344379 3.995544
ht 2.900166 3.193537 0.97 0.334 .3350554 25.1032
ui 1.229523 .9474768 0.27 0.789 .2715165 5.567715

race#c.age
Black .885066 .1474079 -0.73 0.464 .638569 1.226714
Other .9386232 .0840486 -0.71 0.479 .7875366 1.118695

race#c.lwt
Black .9845329 .0198857 -0.77 0.440 .9463191 1.02429
Other .9821859 .0190847 -0.93 0.355 .9454839 1.020313

race#c.smoke
Black 3.921338 6.305992 0.85 0.395 .167725 91.67917
Other .1895844 .1930601 -1.63 0.102 .025763 1.395113

race#c.ptl
Black 3.05683 6.034089 0.57 0.571 .0638301 146.3918
Other 1.787322 1.396789 0.74 0.457 .3863582 8.268285

race#c.ht
Black 29.328 80.7482 1.23 0.220 .1329492 6469.623
Other 2.678295 4.538712 0.58 0.561 .0966916 74.18702

race#c.ui
Black 54.99155 116.4274 1.89 0.058 .8672471 3486.977
Other 2.378976 2.476124 0.83 0.405 .309335 18.29579

_cons .4891008 .993785 -0.35 0.725 .0091175 26.23746

Note: _cons estimates baseline odds.
. lrtest full .
Likelihood-ratio test
Assumption: full nested within .
LR chi2(12) = 9.83
Prob > chi2 = 0.6310
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Applying lrtest for the full model against themodel with all interactions yields the same test statistic
and 𝑝-value as for the full model against the composite model for the three regimes. Here the specification
of the model with interactions was convenient, and logistic had no problem computing the estimates

for the expanded model. In models with more complicated likelihoods, such as Heckman’s selection

model (see [R] heckman) or complicated survival-time models (see [ST] streg), fitting the models with

all interactions may be numerically demanding and may be much more time consuming than fitting a

series of models separately for each regime.

Given the model with all interactions, we could also test the hypothesis of no differences among the

regions (races) by a Wald version of the Chow test by using the testparm command; see [R] test.

. testparm race#c.(age lwt smoke ptl ht ui)
( 1) [low]2.race#c.age = 0
( 2) [low]3.race#c.age = 0
( 3) [low]2.race#c.lwt = 0
( 4) [low]3.race#c.lwt = 0
( 5) [low]2.race#c.smoke = 0
( 6) [low]3.race#c.smoke = 0
( 7) [low]2.race#c.ptl = 0
( 8) [low]3.race#c.ptl = 0
( 9) [low]2.race#c.ht = 0
(10) [low]3.race#c.ht = 0
(11) [low]2.race#c.ui = 0
(12) [low]3.race#c.ui = 0

chi2( 12) = 8.24
Prob > chi2 = 0.7663

We conclude that, here, the Wald version of the Chow test is similar to the likelihood-ratio version of

the Chow test.

Stored results
lrtest stores the following in r():

Scalars

r(p) 𝑝-value for likelihood-ratio test
r(df) degrees of freedom

r(chi2) LR test statistic

Programmers wishing their estimation commands to be compatible with lrtest should note that

lrtest requires that the following results be returned:

e(cmd) name of estimation command

e(ll) log likelihood

e(V) variance–covariance matrix of the estimators

e(N) number of observations

lrtest also verifies that e(N), e(ll 0), and e(depvar) are consistent between two noncomposite

models.
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Methods and formulas
Let 𝐿0 and 𝐿1 be the log-likelihood values associated with the full and constrained models, respec-

tively. The test statistic of the likelihood-ratio test is LR = −2(𝐿1 − 𝐿0). If the constrained model
is true, LR is approximately 𝜒2 distributed with 𝑑0 − 𝑑1 degrees of freedom, where 𝑑0 and 𝑑1 are the

model degrees of freedom associated with the full and constrained models, respectively (Greene 2018,

554–555).

lrtest determines the degrees of freedom of a model as the rank of e(V), computed as the number
of nonzero diagonal elements of invsym(e(V)).

References
Greene, W. H. 2018. Econometric Analysis. 8th ed. New York: Pearson.

Gutierrez, R. G., S. L. Carter, and D. M. Drukker. 2001. sg160: On boundary-value likelihood-ratio tests. Stata Technical

Bulletin 60: 15–18. Reprinted in Stata Technical Bulletin Reprints, vol. 10, pp. 269–273. College Station, TX: Stata

Press.

Hosmer, D. W., Jr., S. A. Lemeshow, and R. X. Sturdivant. 2013. Applied Logistic Regression. 3rd ed. Hoboken, NJ:

Wiley.

Raciborski, R. 2015. Spotlight on irt. The Stata Blog: Not Elsewhere Classified. https://blog.stata.com/2015/07/31/

spotlight-on-irt/.

Tauchmann, H. 2023. lgrgtest: Lagrange multiplier test after constrained maximum-likelihood estimation. Stata Journal
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Also see
[R] test — Test linear hypotheses after estimation

[R] testnl — Test nonlinear hypotheses after estimation

[R] nestreg — Nested model statistics
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lsens — Graph sensitivity and specificity versus probability cutoff

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Reference Also see

Description
lsens graphs sensitivity and specificity versus probability cutoff and optionally creates new variables

containing these data.

lsens requires that the current estimation results be from logistic, logit, probit, or ivprobit;
see [R] logistic, [R] logit, [R] probit, or [R] ivprobit.

Quick start
Graph sensitivity and specificity versus a probability cutoff using current estimation results

lsens

Generate variables v1, v2, and v3 to contain probability cutoffs, sensitivity, and specificity
lsens, genprob(v1) gensens(v2) genspec(v3)

Add “My Title” to graph

lsens, genprob(v1) gensens(v2) genspec(v3) title(My Title)

Menu
Statistics > Binary outcomes > Postestimation > Sensitivity/specificity plot

1609
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Syntax
lsens [ depvar ] [ if ] [ in ] [weight ] [ , options ]

options Description

Main

all graph all observations in the data

genprob(varname) create variable containing probability cutoffs

gensens(varname) create variable containing sensitivity

genspec(varname) create variable containing specificity

replace overwrite existing variables

nograph suppress the graph

Advanced

beta(matname) row vector containing model coefficients

Plot

connect options affect rendition of the plotted points connected by lines

Add plots

addplot(plot) add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

collect is allowed; see [U] 11.1.10 Prefix commands.

fweights are allowed; see [U] 11.1.6 weight.
lsens is not appropriate with svy estimation results.

Options

� � �
Main �

all requests that the statistic be computed for all observations in the data, ignoring any if or in restric-
tions specified by the estimation command.

genprob(varname), gensens(varname), and genspec(varname) specify the names of new variables

created to contain, respectively, the probability cutoffs and the corresponding sensitivity and speci-

ficity.

replace requests that existing variables specified for genprob(), gensens(), or genspec() be over-
written.

nograph suppresses graphical output.

� � �
Advanced �

beta(matname) specifies a row vector containing model coefficients. The columns of the row vector

must be labeled with the corresponding names of the independent variables in the data. The dependent

variable depvar must be specified immediately after the command name. See Models other than the

last fitted model later in this entry.
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� � �
Plot �

connect options affect the rendition of the plotted points connected by lines; see connect options in

[G-2] graph twoway scatter.

� � �
Add plots �

addplot(plot) provides a way to add other plots to the generated graph. See [G-3] addplot option.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see

[G-3] saving option).

Remarks and examples
Remarks are presented under the following headings:

Introduction
Models other than the last fitted model

Introduction
lsens plots sensitivity and specificity; it plots both sensitivity and specificity versus probability cutoff

𝑐. The graph is equivalent to what you would get from estat classification (see [R] estat classifi-
cation) if you varied the cutoff probability 𝑐 from 0 to 1.

Example 1
We illustrate lsens after logistic; see [R] logistic.

. use https://www.stata-press.com/data/r18/lbw
(Hosmer & Lemeshow data)
. logistic low age i.race smoke ui
(output omitted )

. lsens
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lsens optionally creates new variables containing the probability cutoff, sensitivity, and specificity.

. lsens, genprob(p) gensens(sens) genspec(spec) nograph

The variables created will have 𝑀 + 2 distinct nonmissing values: one for each of the 𝑀 covariate

patterns, one for 𝑐 = 0, and another for 𝑐 = 1. Values are recorded for 𝑝 = 0, for each of the observed

predicted probabilities, and for 𝑝 = 1. The total number of observations required to do this can be fewer

than N, the same as N, or N+ 1, or N + 2. If more observations are added, they are added at the end

of the dataset and the values of the original variables are set to missing in the added observations. How

the values added align with existing observations is irrelevant.

Technical note
logistic, logit, probit, or ivprobit and lsens keep track of the estimation sample. If you type,

for instance, logistic ... if x==1, then when you type lsens, the statistics will be calculated on the
x==1 subsample of the data automatically.

You should specify if or inwith lsens only when you wish to produce graphs and calculate statistics
for a set of observations other than the estimation sample.

If the logistic model was fit with fweights, lsens properly accounts for the weights in its calcu-
lations. You do not have to specify the weights when you run lsens. Weights should be specified with

lsens only when you wish to use a different set of weights.

Models other than the last fitted model
By default, lsens uses the last model fit. You may also directly specify the model to lsens by

inputting a vector of coefficients with the beta() option and passing the name of the dependent variable
depvar to lsens.

Example 2
Suppose that someone publishes the following logistic model of low birthweight:

Pr(low = 1) = 𝐹(−0.02 age − 0.01 lwt + 1.3 black + 1.1 smoke + 0.5 ptl + 1.8 ht + 0.8 ui + 0.5)

where 𝐹 is the cumulative logistic distribution. These coefficients are not odds ratios; they are the equiv-

alent of what logit produces.

We can see whether this model fits our data. First, we enter the coefficients as a row vector and label

its columns with the names of the independent variables plus cons for the constant (see [P] matrix

define and [P] matrix rownames).

. use https://www.stata-press.com/data/r18/lbw3, clear
(Hosmer & Lemeshow data)
. matrix input b = (-0.02, -.01, 1.3, 1.1, .5, 1.8, .8, .5)
. matrix colnames b = age lwt black smoke ptl ht ui _cons
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We can use lroc (see [R] lroc) to examine the predictive ability of the model:

. lroc low, beta(b) nograph
Logistic model for low
Number of observations = 189
Area under ROC curve = 0.7275

The area under the curve indicates that this model does have some predictive power. We can obtain a

graph of sensitivity and specificity as a function of the cutoff probability by typing

. lsens low, beta(b)
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Stored results
lsens stores the following in r():
Scalars

r(N) number of observations

Methods and formulas
Let 𝑗 index observations and 𝑐 be the cutoff probability. Let 𝑝𝑗 be the predicted probability of a

positive outcome and 𝑦𝑗 be the actual outcome, which we will treat as 0 or 1, although Stata treats it as

0 and non-0, excluding missing observations.

Aprediction is classified as positive if 𝑝𝑗 ≥ 𝑐 and otherwise is classified as negative. The classification
is correct if it is positive and 𝑦𝑗 = 1 or if it is negative and 𝑦𝑗 = 0.

Sensitivity is the fraction of 𝑦𝑗 = 1 observations that are correctly classified. Specificity is the

percentage of 𝑦𝑗 = 0 observations that are correctly classified.

Reference
Hosmer, D. W., Jr., S. A. Lemeshow, and R. X. Sturdivant. 2013. Applied Logistic Regression. 3rd ed. Hoboken, NJ:

Wiley.

https://www.stata.com/bookstore/applied-logistic-regression/
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Also see
[R] logistic — Logistic regression, reporting odds ratios

[R] logit — Logistic regression, reporting coefficients

[R] probit — Probit regression

[R] ivprobit — Probit model with continuous endogenous covariates

[R] lroc — Compute area under ROC curve and graph the curve

[R] estat classification — Classification statistics and table

[R] estat gof — Pearson or Hosmer–Lemeshow goodness-of-fit test

[R] roc — Receiver operating characteristic (ROC) analysis

[U] 20 Estimation and postestimation commands
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Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description
lv shows a letter-value display (Tukey 1977, 44–49; Hoaglin 1983) for each variable in varlist. If

no variables are specified, letter-value displays are shown for each numeric variable in the data.

Quick start
Letter-value display for all numeric variables in the dataset

lv

Letter-value display for v1
lv v1

Also generate new variables mid, spread, psigma, and z2 containing midsummaries, spreads,

pseudosigmas, and 𝑧2 values

lv v1, generate

Letter-value displays for v1 separately for each value of v2
bysort v2: lv v1

Menu
Statistics > Summaries, tables, and tests > Distributional plots and tests > Letter-value display

Syntax
lv [ varlist ] [ if ] [ in ] [ , generate tail(#) ]

by and collect are allowed; see [U] 11.1.10 Prefix commands.

Options

� � �
Main �

generate adds four new variables to the data: mid, containing themidsummaries; spread, containing
the spreads; psigma, containing the pseudosigmas; and z2, containing the squared values from
a standard normal distribution corresponding to the particular letter value. If the variables mid,
spread, psigma, and z2 already exist, their contents are replaced. At most, only the first 11

observations of each variable are used; the remaining observations containmissing. If varlist specifies

more than one variable, the newly created variables contain results for the last variable specified. The

generate option may not be used with the by prefix.

1615
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tail(#) indicates the inverse of the tail density through which letter values are to be displayed: 2

corresponds to the median (meaning half in each tail), 4 to the fourths (roughly the 25th and 75th

percentiles), 8 to the eighths, and so on. #may be specified as 4, 8, 16, 32, 64, 128, 256, 512, or 1,024

and defaults to a value of # that has corresponding depth just greater than 1. The default is taken as

1,024 if the calculation results in a number larger than 1,024. Given the intelligent default, this option

is rarely specified.

Remarks and examples
Letter-value displays are a collection of observations drawn systematically from the data, focusing

especially on the tails rather than the middle of the distribution. The displays are called letter-value

displays because letters have been (almost arbitrarily) assigned to tail densities:

Letter Tail area Letter Tail area

M 1/2 B 1/64
F 1/4 A 1/128
E 1/8 Z 1/256
D 1/16 Y 1/512
C 1/32 X 1/1024

Example 1
We have data on the mileage ratings of 74 automobiles. To obtain a letter-value display, we type

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. lv mpg
# 74 Mileage (mpg)

M 37.5 20 spread pseudosigma
F 19 18 21.5 25 7 5.216359
E 10 15 21.5 28 13 5.771728
D 5.5 14 22.25 30.5 16.5 5.576303
C 3 14 24.5 35 21 5.831039
B 2 12 23.5 35 23 5.732448
A 1.5 12 25 38 26 6.040635

1 12 26.5 41 29 6.16562

# below # above
inner fence 7.5 35.5 0 1
outer fence -3 46 0 0
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The decimal points can be made to line up and thus the output made more readable by specifying a

display format for the variable; see [U] 12.5 Formats: Controlling how data are displayed.

. format mpg %9.2f

. lv mpg
# 74 Mileage (mpg)

M 37.5 20.00 spread pseudosigma
F 19 18.00 21.50 25.00 7.00 5.22
E 10 15.00 21.50 28.00 13.00 5.77
D 5.5 14.00 22.25 30.50 16.50 5.58
C 3 14.00 24.50 35.00 21.00 5.83
B 2 12.00 23.50 35.00 23.00 5.73
A 1.5 12.00 25.00 38.00 26.00 6.04

1 12.00 26.50 41.00 29.00 6.17

# below # above
inner fence 7.50 35.50 0 1
outer fence -3.00 46.00 0 0

At the top, the number of observations is indicated as 74. The first line shows the statistics associated

with M, the letter value that puts half the density in each tail, or the median. The median has depth 37.5

(that is, in the ordered data, M is 37.5 observations in from the extremes) and has value 20. The next line

shows the statistics associated with F or the fourths. The fourths have depth 19 (that is, in the ordered

data, the lower fourth is observation 19, and the upper fourth is observation 74− 19+ 1), and the values

of the lower and upper fourths are 18 and 25. The number in the middle is the point halfway between the

fourths—called a midsummary. If the distribution were perfectly symmetric, the midsummary would

equal themedian. The spread is the difference between the lower and upper summaries (25−18 = 7). For

fourths, half the data lie within a 7-mpg band. The pseudosigma is a calculation of the standard deviation

using only the lower and upper summaries and assuming that the variable is normally distributed. If the

data really were normally distributed, all the pseudosigmas would be roughly equal.

After the letter values, the line labeled with depth 1 reports the minimum and maximum values. Here

the halfway point between the extremes is 26.5, which is greater than the median, indicating that 41 is

more extreme than 12, at least relative to the median. And with each letter value, the midsummaries

are increasing—our data are skewed. The pseudosigmas are also increasing, indicating that the data are

spreading out relative to a normal distribution, although, given the evident skewness, this elongation may

be an artifact of the skewness.

At the end is an attempt to identify outliers, although the points so identified are merely outside some

predetermined cutoff. Points outside the inner fence are called outside values or mild outliers. Points

outside the outer fence are called severe outliers. The inner fence is defined as (3/2)IQR and the outer

fence as 3IQR above and below the F summaries, where the interquartile range (IQR) is the spread of the

fourths.

Technical note
The form of the letter-value display has varied slightly with different authors. lv displays appear

as described by Hoaglin (1983) but as modified by Emerson and Stoto (1983), where they included the

midpoint of each of the spreads. This format was later adopted by Hoaglin (1985). If the distribution is

symmetric, the midpoints will all be roughly equal. On the other hand, if the midpoints vary systemati-

cally, the distribution is skewed.
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The pseudosigmas are obtained from the lower and upper summaries for each letter value. For each

letter value, they are the standard deviation a normal distribution would have if its spread for the given

letter value were to equal the observed spread. If the pseudosigmas are all roughly equal, the data are

said to have neutral elongation. If the pseudosigmas increase systematically, the data are said to be more

elongated than a normal, that is, have thicker tails. If the pseudosigmas decrease systematically, the data

are said to be less elongated than a normal, that is, have thinner tails.

Interpretation of the number ofmild and severe outliers is more problematic. The following discussion

is drawn from Hamilton (1991):

Obviously, the presence of any such outliers does not rule out that the data have been drawn from

a normal distribution; in large datasets, there will most certainly be observations outside (3/2)IQR and

3IQR. Severe outliers, however, make up about two per million (0.0002%) of a normal population. In

samples, they lie far enough out to have substantial effects on means, standard deviations, and other

classical statistics. The 0.0002%, however, should be interpreted carefully; outliers appear more often

in small samples than one might expect from population proportions because of sampling variation in

estimated quartiles. Monte Carlo simulation by Hoaglin, Iglewicz, and Tukey (1986) obtained these

results on the percentages and numbers of outliers in random samples from a normal population:

Percentage Number
𝑛 any outliers severe any outliers severe

10 2.83 0.362 0.283 0.0362
20 1.66 0.074 0.332 0.0148
50 1.15 0.011 0.575 0.0055
100 0.95 0.002 0.95 0.002
200 0.79 0.001 1.58 0.002
300 0.75 0.001 2.25 0.003
∞ 0.70 0.0002 ∞ ∞

Thus, the presence of any severe outliers in samples of less than 300 is sufficient to reject normality.

Hoaglin, Iglewicz, and Tukey (1981) suggested the approximation 0.00698 + 0.4/𝑛 for the fraction of

mild outliers in a sample of size 𝑛 or, equivalently, 0.00698𝑛 + 0.4 for the number of outliers.
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Example 2
The generate option adds the mid, spread, psigma, and z2 variables to our data, making

possible many of the diagnostic graphs suggested by Hoaglin (1985).

. lv mpg, generate
(output omitted )

. list _mid _spread _psigma _z2 in 1/12

_mid _spread _psigma _z2

1. 20 . . .
2. 21.5 7 5.216359 .4501955
3. 21.5 13 5.771728 1.26828
4. 22.25 16.5 5.576303 2.188846
5. 24.5 21 5.831039 3.24255

6. 23.5 23 5.732448 4.024532
7. 25 26 6.040635 4.631499
8. . . . .
9. . . . .

10. . . . .

11. 26.5 29 6.16562 5.53073
12. . . . .

Observations 12 through the end are missing for these new variables. The definition of the observations

is always the same. The first observation contains the M summary; the second, the F; the third, the E; and

so on. Observation 11 always contains the summary for depth 1. Observations 8–10—corresponding to

letter values Z, Y, and X—contain missing because these statistics were not calculated. We have only

74 observations, and their depth would be 1.

Hoaglin (1985) suggests graphing the midsummary against 𝑧2. If the distribution is not skewed, the

points in the resulting graph will be along a horizontal line:

. scatter _mid _z2
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The graph clearly indicates the skewness of the distribution. We might also graph psigma against z2
to examine elongation.

Stored results
lv stores the following in r():

Scalars

r(N) number of observations r(u C) upper 32nd

r(min) minimum r(l B) lower 64th

r(max) maximum r(u B) upper 64th

r(median) median r(l A) lower 128th

r(l F) lower 4th r(u A) upper 128th

r(u F) upper 4th r(l Z) lower 256th

r(l E) lower 8th r(u Z) upper 256th

r(u E) upper 8th r(l Y) lower 512th

r(l D) lower 16th r(u Y) upper 512th

r(u D) upper 16th r(l X) lower 1024th

r(l C) lower 32nd r(u X) upper 1024th

The lower/upper 8ths, 16ths, . . . , 1024ths will be defined only if there are sufficient data.

Methods and formulas
Let 𝑁 be the number of (nonmissing) observations on 𝑥, and let 𝑥(𝑖) refer to the ordered data when 𝑖

is an integer. Define 𝑥(𝑖+0.5) = (𝑥(𝑖) + 𝑥(𝑖+1))/2; the median is defined as 𝑥{(𝑁+1)/2}.

Define 𝑥[𝑑] as the pair of numbers 𝑥(𝑑) and 𝑥(𝑁+1−𝑑), where 𝑑 is called the depth. Thus, 𝑥[1] refers

to the minimum and maximum of the data. Define 𝑚 = (𝑁 + 1)/2 as the depth of the median, 𝑓 =
(⌊𝑚⌋ + 1)/2 as the depth of the fourths, 𝑒 = (⌊𝑓⌋ + 1)/2 as the depth of the eighths, and so on. Depths
are reported on the far left of the letter-value display. The corresponding fourths of the data are 𝑥[𝑓], the

eighths are 𝑥[𝑒], and so on. These values are reported inside the display. The middle value is defined as

the corresponding midpoint of 𝑥[⋅]. The spreads are defined as the difference in 𝑥[⋅].

The corresponding point 𝑧𝑖 on a standard normal distribution is obtained as (Hoaglin 1985, 456–457)

𝑧𝑖 =
⎧{
⎨{⎩

𝐹 −1{(𝑑𝑖 − 1/3)/(𝑁 + 1/3)} if𝑑𝑖 > 1

𝐹 −1{0.695/(𝑁 + 0.390)} otherwise

where 𝑑𝑖 is the depth of the letter value. The corresponding pseudosigma is obtained as the ratio of the

spread to −2𝑧𝑖 (Hoaglin 1985, 431).

Define (𝐹𝑙, 𝐹𝑢) = 𝑥[𝑓]. The inner fence has cutoffs 𝐹𝑙 − 3
2 (𝐹𝑢 − 𝐹𝑙) and 𝐹𝑢 + 3

2 (𝐹𝑢 − 𝐹𝑙). The
outer fence has cutoffs 𝐹𝑙 − 3(𝐹𝑢 − 𝐹𝑙) and 𝐹𝑢 + 3(𝐹𝑢 − 𝐹𝑙).

The inner-fence values reported by lv are almost equal to those used by graph, box to identify

outside points. The only difference is that graph uses a slightly different definition of fourths, namely,
the 25th and 75th percentiles as defined by summarize; see [R] summarize.
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makespline — Spline generation

Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas References Also see

Description
makespline generates a set of variables that form B-spline, piecewise polynomial spline, and re-

stricted cubic spline basis functions from a list of existing variables. B-spline and piecewise polynomial

spline bases may be first, second, or third order, with knots at percentiles of the data or uniformly spaced

over the range of the variables. Restricted cubic splines, also known as natural splines, may only be of

third order.

Quick start
Generate variables from x1 and x2 that form third-order B-spline basis functions, with one knot at the

median of each variable

makespline bspline x1 x2

Same as above, but with three knots at the 25th, 50th, and 75th percentiles

makespline bspline x1 x2, knots(3)

Same as above, but use second-order B-splines

makespline bspline x1 x2, knots(3) order(2)

Generate variables that form a linear spline for x1 with knots at 10 and 20
makespline piecewise x1, knotslist(10 20) order(1)

Same as above, but do not rescale x1 before creating spline variables
makespline piecewise x1, knotslist(10 20) order(1) norescalevars

Generate variables that form third-order piecewise polynomial splines for x1 and x2, with knots at their
25th, 50th, and 75th percentiles

makespline piecewise x1 x2, knots(3)

Same as above, but with three knots at evenly spaced points over the range of x1 and of x2
makespline piecewise x1 x2, knots(3) uniformknots

Specify values of knots in matrix K to generate variables forming restricted cubic splines
makespline rcs x1 x2, knotsmat(K)

Generate variables that form a linear spline for x1 without rescaling the values of x1
makespline linear x1

Menu
Data > Create or change data > Other variable-creation commands > Spline generation

1622
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Syntax
makespline basis varlist [ if ] [ in ] [weight ] [ , options ]

basis Description

bspline B-spline

piecewise piecewise polynomial spline

rcs restricted cubic spline

linear linear spline—piecewise basis of order 1 without rescaling variables

options Description

Main

bsepsilon(#) specify the distance (#) from the variable’s boundary for B-spline
knot placement; default is bsepsilon(0.01)

local generate first-order polynomial spline variables centered around
adjacent knots

harrell place knots according to percentiles in Harrell (2001); only for
rcs basis

order(#) use a spline basis of order #; default is order(3)
knots(#) use a spline basis function with # knots

knotslist(knotvals) use knots specified in knotvals

knotsmat(matname) use knots in matrix matname

distinct(#) set minimum number of distinct values required for variables
used to construct splines to #; default is distinct(10)

replace replace existing variables having the same names as the new basis
and rescaled variables, if they exist

norescalevars do not rescale variables before generating spline basis

uniformknots place knots at evenly spaced points over the range of each
variable; default is placement at percentiles

float set type for generated variables to float instead of double

basis(stub | newvarlist) store elements of spline basis function using stub or newvarlist

rescale(stub | newvarlist) store rescaled values of variables using stub or newvarlist

collect is allowed; see [U] 11.1.10 Prefix commands.

fweights, aweights, and iweights are allowed; see [U] 11.1.6 weight.

Options

� � �
Main �

bsepsilon(#) specifies the distance from the boundary of the variable where B-spline knots may be

placed. The default is bsepsilon(0.01).

local specifies that a basis function for a first-order piecewise polynomial be generated with variables
centered around adjacent knots. When splines are generated for only one variable and used in estima-

tion, the regression coefficients measure slopes for the intervals defined by knots.

harrell specifies that knots be placed according to the percentiles recommended in Harrell (2001, 23).
This option may be used only with basis rcs and when specifying 3 to 7 knots.
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order(#) specifies that a spline of order # be used as the basis. order() may be 1, 2, or 3 for basis
bspline and basis piecewise. order() may only be 3 for basis rcs. For basis linear or when
the local option is specified, order() may only be 1. The default is order(3), cubic splines.

knots(#) specifies that a spline or B-spline basis function with # interior knots be used. The number of
knots must be an integer greater than or equal to 1. The maximum number of knots is either 4,096 or

two-thirds of the sample size, whichever is smaller. Also, the number of knots must be less than the

number of distinct values in the variable used to generate the basis function. The default is knots(1)
if exact knot values are not specified using knotslist() or knotsmat(). For basis rcs, the default
is knots(3), and the number of knots must be 3 or greater.

knotslist(knotvals) specifies in knotvals the values of knots to be used for each variable. The knot
values must be specified in the order of varlist, and a backslash (\) must be used to separate knots for
different variables. For example, if splines are generated for x1 and x2, the knots may be specified
as knotslist(20 40 60 \ 5 10 15).

knotsmat(matname) specifies that, in matname, the knots for each variable be the values in each row.
The number of knots should be the same for each variable, and there must be as many rows as there

are variables. If rows of matname are not labeled with varnames, then rows are assumed to be in the

order of varlist.

distinct(#) specifies the minimum number of distinct values required for the variables used to con-

struct the basis functions. Intuitively, using discrete variables for continuous interpolation is difficult

to justify. # specifies the number of distinct values necessary for a variable to be considered continu-

ous. The default is distinct(10).

replace specifies that the variables generated to form the basis function be replaced. If

basis(stub | newvarlist) or rescale(stub | newvarlist) are specified, the variables named with stub,
or those listed in newvarlist, are replaced. Otherwise, variables with the default names are replaced.

norescalevars specifies that the original values of the variables in varlist be used to generate the basis
function. By default, variables are first rescaled to [0, 1]. norescalevarsmay not be used with basis
bspline or basis linear.

uniformknots specifies that knots be placed at evenly spaced points over the range of each variable.
The default is placement at percentiles of each of the specified variables.

float specifies that variables be generated as floats. Because of numerical precision and stability, the
default is double.

basis(stub | newvarlist) specifies that the elements of the basis function be generated with the specified
names.

When stub is specified, this prefix is used to generate enumerated variables for each element of the

basis function.

When newvarlist is specified, variables with these names are generated for the elements of the basis

function.

rescale(stub | newvarlist) specifies that the rescaled variables used to generate the basis function be
stored with the specified names. This option applies only to basis piecewise and basis rcs.

When stub is specified, this prefix is used to generate enumerated variables for the rescaled variables.

When newvarlist is specified, variables with these names are generated for the rescaled variables.
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Remarks and examples
makespline generates new variables that form B-splines, piecewise polynomial splines, and re-

stricted cubic splines from existing variables. Splines allow for different low-order polynomials in differ-

ent regions of the original variables, and they approximate a smooth function by continuously connecting

these low-order polynomials. Knots define the boundaries of the regions.

The standard piecewise polynomial variables created by makespline piecewise allow the functions

to be linear, quadratic, or cubic in each region. makespline linear provides a convenient method for
creating linear splines from the original variables, without rescaling. This is useful when you wish to

directly interpret regression coefficients in the metric of the original variables. The terms in the standard

piecewise polynomial spline function can be highly collinear and may be numerically unstable when

used in estimation. B-splines, which can be created by makespline bspline, avoid this problem by

creating orthogonal spline terms. For an introduction to piecewise polynomial splines and B-splines, see

Piecewise polynomial splines and B-splines in [R] npregress intro. makespline rcs creates restricted
cubic splines, also known as natural splines, in which the function is linear before the first knot, cubic

between adjacent knots, and linear again after the last knot. This can improve performance in the tails

over the standard cubic spline.

In addition to selecting the type of spline, makespline allows you to specify the location of knots—
the locations where the function changes. You can specify the number of knots you wish to allow, and

makespline will place the knots based on percentiles of the data or uniformly spaced across the range
of values in the data. Alternatively, you can specify the exact values at which you wish the knots to be

placed.

Regardless of the type of spline, we can refer to our newly created variables as a spline basis function.

A basis is a collection of terms that can approximate a smooth function arbitrarily well. A basis function,

such as one of the spline functions created by makespline, is a subset of the basis terms that can be used
to approximate the mean function.

The basis function variables generated by makespline are useful for nonparametric and semipara-
metric estimation. For instance, makespline can be used when we want to fit models such as

y = x1𝛽 + 𝑔 (x2, x3, . . . , x𝑘) + ε (1)

In the expression above, the outcome y, the covariates x1, . . . , x𝑘, and the unobservable ε are 𝑛 × 1

vectors of covariates. The function 𝑔(⋅) is unknown and x1 enters the model linearly. These types of

models are commonly used when we are interested in estimating the effect of x1 on the mean of y. We

are agnostic about the functional form in which the controls, x2, . . . , x𝑘, enter the model, but to get a

precise estimate of the effect of x1, we need a reliable approximation of 𝑔(⋅). We may use makespline
to generate the basis functions that best approximate 𝑔(⋅) and then use the basis functions to fit the model
in (1).

For instance, we can generate basis functions with basis as the stub name:

makespline bspline x2-x5, basis(basis)

This would generate a third-order B-spline basis function for each of the variables in x2-x5, with knots
at the medians of x2-x5. Each of the basis functions would consist of five variables; see Methods and

formulas in [R] npregress series for details.
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Once we have these basis functions, we can fit the model in (1) by typing

regress y x1 c.(basis*)##c.(basis*)

where c.(basis*)##c.(basis*) specifies that the terms in the basis functions be included in themodel
on their own as well as interacted with each of the other terms.

Above, we are assuming that we constructed a good approximation of the unknown function 𝑔(⋅).
We could go further and select from among these spline basis terms by using a technique such as lasso

for prediction, described in [LASSO] lasso, or, if we are interested in inferences on estimated effects,

a technique such as the partialing-out or double-selection lasso method, described in [LASSO] Lasso

inference intro.

Let’s say we are interested in getting a reliable estimate of the effect of x1 on the mean of the outcome.
We would type

poregress y x1, controls(c.(basis*)##c.(basis*))

The method used by the above command is partialing-out lasso, which selects from the elements of

the basis function to provide an optimal approximation of 𝑔(⋅) while accounting for the implied model
selection error. The result is an estimate of the effect of x1 on the outcome with reliable standard errors.

Of course, the model does not have to be like the one presented in (1). It could be

y = 𝑔 (x1, x2, . . . , x𝑘) + ε

or

y = 𝑔 (x1) + 𝑔 (x2) + · · · + 𝑔 (x𝑘) + ε

or we might instead be interested in using the basis functions for visualization.

Example 1: Generating and naming B-spline basis functions
Below, we generate a third-order B-spline basis function with one knot placed at the median. The

basis function is constructed from the variable price.

. sysuse auto
(1978 automobile data)
. makespline bspline price

The basis function consists of these five variables:

. describe _*
Variable Storage Display Value

name type format label Variable label

_bsp_1_1 double %10.0g B-spline basis term 1 for price
_bsp_1_2 double %10.0g B-spline basis term 2 for price
_bsp_1_3 double %10.0g B-spline basis term 3 for price
_bsp_1_4 double %10.0g B-spline basis term 4 for price
_bsp_1_5 double %10.0g B-spline basis term 5 for price
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The default naming convention is to give the elements of the basis function a name that starts with

bsp and two subscripts. The first subscript enumerates the basis functions, and the second subscript
enumerates the elements within the basis function. For example, if we created basis functions for two

variables, we would obtain the following:

. makespline bspline price mpg, replace

. describe _*
Variable Storage Display Value

name type format label Variable label

_bsp_1_1 double %10.0g B-spline basis term 1 for price
_bsp_1_2 double %10.0g B-spline basis term 2 for price
_bsp_1_3 double %10.0g B-spline basis term 3 for price
_bsp_1_4 double %10.0g B-spline basis term 4 for price
_bsp_1_5 double %10.0g B-spline basis term 5 for price
_bsp_2_1 double %10.0g B-spline basis term 1 for mpg
_bsp_2_2 double %10.0g B-spline basis term 2 for mpg
_bsp_2_3 double %10.0g B-spline basis term 3 for mpg
_bsp_2_4 double %10.0g B-spline basis term 4 for mpg
_bsp_2_5 double %10.0g B-spline basis term 5 for mpg

If we want to change the stub name bsp to autobasis, we could use the basis() option as follows:

. makespline bspline price mpg, basis(autobasis)

. describe auto*
Variable Storage Display Value

name type format label Variable label

autobasis_1_1 double %10.0g B-spline basis term 1 for price
autobasis_1_2 double %10.0g B-spline basis term 2 for price
autobasis_1_3 double %10.0g B-spline basis term 3 for price
autobasis_1_4 double %10.0g B-spline basis term 4 for price
autobasis_1_5 double %10.0g B-spline basis term 5 for price
autobasis_2_1 double %10.0g B-spline basis term 1 for mpg
autobasis_2_2 double %10.0g B-spline basis term 2 for mpg
autobasis_2_3 double %10.0g B-spline basis term 3 for mpg
autobasis_2_4 double %10.0g B-spline basis term 4 for mpg
autobasis_2_5 double %10.0g B-spline basis term 5 for mpg

Alternatively, we could provide names for each of the variables that form a basis function. For exam-

ple,

. makespline bspline mpg, basis(mpg1 mpg2 mpg3 mpg4 mpg5)

. describe mpg1-mpg5
Variable Storage Display Value

name type format label Variable label

mpg1 double %10.0g B-spline basis term 1 for mpg
mpg2 double %10.0g B-spline basis term 2 for mpg
mpg3 double %10.0g B-spline basis term 3 for mpg
mpg4 double %10.0g B-spline basis term 4 for mpg
mpg5 double %10.0g B-spline basis term 5 for mpg
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Example 2: Generating and naming piecewise polynomial spline basis functions
Below, we generate a third-order piecewise polynomial spline with one knot at the median and show

the variables we generated:

. makespline piecewise mpg

. describe *_sp*
Variable Storage Display Value

name type format label Variable label

_rs_sp_1 double %10.0g mpg rescaled to [0,1]
_sp_1_1 double %10.0g Piecewise polynomial basis term 1

for mpg

The only syntactical difference is that, after makespline, we specify piecewise instead of bspline
to be the basis. makespline generates two variables in this case. They are the elements that are necessary
to construct a basis function.

The default naming convention is to give the elements of the spline function a name that starts with

sp and has two subscripts. The first subscript enumerates the piecewise polynomial spline for a given
variable, and the second subscript denotes the knot number. The rescaled variable starts with rs sp
followed by a subscript denoting the element in the variable list.

Again, we may use a stub to modify the names that precede the subscripts, or we may specify a name

for each new variable. Below, we also specified the names for the rescaled variables:

. makespline piecewise mpg price, basis(mpgsp pricesp) rescale(mpgrs pricers)

. describe mpgsp mpgrs pricesp pricers
Variable Storage Display Value

name type format label Variable label

mpgsp double %10.0g Piecewise polynomial basis term 1
for mpg

mpgrs double %10.0g mpg rescaled to [0,1]
pricesp double %10.0g Piecewise polynomial basis term 1

for price
pricers double %10.0g price rescaled to [0,1]

The logic behind the variables generated is that they consist of all the elements needed to approxi-

mate the unknown function 𝑔(⋅) of the specified variables nonparametrically. In this case, a third-order
piecewise polynomial spline approximation of 𝑔(⋅) consists of the levels, square, and cube of mpgsp,
mpgrs, pricesp, and pricers. Specifically, to include the fully interacted basis functions in a model,
we would need to include the term below in our specification:

c.(c.mpgrs##c.mpgrs##c.mpgrs mpgsp)##c.(c.pricers##c.pricers##c.pricers pricesp)

makespline simplifies this task by returning a local macro with the terms needed to fit 𝑔(⋅). The
local macro has the name r(regressors). In this case, it expands to the following:

. display ”‘r(regressors)’”
c.(c.mpgrs##c.mpgrs##c.mpgrs mpgsp)##c.(c.pricers##c.pricers##c.pricers pricesp)

Note that when you generate basis functions for more than one variable, as we did above,

r(regressors) fully interacts these basis functions. These fully interacted basis functions can be in-
cluded when fitting a model by adding ‘r(regressors)’ to your list of covariates.
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Example 3: Using makespline in semiparametric estimation
As we mentioned previously, basis functions are particularly useful for approximating unknown func-

tions. For example, say we want to obtain the average marginal effect of x1 on the conditional mean of
the continuous outcome y. We have two controls, x2 and x3, but it is unclear whether they enter the
model linearly or with another functional form.

To approximate the unknown function of x2 and x3, we construct two B-spline basis functions with
eight knots each. We use the simulated dataset and then the makespline bspline command:

. use https://www.stata-press.com/data/r18/splines, clear
(Simulated data)
. makespline bspline x2 x3, knots(8)

This yields basis functions with 12 elements. Once you fully interact the two basis functions, you

get 168 regressors. Using all of them to approximate the unknown function would not be a sound idea.

Thus, we will use poregress to perform partialing-out lasso linear regression. This estimator will select

from the 168 covariates to provide a good approximation to the unknown function and at the same time

provide a reliable estimate of the marginal effect of interest.

Rather than interact the basis terms manually, we can simply refer to the macro r(regressors),
which contains the full interaction of the basis functions:

. poregress y x1, controls(‘r(regressors)’)
Estimating lasso for y using plugin
Estimating lasso for x1 using plugin
Partialing-out linear model Number of obs = 5,000

Number of controls = 168
Number of selected controls = 19
Wald chi2(1) = 3535.78
Prob > chi2 = 0.0000

Robust
y Coefficient std. err. z P>|z| [95% conf. interval]

x1 2.951242 .049632 59.46 0.000 2.853965 3.048519

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

We obtain an average marginal effect of 2.95.

A researcher does not know the true value of the effect; however, we do. These are simulated data.

The model is given by

y = 3x1 + 3sin {3 (x2 − x3)} + ε

The unknown function of x2 and x3 is complex, yet we obtained a precise estimate of the averagemarginal

effect.



makespline — Spline generation 1630

Example 4: Using makespline for estimation and graphing
It is common to use linear splines to create a graph after estimation. The knots of a regressor define

a piecewise polynomial that can be visualized conditional on the values of other covariates.

Below, we study the effect of mileage in miles per gallon (mpg) on car prices (price). We regress

price on mpg, three linear polynomial basis terms defined by knots at the quartiles of mpg, and a dummy
variable, foreign (1 if cars are foreign).

We first generate the variables that form the polynomial basis and then fit the regression.

. sysuse auto, clear
(1978 automobile data)
. makespline linear mpg, knots(3) basis(mpg)
. regress price mpg mpg_* i.foreign

Source SS df MS Number of obs = 74
F(5, 68) = 13.49

Model 316201619 5 63240323.8 Prob > F = 0.0000
Residual 318863777 68 4689173.19 R-squared = 0.4979

Adj R-squared = 0.4610
Total 635065396 73 8699525.97 Root MSE = 2165.4

price Coefficient Std. err. t P>|t| [95% conf. interval]

mpg -1330.299 213.0425 -6.24 0.000 -1755.419 -905.1798
mpg_1_1 1698.953 622.5153 2.73 0.008 456.7432 2941.163
mpg_1_2 -622.9298 651.5686 -0.96 0.342 -1923.115 677.2551
mpg_1_3 139.4188 277.0762 0.50 0.616 -413.4783 692.3158

foreign
Foreign 1676.381 609.4723 2.75 0.008 460.1983 2892.564

_cons 28796.47 3449.408 8.35 0.000 21913.28 35679.65

The regression line for our model is given by the following command:

generate double xb = _b[_cons] + _b[1.foreign]*foreign + ///
mpg*_b[mpg] + (mpg>18)*(mpg-18)*_b[mpg_1_1] + ///

(mpg>20)*(mpg-20)*_b[mpg_1_2] + ///
(mpg>25)*(mpg-25)*_b[mpg_1_3]

The effect of mpg changes at the knots. If mpg is less than or equal to 18, it is b[mpg]; if it is greater
than 18 but less than or equal to 20, it is ( b[mpg] + b[mpg 1 1]); if it is greater than 20 but less
than or equal to 25, it is ( b[mpg] + b[mpg 1 1] + b[mpg 1 2]); and if it is greater than 25, it is
( b[mpg] + b[mpg 1 1] + b[mpg 1 2] + b[mpg 1 3]).

We can plot regression lines for foreign and domestic cars. We first generate the predictions for foreign

and domestic cars.

. generate xb_domestic = _b[_cons] + mpg*_b[mpg]
> + (mpg>18)*(mpg-18)*_b[mpg_1_1]
> + (mpg>20)*(mpg-20)*_b[mpg_1_2]
> + (mpg>25)*(mpg-25)*_b[mpg_1_3]
. generate xb_foreign = _b[_cons] + _b[1.foreign] + mpg*_b[mpg]
> + (mpg>18)*(mpg-18)*_b[mpg_1_1]
> + (mpg>20)*(mpg-20)*_b[mpg_1_2]
> + (mpg>25)*(mpg-25)*_b[mpg_1_3]
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Then we plot both regression lines referencing the placement of the knots with vertical lines. In the

graph, we also include the values of the dependent variable. We can inspect graphically how the effect

of mpg differs across the regions defined by the knots.

. twoway line xb_domestic mpg,
> lcolor(blue) lpattern(dash) sort ||
> line xb_foreign mpg,
> lcolor(red) lpatter(dash_dot) sort ||
> scatter price mpg if foreign==0, mcolor(blue%30) ||
> scatter price mpg if foreign==1, mcolor(red%30)
> xline(18 20 25)
> title(Fitted values for domestic and foreign cars)
> subtitle(Spline regression with knots at quartiles of mpg)
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15000

10 20 30 40
Mileage (mpg)

xb_domestic
xb_foreign
Price
Price

Spline regression with knots at quartiles of mpg

Fitted values for domestic and foreign cars

Stored results
makespline stores the following in r():

Scalars

r(N knots) number of knots

r(local) 1 if local was specified, 0 otherwise
r(bsepsilon) distance from variable’s boundary for B-spline knot placement

Macros

r(basis) spline type used to generate basis function

r(regressors) regressors formed from basis functions

r(basisnames#) variable names of basis function for variable #

r(wtype) weight type

r(wexp) weight expression

Matrices

r(minmax) minimum and maximum of all variables

r(knots) matrix of knots
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Methods and formulas
See Methods and formulas in [R] npregress series for piecewise polynomial spline and B-spline

computation.

When the local option is specified, let 𝑉𝑖, 𝑖 = 1, . . . , 𝑛, be the variables to be created; 𝑘𝑖, 𝑖 =
1, . . . , 𝑛 − 1, be the corresponding knots; and 𝒱 be the original variable rescaled to be in [0, 1]. Then

𝑉1 = min(𝒱, 𝑘1)

𝑉𝑖 = max{min(𝒱, 𝑘𝑖), 𝑘𝑖−1} − 𝑘𝑖−1 𝑖 = 2, . . . , 𝑛 − 1

𝑉𝑛 = max(𝒱, 𝑘𝑛−1) − 𝑘𝑛−1

When the rcs basis is specified, let 𝑘𝑖, 𝑖 = 1, . . . , 𝑛, be the knot values; 𝑉𝑖, 𝑖 = 1, . . . , 𝑛 − 1, be the

variables to be created; and 𝒱 be the original variable rescaled to be in [0, 1]. Then

𝑉1 = 𝒱

𝑉𝑖+1 =
(𝒱 − 𝑘𝑖)3

+ − (𝑘𝑛 − 𝑘𝑛−1)−1{(𝒱 − 𝑘𝑛−1)3
+(𝑘𝑛 − 𝑘𝑖) − (𝒱 − 𝑘𝑛)3

+(𝑘𝑛−1 − 𝑘𝑖)}
(𝑘𝑛 − 𝑘1)2

𝑖 = 1, . . . , 𝑛 − 2

where

(𝑢)+ = { 𝑢, if 𝑢 > 0
0, if 𝑢 ≤ 0

When the harrell option is specified, the knots are placed using the percentiles recommended in

Harrell (2001, 23). These percentiles are based on the chosen number of knots as follows:

No.

of knots Percentiles

3 10 50 90

4 5 35 65 95

5 5 27.5 50 72.5 95

6 5 23 41 59 77 95

7 2.5 18.33 34.17 50 65.83 81.67 97.5
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Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description
Margins are statistics calculated from predictions of a previously fit model at fixed values of some

covariates and averaging or otherwise integrating over the remaining covariates.

The margins command estimates margins of responses for specified values of covariates and presents
the results as a table.

Capabilities include estimated marginal means (also called least-squares means); adjusted predictions

and adjusted treatment means; predictive margins (also called potential-outcome means); average and

conditional adjusted predictions; and average and conditional marginal and partial effects, which may be

reported as derivatives or as elasticities.

Quick start
Estimated marginal means (least-squares means)

Estimated marginal mean of y for each level of a after anova y a##b
margins a, asbalanced

Estimated marginal mean of y for each level of the interaction of a and b after anova y a##b##c
margins a#b, asbalanced

Estimated marginal means of y1, y2, and y3 for each level of a after manova y1 y2 y3 = a##b
margins a, asbalanced

Adjusted means and adjusted predictions

Adjusted mean of y for each level of a when x is at its mean after regress y i.a x
margins a, atmeans

Same as above, but set x to 10 rather than to its mean
margins a, at(x=10)

Same as above, and also report adjusted means for x = 20, x = 30, and x = 40

margins a, at(x=(10(10)40))

Adjusted predicted probability of y = 1 for each level of a when x is at its mean after
logit y a##c.x

margins a, atmeans

Adjusted predicted probability for each level of the interaction of a and b, holding x at 25, after logit
y a##b##c.x

margins a#b, at(x=25)

Adjusted prediction for each level of a when x = 25 and b = 1

margins a, at(x=25 b=1)

1634
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Predictive margins and potential-outcome means

Overall predictive margin, the average predicted probability of y = 1, after logit y a##b x1 x2
margins

Predictive margins (potential-outcome means) for each level of a
margins a

Predictive margins for a, when x1 is set to 10, 20, 30, and 40
margins a, at(x1=(10(10)40))

Predictive margins for levels of the interaction of a and b
margins a#b

Predictive margins for a for all combinations of x1 = 10, 20, 30 and x2 = 50, 100, 150

margins a, at(x1=(10(10)30) x2=(50(50)150))

Predictive margins for a, first for x1 = 10, 20, 30 with x2 at its observed values, then for x2 = 50, 100,

150 with x1 at its observed values
margins a, at(x1=(10(10)30)) at(x2=(50(50)150))

Predictive margins for a after svy:logit y a##b x1 x2
margins a, vce(unconditional)

Average predicted probabilities of y = 1, y = 2, . . .after mlogit y x1 x2 i.a
margins

Predictive margins for each level of a for each outcome of y
margins a

Average marginal effects and average partial effects

Average marginal effect of x1 on the predicted probability of y = 1 after probit y c.x1##c.x2##a
with continuous x1 and x2 and binary a

margins, dydx(x1)

Average marginal effect (average partial effect) of binary a
margins, dydx(a)

Average marginal effect of x1 when x2 is set to 10, 20, 30, and 40
margins, dydx(x1) at(x2=(10(10)40))

Average marginal effect of x1 when a is set to 0 and then to 1
margins a, dydx(x1)

Average marginal effect of each variable in the model

margins, dydx(*)

Average marginal effect of all variables on the truncated expected value of y, e(0,.), after
tobit y x1 x2 x3, ll(0)

margins, dydx(*) predict(e(0,.))
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Same as above, and report marginal effects for censored expected value of y, ystar(0,.), and for the
linear prediction, xb

margins, dydx(*) predict(e(0,.)) predict(ystar(0,.)) predict(xb)

Conditional marginal effects and conditional partial effects

Marginal effect of x1 on the predicted probability of y = 1, setting all variables to their means, after

probit y c.x1##c.x2##a with continuous x1 and x2 and binary a
margins, dydx(x1) atmeans

Marginal effect (partial effect) of a when all variables are set to their means
margins, dydx(a) atmeans

Marginal effect of x1 when a = 0 and x1 and x2 are set to their means
margins, dydx(x1) at(a=0 (mean) x1 x2)

Same as above

margins, dydx(x1) at(a=0) atmeans

Marginal effect of x1 when for all possible combinations of a = 0, 1, x1 = 50, 100, and

x2 = 10, 20, 30, 40

margins a, dydx(x1) at(x1=(50 100) x2=(10(10)40))

Marginal effects of x1, x2, and a with all variables set to their means
margins, dydx(*) atmeans

Menu
Statistics > Postestimation
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Syntax
margins [marginlist ] [ if ] [ in ] [weight ] [ , response options options ]

where marginlist is a list of factor variables or interactions that appear in the current estimation results.

The variables may be typed with or without the i. prefix, and you may use any factor-variable syntax:

. margins i.sex i.group i.sex#i.group

. margins sex group sex#i.group

. margins sex##group

response options Description

Main

predict(pred opt) estimate margins for predict, pred opt

expression(pnl exp) estimate margins for pnl exp

dydx(varlist) estimate marginal effect of variables in varlist

eyex(varlist) estimate elasticities of variables in varlist

dyex(varlist) estimate semielasticity—𝑑( ̂𝑦)/𝑑(ln𝑥)
eydx(varlist) estimate semielasticity—𝑑(ln ̂𝑦)/𝑑(𝑥)
continuous treat factor-level indicators as continuous
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options Description

Main

grand add the overall margin; default if no marginlist

At

at(atspec) estimate margins at specified values of covariates

atmeans estimate margins at the means of covariates

asbalanced treat all factor variables as balanced

if/in/over

over(varlist) estimate margins at unique values of varlist

subpop(subspec) estimate margins for subpopulation

Within

within(varlist) estimate margins at unique values of the nesting factors in varlist

Contrast

contrast options any options documented in [R] margins, contrast

Pairwise comparisons

pwcompare options any options documented in [R] margins, pwcompare

SE

vce(delta) estimate SEs using delta method; the default

vce(unconditional) estimate SEs allowing for sampling of covariates

nose do not estimate SEs

Advanced

noweights ignore weights specified in estimation

noesample do not restrict margins to the estimation sample
emptycells(empspec) treatment of empty cells for balanced factors

estimtolerance(tol) specify numerical tolerance used to determine estimable functions;
default is estimtolerance(1e-5)

noestimcheck suppress estimability checks

force estimate margins despite potential problems

chainrule use the chain rule when computing derivatives

nochainrule do not use the chain rule

Reporting

level(#) set confidence level; default is level(95)
mcompare(method) adjust for multiple comparisons; default is mcompare(noadjust)
noatlegend suppress legend of fixed covariate values

post post margins and their VCE as estimation results

display options control columns and column formats, row spacing, line width and
factor-variable labeling

df(#) use 𝑡 distribution with # degrees of freedom for computing 𝑝-values
and confidence intervals
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method Description

noadjust do not adjust for multiple comparisons; the default

bonferroni [ adjustall ] Bonferroni’s method; adjust across all terms

sidak [ adjustall ] Šidák’s method; adjust across all terms

scheffe Scheffé’s method

Time-series operators are allowed if they were used in the estimation.

See at() under Options for a description of atspec.
collect is allowed; see [U] 11.1.10 Prefix commands.

fweights, aweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.

df(#) does not appear in the dialog box.

Options
Warning: The option descriptions are brief and use jargon. Skip to Remarks and examples if you are

reading about margins for the first time.

� � �
Main �

predict(pred opt) and expression(pnl exp) are mutually exclusive; they specify the response. If
neither is specified, the response will be the default prediction that would be produced by predict
after the underlying estimation command. Some estimation commands, such as mlogit, document a
different default prediction for margins than for predict.

predict(pred opt) specifies the option(s) to be specified with the predict command to produce
the variable that will be used as the response. After estimation by logistic, you could specify
predict(xb) to obtain linear predictions rather than the predict command’s default, the prob-
abilities.

Multiple predict() options can be specified to compute margins of multiple predictions simultane-
ously.

expression(pnl exp) specifies the response as an expression. See [R] predictnl for

a full description of pnl exp. After estimation by logistic, you might specify

expression(exp(predict(xb))) to use relative odds rather than probabilities as the response.
For examples, see Example 12: Margins of a specified expression.

dydx(varlist), eyex(varlist), dyex(varlist), and eydx(varlist) request that margins report derivatives
of the response with respect to varlist rather than on the response itself. eyex(), dyex(), and eydx()
report derivatives as elasticities; see Expressing derivatives as elasticities.

continuous is relevant only when one of dydx() or eydx() is also specified. It specifies that the levels
of factor variables be treated as continuous; see Derivatives versus discrete differences. This option

is implied if there is a single-level factor variable specified in dydx() or eydx().

grand specifies that the overall margin be reported. grand is assumed when marginlist is empty.
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� � �
At �

at(atspec) specifies values for covariates to be treated as fixed. By default, margins are calculated using
observed values of covariates.

at(age=20) fixes covariate age to the value specified. at()may be used to fix continuous or factor
covariates.

at(age=20 sex=1) simultaneously fixes covariates age and sex at the values specified.

at(age=(20 30 40 50)) fixes age first at 20, then at 30, . . . . margins produces separate results for
each specified value.

at(age=(20(10)50)) does the same as at(age=(20 30 40 50)); that is, youmay specify a numlist.

at((mean) age (median) distance) fixes the covariates at the summary statistics specified.

at((p25) all) fixes all covariates at their 25th percentile values. See Syntax of at() for the

full list of summary-statistic modifiers.

at((mean) all (median) x x2=1.2 z=(1 2 3)) is processed from general to specific, with set-

tings for named covariates overriding general settings specified via all. Thus, all covariates are
fixed at their means except for x (fixed at its median), x2 (fixed at 1.2), and z (fixed first at 1, then
at 2, and finally at 3).

at((means) all (asobserved) x2) is a convenient way to set all covariates except x2 to the

mean.

Multiple at() options can be specified, and each will produce a different set of margins.

See Syntax of at() for more information.

atmeans specifies that covariates be fixed at their means and is shorthand for at((mean) all).
atmeans differs from at((mean) all) in that atmeans will affect subsequent at() options. For
instance,

. margins ..., atmeans at((p25) x) at((p75) x)

produces two sets of margins with both sets evaluated at the means of all covariates except x.

asbalanced is shorthand for at((asbalanced) factor) and specifies that factor covariates be eval-
uated as though there were an equal number of observations in each level; see Obtaining margins

as though the data were balanced. asbalanced differs from at((asbalanced) factor) in that
asbalanced will affect subsequent at() options in the same way as atmeans does.

When asbalanced is combined with the atmeans option, factor variables are treated as balanced,
while continuous covariates are fixed at their means. The resulting margin is known as an adjusted

treatment mean.

� � �
if/in/over �

over(varlist) specifies that separate sets of margins be estimated for the groups defined by varlist. The
variables in varlist must contain nonnegative integer (or missing) values. The variables need not be

covariates in your model. When over() is combined with the vce(unconditional) option, each
group is treated as a subpopulation; see [SVY] Subpopulation estimation.

subpop([ varname ] [ if ]) is intended for use with the vce(unconditional) option. It specifies that
margins be estimated for the single subpopulation identified by the indicator variable or by the if
expression or by both. Zero or missing indicates that the observation be excluded; nonzero or non-
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missing, that it be included. See [SVY] Subpopulation estimation for why subpop() is preferred to
if expressions and in ranges when also using vce(unconditional). If subpop() is used without
vce(unconditional), it is treated merely as an additional if qualifier.

� � �
Within �

within(varlist) allows for nested designs. varlist contains the nesting variable(s) over which mar-

gins are to be estimated. See Obtaining margins with nested designs. As with over(varlist), when
within(varlist) is combined with vce(unconditional), each level of the variables in varlist is
treated as a subpopulation.

� � �
Contrast �

contrast options are any of the options documented in [R] margins, contrast.

� � �
Pairwise comparisons �

pwcompare options are any of the options documented in [R] margins, pwcompare.

� � �
SE �

vce(delta) and vce(unconditional) specify how the VCE and, correspondingly, standard errors are

calculated.

vce(delta) is the default. The delta method is applied to the formula for the response and the VCE
of the estimation command. This method assumes that values of the covariates used to calculate

the response are given or, if all covariates are not fixed using at(), that the data are given.

vce(unconditional) specifies that the covariates that are not fixed be treated in a way that ac-

counts for their having been sampled. The VCE is estimated using the linearization method. This

method allows for heteroskedasticity or other violations of distributional assumptions and allows

for correlation among the observations in the same manner as vce(robust) and vce(cluster
. . .), which may have been specified with the estimation command. This method also accounts for
complex survey designs if the data are svyset. See Obtaining margins with survey data and rep-
resentative samples. When you use complex survey data, this method requires that the linearized

variance estimation method be used for the model. See [SVY] svy postestimation for an example

of margins with replication-based methods.

nose suppresses calculation of the VCE and standard errors. See Requirements for model specification
for an example of the use of this option.

� � �
Advanced �

noweights specifies that any weights specified on the previous estimation command be ignored by

margins. By default, margins uses the weights specified on the estimator to average responses and
to compute summary statistics. If weights are specified on the margins command, they override

previously specified weights, making it unnecessary to specify noweights. The noweights option
is not allowed after svy: estimation when the vce(unconditional) option is specified.

For multilevel models, such as meglm, the default behavior is to construct a single weight value for
each observation by multiplying the corresponding multilevel weights within the given observation.

noesample specifies that margins not restrict its computations to the estimation sample used by the

previous estimation command. See Example 15: Margins evaluated out of sample.
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With the default delta-method VCE, noesample margins may be estimated on samples other than the
estimation sample; such results are valid under the assumption that the data used are treated as being

given.

You can specify noesample and vce(unconditional) together, but if you do, you should be sure
that the data in memory correspond to the original e(sample). To show that you understand that, you

must also specify the force option. Be aware that making the vce(unconditional) calculation on
a sample different from the estimation sample would be equivalent to estimating the coefficients on

one set of data and computing the scores used by the linearization on another set; see [P] robust.

emptycells(strict) and emptycells(reweight) are relevant only when the asbalanced option is
also specified. emptycells() specifies how empty cells are handled in interactions involving factor

variables that are being treated as balanced; see Obtaining margins as though the data were balanced.

emptycells(strict) is the default; it specifies that margins involving empty cells be treated as not
estimable.

emptycells(reweight) specifies that the effects of the observed cells be increased to accom-

modate any missing cells. This makes the margin estimable but changes its interpretation.

emptycells(reweight) is implied when the within() option is specified.

estimtolerance(tol) specifies the numerical tolerance used to determine estimable functions. The

default is estimtolerance(1e-5).

A linear combination of the model coefficients z is found to be not estimable if

mreldif(z, z × H) > tol

where H is defined in Methods and formulas.

noestimcheck specifies that margins not check for estimability. By default, the requested margins are
checked and those found not estimable are reported as such. Nonestimability is usually caused by

empty cells. If noestimcheck is specified, estimates are computed in the usual way and reported

even though the resulting estimates are manipulable, which is to say they can differ across equivalent

models having different parameterizations. See Estimability of margins.

force instructs margins to proceed in some situations where it would otherwise issue an error message
because of apparent violations of assumptions. Do not be casual about specifying force. You need
to understand and fully evaluate the statistical issues. For an example of the use of force, see Using
margins after the estimates use command.

chainrule and nochainrule specify whether margins uses the chain rule when numerically com-

puting derivatives. You need not specify these options when using margins after any official Stata
estimator; margins will choose the appropriate method automatically.

Specify nochainrule after estimation by a community-contributed command. We recommend using

nochainrule, even though chainrule is usually safe and is always faster. nochainrule is safer
because it makes no assumptions about how the parameters and covariates join to form the response.

nochainrule is implied when the expression() option is specified.

� � �
Reporting �

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is

level(95) or as set by set level; see [U] 20.8 Specifying the width of confidence intervals.

mcompare(method) specifies the method for computing 𝑝-values and confidence intervals that account
for multiple comparisons within a factor-variable term.
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Most methods adjust the comparisonwise error rate, 𝛼𝑐, to achieve a prespecified experimentwise

error rate, 𝛼𝑒.

mcompare(noadjust) is the default; it specifies no adjustment.
𝛼𝑐 = 𝛼𝑒

mcompare(bonferroni) adjusts the comparisonwise error rate based on the upper limit of the Bon-
ferroni inequality

𝛼𝑒 ≤ 𝑚𝛼𝑐

where m is the number of comparisons within the term.

The adjusted comparisonwise error rate is

𝛼𝑐 = 𝛼𝑒/𝑚

mcompare(sidak) adjusts the comparisonwise error rate based on the upper limit of the probability
inequality

𝛼𝑒 ≤ 1 − (1 − 𝛼𝑐)𝑚

where m is the number of comparisons within the term.

The adjusted comparisonwise error rate is

𝛼𝑐 = 1 − (1 − 𝛼𝑒)1/𝑚

This adjustment is exact when the m comparisons are independent.

mcompare(scheffe) controls the experimentwise error rate using the 𝐹 or 𝜒2 distribution with de-

grees of freedom equal to the rank of the term.

mcompare(method adjustall) specifies that the multiple-comparison adjustments count all com-
parisons across all terms rather than performing multiple comparisons term by term. This leads to

more conservative adjustments when multiple variables or terms are specified in marginslist. This

option is compatible only with the bonferroni and sidak methods.

noatlegend specifies that the legend showing the fixed values of covariates be suppressed.

post causes margins to behave like a Stata estimation (e-class) command. margins posts the vector of
estimated margins along with the estimated variance–covariance matrix to e(), so you can treat the
estimated margins just as you would results from any other estimation command. For example, you

could use test to perform simultaneous tests of hypotheses on the margins, or you could use lincom
to create linear combinations. See Example 10: Testing margins—contrasts of margins.

display options: noci, nopvalues, vsquish, nofvlabel, fvwrap(#), fvwrapon(style),
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch.

noci suppresses confidence intervals from being reported in the coefficient table.

nopvalues suppresses 𝑝-values and their test statistics from being reported in the coefficient table.

vsquish specifies that the blank space separating factor-variable terms or time-series–operated vari-
ables from other variables in the model be suppressed.

nofvlabel displays factor-variable level values rather than attached value labels. This option over-
rides the fvlabel setting; see [R] set showbaselevels.

fvwrap(#) allows long value labels to wrap the first # lines in the coefficient table. This option

overrides the fvwrap setting; see [R] set showbaselevels.
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fvwrapon(style) specifies whether value labels that wrap will break at word boundaries or break

based on available space.

fvwrapon(word), the default, specifies that value labels break at word boundaries.

fvwrapon(width) specifies that value labels break based on available space.

This option overrides the fvwrapon setting; see [R] set showbaselevels.

cformat(% fmt) specifies how to format margins, standard errors, and confidence limits in the table

of estimated margins.

pformat(% fmt) specifies how to format 𝑝-values in the table of estimated margins.
sformat(% fmt) specifies how to format test statistics in the table of estimated margins.

nolstretch specifies that the width of the table of estimatedmargins not be automatically widened to
accommodate longer variable names. The default, lstretch, is to automatically widen the table of
estimated margins up to the width of the Results window. Specifying lstretch or nolstretch
overrides the setting given by set lstretch. If set lstretch has not been set, the default is

lstretch. nolstretch is not shown in the dialog box.

The following option is available with margins but is not shown in the dialog box:

df(#) specifies that the 𝑡 distribution with # degrees of freedom be used for computing 𝑝-values and
confidence intervals. The default typically is to use the standard normal distribution. However, if

the estimation command computes the residual degrees of freedom (e(df r)) and predict(xb) is
specified with margins, the default is to use the 𝑡 distribution with e(df r) degrees of freedom.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Obtaining margins of responses

Example 1: A simple case after regress
Example 2: A simple case after logistic
Example 3: Average response versus response at average
Example 4: Multiple margins from one command
Example 5: Margins with interaction terms
Example 6: Margins with continuous variables
Example 7: Margins of continuous variables
Example 8: Margins of interactions
Example 9: Decomposing margins
Example 10: Testing margins—contrasts of margins
Example 11: Margins of a specified prediction
Example 12: Margins of a specified expression
Example 13: Margins with multiple outcomes (responses)
Example 14: Margins with multiple equations
Example 15: Margins evaluated out of sample

Obtaining margins of derivatives of responses (a.k.a. marginal effects)
Use at() freely, especially with continuous variables
Expressing derivatives as elasticities
Derivatives versus discrete differences
Example 16: Average marginal effect (partial effects)
Example 17: Average marginal effect of all covariates
Example 18: Evaluating marginal effects over the response surface

Obtaining margins with survey data and representative samples
Example 19: Inferences for populations, margins of response
Example 20: Inferences for populations, marginal effects
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Example 21: Inferences for populations with svyset data
Standardizing margins
Obtaining margins as though the data were balanced

Balancing using asbalanced
Balancing by standardization
Balancing nonlinear responses
Treating a subset of covariates as balanced
Balancing in the presence of continuous covariates
Using fvset design
Balancing in the presence of empty cells

Obtaining margins with nested designs
Introduction to nested designs
Margins with nested designs as though the data were balanced
Coding of nested designs

Special topics
Requirements for model specification
Estimability of margins
Manipulability of tests
Using margins after the estimates use command
Syntax of at()
Estimation commands that may be used with margins

Video examples
Glossary

Introduction
margins is a postestimation command, a command for use after you have fit a model using an esti-

mation command such as regress or logistic, or using almost any other estimation command.

margins estimates and reports margins of responses and margins of derivatives of responses, also

known as marginal effects. A margin is a statistic based on a fitted model in which some of or all the

covariates are fixed. Marginal effects are changes in the response for change in a covariate, which can

be reported as a derivative, elasticity, or semielasticity.

For a brief overview of margins, see Williams (2012).

Obtaining margins of responses
What we call margins of responses are also known as predictive margins, adjusted predictions, and

recycled predictions. When applied to balanced data, margins of responses are also called estimated

marginal means and least-squares means.

A margin is a statistic based on a fitted model calculated over a dataset in which some of or all the

covariates are fixed at values different from what they really are. For instance, after a linear regression

fit on males and females, the marginal mean (margin of mean) for males is the predicted mean of the

dependent variable, where every observation is treated as if it represents a male; thus, those observations

that in fact do represent males are included, as well as those observations that represent females. The

marginal mean for females would be similarly obtained by treating all observations as if they represented

females.

In making the calculation, sex is treated as male or female everywhere it appears in the model. The

model might be

. regress y age bp i.sex sex#c.age sex#c.bp

and then, in making the marginal calculation of the mean for males and females, margins not only

accounts for the direct effect of i.sex but also for the indirect effects of sex#c.age and sex#c.bp.
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The response being margined can be any statistic produced by [R] predict, or any expression of those

statistics.

Standard errors are obtained by the delta method, at least by default. The delta method assumes

that the values at which the covariates are evaluated to obtain the marginal responses are fixed. When

your sample represents a population, whether you are using svy or not (see [SVY] svy), you can specify
margins’ vce(unconditional) option and margins will produce standard errors that account for the
sampling variability of the covariates. Some researchers reserve the term predictive margins to describe

this.

The best way to understand margins is to see some examples. You can run the following examples
yourself if you type

. use https://www.stata-press.com/data/r18/margex
(Artificial data for margins)

Example 1: A simple case after regress
. regress y i.sex i.group
(output omitted )

. margins sex
Predictive margins Number of obs = 3,000
Model VCE: OLS
Expression: Linear prediction, predict()

Delta-method
Margin std. err. t P>|t| [95% conf. interval]

sex
Male 60.56034 .5781782 104.74 0.000 59.42668 61.69401

Female 78.88236 .5772578 136.65 0.000 77.7505 80.01422

The numbers reported in the Margin column are average values of the linear prediction of y, as noted
above the output table after Expression:. Based on a linear regression of y on sex and group, 60.6
would be the average value of the linear prediction of y if everyone in the data were treated as if they
were male, and 78.9 would be the average value if everyone were treated as if they were female.

Example 2: A simple case after logistic

margins may be used after almost any estimation command.
. logistic outcome i.sex i.group
(output omitted )

. margins sex
Predictive margins Number of obs = 3,000
Model VCE: OIM
Expression: Pr(outcome), predict()

Delta-method
Margin std. err. z P>|z| [95% conf. interval]

sex
Male .1286796 .0111424 11.55 0.000 .106841 .1505182

Female .1905087 .0089719 21.23 0.000 .1729241 .2080933



margins — Marginal means, predictive margins, and marginal effects 1647

The numbers reported in the Margin column are average predicted probabilities. Based on a logistic
regression of outcome on sex and group, 0.13 would be the average probability of outcome if everyone
in the data were treated as if they were male, and 0.19 would be the average probability if everyone were

treated as if they were female.

margins reports average values after regress and average probabilities after logistic. By default,
marginsmakes tables of whatever it is that predict (see [R] predict) predicts by default. Alternatively,
margins can make tables of anything that predict can produce if you use margins’predict() option;
see Example 11: Margins of a specified prediction.

Example 3: Average response versus response at average

In example 2, margins reported average probabilities of outcome for sex = 0 and sex = 1. If

we instead wanted the predicted probabilities evaluated at the mean of the covariates, we would specify

margins’ atmeans option. We previously typed

. logistic outcome i.sex i.group
(output omitted )

. margins sex
(output omitted )

and now we type

. margins sex, atmeans
Adjusted predictions Number of obs = 3,000
Model VCE: OIM
Expression: Pr(outcome), predict()
At: 1.group = .3996667 (mean)

2.group = .3726667 (mean)
3.group = .2276667 (mean)

Delta-method
Margin std. err. z P>|z| [95% conf. interval]

sex
Male .0966105 .0089561 10.79 0.000 .0790569 .1141641

Female .1508362 .0118064 12.78 0.000 .127696 .1739764

The average of the predictions, whichwe calculated in example 2, is different from the prediction at the

average of the covariates that we calculate here. The first is the average of the probabilities among actual

persons in the data. The second is the expected probability of a person with “average” characteristics;

in this case, that person is 40% in group one, 37% in group two, and 23% in group three. Such a person

cannot exist because membership in each group is exclusive, but margins uses regression coefficients
to calculate the predicted response of the mythical “average” individual.

When you specify the atmeans or at() option, margins reports the values used for the covariates
in the legend above the table. margins lists the values for all the covariates, including values it may

not use, in the results that follow. In this example, margins reported means for sex even though those
means were not used. They were not used because we asked for the margins of sex, so sex was fixed
first at 0 and then at 1.

If you wish to suppress this legend, specify the nolegend option.
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Example 4: Multiple margins from one command

More than one margin can be reported by just one margins command. You can type
. margins sex group

and doing that is equivalent in terms of the output to typing

. margins sex

. margins group

When multiple margins are requested on the same command, each is estimated separately. There is,

however, a difference when you also specify margins’ post option. Then, the variance–covariance

matrix for all margins requested is posted, and that is what allows you to test, for example, equality of

margins. Testing equality of margins is covered in Example 10: Testing margins—contrasts of margins.

In any case, below we request margins for sex and for group.

. margins sex group
Predictive margins Number of obs = 3,000
Model VCE: OIM
Expression: Pr(outcome), predict()

Delta-method
Margin std. err. z P>|z| [95% conf. interval]

sex
Male .1286796 .0111424 11.55 0.000 .106841 .1505182

Female .1905087 .0089719 21.23 0.000 .1729241 .2080933

group
1 .2826207 .0146234 19.33 0.000 .2539593 .311282
2 .1074814 .0094901 11.33 0.000 .0888812 .1260817
3 .0291065 .0073417 3.96 0.000 .0147169 .043496
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Example 5: Margins with interaction terms

The estimation command on which margins bases its calculations may contain interaction terms,

such as an interaction of sex and group:
. logistic outcome i.sex i.group sex#group
(output omitted )

. margins sex group
Predictive margins Number of obs = 3,000
Model VCE: OIM
Expression: Pr(outcome), predict()

Delta-method
Margin std. err. z P>|z| [95% conf. interval]

sex
Male .1561738 .0132774 11.76 0.000 .1301506 .182197

Female .1983749 .0101546 19.54 0.000 .1784723 .2182776

group
1 .3211001 .0176403 18.20 0.000 .2865257 .3556744
2 .1152127 .0099854 11.54 0.000 .0956417 .1347838
3 .0265018 .0109802 2.41 0.016 .0049811 .0480226

We fit the model by typing logistic outcome i.sex i.group sex#group, but the meaning would
have been the same had we typed logistic outcome sex##group.

As mentioned in example 4, the results for sex and the results for group are calculated independently,
and we would have obtained the same results had we typed margins sex followed by margins group.

The margin for male (sex = 0) is 0.16. The probability 0.16 is the average probability if everyone in

the data were treated as if sex = 0, including sex = 0 in the main effect and sex = 0 in the interaction

of sex with group.

Had we specified margins sex, atmeans, we would have obtained not average probabilities but
the probabilities evaluated at the average. Rather than obtaining 0.16, we would have obtained 0.10

for sex = 0. The 0.10 is calculated by taking the fitted model, plugging in sex = 0 everywhere, and

plugging in the average value of the group indicator variables everywhere they are used. That is, rather

than treating the group indicators as being (1, 0, 0), (0, 1, 0), or (0, 0, 1) depending on observation, the
group indicators are treated as being (0.40, 0.37, 0.23), which are the average values of group = 1,

group = 2, and group = 3.
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Example 6: Margins with continuous variables

To the above example, we will add the continuous covariate age to the model and then rerun margins
sex group.

. logistic outcome i.sex i.group sex#group age
(output omitted )

. margins sex group
Predictive margins Number of obs = 3,000
Model VCE: OIM
Expression: Pr(outcome), predict()

Delta-method
Margin std. err. z P>|z| [95% conf. interval]

sex
Male .1600644 .0125653 12.74 0.000 .1354368 .184692

Female .1966902 .0100043 19.66 0.000 .1770821 .2162983

group
1 .2251302 .0123233 18.27 0.000 .200977 .2492834
2 .150603 .0116505 12.93 0.000 .1277685 .1734376
3 .0736157 .0337256 2.18 0.029 .0075147 .1397167

Compared with the results presented in example 5, results for sex change little, but results for groups 1

and 3 change markedly. The tables differ because now we are adjusting for the continuous covariate age,
as well as for sex and group.

We will continue examining interactions in example 8. Because we have added a continuous vari-

able, let’s take a detour to explain how to obtain margins for continuous variables and to explain their

interpretation.
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Example 7: Margins of continuous variables

Continuing with our example of

. logistic outcome i.sex i.group sex#group age

let’s examine the continuous covariate age.

You are not allowed to type margins age; doing that will produce an error:

. margins age
factor age not found in list of covariates
r(322);

The message “age not found in list of covariates” is margins’ way of saying, “Yes, age might be in
the model, but if it is, it is not included as a factor variable; it is in as a continuous variable.” Sometimes,

Stata is overly terse. marginsmight also say that because age is continuous there are an infinite number
of values at which it could evaluate the margins. At what value(s) should age be fixed? margins requires
more guidance with continuous covariates. We can provide that guidance by using the at() option and
typing

. margins, at(age=40)

To understand why that yields the desired result, let us tell you that if you were to type

. margins

margins would report the overall margin—the margin that holds nothing constant. Because our model

is logistic, the average value of the predicted probabilities would be reported. The at() option fixes one
or more covariates to the value(s) specified and can be used with both factor and continuous variables.

Thus, if you typed margins, at(age=40), then margins would average over the data the responses for
everybody, setting age=40. Here is what happens when you type that:

. margins, at(age=40)
Predictive margins Number of obs = 3,000
Model VCE: OIM
Expression: Pr(outcome), predict()
At: age = 40

Delta-method
Margin std. err. z P>|z| [95% conf. interval]

_cons .1133603 .0070731 16.03 0.000 .0994972 .1272234

Reported is the margin for age = 40, adjusted for the other covariates in our model.

If we wanted to obtain the margins for age 30, 35, 40, 45, and 50, we could type

. margins, at(age=(30 35 40 45 50))

or, equivalently,

. margins, at(age=(30(5)50))
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Example 8: Margins of interactions

Our model is

. logistic outcome i.sex i.group sex#group age

We can obtain the margins of all possible combinations of the levels of sex and the levels of group
by typing

. margins sex#group
Predictive margins Number of obs = 3,000
Model VCE: OIM
Expression: Pr(outcome), predict()

Delta-method
Margin std. err. z P>|z| [95% conf. interval]

sex#group
Male#1 .2379605 .0237178 10.03 0.000 .1914745 .2844465
Male#2 .0658294 .0105278 6.25 0.000 .0451953 .0864636
Male#3 .0538001 .0136561 3.94 0.000 .0270347 .0805656

Female#1 .2158632 .0112968 19.11 0.000 .1937218 .2380045
Female#2 .2054406 .0183486 11.20 0.000 .1694781 .2414032
Female#3 .085448 .0533914 1.60 0.110 -.0191973 .1900932

The first line in the table reports the marginal probability for sex = 0 (male) and group = 1. That

is, it reports the estimated probability if everyone in the data were treated as if they were sex = 0 and

group = 1.

Also reported are all the other combinations of sex and group.

By the way, we could have typed margins sex#group even if our fitted model did not include

sex#group. Estimation is one thing, and asking questions about the nature of the estimates is another.
margins does, however, require that i.sex and i.group appear somewhere in the model, because fix-
ing a value outside the model would just produce the grand margin, and you can separately ask for that

if you want it by typing margins without arguments.
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Example 9: Decomposing margins

We have the model

. logistic outcome i.sex i.group sex#group age

In example 6, we typed margins sex and obtained 0.160 for males and 0.197 for females. We are

going to decompose each of those numbers. Let us explain:

1. The margin for males, 0.160, treats everyone as if they were male, and that amounts to simultane-

ously

(a) treating males as males and

(b) treating females as males.

2. The margin for females, 0.197, treats everyone as if they were female, and that amounts to simul-

taneously

(a) treating males as females and

(b) treating females as females.

The margins 1a and 1b are the decomposition of 1, and the margins 2a and 2b are the decomposition

of 2.

We could obtain 1a and 2a by typing

. margins if sex==0, at(sex=(0 1))

because the qualifier if sex==0 would restrict margins to running on only the males. Similarly, we

could obtain 1b and 2b by typing

. margins if sex==1, at(sex=(0 1))

We run these examples below:

. margins if sex==0, at(sex=(0 1))
Predictive margins Number of obs = 1,498
Model VCE: OIM
Expression: Pr(outcome), predict()
1._at: sex = 0
2._at: sex = 1

Delta-method
Margin std. err. z P>|z| [95% conf. interval]

_at
1 .0794393 .0062147 12.78 0.000 .0672586 .0916199
2 .1335584 .0127351 10.49 0.000 .1085981 .1585187
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. margins if sex==1, at(sex=(0 1))
Predictive margins Number of obs = 1,502
Model VCE: OIM
Expression: Pr(outcome), predict()
1._at: sex = 0
2._at: sex = 1

Delta-method
Margin std. err. z P>|z| [95% conf. interval]

_at
1 .2404749 .0199709 12.04 0.000 .2013326 .2796171
2 .2596538 .0104756 24.79 0.000 .2391219 .2801857

Putting together the results from example 6 and the results above, we have

Margin treating individuals as themselves 0.170

Margin treating individuals as male 0.160

Margin treating male as male 0.079

Margin treating female as male 0.240

Margin treating individuals as female 0.197

Margin treating male as female 0.134

Margin treating female as female 0.260

Example 10: Testing margins—contrasts of margins

Continuing with the previous example, it would be interesting to test the equality of 2b and 1b, to

test whether the average probability of a positive outcome for females treated as females is equal to that

for females treated as males. That test would be different from testing the overall significance of sex
in our model. The test performed on our model would be a test of whether the probability of a positive

outcome differs between males and females when they have equal values of the other covariates. The

test of equality of margins is a test of whether the average probabilities differ given the different pattern

of values of the other covariates that the two sexes have in our data.

We can also perform such tests by treating the results from margins as estimation results. There are
three steps required to perform tests on margins. First, you must arrange it so that all the margins of

interest are reported by just one margins command. Second, you must specify margins’ post option.
Third, you perform the test with the test command.

Such tests and comparisons can be readily performed by contrasting margins; see [R] margins, con-

trast. Also see Contrasts of margins—effects (discrete marginal effects) in [R] marginsplot.

In the previous example, we used two commands to obtain our results, namely,

. margins if sex==0, at(sex=(0 1))

. margins if sex==1, at(sex=(0 1))

We could, however, have obtained the same results by typing just one command:

. margins, over(sex) at(sex=(0 1))

Performing margins, over(sex) first restricts the sample to sex==0 and then restricts it to sex==1,
and that is equivalent to the two different if conditions that we specified before.
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To test whether females treated as females is equal to females treated as males, we will need to type

. margins, over(sex) at(sex=(0 1)) post

. test _b[2._at#1.sex] = _b[1._at#1.sex]

We admit that the second command may seem to have come out of nowhere. When we specify post
on the margins command, margins behaves as if it were an estimation command, which means that 1)
it posts its estimates and full VCE to e(), 2) it gains the ability to replay results just as any estimation
command can, and 3) it gains access to the standard postestimation commands. Item 3 explains why

we could use test. We learned that we wanted to test b[2. at#1.sex] and b[1. at#1.sex] by
replaying the estimation results, but this timewith the standard estimation command coeflegend option.
So, what we typed was

. margins, over(sex) at(sex=(0 1)) post

. margins, coeflegend

. test _b[2._at#1.sex] = _b[1._at#1.sex]

We will let you try margins, coeflegend for yourself. The results of running the other two com-
mands are

. margins, over(sex) at(sex=(0 1)) post
Predictive margins Number of obs = 3,000
Model VCE: OIM
Expression: Pr(outcome), predict()
Over: sex
1._at: 0.sex

sex = 0
1.sex

sex = 0
2._at: 0.sex

sex = 1
1.sex

sex = 1

Delta-method
Margin std. err. z P>|z| [95% conf. interval]

_at#sex
1#Male .0794393 .0062147 12.78 0.000 .0672586 .0916199

1#Female .2404749 .0199709 12.04 0.000 .2013326 .2796171
2#Male .1335584 .0127351 10.49 0.000 .1085981 .1585187

2#Female .2596538 .0104756 24.79 0.000 .2391219 .2801857

. test _b[2._at#1.sex] = _b[1._at#1.sex]
( 1) - 1bn._at#1.sex + 2._at#1.sex = 0

chi2( 1) = 0.72
Prob > chi2 = 0.3951
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We can perform the same test in one command using contrasts of margins:

. logistic outcome i.sex i.group sex#group age
(output omitted )

. margins, over(sex) at(sex=(0 1)) contrast(atcontrast(r._at) wald)
Contrasts of predictive margins Number of obs = 3,000
Model VCE: OIM
Expression: Pr(outcome), predict()
Over: sex
1._at: 0.sex

sex = 0
1.sex

sex = 0
2._at: 0.sex

sex = 1
1.sex

sex = 1

df chi2 P>chi2

_at@sex
(2 vs 1) Male 1 14.59 0.0001

(2 vs 1) Female 1 0.72 0.3951
Joint 2 16.13 0.0003

Delta-method
Contrast std. err. [95% conf. interval]

_at@sex
(2 vs 1) Male .0541192 .0141706 .0263453 .081893

(2 vs 1) Female .0191789 .0225516 -.0250215 .0633793

We refit our logistic model because its estimation results were replaced when we posted our margins.

The syntax to perform the contrast we want is admittedly not obvious. Contrasting (testing) across at()
groups is more difficult than contrasting across the margins themselves or across over() groups, because
we have no natural place for the contrast operators (r., in our case). We also explicitly requested Wald

tests of the contrasts, which are not provided by default. Nevertheless, the 𝜒2 statistic and its 𝑝-value for
(2 vs 1) for female matches the results of our test command. We also obtain the test of whether the

response of males treated as males is equal to the response of males treated as females.

For a gentler introduction to contrasts of margins, see [R] margins, contrast.

Example 11: Margins of a specified prediction

We will fit the model

. use https://www.stata-press.com/data/r18/margex

. tobit ycn i.sex i.group sex#group age, ul(90)

and we will tell the following story about the variables: We run a peach orchard where we allow people to

pick their own peaches. A person receives one empty basket in exchange for $20, along with the right to

enter the orchard. There is no official limit on how many peaches a person can pick, but only 90 peaches

will fit into a basket. The dependent variable in the above tobit model, ycn, is the number of peaches
picked. We use tobit, a special case of censored-normal regression, because ycn is censored at 90.
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After fitting this model, if we typed

. margins sex

we would obtain the margins for males and for females of the uncensored number of peaches picked.

We would obtain that because predict after tobit produces the uncensored number by default. To

obtain the censored prediction, we would have to specify predict’s ystar(.,90) option. If we want
the margins based on that response, we type

. margins sex, predict(ystar(.,90))

The results of typing that are

. tobit ycn i.sex i.group sex#group age, ul(90)
(output omitted )

. margins sex, predict(ystar(.,90))
Predictive margins Number of obs = 3,000
Model VCE: OIM
Expression: E(ycn*|ycn<90), predict(ystar(.,90))

Delta-method
Margin std. err. z P>|z| [95% conf. interval]

sex
Male 62.21804 .5996952 103.75 0.000 61.04266 63.39342

Female 78.34272 .4555278 171.98 0.000 77.4499 79.23553

In our previous examples, sex = 1 has designated females, so evidently the females visiting our

orchard are better at filling baskets than the men.

Example 12: Margins of a specified expression

Continuing with our peach orchard example and the previously fit model

. use https://www.stata-press.com/data/r18/margex

. tobit ycn i.sex i.group sex#group age, ul(90)

let’s examine how well our baskets are working for us. What is the proportion of the number of peaches

actually picked to the number that would have been picked were the baskets larger? As mentioned in

example 11, predict, ystar(.,90) produces the expected number picked given the limit of basket
size. predict, xb would predict the expected number without a limit. We want the ratio of those two

predictions. That ratio will measure as a proportion how well the baskets work. Thus, we could type

. margins sex, expression(predict(ystar(.,90))/predict(xb))
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That would give us the proportion for everyone treated as male and everyone treated as female, but what

we want to know is how well baskets work for true males and true females, so we will type

. margins, over(sex) expression(predict(ystar(0,90))/predict(xb))
Predictive margins Number of obs = 3,000
Model VCE: OIM
Expression: predict(ystar(0,90))/predict(xb)
Over: sex

Delta-method
Margin std. err. z P>|z| [95% conf. interval]

sex
Male .9811785 .0013037 752.60 0.000 .9786233 .9837338

Female .9419962 .0026175 359.88 0.000 .9368659 .9471265

By the way, we could count the number of peaches saved by the limited basket size during the period

of data collection by typing

. count
3,000

. margins, expression(3000*(predict(xb)-predict(ystar(.,90))))
(output omitted )

The number of peaches saved turns out to be 9,183.

Example 13: Margins with multiple outcomes (responses)

Estimation commands such as mlogit and mprobit (see [R]mlogit and [R]mprobit) calculate mul-

tiple responses, and those multiple responses are reflected in the options available with predict after
estimation. Obtaining margins for such estimators is thus the same as obtaining margins of a specified

prediction, which was demonstrated in example 11. The solution is to include the predict opt that selects

the desired response in margins’ predict(predict opt) option.

If we fit the multinomial logistic model

. mlogit group i.sex age

then to obtain the margins for the probability that group = 1, we would type

. margins sex, predict(outcome(1))

and to obtain the margins for the probability that group = 3, we would type

. margins sex, predict(outcome(3))

To obtain the margins for each of these outcomes simultaneously, type

. margins sex, predict(outcome(1)) predict(outcome(3))

We learned about the outcome(1) and outcome(3) options by looking in [R] mlogit postestima-

tion. For an example using margins with a multiple-outcome estimator, see example 4 in [R] mlogit

postestimation.
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Example 14: Margins with multiple equations

Estimation commands such as mvreg, manova, sureg, and reg3 (see [MV] mvreg, [MV] manova,

[R] sureg, and [R] reg3) fit multiple equations. Obtaining margins for such estimators is the same as

obtaining margins with multiple outcomes (see example 13), which in turn is the same as obtaining

margins of a specified prediction (see example 11). You place the relevant option from the estimator’s

predict command into margins’ predict(predict opt) option.

If we fit the seemingly unrelated regression model

. sureg (y = i.sex age) (distance = i.sex i.group)

we can obtain the marginal means of y for males and females by typing

. margins sex, predict(equation(y))

and we can obtain the marginal means of distance by typing

. margins sex, predict(equation(distance))

We could obtain the difference between the margins of y and distance by typing

. margins sex, expression(predict(equation(y)) -
> predict(equation(distance)))

More examples can be found in [MV] manova and [MV] manova postestimation.

Example 15: Margins evaluated out of sample

You can fit your model on one dataset and use margins on another if you specify margins’
noesample option. Remember that margins reports estimated average responses, and, unless you lock
all the covariates at fixed values by using the at() option, the remaining variables are allowed to vary
as they are observed to vary in the data. That is indeed the point of using margins. The fitted model
provides the basis for adjusting for the remaining variables, and the data provide their values. The pre-

dictions produced by margins are of interest assuming the data used by margins are in some sense

interesting or representative. In some cases, you might need to fit your model on one set of data and

perform margins on another.

In example 11, we fit the model

. tobit ycn i.sex i.group sex#group age, ul(90)

and we told a story about our peach orchard in which we charged people $20 to collect a basket of

peaches, where baskets could hold at most 90 peaches. Let us now tell you that we believe the data

on which we estimated those margins were unrepresentative, or at least, we have a more representative

sample stored in another .dta file. That dataset includes the demographics of our customers but does
not include counts of peaches picked. It is a lot of work counting those peaches.
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Thus, wewill fit ourmodel just as we did previously using the detailed data, but wewill bring the other,

more representative dataset into memory before issuing the margins sex, predict(ystar(.,90))
command, and we will add noesample to it.

. use https://www.stata-press.com/data/r18/margex
(Artificial data for margins)
. tobit ycn i.sex i.group sex#group age, ul(90)
(output omitted )

. use https://www.stata-press.com/data/r18/peach

. margins sex, predict(ystar(.,90)) noesample
Predictive margins Number of obs = 2,727
Model VCE: OIM
Expression: E(ycn*|ycn<90), predict(ystar(.,90))

Delta-method
Margin std. err. z P>|z| [95% conf. interval]

sex
0 56.79774 1.003731 56.59 0.000 54.83046 58.76502
1 75.02146 .6437446 116.54 0.000 73.75974 76.28317

In example 12, we produced an estimate of the number of peaches saved by the limited-size baskets.

We can update that estimate using the new demographic data by typing

. count
2,727

. margins, exp(2727*(predict(xb)-predict(ystar(.,90)))) noesample
(output omitted )

By running the above, we find that the updated number of peaches saved is 6,408.

Obtaining margins of derivatives of responses (a.k.a. marginal effects)
Derivatives of responses are themselves responses, so everything said above in Obtaining margins of

responses is equally true of derivatives of responses, and every example above could be repeated here

substituting the derivative of the response for the response.

Derivatives are of interest because they are an informative way of summarizing fitted results. The

change in a response for a change in the covariate is easy to understand and to explain. In simple models,

one hardly needs margins to assist in obtaining such margins. Consider the simple linear regression

𝑦 = 𝛽0 + 𝛽1 × sex + 𝛽2 × age + 𝜖

The derivatives of the responses are

𝑑𝑦/𝑑(sex) = 𝛽1

𝑑𝑦/𝑑(age) = 𝛽2

margins computes these derivatives using ̂𝛽1 and
̂𝛽2, the coefficients from the linear predictor of 𝑦. How

does the linear predictor ̂𝑦 change between males and females? It changes by ̂𝛽1. How does ̂𝑦 change

with age? It changes by ̂𝛽2 per year.
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If you make the model a little more complicated, however, the need for margins arises. Consider the

model

𝑦 = 𝛽0 + 𝛽1 × sex + 𝛽2 × age + 𝛽3 × age2 + 𝜖

Now, the derivative with respect to age is

𝑑𝑦/𝑑(age) = 𝛽2 + 2 × 𝛽3 × age

The change in 𝑦 for a change in age itself changes with age, and so to better understand the fitted results,
you might want to make a table of the change in 𝑦 for a change in age for age = 30, age = 40, and

age = 50. margins can do that.

Consider an even more complicated model, such as

𝑦 = 𝛽0 + 𝛽1 × sex + 𝛽2 × age + 𝛽3 × age2 + 𝛽4 × bp + 𝛽5 × sex × bp + 𝛽6 × tmt

+ 𝛽7 × tmt × age + 𝛽8 × tmt × age2 + 𝜖
(1)

The derivatives are

𝑑𝑦/𝑑(sex) = 𝛽1 + 𝛽5 × bp

𝑑𝑦/𝑑(age) = 𝛽2 + 2 × 𝛽3 × age + 𝛽7 × tmt + 2 × 𝛽8 × tmt × age

𝑑𝑦/𝑑(bp) = 𝛽4 + 𝛽5 × sex

𝑑𝑦/𝑑(tmt) = 𝛽6 + 𝛽7 × age + 𝛽8 × age2

At this point, margins becomes indispensable.

Use at() freely, especially with continuous variables

An option one tends to use frequently with derivatives of responses is at(). Such use is often to better
understand or to communicate how the response varies, or, in technical jargon, to explore the nature of

the response surface.

For instance, the effect 𝑑𝑦/𝑑(tmt) in (1) is equal to 𝛽6 + 𝛽7 × age + 𝛽8 × age2, and so simply to

understand how treatment varies with age, we may want to fix age at various values. We might type

. margins, dydx(tmt) at(age=(30 40 50))

Expressing derivatives as elasticities

You specify the dydx(varname) option on the margins command to use 𝑑𝑦/𝑑(varname) as the re-
sponse variable. If you want that derivative expressed as an elasticity, you can specify eyex(varname),
eydx(varname), or dyex(varname). You substitute e for d where you want an elasticity. In the discus-
sion below, when we talk about 𝑦, we are referring to the linear predictions from the model.

The formulas are

dydx() = 𝑑𝑦/𝑑𝑥
eyex() = 𝑑𝑦/𝑑𝑥 × (𝑥/𝑦)
eydx() = 𝑑𝑦/𝑑𝑥 × (1/𝑦) = 𝑑 ln(𝑦)/𝑑𝑥
dyex() = 𝑑𝑦/𝑑𝑥 × (𝑥) = 𝑑𝑦/𝑑 ln(𝑥)
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and the interpretations are

dydx(): change in 𝑦 for a change in 𝑥
eyex(): proportional change in 𝑦 for a proportional change in 𝑥
eydx(): proportional change in 𝑦 for a change in 𝑥
dyex(): change in 𝑦 for a proportional change in 𝑥

As margins always does with response functions, calculations are made at the observational level
and are then averaged. Let’s assume that in observation 5, 𝑑𝑦/𝑑𝑥 = 0.5, 𝑦 = 15, and 𝑥 = 30; then

dydx() = 0.5
eyex() = 1.0
eydx() = 0.03
dyex() = 15.0

Many social scientists would informally explain the meaning of eyex() = 1 as “𝑦 increases 100%

when 𝑥 increases 100%” or as “𝑦 doubles when 𝑥 doubles”, although neither statement is literally true.

eyex(), eydx(), and dyex() are rates evaluated at a point, just as dydx() is a rate, and all such in-

terpretations are valid only for small (infinitesimal) changes in 𝑥. It is true that eyex() = 1 means 𝑦
increases with 𝑥 at a rate such that, if the rate were constant, 𝑦 would double if 𝑥 doubled. This issue of

casual interpretation is no different from casually interpreting dydx() as if it represents the response to
a unit change. It is not necessarily true that dydx() = 0.5 means that “𝑦 increases by 0.5 if 𝑥 increases

by 1”. It is true that “𝑦 increases with 𝑥 at a rate such that, if the rate were constant, 𝑦 would increase by
0.5 if 𝑥 increased by 1”.

dydx(), eyex(), eydx(), and dyex()may be used with continuous 𝑥 variables. dydx() and eydx()
may also be used with factor variables. For eydx(), effects are based on 𝑑 ln(𝑦)/𝑑𝑥 for continuous

covariates and on differences of ln(𝑦) for discrete covariates. Estimates based on logarithms have better
computational properties and allow us to think of semielasticities as coefficients in a regression with log

dependent variables. As we discuss next, whenwe are analyzingmarginal effects of categorical variables,

we think in terms of discrete differences instead of derivatives.

Derivatives versus discrete differences

In (1),

𝑦 = 𝛽0 + 𝛽1 × sex + 𝛽2 × age + 𝛽3 × age2 + 𝛽4 × bp + 𝛽5 × sex × bp + 𝛽6 × tmt

+ 𝛽7 × tmt × age + 𝛽8 × tmt × age2 + 𝜖

Let us call your attention to the derivatives of 𝑦 with respect to age and sex:

𝑑𝑦/𝑑(age) = 𝛽2 + 2 × 𝛽3 × age + 𝛽7 × tmt + 2 × 𝛽8 × tmt × age (2)

𝑑𝑦/𝑑(sex) = 𝛽1 + 𝛽5 × bp (3)

age is presumably a continuous variable, and (2) is precisely how margins calculates its derivatives
when you type margins, dydx(age). sex, however, is presumably a factor variable, and margins does
not necessarily make the calculation using (3) were you to type margins, dydx(sex). We will explain,

but let us first clarify what we mean by a continuous and a factor variable. Say that you fit (1) by typing

. regress y i.sex age c.age#c.age i.bp bp#sex
> i.tmt tmt#c.age tmt#c.age#c.age
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It is important that sex entered the model as a factor variable. It would not do to type regress y sex
. . . because then sex would be a continuous variable, or at least it would be a continuous variable from
Stata’s point of view. The model estimates would be the same, but margins’ understanding of those
estimates would be a little different. With the model fit using i.sex, margins understands that either
sex is 0 or sex is 1. With the model fit using sex, margins thinks sex is continuous and, for instance,
sex = 1.5 is a possibility.

margins calculates dydx() differently for continuous and for factor variables. For continuous vari-
ables, margins calculates 𝑑𝑦/𝑑𝑥 using the fitted values from regress. For factor variables, margins
calculates the discrete first difference from the base category. To obtain that for sex, write down the
model and then subtract from it the model evaluated at the base category for sex, which is sex = 0. If

you do that, you will get the same formula as we obtained for the derivative, namely,

discrete difference{(sex = 1) − (sex = 0)} = 𝛽1 + 𝛽5 × bp

We obtain the same formula because our model is linear regression. Outside of linear regression, and

outside of linear response functions generally, the discrete difference is not equal to the derivative. The

discrete difference is not equal to the derivative for logistic regression, probit, etc. The discrete difference

calculation is generally viewed as better for factor variables than the derivative calculation because the

discrete difference is what would actually be observed.

If you want the derivative calculation for your factor variables, specify the continuous option on the
margins command.

Example 16: Average marginal effect (partial effects)

Concerning the title of this example, the way we use the term marginal effect, the effects of factor

variables are calculated using discrete first differences. If you wanted the continuous calculation, you

would specify margins’ continuous option in what follows.
. use https://www.stata-press.com/data/r18/margex
(Artificial data for margins)
. logistic outcome treatment##group age c.age#c.age treatment#c.age
(output omitted )

. margins, dydx(treatment)
Average marginal effects Number of obs = 3,000
Model VCE: OIM
Expression: Pr(outcome), predict()
dy/dx wrt: 1.treatment

Delta-method
dy/dx std. err. z P>|z| [95% conf. interval]

1.treatment .0385625 .0162848 2.37 0.018 .0066449 .0704801

Note: dy/dx for factor levels is the discrete change from the base level.

The average marginal effect of treatment on the probability of a positive outcome is 0.039.
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Example 17: Average marginal effect of all covariates

We will continue with the model

. logistic outcome treatment##group age c.age#c.age treatment#c.age

if we wanted the average marginal effects for all covariates, we would type margins, dydx(*) or

margins, dydx( all); they mean the same thing. This is probably the most common way margins,
dydx() is used.

. margins, dydx(*)
Average marginal effects Number of obs = 3,000
Model VCE: OIM
Expression: Pr(outcome), predict()
dy/dx wrt: 1.treatment 2.group 3.group age

Delta-method
dy/dx std. err. z P>|z| [95% conf. interval]

1.treatment .0385625 .0162848 2.37 0.018 .0066449 .0704801

group
2 -.0776906 .0181584 -4.28 0.000 -.1132805 -.0421007
3 -.1505652 .0400882 -3.76 0.000 -.2291366 -.0719937

age .0095868 .0007796 12.30 0.000 .0080589 .0111148

Note: dy/dx for factor levels is the discrete change from the base level.
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Example 18: Evaluating marginal effects over the response surface

Continuing with the model

. logistic outcome treatment##group age c.age#c.age treatment#c.age

What follows maps out the entire response surface of our fitted model. We report the marginal effect

of treatment evaluated at age = 20, 30, . . . , 60, by each level of group.
. margins group, dydx(treatment) at(age=(20(10)60))
Conditional marginal effects Number of obs = 3,000
Model VCE: OIM
Expression: Pr(outcome), predict()
dy/dx wrt: 1.treatment
1._at: age = 20
2._at: age = 30
3._at: age = 40
4._at: age = 50
5._at: age = 60

Delta-method
dy/dx std. err. z P>|z| [95% conf. interval]

0.treatment (base outcome)

1.treatment
_at#group

1 1 -.0208409 .0152862 -1.36 0.173 -.0508013 .0091196
1 2 .009324 .0059896 1.56 0.120 -.0024155 .0210635
1 3 .0006558 .0048682 0.13 0.893 -.0088856 .0101972
2 1 -.0436964 .0279271 -1.56 0.118 -.0984325 .0110397
2 2 .0382959 .0120405 3.18 0.001 .014697 .0618949
2 3 .0064564 .0166581 0.39 0.698 -.0261929 .0391057
3 1 -.055676 .0363191 -1.53 0.125 -.1268601 .015508
3 2 .1152235 .0209858 5.49 0.000 .074092 .156355
3 3 .0284808 .0471293 0.60 0.546 -.0638908 .1208524
4 1 -.027101 .0395501 -0.69 0.493 -.1046177 .0504158
4 2 .2447682 .0362623 6.75 0.000 .1736954 .315841
4 3 .0824401 .1025028 0.80 0.421 -.1184616 .2833418
5 1 .0292732 .0587751 0.50 0.618 -.0859239 .1444703
5 2 .3757777 .0578106 6.50 0.000 .2624709 .4890844
5 3 .1688268 .1642191 1.03 0.304 -.1530368 .4906904

Note: dy/dx for factor levels is the discrete change from the base level.
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Obtaining margins with survey data and representative samples
The standard errors and confidence intervals produced by margins are based by default on the delta

method applied to the VCE of the current estimates. Delta-method standard errors treat the covariates at

which the response is evaluated as given or fixed. Such standard errors are appropriate if you specify

at() to fix the covariates, and they are appropriate when you are making inferences about groups exactly
like your sample whether you specify at() or not.

On the other hand, if you have a representative sample of the population or if you have complex survey

data and if you want to make inferences about the underlying population, you need to account for the vari-

ation in the covariates that would arise in repeated sampling. You do that using vce(unconditional),
which invokes a different standard error calculation based on Korn and Graubard (1999). Syntactically,

there are three cases. They all involve specifying vce(unconditional) on the margins command:

1. You have a representative random sample, and you have not svyset your data.
When you fit the model, you need to specify the vce(robust) or vce(cluster clustvar) option.
When you issue the margins command, you need to specify the vce(unconditional) option.

2. You have a weighted sample, and you have not svyset your data.
You need to specify [pw=weight] when you fit the model and, of course, specify the

vce(unconditional) option on the margins command. You do not need to specify the weights
on the margins command because margins will obtain them from the estimation results.

3. You have svyset your data, whether it be a simple random sample or something more complex

including weights, strata, sampling units, or poststratification, and you are using the linearized

variance estimator.

You need to use the svy prefix when you fit themodel. You need to specify vce(unconditional)
when you issue the margins command. You do not need to respecify the weights.

Even though the data are svyset, and even though the estimation was svy estimation, margins
does not default to vce(unconditional). It does not default to vce(unconditional) because
there are valid reasons to want the data-specific, vce(delta) standard-error estimates. Whether

you specify vce(unconditional) or not, margins uses the weights, so you do not need to re-
specify them even if you are using vce(unconditional).

vce(unconditional) is allowed only after estimation with vce(robust), vce(cluster . . .), or
the svy prefix with the linearized variance estimator. If the VCE of the current estimates was specified
as clustered, so will be the VCE estimates of margins. If the estimates were from a survey estimation,

the survey settings in the dataset will be used by margins.

When you use vce(unconditional), never specify if exp or in range on the margins command;
instead, specify the subpop(if exp) option. You do that for the usual reasons; see [SVY] Subpopulation
estimation. If you specify over(varlist) to examine subgroups, the subgroups will automatically be

treated as subpopulations.

If you are using a replication-based variance estimator, you may want to use this method to estimate

the variance of your margins; see [SVY] svy postestimation.
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Example 19: Inferences for populations, margins of response

In example 6, we fit the model

. logistic outcome i.sex i.group sex#group age

and we obtained margins by sex and margins by group,

. margins sex group

If our data were randomly drawn from the population of interest and we wanted to account for this,

we would have typed

. logistic outcome i.sex i.group sex#group age, vce(robust)

. margins sex group, vce(unconditional)

We do that below:

. logistic outcome i.sex i.group sex#group age, vce(robust)
(output omitted )

. margins sex group, vce(unconditional)
Predictive margins Number of obs = 3,000
Expression: Pr(outcome), predict()

Unconditional
Margin std. err. z P>|z| [95% conf. interval]

sex
Male .1600644 .0131685 12.16 0.000 .1342546 .1858743

Female .1966902 .0104563 18.81 0.000 .1761963 .2171841

group
1 .2251302 .0127069 17.72 0.000 .200225 .2500354
2 .150603 .0118399 12.72 0.000 .1273972 .1738088
3 .0736157 .0343188 2.15 0.032 .0063522 .1408793

The estimated margins are the same as they were in example 6, but the standard errors and confidence

intervals differ, although not by much. Given that we have 3,000 observations in our randomly drawn

sample, we should expect this.
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Example 20: Inferences for populations, marginal effects

In example 17, we fit a logistic model and then obtained the average marginal effects for all covariates

by typing

. logistic outcome treatment##group age c.age#c.age treatment#c.age

. margins, dydx(*)

To repeat that and also obtain standard errors for our population, we would type

. logistic outcome treatment##group age c.age#c.age treatment#c.age, vce(robust)
(output omitted )

. margins, dydx(*) vce(unconditional)
Average marginal effects Number of obs = 3,000
Expression: Pr(outcome), predict()
dy/dx wrt: 1.treatment 2.group 3.group age

Unconditional
dy/dx std. err. z P>|z| [95% conf. interval]

1.treatment .0385625 .0163872 2.35 0.019 .0064442 .0706808

group
2 -.0776906 .0179573 -4.33 0.000 -.1128863 -.0424949
3 -.1505652 .0411842 -3.66 0.000 -.2312848 -.0698456

age .0095868 .0007814 12.27 0.000 .0080553 .0111183

Note: dy/dx for factor levels is the discrete change from the base level.

Example 21: Inferences for populations with svyset data

See example 3 in [SVY] svy postestimation.

Standardizing margins
A standardized margin is the margin calculated on data different from the data used to fit the model.

Typically, the word standardized is reserved for situations in which the alternate population is a reference

population, which may be real or artificial, and which is treated as fixed.

Say that you work for a hospital and have fit a model of mortality on the demographic characteristics

of the hospital’s patients. At this stage, were you to type

. margins

you would obtain the mortality rate for your hospital. You have another dataset, hstandard.dta, that
contains demographic characteristics of patients across all hospitals along with the population of each

hospital recorded in the pop variable. You could obtain the expected mortality rate at your hospital if
your patients matched the characteristics of the standard population by typing

. use https://www.stata-press.com/data/r18/hstandard, clear

. margins [fw=pop], noesample

You specified noesample because the margin is being calculated on data other than the data used to
fit the model. You specified [fw=pop] because the reference dataset you are using included population
counts, as many reference datasets do.
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Obtaining margins as though the data were balanced
Here we discuss what are commonly called estimated marginal means or least-squares means. These

are margins that assume that the design is balanced, which means all levels of factor variables are equally

likely. The seminal reference on these margins is Searle, Speed, and Milliken (1980).

In designed experiments, observations are often allocated in a balanced way so that the variances can

be easily compared and decomposed. At the Acme Portable Widget Company, they are experimenting

with a newmachine. Themachine has three temperature settings and two pressure settings; a combination

of settings will be optimal on any particular day, determined by the weather. At start-up, one runs a quick

test and chooses the optimal setting for the day. Across different days, each setting will be used about

equally, says the manufacturer.

In experiments with the machine, 10 widgets were collected for stress testing at each of the settings

over a six-week period. We wish to know the average stress-test value that can be expected from these

machines over a long period.

Balancing using asbalanced

The data were intended to be balanced, but unfortunately some samples were destroyed before the

stress could be measured, rendering the data unbalanced. To estimate the margins as if the data were

balanced, specify the asbalanced option.
. use https://www.stata-press.com/data/r18/acmemanuf
. regress y pressure##temp
(output omitted )

. margins, asbalanced
Adjusted predictions Number of obs = 49
Model VCE: OLS
Expression: Linear prediction, predict()
At: pressure (asbalanced)

temp (asbalanced)

Delta-method
Margin std. err. t P>|t| [95% conf. interval]

_cons 115.3758 1.530199 75.40 0.000 112.2899 118.4618

If we had omitted the asbalanced option, our calculations would have been different:

. margins
Predictive margins Number of obs = 49
Model VCE: OLS
Expression: Linear prediction, predict()

Delta-method
Margin std. err. t P>|t| [95% conf. interval]

_cons 109.9214 1.422629 77.27 0.000 107.0524 112.7904
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To see what margins, asbalanced is doing, first recall that pressure and temp are categorical

variables that take values {1, 2} and {1, 2, 3}, respectively. To re-create the asbalanced calculations
using the at() option, we set each level of pressure equal to 1/2 and each level of temp equal to 1/3.

. margins, at(1.pressure=0.5 2.pressure=0.5
> 1.temp=0.333333 2.temp=0.333333 3.temp=0.333333)
Adjusted predictions Number of obs = 49
Model VCE: OLS
Expression: Linear prediction, predict()
At: 1.pressure = .5

2.pressure = .5
1.temp = .333333
2.temp = .333333
3.temp = .333333

Delta-method
Margin std. err. t P>|t| [95% conf. interval]

_cons 115.3758 1.530199 75.40 0.000 112.2899 118.4618

Technical note
Concerning how asbalanced calculations are performed, if a factor variable has 𝑙 levels, then each

level’s coefficient contributes to the response weighted by 1/𝑙. If two factors, 𝑎 and 𝑏, interact, then each
coefficient associated with their interaction is weighted by 1/(𝑙𝑎 × 𝑙𝑏).

If a balanced factor interacts with a continuous variable, then each coefficient in the interaction is

applied to the value of the continuous variable, and the results are weighted equally. So, if the factor

being interacted has 𝑙𝑎 levels, the effect of each coefficient on the value of the continuous covariate is

weighted by 1/𝑙𝑎.

Balancing by standardization

To better understand the balanced results, we can perform the balancing ourselves by using the stan-

dardizing method shown in Standardizing margins. To do that, we will input a balanced dataset and then

type margins, noesample.
. use https://www.stata-press.com/data/r18/acmemanuf
. regress y pressure##temp
(output omitted )

. drop _all
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. input pressure temp
pressure temp

1. 1 1
2. 1 2
3. 1 3
4. 2 1
5. 2 2
6. 2 3
7. end

. margins, noesample
Predictive margins Number of obs = 6
Model VCE: OLS
Expression: Linear prediction, predict()

Delta-method
Margin std. err. t P>|t| [95% conf. interval]

_cons 115.3758 1.530199 75.40 0.000 112.2899 118.4618

We obtain the same results as previously.

Balancing nonlinear responses

If our testing had produced a binary outcome, say, acceptable/unacceptable, rather than a continuous

variable, we would type

. use https://www.stata-press.com/data/r18/acmemanuf, clear

. logistic acceptable pressure##temp

. margins, asbalanced

The result of doing that would be 0.680. If we omitted the asbalanced option, the result would have
been 0.667. The two results are so similar because acmemanuf.dta is nearly balanced.

Even though the asbalanced option can be used on both linear and nonlinear responses, such as

probabilities, there is an issue of which you should be aware. The most widely used formulas for balanc-

ing responses apply the balancing to the linear prediction, average that as if it were balanced, and then

apply the nonlinear transform. That is the calculation that produced 0.680.

An alternative would be to apply the standardization method. That amounts to making the linear

predictions observation by observation, applying the nonlinear transform to each, and then averaging the

nonlinear result as if it were balanced. You could do that by typing

. use https://www.stata-press.com/data/r18/acmemanuf, clear

. logistic acceptable pressure##temp

. clear

. input pressure temp
(see above for entered data)

. margins, noesample

The result from the standardization procedure would be 0.672. These twoways of averaging nonlinear

responses are discussed in detail in Lane and Nelder (1982) within the context of general linear models.

Concerning the method used by the asbalanced option, if your data start balanced and you have a
nonlinear response, you will get different results with and without the asbalanced option!
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Treating a subset of covariates as balanced

So far, we have treated all the covariates as if they were balanced. margins will allow you to treat a

subset of the covariates as balanced, too. For instance, you might be performing an experiment in which

you are randomly allocating patients to a treatment arm and so want to balance on arm, but you do not

want to balance the other characteristics.

In this example, we will imagine that the outcome of the experiment is continuous. We type

. use https://www.stata-press.com/data/r18/margex, clear

. regress y arm##sex sex##agegroup

. margins, at((asbalanced) arm)

If we wanted results balanced on agegroup as well, we could type

. margins, at((asbalanced) arm agegroup)

If we wanted results balanced on all three covariates, we could type

. margins, at((asbalanced) arm agegroup sex)

or we could type

. margins, at((asbalanced) _factor)

or we could type

. margins, asbalanced

Balancing in the presence of continuous covariates

So far, we have considered only factor variables because the concept of balancing is applicable only to

factor covariates. If your model contains both factor and continuous covariates, the asbalanced option
will treat the factor covariates as if they were balanced, but it will not affect the continuous covariates.

Here we imagine that the outcome of the experiment is binary and that we have two factor covariates

(arm and sex) and two continuous covariates (distance and ycn). We could type

. use https://www.stata-press.com/data/r18/margex, clear

. logistic outcome i.arm i.sex c.distance c.ycn

. margins, asbalanced

This calculates the marginal probability of outcome = 1 while treating factor covariates arm and

sex as balanced, but continuous covariates distance and ycn are left as observed, which is the default
behavior.

If we set continuous covariates equal to their means while maintaining a balanced treatment of factor

covariates, the resulting margin is called an adjusted treatment mean. To calculate this margin, we could

type

. margins, asbalanced atmeans

or we could type

. margins, at((asbalanced) _factor (mean) _continuous)
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Using fvset design

As a convenience feature, equivalent to

. regress y arm##sex sex##agegroup

. margins, at((asbalanced) arm sex)

is

. fvset design asbalanced arm sex

. regress y arm##sex sex##agegroup

. margins

The advantage of the latter is that you have to set the variables as balanced only once. This is useful

when balancing is a design characteristic of certain variables and you wish to avoid accidentally treating

them as unbalanced.

If you save your data after fvsetting, the settings will be remembered in future sessions. If you want
to clear the setting(s), type

. fvset clear varlist

See [R] fvset.

Balancing in the presence of empty cells

The issue of empty cells is not exclusively an issue of balancing, but there are special considerations

when balancing. Empty cells are discussed generally in Estimability of margins.

An empty cell is an interaction of levels of two or more factor variables for which you have no data.

Usually, margins involving empty cells cannot be estimated. When balancing, there is an alternate defini-

tion of the margin that allows the margin to be estimated. marginsmakes the alternate calculation when
you specify the emptycells(reweight) option. By default, margins uses the emptycells(strict)
option.

If you have empty cells in your data and you request margins involving the empty cells, those margins

will be marked as not estimable even if you specify the asbalanced option.
. use https://www.stata-press.com/data/r18/estimability, clear
(margins estimability)
. regress y sex##group
(output omitted )

. margins sex, asbalanced
Adjusted predictions Number of obs = 69
Model VCE: OLS
Expression: Linear prediction, predict()
At: group (asbalanced)

Delta-method
Margin std. err. t P>|t| [95% conf. interval]

sex
Male 21.91389 1.119295 19.58 0.000 19.67572 24.15206

Female . (not estimable)
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This example is discussed in Estimability of margins, although without the asbalanced option. What

is said there is equally relevant to the asbalanced case. For reasons explained there, the margin for

sex = 1 (female) cannot be estimated.

The margin for sex = 1 can be estimated in the asbalanced case if you are willing to make an

assumption. Remember that marginsmakes the balanced calculation by summing the responses associ-
ated with the levels and then dividing by the number of levels. If you specify emptycells(reweight),
margins sums what is available and divides by the number available. Thus, you are assuming that, what-
ever the responses in the empty cells, those responses are such that they would not change the overall

mean of what is observed.

The results of specifying emptycells(reweight) are

. margins sex, asbalanced emptycells(reweight)
Adjusted predictions Number of obs = 69
Model VCE: OLS
Expression: Linear prediction, predict()
Empty cells: reweight
At: group (asbalanced)

Delta-method
Margin std. err. t P>|t| [95% conf. interval]

sex
Male 21.91389 1.119295 19.58 0.000 19.67572 24.15206

Female 24.85185 1.232304 20.17 0.000 22.38771 27.316

Obtaining margins with nested designs

Introduction to nested designs

Factors whose meaning depends on other factors are called nested factors, and the factors on which

their meaning depends are called the nesting factors. For instance, assume that we have a sample of pa-

tients and each patient is assigned to one doctor. Then, patient is nested within doctor. Let the identifiers

of the first 5 observations of our data be

Doctor Patient Name

1 1 Fred

1 2 Mary

1 3 Bob

2 1 Karen

2 2 Hank

The first patient on one doctor’s list has nothing whatsoever to do with the first patient on another

doctor’s list. The meaning of patient = 1 is defined only when the value of doctor is supplied.

Nested factors enter intomodels as interactions of nesting and nested; the nested factor does not appear

by itself. We might estimate a model such as

. regress y ... i.doctor doctor#patient ...
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You do not include i.patient because the coding for patient has no meaning except within doctor.
Patient 1 is Fred for doctor 1 and Karen for doctor 2, etc.

margins provides an option to help account for the structure of nested models. The within(varlist)
option specifies that margins estimate and report a set of margins for the value combinations of varlist.
We might type

. margins, within(doctor)

Margin calculations are performed first for doctor = 1, then for doctor = 2, and so on.

Sometimes you need to specify within(), and other times you do not. Let’s consider the particular
model

. regress y i.doctor doctor#patient i.sex sex#doctor#patient

The guidelines are the following:

1. You may compute overall margins by typing

margins.

2. You may compute overall margins within levels of a nesting factor by typing

margins, within(doctor).

3. You may compute margins of a nested factor within levels of its nesting factor by typing

margins patient, within(doctor).

4. Youmay compute margins of factors in your model, as long as the factor does not nest other factors

and is not nested within other factors, by typing

margins sex.

5. You may not compute margins of a nesting factor, such as margins doctor, because they are not
estimable.

For examples using within(), see [R] anova.

Margins with nested designs as though the data were balanced

To obtain margins with nested designs as though the data were balanced, the guidelines are the same

as above except that 1) you add the asbalanced option and 2) whenever you do not specify within(),
you specify emptycells(reweight). The updated guidelines are

1. You may compute overall margins by typing

margins, asbalanced emptycells(reweight).

2. You may compute overall margins within levels of a nesting factor by typing

margins, asbalanced within(doctor).

3. You may compute margins of a nested factor within levels of its nesting factor by typing

margins patient, asbalanced within(doctor).

4. Youmay compute margins of factors in your model, as long as the factor does not nest other factors

and is not nested within other factors, by typing

margins sex, asbalanced emptycells(reweight).

5. You may not compute margins of a nesting factor, such as margins doctor, because they are not
estimable.
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Just as explained in Using fvset design, rather than specifying the asbalanced option, you may set
the balancing characteristic on the factor variables once and for all by using the command fvset design
asbalanced varlist.

Technical note
Specifying either emptycells(reweight) or within(varlist) causes margins to rebalance over

all empty cells in your model. If you have interactions in your model that are not involved in the nesting,

margins will lose its ability to detect estimability.

Technical note
Careful readers will note that the description of within(varlist) matches closely the description of

over(varlist). The concept of nesting is similar to the concept of subpopulations. within() differs

from over() in that it gracefully handles the missing cells when margins are computed as balanced.

Coding of nested designs

In the Introduction to this section, we showed a coding of the nested variable patient, where the
coding started over with each doctor:

Doctor Patient Name

1 1 Fred

1 2 Mary

1 3 Bob

2 1 Karen

2 2 Hank

That coding style is not required. The data could just as well have been coded

Doctor Patient Name

1 1 Fred

1 2 Mary

1 3 Bob

2 4 Karen

2 5 Hank

or even

Doctor Patient Name

1 1037239 Fred

1 2223942 Mary

1 0611393 Bob

2 4433329 Karen

2 6110271 Hank
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Actually, either of the above two alternatives is better than the first one because margins will be

better able to give you feedback about estimability should you make a mistake following the guidelines.

On the other hand, both of these alternatives require more memory at the estimation step. If you run

short of memory, you will need to recode your patient ID to the first coding style, which you could do by

typing

. sort doctor patient

. by doctor: generate newpatient = _n

Alternatively, you can set emptycells drop and continue to use your patient ID variable just as

it is coded. If you do this, we recommend that you remember to type set emptycells keep when

you are finished; margins is better able to determine estimability that way. If you regularly work with
large nested models, you can set emptycells keep, permanently so that the setting persists across
sessions. See [R] set emptycells.

Special topics

Requirements for model specification

The results that margins reports are based on the most recently fit model or, in Stata jargon, the

most recently issued estimation command. Here we discuss 1) mechanical requirements for how you

specify that estimation command, 2) workarounds to use when those restrictions prove impossible, and

3) requirements for margins’ predict(pred opt) option to work.

Concerning 1, when you specify the estimation command, covariates that are logically factor variables

must be Stata factor variables, and that includes indicator variables, binary variables, and dummies. It

will not do to type

. regress y ... sex ...

even if sex is a 0/1 variable. You must type

. regress y ... i.sex ...

If you violate this rule, you will not get incorrect results, but you will discover that you will be unable

to obtain margins on sex:

. margins sex
factor sex not found in list of covariates
r(111);

It is also important that if the same continuous variable appears in your model more than once, dif-

ferently transformed, those transforms be performed via Stata’s factor-variable notation. It will not do to

type

. generate age2 = age^2

. regress y ... age age2 ...

You must type

. regress y ... age c.age#c.age ...

You must do that because margins needs to know everywhere that variable appears in the model if it

is to be able to set covariates to fixed values.
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Concerning 2, sometimes the transformations you desire may not be achievable using the factor-

variable notation; in those situations, there is a workaround. Let’s assume you wish to estimate

. generate age1_5 = age^1.5

. regress y ... age age1_5 ...

There is no factor-variable notation for including age and age1.5 in a model, so obviously you are

going to obtain the estimates by typing just what we have shown. In what follows, it would be okay if

there are interactions of age and age1 5 with other variables specified by the factor-variable notation,
so the model could just as well be

. regress y ... age age1_5 sex#c.age sex#c.age1_5 ...

Let’s assume you have fit one of these two models. On any subsequent margins command where
you leave age free to vary, there will be no issue. You can type

. margins sex

and results will be correct. Issues arise when you attempt to fix age at predetermined values. The fol-

lowing would produce incorrect results:

. margins sex, at(age=20)

The results would be incorrect because they leave age1 5 free to vary, and, logically, fixing age
implies that age1 5 should also be fixed. Because we were unable to state the relationship between age
and age1 5 using the factor-variable notation, margins does not know to fix age1 5 at 201.5 when it

fixes age at 20. To get the correct results, you must fix the value of age1 5 yourself:

. margins sex, at(age=20 age1_5=89.442719)

That command produces correct results. In the command, 89.442719 is 201.5.

In summary, when there is a functional relationship between covariates of your model and that func-

tional relationship is not communicated to margins via the factor-variable notation, then it becomes

your responsibility to ensure that all variables that are functionally related are set to the appropriate fixed

values when any one of them is set to a fixed value.

Concerning 3, we wish to amend our claim that you can calculate margins for anything that predict
will produce. We need to add a qualifier. Let us show you an example where the statement is not true.

After regress, predict will predict something it calls pr(a,b), which is the probability a ≤ 𝑦 ≤ b.

Yet if we attempted to use pr() with margins after estimation by regress, we would obtain

. margins sex, predict(pr(10,20))
prediction is a function of possibly stochastic quantities other than e(b)
r(498);

What we should have stated was that you can calculate margins for anything that predict will pro-
duce for which all the estimated quantities used in its calculation appear in e(V), the estimated VCE.

pr() is a function of β, the estimated coefficients, and of 𝑠2, the estimated variance of the residual.

regress does not post the variance of the residual variance (sic) in e(V), or even estimate it, and there-
fore, predict(pr(10,20)) cannot be specified with margins after estimation by regress.

It is unlikely that you will ever encounter these kinds of problems because there are so few predictions

where the components are not posted to e(V). If you do encounter the problem, the solution may be to
specify nose to suppress the standard error calculation. If the problem is not with computing the margin,

but with computing its standard error, margins will report the result:

. margins sex, predict(pr(10,20)) nose
(output appears with SEs, tests, and CIs left blank)
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Technical note
Programmers: If you run into this after running an estimation command that you have written, be

aware that as of Stata 11, you are supposed to set in e(marginsok) the list of options allowed with

predict that are okay to use with margins. When that list is not set, margins looks for violations of
its assumptions and, if it finds any, refuses to proceed.

Estimability of margins

Sometimes margins will report that a margin cannot be estimated:
. use https://www.stata-press.com/data/r18/estimability, clear
(margins estimability)
. regress y sex##group
(output omitted )

. margins sex
Predictive margins Number of obs = 69
Model VCE: OLS
Expression: Linear prediction, predict()

Delta-method
Margin std. err. t P>|t| [95% conf. interval]

sex
Male 21 .8500245 24.71 0.000 19.30027 22.69973

Female . (not estimable)

In the above output, the margin for sex = 0 (male) is estimated, but the margin for sex = 1 (female)

is not estimable. This occurs because of empty cells. An empty cell is an interaction of levels of two or

more factor variables for which you have no data. In the example, the lack of estimability arises because

we have two empty cells:

. table sex group, nototals

Group
1 2 3 4 5

Sex
Male 2 9 27 8 2
Female 9 9 3

To calculate the marginal mean response for sex = 1, we have no responses to average over for

group = 4 and group = 5. We obviously could calculate that mean for the observations that really are

sex = 1, but remember, the marginal calculation for sex = 1 treats everyone as if female, and we will

thus have 8 and 2 observations for which we have no basis for estimating the response.

There is no solution for this problem unless you are willing to treat the data as if it were balanced and

adjust your definition of a margin; see Balancing in the presence of empty cells.
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Manipulability of tests

Manipulability is a problem that arises with some tests, and in particular, arises withWald tests. Tests

of margins are based on Wald tests, hence our interest. This is a generic issue and not specific to the

margins command.

Let’s understand the problem. Consider performing a test of whether some statistic 𝜙 is 0. Whatever

the outcome of that test, it would be desirable if the outcome were the same were we to test whether the

sqrt(𝜙) were 0, or whether 𝜙2 were 0, or whether any other monotonic transform of 𝜙 were 0 (for 𝜙2,

we were considering only the positive half of the number line). If a test does not have that property, it is

manipulable.

Wald tests are manipulable, and that means the tests produced by margins are manipulable. You can
see this for yourself by typing

. use https://www.stata-press.com/data/r18/margex, clear

. replace y = y - 65

. regress y sex##group

. margins, df(.)

. margins, expression(predict(xb)^2)

To compare the results from the two margins commands, we added the df(.) option to the first one,

forcing it to report a 𝑧 statistic even though a 𝑡 statistic would have been appropriate in this case. We

would prefer if the test against zero produced by margins, df(.) was equal to the test produced by

margins, expression(predict(xb)^2). But alas, they produce different results. The first produces
𝑧 = 12.93, and the second produces 𝑧 = 12.57.

The difference is not much in our example, but behind the scenes, we worked to make it small. We

subtracted 65 from y so that the experiment would be for a case where it might be reasonable that you
would be testing against 0. One does not typically test whether the mean income in the United States is

zero or whether the mean blood pressure of live patients is zero. Had we left y as it was originally, we
would have obtained 𝑧 = 190 and 𝑧 = 96. We did not want to show that comparison to you first because

the mean of y is so far from 0 that you probably would never be testing it. The corresponding difference

in 𝜙 is tiny.

Regardless of the example, it is important that you base your tests in the metric where the likelihood

surface is most quadratic. For further discussion on manipulability, see Manipulability in [R] predictnl.

This manipulability is not limited to Wald tests after estimation; you can also see the manipulability

of results produced by linear regression just by applying nonlinear transforms to a covariate (Phillips and

Park 1988; Gould 1996).

Using margins after the estimates use command

Assume you fit and used estimates save (see [R] estimates save) to save the estimation results:

. regress y sex##group age c.age*c.age if site==1

. ...

. estimates save mymodel
file mymodel.ster saved

Later, perhaps in a different Stata session, you reload the estimation results by typing

. estimates use mymodel
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You plan to use marginswith the reloaded results. You must remember that margins bases its results
not only on the current estimation results but also on the current data in memory. Before you can use

margins, you must reload the dataset on which you fit the model or, if you wish to produce standardized
margins, some other dataset.

. use mydata, clear
(data for fitting models)

If the dataset you loaded contained the data for standardization, you can stop reading; you know that

to produce standardized margins, you need to specify the noesample option.

We reloaded the original data and want to produce margins for the estimation sample. In addition to

the data, margins requires that e(sample) be set, as margins will remind us:

. margins sex
e(sample) does not identify the estimation sample
r(322);

The best solution is to use estimates esample to rebuild e(sample):

. estimates esample: y sex group age if site==1

If we knew we had no missing values in y and the covariates, we could type

. estimates esample: if site==1

Either way, margins would now work:

. margins sex
(usual output appears)

There is an alternative. We do not recommend it, but we admit that we have used it. Rather than re-

building e(sample), you can use margins’noesample option to tell margins to skip using e(sample).
You could then specify the appropriate if statement (if necessary) to identify the estimation sample:

. estimates use mymodel

. use mydata, clear

. margins sex if !missing(y, sex, group age) & site==1, noesample

In the above, we are not really running on a sample different from the estimation sample; we are

merely using noesample to fool margins, and then we are specifying on the margins command the

conditions equivalent to re-create e(sample).

If we wish to obtain vce(unconditional) results, however, noesample will be insufficient. We

must also specify the force option,

. margins sex if !missing(y, sex, group age) & site==1,
> vce(unconditional) noesample force
(usual output appears)

Regardless of the approach you choose—resetting e(sample) or specifying noesample and possibly
force—make sure you are right. In the vce(delta) case, you want to be right to ensure that you obtain
the results you want. In the vce(unconditional) case, you need to be right because otherwise results
will be statistically invalid.
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Syntax of at()

In at(atspec), atspec may contain one or more of the following specifications:

varlist

(stat) varlist

varname = #

varname = (numlist)

varname = generate(exp)

where

1. varnames must be covariates in the previously fit model (estimation command).

2. Variable names (whether in varname or varlist) may be continuous variables, factor variables, or

specific level variables, such as age, group, or 3.group.

3. varlist may also be one of three standard lists:

(a) all (all covariates),

(b) factor (all factor-variable covariates), or

(c) continuous (all continuous covariates).

4. stat can be any of the following:

Variables

stat Description allowed

asobserved at observed values in the sample (default) all

mean means (default for varlist) all

median medians continuous

p1 1st percentile continuous

p2 2nd percentile continuous

. . . 3rd–49th percentiles continuous

p50 50th percentile (same as median) continuous

. . . 51st–97th percentiles continuous

p98 98th percentile continuous

p99 99th percentile continuous

min minimums continuous

max maximums continuous

zero fixed at zero continuous

base base level factors

asbalanced all levels equally probable and sum to 1 factors

Any stat except zero, base, and asbalanced may be prefixed with an o to get the overall statis-
tic—the sample over all over() groups. For example, omean, omedian, and op25. Overall

statistics differ from their correspondingly named statistics only when the over() or within()
option is specified. When no stat is specified, mean is assumed. If stat is not followed by a varlist,
stat is ignored.



margins — Marginal means, predictive margins, and marginal effects 1683

atspec can involve multiple settings for one covariate as well as settings for multiple covariates. The

following rules are applied when more than one covariate or value is included:

1. When more than one covariate is referenced in atspec but each covariate is set to only one value,

all settings are applied in combination. For example, at(x1=5 x2=0) results in margins being
estimated under one scenario, with x1 set to 5, x2 set to 0, and all other covariates set to their

observed values (the default).

2. When multiple values are specified for a covariate, the covariate will be set to each of the values

in turn. For example, at(x1=5 x1=10) or, equivalently, at(x1=(5 10)) specifies that x1 be set
first to 5 and then to 10.

3. When multiple values are specified for more than one covariate, all possible combinations of

settings are applied in turn. For example, at(x1=(5 10) x2=(0 1)) results in margins being

estimated under four scenarios: (x1 = 5 x2 = 0), (x1 = 5 x2 = 1), (x1 = 10 x2 = 0), and
(x1 = 10 x2 = 1).

4. Settings may be specified for groups of covariates using three general varlists— all, factor,
and continuous. When atspec includes both specifications with general varlists and specifica-

tions with named covariates, the specifications for named covariates take precedence over general

ones. For example, at(x1=10 (means) all) sets x1 to 10 while setting all other covariates to
their means.

5. Only one (stat) varlist specification can be applied to a covariate. If more than one is specified,
the rightmost specification is respected. For example, at((means) x1 x2 (medians) x1 x2) sets
both x1 and x2 to their medians.

6. When both a (stat) specification and another specification are included for a named covariate, the
other specification takes precedence. For example, at(x1=5 (means) x1) sets x1 to 5.

In addition, at() can be repeated. When multiple at() options are specified, atspecs are processed
sequentially. For instance, at(x1=5) at(x2=0) results in margins being estimated under two scenarios.
The first sets x1 to 5 and all other covariates, including x2, to their observed values. The second sets x2
to 0 and all other covariates to their observed values. Note that this is different from the single at(x1=5
x2=0) specification, which sets x1 and x2 to the specified values simultaneously.

Estimation commands that may be used with margins

margins may be used after most estimation commands.

margins cannot be used after estimation commands that do not produce full variance matrices, such
as exlogistic and expoisson (see [R] exlogistic and [R] expoisson).

margins is all about covariates and cannot be used after estimation commands that do not post the
covariates, which eliminates gmm (see [R] gmm).

margins cannot be used after some estimation commands that have an odd data organization, such
as nlogit. However, margins has been specially adapted to work with many choice model estimation
commands; see [CM] margins.



margins — Marginal means, predictive margins, and marginal effects 1684

Video examples
Introduction to margins, part 1: Categorical variables

Introduction to margins, part 2: Continuous variables

Introduction to margins, part 3: Interactions

Glossary
adjusted mean. A margin when the response is the linear predictor from linear regression, ANOVA, etc.

For some authors, adjusting also implies adjusting for unbalanced data. See Obtaining margins of

responses and see Obtaining margins as though the data were balanced.

adjusted treatment mean. When calculating estimated marginal means (also known as least-squares

means) in the presence of continuous covariates, some authors recommend setting the continuous

covariates equal to their means. This yields an estimated marginal mean that Searle, Speed, and

Milliken (1980) refer to as an adjusted treatment mean. Adjusted treatment means are obtained using

option at((asbalanced) factor (mean) continuous) or, equivalently, options asbalanced
and atmeans together.

average marginal effect. See marginal effect and average marginal effect.

average partial effect. See partial effect and average partial effect.

balanced data. When a dataset contains an equal number of observations at each level of a factor vari-

able, it is said to be balanced with respect to that variable. The concept of balanced data is only

applicable to factor variables, not continuous variables. Balancing is common in designed experi-

ments, but even if the data are not balanced, the asbalanced option allows margins to be calculated
as though the data were balanced. Also see Obtaining margins as though the data were balanced.

conditional margin. A margin when the response is evaluated at fixed values of all the covariates. If

any covariates are left as observed, the margin is called a predictive margin.

effect. The effect of 𝑥 is the derivative of the response with respect to covariate 𝑥, or it is the difference
in responses caused by a discrete change in 𝑥. Also see marginal effect.
The effect of 𝑥measures the change in the response for a change in 𝑥. Derivatives or differences might
be reported as elasticities. If 𝑥 is continuous, the effect is measured continuously. If 𝑥 is a factor, the

effect is measured with respect to each level of the factor andmay be calculated as a discrete difference

or as a continuous change, as measured by the derivative. margins calculates the discrete difference
by default and calculates the derivative if the continuous option is specified.

elasticity and semielasticity. The elasticity of 𝑦 with respect to 𝑥 is 𝑑(ln𝑦)/𝑑(ln𝑥) = (𝑥/𝑦) × (𝑑𝑦/𝑑𝑥),
which is approximately equal to the proportional change in 𝑦 for a proportional change in 𝑥.
The semielasticity of 𝑦 with respect to 𝑥 is either 1) 𝑑𝑦/𝑑(ln𝑥) = 𝑥 × (𝑑𝑦/𝑑𝑥) or 2) 𝑑(ln𝑦)/𝑑𝑥 =
(1/𝑦) × (𝑑𝑦/𝑑𝑥), which is approximately 1) the change in 𝑦 for a proportional change in 𝑥 or 2) the

proportional change in 𝑦 for a change in 𝑥.
margins uses model predictions or user-specified statistics in expression() in place of 𝑦 above.

empty cell. An interaction of levels of two or more factor variables for which you have no data. For

instance, you have sex interacted with group in your model, and in your data there are no females in

group 1. Empty cells affect which margins can be estimated; see Estimability of margins.

https://www.youtube.com/watch?v=XAG4CbIbH0k
https://www.youtube.com/watch?v=L9-PWY79aVA
https://www.youtube.com/watch?v=43uX4D_7uaI
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estimability. Estimability concerns whether a margin can be uniquely estimated (identified); see Es-

timability of margins.

estimated marginal mean. An estimated marginal mean, as defined by Searle, Speed, and Milliken

(1980), is amargin assuming the levels of each factor covariate are balanced (equally likely), including

interaction terms. This is obtained using the asbalanced option.

If the model includes continuous covariates, setting them equal to their sample means yields a type

of estimated marginal mean known as an adjusted treatment mean.

When some cells are empty, it is impossible to estimate their marginal means. To get around this

limitation, Searle, Speed, andMilliken introduced the concept of modified estimated marginal means,

in which margins involving empty cells are redefined so that they become estimable. This is invoked

by the emptycells(reweight) option. See Balancing in the presence of empty cells.

least-squares mean. Synonym for estimated marginal mean.

margin. A statistic calculated from predictions or other statistics of a previously fit model at fixed

values of some covariates and averaging or otherwise integrating over the remaining covariates. The

prediction or other statistic on which the margin is based is called the response.

If all the covariates are fixed, then the margin is called a conditional margin. If any covariates are left

to vary, the margin is called a predictive margin.

In this documentation, we divide margins on the basis of whether the statistic is a response or a

derivative of a response; see Obtaining margins of responses and Obtaining margins of derivatives of

responses.

marginal effect and average marginal effect. The marginal effect of 𝑥 is the margin of the effect of 𝑥.
The term is popular with social scientists, and because of that, you might think the word marginal in

marginal effect means derivative because of terms like marginal cost and marginal revenue. Marginal

used in that way, however, refers to the derivative of revenue and the derivative of cost; it refers to the

numerator, whereas marginal effect refers to the denominator. Moreover, effect is already a derivative

or difference.

Some researchers interpret marginal in marginal effect to mean instantaneous, and thus a marginal ef-

fect is the instantaneous derivative rather than the discrete first difference, corresponding to margins’
continuous option. Researchers who use marginal in this way refer to the discrete difference calcu-
lation of an effect as a partial effect.

Other researchers define marginal effect to be the margin when all covariates are held fixed and the

average marginal effect when some covariates are not fixed.

out-of-sample prediction. Predictions made in one dataset using the results from a model fit on another.

Sample here refers to the sample on which the model was fit, and out-of-sample refers to the dataset

on which the predictions are made.

partial effect and average partial effect. Some authors restrict the term marginal effect to mean deriva-

tives and use the term partial effect to denote discrete differences; see marginal effect and average

marginal effect.

population marginal mean. The theoretical (true) value that is estimated by estimated marginal mean.

We avoid this term because it can be confused with the concept of a population in survey statistics,

with which the population marginal mean has no connection.
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posting results, postingmargins. AStata concept having to dowith storing the results from the margins
command in e() so that those results can be used as if they were estimation results, thus allowing the
subsequent use of postestimation commands, such as test, testnl, lincom, and nlcom (see [R] test,
[R] testnl, [R] lincom, and [R] nlcom). This is achieved by specifying margins’ post option. See
Example 10: Testing margins—contrasts of margins.

predictive margin. A margin in which all the covariates are not fixed. When all covariates are fixed, it

is called a conditional margin.

recycled prediction. A synonym for predictive margin.

response. A prediction or other statistic derived from combining the parameter estimates of a fitted

model with data or specified values on covariates. Derivatives of responses are themselves responses.

Responses are what we take margins of.

standardized margin. The margin calculated on data different from the data used to fit the model. The

term standardized is usually reserved for situations in which the alternate population is a reference

population, which may be real or artificial, and which is treated as fixed.

subpopulation. A subset of your sample that represents a subset of the population, such as the males in

a sample of people. In survey contexts when it is desired to account for sampling of the covariates,

standard errors for marginal statistics and effects need to account for both the population and the

subpopulation. This is accomplished by specifying the vce(unconditional) option and one of the
subpop() or over() options. In fact, the above is allowed even when your data are not svyset
because vce(unconditional) implies that the sample represents a population.
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Stored results
margins stores the following in r():

Scalars

r(N) number of observations

r(N sub) subpopulation observations

r(N clust) number of clusters

r(N psu) number of sampled PSUs, survey data only

r(N strata) number of strata, survey data only

r(df r) variance degrees of freedom, survey data only

r(N poststrata) number of post strata, survey data only

r(k predict) number of predict() options
r(k margins) number of terms in marginlist

r(k by) number of subpopulations

r(k at) number of at() options
r(level) confidence level of confidence intervals

Macros

r(cmd) margins
r(cmdline) command as typed

r(est cmd) e(cmd) from original estimation results

r(est cmdline) e(cmdline) from original estimation results

r(title) title in output

r(subpop) subspec from subpop()
r(model vce) vcetype from estimation command

r(model vcetype) Std. err. title from estimation command

r(vce) vcetype specified in vce()
r(vcetype) title used to label Std. err.

r(clustvar) name of cluster variable

r(margins) marginlist

r(predict# opts) the #th predict() option
r(predict# label) label from the #th predict() option
r(expression) response expression

r(xvars) varlist from dydx(), dyex(), eydx(), or eyex()
r(derivatives) “ ”, “dy/dx”, “dy/ex”, “ey/dx”, or “ey/ex”

r(over) varlist from over()
r(within) varlist from within()
r(by) union of r(over) and r(within) lists
r(by#) interaction notation identifying the #th subpopulation

r(atstats#) the #th at() specification
r(emptycells) empspec from emptycells()
r(mcmethod) method from mcompare()
r(mcadjustall) adjustall or empty

Matrices

r(b) estimates

r(V) variance–covariance matrix of the estimates

r(Jacobian) Jacobian matrix

r( N) sample size corresponding to each margin estimate

r(at) matrix of values from the at() options
r(chainrule) chain rule information from the fitted model

r(error) margin estimability codes;

0 means estimable,
8 means not estimable

r(table) matrix containing the margins with their standard errors, test statistics, 𝑝-values, and
confidence intervals
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margins with the post option also stores the following in e():

Scalars

e(N) number of observations

e(N sub) subpopulation observations

e(N clust) number of clusters

e(N psu) number of sampled PSUs, survey data only

e(N strata) number of strata, survey data only

e(df r) variance degrees of freedom, survey data only

e(N poststrata) number of post strata, survey data only

e(k predict) number of predict() options
e(k margins) number of terms in marginlist

e(k by) number of subpopulations

e(k at) number of at() options

Macros

e(cmd) margins
e(cmdline) command as typed

e(est cmd) e(cmd) from original estimation results

e(est cmdline) e(cmdline) from original estimation results

e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(subpop) subspec from subpop()
e(model vce) vcetype from estimation command

e(model vcetype) Std. err. title from estimation command

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(clustvar) name of cluster variable

e(properties) b V, or just b if nose is specified
e(margins) marginlist

e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved
e(predict# opts) the #th predict() option
e(predict# label) label from the #th predict() option
e(expression) prediction expression

e(xvars) varlist from dydx(), dyex(), eydx(), or eyex()
e(derivatives) “ ”, “dy/dx”, “dy/ex”, “ey/dx”, or “ey/ex”

e(over) varlist from over()
e(within) varlist from within()
e(by) union of r(over) and r(within) lists
e(by#) interaction notation identifying the #th subpopulation

e(atstats#) the #th at() specification
e(emptycells) empspec from emptycells()

Matrices

e(b) estimates

e(V) variance–covariance matrix of the estimates

e(Jacobian) Jacobian matrix

e( N) sample size corresponding to each margin estimate

e(error) error code corresponding to e(b)
e(at) matrix of values from the at() options
e(chainrule) chain rule information from the fitted model

Functions

e(sample) marks estimation sample
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Methods and formulas
Margins are statistics calculated from predictions of a previously fit model at fixed values of some

covariates and averaging or otherwise integrating over the remaining covariates. There are many names

for the different statistics that margins can compute: estimates marginal means (see Searle, Speed,

and Milliken [1980]), predictive margins (see Graubard and Korn [2004]), marginal effects (see Greene

[2018]), and average marginal/partial effects (see Wooldridge [2010] and Bartus [2005]).

Methods and formulas are presented under the following headings:

Notation
Marginal effects
Fixing covariates and balancing factors
Estimable functions
Standard errors conditional on the covariates
Unconditional standard errors

Notation
Let θ be the vector of parameters in the current model fit, let z be a vector of covariate values, and let

𝑓(z,θ) be a scalar-valued function returning the value of the predictions of interest. The following table
illustrates the parameters and default prediction for several of Stata’s estimation commands.

Command θ z 𝑓(z,θ)

regress β x xβ

cloglog β x 1 − 𝑒−𝑒𝑥𝛽

logit β x 1/(1 + 𝑒−𝑥𝛽)
poisson β x 𝑒𝑥𝛽

probit β x Φ(xβ)
biprobit β1,β2, 𝜌 x1, x2 Φ2(x1β1, x2β2, 𝜌)
mlogit β1,β2, . . . ,β𝑘 x 𝑒−𝑥𝛽1/(∑𝑖 𝑒−𝑥𝛽𝑖)
nbreg β, ln𝛼 x 𝑒𝑥𝛽

Φ() and Φ2() are cumulative distribution functions: Φ() for the standard normal distribution and Φ2()
for the standard bivariate normal distribution.

margins computes estimates of

𝑝(θ) = 1
𝑀𝑆p

𝑀
∑
𝑗=1

𝛿𝑗(𝑆p)𝑓(z𝑗,θ)

where 𝛿𝑗(𝑆p) identifies elements within the subpopulation 𝑆p (for the prediction of interest),

𝛿𝑗(𝑆p) = {1, 𝑗 ∈ 𝑆p

0, 𝑗 ∉ 𝑆p

𝑀𝑆p
is the subpopulation size,

𝑀𝑆p
=

𝑀
∑
𝑗=1

𝛿𝑗(𝑆p)

and 𝑀 is the population size.
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Let θ̂ be the vector of parameter estimates. Then, margins estimates 𝑝(θ) via

̂𝑝 = 1
𝑤⋅

𝑁
∑
𝑗=1

𝛿𝑗(𝑆p)𝑤𝑗𝑓(z𝑗, θ̂)

where

𝑤⋅ =
𝑁

∑
𝑗=1

𝛿𝑗(𝑆p)𝑤𝑗

𝛿𝑗(𝑆p) indicates whether observation 𝑗 is in subpopulation 𝑆p, 𝑤𝑗 is the weight for the 𝑗th observation,
and 𝑁 is the sample size.

Marginal effects
margins also computes marginal and partial effects. For the marginal effect of continuous covariate

𝑥, margins computes

̂𝑝 = 1
𝑤⋅

𝑁
∑
𝑗=1

𝛿𝑗(𝑆p)𝑤𝑗ℎ(z𝑗, θ̂)

where

ℎ(z,θ) = 𝜕𝑓(z,θ)
𝜕𝑥

The marginal effect for level 𝑘 of factor variable 𝐴 is the simple contrast (also known as difference)

comparing its margin with the margin at the base level.

ℎ(z,θ) = 𝑓(z,θ|𝐴 = 𝑘) − 𝑓(z,θ|𝐴 = base)

Elasticities and semielasticities given by eyex() and dyex() are only available for continuous co-
variates. Elasticities are computed using

ℎ(z,θ) = 𝜕 ln{𝑓(z,θ)}
𝜕 ln(𝑥)

and semielasticities, dyex(), using

ℎ(z,θ) = 𝜕𝑓(z,θ)
𝜕 ln(𝑥)

Semielasticities of the form eydx() for continuous covariates are computed using

ℎ(z,θ) = 𝜕 ln{𝑓(z,θ)}
𝜕𝑥

and for discrete covariates using

ℎ(z,θ) = ln{𝑓(z,θ|𝐴 = 𝑘)} − ln{𝑓(z,θ|𝐴 = base)}
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Fixing covariates and balancing factors
margins controls the values in each z vector through the marginlist, the at() option, the atmeans

option, and the asbalanced and emptycells() options. Suppose z is composed of the elements from
the equation specification

A##B x

where A is a factor variable with 𝑎 levels, B is a factor variable with 𝑏 levels, and x is a continuous

covariate. To simplify the notation for this discussion, assume the levels of A and B start with 1 and are
contiguous. Then

z = (𝐴1, . . . , 𝐴𝑎, 𝐵1, . . . , 𝐵𝑏, 𝐴1𝐵1, 𝐴1𝐵2, . . . , 𝐴𝑎𝐵𝑏, 𝑥, 1)

where𝐴𝑖, 𝐵𝑗, and𝐴𝑖𝐵𝑗 represent the indicator values for the factor variables A and B and the interaction
A#B.

When factor A is in themarginlist, margins replaces Awith 𝑖 and then computes themean of the subse-
quent prediction, for 𝑖 = 1, . . . , 𝑎. When the interaction term A#B is in the marginlist, margins replaces
A with 𝑖 and B with 𝑗, and then computes the mean of the subsequent prediction, for all combinations of
𝑖 = 1, . . . , 𝑎 and 𝑗 = 1, . . . , 𝑏.

The at() option sets model covariates to fixed values. For example, at(x=15) causes margins to
temporarily set 𝑥 to 15 for each observation in the dataset before computing any predictions. Similarly,

at((median) x) causes margins to temporarily set 𝑥 to the median of x using the current dataset.

When factor variable A is specified as asbalanced, margins sets each𝐴𝑖 to 1/𝑎. Thus, each z vector
will look like

z = (1/𝑎, . . . , 1/𝑎, 𝐵1, . . . , 𝐵𝑏, 𝐵1/𝑎, 𝐵2/𝑎, . . . , 𝐵𝑏/𝑎, 𝑥, 1)

If B is also specified as asbalanced, then each 𝐵𝑗 is set to 1/𝑏, and each z vector will look like

z = (1/𝑎, . . . , 1/𝑎, 1/𝑏, . . . , 1/𝑏, 1/𝑎𝑏, 1/𝑎𝑏, . . . , 1/𝑎𝑏, 𝑥, 1)

If emptycells(reweight) is also specified, then margins uses a different balancing weight for each
element of z, depending on how many empty cells the element is associated with. Let 𝛿𝑖𝑗 indicate that

the 𝑖𝑗th cell of A#B was observed in the estimation sample.

𝛿𝑖𝑗 = {0, A= 𝑖 and B= 𝑗 was an empty cell
1, otherwise

For the grand margin, the affected elements of z and their corresponding balancing weights are

𝐴𝑖 =
∑𝑗 𝛿𝑖𝑗

∑𝑘 ∑𝑗 𝛿𝑘𝑗

𝐵𝑗 =
∑𝑖 𝛿𝑖𝑗

∑𝑖 ∑𝑘 𝛿𝑖𝑘

𝐴𝑖𝐵𝑗 =
𝛿𝑖𝑗

∑𝑘 ∑𝑙 𝛿𝑘𝑙
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For the 𝑗th margin of B, the affected elements of z and their corresponding balancing weights are

𝐴𝑖 =
𝛿𝑖𝑗

∑𝑘 𝛿𝑘𝑗

𝐵𝑙 = {1, if 𝑙 = 𝑗 and not all 𝛿𝑖𝑗 are zero

0, otherwise

𝐴𝑖𝐵𝑙 = 𝛿𝑖𝑙
∑𝑘 𝛿𝑘𝑙

𝐵𝑙

Estimable functions
The fundamental idea behind estimable functions is clearly defined in the statistical literature for linear

models; see Searle and Gruber (2017). Assume that we are working with the following linear model:

y = Xb + e

where y is an 𝑁 × 1 vector of responses, X is an 𝑁 × 𝑝 matrix of covariate values, b is a 𝑝 × 1 vector

of coefficients, and e is a vector of random errors. Assuming a constant variance for the random errors,

the normal equations for the least-squares estimator, b̂, are

X′Xb̂ = X′y

When X is not of full column rank, we will need a generalized inverse (g-inverse) of X′X to solve for b̂.

Let G be a g-inverse of X′X.

Searle and Gruber (2017) defines a linear function of the parameters as estimable if it is identically

equal to some linear function of the expected values of the y vector. LetH = GX′X. Then this definition

simplifies to the following rule:

zb is estimable if z = zH

margins generalizes this to nonlinear functions by assuming the prediction function 𝑓(z,θ) is a func-
tion of one or more of the linear predictions from the equations in the model that θ represents.

𝑓(z,θ) = ℎ(z1β1, z2β2, . . . , z𝑘β𝑘)

z𝑖β𝑖 is considered estimable if z𝑖 = z𝑖H𝑖, whereH𝑖 = G𝑖X
′
𝑖X𝑖,G𝑖 is a g-inverse forX

′
𝑖X𝑖, andX𝑖 is the

matrix of covariates from the 𝑖th equation of the fitted model. margins considers 𝑝(θ) to be estimable
if every z𝑖β𝑖 is estimable.

Standard errors conditional on the covariates
By default, margins uses the delta method to estimate the variance of ̂𝑝.

V̂ar( ̂𝑝 | z) = v′Vv

where V is a variance estimate for θ̂ and

v = 𝜕 ̂𝑝
𝜕θ

∣
𝜃= ̂𝜃

This variance estimate is conditional on the z vectors used to compute the marginalized predictions.
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Unconditional standard errors
marginswith the vce(unconditional) option uses linearization to estimate the unconditional vari-

ance of θ̂. Linearization uses the variance estimator for the total of a score variable for ̂𝑝 as an approx-
imate estimator for Var( ̂𝑝); see [SVY] Variance estimation. margins requires that the model was fit

using some form of linearized variance estimator and that predict, scores computes the appropriate
score values for the linearized variance estimator.

The score for ̂𝑝 from the 𝑗th observation is given by

𝑠𝑗 = 𝜕 ̂𝑝
𝜕𝑤𝑗

= −
𝛿𝑗(𝑆p)

𝑤⋅
̂𝑝 +

𝛿𝑗(𝑆p)
𝑤⋅

𝑓(z𝑗, θ̂) + 1
𝑤⋅

𝑁
∑
𝑖=1

𝛿𝑖(𝑆p)𝑤𝑖
𝜕𝑓(z𝑖, θ̂)

𝜕𝑤𝑗

The remaining partial derivative can be decomposed using the chain rule.

𝜕𝑓(z𝑖, θ̂)
𝜕𝑤𝑗

= ( 𝜕𝑓(z𝑖,θ)
𝜕θ

∣
𝜃= ̂𝜃

) ( 𝜕θ̂
𝜕𝑤𝑗

)
′

This is the inner product of two vectors, the second of which is not a function of the 𝑖 index. Thus, the
score is

𝑠𝑗 = −
𝛿𝑗(𝑆p)

𝑤⋅
̂𝑝 +

𝛿𝑗(𝑆p)
𝑤⋅

𝑓(z𝑗, θ̂) + ( 𝜕 ̂𝑝
𝜕θ

∣
𝜃= ̂𝜃

) ( 𝜕θ̂
𝜕𝑤𝑗

)
′

If θ̂ was derived from a system of equations (such as in linear regression or maximum likelihood

estimation), then θ̂ is the solution to

G(θ) =
𝑁

∑
𝑗=1

𝛿𝑗(𝑆m)𝑤𝑗g(θ, y𝑗, x𝑗) = 0

where 𝑆m identifies the subpopulation used to fit the model, g() is the model’s gradient function, and y𝑗
and x𝑗 are the values of the dependent and independent variables for the 𝑗th observation. We can use

linearization to derive a first-order approximation for 𝜕θ̂/𝜕𝑤𝑗.

G(θ̂) ≈ G(θ0) + 𝜕G(θ)
𝜕θ

∣
𝜃=𝜃0

(θ̂ − θ0)

Let H be the Hessian matrix

H = 𝜕G(θ)
𝜕θ

∣
𝜃=𝜃0

Then

θ̂ ≈ θ0 + (−H)−1G(θ0)

and
𝜕θ̂

𝜕𝑤𝑗
≈ (−H)−1 𝜕G(θ)

𝜕𝑤𝑗
∣
𝜃= ̂𝜃

= (−H)−1𝛿𝑗(𝑆m)g(θ̂, y𝑗, x𝑗)
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The computed value of the score for ̂𝑝 for the 𝑗th observation is

𝑠𝑗 = v′u𝑗

where

v =
⎡
⎢
⎢
⎣

− ̂𝑝
𝑤⋅1

𝑤⋅
𝜕 ̂𝑝
𝜕θ̂

(−H)−1

⎤
⎥
⎥
⎦

and

u𝑗 = ⎡
⎢
⎣

𝛿𝑗(𝑆p)
𝛿𝑗(𝑆p)𝑓(z𝑗, θ̂)

𝛿𝑗(𝑆m)g(θ̂, y𝑗, x𝑗)

⎤
⎥
⎦

Thus, the variance estimate for ̂𝑝 is
V̂ar( ̂𝑝) = v′V̂ar(Û)v

where

Û =
𝑁

∑
𝑗=1

𝑤𝑗u𝑗

margins uses the model-based variance estimates for (−H)−1 and the scores from predict for

g(θ̂, y𝑗, x𝑗).
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Also see
[R] contrast — Contrasts and linear hypothesis tests after estimation

[R] margins, contrast — Contrasts of margins

[R] margins, pwcompare — Pairwise comparisons of margins

[R] margins postestimation — Postestimation tools for margins

[R] marginsplot — Graph results from margins (profile plots, etc.)

[R] lincom — Linear combinations of parameters

[R] nlcom — Nonlinear combinations of parameters

[R] predict — Obtain predictions, residuals, etc., after estimation

[R] predictnl — Obtain nonlinear predictions, standard errors, etc., after estimation

[U] 20 Estimation and postestimation commands
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Postestimation commands Remarks and examples Also see

Postestimation commands
The following standard postestimation command is available after margins:

Command Description

marginsplot graph the results from margins—profile plots, interaction plots, etc.

For information on marginsplot, see [R] marginsplot.

The following standard postestimation commands are available after margins, post:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estimates cataloging estimation results

etable table of estimation results

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

pwcompare pairwise comparisons of parameters

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

Remarks and examples
Continuing with the example from Example 8: Margins of interactions in [R] margins, we use the

dataset and refit the logistic model of outcome:

. use https://www.stata-press.com/data/r18/margex
(Artificial data for margins)
. logistic outcome sex##group age
(output omitted )
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We then estimate the margins for males and females and post the margins as estimation results with a

full VCE.

. margins sex, post
Predictive margins Number of obs = 3,000
Model VCE: OIM
Expression: Pr(outcome), predict()

Delta-method
Margin std. err. z P>|z| [95% conf. interval]

sex
Male .1600644 .0125653 12.74 0.000 .1354368 .184692

Female .1966902 .0100043 19.66 0.000 .1770821 .2162983

We can now use nlcom (see [R] nlcom) to estimate a risk ratio of females to males using the average
probabilities for females and males posted by margins:

. nlcom (risk_ratio: _b[1.sex] / _b[0.sex])
risk_ratio: _b[1.sex] / _b[0.sex]

Coefficient Std. err. z P>|z| [95% conf. interval]

risk_ratio 1.228819 .1149538 10.69 0.000 1.003514 1.454124

We could similarly estimate the average risk difference between females and males:

. nlcom (risk_diff: _b[1.sex] - _b[0.sex])
risk_diff: _b[1.sex] - _b[0.sex]

Coefficient Std. err. z P>|z| [95% conf. interval]

risk_diff .0366258 .0160632 2.28 0.023 .0051425 .068109

Also see
[R] margins — Marginal means, predictive margins, and marginal effects

[R] marginsplot — Graph results from margins (profile plots, etc.)

[U] 20 Estimation and postestimation commands
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Description Quick start Menu Syntax
Suboptions Remarks and examples Stored results Methods and formulas
Reference Also see

Description
margins with the contrast option or with contrast operators performs contrasts of margins. This

extends the capabilities of contrast to any of the nonlinear responses, predictive margins, or other

margins that can be estimated by margins.

Quick start
Reference category contrasts of the predictive margins for a after logit y a##b x1

margins r.a

Contrasts of predictive margins for a with the previous level
margins ar.a

Test the equality of predictive margins for a
margins a, contrast

Reference category contrasts of predictive margins for x1 = 10 and x1 = 20 with x1 = 0

margins, at(x1=(0 10 20)) contrast(atcontrast(r))

Average partial effect of increasing x1 by 100 for each observation after probit y x1 x2
margins, at((asobserved) _all) at(x1=generate(x1+100)) ///

contrast(atcontrast(r))

Menu
Statistics > Postestimation

1699



margins, contrast — Contrasts of margins 1700

Syntax
margins [marginlist ] [ if ] [ in ] [weight ] [ , contrast margins options ]

margins [marginlist ] [ if ] [ in ] [weight ] [ , contrast(suboptions) margins options ]

where marginlist is a list of factor variables or interactions that appear in the current estimation results.

The variables may be typed with or without contrast operators, and you may use any factor-variable

syntax:

. margins sex##group, contrast

. margins sex##g.group, contrast

. margins sex@group, contrast

See the operators (op.) table in [R] contrast for the list of contrast operators. Contrast operators may also

be specified on the variables in margins’s over() and within() options to perform contrasts across

the levels of those variables.

suboptions Description

Contrast

overall add a joint hypothesis test for all specified contrasts

lincom treat user-defined contrasts as linear combinations

predict(op[ . predict ]) apply the op. contrast operator to the groups defined by multiple
predict() options

atcontrast(op[ . at ]) apply the op. contrast operator to the groups defined by at()
predictjoint test jointly across all groups defined by multiple predict() options
atjoint test jointly across all groups defined by at()
overjoint test jointly across all levels of the unoperated over() variables
withinjoint test jointly across all levels of the unoperated within() variables
marginswithin perform contrasts within the levels of the unoperated terms in marginlist

cieffects show effects table with confidence intervals

pveffects show effects table with 𝑝-values
effects show effects table with confidence intervals and 𝑝-values
nowald suppress table of Wald tests

noatlevels report only the overall Wald test for terms that use the within @
or nested | operator

nosvyadjust compute unadjusted Wald tests for survey results

collect is allowed; see [U] 11.1.10 Prefix commands.

fweights, aweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
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Suboptions

� � �
Contrast �

overall specifies that a joint hypothesis test over all terms be performed.

lincom specifies that user-defined contrasts be treated as linear combinations. The default is to require
that all user-defined contrasts sum to zero. (Summing to zero is part of the definition of a contrast.)

predict(op[ . predict ]) specifies that the op. contrast operator be applied to the groups defined by

multiple specifications of margins’s predict() option. The default behavior, by comparison, is to
perform tests and contrasts within these groups.

atcontrast(op[ . at ]) specifies that the op. contrast operator be applied to the groups defined by

the at() option(s). The default behavior, by comparison, is to perform tests and contrasts within the

groups defined by the at() option(s).

See example 6 in Remarks and examples.

predictjoint specifies that joint tests be performed across all groups defined bymultiple specifications
of margins’s predict() option. The default behavior, by comparison, is to perform contrasts and

tests within each group.

atjoint specifies that joint tests be performed across all groups defined by the at() option. The default
behavior, by comparison, is to perform contrasts and tests within each group.

See example 5 in Remarks and examples.

overjoint specifies how unoperated variables in the over() option are treated.

Each variable in the over() option may be specified either with or without a contrast operator. For
contrast-operated variables, the specified contrast comparisons are always performed.

overjoint specifies that joint tests be performed across all levels of the unoperated variables. The
default behavior, by comparison, is to perform contrasts and tests within each combination of levels

of the unoperated variables.

See example 3 in Remarks and examples.

withinjoint specifies how unoperated variables in the within() option are treated.

Each variable in the within() option may be specified either with or without a contrast operator. For
contrast-operated variables, the specified contrast comparisons are always performed.

withinjoint specifies that joint tests be performed across all levels of the unoperated variables. The
default behavior, by comparison, is to perform contrasts and tests within each combination of levels

of the unoperated variables.

marginswithin specifies how unoperated variables in marginlist are treated.

Each variable in marginlist may be specified either with or without a contrast operator. For contrast-

operated variables, the specified contrast comparisons are always performed.

marginswithin specifies that contrasts and tests be performed within each combination of levels

of the unoperated variables. The default behavior, by comparison, is to perform joint tests across all

levels of the unoperated variables.

See example 4 in Remarks and examples.

cieffects specifies that a table containing a confidence interval for each individual contrast be reported.
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pveffects specifies that a table containing a 𝑝-value for each individual contrast be reported.
effects specifies that a single table containing a confidence interval and 𝑝-value for each individual

contrast be reported.

nowald suppresses the table of Wald tests.

noatlevels indicates that only the overall Wald test be reported for each term containing within or

nested (@ or |) operators.

nosvyadjust is for use with svy estimation commands. It specifies that the Wald test be carried out

without the default adjustment for the design degrees of freedom. That is to say the test is carried out

as 𝑊/𝑘 ∼ 𝐹(𝑘, 𝑑) rather than as (𝑑 − 𝑘 + 1)𝑊/(𝑘𝑑) ∼ 𝐹(𝑘, 𝑑 − 𝑘 + 1), where 𝑘 is the dimension
of the test and 𝑑 is the total number of sampled PSUs minus the total number of strata.

Remarks and examples
Remarks are presented under the following headings:

Contrasts of margins
Contrasts and the over() option

The overjoint suboption
The marginswithin suboption

Contrasts and the at() option
Estimating treatment effects with margins
Conclusion

Contrasts of margins

Example 1
Estimating contrasts of margins is as easy as adding a contrast operator to the variable name. Let’s

review Example 2: A simple case after logistic of [R]margins. Variable sex is coded 0 for males and 1
for females.

. use https://www.stata-press.com/data/r18/margex
(Artificial data for margins)
. logistic outcome i.sex i.group
(output omitted )

. margins sex
Predictive margins Number of obs = 3,000
Model VCE: OIM
Expression: Pr(outcome), predict()

Delta-method
Margin std. err. z P>|z| [95% conf. interval]

sex
Male .1286796 .0111424 11.55 0.000 .106841 .1505182

Female .1905087 .0089719 21.23 0.000 .1729241 .2080933
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The first margin, 0.13, is the average probability of a positive outcome, treating everyone as if they

were male. The second margin, 0.19, is the average probability of a positive outcome, treating everyone

as if they were female. We can compare females with males by rerunning margins and adding a contrast
operator:

. margins r.sex
Contrasts of predictive margins Number of obs = 3,000
Model VCE: OIM
Expression: Pr(outcome), predict()

df chi2 P>chi2

sex 1 16.61 0.0000

Delta-method
Contrast std. err. [95% conf. interval]

sex
(Female vs Male) .0618291 .0151719 .0320927 .0915656

The r. prefix for sex is the reference-category contrast operator—see [R] contrast. (The default

reference category is zero, the lowest value of sex.) Contrast operators in a marginlist work just as they
do in the termlist of a contrast command.

The contrast estimate of 0.06 says that unconditional on group, females on average are about 6%

more likely than males to have a positive outcome. The 𝜒2 statistic of 16.61 shows that the contrast is

significantly different from zero.

You may be surprised that we did not need to include the contrast option to estimate our contrast.
If we had included the option, our output would not have changed:

. margins r.sex, contrast
Contrasts of predictive margins Number of obs = 3,000
Model VCE: OIM
Expression: Pr(outcome), predict()

df chi2 P>chi2

sex 1 16.61 0.0000

Delta-method
Contrast std. err. [95% conf. interval]

sex
(Female vs Male) .0618291 .0151719 .0320927 .0915656
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The contrast option is useful mostly for its suboptions, which control the output and how con-

trasts are estimated in more complicated situations. But contrastmay be specified on its own (without
contrast operators or suboptions) if we do not need estimates or confidence intervals:

. margins sex group, contrast
Contrasts of predictive margins Number of obs = 3,000
Model VCE: OIM
Expression: Pr(outcome), predict()

df chi2 P>chi2

sex 1 16.61 0.0000

group 2 225.76 0.0000

Each 𝜒2 statistic is a joint test of constituent contrasts. The test for group has two degrees of freedom
because group has three levels.

Contrasts and the over() option

Example 2
It is common to estimate margins at combinations of factor levels, and margins, contrast includes

several suboptions for contrasting such margins. Let’s fit a model with two categorical predictors and

their interaction:

. logistic outcome agegroup##group
Logistic regression Number of obs = 3,000

LR chi2(8) = 520.64
Prob > chi2 = 0.0000

Log likelihood = -1105.7504 Pseudo R2 = 0.1906

outcome Odds ratio Std. err. z P>|z| [95% conf. interval]

agegroup
30--39 3.54191 2.226951 2.01 0.044 1.032882 12.14576
40+ 16.23351 9.611879 4.71 0.000 5.086452 51.80955

group
2 .834507 .5663738 -0.27 0.790 .2206611 3.15598
3 .2146739 .1772903 -1.86 0.062 .042541 1.083306

agegroup#
group

30--39#2 .4426927 .3358505 -1.07 0.283 .1000772 1.958257
30--39#3 1.16088 1.103521 0.16 0.875 .1801538 7.480508
40+#2 .440672 .3049393 -1.18 0.236 .1135259 1.71055
40+#3 .4407892 .4034666 -0.89 0.371 .0732998 2.650693

_cons .0379747 .0223371 -5.56 0.000 .0119897 .1202762

Note: _cons estimates baseline odds.

Each of agegroup and group has three levels. To compare each age groupwith the reference category
on the probability scale, we can again use margins with the r. contrast operator.
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. margins r.agegroup
Contrasts of predictive margins Number of obs = 3,000
Model VCE: OIM
Expression: Pr(outcome), predict()

df chi2 P>chi2

agegroup
(30--39 vs 20--29) 1 10.04 0.0015
(40+ vs 20--29) 1 224.44 0.0000

Joint 2 238.21 0.0000

Delta-method
Contrast std. err. [95% conf. interval]

agegroup
(30--39 vs 20--29) .044498 .0140448 .0169706 .0720253
(40+ vs 20--29) .2059281 .0137455 .1789874 .2328688

Our model includes an interaction, though, so it would be nice to estimate the contrasts separately for

each value of group. We need the over() option:

. margins r.agegroup, over(group)
Contrasts of predictive margins Number of obs = 3,000
Model VCE: OIM
Expression: Pr(outcome), predict()
Over: group

df chi2 P>chi2

agegroup@group
(30--39 vs 20--29) 1 1 6.94 0.0084
(30--39 vs 20--29) 2 1 1.18 0.2783
(30--39 vs 20--29) 3 1 3.10 0.0783
(40+ vs 20--29) 1 1 173.42 0.0000
(40+ vs 20--29) 2 1 57.77 0.0000
(40+ vs 20--29) 3 1 5.12 0.0236

Joint 6 266.84 0.0000

Delta-method
Contrast std. err. [95% conf. interval]

agegroup@group
(30--39 vs 20--29) 1 .0819713 .0311208 .0209757 .142967
(30--39 vs 20--29) 2 .0166206 .0153309 -.0134275 .0466686
(30--39 vs 20--29) 3 .0243462 .0138291 -.0027584 .0514507
(40+ vs 20--29) 1 .3447797 .0261811 .2934658 .3960937
(40+ vs 20--29) 2 .1540882 .0202722 .1143554 .193821
(40+ vs 20--29) 3 .0470319 .0207774 .006309 .0877548

The effect of agegroup appears to be greatest for the first level of group.
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Including a variable in the over() option is not equivalent to including the variable in the main

marginlist. The variables in the marginlist are manipulated in the analysis, so that we can measure, for

example, the effect of being in age group 3 and not age group 1. (The manipulation could be mimicked

by running replace and then predict, but the manipulations actually performed by margins do not
change the data in memory.) The variables in the over() option are not so manipulated—the values

of the over() variables are left as they were observed, and the marginlist variables are manipulated

separately for each observed over() group.

The overjoint suboption

Example 3
Each variable in an over() option may be specified with or without contrast operators. Our option

over(group) did not include a contrast operator, so margins estimated the contrasts separately for each
level of group. If we had instead specified over(r.group), we would have received differences of the
contrasts:

. margins r.agegroup, over(r.group)
Contrasts of predictive margins Number of obs = 3,000
Model VCE: OIM
Expression: Pr(outcome), predict()
Over: group

df chi2 P>chi2

group#agegroup
(2 vs 1) (30--39 vs 20--29) 1 3.55 0.0596
(2 vs 1) (40+ vs 20--29) 1 33.17 0.0000

(3 vs 1) (30--39 vs 20--29) 1 2.86 0.0906
(3 vs 1) (40+ vs 20--29) 1 79.36 0.0000

Joint 4 83.88 0.0000

Delta-method
Contrast std. err. [95% conf. interval]

group#agegroup
(2 vs 1) (30--39 vs 20--29) -.0653508 .0346921 -.133346 .0026445
(2 vs 1) (40+ vs 20--29) -.1906915 .0331121 -.25559 -.1257931

(3 vs 1) (30--39 vs 20--29) -.0576252 .0340551 -.1243719 .0091216
(3 vs 1) (40+ vs 20--29) -.2977479 .0334237 -.3632572 -.2322386
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The contrasts are double differences: the estimate of −0.19, for example, says that the difference in

the probability of success between age group 3 and age group 1 is smaller in group 2 than in group 1.

We can jointly test pairs of the double differences with the overjoint suboption:

. margins r.agegroup, over(group) contrast(overjoint)
Contrasts of predictive margins Number of obs = 3,000
Model VCE: OIM
Expression: Pr(outcome), predict()
Over: group

df chi2 P>chi2

group#agegroup
(joint) (30--39 vs 20--29) 2 3.62 0.1641
(joint) (40+ vs 20--29) 2 79.45 0.0000

Joint 4 83.88 0.0000

The contrast(overjoint) option overrides the default behavior of over() and requests joint tests
over the levels of the unoperated variable group. The 𝜒2 statistic of 3.62 tests that the first and third

contrasts from the previous table are jointly zero. The 𝜒2 statistic of 79.45 jointly tests the other pair of

contrasts.

The marginswithin suboption

Example 4
Another suboption that may usefully be combined with over() is marginswithin. marginswithin

requests that contrasts be performed within the levels of unoperated variables in the main marginlist,

instead of performing them jointly across the levels. marginswithin affects only unoperated variables
because contrast operators take precedence over suboptions.
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Let’s first look at the default behavior, which occurs when marginswithin is not specified:

. margins agegroup, over(r.group) contrast(effects)
Contrasts of predictive margins Number of obs = 3,000
Model VCE: OIM
Expression: Pr(outcome), predict()
Over: group

df chi2 P>chi2

group#agegroup
(2 vs 1) (joint) 2 33.94 0.0000
(3 vs 1) (joint) 2 83.38 0.0000

Joint 4 83.88 0.0000

Delta-method
Contrast std. err. z P>|z| [95% conf. interval]

group#
agegroup

(2 vs 1)
(30--39

vs
base) -.0653508 .0346921 -1.88 0.060 -.133346 .0026445

(2 vs 1)
(40+

vs
base) -.1906915 .0331121 -5.76 0.000 -.25559 -.1257931

(3 vs 1)
(30--39

vs
base) -.0576252 .0340551 -1.69 0.091 -.1243719 .0091216

(3 vs 1)
(40+

vs
base) -.2977479 .0334237 -8.91 0.000 -.3632572 -.2322386

Here agegroup in the main marginlist is an unoperated variable, so margins by default performs

joint tests across the levels of agegroup: the 𝜒2 statistic of 33.94, for example, jointly tests whether the

first two contrast estimates in the lower table differ significantly from zero.
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When we specify marginswithin, the contrasts will instead be performed within the levels of

agegroup:

. margins agegroup, over(r.group) contrast(marginswithin effects)
Contrasts of predictive margins Number of obs = 3,000
Model VCE: OIM
Expression: Pr(outcome), predict()
Over: group

df chi2 P>chi2

group@agegroup
(2 vs 1) 20--29 1 0.06 0.7991
(2 vs 1) 30--39 1 7.55 0.0060
(2 vs 1) 40+ 1 68.39 0.0000

(3 vs 1) 20--29 1 1.80 0.1798
(3 vs 1) 30--39 1 10.47 0.0012
(3 vs 1) 40+ 1 159.89 0.0000

Joint 6 186.87 0.0000

Delta-method
Contrast std. err. z P>|z| [95% conf. interval]

group@
agegroup

(2 vs 1)
20--29 -.0058686 .0230533 -0.25 0.799 -.0510523 .039315

(2 vs 1)
30--39 -.0712194 .0259246 -2.75 0.006 -.1220308 -.0204081

(2 vs 1)
40+ -.1965602 .0237688 -8.27 0.000 -.2431461 -.1499742

(3 vs 1)
20--29 -.0284991 .0212476 -1.34 0.180 -.0701436 .0131454

(3 vs 1)
30--39 -.0861243 .0266137 -3.24 0.001 -.1382862 -.0339624

(3 vs 1)
40+ -.326247 .0258009 -12.64 0.000 -.3768159 -.2756781

The joint tests in the top table have been replaced by one-degree-of-freedom tests, one for each combi-

nation of the two reference comparisons and three levels of agegroup. The reference-category contrasts
for group have been performed within levels of agegroup.



margins, contrast — Contrasts of margins 1710

Contrasts and the at() option

Example 5
The at() option of margins is used to set predictors to particular values. When at() is used, con-

trasts are by default performed within each at() level:

. margins r.agegroup, at(group=(1/3))
Contrasts of adjusted predictions Number of obs = 3,000
Expression: Pr(outcome), predict()
1._at: group = 1
2._at: group = 2
3._at: group = 3

df chi2 P>chi2

agegroup@_at
(30--39 vs 20--29) 1 1 6.94 0.0084
(30--39 vs 20--29) 2 1 1.18 0.2783
(30--39 vs 20--29) 3 1 3.10 0.0783
(40+ vs 20--29) 1 1 173.42 0.0000
(40+ vs 20--29) 2 1 57.77 0.0000
(40+ vs 20--29) 3 1 5.12 0.0236

Joint 6 266.84 0.0000

Delta-method
Contrast std. err. [95% conf. interval]

agegroup@_at
(30--39 vs 20--29) 1 .0819713 .0311208 .0209757 .142967
(30--39 vs 20--29) 2 .0166206 .0153309 -.0134275 .0466686
(30--39 vs 20--29) 3 .0243462 .0138291 -.0027584 .0514507
(40+ vs 20--29) 1 .3447797 .0261811 .2934658 .3960937
(40+ vs 20--29) 2 .1540882 .0202722 .1143554 .193821
(40+ vs 20--29) 3 .0470319 .0207774 .006309 .0877548

Our option at(group=(1/3)) manipulates the values of group and is therefore not equivalent to

over(group). We see that the reference-category contrasts for agegroup have been performed within
each at() level. For a similar example that uses the . at operator instead of the at() option, see

Contrasts of at() groups—discrete effects in [R] marginsplot.
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The default within behavior of at() may be changed to joint behavior with the atjoint suboption:

. margins r.agegroup, at(group=(1/3)) contrast(atjoint)
Contrasts of adjusted predictions Number of obs = 3,000
Model VCE: OIM
Expression: Pr(outcome), predict()
1._at: group = 1
2._at: group = 2
3._at: group = 3

df chi2 P>chi2

_at#agegroup
(joint) (30--39 vs 20--29) 2 3.62 0.1641
(joint) (40+ vs 20--29) 2 79.45 0.0000

Joint 4 83.88 0.0000

Now, the tests are performed jointly over the levels of group, the at() variable. The atjoint sub-
option is the analogue for at() of the overjoint suboption from example 3.

Example 6
What if we would like to apply a contrast operator, like r., to the at() levels? It is not possible to

specify the operator inside the at() option. Instead, we need a new suboption, atcontrast():

. margins r.agegroup, at(group=(1/3)) contrast(atcontrast(r))
Contrasts of adjusted predictions Number of obs = 3,000
Model VCE: OIM
Expression: Pr(outcome), predict()
1._at: group = 1
2._at: group = 2
3._at: group = 3

df chi2 P>chi2

_at#agegroup
(2 vs 1) (30--39 vs 20--29) 1 3.55 0.0596
(2 vs 1) (40+ vs 20--29) 1 33.17 0.0000

(3 vs 1) (30--39 vs 20--29) 1 2.86 0.0906
(3 vs 1) (40+ vs 20--29) 1 79.36 0.0000

Joint 4 83.88 0.0000

Delta-method
Contrast std. err. [95% conf. interval]

_at#agegroup
(2 vs 1) (30--39 vs 20--29) -.0653508 .0346921 -.133346 .0026445
(2 vs 1) (40+ vs 20--29) -.1906915 .0331121 -.25559 -.1257931

(3 vs 1) (30--39 vs 20--29) -.0576252 .0340551 -.1243719 .0091216
(3 vs 1) (40+ vs 20--29) -.2977479 .0334237 -.3632572 -.2322386

When we specify contrast(atcontrast(r)), margins will apply the r. reference-category oper-
ator to the levels of group, the variable specified inside at(). The default reference category is 1, the
lowest level of group.
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Estimating treatment effects with margins
margins with the contrast option can also be used to estimate treatment effects in certain cases.

A treatment effect represents the change in an outcome variable that is attributable to a particular event,

controlling for all other factors that could affect the outcome. For example, we might want to know how a

person’s wage changes as a result of being in a union. Here the outcome variable is the person’s wage, and

the “event” is membership in a union. The treatment effect measures the difference in a person’s wage as

a result of being or not being in a union once we control for the person’s educational background, level

of experience, industry, and other factors.

In fact, Stata has an entire manual dedicated to estimators designed specifically for estimating treat-

ment effects; see the Stata Causal Inference and Treatment-Effects Estimation Reference Manual. Here

we show how margins can be used to estimate treatment effects using the regression-adjustment esti-
mator when the conditional independence assumption is met; see [CAUSAL] teffects intro. Regression

adjustment simply means that we are going to use a regression model to predict the outcome variable,

controlling for treatment status and other characteristics. The conditional independence assumption im-

plies that we have enough variables in our dataset so that once we control for them in our regression

model, the outcomes one would obtain with and without treatment are independent of how treatment

status is determined.

Example 7: Regression adjustment with a binary treatment variable
nlsw88.dta contains women’s wages (wage) in dollars per hour, a binary variable indicating their

union status (union), years of experience (ttl exp), and a variable, grade, indicating the number of
years of schooling completed. We want to know how being in a union (the treatment) affects women’s

wages. Traditionally, a wage equation of the form

ln wage𝑖 = 𝛽0 + 𝛽1union𝑖 + 𝛽2grade𝑖 + 𝛽3ttl exp + 𝛽4ttl exp2 + 𝜖𝑖

would be fit. However, there are two shortcomings that we will improve upon. First, to avoid the

problem of predicting the level of a log-transformed dependent variable, we will use poisson with

the vce(robust) option to fit an exponential regression model; see Wooldridge (2010, sec. 18.2) for

background on this approach. Second, the previous equation implies that factors other than union status

have the same impact on wages for both union and nonunion workers. Regression-adjustment estimators

allow all the variables to have different impacts depending on the level of the treatment variable, and we

can accomplish that here using factor-variable notation. In Stata, we fit our model by typing
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. use https://www.stata-press.com/data/r18/nlsw88
(NLSW, 1988 extract)
. poisson wage i.union##(c.grade c.ttl_exp##c.ttl_exp), vce(robust)
note: noncount dependent variable encountered; results correspond to an

exponential-mean model rather than a poisson model.
Iteration 0: Log pseudolikelihood = -4770.7957
Iteration 1: Log pseudolikelihood = -4770.7693
Iteration 2: Log pseudolikelihood = -4770.7693
Poisson regression Number of obs = 1,876

Wald chi2(7) = 1047.11
Prob > chi2 = 0.0000

Log pseudolikelihood = -4770.7693 Pseudo R2 = 0.1195

Robust
wage Coefficient std. err. z P>|z| [95% conf. interval]

union
Union .8638376 .168233 5.13 0.000 .534107 1.193568
grade .0895252 .0056874 15.74 0.000 .0783782 .1006722

ttl_exp .0805737 .0114534 7.03 0.000 .0581255 .103022

c.ttl_exp#
c.ttl_exp -.0015502 .0004612 -3.36 0.001 -.0024541 -.0006463

union#
c.grade
Union -.0310298 .0088259 -3.52 0.000 -.0483282 -.0137314

union#
c.ttl_exp

Union -.0404226 .0230113 -1.76 0.079 -.085524 .0046788

union#
c.ttl_exp#
c.ttl_exp

Union .0011808 .0008428 1.40 0.161 -.0004711 .0028327

_cons .017488 .0893602 0.20 0.845 -.1576547 .1926308

To see how union status affects wages, we can use margins:

. margins r.union, vce(unconditional)
Contrasts of predictive margins Number of obs = 1,876
Expression: Predicted number of events, predict()

df chi2 P>chi2

union 1 26.22 0.0000

Unconditional
Contrast std. err. [95% conf. interval]

union
(Union vs Nonunion) 1.004119 .1960944 .6197815 1.388457
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The estimated contrast 1.004 indicates that on average, belonging to a union causes a woman’s wage to

be slightly more than a dollar higher than if she were not in the union. This estimated contrast is called

the average treatment effect (ATE). Conceptually, we predicted the wage of each woman in the estimation

sample assuming she was in a union and obtained the sample mean. We then predicted each woman’s

wage assuming she was not in a union and obtained that sample mean. The difference between these two

sample means represents the ATE.

We obtain essentially the same results by using teffects ra:

. teffects ra (wage c.grade c.ttl_exp##c.ttl_exp, poisson) (union)
Iteration 0: EE criterion = 2.611e-13
Iteration 1: EE criterion = 1.112e-26
Treatment-effects estimation Number of obs = 1,876
Estimator : regression adjustment
Outcome model : Poisson
Treatment model: none

Robust
wage Coefficient std. err. z P>|z| [95% conf. interval]

ATE
union

(Union
vs

Nonunion) 1.004119 .1960421 5.12 0.000 .619884 1.388355

POmean
union

Nonunion 7.346493 .1096182 67.02 0.000 7.131645 7.561341

The point estimates of the ATE are identical to those we obtained using margins, though the standard
errors differ slightly from those reported by margins. The standard errors from the two estimators are,

however, asymptotically equivalent, meaning they would coincide with a sufficiently large dataset. The

last statistic in this output table indicates the untreated potential-outcome mean (untreated POM), which

is the mean predicted wage assuming each woman did not belong to a union.

If we specify the pomeans option with teffects ra, we can obtain both the treated and the untreated
POMs, which represent the predicted mean wages assuming all women were or were not in the union:

. teffects ra (wage c.grade c.ttl_exp##c.ttl_exp, poisson) (union), pomeans
Iteration 0: EE criterion = 2.611e-13
Iteration 1: EE criterion = 1.112e-26
Treatment-effects estimation Number of obs = 1,876
Estimator : regression adjustment
Outcome model : Poisson
Treatment model: none

Robust
wage Coefficient std. err. z P>|z| [95% conf. interval]

POmeans
union

Nonunion 7.346493 .1096182 67.02 0.000 7.131645 7.561341
Union 8.350612 .1757346 47.52 0.000 8.006179 8.695046

Notice that the difference between these two POMs equals 1.004119, which is theATEwe obtained earlier.
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In some applications, the average treatment effect of the treated (ATET) is more germane than theATE.

For example, if the untreated subjects in the sample could not possibly receive treatment (perhaps because

a medical condition precludes their taking an experimental drug), then considering the counterfactual

outcome had those subjects taken the drugmay not be relevant. In these cases, theATET is a better statistic

because it measures the effect of the treatment only for those subjects who actually did receive treatment.

Like the ATE, the ATET involves computing predicted outcomes for each treatment level, obtaining the

sample means, and computing the difference between those two means. Unlike the ATE, however, we

use only observations corresponding to treated subjects.

Example 8: Regression adjustment with a binary treatment variable (continued)
Here we calculate the ATET of union membership, first using margins. Because teffects ra over-

wrote our estimation results, we first quietly refit our poisson model. We then call margins to obtain
the ATET:

. quietly poisson wage i.union##(c.grade c.ttl_exp##c.ttl_exp), vce(robust)

. margins r.union, subpop(union) vce(unconditional)
Contrasts of predictive margins Number of obs = 1,876

Subpop. no. obs = 460
Expression: Predicted number of events, predict()

df chi2 P>chi2

union 1 18.86 0.0000

Unconditional
Contrast std. err. [95% conf. interval]

union
(Union vs Nonunion) .901419 .2075863 .4945574 1.308281

The key here was specifying the subpop(union) option to restrict margin’s computations to those

women who are union members. The results indicate that being in the union causes the union members’

wages to be about 90 cents higher than they would otherwise be.
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To replicate these results using teffects ra, we include the atet option to obtain ATETs:

. teffects ra (wage c.grade c.ttl_exp##c.ttl_exp, poisson) (union), atet
Iteration 0: EE criterion = 2.611e-13
Iteration 1: EE criterion = 9.347e-27
Treatment-effects estimation Number of obs = 1,876
Estimator : regression adjustment
Outcome model : Poisson
Treatment model: none

Robust
wage Coefficient std. err. z P>|z| [95% conf. interval]

ATET
union

(Union
vs

Nonunion) .901419 .2075309 4.34 0.000 .4946658 1.308172

POmean
union

Nonunion 7.776417 .162121 47.97 0.000 7.458665 8.094168

We obtain the same point estimate of the effect of union status as with margins. As before, the standard
errors differ slightly between the two estimators, but they are asymptotically equivalent. The output also

indicates that among the women who are in a union, their average wage would be $7.78 if they were not

in a union.

Technical note
One advantage of the ATET over the ATE is that the ATET can be consistently estimated with slightly

weaker assumptions than are required to consistently estimate theATE. See Comparing theATE andATET

in Remarks and examples of [CAUSAL] teffects intro advanced.

Both margins and teffects can estimate treatment effects using regression adjustment, so which
should you use? In addition to regression adjustment, the teffects command implements other estima-
tors of treatment effects; some of these estimators possess desirable robustness properties that we cannot

replicate using margins. Moreover, all the teffects estimators use a common syntax and automat-

ically present the estimated treatment effects, whereas we must first fit our own regression model and

then call margins to obtain the treatment effects.

On the other hand, particularly with the at() option, margins gives us more flexibility in specifying
our scenarios. The teffects commands allow us to measure the effect of a single binary or multinomial

treatment, but we can have margins compute the effects of arbitrary interventions, as we illustrate in the
next example.
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Example 9: Interventions involving multiple variables
Suppose we want to see how women’s wages would be affected if we could increase each woman’s

education level by one year. That is, we want to measure the treatment effect of an additional year of

schooling. We assume that if a woman attains another year of schooling, she cannot simultaneously

work. Thus, an additional year of education implies her total work experience must decrease by a year.

The flexible at() option of margins allows us to manipulate both variables at once:

. quietly poisson wage i.union##(c.grade c.ttl_exp##c.ttl_exp), vce(robust)

. margins, at((asobserved) _all)
> at(grade=generate(grade+1) ttl_exp=generate(ttl_exp-1))
> contrast(atcontrast(r._at))
Contrasts of predictive margins Number of obs = 1,876
Model VCE: Robust
Expression: Predicted number of events, predict()
1._at: (asobserved)
2._at: grade = grade+1

ttl_exp = ttl_exp-1

df chi2 P>chi2

_at 1 58.53 0.0000

Delta-method
Contrast std. err. [95% conf. interval]

_at
(2 vs 1) .3390392 .0443161 .2521813 .4258971

The first at() option instructs margins to obtain predicted wages for all women in the sample using
their existing values for grade and ttl exp and to record the mean of those predictions. The second
at() option instructs margins to obtain the mean predicted wage under the counterfactual scenario

where each woman’s education level is increased by one year and total work experience is simultaneously

decreased by one year. The contrast() option instructs margins to compute the difference between the
two means. The output indicates that increasing education by one year, which will necessarily decrease

work experience by the same amount, will cause the average wage to increase by about 34 cents per hour,

a statistically significant amount.

Conclusion
margins, contrast is a powerful command, and its abundance of suboptions may seem daunting.

The suboptions are in the service of only three goals, however. There are three things that margins,
contrast can do with a factor variable or a set of at() definitions:

1. Perform contrasts across the levels of the factor or set (as in example 1).

2. Perform a joint test across the levels of the factor or set (as in example 5).

3. Perform other tests and contrasts within each level of the factor or set (as in example 4).

The default behavior for variables specified inside at(), over(), and within() is to perform con-

trasts within groups; the default behavior for variables in the marginlist is to perform joint tests across

groups.



margins, contrast — Contrasts of margins 1718

Stored results
margins, contrast stores the following additional results in r():

Scalars

r(k terms) number of terms participating in contrasts

Macros

r(cmd) contrast
r(cmd2) margins
r(overall) overall or empty

Matrices

r(L) matrix of contrasts applied to the margins

r(chi2) vector of 𝜒2 statistics

r(p) vector of 𝑝-values corresponding to r(chi2)
r(df) vector of degrees of freedom corresponding to r(p)

margins, contrast with the post option also stores the following additional results in e():

Scalars

e(k terms) number of terms participating in contrasts

Macros

e(cmd) contrast
e(cmd2) margins
e(overall) overall or empty

Matrices

e(L) matrix of contrasts applied to the margins

e(chi2) vector of 𝜒2 statistics

e(p) vector of 𝑝-values corresponding to e(chi2)
e(df) vector of degrees of freedom corresponding to e(p)

Methods and formulas
See Methods and formulas in [R] margins and Methods and formulas in [R] contrast.

Reference
Wooldridge, J. M. 2010. Econometric Analysis of Cross Section and Panel Data. 2nd ed. Cambridge, MA: MIT Press.

Also see
[R] contrast — Contrasts and linear hypothesis tests after estimation

[R] lincom — Linear combinations of parameters

[R] margins — Marginal means, predictive margins, and marginal effects

[R] margins postestimation — Postestimation tools for margins

[R] margins, pwcompare — Pairwise comparisons of margins

[R] pwcompare — Pairwise comparisons

https://www.stata.com/bookstore/cspd.html


margins, pwcompare — Pairwise comparisons of margins

Description Quick start Menu Syntax
Suboptions Remarks and examples Stored results Methods and formulas
Also see

Description
margins with the pwcompare option performs pairwise comparisons of margins. margins,

pwcompare extends the capabilities of pwcompare to any of the nonlinear responses, predictive mar-

gins, or other margins that can be estimated by margins.

Quick start
All pairwise comparisons of the predictive margins for a after logit y a##b x1

margins a, pwcompare

Same as above, but report both tests and confidence intervals for differences in predictive margins

margins a, pwcompare(effects)

Same as above, but adjust 𝑝-values and confidence intervals for multiple comparisons using Bonferroni’s
method

margins a, pwcompare(effects) mcompare(bonferroni)

Report predictive margins for the levels of a, and group those that are not significantly different
margins a, pwcompare(groups)

All pairwise comparisons of the predictive margins for combinations of levels of a and b
margins a#b, pwcompare

Menu
Statistics > Postestimation

1719



margins, pwcompare — Pairwise comparisons of margins 1720

Syntax
margins [marginlist ] [ if ] [ in ] [weight ] [ , pwcompare margins options ]

margins [marginlist ] [ if ] [ in ] [weight ] [ , pwcompare(suboptions) margins options ]

where marginlist is a list of factor variables or interactions that appear in the current estimation results.

The variables may be typed with or without the i. prefix, and you may use any factor-variable syntax:

. margins i.sex i.group i.sex#i.group, pwcompare

. margins sex group sex#i.group, pwcompare

. margins sex##group, pwcompare

suboptions Description

Pairwise comparisons

cieffects show effects table with confidence intervals; the default

pveffects show effects table with 𝑝-values
effects show effects table with confidence intervals and 𝑝-values
cimargins show table of margins and confidence intervals

groups show table of margins and group codes

sort sort the margins or contrasts in each term

collect is allowed; see [U] 11.1.10 Prefix commands.

fweights, aweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.

Suboptions

� � �
Pairwise comparisons �

cieffects specifies that a table of the pairwise comparisons with their standard errors and confidence
intervals be reported. This is the default.

pveffects specifies that a table of the pairwise comparisons with their standard errors, test statistics,
and 𝑝-values be reported.

effects specifies that a table of the pairwise comparisons with their standard errors, test statistics,

𝑝-values, and confidence intervals be reported.
cimargins specifies that a table of the margins with their standard errors and confidence intervals be

reported.

groups specifies that a table of the margins with their standard errors and group codes be reported. Mar-

gins with the same letter in the group code are not significantly different at the specified significance

level.

sort specifies that the reported tables be sorted on the margins or contrasts in each term.
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Remarks and examples
You should be familiar with the concepts and syntax of both margins and pwcompare before using

the pwcompare option of margins. These remarks build on those in [R] margins and [R] pwcompare.

margins can perform pairwise comparisons of any of the margins that it estimates.

We begin by fitting a logistic regression model using the NHANES II dataset, ignoring the complex

survey nature of the data. Our dependent variable is highbp, an indicator for whether a person has high
blood pressure. We fit an interacted model including two factor variables representing the region of the

country as well as the continuous covariate bmi.

. use https://www.stata-press.com/data/r18/nhanes2

. logistic highbp region##c.bmi
(output omitted )

By default, margins will compute the predictive margins of the probability of a positive outcome for
each of the terms in marginlist after logistic regression. We will margin on region so that margins will
estimate the average predicted probabilities of having high blood pressure conditional on being in each

of the four regions and unconditional on BMI. We can specify the pwcompare option to obtain all possible
pairwise comparisons of these predictive margins:

. margins region, pwcompare
Pairwise comparisons of predictive margins Number of obs = 10,351
Model VCE: OIM
Expression: Pr(highbp), predict()

Delta-method Unadjusted
Contrast std. err. [95% conf. interval]

region
MW vs NE -.0377194 .0133571 -.0638987 -.01154
S vs NE -.0156843 .0133986 -.041945 .0105764
W vs NE -.006873 .0136595 -.0336451 .019899
S vs MW .0220351 .0124564 -.0023789 .0464492
W vs MW .0308463 .0127366 .0058831 .0558096
W vs S .0088112 .0127801 -.0162373 .0338598

This table gives each of the pairwise differences with confidence intervals. We can see that the con-

fidence interval in the row labeled MW vs NE does not include 0. At the 5% level, the predictive margins

for the first and second regions, the Northeast and the Midwest, are significantly different. The same

is true of the second and fourth regions, the Midwest and the West. With many pairwise comparisons,

output in this format can be difficult to sort through. We can organize it by adding the group suboption:
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. margins region, pwcompare(group)
Pairwise comparisons of predictive margins Number of obs = 10,351
Model VCE: OIM
Expression: Pr(highbp), predict()

Delta-method Unadjusted
Margin std. err. groups

region
NE .4388358 .010069 B
MW .4011164 .0087764 A
S .4231516 .0088395 AB
W .4319628 .0092301 B

Note: Margins sharing a letter in the group label
are not significantly different at the 5%
level.

The group output includes the predictive margins for each region and letters denoting margins that

are not significantly different from one another. In this case, the Northeast (NE), South (S), and West

(W) regions have the letter B in the “Unadjusted Groups” column. The letter B indicates that the average
predicted probability for the Northeast region is not significantly different from the average predicted

probabilities for the South and West regions at the 5% significance level. The Midwest (MW) region does
not share a letter with the Northeast region nor theWest region, which indicates that the average predicted

probability for the Midwest region is significantly different for each of the other two regions at our 5%

level.

We can also include the mcompare(bonferroni) option to perform tests using Bonferroni’s method

to account for making multiple comparisons.

. margins region, pwcompare(group) mcompare(bonferroni)
Pairwise comparisons of predictive margins Number of obs = 10,351
Model VCE: OIM
Expression: Pr(highbp), predict()

Number of
comparisons

region 6

Delta-method Bonferroni
Margin std. err. groups

region
NE .4388358 .010069 B
MW .4011164 .0087764 A
S .4231516 .0088395 AB
W .4319628 .0092301 AB

Note: Margins sharing a letter in the group label
are not significantly different at the 5%
level.

We now see the letter A on the row corresponding to the West region. At the 5% level and with Bon-

ferroni’s adjustment, the predictive margins for the probability in the Midwest and West regions are not

significantly different.
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Stored results
margins, pwcompare stores the following additional results in r():

Scalars

r(k terms) number of terms participating in pairwise comparisons

Macros

r(cmd) pwcompare
r(cmd2) margins
r(group#) group code for the #th margin in r(b)
r(mcmethod vs) method from mcompare()
r(mctitle vs) title for method from mcompare()
r(mcadjustall vs) adjustall or empty

Matrices

r(b) margin estimates

r(V) variance–covariance matrix of the margin estimates

r(b vs) margin difference estimates

r(V vs) variance–covariance matrix of the margin difference estimates

r(error vs) margin difference estimability codes;

0 means estimable,
8 means not estimable

r(table vs) matrix containing the margin differences with their standard errors, test statistics, 𝑝-
values, and confidence intervals

r(L) matrix that produces the margin differences

margins, pwcompare with the post option also stores the following additional results in e():

Scalars

e(k terms) number of terms participating in pairwise comparisons

Macros

e(cmd) pwcompare
e(cmd2) margins

Matrices

e(b) margin estimates

e(V) variance–covariance matrix of the margin estimates

e(b vs) margin difference estimates

e(V vs) variance–covariance matrix of the margin difference estimates

e(error vs) margin difference estimability codes;

0 means estimable,
8 means not estimable

e(L) matrix that produces the margin differences

Methods and formulas
See Methods and formulas in [R] margins and Methods and formulas in [R] pwcompare.

Also see
[R] contrast — Contrasts and linear hypothesis tests after estimation

[R] margins — Marginal means, predictive margins, and marginal effects

[R] margins, contrast — Contrasts of margins

[R] margins postestimation — Postestimation tools for margins

[R] pwcompare — Pairwise comparisons
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Description Menu Syntax
Options Remarks and examples Addendum: Advanced uses of dimlist
Acknowledgments References Also see

Description
marginsplot graphs the results of the immediately preceding margins command; see [R]margins.

Common names for some of the graphs that marginsplot can produce are profile plots and interaction
plots.

marginsplot is also available after estat lcprob and estat lcmean; see [SEM] estat lcprob,
[SEM] estat lcmean, [FMM] estat lcprob, and [FMM] estat lcmean.

Menu
Statistics > Postestimation

Syntax
marginsplot [ , options ]

options Description

Main

xdimension(dimlist [ , dimopts ]) use dimlist to define 𝑥 axis

plotdimension(dimlist [ , dimopts ]) create plots for groups in dimlist

bydimension(dimlist [ , dimopts ]) create subgraphs for groups in dimlist

graphdimension(dimlist [ , dimopts ]) create graphs for groups in dimlist

horizontal swap 𝑥 and 𝑦 axes
noci do not plot confidence intervals

derivlabels use labels attached to marginal-effects variables

name(name | stub [ , replace ]) name of graph, or stub if multiple graphs

Labels

allxlabels place ticks and labels on the 𝑥 axis for each value

nolabels label groups with their values, not their labels

allsimplelabels forgo variable name and equal signs in all labels

nosimplelabels include variable name and equal signs in all labels

separator(string) separator for labels when multiple variables are specified
in a dimension

noseparator do not use a separator

1724
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Plot

plotopts(plot options) affect rendition of all margin plots

plot#opts(plot options) affect rendition of #th margin plot

recast(plottype) plot margins using plottype

CI plot

ciopts(rcap options) affect rendition of all confidence interval plots

ci#opts(rcap options) affect rendition of #th confidence interval plot

recastci(plottype) plot confidence intervals using plottype

mcompare(method) adjust for multiple comparisons

level(#) set confidence level

Pairwise

unique plot only unique pairwise comparisons

csort sort comparison categories first

Add plots

addplot(plot) add other plots to the graph

Y axis, X axis, Titles, Legend, Overall, By

twoway options any options documented in [G-3] twoway options

byopts(byopts) how subgraphs are combined, labeled, etc.

where dimlist may be any of the dimensions across which margins were computed in the immediately preceding margins
command; see [R]margins. That is to say, dimlistmay be any variable used in the margins command, including variables
specified in the at(), over(), and within() options. More advanced specifications of dimlist are covered in Addendum:
Advanced uses of dimlist.

dimopts Description

labels(lablist) list of quoted strings to label each level of the dimension

elabels(elablist) list of enumerated labels

nolabels label groups with their values, not their labels

allsimplelabels forgo variable name and equal signs in all labels

nosimplelabels include variable name and equal signs in all labels

separator(string) separator for labels when multiple variables are specified
in the dimension

noseparator do not use a separator

where lablist is defined as

”label” [ ”label” [ . . . ] ]
elablist is defined as

# ”label” [ # ”label” [ . . . ] ]
and the #s are the indices of the levels of the dimension—1 is the first level, 2 is the second level, and

so on.

plot options Description

marker options change look of markers (color, size, etc.)

marker label options add marker labels; change look or position

cline options change look of the line



marginsplot — Graph results from margins (profile plots, etc.) 1726

method Description

noadjust do not adjust for multiple comparisons

bonferroni [ adjustall ] Bonferroni’s method; adjust across all terms

sidak [ adjustall ] Šidák’s method; adjust across all terms

scheffe Scheffé’s method

Options

� � �
Main �

xdimension(), plotdimension(), bydimension(), and graphdimension() specify the variables

from the preceding margins command whose group levels will be used for the graph’s 𝑥 axis, plots,

by() subgraphs, and graphs.

marginsplot chooses default dimensions based on the margins command. In most cases, the first
variable appearing in an at() option and evaluated over more than one value is used for the 𝑥 axis.

If no at() variable meets this condition, the first variable in the marginlist is usually used for the 𝑥
axis and the remaining variables determine the plotted lines or markers. Pairwise comparisons and

graphs of marginal effects (derivatives) have different defaults. In all cases, you may override the

defaults and explicitly control which variables are used on each dimension of the graph by using

these dimension options.

Each of these options supports suboptions that control the labeling of the dimension—axis labels for

xdimension(), plot labels for plotdimension(), subgraph titles for bydimension(), and graph
titles for graphdimension() titles.

For examples using the dimension options, see Controlling the graph’s dimensions.

xdimension(dimlist [ , dimopts ]) specifies the variables for the 𝑥 axis in dimlist and controls

the content of those labels with dimopts.

plotdimension(dimlist [ , dimopts ]) specifies in dimlist the variables whose group levels de-
termine the plots and optionally specifies in dimopts the content of the plots’ labels.

bydimension(dimlist [ , dimopts ]) specifies in dimlist the variables whose group levels deter-
mine the by() subgraphs and optionally specifies in dimopts the content of the subgraphs’ titles.
For an example using by(), see Three-way interactions.

graphdimension(dimlist [ , dimopts ]) specifies in dimlist the variables whose group levels de-
termine the graphs and optionally specifies in dimopts the content of the graphs’ titles.

horizontal reverses the default 𝑥 and 𝑦 axes. By default, the 𝑦 axis represents the estimates of the mar-
gins and the 𝑥 axis represents one or more factors or continuous covariates. Specifying horizontal
swaps the axes so that the 𝑥 axis represents the estimates of the margins. This option can be useful if

the labels on the factor or continuous covariates are long.

The horizontal option is discussed in Horizontal is sometimes better.

noci removes plots of the pointwise confidence intervals. The default is to plot the confidence intervals.

derivlabels specifies that variable labels attached to marginal-effects variables be used in place of the
variable names in titles and legends. Marginal-effects variables are the ones specified in margins’s
option dydx(), dyex(), eydx(), or eyex().
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name(name | stub [ , replace ]) specifies the name of the graph or graphs. If the graphdimension()
option is specified, or if the default action is to produce multiple graphs, then the argument of name()
is taken to be stub and graphs named stub1, stub2, . . . are created.

The replace suboption causes existing graphs with the specified name or names to be replaced.

If name() is not specified, default names are used and the graphs may be replaced by subsequent

marginsplot or other graphing commands.

� � �
Labels �

With the exception of allxlabels, all of these options may be specified either directly as

options or as dimopts within options xdimension(), plotdimension(), bydimension(), and

graphdimension(). When specified in one of the dimension options, only the labels for that dimension

are affected. When specified outside the dimension options, all labels on all dimensions are affected.

Specifications within the dimension options take precedence.

allxlabels specifies that tick marks and labels be placed on the 𝑥 axis for each value of the 𝑥-
dimension variables. By default, if there are more than 25 ticks, default graph axis labeling rules

are applied. Labeling may also be specified using the standard graph twoway 𝑥-axis label rules and
options—xlabel(); see [G-3] axis label options.

nolabels specifies that value labels not be used to construct graph labels and titles for the group levels
in the dimension. By default, if a variable in a dimension has value labels, those labels are used to

construct labels and titles for axis ticks, plots, subgraphs, and graphs.

Graphs of contrasts and pairwise comparisons are an exception to this rule and are always labeled

with values rather than value labels.

allsimplelabels and nosimplelabels control whether graphs’labels and titles include just the values
of the variables or include variable names and equal signs. The default is to use just the value label

for variables that have value labels and to use variable names and equal signs for variables that do not

have value labels. An example of the former is “Female” and the latter is “country=2”.

Sometimes, value labels are universally descriptive, and sometimes they have meaning only when

considered in relation to their variable. For example, “Male” and “Female” are typically universal,

regardless of the variable fromwhich they are taken. “High” and “Low”may not have meaning unless

you know they are in relation to a specific measure, say, blood-pressure level. The allsimplelabels
and nosimplelabels options let you override the default labeling.

allsimplelabels specifies that all titles and labels use just the value or value label of the vari-
able.

nosimplelabels specifies that all titles and labels include varname= before the value or value
label of the variable.

separator(string) and noseparator control the separator between label sections when more than one
variable is used to specify a dimension. The default separator is a comma followed by a space, but

no separator may be requested with noseparator or the default may be changed to any string with
separator().

For example, if plotdimension(a b) is specified, the plot labels in our graph legend might be “a=1,

b=1”, “a=1, b=2”, . . . . Specifying separator(:) would create labels “a=1:b=1”, “a=1:b=2”, . . . .
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� � �
Plot �

plotopts(plot options) affects the rendition of all margin plots. The plot options can affect the size
and color of markers, whether and how the markers are labeled, and whether and how the points are

connected; see [G-3] marker options, [G-3] marker label options, and [G-3] cline options.

These settings may be overridden for specific plots by using the plot#opts() option.

plot#opts(plot options) affects the rendition of the #th margin plot. The plot options can affect the
size and color of markers, whether and how the markers are labeled, and whether and how the points

are connected; see [G-3] marker options, [G-3] marker label options, and [G-3] cline options.

recast(plottype) specifies that margins be plotted using plottype. plottype may be scatter, line,
connected, bar, area, spike, dropline, or dot; see [G-2] graph twoway. When recast()
is specified, the plot-rendition options appropriate to the specified plottype may be used in lieu of

plot options. For details on those options, follow the appropriate link from [G-2] graph twoway.

For an example using recast(), see Continuous covariates.

You may specify recast() within a plotopts() or plot#opts() option. It is better, however, to
specify it as documented here, outside those options. When specified outside those options, you have

greater access to the plot-specific rendition options of your specified plottype.

� � �
CI plot �

ciopts(rcap options) affects the rendition of all confidence interval plots; see [G-3] rcap options.

These settings may be overridden for specific confidence interval plots with the ci#opts() option.

ci#opts(rcap options) affects the rendition of the #th confidence interval; see [G-3] rcap options.

recastci(plottype) specifies that confidence intervals be plotted using plottype. plottype may be

rarea, rbar, rspike, rcap, rcapsym, rline, rconnected, or rscatter; see [G-2] graph twoway.
When recastci() is specified, the plot-rendition options appropriate to the specified plottypemay be
used in lieu of rcap options. For details on those options, follow the appropriate link from [G-2] graph

twoway.

For an example using recastci(), see Continuous covariates.

You may specify recastci() within a ciopts() or ci#opts() option. It is better, however, to

specify it as documented here, outside those options. When specified outside those options, you have

greater access to the plot-specific rendition options of your specified plottype.

mcompare(method) specifies the method for confidence intervals that account for multiple comparisons
within a factor-variable term. The default is determined by the margins results stored in r(). If
marginsplot is working from margins results stored in e(), the default is mcompare(noadjust).

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is de-
termined by the margins results stored in r(). If marginsplot is working from margins results
stored in e(), the default is level(95) or as set by set level; see [U] 20.8 Specifying the width
of confidence intervals.



marginsplot — Graph results from margins (profile plots, etc.) 1729

� � �
Pairwise �

These options have an effect only when the pwcompare option was specified on the preceding

margins command.

unique specifies that only unique pairwise comparisons be plotted. The default is to plot all pairwise
comparisons, including those that are mirror images of each other—“male” versus “female” and “fe-

male” versus “male”. margins reports only the unique pairwise comparisons. unique also changes
the default xdimension() for graphs of pairwise comparisons from the reference categories ( pw0)
to the comparisons of each pairwise category ( pw).

Unique comparisons are often preferred with horizontal graphs that put all pairwise comparisons on

the 𝑥 axis, whereas including the full matrix of comparisons is preferred for charts showing the refer-

ence groups on an axis and the comparison groups as plots; see Pairwise comparisons and Horizontal

is sometimes better.

csort specifies that comparison categories are sorted first, and then reference categories are sortedwithin
comparison category. The default is to sort reference categories first, and then sort comparison cate-

gories within reference categories. This option has an observable effect only when pw is also spec-
ified in one of the dimension options. It then determines the order of the labeling in the dimension

where pw is specified.

� � �
Add plots �

addplot(plot) provides a way to add other plots to the generated graph; see [G-3] addplot option.

For an example using addplot(), see Adding scatterplots of the data.

If multiple graphs are drawn by a single marginsplot command or if plot specifies plots withmultiple
𝑦 variables, for example, scatter y1 y2 x, then the graph’s legend will not clearly identify all the
plots and will require customization using the legend() option; see [G-3] legend options.

� � �
Y axis, X axis, Titles, Legend, Overall, By �

twoway options are any of the options documented in [G-3] twoway options. These include options

for titling the graph (see [G-3] title options); for saving the graph to disk (see [G-3] saving option);

for controlling the labeling and look of the axes (see [G-3] axis options); for controlling the look,

contents, position, and organization of the legend (see [G-3] legend options); for adding lines (see

[G-3] added line options) and text (see [G-3] added text options); and for controlling other aspects

of the graph’s appearance (see [G-3] twoway options).

The label() suboption of the legend() option has no effect on marginsplot. Use the order()
suboption instead.

byopts(byopts) affects the appearance of the combined graph when bydimension() is specified or

when the default graph has subgraphs, including the overall graph title, the position of the legend, and

the organization of subgraphs. See [G-3] by option.
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Remarks and examples
Remarks are presented under the following headings:

Introduction
Dataset
Profile plots
Interaction plots
Contrasts of margins—effects (discrete marginal effects)
Three-way interactions
Continuous covariates
Plots at every value of a continuous covariate
Contrasts of at() groups—discrete effects
Controlling the graph’s dimensions
Pairwise comparisons
Horizontal is sometimes better
Marginal effects
Plotting a subset of the results from margins
Advanced usage

Plots with multiple terms
Plots with multiple at() options
Adding scatterplots of the data

Video examples

Introduction
marginsplot is a post-margins command. It graphs the results of the margins command, whether

those results are marginal means, predictive margins, marginal effects, contrasts, pairwise comparisons,

or other statistics; see [R] margins.

By default, the margins are plotted on the 𝑦 axis, and all continuous and factor covariates specified

in the margins command will usually be placed on the 𝑥 axis or used to identify plots. Exceptions are

discussed in the following sections and in Addendum: Advanced uses of dimlist below.

marginsplot produces classic plots, such as profile plots and interaction plots. Beyond that, anything
that margins can compute, marginsplot can graph.

We will be using some relatively complicated margins commands with little explanation of the syn-
tax. Wewill also avoid lengthy interpretations of the results of margins. See [R]margins for the complete

syntax of margins and discussions of its results.

All graphs in this entry were drawn using the s2gcolor scheme; see [G-4] Scheme s2.

Mitchell (2021) and Baldwin (2019) show in many examples how to use marginsplot to understand
a fitted model.

Dataset
For continuity, we will use one dataset for most examples—the Second National Health and Nutrition

Examination Survey (NHANES II) (McDowell et al. 1981). NHANES II is part of a study to assess the

health and nutritional status of adults and children in the United States. It is designed to be a nationally

representative sample of the US population. This particular sample is from 1976 to 1980.
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The survey nature of the dataset—weights, strata, and sampling units—will be ignored in our anal-

yses. We are discussing graphing, not survey statistics. If you would like to see the results with the ap-

propriate adjustments for the survey design, just add svy: before each estimation command, and if you
wish, add vce(unconditional) as an option to each margins command. See [R]margins, particularly

the discussion and examples under Obtaining margins with survey data and representative samples, for

reasons why you probably would want to add vce(unconditional) when analyzing survey data. For
the most part, adjusting for survey design produces moderately larger confidence intervals and relatively

small changes in point estimates.

Profile plots
What does my estimation say about how my response varies as one (or more) of my covariates

changes? That is the question that is answered by profile plots. Profile plots are also referred to as

plots of estimated (or expected, or least-squares) means, though that is unnecessarily restrictive when

considering models of binary, count, and ordered outcomes. In the latter cases, we might prefer to say

they plot conditional expectations of responses, where a response might be a probability.

What we do with the other covariates depends on the questions we wish to answer. Sometimes, we

wish to hold other covariates at fixed values, and sometimes we wish to average the response over their

values. margins can do either, so you can graph either.

We can fit a fully factorial two-wayANOVA of systolic blood pressure on age group and sex using the

NHANES II data.

. use https://www.stata-press.com/data/r18/nhanes2

. anova bpsystol agegrp##sex
Number of obs = 10,351 R-squared = 0.2497
Root MSE = 20.2209 Adj R-squared = 0.2489

Source Partial SS df MS F Prob>F

Model 1407229.3 11 127929.93 312.88 0.0000

agegrp 1243037.8 5 248607.56 608.02 0.0000
sex 27728.379 1 27728.379 67.81 0.0000

agegrp#sex 88675.043 5 17735.009 43.37 0.0000

Residual 4227440.7 10,339 408.88294

Total 5634670 10,350 544.41256

If you are more comfortable with regression than ANOVA, then type

. regress bpsystol agegrp##sex

The anova and regress commands fit identical models. The output from anova displays all the

terms in the model and thus tends to be more conducive to exploration with margins and marginsplot.
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We estimate the predictive margins of systolic blood pressure for each age group using margins.

. margins agegrp
Predictive margins Number of obs = 10,351
Expression: Linear prediction, predict()

Delta-method
Margin std. err. t P>|t| [95% conf. interval]

agegrp
20--29 117.2684 .419845 279.31 0.000 116.4454 118.0914
30--39 120.2383 .5020813 239.48 0.000 119.2541 121.2225
40--49 126.9255 .56699 223.86 0.000 125.8141 128.0369
50--59 135.682 .5628593 241.06 0.000 134.5787 136.7853
60--69 141.5285 .3781197 374.30 0.000 140.7873 142.2696
70+ 148.1096 .6445073 229.80 0.000 146.8463 149.373

The six predictive margins are just the averages of the predictions over the estimation sample, holding

agegrp to each of its six levels. If this were a designed experiment rather than survey data, we might
wish to assume the cells are balanced—that they have the same number of observations—and thus es-

timate what are often called expected means or least-squares means. To do that, we would simply add

the asbalanced option to the margins command. The NHANES II data are decidedly unbalanced over
sex#agegrp cells. So much so that it is unreasonable to assume the cells are balanced.

We graph the results:

. marginsplot
Variables that uniquely identify margins: agegrp
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Profile plots are often drawn without confidence intervals (CIs). The CIs may be removed by adding

the noci option. We prefer to see the CIs.

Disciplines vary widely in their use of the term profile plot. Some disciplines consider any connected

plot of a response over values of other variables to be a profile plot. By that definition, most graphs in

this entry are profile plots.
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Interaction plots
Interaction plots are often used to explore the form of an interaction. The interaction term in our

ANOVA results is highly significant. Are the interaction effects also large enough to matter? What form

do they take? We can answer these questions by fixing agegrp and sex to each possible combination of
the two covariates and estimating the margins for those cells.

. margins agegrp#sex

Then, we can graph the results:

. marginsplot
Variables that uniquely identify margins: agegrp sex

110

120

130

140

150

Li
ne

ar
 p

re
di

ct
io

n

20–29 30–39 40–49 50–59 60–69 70+
Age group

Male
Female

Adjusted predictions of agegrp#sex with 95% CIs

It is clear that the effect of age differs by sex—there is an interaction. If there were no interaction,

then the two lines would be parallel.

While males start out with higher systolic blood pressure, females catch up to the males as age in-

creases and may even surpass males in the upper age groups. We say “may” because we cannot tell if

the differences are statistically significant. The CIs overlap for the top three age groups. It is tempting

to conclude from this overlap that the differences are not statistically significant. Do not fall into this

trap. Likewise, do not fall into the trap that the first three age groups are different because their CIs do

not overlap. The CIs are for the point estimates, not the differences. There is a covariance between the

differences that we must consider if we are to make statements about those differences.

Contrasts of margins—effects (discrete marginal effects)
To assess the differences, all we need to do is ask margins to contrast the sets of effects that we

just estimated; see [R] margins, contrast. With only two groups in sex, it does not matter much which

contrast operator we choose. We will use the reference contrast. It will compare the difference between

males and females, with males (the first category) as the reference category.
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. margins r.sex@agegrp
Contrasts of adjusted predictions Number of obs = 10,351
Expression: Linear prediction, predict()

df F P>F

sex@agegrp
(Female vs Male) 20--29 1 224.92 0.0000
(Female vs Male) 30--39 1 70.82 0.0000
(Female vs Male) 40--49 1 12.15 0.0005
(Female vs Male) 50--59 1 0.47 0.4949
(Female vs Male) 60--69 1 3.88 0.0488
(Female vs Male) 70+ 1 6.37 0.0116

Joint 6 53.10 0.0000

Denominator 10339

Delta-method
Contrast std. err. [95% conf. interval]

sex@agegrp
(Female vs Male) 20--29 -12.60132 .8402299 -14.24833 -10.9543
(Female vs Male) 30--39 -8.461161 1.005448 -10.43203 -6.490288
(Female vs Male) 40--49 -3.956451 1.134878 -6.181031 -1.731871
(Female vs Male) 50--59 -.7699782 1.128119 -2.981309 1.441353
(Female vs Male) 60--69 1.491684 .756906 .0080022 2.975367
(Female vs Male) 70+ 3.264762 1.293325 .729594 5.79993

Because we are looking for effects that are different from 0, we will add a reference line at 0 to our

graph.

. marginsplot, yline(0)
Variables that uniquely identify margins: agegrp
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We can now say that females’ systolic blood pressure is substantially and significantly lower than

males’ in the first three age groups but is significantly higher in the last two age groups. Despite the

overlapping CIs for the last two age groups in the interaction graph, the effect of sex is significant in

these age groups.
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The terminology for what we just estimated and graphed varies widely across disciplines. Those

versed in design of experiments refer to these values as contrasts or effects. Economists and some other

social scientists call them marginal or partial effects. The latter groups might be more comfortable if we

avoided the whole concept of contrasts and instead estimated the effects by typing

. margins agegrp, dydx(sex)

This will produce estimates that are identical to those shown above, and we can graph them by typing

marginsplot.

The advantage of using the contrast notation and thinking in contrasts is most evident when we take

marginal effects with respect to a categorical covariate with more than two levels. Marginal effects for

each level of the covariate will be taken with respect to a specified base level. Contrasts are much more

flexible. Using the r. operator, we can reproduce the marginal-effects results by taking derivatives with
respect to a reference level (as we saw above.) We can also estimate the marginal effect of first moving

from level 1 to level 2, then from level 2 to level 3, then from level 3 to level 4, . . . using the ar. or
“reverse adjacent” operator. Adjacent effects (marginal effects) can be valuable when evaluating an

ordinal covariate, such as agegrp in our current model. For a discussion of contrasts, see [R] contrast
and [R] margins, contrast.

Three-way interactions
marginsplot can handle any number of covariates in your margins command. Consider the three-

way ANOVA model that results from adding an indicator for whether an individual has been diagnosed

with diabetes. We will fully interact the new covariate with the others in the model.

. anova bpsystol agegrp##sex##diabetes
Number of obs = 10,349 R-squared = 0.2572
Root MSE = 20.131 Adj R-squared = 0.2556

Source Partial SS df MS F Prob>F

Model 1448983.2 23 62999.268 155.45 0.0000

agegrp 107963.58 5 21592.716 53.28 0.0000
sex 1232.7927 1 1232.7927 3.04 0.0812

agegrp#sex 11679.592 5 2335.9185 5.76 0.0000
diabetes 7324.9892 1 7324.9892 18.07 0.0000

agegrp#diabetes 5484.5462 5 1096.9092 2.71 0.0189
sex#diabetes 102.98824 1 102.98824 0.25 0.6142

agegrp#sex#diabetes 4863.1497 5 972.62994 2.40 0.0349

Residual 4184296.9 10,325 405.25878

Total 5633280 10,348 544.38346

The three-way interaction is significant, as is the main effect of diabetes and its interaction with

agegrp.

Again, if you are more comfortable with regression than ANOVA, you may type

. regress bpsystol agegrp##sex##diabetes

The margins and marginsplot results will be the same.
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We estimate the expected cell means for each combination of agegrp, sex, and diabetes, and then
graph the results by typing

. margins agegrp#sex#diabetes
(output omitted )

. marginsplot
Variables that uniquely identify margins: agegrp sex diabetes
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The graph is busy and difficult to interpret.

We can make it better by putting those with diabetes on one subgraph and those without on another:

. marginsplot, by(diabetes)
Variables that uniquely identify margins: agegrp sex diabetes
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We notice much larger CIs for diabetics. That is not surprising because our sample contains only 499

diabetics compared with 9,850 nondiabetics.
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Amore interesting way to arrange the plots is by grouping the subgraphs on sex:

. marginsplot, by(sex)
Variables that uniquely identify margins: agegrp sex diabetes
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Aside from increased systolic blood pressure in the upper-age groups, which we saw earlier, it appears

that those with diabetes are at greater risk of higher systolic blood pressure for many upper-age groups.

We can check that by having margins estimate the differences between diabetics and nondiabetics, and
graphing the results.

. margins r.diabetes@agegrp#sex
(output omitted )

. marginsplot, by(sex) yline(0)
Variables that uniquely identify margins: agegrp sex
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With CIs above 0 for six of eight age groups over 40, this graph provides evidence that diabetes is related

to higher blood pressure in those over 40.
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Continuous covariates
margins and marginsplot are just as useful with continuous covariates as they are with factor vari-

ables. As a variation on our ANOVA/regression models, let’s move to a logistic regression, using as our

dependent variable an indicator for whether a person has high blood pressure. We introduce a continuous

covariate—body mass index (BMI), a measure of weight relative to height. High BMI is often associated

with high blood pressure. We will allow the effect of BMI to vary across sexes, age groups, and sex/age

combinations by fully interacting the covariates.

. logistic highbp sex##agegrp##c.bmi

If we wished, we could perform all the analyses above on this model. Instead of estimating margins,

contrasts, and marginal effects on the level of systolic blood pressure, we would be estimating margins,

contrasts, and marginal effects on the probability of having high blood pressure. You can see those results

by repeating any of the prior commands that involve sex and agegrp. In this section, we will focus on
the continuous covariate bmi.

With continuous covariates, rather than specify them in the marginlist of margins, we specify the
specific values at which we want the covariate evaluated in an at() option. at() options are very

flexible, and there are many ways to specify values; see Syntax of at() in [R] margins.

BMI in our sample ranges from 12.4 to 61.1. Let’s estimate the predictive margins for males and

females at levels of BMI from 10 through 65 at intervals of 5 and graph the results:

. margins sex, at(bmi=(10(5)65))
(output omitted )

. marginsplot, xlabel(10(10)60)
Variables that uniquely identify margins: bmi sex
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We added the xlabel(10(10)60) option to improve the labeling of the 𝑥 axis. You may add any

twoway options (see [G-3] twoway options) to the marginsplot command.

For a given BMI, males are generally more susceptible to high blood pressure, though the effect is

attenuated by the logistic response when the probabilities approach 0 or 1.
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Because bmi is continuous, we might prefer to see the response graphed using a line. We might also

prefer that the CIs be plotted as areas. We change the plottype of the response by using the recast()
option and the plottype of the CI by using the recastci() option:

. marginsplot, xlabel(10(10)60) recast(line) recastci(rarea)
Variables that uniquely identify margins: bmi sex
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The CIs are a little dark for our tastes. You can dim them a bit by reducing the intensity of their color.

Adding ciopts(color(*.8)) to our marginsplot command will do that. Any plot option accepted
by twoway rarea (see [G-2] graph twoway rarea) may be specified in a ciopts() option.

Given their confidence regions, the male and female profiles appear to be statistically different over

most of the range of BMI. As with the profiles of categorical covariates, we can check that assertion

by contrasting the two profiles on sex and graphing the results. Let’s improve the smoothness of the

response by specifying intervals of 1 instead of 5.

. margins r.sex, at(bmi=(10(1)65))
(output omitted )

. marginsplot, xlabel(10(10)60) recast(line) recastci(rarea)
Variables that uniquely identify margins: bmi

-.2

-.15

-.1

-.05

0

.05

C
on

tr
as

ts
 o

f P
r(

hi
gh

bp
)

10 20 30 40 50 60
Body mass index (BMI)

Contrasts of predictive margins of sex with 95% CIs



marginsplot — Graph results from margins (profile plots, etc.) 1740

We see that the difference between the sexes is largest at a BMI of about 35 and that the sexes respond

more similarly with very high and very low BMI. This shape is largely determined by the response of the

logistic function, which is attenuated near probabilities 0 and 1, combined with the fact that the lowest

measured BMIs are associated with low probabilities of high blood pressure and the highest measured

BMIs are associated with high probabilities of high blood pressure.

As when we contrasted profiles of categorical variables, different disciplines will think of this

graph differently. Those familiar with designed experiments will be comfortable with the terms used

above—this is a contrast of profiles, or a profile of effects, or a profile of a contrast. Many social sci-

entists will prefer to think of this as a graph of marginal or partial effects. For them, this is a plot of the

discrete marginal effect of being female for various levels of BMI. They can obtain an identical graph,

with labeling more appropriate for the marginal effect’s interpretation, by typing

. margins, at(bmi=(10(1)65)) dydx(sex)

. marginsplot, xlabel(10(10)60) recast(line) recastci(rarea)

We can also plot profiles of the response of BMI by levels of another continuous covariate (rather

than by the categorical variable sex). To do so, we will need another continuous variable in our model.
We have been using age groups as a covariate to emphasize the treatment of categorical variables and

to allow the effect of age to be flexible. Our dataset also has age recorded in integer years. We replace

agegrp with continuous age in our logistic regression.

. logistic highbp sex##c.age##c.bmi

We can now obtain profiles of BMI for different ages by specifying ranges for both bmi and age in a
single at() option on the margins command:

. margins sex, at(bmi=(10(5)60) age=(20(10)70))

With six ages specified, we have many profiles, so we will dispense with the CIs by adding the noci
option:

. marginsplot, noci by(sex)
Variables that uniquely identify margins: bmi age sex
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Our model seems to indicate that males have a sharper reaction to body mass indices than do females.

Likewise, younger subjects display a sharper response, while older subjects have amore gradual response

with earlier onset. That interpretation might be a result of our parametric treatment of age. As it turns
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out, the interpretation holds if we allow age to take more flexible forms or return to our use of age groups,

which allows each of seven age groups to have unique BMI profiles. Here are the commands to perform

that analysis:

. logistic highbp sex##agegrp##c.bmi
(output omitted )

. margins sex#agegrp, at(bmi=(10(5)60))
(output omitted )

. marginsplot, noci by(sex)
Variables that uniquely identify margins: bmi sex agegrp
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Plots at every value of a continuous covariate
In some cases, the specific values of a continuous covariate are important, and we want to plot the

response at those specific values. Return to our logistic example with age treated as a continuous covari-

ate.

. logistic highbp sex##c.age##c.bmi

We can use a programming trick to extract all the values of age and then supply them in an at()
option, just as we would any list of values.

. levelsof age

. margins sex, at(age=(‘r(levels)’))

See [P] levelsof for a discussion of the levelsof command. levelsof returns in r(levels) the sorted
list of unique values of the specified varlist, in our case, age.

We can then plot the results using marginsplot.

This is not a very interesting trick when using our age variable, which is recorded as integers from 20

to 74, but the approach will work with almost any continuous variable. In our model, bmi might seem
more interesting, but there are 9,941 unique values of bmi in our dataset. Agraph cannot resolve so many

different values. For that reason, we usually recommend against plotting at every value of a covariate.

Instead, graph at reasonable values over the range of the covariate by using the at() option, as we did
earlier. This trick is best reserved for variables with a few, or at most a few dozen, unique values.
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Contrasts of at() groups—discrete effects
We have previously contrasted across the values of factor variables in our model. Put another way,

we have estimated the discrete marginal effects of factor variables. We can do the same for the levels of

variables in at() specifications and across separate at() specifications.

Returning to one of our logistic models and its margins, we earlier estimated the predictive margins

of BMI at 5-unit intervals for both sexes. These are the commands we typed:

. logistic highbp sex##agegrp##c.bmi

. margins sex, at(bmi=(10(5)65))

. marginsplot, xlabel(10(10)60)

We can estimate the discrete effects by sex of bmi moving from 10 to 15, then from 15 to 20, . . . ,

and then from 60 to 65 by contrasting the levels of the at() groups using the reverse-adjacent contrast
operator (ar.). We specify the operator within the atcontrast() suboption of the contrast() op-

tion. We need to specify one other option. By default, margins, contrast will apply a contrast to all
variables in its marginlist when a contrast has been requested. In this case, we do not want to contrast

across sexes but rather to contrast across the levels of BMI within each sex. To prevent margins from
contrasting across the sexes, we specify the marginswithin option. Our margins command is

. margins sex, at(bmi=(10(5)65)) contrast(atcontrast(ar._at) marginswithin)

And we graph the results using marginsplot:

. marginsplot
Variables that uniquely identify margins: bmi sex
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The graph shows the contrasts (or if you prefer, discrete changes) in the probability of high blood

pressure by sex as one increases BMI in 5-unit increments.
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We can even estimate contrasts (discrete effects) across at() options. To start, let’s compare the

age-group profiles of the probability of high blood pressure for those in the 25th and 75th percentile of

BMI.

. margins agegrp, at((p25) bmi) at((p75) bmi)
(output omitted )

. marginsplot
Variables that uniquely identify margins: agegrp _atopt
Multiple at() options specified:

_atoption=1: (p25) bmi
_atoption=2: (p75) bmi
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For each age group, people whose BMI is at the 75th percentile have a much higher probability of

high blood pressure than those at the 25th percentile. What is that difference in probability and its CI?

To contrast across the percentiles of BMI within age groups, we again specify a contrast operator on the

at() groups using atcontrast(), and we also tell margins to perform that contrast within the levels

of the marginlist by using the marginswithin option.

. margins agegrp, at((p25) bmi) at((p75) bmi)
> contrast(atcontrast(r._at) marginswithin)
(output omitted )
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. marginsplot
Variables that uniquely identify margins: agegrp _atopt
Multiple at() options specified:

_atoption=1: (p25) bmi
_atoption=2: (p75) bmi
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The differences in probability between 25th and 75th BMI percentiles are clearly significantly greater

than 0. The differences appear to be smallest for those in the youngest and oldest age groups.

Controlling the graph’s dimensions
Thus far, marginsplot has miraculously done almost exactly what we want in most cases. The things

we want on the 𝑥 axis have been there, the choice of plots has made sense, etc. Some of that luck sprang

from the relatively simple analyses we were performing, and some was from careful specification of our

margins command. Sometimes, we will not be so lucky.

Consider the following regress, margins, and marginsplot commands:
. regress bpsystol agegrp##sex##c.bmi
(output omitted )

. margins agegrp, over(sex) at(bmi=(10(10)60))
(output omitted )
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. marginsplot
Variables that uniquely identify margins: agegrp _atopt
Multiple at() options specified:

_atoption=1: (p25) bmi
_atoption=2: (p75) bmi
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By default, marginsplot places the levels of the first multilevel at() specification on the 𝑥 axis and

then usually plots the levels of all remaining variables as connected lines. That is what we see in the graph

above—bmi, the at() variable, is on the 𝑥 axis, and each combination of agegrp and sex is plotted as a
separate connected line. If there is no multilevel at() specification, then the first variable in marginlist
becomes the 𝑥 axis. There are many more rules, but it is usually best to simply type marginsplot and
see what happens. If you do not like marginsplot’s choices, change them.

What if we wanted agegrp on the 𝑥 axis instead of BMI? We tell marginsplot to make that change
by specifying agegrp in the xdimension() option:

. marginsplot, xdimension(agegrp)
Variables that uniquely identify margins: bmi agegrp sex
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We have been suppressing the Results window output for marginsplot, but that output is help-
ful if we want to change how things are plotted. You may specify any variable used in your margins
command in any of the dimension options—xdimension(), plotdimension(), bydimension(), and
graphdimension(). (In fact, there are some pseudovariables that you may also specify in some cases;
see Addendum: Advanced uses of dimlist for details.) marginsplot tries to help you narrow your

choices by listing a set of variables that uniquely identify all your margins. You are not restricted to this

list.

We have a different 𝑥 axis and a different set of plots, but our graph is still busy and difficult to

read. We can make it better by creating separate graph panels for each sex. We do that by adding a

bydimension() option with sex as the argument.

. marginsplot, xdimension(agegrp) bydimension(sex)
Variables that uniquely identify margins: bmi agegrp sex
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The patterns and the differences between males and females are now easier to see.
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If our interest is in comparing males and females, we might even choose to create a separate panel for

each level of BMI:

. marginsplot, xdimension(agegrp) bydimension(bmi) xlabel(, angle(45))
Variables that uniquely identify margins: bmi agegrp sex
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The 𝑥-axis labels did not fit, so we angled them.
We leave you to explore the use of the graphdimension() option. It is much like bydimension()

but creates separate graphs rather than separate panels. Operationally, the plotdimension() option

is rarely used. All variables not in the 𝑥 dimension and not specified elsewhere become the plotted

connected lines.

You will likely use the dimension options frequently. This is one of the rare cases where we

recommend using the minimal abbreviations of the options—x() for xdimension(), plot() for

plotdimension(), by() for bydimension(), and graph() for graphdimension(). The abbrevi-

ations are easy to read and just as meaningful as the full option names. The full names exist to reinforce

the relationship between the dimension options.
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Pairwise comparisons
marginsplot can graph the results of margins, pwcompare; see [R] margins, pwcompare. We

return to one of ourANOVA examples. Here we request pairwise comparisons with the pwcompare option
of margins, and we request Bonferroni-adjusted CIs with the mcompare() option:

. anova bpsystol agegrp##sex
(output omitted )

. margins agegrp, pwcompare mcompare(bonferroni)
(output omitted )

. marginsplot
Variables that uniquely identify margins: _pw1 _pw0

i_pw enumerates all pairwise comparisons; _pw0 enumerates the reference
categories; _pw1 enumerates the comparison categories.
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Pairwise comparisons of predictive margins of agegrp with 95% CIs

Each connected line plot in the graph represents a reference age-group category for the pairwise compar-

ison. The ticks on the 𝑥 axis represent comparison age-group categories. So, each plot is a profile for a

reference category showing its comparison to each other category.

Horizontal is sometimes better
Another interesting way to graph pairwise comparisons is to simply plot each comparison and label

the two categories being compared. This type of graph works better if it is oriented horizontally rather

than vertically.

Continuing with the example above, we will switch the graph to horizontal. We will also make several

changes to display the graph better. We specify that only unique comparisons be plotted. The graph
above plotted both 1 versus 2 and 2 versus 1, which are the same comparison with opposite signs. We

add a reference line at 0 because we are interested in comparisons that differ from 0. This graph looks

better without the connecting lines, so we add the option recast(scatter). We also reverse the 𝑦 scale
so that the smallest levels of age group appear at the top of the axis.
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. marginsplot, horizontal unique xline(0) recast(scatter) yscale(reverse)
Variables that uniquely identify margins: _pw1 _pw0

i_pw enumerates all pairwise comparisons; _pw0 enumerates the reference
categories; _pw1 enumerates the comparison categories.
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All the comparisons differ from 0, so all our age groups are statistically different from each other.

The horizontal option can be useful outside of pairwise comparisons. Profile plots are usually

oriented vertically. However, when your covariates have long labels or there are many levels at which

the margins are being evaluated, the graph may be easier to read when rendered horizontally.

Marginal effects
We have seen how to graph discrete effects for factor variables and continuous variables by using

contrasts, and optionally by using the dydx() option of margins: Contrasts ofmargins—effects (discrete

marginal effects) and Continuous covariates. Let’s now consider graphing instantaneous marginal effects

for continuous covariates. Begin by refitting our logistic model of high blood pressure as a function of

sex, age, and BMI:

. logistic highbp sex##agegrp##c.bmi
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We estimate the average marginal effect of BMI on the probability of high blood pressure for each age

group and then graph the results by typing

. margins agegrp, dydx(bmi)
(output omitted )

. marginsplot
Variables that uniquely identify margins: agegrp
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These are the conditional expectations of the marginal effects treating everyone in the sample as though

they were in each age group. We can estimate fully conditional marginal effects that do not depend on

averaging over the sample by also margining on our one remaining covariate—sex.

. margins agegrp#sex, dydx(bmi)
(output omitted )

. marginsplot
Variables that uniquely identify margins: agegrp sex
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The effect of BMI on the probability of high blood pressure looks to increase with age for females. The

marginal effect is higher for males than females in the younger age groups but then decreases with age

for males after the 40–49 age group.
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Youmay want to test for differences in the marginal effect of BMI for males and females by contrasting

across sexes within agegrp:

. margins r.sex@agegrp, dydx(bmi)

Plotting a subset of the results from margins
marginsplot plots all the margins produced by the preceding margins command. If you want a

graph that does not include all the margins, then enter a margins command that produces a reduced

set of margins. Obvious ways to reduce the number of margins include not specifying some factors or

interactions in the marginlist of margins, not specifying some at() or over() options, or reducing the
values specified in an at() option. A less obvious technique uses selection lists in factor operators to

select specific sets of levels from factor variables specified in the marginlist.

Instead of typing

. margins agegrp

which will give you margins for all six age groups in our sample, type

. margins i(2/4).agegrp

which will give you only three margins—those for groups 2, 3, and 4. See [U] 11.4.3.4 Selecting levels.

Advanced usage
margins is incredibly flexible in the statistics it can estimate and in the grouping of those estimates.

Many of the estimates that margins can produce do not make convincing graphs. marginsplot plots
the results of any margins command, regardless of whether the resulting graph is easily interpreted.

Here we demonstrate some options that can make complicated margins into graphs that are somewhat
more useful than those produced by marginsplot’s defaults. Others may find truly useful applications
for these approaches.

Plots with multiple terms

Margins plots are rarely interesting when you specify multiple terms on your margins command,

for example, margins a b. Such plots often compare things that are not comparable. The defaults for
marginsplot rarely produce useful plots with multiple terms. Perhaps the most interesting graph in

such cases puts all the levels of all the terms together on the vertical axis and plots their margins on the

horizontal axis. We do that by including the marginlist from margins in an xdimension() option on
marginsplot. The long labels on such graphs look better with a horizontal orientation, and there is no
need to connect the margin estimates, so we specify the recast(scatter) option.
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Using one of our ANOVA examples from earlier,

. anova bpsystol agegrp##sex
(output omitted )

. margins agegrp sex
(output omitted )

. marginsplot, xdimension(agegrp sex) horizontal recast(scatter)
Variables that uniquely identify margins: agegrp sex
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The “asobserved” notations in the 𝑦-axis labels are informing us that, for example, when the margin for
females is evaluated, the values of age group are taken as they are observed in the dataset. The margin

is computed as an average over those values.

Plots with multiple at() options

Some disciplines like to compute margins at the means of other covariates in their model and oth-

ers like to compute the response for each observation and then take the means of the response. These

correspond to the margins options at((mean) all) and at((asobserved) all). For responses
that are linear functions of the coefficients, such as predict after regress, the two computations yield
identical results. For responses that are nonlinear functions of the coefficients, the two computations

estimate different things.
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Using one of our logistic models of high blood pressure,

. logistic highbp sex##agegrp##c.bmi

and computing both sets of margins for each age group,

. margins agegrp, at((mean) _all) at((asobserved) _all)

we can use marginsplot to compare the approaches:

. marginsplot
Variables that uniquely identify margins: agegrp _atopt
Multiple at() options specified:

_atoption=1: (mean)_all
_atoption=2: (asobserved) _all
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For the first three age groups, the probabilities of high blood pressure are lower at the means of sex and
bpi than are the mean probabilities of high blood pressure averaged over the observed values of sex and
bpi. The reverse is true for the last three age groups, although the values are very similar in these older
age groups.

Such comparisons come up even more frequently when evaluating marginal effects. We can estimate

the marginal effects of sex at each age group and graph the results by adding dydx(sex) to our margins
command:

. margins agegrp, at((mean) _all) at((asobserved) _all) dydx(sex)
(output omitted )
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. marginsplot
Variables that uniquely identify margins: agegrp _atopt
Multiple at() options specified:

_atoption=1: (mean)_all
_atoption=2: (asobserved) _all
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The average marginal effect is smaller for most age groups, but the CIs for both sets of estimates are

wide. Can we tell the difference between the estimates? To answer that, we use the now-familiar tactic of

taking the contrast of our estimated marginal-effects profiles. That means adding contrast(atjoint
marginswithin) to our margins command. We will also add mcompare(bonferroni) to account for
the fact that we will be comparing six contrasts.

. margins agegrp, at((mean) _all) at((asobserved) _all) dydx(sex)
> contrast(atjoint marginswithin) mcompare(bonferroni)
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We will also add the familiar reference line at 0 to our graph of the contrasts.

. marginsplot, yline(0)
Variables that uniquely identify margins: agegrp _atopt
Multiple at() options specified:

_atoption=1: (mean)_all
_atoption=2: (asobserved) _all
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While the difference in the estimates of marginal effects is not large, we can distinguish the estimates for

the 30–39 and 70+ age groups.

The at() option of margins provides far more flexibility than demonstrated above. It can be used
to evaluate a response or marginal effect at almost any point of interest or combinations of such points.

See Syntax of at() in [R] margins.

Adding scatterplots of the data

We can add scatterplots of the observed data to our plots of the margins. The NHANES II dataset is too

large for this to be interesting, so for this example, we will use auto.dta. We fit mileage on whether the

care is foreign and on a quadratic in the weight of the car. We convert the weight into tons (US definition)

to improve the scaling, and we format the new tons variable to improve its labels on the graph. For our
graph, we create separate variables for mileage of domestic and of foreign cars. We fit a fully interacted

model so that the effect of weight on mileage can be different for foreign and for domestic cars.

. use https://www.stata-press.com/data/r18/auto

. generate tons = weight/2000

. format tons %6.2f

. separate mpg, by(foreign)

. regress mpg foreign##c.tons##c.tons

We then estimate the margins over the range of tons, using the option over(foreign) to obtain

separate estimates for foreign and domestic cars.

. margins, at(tons=(.8(.05)2.4)) over(foreign)
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Adding scatterplots of mileage for domestic and foreign cars is easy. We insert into an addplot() op-
tion of marginsplot the same scatterplot syntax for twoway that we would type to produce a scatterplot
of the data:

. marginsplot, addplot(scatter mpg0 tons || scatter mpg1 tons) recast(line) noci
Variables that uniquely identify margins: tons foreign
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Many will be surprised that the mileage profile is higher in 1978 for domestic (US built) cars. Is the

difference significant?

. margins, at(tons=(.8(.05)2.4)) over(r.for)
(output omitted )

. marginsplot, yline(0)
Variables that uniquely identify margins: tons
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As we did earlier, we contrast the two profiles. We can discern some difference between the two

profiles for midweight vehicles, but otherwise there is insufficient information to believe mileage differs

across domestic and foreign cars.
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Video examples
Profile plots and interaction plots, part 1: A single categorical variable

Profile plots and interaction plots, part 2: A single continuous variable

Profile plots and interaction plots, part 3: Interactions between categorical variables

Profile plots and interaction plots, part 4: Interactions of continuous and categorical variables

Profile plots and interaction plots, part 5: Interactions of two continuous variables

Addendum: Advanced uses of dimlist
dimlist specifies the dimensions from the immediately preceding margins command that are to be

used for the marginsplot’s 𝑥 axis, plots, subgraphs, and graphs. dimlist may contain:

dim Description

varname Any variable referenced in the preceding margins command.
equation If the estimation command being analyzed is multivariate and margins automatically

produced estimates for more than one dependent-variable equation, then dimlist may

contain equation to enumerate those equations.
outcome If the estimation command being analyzed is ordinal and margins automatically pro-

duced estimates for more than one outcome level, then dimlistmay contain outcome
to enumerate those outcomes.

predict If the preceding margins command included multiple predict() options, then dim-
list may contain predict to enumerate those predict() options.

at(varname) If a variable is specified in both the marginlist or the over() option and in the at()
option of margins, then the two uses can be distinguished in marginsplot by typing
the at() variables as at(varname) in dimlist.

deriv If the preceding margins command included a dydx(), eyex(), dyex(), or eydx()
option, dimlistmay also contain deriv to specify all the variables over which deriva-
tives were taken.

term If the preceding margins command included multiple terms (for example, margins
a b), then dimlist may contain term to enumerate those terms.

atopt If the preceding margins command included multiple at() options, then dimlistmay
contain atopt to enumerate those at() options.

When the pairwise option is specified on margins, you may specify dimensions that enumerate the
pairwise comparisons.

pw enumerates all the pairwise comparisons

pw0 enumerates the reference categories of the comparisons

pw1 enumerates the comparison categories of the comparisons

Acknowledgments
We thank Philip B. Ender (retired) of UCLA Academic Technology Services for his programs that

demonstrated what could be done in this area. We also thank Michael N. Mitchell, author of the Stata

Press books Data Management Using Stata: A Practical Handbook, Interpreting and Visualizing Regres-

sion Models Using Stata, Stata for the Behavioral Sciences, and A Visual Guide to Stata Graphics, for

his generous advice and comprehensive insight into the application of margins and their plots.

https://www.youtube.com/watch?v=7iSa_gboh9I
https://www.youtube.com/watch?v=O4QbEaHRGT8
https://www.youtube.com/watch?v=7M3vJrLq1t0
https://www.youtube.com/watch?v=iHfTJIdhwWs
https://www.youtube.com/watch?v=QFROtui_OyM
https://www.stata-press.com/books/dmus.html
https://www.stata-press.com/books/interpreting-visualizing-regression-models/
https://www.stata-press.com/books/interpreting-visualizing-regression-models/
https://www.stata-press.com/books/stata-for-the-behavioral-sciences/
https://www.stata-press.com/books/visual-guide-to-stata-graphics/


marginsplot — Graph results from margins (profile plots, etc.) 1758

References
Baldwin, S. 2019. Psychological Statistics and Psychometrics Using Stata. College Station, TX: Stata Press.

Bruun, N. H. 2019. Visualizing effect modification on contrasts. Stata Journal 19: 566–580.

Jann, B. 2014. Plotting regression coefficients and other estimates. Stata Journal 14: 708–737.

Lindsey, C. 2016. Estimating covariate effects after gmm. The Stata Blog: Not Elsewhere Classified. https://blog.stata.

com/2016/10/04/estimating-covariate-effects-after-gmm/.

MacDonald, K. 2018. Exploring results of nonparametric regression models. The Stata Blog: Not Elsewhere Classified.

https://blog.stata.com/2018/06/18/exploring-results-of-nonparametric-regression-models/.

McDowell, A., A. Engel, J. T. Massey, and K. Maurer. 1981. “Plan and operation of the Second National Health and

Nutrition Examination Survey, 1976–1980”. In Vital and Health Statistics, ser. 1, no. 15. Hyattsville, MD: National

Center for Health Statistics.

Mitchell, M. N. 2015. Stata for the Behavioral Sciences. College Station, TX: Stata Press.

———. 2021. Interpreting and Visualizing Regression Models Using Stata. 2nd ed. College Station, TX: Stata Press.

Pinzon, E. 2016. Effects of nonlinear models with interactions of discrete and continuous variables: Estimating, graphing,

and interpreting. The Stata Blog: Not Elsewhere Classified. https://blog.stata.com/2016/07/12/effects-for-nonlinear-

models-with-interactions-of-discrete-and-continuous-variables-estimating-graphing-and-interpreting/.

Royston, P. 2013. marginscontplot: Plotting the marginal effects of continuous predictors. Stata Journal 13: 510–527.

Williams, R. 2012. Using the margins command to estimate and interpret adjusted predictions and marginal effects. Stata

Journal 12: 308–331.

Also see
[R] margins — Marginal means, predictive margins, and marginal effects

[R] margins, contrast — Contrasts of margins

[R] margins, pwcompare — Pairwise comparisons of margins

[R] margins postestimation — Postestimation tools for margins

https://www.stata-press.com/books/psychological-statistics-and-psychometrics-using-stata/
https://doi.org/10.1177/1536867X19874226
https://www.stata-journal.com/article.html?article=gr0059
https://blog.stata.com/2016/10/04/estimating-covariate-effects-after-gmm/
https://blog.stata.com/2016/10/04/estimating-covariate-effects-after-gmm/
https://blog.stata.com/2018/06/18/exploring-results-of-nonparametric-regression-models/
https://www.stata-press.com/books/stata-for-the-behavioral-sciences/
https://www.stata-press.com/books/interpreting-visualizing-regression-models/
https://blog.stata.com/2016/07/12/effects-for-nonlinear-models-with-interactions-of-discrete-and-continuous-variables-estimating-graphing-and-interpreting/
https://blog.stata.com/2016/07/12/effects-for-nonlinear-models-with-interactions-of-discrete-and-continuous-variables-estimating-graphing-and-interpreting/
https://www.stata-journal.com/article.html?article=gr0056
https://www.stata-journal.com/article.html?article=st0260


Maximize — Details of iterative maximization

Description Syntax Maximization options Remarks and examples
Stored results Methods and formulas References Also see

Description
All Stata commands maximize likelihood functions using moptimize() and optimize(); see Meth-

ods and formulas below. Commands use the Newton–Raphson method with step halving and special fix-

ups when they encounter nonconcave regions of the likelihood. For details, see [M-5] moptimize( ) and

[M-5] optimize( ). For more information about programmingmaximum likelihood estimators in ado-files

and Mata, see [R] ml and Pitblado, Poi, and Gould (2024).

Syntax
mle cmd . . . [ , options ]

options Description

difficult use a different stepping algorithm in nonconcave regions

technique(algorithm spec) maximization technique

iterate(#) perform maximum of # iterations; default is iterate(300)
[no]log display an iteration log of the log likelihood; typically, the default

trace display current parameter vector in iteration log

gradient display current gradient vector in iteration log

showstep report steps within an iteration in iteration log

hessian display current negative Hessian matrix in iteration log

showtolerance report the calculated result that is compared to the effective
convergence criterion

tolerance(#) tolerance for the coefficient vector; see Options for the defaults

ltolerance(#) tolerance for the log likelihood; see Options for the defaults

nrtolerance(#) tolerance for the scaled gradient; see Options for the defaults

qtolerance(#) when specified with algorithms bhhh, dfp, or bfgs, the q − H

matrix is used as the final check for convergence rather than
nrtolerance() and the H matrix; seldom used

nonrtolerance ignore the nrtolerance() option
from(init specs) initial values for the coefficients

algorithm spec is

algorithm [ # [ algorithm [ # ] ]. . . ]

algorithm is { nr | bhhh | dfp | bfgs }

init specs is one of

matname [ , skip copy ]

{ [ eqname: ]name = # | /eqname = # } [ . . . ]

# [ # . . . ], copy
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Maximization options
difficult specifies that the likelihood function is likely to be difficult to maximize because of noncon-

cave regions. When the message “not concave” appears repeatedly, ml’s standard stepping algorithm
may not be working well. difficult specifies that a different stepping algorithm be used in noncon-

cave regions. There is no guarantee that difficult will work better than the default; sometimes it is
better and sometimes it is worse. You should use the difficult option only when the default stepper
declares convergence and the last iteration is “not concave” or when the default stepper is repeatedly

issuing “not concave” messages and producing only tiny improvements in the log likelihood.

technique(algorithm spec) specifies how the likelihood function is to be maximized. The following

algorithms are allowed. For details, see Pitblado, Poi, and Gould (2024).

technique(nr) specifies Stata’s modified Newton–Raphson (NR) algorithm.

technique(bhhh) specifies the Berndt–Hall–Hall–Hausman (BHHH) algorithm.

technique(dfp) specifies the Davidon–Fletcher–Powell (DFP) algorithm.

technique(bfgs) specifies the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm.

The default is technique(nr).

You can switch between algorithms by specifying more than one in the technique() option. By

default, an algorithm is used for five iterations before switching to the next algorithm. To specify

a different number of iterations, include the number after the technique in the option. For example,

specifying technique(bhhh 10 nr 1000) requests that ml perform 10 iterations with the BHHH al-

gorithm followed by 1000 iterations with the NR algorithm, and then switch back to BHHH for 10

iterations, and so on. The process continues until convergence or until the maximum number of iter-

ations is reached.

iterate(#) specifies the maximum number of iterations. When the number of iterations equals

iterate(), the optimizer stops and presents the current results. If convergence is declared before
this threshold is reached, it will stop when convergence is declared. Specifying iterate(0) is useful
for viewing results evaluated at the initial value of the coefficient vector. Specifying iterate(0)
and from() together allows you to view results evaluated at a specified coefficient vector; however,

not all commands allow the from() option. The default value of iterate(#) for both estimators

programmed internally and estimators programmed with ml is the number set using set maxiter,
which is 300 by default.

log and nolog specify whether an iteration log showing the progress of the log likelihood is to be

displayed. For most commands, the log is displayed by default, and nolog suppresses it; see set
iterlog in [R] set iter. For a few commands (such as the svy maximum likelihood estimators), you

must specify log to see the log.

trace adds to the iteration log a display of the current parameter vector.

gradient adds to the iteration log a display of the current gradient vector.

showstep adds to the iteration log a report on the steps within an iteration. This option was added so that
developers at StataCorp could view the stepping when they were improving the ml optimizer code.
At this point, it mainly provides entertainment.

hessian adds to the iteration log a display of the current negative Hessian matrix.
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showtolerance adds to the iteration log the calculated value that is compared with the effective con-
vergence criterion at the end of each iteration. Until convergence is achieved, the smallest calculated

value is reported.

shownrtolerance is a synonym of showtolerance.

Below, we describe the three convergence tolerances. Convergence is declared when the

nrtolerance() criterion is met and either the tolerance() or the ltolerance() criterion is also

met.

tolerance(#) specifies the tolerance for the coefficient vector. When the relative change in the coef-

ficient vector from one iteration to the next is less than or equal to tolerance(), the tolerance()
convergence criterion is satisfied.

tolerance(1e-4) is the default for estimators programmed with ml.

tolerance(1e-6) is the default.

ltolerance(#) specifies the tolerance for the log likelihood. When the relative change in the log like-

lihood from one iteration to the next is less than or equal to ltolerance(), the ltolerance()
convergence is satisfied.

ltolerance(0) is the default for estimators programmed with ml.

ltolerance(1e-7) is the default.

nrtolerance(#) specifies the tolerance for the scaled gradient. Convergence is declared when

gH−1g′ < nrtolerance(). The default is nrtolerance(1e-5).

qtolerance(#) when specified with algorithms bhhh, dfp, or bfgs uses the q − H matrix as the final

check for convergence rather than nrtolerance() and the H matrix.

Beginningwith Stata 12, by default, Stata now computes theHmatrixwhen the q−Hmatrix passes the

convergence tolerance, and Stata requires that H be concave and pass the nrtolerance() criterion
before concluding convergence has occurred.

qtolerance() provides a way for the user to obtain Stata’s earlier behavior.

nonrtolerance specifies that the default nrtolerance() criterion be turned off.

from() specifies initial values for the coefficients. Not all estimators in Stata support this option. You
can specify the initial values in one of three ways: by specifying the name of a vector containing

the initial values (for example, from(b0), where b0 is a properly labeled vector); by specifying

coefficient names with the values (for example, from(age=2.1 /sigma=7.4)); or by specifying a
list of values (for example, from(2.1 7.4, copy)). from() is intended for usewhen doing bootstraps
(see [R] bootstrap) and in other special situations (for example, with iterate(0)). Even when the
values specified in from() are close to the values that maximize the likelihood, only a few iterations

may be saved. Poor values in from() may lead to convergence problems.

skip specifies that any parameters found in the specified initialization vector that are not also found
in the model be ignored. The default action is to issue an error message.

copy specifies that the list of values or the initialization vector be copied into the initial-value vector
by position rather than by name.
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Remarks and examples
Only in rare circumstances would you ever need to specify any of these options, except nolog. The

nolog option is useful for reducing the amount of output appearing in log files; also see set iterlog
in [R] set iter.

The following is an example of an iteration log:

Iteration 0: Log likelihood = -3791.0251
Iteration 1: Log likelihood = -3761.738
Iteration 2: Log likelihood = -3758.0632 (not concave)
Iteration 3: Log likelihood = -3758.0447
Iteration 4: Log likelihood = -3757.5861
Iteration 5: Log likelihood = -3757.474
Iteration 6: Log likelihood = -3757.4613
Iteration 7: Log likelihood = -3757.4606
Iteration 8: Log likelihood = -3757.4606
(table of results omitted$ $)

At iteration 8, the model converged. The message “not concave” at the second iteration is notable.

This example was produced using the heckman command; its likelihood is not globally concave, so

it is not surprising that this message sometimes appears. The other message that is occasionally seen is

“backed up”. Neither of these messages should be of any concern unless they appear at the final iteration.

If a “not concave” message appears at the last step, there are two possibilities. One is that the result

is valid, but there is collinearity in the model that the command did not otherwise catch. Stata checks for

obvious collinearity among the independent variables before performing the maximization, but strange

collinearities or near collinearities can sometimes arise between coefficients and ancillary parameters.

The second, more likely cause for a “not concave” message at the final step is that the optimizer entered

a flat region of the likelihood and prematurely declared convergence.

If a “backed up” message appears at the last step, there are also two possibilities. One is that Stata

found a perfect maximum and could not step to a better point; if this is the case, all is fine, but this is a

highly unlikely occurrence. The second is that the optimizer worked itself into a bad concave spot where

the computed gradient and Hessian gave a bad direction for stepping.

If either of these messages appears at the last step, perform the maximization again with the gradient
option. If the gradient goes to zero, the optimizer has found a maximum that may not be unique but is a

maximum. From the standpoint of maximum likelihood estimation, this is a valid result. If the gradient

is not zero, it is not a valid result, and you should try tightening up the convergence criterion, or try

ltol(0) tol(1e-7) to see if the optimizer can work its way out of the bad region.

If you get repeated “not concave” steps with little progress being made at each step, try specifying the

difficult option. Sometimes difficult works wonderfully, reducing the number of iterations and
producing convergence at a good (that is, concave) point. Other times, difficult works poorly, taking
much longer to converge than the default stepper.
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Stored results
Maximum likelihood estimators store the following in e():

Scalars

e(N) number of observations always stored

e(k) number of parameters always stored

e(k eq) number of equations in e(b) usually stored

e(k eq model) number of equations in overall usually stored

model test

e(k dv) number of dependent variables usually stored

e(df m) model degrees of freedom always stored

e(r2 p) pseudo-𝑅2 sometimes stored

e(ll) log likelihood always stored

e(ll 0) log likelihood, constant-only model stored when constant-only model is fit

e(N clust) number of clusters stored when vce(cluster clustvar) is specified;
see [U] 20.22 Obtaining robust variance estimates

e(chi2) 𝜒2 usually stored

e(p) 𝑝-value for model test usually stored

e(rank) rank of e(V) always stored

e(rank0) rank of e(V) for constant-only model stored when constant-only model is fit
e(ic) number of iterations usually stored

e(rc) return code usually stored

e(converged) 1 if converged, 0 otherwise usually stored

Macros

e(cmd) name of command always stored

e(cmdline) command as typed always stored

e(depvar) names of dependent variables always stored

e(wtype) weight type stored when weights are specified or implied

e(wexp) weight expression stored when weights are specified or implied

e(title) title in estimation output usually stored by commands using ml
e(clustvar) name of cluster variable stored when vce(cluster clustvar) is specified;

see [U] 20.22 Obtaining robust variance estimates

e(chi2type) Wald or LR; type of model 𝜒2 test usually stored

e(vce) vcetype specified in vce() stored when command allows vce()
e(vcetype) title used to label Std. err. sometimes stored

e(opt) type of optimization always stored

e(which) max or min; whether optimizer is to always stored

perform maximization or

minimization

e(ml method) type of ml method always stored by commands using ml
e(user) name of likelihood-evaluator program always stored

e(technique) from technique() option sometimes stored

e(singularHmethod) m-marquardt or hybrid; method sometimes stored1

used when Hessian is singular

e(crittype) optimization criterion always stored1

e(properties) estimator properties always stored

e(predict) program used to implement predict usually stored
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Macros, continued

e(deriv useminbound) off or on; whether minimum always stored by ml model
bounds are used for step sizes

in numerical derivative

computations

Matrices

e(b) coefficient vector always stored

e(Cns) constraints matrix sometimes stored

e(ilog) iteration log (up to 20 iterations) usually stored

e(gradient) gradient vector usually stored

e(V) variance–covariance matrix of always stored

the estimators

e(V modelbased) model-based variance only stored when e(V) is robust, cluster–robust,
bootstrap, or jackknife variance

e(deriv minbound) minimum values for step sizes only stored when e(deriv useminbound) is on

Functions

e(sample) marks estimation sample always stored

1. Type ereturn list, all to view these results; see [P] return.

See Stored results in the manual entry for any maximum likelihood estimator for a list of returned

results.

Methods and formulas
Optimization is currently performed by moptimize() and optimize(), with the former implemented

in terms of the latter; see [M-5]moptimize( ) and [M-5] optimize( ). Some estimators use moptimize()
and optimize() directly, and others use the ml ado-file interface to moptimize().

Prior to Stata 11, Stata had three separate optimization engines: an internal one used by estimation

commands implemented in C code; ml implemented in ado-code separately from moptimize() and used
bymost estimators; and moptimize() and optimize() used by a few recently written estimators. These

days, the internal optimizer and the old version of ml are used only under version control. In addition,
arch and arima (see [TS] arch and [TS] arima) are currently implemented using the old ml.

Let 𝐿1 be the log likelihood of the full model (that is, the log-likelihood value shown on the output),

and let 𝐿0 be the log likelihood of the “constant-only” model. The likelihood-ratio 𝜒2 model test is

defined as 2(𝐿1 − 𝐿0). The pseudo-𝑅2 (McFadden 1974) is defined as 1 − 𝐿1/𝐿0. This is simply the

log likelihood on a scale where 0 corresponds to the “constant-only” model and 1 corresponds to perfect

prediction for a discrete model (in which case the overall log likelihood is 0).

Some maximum likelihood routines can report coefficients in an exponentiated form, for example,

odds ratios in logistic. Let 𝑏 be the unexponentiated coefficient, 𝑠 its standard error, and 𝑏0 and 𝑏1
the reported confidence interval for 𝑏. In exponentiated form, the point estimate is 𝑒𝑏, the standard error

𝑒𝑏𝑠, and the confidence interval 𝑒𝑏0 and 𝑒𝑏1 . The displayed 𝑍 (or 𝑡) statistics and 𝑝-values are the same
as those for the unexponentiated results. This is justified because 𝑒𝑏 = 1 and 𝑏 = 0 are equivalent

hypotheses, and normality is more likely to hold in the 𝑏 metric.
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Also see
[R] ml — Maximum likelihood estimation

[R] set iter — Control iteration settings

[SVY] ml for svy — Maximum pseudolikelihood estimation for survey data

[M-5] moptimize( ) — Model optimization

[M-5] optimize( ) — Function optimization
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mean — Estimate means

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description
mean produces estimates of means, along with standard errors.

Quick start
Mean, standard error, and 95% confidence interval for v1

mean v1

Also compute statistics for v2
mean v1 v2

Same as above, but for each level of categorical variable catvar1
mean v1 v2, over(catvar1)

Weighting by probability weight wvar
mean v1 v2 [pweight=wvar]

Population mean using svyset data
svy: mean v3

Subpopulation means for each level of categorical variable catvar2 using svyset data
svy: mean v3, over(catvar2)

Test equality of two subpopulation means

svy: mean v3, over(catvar2)
test v3@1.catvar2 = v3@2.catvar2

Menu
Statistics > Summaries, tables, and tests > Summary and descriptive statistics > Means
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Syntax
mean varlist [ if ] [ in ] [weight ] [ , options ]

options Description

Model

stdize(varname) variable identifying strata for standardization

stdweight(varname) weight variable for standardization

nostdrescale do not rescale the standard weight variable

if/in/over

over(varlist𝑜) group over subpopulations defined by varlist𝑜

SE/Cluster

vce(vcetype) vcetype may be analytic, cluster clustvar, bootstrap, or
jackknife

Reporting

level(#) set confidence level; default is level(95)
noheader suppress table header

display options control column formats, line width, display of omitted variables
and base and empty cells, and factor-variable labeling

coeflegend display legend instead of statistics

varlist may contain factor variables; see [U] 11.4.3 Factor variables.

bootstrap, collect, jackknife, mi estimate, rolling, statsby, and svy are allowed; see [U] 11.1.10 Prefix com-
mands.

vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix; see [MI] mi estimate.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
aweights are not allowed with the jackknife prefix; see [R] jackknife.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, aweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

stdize(varname) specifies that the point estimates be adjusted by direct standardization across the

strata identified by varname. This option requires the stdweight() option.

stdweight(varname) specifies the weight variable associated with the standard strata identified in the
stdize() option. The standardization weights must be constant within the standard strata.

nostdrescale prevents the standardization weights from being rescaled within the over() groups. This
option requires stdize() but is ignored if the over() option is not specified.

� � �
if/in/over �

over(varlist𝑜) specifies that estimates be computed for multiple subpopulations, which are identified by
the different values of the variables in varlist𝑜. Only numeric, nonnegative, integer-valued variables

are allowed in over(varlist𝑜).
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� � �
SE/Cluster �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (analytic), that allow for intragroup correlation (cluster clustvar), and that use
bootstrap or jackknife methods (bootstrap, jackknife); see [R] vce option.

vce(analytic), the default, uses the analytically derived variance estimator associated with the

sample mean.

� � �
Reporting �

level(#); see [R] Estimation options.

noheader prevents the table header from being displayed.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), and nolstretch; see [R] Estimation

options.

The following option is available with mean but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

Remarks and examples

Example 1
Using the fuel data from example 3 of [R] ttest, we estimate the average mileage of the cars without

the fuel treatment (mpg1) and those with the fuel treatment (mpg2).

. use https://www.stata-press.com/data/r18/fuel

. mean mpg1 mpg2
Mean estimation Number of obs = 12

Mean Std. err. [95% conf. interval]

mpg1 21 .7881701 19.26525 22.73475
mpg2 22.75 .9384465 20.68449 24.81551

Using these results, we can test the equality of the mileage between the two groups of cars.

. test mpg1 = mpg2
( 1) mpg1 - mpg2 = 0

F( 1, 11) = 5.04
Prob > F = 0.0463
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Example 2
In example 1, the joint observations of mpg1 and mpg2 were used to estimate a covariance between

their means.

. matrix list e(V)
symmetric e(V)[2,2]

mpg1 mpg2
mpg1 .62121212
mpg2 .4469697 .88068182

If the data were organized this way out of convenience but the two variables represent independent

samples of cars (coincidentally of the same sample size), we should reshape the data and use the over()
option to ensure that the covariance between the means is zero.

. use https://www.stata-press.com/data/r18/fuel

. stack mpg1 mpg2, into(mpg) clear

. rename _stack trt

. label define trt_lab 1 ”without” 2 ”with”

. label values trt trt_lab

. label var trt ”Fuel treatment”

. mean mpg, over(trt)
Mean estimation Number of obs = 24

Mean Std. err. [95% conf. interval]

c.mpg@trt
without 21 .7881701 19.36955 22.63045

with 22.75 .9384465 20.80868 24.69132

. matrix list e(V)
symmetric e(V)[2,2]

c.mpg@ c.mpg@
1.trt 2.trt

c.mpg@1.trt .62121212
c.mpg@2.trt 0 .88068182

Now, we can test the equality of the mileage between the two independent groups of cars.

. test mpg@1.trt = mpg@2.trt
( 1) c.mpg@1bn.trt - c.mpg@2.trt = 0

F( 1, 23) = 2.04
Prob > F = 0.1667



mean — Estimate means 1770

Example 3: standardized means
Suppose that we collected the blood pressure data from example 2 of [R] dstdize, and we wish to

obtain standardized high blood pressure rates for each city in 1990 and 1992, using, as the standard, the

age, sex, and race distribution of the four cities and two years combined. Our rate is really the mean of

a variable that indicates whether a sampled individual has high blood pressure. First, we generate the

strata and weight variables from our standard distribution, and then use mean to compute the rates.

. use https://www.stata-press.com/data/r18/hbp, clear

. egen strata = group(age race sex) if inlist(year, 1990, 1992)
(675 missing values generated)
. by strata, sort: gen stdw = _N
. mean hbp, over(city year) stdize(strata) stdweight(stdw)
Mean estimation
N. of std strata = 24 Number of obs = 455

Mean Std. err. [95% conf. interval]

c.hbp@city#year
1 1990 .058642 .0296273 .0004182 .1168657
1 1992 .0117647 .0113187 -.0104789 .0340083
2 1990 .0488722 .0238958 .0019121 .0958322
2 1992 .014574 .007342 .0001455 .0290025
3 1990 .1011211 .0268566 .0483425 .1538998
3 1992 .0810577 .0227021 .0364435 .1256719
5 1990 .0277778 .0155121 -.0027066 .0582622
5 1992 .0548926 0 . .

The standard error of the high blood pressure rate estimate is missing for city 5 in 1992 because there

was only one individual with high blood pressure; that individual was the only person observed in the

stratum of white males 30–35 years old.

By default, mean rescales the standard weights within the over() groups. In the following, we use
the nostdrescale option to prevent this, thus reproducing the results in [R] dstdize.

. mean hbp, over(city year) stdize(strata) stdweight(stdw) nostdrescale
Mean estimation
N. of std strata = 24 Number of obs = 455

Mean Std. err. [95% conf. interval]

c.hbp@city#year
1 1990 .0073302 .0037034 .0000523 .0146082
1 1992 .0015432 .0014847 -.0013745 .004461
2 1990 .0078814 .0038536 .0003084 .0154544
2 1992 .0025077 .0012633 .000025 .0049904
3 1990 .0155271 .0041238 .007423 .0236312
3 1992 .0081308 .0022772 .0036556 .012606
5 1990 .0039223 .0021904 -.0003822 .0082268
5 1992 .0088735 0 . .
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Example 4: profile plots and contrasts
The first example in [R] marginsplot shows how to use margins and marginsplot to get profile

plots from a linear regression. We can similarly explore the data using marginsplot after mean with
the over() option. Here we use marginsplot to plot the means of systolic blood pressure for each age
group.

. use https://www.stata-press.com/data/r18/nhanes2, clear

. mean bpsystol, over(agegrp)
Mean estimation Number of obs = 10,351

Mean Std. err. [95% conf. interval]

c.bpsystol@agegrp
20--29 117.3466 .3247329 116.71 117.9831
30--39 120.2374 .4095845 119.4345 121.0402
40--49 126.9442 .532033 125.9013 127.9871
50--59 135.6754 .6061842 134.4872 136.8637
60--69 141.5227 .4433527 140.6537 142.3918

70+ 148.1765 .8321116 146.5454 149.8076

. marginsplot
Variables that uniquely identify means: agegrp

110

120

130

140

150

20–29 30–39 40–49 50–59 60–69 70+
Age group

Estimated means of bpsystol with 95% CIs

We see that themean systolic blood pressure increases with age. We can use contrast to formally test
whether each mean is different from the mean in the previous age group using the ar. contrast operator;
see [R] contrast for more information on this command.
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. contrast ar.agegrp#c.bpsystol, effects nowald
Contrasts of means

Contrast Std. err. t P>|t| [95% conf. interval]

agegrp#
c.bpsystol

(30--39
vs

20--29) 2.89081 .5226958 5.53 0.000 1.866225 3.915394
(40--49

vs
30--39) 6.706821 .6714302 9.99 0.000 5.390688 8.022954
(50--59

vs
40--49) 8.731263 .8065472 10.83 0.000 7.150275 10.31225
(60--69

vs
50--59) 5.847282 .7510133 7.79 0.000 4.375151 7.319413
(70+

vs
60--69) 6.653743 .9428528 7.06 0.000 4.80557 8.501917

The first row of the output reports that the mean systolic blood pressure for the 30–39 age group is

2.89 higher than the mean for the 20–29 age group. The mean for the 40–49 age group is 6.71 higher

than the mean for the 30–39 age group, and so on. Each of these differences is significantly different

from zero.

We can include both agegrp and sex in the over() option to estimate means separately for men and
women in each age group.

. mean bpsystol, over(agegrp sex)
Mean estimation Number of obs = 10,351

Mean Std. err. [95% conf. interval]

c.bpsystol@agegrp#sex
20--29#Male 123.8862 .4528516 122.9985 124.7739

20--29#Female 111.2849 .3898972 110.5206 112.0492
30--39#Male 124.6818 .5619855 123.5802 125.7834

30--39#Female 116.2207 .5572103 115.1284 117.3129
40--49#Male 129.0033 .7080788 127.6153 130.3912

40--49#Female 125.0468 .7802558 123.5174 126.5763
50--59#Male 136.0864 .855435 134.4096 137.7632

50--59#Female 135.3164 .8556015 133.6393 136.9935
60--69#Male 140.7451 .6059786 139.5572 141.9329

60--69#Female 142.2368 .6427981 140.9767 143.4968
70+#Male 146.3951 1.141126 144.1583 148.6319

70+#Female 149.6599 1.189975 147.3273 151.9924
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. marginsplot
Variables that uniquely identify means: agegrp sex

110

120

130

140

150

20–29 30–39 40–49 50–59 60–69 70+
Age group

Male
Female

Estimated means of bpsystol with 95% CIs

Are the means different for men and women within each age group? We can again perform the tests

using contrast. This time, we will use r.sex to obtain contrasts comparing men and women and use
@agegrp to request that the tests are performed for each age group.

. contrast r.sex#c.bpsystol@agegrp, effects nowald
Contrasts of means

Contrast Std. err. t P>|t| [95% conf. interval]

sex@agegrp#
c.bpsystol
(Female

vs
Male)
20--29 -12.60132 .5975738 -21.09 0.000 -13.77268 -11.42996

(Female
vs

Male)
30--39 -8.461161 .7913981 -10.69 0.000 -10.01245 -6.909868

(Female
vs

Male)
40--49 -3.956451 1.053648 -3.76 0.000 -6.021805 -1.891097

(Female
vs

Male)
50--59 -.7699782 1.209886 -0.64 0.525 -3.141588 1.601631

(Female
vs

Male)
60--69 1.491684 .8834022 1.69 0.091 -.2399545 3.223323

(Female
vs

Male)
70+ 3.264762 1.648699 1.98 0.048 .0329927 6.496531
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Using a 0.05 significance level, we find that the mean systolic blood pressure is different for men and

women in all age groups except the fifties and sixties.

Video example
Descriptive statistics in Stata

Stored results
mean stores the following in e():
Scalars

e(N) number of observations

e(N over) number of subpopulations

e(N stdize) number of standard strata

e(N clust) number of clusters

e(k eq) number of equations in e(b)
e(df r) sample degrees of freedom

e(rank) rank of e(V)
Macros

e(cmd) mean
e(cmdline) command as typed

e(varlist) varlist

e(stdize) varname from stdize()
e(stdweight) varname from stdweight()
e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(clustvar) name of cluster variable

e(over) varlist from over()
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(properties) b V
e(estat cmd) program used to implement estat
e(marginsnotok) predictions disallowed by margins

Matrices

e(b) vector of mean estimates

e(V) (co)variance estimates

e(sd) vector of standard deviation estimates

e( N) vector of numbers of nonmissing observations

e( N stdsum) number of nonmissing observations within the standard strata

e( p stdize) standardizing proportions

e(error) error code corresponding to e(b)
Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():
Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

https://www.youtube.com/watch?v=kKFbnEWwa2s
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Methods and formulas
Methods and formulas are presented under the following headings:

The mean estimator
Survey data
The survey mean estimator
The standardized mean estimator
The poststratified mean estimator
The standardized poststratified mean estimator
Subpopulation estimation

The mean estimator
Let 𝑦 be the variable on which we want to calculate the mean and 𝑦𝑗 an individual observation on 𝑦,

where 𝑗 = 1, . . . , 𝑛 and 𝑛 is the sample size. Let 𝑤𝑗 be the weight, and if no weight is specified, define

𝑤𝑗 = 1 for all 𝑗. For aweights, the 𝑤𝑗 are normalized to sum to 𝑛. See The survey mean estimator for
pweighted data.

Let 𝑊 be the sum of the weights

𝑊 =
𝑛

∑
𝑗=1

𝑤𝑗

The mean is defined as

𝑦 = 1
𝑊

𝑛
∑
𝑗=1

𝑤𝑗𝑦𝑗

The default variance estimator for the mean is

̂𝑉 (𝑦) = 1
𝑊(𝑊 − 1)

𝑛
∑
𝑗=1

𝑤𝑗(𝑦𝑗 − 𝑦)2

The standard error of the mean is the square root of the variance.

If 𝑥, 𝑥𝑗, and 𝑥 are similarly defined for another variable (observed jointly with 𝑦), the covariance
estimator between 𝑥 and 𝑦 is

Ĉov(𝑥, 𝑦) = 1
𝑊(𝑊 − 1)

𝑛
∑
𝑗=1

𝑤𝑗(𝑥𝑗 − 𝑥)(𝑦𝑗 − 𝑦)

Survey data
See [SVY] Variance estimation, [SVY] Direct standardization, and [SVY] Poststratification for

discussions that provide background information for the following formulas. The following formulas

are derived from the fact that the mean is a special case of the ratio estimator where the denominator

variable is one, 𝑥𝑗 = 1; see [R] ratio.
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The survey mean estimator
Let 𝑌𝑗 be a survey item for the 𝑗th individual in the population, where 𝑗 = 1, . . . , 𝑀 and 𝑀 is the

size of the population. The associated population mean for the item of interest is 𝑌 = 𝑌 /𝑀 where

𝑌 =
𝑀

∑
𝑗=1

𝑌𝑗

Let 𝑦𝑗 be the survey item for the 𝑗th sampled individual from the population, where 𝑗 = 1, . . . , 𝑚 and

𝑚 is the number of observations in the sample.

The estimator for the mean is 𝑦 = ̂𝑌 /𝑀, where

̂𝑌 =
𝑚

∑
𝑗=1

𝑤𝑗𝑦𝑗 and 𝑀 =
𝑚

∑
𝑗=1

𝑤𝑗

and 𝑤𝑗 is a sampling weight. The score variable for the mean estimator is

𝑧𝑗(𝑦) =
𝑦𝑗 − 𝑦

𝑀
=

𝑀𝑦𝑗 − ̂𝑌
𝑀2

The standardized mean estimator
Let 𝐷𝑔 denote the set of sampled observations that belong to the 𝑔th standard stratum and define

𝐼𝐷𝑔
(𝑗) to indicate if the 𝑗th observation is a member of the 𝑔th standard stratum; where 𝑔 = 1, . . . , 𝐿𝐷

and 𝐿𝐷 is the number of standard strata. Also, let 𝜋𝑔 denote the fraction of the population that belongs

to the 𝑔th standard stratum, thus 𝜋1 + · · · + 𝜋𝐿𝐷
= 1. 𝜋𝑔 is derived from the stdweight() option.

The estimator for the standardized mean is

𝑦𝐷 =
𝐿𝐷

∑
𝑔=1

𝜋𝑔

̂𝑌𝑔

𝑀𝑔

where

̂𝑌𝑔 =
𝑚

∑
𝑗=1

𝐼𝐷𝑔
(𝑗) 𝑤𝑗𝑦𝑗 and 𝑀𝑔 =

𝑚
∑
𝑗=1

𝐼𝐷𝑔
(𝑗) 𝑤𝑗

The score variable for the standardized mean is

𝑧𝑗(𝑦𝐷) =
𝐿𝐷

∑
𝑔=1

𝜋𝑔𝐼𝐷𝑔
(𝑗)

𝑀𝑔𝑦𝑗 − ̂𝑌𝑔

𝑀2
𝑔
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The poststratified mean estimator
Let 𝑃𝑘 denote the set of sampled observations that belong to poststratum 𝑘 and define 𝐼𝑃𝑘

(𝑗) to
indicate if the 𝑗th observation is a member of poststratum 𝑘; where 𝑘 = 1, . . . , 𝐿𝑃 and 𝐿𝑃 is the number

of poststrata. Also let 𝑀𝑘 denote the population size for poststratum 𝑘. 𝑃𝑘 and 𝑀𝑘 are identified by

specifying the poststrata() and postweight() options on svyset; see [SVY] svyset.

The estimator for the poststratified mean is

𝑦𝑃 =
̂𝑌 𝑃

𝑀𝑃
=

̂𝑌 𝑃

𝑀

where

̂𝑌 𝑃 =
𝐿𝑃

∑
𝑘=1

𝑀𝑘

𝑀𝑘

̂𝑌𝑘 =
𝐿𝑃

∑
𝑘=1

𝑀𝑘

𝑀𝑘

𝑚
∑
𝑗=1

𝐼𝑃𝑘
(𝑗) 𝑤𝑗𝑦𝑗

and

𝑀𝑃 =
𝐿𝑃

∑
𝑘=1

𝑀𝑘

𝑀𝑘
𝑀𝑘 =

𝐿𝑃

∑
𝑘=1

𝑀𝑘 = 𝑀

The score variable for the poststratified mean is

𝑧𝑗(𝑦𝑃) =
𝑧𝑗( ̂𝑌 𝑃)

𝑀
= 1

𝑀

𝐿𝑃

∑
𝑘=1

𝐼𝑃𝑘
(𝑗)𝑀𝑘

𝑀𝑘
(𝑦𝑗 −

̂𝑌𝑘

𝑀𝑘
)

The standardized poststratified mean estimator
The estimator for the standardized poststratified mean is

𝑦𝐷𝑃 =
𝐿𝐷

∑
𝑔=1

𝜋𝑔

̂𝑌 𝑃
𝑔

𝑀𝑃
𝑔

where

̂𝑌 𝑃
𝑔 =

𝐿𝑝

∑
𝑘=1

𝑀𝑘

𝑀𝑘

̂𝑌𝑔,𝑘 =
𝐿𝑝

∑
𝑘=1

𝑀𝑘

𝑀𝑘

𝑚
∑
𝑗=1

𝐼𝐷𝑔
(𝑗)𝐼𝑃𝑘

(𝑗) 𝑤𝑗𝑦𝑗

and

𝑀𝑃
𝑔 =

𝐿𝑝

∑
𝑘=1

𝑀𝑘

𝑀𝑘
𝑀𝑔,𝑘 =

𝐿𝑝

∑
𝑘=1

𝑀𝑘

𝑀𝑘

𝑚
∑
𝑗=1

𝐼𝐷𝑔
(𝑗)𝐼𝑃𝑘

(𝑗) 𝑤𝑗
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The score variable for the standardized poststratified mean is

𝑧𝑗(𝑦𝐷𝑃) =
𝐿𝐷

∑
𝑔=1

𝜋𝑔
𝑀𝑃

𝑔 𝑧𝑗( ̂𝑌 𝑃
𝑔 ) − ̂𝑌 𝑃

𝑔 𝑧𝑗(𝑀𝑃
𝑔 )

(𝑀𝑃
𝑔 )2

where

𝑧𝑗( ̂𝑌 𝑃
𝑔 ) =

𝐿𝑃

∑
𝑘=1

𝐼𝑃𝑘
(𝑗)𝑀𝑘

𝑀𝑘
{𝐼𝐷𝑔

(𝑗)𝑦𝑗 −
̂𝑌𝑔,𝑘

𝑀𝑘
}

and

𝑧𝑗(𝑀𝑃
𝑔 ) =

𝐿𝑃

∑
𝑘=1

𝐼𝑃𝑘
(𝑗)𝑀𝑘

𝑀𝑘
{𝐼𝐷𝑔

(𝑗) −
𝑀𝑔,𝑘

𝑀𝑘
}

Subpopulation estimation
Let 𝑆 denote the set of sampled observations that belong to the subpopulation of interest, and define

𝐼𝑆(𝑗) to indicate if the 𝑗th observation falls within the subpopulation.

The estimator for the subpopulation mean is 𝑦𝑆 = ̂𝑌 𝑆/𝑀𝑆, where

̂𝑌 𝑆 =
𝑚

∑
𝑗=1

𝐼𝑆(𝑗) 𝑤𝑗𝑦𝑗 and 𝑀𝑆 =
𝑚

∑
𝑗=1

𝐼𝑆(𝑗) 𝑤𝑗

Its score variable is

𝑧𝑗(𝑦𝑆) = 𝐼𝑆(𝑗)
𝑦𝑗 − 𝑦𝑆

𝑀𝑆
= 𝐼𝑆(𝑗)

𝑀𝑆𝑦𝑗 − ̂𝑌 𝑆

(𝑀𝑆)2

The estimator for the standardized subpopulation mean is

𝑦𝐷𝑆 =
𝐿𝐷

∑
𝑔=1

𝜋𝑔

̂𝑌 𝑆
𝑔

𝑀𝑆
𝑔

where

̂𝑌 𝑆
𝑔 =

𝑚
∑
𝑗=1

𝐼𝐷𝑔
(𝑗)𝐼𝑆(𝑗) 𝑤𝑗𝑦𝑗 and 𝑀𝑆

𝑔 =
𝑚

∑
𝑗=1

𝐼𝐷𝑔
(𝑗)𝐼𝑆(𝑗) 𝑤𝑗

Its score variable is

𝑧𝑗(𝑦𝐷𝑆) =
𝐿𝐷

∑
𝑔=1

𝜋𝑔𝐼𝐷𝑔
(𝑗)𝐼𝑆(𝑗)

𝑀𝑆
𝑔 𝑦𝑗 − ̂𝑌 𝑆

𝑔

(𝑀𝑆
𝑔 )2



mean — Estimate means 1779

The estimator for the poststratified subpopulation mean is

𝑦𝑃𝑆 =
̂𝑌 𝑃𝑆

𝑀𝑃𝑆

where

̂𝑌 𝑃𝑆 =
𝐿𝑃

∑
𝑘=1

𝑀𝑘

𝑀𝑘

̂𝑌 𝑆
𝑘 =

𝐿𝑃

∑
𝑘=1

𝑀𝑘

𝑀𝑘

𝑚
∑
𝑗=1

𝐼𝑃𝑘
(𝑗)𝐼𝑆(𝑗) 𝑤𝑗𝑦𝑗

and

𝑀𝑃𝑆 =
𝐿𝑃

∑
𝑘=1

𝑀𝑘

𝑀𝑘
𝑀𝑆

𝑘 =
𝐿𝑃

∑
𝑘=1

𝑀𝑘

𝑀𝑘

𝑚
∑
𝑗=1

𝐼𝑃𝑘
(𝑗)𝐼𝑆(𝑗) 𝑤𝑗

Its score variable is

𝑧𝑗(𝑦𝑃𝑆) =
𝑀𝑃𝑆𝑧𝑗( ̂𝑌 𝑃𝑆) − ̂𝑌 𝑃𝑆𝑧𝑗(𝑀𝑃𝑆)

(𝑀𝑃𝑆)2

where

𝑧𝑗( ̂𝑌 𝑃𝑆) =
𝐿𝑃

∑
𝑘=1

𝐼𝑃𝑘
(𝑗)𝑀𝑘

𝑀𝑘
{𝐼𝑆(𝑗) 𝑦𝑗 −

̂𝑌 𝑆
𝑘

𝑀𝑘
}

and

𝑧𝑗(𝑀𝑃𝑆) =
𝐿𝑃

∑
𝑘=1

𝐼𝑃𝑘
(𝑗)𝑀𝑘

𝑀𝑘
{𝐼𝑆(𝑗) −

𝑀𝑆
𝑘

𝑀𝑘
}

The estimator for the standardized poststratified subpopulation mean is

𝑦𝐷𝑃𝑆 =
𝐿𝐷

∑
𝑔=1

𝜋𝑔

̂𝑌 𝑃𝑆
𝑔

𝑀𝑃𝑆
𝑔

where

̂𝑌 𝑃𝑆
𝑔 =

𝐿𝑝

∑
𝑘=1

𝑀𝑘

𝑀𝑘

̂𝑌 𝑆
𝑔,𝑘 =

𝐿𝑝

∑
𝑘=1

𝑀𝑘

𝑀𝑘

𝑚
∑
𝑗=1

𝐼𝐷𝑔
(𝑗)𝐼𝑃𝑘

(𝑗)𝐼𝑆(𝑗) 𝑤𝑗𝑦𝑗

and

𝑀𝑃𝑆
𝑔 =

𝐿𝑝

∑
𝑘=1

𝑀𝑘

𝑀𝑘
𝑀𝑆

𝑔,𝑘 =
𝐿𝑝

∑
𝑘=1

𝑀𝑘

𝑀𝑘

𝑚
∑
𝑗=1

𝐼𝐷𝑔
(𝑗)𝐼𝑃𝑘

(𝑗)𝐼𝑆(𝑗) 𝑤𝑗
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Its score variable is

𝑧𝑗(𝑦𝐷𝑃𝑆) =
𝐿𝐷

∑
𝑔=1

𝜋𝑔
𝑀𝑃𝑆

𝑔 𝑧𝑗( ̂𝑌 𝑃𝑆
𝑔 ) − ̂𝑌 𝑃𝑆

𝑔 𝑧𝑗(𝑀𝑃𝑆
𝑔 )

(𝑀𝑃𝑆
𝑔 )2

where

𝑧𝑗( ̂𝑌 𝑃𝑆
𝑔 ) =

𝐿𝑃

∑
𝑘=1

𝐼𝑃𝑘
(𝑗)𝑀𝑘

𝑀𝑘
{𝐼𝐷𝑔

(𝑗)𝐼𝑆(𝑗) 𝑦𝑗 −
̂𝑌 𝑆
𝑔,𝑘

𝑀𝑘
}

and

𝑧𝑗(𝑀𝑃𝑆
𝑔 ) =

𝐿𝑃

∑
𝑘=1

𝐼𝑃𝑘
(𝑗)𝑀𝑘

𝑀𝑘
{𝐼𝐷𝑔

(𝑗)𝐼𝑆(𝑗) −
𝑀𝑆

𝑔,𝑘

𝑀𝑘
}
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Postestimation commands estat sd Also see

Postestimation commands
The following postestimation commands are of special interest after mean:

Command Description

estat sd standard deviation estimates

The following standard postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters

estat vce variance–covariance matrix of the estimators (VCE)

estat (svy) postestimation statistics for survey data

estimates cataloging estimation results

etable table of estimation results

hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

marginsplot graph the results from mean

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

pwcompare pairwise comparisons of parameters

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses
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estat sd

Description for estat sd
estat sd reports standard deviations based on the estimation results from mean. estat sd is not

appropriate with estimation results that used direct standardization.

estat sd can also report subpopulation standard deviations based on estimation results from

svy: mean; see [SVY] estat.

Menu for estat sd
Statistics > Postestimation

Syntax for estat sd

estat sd [ , variance ]

Option for estat sd
variance requests that the variance be displayed instead of the standard deviation.

Stored results for estat sd
estat sd stores the following in r():

Matrices

r(mean) vector of mean estimates

r(sd) vector of standard deviation estimates

r(variance) vector of variance estimates

Also see
[R] mean — Estimate means

[SVY] estat — Postestimation statistics for survey data

[U] 20 Estimation and postestimation commands



mfp — Multivariable fractional polynomial models

Description Quick start Menu Syntax
Options Remarks and examples Stored results Acknowledgments
References Also see

Description
mfp selects the multivariable fractional polynomial (MFP) model that best predicts the outcome vari-

able from the right-hand-side variables in xvarlist.

For univariate fractional polynomials, fp can be used to fit a wider range of models than mfp. See
[R] fp for more details.

Quick start
Find optimal MFPmodel for regression of y on fractional polynomials of x1, x2, and x3

mfp: regress y x1 x2 x3

Same as above, but search only powers of −1, −0.5, 1, and 2
mfp, xpowers(-1 -.5 1 2): regress y x1 x2 x3

Allow a maximum of 2 degrees of freedom for all covariates

mfp, dfdefault(2): regress y x1 x2 x3

Allow 4 degrees of freedom for x1 and 2 degrees of freedom for x2 and x3
mfp, dfdefault(2) df(x1:4): regress y x1 x2 x3

Same as above

mfp, df(x1:4, x2 x3:2): regress y x1 x2 x3

Use a 10% significance level when testing between fractional polynomials of different degrees

mfp, alpha(0.1): regress y x1 x2 x3

Perform backward selection using a nominal 𝑝-value of 0.05 for all variables
mfp, select(0.05): regress y x1 x2 x3

Same as above, but force x3 into the model by setting its nominal 𝑝-value to 1
mfp, select(0.05, x3:1): regress y x1 x2 x3

Note: In the above examples, regress could be replaced with any estimation command allowing the
mfp prefix.

Menu
Statistics > Linear models and related > Fractional polynomials > Multivariable fractional polynomial models
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Syntax
mfp [ , options ] : regression cmd [ yvar1 [ yvar2 ] ] xvarlist [ if ] [ in ] [weight ]

[ , regression cmd options ]

regression cmd may be clogit, glm, intreg, logistic, logit, mlogit, nbreg, ologit, oprobit,
poisson, probit, qreg, regress, rreg, stcox, stcrreg, streg, or xtgee.

yvar1 is not allowed for streg, stcrreg, and stcox. For these commands, you must first stset your
data.

yvar1 and yvar2 must both be specified when regression cmd is intreg.

xvarlist has elements of type varlist or (varlist) or both, for example, x1 x2 (x3 x4 x5). Elements

enclosed in parentheses are tested jointly for inclusion in the model and are not eligible for fractional

polynomial transformation.

options Description

Model 2

sequential use the Royston and Altman model-selection algorithm; default uses
closed-test procedure

cycles(#) maximum number of iteration cycles; default is cycles(5)
dfdefault(#) default maximum degrees of freedom; default is dfdefault(4)
center(cent list) specification of centering for the independent variables

alpha(alpha list) 𝑝-values for testing between FPmodels; default is alpha(0.05)
df(df list) degrees of freedom for each predictor

powers(numlist) list of FP powers to use; default is powers(-2 -1(.5)1 2 3)

Adv. model

xorder(+ | - | n) order of entry into model-selection algorithm; default is xorder(+)
select(select list) nominal 𝑝-values for selection on each predictor
xpowers(xp list) FP powers for each predictor

zero(varlist) treat nonpositive values of specified predictors as zero when FP

is transformed

catzero(varlist) add indicator variable for specified predictors

all include out-of-sample observations in generated variables

Reporting

level(#) set confidence level; default is level(95)
display options control column formats and line width

regression cmd options Description

Adv. model

regression cmd options options appropriate to the regression command in use

collect is allowed; see [U] 11.1.10 Prefix commands.

All weight types supported by regression cmd are allowed; see [U] 11.1.6 weight.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

fp generate may be used to create new variables containing fractional polynomial powers. See [R] fp.
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Options

� � �
Model 2 �

sequential chooses the sequential fractional polynomial (FP) selection algorithm (see Methods of FP

model selection).

cycles(#) sets the maximum number of iteration cycles permitted. cycles(5) is the default.

dfdefault(#) determines the default maximum degrees of freedom (df) for a predictor. The default is

dfdefault(4) (second-degree FP).

center(cent list) defines the centering of the covariates xvar1, xvar2, . . . of xvarlist. The default is

center(mean), except for binary covariates, where it is center(#), with # being the lower of the
two distinct values of the covariate. A typical item in cent list is varlist:{mean | # | no}. Items are
separated by commas. The first item is special in that varlist is optional, and if it is omitted, the default

is reset to the specified value (mean, #, or no). For example, center(no, age:mean) sets the default
to no (that is, no centering) and the centering of age to mean.

alpha(alpha list) sets the significance levels for testing between FP models of different degrees. The

rules for alpha list are the same as those for df list in the df() option (see below). The default

nominal 𝑝-value (significance level, selection level) is 0.05 for all variables.
Example: alpha(0.01) specifies that all variables have an FP selection level of 1%.

Example: alpha(0.05, weight:0.1) specifies that all variables except weight have an FP selection
level of 5%; weight has a level of 10%.

df(df list) sets the df for each predictor. The df (not counting the regression constant, cons) is twice
the degree of the FP, so, for example, an xvar fit as a second-degree FP (FP2) has 4 df. The first item

in df list may be either # or varlist:#. Subsequent items must be varlist:#. Items are separated by
commas, and varlist is specified in the usual way for variables. With the first type of item, the df for

all predictors is taken to be #. With the second type of item, all members of varlist (which must be a

subset of xvarlist) have # df.

The default number of degrees of freedom for a predictor of type varlist specified in xvarlist but not

in df list is assigned according to the number of distinct (unique) values of the predictor, as follows:

# of distinct values Default df

1 (invalid predictor)

2–3 1

4–5 min(2, dfdefault())
≥ 6 dfdefault()

Example: df(4)
All variables have 4 df.

Example: df(2, weight displ:4)
weight and displ have 4 df; all other variables have 2 df.

Example: df(weight displ:4, mpg:2)
weight and displ have 4 df, mpg has 2 df; all other variables have default df.

powers(numlist) is the set of FP powers to be used. The default set is −2, −1, −0.5, 0, 0.5, 1, 2, 3 (0

means log).
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� � �
Adv. model �

xorder(+ | - | n) determines the order of entry of the covariates into the model-selection algorithm.

The default is xorder(+), which enters them in decreasing order of significance in a multiple linear

regression (most significant first). xorder(-) places them in reverse significance order, whereas

xorder(n) respects the original order in xvarlist.

select(select list) sets the nominal 𝑝-values (significance levels) for variable selection by backward
elimination. A variable is dropped if its removal causes a nonsignificant increase in deviance. The

rules for select list are the same as those for df list in the df() option (see above). Using the default
selection level of 1 for all variables forces them all into the model. Setting the nominal 𝑝-value to be 1
for a given variable forces it into the model, leaving others to be selected or not. The nominal 𝑝-value
for elements of xvarlist bound by parentheses is specified by including (varlist) in select list.

Example: select(0.05)
All variables have a nominal 𝑝-value of 5%.
Example: select(0.05, weight:1)
All variables except weight have a nominal 𝑝-value of 5%; weight is forced into the model.
Example: select(a (b c):0.05)
All variables except a, b, and c are forced into the model. b and c are tested jointly with 2 df at the
5% level, and a is tested singly at the 5% level.

xpowers(xp list) sets the permitted FP powers for covariates individually. The rules for xp list are the

same as for df list in the df() option. The default selection is the same as that for the powers()
option.

Example: xpowers(-1 0 1)
All variables have powers −1, 0, 1.

Example: xpowers(x5:-1 0 1)
All variables except x5 have default powers; x5 has powers −1, 0, 1.

zero(varlist) treats negative and zero values of members of varlist as zero when FP transformations

are applied. By default, such variables are subjected to a preliminary linear transformation to avoid

negative and zero values, as described in the scale option of [R] fp. varlist must be part of xvarlist.

catzero(varlist) is a variation on zero(); see Zeros and zero categories below. varlist must be part of
xvarlist.

regression cmd options may be any of the options appropriate to regression cmd.

all includes out-of-sample observations when generating the FP variables. By default, the generated FP

variables contain missing values outside the estimation sample.

� � �
Reporting �

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is

level(95) or as set by set level; see [U] 20.8 Specifying the width of confidence intervals.

display options: cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] Esti-
mation options.
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Remarks and examples
Remarks are presented under the following headings:

Iteration report
Estimation algorithm
Methods of FP model selection
Zeros and zero categories

For elements in xvarlist not enclosed in parentheses, mfp leaves variables in the data named Ixvar 1,
Ixvar 2, . . . , where xvar represents the first four letters of the name of xvar1, and so on, for xvar2, xvar3,
etc. The new variables contain the best-fitting FP powers of xvar1, xvar2, . . . .

Iteration report
By default, for each continuous predictor, x, mfp compares null, linear, and FP1 models for x with an

FP2model. The deviance for each of these nested submodels is given in the column labeled “Deviance”.

The line labeled “Final” gives the deviance for the selected model and its powers. All the other predictors

currently selected are included, with their transformations (if any). For models specified as having 1 df,

the only choice is whether the variable enters the model.

Estimation algorithm
The estimation algorithm in mfp processes the xvars in turn. Initially, mfp silently arranges xvarlist

in order of increasing 𝑝-value (that is, of decreasing statistical significance) for omitting each predictor
from the model comprising xvarlist, with each term linear. The aim is to model relatively important

variables before unimportant ones. This approach may help to reduce potential model-fitting difficulties

caused by collinearity or, more generally, “concurvity” among the predictors. See the xorder() option
above for details on how to change the ordering.

At the initial cycle, the best-fitting FP function for xvar1 (the first of xvarlist) is determined, with all the

other variables assumed to be linear. Either the default or the alternative procedure is used (see Methods

of FP model selection below). The functional form (but not the estimated regression coefficients) for

xvar1 is kept, and the process is repeated for xvar2, xvar3, etc. The first iteration concludes when all the

variables have been processed in this way. The next cycle is similar, except that the functional forms

from the initial cycle are retained for all variables except the one currently being processed.

A variable whose functional form is prespecified to be linear (that is, to have 1 df) is tested for ex-

clusion within the above procedure when its nominal 𝑝-value (selection level) according to select() is
less than 1; otherwise, it is included.

Updating of FP functions and candidate variables continues until the functions and variables included

in the overall model do not change (convergence). Convergence is usually achieved within 1–4 cycles.
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Methods of FP model selection
mfp includes two algorithms for FPmodel selection, both of which combine backward eliminationwith

the selection of an FP function. For each continuous variable in turn, they start from a most-complex

permitted FP model and attempt to simplify the model by reducing the degree. The default algorithm

resembles a closed-test procedure, a sequence of tests maintaining the overall type I error rate at a pre-

specified nominal level, such as 5%. All significance tests are approximate; therefore, the algorithm is

not precisely a closed-test procedure (Royston and Sauerbrei 2008, chap. 6).

The closed-test algorithm for choosing an FPmodel with maximum permitted degree 𝑚 = 2 (that is,

an FP2 model with 4 df) for one continuous predictor, x, is as follows:

1. Inclusion: Test FP2 against the null model for x on 4 df at the significance level determined by

select(). If x is significant, continue; otherwise, drop x from the model.

2. Nonlinearity: Test FP2 against a straight line in x on 3 df at the significance level determined by

alpha(). If significant, continue; otherwise, stop, with the chosen model for x being a straight
line.

3. Simplification: Test FP2 against FP1 on 2 df at the significance level determined by alpha().
If significant, the final model is FP2; otherwise, it is FP1.

The first step is omitted if x is to be retained in the model, that is, if its nominal 𝑝-value, according to
the select() option, is 1.

An alternative algorithm is available with the sequential option, as originally suggested by Royston
and Altman (1994):

1. Test FP2 against FP1 on 2 df at the alpha() significance level. If significant, the final model is
FP2; otherwise, continue.

2. Test FP1 against a straight line on 1 df at the alpha() level. If significant, the final model is
FP1; otherwise, continue.

3. Test a straight line against omitting x on 1 df at the select() level. If significant, the final
model is a straight line; otherwise, drop x.

The final step is omitted if x is to be retained in the model, that is, if its nominal 𝑝-value, according
to the select() option, is 1.

If x is uninfluential, the overall type I error rate of this procedure is about double that of the closed-

test procedure, for which the rate is close to the nominal value. This inflated type I error rate confers

increased apparent power to detect nonlinear relationships.
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Zeros and zero categories
The zero() option permits fitting an FPmodel to the positive values of a covariate, taking nonpositive

values as zero. An application is the assessment of the effect of cigarette smoking as a risk factor in

an epidemiological study. Nonsmokers may be qualitatively different from smokers, so the effect of

smoking (regarded as a continuous variable) may not be continuous between one and zero cigarettes.

To allow for this, the risk may be modeled as constant for the nonsmokers and as an FP function of the

number of cigarettes for the smokers:

. generate byte nonsmokr = cond(n_cigs==0, 1, 0) if n_cigs != .

. mfp, zero(n_cigs) df(4, nonsmokr:1): logit case n_cigs nonsmokr age

Omission of zero(n cigs) would cause n cigs to be transformed before analysis by the addition
of a suitable constant, probably 1.

A closely related approach involves the catzero() option. The command

. mfp, catzero(n_cigs): logit case n_cigs age

would achieve a similar result to the previous command but with important differences. First, mfpwould
create the equivalent of the binary variable nonsmokr automatically and include it in the model. Second,
the two smoking variables would be treated as one predictor in the model. With the select() option ac-
tive, the two variables would be tested jointly for inclusion in the model. Amodified version is described

in Royston and Sauerbrei (2008, sec. 4.15).

Example 1
We illustrate two of the analyses performed by Sauerbrei and Royston (1999). We use brcancer.dta,

which contains prognostic factors data from the German Breast Cancer Study Group of patients with

node-positive breast cancer. The response variable is recurrence-free survival time (rectime), and the
censoring variable is censrec. There are 686 patients with 299 events. We use Cox regression to predict

the log hazard of recurrence from prognostic factors of which five are continuous (x1, x3, x5, x6, x7)
and three are binary (x2, x4a, x4b). Hormonal therapy (hormon) is known to reduce recurrence rates
and is forced into the model. We use mfp to build a model from the initial set of eight predictors by using

the backfitting model-selection algorithm. We set the nominal 𝑝-value for variable and FP selection to

0.05 for all variables except hormon, which it is set to 1:

. use https://www.stata-press.com/data/r18/brcancer
(German breast cancer data)
. stset rectime, fail(censrec)
(output omitted )
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. mfp, alpha(.05) select(.05, hormon:1): stcox x1 x2 x3 x4a x4b x5 x6 x7 hormon,
> nohr
Deviance for model with all terms untransformed = 3471.637, 686 observations
Variable Model (vs.) Deviance Dev diff. P Powers (vs.)

x5 null FP2 3503.610 61.366 0.000* . .5 3
Lin. 3471.637 29.393 0.000+ 1
FP1 3449.203 6.959 0.031+ 0
Final 3442.244 .5 3

x6 null FP2 3464.113 29.917 0.000* . -2 .5
Lin. 3442.244 8.048 0.045+ 1
FP1 3435.550 1.354 0.508 .5
Final 3435.550 .5

[hormon included with 1 df in model]
x4a null Lin. 3440.749 5.199 0.023* . 1

Final 3435.550 1
x3 null FP2 3436.832 3.560 0.469 . -2 3

Final 3436.832 .
x2 null Lin. 3437.589 0.756 0.384 . 1

Final 3437.589 .
x4b null Lin. 3437.848 0.259 0.611 . 1

Final 3437.848 .
x1 null FP2 3437.893 18.085 0.001* . -2 -.5

Lin. 3437.848 18.040 0.000+ 1
FP1 3433.628 13.820 0.001+ -2
Final 3419.808 -2 -.5

x7 null FP2 3420.805 3.715 0.446 . -.5 3
Final 3420.805 .

End of Cycle 1: Deviance = 3420.805

x5 null FP2 3494.867 74.143 0.000* . -2 -1
Lin. 3451.795 31.071 0.000+ 1
FP1 3428.023 7.299 0.026+ 0
Final 3420.724 -2 -1

x6 null FP2 3452.093 32.704 0.000* . 0 0
Lin. 3427.703 8.313 0.040+ 1
FP1 3420.724 1.334 0.513 .5
Final 3420.724 .5

[hormon included with 1 df in model]
x4a null Lin. 3425.310 4.586 0.032* . 1

Final 3420.724 1
x3 null FP2 3420.724 5.305 0.257 . -.5 0

Final 3420.724 .
x2 null Lin. 3420.724 0.214 0.644 . 1

Final 3420.724 .
x4b null Lin. 3420.724 0.145 0.703 . 1

Final 3420.724 .
x1 null FP2 3440.057 19.333 0.001* . -2 -.5

Lin. 3440.038 19.314 0.000+ 1
FP1 3436.949 16.225 0.000+ -2
Final 3420.724 -2 -.5

x7 null FP2 3420.724 2.152 0.708 . -1 3
Final 3420.724 .
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Fractional polynomial fitting algorithm converged after 2 cycles.
Transformations of covariates:
-> gen double Ix1__1 = X^-2-.0355294635 if e(sample)
-> gen double Ix1__2 = X^-.5-.4341573547 if e(sample)

(where: X = x1/10)
-> gen double Ix5__1 = X^-2-3.983723313 if e(sample)
-> gen double Ix5__2 = X^-1-1.99592668 if e(sample)

(where: X = x5/10)
-> gen double Ix6__1 = X^.5-.3331600619 if e(sample)

(where: X = (x6+1)/1000)
Final multivariable fractional polynomial model for _t

Variable Initial Final
df Select Alpha Status df Powers

x1 4 0.0500 0.0500 in 4 -2 -.5
x2 1 0.0500 0.0500 out 0
x3 4 0.0500 0.0500 out 0
x4a 1 0.0500 0.0500 in 1 1
x4b 1 0.0500 0.0500 out 0
x5 4 0.0500 0.0500 in 4 -2 -1
x6 4 0.0500 0.0500 in 2 .5
x7 4 0.0500 0.0500 out 0

hormon 1 1.0000 0.0500 in 1 1

Cox regression -- Breslow method for ties
Entry time _t0 Number of obs = 686

LR chi2(7) = 155.62
Prob > chi2 = 0.0000

Log likelihood = -1710.3619 Pseudo R2 = 0.0435

_t Coefficient Std. err. z P>|z| [95% conf. interval]

Ix1__1 44.73377 8.256682 5.42 0.000 28.55097 60.91657
Ix1__2 -17.92302 3.909611 -4.58 0.000 -25.58571 -10.26032

x4a .5006982 .2496324 2.01 0.045 .0114276 .9899687
Ix5__1 .0387904 .0076972 5.04 0.000 .0237041 .0538767
Ix5__2 -.5490645 .0864255 -6.35 0.000 -.7184554 -.3796736
Ix6__1 -1.806966 .3506314 -5.15 0.000 -2.494191 -1.119741
hormon -.4024169 .1280843 -3.14 0.002 -.6534575 -.1513763

Deviance = 3420.724.

Some explanation of the output from the model-selection algorithm is desirable. Consider the first

few lines of output in the iteration log:

1. Deviance for model with all terms untransformed = 3471.637, 686 observations
Variable Model (vs.) Deviance Dev diff. P Powers (vs.)

2. x5 null FP2 3503.610 61.366 0.000* . .5 3
3. lin. 3471.637 29.393 0.000+ 1
4. FP1 3449.203 6.959 0.031+ 0
5. Final 3442.244 .5 3

Line 1 gives the deviance (−2 × log partial likelihood) for the Cox model with all terms linear, the

place where the algorithm starts. The model is modified variable by variable in subsequent steps. The

most significant linear term turns out to be x5, which is therefore processed first. Line 2 compares the
best-fitting FP2 for x5 with a model omitting x5. The FP has powers (0.5, 3), and the test for inclusion of
x5 is highly significant. The reported deviance of 3,503.610 is of the null model, not for the FP2 model.
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The deviance for the FP2 model may be calculated by subtracting the deviance difference (Dev diff.)
from the reported deviance, giving 3,503.610− 61.366 = 3,442.244. Line 3 shows that the FP2model is

also a significantly better fit than a straight line (lin.) and line 4 that FP2 is also somewhat better than
FP1 (𝑝 = 0.031). Thus at this stage in the model-selection procedure, the final model for x5 (line 5) is
FP2 with powers (0.5, 3). The overall model with an FP2 for x5 and all other terms linear has a deviance
of 3,442.244.

After all the variables have been processed (cycle 1) and reprocessed (cycle 2) in this way, conver-

gence is achieved because the functional forms (FP powers and variables included) after cycle 2 are the

same as they were after cycle 1. The model finally chosen is Model II as given in tables 3 and 4 of Sauer-

brei and Royston (1999). Because of scaling of variables, the regression coefficients reported there are

different, but the model and its deviance are identical. The model includes x1 with powers (−2, −0.5),
x4a, x5 with powers (−2, −1), and x6 with power 0.5. There is strong evidence of nonlinearity for x1
and for x5, the deviance differences for comparison with a straight-line model (FP2 vs lin.) being,

respectively, 19.3 and 31.1 at convergence (cycle 2). Predictors x2, x3, x4b, and x7 are dropped, as may
be seen from their status out in the table Final multivariable fractional polynomial model for
t (the assumed depvar when using stcox).

All predictors except x4a and hormon, which are binary, have been centered on the mean of the

original variable. For example, the mean of x1 (age) is 53.05 years. The first FP-transformed variable for
x1 is x1^-2 and is created by the expression generate double Ix1 1 = X^-2-.0355 if e(sample).
The value 0.0355 is obtained from (53.05/10)−2. The division by 10 is applied automatically to improve

the scaling of the regression coefficient for Ix1 1.

According to Sauerbrei and Royston (1999), medical knowledge dictates that the estimated risk func-

tion for x5 (number of positive nodes), which was based on the above FP with powers (−2, −1), should

be monotonic, but it was not. They improved Model II by estimating a preliminary exponential transfor-

mation, x5e = exp(−0.12 ⋅ x5), for x5 and fitting a degree 1 FP for x5e, thus obtaining a monotonic
risk function. The value of −0.12 was estimated univariately using nonlinear Cox regression with the

ado-file boxtid (Royston and Ambler 1999b, 1999d). To ensure a negative exponent, Sauerbrei and

Royston (1999) restricted the powers for x5e to be positive. Their Model III may be fit by using the

following command:

. mfp, alpha(.05) select(.05, hormon:1) df(x5e:2) xpowers(x5e:0.5 1 2 3):
> stcox x1 x2 x3 x4a x4b x5e x6 x7 hormon
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Other than the customization for x5e, the command is the same as it was before. The resulting model
is as reported in table 4 of Sauerbrei and Royston (1999):

. use https://www.stata-press.com/data/r18/brcancer, clear
(German breast cancer data)
. stset rectime, fail(censrec)
(output omitted )

. mfp, alpha(.05) select(.05, hormon:1) df(x5e:2) xpowers(x5e:0.5 1 2 3):
> stcox x1 x2 x3 x4a x4b x5e x6 x7 hormon, nohr
(output omitted )

Final multivariable fractional polynomial model for _t

Variable Initial Final
df Select Alpha Status df Powers

x1 4 0.0500 0.0500 in 4 -2 -.5
x2 1 0.0500 0.0500 out 0
x3 4 0.0500 0.0500 out 0
x4a 1 0.0500 0.0500 in 1 1
x4b 1 0.0500 0.0500 out 0
x5e 2 0.0500 0.0500 in 1 1
x6 4 0.0500 0.0500 in 2 .5
x7 4 0.0500 0.0500 out 0

hormon 1 1.0000 0.0500 in 1 1

Cox regression -- Breslow method for ties
Entry time _t0 Number of obs = 686

LR chi2(6) = 153.11
Prob > chi2 = 0.0000

Log likelihood = -1711.6186 Pseudo R2 = 0.0428

_t Coefficient Std. err. z P>|z| [95% conf. interval]

Ix1__1 43.55382 8.253433 5.28 0.000 27.37738 59.73025
Ix1__2 -17.48136 3.911882 -4.47 0.000 -25.14851 -9.814212

x4a .5174351 .2493739 2.07 0.038 .0286713 1.006199
Ix5e__1 -1.981213 .2268903 -8.73 0.000 -2.425909 -1.536516
Ix6__1 -1.84008 .3508432 -5.24 0.000 -2.52772 -1.15244
hormon -.3944998 .128097 -3.08 0.002 -.6455654 -.1434342

Deviance = 3423.237.
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Stored results
In addition to what regression cmd stores, mfp stores the following in e():
Scalars

e(fp nx) number of predictors in xvarlist

e(fp dev) deviance of final model fit

e(Fp id#) initial degrees of freedom for the #th element of xvarlist

e(Fp fd#) final degrees of freedom for the #th element of xvarlist

e(Fp al#) FP selection level for the #th element of xvarlist

e(Fp se#) backward elimination selection level for the #th element of xvarlist

Macros

e(fp cmd) fracpoly
e(fp cmd2) mfp
e(cmdline) command as typed

e(fracpoly) command used to fit the selected model using fracpoly
e(fp fvl) variables in final model

e(fp depv) yvar1 (yvar2)
e(fp opts) estimation command options

e(fp x1) first variable in xvarlist

e(fp x2) second variable in xvarlist

. . .

e(fp xN) last variable in xvarlist, 𝑁 =e(fp nx)
e(fp k1) power for first variable in xvarlist (*)

e(fp k2) power for second variable in xvarlist (*)

. . .

e(fp kN) power for last var. in xvarlist (*), 𝑁 =e(fp nx)

Note: (*) contains ‘.’ if the variable is not selected in the final model.

In addition to the above, the following is stored in r():
Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.
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Postestimation commands fracplot and fracpred Remarks and examples
Methods and formulas Also see

Postestimation commands
The following postestimation commands are of special interest after mfp:

Command Description

fracplot plot data and fit from most recently fit fractional polynomial model

fracpred create variable containing prediction, deviance residuals, or SEs of fitted values

The following standard postestimation commands are also available if available after regression cmd:

Command Description

estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian infor-
mation criteria (AIC, CAIC, AICc, and BIC, respectively)

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estimates cataloging estimation results

etable table of estimation results

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

linktest link test for model specification

lrtest likelihood-ratio test

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

1796
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fracplot and fracpred

Description for fracplot and fracpred
fracplot plots the data and fit, with 95% confidence limits, from the most recently fit fractional

polynomial (FP) model. The data and fit are plotted against varname, which may be xvar1 or another of

the covariates (xvar2, . . . , or a variable from xvarlist). If varname is not specified, xvar1 is assumed.

fracpred creates newvar containing the fitted index or deviance residuals for the whole model, or
the fitted index or its standard error for varname, which may be xvar1 or another covariate.

Menu for fracplot and fracpred
fracplot
Statistics > Linear models and related > Fractional polynomials > Multivariable fractional polynomial plot

fracpred
Statistics > Linear models and related > Fractional polynomials > Multivariable fractional polynomial prediction

Syntax for fracplot and fracpred
Plot data and fit from most recently fit fractional polynomial model

fracplot [ varname ] [ if ] [ in ] [ , fracplot options ]

Create variable containing the prediction, deviance residuals, or SEs of fitted values

fracpred newvar [ , fracpred options ]

fracplot options Description

Plot

marker options change look of markers (color, size, etc.)

marker label options add marker labels; change look or position

Fitted line

lineopts(cline options) affect rendition of the fitted line

CI plot

ciopts(area options) affect rendition of the confidence bands

Add plots

addplot(plot) add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

fracpred options Description

for(varname) compute prediction for varname

dresid compute deviance residuals

stdp compute standard errors of the fitted values varname
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fracplot is not allowed after mfp with clogit, mlogit, or stcrreg. fracpred, dresid is not al-
lowed after mfp with clogit, mlogit, or stcrreg.

Options for fracplot

� � �
Plot �

marker options affect the rendition of markers drawn at the plotted points, including their shape, size,

color, and outline; see [G-3] marker options.

marker label options specify if and how the markers are to be labeled; see [G-3]marker label options.

� � �
Fitted line �

lineopts(cline options) affect the rendition of the fitted line; see [G-3] cline options.

� � �
CI plot �

ciopts(area options) affect the rendition of the confidence bands; see [G-3] area options.

� � �
Add plots �

addplot(plot) provides a way to add other plots to the generated graph. See [G-3] addplot option.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see

[G-3] saving option).

Options for fracpred
for(varname) specifies (partial) prediction for variable varname. The fitted values are adjusted to the

value specified by the center() option in mfp.

dresid specifies that deviance residuals be calculated.

stdp specifies calculation of the standard errors of the fitted values varname, adjusted for all the other
predictors at the values specified by center().

Remarks and examples
fracplot actually produces a component-plus-residual plot. For normal-error models with constant

weights and one covariate, this amounts to a plot of the observations with the fitted line inscribed. For

other normal-error models, weighted residuals are calculated and added to the fitted values.

For models with additional covariates, the line is the partial linear predictor for the variable in question

(xvar1 or a covariate) and includes the intercept 𝛽0.

For generalized linear and Cox models, the fitted values are plotted on the scale of the “index” (linear

predictor). Deviance residuals are added to the (partial) linear predictor to give component-plus-residual

values. These values are plotted as small circles.
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Example 1
In example 1 of [R]mfp, we used Cox regression to predict the log hazard of breast cancer recurrence

from prognostic factors of which five are continuous (x1, x3, x5, x6, x7) and three are binary (x2,
x4a, x4b). We also controlled for hormonal therapy (hormon). We used mfp to build a model from the

initial set of eight predictors by using the backfitting model-selection algorithm. The nominal 𝑝-value
for variable and FP selection was set to 0.05 for all variables except hormon, which is set to 1.

. use https://www.stata-press.com/data/r18/brcancer
(German breast cancer data)
. stset rectime, fail(censrec)
(output omitted )

. mfp, alpha(.05) select(.05, hormon:1): stcox x1 x2 x3 x4a x4b x5 x6 x7 hormon,
> nohr
(output omitted )

We can use fracplot to produce component-plus-residual plots of the continuous variables. We

produce the component-plus-residual plot for x1 with fracplot by specifying x1 after the command

name.

. fracplot x1
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We use fracpred with the stdp option to predict the standard error of the fractional polynomial pre-
diction for x1. The standard error prediction will be stored in variable sepx1. We specify that prediction

is made for x1 with the for() option. After prediction, we use summarize to show how the standard

error estimate varies over different values of x1.
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. fracpred sepx1, stdp for(x1)

. summarize sepx1
Variable Obs Mean Std. dev. Min Max

sepx1 686 .0542654 .0471993 .0003304 .6862065

Methods and formulas
The general definition of an FP, accommodating possible repeated powers, may be written for func-

tions 𝐻1(𝑥), . . . , 𝐻𝑚(𝑥) as

𝛽0 +
𝑚

∑
𝑗=1

𝛽𝑗𝐻𝑗(𝑥)

where 𝐻1(𝑥) = 𝑥(𝑝1) and for 𝑗 = 2, . . . , 𝑚,

𝐻𝑗(𝑥) = {𝑥(𝑝𝑗) if 𝑝𝑗 ≠ 𝑝𝑗−1
𝐻𝑗−1(𝑥) log𝑥 if 𝑝𝑗 = 𝑝𝑗−1

For example, an FP of degree 3 with powers (1, 3, 3) has𝐻1(𝑥) = 𝑥, 𝐻2(𝑥) = 𝑥3, and𝐻3(𝑥) = 𝑥3 log𝑥
and equals 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥3 + 𝛽3𝑥3 log𝑥.

The component-plus-residual values graphed by fracplot are calculated as follows: Let the data

consist of triplets (𝑦𝑖, 𝑥𝑖, z𝑖), 𝑖 = 1, . . . , 𝑛, where z𝑖 is the vector of covariates for the 𝑖th obser-

vation, after applying possible fractional polynomial transformation and adjustment as described ear-

lier. Let ̂𝜂𝑖 = ̂𝛽0 + {H(𝑥𝑖) − H(𝑥0)}′ β̂ + z
′
𝑖�̂� be the linear predictor from the FP model, as given

by the fracpred command or, equivalently, by the predict command with the xb option, follow-

ing mfp. Here H(𝑥𝑖) = {𝐻1(𝑥𝑖), . . . , 𝐻𝑚(𝑥𝑖)}′ is the vector of FP functions described above,

H(𝑥0) = {𝐻1(𝑥0), . . . , 𝐻𝑚(𝑥0)}′ is the vector of adjustments to 𝑥0 (often, 𝑥0 is chosen to be the

mean of the 𝑥𝑖), β̂ is the estimated parameter vector, and �̂� is the estimated parameter vector for the

covariates. The values ̂𝜂∗
𝑖 = ̂𝛽0 + {H(𝑥𝑖) − H(𝑥0)}′ β̂ represent the behavior of the FP model for 𝑥 at

fixed values z = 0 of the (adjusted) covariates. The 𝑖th component-plus-residual is defined as ̂𝜂∗
𝑖 + 𝑑𝑖,

where 𝑑𝑖 is the deviance residual for the 𝑖th observation. For normal-errors models, 𝑑𝑖 = √𝑤𝑖(𝑦𝑖 − ̂𝜂𝑖),
where 𝑤𝑖 is the case weight (or 1, if weight is not specified). For logistic, Cox, and generalized linear re-

gression models, see [R] logistic, [R] probit, [ST] stcox, and [R] glm for the formula for 𝑑𝑖. The formula

for poisson models is the same as that for glm with family(poisson). For stcox, 𝑑𝑖 is the partial

martingale residual (see [ST] stcox postestimation).

fracplot plots the values of 𝑑𝑖 and the curve represented by ̂𝜂∗
𝑖 against 𝑥𝑖. The confidence interval

for ̂𝜂∗
𝑖 is obtained from the variance–covariance matrix of the entire model and takes into account the

uncertainty in estimating 𝛽0, β, and 𝛄 (but not in estimating the FP powers for 𝑥).
fracpred with the for(varname) option calculates the predicted index at 𝑥𝑖 = 𝑥0 and z𝑖 = 0; that

is, ̂𝜂𝑖 = ̂𝛽0+{H(𝑥𝑖) − H(𝑥0)}′ β̂. The standard error is calculated from the variance–covariance matrix

of ( ̂𝛽0, β̂), again ignoring estimation of the powers.

Also see
[R] mfp — Multivariable fractional polynomial models

[U] 20 Estimation and postestimation commands
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Description Quick start Menu Syntax
Options Remarks and examples Stored results Also see

Description
misstable makes tables that help you understand the pattern of missing values in your data.

Quick start
Tables with counts of missing values

Missing observations in v1, v2, and v3
misstable summarize v1 v2 v3

Missing observations in v1–v3 for cases where v4 > 10
misstable summarize v1 v2 v3 if v4>10

All variables with missing values

misstable summarize

Include variables with no missing values in the table

misstable summarize, all

Create 3 missing-data indicator variables with prefix m for v1, v2, and v3
misstable summarize v1 v2 v3, generate(m)

Tables of missing-value patterns

Missing-value patterns for v1, v2, and v3
misstable patterns v1 v2 v3

Same as above, but for all variables with missing values

misstable patterns

Show variables in the order listed in the command

misstable patterns v1 v3 v2, asis

Show frequencies, rather than percentages, in the output

misstable patterns v1 v2 v3, frequency

Missing-value patterns displayed as trees

A tree view of missing-value patterns for v1, v2, and v3
misstable tree v1 v2 v3

For all variables with missing values

misstable tree

1801
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Nesting patterns of missing values

Missing values for v1, v2, and v3
misstable nested v1 v2 v3

Same as above, but for all variables with missing values

misstable nested

Treat extended missing values (.a, .b, . . . , .z) as nonmissing
misstable nested v1 v2 v3, exok

Menu
Statistics > Summaries, tables, and tests > Other tables > Tabulate missing values
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Syntax
Report counts of missing values

misstable summarize [ varlist ] [ if ] [ in ] [ , summarize options ]

Report pattern of missing values

misstable patterns [ varlist ] [ if ] [ in ] [ , patterns options ]

Present a tree view of the pattern of missing values

misstable tree [ varlist ] [ if ] [ in ] [ , tree options ]

List the nesting rules that describe the missing-value pattern

misstable nested [ varlist ] [ if ] [ in ] [ , nested options ]

summarize options Description

all show all variables

showzeros show zeros in table

generate(stub [ , exok ]) generate missing-value indicators

patterns options Description

asis use variables in order given

frequency report frequencies instead of percentages

exok treat .a, .b, . . . , .z as nonmissing
replace replace data in memory with dataset of patterns

clear okay to replace even if original unsaved

bypatterns list by patterns rather than by frequency

tree options Description

asis use variables in order given

frequency report frequencies instead of percentages

exok treat .a, .b, . . . , .z as nonmissing

nested options Description

exok treat .a, .b, . . . , .z as nonmissing

In addition, programmer’s option nopreserve is allowed with all syntaxes; see [P] nopreserve option.

collect is allowed; see [U] 11.1.10 Prefix commands.
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Options
Options are presented under the following headings:

Options for misstable summarize
Options for misstable patterns
Options for misstable tree
Option for misstable nested
Common options

Options for misstable summarize
all specifies that the table should include all the variables specified or all the variables in the dataset.

The default is to include only numeric variables that contain missing values.

showzeros specifies that zeros in the table should display as 0 rather than being omitted.

generate(stub [ , exok ]) requests that a missing-value indicator newvar, a new binary variable con-

taining 0 for complete observations and 1 for incomplete observations, be generated for every numeric
variable in varlist containing missing values. If the all option is specified, missing-value indicators
are created for all the numeric variables specified or for all the numeric variables in the dataset. If

exok is specified within generate(), the extended missing values .a, .b, . . . , .z are treated as if
they do not designate missing.

For each variable in varlist, newvar is the corresponding variable name varname prefixed with stub.

If the total length of stub and varname exceeds 32 characters, newvar is abbreviated so that its name

does not exceed 32 characters.

Options for misstable patterns
asis, frequency, and exok – see Common options below.

replace specifies that the data in memory be replaced with a dataset corresponding to the table just

displayed; see misstable patterns under Remarks and examples below.

clear is for use with replace; it specifies that it is okay to change the data in memory even if they have
not been saved to disk.

bypatterns specifies the table be ordered by pattern rather than by frequency. That is, bypatterns
specifies that patterns containing one incomplete variable be listed first, followed by those for two

incomplete variables, and so on. The default is to list the most frequent pattern first, followed by the

next most frequent pattern, etc.

Options for misstable tree
asis, frequency, and exok – see Common options below.

Option for misstable nested
exok – see Common options below.
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Common options
asis specifies that the order of the variables in the table be the same as the order in which they are

specified on the misstable command. The default is to order the variables by the number of missing
values, and within that, by the amount of overlap of missing values.

frequency specifies that the table should report frequencies instead of percentages.

exok specifies that the extendedmissing values .a, .b, . . . , .z should be treated as if they do not designate
missing. Some users use extended missing values to designate values that are missing for a known

and valid reason.

nopreserve is a programmer’s option allowed with all misstable commands; see [P] nopreserve

option.

Remarks and examples
Remarks are presented under the following headings:

misstable summarize
misstable patterns
misstable tree
misstable nested
Execution time of misstable nested

In what follows, we will use data from a 125-observation, fictional, student-satisfaction survey:

. use https://www.stata-press.com/data/r18/studentsurvey
(Student survey)
. summarize

Variable Obs Mean Std. dev. Min Max

m1 125 2.456 .8376619 1 4
m2 125 2.472 .8089818 1 4
age 122 18.97541 .8763477 17 21

female 122 .5245902 .5014543 0 1
dept 116 2.491379 1.226488 1 4

offcampus 125 .36 .4819316 0 1
comment 0

The m1 and m2 variables record the student’s satisfaction with teaching and with academics. comment
is a string variable recording any comments the student might have had.
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misstable summarize

Example 1
misstable summarize reports counts of missing values:

. misstable summarize
Obs<.

Unique
Variable Obs=. Obs>. Obs<. values Min Max

age 3 122 5 17 21
female 3 122 2 0 1

dept 9 116 4 1 4

Stata provides 27 different missing values, namely, ., .a, .b, . . . , .z. The first of those, ., is often
called system missing. The remaining missing values are called extended missings. The nonmissing and

missing values are ordered nonmissing < . < .a < .b < · · · < .z. Thus, reported in the column
“Obs=.” are counts of system missing values; in the column “Obs>.”, extended missing values; and in

the column “Obs<.”, nonmissing values.

The rightmost portion of the table is included to remind you how the variables are encoded.

Our data contain seven variables and yet misstable reported only three of them. The omitted vari-
ables contain no missing values or are string variables. Even if we specified the varlist explicitly, those

variables would not appear in the table unless we specified the all option.

We can also create missing-value indicators for each of the variables above using the generate()
option:

. quietly misstable summarize, generate(miss_)

. describe miss_*
Variable Storage Display Value

name type format label Variable label

miss_age byte %8.0g (age>=.)
miss_female byte %8.0g (female>=.)
miss_dept byte %8.0g (dept>=.)

For each variable containing missing values, the generate() option creates a new binary variable con-

taining 0 for complete observations and 1 for incomplete observations. In our example, three new

missing-value indicators are generated, one for each of the incomplete variables age, female, and dept.
The naming convention of generate() is to prefix the corresponding variable names with the specified
stub, which is miss in this example.

Missing-value indicators are useful, for example, for checking whether data are missing completely

at random. They are also often used within the multiple-imputation context to identify the observed

and imputed data; see [MI] Intro substantive for a general introduction to multiple imputation. Within

Stata’s multiple-imputation commands, an incomplete value is identified by the system missing value, a

dot. By default, misstable summarize, generate()marks the extendedmissing values as incomplete
values, as well. You can use exokwithin generate() to treat extended missing values as complete when
creating missing-value identifiers.
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misstable patterns

Example 2
misstable patterns reports the pattern of missing values:

. misstable patterns
Missing-value patterns

(1 means complete)
Pattern

Percent 1 2 3

93% 1 1 1

5 1 1 0
2 0 0 0

100%
Variables are (1) age (2) female (3) dept

There are three patterns in these data: (1,1,1), (1,1,0), and (0,0,0). By default, the rows of the table

are ordered by frequency. In larger tables that have more patterns, it is sometimes useful to order the

rows by pattern. We could have obtained that by typing mi misstable patterns, bypatterns.

In a pattern, 1 indicates that all values of the variable are nonmissing and 0 indicates that all values

are missing. Thus, pattern (1,1,1) means no missing values, and 93% of our data have that pattern.

There are two patterns in which variables are missing, (1,1,0) and (0,0,0). Pattern (1,1,0) means that age
is nonmissing, female is nonmissing, and dept is missing. The order of the variables in the patterns
appears in the key at the bottom of the table. Five percent of the observations have pattern (1,1,0). The

remaining 2% have pattern (0,0,0), meaning that all three variables contain missing.

As with misstable summarize, only numeric variables that contain missing are listed, so had we
typed misstable patterns comments age female offcampus dept, we still would have obtained the
same table. Variables that are automatically omitted contain no missing values or are string variables.

The variables in the table are ordered from lowest to highest frequency of missing values, although

you cannot see that from the information presented in the table. The variables are ordered this way even

if you explicitly specify the varlist with a different ordering. Typing misstable patterns dept female
age would produce the same table as above. Specify the asis option if you want the variables in the
order in which you specify them.

You can obtain a dataset of the patterns by specifying the replace option:

. misstable patterns, replace clear
Missing-value patterns

(1 means complete)
Pattern

Percent 1 2 3

93% 1 1 1

5 1 1 0
2 0 0 0

100%
Variables are (1) age (2) female (3) dept

(summary data now in memory)
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. list

_freq age female dept

1. 3 0 Male 0
2. 6 1 Female 0
3. 116 1 Female 1

The differences between the dataset and the printed table are that 1) the dataset always records fre-

quency and 2) the rows are reversed.

misstable tree

Example 3
misstable tree presents a tree view of the pattern of missing values:

. use https://www.stata-press.com/data/r18/studentsurvey, clear
(Student survey)
. misstable tree, frequency
Nested pattern of missing values

dept age female

9 3 3
0

6 0
6

116 0 0
0

116 0
116

(number missing listed first)

In this example, we specified the frequency option to see the table in frequency rather than percent-
age terms. In the table, each column sums to the total number of observations in the data, 125. Variables

are ordered from those with the most missing values to those with the least. Start with the first column.

The dept variable is missing in 9 observations and, farther down, the table reports that it is not missing
in 116 observations.

Go back to the first row and read across, but only to the second column. The dept variable is missing
in 9 observations. Within those 9, age is missing in 3 of them and is not missing in the remaining 6.

Reading down the second column, within the 116 observations that dept is not missing, age is missing
in 0 and not missing in 116.

Reading straight across the first row again, dept is missing in 9 observations, and within the 9, age
is missing in 3, and within the 3, female is also missing in 3. Skipping down just a little, within the 6
observations for which dept is missing and age is not missing, female is not missing, too.
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misstable nested

Example 4
misstable nested lists the nesting rules that describe the missing-value pattern,

. misstable nested
1. female(3) <-> age(3) -> dept(9)

This line says that in observations in which female is missing, so is agemissing, and vice versa, and
in observations in which age (or female) is missing, so is dept. The numbers in parentheses are counts
of the missing values. The female variable happens to be missing in 3 observations, and the same is true
for age; the dept variable is missing in 9 observations. Thus, dept is missing in the 3 observations for
which age and female are missing, and in 6 more observations, too.

In these data, it turns out that the missing-value pattern can be summarized in one statement. In a

larger dataset, you might see something like this:

. misstable nested
1. female(50) <-> age(50) -> dept(120)
2. female(50) -> m1(58)
3. offcampus(11)

misstable nested accounts for every missing value. In the above, in addition to female <-> age
-> dept, we have that female -> m1, and we have offcampus, the last all by itself. The last line says
that the 11 missing values in offcampus are not themselves nested in the missing value of any other

variable, nor do they imply the missing values in another variable. In some datasets, all the statements

will be of this last form.

In our data, however, we have one statement:

. misstable nested
1. female(3) <-> age(3) -> dept(9)

When the missing-value pattern can be summarized in one misstable nested statement, the pattern
of missing values in the data is said to be monotone.
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Execution time of misstable nested
The execution time of misstable nested is affected little by the number of observations but can

grow quickly with the number of variables, depending on the fraction of missing values within variable.

The execution time of the example above, which has 3 variables containing missing, is instant. In worst-

case scenarios, with 500 variables, the time might be 25 seconds; with 1,000 variables, the execution

time might be closer to an hour.

In situations where misstable nested takes a long time to complete, it will produce thousands of
rules that will defy interpretation. A 523-variable dataset we have seen ran in 20 seconds and produced

8,040 rules. Although we spotted a few rules in the output that did not surprise us, such as the year of

the date being missing implied that the month and the day were also missing, mostly the output was not

helpful.

If you have such a dataset, we recommend you run misstable on groups of variables that you have
reason to believe the pattern of missing values might be related.

Stored results
misstable summarize stores the following values of the last variable summarized in r():

Scalars

r(N eq dot) number of observations containing .
r(N gt dot) number of observations containing .a, .b, . . . , .z
r(N lt dot) number of observations containing nonmissing

r(K uniq) number of unique, nonmissing values

r(min) variable’s minimum value

r(max) variable’s maximum value

Macros

r(vartype) numeric, string, or none

r(K uniq) contains . if the number of unique, nonmissing values is greater than 500. r(vartype)
contains none if no variables are summarized, and in that case, the value of the scalars are all set to
missing (.). Programmers intending to access results after misstable summarize should specify the

all option.

misstable patterns stores the following in r():

Scalars

r(N complete) number of complete observations

r(N incomplete) number of incomplete observations

r(K) number of patterns

Macros

r(vars) variables used in order presented

r(N complete) and r(N incomplete) are defined with respect to the variables specified if variables
were specified and otherwise, defined with respect to all the numeric variables in the dataset. r(N complete)
is the number of observations that contain no missing values.

misstable tree stores the following in r():

Macros

r(vars) variables used in order presented



misstable — Tabulate missing values 1811

misstable nested stores the following in r():

Scalars

r(K) number of statements

Macros

r(stmt1) first statement

r(stmt2) second statement

. .

. .

r(stmt‘r(K)’) last statement

r(stmt1wc) r(stmt1) with missing-value counts
r(vars) variables considered

A statement is encoded “varname”, “varname op varname”, or “varname op varname op varname”, and so on;

op is either “->” or “<->”.

Also see
[MI] mi misstable — Tabulate pattern of missing values

[R] summarize — Summary statistics

[R] tabulate oneway — One-way table of frequencies

[R] tabulate twoway — Two-way table of frequencies



ml — Maximum likelihood estimation

Description Syntax Options Remarks and examples
Stored results Methods and formulas References Also see

Description
ml model defines the current problem.

ml clear clears the current problem definition. This command is rarely used because when you type ml
model, any previous problem is automatically cleared.

ml query displays a description of the current problem.

ml check verifies that the log-likelihood evaluator you have written works. We strongly recommend

using this command.

ml search searches for (better) initial values. We recommend using this command.

ml plot provides a graphical way of searching for (better) initial values.

ml init provides a way to specify initial values.

ml report reports ln𝐿’s values, gradient, and Hessian at the initial values or current parameter estimates,
b0.

ml trace traces the execution of the user-defined log-likelihood evaluation program.

ml count counts the number of times the user-defined log-likelihood evaluation program is called; this

command is seldom used. ml count clear clears the counter. ml count on turns on the counter.

ml count without arguments reports the current values of the counter. ml count off stops counting
calls.

ml maximize maximizes the likelihood function and reports results. Once ml maximize has success-
fully completed, the previously mentioned ml commands may no longer be used unless noclear is
specified. ml graph and ml display may be used whether or not noclear is specified.

ml graph graphs the log-likelihood values against the iteration number.

ml display redisplays results.

ml footnote displays a warning message when the model did not converge within the specified number
of iterations.

ml score creates new variables containing the equation-level scores. The variables generated by ml
score are equivalent to those generated by specifying the score() option of ml maximize (and ml
model . . ., . . . maximize).

progname is the name of a Stata program you write to evaluate the log-likelihood function.

funcname() is the name of a Mata function you write to evaluate the log-likelihood function.

In this documentation, progname and funcname() are referred to as the user-written evaluator, the like-
lihood evaluator, or sometimes simply as the evaluator. The program you write is written in the style

required by the method you choose. The methods are lf, d0, d1, d2, lf0, lf1, lf2, and gf0. Thus, if you

choose to use method lf, your program is called a method-lf evaluator.

Method-lf evaluators are required to evaluate the observation-by-observation log likelihood ln ℓ𝑗, 𝑗 =
1, . . . , 𝑁.

1812
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Method-d0 evaluators are required to evaluate the overall log likelihood ln𝐿. Method-d1 evaluators

are required to evaluate the overall log likelihood and its gradient vector g = 𝜕 ln𝐿/𝜕b. Method-

d2 evaluators are required to evaluate the overall log likelihood, its gradient, and its Hessian matrix

𝐻 = 𝜕2ln𝐿/𝜕b𝜕b′.

Method-lf0 evaluators are required to evaluate the observation-by-observation log likelihood ln ℓ𝑗,

𝑗 = 1, . . . , 𝑁. Method-lf1 evaluators are required to evaluate the observation-by-observation log like-

lihood and its equation-level scores 𝑔𝑗𝑖 = 𝜕ln ℓ/𝜕x𝑗𝑖b𝑖. Method-lf2 evaluators are required to eval-

uate the observation-by-observation log likelihood, its equation-level scores, and its Hessian matrix

𝐻 = 𝜕2ln ℓ/𝜕b𝜕b′.

Method-gf0 evaluators are required to evaluate the summable pieces of the log likelihood ln ℓ𝑘, 𝑘 =
1, . . . , 𝐾.

mleval is a subroutine used by evaluators of methods d0, d1, d2, lf0, lf1, lf2, and gf0 to evaluate the
coefficient vector, b, that they are passed.

mlsum is a subroutine used by evaluators of methods d0, d1, and d2 to define the value, ln𝐿, that is to
be returned.

mlvecsum is a subroutine used by evaluators of methods d1 and d2 to define the gradient vector, g,

that is to be returned. It is suitable for use only when the likelihood function meets the linear-form

restrictions.

mlmatsum is a subroutine used by evaluators of methods d2 and lf2 to define the Hessian matrix, H,

that is to be returned. It is suitable for use only when the likelihood function meets the linear-form

restrictions.

mlmatbysum is a subroutine used by evaluator of method d2 to help define the Hessian matrix,H, that is
to be returned. It is suitable for use when the likelihood function contains terms made up of grouped

sums, such as in panel-data models. For such models, use mlmatsum to compute the observation-level
outer products and mlmatbysum to compute the group-level outer products. mlmatbysum requires that
the data be sorted by the variable identified in the by() option.

Syntax

ml model in interactive mode

ml model method progname eq [ eq . . . ] [ if ] [ in ] [weight ]
[ , model options svy diparm options ]

ml model method funcname() eq [ eq . . . ] [ if ] [ in ] [weight ]
[ , model options svy diparm options ]

ml model in noninteractive mode

ml model method progname eq [ eq . . . ] [ if ] [ in ] [weight ] , maximize
[model options svy diparm options noninteractive options ]

ml model method funcname() eq [ eq . . . ] [ if ] [ in ] [weight ] , maximize
[model options svy diparm options noninteractive options ]
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Noninteractive mode is invoked by specifying the maximize option. Use maximize when ml will be
used as a subroutine of another ado-file or program and you want to carry forth the problem, from

definition to posting of results, in one command.

ml clear

ml query

ml check

ml search [ [ / ]eqname[ : ] #𝑙𝑏 #𝑢𝑏 ] [ . . . ] [ , search options ]

ml plot [ eqname: ]name [ # [ # [ # ] ] ] [ , saving(filename[ , replace ]) ]

ml init { [ eqname: ]name=# | /eqname=# } [ . . . ]
ml init # [ # . . . ] , copy
ml init matname [ , copy skip ]

ml report

ml trace { on | off }

ml count [ clear | on | off ]

ml maximize [ , ml maximize options display options eform option ]

ml graph [ # ] [ , saving(filename[ , replace ]) ]

ml display [ , display options eform option ]

ml footnote

ml score newvar [ if ] [ in ] [ , equation(eqname) missing ]

ml score newvarlist [ if ] [ in ] [ , missing ]

ml score [ type ] stub* [ if ] [ in ] [ , missing ]

where method is one of

lf d0 lf0 gf0
d1 lf1
d1debug lf1debug
d2 lf2
d2debug lf2debug
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or method can be specified using one of the longer, more descriptive names

method Longer name

lf linearform
d0 derivative0
d1 derivative1
d1debug derivative1debug
d2 derivative2
d2debug derivative2debug
lf0 linearform0
lf1 linearform1
lf1debug linearform1debug
lf2 linearform2
lf2debug linearform2debug
gf0 generalform0

eq is the equation to be estimated, enclosed in parentheses, and optionally with a name to be given to the

equation, preceded by a colon,

([ eqname: ] [ varlist𝑦 = ] [ varlist𝑥 ] [ , eq options ])
or eq is the name of a parameter, such as sigma, with a slash in front

/eqname which is equivalent to (eqname:, freeparm)

and diparm options is one or more diparm(diparm args) options where diparm args is either

sep or anything accepted by the “undocumented” diparm command; see help diparm.

eq options Description

noconstant do not include an intercept in the equation

offset(varname𝑜) include varname𝑜 in model with coefficient constrained to 1

exposure(varname𝑒) include ln(varname𝑒) in model with coefficient constrained to 1
freeparm eqname is a free parameter
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model options Description

group(varname) use varname to identify groups

vce(vcetype) vcetype may be robust, cluster clustvar, oim, or opg
constraints(numlist) constraints by number to be applied

constraints(matname) matrix that contains the constraints to be applied

nocnsnotes do not display notes when constraints are dropped

title(string) place a title on the estimation output

nopreserve do not preserve the estimation subsample in memory

collinear keep collinear variables within equations

missing keep observations containing variables with missing values

lf0(#𝑘 #𝑙𝑙) number of parameters and log-likelihood value of the
constant-only model

continue specifies that a model has been fit and sets the initial values
b0 for the model to be fit based on those results

waldtest(#) perform a Wald test; see Options for use with ml model in
interactive or noninteractive mode below

obs(#) number of observations

crittype(string) describe the criterion optimized by ml
subpop(varname) compute estimates for the single subpopulation

nosvyadjust carry out Wald test as 𝑊/𝑘 ∼ 𝐹(𝑘, 𝑑)
technique(nr) Stata’s modified Newton–Raphson (NR) algorithm

technique(bhhh) Berndt–Hall–Hall–Hausman (BHHH) algorithm

technique(dfp) Davidon–Fletcher–Powell (DFP) algorithm

technique(bfgs) Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm

deriv(min spec) specify the minimum step size for computing numerical derivatives

noninteractive options Description

init(ml init args) set the initial values b0
search(on) equivalent to ml search, repeat(0); the default
search(norescale) equivalent to ml search, repeat(0) norescale
search(quietly) same as search(on), except that output is suppressed
search(off) prevents calling ml search
repeat(#) ml search’s repeat() option; see below
bounds(ml search bounds) specify bounds for ml search
nowarning suppress “convergence not achieved” message of iterate(0)
novce substitute the zero matrix for the variance matrix

negh indicates that the evaluator returns the negative Hessian matrix

score(newvars) new variables containing the contribution to the score

maximize options control the maximization process; seldom used
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search options Description

repeat(#) number of random attempts to find better initial-value
vector; default is repeat(10) in interactive mode and
repeat(0) in noninteractive mode

restart use random actions to find starting values; not recommended

norescale do not rescale to improve parameter vector; not recommended

maximize options control the maximization process; seldom used

ml maximize options Description

nowarning suppress “convergence not achieved” message of iterate(0)
novce substitute the zero matrix for the variance matrix

negh indicates that the evaluator returns the negative Hessian matrix

score(newvars | stub*) new variables containing the contribution to the score

nooutput suppress display of final results

noskipline suppress display of blank line before iteration log

noclear do not clear ml problem definition after model has converged

maximize options control the maximization process; seldom used

display options Description

noheader suppress header display above the coefficient table

nofootnote suppress footnote display below the coefficient table

level(#) set confidence level; default is level(95)
first display coefficient table reporting results for first equation only

neq(#) display coefficient table reporting first # equations

showeqns display equation names in the coefficient table

plus display coefficient table ending in dashes–plus-sign–dashes

nocnsreport suppress constraints display above the coefficient table

noomitted suppress display of omitted variables

vsquish suppress blank space separating factor-variable terms or

time-series–operated variables from other variables

noemptycells suppress empty cells for interactions of factor variables

baselevels report base levels of factor variables and interactions

allbaselevels display all base levels of factor variables and interactions

cformat(% fmt) format the coefficients, standard errors, and confidence limits in
the coefficient table

pformat(% fmt) format the 𝑝-values in the coefficient table
sformat(% fmt) format the test statistics in the coefficient table

nolstretch do not automatically widen the coefficient table to accommodate
longer variable names

coeflegend display legend instead of statistics
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eform option Description

eform(string) display exponentiated coefficients; column title is “string”

eform display exponentiated coefficients; column title is “exp(b)”
hr report hazard ratios

shr report subhazard ratios

irr report incidence-rate ratios

or report odds ratios

rrr report relative-risk ratios

fweights, aweights, iweights, and pweights are allowed; see [U] 11.1.6 weight. With all but method lf, you must write
your likelihood-evaluation program carefully if pweights are to be specified, and pweights may not be specified with
method d0, d1, d1debug, d2, or d2debug. See Pitblado, Poi, and Gould (2024, chap. 7) for details.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

To redisplay results, type ml display.

Syntax of subroutines for use by evaluator programs

mleval newvar = vecname [ , eq(#) ]
mleval scalarname = vecname , scalar [ eq(#) ]

mlsum scalarnamelnf = exp [ if ] [ , noweight ]

mlvecsum scalarnamelnf rowvecname = exp [ if ] [ , eq(#) ]

mlmatsum scalarnamelnf matrixname = exp [ if ] [ , eq(#[ ,# ]) ]

mlmatbysum scalarnamelnf matrixname varname𝑎 varname𝑏 [ varname𝑐 ] [ if ] ,
by(varname) [ eq(#[ ,# ]) ]

Syntax of user-written evaluator

Summary of notation

The log-likelihood function is ln𝐿(𝜃1𝑗, 𝜃2𝑗, . . . , 𝜃𝐸𝑗), where 𝜃𝑖𝑗 = x𝑖𝑗b𝑖, 𝑗 = 1, . . . , 𝑁 indexes

observations, and 𝑖 = 1, . . . , 𝐸 indexes the linear equations defined by ml model. If the likelihood
satisfies the linear-form restrictions, it can be decomposed as ln𝐿 = ∑𝑁

𝑗=1 ln ℓ(𝜃1𝑗, 𝜃2𝑗, . . . , 𝜃𝐸𝑗).

Method-lf evaluators

program progname
version 18.0 // (or version 18.5 for StataNow)
args lnfj theta1 theta2 . . .

// if you need to create any intermediate results:
tempvar tmp1 tmp2 . . .
quietly generate double ‘tmp1’ = . . .
. . .

quietly replace ‘lnfj’ = . . .
end
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where
‘lnfj’ variable to be filled in with observation-by-observation values of lnℓ𝑗
‘theta1’ variable containing evaluation of first equation 𝜃1𝑗 = x1𝑗b1
‘theta2’ variable containing evaluation of second equation 𝜃2𝑗 = x2𝑗b2
. . .

Method-d0 evaluators

program progname
version 18.0 // (or version 18.5 for StataNow)
args todo b lnf
tempvar theta1 theta2 . . .
mleval ‘theta1’ = ‘b’, eq(1)
mleval ‘theta2’ = ‘b’, eq(2) // if there is a 𝜃2
. . .

// if you need to create any intermediate results:
tempvar tmp1 tmp2 . . .
generate double ‘tmp1’ = . . .
. . .

mlsum ‘lnf’ = . . .
end

where
‘todo’ always contains 0 (may be ignored)
‘b’ full parameter row vector b = (b1,b2, . . . ,b𝐸)
‘lnf’ scalar to be filled in with overall ln𝐿

Method-d1 evaluators

program progname
version 18.0 // (or version 18.5 for StataNow)
args todo b lnf g
tempvar theta1 theta2 . . .
mleval ‘theta1’ = ‘b’, eq(1)
mleval ‘theta2’ = ‘b’, eq(2) // if there is a 𝜃2
. . .

// if you need to create any intermediate results:
tempvar tmp1 tmp2 . . .
generate double ‘tmp1’ = . . .
. . .

mlsum ‘lnf’ = . . .
if (‘todo’==0 | ‘lnf’>=.) exit
tempname d1 d2 . . .
mlvecsum ‘lnf’ ‘d1’ = formula for 𝜕 lnℓ 𝑗/𝜕𝜃 1𝑗, eq(1)
mlvecsum ‘lnf’ ‘d2’ = formula for 𝜕 lnℓ 𝑗/𝜕𝜃 2𝑗, eq(2)
. . .
matrix ‘g’ = (‘d1’,‘d2’, . . . )

end

where
‘todo’ contains 0 or 1

0 ⇒ ‘lnf’to be filled in;
1 ⇒ ‘lnf’ and ‘g’ to be filled in

‘b’ full parameter row vector b = (b1,b2, . . . ,b𝐸)
‘lnf’ scalar to be filled in with overall ln𝐿
‘g’ row vector to be filled in with overall g = 𝜕 ln𝐿/𝜕b
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Method-d2 evaluators

program progname
version 18.0 // (or version 18.5 for StataNow)
args todo b lnf g H
tempvar theta1 theta2 . . .
mleval ‘theta1’ = ‘b’, eq(1)
mleval ‘theta2’ = ‘b’, eq(2) // if there is a 𝜃 2
. . .

// if you need to create any intermediate results:
tempvar tmp1 tmp2 . . .
generate double ‘tmp1’ = . . .
. . .

mlsum ‘lnf’ = . . .
if (‘todo’==0 | ‘lnf’>=.) exit
tempname d1 d2 . . .
mlvecsum ‘lnf’ ‘d1’ = formula for 𝜕 lnℓ 𝑗/𝜕𝜃 1𝑗, eq(1)
mlvecsum ‘lnf’ ‘d2’ = formula for 𝜕 lnℓ 𝑗/𝜕𝜃 2𝑗, eq(2)
. . .
matrix ‘g’ = (‘d1’,‘d2’, . . . )
if (‘todo’==1 | ‘lnf’>=.) exit
tempname d11 d12 d22 . . .

mlmatsum ‘lnf’ ‘d11’ = formula for 𝜕2 lnℓ 𝑗/𝜕𝜃 1𝑗2, eq(1)
mlmatsum ‘lnf’ ‘d12’ = formula for 𝜕2 lnℓ 𝑗/𝜕𝜃 1𝑗𝜕𝜃 2𝑗, eq(1,2)
mlmatsum ‘lnf’ ‘d22’ = formula for 𝜕2 lnℓ 𝑗/𝜕𝜃 2𝑗2, eq(2)
. . .
matrix ‘H’ = (‘d11’,‘d12’, . . . \ ‘d12’’,‘d22’, . . . )

end

where
‘todo’ contains 0, 1, or 2

0 ⇒ ‘lnf’ to be filled in;
1 ⇒ ‘lnf’ and ‘g’ to be filled in;
2 ⇒ ‘lnf’, ‘g’, and ‘H’ to be filled in

‘b’ full parameter row vector b = (b1,b2, . . . ,b𝐸)
‘lnf’ scalar to be filled in with overall ln𝐿
‘g’ row vector to be filled in with overall g = 𝜕 ln𝐿/𝜕b
‘H’ matrix to be filled in with overall Hessian H = 𝜕2 ln𝐿/𝜕b𝜕b′

Method-lf0 evaluators

program progname
version 18.0 // (or version 18.5 for StataNow)
args todo b lnfj
tempvar theta1 theta2 . . .
mleval ‘theta1’ = ‘b’, eq(1)
mleval ‘theta2’ = ‘b’, eq(2) // if there is a 𝜃 2
. . .

// if you need to create any intermediate results:
tempvar tmp1 tmp2 . . .
generate double ‘tmp1’ = . . .
. . .

quietly replace ‘lnfj’ = . . .
end
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where
‘todo’ always contains 0 (may be ignored)
‘b’ full parameter row vector b = (b1,b2, . . . ,b𝐸)
‘lnfj’ variable to be filled in with observation-by-observation values of lnℓ𝑗

Method-lf1 evaluators

program progname
version 18.0 // (or version 18.5 for StataNow)
args todo b lnfj g1 g2 $...$
tempvar theta1 theta2 . . .
mleval ‘theta1’ = ‘b’, eq(1)
mleval ‘theta2’ = ‘b’, eq(2) // if there is a 𝜃 2
. . .

// if you need to create any intermediate results:
tempvar tmp1 tmp2 . . .
generate double ‘tmp1’ = . . .
. . .

quietly replace ‘lnfj’ = . . .
if (‘todo’==0) exit
quietly replace ‘g1’ = formula for 𝜕 lnℓ 𝑗/𝜕𝜃 1𝑗
quietly replace ‘g2’ = formula for 𝜕 lnℓ 𝑗/𝜕𝜃 2𝑗
. . .

end

where
‘todo’ contains 0 or 1

0 ⇒ ‘lnfj’to be filled in;
1 ⇒ ‘lnfj’, ‘g1’, ‘g2’, . . ., to be filled in

‘b’ full parameter row vector b = (b1,b2, . . . ,b𝐸)
‘lnfj’ variable to be filled in with observation-by-observation values of lnℓ𝑗
‘g1’ variable to be filled in with 𝜕 lnℓ𝑗/𝜕𝜃1𝑗
‘g2’ variable to be filled in with 𝜕 lnℓ𝑗/𝜕𝜃2𝑗
. . .

Method-lf2 evaluators

program progname
version 18.0 // (or version 18.5 for StataNow)
args todo b lnfj g1 g2 ... H
tempvar theta1 theta2 . . .
mleval ‘theta1’ = ‘b’, eq(1)
mleval ‘theta2’ = ‘b’, eq(2) // if there is a 𝜃 2
. . .

// if you need to create any intermediate results:
tempvar tmp1 tmp2 . . .
generate double ‘tmp1’ = . . .
. . .

quietly replace ‘lnfj’ = . . .
if (‘todo’==0) exit
quietly replace ‘g1’ = formula for 𝜕 lnℓ 𝑗/𝜕𝜃 1𝑗
quietly replace ‘g2’ = formula for 𝜕 lnℓ 𝑗/𝜕𝜃 2𝑗
. . .
if (‘todo’==1) exit
tempname d11 d12 d22 lnf . . .
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mlmatsum ‘lnf’ ‘d11’ = formula for 𝜕2 lnℓ 𝑗/𝜕𝜃 1𝑗2, eq(1)
mlmatsum ‘lnf’ ‘d12’ = formula for 𝜕2 lnℓ 𝑗/𝜕𝜃 1𝑗𝜕𝜃 2𝑗, eq(1,2)
mlmatsum ‘lnf’ ‘d22’ = formula for 𝜕2 lnℓ 𝑗/𝜕𝜃 2𝑗2, eq(2)
. . .
matrix ‘H’ = (‘d11’,‘d12’, . . . \ ‘d12’’,‘d22’, . . . )

end

where
‘todo’ contains 0 or 1

0 ⇒ ‘lnfj’to be filled in;
1 ⇒ ‘lnfj’, ‘g1’, ‘g2’, . . ., to be filled in
2 ⇒ ‘lnfj’, ‘g1’, ‘g2’, . . ., and ‘H’ to be filled in

‘b’ full parameter row vector b = (b1,b2, . . . ,b𝐸)
‘lnfj’ scalar to be filled in with observation-by-observation ln𝐿
‘g1’ variable to be filled in with 𝜕 lnℓ𝑗/𝜕𝜃1𝑗
‘g2’ variable to be filled in with 𝜕 lnℓ𝑗/𝜕𝜃2𝑗
. . .
‘H’ matrix to be filled in with overall Hessian H = 𝜕2 ln𝐿/𝜕b𝜕b′

Method-gf0 evaluators

program progname
version 18.0 // (or version 18.5 for StataNow)
args todo b lnfj
tempvar theta1 theta2 . . .
mleval ‘theta1’ = ‘b’, eq(1)
mleval ‘theta2’ = ‘b’, eq(2) // if there is a 𝜃 2
. . .

// if you need to create any intermediate results:
tempvar tmp1 tmp2 . . .
generate double ‘tmp1’ = . . .
. . .

quietly replace ‘lnfj’ = . . .
end

where
‘todo’ always contains 0 (may be ignored)
‘b’ full parameter row vector b = (b1,b2, . . . ,b𝐸)
‘lnfj’ variable to be filled in with the values of the log-likelihood lnℓ𝑗

Global macros for use by all evaluators

$ML y1 name of first dependent variable
$ML y2 name of second dependent variable, if any
. . .
$ML samp variable containing 1 if observation to be used; 0 otherwise
$ML w variable containing weight associated with observation or 1 if no weights specified

Method-lf evaluators can ignore $ML samp, but restricting calculations to the $ML samp==1 subsam-
ple will speed execution. Method-lf evaluators must ignore $ML w; application of weights is handled
by the method itself.



ml — Maximum likelihood estimation 1823

Methods d0, d1, d2, lf0, lf1, lf2, and gf0 can ignore $ML samp as long as ml model’s nopreserve
option is not specified. These methods will run more quickly if nopreserve is specified. These

evaluators can ignore $ML w only if they use mlsum, mlvecsum, mlmatsum, and mlmatbysum to

produce all final results.

Options
Options are presented under the following headings:

Options for use with ml model in interactive or noninteractive mode
Options for use with ml model in noninteractive mode
Options for use when specifying equations
Options for use with ml search
Option for use with ml plot
Options for use with ml init
Options for use with ml maximize
Option for use with ml graph
Options for use with ml display
Options for use with mleval
Option for use with mlsum
Option for use with mlvecsum
Option for use with mlmatsum
Options for use with mlmatbysum
Options for use with ml score

Options for use with ml model in interactive or noninteractive mode
group(varname) specifies the numeric variable that identifies groups. This option is typically used to

identify panels for panel-data models.

vce(vcetype) specifies the type of standard error reported, which includes types that are robust to some
kinds of misspecification (robust), that allow for intragroup correlation (cluster clustvar), and that
are derived from asymptotic theory (oim, opg); see [R] vce option.

vce(robust), vce(cluster clustvar), pweight, and svy will work with evaluators of methods lf,
lf0, lf1, lf2, and gf0; all you need to do is specify them.

These options will not work with evaluators of methods d0, d1, or d2, and specifying these options

will produce an error message.

constraints(numlist |matname) specifies the linear constraints to be applied during estimation.

constraints(numlist) specifies the constraints by number. Constraints are defined by using the

constraint command; see [R] constraint. constraint(matname) specifies a matrix that contains
the constraints.

nocnsnotes prevents notes from being displayed when constraints are dropped. A constraint will be

dropped if it is inconsistent, contradicts other constraints, or causes some other error when the con-

straint matrix is being built. Constraints are checked in the order in which they are specified.

title(string) specifies the title for the estimation output when results are complete.

nopreserve specifies that ml need not ensure that only the estimation subsample is in memory when
the user-written likelihood evaluator is called. nopreserve is irrelevant when you use method lf.

For the other methods, if nopreserve is not specified, ml saves the data in a file (preserves the

original dataset) and drops the irrelevant observations before calling the user-written evaluator. This

way, even if the evaluator does not restrict its attentions to the $ML samp==1 subsample, results will
still be correct. Later, ml automatically restores the original dataset.
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ml need not go through these machinations for method lf because the user-written evaluator calculates
observation-by-observation values, and ml itself sums the components.

ml goes through these machinations if and only if the estimation sample is a subsample of the data
in memory. If the estimation sample includes every observation in memory, ml does not preserve the
original dataset. Thus, programmers must not alter the original dataset unless they preserve the data
themselves.

We recommend that interactive users of ml not specify nopreserve; the speed gain is not worth the
possibility of getting incorrect results.

We recommend that programmers specify nopreserve, but only after verifying that their evaluator
really does restrict its attentions solely to the $ML samp==1 subsample.

collinear specifies that ml not remove the collinear variables within equations. There is no reason to
leave collinear variables in place, but this option is of interest to programmers who, in their code,

have already removed collinear variables and do not want ml to waste computer time checking again.

missing specifies that observations containing variables with missing values not be eliminated from the

estimation sample. There are two reasons you might want to specify missing:

Programmers may wish to specify missing because, in other parts of their code, they have already
eliminated observations withmissing values and do not want ml to waste computer time looking again.

Youmaywish to specify missing if your model explicitly deals with missing values. Stata’s heckman
command is a good example of this. In such cases, there will be observations where missing values

are allowed and other observations where they are not—where their presence should cause the ob-

servation to be eliminated. If you specify missing, it is your responsibility to specify an if exp that
eliminates the irrelevant observations.

lf0(#𝑘 #𝑙𝑙) is typically used by programmers. It specifies the number of parameters and log-likelihood
value of the constant-only model so that ml can report a likelihood-ratio test rather than a Wald test.

These values may have been analytically determined, or they may have been determined by a previous

fitting of the constant-only model on the estimation sample.

Also see the continue option directly below.

If you specify lf0(), it must be safe for you to specify the missing option, too, else how did you

calculate the log likelihood for the constant-only model on the same sample? Youmust have identified

the estimation sample, and done so correctly, so there is no reason for ml to waste time rechecking
your results. All of which is to say, do not specify lf0() unless you are certain your code identifies
the estimation sample correctly.

lf0(), even if specified, is ignored if vce(robust), vce(cluster clustvar), pweight, or svy is
specified because, in that case, a likelihood-ratio test would be inappropriate.

continue is typically specified by programmers and does two things:

First, it specifies that a model has just been fit by either ml or some other estimation command,

such as logit, and that the likelihood value stored in e(ll) and the number of parameters stored
in e(b) as of that instant are the relevant values of the constant-only model. The current value of

the log likelihood is used to present a likelihood-ratio test unless vce(robust), vce(cluster clust-
var), pweight, svy, or constraints() is specified. A likelihood-ratio test is inappropriate when

vce(robust), vce(cluster clustvar), pweight, or svy is specified. We suggest using lrtest
when constraints() is specified; see [R] lrtest.
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Second, continue sets the initial values, b0, for the model about to be fit according to the e(b)
currently stored.

The comments made about specifying missing with lf0() apply equally well here.

waldtest(#) is typically specified by programmers. By default, ml presents a Wald test, but that is

overridden if the lf0() or continue option is specified. AWald test is performed if vce(robust),
vce(cluster clustvar), or pweight is specified.

waldtest(0) prevents even the Wald test from being reported.

waldtest(-1) is the default. It specifies that aWald test be performed by constraining all coefficients

except the intercept to 0 in the first equation. Remaining equations are to be unconstrained. AWald test

is performed if neither lf0() nor continuewas specified, and aWald test is forced if vce(robust),
vce(cluster clustvar), or pweight was specified.

waldtest(𝑘) for 𝑘 ≤ −1 specifies that a Wald test be performed by constraining all coefficients ex-

cept intercepts to 0 in the first |𝑘| equations; remaining equations are to be unconstrained. AWald test

is performed if neither lf0() nor continuewas specified, and aWald test is forced if vce(robust),
vce(cluster clustvar), or pweight was specified.

waldtest(𝑘) for 𝑘 ≥ 1 works like the options above, except that it forces a Wald test to be re-

ported even if the information to perform the likelihood-ratio test is available and even if none of

vce(robust), vce(cluster clustvar), or pweight was specified. waldtest(𝑘), 𝑘 ≥ 1, may not

be specified with lf0().

obs(#) is used mostly by programmers. It specifies that the number of observations reported and ulti-
mately stored in e(N) be #. Ordinarily, mlworks that out for itself. Programmers may want to specify
this option when, for the likelihood evaluator to work for 𝑁 observations, they first had to modify the

dataset so that it contained a different number of observations.

crittype(string) is used mostly by programmers. It allows programmers to supply a string (up to

32 characters long) that describes the criterion that is being optimized by ml. The default is ”Log
likelihood” for nonrobust and ”Log pseudolikelihood” for robust estimation.

svy indicates that ml is to pick up the svy settings set by svyset and use the robust variance estimator.
This option requires the data to be svyset; see [SVY] svyset. svy may not be specified with vce()
or weights.

subpop(varname) specifies that estimates be computed for the single subpopulation defined by the

observations for which varname ≠ 0. Typically, varname = 1 defines the subpopulation, and

varname = 0 indicates observations not belonging to the subpopulation. For observations whose

subpopulation status is uncertain, varname should be set to missing (‘.’). This option requires the
svy option.

nosvyadjust specifies that the model Wald test be carried out as 𝑊/𝑘 ∼ 𝐹(𝑘, 𝑑), where 𝑊 is the

Wald test statistic, 𝑘 is the number of terms in the model excluding the constant term, 𝑑 is the total

number of sampled PSUs minus the total number of strata, and 𝐹(𝑘, 𝑑) is an 𝐹 distribution with 𝑘
numerator degrees of freedom and 𝑑 denominator degrees of freedom. By default, an adjusted Wald

test is conducted: (𝑑 − 𝑘 + 1)𝑊/(𝑘𝑑) ∼ 𝐹(𝑘, 𝑑 − 𝑘 + 1). See Korn and Graubard (1990) for a
discussion of the Wald test and the adjustments thereof. This option requires the svy option.

technique(algorithm spec) specifies how the likelihood function is to be maximized. The following

algorithms are currently implemented in ml. For details, see Pitblado, Poi, and Gould (2024).

technique(nr) specifies Stata’s modified Newton–Raphson (NR) algorithm.
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technique(bhhh) specifies the Berndt–Hall–Hall–Hausman (BHHH) algorithm.

technique(dfp) specifies the Davidon–Fletcher–Powell (DFP) algorithm.

technique(bfgs) specifies the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm.

The default is technique(nr).

You can switch between algorithms by specifying more than one in the technique() option. By

default, ml will use an algorithm for five iterations before switching to the next algorithm. To specify

a different number of iterations, include the number after the technique in the option. For example,

technique(bhhh 10 nr 1000) requests that ml perform 10 iterations using the BHHH algorithm, fol-

lowed by 1,000 iterations using the NR algorithm, and then switch back to BHHH for 10 iterations, and

so on. The process continues until convergence or until reaching the maximum number of iterations.

deriv(min spec) specifies whether to use minimum values of step sizes for computing numerical

derivatives and optionally specifies the minimum values.

deriv(nomin), the default, suppresses the use of minimum values.

deriv(min) sets the minimum step size to 1e–6 for computing first-order derivatives and 1e–4 for

computing second-order derivatives.

deriv(min(#1, #2)) sets the minimum step size to #1 for computing the first-order derivatives and

#2 for computing the second-order derivatives. Specifying deriv(min(1e-6, 1e-4)) is equiva-
lent to specifying deriv(min).

deriv(min(matname)) sets the minimum step size to the values in the 1 × 2 matrix matname. The

value in the first column of the row vector will set the minimum step size for the first-order deriva-

tives, and the value in the second column will set the minimum step size for the second-order

derivatives.

Options for use with ml model in noninteractive mode
The following extra options are for use with ml model in noninteractive mode. Noninteractive mode

is for programmers who use ml as a subroutine and want to issue one command that will carry forth the
estimation from start to finish.

maximize is required. It specifies noninteractive mode.

init(ml init args) sets the initial values, b0. ml init args are whatever you would type after the ml
init command.

search(on | norescale | quietly | off) specifies whether ml search is to be used to improve the

initial values. search(on) is the default and is equivalent to separately running ml search,
repeat(0). search(norescale) is equivalent to separately running ml search, repeat(0)
norescale. search(quietly) is equivalent to search(on), except that it suppresses ml search’s
output. search(off) prevents calling ml search.

repeat(#) is ml search’s repeat() option. repeat(0) is the default.

bounds(ml search bounds) specifies the search bounds. ml search bounds is specified as

[ eqn name ] lower bound upper bound . . . [ eqn name ] lower bound upper bound
for instance, bounds(100 100 lnsigma 0 10). The ml model command issues ml search
ml search bounds, repeat(#). Specifying search bounds is optional.

nowarning, novce, negh, and score() are ml maximize’s equivalent options.
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maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. These options are

seldom used.

Options for use when specifying equations
noconstant specifies that the equation not include an intercept.

offset(varname𝑜) specifies that the equation be xb+ varname𝑜—that it include varname𝑜 with coef-

ficient constrained to be 1.

exposure(varname𝑒) is an alternative to offset(varname𝑜); it specifies that the equation be xb +
ln(varname𝑒). The equation is to include ln(varname𝑒) with coefficient constrained to be 1.

freeparm specifies that the associated eqname is a free parameter. The corresponding full column name
on e(b) will be /eqname instead of eqname: cons. This option is not allowed with varlist𝑥.

Options for use with ml search
repeat(#) specifies the number of random attempts that are to be made to find a better initial-value

vector. The default is repeat(10).

repeat(0) specifies that no random attempts be made. More precisely, repeat(0) specifies that no
random attempts be made if the first initial-value vector is a feasible starting point. If it is not, ml
search will make random attempts, even if you specify repeat(0), because it has no alternative.
The repeat() option refers to the number of random attempts to be made to improve the initial

values. When the initial starting value vector is not feasible, ml searchwill make up to 1,000 random
attempts to find starting values. It stops when it finds one set of values that works and then moves

into its improve-initial-values logic.

repeat(𝑘), 𝑘 > 0, specifies the number of random attempts to be made to improve the initial values.

restart specifies that random actions be taken to obtain starting values and that the resulting starting

values not be a deterministic function of the current values. Generally, you should not specify this

option because, with restart, ml search intentionally does not produce as good a set of starting
values as it could. restart is included for use by the optimizer when it gets into serious trouble. The
random actions ensure that the optimizer and ml search, working together, do not cause an endless
loop.

restart implies norescale, which is why we recommend that you do not specify restart. In

testing, sometimes rescale worked so well that, even after randomization, the rescaler would bring
the starting values right back to where they had been the first time and thus defeat the intended ran-

domization.

norescale specifies that ml search not engage in its rescaling actions to improve the parameter vector.
We do not recommend specifying this option because rescaling tends to work so well.

maximize options: [no]log and trace; see [R]Maximize. These options are seldom used.

Option for use with ml plot
saving( filename[ , replace]) specifies that the graph be saved in filename.gph.

See [G-3] saving option.
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Options for use with ml init
copy specifies that the list of numbers or the initialization vector be copied into the initial-value vector

by position rather than by name.

skip specifies that any parameters found in the specified initialization vector that are not also found in
the model be ignored. The default action is to issue an error message.

Options for use with ml maximize
nowarning is allowed only with iterate(0). nowarning suppresses the “convergence not achieved”

message. Programmers might specify iterate(0) nowarning when they have a vector b already

containing the final estimates and want ml to calculate the variance matrix and postestimation results.
Then, specify init(b) search(off) iterate(0) nowarning nolog.

novce is allowed only with iterate(0). novce substitutes the zero matrix for the variance matrix,

which in effect posts estimation results as fixed constants.

negh indicates that the evaluator returns the negative Hessian matrix. By default, ml assumes d2 and lf2
evaluators return the Hessian matrix.

score(newvars | stub*) creates new variables containing the contributions to the score for each equation

and ancillary parameter in the model; see [U] 20.23 Obtaining scores.

If score(newvars) is specified, the newvarsmust contain 𝑘 new variables. For evaluators of methods

lf, lf0, lf1, and lf2, 𝑘 is the number of equations. For evaluators of method gf0, 𝑘 is the number of

parameters. If score(stub*) is specified, variables named stub1, stub2, . . . , stubk are created.

For evaluators of methods lf, lf0, lf1, and lf2, the first variable contains 𝜕ln ℓ𝑗/𝜕(x1𝑗b1), the second
variable contains 𝜕ln ℓ𝑗/𝜕(x2𝑗b2), and so on.
For evaluators of method gf0, the first variable contains 𝜕ln ℓ𝑗/𝜕b1, the second variable contains

𝜕ln ℓ𝑗/𝜕b2, and so on.

nooutput suppresses display of results. This option is different from prefixing ml maximize with

quietly in that the iteration log is still displayed (assuming that nolog is not specified).

noskipline suppresses display of a blank line before the iteration log. This is useful in programs when
there is a header preceding the iteration log and a blank line is not wanted after the header.

noclear specifies that the ml problem definition not be cleared after the model has converged. Perhaps

you are having convergence problems and intend to run the model to convergence. If so, use ml
search to see if those values can be improved, and then restart the estimation.

maximize options: difficult, iterate(#), [no]log, trace, gradient, showstep, hessian,
showtolerance, tolerance(#), ltolerance(#), nrtolerance(#), and nonrtolerance; see
[R]Maximize. These options are seldom used.

display options; see Options for use with ml display below.

eform option; see Options for use with ml display below.

Option for use with ml graph
saving( filename[ , replace]) specifies that the graph be saved in filename.gph.

See [G-3] saving option.
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Options for use with ml display
noheader suppresses the header display above the coefficient table that displays the final log-likelihood

value, the number of observations, and the model significance test.

nofootnote suppresses the footnote display below the coefficient table, which displays a warning if the

model fit did not converge within the specified number of iterations. Use ml footnote to display the
warning if 1) you add to the coefficient table using the plus option or 2) you have your own footnotes
and want the warning to be last.

level(#) is the standard confidence-level option. It specifies the confidence level, as a percentage,

for confidence intervals of the coefficients. The default is level(95) or as set by set level; see
[U] 20.8 Specifying the width of confidence intervals.

first displays a coefficient table reporting results for the first equation only, and the report makes it
appear that the first equation is the only equation. This option is used by programmers who estimate

ancillary parameters in the second and subsequent equations and who wish to report the values of

such parameters themselves.

neq(#) is an alternative to first. neq(#) displays a coefficient table reporting results for the first #
equations. This option is used by programmers who estimate ancillary parameters in the # + 1 and

subsequent equations and who wish to report the values of such parameters themselves.

showeqns is a seldom-used option that displays the equation names in the coefficient table. ml display
uses the numbers stored in e(k eq) and e(k aux) to determine how to display the coefficient table.

e(k eq) identifies the number of equations, and e(k aux) identifies how many of these are for

ancillary parameters. The first option is implied when showeqns is not specified and all but the
first equation are for ancillary parameters.

plus displays the coefficient table, but rather than ending the table in a line of dashes, ends it in

dashes–plus-sign–dashes. This is so that programmers can write additional display code to add more

results to the table and make it appear as if the combined result is one table. Programmers typically

specify plus with the first or neq() options. This option implies nofootnote.

nocnsreport suppresses the display of constraints above the coefficient table. This option is ignored if
constraints were not used to fit the model.

noomitted specifies that variables that were omitted because of collinearity not be displayed. The de-
fault is to include in the table any variables omitted because of collinearity and to label them as

“(omitted)”.

vsquish specifies that the blank space separating factor-variable terms or time-series–operated variables
from other variables in the model be suppressed.

noemptycells specifies that empty cells for interactions of factor variables not be displayed. The default
is to include in the table interaction cells that do not occur in the estimation sample and to label them

as “(empty)”.

baselevels and allbaselevels control whether the base levels of factor variables and interactions
are displayed. The default is to exclude from the table all base categories.

baselevels specifies that base levels be reported for factor variables and for interactions whose

bases cannot be inferred from their component factor variables.

allbaselevels specifies that all base levels of factor variables and interactions be reported.

cformat(% fmt) specifies how to format coefficients, standard errors, and confidence limits in the coef-

ficient table.
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pformat(% fmt) specifies how to format 𝑝-values in the coefficient table.
sformat(% fmt) specifies how to format test statistics in the coefficient table.

nolstretch specifies that the width of the coefficient table not be automatically widened to accommo-
date longer variable names. The default, lstretch, is to automatically widen the coefficient table up
to the width of the Results window. Specifying lstretch or nolstretch overrides the setting given
by set lstretch. If set lstretch has not been set, the default is lstretch.

coeflegend specifies that the legend of the coefficients and how to specify them in an expression be

displayed rather than displaying the statistics for the coefficients.

eform option: eform(string), eform, hr, shr, irr, or, and rrr display the coefficient table in exponen-
tiated form: for each coefficient, exp(𝑏) rather than 𝑏 is displayed, and standard errors and confidence
intervals are transformed. string is the table header that will be displayed above the transformed co-

efficients and must be 11 characters or shorter in length—for example, eform(”Odds ratio”). The
options eform, hr, shr, irr, or, and rrr provide a default string equivalent to “exp(b)”, “Haz.
ratio”, “SHR”, “IRR”, “Odds ratio”, and “RRR”, respectively. These options may not be combined.

ml display looks at e(k eform) to determine howmany equations are affected by an eform option;

by default, only the first equation is affected. Type ereturn list, all to view e(k eform); see
[P] ereturn.

Options for use with mleval
eq(#) specifies the equation number, 𝑖, for which 𝜃𝑖𝑗 = x𝑖𝑗b𝑖 is to be evaluated. eq(1) is assumed if

eq() is not specified.

scalar asserts that the 𝑖th equation is known to evaluate to a constant, meaning that the equation was
specified as (), (name:), or /name on the ml model statement. If you specify this option, the new
variable created is created as a scalar. If the 𝑖th equation does not evaluate to a scalar, an error message
is issued.

Option for use with mlsum
noweight specifies that weights ($ML w) be ignored when summing the likelihood function.

Option for use with mlvecsum
eq(#) specifies the equation for which a gradient vector 𝜕ln𝐿/𝜕b𝑖 is to be constructed. The default is

eq(1).

Option for use with mlmatsum
eq(#[ ,# ]) specifies the equations for which the Hessian matrix is to be constructed. The default is

eq(1), which is the same as eq(1,1), which means 𝜕2ln𝐿/𝜕b1𝜕b′
1. Specifying eq(𝑖,𝑗) results in

𝜕2ln𝐿/𝜕b𝑖𝜕b′
𝑗.

Options for use with mlmatbysum
by(varname) is required and specifies the group variable.
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eq(#[ ,# ]) specifies the equations for which the Hessian matrix is to be constructed. The default is

eq(1), which is the same as eq(1,1), which means 𝜕2ln𝐿/𝜕b1𝜕b′
1. Specifying eq(𝑖,𝑗) results in

𝜕2ln𝐿/𝜕b𝑖𝜕b′
𝑗.

Options for use with ml score
equation(eqname) identifies from which equation the observation scores are to come. This option may

be used only when generating one variable.

missing specifies that observations containing variables with missing values not be eliminated from the

estimation sample.

Remarks and examples
For a thorough discussion of ml, see the fifth edition of Maximum Likelihood Estimation with Stata

(Pitblado, Poi, and Gould 2024). The book provides a tutorial introduction to ml, notes on advanced pro-
gramming issues, and a discourse on maximum likelihood estimation from both theoretical and practical

standpoints. See Survey options and ml at the end of Remarks and examples for examples of the new

svy options. For more information about survey estimation, see [SVY] Survey, [SVY] svy estimation,

and [SVY] Variance estimation.

ml requires that you write a program that evaluates the log-likelihood function and, possibly, its first

and second derivatives. The style of the program you write depends upon the method you choose. Meth-

ods lf, lf0, d0, and gf0 require that your program evaluate the log likelihood only. Methods d1 and lf1

require that your program evaluate the log likelihood and its first derivatives. Methods d2 and lf2 re-

quires that your program evaluate the log likelihood and its first and second derivatives. Methods lf,

lf0, d0, and gf0 differ from each other in that, with methods lf and lf0, your program is required to pro-

duce observation-by-observation log-likelihood values ln ℓ𝑗 and it is assumed that ln𝐿 = ∑𝑗 ln ℓ𝑗; with

method d0, your program is required to produce only the overall value ln𝐿; and with method gf0, your
program is required to produce the summable pieces of the log likelihood, such as those in panel-data

models.

Once you have written the program—called an evaluator—you define a model to be fit using ml
model and obtain estimates using ml maximize. You might type

. ml model . . .

. ml maximize

but we recommend that you type

. ml model . . .

. ml check

. ml search

. ml maximize

ml check verifies your evaluator has no obvious errors, and ml search finds better initial values.

You fill in the ml model statement with 1) the method you are using, 2) the name of your program,
and 3) the “equations”. You write your evaluator in terms of 𝜃1, 𝜃2, . . . , each of which has a linear

equation associated with it. That linear equation might be as simple as 𝜃𝑖 = 𝑏0, it might be 𝜃𝑖 =
𝑏1mpg+ 𝑏2weight+ 𝑏3, or it might omit the intercept 𝑏3. The equations are specified in parentheses on

the ml model line.
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Suppose that you are using method lf and the name of your evaluator program is myprog. The state-
ment

. ml model lf myprog (mpg weight)

would specify one equation with 𝜃𝑖 = 𝑏1mpg + 𝑏2weight + 𝑏3. If you wanted to omit 𝑏3, you would

type

. ml model lf myprog (mpg weight, nocons)

and if all you wanted was 𝜃𝑖 = 𝑏0, you would type

. ml model lf myprog ()

With multiple equations, you list the equations one after the other; so, if you typed

. ml model lf myprog (mpg weight) ()

you would be specifying 𝜃1 = 𝑏1mpg + 𝑏2weight + 𝑏3 and 𝜃2 = 𝑏4. You would write your likelihood

in terms of 𝜃1 and 𝜃2. If the model was linear regression, 𝜃1 might be the xb part and 𝜃2 the variance of

the residuals.

When you specify the equations, you also specify any dependent variables. If you typed

. ml model lf myprog (price = mpg weight) ()

price would be the one and only dependent variable, and that would be passed to your program in

$ML y1. If your model had two dependent variables, you could type

. ml model lf myprog (price displ = mpg weight) ()

Then, $ML y1 would be price and $ML y2 would be displ. You can specify however many dependent
variables are necessary and specify them on any equation. It does not matter on which equation you

specify them; the first one specified is placed in $ML y1, the second in $ML y2, and so on.

Example 1: Method lf
Using method lf, we want to produce observation-by-observation values of the log likelihood. The

probit log-likelihood function is

ln ℓ𝑗 = {lnΦ(𝜃1𝑗) if 𝑦𝑗 = 1

lnΦ(−𝜃1𝑗) if 𝑦𝑗 = 0

𝜃1𝑗 = x𝑗b1

The following is the method-lf evaluator for this likelihood function:

program myprobit
version 18.0 // (or version 18.5 for StataNow)
args lnf theta1
quietly replace ‘lnf’ = ln(normal(‘theta1’)) if $ML_y1==1
quietly replace ‘lnf’ = ln(normal(-‘theta1’)) if $ML_y1==0

end

If we wanted to fit a model of foreign on mpg and weight, we would type the following commands.
The ‘foreign =’ part specifies that 𝑦 is foreign. The ‘mpg weight’ part specifies that 𝜃1𝑗 = 𝑏1mpg𝑗 +
𝑏2weight𝑗 + 𝑏3.
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. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. ml model lf myprobit (foreign = mpg weight)
. ml maximize
Initial: Log likelihood = -51.292891
Alternative: Log likelihood = -45.055272
Rescale: Log likelihood = -45.055272
Iteration 0: Log likelihood = -45.055272
Iteration 1: Log likelihood = -27.904125
Iteration 2: Log likelihood = -26.858643
Iteration 3: Log likelihood = -26.844199
Iteration 4: Log likelihood = -26.844189
Iteration 5: Log likelihood = -26.844189

Number of obs = 74
Wald chi2(2) = 20.75

Log likelihood = -26.844189 Prob > chi2 = 0.0000

foreign Coefficient Std. err. z P>|z| [95% conf. interval]

mpg -.1039503 .0515689 -2.02 0.044 -.2050235 -.0028772
weight -.0023355 .0005661 -4.13 0.000 -.003445 -.0012261
_cons 8.275464 2.554142 3.24 0.001 3.269438 13.28149

Example 2: Method lf for two-equation, two-dependent-variable model
A two-equation, two-dependent-variable model is a little different. Rather than receiving one 𝜃, our

program will receive two. Rather than there being one dependent variable in $ML y1, there will be
dependent variables in $ML y1 and $ML y2. For instance, theWeibull regression log-likelihood function

is

ln ℓ𝑗 = −(𝑡𝑗𝑒−𝜃1𝑗)exp(𝜃2𝑗) + 𝑑𝑗{𝜃2𝑗 − 𝜃1𝑗 + (𝑒𝜃2𝑗 − 1)(ln 𝑡𝑗 − 𝜃1𝑗)}
𝜃1𝑗 = x𝑗b1

𝜃2𝑗 = 𝑠

where 𝑡𝑗 is the time of failure or censoring and 𝑑𝑗 = 1 if failure and 0 if censored. We can make the log

likelihood a little easier to program by introducing some extra variables:

𝑝𝑗 = exp(𝜃2𝑗)
𝑀𝑗 = {𝑡𝑗 exp(−𝜃1𝑗)}𝑝𝑗

𝑅𝑗 = ln 𝑡𝑗 − 𝜃1𝑗

ln ℓ𝑗 = −𝑀𝑗 + 𝑑𝑗{𝜃2𝑗 − 𝜃1𝑗 + (𝑝𝑗 − 1)𝑅𝑗}
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The method-lf evaluator for this is

program myweib
version 18.0 // (or version 18.5 for StataNow)
args lnf theta1 theta2
tempvar p M R
quietly generate double ‘p’ = exp(‘theta2’)
quietly generate double ‘M’ = ($ML_y1*exp(-‘theta1’))^‘p’
quietly generate double ‘R’ = ln($ML_y1)-‘theta1’
quietly replace ‘lnf’ = -‘M’ + $ML_y2*(‘theta2’-‘theta1’ + (‘p’-1)*‘R’)

end

We can fit a model by typing

. ml model lf myweib (studytime died = i.drug age) ()

. ml maximize

Note that we specified ‘()’ for the second equation. The second equation corresponds to the Weibull

shape parameter 𝑠, and the linear combination we want for 𝑠 contains just an intercept. Alternatively, we
could type

. ml model lf myweib (studytime died = i.drug age) /s

Typing /smeans the same thing as typing (s:, freeparm). The s, either after a slash or in parentheses
before a colon, labels the equation. The leading slash, /, is a shortcut for specifying that “s” is a free
parameter. Free parameters are labeled using this shortcut notation, /s, in the column names of e(b) and
in the estimation results. If we instead specified (s:), then s would be the equation label for a constant
linear equation and would be labeled as s: cons in the column names of e(b) and in the estimation
results.
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. use https://www.stata-press.com/data/r18/cancer, clear
(Patient survival in drug trial)
. ml model lf myweib (studytime died = i.drug age) /s
. ml maximize
Initial: Log likelihood = -744
Alternative: Log likelihood = -356.14276
Rescale: Log likelihood = -200.80201
Rescale eq: Log likelihood = -136.69232
Iteration 0: Log likelihood = -136.69232 (not concave)
Iteration 1: Log likelihood = -124.11726
Iteration 2: Log likelihood = -113.9591
Iteration 3: Log likelihood = -110.30683
Iteration 4: Log likelihood = -110.26748
Iteration 5: Log likelihood = -110.26736
Iteration 6: Log likelihood = -110.26736

Number of obs = 48
Wald chi2(3) = 35.25

Log likelihood = -110.26736 Prob > chi2 = 0.0000

Coefficient Std. err. z P>|z| [95% conf. interval]

drug
Other 1.012966 .2903917 3.49 0.000 .4438086 1.582123

NA 1.45917 .2821195 5.17 0.000 .9062261 2.012114

age -.0671728 .0205688 -3.27 0.001 -.1074868 -.0268587
_cons 6.060723 1.152845 5.26 0.000 3.801188 8.320259

/s .5573333 .1402154 3.97 0.000 .2825162 .8321504

Example 3: Method d0
Method-d0 evaluators receive b = (b1,b2, . . . ,b𝐸), the coefficient vector, rather than the already

evaluated 𝜃1, 𝜃2, . . . , 𝜃𝐸, and they are required to evaluate the overall log-likelihood ln𝐿 rather than

ln ℓ𝑗, 𝑗 = 1, . . . , 𝑁.

Use mleval to produce the thetas from the coefficient vector.

Use mlsum to sum the components that enter into ln𝐿.
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In the case of Weibull, ln𝐿 = ∑ ln ℓ𝑗, and our method-d0 evaluator is

program weib0
version 18.0 // (or version 18.5 for StataNow)
args todo b lnf
tempvar theta1 theta2
mleval ‘theta1’ = ‘b’, eq(1)
mleval ‘theta2’ = ‘b’, eq(2)
local t ”$ML_y1” // this is just for readability
local d ”$ML_y2”
tempvar p M R
quietly generate double ‘p’ = exp(‘theta2’)
quietly generate double ‘M’ = (‘t’*exp(-‘theta1’))^‘p’
quietly generate double ‘R’ = ln(‘t’)-‘theta1’
mlsum ‘lnf’ = -‘M’ + ‘d’*(‘theta2’-‘theta1’ + (‘p’-1)*‘R’)

end

To fit our model using this evaluator, we would type

. ml model d0 weib0 (studytime died = i.drug age) /s

. ml maximize

Technical note
Method d0 does not require ln𝐿 = ∑𝑗 ln ℓ𝑗, 𝑗 = 1, . . . , 𝑁, as method lf does. Your likelihood

function might have independent components only for groups of observations. Panel-data estimators

have a log-likelihood value ln𝐿 = ∑𝑖 ln𝐿𝑖, where 𝑖 indexes the panels, each of which contains multiple
observations. Conditional logistic regression has ln𝐿 = ∑𝑘 ln𝐿𝑘, where 𝑘 indexes the risk pools. Cox
regression has ln𝐿 = ∑(𝑡) ln𝐿(𝑡), where (𝑡) denotes the ordered failure times.

To evaluate such likelihood functions, first calculate the within-group log-likelihood contributions.

This usually involves generate and replace statements prefixed with by, as in

tempvar sumd
by group: generate double ‘sumd’ = sum($ML_y1)

Structure your code so that the log-likelihood contributions are recorded in the last observation of each

group. Say that a variable is named ‘cont’. To sum the contributions, code

tempvar last
quietly by group: generate byte ‘last’ = (_n==_N)
mlsum ‘lnf’ = ‘cont’ if ‘last’

You must inform mlsum which observations contain log-likelihood values to be summed. First, you do
not want to include intermediate results in the sum. Second, mlsum does not skip missing values. Rather,
if mlsum sees a missing value among the contributions, it sets the overall result, ‘lnf’, to missing. That
is how ml maximize is informed that the likelihood function could not be evaluated at the particular

value of b. ml maximize will then take action to escape from what it thinks is an infeasible area of the

likelihood function.

When the likelihood function violates the linear-form restriction ln𝐿 = ∑𝑗 ln ℓ𝑗, 𝑗 = 1, . . . , 𝑁,

with ln ℓ𝑗 being a function solely of values within the 𝑗th observation, use method d0. In the following
examples, we will demonstrate methods d1 and d2 with likelihood functions that meet this linear-form
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restriction. The d1 and d2 methods themselves do not require the linear-form restriction, but the utility

routines mlvecsum and mlmatsum do. Using method d1 or d2 when the restriction is violated is difficult;
however, mlmatbysum may be of some help for method-d2 evaluators.

Example 4: Method d1
Method-d1 evaluators are required to produce the gradient vector g = 𝜕 ln𝐿/𝜕b, as well as the

overall log-likelihood value. Using mlvecsum, we can obtain 𝜕 ln𝐿/𝜕b from 𝜕 ln𝐿/𝜕𝜃𝑖, 𝑖 = 1, . . . , 𝐸.
The derivatives of the Weibull log-likelihood function are

𝜕ln ℓ𝑗

𝜕𝜃1𝑗
= 𝑝𝑗(𝑀𝑗 − 𝑑𝑗)

𝜕ln ℓ𝑗

𝜕𝜃2𝑗
= 𝑑𝑗 − 𝑅𝑗𝑝𝑗(𝑀𝑗 − 𝑑𝑗)

The method-d1 evaluator for this is

program weib1
version 18.0 // (or version 18.5 for StataNow)
args todo b lnf g // g is new
tempvar t1 t2
mleval ‘t1’ = ‘b’, eq(1)
mleval ‘t2’ = ‘b’, eq(2)
local t ”$ML_y1”
local d ”$ML_y2”
tempvar p M R
quietly generate double ‘p’ = exp(‘t2’)
quietly generate double ‘M’ = (‘t’*exp(-‘t1’))^‘p’
quietly generate double ‘R’ = ln(‘t’)-‘t1’
mlsum ‘lnf’ = -‘M’ + ‘d’*(‘t2’-‘t1’ + (‘p’-1)*‘R’)
if (‘todo’==0 | ‘lnf’>=.) exit /* <-- new */
tempname d1 d2 /* <-- new */
mlvecsum ‘lnf’ ‘d1’ = ‘p’*(‘M’-‘d’), eq(1) /* <-- new */
mlvecsum ‘lnf’ ‘d2’ = ‘d’ - ‘R’*‘p’*(‘M’-‘d’), eq(2) /* <-- new */
matrix ‘g’ = (‘d1’,‘d2’) /* <-- new */

end

We obtained this code by starting with our method-d0 evaluator and then adding the extra lines that

method d1 requires. To fit our model using this evaluator, we could type

. ml model d1 weib1 (studytime died = drug2 drug3 age) /s

. ml maximize

but we recommend substituting method d1debug for method d1 and typing

. ml model d1debug weib1 (studytime died = drug2 drug3 age) /s

. ml maximize

Method d1debug will compare the derivatives we calculate with numerical derivatives and thus verify

that our program is correct. Once we are certain the program is correct, then we would switch from

method d1debug to method d1.
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Example 5: Method d2
Method-d2 evaluators are required to produce H = 𝜕2ln𝐿/𝜕b𝜕b′, the Hessian matrix, as well as

the gradient and log-likelihood value. mlmatsum will help calculate 𝜕2ln𝐿/𝜕b𝜕b′ from the second

derivatives with respect to 𝜃. For the Weibull model, these second derivatives are

𝜕2ln ℓ𝑗

𝜕𝜃2
1𝑗

= −𝑝2
𝑗 𝑀𝑗

𝜕2ln ℓ𝑗

𝜕𝜃1𝑗𝜕𝜃2𝑗
= 𝑝𝑗(𝑀𝑗 − 𝑑𝑗 + 𝑅𝑗𝑝𝑗𝑀𝑗)

𝜕2ln ℓ𝑗

𝜕𝜃2
2𝑗

= −𝑝𝑗𝑅𝑗(𝑅𝑗𝑝𝑗𝑀𝑗 + 𝑀𝑗 − 𝑑𝑗)

The method-d2 evaluator is

program weib2
version 18.0 // (or version 18.5 for StataNow)
args todo b lnf g H // H added
tempvar t1 t2
mleval ‘t1’ = ‘b’, eq(1)
mleval ‘t2’ = ‘b’, eq(2)
local t ”$ML_y1”
local d ”$ML_y2”
tempvar p M R
quietly generate double ‘p’ = exp(‘t2’)
quietly generate double ‘M’ = (‘t’*exp(-‘t1’))^‘p’
quietly generate double ‘R’ = ln(‘t’)-‘t1’
mlsum ‘lnf’ = -‘M’ + ‘d’*(‘t2’-‘t1’ + (‘p’-1)*‘R’)
if (‘todo’==0 | ‘lnf’>=.) exit
tempname d1 d2
mlvecsum ‘lnf’ ‘d1’ = ‘p’*(‘M’-‘d’), eq(1)
mlvecsum ‘lnf’ ‘d2’ = ‘d’ - ‘R’*‘p’*(‘M’-‘d’), eq(2)
matrix ‘g’ = (‘d1’,‘d2’)
if (‘todo’==1 | ‘lnf’>=.) exit // new from here down
tempname d11 d12 d22
mlmatsum ‘lnf’ ‘d11’ = -‘p’^2 * ‘M’, eq(1)
mlmatsum ‘lnf’ ‘d12’ = ‘p’*(‘M’-‘d’ + ‘R’*‘p’*‘M’), eq(1,2)
mlmatsum ‘lnf’ ‘d22’ = -‘p’*‘R’*(‘R’*‘p’*‘M’ + ‘M’ - ‘d’) , eq(2)
matrix ‘H’ = (‘d11’,‘d12’ \ ‘d12’’,‘d22’)

end

We started with our previous method-d1 evaluator and added the lines that method d2 requires. We could

now fit a model by typing

. ml model d2 weib2 (studytime died = drug2 drug3 age) /s

. ml maximize

but we would recommend substituting method d2debug for method d2 and typing

. ml model d2debug weib2 (studytime died = drug2 drug3 age) /s

. ml maximize

Method d2debug will compare the first and second derivatives we calculate with numerical derivatives

and thus verify that our program is correct. Once we are certain the program is correct, then we would

switch from method d2debug to method d2.
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As we stated earlier, to produce the robust variance estimator with method lf, there is nothing to do

except specify vce(robust), vce(cluster clustvar), or pweight. For methods d0, d1, and d2, these
options do not work. If your likelihood function meets the linear-form restrictions, you can use methods

lf0, lf1, and lf2, then these options will work. The equation scores are defined as

𝜕ln ℓ𝑗

𝜕𝜃1𝑗
,

𝜕ln ℓ𝑗

𝜕𝜃2𝑗
, . . .

Your evaluator will be passed variables, one for each equation, which you fill in with the equation scores.

For both method lf1 and lf2, these variables are passed in the fourth and subsequent positions of the

argument list. That is, you must process the arguments as

args todo b lnf g1 g2 ... H

Note that for method lf1, the ‘H’ argument is not used and can be ignored.

Example 6: Robust variance estimates
If you have used mlvecsum in your evaluator of method d1 or d2, it is easy to turn it into an evaluator

of method lf1 or lf2 that allows the computation of the robust variance estimator. The expression that

you specified on the right-hand side of mlvecsum is the equation score.

Here we turn the program that we gave earlier in the method-d1 example into a method-lf1 evaluator

that allows vce(robust), vce(cluster clustvar), or pweight.

program weib1
version 18.0 // (or version 18.5 for StataNow)
args todo b lnfj g1 g2 // g1 and g2 are new
tempvar t1 t2
mleval ‘t1’ = ‘b’, eq(1)
mleval ‘t2’ = ‘b’, eq(2)
local t ”$ML_y1”
local d ”$ML_y2”
tempvar p M R
quietly generate double ‘p’ = exp(‘t2’)
quietly generate double ‘M’ = (‘t’*exp(-‘t1’))^‘p’
quietly generate double ‘R’ = ln(‘t’)-‘t1’
quietly replace ‘lnfj’ = -‘M’ + ‘d’*(‘t2’-‘t1’ + (‘p’-1)*‘R’)
if (‘todo’==0) exit
quietly replace ‘g1’ = ‘p’*(‘M’-‘d’) /* <-- new */
quietly replace ‘g2’ = ‘d’ - ‘R’*‘p’*(‘M’-‘d’) /* <-- new */

end

To fit our model and get the robust variance estimates, we type

. ml model lf1 weib1 (studytime died = drug2 drug3 age) /s, vce(robust)

. ml maximize

Survey options and ml
ml can handle stratification, poststratification, multiple stages of clustering, and finite population

corrections. Specifying the svy option implies that the data come from a survey design and also implies

that the survey linearized variance estimator is to be used; see [SVY] Variance estimation.
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Example 7
Suppose that we are interested in a probit analysis of data from a survey in which q1 is the answer

to a yes/no question and x1, x2, x3 are demographic responses. The following is a lf2 evaluator for the
probit model that meets the requirements for vce(robust) (linear form and computes the scores).

program mylf2probit
version 18.0 // (or version 18.5 for StataNow)
args todo b lnfj g1 H

tempvar z Fz lnf
mleval ‘z’ = ‘b’

quietly generate double ‘Fz’ = normal( ‘z’) if $ML_y1 == 1
quietly replace ‘Fz’ = normal(-‘z’) if $ML_y1 == 0
quietly replace ‘lnfj’ = log(‘Fz’)
if (‘todo’==0) exit

quietly replace ‘g1’ = normalden(‘z’)/‘Fz’ if $ML_y1 == 1
quietly replace ‘g1’ = -normalden(‘z’)/‘Fz’ if $ML_y1 == 0
if (‘todo’==1) exit

mlmatsum ‘lnf’ ‘H’ = -‘g1’*(‘g1’+‘z’), eq(1,1)
end

To fit a model, we svyset the data, then use svy with ml.

. svyset psuid [pw=w], strata(strid)

. ml model lf2 mylf2probit (q1 = x1 x2 x3), svy

. ml maximize

We could also use the subpop() option to make inferences about the subpopulation identified by the

variable sub:

. svyset psuid [pw=w], strata(strid)

. ml model lf2 mylf2probit (q1 = x1 x2 x3), svy subpop(sub)

. ml maximize

Stored results
For results stored by ml without the svy option, see [R]Maximize.

For results stored by ml with the svy option, see [SVY] svy.

Methods and formulas
ml is implemented using moptimize(); see [M-5] moptimize( ).
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Also see
[R]Maximize — Details of iterative maximization

[R] mlexp — Maximum likelihood estimation of user-specified expressions

[R] nl — Nonlinear least-squares estimation

[M-5] moptimize( ) — Model optimization

[M-5] optimize( ) — Function optimization

[U] 20 Estimation and postestimation commands



mlexp — Maximum likelihood estimation of user-specified expressions

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description
mlexp performs maximum likelihood estimation of models that satisfy the linear-form restrictions,

that is, models for which you can write the log likelihood for an individual observation and for which

the overall log likelihood is the sum of the individual observations’ log likelihoods.

You express the observation-level log-likelihood function by using a substitutable expression. Unlike

models fit using ml, you do not need to do any programming. However, ml can fit classes of models that
cannot be fit by mlexp.

Quick start
Linear regression of y on x1 and x2

mlexp (ln(normalden(y, {xb: x1 x2 _cons}, {sigma})))

Same as above

mlexp (ln(normalden(y, {b0} + {b1}*x1 + {b2}*x2, {sigma})))

Same as above, and set initial values for b2 and sigma
mlexp (ln(normalden(y, {b0} + {b1}*x1 + {b2=0.5}*x2, {sigma=3})))

Constrain sigma and the coefficient on x1 to be positive
mlexp (ln(normalden(y, {b0} + exp({lnb1})*x1+{b2}*x2,exp({lnsigma}))))
nlcom (b1: exp(_b[lnb1:_cons])) (sigma: exp(_b[lnsigma:_cons]))

Omit observations with missing values for y, x1, or x2
mlexp (ln(normalden(y, {xb: x1 x2 _cons}, {sigma}))), variables(y x1 x2)

Menu
Statistics > Other > Maximum likelihood estimation of expression

1842
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Syntax
mlexp (lexp) [ if ] [ in ] [weight ] [ , options ]

where lexp is a substitutable expression representing the log-likelihood function.

options Description

Model

variables(varlist) specify variables in model

from(initial values) specify initial values for parameters

constraints(numlist) apply specified linear constraints

Derivatives

derivative(/name = dexp) specify derivative of lexp with respect to parameter name;
can be specified more than once

SE/Robust

vce(vcetype) vcetype may be oim, opg, robust, cluster clustvar,
bootstrap, or jackknife

Reporting

level(#) set confidence level; default is level(95)
title(string) display string as title above the table of parameter estimates

title2(string) display string as subtitle

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

debug display debug output

collinear keep collinear variables

coeflegend display legend instead of statistics

lexp and dexp may contain factor variables and time-series operators; see [U] 11.4.3 Factor variables and [U] 11.4.4 Time-

series varlists.

bootstrap, by, collect, jackknife, rolling, statsby, and svy are allowed; see [U] 11.1.10 Prefix commands.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
aweights are not allowed with the jackknife prefix; see [R] jackknife.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
aweights, fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
debug, collinear, and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

lexp and dexp are substitutable expressions, Stata expressions that also contain parameters to be esti-

mated. The parameters are enclosed in curly braces and must satisfy the naming requirements for vari-

ables; {beta} is an example of a parameter. The notation {lc:varlist} is allowed for linear combinations
of multiple covariates and their parameters. For example, {xb: mpg price turn cons} defines a lin-
ear combination of the variables mpg, price, turn, and cons (the constant term). See Substitutable
expressions under Remarks and examples below.
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Options

� � �
Model �

variables(varlist) specifies the variables in the model. mlexp excludes observations for which any
of these variables has missing values. If you do not specify variables(), then mlexp assumes all
observations are valid. mlexpwill exit with an error message if the log likelihood cannot be calculated
at the initial values for any observation.

from(initial values) specifies the initial values to begin the estimation. You can specify parameter

names and values, or you can specify a 1 × 𝑘 matrix, where 𝑘 is the number of parameters in the

model. For example, to initialize alpha to 1.23 and delta to 4.57, you would type

mlexp ..., from(alpha=1.23 delta=4.57) ...

or equivalently

matrix define initval = (1.23, 4.57)
mlexp ..., from(initval) ...

Initial values declared in the from() option override any that are declared within substitutable ex-
pressions. If you specify a parameter that does not appear in your model, mlexp exits with an error.
If you specify a matrix, the values must be in the same order in which the parameters are declared in

your model.

constraints(numlist); see [R] Estimation options.

� � �
Derivatives �

derivative(/name = dexp) specifies the derivative of the observation-level log-likelihood function

with respect to parameter name. If you wish to specify analytic derivatives, you must specify

derivative() for each parameter in your model.

dexp uses the same substitutable expression syntax as is used to specify the log-likelihood function.

If you declare a linear combination in the log-likelihood function, you provide the derivative for the

linear combination; mlexp then applies the chain rule for you. See Specifying derivatives under

Remarks and examples for examples.

If you do not specify the derivative() option, mlexp calculates derivatives numerically.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), that al-
low for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods

(bootstrap, jackknife); see [R] vce option.

� � �
Reporting �

level(#); see [R] Estimation options.

title(string) specifies an optional title that will be displayed just above the table of parameter esti-

mates.

title2(string) specifies an optional subtitle that will be displayed between the title specified in

title() and the table of parameter estimates. If title2() is specified but title() is not, then

title2() has the same effect as title().
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display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), and nonrtolerance; see [R]Maximize. These options are seldom used.

The following options are available with mlexp but are not shown in the dialog box:

debug specifies that differences between the numerically computed gradient and the gradient computed
from your derivative expression are reported at each iteration. This option is only allowed with the

derivative() option.

collinear, coeflegend; see [R] Estimation options.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Substitutable expressions
Parameter interpretation using margins
Parameter constraints
Specifying derivatives

Introduction
mlexp performs maximum likelihood estimation of models that satisfy the linear-form restrictions,

that is, models for which you can write the log likelihood for a single observation and for which the

overall log likelihood is the sum of the individual observations’ log likelihoods. Models designed for

use with cross-sectional data usually meet the linear-form restrictions, including linear regression, many

discrete choice models, limited-dependent-variable models, and selection models. Examples of models

that do not satisfy the linear-form restrictions are random-effects panel-data models (because the likeli-

hood function is defined at the panel level) and Cox proportional hazards models (because the likelihood

function is defined for risk sets).

Because of its straightforward syntax and accessibility from the menu system, mlexp is particularly
suited to users who are new to Stata and to those using Stata for pedagogical purposes. You specify the

log-likelihood function that mlexp is to maximize by using substitutable expressions that are similar to
those used by nl, nlsur, and gmm. mlexp allows you to avoid the programming requirements of ml.
However, ml can fit classes of models that cannot be fit by mlexp, including those that do not meet the
linear-form restrictions. See Pitblado, Poi, and Gould (2024, chap. 2) for examples using mlexp and for
further discussion of the advantages of both mlexp and ml.
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Substitutable expressions
Substitutable expressions allow you to distinguish between variables and parameters. There are three

rules to follow when defining substitutable expressions:

1. Parameters of the model are bound in curly braces: {b0}, {param}, etc. Parameter names must
follow the same conventions as variable names; see [U] 11.3 Naming conventions.

2. Initial values for parameters are given by including an equal sign and the initial value inside the

curly braces: {b0=1}, {param=3.571}, etc.

3. Linear combinations of variables can be included using the notation {lc:varlist}:
{xb: mpg price weight cons}, {score: w x z}, etc. Parameters of linear combinations

are initialized to zero.

Substitutable expressions can include any mathematical expression involving scalars and variables. See

[U] 13.2 Operators and [U] 13.3 Functions for more information on expressions.

Example 1: The gamma density function
In an extract of the March 2014 Current Population Survey downloaded from Integrated Public Use

Microdata Series (IPUMS), wage contains the wage and salary income earned in tens of thousands of

dollars per year for working individuals; see King et al. (2010). We want to model wage using the two-
parameter gamma distribution with shape parameter 𝛼 and rate parameter 𝛽. The density function for
𝑦 > 0 is

𝑓(𝑦) = 𝛽𝛼

Γ(𝛼)
𝑦𝛼−1 exp(−𝛽𝑦) 𝛽 > 0, 𝛼 > 0

so that the log likelihood for the 𝑖th observation is

ln(ℓ𝑖) = 𝛼 ln(𝛽) − ln{Γ(𝛼)} + (𝛼 − 1) ln(𝑦𝑖) − 𝛽𝑦𝑖

To fit wage to the two-parameter gamma distribution, we let a be the parameter name that conforms

to Stata naming conventions for 𝛼 and b be the parameter name for 𝛽. We enclose both in {} in our

substitutable expression for the log-likelihood function:
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. use https://www.stata-press.com/data/r18/cpswage

. mlexp ({a}*ln({b}) - lngamma({a}) + ({a}-1)*ln(wage) - {b}*wage)
Initial: Log likelihood = -<inf> (could not be evaluated)
Feasible: Log likelihood = -239367.36
Rescale: Log likelihood = -228037.02
Rescale eq: Log likelihood = -163560.64
Iteration 0: Log likelihood = -163560.64
Iteration 1: Log likelihood = -162820.41
Iteration 2: Log likelihood = -162808.55
Iteration 3: Log likelihood = -162808.55
Maximum likelihood estimation
Log likelihood = -162808.55 Number of obs = 64,748

Coefficient Std. err. z P>|z| [95% conf. interval]

/a 1.097287 .0054134 202.70 0.000 1.086677 1.107897
/b .2406718 .0014917 161.34 0.000 .2377482 .2435954

Because we did not specify initial values, mlexp initialized 𝛼 and 𝛽 to be 0. When both parameters are

0, the log-likelihood function cannot be evaluated, because ln(0) is undefined. Therefore, in the iteration
log above the coefficient table, we see that mlexp reported the initial log likelihood to be -<inf> (could
not be evaluated). When this occurs, mlexp uses a search routine to find alternative initial values that
do allow the log-likelihood function to be calculated.

We now initialize a to 1 and b to 0.1 the first time that we type themwithin the substitutable expression:

. mlexp ({a=1}*ln({b=.1}) - lngamma({a}) + ({a}-1)*ln(wage) - {b}*wage)
Initial: Log likelihood = -178608.12
Rescale: Log likelihood = -178608.12
Rescale eq: Log likelihood = -173389.94
Iteration 0: Log likelihood = -173389.94
Iteration 1: Log likelihood = -163081.69
Iteration 2: Log likelihood = -162813.54
Iteration 3: Log likelihood = -162808.55
Iteration 4: Log likelihood = -162808.55
Maximum likelihood estimation
Log likelihood = -162808.55 Number of obs = 64,748

Coefficient Std. err. z P>|z| [95% conf. interval]

/a 1.097287 .0054134 202.70 0.000 1.086677 1.107897
/b .2406719 .0014917 161.34 0.000 .2377483 .2435955

Even when mlexp can find alternative initial values, specifying your own values facilitates optimization.

By default, initial values of parameters are set to zero, and mlexp performs an iterative search for

optimum starting values before beginning maximization. If mlexp cannot find initial parameter values
for which it can calculate the log-likelihood function, it will exit with an error message. Restricting the

sample or specifying starting values solves this problem.

Use the variables() option, an if qualifier, or an in qualifier to restrict the sample. You can also
specify initial values by using the from() option or within the substitutable expression by including an
equal sign and the initial value after the parameter. If you specify initial values by using from(), they
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override whatever initial values are given within the substitutable expression. Regardless of whether you

specify initial values, mlexp performs a search procedure for better starting values before commencing
the first iteration of the maximization routine.

Example 2: Linear combinations of covariates
We frequently want to model the parameters as linear combinations of variables. Continuing ex-

ample 1, we see that the mean of the two-parameter gamma distribution is E(𝑦) = 𝛼/𝛽. By letting

𝛼 = 𝑎1age + 𝑎0, we model the mean of wage conditional on age as E(wage|age) = (𝑎1age + 𝑎0)/𝛽.
Below, we specify {a: age cons} to model a as a linear combination of age and a constant term.

. mlexp ({a:age _cons}*ln({b=.1})-lngamma({a:})+({a:}-1)*ln(wage)-{b}*wage)
Initial: Log likelihood = -<inf> (could not be evaluated)
Feasible: Log likelihood = -239367.36
Rescale: Log likelihood = -228037.02
Rescale eq: Log likelihood = -163560.64
Iteration 0: Log likelihood = -163560.64
Iteration 1: Log likelihood = -160123.65
Iteration 2: Log likelihood = -159838.42
Iteration 3: Log likelihood = -159838.38
Iteration 4: Log likelihood = -159838.38
Maximum likelihood estimation
Log likelihood = -159838.38 Number of obs = 64,748

Coefficient Std. err. z P>|z| [95% conf. interval]

a
age .0194396 .0002689 72.31 0.000 .0189126 .0199665

_cons .4108355 .0096791 42.45 0.000 .3918647 .4298062

/b .2667954 .0016423 162.45 0.000 .2635765 .2700142

The notation {a: age cons} indicates to mlexp that you want a linear combination of the variable age
and a constant term. We named the linear combination a, so mlexp names the parameters a:age and
a: cons, respectively.

Once you have declared a linear combination, you can subsequently refer to the linear combination by

specifying its name and a colon inside curly braces, as we did in this example. You cannot use the same

name for both an individual parameter and a linear combination. However, after a linear combination

has been declared, you can refer to the parameter of an individual variable within that linear combination

by using the notation {lc:𝑧}, where lc is the name of the linear combination, and 𝑧 is the variable whose
parameter you want to reference.

Example 3: Linear combinations of factor variables
Factor variables and time-series operated variables can be included in a varlist defining a linear com-

bination. Continuing example 2, we want to allow different intercepts for males and females in 𝛼, and
we want different 𝛽 parameters for males and females. We implement this model below by including

ibn.female in each linear combination using factor-variable notation.
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. mlexp ({a:age ibn.female}*ln({b:ibn.female}) - lngamma({a:}) +
> ({a:}-1)*ln(wage) - {b:}*wage)
Initial: Log likelihood = -<inf> (could not be evaluated)
Feasible: Log likelihood = -239367.36
Rescale: Log likelihood = -228037.02
Rescale eq: Log likelihood = -163560.64
Iteration 0: Log likelihood = -163560.64
Iteration 1: Log likelihood = -158999.51
Iteration 2: Log likelihood = -158135.16
Iteration 3: Log likelihood = -158130.94
Iteration 4: Log likelihood = -158130.93
Maximum likelihood estimation
Log likelihood = -158130.93 Number of obs = 64,748

Coefficient Std. err. z P>|z| [95% conf. interval]

a
age .020543 .0002781 73.88 0.000 .019998 .0210881

female
Male .3917619 .0111697 35.07 0.000 .3698696 .4136542

Female .4475977 .0116285 38.49 0.000 .4248063 .4703892

b
female
Male .2279862 .0018677 122.07 0.000 .2243256 .2316468

Female .3600628 .0030156 119.40 0.000 .3541523 .3659733

Parameter interpretation using margins
The margins command can be used after mlexp to estimate the effect of a covariate from a set

of parameter estimates. The estimated covariate effects can be conditional on the other covariates or

population-averaged effects that average out the other covariates.

Example 4
Continuing example 3, we use margins to estimate the average wage if everyone in the sample were

male and if everyone in the sample were female. The expression() option is used to specify the formula
for the mean. Wages, measured in tens of thousands of dollars, have a gamma distribution, so the mean

is a ratio of the 𝛼 and 𝛽 parameters. The linear prediction is specified in the expression with xb().
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. margins i.female, expression(xb(a)/xb(b))
Predictive margins Number of obs = 64,748
Model VCE: OIM
Expression: xb(a)/xb(b)

Delta-method
Margin std. err. z P>|z| [95% conf. interval]

female
Male 5.452281 .0267573 203.77 0.000 5.399838 5.504724

Female 3.607372 .0178778 201.78 0.000 3.572332 3.642412

When everyone is male, the estimated average wage is 5.45; when everyone is female, the estimated

average wage is 3.61.

Parameter constraints

Example 5
In examples 1, 2, and 3, we were lucky. The two-parameter gamma density function is defined

only when both 𝛼 and 𝛽 are positive. However, mlexp does not know this; when maximizing the log-

likelihood function, it will consider all real values for the parameters. Also recall from above, mlexp
will exit with an error message if it cannot find parameter values that produce nonmissing values for the

likelihood for each sample observation.

We could reparameterize our model so that we avoid having to directly estimate parameters that are

restricted. For example, consider the parameter 𝛼 > 0, and suppose we define the new parameter 𝜃 =
ln(𝛼) so that 𝛼 = exp(𝜃). With this parameterization, for any real value of 𝜃 that mlexp might try to
use when evaluating the log-likelihood function, 𝛼 is guaranteed to be positive. Below we apply this

parameterization to the model in example 1.

. mlexp (exp({lna})*{lnb} - lngamma(exp({lna}))
> + (exp({lna})-1)*ln(wage) - exp({lnb})*wage)
Initial: Log likelihood = -295203.41
Alternative: Log likelihood = -249215.67
Rescale: Log likelihood = -230376.58
Rescale eq: Log likelihood = -166588.81
Iteration 0: Log likelihood = -166588.81
Iteration 1: Log likelihood = -162845.95
Iteration 2: Log likelihood = -162808.56
Iteration 3: Log likelihood = -162808.55
Iteration 4: Log likelihood = -162808.55
Maximum likelihood estimation
Log likelihood = -162808.55 Number of obs = 64,748

Coefficient Std. err. z P>|z| [95% conf. interval]

/lna .0928409 .0049334 18.82 0.000 .0831716 .1025103
/lnb -1.424321 .0061979 -229.81 0.000 -1.436469 -1.412173
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We can use nlcom to obtain the back-transformed parameter estimates, but first we need to know

how to refer to the parameters estimated by mlexp. We can replay the results and request the coefficient

legend.

. mlexp, coeflegend
Maximum likelihood estimation
Log likelihood = -162808.55 Number of obs = 64,748

Coefficient Legend

/lna .0928409 _b[lna:_cons]
/lnb -1.424321 _b[lnb:_cons]

Now, we see that we can refer to b[lna: cons] and b[lnb: cons] in nlcom.

. nlcom (a: exp(_b[lna:_cons])) (b: exp(_b[lnb:_cons]))
a: exp(_b[lna:_cons])
b: exp(_b[lnb:_cons])

Coefficient Std. err. z P>|z| [95% conf. interval]

a 1.097287 .0054134 202.70 0.000 1.086677 1.107897
b .2406718 .0014917 161.34 0.000 .2377482 .2435954

The optimal value of the log-likelihood function and the back-transformed parameter estimates match

those reported in example 1.
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However, when you impose nonlinear constraints on linear combinations of covariates, you change

the model. These nonlinear constraints change the model because they are not invertible functions of the

original parameters. For example, we can use the exponential function to ensure 𝛼 > 0 and 𝛽 > 0 in the

model from example 3.

. mlexp (exp({a:age ibn.female})*{b:ibn.female} - lngamma(exp({a:}))
> + (exp({a:})-1)*ln(wage) - exp({b:})*wage)
Initial: Log likelihood = -295203.41
Alternative: Log likelihood = -249215.67
Rescale: Log likelihood = -230376.58
Rescale eq: Log likelihood = -166588.81
Iteration 0: Log likelihood = -166588.81
Iteration 1: Log likelihood = -160273.12
Iteration 2: Log likelihood = -158868.39
Iteration 3: Log likelihood = -158864.02
Iteration 4: Log likelihood = -158864.02
Maximum likelihood estimation
Log likelihood = -158864.02 Number of obs = 64,748

Coefficient Std. err. z P>|z| [95% conf. interval]

a
age .0126713 .0001785 70.98 0.000 .0123214 .0130212

female
Male -.3470203 .009978 -34.78 0.000 -.3665769 -.3274638

Female -.3177398 .0103376 -30.74 0.000 -.338001 -.2974786

b
female
Male -1.502222 .0085431 -175.84 0.000 -1.518966 -1.485478

Female -1.059358 .0087602 -120.93 0.000 -1.076528 -1.042189

The value of the log-likelihood function is now −158,864.02, which is less than the value

−158,130.93, which was reported in example 3. The constrained parameterization that keeps 𝛼 > 0

and 𝛽 > 0 has changed the model, and the optimal value of the log-likelihood function in the constrained

model is less than the optimal value in the unconstrained model.

Because neither the unconstrained nor the constrained parameterization generates missing predicted

values for𝛼 or 𝛽, we can choose between them. However, if any of the predicted values for𝛼 or 𝛽 produce
missing values for the log-likelihood function using the unconstrained parameterization, we could not

compute the log-likelihood function for the unconstrained parameterization, and we would have to use a

constrained parameterization.

Specifying derivatives
By default, mlexp calculates derivatives of the log-likelihood function numerically using an algo-

rithm that produces accurate results. However, mlexp will fit your model more quickly (and even more
accurately) if you specify analytic derivatives.

You specify derivatives by using substitutable expressions in much the same way as you specify the

log-likelihood function. If you specify a linear combination in your log-likelihood function, then you

supply a derivative with respect to that linear combination; mlexp then uses the chain rule to obtain the
derivatives with respect to the individual parameters.
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We will illustrate how to specify derivatives using the probit model for dichotomous outcomes. The

log-likelihood function for the probit model is often written as

lnℓ𝑖 = { lnΦ(x′
𝑖β) 𝑦𝑖 = 1

lnΦ(−x′
𝑖β) 𝑦𝑖 = 0

using the fact that 1 − Φ(x′
𝑖β) = Φ(−x′

𝑖β), where Φ(⋅) is the cumulative standard normal distribution
function. If we use the trick suggested by Greene (2018, 742, fn. 16), we can simplify the log-likelihood

function, making the derivative calculation easier. Let 𝑞𝑖 = 2𝑦𝑖−1. Then, we canwrite the log-likelihood

function as

lnℓ𝑖 = lnΦ(𝑞𝑖x
′
𝑖β)

and the first derivative as
𝜕 lnℓ𝑖
𝜕β

= 𝑞𝑖𝜙(𝑞𝑖x
′
𝑖β)

Φ(𝑞𝑖x
′
𝑖β)

x𝑖

Example 6: Probit with a linear combination
Now, let’s fit a probit model of the indicator for whether an individual is below the official poverty

level offpov on age, female, and a constant. We could specify the parameters and independent variables

individually, but we will use a linear combination instead. First, note that

𝜕 lnℓ𝑖
𝜕x′

𝑖β
= 𝑞𝑖𝜙(𝑞𝑖x

′
𝑖β)

Φ(𝑞𝑖x
′
𝑖β)

When you specify a linear combination of variables, you specify the derivative with respect to the

linear combination. That way, if you change the variables in the linear combination, you do not need to

change the derivative. To see why this is the case, consider the function 𝑓(x′
𝑖β), where x′

𝑖β is a linear

combination. Then, using the chain rule, we see that

𝜕𝑓(x′
𝑖β)

𝜕𝛽𝑗
= 𝜕𝑓(x′

𝑖β)
𝜕x′

𝑖β
× 𝜕x′

𝑖β

𝜕𝛽𝑗
= 𝜕𝑓(x′

𝑖β)
𝜕x′

𝑖β
× 𝑥𝑖𝑗

Once the derivative with respect to the linear combination is known, mlexp can then multiply it by each
of the variables in the linear combination to get the full set of derivatives with respect to the parameters

needed to maximize the likelihood function. Moreover, the derivative with respect to the linear combina-

tion does not depend on the variables within the linear combination, so even if you change the variables

in it, you will not need to modify the specification of the corresponding derivative() option.
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We type

. generate int q = 2*offpov - 1

. mlexp (ln(normal(q*({xb:age i.female _cons})))),
> deriv(/xb = q*normalden(q*{xb:})/normal(q*{xb:}))
Initial: Log likelihood = -44879.894
Alternative: Log likelihood = -27407.718
Rescale: Log likelihood = -17888.147
Iteration 0: Log likelihood = -17888.147
Iteration 1: Log likelihood = -15805.22
Iteration 2: Log likelihood = -15427.598
Iteration 3: Log likelihood = -15427.04
Iteration 4: Log likelihood = -15427.04
Maximum likelihood estimation
Log likelihood = -15427.04 Number of obs = 64,748

Coefficient Std. err. z P>|z| [95% conf. interval]

xb
age -.0179139 .0005852 -30.61 0.000 -.0190608 -.016767

female
Female .1514014 .0154565 9.80 0.000 .1211072 .1816955
_cons -.8773462 .0244956 -35.82 0.000 -.9253567 -.8293357

After defining q, we specified the log-likelihood function using q and the linear combination xb. We

also use xb in specifying the derivative.

Stored results
mlexp stores the following in e():
Scalars

e(N) number of observations

e(k) number of parameters

e(k aux) number of ancillary parameters

e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test

e(df m) model degrees of freedom

e(ll) log likelihood

e(N clust) number of clusters

e(rank) rank of e(V)
e(ic) number of iterations

e(rc) return code

e(converged) 1 if converged, 0 otherwise
Macros

e(cmd) mlexp
e(cmdline) command as typed

e(lexp) likelihood expression

e(wtype) weight type

e(wexp) weight expression

e(usrtitle) user-specified title

e(usrtitle2) user-specified secondary title

e(clustvar) name of cluster variable

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.
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e(params) names of parameters

e(hasderiv) yes, if derivative() is specified
e(d 𝑗) derivative expression for parameter 𝑗
e(rhs) contents of variables()
e(opt) type of optimization

e(ml method) type of ml method
e(technique) maximization technique

e(singularHmethod) m-marquardt or hybrid; method used when Hessian is singular1

e(crittype) optimization criterion1

e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(marginsprop) signals to the margins command
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(ilog) iteration log (up to 20 iterations)

e(init) initial values

e(gradient) gradient vector

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

Functions

e(sample) marks estimation sample

1. Type ereturn list, all to view these results; see [P] return.

In addition to the above, the following is stored in r():
Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas
Optimization is carried out using moptimize(); see [M-5] moptimize( ).
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Postestimation commands predict margins Also see

Postestimation commands
The following postestimation commands are available after mlexp:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters

estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian infor-
mation criteria (AIC, CAIC, AICc, and BIC, respectively)

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estimates cataloging estimation results

etable table of estimation results

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

∗ lrtest likelihood-ratio test

margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

predict linear predictions and scores

predictnl point estimates, standard errors, testing, and inference for generalized predictions

pwcompare pairwise comparisons of parameters

suest seemingly unrelated estimation

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

∗lrtest is not appropriate with svy estimation results.
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predict

Description for predict
predict creates a new variable containing predictions such as linear predictions and equation-level

scores.

Menu for predict
Statistics > Postestimation

Syntax for predict
predict [ type ] newvar [ if ] [ in ] [ , xb equation(eqno | eqname) ]

predict [ type ] stub* [ if ] [ in ], scores

Scores are only available for observations within the estimation sample.

Options for predict
xb calculates the linear prediction.

equation(eqno | eqname) specifies the equation for which the linear prediction is desired. Spec-

ifying equation(#1) indicates that the calculation be made for the first equation. Specifying

equation(demand) indicates that the calculation be made for the equation named demand, assuming
there is an equation named demand in the model.

If you specify one new variable name and omit equation(), results are the same as if you had

specified equation(#1).

For more information on using predict after multiple-equation estimation commands, see [R] pre-
dict.

scores calculates the equation-level score variables. The 𝑗th new variable will contain the scores for

the 𝑗th equation of the model.
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margins

Description for margins
margins estimates margins of response for linear predictions.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist ] [ , options ]
margins [marginlist ] , predict(statistic ...) [ predict(statistic ...) ... ] [ options ]

statistic Description

xb linear prediction

xb defaults to the first equation.

Also see
[R] mlexp — Maximum likelihood estimation of user-specified expressions

[U] 20 Estimation and postestimation commands



mlogit — Multinomial (polytomous) logistic regression

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description
mlogit fits a multinomial logit (MNL) model for a categorical dependent variable with outcomes that

have no natural ordering. The actual values taken by the dependent variable are irrelevant. The MNL

model is also known as the polytomous logistic regression model. Some people refer to conditional

logistic regression as multinomial logistic regression. If you are one of them, see [R] clogit.

Quick start
MNLmodel of y on x1, x2, and categorical variable a

mlogit y x1 x2 i.a

Same as above, but use y = 1 as the base outcome even if 1 is not the most frequent

mlogit y x1 x2 i.a, baseoutcome(1)

Report results as relative-risk ratios

mlogit y x1 x2 i.a, rrr

Constrain coefficient of x1 to be equal for second and third outcomes
constraint 1 [#2=#3]:x1
mlogit y x1 x2 i.a, constraints(1)

Menu
Statistics > Categorical outcomes > Multinomial logistic regression

1860
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Syntax
mlogit depvar [ indepvars ] [ if ] [ in ] [weight ] [ , options ]

options Description

Model

noconstant suppress constant term

baseoutcome(#) value of depvar that will be the base outcome

constraints(constraints) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim, opg, robust, cluster clustvar, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)
rrr report relative-risk ratios

nocnsreport do not display constraints

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

collinear keep collinear variables

coeflegend display legend instead of statistics

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.

bayes, bootstrap, by, collect, fmm, fp, jackknife, mfp, mi estimate, rolling, statsby, and svy are allowed; see
[U] 11.1.10 Prefix commands. For more details, see [BAYES] bayes: mlogit and [FMM] fmm: mlogit.

vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix; see [MI] mi estimate.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
collinear and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

noconstant; see [R] Estimation options.

baseoutcome(#) specifies the value of depvar to be treated as the base outcome. The default is to

choose the most frequent outcome.

constraints(constraints); see [R] Estimation options.
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� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), that al-
low for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods

(bootstrap, jackknife); see [R] vce option.

If specifying vce(bootstrap) or vce(jackknife), you must also specify baseoutcome().

� � �
Reporting �

level(#); see [R] Estimation options.

rrr reports the estimated coefficients transformed to relative-risk ratios, that is, 𝑒𝑏 rather than 𝑏; see
Description of the model below for an explanation of this concept. Standard errors and confidence

intervals are similarly transformed. This option affects how results are displayed, not how they are

estimated. rrr may be specified at estimation or when replaying previously estimated results.

nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. These options are

seldom used.

The following options are available with mlogit but are not shown in the dialog box:

collinear, coeflegend; see [R] Estimation options.

Remarks and examples
Remarks are presented under the following headings:

Description of the model
Fitting unconstrained models
Fitting constrained models

mlogit fits maximum likelihood models with discrete dependent (left-hand-side) variables when the

dependent variable takes on more than two outcomes and the outcomes have no natural ordering. If the

dependent variable takes on only two outcomes, estimates are identical to those produced by logistic
or logit; see [R] logistic or [R] logit. If the outcomes are ordered, see [R] ologit. See [R] logistic for a
list of related estimation commands.

Description of the model
For an introduction toMNLmodels, see Greene (2018, 829–833), Hosmer, Lemeshow, and Sturdivant

(2013, 269–289), Long (1997, chap. 6), Long and Freese (2014, chap. 8), and Treiman (2009, 336–341).

For a description emphasizing the difference in assumptions and data requirements for conditional and

multinomial logit, see Davidson and MacKinnon (1993).
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Consider the outcomes 1, 2, 3, . . . , 𝑚 recorded in 𝑦, and the explanatory variables 𝑋. Assume that

there are 𝑚 = 3 outcomes: “buy an American car”, “buy a Japanese car”, and “buy a European car”.

The values of 𝑦 are then said to be “unordered”. Even though the outcomes are coded 1, 2, and 3, the

numerical values are arbitrary because 1 < 2 < 3 does not imply that outcome 1 (buy American) is

less than outcome 2 (buy Japanese) is less than outcome 3 (buy European). This unordered categorical

property of 𝑦 distinguishes the use of mlogit from regress (which is appropriate for a continuous

dependent variable), from ologit (which is appropriate for ordered categorical data), and from logit
(which is appropriate for two outcomes, which can be thought of as ordered).

In the MNL model, you estimate a set of coefficients, 𝛽(1), 𝛽(2), and 𝛽(3), corresponding to each

outcome:

Pr(𝑦 = 1) = 𝑒𝑋𝛽(1)

𝑒𝑋𝛽(1) + 𝑒𝑋𝛽(2) + 𝑒𝑋𝛽(3)

Pr(𝑦 = 2) = 𝑒𝑋𝛽(2)

𝑒𝑋𝛽(1) + 𝑒𝑋𝛽(2) + 𝑒𝑋𝛽(3)

Pr(𝑦 = 3) = 𝑒𝑋𝛽(3)

𝑒𝑋𝛽(1) + 𝑒𝑋𝛽(2) + 𝑒𝑋𝛽(3)

The model, however, is unidentified in the sense that there is more than one solution to 𝛽(1), 𝛽(2), and

𝛽(3) that leads to the same probabilities for 𝑦 = 1, 𝑦 = 2, and 𝑦 = 3. To identify the model, you

arbitrarily set one of 𝛽(1), 𝛽(2), or 𝛽(3) to 0—it does not matter which. That is, if you arbitrarily set

𝛽(1) = 0, the remaining coefficients 𝛽(2) and 𝛽(3) will measure the change relative to the 𝑦 = 1 group. If

you instead set 𝛽(2) = 0, the remaining coefficients 𝛽(1) and 𝛽(3) will measure the change relative to the

𝑦 = 2 group. The coefficients will differ because they have different interpretations, but the predicted

probabilities for 𝑦 = 1, 2, and 3 will still be the same. Thus, either parameterization will be a solution to

the same underlying model.

Setting 𝛽(1) = 0, the equations become

Pr(𝑦 = 1) = 1
1 + 𝑒𝑋𝛽(2) + 𝑒𝑋𝛽(3)

Pr(𝑦 = 2) = 𝑒𝑋𝛽(2)

1 + 𝑒𝑋𝛽(2) + 𝑒𝑋𝛽(3)

Pr(𝑦 = 3) = 𝑒𝑋𝛽(3)

1 + 𝑒𝑋𝛽(2) + 𝑒𝑋𝛽(3)

The relative probability of 𝑦 = 2 to the base outcome is

Pr(𝑦 = 2)
Pr(𝑦 = 1)

= 𝑒𝑋𝛽(2)
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Let’s call this ratio the relative risk, and let’s further assume that 𝑋 and 𝛽(2)
𝑘 are vectors equal to

(𝑥1, 𝑥2, . . . , 𝑥𝑘) and (𝛽(2)
1 , 𝛽(2)

2 , . . . , 𝛽(2)
𝑘 )′, respectively. The ratio of the relative risk for a one-unit

change in 𝑥𝑖 is then

𝑒𝛽(2)
1 𝑥1+···+𝛽(2)

𝑖 (𝑥𝑖+1)+···+𝛽(2)
𝑘 𝑥𝑘

𝑒𝛽(2)
1 𝑥1+···+𝛽(2)

𝑖 𝑥𝑖+···+𝛽(2)
𝑘 𝑥𝑘

= 𝑒𝛽(2)
𝑖

Thus, the exponentiated value of a coefficient is the relative-risk ratio for a one-unit change in the

corresponding variable (risk is measured as the risk of the outcome relative to the base outcome).

Fitting unconstrained models

Example 1: A first example
Wehave data on the type of health insurance available to 616 psychologically depressed subjects in the

United States (Tarlov et al. 1989; Wells et al. 1989). The insurance is categorized as either an indemnity

plan (that is, regular fee-for-service insurance, which may have a deductible or coinsurance rate) or a

prepaid plan (a fixed up-front payment allowing subsequent unlimited use as provided, for instance, by

an HMO). The third possibility is that the subject has no insurance whatsoever. We wish to explore the

demographic factors associated with each subject’s insurance choice. One of the demographic factors in

our data is the race of the participant, coded as white or nonwhite:

. use https://www.stata-press.com/data/r18/sysdsn1
(Health insurance data)
. tabulate insure nonwhite, chi2 col

Key

frequency
column percentage

Type of Nonwhite
insurance 0 1 Total

Indemnity 251 43 294
50.71 35.54 47.73

Prepaid 208 69 277
42.02 57.02 44.97

Uninsure 36 9 45
7.27 7.44 7.31

Total 495 121 616
100.00 100.00 100.00

Pearson chi2(2) = 9.5599 Pr = 0.008

Although insure appears to take on the values Indemnity, Prepaid, and Uninsure, it actually takes
on the values 1, 2, and 3. The words appear because we have associated a value label with the numeric

variable insure; see [U] 12.6.3 Value labels.
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When we fit anMNLmodel, we can tell mlogitwhich outcome to use as the base outcome, or we can
let mlogit choose. To fit a model of insure on nonwhite, letting mlogit choose the base outcome,
we type

. mlogit insure nonwhite
Iteration 0: Log likelihood = -556.59502
Iteration 1: Log likelihood = -551.78935
Iteration 2: Log likelihood = -551.78348
Iteration 3: Log likelihood = -551.78348
Multinomial logistic regression Number of obs = 616

LR chi2(2) = 9.62
Prob > chi2 = 0.0081

Log likelihood = -551.78348 Pseudo R2 = 0.0086

insure Coefficient Std. err. z P>|z| [95% conf. interval]

Indemnity (base outcome)

Prepaid
nonwhite .6608212 .2157321 3.06 0.002 .2379942 1.083648

_cons -.1879149 .0937644 -2.00 0.045 -.3716896 -.0041401

Uninsure
nonwhite .3779586 .407589 0.93 0.354 -.4209011 1.176818

_cons -1.941934 .1782185 -10.90 0.000 -2.291236 -1.592632

mlogit chose the indemnity outcome as the base outcome and presented coefficients for the outcomes
prepaid and uninsured. According to the model, the probability of prepaid for whites (nonwhite = 0) is

Pr(insure = Prepaid) = 𝑒−.188

1 + 𝑒−.188 + 𝑒−1.942 = 0.420

Similarly, for nonwhites, the probability of prepaid is

Pr(insure = Prepaid) = 𝑒−.188+.661

1 + 𝑒−.188+.661 + 𝑒−1.942+.378 = 0.570

These results agree with the column percentages presented by tabulate because the mlogit model
is fully saturated. That is, there are enough terms in the model to fully explain the column percentage in

each cell. The model 𝜒2 and the tabulate 𝜒2 are in almost perfect agreement; both test that the column

percentages of insure are the same for both values of nonwhite.
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Example 2: Specifying the base outcome
By specifying the baseoutcome() option, we can control which outcome of the dependent variable

is treated as the base. Left to its own, mlogit chose to make outcome 1, indemnity, the base outcome.
To make outcome 2, prepaid, the base, we would type

. mlogit insure nonwhite, base(2)
Iteration 0: Log likelihood = -556.59502
Iteration 1: Log likelihood = -551.78935
Iteration 2: Log likelihood = -551.78348
Iteration 3: Log likelihood = -551.78348
Multinomial logistic regression Number of obs = 616

LR chi2(2) = 9.62
Prob > chi2 = 0.0081

Log likelihood = -551.78348 Pseudo R2 = 0.0086

insure Coefficient Std. err. z P>|z| [95% conf. interval]

Indemnity
nonwhite -.6608212 .2157321 -3.06 0.002 -1.083648 -.2379942

_cons .1879149 .0937644 2.00 0.045 .0041401 .3716896

Prepaid (base outcome)

Uninsure
nonwhite -.2828627 .3977302 -0.71 0.477 -1.0624 .4966742

_cons -1.754019 .1805145 -9.72 0.000 -2.107821 -1.400217

The baseoutcome() option requires that we specify the numeric value of the outcome, so we could not
type base(Prepaid).

Although the coefficients now appear to be different, the summary statistics reported at the top are

identical. With this parameterization, the probability of prepaid insurance for whites is

Pr(insure = Prepaid) = 1

1 + 𝑒.188 + 𝑒−1.754 = 0.420

This is the same answer we obtained previously.
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Example 3: Displaying relative-risk ratios
By specifying rrr, which we can do at estimation time or when we redisplay results, we see the model

in terms of relative-risk ratios:

. mlogit, rrr
Multinomial logistic regression Number of obs = 616

LR chi2(2) = 9.62
Prob > chi2 = 0.0081

Log likelihood = -551.78348 Pseudo R2 = 0.0086

insure RRR Std. err. z P>|z| [95% conf. interval]

Indemnity
nonwhite .516427 .1114099 -3.06 0.002 .3383588 .7882073

_cons 1.206731 .1131483 2.00 0.045 1.004149 1.450183

Prepaid (base outcome)

Uninsure
nonwhite .7536233 .2997387 -0.71 0.477 .3456255 1.643247

_cons .1730769 .0312429 -9.72 0.000 .1215024 .2465434

Note: _cons estimates baseline relative risk for each outcome.

Looked at this way, the relative risk of choosing an indemnity over a prepaid plan is 0.516 for nonwhites

relative to whites.

To illustrate, from the output and discussions of examples 1 and 2 we find that

Pr (insure = Indemnity | white) = 1

1 + 𝑒−.188 + 𝑒−1.942 = 0.507

and thus the relative risk of choosing indemnity over prepaid (for whites) is

Pr (insure = Indemnity | white)
Pr (insure = Prepaid | white)

= 0.507

0.420
= 1.207

For nonwhites,

Pr (insure = Indemnity | not white) = 1

1 + 𝑒−.188+.661 + 𝑒−1.942+.378 = 0.355

and thus the relative risk of choosing indemnity over prepaid (for nonwhites) is

Pr (insure = Indemnity | not white)
Pr (insure = Prepaid | not white)

= 0.355

0.570
= 0.623

The ratio of these two relative risks, hence the name “relative-risk ratio”, is 0.623/1.207 = 0.516, as

given in the output under the heading “RRR”.
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Technical note
In models where only two categories are considered, the mlogit model reduces to standard logit.

Consequently, the exponentiated regression coefficients, labeled as RRR within mlogit, are equal to the
odds ratios as given when the or option is specified under logit; see [R] logit.

As such, always referring to mlogit’s exponentiated coefficients as odds ratios may be tempting.
However, the discussion in example 3 demonstrates that doing so would be incorrect. In general mlogit
models, the exponentiated coefficients are ratios of relative risks, not ratios of odds.

Example 4: Model with continuous and multiple categorical variables
One of the advantages of mlogit over tabulate is that we can include continuous variables and

multiple categorical variables in the model. In examining the data on insurance choice, we decide that

we want to control for age, gender, and site of study (the study was conducted in three sites):

. mlogit insure age male nonwhite i.site
Iteration 0: Log likelihood = -555.85446
Iteration 1: Log likelihood = -534.67443
Iteration 2: Log likelihood = -534.36284
Iteration 3: Log likelihood = -534.36165
Iteration 4: Log likelihood = -534.36165
Multinomial logistic regression Number of obs = 615

LR chi2(10) = 42.99
Prob > chi2 = 0.0000

Log likelihood = -534.36165 Pseudo R2 = 0.0387

insure Coefficient Std. err. z P>|z| [95% conf. interval]

Indemnity (base outcome)

Prepaid
age -.011745 .0061946 -1.90 0.058 -.0238862 .0003962

male .5616934 .2027465 2.77 0.006 .1643175 .9590693
nonwhite .9747768 .2363213 4.12 0.000 .5115955 1.437958

site
2 .1130359 .2101903 0.54 0.591 -.2989296 .5250013
3 -.5879879 .2279351 -2.58 0.010 -1.034733 -.1412433

_cons .2697127 .3284422 0.82 0.412 -.3740222 .9134476

Uninsure
age -.0077961 .0114418 -0.68 0.496 -.0302217 .0146294

male .4518496 .3674867 1.23 0.219 -.268411 1.17211
nonwhite .2170589 .4256361 0.51 0.610 -.6171725 1.05129

site
2 -1.211563 .4705127 -2.57 0.010 -2.133751 -.2893747
3 -.2078123 .3662926 -0.57 0.570 -.9257327 .510108

_cons -1.286943 .5923219 -2.17 0.030 -2.447872 -.1260134

These results suggest that the inclination of nonwhites to choose prepaid care is even stronger than it was

without controlling. We also see that subjects in site 2 are less likely to be uninsured.
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Fitting constrained models
mlogit can fit models with subsets of coefficients constrained to be zero, with subsets of coefficients

constrained to be equal both within and across equations, and with subsets of coefficients arbitrarily

constrained to equal linear combinations of other estimated coefficients.

Before fitting a constrained model, you define the constraints with the constraint command;

see [R] constraint. Once the constraints are defined, you estimate using mlogit, specifying the

constraint() option. Typing constraint(4) would use the constraint you previously saved as

4. Typing constraint(1,4,6) would use the previously stored constraints 1, 4, and 6. Typing

constraint(1-4,6) would use the previously stored constraints 1, 2, 3, 4, and 6.

Sometimes, you will not be able to specify the constraints without knowing the omitted outcome. In

such cases, assume that the omitted outcome is whatever outcome is convenient for you, and include the

baseoutcome() option when you specify the mlogit command.

Example 5: Specifying constraints to test hypotheses
We can use constraints to test hypotheses, among other things. In our insurance-choice model, let’s

test the hypothesis that there is no distinction between having indemnity insurance and being uninsured.

Indemnity-style insurance was the omitted outcome, so we type

. test [Uninsure]
( 1) [Uninsure]age = 0
( 2) [Uninsure]male = 0
( 3) [Uninsure]nonwhite = 0
( 4) [Uninsure]1b.site = 0
( 5) [Uninsure]2.site = 0
( 6) [Uninsure]3.site = 0

Constraint 4 dropped
chi2( 5) = 9.31

Prob > chi2 = 0.0973

If indemnity had not been the omitted outcome, we would have typed test [Uninsure=Indemnity].

The results produced by test are an approximation based on the estimated covariance matrix of the
coefficients. Because the probability of being uninsured is low, the log likelihood may be nonlinear

for the uninsured. Conventional statistical wisdom is not to trust the asymptotic answer under these

circumstances but to perform a likelihood-ratio test instead.

To use Stata’s lrtest (likelihood-ratio test) command, we must fit both the unconstrained and con-
strained models. The unconstrained model is the one we have previously fit. Following the instruction

in [R] lrtest, we first store the unconstrained model results:

. estimates store unconstrained
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To fit the constrained model, we must refit our model with all the coefficients except the constant set to

0 in the Uninsure equation. We define the constraint and then refit:

. constraint 1 [Uninsure]

. mlogit insure age male nonwhite i.site, constraints(1)
Iteration 0: Log likelihood = -555.85446
Iteration 1: Log likelihood = -539.80523
Iteration 2: Log likelihood = -539.75644
Iteration 3: Log likelihood = -539.75643
Multinomial logistic regression Number of obs = 615

Wald chi2(5) = 29.70
Log likelihood = -539.75643 Prob > chi2 = 0.0000
( 1) [Uninsure]o.age = 0
( 2) [Uninsure]o.male = 0
( 3) [Uninsure]o.nonwhite = 0
( 4) [Uninsure]2o.site = 0
( 5) [Uninsure]3o.site = 0

insure Coefficient Std. err. z P>|z| [95% conf. interval]

Indemnity (base outcome)

Prepaid
age -.0107025 .0060039 -1.78 0.075 -.0224699 .0010649

male .4963616 .1939683 2.56 0.010 .1161907 .8765324
nonwhite .9421369 .2252094 4.18 0.000 .5007346 1.383539

site
2 .2530912 .2029465 1.25 0.212 -.1446767 .6508591
3 -.5521773 .2187237 -2.52 0.012 -.9808678 -.1234869

_cons .1792752 .3171372 0.57 0.572 -.4423023 .8008527

Uninsure
age 0 (omitted)

male 0 (omitted)
nonwhite 0 (omitted)

site
2 0 (omitted)
3 0 (omitted)

_cons -1.87351 .1601099 -11.70 0.000 -2.18732 -1.5597

We can now perform the likelihood-ratio test:

. lrtest unconstrained .
Likelihood-ratio test
Assumption: . nested within unconstrained
LR chi2(5) = 10.79
Prob > chi2 = 0.0557

The likelihood-ratio𝜒2 is 10.79 with 5 degrees of freedom—just slightly greater than themagic 𝑝 = 0.05

level—so we should not call this difference significant.
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Technical note
In certain circumstances, you should fit an MNL model with conditional logit; see [R] clogit. With

substantial data manipulation, clogit can handle the same class of models with some interesting addi-
tions. For example, if we had available the price and deductible of the most competitive insurance plan

of each type, mlogit could not use this information, but clogit could.

Stored results
mlogit stores the following in e():
Scalars

e(N) number of observations

e(N cd) number of completely determined observations

e(k out) number of outcomes

e(k) number of parameters

e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test

e(k dv) number of dependent variables

e(df m) model degrees of freedom

e(r2 p) pseudo-𝑅2

e(ll) log likelihood

e(ll 0) log likelihood, constant-only model

e(N clust) number of clusters

e(chi2) 𝜒2

e(p) 𝑝-value for model test
e(k eq base) equation number of the base outcome

e(baseout) the value of depvar to be treated as the base outcome

e(ibaseout) index of the base outcome

e(rank) rank of e(V)
e(ic) number of iterations

e(rc) return code

e(converged) 1 if converged, 0 otherwise
Macros

e(cmd) mlogit
e(cmdline) command as typed

e(depvar) name of dependent variable

e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(clustvar) name of cluster variable

e(chi2type) Wald or LR; type of model 𝜒2 test

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(eqnames) names of equations

e(baselab) value label corresponding to base outcome

e(opt) type of optimization

e(which) max or min; whether optimizer is to perform maximization or minimization

e(ml method) type of ml method
e(user) name of likelihood-evaluator program

e(technique) maximization technique

e(properties) b V
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(marginsdefault) default predict() specification for margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved
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Matrices

e(b) coefficient vector

e(out) outcome values

e(Cns) constraints matrix

e(ilog) iteration log (up to 20 iterations)

e(gradient) gradient vector

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas
The MNLmodel is described in Greene (2018, 829–833).

Suppose that there are 𝑘 categorical outcomes and—without loss of generality—let the base outcome

be 1. The probability that the response for the 𝑗th observation is equal to the 𝑖th outcome is

𝑝𝑖𝑗 = Pr(𝑦𝑗 = 𝑖) =

⎧
{
{
{
⎨
{
{
{
⎩

1

1 +
𝑘

∑
𝑚=2

exp(x𝑗β𝑚)
, if 𝑖 = 1

exp(x𝑗β𝑖)

1 +
𝑘

∑
𝑚=2

exp(x𝑗β𝑚)
, if 𝑖 > 1

where x𝑗 is the row vector of observed values of the independent variables for the 𝑗th observation and
β𝑚 is the coefficient vector for outcome 𝑚. The log pseudolikelihood is

ln𝐿 = ∑
𝑗

𝑤𝑗

𝑘
∑
𝑖=1

𝐼𝑖(𝑦𝑗) ln𝑝𝑖𝑘

where 𝑤𝑗 is an optional weight and

𝐼𝑖(𝑦𝑗) = {1, if 𝑦𝑗 = 𝑖
0, otherwise

Newton–Raphson maximum likelihood is used; see [R]Maximize.

For constrained equations, the set of constraints is orthogonalized, and a subset of maximizable pa-

rameters is selected. For example, a parameter that is constrained to zero is not a maximizable parameter.

If two parameters are constrained to be equal to each other, only one is a maximizable parameter.
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Let r be the vector of maximizable parameters. r is physically a subset of the solution parameters, b.

A matrix, T, and a vector,m, are defined as

b = Tr + m

so that

𝜕𝑓
𝜕b

= 𝜕𝑓
𝜕r
T′

𝜕2𝑓
𝜕b2 = T

𝜕2𝑓
𝜕r2 T

′

T consists of a block form in which one part is a permutation of the identity matrix and the other part

describes how to calculate the constrained parameters from the maximizable parameters.

This command supports the Huber/White/sandwich estimator of the variance and its clustered version

using vce(robust) and vce(cluster clustvar), respectively. See [P] robust, particularly Maximum

likelihood estimators and Methods and formulas.

mlogit also supports estimation with survey data. For details on VCEs with survey data, see

[SVY] Variance estimation.
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Also see
[R] mlogit postestimation — Postestimation tools for mlogit

[R] clogit — Conditional (fixed-effects) logistic regression

[R] logistic — Logistic regression, reporting odds ratios

[R] logit — Logistic regression, reporting coefficients

[R] mprobit — Multinomial probit regression

[R] ologit — Ordered logistic regression

[R] slogit — Stereotype logistic regression

[BAYES] bayes: mlogit — Bayesian multinomial logistic regression

[CM] cmrologit — Rank-ordered logit choice model

[CM] nlogit — Nested logit regression

[FMM] fmm: mlogit — Finite mixtures of multinomial (polytomous) logistic regression models

[MI] Estimation — Estimation commands for use with mi estimate

[SVY] svy estimation — Estimation commands for survey data

[XT] xtmlogit — Fixed-effects and random-effects multinomial logit models

[U] 20 Estimation and postestimation commands
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Postestimation commands predict margins Remarks and examples
Reference Also see

Postestimation commands
The following postestimation commands are available after mlogit:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters

estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian infor-
mation criteria (AIC, CAIC, AICc, and BIC, respectively)

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estat (svy) postestimation statistics for survey data

estimates cataloging estimation results

etable table of estimation results
∗ forecast dynamic forecasts and simulations
∗ hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

∗ lrtest likelihood-ratio test

margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

predict probabilities, linear predictions and their SEs, etc.

predictnl point estimates, standard errors, testing, and inference for generalized predictions

pwcompare pairwise comparisons of parameters

suest seemingly unrelated estimation

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

∗forecast, hausman, and lrtest are not appropriate with svy estimation results. forecast is also not appropriate with mi
estimation results.

1875
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predict

Description for predict
predict creates a new variable containing predictions such as probabilities, linear predictions, and

standard errors.

Menu for predict
Statistics > Postestimation

Syntax for predict
predict [ type ] { stub* | newvar | newvarlist } [ if ] [ in ] [ , statistic outcome(outcome) ]

predict [ type ] stub* [ if ] [ in ], scores

statistic Description

Main

pr predicted probabilities; the default

xb linear prediction

stdp standard error of the linear prediction

stddp standard error of the difference in two linear predictions

You specify one or 𝑘 new variables with pr, where 𝑘 is the number of outcomes. If you specify one new variable and you do
not specify outcome(), then outcome(#1) is assumed.

You specify one new variable with xb, stdp, and stddp. If you do not specify outcome(), then outcome(#1) is assumed.
You must specify outcome() with the stddp option.

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for the estimation
sample.

Options for predict

� � �
Main �

pr, the default, computes the predicted probabilities for all outcomes or for a specific outcome. To com-
pute probabilities for all outcomes, you specify 𝑘 new variables, where 𝑘 is the number of categories
of the dependent variable. Alternatively, you can specify stub*; in which case, pr will store predicted
probabilities in variables stub1, stub2, . . . , stub𝑘. To compute the probability for a specific outcome,
you specify one new variable and, optionally, the outcome value in option outcome(); if you omit
outcome(), the first outcome value, outcome(#1), is assumed.

Say that you fit a model by typing estimation cmd y x1 x2, and y takes on four values. Then,

you could type predict p1 p2 p3 p4 to obtain all four predicted probabilities; alternatively, you

could type predict p* to generate the four predicted probabilities. To compute specific probabil-

ities one at a time, you can type predict p1, outcome(#1) (or simply predict p1), predict p2,
outcome(#2), and so on. See option outcome() for other ways to refer to outcome values.

xb calculates the linear prediction. You must also specify the outcome(outcome) option.
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stdp calculates the standard error of the linear prediction. You must also specify the outcome(outcome)
option.

stddp calculates the standard error of the difference in two linear predictions. You must specify the

outcome(outcome) option, and here you specify the two particular outcomes of interest inside the
parentheses, for example, predict sed, stddp outcome(1,3).

outcome(outcome) specifies for which outcome the predicted probabilities are to be calculated.

outcome() should contain either one value of the dependent variable or one of #1, #2, . . . , with #1
meaning the first category of the dependent variable, #2meaning the second category, etc. outcome()
is not allowed with scores.

scores calculates equation-level score variables. The number of score variables created will be one less
than the number of outcomes in the model. If the number of outcomes in the model were 𝑘, then

the first new variable will contain 𝜕ln𝐿/𝜕(x𝑗β1);
the second new variable will contain 𝜕ln𝐿/𝜕(x𝑗β2);
. . .

the (𝑘 − 1)th new variable will contain 𝜕ln𝐿/𝜕(x𝑗β𝑘−1).

margins

Description for margins
margins estimates margins of response for probabilities and linear predictions.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist ] [ , options ]
margins [marginlist ] , predict(statistic ...) [ predict(statistic ...) ... ] [ options ]

statistic Description

default probabilities for each outcome

pr probability for a specified outcome

xb linear prediction for a specified outcome

stdp not allowed with margins
stddp not allowed with margins

pr and xb default to the first outcome.

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.
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Remarks and examples
Remarks are presented under the following headings:

Obtaining predicted values
Calculating marginal effects
Testing hypotheses about coefficients

Obtaining predicted values

Example 1: Obtaining predicted probabilities
After estimation, we can use predict to obtain predicted probabilities, index values, and standard

errors of the index, or differences in the index. For instance, in example 4 of [R] mlogit, we fit a model

of insurance choice on various characteristics. We can obtain the predicted probabilities for outcome 1

by typing

. use https://www.stata-press.com/data/r18/sysdsn1
(Health insurance data)
. mlogit insure age i.male i.nonwhite i.site
(output omitted )

. predict p1 if e(sample), outcome(1)
(option pr assumed; predicted probability)
(29 missing values generated)
. summarize p1

Variable Obs Mean Std. dev. Min Max

p1 615 .4764228 .1032279 .1698142 .71939

We added the i. prefix to the male, nonwhite, and site variables to explicitly identify them as factor

variables. That makes no difference in the estimated results, but we will take advantage of it in later

examples. We also included if e(sample) to restrict the calculation to the estimation sample. In exam-
ple 4 of [R] mlogit, the multinomial logit model was fit on 615 observations, so there must be missing

values in our dataset.

Although we typed outcome(1), specifying 1 for the indemnity outcome, we could have typed

outcome(Indemnity). For instance, to obtain the probabilities for prepaid, we could type

. predict p2 if e(sample), outcome(Prepaid)
(option pr assumed; predicted probability)
(29 missing values generated)
. summarize p2

Variable Obs Mean Std. dev. Min Max

p2 615 .4504065 .1125962 .1964103 .7885724

We must specify the label exactly as it appears in the underlying value label (or how it appears in the

mlogit output), including capitalization.

Here we have used predict to obtain probabilities for the same sample on which we estimated. That
is not necessary. We could use another dataset that had the independent variables defined (in our example,

age, male, nonwhite, and site) and use predict to obtain predicted probabilities; here, we would not
specify if e(sample).
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Example 2: Obtaining index values

predict can also be used to obtain the index values—the ∑ 𝑥𝑖
̂𝛽(𝑘)
𝑖 —as well as the probabilities:

. predict idx1, outcome(Indemnity) xb
(1 missing value generated)
. summarize idx1

Variable Obs Mean Std. dev. Min Max

idx1 643 0 0 0 0

The indemnity outcome was our base outcome—the outcome for which all the coefficients were set to

0—so the index is always 0. For the prepaid and uninsured outcomes, we type

. predict idx2, outcome(Prepaid) xb
(1 missing value generated)
. predict idx3, outcome(Uninsure) xb
(1 missing value generated)
. summarize idx2 idx3

Variable Obs Mean Std. dev. Min Max

idx2 643 -.0566113 .4962973 -1.298198 1.700719
idx3 643 -1.980747 .6018139 -3.112741 -.8258458

We can obtain the standard error of the index by specifying the stdp option:

. predict se2, outcome(Prepaid) stdp
(1 missing value generated)
. list p2 idx2 se2 in 1/5

p2 idx2 se2

1. .3709022 -.4831167 .2437772
2. .4977667 .055111 .1694686
3. .4113073 -.1712106 .1793498
4. .5424927 .3788345 .2513701
5. . -.0925817 .1452616

We obtained the probability, p2, in the previous example.
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Finally, predict can calculate the standard error of the difference in the index values between two
outcomes with the stddp option:

. predict se_2_3, outcome(Prepaid,Uninsure) stddp
(1 missing value generated)
. list idx2 idx3 se_2_3 in 1/5

idx2 idx3 se_2_3

1. -.4831167 -3.073253 .5469354
2. .055111 -2.715986 .4331918
3. -.1712106 -1.579621 .3053815
4. .3788345 -1.462007 .4492552
5. -.0925817 -2.814022 .4024784

In the first observation, the difference in the indexes is −0.483 − (−3.073) = 2.59. The standard error

of that difference is 0.547.

Example 3: Interpreting results using predictive margins
It is more difficult to interpret the results from mlogit than those from clogit or logit because

there are multiple equations. For example, suppose that one of the independent variables in our model

takes on the values 0 and 1, and we are attempting to understand the effect of this variable. Assume that

the coefficient on this variable for the second outcome, 𝛽(2), is positive. We might then be tempted to

reason that the probability of the second outcome is higher if the variable is 1 rather than 0. Most of the

time, that will be true, but occasionally we will be surprised. The probability of some other outcome

could increase even more (say, 𝛽(3) > 𝛽(2)), and thus the probability of outcome 2 would actually fall

relative to that outcome. We can use predict to help interpret such results.

Continuing with our previously fit insurance-choice model, we wish to describe the model’s predic-

tions by race. For this purpose, we can use the method of predictive margins (also known as recycled

predictions), in which we vary characteristics of interest across the whole dataset and average the predic-

tions. That is, we have data on both whites and nonwhites, and our individuals have other characteristics

as well. We will first pretend that all the people in our data are white but hold their other characteristics

constant. We then calculate the probabilities of each outcome. Next we will pretend that all the people in

our data are nonwhite, still holding their other characteristics constant. Again, we calculate the probabil-

ities of each outcome. The difference in those two sets of calculated probabilities, then, is the difference

due to race, holding other characteristics constant.

. gen byte nonwhold=nonwhite // save real race

. replace nonwhite=0 // make everyone white
(126 real changes made)
. predict wpind, outcome(Indemnity) // predict probabilities
(option pr assumed; predicted probability)
(1 missing value generated)
. predict wpp, outcome(Prepaid)
(option pr assumed; predicted probability)
(1 missing value generated)
. predict wpnoi, outcome(Uninsure)
(option pr assumed; predicted probability)
(1 missing value generated)
. replace nonwhite=1 // make everyone nonwhite
(644 real changes made)
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. predict nwpind, outcome(Indemnity)
(option pr assumed; predicted probability)
(1 missing value generated)
. predict nwpp, outcome(Prepaid)
(option pr assumed; predicted probability)
(1 missing value generated)
. predict nwpnoi, outcome(Uninsure)
(option pr assumed; predicted probability)
(1 missing value generated)
. replace nonwhite=nonwhold // restore real race
(518 real changes made)
. summarize wp* nwp*, sep(3)

Variable Obs Mean Std. dev. Min Max

wpind 643 .5141673 .0872679 .3092903 .71939
wpp 643 .4082052 .0993286 .1964103 .6502247

wpnoi 643 .0776275 .0360283 .0273596 .1302816

nwpind 643 .3112809 .0817693 .1511329 .535021
nwpp 643 .630078 .0979976 .3871782 .8278881

nwpnoi 643 .0586411 .0287185 .0209648 .0933874

In example 1 of [R]mlogit, we presented a cross-tabulation of insurance type and race. Those values

were unadjusted. The means reported above are the values adjusted for age, sex, and site. Combining

the results gives
Unadjusted Adjusted

white nonwhite white nonwhite

Indemnity 0.51 0.36 0.51 0.31
Prepaid 0.42 0.57 0.41 0.63
Uninsured 0.07 0.07 0.08 0.06

We find, for instance, after adjusting for age, sex, and site, that although 57% of nonwhites in our data

had prepaid plans, 63% of nonwhites chose prepaid plans.

Computing predictive margins by hand was instructive, but we can compute these values more easily

using the margins command (see [R] margins). The two margins for the indemnity outcome can be

estimated by typing

. margins nonwhite, predict(outcome(Indemnity)) noesample
Predictive margins Number of obs = 643
Model VCE: OIM
Expression: Pr(insure==Indemnity), predict(outcome(Indemnity))

Delta-method
Margin std. err. z P>|z| [95% conf. interval]

nonwhite
0 .5141673 .0223485 23.01 0.000 .470365 .5579695
1 .3112809 .0418049 7.45 0.000 .2293448 .393217

margins also estimates the standard errors and confidence intervals of the margins. By default, margins
uses only the estimation sample. We added the noesample option so that margins would use the entire
sample and produce results comparable with our earlier analysis.
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We can use marginsplot to graph the results from margins:

. marginsplot
Variables that uniquely identify margins: nonwhite
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Predictive margins of nonwhite with 95% CIs

The margins for the other two outcomes can be computed by typing

. margins nonwhite, predict(outcome(Prepaid)) noesample
(output omitted )

. margins nonwhite, predict(outcome(Uninsure)) noesample
(output omitted )

The margins for each outcome is computed when no outcome is specified. For example,

. margins nonwhite, noesample
(output omitted )

Technical note
You can use predict to classify predicted values and compare them with the observed outcomes

to interpret a multinomial logit model. This is a variation on the notions of sensitivity and specificity

for logistic regression. Here we will classify indemnity and prepaid as definitely predicting indemnity,

definitely predicting prepaid, and ambiguous.

. predict indem, outcome(Indemnity) index // obtain indexes
(1 missing value generated)
. predict prepaid, outcome(Prepaid) index
(1 missing value generated)
. gen diff = prepaid-indem // obtain difference
(1 missing value generated)
. predict sediff, outcome(Indemnity,Prepaid) stddp // & its standard error
(1 missing value generated)
. gen type = 1 if diff/sediff < -1.96 // definitely indemnity
(504 missing values generated)
. replace type = 3 if diff/sediff > 1.96 // definitely prepaid
(100 real changes made)
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. replace type = 2 if type>=. & diff/sediff < . // ambiguous
(404 real changes made)
. label def type 1 ”Def Ind” 2 ”Ambiguous” 3 ”Def Prep”
. label values type type // label results
. tabulate insure type

Type of type
insurance Def Ind Ambiguous Def Prep Total

Indemnity 78 183 33 294
Prepaid 44 177 56 277
Uninsure 12 28 5 45

Total 134 388 94 616

We can see that the predictive power of this model is modest. There are many misclassifications in

both directions, though there are more correctly classified observations than misclassified observations.

Also, the uninsured look overwhelmingly as though they might have come from the indemnity system

rather than from the prepaid system.

Calculating marginal effects

Example 4
We have already noted that the coefficients frommultinomial logit can be difficult to interpret because

they are relative to the base outcome. Another way to evaluate the effect of covariates is to examine the

marginal effect of changing their values on the probability of observing an outcome.

The margins command can be used for this too. We can estimate the marginal effect of each covariate

on the probability of observing the first outcome—indemnity insurance—by typing

. margins, dydx(*) predict(outcome(Indemnity))
Average marginal effects Number of obs = 615
Model VCE: OIM
Expression: Pr(insure==Indemnity), predict(outcome(Indemnity))
dy/dx wrt: age 1.male 1.nonwhite 2.site 3.site

Delta-method
dy/dx std. err. z P>|z| [95% conf. interval]

age .0026655 .001399 1.91 0.057 -.0000765 .0054074
1.male -.1295734 .0450945 -2.87 0.004 -.2179571 -.0411898

1.nonwhite -.2032404 .0482554 -4.21 0.000 -.2978192 -.1086616

site
2 .0070995 .0479993 0.15 0.882 -.0869775 .1011765
3 .1216165 .0505833 2.40 0.016 .022475 .220758

Note: dy/dx for factor levels is the discrete change from the base level.
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By default, margins estimates the average marginal effect over the estimation sample, and that is

what we see above. Being male decreases the average probability of having indemnity insurance by

0.130. We also see, from the note at the bottom of the table, that the marginal effect was computed as a

discrete change in the probability of being male rather than female. That is why we made male a factor
variable when fitting the model.

The dydx(*) option requested that margins estimate the marginal effect for each regressor,

dydx(age) would have produced estimates only for the effect of age. margins has many options for
controlling how the marginal effect is computed, including the ability to average over subgroups or to

compute estimates for specified values of the regressors; see [R] margins.

margins will compute the marginal effects on each outcome when no outcome is specified.

. margins, dydx(*)
(output omitted )

Testing hypotheses about coefficients

Example 5
test tests hypotheses about the coefficients just as after any estimation command; see [R] test. Note,

however, test’s syntax for dealing with multiple-equation models. Because test bases its results on
the estimated covariance matrix, we might prefer a likelihood-ratio test; see example 5 in [R]mlogit for

an example of lrtest.

If we simply list variables after the test command, we are testing that the corresponding coefficients
are zero across all equations:

. test 2.site 3.site
( 1) [Indemnity]2o.site = 0
( 2) [Prepaid]2.site = 0
( 3) [Uninsure]2.site = 0
( 4) [Indemnity]3o.site = 0
( 5) [Prepaid]3.site = 0
( 6) [Uninsure]3.site = 0

Constraint 1 dropped
Constraint 4 dropped

chi2( 4) = 19.74
Prob > chi2 = 0.0006
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We can test that all the coefficients (except the constant) in an equation are zero by simply typing the

outcome in square brackets:

. test [Uninsure]
( 1) [Uninsure]age = 0
( 2) [Uninsure]0b.male = 0
( 3) [Uninsure]1.male = 0
( 4) [Uninsure]0b.nonwhite = 0
( 5) [Uninsure]1.nonwhite = 0
( 6) [Uninsure]1b.site = 0
( 7) [Uninsure]2.site = 0
( 8) [Uninsure]3.site = 0

Constraint 2 dropped
Constraint 4 dropped
Constraint 6 dropped

chi2( 5) = 9.31
Prob > chi2 = 0.0973

We specify the outcome just as we do with predict; we can specify the label if the outcome variable is
labeled, or we can specify the numeric value of the outcome. We would have obtained the same test as

above if we had typed test [3] because 3 is the value of insure for the outcome uninsured.

We can combine the two syntaxes. To test that the coefficients on the site variables are 0 in the equation

corresponding to the outcome prepaid, we can type

. test [Prepaid]: 2.site 3.site
( 1) [Prepaid]2.site = 0
( 2) [Prepaid]3.site = 0

chi2( 2) = 10.78
Prob > chi2 = 0.0046

We specified the outcome and then followed that with a colon and the variables we wanted to test.

We can also test that coefficients are equal across equations. To test that all coefficients except the

constant are equal for the prepaid and uninsured outcomes, we can type

. test [Prepaid=Uninsure]
( 1) [Prepaid]age - [Uninsure]age = 0
( 2) [Prepaid]0b.male - [Uninsure]0b.male = 0
( 3) [Prepaid]1.male - [Uninsure]1.male = 0
( 4) [Prepaid]0b.nonwhite - [Uninsure]0b.nonwhite = 0
( 5) [Prepaid]1.nonwhite - [Uninsure]1.nonwhite = 0
( 6) [Prepaid]1b.site - [Uninsure]1b.site = 0
( 7) [Prepaid]2.site - [Uninsure]2.site = 0
( 8) [Prepaid]3.site - [Uninsure]3.site = 0

Constraint 2 dropped
Constraint 4 dropped
Constraint 6 dropped

chi2( 5) = 13.80
Prob > chi2 = 0.0169

To test that only the site variables are equal, we can type

. test [Prepaid=Uninsure]: 2.site 3.site
( 1) [Prepaid]2.site - [Uninsure]2.site = 0
( 2) [Prepaid]3.site - [Uninsure]3.site = 0

chi2( 2) = 12.68
Prob > chi2 = 0.0018
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Finally, we can test any arbitrary constraint by simply entering the equation and specifying the coef-

ficients as described in [U] 13.5 Accessing coefficients and standard errors. The following hypothesis

is senseless but illustrates the point:

. test ([Prepaid]age+[Uninsure]2.site)/2 = 2-[Uninsure]1.nonwhite
( 1) .5*[Prepaid]age + [Uninsure]1.nonwhite + .5*[Uninsure]2.site = 2

chi2( 1) = 22.45
Prob > chi2 = 0.0000

See [R] test for more information about test. The information there about combining hypotheses
across test commands (the accumulate option) also applies after mlogit.

Reference
Fagerland, M. W., and D. W. Hosmer, Jr. 2012. A generalized Hosmer–Lemeshow goodness-of-fit test for multinomial

logistic regression models. Stata Journal 12: 447–453.

Also see
[R] mlogit — Multinomial (polytomous) logistic regression

[U] 20 Estimation and postestimation commands

https://www.stata-journal.com/article.html?article=st0269
https://www.stata-journal.com/article.html?article=st0269


more — The —more— message

Description Syntax Option Remarks and examples Also see

Description
set more off, which is the default, tells Stata not to pause or display a more message. set more

on tells Stata to wait until you press a key before continuing when a more message is displayed.

set pagesize # sets the number of lines between more messages.

Syntax
Tell Stata to pause or not pause for —more— messages

set more { on | off } [ , permanently ]

Set number of lines between —more— messages

set pagesize #

Option
permanently specifies that, in addition to making the change right now, the more setting be remembered

and become the default setting when you invoke Stata.

Remarks and examples
more is Stata’s way of telling you that it has something more to show you but that showing it

to you will cause the information on the screen to scroll off. If you type set more off, the more
conditions will never arise, and Stata’s output will scroll by at full speed. If you type set more on, the

more conditions will be restored at the appropriate places.

When you see more at the bottom of the screen, you can do the following:

Press . . . and Stata . . .

letter 𝑙 or Enter displays the next line

letter q acts as if you pressed Break

Spacebar or any other key displays the next screen

You can also click on theMore button or click on more to display the next screen.

If set more is used within a do-file or program, Stata automatically restores the previous set more
setting when the do-file or program concludes.

Programmers should see [P] more for information on the more programming command.

1887
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Also see
[R] query — Display system parameters

[P] creturn — Return c-class values

[P] more — Pause until key is pressed

[P] sleep — Pause for a specified time

[U] 7 –more– conditions



mprobit — Multinomial probit regression

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description
mprobit fits a multinomial probit (MNP) model for a categorical dependent variable with outcomes

that have no natural ordering. The actual values taken by the dependent variable are irrelevant. The

error terms are assumed to be independent, standard normal, random variables. cmmprobit relaxes

the independence of irrelevant alternatives assumption by specifying correlated latent-variable errors.

cmmprobit also allows heteroskedastic latent-variable errors and alternative-specific independent vari-
ables.

Quick start
Multinomial probit model of y on x1, x2, and categorical a

mprobit y x1 x2 i.a

Same as above, but use as the base outcome y = 3

mprobit y x1 x2 i.a, baseoutcome(3)

Probit variance parameterization of differenced latent errors

mprobit y x1 x2 i.a, probitparam

Multiple-imputation estimates with Monte Carlo errors from mi set data
mi estimate, mcerror: mprobit y x1 x2 i.a

Menu
Statistics > Categorical outcomes > Multinomial probit regression
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Syntax
mprobit depvar [ indepvars ] [ if ] [ in ] [weight ] [ , options ]

options Description

Model

noconstant suppress constant terms

baseoutcome(# | lbl) outcome used to normalize location

probitparam use the probit variance parameterization

constraints(constraints) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, opg, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)
nocnsreport do not display constraints

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Integration

intpoints(#) number of quadrature points

Maximization

maximize options control the maximization process; seldom used

collinear keep collinear variables

coeflegend display legend instead of statistics

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

bayes, bootstrap, by, collect, fp, jackknife, mi estimate, rolling, statsby, and svy are allowed; see
[U] 11.1.10 Prefix commands. For more details, see [BAYES] bayes: mprobit.

vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix; see [MI] mi estimate.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
collinear and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

noconstant suppresses the 𝐽 − 1 constant terms.

baseoutcome(# | lbl) specifies the outcome used to normalize the location of the latent variable. The
base outcomemay be specified as a number or a label. The default is to use themost frequent outcome.

The coefficients associated with the base outcome are zero.



mprobit — Multinomial probit regression 1891

probitparam specifies to use the probit variance parameterization by fixing the variance of the differ-
enced latent errors between the scale and the base alternatives to be one. The default is to make the

variance of the base and scale latent errors one, thereby making the variance of the difference to be

two.

constraints(constraints); see [R] Estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), that al-
low for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods

(bootstrap, jackknife); see [R] vce option.

If specifying vce(bootstrap) or vce(jackknife), you must also specify baseoutcome().

� � �
Reporting �

level(#), nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Integration �

intpoints(#) specifies the number of Gaussian quadrature points to use in approximating the likeli-
hood. The default is intpoints(15).

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. These options are

seldom used.

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

The following options are available with mprobit but are not shown in the dialog box:

collinear, coeflegend; see [R] Estimation options.

Remarks and examples
TheMNPmodel is used with discrete dependent variables that take on more than two outcomes that do

not have a natural ordering. The stochastic error terms for this implementation of the model are assumed

to have independent, standard normal distributions. To use mprobit, you must have one observation for
each decision maker in the sample. See [CM] cmmprobit for another implementation of the MNPmodel

that permits correlated and heteroskedastic errors and is suitable when you have data for each alternative

that a decision maker faced.
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TheMNPmodel is frequently motivated using a latent-variable framework. The latent variable for the

𝑗th alternative, 𝑗 = 1, . . . , 𝐽, is
𝜂𝑖𝑗 = z𝑖α𝑗 + 𝜉𝑖𝑗

where the 1 × 𝑞 row vector z𝑖 contains the observed independent variables for the 𝑖th decision maker.
Associated with z𝑖 are the 𝐽 vectors of regression coefficients α𝑗. The 𝜉𝑖,1, . . . , 𝜉𝑖,𝐽 are distributed

independently and identically standard normal. The decision maker chooses the alternative 𝑘 such that

𝜂𝑖𝑘 ≥ 𝜂𝑖𝑚 for 𝑚 ≠ 𝑘.
Suppose that case 𝑖 chooses alternative 𝑘, and take the difference between latent variable 𝜂𝑖𝑘 and the

𝐽 − 1 others:

𝑣𝑖𝑗𝑘 = 𝜂𝑖𝑗 − 𝜂𝑖𝑘

= z𝑖(α𝑗 − α𝑘) + 𝜉𝑖𝑗 − 𝜉𝑖𝑘

= z𝑖𝛄𝑗′ + 𝜖𝑖𝑗′

(1)

where 𝑗′ = 𝑗 if 𝑗 < 𝑘 and 𝑗′ = 𝑗 − 1 if 𝑗 > 𝑘 so that 𝑗′ = 1, . . . , 𝐽 − 1. Var(𝜖𝑖𝑗′) = Var(𝜉𝑖𝑗 − 𝜉𝑖𝑘) = 2

and Cov(𝜖𝑖𝑗′ , 𝜖𝑖𝑙′) = 1 for 𝑗′ ≠ 𝑙′. The probability that alternative 𝑘 is chosen is

Pr(𝑖 chooses 𝑘) = Pr(𝑣𝑖1𝑘 ≤ 0, . . . , 𝑣𝑖,𝐽−1,𝑘 ≤ 0)
= Pr(𝜖𝑖1 ≤ −z𝑖𝛄1, . . . , 𝜖𝑖,𝐽−1 ≤ −z𝑖𝛄𝐽−1)

Hence, evaluating the likelihood function involves computing probabilities from the multivariate nor-

mal distribution. That all the covariances are equal simplifies the problem somewhat; see Methods and

formulas for details.

In (1), not all 𝐽 of the α𝑗 are identifiable. To remove the indeterminacy, α𝑙 is set to the zero vector,

where 𝑙 is the base outcome as specified in the baseoutcome() option. That fixes the 𝑙th latent variable
to zero so that the remaining variables measure the attractiveness of the other alternatives relative to the

base.

Example 1
As discussed in example 1 of [R]mlogit, we have data on the type of health insurance available to 616

psychologically depressed subjects in the United States (Tarlov et al. 1989; Wells et al. 1989). Patients

may have either an indemnity (fee-for-service) plan or a prepaid plan such as an HMO, or the patient may

be uninsured. Demographic variables include age, gender, race, and site. Indemnity insurance is the

most popular alternative, so mprobit will choose it as the base outcome by default.
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. use https://www.stata-press.com/data/r18/sysdsn1
(Health insurance data)
. mprobit insure age male nonwhite i.site
Iteration 0: Log likelihood = -535.89424
Iteration 1: Log likelihood = -534.56173
Iteration 2: Log likelihood = -534.52835
Iteration 3: Log likelihood = -534.52833
Multinomial probit regression Number of obs = 615

Wald chi2(10) = 40.18
Log likelihood = -534.52833 Prob > chi2 = 0.0000

insure Coefficient Std. err. z P>|z| [95% conf. interval]

Indemnity (base outcome)

Prepaid
age -.0098536 .0052688 -1.87 0.061 -.0201802 .000473

male .4774678 .1718316 2.78 0.005 .1406841 .8142515
nonwhite .8245003 .1977582 4.17 0.000 .4369013 1.212099

site
2 .0973956 .1794546 0.54 0.587 -.2543289 .4491201
3 -.495892 .1904984 -2.60 0.009 -.869262 -.1225221

_cons .22315 .2792424 0.80 0.424 -.324155 .7704549

Uninsure
age -.0050814 .0075327 -0.67 0.500 -.0198452 .0096823

male .3332637 .2432986 1.37 0.171 -.1435929 .8101203
nonwhite .2485859 .2767734 0.90 0.369 -.29388 .7910518

site
2 -.6899485 .2804497 -2.46 0.014 -1.23962 -.1402771
3 -.1788447 .2479898 -0.72 0.471 -.6648957 .3072063

_cons -.9855917 .3891873 -2.53 0.011 -1.748385 -.2227986

The likelihood function for mprobit is derived under the assumption that all decision-making units
face the same choice set, which is the union of all outcomes observed in the dataset. If that is not

true for your model, then an alternative is to use the cmmprobit command, which does not require

this assumption. To do that, you will need to expand the dataset so that each decision maker has 𝑘𝑖
observations, where 𝑘𝑖 is the number of alternatives in the choice set faced by decision maker 𝑖. You
will also need to create a binary variable to indicate the choice made by each decision maker. Moreover,

you will need to use the correlation(independent) and stddev(homoskedastic) options with

cmmprobit unless you have alternative-specific variables.
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Stored results
mprobit stores the following in e():

Scalars

e(N) number of observations

e(k out) number of outcomes

e(k points) number of quadrature points

e(k) number of parameters

e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test

e(k indvars) number of independent variables

e(k dv) number of dependent variables

e(df m) model degrees of freedom

e(ll) log likelihood

e(N clust) number of clusters

e(chi2) 𝜒2

e(p) 𝑝-value for model test
e(k eq base) equation number of the base outcome

e(baseout) the value of depvar to be treated as the base outcome

e(ibaseout) index of the base outcome

e(const) 0 if noconstant is specified, 1 otherwise
e(probitparam) 1 if probitparam is specified, 0 otherwise
e(rank) rank of e(V)
e(ic) number of iterations

e(rc) return code

e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) mprobit
e(cmdline) command as typed

e(depvar) name of dependent variable

e(indvars) independent variables

e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(clustvar) name of cluster variable

e(chi2type) Wald, type of model 𝜒2 test

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(outeqs) outcome equations

e(out#) outcome labels, # = 1, . . . ,e(k out)
e(opt) type of optimization

e(which) max or min; whether optimizer is to perform maximization or minimization

e(ml method) type of ml method
e(user) name of likelihood-evaluator program

e(technique) maximization technique

e(properties) b V
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(marginsdefault) default predict() specification for margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved
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Matrices

e(b) coefficient vector

e(outcomes) outcome values

e(Cns) constraints matrix

e(ilog) iteration log (up to 20 iterations)

e(gradient) gradient vector

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas
See Cameron and Trivedi (2005, chap. 15) for a discussion of multinomial models, including multi-

nomial probit. Long and Freese (2014, chap. 8) discuss the multinomial logistic, multinomial probit, and

stereotype logistic regression models, with examples using Stata.

As discussed in Remarks and examples, the latent variables for a 𝐽-alternative model are 𝜂𝑖𝑗 = z𝑖α𝑗+
𝜉𝑖𝑗, for 𝑗 = 1, . . . , 𝐽, 𝑖 = 1, . . . , 𝑛, and {𝜉𝑖,1, . . . , 𝜉𝑖,𝐽} ∼ i.𝑖.𝑑.𝑁(0, 1). The experimenter observes
alternative 𝑘 for the 𝑖th observation if 𝜂𝑖𝑘 > 𝜂𝑖𝑙 for 𝑙 ≠ 𝑘. For 𝑗 ≠ 𝑘, let

𝑣𝑖𝑗′ = 𝜂𝑖𝑗 − 𝜂𝑖𝑘

= z𝑖(α𝑗 − α𝑘) + 𝜉𝑖𝑗 − 𝜉𝑖𝑘

= z𝑖𝛄𝑗′ + 𝜖𝑖𝑗′

where 𝑗′ = 𝑗 if 𝑗 < 𝑘 and 𝑗′ = 𝑗 − 1 if 𝑗 > 𝑘 so that 𝑗′ = 1, . . . , 𝐽 − 1. ε𝑖 = (𝜖𝑖1, . . . , 𝜖𝑖,𝐽−1) ∼
𝑀𝑉 𝑁(0, 𝚺), where

𝚺 =
⎛⎜⎜⎜⎜⎜⎜
⎝

2 1 1 . . . 1
1 2 1 . . . 1
1 1 2 . . . 1
⋮ ⋮ ⋮ ⋱ ⋮
1 1 1 . . . 2

⎞⎟⎟⎟⎟⎟⎟
⎠

Denote the deterministic part of the model as 𝜆𝑖𝑗′ = z𝑖𝛄𝑗′ ; the probability that subject 𝑖 chooses outcome
𝑘 is

Pr(𝑦𝑖 = 𝑘) = Pr(𝑣𝑖1 ≤ 0, . . . , 𝑣𝑖,𝐽−1 ≤ 0)
= Pr(𝜖𝑖1 ≤ −𝜆𝑖1, . . . , 𝜖𝑖,𝐽−1 ≤ −𝜆𝑖,𝐽−1)

= 1
(2𝜋)(𝐽−1)/2 |𝚺|1/2

∫
−𝜆𝑖1

−∞
· · · ∫

−𝜆𝑖,𝐽−1

−∞
exp (− 1

2z
′𝚺−1z) 𝑑z
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Because of the exchangeable correlation structure of𝚺 (𝜌𝑖𝑗 = 1/2 for all 𝑖 ≠ 𝑗), we can use Dunnett’s
(1989) result to reduce the multidimensional integral to one dimension:

Pr(𝑦𝑖 = 𝑘) = 1√
𝜋

∫
∞

0
{

𝐽−1
∏
𝑗=1

Φ (−𝑧
√

2 − 𝜆𝑖𝑗) +
𝐽−1
∏
𝑗=1

Φ (𝑧
√

2 − 𝜆𝑖𝑗)} 𝑒−𝑧2𝑑𝑧

Gaussian quadrature is used to approximate this integral, resulting in the 𝐾-point quadrature formula

Pr(𝑦𝑖 = 𝑘) ≈ 1
2

𝐾
∑
𝑘=1

𝑤𝑘 {
𝐽−1
∏
𝑗=1

Φ (−√2𝑥𝑘 − 𝜆𝑖𝑗) +
𝐽−1
∏
𝑗=1

Φ (√2𝑥𝑘 − 𝜆𝑖𝑗)}

where 𝑤𝑘 and 𝑥𝑘 are the weights and roots of the Laguerre polynomial of order 𝐾. In mprobit, 𝐾 is

specified by the intpoints() option.

This command supports the Huber/White/sandwich estimator of the variance and its clustered version

using vce(robust) and vce(cluster clustvar), respectively. See [P] robust, particularly Maximum

likelihood estimators and Methods and formulas.

mprobit also supports estimation with survey data. For details on VCEs with survey data, see

[SVY] Variance estimation.
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Also see
[R] mprobit postestimation — Postestimation tools for mprobit

[R] clogit — Conditional (fixed-effects) logistic regression

[R] mlogit — Multinomial (polytomous) logistic regression

[R] ologit — Ordered logistic regression

[R] oprobit — Ordered probit regression

[BAYES] bayes: mprobit — Bayesian multinomial probit regression

[CM] cmmprobit — Multinomial probit choice model

[CM] nlogit — Nested logit regression

[MI] Estimation — Estimation commands for use with mi estimate

[SVY] svy estimation — Estimation commands for survey data

[XT] xtmlogit — Fixed-effects and random-effects multinomial logit models

[U] 20 Estimation and postestimation commands
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Postestimation commands predict margins Remarks and examples
References Also see

Postestimation commands
The following postestimation commands are available after mprobit:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters

estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian infor-
mation criteria (AIC, CAIC, AICc, and BIC, respectively)

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estat (svy) postestimation statistics for survey data

estimates cataloging estimation results

etable table of estimation results
∗ forecast dynamic forecasts and simulations
∗ hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

∗ lrtest likelihood-ratio test

margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

predict probabilities, linear predictions and their SEs, etc.

predictnl point estimates, standard errors, testing, and inference for generalized predictions

pwcompare pairwise comparisons of parameters

suest seemingly unrelated estimation

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

∗forecast, hausman, and lrtest are not appropriate with svy estimation results. forecast is also not appropriate with mi
estimation results.
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predict

Description for predict
predict creates a new variable containing predictions such as probabilities, linear predictions, and

standard errors.

Menu for predict
Statistics > Postestimation

Syntax for predict
predict [ type ] { stub* | newvar | newvarlist } [ if ] [ in ] [ , statistic outcome(outcome) ]

predict [ type ] stub* [ if ] [ in ], scores

statistic Description

Main

pr predicted probabilities; the default

xb linear prediction

stdp standard error of the linear prediction

You specify one or 𝑘 new variables with pr, where 𝑘 is the number of outcomes. If you specify one new variable and you do
not specify outcome(), then outcome(#1) is assumed.

You specify one new variable with xb and stdp. If you do not specify outcome(), then outcome(#1) is assumed.
These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for the estimation

sample.

Options for predict

� � �
Main �

pr, the default, computes the predicted probabilities for all outcomes or for a specific outcome. To com-
pute probabilities for all outcomes, you specify 𝑘 new variables, where 𝑘 is the number of categories
of the dependent variable. Alternatively, you can specify stub*; in which case, pr will store predicted
probabilities in variables stub1, stub2, . . . , stub𝑘. To compute the probability for a specific outcome,
you specify one new variable and, optionally, the outcome value in option outcome(); if you omit
outcome(), the first outcome value, outcome(#1), is assumed.

Say that you fit a model by typing estimation cmd y x1 x2, and y takes on four values. Then,

you could type predict p1 p2 p3 p4 to obtain all four predicted probabilities; alternatively, you

could type predict p* to generate the four predicted probabilities. To compute specific probabil-

ities one at a time, you can type predict p1, outcome(#1) (or simply predict p1), predict p2,
outcome(#2), and so on. See option outcome() for other ways to refer to outcome values.

xb calculates the linear prediction, x𝑖α𝑗, for alternative 𝑗 and individual 𝑖. The index, 𝑗, corresponds to
the outcome specified in outcome().

stdp calculates the standard error of the linear prediction.
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outcome(outcome) specifies for which outcome the predicted probabilities are to be calculated.

outcome() should contain either one value of the dependent variable or one of #1, #2, . . . , with #1
meaning the first category of the dependent variable, #2meaning the second category, etc. outcome()
is not allowed with scores.

scores calculates equation-level score variables. The 𝑗th new variable will contain the scores for the

𝑗th fitted equation.

margins

Description for margins
margins estimates margins of response for probabilities and linear predictions.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist ] [ , options ]
margins [marginlist ] , predict(statistic ...) [ predict(statistic ...) ... ] [ options ]

statistic Description

default probabilities for each outcome

pr probability for a specified outcome

xb linear prediction for a specified outcome

stdp not allowed with margins

pr and xb default to the first outcome.

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.

Remarks and examples
Once you have fit a multinomial probit model, you can use predict to obtain probabilities that an

individual will choose each of the alternatives for the estimation sample, as well as other samples; see

[U] 20 Estimation and postestimation commands and [R] predict.
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Example 1
In example 1 of [R] mprobit, we fit the multinomial probit model to a dataset containing the type

of health insurance available to 616 psychologically depressed subjects in the United States (Tarlov et

al. 1989; Wells et al. 1989). We can obtain the predicted probabilities by typing

. use https://www.stata-press.com/data/r18/sysdsn1
(Health insurance data)
. mprobit insure age male nonwhite i.site
(output omitted )

. predict p1-p3
(option pr assumed; predicted probabilities)
. list p1-p3 insure in 1/10

p1 p2 p3 insure

1. .5961306 .3741824 .029687 Indemnity
2. .4719296 .4972289 .0308415 Prepaid
3. .4896086 .4121961 .0981953 Indemnity
4. .3730529 .5416623 .0852848 Prepaid
5. .5063069 .4629773 .0307158 .

6. .4768125 .4923548 .0308327 Prepaid
7. .5035672 .4657016 .0307312 Prepaid
8. .3326361 .5580404 .1093235 .
9. .4758165 .4384811 .0857024 Uninsure

10. .5734057 .3316601 .0949342 Prepaid

insure contains a missing value for observations 5 and 8. Because of that, those two observations were
not used in the estimation. However, because none of the independent variables is missing, predict can
still calculate the probabilities. Had we typed

. predict p1-p3 if e(sample)

predictwould have filled in missing values for p1, p2, and p3 for those observations because they were
not used in the estimation.
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Description Quick start Menu Syntax
Options for nbreg Options for gnbreg Remarks and examples Stored results
Methods and formulas References Also see

Description
nbreg fits a negative binomial regression model for a nonnegative count dependent variable. In this

model, the count variable is believed to be generated by a Poisson-like process, except that the variation

is allowed to be greater than that of a true Poisson. This extra variation is referred to as overdispersion.

gnbreg fits a generalization of the negative binomial mean-dispersion model; the shape parameter 𝛼
may also be parameterized.

Quick start
Negative binomial model of y on x1 and categorical variable a

nbreg y x1 i.a

Same as above, but report results as incidence-rate ratios

nbreg y x1 i.a, irr

Same as above, and specify exposure variable evar
nbreg y x1 i.a, irr exposure(evar)

Generalized negative binomial model with shape parameter 𝛼 a function of x2 and x3
gnbreg y x1 i.a, lnalpha(x2 x3)

Add log of exposure, lnevar, as an offset
gnbreg y x1 i.a, lnalpha(x2 x3) offset(lnevar)

Menu
nbreg
Statistics > Count outcomes > Negative binomial regression

gnbreg
Statistics > Count outcomes > Generalized negative binomial regression
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Syntax
Negative binomial regression model

nbreg depvar [ indepvars ] [ if ] [ in ] [weight ] [ , nbreg options ]

Generalized negative binomial model

gnbreg depvar [ indepvars ] [ if ] [ in ] [weight ] [ , gnbreg options ]

nbreg options Description

Model

noconstant suppress constant term

dispersion(mean) parameterization of dispersion; the default

dispersion(constant) constant dispersion for all observations

exposure(varname𝑒) include ln(varname𝑒) in model with coefficient constrained to 1

offset(varname𝑜) include varname𝑜 in model with coefficient constrained to 1

constraints(constraints) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, opg, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)
nolrtest suppress likelihood-ratio test

irr report incidence-rate ratios

nocnsreport do not display constraints

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

collinear keep collinear variables

coeflegend display legend instead of statistics
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gnbreg options Description

Model

noconstant suppress constant term

lnalpha(varlist) dispersion model variables

exposure(varname𝑒) include ln(varname𝑒) in model with coefficient constrained to 1

offset(varname𝑜) include varname𝑜 in model with coefficient constrained to 1

constraints(constraints) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, opg, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)
irr report incidence-rate ratios

nocnsreport do not display constraints

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

collinear keep collinear variables

coeflegend display legend instead of statistics

indepvars and varlist may contain factor variables; see [U] 11.4.3 Factor variables.

depvar, indepvars, varname𝑒, and varname𝑜 may contain time-series operators (nbreg only); see [U] 11.4.4 Time-series

varlists.

bayes, bootstrap, by (nbreg only), collect, fmm (nbreg only), fp (nbreg only), jackknife, mfp (nbreg only), mi
estimate, nestreg (nbreg only), rolling, statsby, stepwise, and svy are allowed; see [U] 11.1.10 Prefix com-

mands. For more details, see [BAYES] bayes: gnbreg, [BAYES] bayes: nbreg, and [FMM] fmm: nbreg.

vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix; see [MI] mi estimate.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
collinear and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options for nbreg

� � �
Model �

noconstant; see [R] Estimation options.

dispersion(mean | constant) specifies the parameterization of the model. dispersion(mean), the
default, yields a model with dispersion equal to 1 + 𝛼 exp(x𝑗β + offset𝑗); that is, the dispersion is a
function of the expected mean: exp(x𝑗β + offset𝑗). dispersion(constant) has dispersion equal
to 1 + 𝛿; that is, it is a constant for all observations.

exposure(varname𝑒), offset(varname𝑜), constraints(constraints); see [R] Estimation options.
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� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), that al-
low for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods

(bootstrap, jackknife); see [R] vce option.

� � �
Reporting �

level(#); see [R] Estimation options.

nolrtest suppresses fitting the Poisson model. Without this option, a comparison Poisson model is fit,

and the likelihood is used in a likelihood-ratio test of the null hypothesis that the dispersion parameter

is zero.

irr reports estimated coefficients transformed to incidence-rate ratios, that is, 𝑒𝛽𝑖 rather than 𝛽𝑖. Stan-

dard errors and confidence intervals are similarly transformed. This option affects how results are

displayed, not how they are estimated or stored. irr may be specified at estimation or when replay-
ing previously estimated results.

nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. These options are

seldom used.

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

The following options are available with nbreg but are not shown in the dialog box:

collinear, coeflegend; see [R] Estimation options.

Options for gnbreg

� � �
Model �

noconstant; see [R] Estimation options.

lnalpha(varlist) allows you to specify a linear equation for ln𝛼. Specifying lnalpha(male old)
means that ln𝛼 = 𝛾0 + 𝛾1male + 𝛾2old, where 𝛾0, 𝛾1, and 𝛾2 are parameters to be estimated along

with the other model coefficients. If this option is not specified, gnbreg and nbreg will produce the
same results because the shape parameter will be parameterized as a constant.

exposure(varname𝑒), offset(varname𝑜), constraints(constraints); see [R] Estimation options.
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� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), that al-
low for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods

(bootstrap, jackknife); see [R] vce option.

� � �
Reporting �

level(#); see [R] Estimation options.

irr reports estimated coefficients transformed to incidence-rate ratios, that is, 𝑒𝛽𝑖 rather than 𝛽𝑖. Stan-

dard errors and confidence intervals are similarly transformed. This option affects how results are

displayed, not how they are estimated or stored. irr may be specified at estimation or when replay-
ing previously estimated results.

nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. These options are

seldom used.

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

The following options are available with gnbreg but are not shown in the dialog box:

collinear, coeflegend; see [R] Estimation options.

Remarks and examples
Remarks are presented under the following headings:

Introduction to negative binomial regression
nbreg
gnbreg
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Introduction to negative binomial regression
Negative binomial regression models the number of occurrences (counts) of an event when the event

has extra-Poisson variation, that is, when it has overdispersion. The Poisson regression model is

𝑦𝑗 ∼ Poisson(𝜇𝑗)
where

𝜇𝑗 = exp(x𝑗β + offset𝑗)

for observed counts 𝑦𝑗 with covariates x𝑗 for the 𝑗th observation. One derivation of the negative binomial
mean-dispersion model is that individual units follow a Poisson regression model, but there is an omitted

variable 𝜁𝑗, such that 𝑒𝜁𝑗 follows a gamma distribution with mean 1 and variance 𝛼:

𝑦𝑗 ∼ Poisson(𝜇∗
𝑗)

where

𝜇∗
𝑗 = exp(x𝑗β + offset𝑗 + 𝜁𝑗)

and

𝑒𝜁𝑗 ∼ Gamma(1/𝛼, 𝛼)

With this parameterization, a Gamma(𝑎, 𝑏) distribution will have expectation 𝑎𝑏 and variance 𝑎𝑏2.

We refer to 𝛼 as the overdispersion parameter. The larger 𝛼 is, the greater the overdispersion. The

Poisson model corresponds to 𝛼 = 0. nbreg parameterizes 𝛼 as ln𝛼. gnbreg allows ln𝛼 to be modeled

as ln𝛼𝑗 = z𝑗𝛄, a linear combination of covariates z𝑗.

nbreg will fit two different parameterizations of the negative binomial model. The default, described
above and also given by the dispersion(mean) option, has dispersion for the 𝑗th observation equal to
1 + 𝛼 exp(x𝑗β + offset𝑗). This is seen by noting that the above implies that

𝜇∗
𝑗 ∼ Gamma(1/𝛼, 𝛼𝜇𝑗)

and thus

Var(𝑦𝑗) = 𝐸 {Var(𝑦𝑗|𝜇∗
𝑗)} + Var{𝐸(𝑦𝑗|𝜇∗

𝑗)}
= 𝐸(𝜇∗

𝑗) + Var(𝜇∗
𝑗)

= 𝜇𝑗(1 + 𝛼𝜇𝑗)

The alternative parameterization, given by the dispersion(constant) option, has dispersion equal to
1+𝛿; that is, it is constant for all observations. This is so because the constant-dispersion model assumes
instead that

𝜇∗
𝑗 ∼ Gamma(𝜇𝑗/𝛿, 𝛿)

and thus Var(𝑦𝑗) = 𝜇𝑗(1 + 𝛿). The Poisson model corresponds to 𝛿 = 0.



nbreg — Negative binomial regression 1908

For detailed derivations of both models, see Cameron and Trivedi (2013, 80–89). In particular, note

that the mean-dispersion model is known as the NB2 model in their terminology, whereas the constant-

dispersion model is referred to as the NB1 model.

See Long and Freese (2014) and Cameron and Trivedi (2022, chap. 20) for a discussion of the negative

binomial regression model with Stata examples and for a discussion of other regression models for count

data.

Hilbe (2011) provides an extensive review of the negative binomial model and its variations, using

Stata examples.

nbreg
It is not uncommon to posit a Poisson regression model and observe a lack of model fit. The following

data appeared in Rodríguez (1993):

. use https://www.stata-press.com/data/r18/rod93

. list, sepby(cohort)

cohort age_mos deaths exposure

1. 1941--1949 0.5 168 278.4
2. 1941--1949 2.0 48 538.8
3. 1941--1949 4.5 63 794.4
4. 1941--1949 9.0 89 1,550.8
5. 1941--1949 18.0 102 3,006.0
6. 1941--1949 42.0 81 8,743.5
7. 1941--1949 90.0 40 14,270.0

8. 1960--1967 0.5 197 403.2
9. 1960--1967 2.0 48 786.0

10. 1960--1967 4.5 62 1,165.3
11. 1960--1967 9.0 81 2,294.8
12. 1960--1967 18.0 97 4,500.5
13. 1960--1967 42.0 103 13,201.5
14. 1960--1967 90.0 39 19,525.0

15. 1968--1976 0.5 195 495.3
16. 1968--1976 2.0 55 956.7
17. 1968--1976 4.5 58 1,381.4
18. 1968--1976 9.0 85 2,604.5
19. 1968--1976 18.0 87 4,618.5
20. 1968--1976 42.0 70 9,814.5
21. 1968--1976 90.0 10 5,802.5

. generate logexp = ln(exposure)
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. poisson deaths i.cohort, offset(logexp)
Iteration 0: Log likelihood = -2160.0544
Iteration 1: Log likelihood = -2159.5162
Iteration 2: Log likelihood = -2159.5159
Iteration 3: Log likelihood = -2159.5159
Poisson regression Number of obs = 21

LR chi2(2) = 49.16
Prob > chi2 = 0.0000

Log likelihood = -2159.5159 Pseudo R2 = 0.0113

deaths Coefficient Std. err. z P>|z| [95% conf. interval]

cohort
1960--1967 -.3020405 .0573319 -5.27 0.000 -.4144089 -.1896721
1968--1976 .0742143 .0589726 1.26 0.208 -.0413698 .1897983

_cons -3.899488 .0411345 -94.80 0.000 -3.98011 -3.818866
logexp 1 (offset)

. estat gof
Deviance goodness-of-fit = 4190.689
Prob > chi2(18) = 0.0000
Pearson goodness-of-fit = 15387.67
Prob > chi2(18) = 0.0000

The extreme significance of the goodness-of-fit 𝜒2 indicates that the Poisson regression model is inap-

propriate, suggesting to us that we should try a negative binomial model:

. nbreg deaths i.cohort, offset(logexp) nolog
Negative binomial regression Number of obs = 21

LR chi2(2) = 0.40
Dispersion: mean Prob > chi2 = 0.8171
Log likelihood = -131.3799 Pseudo R2 = 0.0015

deaths Coefficient Std. err. z P>|z| [95% conf. interval]

cohort
1960--1967 -.2676187 .7237203 -0.37 0.712 -1.686084 1.150847
1968--1976 -.4573957 .7236651 -0.63 0.527 -1.875753 .9609618

_cons -2.086731 .511856 -4.08 0.000 -3.08995 -1.083511
logexp 1 (offset)

/lnalpha .5939963 .2583615 .0876171 1.100376

alpha 1.811212 .4679475 1.09157 3.005295

LR test of alpha=0: chibar2(01) = 4056.27 Prob >= chibar2 = 0.000

Our original Poisson model is a special case of the negative binomial—it corresponds to 𝛼 = 0.

nbreg, however, estimates 𝛼 indirectly, estimating instead ln𝛼. In our model, ln𝛼 = 0.594, meaning

that 𝛼 = 1.81 (nbreg undoes the transformation for us at the bottom of the output).

To test 𝛼 = 0 (equivalent to ln𝛼 = −∞), nbreg performs a likelihood-ratio test. The staggering
𝜒2 value of 4,056 asserts that the probability that we would observe these data conditional on 𝛼 = 0

is virtually zero, that is, conditional on the process being Poisson. The data are not Poisson. It is not

accidental that this 𝜒2 value is close to the goodness-of-fit statistic from the Poisson regression itself.
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Technical note
The usual Gaussian test of 𝛼 = 0 is omitted because this test occurs on the boundary, invalidating the

usual theory associated with such tests. However, the likelihood-ratio test of 𝛼 = 0 has been modified to
be valid on the boundary. In particular, the null distribution of the likelihood-ratio test statistic is not the

usual 𝜒2
1, but rather a 50 : 50 mixture of a 𝜒2

0 (point mass at zero) and a 𝜒2
1, denoted as 𝜒2

01. See Gutierrez,
Carter, and Drukker (2001) for more details.

Technical note
The negative binomial model deals with cases in which there is more variation than would be expected

if the process were Poisson. The negative binomial model is not helpful if there is less than Poisson varia-

tion—if the variance of the count variable is less than its mean. However, underdispersion is uncommon.

Poisson models arise because of independently generated events. Overdispersion comes about if some of

the parameters (causes) of the Poisson processes are unknown. To obtain underdispersion, the sequence

of events somehow would have to be regulated; that is, events would not be independent but controlled

based on past occurrences.

gnbreg
gnbreg is a generalization of nbreg, dispersion(mean). Whereas in nbreg, one ln𝛼 is estimated,

gnbreg allows ln𝛼 to vary, observation by observation, as a linear combination of another set of covari-

ates: ln𝛼𝑗 = z𝑗𝛄.
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Wewill assume that the number of deaths is a function of age, whereas the ln𝛼 parameter is a function

of cohort. To fit the model, we type

. gnbreg deaths age_mos, lnalpha(i.cohort) offset(logexp)
Fitting constant-only model:
Iteration 0: Log likelihood = -187.067 (not concave)
Iteration 1: Log likelihood = -138.13047
Iteration 2: Log likelihood = -133.83164
Iteration 3: Log likelihood = -131.59551
Iteration 4: Log likelihood = -131.5795
Iteration 5: Log likelihood = -131.57948
Iteration 6: Log likelihood = -131.57948
Fitting full model:
Iteration 0: Log likelihood = -124.34327
Iteration 1: Log likelihood = -117.76701
Iteration 2: Log likelihood = -117.56403
Iteration 3: Log likelihood = -117.56164
Iteration 4: Log likelihood = -117.56164
Generalized negative binomial regression Number of obs = 21

LR chi2(1) = 28.04
Prob > chi2 = 0.0000

Log likelihood = -117.56164 Pseudo R2 = 0.1065

deaths Coefficient Std. err. z P>|z| [95% conf. interval]

deaths
age_mos -.0516657 .0051747 -9.98 0.000 -.061808 -.0415233
_cons -1.867225 .2227944 -8.38 0.000 -2.303894 -1.430556
logexp 1 (offset)

lnalpha
cohort

1960--1967 .0939546 .7187747 0.13 0.896 -1.314818 1.502727
1968--1976 .0815279 .7365476 0.11 0.912 -1.362079 1.525135

_cons -.4759581 .5156502 -0.92 0.356 -1.486614 .5346978

We find that age is a significant determinant of the number of deaths. The standard errors for the variables

in the ln𝛼 equation suggest that the overdispersion parameter does not vary across cohorts. We can test

this assertion by typing

. test 2.cohort 3.cohort
( 1) [lnalpha]2.cohort = 0
( 2) [lnalpha]3.cohort = 0

chi2( 2) = 0.02
Prob > chi2 = 0.9904

There is no evidence of variation by cohort in these data.
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Technical note
Note the intentional absence of a likelihood-ratio test for 𝛼 = 0 in gnbreg. The test is affected by the

same boundary condition that affects the comparison test in nbreg; however, when 𝛼 is parameterized

by more than a constant term, the null distribution becomes intractable. For this reason, we recommend

using nbreg to test for overdispersion and, if you have reason to believe that overdispersion exists, only
then modeling the overdispersion using gnbreg.

Stored results
nbreg stores the following in e():

Scalars

e(N) number of observations

e(k) number of parameters

e(k aux) number of auxiliary parameters

e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test

e(k dv) number of dependent variables

e(df m) model degrees of freedom

e(r2 p) pseudo-𝑅2

e(ll) log likelihood

e(ll 0) log likelihood, constant-only model

e(ll c) log likelihood, comparison model

e(alpha) value of alpha

e(delta) value of delta

e(N clust) number of clusters

e(chi2) 𝜒2

e(chi2 c) 𝜒2 for comparison test

e(p) 𝑝-value for model test
e(rank) rank of e(V)
e(rank0) rank of e(V) for constant-only model
e(ic) number of iterations

e(rc) return code

e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) nbreg
e(cmdline) command as typed

e(depvar) name of dependent variable

e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(clustvar) name of cluster variable

e(offset) linear offset variable

e(chi2type) Wald or LR; type of model 𝜒2 test

e(chi2 ct) Wald or LR; type of model 𝜒2 test corresponding to e(chi2 c)
e(dispers) mean or constant
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(opt) type of optimization

e(which) max or min; whether optimizer is to perform maximization or minimization

e(ml method) type of ml method
e(user) name of likelihood-evaluator program

e(technique) maximization technique

e(properties) b V
e(predict) program used to implement predict
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e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(ilog) iteration log (up to 20 iterations)

e(gradient) gradient vector

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():
Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

gnbreg stores the following in e():
Scalars

e(N) number of observations

e(k) number of parameters

e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test

e(k dv) number of dependent variables

e(df m) model degrees of freedom

e(r2 p) pseudo-𝑅2

e(ll) log likelihood

e(ll 0) log likelihood, constant-only model

e(N clust) number of clusters

e(chi2) 𝜒2

e(p) 𝑝-value for model test
e(rank) rank of e(V)
e(rank0) rank of e(V) for constant-only model
e(ic) number of iterations

e(rc) return code

e(converged) 1 if converged, 0 otherwise
Macros

e(cmd) gnbreg
e(cmdline) command as typed

e(depvar) name of dependent variable

e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(clustvar) name of cluster variable

e(offset1) linear offset variable

e(chi2type) Wald or LR; type of model 𝜒2 test

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(opt) type of optimization

e(which) max or min; whether optimizer is to perform maximization or minimization

e(ml method) type of ml method
e(user) name of likelihood-evaluator program

e(technique) maximization technique

e(properties) b V
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e(predict) program used to implement predict
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(ilog) iteration log (up to 20 iterations)

e(gradient) gradient vector

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas
See [R] poisson and Johnson, Kemp, and Kotz (2005, chap. 4) for an introduction to the Poisson

distribution.

Methods and formulas are presented under the following headings:

Mean-dispersion model
Constant-dispersion model

Mean-dispersion model
A negative binomial distribution can be regarded as a gamma mixture of Poisson random variables.

The number of times something occurs, 𝑦𝑗, is distributed as Poisson(𝜈𝑗𝜇𝑗). That is, its conditional

likelihood is

𝑓(𝑦𝑗 ∣ 𝜈𝑗) =
(𝜈𝑗𝜇𝑗)𝑦𝑗𝑒−𝜈𝑗𝜇𝑗

Γ(𝑦𝑗 + 1)

where 𝜇𝑗 = exp(x𝑗β + offset𝑗) and 𝜈𝑗 is an unobserved parameter with a Gamma(1/𝛼, 𝛼) density:

𝑔(𝜈) = 𝜈(1−𝛼)/𝛼𝑒−𝜈/𝛼

𝛼1/𝛼Γ(1/𝛼)

This gamma distribution has mean 1 and variance 𝛼, where 𝛼 is our ancillary parameter.

The unconditional likelihood for the 𝑗th observation is therefore

𝑓(𝑦𝑗) = ∫
∞

0
𝑓(𝑦𝑗 ∣ 𝜈)𝑔(𝜈) 𝑑𝜈 =

Γ(𝑚 + 𝑦𝑗)
Γ(𝑦𝑗 + 1)Γ(𝑚)

𝑝𝑚
𝑗 (1 − 𝑝𝑗)𝑦𝑗

where 𝑝𝑗 = 1/(1 + 𝛼𝜇𝑗) and 𝑚 = 1/𝛼. Solutions for 𝛼 are handled by searching for ln𝛼 because 𝛼
must be greater than zero.
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The log likelihood (with weights 𝑤𝑗 and offsets) is given by

𝑚 = 1/𝛼 𝑝𝑗 = 1/(1 + 𝛼𝜇𝑗) 𝜇𝑗 = exp(x𝑗β + offset𝑗)

ln𝐿 =
𝑛

∑
𝑗=1

𝑤𝑗[ ln{Γ(𝑚 + 𝑦𝑗)} − ln{Γ(𝑦𝑗 + 1)}

− ln{Γ(𝑚)} + 𝑚 ln(𝑝𝑗) + 𝑦𝑗 ln(1 − 𝑝𝑗)]

For gnbreg, 𝛼 can vary across the observations according to the parameterization ln𝛼𝑗 = z𝑗𝛄.

Constant-dispersion model
The constant-dispersion model assumes that 𝑦𝑗 is conditionally distributed as Poisson(𝜇∗

𝑗), where
𝜇∗

𝑗 ∼ Gamma(𝜇𝑗/𝛿, 𝛿) for some dispersion parameter 𝛿 (by contrast, themean-dispersionmodel assumes
that 𝜇∗

𝑗 ∼ Gamma(1/𝛼, 𝛼𝜇𝑗)). The log likelihood is given by

𝑚𝑗 = 𝜇𝑗/𝛿 𝑝 = 1/(1 + 𝛿)

ln𝐿 =
𝑛

∑
𝑗=1

𝑤𝑗[ ln{Γ(𝑚𝑗 + 𝑦𝑗)} − ln{Γ(𝑦𝑗 + 1)}

− ln{Γ(𝑚𝑗)} + 𝑚𝑗 ln(𝑝) + 𝑦𝑗 ln(1 − 𝑝)]

with everything else defined as before in the calculations for the mean-dispersion model.

nbreg and gnbreg support the Huber/White/sandwich estimator of the variance and its clustered

version using vce(robust) and vce(cluster clustvar), respectively. See [P] robust, particularly

Maximum likelihood estimators and Methods and formulas.

These commands also support estimation with survey data. For details on VCEs with survey data, see

[SVY] Variance estimation.
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Postestimation commands predict margins
Remarks and examples Methods and formulas Reference
Also see

Postestimation commands
The following postestimation commands are available after nbreg and gnbreg:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters

estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian infor-
mation criteria (AIC, CAIC, AICc, and BIC, respectively)

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estat (svy) postestimation statistics for survey data

estimates cataloging estimation results

etable table of estimation results
∗ forecast dynamic forecasts and simulations
∗ hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

linktest link test for model specification
∗ lrtest likelihood-ratio test

margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

predict number of events, incidence rates, probabilities, etc.

predictnl point estimates, standard errors, testing, and inference for generalized predictions

pwcompare pairwise comparisons of parameters

suest seemingly unrelated estimation

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

∗forecast, hausman, and lrtest are not appropriate with svy estimation results. forecast is also not appropriate with mi
estimation results.

1917
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predict

Description for predict
predict creates a new variable containing predictions such as numbers of events, incidence rates,

probabilities, linear predictions, standard errors, and predicted values.

Menu for predict
Statistics > Postestimation

Syntax for predict
predict [ type ] newvar [ if ] [ in ] [ , statistic nooffset ]

predict [ type ] stub* [ if ] [ in ], scores

statistic Description

Main

n number of events; the default

ir incidence rate (equivalent to predict . . ., n nooffset)
pr(n) probability Pr(𝑦𝑗 = n)
pr(a,b) probability Pr(a ≤ 𝑦𝑗 ≤ b)
xb linear prediction

stdp standard error of the linear prediction

In addition, relevant only after gnbreg are the following:

statistic Description

Main

alpha predicted values of 𝛼𝑗
lnalpha predicted values of ln𝛼𝑗
stdplna standard error of predicted ln𝛼𝑗

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted
only for the estimation sample.

Options for predict

� � �
Main �

n, the default, calculates the predicted number of events, which is exp(x𝑗β) if neither offset(var-
name𝑜) nor exposure(varname𝑒) was specified when the model was fit; exp(x𝑗β + offset𝑗) if
offset() was specified; or exp(x𝑗β) × exposure𝑗 if exposure() was specified.

ir calculates the incidence rate exp(x𝑗β), which is the predicted number of events when exposure is 1.
This is equivalent to specifying both the n and the nooffset options.
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pr(n) calculates the probability Pr(𝑦𝑗 = n), where n is a nonnegative integer that may be specified as
a number or a variable.

pr(a,b) calculates the probability Pr(a ≤ 𝑦𝑗 ≤ b), where a and b are nonnegative integers that may be
specified as numbers or variables;

b missing (b ≥ .) means +∞;

pr(20,.) calculates Pr(𝑦𝑗 ≥ 20);
pr(20,b) calculates Pr(𝑦𝑗 ≥ 20) in observations for which b ≥ . and calculates
Pr(20 ≤ 𝑦𝑗 ≤ b) elsewhere.
pr(.,b) produces a syntax error. Amissing value in an observation of the variable a causes a missing

value in that observation for pr(a,b).

xb calculates the linear prediction, which is x𝑗β if neither offset() nor exposure() was specified;

x𝑗β + offset𝑗 if offset() was specified; or x𝑗β + ln(exposure𝑗) if exposure() was specified; see
nooffset below.

stdp calculates the standard error of the linear prediction.

alpha, lnalpha, and stdplna are relevant after gnbreg estimation only; they produce the predicted
values of 𝛼𝑗, ln𝛼𝑗, and the standard error of the predicted ln𝛼𝑗, respectively.

nooffset is relevant only if you specified offset() or exposure() when you fit the model. It modi-
fies the calculations made by predict so that they ignore the offset or exposure variable; the linear
prediction is treated as x𝑗β rather than as x𝑗β+ offset𝑗 or x𝑗β+ ln(exposure𝑗). Specifying predict
..., nooffset is equivalent to specifying predict ..., ir.

scores calculates equation-level score variables.

The first new variable will contain 𝜕ln𝐿/𝜕(x𝑗β).
The second new variable will contain 𝜕ln𝐿/𝜕( ln𝛼𝑗) for dispersion(mean) and gnbreg.
The second new variable will contain 𝜕ln𝐿/𝜕( ln𝛿) for dispersion(constant).
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margins

Description for margins
margins estimates margins of response for numbers of events, incidence rates, probabilities, linear

predictions, and predicted values.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist ] [ , options ]
margins [marginlist ] , predict(statistic ...) [ predict(statistic ...) ... ] [ options ]

statistic Description

n number of events; the default

ir incidence rate (equivalent to predict . . ., n nooffset)
pr(n) probability Pr(𝑦𝑗 = n)
pr(a,b) probability Pr(a ≤ 𝑦𝑗 ≤ b)
xb linear prediction

stdp not allowed with margins

In addition, relevant only after gnbreg are the following:
statistic Description

alpha predicted values of 𝛼𝑗
lnalpha predicted values of ln𝛼𝑗
stdplna not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.
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Remarks and examples
After nbreg and gnbreg, predict returns the expected number of deaths per cohort and the proba-

bility of observing the number of deaths recorded or fewer.

. use https://www.stata-press.com/data/r18/rod93

. nbreg deaths i.cohort, nolog
Negative binomial regression Number of obs = 21

LR chi2(2) = 0.14
Dispersion: mean Prob > chi2 = 0.9307
Log likelihood = -108.48841 Pseudo R2 = 0.0007

deaths Coefficient Std. err. z P>|z| [95% conf. interval]

cohort
1960--1967 .0591305 .2978419 0.20 0.843 -.5246289 .64289
1968--1976 -.0538792 .2981621 -0.18 0.857 -.6382662 .5305077

_cons 4.435906 .2107213 21.05 0.000 4.0229 4.848912

/lnalpha -1.207379 .3108622 -1.816657 -.5980999

alpha .29898 .0929416 .1625683 .5498555

LR test of alpha=0: chibar2(01) = 434.62 Prob >= chibar2 = 0.000
. predict count
(option n assumed; predicted number of events)
. predict p, pr(0, deaths)
. summarize deaths count p

Variable Obs Mean Std. dev. Min Max

deaths 21 84.66667 48.84192 10 197
count 21 84.66667 4.00773 80 89.57143

p 21 .4991542 .2743702 .0070255 .9801285

The expected number of deaths ranges from 80 to 90. The probability Pr(𝑦𝑖 ≤ deaths) ranges from
0.007 to 0.98.

The estimated expected and observed mean number of deaths, 84.67, happen to be the same in our

example because our model included only a categorical predictor. In general, in the presence of other

continuous predictors, the two estimates may not always be the same.

Methods and formulas
In the following, we use the same notation as in [R] nbreg.

Methods and formulas are presented under the following headings:

Mean-dispersion model
Constant-dispersion model
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Mean-dispersion model
The equation-level scores are given by

score(xβ)𝑗 = 𝑝𝑗(𝑦𝑗 − 𝜇𝑗)

score(𝜏)𝑗 = −𝑚 {
𝛼𝑗(𝜇𝑗 − 𝑦𝑗)

1 + 𝛼𝑗𝜇𝑗
− ln(1 + 𝛼𝑗𝜇𝑗) + 𝜓(𝑦𝑗 + 𝑚) − 𝜓(𝑚)}

where 𝜏𝑗 = ln𝛼𝑗 and 𝜓(𝑧) is the digamma function.

Constant-dispersion model
The equation-level scores are given by

score(xβ)𝑗 = 𝑚𝑗 {𝜓(𝑦𝑗 + 𝑚𝑗) − 𝜓(𝑚𝑗) + ln(𝑝)}
score(𝜏)𝑗 = 𝑦𝑗 − (𝑦𝑗 + 𝑚𝑗)(1 − 𝑝) − score(xβ)𝑗

where 𝜏𝑗 = ln𝛿𝑗.

Reference
Manjón, M., and O. Martínez. 2014. The chi-squared goodness-of-fit test for count-data models. Stata Journal 14:

798–816.

Also see
[R] nbreg — Negative binomial regression

[U] 20 Estimation and postestimation commands

https://www.stata-journal.com/article.html?article=st0360
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Description Quick start Menu Syntax
Options Remarks and examples Stored results Acknowledgment
References Also see

Description
nestreg fits nested models by sequentially adding blocks of variables and then reports comparison

tests between the nested models.

Quick start
Fit nested (hierarchical) models sequentially, including covariates x1 and x2 first and then adding x3 and

x4
nestreg: regress y (x1 x2) (x3 x4)

Also fit third model including indicators for categorical variable a
nestreg: regress y (x1 x2) (x3 x4) (i.a)

Report table of likelihood-ratio tests instead of Wald tests comparing models

nestreg, lrtable: regress y (x1 x2) (x3 x4) (i.a)

Fit nested models and adjust for complex survey design using svyset data
nestreg: svy: regress y (x1 x2) (x3 x4) (i.a)

Note: In the above examples, regress could be replaced with any estimation command allowing the
nestreg prefix.

Menu
Statistics > Other > Nested model statistics
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Syntax
Standard estimation command syntax

nestreg [ , options ]: command name depvar (varlist) [ (varlist) ... ]

[ if ] [ in ] [weight ] [ , command options ]

Survey estimation command syntax

nestreg [ , options ]: svy [ vcetype ] [ , svy options ]: command name depvar

(varlist) [ (varlist) ... ] [ if ] [ in ] [ , command options ]

options Description

Reporting

waldtable report Wald test results; the default

lrtable report likelihood-ratio test results

quietly suppress any output from command name

store(stub) store nested estimation results in est stub#

by is allowed; see [U] 11.1.10 Prefix commands.

Weights are allowed if command name allows them; see [U] 11.1.6 weight.

A varlist in parentheses indicates that this list of variables is to be considered as a block. Each variable in a varlist not bound
in parentheses will be treated as its own block.

All postestimation commands behave as they would after command namewithout the nestreg prefix; see the postestimation
manual entry for command name.

Options

� � �
Reporting �

waldtable specifies that the table of Wald test results be reported. waldtable is the default.

lrtable specifies that the table of likelihood-ratio tests be reported. This option is not allowed if

pweights, the vce(robust) option, or the vce(cluster clustvar) option is specified. lrtable
is also not allowed with the svy prefix.

quietly suppresses the display of any output from command name.

store(stub) specifies that each model fit by nestreg be stored under the name est stub#, where #

is the nesting order from first to last.

Remarks and examples
Remarks are presented under the following headings:

Estimation commands
Wald tests
Likelihood-ratio tests
Programming for nestreg
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Estimation commands
nestreg removes collinear predictors and observations with missing values from the estimation sam-

ple before calling command name.

The following Stata commands are supported by nestreg:

betareg, clogit, cloglog, glm, intreg, logistic, logit, nbreg, ologit, oprobit, poisson, probit, qreg,

regress, scobit, stcox, stcrreg, stintreg, streg, and tobit

You do not supply a depvar for stcox, stintreg, stcrreg, or streg; otherwise, depvar is required.
You must supply two depvars for intreg.

Wald tests
Use nestreg to test the significance of blocks of predictors, building the regression model one block

at a time. Using the data from example 1 of [R] test, we wish to test the significance of the following pre-

dictors of birthrate: median age (medage), median age squared (c.medage#c.medage), and indicators
of the census region (i.region).

. use https://www.stata-press.com/data/r18/census4
(Census data on birthrate, median age)
. nestreg: regress brate (medage) (c.medage#c.medage) (i.region)
note: 1.region omitted because of estimability.
Block 1: medage

Source SS df MS Number of obs = 50
F(1, 48) = 164.72

Model 32675.1044 1 32675.1044 Prob > F = 0.0000
Residual 9521.71561 48 198.369075 R-squared = 0.7743

Adj R-squared = 0.7696
Total 42196.82 49 861.159592 Root MSE = 14.084

brate Coefficient Std. err. t P>|t| [95% conf. interval]

medage -15.24893 1.188141 -12.83 0.000 -17.63785 -12.86002
_cons 618.3935 35.15416 17.59 0.000 547.7113 689.0756

Block 2: c.medage#c.medage
Source SS df MS Number of obs = 50

F(2, 47) = 158.75
Model 36755.8566 2 18377.9283 Prob > F = 0.0000

Residual 5440.96342 47 115.765179 R-squared = 0.8711
Adj R-squared = 0.8656

Total 42196.82 49 861.159592 Root MSE = 10.759

brate Coefficient Std. err. t P>|t| [95% conf. interval]

medage -109.8926 15.96663 -6.88 0.000 -142.0133 -77.77189

c.medage#
c.medage 1.607334 .2707229 5.94 0.000 1.06271 2.151958

_cons 2007.073 235.4316 8.53 0.000 1533.445 2480.7
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Block 3: 2.region 3.region 4.region
Source SS df MS Number of obs = 50

F(5, 44) = 100.63
Model 38803.4208 5 7760.68416 Prob > F = 0.0000

Residual 3393.39921 44 77.1227094 R-squared = 0.9196
Adj R-squared = 0.9104

Total 42196.82 49 861.159592 Root MSE = 8.782

brate Coefficient Std. err. t P>|t| [95% conf. interval]

medage -109.0958 13.52452 -8.07 0.000 -136.3527 -81.83892

c.medage#
c.medage 1.635209 .2290536 7.14 0.000 1.173582 2.096836

region
N Cntrl 15.00283 4.252067 3.53 0.001 6.433353 23.57231
South 7.366445 3.953335 1.86 0.069 -.6009775 15.33387
West 21.39679 4.650601 4.60 0.000 12.02412 30.76946

_cons 1947.611 199.8405 9.75 0.000 1544.859 2350.363

Block Residual Change
Block F df df Pr > F R2 in R2

1 164.72 1 48 0.0000 0.7743
2 35.25 1 47 0.0000 0.8711 0.0967
3 8.85 3 44 0.0001 0.9196 0.0485

This single call to nestreg ran regress three times, adding a block of predictors to the model for
each run as in

. regress brate medage
Source SS df MS Number of obs = 50

F(1, 48) = 164.72
Model 32675.1044 1 32675.1044 Prob > F = 0.0000

Residual 9521.71561 48 198.369075 R-squared = 0.7743
Adj R-squared = 0.7696

Total 42196.82 49 861.159592 Root MSE = 14.084

brate Coefficient Std. err. t P>|t| [95% conf. interval]

medage -15.24893 1.188141 -12.83 0.000 -17.63785 -12.86002
_cons 618.3935 35.15416 17.59 0.000 547.7113 689.0756
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. regress brate medage c.medage#c.medage
Source SS df MS Number of obs = 50

F(2, 47) = 158.75
Model 36755.8566 2 18377.9283 Prob > F = 0.0000

Residual 5440.96342 47 115.765179 R-squared = 0.8711
Adj R-squared = 0.8656

Total 42196.82 49 861.159592 Root MSE = 10.759

brate Coefficient Std. err. t P>|t| [95% conf. interval]

medage -109.8926 15.96663 -6.88 0.000 -142.0133 -77.77189

c.medage#
c.medage 1.607334 .2707229 5.94 0.000 1.06271 2.151958

_cons 2007.073 235.4316 8.53 0.000 1533.445 2480.7

. regress brate medage c.medage#c.medage i.region
Source SS df MS Number of obs = 50

F(5, 44) = 100.63
Model 38803.4208 5 7760.68416 Prob > F = 0.0000

Residual 3393.39921 44 77.1227094 R-squared = 0.9196
Adj R-squared = 0.9104

Total 42196.82 49 861.159592 Root MSE = 8.782

brate Coefficient Std. err. t P>|t| [95% conf. interval]

medage -109.0958 13.52452 -8.07 0.000 -136.3527 -81.83892

c.medage#
c.medage 1.635209 .2290536 7.14 0.000 1.173582 2.096836

region
N Cntrl 15.00283 4.252067 3.53 0.001 6.433353 23.57231
South 7.366445 3.953335 1.86 0.069 -.6009775 15.33387
West 21.39679 4.650601 4.60 0.000 12.02412 30.76946

_cons 1947.611 199.8405 9.75 0.000 1544.859 2350.363

nestreg collected the 𝐹 statistic for the corresponding block of predictors and the model 𝑅2 statistic

from each model fit.

The 𝐹 statistic for the first block, 164.72, is for a test of the joint significance of the first block of

variables; it is simply the 𝐹 statistic from the regression of brate on medage. The 𝐹 statistic for the

second block, 35.25, is for a test of the joint significance of the second block of variables in a regression

of both the first and second blocks of variables. In our example, it is an 𝐹 test of c.medage#c.medage
in the regression of brate on medage and c.medage#c.medage. Similarly, the third block’s 𝐹 statistic

of 8.85 corresponds to a joint test of the indicators for the N Cntrl, South, and West regions in the final
regression.
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Likelihood-ratio tests
The nestreg command provides a simple syntax for performing likelihood-ratio tests for nested

model specifications; also see lrtest. Using the data from example 1 of [R] lrtest, we wish to jointly

test the significance of the following predictors of low birthweight: age, lwt, ptl, and ht.
. use https://www.stata-press.com/data/r18/lbw
(Hosmer & Lemeshow data)
. nestreg, lr: logistic low (i.race smoke ui) (age lwt ptl ht)
note: 1.race omitted because of estimability.
Block 1: 2.race 3.race smoke ui
Logistic regression Number of obs = 189

LR chi2(4) = 18.80
Prob > chi2 = 0.0009

Log likelihood = -107.93404 Pseudo R2 = 0.0801

low Odds ratio Std. err. z P>|z| [95% conf. interval]

race
Black 3.052746 1.498087 2.27 0.023 1.166747 7.987382
Other 2.922593 1.189229 2.64 0.008 1.316457 6.488285

smoke 2.945742 1.101838 2.89 0.004 1.415167 6.131715
ui 2.419131 1.047359 2.04 0.041 1.035459 5.651788

_cons .1402209 .0512295 -5.38 0.000 .0685216 .2869447

Note: _cons estimates baseline odds.
Block 2: age lwt ptl ht
Logistic regression Number of obs = 189

LR chi2(8) = 33.22
Prob > chi2 = 0.0001

Log likelihood = -100.724 Pseudo R2 = 0.1416

low Odds ratio Std. err. z P>|z| [95% conf. interval]

race
Black 3.534767 1.860737 2.40 0.016 1.259736 9.918406
Other 2.368079 1.039949 1.96 0.050 1.001356 5.600207

smoke 2.517698 1.00916 2.30 0.021 1.147676 5.523162
ui 2.1351 .9808153 1.65 0.099 .8677528 5.2534
age .9732636 .0354759 -0.74 0.457 .9061578 1.045339
lwt .9849634 .0068217 -2.19 0.029 .9716834 .9984249
ptl 1.719161 .5952579 1.56 0.118 .8721455 3.388787
ht 6.249602 4.322408 2.65 0.008 1.611152 24.24199

_cons 1.586014 1.910496 0.38 0.702 .1496092 16.8134

Note: _cons estimates baseline odds.

Block LL LR df Pr > LR AIC BIC

1 -107.934 18.80 4 0.0009 225.8681 242.0768
2 -100.724 14.42 4 0.0061 219.448 248.6237
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The estimation results from the full model are left in e(), so we can later use estat and other postes-
timation commands.

. estat gof
Goodness-of-fit test after logistic model
Variable: low

Number of observations = 189
Number of covariate patterns = 182

Pearson chi2(173) = 179.24
Prob > chi2 = 0.3567

Programming for nestreg
If you want your community-contributed command (command name) to work with nestreg, it must

follow standard Stata syntax and allow the if qualifier. Furthermore, command name must have sw
or swml as a program property; see [P] program properties. If command name has swml as a prop-
erty, command name must store the log-likelihood value in e(ll) and the model degrees of freedom in

e(df m).

Stored results
nestreg stores the following in r():

Matrices

r(wald) matrix corresponding to the Wald table

r(lr) matrix corresponding to the likelihood-ratio table

Acknowledgment
We thank Paul H. Bern of Syracuse University for developing the hierarchical regression command

that inspired nestreg.
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Description Syntax Options Remarks and examples Also see

Description
net downloads and installs additions to Stata. The additions can be obtained from the Internet or from

physical media. The additions can be ado-files (new commands), help files, or even datasets. Collections

of files that may be installed as a group are bound together into a package.

ado manages the packages you have installed by using net. The ado command lets you list and

uninstall previously installed packages.

You can also access the net and ado features by selecting Help > SJ and community-contributed

features; this is the recommended method to find and install additions to Stata.

Syntax
Set current location for net

net from directory or url

Change to a different net directory

net cd path or url

Change to a different net site

net link linkname

Search for installed packages

net search (see [R] net search)

Report current net location

net

Describe a package

net describe pkgname [ , from(directory or url) ]

Set location where packages will be installed

net set ado dirname

Set location where ancillary files will be installed

net set other dirname

1930
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Report net ‘from’, ‘ado’, and ‘other’ settings

net query

Install ado-files and help files from a package

net install pkgname [ , all replace force from(directory or url) ]

Install ancillary files from a package

net get pkgname [ , all replace force from(directory or url) ]

Shortcut to access Stata Journal (SJ) net site

net sj vol-issue [ insert ]

List installed packages

ado [ , find(string) from(dirname) ]

ado dir [ pkgid ] [ , find(string) from(dirname) ]

Describe installed packages

ado describe [ pkgid ] [ , find(string) from(dirname) ]

Update installed packages

ado update (see [R] ado update)

Uninstall an installed package

ado uninstall pkgid [ , from(dirname) ]

where
pkgname is name of a package

pkgid is name of a package

or a number in square brackets: [#]
dirname is a directory name

or PLUS (default)

or PERSONAL
or SITE
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Options
all is used with net install and net get. Typing it with either one makes the command equivalent

to typing net install followed by net get.

replace is for use with net install and net get. It specifies that the downloaded files replace existing
files if any of the files already exists.

force specifies that the downloaded files replace existing files if any of the files already exists, even if
Stata thinks all the files are the same. force implies replace.

find(string) is for use with ado, ado dir, and ado describe. It specifies that the descriptions of the
packages installed on your computer be searched, and that the package descriptions containing string

be listed.

from(dirname), when used with ado, specifies where the packages are installed. The default is

from(PLUS). PLUS is a code word that Stata understands to correspond to a particular directory on
your computer that was set at installation time. On Windows computers, PLUS probably means the
directory c:\ado\plus, but it might mean something else. You can find out what it means by typing
sysdir, but doing so is irrelevant if you use the defaults.

from(directory or url), when used with net, specifies the directory or URLwhere installable packages
may be found. The directory or URL is the same as the one that would have been specified with net
from.

Remarks and examples
For an introduction to using net and ado, see [U] 29 Using the Internet to keep up to date. The

purpose of this documentation is

• to briefly, but accurately, describe net and ado and all their features and

• to provide documentation to those who wish to set up their own sites to distribute additions to

Stata.

Remarks are presented under the following headings:

Definition of a package
The purpose of the net and ado commands
Content pages
Package-description pages
Where packages are installed
A summary of the net command
A summary of the ado command
Relationship of net and ado to the point-and-click interface
Creating your own site
Format of content and package-description files
Example 1
Example 2
Additional package directives
SMCL in content and package-description files
Error-free file delivery
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Definition of a package
A package is a collection of files—typically, .ado and .sthlp files—that together provide a new

feature in Stata. Packages contain additions that you wish had been part of Stata at the outset. For

instance, the package named zz49 might add the xyz command to Stata. At a minimum, such a package
would contain xyz.ado, the code to implement the new command, and xyz.sthlp, the system help to

describe it. We write such additions, and so do other users.

One source of these additions is the Stata Journal, a printed and electronic journal with corresponding

software. If you want the journal, you must subscribe, but the software is available for free from our

website.

The purpose of the net and ado commands
The net command makes it easy to distribute and install packages. The goal is to get you quickly to

a package-description page that summarizes the addition, for example,

. net describe rte_stat, from(http://www.wemakeitupaswego.edu/faculty/sgazer/)

package rte_stat from http://www.wemakeitupaswego.edu/faculty/sgazer/

TITLE
rte_stat. The robust-to-everything statistic; update.

DESCRIPTION/AUTHOR(S)
S. Gazer, Dept. of Applied Theoretical Mathematics, WMIUAWG Univ.
Aleph-0 100% confidence intervals proved too conservative for some
applications; Aleph-1 confidence intervals have been substituted.
The new robust-to-everything supplants the previous robust-to-
everything-conceivable statistic. See ”Inference in the absence
of data” (forthcoming). After installation, see help rte.

INSTALLATION FILES (type net install rte_stat)
rte.ado
rte.sthlp
nullset.ado
random.ado

If you decide that the addition might prove useful, net makes the installation easy:

. net install rte_stat
checking rte_stat consistency and verifying not already installed...
installing into c:\ado\plus\ ...
installation complete.

https://www.stata-journal.com
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The ado command helps you manage packages installed with net. Perhaps you remember that you
installed a package that calculates the robust-to-everything statistic, but you cannot remember the com-

mand’s name. You could use ado to search what you have previously installed for the rte command,

. ado
[1] package tomata from https://fmwww.bc.edu/RePEc/bocode/t

'TOMATA': module to make vectors in Mata of variables in Stata
(output omitted )

[15] package rte_stat from http://www.wemakeitupaswego.edu/faculty/sgazer
rte_stat. The robust-to-everything statistic; update.

(output omitted )
[21] package st0119 from https://www.stata-journal.com/software/sj7-1

SJ7-1 st0119. Rasch analysis

or you might type

. ado, find(”robust-to-everything”)
[15] package rte_stat from http://www.wemakeitupaswego.edu/faculty/sgazer

rte_stat. The robust-to-everything statistic; update.

Perhaps you decide that rte, despite the author’s claims, is not worth the disk space it occupies. You can
use ado to erase it:

. ado uninstall rte_stat
package rte_stat from http://www.wemakeitupaswego.edu/faculty/sgazer

rte_stat. The robust-to-everything statistic; update.

(package uninstalled)

ado uninstall is easier than erasing the files by hand because ado uninstall erases every file asso-
ciated with the package, and, moreover, ado knows where on your computer rte stat is installed; you
would have to hunt for these files.

Content pages
There are two types of pages displayed by net: content pages and package-description pages. When

you type net from, net cd, net link, or net without arguments, Stata goes to the specified place and
displays the content page:

. net from https://www.stata.com

https://www.stata.com/
StataCorp

Welcome to StataCorp.
Below we provide links to sites providing additions to Stata, including
the Stata Journal and Statalist. These are NOT THE OFFICIAL UPDATES;
you fetch and install the official updates by typing -update-.
PLACES you could -net link- to:

sj The Stata Journal
DIRECTORIES you could -net cd- to:

users materials written by various people, including StataCorp
employees

meetings software packages from Stata Users Group meetings
links links to other locations providing additions to Stata
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A content page tells you about other content pages and package-description pages. The example above

lists other content pages only. Below, we follow one of the links for the Stata Journal:

. net link sj

https://www.stata-journal.com/
The Stata Journal

The Stata Journal is a refereed, quarterly journal containing articles
of interest to Stata users. For more details and subscription information,
visit the Stata Journal website at https://www.stata-journal.com.
PLACES you could -net link- to:

stata StataCorp website
DIRECTORIES you could -net cd- to:

production Files for authors of the Stata Journal
software Software associated with Stata Journal articles

. net cd software

https://www.stata-journal.com/software/
The Stata Journal

PLACES you could -net link- to:
stata StataCorp website
stb Historical materials published in the Stata Technical

Bulletin
DIRECTORIES you could -net cd- to:
(output omitted )

sj7-1 volume 7, issue 1
(output omitted )

sj1-1 volume 1, issue 1

. net cd sj7-1

https://www.stata-journal.com/software/sj7-1/
Stata Journal volume 7, issue 1

DIRECTORIES you could -net cd- to:
.. Other Stata Journals

PACKAGES you could -net describe-:
dm0027 File filtering in Stata: handling complex data

formats and navigating log files efficiently
st0119 Rasch analysis
st0120 Multivariable regression spline models
st0121 mhbounds - Sensitivity Analysis for Average

Treatment Effects

dm0027, st0119, . . . , st0121 are links to package-description pages.

1. When you type net from, you follow that with a location to display the location’s content page.

a. The location could be a URL, such as https://www.stata.com. The content page at that loca-

tion would then be listed.

b. The location could be e: on aWindows computer or a mounted volume on a Mac computer.

The content page on that source would be listed. That would work if you had special media

obtained from StataCorp or special media prepared by another user.

https://www.stata.com
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c. The location could even be a directory on your computer, but that would work only if that

directory contained the right kind of files.

2. Once you have specified a location, typing net cdwill take you into subdirectories of that location,
if there are any. Typing

. net from https://www.stata-journal.com

. net cd software

is equivalent to typing

. net from https://www.stata-journal.com/software

Typing net cd displays the content page from that location.

3. Typing net without arguments redisplays the current content page, which is the content page last
displayed.

4. net link is similar to net cd in that the result is to change the location, but rather than changing
to subdirectories of the current location, net link jumps to another location:

. net from https://www.stata-journal.com

https://www.stata-journal.com/
The Stata Journal

The Stata Journal is a refereed, quarterly journal containing articles
of interest to Stata users. For more details and subscription information,
visit the Stata Journal website at
https://www.stata-journal.com.
PLACES you could -net link- to:

stata StataCorp website
DIRECTORIES you could -net cd- to:

production Files for authors of the Stata Journal
software Software associated with Stata Journal articles

Typing net link stata would jump to https://www.stata.com:

. net link stata

https://www.stata.com/
StataCorp

Welcome to StataCorp.
(output omitted )

https://www.stata\unhbox \voidb@x \kern \z@ \char `\-journal.com
https://www.stata.com
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Package-description pages
Package-description pages describe what could be installed:

. net from https://www.stata-journal.com/software/sj7-1

https://www.stata-journal.com/software/sj7-1/
(output omitted )

. net describe st0119

package st0119 from https://www.stata-journal.com/software/sj7-1

TITLE
SJ7-1 st0119. Rasch analysis

DESCRIPTION/AUTHOR(S)
Rasch analysis
by Jean-Benoit Hardouin, University of Nantes, France
Support: jean-benoit.hardouin@univ-nantes.fr
After installation, type help gammasym, gausshermite,

geekel2d, raschtest, and raschtestv7

INSTALLATION FILES (type net install st0119)
st0119/raschtest.ado
st0119/raschtest.hlp
st0119/raschtestv7.ado
st0119/raschtestv7.hlp
st0119/gammasym.ado
st0119/gammasym.hlp
st0119/gausshermite.ado
st0119/gausshermite.hlp
st0119/geekel2d.ado
st0119/geekel2d.hlp

ANCILLARY FILES (type net get st0119)
st0119/data.dta
st0119/outrasch.do

A package-description page describes the package and tells you how to install the component files.

Package-description pages potentially describe two types of files:

1. Installation files: files that you type net install to install and that are required to make the

addition work.

2. Ancillary files: additional files that you might want to install—you type net get to install

them—but that you can ignore. Ancillary files are typically datasets that are useful for demon-

stration purposes. Ancillary files are not really installed in the sense of being copied to an official

place for use by Stata itself. They are merely copied into the current directory so that you may use

them if you wish.

You install the official files by typing net install followed by the package name. For example, to

install st0119, you would type

. net install st0119
checking st0119 consistency and verifying not already installed...
installing into c:\ado\plus\ ...
installation complete.
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You get the ancillary files—if there are any and if you want them—by typing net get followed by the
package name:

. net get st0119
checking st0119 consistency and verifying not already installed...
copying into current directory...

copying data.dta
copying outrasch.do

ancillary files successfully copied.

Most users ignore the ancillary files.

Once you have installed a package—by typing net install—use ado to redisplay the package-

description page whenever you wish:

. ado describe st0119

[1] package st0119 from https://www.stata-journal.com/software/sj7-1

TITLE
SJ7-1 st0119. Rasch analysis

DESCRIPTION/AUTHOR(S)
Rasch analysis
by Jean-Benoit Hardouin, University of Nantes, France
Support: jean-benoit.hardouin@univ-nantes.fr
After installation, type help gammasym, gausshermite,

geekel2d, raschtest, and raschtestv7

INSTALLATION FILES
r/raschtest.ado
r/raschtest.hlp
r/raschtestv7.ado
r/raschtestv7.hlp
g/gammasym.ado
g/gammasym.hlp
g/gausshermite.ado
g/gausshermite.hlp
g/geekel2d.ado
g/geekel2d.hlp

INSTALLED ON
24 Feb 2023

The package-description page shown by ado includes the location from which we got the package and

when we installed it. It does not mention the ancillary files that were originally part of this package

because they are not tracked by ado.
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Where packages are installed
Packages should be installed in PLUS or SITE; these are code words that Stata understands and corre-

spond to real directories on your computer. Typing sysdir will tell you where these are, if you care.
. sysdir

STATA: C:\Program Files\Stata18\
BASE: C:\Program Files\Stata18\ado\base\
SITE: C:\Program Files\Stata18\ado\site\
PLUS: c:\ado\plus\

PERSONAL: c:\ado\personal\
OLDPLACE: c:\ado\

If you type sysdir, you may obtain different results.

By default, net installs in the PLUS directory, and ado tells you about what is installed there. If you
are on a multiple-user system, you may wish to install some packages in the SITE directory. This way,
they will be available to other Stata users. To do that, before using net install, type

. net set ado SITE

and when reviewing what is installed or removing packages, redirect ado to that directory:

. ado ..., from(SITE)

In both cases, you type SITE because Stata will understand that SITE means the site ado-directory as

defined by sysdir. To install into SITE, you must have write access to that directory.

If you reset where net installs and then, in the same session, wish to install into your private ado-
directory, type

. net set ado PLUS

That is how things were originally. If you are confused as to where you are, type net query.

A summary of the net command
The net command displays content pages and package-description pages. Such pages are provided

over the Internet, and most users get them there. We recommend that you start at https://www.stata.com

and work out from there. We also recommend using net search to find packages of interest to you; see
[R] net search.

net from moves you to a location and displays the content page.

net cd and net link change from your current location to other locations. net cd enters subdirec-
tories of the original location. net link jumps from one location to another, depending on the code on

the content page.

net describe lists a package-description page. Packages are named, and you type net describe
pkgname.

net install installs a package into your copy of Stata. net get copies any additional files (ancillary
files) to your current directory.

https://www.stata.com
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net sj simplify loading files from the Stata Journal.

net sj vol-issue

is a synonym for typing

net from https://www.stata-journal.com/software/sjvol-issue

whereas

net sj vol-issue insert

is a synonym for typing

net from https://www.stata-journal.com/software/sjvol-issue
net describe insert

net set controls where net installs files. By default, net installs in the PLUS directory; see [P] sysdir.
net set ado SITE would cause subsequent net commands to install in the SITE directory. net set
other sets where ancillary files, such as .dta files, are installed. The default is the current directory.

net query displays the current net from, net set ado, and net set other settings.

A summary of the ado command
The ado command lists the package descriptions of previously installed packages.

Typing ado without arguments is the same as typing ado dir. Both list the names and titles of the
packages you have installed.

ado describe lists full package-description pages.

ado uninstall removes packages from your computer.

Because you can install packages from a variety of sources, the package names may not always be

unique. Thus the packages installed on your computer are numbered sequentially, and you may refer to

them by name or by number. For instance, say that you wanted to get rid of the robust-to-everything

statistic command you installed. Type

. ado, find(”robust-to-everything”)
[15] package rte_stat from http://www.wemakeitupaswego.edu/faculty/sgazer

rte_stat. The robust-to-everything statistic; update.

You could then type

. ado uninstall rte_stat

or

. ado uninstall [15]

Typing ado uninstall rte statwould work only if the name rte statwere unique; otherwise, ado
would refuse, and you would have to type the number.
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The find() option is allowed with ado dir and ado describe. It searches the package description
for the word or phrase you specify, ignoring case (alpha matches Alpha). The complete package de-
scription is searched, including the author’s name and the name of the files. Thus if rte was the name
of a command that you wanted to eliminate, but you could not remember the name of the package, you

could type

. ado, find(rte)
[15] package rte_stat from http://www.wemakeitupaswego.edu/faculty/sgazer

rte_stat. The robust-to-everything statistic; update.

Relationship of net and ado to the point-and-click interface
Users may instead select Help > SJ and community-contributed features. There are advantages

and disadvantages:

1. Flipping through content and package-description pages is easier; it is much like a browser. See

[GS] 19 Updating and extending Stata—Internet functionality (GSM, GSU, or GSW).

2. When browsing a product-description page, note that the .sthlp files are highlighted. You may
click on .sthlp files to review them before installing the package.

3. You may not redirect from where ado searches for files.

Creating your own site
Users who wish to share content with the Stata community often do so via the Statistical Software

Components (SSC) Archive. See [R] ssc and also see http://repec.org/bocode/s/sscsubmit.html.

The rest of this entry concerns how to create your own site to distribute additions to Stata. The idea

is that you have written additions for use with Stata—say, xyz.ado and xyz.sthlp—and you wish to

make them available so that others can easily install them. Or, perhaps you just have a dataset that you

and others want to share.

In any case, all you need is a webpage. You place the files that you want to distribute on your webpage,

and you add two more files—a content file and a package-description file—and you are done.

http://repec.org/bocode/s/sscsubmit.html
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Format of content and package-description files
The content file describes the content page. It must be named stata.toc:

begin stata.toc
OFF (to make site unavailable temporarily)
* lines starting with * are comments; they are ignored

* blank lines are ignored, too

* v indicates version---specify v 3, which is the current version of .toc files
v 3
* d lines display description text
* the first d line is the title, and the remaining ones are text
* blank d lines display a blank line
d title
d text
d text
d
...
* l lines display links
l word-to-show path-or-url [description]
l word-to-show path-or-url [description]
...
* t lines display other directories within the site
t path [description]
t path [description]
...
* p lines display packages
p pkgname [description]
p pkgname [description]
...

end stata.toc

Package files describe packages and are named pkgname.pkg:

begin pkgname.pkg
* lines starting with * are comments; they are ignored

* blank lines are ignored, too

* v indicates version---specify v 3, which is the current version of .toc files
v 3
* d lines display package description text
* the first d line is the title, and the remaining ones are text
* blank d lines display a blank line
d title
d text
d Distribution-Date: date
d text
d
...
* f identifies the component files
f [path/]filename [description]
f [path/]filename [description]
...
* e line is optional; it means stop reading
e

end pkgname.pkg
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Note the Distribution-Date description line. This line is optional but recommended. Stata can look for

updates to community-contributed programs with the ado update command if the package files from
which those programs were installed contain a Distribution-Date description line.

Example 1
Say that we want the user to see the following:

. net from http://www.university.edu/~me

http://www.university.edu/~me
Chris Farrar, Uni University

PACKAGES you could -net describe-:
xyz interval-truncated survival

. net describe xyz

package xyz from http://www.university.edu/~me

TITLE
xyz. interval-truncated survival.

DESCRIPTION/AUTHOR(S)
C. Farrar, Uni University.

INSTALLATION FILES (type net install xyz)
xyz.ado
xyz.sthlp

ANCILLARY FILES (type net get xyz)
sample.dta

The files needed to do this would be

begin stata.toc
v 3
d Chris Farrar, Uni University
p xyz interval-truncated survival

end stata.toc

begin xyz.pkg
v 3
d xyz. interval-truncated survival.
d C. Farrar, Uni University.
f xyz.ado
f xyz.sthlp
f sample.dta

end xyz.pkg

On his homepage, Chris would place the following files:

stata.toc (shown above)
xyz.pkg (shown above)
xyz.ado file to be delivered (for use by net install)
xyz.sthlp file to be delivered (for use by net install)
sample.dta file to be delivered (for use by net get)

Chris does nothing to distinguish ancillary files from installation files.
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Example 2
S. Gazer wants to create a more complex site:

. net from http://www.wemakeitupaswego.edu/faculty/sgazer

http://www.wemakeitupaswego.edu/faculty/sgazer
Data-free inference materials

S. Gazer, Department of Applied Theoretical Mathematics
Also see my homepage for the preprint of ”Irrefutable inference”.
PLACES you could -net link- to:

stata StataCorp website
DIRECTORIES you could -net cd- to:

ir irrefutable inference programs (work in progress)
PACKAGES you could -net describe-:

rtec Robust-to-everything-conceivable statistic
rte Robust-to-everything statistic

. net describe rte

package rte from http://www.wemakeitupaswego.edu/faculty/sgazer/

TITLE
rte. The robust-to-everything statistic; update.

DESCRIPTION/AUTHOR(S)
S. Gazer, Dept. of Applied Theoretical Mathematics, WMIUAWG Univ.
Aleph-0 100% confidence intervals proved too conservative for some
applications; Aleph-1 confidence intervals have been substituted.
The new robust-to-everything supplants the previous robust-to-
everything-conceivable statistic. See ”Inference in the absence
of data” (forthcoming). After installation, see help rte.
Distribution-Date: 20190320
Support: email sgazer@wemakeitupaswego.edu

INSTALLATION FILES (type net install rte_stat)
rte.ado
rte.sthlp
nullset.ado
random.ado

ANCILLARY FILES (type net get rte_stat)
empty.dta
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The files needed to do this would be

begin stata.toc
v 3
d Data-free inference materials
d S. Gazer, Department of Applied Theoretical Mathematics
d
d Also see my homepage for the preprint of ”Irrefutable inference”.
l stata https://www.stata.com
t ir irrefutable inference programs (work in progress)
p rtec Robust-to-everything-conceivable statistic
p rte Robust-to-everything statistic

end stata.toc

begin rte.pkg
v 3
d rte. The robust-to-everything statistic; update.
d {bf:S. Gazer, Dept. of Applied Theoretical Mathematics, WMIUAWG Univ.}
d Aleph-0 100% confidence intervals proved too conservative for some
d applications; Aleph-1 confidence intervals have been substituted.
d The new robust-to-everything supplants the previous robust-to-
d everything-conceivable statistic. See ”Inference in the absence
d of data” (forthcoming). After installation, see help {bf:rte}.
d
d Distribution-Date: 20190320
d
d Support: email sgazer@wemakeitupaswego.edu
f rte.ado
f rte.sthlp
f nullset.ado
f random.ado
f empty.dta

end rte.pkg

On his homepage, Mr. Gazer would place the following files:

stata.toc (shown above)

rte.pkg (shown above)
rte.ado (file to be delivered)
rte.sthlp (file to be delivered)
nullset.ado (file to be delivered)
random.ado (file to be delivered)
empty.dta (file to be delivered)

rtec.pkg the other package referred to in stata.toc
rtec.ado the corresponding files to be delivered
rtec.sthlp
ir/stata.toc the contents file for when the user types net cd ir
ir/... whatever other .pkg files are referred to
ir/... whatever other files are to be delivered

If Mr. Gazer later updated the rte package, he could change the Distribution-Date description line
in his package. Then, if someone who had previously installed the rte packaged wanted to obtain the
latest version, that person could use the ado update command; see [R] ado update.
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For complex sites, a different structure may prove more convenient:

stata.toc (shown above)
rte.pkg (shown above)
rtec.pkg the other package referred to in stata.toc
rte/ directory containing rte files to be delivered:
rte/rte.ado (file to be delivered)
rte/rte.sthlp (file to be delivered)
rte/nullset.ado (file to be delivered)
rte/random.ado (file to be delivered)
rte/empty.dta (file to be delivered)

rtec/ directory containing rtec files to be delivered:
rtec/... (files to be delivered)

ir/stata.toc the contents file for when the user types net cd ir
ir/*.pkg whatever other package files are referred to
ir/*/... whatever other files are to be delivered

If you prefer this structure, it is simply a matter of changing the bottom of the rte.pkg from

f rte.ado
f rte.sthlp
f nullset.ado
f random.ado
f empty.dta

to

f rte/rte.ado
f rte/rte.sthlp
f rte/nullset.ado
f rte/random.ado
f rte/empty.dta

In writing paths and files, the directory separator forward slash (/) is used, regardless of operating system,
because this is what the Internet uses.

It does not matter whether the files you put out are in Windows, Mac, or Unix format (how lines end

is recorded differently). When Stata reads the files over the Internet, it will figure out the file format on

its own and will automatically translate the files to what is appropriate for the receiver.

Additional package directives
F filename is similar to f filename, except that, when the file is installed, it will always be copied to the

system directories (and not the current directory).

With f filename, the file is installed into a directory according to the file’s suffix. For instance,

xyz.ado would be installed in the system directories, whereas xyz.dta would be installed in the

current directory.

Coding F xyz.ado would have the same result as coding f xyz.ado.

Coding F xyz.dta, however, would state that xyz.dta is to be installed in the system directories.

g platformname filename is also a variation on f filename. It specifies that the file be installed only if the
user’s operating system is of type platformname; otherwise, the file is ignored. The platform names

are WIN64 (64-bit x86-64) for Windows; MACARM64 (Apple Silicon, GUI) and OSX.ARM64 (Apple

Silicon, console), MACINTEL64 (64-bit Intel, GUI) and OSX.X8664 (64-bit Intel, console) for Mac;



net — Install and manage community-contributed additions from the Internet 1947

and LINUX64 (64-bit x86-64) and LINUX64P (64-bit x86-64, libpng v1.6) for Linux. For LINUX64P,
the LINUX64-specific version of a file will be installed if no LINUX64P-specific one exists. LINUX64
will not install a LINUX64P-specific version of a file because of possible changes in system libraries.

G platformname filename is a variation on F filename. The file, if not ignored, is to be installed in the
system directories.

g platformname filename1 filename2 is a more detailed version of g platformname filename. In this

case, filename1 is the name of the file on the server (the file to be copied), and filename2 is to be

the name of the file on the user’s system; for example, you might code

g WIN64 mydll.forwin mydll.plugin
g LINUX64 mydll.forlinux mydll.plugin

When you specify one filename, the result is the same as specifying two identical filenames.

G platformname filename1 filename2 is the install-in-system-directories version of g platformname file-
name1 filename2.

h filename asserts that filename must be loaded, or this package is not to be installed; for example, you
might code

g WIN64 mydll.forwin mydll.plugin
g LINUX64 mydll.forlinux mydll.plugin
h mydll.plugin

if you were offering the plugin mydll.plugin for Windows and Linux only.

SMCL in content and package-description files
The text listed on the second and subsequent d lines in both stata.toc and pkgname.pkg may

contain SMCL as long as you include v 3; see [P] smcl.

Thus, in rte.pkg, S. Gazer coded the third line as

d {bf:S. Gazer, Dept. of Applied Theoretical Mathematics, WMIUAWG Univ.}

Error-free file delivery
Most people transport files over the Internet and never worry about the file being corrupted in the

process because corruption rarely occurs. If, however, the files must be delivered perfectly or not at all,

you can include checksum files in the directory.

For instance, say that big.dta is included in your package and that it must be sent perfectly. First,
use Stata to make the checksum file for big.dta

. checksum big.dta, save

That command creates a small file called big.sum; see [D] checksum. Then, copy both big.dta and
big.sum to your homepage.

If you do this, be cautious. If you put big.dta and big.sum on your homepage and then later change
big.dta without changing big.sum, people will think that there are transmission errors when they try
to download big.dta.
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Also see
[R] ado update — Update community-contributed packages

[R] net search — Search the Internet for installable packages

[R] netio — Control Internet connections

[R] search — Search Stata documentation and other resources

[R] sj — Stata Journal installation instructions

[R] ssc — Install and uninstall packages from SSC

[R] update — Check for official updates

[D] checksum — Calculate checksum of file

[P] smcl — Stata Markup and Control Language

[GSM] 19 Updating and extending Stata—Internet functionality

[GSU] 19 Updating and extending Stata—Internet functionality

[GSW] 19 Updating and extending Stata—Internet functionality

[U] 29 Using the Internet to keep up to date
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Description Quick start Syntax Options
Remarks and examples Also see

Description
net search searches the Internet for community-contributed additions to Stata, including, but not

limited to, community-contributed additions published in the Stata Journal (SJ). net search lists the

available additions that contain the specified keywords.

The community-contributed materials found are available for immediate download by using the net
command or by clicking on the link.

In addition to typing net search, you may selectHelp > Search... and choose Search net resources.
This is the recommended way to search for community-contributed additions to Stata.

Quick start
Search community-contributed commands for all terms word1, word2, and word3

net search word1 word2 word3

Same as above, but search for any term

net search word1 word2 word3, or

Search Internet sources other than the Stata Journal

net search word1 word2 word3, nosj

Syntax
net search word [word . . .] [ , options ]

options Description

or list packages that contain any of the keywords; default is all

nosj search non-SJ sources

tocpkg search both tables of contents and packages; the default

toc search tables of contents only

pkg search packages only

everywhere search packages for match

filenames search filenames associated with package for match

errnone make return code 111 instead of 0 when no matches found

1949

https://www.stata-journal.com
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Options
or is relevant only when multiple keywords are specified. By default, net search lists only packages

that include all the keywords. or changes the command to list packages that contain any of the

keywords.

nosj specifies that net search not list matches that were published in the SJ.

tocpkg, toc, and pkg determine what is searched. tocpkg is the default, meaning that both tables of
contents (tocs) and packages (pkgs) are searched. toc restricts the search to tables of contents. pkg
restricts the search to packages.

everywhere and filenames determine where in packages net search looks for keywords. The de-

fault is everywhere. filenames restricts net search to search for matches only in the filenames
associated with a package. Specifying everywhere implies pkg.

errnone is a programmer’s option that causes the return code to be 111 instead of 0 when no matches
are found.

Remarks and examples
net search searches the Internet for community-contributed additions to Stata. If you want to search

the Stata documentation for a particular topic, command, or author, see [R] search. net search word
[word . . .] (without options) is equivalent to typing search word [word . . .], net.

Remarks are presented under the following headings:

Topic searches
Author searches
Command searches
Where does net search look?
How does net search work?

Topic searches

Example: Find what is available about random effects
. net search random effect

Comments:

• It is best to search using the singular form of a word. net search random effect will find both
“random effect” and “random effects”.

• net search random effect will also find “random-effect” because net search performs a

string search and not a word search.

• net search random effect lists all packages containing the words “random” and “effect”, not
necessarily used together.

• If you wanted all packages containing the word “random” or the word “effect”, you would type

net search random effect, or.
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Author searches

Example: Find what is available by author Jeroen Weesie
. net search weesie

Comments:

• You could type net search jeroen weesie, but that might list fewer results because sometimes
the last name is used without the first.

• You could type net search Weesie, but it would not matter. Capitalization is ignored in the

search.

Example: Find what is available by Jeroen Weesie, excluding SJ materials
. net search weesie, nosj

• The SJ tends to dominate search results because so much has been published in it. If you know that

what you are looking for is not in the SJ, specifying the nosj option will narrow the search.

• net search weesie lists everything that net search weesie, nosj lists, and more. If you just
type net search weesie, look down the list. SJmaterials are listed first, and non-SJmaterials are
listed last.

Command searches

Example: Find the community-contributed command kursus
. net search kursus, file

• You could just type net search kursus, and that will list everything net search kursus, file
lists, and more. Because you know kursus is a command, however, there must be a kursus.ado
file associated with the package. Typing net search kursus, file narrows the search.

• You could also type net search kursus.ado, file to narrow the search even more.

Where does net search look?
net search looks everywhere, not just at https://www.stata.com.

net search begins by looking at https://www.stata.com, but then follows every link, which takes it
to other places, and then follows every link again, which takes it to even more places, and so on.

Authors: Please let us know if you have a site that we should include in our search by sending an

email to webmaster@stata.com. We will then link to your site from ours to ensure that net search finds
your materials. That is not strictly necessary, however, as long as your site is directly or indirectly linked

from some site that is linked to ours.

https://www.stata.com
https://www.stata.com
mailto:webmaster@stata.com
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How does net search work?

www.stata.com

The Internet

crawler

net search database

Your computer

talks to www.stata.com

Our website maintains a database of Stata resources. When you use net search, it contacts
https://www.stata.com with your request, https://www.stata.com searches its database, and Stata returns

the results to you.

Another part of the system is called the crawler, which searches the web for new Stata resources to add

to the net search database and verifies that the resources already found are still available. When a new

resource becomes available, the crawler takes about two days to add it to the database, and, similarly, if

a resource disappears, the crawler takes roughly two days to remove it from the database.

Also see
[R] ado update — Update community-contributed packages

[R] net — Install and manage community-contributed additions from the Internet

[R] search — Search Stata documentation and other resources

[R] sj — Stata Journal installation instructions

[R] ssc — Install and uninstall packages from SSC

[R] update — Check for official updates

https://www.stata.com
https://www.stata.com


netio — Control Internet connections

Description Syntax Options Remarks and examples Also see

Description
Some commands (for example, net and update) are designed specifically for use over the Internet.

Many other Stata commands that read a file (for example, copy, type, and use) can also read directly
from a URL. All of these commands will usually work without your ever needing to concern yourself

with the set commands discussed here. These set commands provide control over network system

parameters.

If you experience problems when using Stata’s network features, ask your system administrator if

your site uses a proxy. A proxy is a server between your computer and the rest of the Internet, and your

computer may need to communicate with other computers on the Internet through this proxy. If your site

uses a proxy, your system administrator can provide you with its host name and the port your computer

can use to communicate with it. If your site’s proxy requires you to log in to it before it will respond,

your system administrator will provide you with a user ID and password.

set httpproxyhost sets the name of the host to be used as a proxy server. set httpproxyport
sets the port number. set httpproxy turns on or off the use of a proxy server, leaving the proxy host
name and port intact, even when not in use.

Under the Mac and Windows operating systems, when you set httpproxy on, Stata will attempt
to obtain the values of httpproxyhost and httpproxyport from the operating system if they have

not been previously set. set httpproxy on, init attempts to obtain these values from the operating

system, even if they have been previously set.

If the proxy requires authorization (user ID and password), set authorization on via set
httpproxyauth on. The proxy user and proxy password must also be set to the appropriate user ID
and password by using set httpproxyuser and set httpproxypw.

Stata remembers the various proxy settings between sessions and does not need a permanently op-
tion.

1953
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Syntax
Turn on or off the use of a proxy server

set httpproxy {on | off} [ , init]

Set proxy host name

set httpproxyhost [”]name[”]

Set the proxy port number

set httpproxyport #

Turn on or off proxy authorization

set httpproxyauth {on | off}

Set proxy authorization user ID

set httpproxyuser [”]name[”]

Set proxy authorization password

set httpproxypw [”]password[”]

Options
init specifies that set httpproxy on attempts to initialize httpproxyhost and httpproxyport from

the operating system (Mac and Windows only).

Remarks and examples
If you receive an error message, see https://www.stata.com/support/faqs/web/ for the latest informa-

tion.

Also see
[R] query — Display system parameters

[P] creturn — Return c-class values

[U] 29 Using the Internet to keep up to date

https://www.stata.com/support/faqs/web/


nl — Nonlinear least-squares estimation

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Acknowledgments Also see

Description
nl fits an arbitrary nonlinear regression function by least squares. With the interactive version of

the command, you enter the function directly on the command line or in the dialog box by using a

substitutable expression. If you have a function that you use regularly, you can write a substitutable

expression program and use the second syntax to avoid having to reenter the function every time. The

function evaluator program version gives you the most flexibility in exchange for increased complexity;

with this version, your program is given a vector of parameters and a variable list, and your program

computes the regression function.

When you write a substitutable expression program or function evaluator program, the first two letters

of the name must be nl. sexp prog and func prog refer to the name of the program without the first two

letters. For example, if you wrote a function evaluator program named nlregss, you would type nl
regss @ . . . to estimate the parameters.

Quick start
Linear model of y with parameters b0 for the constant and b1 for x1

nl (y = {b0} + {b1}*x1)

Add the variables() option to allow for missing values of y and x1
nl (y = {b0} + {b1}*x1), variables(y x1)

Same as above, but specify starting values

nl (y = {b0=.5} + {b1=2}*x1), variables(y x1)

Add variables x2 and x3 and parameters b2 and b3
nl (y = {b0} + {b1}*x1 + {b2}*x2 + {b3}*x3), variables(y x1 x2 x3)

Same as above, but use {xb:} to specify a linear combination of variables

nl (y = {b0=.5} + {xb:x1 x2 x3}), variables(y x1 x2 x3)

An exponential model

nl (y = {b0} + {b1}*{b2}^x1), variables(y x1)

Same as above, but use nl’s built-in function exp3 to specify the model
nl exp3: y x1, variables(y x1)

Menu
Statistics > Linear models and related > Nonlinear least-squares estimation

1955
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Syntax
Interactive version

nl (depvar = <sexp>) [ if ] [ in ] [weight ] [ , options ]

Programmed substitutable expression version

nl sexp prog : depvar [ varlist ] [ if ] [ in ] [weight ] [ , options ]

Function evaluator program version

nl func prog @ depvar [ varlist ] [ if ] [ in ] [weight ] ,

{ parameters(namelist) | nparameters(#)} [ options ]

where

depvar is the dependent variable;

<sexp> is a substitutable expression;

sexp prog is a substitutable expression program; and

func prog is a function evaluator program.
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options Description

Model

variables(varlist) variables in model

initial(initial values) initial values for parameters
∗ parameters(namelist) parameters in model (function evaluator program version only)
∗ nparameters(#) number of parameters in model

(function evaluator program version only)

sexp options options for substitutable expression program

func options options for function evaluator program

Model 2

lnlsq(#) use log least-squares where ln(depvar − #) is assumed to be
normally distributed

noconstant the model has no constant term; seldom used

hasconstant(name) use name as constant term; seldom used

SE/Robust

vce(vcetype) vcetype may be gnr, robust, cluster clustvar, bootstrap,
jacknife, hac kernel, hc2, or hc3

Reporting

level(#) set confidence level; default is level(95)
leave create variables containing derivative of 𝐸(𝑦)
title(string) display string as title above the table of parameter estimates

title2(string) display string as subtitle

display options control column formats and line width

Optimization

optimization options control the optimization process; seldom used

eps(#) specify # for convergence criterion; default is eps(1e-5)
delta(#) specify # for computing derivatives; default is delta(4e-7)

coeflegend display legend instead of statistics
∗For function evaluator program version, you must specify parameters(namelist) or nparameters(#), or both.
bootstrap, by, collect, jackknife, rolling, statsby, and svy are allowed; see [U] 11.1.10 Prefix commands.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
aweights are not allowed with the jackknife prefix; see [R] jackknife.
vce(), leave, and weights are not allowed with the svy prefix; see [SVY] svy.
aweights, fweights, and iweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

variables(varlist) specifies the variables in the model. nl ignores observations for which any of these
variables have missing values. If you do not specify variables(), then nl issues an error message
with return code 480 if the estimation sample contains any missing values.
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initial(initial values) specifies the initial values to begin the estimation. You can specify a 1 × 𝑘
matrix, where 𝑘 is the number of parameters in the model, or you can specify a parameter name, its

initial value, another parameter name, its initial value, and so on. For example, to initialize alpha to
1.23 and delta to 4.57, you would type

nl ..., initial(alpha 1.23 delta 4.57) ...

Initial values declared using this option override any that are declaredwithin substitutable expressions.

If you specify a parameter that does not appear in your model, nl exits with error code 480. If you
specify a matrix, the values must be in the same order that the parameters are declared in your model.

nl ignores the row and column names of the matrix.

parameters(namelist) specifies the names of the parameters in the model. The names of the parameters
must adhere to the naming conventions of Stata’s variables; see [U] 11.3 Naming conventions. If you

specify both parameters() and nparameters(), the number of names in the former must match
the number specified in the latter; if not, nl issues an error message with return code 198.

nparameters(#) specifies the number of parameters in the model. If you do not specify names with
the parameters() option, nl names them b1, b2, . . . , b#. If you specify both parameters() and
nparameters(), the number of names in the former must match the number specified in the latter;
if not, nl issues an error message with return code 198.

sexp options refer to any options allowed by your sexp prog.

func options refer to any options allowed by your func prog.

� � �
Model 2 �

lnlsq(#) fits the model by using log least-squares, which we define as least squares with shifted log-
normal errors. In other words, ln(depvar−#) is assumed to be normally distributed. Sums of squares
and deviance are adjusted to the same scale as depvar.

noconstant indicates that the function does not include a constant term. This option is generally not
needed, even if there is no constant term in the model, unless the coefficient of variation (over obser-

vations) of the partial derivative of the function with respect to a parameter is less than eps() and
that parameter is not a constant term.

hasconstant(name) indicates that parameter name be treated as the constant term in the model and

that nl should not use its default algorithm to find a constant term. As with noconstant, this option
is seldom used.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (gnr), that are robust to some kinds of misspecification (robust), that allow for

intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods (bootstrap,
jackknife); see [R] vce option.

vce(gnr), the default, uses the conventionally derived variance estimator for nonlinear models fit
using Gauss–Newton regression.
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nl also allows the following:

vce(hac kernel [ # ]) specifies that a heteroskedasticity- and autocorrelation-consistent (HAC) vari-
ance estimate be used. HAC refers to the general form for combining weighted matrices to form

the variance estimate. There are three kernels available for nl:

nwest | gallant | anderson
# specifies the number of lags. If # is not specified, 𝑁 − 2 is assumed.

vce(hac kernel [ # ]) is not allowed if weights are specified.
vce(hc2) and vce(hc3) specify alternative bias corrections for the robust variance calculation.

vce(hc2) and vce(hc3) may not be specified with the svy prefix. By default, vce(robust)
uses �̂�2

𝑗 = {𝑛/(𝑛 − 𝑘)}𝑢2
𝑗 as an estimate of the variance of the 𝑗th observation, where 𝑢𝑗 is

the calculated residual and 𝑛/(𝑛 − 𝑘) is included to improve the overall estimate’s small-sample
properties.

vce(hc2) instead uses 𝑢2
𝑗 /(1 − ℎ𝑗𝑗) as the observation’s variance estimate, where ℎ𝑗𝑗 is the 𝑗th

diagonal element of the hat (projection) matrix. This produces an unbiased estimate of the covari-

ance matrix if the model is homoskedastic. vce(hc2) tends to produce slightly more conservative
confidence intervals than vce(robust).

vce(hc3) uses 𝑢2
𝑗 /(1 − ℎ𝑗𝑗)2 as suggested by Davidson and MacKinnon (? and ?), who report

that this often produces better results when the model is heteroskedastic. vce(hc3) produces

confidence intervals that tend to be even more conservative.

See, in particular, ?, 239, who advocate the use of vce(hc2) or vce(hc3) instead of the plain

robust estimator for nonlinear least squares.

� � �
Reporting �

level(#); see [R] Estimation options.

leave leaves behind after estimation a set of new variables with the same names as the estimated pa-

rameters containing the derivatives of 𝐸(𝑦) with respect to the parameters. If the dataset contains an
existing variable with the same name as a parameter, then using leave causes nl to issue an error
message with return code 110.

leave may not be specified with vce(cluster clustvar) or the svy prefix.

title(string) specifies an optional title that will be displayed just above the table of parameter esti-

mates.

title2(string) specifies an optional subtitle that will be displayed between the title specified in

title() and the table of parameter estimates. If title2() is specified but title() is not, title2()
has the same effect as title().

display options: cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] Esti-
mation options.

� � �
Optimization �

optimization options: iterate(#), [no]log, trace. iterate() specifies the maximum number of

iterations, log/nolog specifies whether to show the iteration log (see set iterlog in [R] set iter),
and trace specifies that the iteration log should include the current parameter vector. These options
are seldom used.
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eps(#) specifies the convergence criterion for successive parameter estimates and for the residual sum
of squares. The default is eps(1e-5).

delta(#) specifies the relative change in a parameter to be used in computing the numeric deriva-

tives. The derivative for parameter 𝛽𝑖 is computed as {𝑓(𝑋, 𝛽1, 𝛽2, . . . , 𝛽𝑖 + 𝑑, 𝛽𝑖+1, . . .) −
𝑓(𝑋, 𝛽1, 𝛽2, . . . , 𝛽𝑖, 𝛽𝑖+1, . . .)}/𝑑, where 𝑑 is 𝛿(𝛽𝑖 + 𝛿). The default is delta(4e-7).

The following options are available with nl but are not shown in the dialog box:

coeflegend; see [R] Estimation options.

Remarks and examples
Remarks are presented under the following headings:

Substitutable expressions
Substitutable expression programs
Built-in functions
Lognormal errors
Other uses
Weights
Potential errors
General comments on fitting nonlinear models
Function evaluator programs

nl fits an arbitrary nonlinear function by least squares. The interactive version allows you to enter
the function directly on the command line or dialog box using substitutable expressions. You can write

a substitutable expression program for functions that you fit frequently to save yourself time. Finally,

function evaluator programs give you the most flexibility in defining your nonlinear function, though

they are more complicated to use.

The next section explains the substitutable expressions that are used to define the regression function,

and the section thereafter explains how to write substitutable expression program files so that you do not

need to type in commonly used functions over and over. Later sections highlight other features of nl.

The final section discusses function evaluator programs. If you find substitutable expressions ad-

equate to define your nonlinear function, then you can skip that section entirely. Function evaluator

programs are generally needed only for complicated problems, such as multistep estimators. The pro-

gram receives a vector of parameters at which it is to compute the function and a variable into which the

results are to be placed.

Substitutable expressions
You define the nonlinear function to be fit by nl by using a substitutable expression. Substitutable

expressions are just like any other mathematical expressions involving scalars and variables, such as

those you would use with Stata’s generate command, except that the parameters to be estimated are
bound in braces. See [U] 13.2 Operators and [U] 13.3 Functions for more information on expressions.

For example, suppose that you wish to fit the function

𝑦𝑖 = 𝛽0(1 − 𝑒−𝛽1𝑥𝑖) + 𝜖𝑖

where 𝛽0 and 𝛽1 are the parameters to be estimated and 𝜖𝑖 is an error term. You would simply type

. nl (y = {b0}*(1 - exp(-1*{b1}*x)))
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Youmust enclose the entire equation in parentheses. Because b0 and b1 are enclosed in braces, nl knows
that they are parameters in the model. nl will initialize b0 and b1 to zero by default. To request that nl
initialize b0 to 1 and b1 to 0.25, you would type

. nl (y = {b0=1}*(1 - exp(-1*{b1=0.25}*x)))

That is, inside the braces denoting a parameter, you put the parameter name followed by an equal sign

and the initial value. If a parameter appears in your function multiple times, you need only specify an

initial value only once (or never, if you wish to set the initial value to zero). If you do specify more than

one initial value for the same parameter, nl will use the last value given. Parameter names must follow
the same conventions as variable names. See [U] 11.3 Naming conventions.

Frequently, even nonlinear functions contain linear combinations of variables. As an example, sup-

pose that you wish to fit the function

𝑦𝑖 = 𝛽0 {1 − 𝑒−(𝛽1𝑥1𝑖+𝛽2𝑥2𝑖+𝛽3𝑥3𝑖)} + 𝜖𝑖

nl allows you to declare a linear combination of variables by using the shorthand notation

. nl (y = {b0=1}*(1 - exp(-1*{xb: x1 x2 x3})))

In the syntax {xb: x1 x2 x3}, you are telling nl that you are declaring a linear combination named xb
that is a function of three variables, x1, x2, and x3. nl will create three parameters, named xb x1,
xb x2, and xb x3, and initialize them to zero. Instead of typing the previous command, you could have

typed

. nl (y = {b0=1}*(1 - exp(-1*({xb x1}*x1 + {xb x2}*x2 + {xb x3}*x3))))

and yielded the same result. You can refer to the parameters created by nl in the linear combination

later in the function, though you must declare the linear combination first if you intend to do that. When

creating linear combinations, nl ensures that the parameter names it chooses are unique and have not yet
been used in the function.

In general, there are three rules to follow when defining substitutable expressions:

1. Parameters of the model are bound in braces: {b0}, {param}, etc.

2. Initial values for parameters are given by including an equal sign and the initial value inside the

braces: {b0=1}, {param=3.571}, etc.

3. Linear combinations of variables can be included using the notation {eqname:varlist}, for ex-
ample, {xb: mpg price weight}, {score: w x z}, etc. Parameters of linear combinations are
initialized to zero.

If you specify initial values by using the initial() option, they override whatever initial values are

given within the substitutable expression. Substitutable expressions are so named because, once values

are assigned to the parameters, the resulting expression can be handled by generate and replace.
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Example 1
We wish to fit the CES production function

ln𝑄𝑖 = 𝛽0 − 1
𝜌
ln {𝛿𝐾−𝜌

𝑖 + (1 − 𝛿)𝐿−𝜌
𝑖 } + 𝜖𝑖 (1)

where ln𝑄𝑖 is the log of output for firm 𝑖; 𝐾𝑖 and 𝐿𝑖 are firm 𝑖’s capital and labor usage, respectively;
and 𝜖𝑖 is a regression error term. Because 𝜌 appears in the denominator of a fraction, zero is not a feasible
initial value; for a CES production function, 𝜌 = 1 is a reasonable choice. Setting 𝛿 = 0.5 implies that

labor and capital have equal impacts on output, which is also a reasonable choice for an initial value. We

type

. use https://www.stata-press.com/data/r18/production

. nl (lnoutput = {b0} - 1/{rho=1}*ln({delta=0.5}*capital^(-1*{rho}) +
> (1 - {delta})*labor^(-1*{rho})))
Iteration 0: Residual SS = 29.38631
Iteration 1: Residual SS = 29.36637
Iteration 2: Residual SS = 29.36583
Iteration 3: Residual SS = 29.36581
Iteration 4: Residual SS = 29.36581
Iteration 5: Residual SS = 29.36581
Iteration 6: Residual SS = 29.36581
Iteration 7: Residual SS = 29.36581

Source SS df MS
Number of obs = 100

Model 91.144992 2 45.5724962 R-squared = 0.7563
Residual 29.365806 97 .302740263 Adj R-squared = 0.7513

Root MSE = .5502184
Total 120.5108 99 1.21728079 Res. dev. = 161.2538

lnoutput Coefficient Std. err. t P>|t| [95% conf. interval]

/b0 3.792158 .099682 38.04 0.000 3.594316 3.989999
/rho 1.386993 .472584 2.93 0.004 .4490443 2.324941

/delta .4823616 .0519791 9.28 0.000 .3791975 .5855258

Note: Parameter b0 is used as a constant term during estimation.

nl will attempt to find a constant term in the model and, if one is found, mention it at the bottom of

the output. nl found b0 to be a constant because the partial derivative 𝜕 ln𝑄𝑖/𝜕b0 has a coefficient of

variation less than eps() in the estimation sample.

The elasticity of substitution for the CES production function is 𝜎 = 1/(1 + 𝜌); and, having fit the
model, we can use nlcom to estimate it:

. nlcom (1/(1 + _b[/rho]))
_nl_1: 1/(1 + _b[/rho])

lnoutput Coefficient Std. err. z P>|z| [95% conf. interval]

_nl_1 .4189372 .0829424 5.05 0.000 .256373 .5815014

See [R] nlcom and [U] 13.5 Accessing coefficients and standard errors for more information.
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nl’s output closely mimics that of regress; see [R] regress for more information. The 𝑅2, sums

of squares, and similar statistics are calculated in the same way that regress calculates them. If no

“constant” term is specified, the usual caveats apply to the interpretation of the 𝑅2 statistic; see the

comments and references in ?. Unlike regress, nl does not report a model 𝐹 statistic, because a test of

the joint significance of all the parameters except the constant term may not be relevant in a nonlinear

model.

Substitutable expression programs
If you fit the same model often or if you want to write an estimator that will operate on whatever

variables you specify, then you will want to write a substitutable expression program. That program will

return a macro containing a substitutable expression that nl can then evaluate, and it may optionally

calculate initial values as well. The name of the program must begin with the letters nl.

To illustrate, suppose that you use the CES production function often in your work. Instead of typing

in the formula each time, you can write a program like this:

program nlces, rclass
version 18.0 // (or version 18.5 for StataNow)
syntax varlist(min=3 max=3) [if]
local logout : word 1 of ‘varlist’
local capital : word 2 of ‘varlist’
local labor : word 3 of ‘varlist’
// Initial value for b0 given delta=0.5 and rho=1
tempvar y
generate double ‘y’ = ‘logout’ + ln(0.5*‘capital’^-1 + 0.5*‘labor’^-1)
summarize ‘y’ ‘if’, meanonly
local b0val = r(mean)
// Terms for substitutable expression
local capterm ”{delta=0.5}*‘capital’^(-1*{rho})”
local labterm ”(1-{delta})*‘labor’^(-1*{rho})”
local term2 ”1/{rho=1}*ln(‘capterm’ + ‘labterm’)”
// Return substitutable expression and title
return local eq ”‘logout’ = {b0=‘b0val’} - ‘term2’”
return local title ”CES ftn., ln Q=‘logout’, K=‘capital’, L=‘labor’”

end

The program accepts three variables for log output, capital, and labor, and it accepts an if exp qualifier to
restrict the estimation sample. All programs that you write to use with nlmust accept an if exp qualifier
because, when nl calls the program, it passes a binary variable that marks the estimation sample (the
variable equals one if the observation is in the sample and zero otherwise). When calculating initial

values, you will want to restrict your computations to the estimation sample, and you can do so by using

if with any commands that accept if exp qualifiers. Even if your program does not calculate initial

values or otherwise use the if qualifier, the syntax statement must still allow it. See [P] syntax for

more information on the syntax command and the use of if.

As in the previous example, reasonable initial values for 𝛿 and 𝜌 are 0.5 and 1, respectively. Condi-

tional on those values, (1) can be rewritten as

𝛽0 = ln𝑄𝑖 + ln(0.5𝐾−1
𝑖 + 0.5𝐿−1

𝑖 ) − 𝜖𝑖 (2)

so a good initial value for 𝛽0 is the mean of the right-hand side of (2) ignoring 𝜖𝑖. Lines 7–10 of the

function evaluator program calculate that mean and store it in a local macro. Notice the use of if in the
summarize statement so that the mean is calculated only for the estimation sample.
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The final part of the program returns two macros. The macro title is optional and defines a short
description of the model that will be displayed in the output immediately above the table of parameter

estimates. The macro eq is required and defines the substitutable expression that nl will use. If the

expression is short, you can define it all at once. However, because the expression used here is somewhat

lengthy, defining local macros and then building up the final expression from them is easier.

To verify that there are no errors in your program, you can call it directly and then use return list:

. use https://www.stata-press.com/data/r18/production

. nlces lnoutput capital labor
(output omitted )

. return list
macros:

r(title) : ”CES ftn., ln Q=lnoutput, K=capital, L=labor”
r(eq) : ”lnoutput = {b0=3.711606264663641} - 1/{rho=1}*ln({delt

> a=0.5}*capital^(-1*{rho}) + (1-{delta})*labor^(-1*{rho}))”

The macro r(eq) contains the same substitutable expression that we specified at the command line in the
preceding example, except for the initial value for b0. In short, an nl substitutable expression program
should return in r(eq) the same substitutable expression you would type at the command line. The only
difference is that when writing a substitutable expression program, you do not bind the entire expression

inside parentheses.

Having written the program, you can use it by typing

. nl ces: lnoutput capital labor

(There is a space between nl and ces.) The output is identical to that shown in example 1, save for the
title defined in the function evaluator program that appears immediately above the table of parameter

estimates.

Technical note
You will want to store nlces as an ado-file called nlces.ado. The alternative is to type the code into

Stata interactively or to place the code in a do-file. While those alternatives are adequate for occasional

use, if you save the program as an ado-file, you can use the function anytime you use Stata without

having to redefine the program. When nl attempts to execute nlces, if the program is not in Stata’s

memory, Stata will search the disk(s) for an ado-file of the same name and, if found, automatically load

it. All you have to do is name the file with the .ado suffix and then place it in a directory where Stata
will find it. You should put the file in the directory Stata reserves for user-written ado-files, which,

depending on your operating system, is c:\ado\personal (Windows), ~ /ado/personal (Unix), or

~:ado:personal (Mac). See [U] 17 Ado-files.

Sometimes you may want to pass additional options to the substitutable expression program. You can

modify the syntax statement of your program to accept whatever options you wish. Then when you call

nl with the syntax

. nl func prog: varlist, options

any options that are not recognized by nl (see the table of options at the beginning of this entry) are

passed on to your function evaluator program. The only other restriction is that your program cannot

accept an option named at because nl uses that option with function evaluator programs.
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Built-in functions
Some functions are used so often that nl has them built in so that you do not need to write them

yourself. nl automatically chooses initial values for the parameters, though you can use the initial()
option to override them.

Three alternatives are provided for exponential regression with one asymptote:

exp3 𝑦𝑖 = 𝛽0 + 𝛽1𝛽𝑥𝑖
2 + 𝜖𝑖

exp2 𝑦𝑖 = 𝛽1𝛽𝑥𝑖
2 + 𝜖𝑖

exp2a 𝑦𝑖 = 𝛽1(1 − 𝛽𝑥𝑖
2 ) + 𝜖𝑖

For instance, typing nl exp3: ras dvl fits the three-parameter exponential model (parameters 𝛽0, 𝛽1,

and 𝛽2) using 𝑦𝑖 = ras and 𝑥𝑖 = dvl.

Two alternatives are provided for the logistic function (symmetric sigmoid shape; not to be confused

with logistic regression):

log4 𝑦𝑖 = 𝛽0 + 𝛽1/[1 + exp{−𝛽2(𝑥𝑖 − 𝛽3)}] + 𝜖𝑖

log3 𝑦𝑖 = 𝛽1/[1 + exp{−𝛽2(𝑥𝑖 − 𝛽3)}] + 𝜖𝑖

Finally, two alternatives are provided for the Gompertz function (asymmetric sigmoid shape):

gom4 𝑦𝑖 = 𝛽0 + 𝛽1 exp[− exp{−𝛽2(𝑥𝑖 − 𝛽3)}] + 𝜖𝑖

gom3 𝑦𝑖 = 𝛽1 exp[− exp{−𝛽2(𝑥𝑖 − 𝛽3)}] + 𝜖𝑖

Lognormal errors
Anonlinear model with errors that are independent and identically distributed normal may be written

as

𝑦𝑖 = 𝑓(x𝑖,β) + 𝑢𝑖, 𝑢𝑖 ∼ 𝑁(0, 𝜎2) (3)

for 𝑖 = 1, . . . , 𝑛. If the 𝑦𝑖 are thought to have a 𝑘-shifted lognormal instead of a normal distribution—that

is, ln(𝑦𝑖 − 𝑘) ∼ 𝑁(𝜁𝑖, 𝜏2), and the systematic part 𝑓(x𝑖,β) of the original model is still thought appro-
priate for 𝑦𝑖—the model becomes

ln(𝑦𝑖 − 𝑘) = 𝜁𝑖 + 𝑣𝑖 = ln{𝑓(x𝑖,β) − 𝑘} + 𝑣𝑖, 𝑣𝑖 ∼ 𝑁(0, 𝜏2) (4)

This model is fit if lnlsq(𝑘) is specified.

If model (4) is correct, the variance of (𝑦𝑖 − 𝑘) is proportional to {𝑓(x𝑖,β) − 𝑘}2
. Probably the

most common case is 𝑘 = 0, sometimes called “proportional errors” because the standard error of 𝑦𝑖
is proportional to its expectation, 𝑓(x𝑖,β). Assuming that the value of 𝑘 is known, (4) is just another

nonlinear model in β, and it may be fit as usual. However, we may wish to compare the fit of (3) with
that of (4) using the residual sum of squares (RSS) or the deviance 𝐷, 𝐷 = −2 × log-likelihood, from

each model. To do so, we must allow for the change in scale introduced by the log transformation.
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Assuming, then, the 𝑦𝑖 to be normally distributed, ?, 85–87, 184, by considering the Jacobian∏|𝜕 ln(𝑦𝑖−

𝑘)/𝜕𝑦𝑖|, showed that multiplying both sides of (4) by the geometric mean of 𝑦𝑖 − 𝑘, ̇𝑦, gives residuals on
the same scale as those of 𝑦𝑖. The geometric mean is given by

̇𝑦 = 𝑒𝑛−1 ∑ ln(𝑦𝑖−𝑘)

which is a constant for a given dataset. The residual deviance for (3) and for (4) may be expressed as

𝐷(β̂) = {1 + ln(2𝜋�̂�2)}𝑛 (5)

where β̂ is the maximum likelihood estimate (MLE) of β for each model and 𝑛�̂�2 is the RSS from (3), or

that from (4) multiplied by ̇𝑦2.

Because (3) and (4) are models with different error structures but the same functional form, the arith-

metic difference in their RSS or deviances is not easily tested for statistical significance. However, if the

deviance difference is large (>4, say), we would naturally prefer the model with the smaller deviance. Of

course, the residuals for each model should be examined for departures from assumptions (nonconstant

variance, nonnormality, serial correlations, etc.) in the usual way.

Alternatively, consider modeling

𝐸(𝑦𝑖) = 1/(𝐶 + 𝐴𝑒𝐵𝑥𝑖) (6)

𝐸(1/𝑦𝑖) = 𝐸(𝑦′
𝑖) = 𝐶 + 𝐴𝑒𝐵𝑥𝑖 (7)

where 𝐶, 𝐴, and 𝐵 are parameters to be estimated. Using the data (𝑦, 𝑥) = (0.04, 5), (0.06, 12),
(0.08, 25), (0.1, 35), (0.15, 42), (0.2, 48), (0.25, 60), (0.3, 75), and (0.5, 120) (?), fitting the models

yields
Model 𝐶 𝐴 𝐵 RSS Deviance

(6) 1.781 25.74 −0.03926 −0.001640 −51.95

(6) with lnlsq(0) 1.799 25.45 −0.04051 −0.001431 −53.18

(7) 1.781 25.74 −0.03926 8.197 24.70

(7) with lnlsq(0) 1.799 27.45 −0.04051 3.651 17.42

There is little to choose between the two versions of the logistic model (6), whereas for the exponen-

tial model (7), the fit using lnlsq(0) is much better (a deviance difference of 7.28). The reciprocal

transformation has introduced heteroskedasticity into 𝑦′
𝑖 , which is countered by the proportional errors

property of the lognormal distribution implicit in lnlsq(0). The deviances are not comparable between
the logistic and exponential models because the change of scale has not been allowed for, although in

principle it could be.

Other uses
Even if you are fitting linear regression models, you may find that nl can save you some typing.

Because you specify the parameters of yourmodel explicitly, you can impose constraints on them directly.



nl — Nonlinear least-squares estimation 1967

Example 2
In example 2 of [R] cnsreg, we showed how to fit the model

mpg = 𝛽0 + 𝛽1price + 𝛽2weight + 𝛽3displ + 𝛽4gear ratio + 𝛽5foreign +
𝛽6length + 𝑢

subject to the constraints

𝛽1 = 𝛽2 = 𝛽3 = 𝛽6

𝛽4 = −𝛽5 = 𝛽0/20

An alternative way is to use nl:

. use https://www.stata-press.com/data/r18/auto, clear
(1978 automobile data)
. nl (mpg = {b0} + {b1}*price + {b1}*weight + {b1}*displ +
> {b0}/20*gear_ratio - {b0}/20*foreign + {b1}*length)
Iteration 0: Residual SS = 1578.522
Iteration 1: Residual SS = 1578.522

Source SS df MS
Number of obs = 74

Model 34429.478 2 17214.7389 R-squared = 0.9562
Residual 1578.5223 72 21.9239203 Adj R-squared = 0.9549

Root MSE = 4.682299
Total 36008 74 486.594595 Res. dev. = 436.4562

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

/b0 26.52229 1.375178 19.29 0.000 23.78092 29.26365
/b1 -.000923 .0001534 -6.02 0.000 -.0012288 -.0006172

The point estimates and standard errors for 𝛽0 and 𝛽1 are identical to those reported in example 2 of

[R] cnsreg. To get the estimate for 𝛽4, we can use nlcom:

. nlcom _b[/b0]/20
_nl_1: _b[/b0]/20

mpg Coefficient Std. err. z P>|z| [95% conf. interval]

_nl_1 1.326114 .0687589 19.29 0.000 1.191349 1.460879

The advantage to using nl is that we do not need to use the constraint command six times.

nl is also a useful tool when doing exploratory data analysis. For example, you may want to run a
regression of y on a function of x, though you have not decided whether to use sqrt(x) or ln(x). You can
use nl to run both regressions without having first to generate two new variables:

. nl (y = {b0} + {b1}*ln(x))

. nl (y = {b0} + {b1}*sqrt(x))

? shows the advantages of using nl when marginal effects of transformed variables are desired as
well.
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Weights
Weights are specified in the usual way—analytic and frequency weights as well as iweights are

supported; see [U] 20.24Weighted estimation. Use of analytic weights implies that the 𝑦𝑖 have different

variances. Therefore, model (3) may be rewritten as

𝑦𝑖 = 𝑓(x𝑖,β) + 𝑢𝑖, 𝑢𝑖 ∼ 𝑁(0, 𝜎2/𝑤𝑖) (3a)

where 𝑤𝑖 are (positive) weights, assumed to be known and normalized such that their sum equals the

number of observations. The residual deviance for (3a) is

𝐷(β̂) = {1 + ln(2𝜋�̂�2)}𝑛 − ∑ ln(𝑤𝑖) (5a)

[compare with (5)], where

𝑛�̂�2 = RSS = ∑ 𝑤𝑖{𝑦𝑖 − 𝑓(x𝑖, β̂)}2

Defining and fitting a model equivalent to (4) when weights have been specified as in (3a) is not straight-

forward and has not been attempted. Thus, deviances using and not using the lnlsq() option may not
be strictly comparable when analytic weights (other than 0 and 1) are used.

You do not need to modify your substitutable expression in any way to use weights. If, however, you

write a substitutable expression program, then you should account for weights when obtaining initial

values. When nl calls your program, it passes whatever weight expression (if any) was specified by the
user. Here is an outline of a substitutable expression program that accepts weights:

program nl name, rclass
version 18.0 // (or version 18.5 for StataNow)
syntax varlist [aw fw iw] if
...
// Obtain initial values allowing weights
// Use the syntax [‘weight’‘exp’]. For example,
summarize varname [‘weight’‘exp’] ‘if’
regress depvar varlist [‘weight’‘exp’] ‘if’
...
// Return substitutable expression
return local eq ”substitutable expression”
return local title ”description of estimator”

end

For details on how the syntax command processes weight expressions, see [P] syntax.

Potential errors
nl is reasonably robust to the inability of your nonlinear function to be evaluated at some parameter

values. nl does assume that your function can be evaluated at the initial values of the parameters. If your
function cannot be evaluated at the initial values, an error message is issued with return code 480. Recall

that if you do not specify an initial value for a parameter, then nl initializes it to zero. Many nonlinear

functions cannot be evaluated when some parameters are zero, so in those cases specifying alternative

initial values is crucial.

Thereafter, as nl changes the parameter values, it monitors your function for unexpected missing

values. If these are detected, nl backs up. That is, nl finds a point between the previous, known-to-be-
good parameter vector and the new, known-to-be-bad vector at which the function can be evaluated and

continues its iterations from that point.
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nl requires that once a parameter vector is found where the predictions can be calculated, small

changes to the parameter vector be made to calculate numeric derivatives. If a boundary is encountered

at this point, an error message is issued with return code 481.

When specifying lnlsq(), an attempt to take logarithms of 𝑦𝑖 − 𝑘 when 𝑦𝑖 ≤ 𝑘 results in an error

message with return code 482.

If iterate() iterations are performed and estimates still have not converged, results are presented
with a warning, and the return code is set to 430.

If you use the programmed substitutable expression version of nl with a function evaluator program,
or vice versa, Stata issues an error message. Verify that you are using the syntax appropriate for the

program you have.

General comments on fitting nonlinear models
Achieving convergence is often problematic. For example, a unique minimum of the sum-of-squares

function may not exist. Much literature exists on different algorithms that have been used, on strategies

for obtaining good initial parameter values, and on tricks for parameterizing the model to make its be-

havior as linear-like as possible. Selected references are ?, chap. 10 for computational matters and ? and

? for all three aspects. Ratkowsky’s book is particularly clear and approachable, with useful discussion

on the meaning and practical implications of intrinsic and parameter-effects nonlinearity. An excellent

text on nonlinear estimation is ?. Also see Davidson and MacKinnon (? and ?).

To enhance the success of nl, pay attention to the form of the model fit, along the lines of Ratkowsky

and Ross. For example, ?, 49–59 analyzes three possible three-parameter yield-density models for plant

growth:

𝐸(𝑦𝑖) =
⎧{
⎨{⎩

(𝛼 + 𝛽𝑥𝑖)−1/𝜃

(𝛼 + 𝛽𝑥𝑖 + 𝛾𝑥2
𝑖 )−1

(𝛼 + 𝛽𝑥𝜙
𝑖 )−1

All three models give similar fits. However, he shows that the second formulation is dramatically more

linear-like than the other two and therefore has better convergence properties. In addition, the param-

eter estimates are virtually unbiased and normally distributed, and the asymptotic approximation to the

standard errors, correlations, and confidence intervals is much more accurate than for the other models.

Even within a given model, the way the parameters are expressed (for example, 𝜙𝑥𝑖 or 𝑒𝜃𝑥𝑖) affects the

degree of linearity and convergence behavior.

Function evaluator programs
Occasionally, a nonlinear function may be so complex that writing a substitutable expression for it

is impractical. For example, there could be many parameters in the model. Alternatively, if you are

implementing a two-step estimator, writing a substitutable expression may be altogether impossible.

Function evaluator programs can be used in these situations.
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nl will pass to your function evaluator program a list of variables, a weight expression, a variable

marking the estimation sample, and a vector of parameters. Your program is to replace the dependent

variable, which is the first variable in the variables list, with the values of the nonlinear function evaluated

at those parameters. As with substitutable expression programs, the first two letters of the name must be

nl.

To focus on the mechanics of the function evaluator program, again let’s compare the CES production

function to the previous examples. The function evaluator program is

program nlces2

version 18.0 // (or version 18.5 for StataNow)
syntax varlist(min=3 max=3) if, at(name)
local logout : word 1 of ‘varlist’
local capital : word 2 of ‘varlist’
local labor : word 3 of ‘varlist’

// Retrieve parameters out of at matrix
tempname b0 rho delta
scalar ‘b0’ = ‘at’[1, 1]
scalar ‘rho’ = ‘at’[1, 2]
scalar ‘delta’ = ‘at’[1, 3]

tempvar kterm lterm
generate double ‘kterm’ = ‘delta’*‘capital’^(-1*‘rho’) ‘if’
generate double ‘lterm’ = (1-‘delta’)*‘labor’^(-1*‘rho’) ‘if’

// Fill in dependent variable
replace ‘logout’ = ‘b0’ - 1/‘rho’*ln(‘kterm’ + ‘lterm’) ‘if’

end

Unlike the previous nlces program, this one is not declared to be r-class. The syntax statement again
accepts three variables: one for log output, one for capital, and one for labor. An if exp is again required
because nl will pass a binary variable marking the estimation sample. All function evaluator programs
must accept an option named at() that takes a name as an argument—that is how nl passes the parameter
vector to your program.

The next part of the program retrieves the output, labor, and capital variables from the variables list.

It then breaks up the temporary matrix at and retrieves the parameters b0, rho, and delta. Pay careful
attention to the order in which the parameters refer to the columns of the at matrix because that will

affect the syntax you use with nl. The temporary names you use inside this program are immaterial,

however.

The rest of the program computes the nonlinear function, using some temporary variables to hold

intermediate results. The final line of the program then replaces the dependent variable with the values

of the function. Notice the use of ‘if’ to restrict attention to the estimation sample. nlmakes a copy of
your dependent variable so that when the command is finished your data are left unchanged.

To use the program and fit your model, you type

. use https://www.stata-press.com/data/r18/production, clear

. nl ces2 @ lnoutput capital labor, parameters(b0 rho delta)
> initial(b0 0 rho 1 delta 0.5)

The output is again identical to that shown in example 1. The order inwhich the parameters were specified

in the parameters() option is the same in which they are retrieved from the at matrix in the program.
To initialize them, you simply list the parameter name, a space, the initial value, and so on.
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If you use the nparameters() option instead of the parameters() option, the parameters are named
b1, b2, . . . , b𝑘, where 𝑘 is the number of parameters. Thus, you could have typed

. nl ces2 @ lnoutput capital labor, nparameters(3) initial(b1 0 b2 1 b3 0.5)

With that syntax, the parameters called b0, rho, and delta in the program will be labeled b1, b2, and b3,
respectively. In programming situations or if there are many parameters, instead of listing the parameter

names and initial values in the initial() option, you may find it more convenient to pass a column
vector. In those cases, you could type

. matrix myvals = (0, 1, 0.5)

. nl ces2 @ lnoutput capital labor, nparameters(3) initial(myvals)

In summary, a function evaluator program receives a list of variables, the first of which is the depen-

dent variable that you are to replace with the values of your nonlinear function. Additionally, it must

accept an if exp, as well as an option named at that will contain the vector of parameters at which nl
wants the function evaluated. You are then free to do whatever is necessary to evaluate your function

and replace the dependent variable.

If you wish to use weights, your function evaluator program’s syntax statement must accept them.
If your program consists only of, for example, generate statements, you need not do anything with the
weights passed to your program. However, if in calculating the nonlinear function you use commands

such as summarize or regress, then you will want to use the weights with those commands.

As with substitutable expression programs, nl will pass to it any options specified that nl does not
accept, providing you with a way to pass more information to your function.

Technical note
Before version 9 of Stata, the nl command used a different syntax, which required you to write an

nlfcn program, and it did not have a syntax for interactive use other than the seven functions that were

built-in. The old syntax of nl still works, and you can still use those nlfcn programs. If nl does not see a
colon, an at sign, or a set of parentheses surrounding the equation in your command, it assumes that the

old syntax is being used.

The current version of nl uses scalars and matrices to store intermediate calculations instead of local
and global macros as the old version did, so the current version produces more accurate results. In

practice, however, any discrepancies are likely to be small.
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Stored results
nl stores the following in e():
Scalars

e(N) number of observations

e(k) number of parameters

e(k eq model) number of equations in overall model test; always 0
e(df m) model degrees of freedom

e(df r) residual degrees of freedom

e(df t) total degrees of freedom

e(mss) model sum of squares

e(rss) residual sum of squares

e(tss) total sum of squares

e(mms) model mean square

e(msr) residual mean square

e(ll) log likelihood assuming i.i.d. normal errors

e(r2) 𝑅2

e(r2 a) adjusted 𝑅2

e(rmse) root mean squared error

e(dev) residual deviance

e(N clust) number of clusters

e(lnlsq) value of lnlsq if specified
e(log t) 1 if lnlsq specified, 0 otherwise
e(gm 2) square of geometric mean of (𝑦 − 𝑘) if lnlsq, 1 otherwise
e(cj) position of constant in e(b) or 0 if no constant
e(delta) relative change used to compute derivatives

e(rank) rank of e(V)
e(ic) number of iterations

e(converged) 1 if converged, 0 otherwise
Macros

e(cmd) nl
e(cmdline) command as typed

e(depvar) name of dependent variable

e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(title 2) secondary title in estimation output

e(clustvar) name of cluster variable

e(hac kernel) HAC kernel

e(hac lag) HAC lag

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(type) 1 = interactively entered expression
2 = substitutable expression program
3 = function evaluator program

e(sexp) substitutable expression

e(params) names of parameters

e(funcprog) function evaluator program

e(rhs) contents of variables()
e(properties) b V
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins

Matrices

e(b) coefficient vector

e(init) initial values vector

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance
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Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas
The derivation here is based on ?, chap. 6. Let β denote the 𝑘 × 1 vector of parameters, and write the

regression function using matrix notation as y = f(x,β) +u so that the objective function can be written

as

SSR(β) = {y − f(x,β)}′
D {y − f(x,β)}

The D matrix contains the weights and is defined in [R] regress; if no weights are specified, then D is

the 𝑁 × 𝑁 identity matrix. Taking a second-order Taylor series expansion centered at β0 yields

SSR(β) ≈ SSR(β0) + g′(β0)(β − β0) + 1
2

(β − β0)′H(β0)(β − β0) (8)

where g(β0) denotes the 𝑘 × 1 gradient of SSR(β) evaluated at β0 andH(β0) denotes the 𝑘 × 𝑘 Hessian
of SSR(β) evaluated at β0. Letting X denote the 𝑁 × 𝑘 matrix of derivatives of f(x,β) with respect to
β, the gradient g(β) is

g(β) = −2X′Du (9)

X and u are obviously functions of β, though for notational simplicity that dependence is not shown
explicitly. The (𝑚, 𝑛) element of the Hessian can be written as

𝐻𝑚𝑛(β) = −2
𝑖=𝑁
∑
𝑖=1

𝑑𝑖𝑖 [ 𝜕2𝑓𝑖
𝜕𝛽𝑚𝜕𝛽𝑛

𝑢𝑖 − 𝑋𝑖𝑚𝑋𝑖𝑛] (10)

where 𝑑𝑖𝑖 is the 𝑖th diagonal element of D. As discussed in ?, chap. 6, the first term inside the brackets

of (10) has expectation zero, so the Hessian can be approximated as

H(β) = 2X′DX (11)
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Differentiating the Taylor series expansion of SSR(β) shown in (8) yields the first-order condition for
a minimum

g(β0) + H(β0)(β − β0) = 0

which suggests the iterative procedure

β𝑗+1 = β𝑗 − 𝛼H−1(β𝑗)g(β𝑗) (12)

where 𝛼 is a “step size” parameter chosen at each iteration to improve convergence. Using (9) and (11),

we can write (12) as

β𝑗+1 = β𝑗 + 𝛼(X′DX)−1X′Du (13)

where X and u are evaluated at β𝑗. Apart from the scalar 𝛼, the second term on the right-hand side of

(13) can be computed via a (weighted) regression of the columns of X on the errors. nl computes the
derivatives numerically and then calls regress. At each iteration, 𝛼 is set to one, and a candidate value

β∗
𝑗+1 is computed by (13). If SSR(β∗

𝑗+1) < SSR(β𝑗), then β𝑗+1 = β∗
𝑗+1 and the iteration is complete.

Otherwise, 𝛼 is halved, a new β∗
𝑗+1 is calculated, and the process is repeated. Convergence is declared

when 𝛼|𝛽𝑗+1,𝑚| ≤ 𝜖(|𝛽𝑗𝑚| + 𝜏) for all 𝑚 = 1, . . . , 𝑘. nl uses 𝜏 = 10−3 and, by default, 𝜖 = 10−5,

though you can specify an alternative value of 𝜖 with the eps() option.
As derived, for example, in ?, chap. 6, an expedient way to obtain the covariance matrix is to compute

u and the columns of X at the final estimate β̂ and then regress that u on X. The covariance matrix of

the estimated parameters of that regression serves as an estimate of Var(β̂). If that regression employs
a robust covariance matrix estimator, then the covariance matrix for the parameters of the nonlinear

regression will also be robust.

All other statistics are calculated analogously to those in linear regression, except that the nonlinear

function 𝑓(x𝑖,β) plays the role of the linear function x′
𝑖β. See [R] regress.

This command supports estimation with survey data. For details on VCEs with survey data, see

[SVY] Variance estimation.
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[R] gmm — Generalized method of moments estimation

[R] ml — Maximum likelihood estimation

[R] mlexp — Maximum likelihood estimation of user-specified expressions

[R] nlcom — Nonlinear combinations of parameters

[R] nlsur — Estimation of nonlinear systems of equations

[R] regress — Linear regression

[ME] menl — Nonlinear mixed-effects regression
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[SVY] svy estimation — Estimation commands for survey data

[U] 20 Estimation and postestimation commands
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Postestimation commands predict margins Remarks and examples Also see

Postestimation commands
The following postestimation commands are available after nl:

Command Description

estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian infor-
mation criteria (AIC, CAIC, AICc, and BIC, respectively)

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estat (svy) postestimation statistics for survey data

estimates cataloging estimation results

etable table of estimation results
∗ forecast dynamic forecasts and simulations
∗ hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

∗ lrtest likelihood-ratio test
† margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

predict fitted values, residuals, etc.

predictnl point estimates, standard errors, testing, and inference for generalized predictions

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

∗forecast, hausman, and lrtest are not appropriate with svy estimation results.
†You must specify the variables() option with nl.

1976
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predict

Description for predict
predict creates a new variable containing predictions such as fitted values, residuals, probabilities,

and expected values.

Menu for predict
Statistics > Postestimation

Syntax for predict
predict [ type ] newvar [ if ] [ in ] [ , statistic ]

predict [ type ] stub* [ if ] [ in ], scores

where 𝑘 is the number of parameters in the model.

statistic Description

Main

yhat fitted values; the default

residuals residuals

pr(a,b) Pr(𝑦𝑗 | 𝑎 < 𝑦𝑗 < 𝑏)
e(a,b) 𝐸(𝑦𝑗 | 𝑎 < 𝑦𝑗 < 𝑏)
ystar(a,b) 𝐸(𝑦∗

𝑗), 𝑦∗
𝑗 = max{𝑎,min(𝑦𝑗, 𝑏)}

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted
only for the estimation sample.

Options for predict

� � �
Main �

yhat, the default, calculates the fitted values.

residuals calculates the residuals.

pr(a,b) calculates Pr(a < x𝑗b + 𝑢𝑗 < b), the probability that 𝑦𝑗|x𝑗 would be observed in the interval

(a, b).
a and b may be specified as numbers or variable names; lb and ub are variable names;

pr(20,30) calculates Pr(20 < x𝑗b + 𝑢𝑗 < 30);
pr(lb,ub) calculates Pr(lb < x𝑗b + 𝑢𝑗 < ub); and
pr(20,ub) calculates Pr(20 < x𝑗b + 𝑢𝑗 < ub).
a missing (a ≥ .) means −∞; pr(.,30) calculates Pr(−∞ < x𝑗b + 𝑢𝑗 < 30);
pr(lb,30) calculates Pr(−∞ < x𝑗b + 𝑢𝑗 < 30) in observations for which lb ≥ .
and calculates Pr(𝑙𝑏 < x𝑗b + 𝑢𝑗 < 30) elsewhere.
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b missing (b ≥ .) means +∞; pr(20,.) calculates Pr(+∞ > x𝑗b + 𝑢𝑗 > 20);
pr(20,ub) calculates Pr(+∞ > x𝑗b + 𝑢𝑗 > 20) in observations for which ub ≥ .
and calculates Pr(20 < x𝑗b + 𝑢𝑗 < ub) elsewhere.

e(a,b) calculates 𝐸(x𝑗b + 𝑢𝑗 | a < x𝑗b + 𝑢𝑗 < b), the expected value of 𝑦𝑗|x𝑗 conditional on 𝑦𝑗|x𝑗
being in the interval (a, b), meaning that 𝑦𝑗|x𝑗 is truncated. a and b are specified as they are for pr().

ystar(a,b) calculates 𝐸(𝑦∗
𝑗), where 𝑦∗

𝑗 = 𝑎 if x𝑗b+𝑢𝑗 ≤ 𝑎, 𝑦∗
𝑗 = 𝑏 if x𝑗b+𝑢𝑗 ≥ 𝑏, and 𝑦∗

𝑗 = x𝑗b+𝑢𝑗
otherwise, meaning that 𝑦∗

𝑗 is censored. a and b are specified as they are for pr().

scores calculates the scores. The 𝑗th new variable created will contain the score for the 𝑗th parameter
in e(b).

margins

Description for margins
margins estimates margins of response for fitted values.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist ] [ , options ]
margins [marginlist ] , predict(statistic ...) [ options ]

statistic Description

yhat fitted values; the default

pr(a,b) not allowed with margins
e(a,b) not allowed with margins
ystar(a,b) not allowed with margins
residuals not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.
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Remarks and examples

Example 1
Obtaining predictions after fitting a nonlinear regression model with nl is no more difficult than

obtaining predictions after fitting a linear regression model with regress. Here we fit a model of mpg
on weight, allowing for a nonlinear relationship:

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. nl (mpg = {b0} + {b1}*weight^{gamma=-.5}), variables(weight) nolog

Source SS df MS
Number of obs = 74

Model 1646.4376 2 823.218806 R-squared = 0.6738
Residual 797.02185 71 11.2256598 Adj R-squared = 0.6646

Root MSE = 3.350472
Total 2443.4595 73 33.4720474 Res. dev. = 385.8874

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

/b0 -18.17583 60.61762 -0.30 0.765 -139.0439 102.6923
/b1 1377.267 5292.379 0.26 0.795 -9175.436 11929.97

/gamma -.4460916 .6763641 -0.66 0.512 -1.794723 .9025401

Note: Parameter b0 is used as a constant term during estimation.

Now, we obtain the predicted values of mpg and plot them in a graph along with the observed values:

. predict mpghat
(option yhat assumed; fitted values)
. scatter mpg weight || line mpghat weight, sort

10
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40

2,000 3,000 4,000 5,000
Weight (lbs.)

Mileage (mpg)
Fitted values
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Suppose we wanted to know how sensitive mpg is to changes in weight for cars that weigh 3,000

pounds. We can use margins to find out:

. margins, eyex(weight) at(weight = 3000)
Conditional marginal effects Number of obs = 74
Model VCE: GNR
Expression: Fitted values, predict()
ey/ex wrt: weight
At: weight = 3000

Delta-method
ey/ex std. err. z P>|z| [95% conf. interval]

weight -.8408119 .0804339 -10.45 0.000 -.9984594 -.6831644

With the eyex() option, margins reports elasticities. These results show that if we increase weight by
1%, then mpg decreases by about 0.84%.

Technical note
Observant readers will notice that margins issued a warning message stating that it could not perform

its usual check for estimable functions. In the case of nl, as long as you do not specify the predict()
option of margins or specify the default predict(yhat), you can safely ignore that message. The

predicted values that nl produces are suitable for use with margins. However, if you specify any

predict() options other than yhat, then the output from margins after using nl will not be correct.

Also see
[R] nl — Nonlinear least-squares estimation

[U] 20 Estimation and postestimation commands
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Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Also see

Description
nlcom computes point estimates, standard errors, test statistics, significance levels, and confidence

intervals for (possibly) nonlinear combinations of parameter estimates after any Stata estimation com-

mand, including survey estimation. Results are displayed in the usual table format used for displaying

estimation results. Standard error calculations are based on the “delta method”, an approximation appro-

priate in large samples.

Quick start
Estimate the ratio of the coefficient of x2 to the coefficient of x1

nlcom _b[x2]/_b[x1]

Also estimate the ratio of the coefficient of x3 to coefficient of x1
nlcom (_b[x2]/_b[x1]) (_b[x3]/_b[x1])

Add labels to the ratios

nlcom (r21:_b[x2]/_b[x1]) (r31:_b[x3]/_b[x1])

Same as above, but post estimates and use the test command to test that both ratios are equal to 1
nlcom (r21:_b[x2]/_b[x1]) (r31:_b[x3]/_b[x1]), post
test (r21 = 1) (r31 = 1)

Estimate the ratio of the coefficients of factor indicators 2.a and 3.a
nlcom _b[2.a]/_b[3.a]

Estimate the ratio of the coefficients of x1 in the equations for y1 and y2 in a multiequation model
nlcom _b[y1:x1]/_b[y2:x1]

Menu
Statistics > Postestimation

1981
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Syntax
Nonlinear combination of parameters—one expression

nlcom [ name: ]exp [ , options ]

Nonlinear combinations of parameters—more than one expression

nlcom ([ name: ]exp) [([ name: ]exp) . . . ] [ , options ]

options Description

level(#) set confidence level; default is level(95)
iterate(#) maximum number of iterations

display options control column formats and line width

post post estimation results

eform report exponentiated estimates; column title is “exp(b)”
eform(string) report exponentiated estimates; column title is “string”

noheader suppress output header

df(#) use 𝑡 distribution with # degrees of freedom for computing 𝑝-values
and confidence intervals

collect is allowed; see [U] 11.1.10 Prefix commands.

Only one of eform or eform() is allowed.
noheader and df(#) do not appear in the dialog box.

The second syntax means that if more than one expression is specified, each must be surrounded by

parentheses. The optional name is any valid Stata name and labels the transformations.

exp is a possibly nonlinear expression containing

b[coef ]
b[eqno:coef ]

[eqno]coef
[eqno] b[coef ]

eqno is

##
name

coef identifies a coefficient in the model. coef is typically a variable name, a level indicator, an inter-

action indicator, or an interaction involving continuous variables. Level indicators identify one level

of a factor variable and interaction indicators identify one combination of levels of an interaction; see

[U] 11.4.3 Factor variables. coefmay contain time-series operators; see [U] 11.4.4 Time-series varlists.

Distinguish between [ ], which are to be typed, and [ ], which indicate optional arguments.

Options
level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is

level(95) or as set by set level; see [U] 20.8 Specifying the width of confidence intervals.
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iterate(#) specifies the maximum number of iterations used to find the optimal step size in calculating

numerical derivatives of the transformation(s) with respect to the original parameters. By default, the

maximum number of iterations is 100, but convergence is usually achieved after only a few iterations.

You should rarely have to use this option.

display options: cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] Esti-
mation options.

post causes nlcom to behave like a Stata estimation (eclass) command. When post is specified, nlcom
will post the vector of transformed parameters and its estimated variance–covariance matrix to e().
This option, in essence, makes the transformation permanent. Thus you could, after posting, treat the
transformed estimation results in the same way as you would treat results from other Stata estimation

commands. For example, after posting, you could redisplay the results by typing nlcom without any
arguments, or use test to perform simultaneous tests of hypotheses on linear combinations of the

transformed parameters; see [R] test.

Specifying post clears out the previous estimation results, which can be recovered only by refitting
the original model or by storing the estimation results before running nlcom and then restoring them;
see [R] estimates store.

eform and eform(string) specify that the table of estimates be displayed in exponentiated form: for each
estimate, 𝑒𝑏 rather than 𝑏 is displayed, where 𝑏 is the nonlinear combination of parameters. eform
labels the exponentiated results exp(b), whereas eform(string) uses string to label them. Standard
errors and confidence intervals are also transformed; see [R] eform option.

The following options are available with nlcom but are not shown in the dialog box:

noheader suppresses the output header.

df(#) specifies that the 𝑡 distribution with # degrees of freedom be used for computing 𝑝-values and
confidence intervals.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Basics
Using the post option
Reparameterizing ML estimates for univariate data
nlcom versus eform

Introduction
nlcom and predictnl both use the delta method. They take nonlinear transformations of the esti-

mated parameter vector from some fitted model and apply the delta method to calculate the variance,

standard error, Wald test statistic, etc., of the transformations. nlcom is designed for functions of the

parameters, and predictnl is designed for functions of the parameters and of the data, that is, for pre-
dictions.

nlcom generalizes lincom (see [R] lincom) in two ways. First, nlcom allows the transformations

to be nonlinear. Second, nlcom can be used to simultaneously estimate many transformations (whether
linear or nonlinear) and to obtain the estimated variance–covariance matrix of these transformations.
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Basics
In [R] lincom, the following regression was performed:

. use https://www.stata-press.com/data/r18/regress

. regress y x1 x2 x3
Source SS df MS Number of obs = 148

F(3, 144) = 96.12
Model 3259.3561 3 1086.45203 Prob > F = 0.0000

Residual 1627.56282 144 11.3025196 R-squared = 0.6670
Adj R-squared = 0.6600

Total 4886.91892 147 33.2443464 Root MSE = 3.3619

y Coefficient Std. err. t P>|t| [95% conf. interval]

x1 1.457113 1.07461 1.36 0.177 -.666934 3.581161
x2 2.221682 .8610358 2.58 0.011 .5197797 3.923583
x3 -.006139 .0005543 -11.08 0.000 -.0072345 -.0050435

_cons 36.10135 4.382693 8.24 0.000 27.43863 44.76407

Then, lincom was used to estimate the difference between the coefficients of x1 and x2:

. lincom _b[x2] - _b[x1]
( 1) - x1 + x2 = 0

y Coefficient Std. err. t P>|t| [95% conf. interval]

(1) .7645682 .9950282 0.77 0.444 -1.20218 2.731316

It was noted, however, that nonlinear expressions are not allowed with lincom:

. lincom _b[x2]/_b[x1]
not possible with test
r(131);

Nonlinear transformations are instead estimated using nlcom:

. nlcom _b[x2]/_b[x1]
_nl_1: _b[x2]/_b[x1]

y Coefficient Std. err. z P>|z| [95% conf. interval]

_nl_1 1.524714 .9812848 1.55 0.120 -.3985686 3.447997

Technical note
The notation b[name] is the standard way in Stata to refer to regression coefficients; see [U] 13.5Ac-

cessing coefficients and standard errors. Some commands, such as lincom and test, allow you to

drop the b[] and just refer to the coefficients by name. nlcom, however, requires the full specification
b[name].
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Returning to our linear regression example, nlcom also allows simultaneous estimation of more than
one combination:

. nlcom (_b[x2]/_b[x1]) (_b[x3]/_b[x1]) (_b[x3]/_b[x2])
_nl_1: _b[x2]/_b[x1]
_nl_2: _b[x3]/_b[x1]
_nl_3: _b[x3]/_b[x2]

y Coefficient Std. err. z P>|z| [95% conf. interval]

_nl_1 1.524714 .9812848 1.55 0.120 -.3985686 3.447997
_nl_2 -.0042131 .0033483 -1.26 0.208 -.0107756 .0023494
_nl_3 -.0027632 .0010695 -2.58 0.010 -.0048594 -.000667

We can also label the transformations to produce more informative names in the estimation table:

. nlcom (ratio21:_b[x2]/_b[x1]) (ratio31:_b[x3]/_b[x1]) (ratio32:_b[x3]/_b[x2])
ratio21: _b[x2]/_b[x1]
ratio31: _b[x3]/_b[x1]
ratio32: _b[x3]/_b[x2]

y Coefficient Std. err. z P>|z| [95% conf. interval]

ratio21 1.524714 .9812848 1.55 0.120 -.3985686 3.447997
ratio31 -.0042131 .0033483 -1.26 0.208 -.0107756 .0023494
ratio32 -.0027632 .0010695 -2.58 0.010 -.0048594 -.000667

nlcom stores the vector of estimated combinations and its estimated variance–covariance matrix in
r().

. matrix list r(b)
r(b)[1,3]

ratio21 ratio31 ratio32
c1 1.5247143 -.00421315 -.00276324
. matrix list r(V)
symmetric r(V)[3,3]

ratio21 ratio31 ratio32
ratio21 .96291982
ratio31 -.00287781 .00001121
ratio32 -.00014234 2.137e-06 1.144e-06
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Using the post option
When used with the post option, nlcom stores the estimation vector and variance–covariance matrix

in e(), making the transformation permanent:
. quietly nlcom (ratio21:_b[x2]/_b[x1]) (ratio31:_b[x3]/_b[x1])
> (ratio32:_b[x3]/_b[x2]), post
. matrix list e(b)
e(b)[1,3]

ratio21 ratio31 ratio32
y1 1.5247143 -.00421315 -.00276324
. matrix list e(V)
symmetric e(V)[3,3]

ratio21 ratio31 ratio32
ratio21 .96291982
ratio31 -.00287781 .00001121
ratio32 -.00014234 2.137e-06 1.144e-06

After posting, we can proceed as if we had just run a Stata estimation (eclass) command. For instance,
we can replay the results,

. nlcom

y Coefficient Std. err. z P>|z| [95% conf. interval]

ratio21 1.524714 .9812848 1.55 0.120 -.3985686 3.447997
ratio31 -.0042131 .0033483 -1.26 0.208 -.0107756 .0023494
ratio32 -.0027632 .0010695 -2.58 0.010 -.0048594 -.000667

or perform other postestimation tasks in the transformed metric, this time making reference to the new

“coefficients”:

. display _b[ratio31]
-.00421315
. estat vce, correlation
Correlation matrix of coefficients of nlcom model

e(V) ratio21 ratio31 ratio32

ratio21 1.0000
ratio31 -0.8759 1.0000
ratio32 -0.1356 0.5969 1.0000

. test _b[ratio21] = 1
( 1) ratio21 = 1

chi2( 1) = 0.29
Prob > chi2 = 0.5928

We see that testing b[ratio21]=1 in the transformed metric is equivalent to testing using testnl
b[x2]/ b[x1]=1 in the original metric:

. quietly regress y x1 x2 x3

. testnl _b[x2]/_b[x1] = 1
(1) _b[x2]/_b[x1] = 1

chi2(1) = 0.29
Prob > chi2 = 0.5928

We needed to refit the regression model to recover the original parameter estimates.
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Technical note
In a previous technical note, we mentioned that commands such as lincom and test permit reference

to name instead of b[name]. This is not the case when lincom and test are used after nlcom, post.
In the above, we used

. test _b[ratio21] = 1

rather than

. test ratio21 = 1

which would have returned an error. Consider this a limitation of Stata. For the shorthand notation to

work, you need a variable named name in the data. In nlcom, however, name is just a coefficient label
that does not necessarily correspond to any variable in the data.

Reparameterizing ML estimates for univariate data
When run using only a response and no covariates, Stata’s maximum likelihood (ML) estimation com-

mands will produce ML estimates of the parameters of some assumed univariate distribution for the re-

sponse. The parameterization, however, is usually not one we are used to dealing with in a nonregression

setting. In such cases, nlcom can be used to transform the estimation results from a regression model to

those from a maximum likelihood estimation of the parameters of a univariate probability distribution in

a more familiar metric.

Example 1
Consider the following univariate data on 𝑌 = # of traffic accidents at a certain intersection in a given

year:

. use https://www.stata-press.com/data/r18/trafint

. summarize accidents
Variable Obs Mean Std. dev. Min Max

accidents 12 13.83333 14.47778 0 41

A quick glance of the output from summarize leads us to quickly reject the assumption that 𝑌 is dis-

tributed as Poisson because the estimated variance of 𝑌 is much greater than the estimated mean of 𝑌.
Instead, we choose to model the data as univariate negative binomial, of which a common parameter-

ization is

Pr(𝑌 = 𝑦) = Γ(𝑟 + 𝑦)
Γ(𝑟)Γ(𝑦 + 1)

𝑝𝑟(1 − 𝑝)𝑦 0 ≤ 𝑝 ≤ 1, 𝑟 > 0, 𝑦 = 0, 1, . . .

with

𝐸(𝑌 ) = 𝑟(1 − 𝑝)
𝑝

Var(𝑌 ) = 𝑟(1 − 𝑝)
𝑝2
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There exist no closed-form solutions for the maximum likelihood estimates of 𝑝 and 𝑟, yet they may
be estimated by the iterative method of Newton–Raphson. One way to get these estimates would be to

write our own Newton–Raphson program for the negative binomial. Another way would be to write our

own ML evaluator; see [R] ml.

The easiest solution, however, would be to use Stata’s existing negative binomialML regression com-

mand, nbreg. The only problem with this solution is that nbreg estimates a different parameterization
of the negative binomial, but we can worry about that later.

. nbreg accidents
Fitting Poisson model:
Iteration 0: Log likelihood = -105.05361
Iteration 1: Log likelihood = -105.05361
Fitting constant-only model:
Iteration 0: Log likelihood = -43.948619
Iteration 1: Log likelihood = -43.891483
Iteration 2: Log likelihood = -43.89144
Iteration 3: Log likelihood = -43.89144
Fitting full model:
Iteration 0: Log likelihood = -43.89144
Iteration 1: Log likelihood = -43.89144
Negative binomial regression Number of obs = 12

LR chi2(0) = 0.00
Dispersion: mean Prob > chi2 = .
Log likelihood = -43.89144 Pseudo R2 = 0.0000

accidents Coefficient Std. err. z P>|z| [95% conf. interval]

_cons 2.627081 .3192233 8.23 0.000 2.001415 3.252747

/lnalpha .1402425 .4187147 -.6804233 .9609083

alpha 1.150553 .4817534 .5064026 2.61407

LR test of alpha=0: chibar2(01) = 122.32 Prob >= chibar2 = 0.000
. nbreg, coeflegend
Negative binomial regression Number of obs = 12

LR chi2(0) = 0.00
Dispersion: mean Prob > chi2 = .
Log likelihood = -43.89144 Pseudo R2 = 0.0000

accidents Coefficient Legend

_cons 2.627081 _b[_cons]

/lnalpha .1402425 _b[/lnalpha]

alpha 1.150553

LR test of alpha=0: chibar2(01) = 122.32 Prob >= chibar2 = 0.000

From this output, we see that, when used with univariate data, nbreg estimates a regression intercept,
𝛽0, and the logarithm of some parameter 𝛼. This parameterization is useful in regression models: 𝛽0 is

the intercept meant to be augmented with other terms of the linear predictor, and 𝛼 is an overdispersion

parameter used for comparison with the Poisson regression model.
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However, we need to transform (𝛽0, ln𝛼) to (𝑝, 𝑟). Examining Methods and formulas of [R] nbreg

reveals the transformation as

𝑝 = {1 + 𝛼 exp(𝛽0)}−1 𝑟 = 𝛼−1

which we apply using nlcom:

. nlcom (p:1/(1 + exp(_b[/lnalpha] + _b[_cons])))
> (r:exp(-_b[/lnalpha]))

p: 1/(1 + exp(_b[/lnalpha] + _b[_cons]))
r: exp(-_b[/lnalpha])

accidents Coefficient Std. err. z P>|z| [95% conf. interval]

p .0591157 .0292857 2.02 0.044 .0017168 .1165146
r .8691474 .3639248 2.39 0.017 .1558679 1.582427

Given the invariance of maximum likelihood estimators and the properties of the delta method, the above

parameter estimates, standard errors, etc., are precisely those we would have obtained had we instead

performed the Newton–Raphson optimization in the (𝑝, 𝑟) metric.

Technical note
Note how we referred to the estimate of ln𝛼 above as b[/lnalpha]. This is not entirely evident

from the output of nbreg, which is why we redisplayed the results using the coeflegend option so that
we would know how to refer to the coefficients; [U] 13.5Accessing coefficients and standard errors.

nlcom versus eform
Many Stata estimation commands allow you to display exponentiated regression coefficients, some

by default, some optionally. Known as “eform” in Stata terminology, this reparameterization serves

many uses: it gives odds ratios for logistic models, hazard ratios in survival models, incidence-rate ratios

in Poisson models, and relative-risk ratios in multinomial logit models, to name a few.

For example, consider the following estimation taken directly from the technical note in [R] poisson:

. use https://www.stata-press.com/data/r18/airline

. generate lnN = ln(n)

. poisson injuries XYZowned lnN
Iteration 0: Log likelihood = -22.333875
Iteration 1: Log likelihood = -22.332276
Iteration 2: Log likelihood = -22.332276
Poisson regression Number of obs = 9

LR chi2(2) = 19.15
Prob > chi2 = 0.0001

Log likelihood = -22.332276 Pseudo R2 = 0.3001

injuries Coefficient Std. err. z P>|z| [95% conf. interval]

XYZowned .6840667 .3895877 1.76 0.079 -.0795111 1.447645
lnN 1.424169 .3725155 3.82 0.000 .6940517 2.154285

_cons 4.863891 .7090501 6.86 0.000 3.474178 6.253603
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When we replay results and specify the irr (incidence-rate ratios) option,

. poisson, irr
Poisson regression Number of obs = 9

LR chi2(2) = 19.15
Prob > chi2 = 0.0001

Log likelihood = -22.332276 Pseudo R2 = 0.3001

injuries IRR Std. err. z P>|z| [95% conf. interval]

XYZowned 1.981921 .7721322 1.76 0.079 .9235678 4.253085
lnN 4.154402 1.547579 3.82 0.000 2.00181 8.621728

_cons 129.5272 91.84126 6.86 0.000 32.2713 519.8828

Note: _cons estimates baseline incidence rate.

we obtain the exponentiated regression coefficients and their estimated standard errors.

Contrast this with what we obtain if we exponentiate the coefficients manually by using nlcom:

. nlcom (E_XYZowned:exp(_b[XYZowned])) (E_lnN:exp(_b[lnN]))
E_XYZowned: exp(_b[XYZowned])

E_lnN: exp(_b[lnN])

injuries Coefficient Std. err. z P>|z| [95% conf. interval]

E_XYZowned 1.981921 .7721322 2.57 0.010 .4685701 3.495273
E_lnN 4.154402 1.547579 2.68 0.007 1.121203 7.187602

There are three things to notewhen comparing an estimation command specifiedwith an eform option

with the nlcom command specified with coefficients that are exponentiated manually:

1. The exponentiated coefficients and standard errors are identical. This is certainly good news.

2. The Wald test statistic (z) and level of significance are different. When using eform or any

eform optionwith an estimation command, theWald test does not change from what you would have

obtained without the eform option. You can see this by comparing both versions of the poisson
output given previously.

When you use eform, Stata knows that what is usually desired is a test of

𝐻0 ∶ exp(𝛽) = 1

and not the uninformative-by-comparison

𝐻0 ∶ exp(𝛽) = 0

The test of 𝐻0 ∶ exp(𝛽) = 1 is asymptotically equivalent to a test of 𝐻0 ∶ 𝛽 = 0, the Wald test in the

original metric, but the latter has better small-sample properties. Thus if you specify eform, you get
a test of 𝐻0 ∶ 𝛽 = 0.

nlcom, however, is general. It does not attempt to infer the test of greatest interest for a given trans-
formation, and so a test of

𝐻0 ∶ transformed coefficient = 0

is always given, regardless of the transformation.
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3. You may be surprised to see that, even though the coefficients and standard errors are identical, the

confidence intervals (both 95%) are different.

eform confidence intervals reported by an estimation command are standard confidence inter-

vals with the endpoints transformed. For example, the confidence interval for the coefficient on

lnN is [0.694, 2.154], whereas the confidence interval for the incidence-rate ratio due to lnN is

[ exp(0.694), exp(2.154)] = [2.002, 8.619], which, except for some roundoff error, is what we see
from the output of poisson, irr. For exponentiated coefficients, confidence intervals based on

transform-the-endpointsmethodology generally have better small-sample properties than their asymp-

totically equivalent counterparts.

The transform-the-endpoints method, however, gives valid coverage only when the transformation is

monotonic. nlcom uses a more general and asymptotically equivalent method for calculating confi-
dence intervals, as described in Methods and formulas.

Notice that nlcom has an eform option that behaves the same way as the eform option of any esti-
mation command. Thus, we could have obtained the exponentiated coefficients and confidence intervals

after poisson by specifying the eform option with nlcom; that is, we would type

. nlcom (E_XYZowned:_b[XYZowned]) (E_lnN:_b[lnN]), eform
E_XYZowned: _b[XYZowned]

E_lnN: _b[lnN]

injuries exp(b) Std. err. z P>|z| [95% conf. interval]

E_XYZowned 1.981921 .7721322 1.76 0.079 .9235678 4.253085
E_lnN 4.154402 1.547579 3.82 0.000 2.00181 8.621728

We obtain the same results as we did using poisson with the irr option. The interpretation of the

coefficients and confidence intervals follows the discussion above.

Stored results
nlcom stores the following in r():
Scalars

r(N) number of observations

r(df r) residual degrees of freedom

Matrices

r(b) vector of transformed coefficients

r(V) estimated variance–covariance matrix of the transformed coefficients

r(table) matrix containing the estimates with their standard errors, test statistics, 𝑝-values, and confidence
intervals

If post is specified, nlcom also stores the following in e():
Scalars

e(N) number of observations

e(df r) residual degrees of freedom

e(N strata) number of strata 𝐿, if used after svy
e(N psu) number of sampled PSUs 𝑛, if used after svy
e(rank) rank of e(V)

Macros

e(cmd) nlcom
e(predict) program used to implement predict
e(properties) b V
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Matrices

e(b) vector of transformed coefficients

e(V) estimated variance–covariance matrix of the transformed coefficients

e(V srs) simple-random-sampling-without-replacement (co)variance 𝑉srswor, if svy
e(V srswr) simple-random-sampling-with-replacement (co)variance 𝑉srswr, if svy and fpc()
e(V msp) misspecification (co)variance 𝑉msp, if svy and available

Functions

e(sample) marks estimation sample

Methods and formulas
Given a 1× 𝑘 vector of parameter estimates, θ̂ = ( ̂𝜃1, . . . , ̂𝜃𝑘), consider the estimated 𝑝-dimensional

transformation

𝑔(θ̂) = [𝑔1(θ̂), 𝑔2(θ̂), . . . , 𝑔𝑝(θ̂)]

The estimated variance–covariance of 𝑔(θ̂) is given by

V̂ar{𝑔(θ̂)} = GVG′

where G is the 𝑝 × 𝑘 matrix of derivatives for which

G𝑖𝑗 = 𝜕𝑔𝑖(θ)
𝜕𝜃𝑗

∣
θ=θ̂

𝑖 = 1, . . . , 𝑝 𝑗 = 1, . . . , 𝑘

and V is the estimated variance–covariance matrix of θ̂. Standard errors are obtained as the square roots
of the variances.

The Wald test statistic for testing

𝐻0 ∶ 𝑔𝑖(θ) = 0

versus the two-sided alternative is given by

𝑍𝑖 = 𝑔𝑖(θ̂)

[V̂ar𝑖𝑖 {𝑔(θ̂)}]
1/2

When the variance–covariance matrix of θ̂ is an asymptotic covariance matrix, 𝑍𝑖 is approximately

distributed as Gaussian. For linear regression, 𝑍𝑖 is taken to be approximately distributed as 𝑡1,𝑟 where

𝑟 is the residual degrees of freedom from the original fitted model.

A (1 − 𝛼) × 100% confidence interval for 𝑔𝑖(θ) is given by

𝑔𝑖(θ̂) ± 𝑧𝛼/2[V̂ar𝑖𝑖 {𝑔(θ̂)}]
1/2

for those cases where 𝑍𝑖 is Gaussian and

𝑔𝑖(θ̂) ± 𝑡𝛼/2,𝑟[V̂ar𝑖𝑖 {𝑔(θ̂)}]
1/2

for those cases where 𝑍𝑖 is 𝑡 distributed. 𝑧𝑝 is the 1− 𝑝 quantile of the standard normal distribution, and
𝑡𝑝,𝑟 is the 1 − 𝑝 quantile of the 𝑡 distribution with 𝑟 degrees of freedom.
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Also see
[R] lincom — Linear combinations of parameters

[R] predictnl — Obtain nonlinear predictions, standard errors, etc., after estimation

[R] test — Test linear hypotheses after estimation

[R] testnl — Test nonlinear hypotheses after estimation

[SVY] svy postestimation — Postestimation tools for svy

[U] 20 Estimation and postestimation commands
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Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Also see

Description
nlsur fits a system of nonlinear equations by feasible generalized nonlinear least squares (FGNLS).

With the interactive version of the command, you enter the system of equations on the command line or

in the dialog box by using substitutable expressions. If you have a system that you use regularly, you

can write a substitutable expression program and use the second syntax to avoid having to reenter the

system every time. The function evaluator program version gives you the most flexibility in exchange

for increased complexity; with this version, your program is given a vector of parameters and a variable

list, and your program computes the system of equations.

When you write a substitutable expression program or a function evaluator program, the first five

letters of the name must be nlsur. sexp prog and func prog refer to the name of the program without

the first five letters. For example, if you wrote a function evaluator program named nlsurregss, you
would type nlsur regss @ . . . to estimate the parameters.

Quick start
Two-parameter exponential model regressing y1 on x using the default FGNLS estimator

nlsur (y1 = {b1}*{b2}^x)

Add the variables() option to allow for missing values of y1 and x
nlsur (y1 = {b1}*{b2}^x), variables(y1 x)

Two-equation, two-parameter exponential model

nlsur (y1 = {b1}*{b2}^x) (y2 = {g1}*{g2}^x), variables(y1 y2 x)

Same as above, but use the iterative FGNLS estimator

nlsur (y1 = {b1}*{b2}^x) (y2 = {g1}*{g2}^x), variables(y1 y2 x) ifgnls

Specify starting values for parameters b1 and g2
nlsur (y1 = {b1=.5}*{b2}^x) (y2 = {g1}*{g2=1}^x), variables(y1 y2 x)

Same as above

nlsur (y1 = {b1}*{b2}^x) (y2 = {g1}*{g2}^x), variables(y1 y2 x) ///
initial(b1 .5 g2 1)

Same as above, but specify starting values using the matrix i
matrix i = (.5,0,0,1)
nlsur (y1 = {b1}*{b2}^x) (y2 = {g1}*{g2}^x), variables(y1 y2 x) ///

initial(i)

Menu
Statistics > Linear models and related > Multiple-equation models > Nonlinear seemingly unrelated regression

1994
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Syntax
Interactive version

nlsur (depvar 1 = <sexp 1>) (depvar 2 = <sexp 2>) . . . [ if ] [ in ] [weight ]

[ , options ]

Programmed substitutable expression version

nlsur sexp prog : depvar 1 depvar 2 . . . [ varlist ] [ if ] [ in ] [weight ] [ , options ]

Function evaluator program version

nlsur func prog @ depvar 1 depvar 2 . . . [ varlist ] [ if ] [ in ] [weight ] ,

nequations(#) { parameters(namelist) | nparameters(#)} [ options ]

where

depvar j is the dependent variable for equation 𝑗;
<sexp> j is the substitutable expression for equation 𝑗;
sexp prog is a substitutable expression program; and

func prog is a function evaluator program.

options Description

Model

fgnls use two-step FGNLS estimator; the default

ifgnls use iterative FGNLS estimator

nls use NLS estimator

variables(varlist) variables in model

initial(initial values) initial values for parameters
∗ nequations(#) number of equations in model (function evaluator program version only)
∗ parameters(namelist) parameters in model (function evaluator program version only)
∗ nparameters(#) number of parameters in model

(function evaluator program version only)

sexp options options for substitutable expression program

func options options for function evaluator program

SE/Robust

vce(vcetype) vcetype may be gnr, robust, cluster clustvar, bootstrap, or jackknife

Reporting

level(#) set confidence level; default is level(95)
title(string) display string as title above the table of parameter estimates

title2(string) display string as subtitle

display options control columns and column formats and line width

Optimization

optimization options control the optimization process; seldom used

coeflegend display legend instead of statistics
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∗You must specify nequations(#) and one of parameters(namelist) or nparameters(#) or both.
bootstrap, by, collect, jackknife, rolling, and statsby are allowed; see [U] 11.1.10 Prefix commands.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
aweights are not allowed with the jackknife prefix; see [R] jackknife.
aweights, fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

fgnls requests the two-step FGNLS estimator; this is the default.

ifgnls requests the iterative FGNLS estimator. For the nonlinear systems estimator, this is equivalent to
maximum likelihood estimation.

nls requests the nonlinear least-squares (NLS) estimator.

variables(varlist) specifies the variables in the system. nlsur ignores observations for which any

of these variables has missing values. If you do not specify variables(), nlsur issues an error

message if the estimation sample contains any missing values.

initial(initial values) specifies the initial values to begin the estimation. You can specify a 1 × 𝑘
matrix, where 𝑘 is the total number of parameters in the system, or you can specify a parameter name,
its initial value, another parameter name, its initial value, and so on. For example, to initialize alpha
to 1.23 and delta to 4.57, you would type

. nlsur ..., initial(alpha 1.23 delta 4.57) ...

Initial values declared using this option override any that are declaredwithin substitutable expressions.

If you specify a matrix, the values must be in the same order in which the parameters are declared in

your model. nlsur ignores the row and column names of the matrix.

nequations(#) specifies the number of equations in the system.

parameters(namelist) specifies the names of the parameters in the system. The names of the parameters
must adhere to the naming conventions of Stata’s variables; see [U] 11.3 Naming conventions. If you

specify both parameters() and nparameters(), the number of names in the former must match
the number specified in the latter.

nparameters(#) specifies the number of parameters in the system. If you do not specify names with the
parameters() option, nlsur names them b1, b2, . . . , b#. If you specify both parameters() and
nparameters(), the number of names in the former must match the number specified in the latter.

sexp options refer to any options allowed by your sexp prog.

func options refer to any options allowed by your func prog.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (gnr), that are robust to some kinds of misspecification (robust), that allow for

intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods (bootstrap,
jackknife); see [R] vce option.
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vce(gnr), the default, uses the conventionally derived variance estimator for nonlinear models fit
using Gauss–Newton regression.

� � �
Reporting �

level(#); see [R] Estimation options.

title(string) specifies an optional title that will be displayed just above the table of parameter esti-

mates.

title2(string) specifies an optional subtitle that will be displayed between the title specified in

title() and the table of parameter estimates. If title2() is specified but title() is not, title2()
has the same effect as title().

display options: noci, nopvalues, cformat(% fmt), pformat(% fmt), sformat(% fmt), and

nolstretch; see [R] Estimation options.

� � �
Optimization �

optimization options: iterate(#), [no]log, trace, eps(#), ifgnlsiterate(#), ifgnlseps(#),
delta(#), noconstants, and hasconstants(namelist).

iterate() specifies the maximum number of iterations to use for NLS at each round of FGNLS esti-

mation. This option is different from ifgnlsiterate(), which controls the maximum rounds of

FGNLS estimation to use when the ifgnls option is specified.

log and nolog specify whether to show the iteration log; see set iterlog in [R] set iter.

trace specifies that the iteration log should include the current parameter vector.

eps(#) specifies the convergence criterion for successive parameter estimates and for the residual

sum of squares (RSS). The default is eps(1e-5) (0.00001). eps() also specifies the convergence
criterion for successive parameter estimates between rounds of iterative FGNLS estimation when

ifgnls is specified.

ifgnlsiterate(#) specifies the maximum number of FGNLS iterations to perform. The default is

the number set using set maxiter, which is 300 by default. To use this option, you must also
specify the ifgnls option.

ifgnlseps(#) specifies the convergence criterion for successive estimates of the error covariance
matrix during iterative FGNLS estimation. The default is ifgnlseps(1e-10). To use this option,
you must also specify the ifgnls option.

delta(#) specifies the relative change in a parameter, 𝛿, to be used in computing the numeric deriva-
tives. The derivative for parameter 𝛽𝑖 is computed as

{𝑓𝑖 (x𝑖, 𝛽1, 𝛽2, . . . , 𝛽𝑖 + 𝑑, 𝛽𝑖+1, . . .) − 𝑓𝑖 (x𝑖, 𝛽1, 𝛽2, . . . , 𝛽𝑖, 𝛽𝑖+1, . . .)} /𝑑

where 𝑑 = 𝛿(|𝛽𝑖| + 𝛿). The default is delta(4e-7).
noconstants indicates that none of the equations in the system includes constant terms. This option

is generally not needed, even if there are no constant terms in the system; though in rare cases

without this option, nlsur may claim that there is one or more constant terms even if there are

none.

hasconstants(namelist) indicates the parameters that are to be treated as constant terms in the

system of equations. The number of elements of namelist must equal the number of equations in

the system. The 𝑖th entry of namelist specifies the constant term in the 𝑖th equation. If an equation
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does not include a constant term, specify a period (.) instead of a parameter name. This option is

seldom needed with the interactive and programmed substitutable expression versions, because in

those cases nlsur can almost always find the constant terms automatically.

The following options are available with nlsur but are not shown in the dialog box:

coeflegend; see [R] Estimation options.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Substitutable expression programs
Function evaluator programs

Introduction
nlsur fits a system of nonlinear equations by FGNLS. It can be viewed as a nonlinear variant of

Zellner’s seemingly unrelated regression model (?; ?; ?) and is therefore commonly called nonlinear

SUR or nonlinear SURE. The model is also discussed in textbooks such as Davidson and MacKinnon (?)

and ?, 305–306. Formally, the model fit by nlsur is

𝑦𝑖1 = 𝑓1(x𝑖,β) + 𝑢𝑖1

𝑦𝑖2 = 𝑓2(x𝑖,β) + 𝑢𝑖2

⋮ = ⋮
𝑦𝑖𝑀 = 𝑓𝑀(x𝑖,β) + 𝑢𝑖𝑀

for 𝑖 = 1, . . . , 𝑁 observations and 𝑚 = 1, . . . , 𝑀 equations. The errors for the 𝑖th observation,

𝑢𝑖1, 𝑢𝑖2, . . . , 𝑢𝑖𝑀, may be correlated, so fitting the 𝑚 equations jointly may lead to more efficient es-

timates. Moreover, fitting the equations jointly allows us to impose cross-equation restrictions on the

parameters. Not all elements of the parameter vector β and data vector x𝑖 must appear in all the equa-

tions, though each element of β must appear in at least one equation for β to be identified. For this

model, iterative FGNLS estimation is equivalent to maximum likelihood estimation with multivariate

normal disturbances.

The syntax you use with nlsur closely mirrors that used with nl. In particular, you use substitutable
expressions with the interactive and programmed substitutable expression versions to define the functions

in your system. See [R] nl for more information on substitutable expressions. Here we reiterate the three

rules that you must follow:

1. Parameters of the model are bound in braces: {b0}, {param}, etc.

2. Initial values for parameters are given by including an equal sign and the initial value inside the

braces: {b0=1}, {param=3.571}, etc. If you do not specify an initial value, that parameter is
initialized to zero. The initial() option overrides initial values in substitutable expressions.

3. Linear combinations of variables can be included using the notation {eqname:varlist}, for ex-
ample, {xb: mpg price weight}, {score: w x z}, etc. Parameters of linear combinations are
initialized to zero.
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Example 1: Interactive version using two-step FGNLS estimator
We have data from an experiment in which two closely related types of bacteria were placed in a Petri

dish, and the number of each type of bacteria were recorded every hour. We suspect a two-parameter

exponential growth model can be used to model each type of bacteria, but because they shared the same

dish, we want to allow for correlation in the error terms. We want to fit the system of equations

𝑝1 = 𝛽1𝛽2
𝑡 + 𝑢1

𝑝2 = 𝛾1𝛾2
𝑡 + 𝑢2

where 𝑝1 and 𝑝2 are the two populations and 𝑡 is time, and we want to allow for nonzero correlation

between 𝑢1 and 𝑢2. We type

. use https://www.stata-press.com/data/r18/petridish

. nlsur (p1 = {b1}*{b2}^t) (p2 = {g1}*{g2}^t)
(obs = 25)
Calculating NLS estimates:
Iteration 0: Residual SS = 335.5286
Iteration 1: Residual SS = 333.8583
Iteration 2: Residual SS = 219.9233
Iteration 3: Residual SS = 127.9355
Iteration 4: Residual SS = 14.86765
Iteration 5: Residual SS = 8.628459
Iteration 6: Residual SS = 8.281268
Iteration 7: Residual SS = 8.28098
Iteration 8: Residual SS = 8.280979
Iteration 9: Residual SS = 8.280979
Calculating FGNLS estimates:
Iteration 0: Scaled RSS = 49.99892
Iteration 1: Scaled RSS = 49.99892
Iteration 2: Scaled RSS = 49.99892
FGNLS regression

Equation Obs Parms RMSE R-sq Constant

1 p1 25 2 .4337019 0.9734* (none)
2 p2 25 2 .3783479 0.9776* (none)

* Uncentered R-sq

Coefficient Std. err. z P>|z| [95% conf. interval]

/b1 .3926631 .064203 6.12 0.000 .2668275 .5184987
/b2 1.119593 .0088999 125.80 0.000 1.102149 1.137036
/g1 .5090441 .0669495 7.60 0.000 .3778256 .6402626
/g2 1.102315 .0072183 152.71 0.000 1.088167 1.116463

The header of the output contains a summary of each equation, including the number of observations and

parameters and the root mean squared error of the residuals. nlsur checks to see whether each equation
contains a constant term, and if an equation does contain a constant term, an 𝑅2 statistic is presented. If

an equation does not have a constant term, an uncentered𝑅2 is instead reported. The𝑅2 statistic for each

equation measures the percentage of variance explained by the nonlinear function and may be useful for

descriptive purposes, though it does not have the same formal interpretation in the context of FGNLS as

it does with NLS estimation. As we would expect, 𝛽2 and 𝛾2 are both greater than one, indicating the two

bacterial populations increased in size over time.
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The model we fit in the next three examples is in fact linear in the parameters, so it could be fit using

the sureg command. However, we will fit the model using nlsur so that we can focus on the mechanics
of using the command. Moreover, using nlsur will obviate the need to generate several variables as

well as the need to use the constraint command to impose parameter restrictions.

Example 2: Interactive version using iterative FGNLS estimator—the translog produc-
tion function

?, sec. 15.6 discusses the transcendental logarithmic (translog) cost function and provides cost and

input price data for capital, labor, energy, and materials for the US economy. One way to fit the translog

production function to these data is to fit the system of three equations

𝑠𝑘 = 𝛽𝑘 + 𝛿𝑘𝑘 ln( 𝑝𝑘
𝑝𝑚

) + 𝛿𝑘𝑙 ln( 𝑝𝑙
𝑝𝑚

) + 𝛿𝑘𝑒 ln( 𝑝𝑒
𝑝𝑚

) + 𝑢1

𝑠𝑙 = 𝛽𝑙 + 𝛿𝑘𝑙 ln( 𝑝𝑘
𝑝𝑚

) + 𝛿𝑙𝑙 ln( 𝑝𝑙
𝑝𝑚

) + 𝛿𝑙𝑒 ln( 𝑝𝑒
𝑝𝑚

) + 𝑢2

𝑠𝑒 = 𝛽𝑒 + 𝛿𝑘𝑒 ln( 𝑝𝑘
𝑝𝑚

) + 𝛿𝑙𝑒 ln( 𝑝𝑙
𝑝𝑚

) + 𝛿𝑒𝑒 ln( 𝑝𝑒
𝑝𝑚

) + 𝑢3

where 𝑠𝑘 is capital’s cost share, 𝑠𝑙 is labor’s cost share, and 𝑠𝑒 is energy’s cost share; 𝑝𝑘, 𝑝𝑙, 𝑝𝑒, and

𝑝𝑚 are the prices of capital, labor, energy, and materials, respectively; the 𝑢’s are regression error terms;
and the 𝛽’s and 𝛿’s are parameters to be estimated. There are three cross-equation restrictions on the
parameters: 𝛿𝑘𝑙, 𝛿𝑘𝑒, and 𝛿𝑙𝑒 each appear in two equations. To fit this model by using the iterative FGNLS

estimator, we type

. use https://www.stata-press.com/data/r18/mfgcost
(Manufacturing cost)
. nlsur (s_k = {bk} + {dkk}*ln(pk/pm) + {dkl}*ln(pl/pm) + {dke}*ln(pe/pm))
> (s_l = {bl} + {dkl}*ln(pk/pm) + {dll}*ln(pl/pm) + {dle}*ln(pe/pm))
> (s_e = {be} + {dke}*ln(pk/pm) + {dle}*ln(pl/pm) + {dee}*ln(pe/pm)),
> ifgnls
(obs = 25)
Calculating NLS estimates:
Iteration 0: Residual SS = .0009989
Iteration 1: Residual SS = .0009989
Calculating FGNLS estimates:
Iteration 0: Scaled RSS = 65.45197
Iteration 1: Scaled RSS = 65.45197
(output omitted )

FGNLS iteration 10:
Iteration 0: Scaled RSS = 75
Iteration 1: Scaled RSS = 75
Parameter change = 4.08e-06
Covariance matrix change = 6.26e-10
FGNLS regression

Equation Obs Parms RMSE R-sq Constant

1 s_k 25 4 .0031722 0.4776 bk
2 s_l 25 4 .0053963 0.8171 bl
3 s_e 25 4 .00177 0.6615 be
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Coefficient Std. err. z P>|z| [95% conf. interval]

/bk .0568925 .0013454 42.29 0.000 .0542556 .0595294
/dkk .0294833 .0057956 5.09 0.000 .0181241 .0408425
/dkl -.0000471 .0038478 -0.01 0.990 -.0075887 .0074945
/dke -.0106749 .0033882 -3.15 0.002 -.0173157 -.0040341
/bl .253438 .0020945 121.00 0.000 .2493329 .2575432

/dll .0754327 .0067572 11.16 0.000 .0621889 .0886766
/dle -.004756 .002344 -2.03 0.042 -.0093501 -.0001619
/be .0444099 .0008533 52.04 0.000 .0427374 .0460823

/dee .0183415 .0049858 3.68 0.000 .0085694 .0281135

We draw your attention to the iteration log at the top of the output. When iterative FGNLS estimation

is used, the final scaled RSSwill equal the product of the number of observations in the estimation sample

and the number of equations; see Methods and formulas for details. Because the RSS is scaled by the

error covariance matrix during each round of FGNLS estimation, the scaled RSS is not comparable from

one FGNLS iteration to the next.

Technical note
You may have noticed that we mentioned having data for four factors of production, yet we fit only

three share equations. Because the four shares sum to one, we must drop one of the equations to avoid

having a singular error covariance matrix. The iterative FGNLS estimator is equivalent to maximum

likelihood estimation, and thus it is invariant to which one of the four equations we choose to drop.

The (linearly restricted) parameters of the fourth equation can be obtained using the lincom command.
Nonlinear functions of the parameters, such as the elasticities of substitution, can be computed using

nlcom.

Substitutable expression programs
If you fit the same model repeatedly or you want to share code with colleagues, you can write a sub-

stitutable expression program to define your system of equations and avoid having to retype the system

every time. The first five letters of the program’s name must be nlsur, and the program must set the

r-class macro r(n eq) to the number of equations in your system. The first equation’s substitutable ex-
pression must be returned in r(eq 1), the second equation’s in r(eq 2), and so on. You may optionally
set r(title) to label your output; that has the same effect as specifying the title() option.
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Example 3: Programmed substitutable expression version
We return to our translog cost function, for which a substitutable expression program is

program nlsurtranslog, rclass
version 18.0 // (or version 18.5 for StataNow)
syntax varlist(min=7 max=7) [if]
tokenize ‘varlist’
args sk sl se pk pl pe pm
local pkpm ln(‘pk’/‘pm’)
local plpm ln(‘pl’/‘pm’)
local pepm ln(‘pe’/‘pm’)
return scalar n_eq = 3
return local eq_1 ”‘sk’= {bk} + {dkk}*‘pkpm’ + {dkl}*‘plpm’ + {dke}*‘pepm’”
return local eq_2 ”‘sl’= {bl} + {dkl}*‘pkpm’ + {dll}*‘plpm’ + {dle}*‘pepm’”
return local eq_3 ”‘se’= {be} + {dke}*‘pkpm’ + {dle}*‘plpm’ + {dee}*‘pepm’”
return local title ”4-factor translog cost function”

end

Wemade our program accept seven variables, for the three dependent variables 𝑠𝑘, 𝑠𝑙, and 𝑠𝑒, and the

four factor prices 𝑝𝑘, 𝑝𝑙, 𝑝𝑚, and 𝑝𝑒. The tokenize command assigns to macros ‘1’, ‘2’, . . . , ‘7’ the
seven variables stored in ‘varlist’, and the args command transfers those numberedmacros to macros
‘sk’, ‘sl’, . . . , ‘pm’. Because we knew our substitutable expressions were going to be somewhat long,

we created local macros to hold the log price ratios. These are simply macros that hold strings such as

ln(pk/pm), not variables, and they will save us some repetitious typing when we define our substitutable
expressions. Our program returns the number of equations in r(n eq), and we defined our substitutable
expressions in eq 1, eq 2, and eq 3. We do not bind the expressions in parentheses as we do with the

interactive version of nlsur. Finally, we put a title in r(title) to label our output.

Our syntax command also accepts an if clause, and that is how nlsur indicates the estimation

sample to our program. In this application, we can safely ignore it because our program does not compute

initial values. However, had we used commands such as summarize or regress to obtain initial values,
then we would need to restrict those commands to analyze only the estimation sample. In those cases,

typically, you simply need to include ‘if’ with the commands you are using. For example, instead of
the command

summarize ‘depvar’, meanonly

you would use

summarize ‘depvar’ ‘if’, meanonly

We can check our program by typing

. nlsurtranslog s_k s_l s_e pk pl pe pm

. return list
scalars:

r(n_eq) = 3
macros:

r(title) : ”4-factor translog cost function”
r(eq_3) : ”s_e= {be} + {dke}*ln(pk/pm) + {dle}*ln(pl/pm) + {..”
r(eq_2) : ”s_l= {bl} + {dkl}*ln(pk/pm) + {dll}*ln(pl/pm) + {..”
r(eq_1) : ”s_k= {bk} + {dkk}*ln(pk/pm) + {dkl}*ln(pl/pm) + {..”
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Now that we know that our program works, we fit our model by typing

. nlsur translog: s_k s_l s_e pk pl pe pm, ifgnls
(obs = 25)
Calculating NLS estimates:
Iteration 0: Residual SS = .0009989
Iteration 1: Residual SS = .0009989
Calculating FGNLS estimates:
Iteration 0: Scaled RSS = 65.45197
Iteration 1: Scaled RSS = 65.45197
FGNLS iteration 2:
Iteration 0: Scaled RSS = 73.28311
Iteration 1: Scaled RSS = 73.28311
Iteration 2: Scaled RSS = 73.28311
Parameter change = 6.54e-03
Covariance matrix change = 1.00e-06
(output omitted )

FGNLS iteration 10:
Iteration 0: Scaled RSS = 75
Iteration 1: Scaled RSS = 75
Parameter change = 4.08e-06
Covariance matrix change = 6.26e-10
FGNLS regression

Equation Obs Parms RMSE R-sq Constant

1 s_k 25 4 .0031722 0.4776 bk
2 s_l 25 4 .0053963 0.8171 bl
3 s_e 25 4 .00177 0.6615 be

4-factor translog cost function

Coefficient Std. err. z P>|z| [95% conf. interval]

/bk .0568925 .0013454 42.29 0.000 .0542556 .0595294
/dkk .0294833 .0057956 5.09 0.000 .0181241 .0408425
/dkl -.0000471 .0038478 -0.01 0.990 -.0075887 .0074945
/dke -.0106749 .0033882 -3.15 0.002 -.0173157 -.0040341
/bl .253438 .0020945 121.00 0.000 .2493329 .2575432

/dll .0754327 .0067572 11.16 0.000 .0621889 .0886766
/dle -.004756 .002344 -2.03 0.042 -.0093501 -.0001619
/be .0444099 .0008533 52.04 0.000 .0427374 .0460823

/dee .0183415 .0049858 3.68 0.000 .0085694 .0281135

Because we set r(title) in our substitutable expression program, the coefficient table has a title at-

tached to it. The estimates are identical to those we obtained in example 2.
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Technical note
nlsur accepts frequency and analytic weights as well as pweights (sampling weights) and iweights

(importance weights). You do not need to modify your substitutable expressions in any way to perform

weighted estimation, though you must make two changes to your substitutable expression program. The

general outline of a sexp prog program is

program nlsur name, rclass
version 18.0 // (or version 18.5 for StataNow)
syntax varlist [fw aw pw iw] [if]
// Obtain initial values incorporating weights. For example,
summarize varname [‘weight’‘exp’] ‘if’
...
// Return n_eqn and substitutable expressions
return scalar n_eq = #
return local eq_1 = ...
...

end

First, we wrote the syntax statement to accept a weight expression. Here we allow all four types of

weights, but if you know that your estimator is valid, say, for only frequency weights, then you should

modify the syntax line to accept only fweights. Second, if your program computes starting values, then

any commands you use must incorporate the weights passed to the program; you do that by including

[‘weight’‘exp’] when calling those commands.

Function evaluator programs
Although substitutable expressions are extremely flexible, there are some problems for which the

nonlinear system cannot be defined using them. You can use the function evaluator program version of

nlsur in these cases. We present two examples, a simple one to illustrate the mechanics of function

evaluator programs and a more complicated one to illustrate the power of nlsur.
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Example 4: Function evaluator program version
Here we write a function evaluator program to fit the translog cost function used in examples 2 and

3. The function evaluator program is

program nlsurtranslog2
version 18.0 // (or version 18.5 for StataNow)
syntax varlist(min=7 max=7) [if], at(name)
tokenize ‘varlist’
args sk sl se pk pl pe pm
tempname bk dkk dkl dke bl dll dle be dee
scalar ‘bk’ = ‘at’[1,1]
scalar ‘dkk’ = ‘at’[1,2]
scalar ‘dkl’ = ‘at’[1,3]
scalar ‘dke’ = ‘at’[1,4]
scalar ‘bl’ = ‘at’[1,5]
scalar ‘dll’ = ‘at’[1,6]
scalar ‘dle’ = ‘at’[1,7]
scalar ‘be’ = ‘at’[1,8]
scalar ‘dee’ = ‘at’[1,9]
local pkpm ln(‘pk’/‘pm’)
local plpm ln(‘pl’/‘pm’)
local pepm ln(‘pe’/‘pm’)
quietly {

replace ‘sk’ = ‘bk’ + ‘dkk’*‘pkpm’ + ‘dkl’*‘plpm’ + ///
‘dke’*‘pepm’ ‘if’

replace ‘sl’ = ‘bl’ + ‘dkl’*‘pkpm’ + ‘dll’*‘plpm’ + ///
‘dle’*‘pepm’ ‘if’

replace ‘se’ = ‘be’ + ‘dke’*‘pkpm’ + ‘dle’*‘plpm’ + ///
‘dee’*‘pepm’ ‘if’

}
end

Unlike the substitutable expression programwe wrote in example 3, nlsurtranslog2 is not declared
as r-class because we will not be returning any stored results. We are again expecting seven variables:

three shares and four factor prices, and nlsur will again mark the estimation sample with an if expres-
sion.

Our function evaluator program also accepts an option named at(), which will receive a parameter
vector at which we are to evaluate the system of equations. All function evaluator programs must accept

this option. Our model has nine parameters to estimate, and we created nine temporary scalars to hold

the elements of the ‘at’ matrix.

Because our model has three equations, the first three variables passed to our program are the depen-

dent variables that we are to fill in with the function values. We replaced only the observations in our

estimation sample by including the ‘if’ qualifier in the replace statements. Here we could have ig-
nored the ‘if’ qualifier because nlsur will skip over observations not in the estimation sample and we
did not perform any computations requiring knowledge of the estimation sample. However, including

the ‘if’ is good practice and may result in a slight speed improvement if the functions of your model
are complicated and the estimation sample is much smaller than the dataset in memory.
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We could have avoided creating temporary scalars to hold our individual parameters by writing the

replace statements as, for example,

replace ‘sk’ = ‘at’[1,1] + ‘at’[1,2]*‘pkpm’ + ‘at’[1,3]*‘plpm’ + ‘at’[1,4]*‘pepm’ ‘if’

You can use whichever method you find more appealing, though giving the parameters descriptive names

reduces the chance for mistakes and makes debugging easier.

To fit our model by using the function evaluator program version of nlsur, we type

. nlsur translog2 @ s_k s_l s_e pk pl pe pm, ifgnls nequations(3)
> parameters(bk dkk dkl dke bl dll dle be dee)
> hasconstants(bk bl be)
(obs = 25)
Calculating NLS estimates:
Iteration 0: Residual SS = .0009989
Iteration 1: Residual SS = .0009989
Calculating FGNLS estimates:
Iteration 0: Scaled RSS = 65.45197
Iteration 1: Scaled RSS = 65.45197
FGNLS iteration 2:
Iteration 0: Scaled RSS = 73.28311
Iteration 1: Scaled RSS = 73.28311
Iteration 2: Scaled RSS = 73.28311
Parameter change = 6.54e-03
Covariance matrix change = 1.00e-06
FGNLS iteration 3:
Iteration 0: Scaled RSS = 74.7113
Iteration 1: Scaled RSS = 74.7113
Parameter change = 2.58e-03
Covariance matrix change = 3.96e-07
FGNLS iteration 4:
Iteration 0: Scaled RSS = 74.95356
Iteration 1: Scaled RSS = 74.95356
Parameter change = 1.02e-03
Covariance matrix change = 1.57e-07
FGNLS iteration 5:
Iteration 0: Scaled RSS = 74.99261
Iteration 1: Scaled RSS = 74.99261
Parameter change = 4.07e-04
Covariance matrix change = 6.25e-08
FGNLS iteration 6:
Iteration 0: Scaled RSS = 74.99883
Iteration 1: Scaled RSS = 74.99883
Parameter change = 1.62e-04
Covariance matrix change = 2.49e-08
FGNLS iteration 7:
Iteration 0: Scaled RSS = 74.99981
Iteration 1: Scaled RSS = 74.99981
Iteration 2: Scaled RSS = 74.99981
Parameter change = 6.45e-05
Covariance matrix change = 9.91e-09
FGNLS iteration 8:
Iteration 0: Scaled RSS = 74.99997
Iteration 1: Scaled RSS = 74.99997
Iteration 2: Scaled RSS = 74.99997
Iteration 3: Scaled RSS = 74.99997
Parameter change = 2.57e-05
Covariance matrix change = 3.95e-09
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FGNLS iteration 9:
Iteration 0: Scaled RSS = 75
Iteration 1: Scaled RSS = 75
Iteration 2: Scaled RSS = 75
Parameter change = 1.02e-05
Covariance matrix change = 1.57e-09
FGNLS iteration 10:
Iteration 0: Scaled RSS = 75
Iteration 1: Scaled RSS = 75
Parameter change = 4.08e-06
Covariance matrix change = 6.26e-10
FGNLS regression

Equation Obs Parms RMSE R-sq Constant

1 s_k 25 . .0031722 0.4776 bk
2 s_l 25 . .0053963 0.8171 bl
3 s_e 25 . .00177 0.6615 be

Coefficient Std. err. z P>|z| [95% conf. interval]

/bk .0568925 .0013454 42.29 0.000 .0542556 .0595294
/dkk .0294833 .0057956 5.09 0.000 .0181241 .0408425
/dkl -.0000471 .0038478 -0.01 0.990 -.0075887 .0074945
/dke -.0106749 .0033882 -3.15 0.002 -.0173157 -.0040341
/bl .253438 .0020945 121.00 0.000 .2493329 .2575432

/dll .0754327 .0067572 11.16 0.000 .0621889 .0886766
/dle -.004756 .002344 -2.03 0.042 -.0093501 -.0001619
/be .0444099 .0008533 52.04 0.000 .0427374 .0460823

/dee .0183415 .0049858 3.68 0.000 .0085694 .0281135

When we use the function evaluator program version, nlsur requires us to specify the number of equa-
tions in nequations(), and it requires us to specify either the names for each of our parameters or the
number of parameters in the model. Here we used the parameters() option to name our parameters;
the order in which we specified them in this option is the same as the order in which we extracted them

from the ‘at’matrix in our program. Had we instead specified nparameters(9), our parameters would
have been labeled /b1, /b2, . . . , /b9 in the output.

nlsur has no way of telling how many parameters appear in each equation, so the Parms column in
the header contains missing values. Moreover, the function evaluator program version of nlsur does not
attempt to identify constant terms, so we used the hasconstant option to tell nlsur which parameter
in each equation is a constant term.

The estimates are identical to those we obtained in examples 2 and 3.

Technical note
As with substitutable expression programs, if you intend to do weighted estimation with a function

evaluator program, you must modify your func prog program’s syntax statement to accept weights.

Moreover, if you use any statistical commands when computing your nonlinear functions, then you must

include the weight expression with those commands.
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Example 5: Fitting the basic AIDS model using nlsur
? introduce the almost ideal demand system (AIDS), and ? presents a set of commands and several

extensions for fitting the AIDS automatically. Here we show how to fit the basic AIDS model, which is a

common example of a nonlinear system of equations, by manually using nlsur. The dataset food.dta
contains household expenditures, expenditure shares, and log prices for four broad food groups. For a

four-good demand system, we need to fit the following system of three equations:

𝑤1 = 𝛼1 + 𝛾11 ln𝑝1 + 𝛾12 ln𝑝2 + 𝛾13 ln𝑝3 + 𝛽1 ln{ 𝑚
𝑃(p)

} + 𝑢1

𝑤2 = 𝛼2 + 𝛾12 ln𝑝1 + 𝛾22 ln𝑝2 + 𝛾23 ln𝑝3 + 𝛽2 ln{ 𝑚
𝑃(p)

} + 𝑢2

𝑤3 = 𝛼3 + 𝛾13 ln𝑝1 + 𝛾23 ln𝑝2 + 𝛾33 ln𝑝3 + 𝛽3 ln{ 𝑚
𝑃(p)

} + 𝑢3

where 𝑤𝑘 denotes a household’s fraction of expenditures on good 𝑘, ln𝑝𝑘 denotes the logarithm of the

price paid for good 𝑘, 𝑚 denotes a household’s total expenditure on all four goods, the 𝑢’s are regression
error terms, and

ln𝑃(p) = 𝛼0 +
4

∑
𝑖=1

𝛼𝑖 ln𝑝𝑖 + 1
2

4
∑
𝑖=1

4
∑
𝑗=1

𝛾𝑖𝑗 ln𝑝𝑖 ln𝑝𝑗

The parameters for the fourth good’s share equation can be recovered from the following constraints that

are imposed by economic theory:

4
∑
𝑖=1

𝛼𝑖 = 1
4

∑
𝑖=1

𝛽𝑖 = 0 𝛾𝑖𝑗 = 𝛾𝑗𝑖 and

4
∑
𝑖=1

𝛾𝑖𝑗 = 0 for all 𝑗

Our model has a total of 12 unrestricted parameters. We will not estimate 𝛼0 directly. Instead, we will

set it equal to 5; see ? for a discussion of why treating 𝛼0 as fixed is acceptable.
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Our function evaluator program is

program nlsuraids
version 18.0 // (or version 18.5 for StataNow)
syntax varlist(min=8 max=8) if, at(name)
tokenize ‘varlist’
args w1 w2 w3 lnp1 lnp2 lnp3 lnp4 lnm
tempname a1 a2 a3 a4
scalar ‘a1’ = ‘at’[1,1]
scalar ‘a2’ = ‘at’[1,2]
scalar ‘a3’ = ‘at’[1,3]
scalar ‘a4’ = 1 - ‘a1’ - ‘a2’ - ‘a3’
tempname b1 b2 b3
scalar ‘b1’ = ‘at’[1,4]
scalar ‘b2’ = ‘at’[1,5]
scalar ‘b3’ = ‘at’[1,6]
tempname g11 g12 g13 g14
tempname g21 g22 g23 g24
tempname g31 g32 g33 g34
tempname g41 g42 g43 g44
scalar ‘g11’ = ‘at’[1,7]
scalar ‘g12’ = ‘at’[1,8]
scalar ‘g13’ = ‘at’[1,9]
scalar ‘g14’ = -‘g11’-‘g12’-‘g13’
scalar ‘g21’ = ‘g12’
scalar ‘g22’ = ‘at’[1,10]
scalar ‘g23’ = ‘at’[1,11]
scalar ‘g24’ = -‘g21’-‘g22’-‘g23’
scalar ‘g31’ = ‘g13’
scalar ‘g32’ = ‘g23’
scalar ‘g33’ = ‘at’[1,12]
scalar ‘g34’ = -‘g31’-‘g32’-‘g33’
scalar ‘g41’ = ‘g14’
scalar ‘g42’ = ‘g24’
scalar ‘g43’ = ‘g34’
scalar ‘g44’ = -‘g41’-‘g42’-‘g43’
quietly {

tempvar lnpindex
gen double ‘lnpindex’ = 5 + ‘a1’*‘lnp1’ + ‘a2’*‘lnp2’ + ///

‘a3’*‘lnp3’ + ‘a4’*‘lnp4’
forvalues i = 1/4 {

forvalues j = 1/4 {
replace ‘lnpindex’ = ‘lnpindex’ + ///

0.5*‘g‘i’‘j’’*‘lnp‘i’’*‘lnp‘j’’
}

}
replace ‘w1’ = ‘a1’ + ‘g11’*‘lnp1’ + ‘g12’*‘lnp2’ + ///

‘g13’*‘lnp3’ + ‘g14’*‘lnp4’ + ///
‘b1’*(‘lnm’ - ‘lnpindex’)

replace ‘w2’ = ‘a2’ + ‘g21’*‘lnp1’ + ‘g22’*‘lnp2’ + ///
‘g23’*‘lnp3’ + ‘g24’*‘lnp4’ + ///
‘b2’*(‘lnm’ - ‘lnpindex’)

replace ‘w3’ = ‘a3’ + ‘g31’*‘lnp1’ + ‘g32’*‘lnp2’ + ///
‘g33’*‘lnp3’ + ‘g34’*‘lnp4’ + ///
‘b3’*(‘lnm’ - ‘lnpindex’)

}
end
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The syntax statement accepts eight variables: three expenditure share variables, all four log-price
variables, and a variable for log expenditures ( ln𝑚). Most of the code simply extracts the parameters

from the ‘at’ matrix. Although we are estimating only 12 parameters, to calculate the price index term
and the expenditure share equations, we need the restricted parameters as well. Notice how we impose

the constraints on the parameters. We then created a temporary variable to hold ln𝑃(p), and we filled
the three dependent variables with the predicted expenditure shares.

To fit our model, we type

. use https://www.stata-press.com/data/r18/food
(Four food groups)
. nlsur aids @ w1 w2 w3 lnp1 lnp2 lnp3 lnp4 lnexp,
> parameters(a1 a2 a3 b1 b2 b3
> g11 g12 g13 g22 g32 g33)
> neq(3) ifgnls
(obs = 4,048)
Calculating NLS estimates:
Iteration 0: Residual SS = 126.9713
Iteration 1: Residual SS = 125.669
Iteration 2: Residual SS = 125.669
Iteration 3: Residual SS = 125.669
Iteration 4: Residual SS = 125.669
Calculating FGNLS estimates:
Iteration 0: Scaled RSS = 12080.14
Iteration 1: Scaled RSS = 12080.14
Iteration 2: Scaled RSS = 12080.14
Iteration 3: Scaled RSS = 12080.14
FGNLS iteration 2:
Iteration 0: Scaled RSS = 12143.99
Iteration 1: Scaled RSS = 12143.99
Iteration 2: Scaled RSS = 12143.99
Parameter change = 1.97e-04
Covariance matrix change = 2.94e-06
FGNLS iteration 3:
Iteration 0: Scaled RSS = 12144
Iteration 1: Scaled RSS = 12144
Parameter change = 2.18e-06
Covariance matrix change = 3.47e-08
FGNLS regression

Equation Obs Parms RMSE R-sq Constant

1 w1 4,048 . .1333175 0.9017* (none)
2 w2 4,048 . .1024166 0.8480* (none)
3 w3 4,048 . .053777 0.7906* (none)

* Uncentered R-sq
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Coefficient Std. err. z P>|z| [95% conf. interval]

/a1 .3163958 .0073871 42.83 0.000 .3019175 .3308742
/a2 .2712501 .0056938 47.64 0.000 .2600904 .2824097
/a3 .1039898 .0029004 35.85 0.000 .0983051 .1096746
/b1 .0161044 .0034153 4.72 0.000 .0094105 .0227983
/b2 -.0260771 .002623 -9.94 0.000 -.0312181 -.0209361
/b3 .0014538 .0013776 1.06 0.291 -.0012463 .004154

/g11 .1215838 .0057186 21.26 0.000 .1103756 .1327921
/g12 -.0522943 .0039305 -13.30 0.000 -.0599979 -.0445908
/g13 -.0351292 .0021788 -16.12 0.000 -.0393996 -.0308588
/g22 .0644298 .0044587 14.45 0.000 .0556909 .0731687
/g32 -.0011786 .0019767 -0.60 0.551 -.0050528 .0026957
/g33 .0424381 .0017589 24.13 0.000 .0389909 .0458854

To get the restricted parameters for the fourth share equation, we can use lincom. For example, to
obtain 𝛼4, we type

. lincom 1 - [a1]_cons - [a2]_cons - [a3]_cons
( 1) - [a1]_cons - [a2]_cons - [a3]_cons = -1

Coefficient Std. err. z P>|z| [95% conf. interval]

(1) .3083643 .0052611 58.61 0.000 .2980528 .3186758

For more information on lincom, see [R] lincom.

Stored results
nlsur stores the following in e():

Scalars

e(N) number of observations

e(k) number of parameters

e(k #) number of parameters for equation #

e(k eq) number of equation names in e(b)
e(k eq model) number of equations in overall model test

e(n eq) number of equations

e(mss #) model sum of squares for equation #

e(rss #) RSS for equation #

e(rmse #) root mean squared error for equation #

e(r2 #) 𝑅2 for equation #

e(ll) Gaussian log likelihood (iflgs version only)
e(N clust) number of clusters

e(rank) rank of e(V)
e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) nlsur
e(cmdline) command as typed

e(method) fgnls, ifgnls, or nls
e(depvar) names of dependent variables

e(depvar #) dependent variable for equation #

e(wtype) weight type

e(wexp) weight expression
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e(title) title in estimation output

e(title 2) secondary title in estimation output

e(clustvar) name of cluster variable

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(type) 1 = interactively entered expression
2 = substitutable expression program
3 = function evaluator program

e(sexpprog) substitutable expression program

e(sexp #) substitutable expression for equation #

e(params) names of all parameters

e(params #) parameters in equation #

e(funcprog) function evaluator program

e(rhs) contents of variables()
e(constants) identifies constant terms

e(properties) b V
e(predict) program used to implement predict

Matrices

e(b) coefficient vector

e(init) initial values vector

e(Sigma) error covariance matrix (�̂�)

e(V) variance–covariance matrix of the estimators

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas
Write the system of equations for the 𝑖th observation as

y𝑖 = f(x𝑖,β) + u𝑖 (1)

where y𝑖 and u𝑖 are 1 × 𝑀 vectors, for 𝑖 = 1, . . . , 𝑁; f is a function that returns a 1 × 𝑀 vector;

x𝑖 represents all the exogenous variables in the system; and β is a 1 × 𝑘 vector of parameters. The

generalized nonlinear least-squares system estimator is defined as

β̂ ≡ argminβ

𝑁
∑
𝑖=1

{y𝑖 − f(x𝑖,β)} 𝚺−1 {y𝑖 − f(x𝑖,β)}′

where𝚺 = 𝐸(u′
𝑖u𝑖) is an𝑀 ×𝑀 positive-definite weight matrix. Let T be the Cholesky decomposition

of 𝚺−1; that is, TT′ = 𝚺−1. Postmultiply (1) by T:

y𝑖T = f(x𝑖,β)T + u𝑖T (2)



nlsur — Estimation of nonlinear systems of equations 2013

Because 𝐸(T′u′
𝑖u𝑖T) = I, we can “stack” the columns of (2) and write

y1T1 = f(x1,β)T1 + �̃�11

y1T2 = f(x1,β)T2 + �̃�12

⋮ =⋮
y1T𝑀 = f(x1,β)T𝑀 + �̃�1𝑀

⋮ =⋮
y𝑁T1 = f(x𝑁,β)T1 + �̃�𝑁1

y𝑁T2 = f(x𝑁,β)T2 + �̃�𝑁2

⋮ =⋮
y𝑁T𝑀 = f(x𝑁,β)T𝑀 + �̃�𝑁𝑀

(3)

where T𝑗 denotes the 𝑗th column of T. By construction, all �̃�𝑖𝑗 are independently distributed with unit

variance. As a result, by transforming themodel in (1) to that shown in (3), we have reduced themultivari-

ate generalized nonlinear least-squares system estimator to a univariate nonlinear least-squares problem;

and the same parameter estimation technique used by nl can be used here. See [R] nl for the details.
Moreover, because the �̃�𝑖𝑗 all have variance 1, the final scaled RSS reported by nlsur is equal to 𝑁𝑀.

To make the estimator feasible, we require an estimate �̂� of 𝚺. nlsur first sets �̂� = I. Although not

efficient, the resulting estimate, β̂
NLS

, is consistent. If the nls option is specified, estimation is complete.
Otherwise, the residuals

û𝑖 = y𝑖 − f(x𝑖, β̂NLS
)

are calculated and used to compute

�̂� = 1
𝑁

𝑁
∑
𝑖=1

û′
𝑖 ̂u𝑖

With �̂� in hand, a new estimate β̂ is then obtained.

If the ifgnls option is specified, the new β̂ is used to recompute the residuals and obtain a new

estimate of �̂�, from which β̂ can then be reestimated. Iterations stop when the relative change in β̂ is

less than eps(), the relative change in �̂� is less than ifgnlseps(), or if ifgnlsiterate() iterations
have been performed.

If the vce(robust) and vce(cluster clustvar) options were not specified, then

𝑉 (β̂) = (
𝑁

∑
𝑖=1

X′
𝑖�̂�

−1
X𝑖)

−1

where the 𝑀 × 𝑘 matrix X𝑖 has typical element 𝑋𝑖𝑠𝑡, the derivative of the 𝑠th element of f with respect
to the 𝑡th element of β, evaluated at x𝑖 and β̂. As a practical matter, once the model is written in the form
of (3), the variance–covariance matrix can be calculated via a Gauss–Newton regression; see ?, chap. 6.

If robust is specified, then

𝑉𝑅(β̂) = (
𝑁

∑
𝑖=1

X′
𝑖�̂�

−1
X𝑖)

−1 𝑁
∑
𝑖=1

X′
𝑖�̂�

−1
û′

𝑖û𝑖�̂�
−1
X𝑖 (

𝑁
∑
𝑖=1

X′
𝑖�̂�

−1
X𝑖)

−1

The cluster–robust variance matrix is

𝑉𝐶(β̂) = (
𝑁

∑
𝑖=1

X′
𝑖�̂�

−1
X𝑖)

−1 𝑁𝐶

∑
𝑐=1

w𝑐w
′
𝑐 (

𝑁
∑
𝑖=1

X′
𝑖�̂�

−1
X𝑖)

−1



nlsur — Estimation of nonlinear systems of equations 2014

where 𝑁𝐶 is the number of clusters and

w𝑐 = ∑
𝑗∈𝐶𝑘

X′
𝑗�̂�

−1
̂u′
𝑗

with𝐶𝑘 denoting the set of observations in the 𝑘th cluster. In evaluating these formulas, we use the value
of �̂� used in calculating the final estimate of β̂. That is, we do not recalculate �̂� after we obtain the final

value of β̂.

The RSS for the 𝑗th equation, RSS𝑗, is

RSS𝑗 =
𝑁

∑
𝑖=1

( ̂𝑦𝑖𝑗 − 𝑦𝑖𝑗)
2

where ̂𝑦𝑖𝑗 is the predicted value of the 𝑖th observation on the 𝑗th dependent variable; the total sum of

squares (TSS) for the 𝑗th equation, TSS𝑗, is

TSS𝑗 =
𝑁

∑
𝑖=1

(𝑦𝑖𝑗 − 𝑦𝑗)
2

if there is a constant term in the 𝑗th equation, where 𝑦𝑗 is the sample mean of the 𝑗th dependent variable,
and

TSS𝑗 =
𝑁

∑
𝑖=1

𝑦2
𝑖𝑗

if there is no constant term in the 𝑗th equation; and the model sum of squares (MSS) for the 𝑗th equation,
MSS𝑗, is TSS𝑗 − RSS𝑗.

The 𝑅2 for the 𝑗th equation is MSS𝑗/TSS𝑗. If an equation does not have a constant term, then the

reported 𝑅2 for that equation is “uncentered” and based on the latter definition of TSS𝑗.

Under the assumption that the u𝑖 are independent and identically distributed 𝑁(0, �̂�), the log likeli-
hood for the model is

ln𝐿 = −𝑀𝑁
2

{1 + ln(2𝜋)} − 𝑁
2
ln ∣�̂�∣

The log likelihood is reported only when the ifgnls option is specified.

Also see
[R] nlsur postestimation — Postestimation tools for nlsur

[R] nl — Nonlinear least-squares estimation

[R] demandsys — Estimation of flexible demand systems

[R] gmm — Generalized method of moments estimation

[R] ml — Maximum likelihood estimation

[R] mlexp — Maximum likelihood estimation of user-specified expressions

[R] reg3 — Three-stage estimation for systems of simultaneous equations

[R] sureg — Zellner’s seemingly unrelated regression

[U] 20 Estimation and postestimation commands
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Postestimation commands
The following postestimation commands are available after nlsur:

Command Description

estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian infor-
mation criteria (AIC, CAIC, AICc, and BIC, respectively)

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estimates cataloging estimation results

etable table of estimation results

forecast dynamic forecasts and simulations

hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

lrtest likelihood-ratio test
∗ margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

predict fitted values, residuals, etc.

predictnl point estimates, standard errors, testing, and inference for generalized predictions

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

∗You must specify the variables() option with nlsur.

2015
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predict

Description for predict
predict creates a new variable containing predictions such as fitted values and residuals.

Menu for predict
Statistics > Postestimation

Syntax for predict
predict [ type ] newvar [ if ] [ in ] [ , equation(eqno) yhat residuals ]

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for the

estimation sample.

Options for predict

� � �
Main �

equation(eqno) specifies to which equation you are referring. equation(#1) would mean that the

calculation is to be made for the first equation, equation(#2) would mean the second, and so on. If
you do not specify equation(), results are the same as if you had specified equation(#1).

yhat, the default, calculates the fitted values for the specified equation.

residuals calculates the residuals for the specified equation.
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margins

Description for margins
margins estimates margins of response for fitted values.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist ] [ , options ]
margins [marginlist ] , predict(statistic ...) [ options ]

statistic Description

yhat fitted values; the default

residuals not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.

Remarks and examples

Example 1
In example 2 of [R] nlsur, we fit a four-factor translog cost function to data for the US economy. The

own-price elasticity for a factor measures the percentage change in its usage as a result of a 1% increase

in the factor’s price, assuming that output is held constant. For the translog production function, the

own-price factor elasticities are

𝜂𝑖 = 𝛿𝑖𝑖 + 𝑠𝑖(𝑠𝑖 − 1)
𝑠𝑖
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Here we compute the elasticity for capital at the sample mean of capital’s factor share. First, we use

summarize to get the mean of s k and store that value in a scalar:

. use https://www.stata-press.com/data/r18/mfgcost
(Manufacturing cost)
. nlsur (s_k = {bk} + {dkk}*ln(pk/pm) + {dkl}*ln(pl/pm) + {dke}*ln(pe/pm))
> (s_l = {bl} + {dkl}*ln(pk/pm) + {dll}*ln(pl/pm) + {dle}*ln(pe/pm))
> (s_e = {be} + {dke}*ln(pk/pm) + {dle}*ln(pl/pm) + {dee}*ln(pe/pm)),
> ifgnls
(output omitted )

. summarize s_k
Variable Obs Mean Std. dev. Min Max

s_k 25 .053488 .0044795 .04602 .06185
. scalar kmean = r(mean)

Now, we can use nlcom to calculate the elasticity:

. nlcom (([dkk]_cons + kmean*(kmean-1)) / kmean)
_nl_1: ([dkk]_cons + kmean*(kmean-1)) / kmean

Coefficient Std. err. z P>|z| [95% conf. interval]

_nl_1 -.3952986 .1083535 -3.65 0.000 -.6076676 -.1829295

If the price of capital increases by 1%, its usage will decrease by about 0.4%. To maintain its current

level of output, a firm would increase its usage of other inputs to compensate for the lower capital usage.

The standard error reported by nlcom reflects the sampling variance of the estimated parameter 𝛿𝑘𝑘,

but nlcom treats the sample mean of s k as a fixed parameter that does not contribute to the sampling
variance of the estimated elasticity.

Also see
[R] nlsur — Estimation of nonlinear systems of equations

[U] 20 Estimation and postestimation commands
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Description
Nonparametric regression models the mean of an outcome given the covariates without making as-

sumptions about its functional form. This makes nonparametric regression estimates robust to functional

form misspecification. npregress implements the two most common nonparametric regression estima-
tors: series regression and kernel regression.

Nonparametric series estimation regresses the outcome on a function of the covariates. The func-

tion of the covariates is known as a basis function. A basis is a collection of terms that approximates

smooth functions arbitrarily well. A basis function includes a subset of these terms. The bases used by

npregress series are polynomials, piecewise polynomial splines, and B-splines.

Nonparametric kernel estimation computes a weighted average of the outcome. The weights are

functions called kernels, which give rise to the name of the method. npregress kernel performs lo-
cal–linear and local–constant kernel regression.

Whether we choose to approximate the mean of our outcome using series regression or kernel regres-

sion, we obtain estimates that are robust to assumptions about functional form. This robustness comes

at a cost; we need many observations and perhaps a long computation time to estimate the elements of

the approximating function.

This entry introduces the intuition behind the nonparametric regression estimators implemented in

npregress. If you are familiar with these methods, you may want to skip to [R] npregress kernel or
[R] npregress series.

Remarks and examples
Remarks are presented under the following headings:

Overview
Nonparametric series regression

Runge’s phenomenon
Piecewise polynomial splines and B-splines

Nonparametric kernel regression
Limitations of nonparametric methods

Overview
Nonparametric regression is used when we are uncertain about the functional form of the mean of

the outcome given the covariates. For example, when we estimate a linear regression, we assume that

the functional form for the mean of the outcome is a linear combination of the specified covariates.

Both parametric (linear) regression and nonparametric regression provide an estimate of the mean for

the different values of the covariates. Consider the simulated data in figure 1. The mean of the outcome

for all values of x is overlaid on these points.

2019
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Figure 1.

Because the mean of the data in figure 1 is not linear in x, using a simple linear regression will not
give us a correct picture about the effect of covariate x on the outcome. For example, if we perform a

linear regression of the outcome on x for the data, we obtain the plot shown in figure 2.
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Figure 2.

The change in the predicted outcome when x changes is positive and constant, yet the true mean is
nonlinear. If the assumption about the functional form of the mean is incorrect, the estimates we obtain

are inconsistent. If we instead fit the model using npregress and graph the estimates, we obtain figure 3.
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Figure 3.

npregress gives us the correct relationship between the outcome and the covariates. The nonpara-
metric regression estimates are consistent as long as the true function is sufficiently smooth. If the linear

regression assumptions are true, nonparametric regression is still consistent but less efficient.

Although nonparametric regression is a way to obtain estimates that are robust to functional form

misspecification, this robustness comes at a cost. You need many observations and more time to com-

pute the estimates. The cost increases with the number of covariates; this is referred to as the curse of

dimensionality.

Nonparametric series regression
The basis and the basis function are concepts essential to understanding series regression. A basis is a

collection of terms that can approximate a smooth function arbitrarily well. Abasis function uses a subset

of these terms to approximate the mean function. npregress series allows you to use a polynomial
basis, a piecewise polynomial spline basis, or a B-spline basis. For each basis, npregress series
selects the basis function for you.

We use an example to illustrate the use of a basis and a basis function. Suppose a researcher has data

on the outcome 𝑦 and a covariate 𝑥. We plot their relationship in the figure 4 below.
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In this case, a regression of 𝑦 on 𝑥 will do a good job of approximating the true function. If our data

looked like the data in figure 5, however, a regression of 𝑦 on 𝑥 would be inadequate.
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Figure 5.

In this case, a regression of 𝑦 on 𝑥 and 𝑥2 is more appropriate.

In each case, we include terms from a polynomial basis. In the first case, we need a constant and

the linear term 𝑥. In the second case, we need a constant, the linear term 𝑥, and the quadratic term 𝑥2.

A more complex function would require a basis function that includes more terms from the polynomial

basis.

If we want to use a polynomial basis function, npregress will select a degree of the polynomial for
us. Additional terms reduce bias but increase the variance of the estimator. npregress will select the
terms that optimally tradeoff bias and variance. In other words, npregress selects a basis function that
includes the terms that minimize the mean squared error. Our example above used a polynomial basis

function, but npregress can also select terms from a piecewise polynomial spline or B-spline basis.
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Runge’s phenomenon

Polynomials are themost intuitive basis but not the preferred basis for nonparametric series estimation.

The reason is that they are poor at interpolating. This problem shows up at the boundaries of the support

of the covariates, where, as you increase the order of the polynomial, the polynomial approximation

oscillates frequently, even when the true function does not behave this way.

Let us demonstrate. Below is an example for which we model a mean function using a third-order

polynomial. We plot the data and the estimate of the mean function:
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Figure 6.

Looking at the data, it appears that a higher-order polynomial would be a better fit for the data. Below

is the mean function we get using a sixth-order and a tenth-order polynomial:
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Figure 7.

The predictions improve at values near the middle of the range of 𝑥 but become more variable at the

edges of the parameter space.
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What we illustrated above is referred to as Runge’s phenomenon. Increasing the complexity of the

polynomial order did not improve our approximation. In fact, as we increased the polynomial order, the

behavior at the edges of the parameter space became more variable. The way to address this is to use a

basis that does a better job of interpolating: piecewise polynomial splines or B-splines.

Piecewise polynomial splines and B-splines

Piecewise polynomial splines and B-splines are preferred to a polynomial basis because they are better

at approximation. We discuss piecewise polynomial splines to provide intuition for both the piecewise

polynomial spline basis and the B-spline basis.

Low-order polynomials do a great job of approximating functions in regions where the true function

does not change too much. Splines continuously connect a set of low-order polynomials to create a basis

to approximate a smooth function. The graph below illustrates what this definition means. We show in

maroon a piecewise polynomial spline estimate of the mean function for the data in the example above.

-.5

0

.5

1

1.5

-1 -.5 0 .5 1
x

Data Spline mean estimate

Figure 8.

To see that splines are better than polynomials, note that the spline approximation of the mean function

fits the data well and that there are no regions where the approximation wiggles wildly.

Now, we delve into the definition above. The vertical lines in the graph partition the support of 𝑥
into subregions. The piecewise polynomial spline basis allows for a different low-order polynomial in

each subregion, and it forces the polynomials in neighboring regions to be continuously connected. In

figure 8 above, the basis used is a third-order polynomial in each subregion. The graph illustrates that the

polynomials are smoothly connected at the subregion boundaries. The subregion boundaries are known

as the knot points, or just the knots, because they are where the different polynomials are tied together.

By default, npregress selects the number of knots for you. Alternatively, you may specify the num-
ber of knots yourself.

We now look at how the mean function at each region was computed. We show this mathematically

and graphically.
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Defining the seven knots as 𝑡1, . . . , 𝑡7, where 𝑡1 < 𝑡2 < · · · < 𝑡6 < 𝑡7, the third-order piecewise

polynomial spline estimate is given by

𝐸 (𝑦𝑖|𝑥𝑖) = ̂𝛽0 + ̂𝛽1𝑥𝑖 + ̂𝛽2𝑥2
𝑖 + ̂𝛽3𝑥3

𝑖 +
7

∑
𝑗=1

𝛽𝑗+3 max(𝑥𝑖 − 𝑡𝑗, 0)3

Thus, for all 𝑥𝑖 that are less than the smallest knot, 𝑡1, the mean estimate is given by the third-order

polynomial

𝐸 (𝑦𝑖|𝑥𝑖≤𝑡1) = ̂𝛽0 + ̂𝛽1𝑥𝑖 + ̂𝛽2𝑥2
𝑖 + ̂𝛽3𝑥3

𝑖

Here it is graphically:
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Figure 9.

Likewise, if 𝑥 is less than the second knot, 𝑡2, then the mean estimate for that region is different if

𝑥𝑖 > 𝑡1 than if 𝑥𝑖 ≤ 𝑡1, and is given by

𝐸 (𝑦𝑖|𝑥𝑖≤𝑡2) = ̂𝛽0 + ̂𝛽1𝑥𝑖 + ̂𝛽2𝑥2
𝑖 + ̂𝛽3𝑥3

𝑖 + 𝛽4 (𝑥𝑖 − 𝑡1)3 (𝑥𝑖 > 𝑡1)

Here it is graphically:
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Figure 10.

As 𝑥 increases, there are additional contributions from each subregion. If we continue plotting the

resulting mean estimates, the following graphs would be what we would obtain:

Figure 11.

This example illustrates how the terms in the spline basis approximate the mean function. Both the

graph of the estimated function and the intuition in the example illustrate why the spline basis is better

than the polynomial basis.

In the examples above, we used a piecewise polynomial spline basis. Specifically, we used a third-

order piecewise polynomial spline basis function to obtain our estimates of the conditional mean. We

could have also used second-order or first-order piecewise polynomial splines, where the order of the

splines is defined by the order of the polynomial terms in the covariates used in each subregion.

As mentioned before, piecewise polynomial splines are preferred to a polynomial basis because they

are better at approximation. However, piecewise polynomial splines also have some issues. In particular,

they can be highly collinear and therefore numerically unstable. You can see this in the regions delineated

in figure 11, which are defined by terms of the form max(𝑥𝑖 − 𝑡𝑗, 0) that may overlap.
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B-splines avoid this problem, so each term that goes into the conditional mean approximation is or-

thogonal. It is for this reason that B-splines are the default basis for npregress series. However, the
intuition we obtain from piecewise polynomial splines and B-splines is equivalent. In fact, B-spline and

piecewise polynomial spline bases can approximate the same functions. For a more detailed explanation

of B-splines, see Methods and formulas in [R] npregress series.

In this section, we provided an intuitive and brief introduction to nonparametric series estimation. For

detailed introductions to series estimators and the methods implemented by npregress series, see ?,
?, ?, ?, ?, and ?.

Nonparametric kernel regression
npregress kernel approximates the mean by using a kernel function. In Overview, we plotted the

following data and nonparametric estimate of the mean function:
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Data and nonparametric estimate

Figure 12.

We used kernel regression to estimate this mean function. With this method, we estimate the mean of

the outcome at different values of the covariate x. In this section, we build our intuition for how kernel

regression estimates these means, and we demonstrate this graphically.

Suppose covariate x is discrete. In this case, a consistent estimator of the mean of outcome y given
that x = 𝑎 is the average of the values of y for which x is equal to a given value 𝑎. For instance, the
sample average of the yearly income for married individuals is a consistent estimator for the population

mean yearly income for married individuals.

Now, consider estimating the mean of y given that x = 𝑎 when x is continuous and 𝑎 is a value

observed for x. Because x is continuous, the probability of any observed value being exactly equal to
𝑎 is 0. Therefore, we cannot compute an average for the values of y for which x is equal to a given

value 𝑎. We use the average of y for the observations in which x is close to 𝑎 to estimate the mean of

y given that x = 𝑎. Specifically, we use the observations for which |x − 𝑎| < ℎ, where ℎ is small.

The parameter ℎ is called a bandwidth. In nonparametric kernel regression, a bandwidth determines the

amount of information we use to estimate the conditional mean at each point 𝑎. We demonstrate how

this works graphically.
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For the simulated data in our example, we choose ℎ = 0.25 and 𝑎 = −0.19. The vertical lines in

figure 13 delimit the values of x around 𝑎 for which we are computing the mean of y. The light blue
square is our estimate of the conditional mean using the observations between the vertical lines.
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Figure 13.

Repeating this estimation when 𝑎 = 2.66 produces figure 14.
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Figure 14.
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Doing this estimation for each point in our data produces a nonparametric estimate of the mean for a

given value of the covariates (see figure 15).
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Figure 15.

The plotted blue squares in figure 15 form what is known as the conditional mean function. Be-

cause these are simulated data, we can compare our estimate with the true conditional mean function, a

comparison we show in figure 16.

-60

-40

-20

0

20

40

-2 -1 0 1 2 3
x

Estimated
Real

Nonparametric mean function estimate and true mean

Figure 16.

We see that the estimate is a bit less smooth than the true function. The size of the bandwidth ℎ
determines the shape and smoothness of the estimated conditional mean function, because the bandwidth

defines how many observations around each point are used. For example, if ℎ is arbitrarily large—say,

ℎ = 300—then we get figure 17.
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Figure 17.

In this case, all observations are used to estimate the conditional mean at each point, and the estimate

is therefore a constant. On the other hand, a too-small bandwidth produces a jagged function with high

variability, as illustrated in figure 18.
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Figure 18.

The optimal bandwidth is somewhere in between. A too-large bandwidth includes too many observa-

tions, so the estimate is biased but it has a low variance. A too-small bandwidth includes too few observa-

tions, so the estimate has little bias but the variance is large. In other words, the optimal bandwidth trades

off bias and variance. In the case of npregress kernel, the bandwidth is chosen to minimize the cost
of this tradeoff by using either cross-validation, as suggested by ?, or an improved Akaike information

criterion proposed by ?.

How we average the observations around a point is also important. In the examples above, we gave

the same weight to each observation for which |x − 𝑎| < ℎ. However, we might weight each observation
differently. The weights that observations receive are determined by functions called kernels. We could

have used any of the weights in [R] kdensity. For a nice introduction to kernel weighting, see ?.
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The estimator described above uses only nearby observations and is thus a local estimator. It uses a

sample average, which is a regression on a constant, and is thus a locally constant estimator. For these

reasons, the estimator described above fits what is known as a local-constant regression.

The generalization that uses the prediction from a local-linear regression on covariates is known as

local-linear regression. Local-linear regression estimates the derivative of the conditional mean function

in addition to the function itself. Understanding how the conditional mean changes when covariates

change is sometimes the research question of interest, for example, how income changes for different

levels of taxes. Local-linear regression provides an estimate for these changes for continuous and discrete

variables.

See ? and ? for detailed introductions to the kernel estimators implemented in npregress kernel.

Limitations of nonparametric methods
As discussed above, series regression and kernel regression approximate an unknown mean function.

Series regression uses least squares on the basis function. Kernel regression uses a kernel-weighted

average of nearby observations.

Series estimators are considered to be global estimators because they approximate the mean function

at each point using the value of one overall approximating function. Kernel regression is considered a

local estimator because it only uses nearby observations to approximate the mean for a given covariate

pattern.

Although piecewise polynomial splines and B-splines are considered to be global estimators, in fact,

they are local estimators. They are local because they fit a polynomial in each region defined by the

knots. Like kernel estimators, piecewise polynomial spline and B-spline estimators require that there are

enough data in each region. Suppose our data look like the data below.
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Using a method to select knots optimally at percentiles of the data will give us figure 20.
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Figure 20.

The vertical line denotes the point at which the knot is placed. The blue line is the B-spline estimate,

and the dotted green line is the true mean function. We see that our estimate of the mean function is not

good, especially for higher positive values of the covariate. The reason is that data are sparse for these

values. An alternative is to place the knots uniformly over the values of x. In this case, our estimate of the
mean function improves. However, this does not change the fact that we have regions with insufficient

data to make reliable inferences.

Thus, for kernel, piecewise polynomial spline, and B-spline estimators, we must have enough data

points for all ranges of the data. In particular, piecewise polynomial spline and B-spline estimates should

not be used to predict outside the support of the data.

Another important consideration is model selection. npregress selects the number of terms from a

basis for series estimation and the bandwidth for kernel estimation. After model selection, the models

are taken as given without accounting for model-selection error. You can find an in-depth discussion and

references of some of the issues that arise when performing model selection in [LASSO] Lasso intro.

Also see
[R] npregress kernel — Nonparametric kernel regression

[R] npregress series — Nonparametric series regression

[R] lpoly — Kernel-weighted local polynomial smoothing

[R] kdensity — Univariate kernel density estimation

[R] regress — Linear regression
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Description
npregress kernel performs nonparametric local–linear and local–constant kernel regression. Like

linear regression, nonparametric regression models the mean of the outcome conditional on the covari-

ates, but unlike linear regression, it makes no assumptions about the functional form of the relationship

between the outcome and the covariates. npregress kernel may be used to model the mean of a con-
tinuous, count, or binary outcome.

Quick start
Nonparametric regression of y on x and discrete covariate a using the Epanechnikov kernel for x and the

Li–Racine kernel for a
npregress kernel y x i.a

Same as above, but use 500 replications and compute bootstrap standard errors and percentile confidence

intervals

npregress kernel y x i.a, reps(500)

Same as above, but use a Gaussian kernel for x
npregress kernel y x i.a, reps(500) kernel(gaussian)

Same as above, but use the improved AIC to find the optimal bandwidth

npregress kernel y x i.a, reps(500) kernel(gaussian) imaic

Same as above, but additionally specify that only the mean of the outcome be computed

npregress kernel y x i.a, reps(500) kernel(gaussian) imaic noderivatives

Specify h as the vector of bandwidths
npregress kernel y x i.a, bwidth(h)

Menu
Statistics > Nonparametric analysis > Nonparametric kernel regression

2033
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Syntax
npregress kernel depvar indepvars [ if ] [ in ] [ , options ]

options Description

Model

estimator(linear | constant) use the local-linear or local-constant kernel estimator

kernel(kernel) kernel density function for continuous covariates

dkernel(dkernel) kernel density function for discrete covariates

predict(prspec) store predicted values of the mean and derivatives using
variable names specified in prspec

noderivatives suppress derivative computation

imaic use improved AIC instead of cross-validation to compute
optimal bandwidth

unidentsample(newvar) specify name of variable that marks identification problems

Bandwidth

bwidth(specs) specify kernel bandwidth for all predictions

meanbwidth(specs) specify kernel bandwidth for the mean

derivbwidth(specs) specify kernel bandwidth for the derivatives

SE
∗ vce(vcetype) vcetype may be none or bootstrap
reps(#) equivalent to vce(bootstrap, reps(#))
seed(#) set random-number seed to #; must also specify reps(#)
bwreplace vary bandwidth with each bootstrap replication; seldom used

Reporting

level(#) set confidence level; default is level(95)
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

citype(citype) method to compute bootstrap confidence intervals;
default is citype(percentile)

Maximization

maximize options control the maximization process

coeflegend display legend instead of statistics

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

bootstrap, by, collect, and jackknife are allowed; see [U] 11.1.10 Prefix commands.
∗ vce(bootstrap) reports percentile confidence intervals instead of the normal-based confidence intervals reported when

vce(bootstrap) is specified with other estimation commands.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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kernel Description

epanechnikov Epanechnikov kernel function; the default

epan2 alternative Epanechnikov kernel function

biweight biweight kernel function

cosine cosine trace kernel function

gaussian Gaussian kernel function

parzen Parzen kernel function

rectangle rectangle kernel function

triangle triangle kernel function

dkernel Description

liracine Li–Racine kernel function; the default

cellmean cell means kernel function

citype Description

percentile percentile confidence intervals; the default

bc bias-corrected confidence intervals

normal normal-based confidence intervals

Options

� � �
Model �

estimator(linear | constant) specifies whether the local-constant or local-linear kernel estimator

should be used. The default is estimator(linear).

kernel(kernel) specifies the kernel density function for continuous covariates for use in calculating the
local-constant or local-linear estimator. The default is kernel(epanechnikov).

dkernel(dkernel) specifies the kernel density function for discrete covariates for use in calculating the
local-constant or local-linear estimator. The default is dkernel(liracine); seeMethods and formu-

las for details on the Li–Racine kernel. When dkernel(cellmean) is specified, discrete covariates
are weighted by their cell means.

predict(prspec) specifies that npregress kernel store the predicted values for the mean and deriva-
tives of the mean with the specified names. prspec is the following:

predict(varlist | stub* [ , replace noderivatives ])
The option takes a variable list or a stub. The first variable name corresponds to the predicted outcome

mean. The second name corresponds to the derivatives of the mean. There is one derivative for each

indepvar.

When replace is used, variables with the names in varlist or stub* are replaced by those in the

new computation. If noderivatives is specified, only a variable for the mean is created. This will
increase computation speed but will add to the computation burden if you want to obtain marginal

effects after estimation.

noderivatives suppresses the computation of the derivatives. In this case, only the mean function is
computed.
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imaic specifies to use the improved AIC instead of cross-validation to compute optimal bandwidths.

unidentsample(newvar) specifies the name of a variable that is 1 if the observation violates the

model identification assumptions and is 0 otherwise. By default, this variable is a system variable

( unident sample).

npregress kernel computes a weighted regression for each observation in our data. An observation
violates identification assumptions if the regression cannot be performed at that point. The regression

formula, which is discussed in detail in Methods and formulas, is given by

�̂� = (Z′WZ)−1
Z′Wy

npregress kernel verifies that the matrix (Z′WZ) is full rank for each observation to determine
identification. Identification problems commonly arise when the bandwidth is too small, resulting in

too few observations within a bandwidth. Independent variables that are collinear within the band-

width can also cause a problem with identification at that point.

Observations that violate identification assumptions are reported as missing for the predicted means

and derivatives.

� � �
Bandwidth �

bwidth(specs) specifies the half-width of the kernel at each point for the computation of the mean and
the derivatives of the mean function. If no bandwidth is specified, one is chosen by minimizing the

integrated mean squared error of the prediction.

specs specifies bandwidths for the mean and derivative for each indepvar in one of three ways: by

specifying the name of a vector containing the bandwidths (for example, bwidth(H), where H is a
properly labeled vector); by specifying the equation and coefficient names with the corresponding

values (for example, bwidth(Mean:x1=0.5 Effect:x1=0.9)); or by specifying a list of values for
the means, standard errors, and derivatives for indepvars given in the order of the corresponding

indepvars and specifying the copy suboption (for example, bwidth(0.5 0.9, copy)).

skip specifies that any parameters found in the specified vector that are not also found in the model
be ignored. The default action is to issue an error message.

copy specifies that the list of values or the vector be copied into the bandwidth vector by position

rather than by name.

meanbwidth(specs) specifies the half-width of the kernel at each point for the computation of the mean
function. If no bandwidth is specified, one is chosen by minimizing the integrated mean squared

error of the prediction. For details on how to specify the bandwidth, see the description of bwidth(),
above.

derivbwidth(specs) specifies the half-width of the kernel at each point for the computation of the

derivatives of the mean. If no bandwidth is specified, one is chosen by minimizing the integrated

mean squared error of the prediction. For details on how to specify the bandwidth, see the description

of bwidth(), above.

� � �
SE �

vce(vcetype) specifies the type of standard error reported, which may be either that no standard er-
rors are reported (none; the default) or that bootstrap standard errors are reported (bootstrap); see
[R] vce option.
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We recommend that you select the number of replications using reps(#) instead of specifying

vce(bootstrap), which defaults to 50 replications. Be aware that the number of replications needed
to produce good estimates of the standard errors varies depending on the problem.

When vce(bootstrap) is specified, npregress kernel reports percentile confidence intervals as
recommended by ? instead of reporting the normal-based confidence intervals that are reported when

vce(bootstrap) is specified with other commands. Other types of confidence intervals can be

obtained by using the citype(citype) option.

reps(#) specifies the number of bootstrap replications to be performed. Specifying this option is equiv-
alent to specifying vce(bootstrap, reps(#)).

seed(#) sets the random-number seed. You must specify reps(#) with seed(#).

bwreplace computes a different bandwidth for each bootstrap replication. The default is to compute the
bandwidth once and keep it fixed for each bootstrap replication. This option is seldom used.

� � �
Reporting �

level(#); see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

citype(citype) specifies the type of confidence interval to be computed. By default, bootstrap percentile
confidence intervals are reported as recommended by ?. citype may be one of percentile, bc, or
normal.

� � �
Maximization �

maximize options: iterate(#), [no]log, trace, showstep, tolerance(#), ltolerance(#),
from(init specs); see [R]Maximize. These options are seldom used.

The following option is available with npregress kernel but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

Remarks and examples
This entry assumes that you are already familiar with nonparametric regression. For an introduction

to the nonparametric kernel regression methods used in npregress kernel, see [R] npregress intro.

Remarks are presented under the following headings:

Overview
Estimation and effects
Visualizing covariate effects

Overview
npregress kernel implements local-constant and local-linear regression. The covariates may be

continuous or discrete. You can use npregress kernel to nonparametrically estimate a conditional

mean. npregress kernel also allows you to estimate covariate effects after estimation and, in models
with one covariate, to plot the mean function by using npgraph after estimation.
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The word “nonparametric” refers to the fact that the parameter of interest, the mean as a function of

the covariates, is given by the unknown function 𝑔(x𝑖), which is an element of an infinite-dimensional
space of functions. In contrast, in a parametric model, the mean for a given value of the covariates,

𝐸(𝑦𝑖|x𝑖) = 𝑓(x𝑖,β), is a known function that is fully characterized by the parameter of interest, β,
which is a finite-dimensional real vector (?).

The regression model of outcome 𝑦𝑖 given the 𝑘-dimensional vector of covariates x𝑖 is given by

𝑦𝑖 = 𝑔 (x𝑖) + 𝜀𝑖 (1)

𝐸 (𝜀𝑖|x𝑖) = 0 (2)

where 𝜀𝑖 is the error term. The covariates may include discrete and continuous variables. Equations (1)

and (2) imply that

𝐸 (𝑦𝑖|x𝑖) = 𝑔 (x𝑖)

Once we account for the information in the covariates, the error term provides no information about

the mean of our outcome. The conditional mean function is therefore given by 𝑔(x𝑖). By estimating
𝐸(𝑦𝑖|x𝑖 = x) for all points x in our data, we obtain an estimate of 𝐸(𝑦𝑖|x𝑖).

npregress kernel, by default, estimates a local-linear regression. Local-linear regression estimates
a regression for a subset of observations for each point in our data. See ? for a good reference on local-

linear regression. Local-linear regression, for each point x, solves the minimization problem given by

min𝛄
𝑛

∑
𝑖=1

{𝑦𝑖 − 𝛾0 − 𝛄′
1 (x𝑖 − x)}2 𝐾(x𝑖, x,h) (3)

where 𝛄 = (𝛾0, 𝛄′
1)′.

Equation (3) and its solution are similar to parametric ordinary least squares. The slope and the

constant in (3), however, have a different interpretation. The constant in (3), 𝛾0, is the conditional mean

at a specific point x. The slope parameter, 𝛄1, is the derivative of the mean function with respect to x.

The solution to this least-squares problem gives us the mean function and its derivative for each one of

the elements of x. Repeating this optimization for each point x gives us the entire mean function and its

derivatives.

Another difference between (3) and the minimization problem of parametric ordinary least squares is

how the optimization is weighted. The weights are given by the kernel function 𝐾(x𝑖, x,h). The kernel
function assigns weights to observations x𝑖 based on how much they differ from x and based on the

bandwidth, h. The smaller h is, the larger the weight assigned to points between x𝑖 and x.

The bandwidth also determines the bias and variance of the mean function estimator. npregress
kernel selects the bandwidth using cross-validation, as suggested by ?, or if the imaic option is spec-
ified, with the improved AIC proposed by ?. Both methods minimize the tradeoff between bias and

variance.

npregress kernel computes a conditional mean for each observation in the data and, for each one of
these computations, verifies whether identification conditions are fulfilled. The observations for which

the regression identification assumptions are not satisfied are dropped from the estimation sample. Ad-

ditionally, whenever there is a violation of the identification assumption, npregress kernel generates
a system variable or a variable with a name provided in noidsample(newvar). This variable is 1 for
observations violating the identification assumption and is 0 otherwise. npregress kernel also issues
a warning, letting you know the number of observations for which the identification assumption is not

satisfied.
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Estimation and effects
The output of npregress kernel reports averages of the mean function and the effects of the mean

function. An average effect from nonparametric regression may be either 1) an average marginal effect,

in the case of the mean of derivatives for continuous covariates or 2) the mean of contrasts for discrete

covariates.

Some well-established literature estimates these average effects directly and uses an optimal band-

width for this computation; see ? and ?. By taking averages of the local-linear estimates, npregress
kernel is more in line with the approach in ?. Intuitively, choosing the optimal bandwidth for the

derivative produces a more efficient estimator than using the bandwidth that is optimal for the function.

Both estimators are consistent for the average effect. ? formally justify the average effect using the

function-optimal bandwidth.

npregress kernel also reports an approximation of 𝑛|h| as the expected kernel observations. This
statistic rounds the product of the continuous kernel bandwidth values and the number of observations

used for estimation. For instance, if the estimation sample was 500 and the bandwidth was 0.246, the

expected kernel observations would be 123 (= 500 × 0.246). The expected kernel observation number

of 123 tells us that, on average, 123 observations are used to compute each one of the 500 regressions

performed by npregress kernel.

Example 1: Nonparametric regression estimation and graphing
dui.dta contains information about the number of monthly drunk driving citations in a local juris-

diction (citations). Suppose we want to know the effect of increasing fines on the number of citations.

Because citations is a count variable, we could consider fitting the model with poisson or nbreg.
However, both of these estimators make assumptions about the distribution of the data. If these assump-

tions are not true, we will obtain inconsistent estimates.
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By using npregress kernel, we do not have to make any assumptions about how citations is

distributed. We use npregress kernel to estimate the mean of citations as a function of the value
of the fines imposed for drunk driving (fines).

. use https://www.stata-press.com/data/r18/dui
(Fictional data on monthly drunk driving citations)
. npregress kernel citations fines
Computing mean function

Minimizing cross-validation function:

Iteration 0: Cross-validation criterion = 35.478784
Iteration 1: Cross-validation criterion = 4.0147129
Iteration 2: Cross-validation criterion = 4.0104176
Iteration 3: Cross-validation criterion = 4.0104176
Iteration 4: Cross-validation criterion = 4.0104176
Iteration 5: Cross-validation criterion = 4.0104176
Iteration 6: Cross-validation criterion = 4.0104006

Computing optimal derivative bandwidth

Iteration 0: Cross-validation criterion = 6.1648059
Iteration 1: Cross-validation criterion = 4.3597488
Iteration 2: Cross-validation criterion = 4.3597488
Iteration 3: Cross-validation criterion = 4.3597488
Iteration 4: Cross-validation criterion = 4.3597488
Iteration 5: Cross-validation criterion = 4.3597488
Iteration 6: Cross-validation criterion = 4.3595842
Iteration 7: Cross-validation criterion = 4.3594713
Iteration 8: Cross-validation criterion = 4.3594713
Bandwidth

Mean Effect

fines .5631079 .924924

Local-linear regression Number of obs = 500
Kernel : epanechnikov E(Kernel obs) = 282
Bandwidth: cross-validation R-squared = 0.4380

citations Estimate

Mean
citations 22.33999

Effect
fines -7.692388

Note: Effect estimates are averages of derivatives.
Note: You may compute standard errors using vce(bootstrap) or reps().

The first table displays the bandwidths used to estimate the mean function and the derivative of the

mean function. Each of these bandwidths is estimated by minimizing a function that trades off bias and

variance; the corresponding iteration logs are displayed also. The expected number of observations used

to estimate the mean function at each point is reported in E(Kernel obs) as 282.
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Unlike other estimation commands, npregress kernel does not report standard errors, test statistics,
and confidence intervals by default. In example 2, we demonstrate how to obtain these statistics and

further discuss the output.

Example 2: Bootstrapping standard errors
We can estimate the standard errors by using the bootstrap; see ? for formal results. We use

the reps(400) option, which is equivalent to vce(bootstrap, reps(400)) and specifies that 400

bootstrap replications be used instead of the default 50 replications that are used when we specify

vce(bootstrap).

Each estimation problem requires a different number of replications to produce good estimates of the

standard errors. In example 3, we explain how we decided to use 400 replications. Note that nonpara-

metric estimation and the bootstrap are computationally intensive, so running this example and others

that compute bootstrap standard errors will take a while.

. npregress kernel citations fines, reps(400) seed(12)
(running npregress on estimation sample)
Bootstrap replications (400): .........10.........20.........30.........40.....
> ....50.........60.........70.........80.........90.........100.........110...
> ......120.........130.........140.........150.........160.........170........
> .180.........190.........200.........210.........220.........230.........240.
> ........250.........260.........270.........280.........290.........300......
> ...310.........320.........330.........340.........350.........360.........37
> 0.........380.........390.........400 done
Bandwidth

Mean Effect

fines .5631079 .924924

Local-linear regression Number of obs = 500
Kernel : epanechnikov E(Kernel obs) = 282
Bandwidth: cross-validation R-squared = 0.4380

Observed Bootstrap Percentile
citations estimate std. err. z P>|z| [95% conf. interval]

Mean
citations 22.33999 .4588298 48.69 0.000 21.48622 23.35956

Effect
fines -7.692388 .491884 -15.64 0.000 -8.693068 -6.757721

Note: Effect estimates are averages of derivatives.

The coefficient table now reports the average of the predicted means and the average of the predicted

derivatives of the mean function with bootstrap standard errors. The average of the observation-level

predicted (citations) is 22.34. The average of the observation-level marginal effects is −7.69, which

indicates that increasing fines reduces the mean number of citations.
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We use npgraph to graph the estimated conditional mean function.

. npgraph
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The graph shows the negative association between fines and the number of drunk driving citations.

npregress kernel generates system variables for the mean function and the derivative of the mean

function. To see the variables that npregress kernel generated for example 1, we type

. describe *_*, fullnames
Variable Storage Display Value

name type format label Variable label

_Mean_citations double %10.0g Mean function
_d_Mean_citations_dfines

double %10.0g derivative of mean function w.r.t
fines

To specify a name for each system variable, we can use the predict() option.

. npregress kernel citations fines, predict(mean deriv)
(output omitted )

. describe mean deriv
Variable Storage Display Value

name type format label Variable label

mean double %10.0g Mean function
deriv double %10.0g derivative of mean function w.r.t

fines

Alternatively, we can use the same stub for all the variable names by typing predict(hatvar*),
which would generate variables hatvar1 and hatvar2.

You may add noderivatives to the option, as in predict(hatvar*, noderivatives), to specify
that no derivatives be generated. You save memory when you use noderivatives, but you add to

the computational burden. As you will see below, an important feature of npregress kernel is the

availability of the margins command after estimation. marginsmust compute the derivatives and their
optimal bandwidth.
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Example 3: Selecting the number of bootstrap replications
We start by fitting the model using 200 bootstrap replications. We want to find the number of repli-

cations for which the confidence intervals do not change much.

. npregress kernel citations fines, reps(200) seed(12)
(running npregress on estimation sample)
Bootstrap replications (200): .........10.........20.........30.........40.....
> ....50.........60.........70.........80.........90.........100.........110...
> ......120.........130.........140.........150.........160.........170........
> .180.........190.........200 done
Bandwidth

Mean Effect

fines .5631079 .924924

Local-linear regression Number of obs = 500
Kernel : epanechnikov E(Kernel obs) = 282
Bandwidth: cross-validation R-squared = 0.4380

Observed Bootstrap Percentile
citations estimate std. err. z P>|z| [95% conf. interval]

Mean
citations 22.33999 .4769389 46.84 0.000 21.49744 23.42156

Effect
fines -7.692388 .5088819 -15.12 0.000 -8.742081 -6.77816

Note: Effect estimates are averages of derivatives.

For 200 replications, the confidence interval for the mean ranges from 21.50 to 23.42. For the effect of

fines, this range is −8.74 to −6.78.

We repeat the estimation using 300 replications and the same seed as in the previous case.

. npregress kernel citations fines, reps(300) seed(12)
(running npregress on estimation sample)
Bootstrap replications (300): .........10.........20.........30.........40.....
> ....50.........60.........70.........80.........90.........100.........110...
> ......120.........130.........140.........150.........160.........170........
> .180.........190.........200.........210.........220.........230.........240.
> ........250.........260.........270.........280.........290.........300 done
Bandwidth

Mean Effect

fines .5631079 .924924
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Local-linear regression Number of obs = 500
Kernel : epanechnikov E(Kernel obs) = 282
Bandwidth: cross-validation R-squared = 0.4380

Observed Bootstrap Percentile
citations estimate std. err. z P>|z| [95% conf. interval]

Mean
citations 22.33999 .4570611 48.88 0.000 21.49359 23.36299

Effect
fines -7.692388 .4981956 -15.44 0.000 -8.673813 -6.720508

Note: Effect estimates are averages of derivatives.

The confidence interval for the mean ranges from 21.49 to 23.36. For the effect of fines, this range is

−8.67 to −6.72. There are some differences so we try estimation with 400 replications.

. npregress kernel citations fines, reps(400) seed(12)
(running npregress on estimation sample)
Bootstrap replications (400): .........10.........20.........30.........40.....
> ....50.........60.........70.........80.........90.........100.........110...
> ......120.........130.........140.........150.........160.........170........
> .180.........190.........200.........210.........220.........230.........240.
> ........250.........260.........270.........280.........290.........300......
> ...310.........320.........330.........340.........350.........360.........37
> 0.........380.........390.........400 done
Bandwidth

Mean Effect

fines .5631079 .924924

Local-linear regression Number of obs = 500
Kernel : epanechnikov E(Kernel obs) = 282
Bandwidth: cross-validation R-squared = 0.4380

Observed Bootstrap Percentile
citations estimate std. err. z P>|z| [95% conf. interval]

Mean
citations 22.33999 .4588298 48.69 0.000 21.48622 23.35956

Effect
fines -7.692388 .491884 -15.64 0.000 -8.693068 -6.757721

Note: Effect estimates are averages of derivatives.

The confidence interval for the mean ranges from 21.49 to 23.36. In the case of the effect of fines,

these ranges are −8.69 to −6.76. The changes are small so we decide to use 400 replications.
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Example 4: Estimating the effect of a percentage change in a covariate
Nonparametric estimation and the bootstrap are computationally intensive, so we use only 200 repli-

cations here.

We now extend example 2. In addition to fines, we model citations as a function of whether the
jurisdiction taxes alcoholic beverages (taxes); whether the city is small, medium, or large (csize); and
whether there is a college in the jurisdiction (college).

. npregress kernel citations fines i.taxes i.csize i.college, nolog
> reps(200) seed(12)
(running npregress on estimation sample)
Bootstrap replications (200): .........10.........20.........30.........40.....
> ....50.........60.........70.........80.........90.........100.........110...
> ......120.........130.........140.........150.........160.........170........
> .180.........190.........200 done
Bandwidth

Mean Effect

fines .4471373 .6537197
taxes .4375656 .4375656
csize .3938759 .3938759

college .554583 .554583

Local-linear regression Number of obs = 500
Continuous kernel : epanechnikov E(Kernel obs) = 224
Discrete kernel : liracine R-squared = 0.8010
Bandwidth : cross-validation

Observed Bootstrap Percentile
citations estimate std. err. z P>|z| [95% conf. interval]

Mean
citations 22.26306 .4642464 47.96 0.000 21.46204 23.2516

Effect
fines -7.332833 .3316656 -22.11 0.000 -8.013487 -6.741899

taxes
(Tax

vs
No tax) -4.502718 .5012 -8.98 0.000 -5.437733 -3.544934

csize
(Medium

vs
Small) 5.300524 .2687413 19.72 0.000 4.758121 5.797119
(Large

vs
Small) 11.05053 .502633 21.99 0.000 10.00169 11.94311

college
(College

vs
Not coll..) 5.953188 .461057 12.91 0.000 5.086511 6.88612

Note: Effect estimates are averages of derivatives for continuous covariates
and averages of contrasts for factor covariates.
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The mean number of citations predicted by the mean estimates is 22.26. The average marginal

effect of fines is −7.33, slightly less in magnitude than the −7.69 that we estimated in example 2.

The average marginal effect tells us the result of an infinitesimal change in fines on citations.
Instead of talking about infinitesimal changes, we want to know the effect of increasing fines by 15%.
We can use margins to estimate the mean number of citations that would occur if fines were increased
by 15%.

. margins, at(fines=generate(fines*1.15)) reps(200) seed(12)
(running margins on estimation sample)
Bootstrap replications (200): .........10.........20.........30.........40.....
> ....50.........60.........70.........80.........90.........100.........110...
> ......120.........130.........140.........150.........160.........170........
> .180.........190.........200 done
Predictive margins Number of obs = 500

Replications = 200
Expression: Mean function, predict()
At: fines = fines*1.15

Observed Bootstrap Percentile
margin std. err. z P>|z| [95% conf. interval]

_cons 14.00818 .866694 16.16 0.000 11.39967 15.00145

The estimated mean number of citations with the new level of fines is 14.01, which is smaller
than the mean 22.26 that was estimated with the observed fines. We can formally compare this estimate

with the mean at the original level of fines. We use the contrast() option with margins to estimate
the difference in these means.

. margins, at(fines=generate(fines)) at(fines=generate(fines*1.15))
> contrast(atcontrast(r) nowald) reps(200) seed(12)
(running margins on estimation sample)
Bootstrap replications (200): .........10.........20.........30.........40.....
> ....50.........60.........70.........80.........90.........100.........110...
> ......120.........130.........140.........150.........160.........170........
> .180.........190.........200 done
Contrasts of predictive margins

Number of obs = 500
Replications = 200

Expression: Mean function, predict()
1._at: fines = fines
2._at: fines = fines*1.15

Observed Bootstrap Percentile
contrast std. err. [95% conf. interval]

_at
(2 vs 1) -8.254875 .8058215 -10.44121 -7.381583

We find that increasing fines by 15% reduces the average number of drunk driving citations by 8.25.
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Example 5: Estimating the effect of a change in level
Now, we estimate the effect of increasing fines from $10,000 to $11,000 for fixed levels of the other

covariates. The other covariate values identify a jurisdiction with a set of characteristics of interest: of

medium size, with a college, and taxes alcohol.

First, we use margins to estimate the means for a jurisdiction with the characteristics of interest for
the two levels of fines.

. margins, at(fines=10 taxes=1 csize=2 college=1)
> at(fines=11 taxes=1 csize=2 college=1) reps(200) seed(12)
(running margins on estimation sample)
Bootstrap replications (200): .........10.........20.........30.........40.....
> ....50.........60.........70.........80.........90.........100.........110...
> ......120.........130.........140.........150.........160.........170........
> .180.........190.........200 done
Adjusted predictions Number of obs = 500

Replications = 200
Expression: Mean function, predict()
1._at: fines = 10

taxes = 1
csize = 2
college = 1

2._at: fines = 11
taxes = 1
csize = 2
college = 1

Observed Bootstrap Percentile
margin std. err. z P>|z| [95% conf. interval]

_at
1 23.17242 .5746008 40.33 0.000 21.95222 24.30412
2 15.90157 .972558 16.35 0.000 13.87449 17.7134

For a medium-sized jurisdiction that taxes alcohol and has a college, the estimated mean of citations

when fines are $10,000 is 23.17, and the estimated mean of citations when fines are $11,000 is 15.90.
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We now use margins to estimate the difference in these means.

. margins, at(fines=10 taxes=1 csize=2 college=1)
> at(fines=11 taxes=1 csize=2 college=1)
> contrast(atcontrast(r) nowald) reps(200) seed(12)
(running margins on estimation sample)
Bootstrap replications (200): .........10.........20.........30.........40.....
> ....50.........60.........70.........80.........90.........100.........110...
> ......120.........130.........140.........150.........160.........170........
> .180.........190.........200 done
Contrasts of predictive margins

Number of obs = 500
Replications = 200

Expression: Mean function, predict()
1._at: fines = 10

taxes = 1
csize = 2
college = 1

2._at: fines = 11
taxes = 1
csize = 2
college = 1

Observed Bootstrap Percentile
contrast std. err. [95% conf. interval]

_at
(2 vs 1) -7.270858 1.003861 -9.096777 -5.162513

In these jurisdictions, increasing fines from $10,000 to $11,000 reduces the average number of citations

by 7.27.

Example 6: Population-averaged covariate effects
In example 5, we estimated the means for two values of fines for a medium-sized jurisdiction with a

college and taxes on alcohol. We specified values for each covariate in our model. In this example, we

will now estimate population-averaged means instead of means at specific levels of all covariates.

We first estimate the means for two levels of fines. We do not specify values for csize, college,
or taxes, so the estimated means are unconditional on these covariates. We use margins to estimate
means of citations when fines are $10,000 and when fines are $11,000:
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. margins, at(fines=10) at(fines=11) reps(200) seed(12)
(running margins on estimation sample)
Bootstrap replications (200): .........10.........20.........30.........40.....
> ....50.........60.........70.........80.........90.........100.........110...
> ......120.........130.........140.........150.........160.........170........
> .180.........190.........200 done
Predictive margins Number of obs = 500

Replications = 200
Expression: Mean function, predict()
1._at: fines = 10
2._at: fines = 11

Observed Bootstrap Percentile
margin std. err. z P>|z| [95% conf. interval]

_at
1 20.50161 .3281821 62.47 0.000 19.90257 21.08954
2 14.97432 .3815647 39.24 0.000 14.14858 15.59955

The estimated mean of citations when fines are $10,000 is 20.50, and the estimated mean of citations

when fines are $11,000 is 14.97. We now use margins to estimate the difference in these means:

. margins, at(fines=10) at(fines=11)
> contrast(atcontrast(r) nowald) reps(200) seed(12)
(running margins on estimation sample)
Bootstrap replications (200): .........10.........20.........30.........40.....
> ....50.........60.........70.........80.........90.........100.........110...
> ......120.........130.........140.........150.........160.........170........
> .180.........190.........200 done
Contrasts of predictive margins

Number of obs = 500
Replications = 200

Expression: Mean function, predict()
1._at: fines = 10
2._at: fines = 11

Observed Bootstrap Percentile
contrast std. err. [95% conf. interval]

_at
(2 vs 1) -5.527288 .3529352 -6.277903 -4.925523

When fines increase from $10,000 to $11,000, the mean number of citations is estimated to decrease by

5.53.
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Next, we consider the effect of taxing alcoholic beverages. We first estimate the population-averaged

number of citations with and without such taxes.

. margins taxes, reps(200) seed(12)
(running margins on estimation sample)
Bootstrap replications (200): .........10.........20.........30.........40.....
> ....50.........60.........70.........80.........90.........100.........110...
> ......120.........130.........140.........150.........160.........170........
> .180.........190.........200 done
Predictive margins Number of obs = 500

Replications = 200
Expression: Mean function, predict()

Observed Bootstrap Percentile
margin std. err. z P>|z| [95% conf. interval]

taxes
No tax 25.47052 .6445729 39.52 0.000 24.17515 26.6114

Tax 20.96781 .4448277 47.14 0.000 20.17071 21.88565

The estimated mean number of citations is 25.47 when there are no alcohol taxes and 20.97 when

there are alcohol taxes. We again use margins to estimate the difference in these means.

. margins r.taxes, reps(200) seed(12)
(running margins on estimation sample)
Bootstrap replications (200): .........10.........20.........30.........40.....
> ....50.........60.........70.........80.........90.........100.........110...
> ......120.........130.........140.........150.........160.........170........
> .180.........190.........200 done
Contrasts of predictive margins Number of obs = 500

Replications = 200
Expression: Mean function, predict()

df chi2 P>chi2

taxes 1 80.71 0.0000

Observed Bootstrap Percentile
contrast std. err. [95% conf. interval]

taxes
(Tax vs No tax) -4.502719 .5011999 -5.437733 -3.544934

The mean number of citations is estimated to decrease by 4.50 when alcohol sales are taxed.
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Visualizing covariate effects

Example 7: Using margins to visualize the mean function and covariate effects
We can also estimate the mean function for the jurisdiction with characteristics of interest over a range

of observed fines. We simply add a range of fines to our margins specification from example 4.

. margins, at(fines=(8(0.5)12) taxes=1 csize=2 college=1) reps(200) seed(12)
(output omitted )

We graph these results using marginsplot.

. marginsplot
(output omitted )
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We estimated the mean when fines are $8,000, $8,500, and so on. From these estimated means, we

can estimate the effect of a $500 increase for each of these levels of fines.

We simply reissue our margins command and specify a reverse adjacent contrast that subtracts the
current level from the next level for each level of fines.

. margins, at(fines=(8(0.5)12) taxes=1 csize=2 college=1)
> contrast(atcontrast(ar)) reps(200) seed(12)
(output omitted )
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We again graph the results, adding a reference line at 0 that designates no change in citations:

. marginsplot, yline(0)
(output omitted )
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For each level of fines between $8,500 and $11,500, the effect of a $500 increase reduces the mean

number of drunk driving incidents. Between $11,500 and $12,000, the difference of a $500 increase is

not statistically different from 0.

It would be easy to construct a similar graph for the population-averaged effects in example 6. Simply

omit the terms that set the other covariates at fixed values.
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Stored results
npregress kernel stores the following in e():

Scalars

e(N) number of observations

e(mean) mean of mean function

e(r2) 𝑅2

e(nh) expected kernel observations

e(converged effect) 1 if effect optimization converged, 0 otherwise
e(converged mean) 1 if mean optimization converged, 0 otherwise
e(converged) 1 if effect and mean optimization converged, 0 otherwise

Macros

e(cmd) npregress
e(cmdline) command as typed

e(depvar) name of dependent variable

e(estimator) linear or constant
e(kname) name of continuous kernel

e(dkname) name of discrete kernel

e(bselector) criterion function for bandwidth selection

e(title) title in estimation output

e(vce) vcetype specified in vce()
e(properties) b (or b V if reps() specified)
e(datasignaturevars) variables used in calculation of checksum

e(datasignature) the checksum

e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsprop) signals to the margins command

Matrices

e(b) coefficient vector

e(bwidth) bandwidth for all predictions

e(derivbwidth) bandwidth for the derivative

e(meanbwidth) bandwidth for the mean

e(ilog mean) iteration log for mean (up to 20 iterations)

e(ilog effect) iteration log for effects (up to 20 iterations)

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.
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Methods and formulas
The regression model of outcome 𝑦𝑖 given the 𝑘-dimensional vector of covariates x𝑖 was defined in

(1) and (2) of Remarks and examples and repeated here:

𝑦𝑖 = 𝑔 (x𝑖) + 𝜀𝑖 (4)

𝐸 (𝜀𝑖|x𝑖) = 0 (5)

where 𝜀𝑖 is the error term. The covariates may include discrete and continuous variables. Equations (4)

and (5) imply that

𝐸 (𝑦𝑖|x𝑖) = 𝑔 (x𝑖)

npregress kernel, by default, estimates a local-linear regression; see ? for a good reference on

local-linear regression. As we discussed in Remarks and examples, local-linear regression estimates a

regression for a subset of observations for each point in our data and solves the minimization problem

given by

min𝛄
𝑛

∑
𝑖=1

{𝑦𝑖 − 𝛾0 − 𝛄′
1 (x𝑖 − x)}2 𝐾(x𝑖, x,h) (6)

where 𝛄 = (𝛾0, 𝛄′
1)′ and 𝐾(x𝑖, x,h) is the product of the kernels for each covariate.

𝐾(x𝑖, x,h) =
𝑘

∏
𝑗=1

𝐾𝑗(𝑥𝑖𝑗, 𝑥𝑗, ℎ𝑗)

The kernel for a continuous covariate is of the form

𝐾𝑗(𝑥𝑖𝑗, 𝑥𝑗, ℎ𝑗) = 𝑘𝑗 (
𝑥𝑖𝑗 − 𝑥𝑗

ℎ𝑗
)

where 𝑘𝑗(⋅) is one of the kernels listed in [R] kdensity. For discrete covariates, npregress kernel uses
the Li–Racine kernel given by

𝐾𝑗(𝑥𝑖𝑗, 𝑥𝑗, ℎ𝑗) = {1 if 𝑥𝑖𝑗 = 𝑥𝑗
ℎ𝑗 otherwise

By estimating 𝐸(𝑦𝑖|x𝑖 = x) for all points x in our data, we obtain an estimate of 𝐸(𝑦𝑖|x𝑖). For a given
x, the solution to the minimization problem in (6) is given by

�̂� = (Z′WZ)−1
Z′Wy

where �̂� = ( ̂𝛾0, �̂�′
1)′, Z is an 𝑛 × (𝑘 + 1) matrix with an 𝑖th row given by {1, (x𝑖 − x)′}′,W is an 𝑛 × 𝑛

diagonal matrix with an 𝑖th diagonal given by 𝐾(x𝑖, x,h), and y is the 𝑛 × 1 outcome vector. ̂𝛾0 is an

estimate of 𝑔(x), whereas �̂�1 is an estimate of the derivative of 𝑔(x) with respect to x. When the matrix

(Z′WZ) is not full rank, the parameter 𝛄 is not identified. The observations for which this is true are

dropped from the estimation sample.
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The local-constant estimator of 𝑔(x) is a special case of (6) with 𝛄1 = 0. In this case, the solution to

the optimization problem is given by

∑𝑛
𝑖=1 𝑦𝑖𝐾(x𝑖, x,h)

∑𝑛
𝑖=1 𝐾(x𝑖, x,h)

This is also known as the Nadaraya–Watson kernel estimator, for ? and ?.

npregress kernel and margins, when used after npregress kernel, use a bootstrap estimate of
the standard errors for all the estimated effects and report percentile confidence intervals by default. ?

formally justify this use of the bootstrap and provide a definitive reference for semiparametric estima-

tion and inference using kernel-based estimators. Their work demonstrates that the percentile bootstrap

provides better coverage than a normal-based confidence interval for statistics based on kernel estimates.

See Methods and formulas in [R] bootstrap for confidence interval formulas.

The rate of convergence of nonparametric regression estimates is given by the product of the sample

size and the bandwidths √𝑛|h|, where |h| is the product of the bandwidths for each covariate. As the
sample size increases, the bandwidth decreases. Thus, the rate of convergence of the estimator is slower

than the parametric rate
√

𝑛. Another way of thinking about 𝑛|h| is that, because we are not using all
our observations to estimate the mean at each point, we require more data to get more reliable estimates;

the convergence rate is thus slower. The rate of convergence also decreases as the number of covariates

increases, because |h| decreases. This is referred to as the curse of dimensionality; see ?, chap. 2 and ?
for details.

The convergence rate for the derivative of the mean function is different from the convergence rate of

the mean function. Therefore, the bandwidth and bandwidth computation for the derivative are different.

npregress kernel computes the bandwidth for the derivative function by using cross-validation, as

suggested by ?.
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Postestimation commands
The following postestimation command is of special interest after npregress kernel:

Command Description

npgraph plot of conditional means

The following standard postestimation commands are also available:

Command Description

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estimates cataloging estimation results

etable table of estimation results

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

predict conditional means and residuals

predictnl point estimates, standard errors, testing, and inference for generalized predictions

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses
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predict

Description for predict
predict creates a new variable containing predictions such as conditional mean of the outcome,

residuals, or derivatives of the mean function.

Menu for predict
Statistics > Postestimation

Syntax for predict
predict [ type ] newvar [ if ] [ in ] [ , statistic ]

predict [ type ] { stub* | newvarlist } [ if ] [ in ], derivatives

statistic Description

Main

mean conditional mean of the outcome; the default

residuals residuals

These statistics are calculated only for the estimation sample.

Options for predict

� � �
Main �

mean, the default, calculates the conditional mean of the outcome variable.

residuals calculates the residuals.

derivatives calculates the derivatives of the conditional mean.
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margins

Description for margins
margins estimates margins of the conditional mean.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist ] [ , options ]
margins [marginlist ] , predict(statistic ...) [ options ]

statistic Description

Main

mean conditional mean of the outcome; the default

residuals not allowed with margins
derivatives not allowed with margins

options Description

SE

nose do not estimate standard errors; the default

vce(bootstrap) estimate bootstrap standard errors

reps(#) equivalent to vce(bootstrap, reps(#))
seed(#) set random-number seed to #; must also specify reps(#)

Reporting

citype(citype) method to compute bootstrap confidence intervals; default is
citype(percentile)

citype Description

percentile percentile confidence intervals; the default

bc bias-corrected confidence intervals

normal normal-based confidence intervals

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.
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Options for margins

� � �
SE �

nose suppresses calculation of the VCE and standard errors. This is the default.

vce(bootstrap) specifies that bootstrap standard errors are reported; see [R] vce option.

We recommend that you select the number of replications using reps(#) instead of specifying

vce(bootstrap), which defaults to 50 replications. Be aware that the number of replications needed
to produce good estimates of the standard errors varies depending on the problem.

reps(#) specifies the number of bootstrap replications to be performed. Specifying this option is equiv-
alent to specifying vce(bootstrap, reps(#)).

seed(#) sets the random-number seed. You must specify reps(#) with seed(#).

� � �
Reporting �

citype(citype) specifies the type of confidence interval to be computed. By default, bootstrap percentile
confidence intervals are reported as recommended by ?. citype may be one of percentile, bc, or
normal.

npgraph

Description for npgraph
npgraph plots the conditional mean estimated by npregress kernel overlayed on a scatterplot of

the data. npgraph is available only after fitting models with one covariate.

Syntax for npgraph
npgraph [ if ] [ in ] [ , options ]

options Description

Plot

marker options change look of markers (color, size, etc.)

marker label options add marker labels; change look or position

noscatter suppress scatterplot

Smoothed line

lineopts(cline options) affect rendition of the smoothed line

Add plots

addplot(plot) add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options



npregress kernel postestimation — Postestimation tools for npregress kernel 2060

Options for npgraph

� � �
Plot �

marker options affect the rendition of markers drawn at the plotted points, including their shape, size,

color, and outline; see [G-3] marker options.

marker label options specify if and how the markers are to be labeled; see [G-3]marker label options.

noscatter suppresses superimposing a scatterplot of the observed data over the smooth. This option is
useful when the number of resulting points would be so large as to clutter the graph.

� � �
Smoothed line �

lineopts(cline options) affects the rendition of the smoothed line; see [G-3] cline options.

� � �
Add plots �

addplot(plot) provides a way to add other plots to the generated graph; see [G-3] addplot option.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see

[G-3] saving option).

Remarks and examples
For examples of margins after npregress kernel, see example 4, example 5, and example 6 in

[R] npregress kernel.

For examples of marginsplot, see example 7 in [R] npregress kernel.

For an example of npgraph, see example 2 in [R] npregress kernel.

Methods and formulas
The formulas used by predict and margins for the conditional mean function and themeanmarginal

effect of a covariate are given in Methods and formulas of [R] npregress kernel.

Also see
[R] npregress kernel — Nonparametric kernel regression

[R] bootstrap postestimation — Postestimation tools for bootstrap

[U] 20 Estimation and postestimation commands
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Description
npregress series performs nonparametric series estimation using aB-spline, piecewise polynomial

spline, or polynomial basis. Like linear regression, nonparametric regression models the mean of the

outcome conditional on the covariates, but unlike linear regression, it makes no assumptions about the

functional form of the relationship between the outcome and the covariates. npregress seriesmay be
used to model the mean of a continuous, count, or binary outcome.

Quick start
Nonparametric regression of y on x and discrete covariate a using the default B-spline basis

npregress series y x i.a

Same as above, but use a polynomial basis

npregress series y x i.a, polynomial

Same as above, but use a piecewise polynomial spline basis

npregress series y x i.a, spline

Same as above, but use AIC to find the optimal basis function

npregress series y x i.a, criterion(aic) spline

Interpolate using three knots

npregress series y x i.a, knots(3)

Specify values of knots in matrix K
npregress series y x i.a, knotsmat(K)

Menu
Statistics > Nonparametric analysis > Nonparametric series regression
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Syntax
npregress series depvar indepvarsseries [ if ] [ in ] [weight ] [ , options ]

indepvarsseries is the list of independent variables for which a basis function will be formed.

options Description

Model

bspline use a third-order B-spline basis; the default

bspline(#) use a B-spline basis of order #

spline use a third-order piecewise polynomial spline basis

spline(#) use a piecewise polynomial spline basis of order #

polynomial use a polynomial basis

polynomial(#) use a polynomial basis of order #

asis(varlist) include varlist in model as specified; do not use in basis

nointeract(seriesvarlist) use seriesvarlist in basis without interactions

criterion(crittype) criterion to use; crittype may be cv, gcv, aic, bic, or mallows
knots(#) use a piecewise polynomial spline or B-spline basis function

with # knots

knotsmat(matname) use knots in matrix matname for piecewise polynomial spline
or B-spline estimation

distinct(#) minimum number of distinct values allowed in continuous
covariates; default is distinct(10)

basis(stub [ , replace ]) store elements of piecewise polynomial spline or B-spline basis
function using stub

rescale(stub [ , replace ]) store rescaled values of covariates using stub

SE

vce(vcetype) vcetype may be robust, ols, or bootstrap

Reporting

level(#) set confidence level; default is level(95)
aequations display auxiliary regression coefficients

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process

coeflegend display legend instead of statistics

indepvars and varlist may contain factor variables; see [U] 11.4.3 Factor variables.

bootstrap, by, collect, and jackknife are allowed; see [U] 11.1.10 Prefix commands.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
fweights and iweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Options

� � �
Model �

bspline specifies that a third-order B-spline be selected. It is the default basis.

bspline(#) specifies that a B-spline of order # be used as the basis. The order may be 1, 2, or 3.

spline specifies that a third-order piecewise polynomial spline be selected as the basis.

spline(#) specifies that a piecewise polynomial spline of order # be used as the basis. The order may
be 1, 2, or 3.

polynomial specifies that a polynomial be selected as the basis.

polynomial(#) specifies that a polynomial of order # be used as the basis. The order may be an integer
between 1 and 16.

asis(varlist) specifies that variables in varlist be included as independent variables in themodel without
any transformation. No B-spline, piecewise polynomial spline, or polynomial basis function will be

formed from these variables. Variables in varlist may not be specified in indepvarsseries.

nointeract(seriesvarlist) specifies that the terms in the basis function formed from variables in se-

riesvarlist not be interacted with the terms of the basis function formed from other variables in inde-

pvarsseries. Covariates specified in seriesvarlist must be in indepvarsseries.

criterion(crittype) specifies that crittype be used to select the optimal number of terms in the ba-

sis function. crittype may be one of the following: cv (cross-validation), gcv (generalized cross-

validation), aic (Akaike’s information criterion), bic (Schwarz’s Bayesian information criterion), or
mallows (Mallows’s 𝐶𝑝). The default is criterion(cv).

knots(#) specifies that a piecewise polynomial spline or B-spline basis function with # knots be used.
The minimum number of knots must be an integer greater than or equal to 1. The maximum number

of knots is either 4,096 or two-thirds of the sample size, whichever is smaller.

knotsmat(matname) specifies that the knots for each continuous covariate be the values in each row
of matname. The number of knots should be the same for each covariate, and there must be as many

rows as there are continuous covariates. If rows ofmatname are not labeled with varnames, then rows

are assumed to be in the order of indepvarsseries.

distinct(#) specifies the minimum number of distinct values allowed in continuous variables. By

default, continuous variables that enter the basis through either indepvarsseries or seriesvarlist are

required to have at least 10 distinct values. Continuous variables with few distinct values provide

little information for determining an appropriate basis function and may produce unreliable estimates.

basis(stub [ , replace ]) specifies that the elements of the basis function generated by npregress
series be stored with the specified names.

The option argument stub is the prefix used to generate enumerated variables for each element of the

basis.

When replace is used, existing variables named with stub are replaced by those from the new com-

putation.
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rescale(stub [ , replace ]) specifies that the rescaled covariates used to generate the basis function
be stored with the specified names.

The option argument stub is the prefix used to generate enumerated variable names for the covariates.

When replace is used, existing covariates named with stub are replaced by those from the new

computation.

� � �
SE �

vce(vcetype) specifies the type of standard error reported, which includes types that are robust to some
kinds of misspecification (robust), that assume homoskedasticity (ols), and that use bootstrap meth-
ods (bootstrap); see [R] vce option.

� � �
Reporting �

level(#); see [R] Estimation options.

aequations specifies that the auxiliary regression coefficients be reported. By default, only the average
marginal effects of the covariates on the outcome are reported.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Maximization �

maximize options: iterate(#), [no]log, tolerance(#); see [R]Maximize. These options are seldom

used.

The following option is available with npregress series but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

Remarks and examples
This entry assumes that you are already familiar with nonparametric regression. Below, we discuss

nonparametric series estimation; see [R] npregress intro for an overview of nonparametric regression

and the models fit by npregress series and npregress kernel.

Remarks are presented under the following headings:

Overview
Estimation and effects

Overview
npregress series implements nonparametric series estimation using a B-spline, piecewise poly-

nomial spline, or polynomial basis. The covariates may be continuous or discrete. npregress series
allows you to estimate covariate effects and other counterfactuals related to the unknown mean function

after estimation.
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The word “nonparametric” refers to the fact that the parameter of interest—the mean as a function of

the covariates—is given by the unknown function 𝑔(x𝑖), which is an element of an infinite-dimensional
space of functions. In contrast, in a parametric model, the mean for a given value of the covariates,

𝐸(𝑦𝑖|x𝑖) = 𝑓(x𝑖,β), is a known function that is fully characterized by the parameter of interest, β,
which is a finite-dimensional real vector (?).

The nonparametric regression model of outcome 𝑦𝑖 given the 𝑘-dimensional vector of covariates x𝑖
is given by

𝑦𝑖 = 𝑔 (x𝑖) + 𝜀𝑖 (1)

𝐸 (𝜀𝑖|x𝑖) = 0 (2)

where 𝜀𝑖 is the error term. Equations (??) and (??) imply that

𝐸 (𝑦𝑖|x𝑖) = 𝑔 (x𝑖)

Once we account for the information in the covariates, the error term provides no information about the

mean of our outcome. The conditional mean function is therefore given by 𝑔(x𝑖).
The mean estimate we obtain using nonparametric series estimation has the same form of the mean

function estimate we obtain using linear regression. The regressors, however, are not variables in the

data but functions of the variables. An example would be a 𝑘th-order polynomial. Suppose we have one
covariate. The elements of the polynomial in this case would be (𝑥𝑖, 𝑥2

𝑖 , . . . , 𝑥𝑘
𝑖 ). If we define z𝑖 as a

vector with elements (𝑥𝑖, 𝑥2
𝑖 , . . . , 𝑥𝑘

𝑖 ), we may write the estimate of the mean function as

z′
𝑖β̂

where β̂ has the form of an ordinary least-squares estimate.

npregress series allows us to specify other functional forms for z𝑖 depending on the basis we

select: B-spline, piecewise polynomial spline, or polynomial. SeeMethods and formulas for the formulas

for each basis.

Although the estimate of the mean function has the form of a linear regression, the individual coeffi-

cients are not easily interpretable. For instance, in our 𝑘th-order polynomial example, if 𝑥𝑖 is continuous,

the marginal effect of 𝑥𝑖 is not a single coefficient but rather is a function of 𝑘 elements of β and the

covariate 𝑥𝑖.

In the example above, we had only one covariate, 𝑥𝑖. If we have more than one covariate, we approx-

imate the mean function by using interactions of the terms in the basis function for each covariate. For

instance, a polynomial of 𝑥𝑖 and 𝑤𝑖 would have terms (𝑥𝑖, 𝑤𝑖, 𝑥𝑖𝑤𝑖, 𝑥2
𝑖 , 𝑤2

𝑖 , . . . , 𝑤𝑘
𝑖 𝑥𝑘

𝑖 ). As the number
of covariates increases, the number of terms in the basis function increases exponentially. This is referred

to in the literature as the curse of dimensionality.

npregress series allows us to reduce the dimensionality by using the nointeract() option to

request that some covariates not be interacted with others. For the example above, this is equivalent to

specifying a model of the form

𝑦𝑖 = 𝑔1 (𝑥𝑖) + 𝑔2 (𝑤𝑖) + 𝜀𝑖 (3)

In (??), 𝑔1 (𝑥𝑖) and 𝑔2 (𝑤𝑖) are unknown functions, but there are no interactions between 𝑥𝑖 and 𝑤𝑖.

This ameliorates the curse of dimensionality but imposes more structure to the model.
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You may also want to reduce the curse of dimensionality by requesting a parametric component, by

using the asis() option, to fit models like this:

𝑦𝑖 = 𝑔 (𝑥𝑖) + 𝑤𝑖β + 𝜀𝑖 (4)

In (??), 𝑔 (𝑥𝑖) is unknown but we assume that 𝑤𝑖 enters the model linearly.

As mentioned above, the regression coefficients are not easily interpretable. We can, however, esti-

mate marginal effects, as reported in the npregress series output, and use margins to answer specific
questions about the effects of covariates on the conditional mean, 𝑔 (x𝑖). We demonstrate this in the ex-

amples below.

For detailed introductions to series estimators and the methods implemented by npregress series,
see ?, ?, ?, ?, ?, and ?.

Estimation and effects

Example 1: Nonparametric series regression estimation
dui.dta contains information about the number of monthly drunk driving citations in a local juris-

diction (citations). Suppose we want to know the effect of increasing fines on the number of citations.

Because citations is a count variable, we could consider fitting the model with poisson or nbreg.
However, both of these estimators make assumptions about the distribution of the data. If these assump-

tions are not true, we will obtain inconsistent estimates.

By using npregress series, we do not have to make any assumptions about how citations is

distributed. We use npregress series to estimate the averagemarginal effect of drunk driving penalties
(fines) on citations.

. use https://www.stata-press.com/data/r18/dui
(Fictional data on monthly drunk driving citations)
. npregress series citations fines
Computing approximating function
Minimizing cross-validation criterion
Iteration 0: Cross-validation criterion = 55.15697
Iteration 1: Cross-validation criterion = 55.11413
Computing average derivatives
Cubic B-spline estimation Number of obs = 500
Criterion: cross-validation Number of knots = 3

Robust
citations Effect std. err. z P>|z| [95% conf. interval]

fines -8.020769 .464836 -17.26 0.000 -8.931831 -7.109707

Note: Effect estimates are averages of derivatives.

The iteration log first tells us that the approximating function is being computed. At this stage, the

number of knots of the cubic B-spline is selected using cross-validation. Three knots were selected.
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After the approximating function is computed, average marginal effects are computed. This second

step is computationally expensive. The computation time increases with the number of elements in the

basis function, which in turn increases with the complexity of themean function we are trying to compute.

The table reports that the average marginal effect of fines on the mean number of citations is −8.02.

Increasing fines, on average, reduces the number of citations.

npregress series generates a system variable for each element of the basis function. Additionally,

variables are generated with the rescaled values of the continuous covariates used to construct the basis

function. To see the variables that npregress series generated for example 1, we type

. describe *_*, fullnames
Variable Storage Display Value

name type format label Variable label

__x1rs double %10.0g fines rescaled to [0,1]
_x1__b1 double %10.0g Basis term 1 for fines
_x1__b2 double %10.0g Basis term 2 for fines
_x1__b3 double %10.0g Basis term 3 for fines
_x1__b4 double %10.0g Basis term 4 for fines
_x1__b5 double %10.0g Basis term 5 for fines
_x1__b6 double %10.0g Basis term 6 for fines
_x1__b7 double %10.0g Basis term 7 for fines

To specify a name for each of the elements of the basis function, we can use the basis() option with
a stub.

. npregress series citations fines, basis(basis)
(output omitted )

We get the following set of names for the elements of the basis function:

. describe basis*, fullnames
Variable Storage Display Value

name type format label Variable label

basis1 double %10.0g Basis term 1 for fines
basis2 double %10.0g Basis term 2 for fines
basis3 double %10.0g Basis term 3 for fines
basis4 double %10.0g Basis term 4 for fines
basis5 double %10.0g Basis term 5 for fines
basis6 double %10.0g Basis term 6 for fines
basis7 double %10.0g Basis term 7 for fines

We may also modify the name of the rescaled variable by using the rescale() option.

. npregress series citations fines, rescale(rescaled)
(output omitted )

This will give us

. describe rescaled*, fullnames
storage display value

variable name type format label variable label

rescaled1 double %10.0g fines rescaled to [0,1]
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Example 2: Estimation with more than one regressor
We now extend example 1. In addition to fines, we model citations as a function of whether

the jurisdiction is small, medium, or large (csize) and whether there is a college in the jurisdiction

(college).

. npregress series citations fines i.csize i.college
Computing approximating function
Minimizing cross-validation criterion
Iteration 0: Cross-validation criterion = 30.26251
Computing average derivatives
Cubic B-spline estimation Number of obs = 500
Criterion: cross-validation Number of knots = 1

Robust
citations Effect std. err. z P>|z| [95% conf. interval]

fines -7.787386 .2917941 -26.69 0.000 -8.359292 -7.215481

csize
(Medium

vs
Small) 4.732592 .5087968 9.30 0.000 3.735368 5.729815
(Large

vs
Small) 10.91757 .5350892 20.40 0.000 9.868813 11.96632

college
(College

vs
Not coll..) 6.514286 .5958949 10.93 0.000 5.346353 7.682218

Note: Effect estimates are averages of derivatives for continuous covariates
and averages of contrasts for factor covariates.

The average marginal effect of fines is −7.79, slightly less in magnitude than the −8.02 that we

estimated in example 1. The output also shows effects for the variables csize and college. In these
categorical variables, the effects are differences instead of derivatives. For example, if every jurisdiction

in the population were a college town, we would expect 6.51 more citations than if none were college

towns.
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Example 3: Expected citations for different levels of fines
The npregress series command reported that the average marginal effect of fines on number of

citations is negative. We can use margins to further explore the relationship between level of fines and
expected number of citations. What would we expect if all jurisdictions set fines to $8,000? What if they

all set fines to $9,000? $10,000? $11,000? We use the at(fines=(8 9 10 11)) option with margins
to estimate these expected values.

. margins, at(fines=(8 9 10 11))
Predictive margins Number of obs = 500
Model VCE: Robust
Expression: Mean function, predict()
1._at: fines = 8
2._at: fines = 9
3._at: fines = 10
4._at: fines = 11

Delta-method
Margin std. err. z P>|z| [95% conf. interval]

_at
1 49.58234 1.47392 33.64 0.000 46.69351 52.47117
2 28.35154 .5730302 49.48 0.000 27.22842 29.47466
3 20.40163 .3320855 61.43 0.000 19.75075 21.0525
4 14.78085 .4297201 34.40 0.000 13.93862 15.62309

There appears to be a dramatic drop in the expected number of citations as fines increase from $8,000

to $9,000. We can visualize these results if we type marginsplot.
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Are there significant differences in the expected number of citations as we increase fines in increments

of $1,000? If we use the reverse-adjacent contrast operator, ar., with margins, we can estimate these
differences and perform tests.

. margins, at(fines=(8 9 10 11)) contrast(atcontrast(ar._at) nowald effects)
Contrasts of predictive margins Number of obs = 500
Model VCE: Robust
Expression: Mean function, predict()
1._at: fines = 8
2._at: fines = 9
3._at: fines = 10
4._at: fines = 11
Expression: Mean function, predict()
1._at: fines = 8
2._at: fines = 9
3._at: fines = 10
4._at: fines = 11

Delta-method
Contrast std. err. z P>|z| [95% conf. interval]

_at
(2 vs 1) -21.2308 1.610261 -13.18 0.000 -24.38685 -18.07475
(3 vs 2) -7.94991 .7085254 -11.22 0.000 -9.338595 -6.561226
(4 vs 3) -5.620773 .5683614 -9.89 0.000 -6.734741 -4.506806

When fines are increased from $8,000 to $9,000, we expect a decrease of 21.23 in the number of

citations. Smaller but still statistically significant decreases in the number of citations are expected as

fines are increased from $9,000 to $10,000 and from $10,000 to $11,000.

Example 4: Estimating the effect for different levels of jurisdiction size
Now, we estimate the effect of increasing fines for different jurisdiction sizes.

. margins csize, dydx(fines)
Average marginal effects Number of obs = 500
Model VCE: Robust
Expression: Mean function, predict()
dy/dx wrt: fines

Delta-method
dy/dx std. err. z P>|z| [95% conf. interval]

fines
csize
Small -5.992484 .4491224 -13.34 0.000 -6.872747 -5.11222

Medium -7.740284 .4366709 -17.73 0.000 -8.596144 -6.884425
Large -10.20492 .564166 -18.09 0.000 -11.31067 -9.099178

If all jurisdictions were small but other characteristics were as they are observed, then we expect that

the marginal effect of fines would be −5.99. We see that the effect is more extreme as the size of the

jurisdiction increases. If all jurisdictions were large, we expect that the average marginal effect of fines
would be −10.20.
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We can further explore the effects of fines for different jurisdiction sizes by estimating the expected

number of citations with fines at specific levels.

. margins csize, at(fines=(8(1)11))
(output omitted )

To visualize the effect, we type marginsplot.
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Figure 2.

For each jurisdiction size, we see that on average higher fines result in fewer citations. We also see

that the effect of changing fine levels is nonlinear and differs across the counterfactual jurisdiction size.

For instance, as fines increase from $8,000 to $9,000, the expected number of citations decreases faster

for small jurisdictions than for medium ones.

Stored results
npregress series stores the following in e():

Scalars

e(N) number of observations

e(r2) 𝑅2

e(r2 a) adjusted 𝑅2

e(converged) 1 if converged, 0 otherwise
e(order) order of basis function

e(rank) rank of e(V)

Macros

e(cmd) npregress
e(cmdline) command as typed

e(depvar) name of dependent variable

e(basis) bsplines, splines, or polynomials
e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(knots) number of knots selected

e(datasignaturevars) variables used in calculation of checksum

e(datasignature) the checksum
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e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(properties) b V
e(marginsok) predictions allowed by margins
e(marginsprop) signals to the margins command
e(marginsnotok) predictions disallowed by margins

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of estimators

e(V modelbased) model-based variance

e(ilog) iteration log (up to 20 iterations)

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas
Methods and formulas are presented under the following headings:

Overview
Polynomials
Piecewise polynomial splines
B-splines
Model selection

Cross-validation
Generalized cross-validation
Mallows’s C𝑝
AIC and BIC

Overview
The regression model of outcome 𝑦𝑖 given the 𝑘-dimensional vector of covariates x𝑖 was defined in

(??) and (??) of Remarks and examples and is repeated here:

𝑦𝑖 = 𝑔 (x𝑖) + 𝜀𝑖 (1)

𝐸 (𝜀𝑖|x𝑖) = 0 (2)

where 𝜀𝑖 is the error term. The covariates may include discrete and continuous variables. Equations (??)

and (??) imply that

𝐸 (𝑦𝑖|x𝑖) = 𝑔 (x𝑖)
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As discussed in Remarks and examples, series estimators have the form of ordinary least squares.

Thus, we can write the estimate of the mean function as

𝐸 (𝑦𝑖|x𝑖) = z (x𝑖) β̂ (5)

where z(x𝑖) is a known 𝑞-dimensional vector for which every one of the 𝑞 terms is a function of the

𝑘-dimensional vector of covariates x𝑖. Let 𝑛 be the sample size. If we define Z as the 𝑛 × 𝑞 matrix
formed by the z(x𝑖) for each individual 𝑖, then the 𝑞-dimensional coefficient vector β̂ is the ordinary

least-squares vector that comes from regressing the 𝑛 × 1 outcome vector y on Z and has the known

form

β̂ = (Z′Z)−1 (Z′y) (6)

Each one of the series estimators has a different form for z(x𝑖). Below, we define z(x𝑖) for polynomials,
piecewise polynomial splines, and B-splines.

Polynomials
For a polynomial of order 1 with 𝑘 continuous covariates, x𝑖 ≡ (𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑘), z(x𝑖) is

z (x𝑖) = (𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑘) (𝑃1)

For notational convenience, we will refer to the polynomial above as 𝑃1, which also corresponds to the
name we gave to the equation. More formally, we could have written (𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑘) ≡ 𝑃1. We will

maintain this notational convention below.

A polynomial of order 2 with 𝑘 continuous covariates includes 𝑃1 and second-order terms:

z (x𝑖) = (𝑃1, 𝑥2
𝑖1, 𝑥𝑖1𝑥𝑖2, . . . , 𝑥𝑖1𝑥𝑖𝑘, 𝑥𝑖2𝑥𝑖3, . . . , 𝑥2

𝑖𝑘) (𝑃2)

A third-order polynomial with 𝑘 continuous covariates includes the terms in 𝑃2 (which already includes
𝑃1) and third-order terms:

z (x𝑖) = (𝑃2, 𝑥3
𝑖1, 𝑥2

𝑖1𝑥𝑖2, . . . , 𝑥2
𝑖1𝑥𝑖𝑘, 𝑥𝑖1𝑥𝑖2𝑥𝑖3, . . . , 𝑥3

𝑖𝑘) (𝑃3)

This recursive relationship continues. Thus, fourth-order polynomials includes the terms in 𝑃3 (which

already includes 𝑃1 and 𝑃2) plus fourth-order terms.
For the polynomials above and all series estimators below, discrete covariates enter the model in

levels, and each level is interacted with all other covariates in the model.

Piecewise polynomial splines
Piecewise polynomial splines are formed by a polynomial and functions of the form

max(𝑥𝑖𝑘 − 𝑡1𝑘, 0)

In the expression above, 𝑡1𝑘 is a constant that is called a knot. The subscript of 𝑡1𝑘 indicates that it is

the first knot of the continuous covariate x𝑘. The max(⋅) function is 0 when 𝑥𝑖𝑘 < 𝑡1𝑘 and is 𝑥𝑖𝑘 − 𝑡1𝑘
otherwise. npregress series selects a set of knots for each one of the continuous covariates.
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The regressors for npregress series using a piecewise polynomial spline of order 3 with one con-
tinuous covariate, x1, and 𝑘 knots, 𝑡11 < 𝑡21 < · · · < 𝑡𝑘1, are given by

z (𝑥𝑖1) = {𝑥𝑖1, 𝑥2
𝑖1, 𝑥3

𝑖1, max (𝑥𝑖1 − 𝑡11, 0)3 , max (𝑥𝑖1 − 𝑡21, 0)3 , . . . ,

max (𝑥𝑖1 − 𝑡𝑘1, 0)3}
(𝑆1)

Equivalently, for another continuous covariate, x2, and 𝑘 knots, 𝑡12 < 𝑡22 < · · · < 𝑡𝑘2, we have

z (𝑥𝑖2) = {𝑥𝑖2, 𝑥2
𝑖2, 𝑥3

𝑖2, max (𝑥𝑖2 − 𝑡12, 0)3 , max (𝑥𝑖2 − 𝑡22, 0)3 , . . . ,

max (𝑥𝑖2 − 𝑡𝑘2, 0)3 }
(𝑆2)

To get z (𝑥𝑖1, 𝑥𝑖2) for x1 and x2 and 𝑘 knots, we include all terms in 𝑆1 and 𝑆2 as well as all the terms
that result from the interaction of their terms. We write it succinctly as

z (𝑥𝑖1, 𝑥𝑖2) = {𝑆1, 𝑆2, (𝑆1)(𝑆2)} (𝑆12)

The description above refers to the default third-order piecewise polynomial spline. Below, we de-

scribe the cases for piecewise polynomial splines of order 1 and order 2. Going back to the one covariate

case, if we want a piecewise polynomial spline of order 1 with 𝑘 knots, we have

z (𝑥𝑖1) = {𝑥𝑖1, max (𝑥𝑖1 − 𝑡11, 0) , max (𝑥𝑖1 − 𝑡21, 0) , . . . , max (𝑥𝑖1 − 𝑡𝑘1, 0)}

And for order 2 with 𝑘 knots and one covariate, we have

z (𝑥𝑖1) = {𝑥𝑖1, 𝑥2
𝑖1, max (𝑥𝑖1 − 𝑡11, 0)2 , max (𝑥𝑖1 − 𝑡21, 0)2 , . . . , max (𝑥𝑖1 − 𝑡𝑘1, 0)2}

If we have more than one covariate, the logic of interacting the expressions for each covariate is the

same as the logic we used for the third-order piecewise polynomial spline in (??).

To construct z (x𝑖), continuous covariates are rescaled to be between 0 and 1 with the expression

{x𝑖 − min(x𝑖)} { 1
max(x𝑖) − min(x𝑖)

}

This rescaling is used to construct the piecewise polynomial spline and B-spline bases.
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B-splines
To construct a B-spline basis, we need to define knots that are on the interior of the range of the

covariates and knots that are at the upper and lower limits of the range or outside the range. The number

of knots that are not in the interior differs depending on the order of the B-spline. For a B-spline of

order 1 with 𝑘 interior knots, 𝑡1, 𝑡2, . . . , 𝑡𝑘, we need 4 additional knots. The set of knots for a first-order

B-spline is therefore

𝑡−1, 𝑡0, 𝑡1, . . . , 𝑡𝑘, 𝑡𝑘+1, 𝑡𝑘+2

We added 𝑡−1, 𝑡0, 𝑡𝑘+1, and 𝑡𝑘+2 to the interior knots. By convention, 𝑡−1 = 𝑡0 and 𝑡𝑘+1 = 𝑡𝑘+2.

For a B-spline of order 2 with 𝑘 interior knots, we need 6 additional knots. The set of knots is

𝑡−2, 𝑡−1, 𝑡0, 𝑡1, . . . , 𝑡𝑘, 𝑡𝑘+1, 𝑡𝑘+2, 𝑡𝑘+3

For a B-spline of order 3, the set of knots is

𝑡−3, 𝑡−2, 𝑡−1, 𝑡0, 𝑡1, . . . , 𝑡𝑘, 𝑡𝑘+1, 𝑡𝑘+2, 𝑡𝑘+3, 𝑡𝑘+4

We first define a first-order B-spline for one continuous covariate xwith 𝑘 interior knots. Let t𝑗 denote
an 𝑛 × 1 vector for which all elements take the value of the 𝑗th knot 𝑡𝑗. The B-spline basis is formed by

𝑘 + 2 functions of the form

𝐵𝑗,1 =
(x − 𝑡𝑗)
𝑡𝑗+1 − 𝑡𝑗

1 (t𝑗 ≤ x < t𝑗+1) +
(𝑡𝑗+2 − x)
𝑡𝑗+2 − 𝑡𝑗+1

1 (t𝑗+1 ≤ x < t𝑗+2)

𝑗 = −1, 0, 1, 2, . . . , 𝑘
(7)

Above, we use the indicator function 1(⋅), which is 1 when the condition inside the parentheses is
satisfied and is 0 otherwise. Also, any term for which 𝑡𝑗+1 = 𝑡𝑗 or 𝑡𝑗+2 = 𝑡𝑗+1 is considered to be a

vector of 0s.

The function z (x) used to estimate 𝑔 (x) is given by

z (x) = (𝐵−1,1, 𝐵0,1, 𝐵1,1, . . . , 𝐵𝑘,1)

We now define a second-order B-spline for one continuous covariate x with 𝑘 interior knots. The

basis is constructed using the relationship given by

𝐵𝑗,2 =
(x − 𝑡𝑗)
𝑡𝑗+2 − 𝑡𝑗

𝐵𝑗,1 +
(𝑡𝑗+3 − x)
𝑡𝑗+3 − 𝑡𝑗+1

𝐵𝑗+1,1

𝑗 = −2, −1, 0, 1, 2, . . . , 𝑘

where 𝐵𝑗,1 and 𝐵𝑗+1,1 come from (??) above. Thus, second-order B-splines are a function of first-order

B-splines, and as we will see below, third-order B-splines are a function of second-order B-splines. This

recursion continues into higher orders, but npregress series stops at B-splines of order 3.
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The function z (x) for the second-order B-spline is given by

z (x) = (𝐵−2,2, 𝐵−1,2, 𝐵0,2, 𝐵1,2, . . . , 𝐵𝑘,2)

The terms of the basis for a third-order B-spline are given by

𝐵𝑗,3 =
(x − 𝑡𝑗)
𝑡𝑗+3 − 𝑡𝑗

𝐵𝑗,2 +
(𝑡𝑗+4 − x)
𝑡𝑗+4 − 𝑡𝑗+1

𝐵𝑗+1,2

𝑗 = −3, −2, −1, 0, 1, 2, . . . , 𝑘

and the function z (x) for the third-order B-spline is

z (x) = (𝐵−3,3, 𝐵−2,3, 𝐵−1,3, 𝐵0,3, 𝐵1,3, . . . , 𝐵𝑘,3) (𝐵1)

Aswas the case with piecewise polynomial splines, when there is more than one covariate, you include

all functions of the form (??) and their interactions to form expressions like the one in (??).

Model selection
Below, we define the criteria used for model selection. In the case of B-splines and piecewise poly-

nomial splines, npregress series selects the number of knots to be used for estimation. In the case of
a polynomial basis, npregress series selects the order of the polynomial.

Let us first define the squared residuals, 𝑒2
𝑖 , where 𝑒𝑖 = 𝑦𝑖 − ̂𝑔 (x𝑖) and ̂𝑔(⋅) is the mean function

estimate defined in (??). We denote the residuals for the regressions below as 𝑒𝑖 (t𝑘) instead of 𝑒𝑖 to

signal that the estimates we obtain are a function of the set of knots, t𝑘, used. In the case of polynomials,

t𝑘 will refer to the degree of the polynomial instead of knots.

Cross-validation

The cross-validation criterion, CV (t𝑘), is defined by

CV (t𝑘) = 1
𝑛

𝑛
∑
𝑖=1

𝑒𝑖 (t𝑘)2

(1 − ℎ𝑖𝑖)
2 (8)

In (??), ℎ𝑖𝑖 are the diagonal elements of the matrix Z (Z′Z)Z′, where 𝑍 is defined in (??) above and

𝑛 is the size of the estimation sample.

npregress series computes CV (t𝑘) for different sets of knots, t1, t2, . . . , t𝑘, . . . , where t1 ⊂ t2 ⊂
. . . ⊂ t𝑘 ⊂ . . . , and then selects the model with the smallest value for the cross-validation criterion.
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Generalized cross-validation

The generalized cross-validation criterion, GCV (t𝑘), is given by

GCV (t𝑘) = 1
𝑛

𝑛
∑
𝑖=1

𝑒𝑖 (t𝑘)2

{1 − (𝐾/𝑛)}2

where 𝐾 is the number of estimated parameters and the other arguments are equivalent to those defined

in (??). As with cross-validation, GCV (t𝑘) is computed for a set of models with an increasing number of
nested knots, in the case of piecewise polynomial splines and B-splines, and of polynomial order in the

case of polynomials. The minimum of the sequence is the selected model.

Mallows’s C𝑝

Mallows (t𝑘) = 1
𝑛

𝑛
∑
𝑖=1

𝑒𝑖 (t𝑘)2 (1 + 2𝐾
𝑛

)

As with cross-validation, Mallows (t𝑘) is computed for a set of models with an increasing number of
nested knots, and the minimum of the sequence is the selected model.

AIC and BIC

See Methods and formulas in [R] estat ic.
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Also see
[R] npregress series postestimation — Postestimation tools for npregress series

[R] npregress intro — Introduction to nonparametric regression

[R] kdensity — Univariate kernel density estimation

[R] lpoly — Kernel-weighted local polynomial smoothing

[R] makespline — Spline generation

[U] 20 Estimation and postestimation commands
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Postestimation commands

The following standard postestimation commands are available after npregress series:

Command Description

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estimates cataloging estimation results

etable table of estimation results

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

predict conditional means and residuals

predictnl point estimates, standard errors, testing, and inference for generalized predictions

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

2079
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predict

Description for predict
predict creates a new variable containing predictions such as conditional mean of the outcome,

residuals, or score of the mean function.

Menu for predict
Statistics > Postestimation

Syntax for predict
predict [ type ] newvar [ if ] [ in ] [ , statistic atsample tolerance(#) ]

statistic Description

Main

mean conditional mean of the outcome; the default

residuals residuals

score score; equivalent to residuals

These statistics are available for the estimation sample only.

Options for predict

� � �
Main �

mean, the default, calculates the conditional mean of the outcome variable.

residuals calculates the residuals.

score is a synonym for residuals.

atsample restricts predictions to the range of covariates in the data. If requested predictions extend

beyond the range of the data, atsample will compute predictions only for observations within the
range of the original data and will exclude those observations that are beyond the range of the data.

By default, predictions will not be computed if any covariate is set to a value outside the range of the

data, unless atsample or tolerance() is specified.

tolerance(#) sets the tolerance for predictions outside the range of the covariates.

By default, predictions will not be computed if any covariate is set to a value outside the range of the

data, unless tolerance() or atsample is specified.
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margins

Description for margins
margins estimates margins of the conditional mean.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist ] [ , options ]
margins [marginlist ] , predict(statistic ...) [ options ]

statistic Description

Main

mean conditional mean of the outcome; the default

residuals not allowed with margins
score not allowed with margins

options Description

SE

vce(vcetype) vcetype may be delta, unconditional, or bootstrap
reps(#) equivalent to vce(bootstrap, reps(#))
seed(#) set random-number seed to #; must also specify reps(#)
nose do not estimate standard errors

Reporting

citype(citype) method to compute bootstrap confidence intervals; default is
citype(percentile)

citype Description

percentile percentile confidence intervals; the default

bc bias-corrected confidence intervals

normal normal-based confidence intervals

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.
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Options for margins

� � �
SE �

vce(delta), vce(unconditional), and vce(bootstrap) specify how theVCE and, correspondingly,

standard errors are calculated.

vce(delta) is the default. The delta method is applied to the formula for the response and the VCE
of the estimation command. This method assumes that values of the covariates used to calculate

the response are given or, if all covariates are not fixed using at(), that the data are given.

vce(unconditional) specifies that the covariates that are not fixed be treated in a way that accounts
for their having been sampled. The VCE is estimated using the linearization method. This method

allows for heteroskedasticity or other violations of distributional assumptions in the same manner

as vce(robust), which is the default for npregress series.

vce(bootstrap) specifies that bootstrap standard errors be reported; see [R] vce option. We

recommend that you select the number of replications using reps(#) instead of specifying

vce(bootstrap), which defaults to 50 replications. Be aware that the number of replications
needed to produce good estimates of the standard errors varies depending on the problem.

reps(#) specifies the number of bootstrap replications to be performed. Specifying this option is equiv-
alent to specifying vce(bootstrap, reps(#)).

seed(#) sets the random-number seed. You must specify reps(#) with seed(#).

nose suppresses calculation of the VCE and standard errors.

� � �
Reporting �

citype(citype) specifies the type of confidence interval to be computed. By default, bootstrap percentile
confidence intervals are reported as recommended by Cattaneo and Jansson (2018). citype may be

one of percentile, bc, or normal.

Remarks and examples
For examples of margins after npregress series, see example 3 and example 4 in [R] npregress

series.

For an example of marginsplot, see example 4 in [R] npregress series.

Methods and formulas
The formulas used by predict and margins for the conditional mean function and themeanmarginal

effect of a covariate are given in Methods and formulas of [R] npregress series.

Also see
[R] npregress series — Nonparametric series regression

[R] bootstrap postestimation — Postestimation tools for bootstrap

[U] 20 Estimation and postestimation commands



nptrend — Tests for trend across ordered groups

Description
nptrend performs four different nonparametric tests for trend: the Cochran–Armitage test, the

Jonckheere–Terpstra test, the linear-by-linear trend test, and a test using ranks developed by Cuzick.

Quick start
Cochran–Armitage test for the association of a binary outcome in y and the ordered values of the cate-

gories of x
nptrend y, group(x) carmitage

Same as above, but report an exact 𝑝-value calculated using Monte Carlo permutations

nptrend y, group(x) carmitage exact

Same as above, but perform 100,000 Monte Carlo permutations rather than the default of 10,000, and set

the random-number seed for reproducibility

nptrend y, group(x) carmitage exact(montecarlo, reps(100000) ///
rseed(1234))

Rather than testing the trend in y by the values of x, which are 1, 2, 3, test the trend by 1, 2, 4
nptrend y, group(x) carmitage scoregroup(1 2 4)

Jonckheere–Terpstra test for trend in y across ordered categories of catvar
nptrend y, group(catvar) jterpstra

Same as above, but perform the linear-by-linear trend test

nptrend y, group(catvar) linear

Same as above, but perform Cuzick’s test using ranks

nptrend y, group(catvar) cuzick

Menu
Statistics > Nonparametric analysis > Tests of hypotheses > Trend test across ordered groups
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Syntax
nptrend varname [ if ] [ in ] [weight ] , group(groupvar) testopt [ options ]

options Description

Main
∗ group(groupvar) ordered group variable

scoreresponse(numlist) scores for the response varname

scoregroup(numlist) scores for the groups specified by groupvar

exact[ (exact specs) ] report an exact 𝑝-value
nolabel display numerical values of groupvar rather than value labels

notable do not display the table of mean response scores by group

∗ testopt Description

carmitage Cochran–Armitage test for trend

jterpstra Jonckheere–Terpstra test for trend

linear linear-by-linear test for trend

cuzick use ranks for the response scores in the test due to Cuzick

∗group(groupvar) and one of the choices for testopt are required.
collect is allowed; see [U] 11.1.10 Prefix commands.

fweights are allowed, except when exact is specified; see [U] 11.1.6 weight.

Options

� � �
Main �

group(groupvar) defines the ordered groups across which differences in the response varname are to
be tested. group() is required.

When option scoregroup() is not specified, the values of groupvar are the group scores. When

scoregroup() is specified, groupvar defines the ordered categories, and the scores are the values
specified in scoregroup(). When scoregroup() is specified, groupvar must be a positive integer
(with gaps allowed).

testopt specifies the test that is reported. It is required and must be one of carmitage, jterpstra,
linear, or cuzick.

carmitage specifies that the Cochran–Armitage test for trend be reported. Typically, the response
varname is a 0/1 variable, and the values of groupvar represent a set of ordered categories. It gives a

test of the trend of the proportions of positive responses in the groups, with the hypothesized trend

given by the values of groupvar (or the values of scoregroup() if specified). If the response

varname is not 0/1, it can be valued 1/2 and mapped to 0/1 or 1/0 using scoreresponse(0 1) or
scoreresponse(1 0), respectively.

Response and group specifications for carmitage can be flipped. The groupvar variable can be
a 0/1 predictor, and the response varname can contain ordered outcomes. If groupvar is not 0/1,

it can be valued 1/2 and mapped to 0/1 or 1/0 using scoregroup(0 1) or scoregroup(1 0),
respectively.
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jterpstra specifies that the Jonckheere–Terpstra test for trend be reported. The response varname
contains outcomes, which can be ordered categories or continuous values, and the groupvar vari-

able is an ordered group indicator that is believed to be a predictor of outcome. The Jonckheere–

Terpstra statistic is dependent on which is the response variable and which is the group variable.

If response and group variables are interchanged, the value of the statistic will be different.

Only the orderings given by the response varname and groupvar are used to calculate the

Jonckheere–Terpstra statistic. Different numerical values that give the same orderings produce

the same statistic. Hence, this statistic is used when a test for trend dependent only on order is de-

sired. Typically, the options scoreresponse() and scoregroup() are not specified. However,
either or both of these options can be used to change the orderings given by varname and groupvar.

linear specifies that the linear-by-linear test for trend be reported. The linear-by-linear statistic

is symmetric in the response variable varname and the group indicator groupvar. Interchanging

response and group variables produces the same result. Despite the name “linear”, nonlinear trends

can be tested. The trend, linear or nonlinear, is based on the numerical values of the response and

group variables. scoreresponse() and scoregroup() can be specified to test different trends.

cuzick specifies that ranks be used for the responses and that the test for trend across ordered groups
developed by Cuzick (1985) be reported. Because ranks are used, only the ordering given by

response variable varnamematters. The numerical values of groupvar are used in calculation, and

different values, even those that give the same ordering, will result in different values of the statistic

for Cuzick’s test. scoreresponse() can be specified to change the ordering of the responses.

scoregroup() can be specified to test different trends by group.

scoreresponse(numlist) specifies scores for the responses in varname. When specified, varnamemust

contain only positive integers (with gaps allowed), and the response score for varname = 𝑖 is the 𝑖th
number in numlist. When scoreresponse() is not specified, the response scores are the values of
the response varname.

scoregroup(numlist) specifies scores for the groups specified by groupvar. When specified, groupvar

must contain only positive integers (with gaps allowed), and the group score for groupvar = 𝑖 is
the 𝑖th number in numlist. When scoregroup() is not specified, the group scores are the values of
groupvar.

exact and exact(exact specs) specify that an exact 𝑝-value be reported.
exact specifies that an exact 𝑝-value from a Monte Carlo permutation test be reported. exact is a

synonym for exact(montecarlo).

exact(montecarlo | enumerate[ , options ]) specifies that an exact 𝑝-value be reported in addition
to the approximate or asymptotic 𝑝-value. Specifying exact(montecarlo) does a Monte Carlo

permutation test. Specifying exact(enumerate) does an enumeration of all possible permuta-
tions. Because the number of all possible permutations is typically extremely large, enumeration

is feasible only for very small datasets. The number of permutations will be displayed, and you

can click on Break to stop the computation. The exact 𝑝-value is computed by permute.
exact(montecarlo[ , options ]) allows options show, reps(#), rseed(#),
saving( filename[ , sav options ]), level(#), dots(#), nodots, and eps(#). The show
option specifies that the table produced by permute also be displayed. By default,

10,000 Monte Carlo permutations are done. That is, the default is the same as specifying

exact(montecarlo, reps(10000)). The default for dots() is dots(100) when reps()
is ≥ 10,000; otherwise, it is dots(1). See Options in [R] permute.
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exact(enumerate[ , options ]) allows options show, saving( filename[ , sav options ]),
dots(#), nodots, and eps(#). The show option specifies that the table produced by permute
also be displayed. The default for dots() is dots(100). See Options in [R] permute.

nolabel causes numerical values of groupvar to be displayed in the table of mean response scores rather
than value labels.

notable suppresses the display of the table of mean response scores by group.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Cochran–Armitage test
Jonckheere–Terpstra test
Linear-by-linear trend test
Cuzick’s test

Introduction
nptrend performs four different nonparametric tests for trend: the Cochran–Armitage test, the

Jonckheere–Terpstra test, the linear-by-linear trend test, and a test using ranks developed by Cuzick.

Data for these tests consist of two variables. The first variable, specified immediately after nptrend,
contains responses. The second variable, specified in group(), identifies groups.

For the Cochran–Armitage test, the response is typically a 0/1 variable, and the values of the group

variable are ordered categories. It tests the trend of the proportions of positive responses in the groups.

The numerical values of the hypothesized trend are called “scores”. For this form of the test, we call the

scores that specify the hypothesized trend “group scores” because it is the trend by group being tested.

For example, group scores of 1, 2, 3 would test for a linear trend. Group scores of 1, 4, 9 would test for

a quadratic trend.

The specification of the Cochran–Armitage test can be flipped. That is, the response variable can

identify ordered outcome categories, and the group variable can be 0/1. In this case, we call the scores

that specify the hypothesized trend “response scores”.

The Cochran–Armitage test requires either a 0/1 response variable or a 0/1 group variable. It cannot

test responses with more than two levels when there are more than two groups.

The Jonckheere–Terpstra test is typically used when there are more than two groups and more than

two response levels. The test assesses whether there is an association between the response scores and

the group scores, but only the relative orders of the responses and groups matter. Because there is no

need to specify a hypothesized trend, this test is in this sense “more nonparametric” than the other tests

for trend reported by nptrend.

The linear-by-linear trend test uses response scores to specify the trend being tested. So it is typically

used when the trend of the response scores, rather than just their ordering, is meaningful. The linear-by-

linear statistic is asymptotically equivalent to the Pearson correlation coefficient (see [R] correlate).

The statistics for the Cochran–Armitage test (when the response is 0/1), the linear-by-linear trend

test, and Cuzick’s test are based on the numerical values of the group scores. The linear-by-linear test

requires numerical response scores as well. Different scores, even those that have the same ordering,

produce different values of the statistic. For instance, group scores 1, 2, 3 would give a different result

than 1, 2, 4. For the linear-by-linear test, the same holds for response scores.
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The options scoreresponse() and scoregroup() are provided as convenience tools to test different
response scores and group scores without having to modify the underlying variables. They do, however,

require that the underlying variables be valued 1, 2, 3, . . . .

If your data are not grouped, you can test for trend with the signtest and spearman commands;

see [R] signrank and [R] spearman. With signtest, you can perform the Cox and Stuart test, a sign

test applied to differences between equally spaced observations of varname. With spearman, you can
perform the Daniels test, a test of zero Spearman correlation between varname and a time index. See

Conover (1999, 169–175, 323) for a discussion of these tests.

Cochran–Armitage test
The Cochran–Armitage test tests the trend in ordered groups of the probability of a positive response.

As we stated earlier, response and group specifications can be flipped, and it can assess whether a trend

based on ordered responses is associated with membership in one of two groups. In the discussion that

follows we will consider only the former case: ordered groups with 0/1 responses.

The Cochran–Armitage test is based on a linear probability model for 𝜃𝑖, the probability of a positive

response for subjects in the 𝑖th group,

𝜃𝑖 = 𝛼 + 𝛽 (𝑔𝑖 − 𝑔)

where 𝛼 is the intercept, 𝛽 is the slope, 𝑔𝑖 are the group scores, and 𝑔 is the mean of the group scores.

The estimate for 𝛽 is the ordinary least-squares (OLS) estimate ̂𝛽, and this is the statistic for the

Cochran–Armitage test.

However, the standard error of the statistic ̂𝛽 for the Cochran–Armitage test has a different formulation
than that of the standard error from OLS regression—although they are the same asymptotically. The

standard error se( ̂𝛽) for the Cochran–Armitage statistic is based on decomposing the Pearson statistic
for independence.

The Pearson statistic 𝑋2
Ind for independence can be written as

𝑋2
Ind = 𝑧2 + 𝑋2

DL

where 𝑧 = ̂𝛽/se( ̂𝛽) is the 𝑧 score for the Cochran–Armitage test and 𝑋2
DL is a statistic for departure from

the linear trend. Asymptotically, 𝑧 has a standard normal distribution, and𝑋2
DL has a 𝜒2 distribution with

𝐼 − 2 degrees of freedom, where 𝐼 is the number of ordered categories. See Cochran–Armitage test for
trend in Methods and formulas below.

This is one of the advantages of performing the Cochran–Armitage test. We get not only a test for

trend but also a test for departure from this trend. Let’s be clear about what we mean when we say

“departure from this trend”. The Pearson statistic for independence is decomposed into two pieces.

Either piece being large means that the test for independence is rejected. The linear piece 𝑧2 being large

means there is a linear trend that rejects independence. The departure piece 𝑋2
DL being large means there

are differences other than the linear trend that reject independence.

We should also be clear about what wemeanwhenwe say “linear trend”. Linear trendmeans whatever

trend is given by the group scores 𝑔𝑖, which do not have to be 1, 2, 3, . . . . They could be, for instance, 1,

3, 10, 12, . . . . It is linear in the scores but not necessarily linear by the ordering of the groups.

When the exact option is specified, a 𝑝-value from the permutation test of the null hypothesis 𝛽 = 0

is reported.
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Example 1
We have fictional data from a clinical trial of a new drug for treating migraines. The variable dose

contains the dose of the drug given to a subject. The variable relief is 0/1 with 0 indicating no relief
of the migraine and 1 indicating partial or total relief. Here is a tabulation of the data:

. use https://www.stata-press.com/data/r18/migraine
(Fictional migraine drug data)
. tabulate dose relief, row nokey

Relief of migraine
Mycureit after 2 hours

dose in mg 0 1 Total

10 80 120 200
40.00 60.00 100.00

20 92 108 200
46.00 54.00 100.00

30 83 117 200
41.50 58.50 100.00

40 63 137 200
31.50 68.50 100.00

Total 318 482 800
39.75 60.25 100.00

There appears to be a trend of more subjects reporting relief at the higher doses. Let’s calculate the

Cochran–Armitage test for trend:

. nptrend relief, group(dose) carmitage
Cochran--Armitage test for trend

Number of observations = 800
Number of groups = 4

Number of response levels = 2

Mean
response Number

Group Group score score of obs

dose
10 10 .6 200
20 20 .54 200
30 30 .585 200
40 40 .685 200

Statistic = .003
Std. err. = .0015476

z = 1.939
Prob > |z| = 0.0526

Test of departure from trend:
chi2(2) = 5.45

Prob > chi2 = 0.0656

The asymptotic 𝑝-value for the test of a linear trend is 0.0526. The 𝑝-value for the test of departure from
linearity is 0.0656.
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The 𝑝-value for the test of a linear trend is close to 0.05. Rather than report the asymptotic 𝑝-value,
we may want to report an exact 𝑝-value. We run nptrend again, this time specifying the exact option.

. nptrend relief, group(dose) carmitage exact
Permutations (10,000): .........1,000.........2,000.........3,000.........4,000
> .........5,000.........6,000.........7,000.........8,000.........9,000.......
> ..10,000 done
Cochran--Armitage test for trend

Number of observations = 800
Number of groups = 4

Number of response levels = 2

Mean
response Number

Group Group score score of obs

dose
10 10 .6 200
20 20 .54 200
30 30 .585 200
40 40 .685 200

Statistic = .003
Std. err. = .0015476

z = 1.939
Prob > |z| = 0.0526
Exact prob = 0.0576 (10,000 Monte Carlo permutations)

Test of departure from trend:
chi2(2) = 5.45

Prob > chi2 = 0.0656

The exact 𝑝-value reported is 0.0576, larger than the asymptotic 𝑝-value of 0.0526. The exact 𝑝-value
comes from a permutation test performed by computing 10,000 random permutations. This means that

there is some random error associated with the reported exact 𝑝-value.
To see the Monte Carlo error in the exact 𝑝-value, we can use the show suboption of exact, which

displays the full output of permute. The option we specify is

exact(montecarlo, show reps(100000) dots(1000) rseed(1234))

We increase the number of random permutations to 100,000. dots(1000) displays a dot after every

1,000th permutation rather than the default of every 100th. rseed(1234) sets the random-number seed
so we can reproduce our result. We did not set the random-number seed when we ran nptrend . . . exact
earlier. If we were to run that again, we would get a different value for the exact 𝑝-value. Here are the
results with exact() specified this new way:
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. nptrend relief, group(dose) carmitage
> exact(montecarlo, show reps(100000) dots(1000) rseed(1234))
Permutations (100,000): .........10,000.........20,000.........30,000.........4
> 0,000.........50,000.........60,000.........70,000.........80,000.........90,
> 000.........100,000 done
Monte Carlo permutation results Number of observations = 800
Permutation variable: relief Number of permutations = 100,000

Monte Carlo error

T T(obs) Test c n p SE(p) [95% CI(p)]

_pm_1 .003 lower 97435 100000 .9744 .0005 .9734 .9753
upper 2959 100000 .0296 .0005 .0285 .0307

two-sided .0592 .0007 .0577 .0606

Notes: For lower one-sided test, c = #{T <= T(obs)} and p = p_lower = c/n.
For upper one-sided test, c = #{T >= T(obs)} and p = p_upper = c/n.
For two-sided test, p = 2*min(p_lower, p_upper); SE and CI approximate.

Cochran--Armitage test for trend
Number of observations = 800

Number of groups = 4
Number of response levels = 2

Mean
response Number

Group Group score score of obs

dose
10 10 .6 200
20 20 .54 200
30 30 .585 200
40 40 .685 200

Statistic = .003
Std. err. = .0015476

z = 1.939
Prob > |z| = 0.0526
Exact prob = 0.0592 (100,000 Monte Carlo permutations)

Test of departure from trend:
chi2(2) = 5.45

Prob > chi2 = 0.0656

The reported exact 𝑝-value from this specification is 0.0592, and we see from the table reported by

permute that theMonte Carlo 95% confidence interval for it is [ 0.0577, 0.0606 ]. Clearly, the asymptotic
𝑝-value 0.0526 is a bit anticonservative. If we were going to publish the result, we might want to run
the command again with even more permutations, perhaps 1,000,000 or more, to narrow the width of

the confidence level to less than 0.001. With only 800 observations in these data, the Monte Carlo

permutations are computed quickly.
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Example 2
We continue with the previous example to illustrate the use of the scoregroup() option. When we

tested the linear trend of dose, we got a 𝑝-value of 0.0656 for the departure from linearity. So maybe the

trend is not linear. Let’s test a quadratic trend.

To use the scoregroup() option, the variable in group() must be 1, 2, . . . . The variable dose is
10, 20, 30, 40. We can convert it to 1, 2, 3, 4 in several ways. Here we use the egen group() function
because this works in general.

. egen idose = group(dose)

. tabulate idose
group(dose) Freq. Percent Cum.

1 200 25.00 25.00
2 200 25.00 50.00
3 200 25.00 75.00
4 200 25.00 100.00

Total 800 100.00

Now, we specify scoregroup(1 4 9 16) to test a quadratic trend.

. nptrend relief, group(idose) carmitage scoregroup(1 4 9 16)
Cochran--Armitage test for trend

Number of observations = 800
Number of groups = 4

Number of response levels = 2

Mean
response Number

Group Group score score of obs

idose
1 1 .6 200
2 4 .54 200
3 9 .585 200
4 16 .685 200

Statistic = .0070543
Std. err. = .0030468

z = 2.315
Prob > |z| = 0.0206

Test of departure from trend:
chi2(2) = 3.85

Prob > chi2 = 0.1462

Of course, we could have just typed generate dose2 = dose^2 and used this variable for group()
to test the quadratic trend.

The 𝑝-value for the quadratic trend is 0.0206, and the departure 𝑝-value is 0.1462. The 𝑝-value for
the linear trend was 0.0526. So it appears the relationship between dose and relief is closer to quadratic

than linear. But should we be using nptrend to search for the trend with the smallest 𝑝-value? Surely,
logit is the tool for that!
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. generate dose2 = dose^2

. logit relief dose dose2
Iteration 0: Log likelihood = -537.58798
Iteration 1: Log likelihood = -532.96973
Iteration 2: Log likelihood = -532.96346
Iteration 3: Log likelihood = -532.96346
Logistic regression Number of obs = 800

LR chi2(2) = 9.25
Prob > chi2 = 0.0098

Log likelihood = -532.96346 Pseudo R2 = 0.0086

relief Coefficient Std. err. z P>|z| [95% conf. interval]

dose -.0720094 .0367396 -1.96 0.050 -.1440177 -1.19e-06
dose2 .0017005 .0007276 2.34 0.019 .0002744 .0031266
_cons .946503 .4021702 2.35 0.019 .1582638 1.734742

To be clear, we are not recommending a model such as this for these data. There are only four doses,

and this logit model fits three of the four degrees of freedom. The purpose of the Cochran–Armitage test

is to test a single hypothesized trend and report an honest 𝑝-value for it. If we want to test for a trend but
do not have any idea what the trend might be, we may be better off using the Jonckheere–Terpstra test.

Jonckheere–Terpstra test
The Jonckheere–Terpstra test is useful when it is not clear what the trend might be and we simply want

to test for any trend. That is, it tests whether the ordering of the groups is associated with the ordering of

the responses. The test is typically used when there are many response levels and any number of groups.

Suppose there are 𝐽 ≥ 2 ordered groups. Let 𝑦𝑗𝑘 be the 𝑘th response in the 𝑗th group, where 𝑘 =
1, 2, . . . , 𝑛𝑗. The responses 𝑦𝑗𝑘 are given by varname (the variable specified immediately after nptrend)
or by varname mapped to the values of scoreresponse().

For groups 𝑗 and 𝑗′, where 𝑗 < 𝑗′, consider the 𝑛𝑗𝑛𝑗′ pairs

(𝑦𝑗𝑘, 𝑦𝑗′𝑘′)

Let 𝐶𝑗𝑗′ be the number of pairs such that 𝑦𝑗𝑘 < 𝑦𝑗′𝑘′ and 𝐷𝑗𝑗′ be the number of pairs such that 𝑦𝑗𝑘 >
𝑦𝑗′𝑘′ . The Jonckheere–Terpstra statistic is

𝑇 = ∑
𝑗<𝑗′

(𝐶𝑗𝑗′ − 𝐷𝑗𝑗′)

In other words, count the number of response pairs, 𝐶𝑗𝑗′ , where the group 𝑗 response is less than the
group 𝑗′ response. That is, pairs in which the ordering of the responses is concordant with the ordering

of the groups. Subtract from this the number of discordant pairs, 𝐷𝑗𝑗′ . Then, sum over the 𝐽(𝐽 − 1)/2
combinations of selecting two of the 𝐽 groups, where group 𝑗 is ordered before group 𝑗′.

Clearly, only the ordering of responses matters relative to the ordering of the groups. There is no need

to hypothesize what the trend is.

Kendall’s 𝜏 (see [R] spearman) also uses only relative differences, and the Jonckheere–Terpstra test

can be viewed as a generalization of Kendall’s 𝜏 for groups of unequal sizes. See Jonckheere–Terpstra
test for trend in Methods and formulas below.
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Example 3
The following data (Altman 1991, 217) show ocular exposure to ultraviolet radiation for 32 pairs of

sunglasses classified into 3 groups according to the amount of visible light transmitted.

Transmission of
Group visible light Ocular exposure to ultraviolet radiation

1 < 25% 1.4 1.4 1.4 1.6 2.3 2.5
2 25 to 35% 0.9 1.0 1.1 1.1 1.2 1.2 1.5 1.9 2.2 2.6 2.6

2.6 2.8 2.8 3.2 3.5 4.3 5.1
3 > 35% 0.8 1.7 1.7 1.7 3.4 7.1 8.9 13.5

Entering these data into Stata, we have

. use https://www.stata-press.com/data/r18/sg, clear
(Ultraviolet radiation exposure with sunglasses)
. list, separator(6)

group exposure

1. < 25% 1.4
2. < 25% 1.4
3. < 25% 1.4
4. < 25% 1.6
5. < 25% 2.3
6. < 25% 2.5

7. 25% to 35% .9
8. 25% to 35% 1
(output omitted )

31. > 35% 8.9
32. > 35% 13.5

We can now use nptrend to report the Jonckheere–Terpstra test results.

. nptrend exposure, group(group) jterpstra
Jonckheere--Terpstra test for trend

Number of observations = 32
Number of groups = 3

Number of response levels = 23

Mean
response Number

Group Group score score of obs

group
< 25% 1 1.766667 6

25% to 35% 2 2.311111 18
> 35% 3 4.85 8

Statistic = 82
Std. err. = 54.80056

z = 1.496
Prob > |z| = 0.1346

The approximate 𝑝-value is 0.1346. This 𝑝-value is an approximation to the permutation test 𝑝-value.
That is, it comes from a 𝑧 statistic that uses the exact variance of the permutation distribution. With only

32 observations, it seems better to simply compute the exact 𝑝-value using Monte Carlo permutations.
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. set seed 1234

. nptrend exposure, group(group) jterpstra exact
Permutations (10,000): .........1,000.........2,000.........3,000.........4,000
> .........5,000.........6,000.........7,000.........8,000.........9,000.......
> ..10,000 done
Jonckheere--Terpstra test for trend

Number of observations = 32
Number of groups = 3

Number of response levels = 23

Mean
response Number

Group Group score score of obs

group
< 25% 1 1.766667 6

25% to 35% 2 2.311111 18
> 35% 3 4.85 8

Statistic = 82
Std. err. = 54.80056

z = 1.496
Prob > |z| = 0.1346
Exact prob = 0.1378 (10,000 Monte Carlo permutations)

Despite the small number of observations, the Monte Carlo exact 𝑝-value 0.1378 is close to the ap-
proximate 𝑝-value 0.1346. Because of the small number of observations, we might be tempted to try the
exact(enumerate) option. We do so.

. nptrend exposure, group(group) jterpstra exact(enumerate, dots(1000))
(enumerating all 1.42e+12 possible permutations)
Permutations (1,415,721,106,800): ..........10,000..... Break
r(1);

nptrend calls permute to do the enumeration, and permute tells us there are 1.42 × 1012 possible

permutations. Because we do not want to wait years for the result, we pressed Break.

Let’s randomly cut the dataset in half, from 32 observations to 16.

. set seed 25

. generate r = runiform()

. sort r

. keep in 1/16
(16 observations deleted)
. tabulate group
Transmissio

n of
visible
light Freq. Percent Cum.

< 25% 2 12.50 12.50
25% to 35% 9 56.25 68.75

> 35% 5 31.25 100.00

Total 16 100.00
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Then, let’s do the enumeration for these data:

. nptrend exposure, group(group) jterpstra exact(enumerate, dots(1000))
(enumerating all 240,240 possible permutations)
Permutations (240,240): .........10,000.........20,000.........30,000.........4
> 0,000.........50,000.........60,000.........70,000.........80,000.........90,
> 000.........100,000.........110,000.........120,000.........130,000.........1
> 40,000.........150,000.........160,000.........170,000.........180,000.......
> ..190,000.........200,000.........210,000.........220,000.........230,000....
> .....240,000. done
Jonckheere--Terpstra test for trend

Number of observations = 16
Number of groups = 3

Number of response levels = 15

Mean
response Number

Group Group score score of obs

group
< 25% 1 1.5 2

25% to 35% 2 2.377778 9
> 35% 3 6.92 5

Statistic = 49
Std. err. = 19.57188

z = 2.504
Prob > |z| = 0.0123
Exact prob = 0.0103 (enumerated all 240,240 permutations)

There are only 240,240 possible permutations now, and the computation takes little time. Despite there

being only 16 observations, the exact 𝑝-value (without any error) 0.0103 is close to the approximate
𝑝-value 0.0123. Enumeration works quite well for tiny datasets such as this.

Linear-by-linear trend test
The linear-by-linear trend test is an alternative to the Jonckheere–Terpstra test. The difference is that

the linear-by-linear trend test uses response scores to specify the trend being tested. How the trend is

hypothesized to vary across groups is specified by the group scores. The linear-by-linear trend test could

be described as a parametric specification for trend that is tested nonparametrically!
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If scores are not specified in the options, then the values of the response varname are used as response

scores, and the values of groupvar are used as group scores.

The linear-by-linear statistic is

𝑇 = 1
𝑁

𝐼
∑
𝑖=1

𝐽
∑
𝑗=1

𝑛𝑖𝑗(𝑔𝑗 − 𝑔)(𝑟𝑖 − 𝑟)

where 𝑁 is the total number of observations, 𝑔𝑗 is the group score for the 𝑗th group, 𝑔 is the mean group
score over all observations, 𝑟𝑖 is the response score for the 𝑖th ordered response, and 𝑟 is the mean

response score over all observations.

The linear-by-linear statistic is equivalent to the Pearson correlation coefficient (see [R] correlate),

the difference being that the Pearson correlation coefficient is standardized by the standard deviations of

the scores. The 𝑝-values are slightly different because the 𝑝-value for the linear-by-linear test is based on
its permutation distribution while the 𝑝-value for the Pearson correlation coefficient assumes normality.

Clearly, the statistic depends on the numerical values of both the response scores and the group scores.

Different scores, even ones that give the same ordering, will produce different values of the statistic.

Example 4
We again use the sunglasses data from example 3, where we did the Jonckheere–Terpstra test.

. use https://www.stata-press.com/data/r18/sg, clear
(Ultraviolet radiation exposure with sunglasses)

We calculate the linear-by-linear trend test for these data.

. nptrend exposure, group(group) linear
Linear-by-linear test for trend

Number of observations = 32
Number of groups = 3

Number of response levels = 23

Mean
response Number

Group Group score score of obs

group
< 25% 1 1.766667 6

25% to 35% 2 2.311111 18
> 35% 3 4.85 8

Statistic = .7035156
Std. err. = .3063377

z = 2.297
Prob > |z| = 0.0216

The approximate 𝑝-value is 0.0216, which is much smaller than the Jonckheere–Terpstra test approximate
𝑝-value 0.1346. Such a difference is not surprising. The linear-by-linear trend test uses the actual values
of the response in the statistic. The values of the response seem to follow a linear trend by group, and

when this is true, one generally expects the 𝑝-value from the linear-by-linear trend test to be smaller than

the 𝑝-value from the Jonckheere–Terpstra test.
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Again, we might want to compute the exact 𝑝-value using Monte Carlo permutations.

. nptrend exposure, group(group) linear
> exact(montecarlo, reps(100000) dots(1000) rseed(1234))
Permutations (100,000): .........10,000.........20,000.........30,000.........4
> 0,000.........50,000.........60,000.........70,000.........80,000.........90,
> 000.........100,000 done
Linear-by-linear test for trend

Number of observations = 32
Number of groups = 3

Number of response levels = 23

Mean
response Number

Group Group score score of obs

group
< 25% 1 1.766667 6

25% to 35% 2 2.311111 18
> 35% 3 4.85 8

Statistic = .7035156
Std. err. = .3063377

z = 2.297
Prob > |z| = 0.0216
Exact prob = 0.0146 (100,000 Monte Carlo permutations)

In this case, the exact 𝑝-value 0.0146 is smaller than the approximate 𝑝-value 0.0216.

Cuzick’s test
Cuzick’s test (Cuzick 1985) is an extension of the Kruskal–Wallis test (see [R] kwallis) for ordered

groups. The response scores are ranked, the sum of the ranks is calculated for each group, and then these

sums of ranks are weighted by the deviation of the group scores from their mean.

The statistic for Cuzick’s test is

𝑇 = 1
𝑁

𝐽
∑
𝑗=1

(𝑔𝑗 − 𝑔)𝑅𝑗

where 𝑁 is the total number of observations, 𝑔𝑗 is the group score for the 𝑗th group, 𝑔 is the mean group
score over all observations, and 𝑅𝑗 is the sum of the ranks of the response scores in the 𝑗th group.

The form of the statistic is similar to that of the statistic for the linear-by-linear test, but instead of using

response scores being used directly, the ranks of the response scores are used. So only the ordering of the

response scores matters. The numerical values of the group scores, however, are used in the calculation,

so different group scores will give different values of the statistic.
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Example 5
We continue with the sunglasses data from example 4. We now calculate Cuzick’s test, calculating

the exact 𝑝-value as well.
. nptrend exposure, group(group) cuzick
> exact(montecarlo, reps(100000) dots(1000) rseed(1234))
Permutations (100,000): .........10,000.........20,000.........30,000.........4
> 0,000.........50,000.........60,000.........70,000.........80,000.........90,
> 000.........100,000 done
Cuzick’s test with rank scores

Number of observations = 32
Number of groups = 3

Number of response levels = 23

Mean
response Number

Group Group score score of obs

group
< 25% 1 1.766667 6

25% to 35% 2 2.311111 18
> 35% 3 4.85 8

Statistic = 1.65625
Std. err. = 1.090461

z = 1.519
Prob > |z| = 0.1288
Exact prob = 0.1322 (100,000 Monte Carlo permutations)

The approximate 𝑝-value 0.1288 is close to the exact 𝑝-value 0.1322. These results are also close to
the results from the Jonckheere–Terpstra test, where the approximate 𝑝-value was 0.1346. This is not
surprising because using ranks of the responses in Cuzick’s test is likely to be similar to the comparisons

of orderings in the Jonckheere–Terpstra test. The latter test is better known than Cuzick’s test, so for this

reason alone, it may be preferable to use the Jonckheere–Terpstra test when reporting results.

Stored results
nptrend stores the following in r():

Scalars

r(N) number of observations

r(n groups) number of groups

r(n rsp levels) number of response levels

r(beta) slope from Cochran–Armitage linear probability model

r(T) statistic

r(se) standard error of the statistic

r(z) 𝑧 statistic

r(p) two-sided 𝑝-value from 𝑧 statistic

r(p l) lower one-sided 𝑝-value from 𝑧 statistic

r(p u) upper one-sided 𝑝-value from 𝑧 statistic

r(chi2 depart) 𝜒2 for departure from Cochran–Armitage linear probability model

r(df depart) degrees of freedom for departure 𝜒2

r(p depart) 𝑝-value for departure 𝜒2

r(p exact) two-sided exact 𝑝-value
r(p l exact) lower one-sided exact 𝑝-value
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r(p u exact) upper one-sided exact 𝑝-value
r(n perm) number of permutations performed

Macros

r(test) ”carmitage”, ”jterpstra”, ”linear”, or ”cuzick”
r(group) group variable

r(exact) ”montecarlo” or ”enumerate”
r(rngstate) random-number state used for Monte Carlo permutations

Matrices

r(table) table of mean response scores by group

If exact(. . ., show) is specified, the stored results from permute are returned as well; see Stored
results in [R] permute.

Methods and formulas
Methods and formulas are presented under the following headings:

Overview
Cochran–Armitage test for trend
Jonckheere–Terpstra test for trend
Linear-by-linear test for trend
Cuzick’s test with rank scores

Overview
We will use the same notation for all the tests. Let the set of distinct responses be indexed by 𝑖 =

1, 2, . . . , 𝐼. Let the groups be indexed by 𝑗 = 1, 2, . . . , 𝐽.
We call the scores for the responses “response scores” and denote them by 𝑟𝑖.

For the Cochran–Armitage test (when the response is 0/1), linear-by-linear trend test, and Cuzick’s

test the groups have scores as well. We call these scores “group scores”, and denote them by 𝑔𝑗.

All the tests for trend reported by nptrend are based on tests of independence between the ordering
of the responses (or their scores) and the ordering of the groups (or their scores). Because these are

tests of independence, there is no need to hypothesize a direction of causal inference. Responses could

be outcomes predicted by group membership, or “groups” could be outcomes predicted by what we are

calling “responses”.

Let 𝑛𝑖𝑗 be the number of observations in the 𝑖th response category and 𝑗th group. Let 𝑁 = ∑𝑖𝑗 𝑛𝑖𝑗

be the total number of observations. Let 𝑛𝑖+ = ∑𝑗 𝑛𝑖𝑗 be the row margins, and let 𝑛+𝑗 = ∑𝑖 𝑛𝑖𝑗 be the

column margins.

Cochran–Armitage test for trend
When carmitage is specified, the Cochran–Armitage test is performed (Cochran 1954; Armitage

1955; Agresti 2013). It assesses whether the probability of a positive response is associated with a trend

based on ordered groups. Or the specification can be flipped. It can be used to assess whether a trend

based on ordered responses is associated with membership in one of two groups.

In these methods, we assume that the response is 0/1—that is, the response is indexed by 𝑖 =
0, 1—and that there are 𝐽 ordered groups with scores 𝑔𝑗. When the specification is flipped, response

and group are interchanged in the equations below.
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The Cochran–Armitage test is based on a linear probability model for 𝜃𝑗, the probability of having

response 𝑖 = 1 for the subjects in the 𝑗th group,

𝜃𝑗 = 𝛼 + 𝛽 (𝑔𝑗 − 𝑔)

where 𝛼 is the intercept, 𝛽 is the slope, 𝑔𝑗 are the group scores, and 𝑔 is the mean of the group scores.
The equation is solved using OLS,

̂𝜃𝑗 = 𝑝 + ̂𝛽 (𝑔𝑗 − 𝑔)

where 𝑝 = (∑𝑗 𝑛1𝑗)/𝑁 and 𝑔 = (∑𝑗 𝑛+𝑗𝑔𝑗)/𝑁.

The OLS solution for ̂𝛽 is

̂𝛽 =
∑𝑗 𝑛+𝑗(𝑝𝑗 − 𝑝)(𝑔𝑗 − 𝑔)

∑𝑗 𝑛+𝑗(𝑔𝑗 − 𝑔)2

where 𝑝𝑗 = 𝑛1𝑗/𝑛+𝑗.

The test for independence between groups and responses can be separated into a test for the linear

trend and a test for departure from the linear trend. The Pearson statistic for independence

𝑋2
Ind = 1

𝑝(1 − 𝑝)

𝐽
∑
𝑗=1

𝑛+𝑗(𝑝𝑗 − 𝑝)2

is decomposed as

𝑋2
Ind = 𝑧2 + 𝑋2

DL

where

𝑧2 =
̂𝛽2

𝑝(1 − 𝑝)

𝐽
∑
𝑗=1

𝑛+𝑗(𝑔𝑗 − 𝑔)2

and

𝑋2
DL = 1

𝑝(1 − 𝑝)

𝐽
∑
𝑗=1

𝑛+𝑗(𝑝𝑗 − ̂𝜃𝑗)2

𝑧 is the 𝑧 statistic for the linear trend, and 𝑋2
DL is the statistic for departure from a linear trend. Asymp-

totically, 𝑧 has a standard normal distribution, and 𝑋2
DL has a 𝜒2 distribution with 𝐽 − 2 degrees of

freedom.

Jonckheere–Terpstra test for trend
When jterpstra is specified, the Jonckheere–Terpstra test is performed (Terpstra 1952; Jonckheere

1954). The Jonckheere–Terpstra test is a test of whether the hypothesized ordering of the responses is

associated with the hypothesized ordering of the groups. Typically, this test is used when there are only

a few groups but many response categories or even continuous responses.

Only the ordering of the responses and groups matter. The numerical values of the scores do not

matter, but scores can be specified to change the ordering.

Let 𝑦𝑗𝑘 be the 𝑘th response in the 𝑗th group, where 𝑘 = 1, 2, . . . , 𝑛+𝑗. If the response falls in the 𝑖th
response category, then 𝑦𝑗𝑘 = 𝑟𝑖, the response score for the 𝑖th category.
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For groups 𝑗 and 𝑗′, where 𝑗 < 𝑗′, consider the pairs

(𝑦𝑗𝑘, 𝑦𝑗′𝑘′)

where 𝑘 = 1, 2, . . . , 𝑛+𝑗 and 𝑘′ = 1, 2, . . . , 𝑛+𝑗′ . A total of 𝑛+𝑗𝑛+𝑗′ pairs are formed for these two

groups.

Let 𝐶𝑗𝑗′ be the number of pairs such that 𝑦𝑗𝑘 < 𝑦𝑗′𝑘′ , that is, pairs in which the response ordering is

concordant with the group ordering. Let 𝐷𝑗𝑗′ be the number of discordant pairs with 𝑦𝑗𝑘 > 𝑦𝑗′𝑘′ . The

Jonckheere–Terpstra statistic is

𝑇 =
𝐽−1
∑
𝑗=1

𝐽
∑

𝑗′=𝑗+1
(𝐶𝑗𝑗′ − 𝐷𝑗𝑗′)

The Jonckheere–Terpstra statistic is sometimes expressed as sums over 𝐶𝑗𝑗′ + 𝐸𝑗𝑗′/2, where 𝐸𝑗𝑗′ is

the number of tied pairs with 𝑦𝑗𝑘 = 𝑦𝑗′𝑘′ . Because 𝐶𝑗𝑗′ +𝐷𝑗𝑗′ +𝐸𝑗𝑗′ = 𝑛+𝑗𝑛+𝑗′ , the statistic 𝑇 is twice

the statistic based on𝐶𝑗𝑗′ +𝐸𝑗𝑗′/2 minus a constant. The advantage of the formulation using𝐶𝑗𝑗′ −𝐷𝑗𝑗′

is that under the null hypothesis of independence between groups and responses, its expectation is zero.

When 𝑇 is positive, the observed trend is a positive trend between the group ordering and the response

ordering, and when 𝑇 is negative, it is a negative trend.

The variance of 𝑇 can be computed exactly based on the permutation distribution of responses where

the table margins 𝑛𝑖+ and 𝑛+𝑗 are fixed and each permutation is considered equally likely under the null

hypothesis. The formula, however, is complicated when there are ties.

Let𝑀 be the number of distinct values in the responses. Let 𝑒𝑚 be the multiplicity of the 𝑚th distinct

response value. That is, the 𝑁 observations 𝑦𝑗𝑘 consist of 𝑒1 observations with value 𝑧1, 𝑒2 observations

with value 𝑧2, etc., with ∑𝑚 𝑒𝑚 = 𝑁. The variance of 𝑇 under the null permutation distribution is

exactly

Var(𝑇 ) = 1
18

[𝑁(𝑁 − 1)(2𝑁 + 5) −
𝐽

∑
𝑗=1

𝑛+𝑗(𝑛+𝑗 − 1)(2𝑛+𝑗 + 5)

−
𝑀

∑
𝑚=1

𝑒𝑚(𝑒𝑚 − 1)(2𝑒𝑚 + 5)]

+ 1
2𝑁(𝑁 − 1)

{
𝐽

∑
𝑗=1

𝑛+𝑗(𝑛+𝑗 − 1)} {
𝑀

∑
𝑚=1

𝑒𝑚(𝑒𝑚 − 1)}

+ 1
9𝑁(𝑁 − 1)(𝑁 − 2)

{
𝐽

∑
𝑗=1

𝑛+𝑗(𝑛+𝑗 − 1)(𝑛+𝑗 − 2)}

× {
𝑀

∑
𝑚=1

𝑒𝑚(𝑒𝑚 − 1)(𝑒𝑚 − 2)}

The approximate 𝑝-value is based on a normal approximation using the exact variance of 𝑇.
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Linear-by-linear test for trend
When linear is specified, the linear-by-linear trend test is calculated based on the statistic

𝑇 = 1
𝑁

𝐼
∑
𝑖=1

𝐽
∑
𝑗=1

𝑛𝑖𝑗(𝑔𝑗 − 𝑔)(𝑟𝑖 − 𝑟)

where 𝑔𝑗 is the group score for the 𝑗th group, 𝑔 = (∑𝑗 𝑛+𝑗𝑔𝑗)/𝑁 is the mean group score over all

observations, 𝑟𝑖 is the response score for the 𝑖th ordered response, and 𝑟 = (∑𝑖 𝑛𝑖+𝑟𝑖)/𝑁 is the mean

response score over all observations.

Under the null hypothesis of independence between groups and responses, the expectation of 𝑇 is

zero. The variance of 𝑇 is based on the permutation distribution of responses where the table margins

𝑛𝑖+ and 𝑛+𝑗 are fixed and each permutation is considered equally likely under the null hypothesis. The

variance of 𝑇 is exactly

Var(𝑇 ) = 1
𝑁2(𝑁 − 1)

{
𝐽

∑
𝑗=1

𝑛+𝑗(𝑔𝑗 − 𝑔)2} {
𝐼

∑
𝑖=1

𝑛𝑖+(𝑟𝑖 − 𝑟)2}

The approximate 𝑝-value is based on a normal approximation using the exact variance of 𝑇.
Note the symmetry between the group and response scores in these equations. In the linear-by-linear

test for trend, it is arbitrary as to what is a group with a group score and what is a response with a response

score. The two are interchangeable.

Cuzick’s test with rank scores
When cuzick is specified, the test for trend is based on a method in Cuzick (1985), which is described

in Altman (1991, 215–217).

Rank all 𝑁 responses, using average ranks for ties. Let 𝑅𝑗 be the sum of the ranks in the 𝑗th group.
The statistic for Cuzick’s test 𝑇 is

𝑇 = 1
𝑁

𝐽
∑
𝑗=1

(𝑔𝑗 − 𝑔)𝑅𝑗

where 𝑔𝑗 is the group score for the 𝑗th group and 𝑔 = (∑𝑗 𝑛+𝑗𝑔𝑗)/𝑁.

Under the null hypothesis of independence between groups and responses, the expectation of 𝑇 is

zero. When there are no ties, the variance of 𝑇 is

Var(𝑇 ) = 𝑁 + 1
12𝑁

𝐽
∑
𝑗=1

𝑛+𝑗(𝑔𝑗 − 𝑔)2

When there are ties, we again let 𝑒𝑚 be the multiplicity of the 𝑚th distinct response value, 𝑚 =
1, 2, . . . , 𝑀. Define

𝑎 = 1
𝑁(𝑁2 − 1)

𝑀
∑
𝑚=1

𝑒𝑚(𝑒2
𝑚 − 1)

The corrected variance of 𝑇 when there are ties is

Ṽar(𝑇 ) = (1 − 𝑎)Var(𝑇 )
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Exact p-values
Exact 𝑝-values are computed by permute. The variable permuted is that specified by group(), except

for carmitage when the response variable is 0/1; in this case, the response variable is permuted. For
details on the permutation computation, see [R] permute.
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ologit — Ordered logistic regression

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description
ologit fits ordered logit models of ordinal variable depvar on the independent variables indepvars.

The actual values taken on by the dependent variable are irrelevant, except that larger values are assumed

to correspond to “higher” outcomes.

Quick start
Ordinal logit model of y on x1 and categorical variables a and b

ologit y x1 i.a i.b

Same as above, and include interaction between a and b and report results as odds ratios
ologit y x1 a##b, or

With bootstrap standard errors

ologit y x1 i.a i.b, vce(bootstrap)

Analysis restricted to cases where catvar = 0 using svyset data with replicate weights
svy bootstrap, subpop(if catvar==0): ologit y x1 i.a i.b

Menu
Statistics > Ordinal outcomes > Ordered logistic regression

2104
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Syntax
ologit depvar [ indepvars ] [ if ] [ in ] [weight ] [ , options ]

options Description

Model

offset(varname) include varname in model with coefficient constrained to 1

constraints(constraints) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim, opg, robust, cluster clustvar, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)
or report odds ratios

nocnsreport do not display constraints

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

collinear keep collinear variables

coeflegend display legend instead of statistics

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.

bayes, bootstrap, by, fmm, fp, jackknife, mfp, mi estimate, nestreg, rolling, statsby, stepwise, and svy are
allowed; see [U] 11.1.10 Prefix commands. For more details, see [BAYES] bayes: ologit and [FMM] fmm: ologit.

vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix; see [MI] mi estimate.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
collinear and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

offset(varname), constraints(constraints); see [R] Estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), that al-
low for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods

(bootstrap, jackknife); see [R] vce option.
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� � �
Reporting �

level(#); see [R] Estimation options.

or reports the estimated coefficients transformed to odds ratios, that is, 𝑒𝑏 rather than 𝑏. Standard errors
and confidence intervals are similarly transformed. This option affects how results are displayed, not

how they are estimated. or may be specified at estimation or when replaying previously estimated
results.

nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. These options are

seldom used.

The following options are available with ologit but are not shown in the dialog box:

collinear, coeflegend; see [R] Estimation options.

Remarks and examples
Ordered logit models are used to estimate relationships between an ordinal dependent variable and

a set of independent variables. An ordinal variable is a variable that is categorical and ordered, for

instance, “poor”, “good”, and “excellent”, which might indicate a person’s current health status or the

repair record of a car. If there are only two outcomes, see [R] logistic, [R] logit, and [R] probit. This

entry is concerned only with more than two outcomes. If the outcomes cannot be ordered (for example,

residency in the north, east, south, or west), see [R]mlogit. This entry is concerned only with models in

which the outcomes can be ordered.

In ordered logit, an underlying score is estimated as a linear function of the independent variables and a

set of cutpoints. The probability of observing outcome 𝑖 corresponds to the probability that the estimated
linear function, plus random error, is within the range of the cutpoints estimated for the outcome:

Pr(outcome𝑗 = 𝑖) = Pr(𝜅𝑖−1 < 𝛽1𝑥1𝑗 + 𝛽2𝑥2𝑗 + · · · + 𝛽𝑘𝑥𝑘𝑗 + 𝑢𝑗 ≤ 𝜅𝑖)

𝑢𝑗 is assumed to be logistically distributed in ordered logit. In either case, we estimate the coefficients 𝛽1,

𝛽2, . . . , 𝛽𝑘 together with the cutpoints 𝜅1, 𝜅2, . . . , 𝜅𝑘−1, where 𝑘 is the number of possible outcomes. 𝜅0
is taken as−∞, and 𝜅𝑘 is taken as+∞. All of this is a direct generalization of the ordinary two-outcome

logit model.
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Example 1
We wish to analyze the 1977 repair records of 66 foreign and domestic cars. The data are a variation

of the automobile dataset described in [U] 1.2.2 Example datasets. The 1977 repair records, like those

in 1978, take on values “Poor”, “Fair”, “Average”, “Good”, and “Excellent”. Here is a cross-tabulation

of the data:

. use https://www.stata-press.com/data/r18/fullauto
(Automobile models)
. tabulate rep77 foreign, chi2

Repair
record Foreign
1977 Domestic Foreign Total

Poor 2 1 3
Fair 10 1 11

Average 20 7 27
Good 13 7 20

Excellent 0 5 5

Total 45 21 66
Pearson chi2(4) = 13.8619 Pr = 0.008

Although it appears that foreign takes on the values Domestic and Foreign, it is actually a numeric
variable taking on the values 0 and 1. Similarly, rep77 takes on the values 1, 2, 3, 4, and 5, corresponding
to Poor, Fair, and so on. The more meaningful words appear because we have attached value labels to
the data; see [U] 12.6.3 Value labels.

Because the 𝜒2 value is significant, we could claim that there is a relationship between foreign
and rep77. Literally, however, we can only claim that the distributions are different; the 𝜒2 test is not

directional. Oneway tomodel these data is tomodel the categorization that took place when the data were

created. Cars have a true frequency of repair, which we will assume is given by 𝑆𝑗 = 𝛽 foreign𝑗 + 𝑢𝑗,

and a car is categorized as “poor” if 𝑆𝑗 ≤ 𝜅0, as “fair” if 𝜅0 < 𝑆𝑗 ≤ 𝜅1, and so on:

. ologit rep77 foreign
Iteration 0: Log likelihood = -89.895098
Iteration 1: Log likelihood = -85.951765
Iteration 2: Log likelihood = -85.908227
Iteration 3: Log likelihood = -85.908161
Iteration 4: Log likelihood = -85.908161
Ordered logistic regression Number of obs = 66

LR chi2(1) = 7.97
Prob > chi2 = 0.0047

Log likelihood = -85.908161 Pseudo R2 = 0.0444

rep77 Coefficient Std. err. z P>|z| [95% conf. interval]

foreign 1.455878 .5308951 2.74 0.006 .4153425 2.496413

/cut1 -2.765562 .5988208 -3.939229 -1.591895
/cut2 -.9963603 .3217706 -1.627019 -.3657016
/cut3 .9426153 .3136398 .3278925 1.557338
/cut4 3.123351 .5423257 2.060412 4.18629

Our model is 𝑆𝑗 = 1.46 foreign𝑗 + 𝑢𝑗; the expected value for foreign cars is 1.46 and, for domestic

cars, 0; foreign cars have better repair records.
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The estimated cutpoints tell us how to interpret the score. For a foreign car, the probability of a poor

record is the probability that 1.46 + 𝑢𝑗 ≤ −2.77, or equivalently, 𝑢𝑗 ≤ −4.23. Making this calculation

requires familiarity with the logistic distribution: the probability is 1/(1+ 𝑒4.23) = 0.014. On the other

hand, for domestic cars, the probability of a poor record is the probability 𝑢𝑗 ≤ −2.77, which is 0.059.

This, it seems to us, is a far more reasonable prediction than we would have made based on the table

alone. The table showed that 2 of 45 domestic cars had poor records, whereas 1 of 21 foreign cars

had poor records—corresponding to probabilities 2/45 = 0.044 and 1/21 = 0.048. The predictions

from our model imposed a smoothness assumption—foreign cars should not, overall, have better repair

records without the difference revealing itself in each category. In our data, the fractions of foreign and

domestic cars in the poor category are virtually identical only because of the randomness associated with

small samples.

Thus if wewere asked to predict the true fractions of foreign and domestic cars that would be classified

in the various categories, we would choose the numbers implied by the ordered logit model:

tabulate logit
Domestic Foreign Domestic Foreign

Poor 0.044 0.048 0.059 0.014
Fair 0.222 0.048 0.210 0.065
Average 0.444 0.333 0.450 0.295
Good 0.289 0.333 0.238 0.467
Excellent 0.000 0.238 0.043 0.159

See [R] ologit postestimation for a more complete explanation of how to generate predictions from

an ordered logit model.

Technical note
Here ordered logit provides an alternative to ordinary two-outcome logistic models with an arbitrary

dichotomization, which might otherwise have been tempting. We could, for instance, have summarized

these data by converting the five-outcome rep77 variable to a two-outcome variable, combining cars in
the average, fair, and poor categories to make one outcome and combining cars in the good and excellent

categories to make the second.

Another even less appealing alternative would have been to use ordinary regression, arbitrarily label-

ing “excellent” as 5, “good” as 4, and so on. The problem is that with different but equally valid labelings

(say, 10 for “excellent”), we would obtain different estimates. We would have no way of choosing one

metric over another. That assertion is not, however, true of ologit. The actual values used to label the
categories make no difference other than through the order they imply.

In fact, our labeling was 5 for “excellent”, 4 for “good”, and so on. The words “excellent” and “good”

appear in our output because we attached a value label to the variables; see [U] 12.6.3 Value labels. If we

were to now go back and type replace rep77=10 if rep77==5, changing all the 5s to 10s, we would
still obtain the same results when we refit our model.
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Example 2
In the example above, we used ordered logit as a way to model a table. We are not, however, limited

to including only one explanatory variable or to including only categorical variables. We can explore the

relationship of rep77 with any of the variables in our data. We might, for instance, model rep77 not
only in terms of the origin of manufacture, but also including length (a proxy for size) and mpg:

. ologit rep77 foreign length mpg
Iteration 0: Log likelihood = -89.895098
Iteration 1: Log likelihood = -78.775147
Iteration 2: Log likelihood = -78.254294
Iteration 3: Log likelihood = -78.250719
Iteration 4: Log likelihood = -78.250719
Ordered logistic regression Number of obs = 66

LR chi2(3) = 23.29
Prob > chi2 = 0.0000

Log likelihood = -78.250719 Pseudo R2 = 0.1295

rep77 Coefficient Std. err. z P>|z| [95% conf. interval]

foreign 2.896807 .7906411 3.66 0.000 1.347179 4.446435
length .0828275 .02272 3.65 0.000 .0382972 .1273579

mpg .2307677 .0704548 3.28 0.001 .0926788 .3688566

/cut1 17.92748 5.551191 7.047344 28.80761
/cut2 19.86506 5.59648 8.896161 30.83396
/cut3 22.10331 5.708936 10.914 33.29262
/cut4 24.69213 5.890754 13.14647 36.2378

foreign still plays a role—and an even larger role than previously. We find that larger cars tend to have

better repair records, as do cars with better mileage ratings.

Stored results
ologit stores the following in e():

Scalars

e(N) number of observations

e(N cd) number of completely determined observations

e(k cat) number of categories

e(k) number of parameters

e(k aux) number of auxiliary parameters

e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test

e(k dv) number of dependent variables

e(df m) model degrees of freedom

e(r2 p) pseudo-𝑅2

e(ll) log likelihood

e(ll 0) log likelihood, constant-only model

e(N clust) number of clusters

e(chi2) 𝜒2

e(p) 𝑝-value for model test
e(rank) rank of e(V)
e(ic) number of iterations

e(rc) return code

e(converged) 1 if converged, 0 otherwise
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Macros

e(cmd) ologit
e(cmdline) command as typed

e(depvar) name of dependent variable

e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(clustvar) name of cluster variable

e(offset) linear offset variable

e(chi2type) Wald or LR; type of model 𝜒2 test

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(opt) type of optimization

e(which) max or min; whether optimizer is to perform maximization or minimization

e(ml method) type of ml method
e(user) name of likelihood-evaluator program

e(technique) maximization technique

e(properties) b V
e(predict) program used to implement predict
e(marginsdefault) default predict() specification for margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(ilog) iteration log (up to 20 iterations)

e(gradient) gradient vector

e(cat) category values

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():
Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas
See Long and Freese (2014, chap. 7) for a discussion ofmodels for ordinal outcomes and examples that

use Stata. Cameron and Trivedi (2005, chap. 15) describe multinomial models, including the model fit by

ologit. When you have a qualitative dependent variable, several estimation procedures are available.

A popular choice is multinomial logistic regression (see [R]mlogit), but if you use this procedure when

the response variable is ordinal, you are discarding information because multinomial logit ignores the

ordered aspect of the outcome. Ordered logit and probit models provide a means to exploit the ordering

information.

There is more than one “ordered logit” model. The model fit by ologit, which we will call the

ordered logit model, is also known as the proportional odds model. Another popular choice, not fit by

ologit, is known as the stereotype model; see [R] slogit. All ordered logit models have been derived by
starting with a binary logit/probit model and generalizing it to allow for more than two outcomes.
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The proportional-odds ordered logit model is so called because, if we consider the odds odds(𝑘) =
𝑃(𝑌 ≤ 𝑘)/𝑃(𝑌 > 𝑘), then odds(𝑘1) and odds(𝑘2) have the same ratio for all independent variable
combinations. The model is based on the principle that the only effect of combining adjoining categories

in ordered categorical regression problems should be a loss of efficiency in estimating the regression

parameters (McCullagh 1980). This model was also described by McKelvey and Zavoina (1975) and,

previously, by Aitchison and Silvey (1957) in a different algebraic form. Brant (1990) offers a set of

diagnostics for the model.

Peterson and Harrell (1990) suggest a model that allows nonproportional odds for a subset of the

explanatory variables. ologit does not allow this, but a model similar to this was implemented by Fu

(1998).

The stereotype model rejects the principle on which the ordered logit model is based. Anderson

(1984) argues that there are two distinct types of ordered categorical variables: “grouped continuous”,

such as income, where the “type a” model applies; and “assessed”, such as extent of pain relief, where the

stereotype model applies. Greenland (1985) independently developed the same model. The stereotype

model starts with a multinomial logistic regression model and imposes constraints on this model.

Goodness of fit for ologit can be evaluated by comparing the likelihood value with that obtained
by fitting the model with mlogit. Let ln𝐿1 be the log-likelihood value reported by ologit, and let
ln𝐿0 be the log-likelihood value reported by mlogit. If there are 𝑝 independent variables (excluding the
constant) and 𝑘 categories, mlogit will estimate 𝑝(𝑘 − 1) additional parameters. We can then perform

a “likelihood-ratio test”, that is, calculate −2( ln𝐿1 − ln𝐿0), and compare it with 𝜒2{𝑝(𝑘 − 2)}. This
test is suggestive only because the ordered logit model is not nested within the multinomial logit model.

A large value of −2( ln𝐿1 − ln𝐿0) should, however, be taken as evidence of poorness of fit. Marginally

large values, on the other hand, should not be taken too seriously.

The coefficients and cutpoints are estimated usingmaximum likelihood as described in [R]Maximize.

In our parameterization, no constant appears, because the effect is absorbed into the cutpoints.

ologit and oprobit begin by tabulating the dependent variable. Category 𝑖 = 1 is defined as the

minimum value of the variable, 𝑖 = 2 as the next ordered value, and so on, for the empirically determined

𝑘 categories.
The probability of a given observation for ordered logit is

𝑝𝑖𝑗 = Pr(𝑦𝑗 = 𝑖) = Pr(𝜅𝑖−1 < x𝑗β + 𝑢 ≤ 𝜅𝑖)

= 1
1 + exp(−𝜅𝑖 + x𝑗β)

− 1
1 + exp(−𝜅𝑖−1 + x𝑗β)

𝜅0 is defined as −∞ and 𝜅𝑘 as +∞.

For ordered probit, the probability of a given observation is

𝑝𝑖𝑗 = Pr(𝑦𝑗 = 𝑖) = Pr(𝜅𝑖−1 < x𝑗β + 𝑢 ≤ 𝜅𝑖)

= Φ(𝜅𝑖 − x𝑗β) − Φ(𝜅𝑖−1 − x𝑗β)

where Φ(⋅) is the standard normal cumulative distribution function.
The log likelihood is

ln𝐿 =
𝑁

∑
𝑗=1

𝑤𝑗

𝑘
∑
𝑖=1

𝐼𝑖(𝑦𝑗) ln𝑝𝑖𝑗
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where 𝑤𝑗 is an optional weight and

𝐼𝑖(𝑦𝑗) = {1, if 𝑦𝑗 = 𝑖
0, otherwise

ologit and oprobit support the Huber/White/sandwich estimator of the variance and its clustered

version using vce(robust) and vce(cluster clustvar), respectively. See [P] robust, particularly

Maximum likelihood estimators and Methods and formulas.

These commands also support estimation with survey data. For details on VCEs with survey data, see

[SVY] Variance estimation.
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Postestimation commands predict margins Remarks and examples
Reference Also see

Postestimation commands
The following postestimation commands are available after ologit:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters

estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian infor-
mation criteria (AIC, CAIC, AICc, and BIC, respectively)

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estat (svy) postestimation statistics for survey data

estimates cataloging estimation results

etable table of estimation results
∗ forecast dynamic forecasts and simulations
∗ hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

linktest link test for model specification
∗ lrtest likelihood-ratio test

margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

predict probabilities, linear predictions and their SEs, etc.

predictnl point estimates, standard errors, testing, and inference for generalized predictions

pwcompare pairwise comparisons of parameters

suest seemingly unrelated estimation

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

∗forecast, hausman, and lrtest are not appropriate with svy estimation results. forecast is also not appropriate with mi
estimation results.

2114
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predict

Description for predict
predict creates a new variable containing predictions such as probabilities, linear predictions, and

standard errors.

Menu for predict
Statistics > Postestimation

Syntax for predict
predict [ type ] { stub* | newvar | newvarlist } [ if ] [ in ] [ , statistic

outcome(outcome) nooffset ]

predict [ type ] stub* [ if ] [ in ], scores

statistic Description

Main

pr predicted probabilities; the default

xb linear prediction

stdp standard error of the linear prediction

You specify one or 𝑘 new variables with pr, where 𝑘 is the number of outcomes. If you specify one new variable and you do
not specify outcome(), then outcome(#1) is assumed.

You specify one new variable with xb and stdp.
These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for the estimation

sample.

Options for predict

� � �
Main �

pr, the default, computes the predicted probabilities for all outcomes or for a specific outcome. To com-
pute probabilities for all outcomes, you specify 𝑘 new variables, where 𝑘 is the number of categories
of the dependent variable. Alternatively, you can specify stub*; in which case, pr will store predicted
probabilities in variables stub1, stub2, . . . , stub𝑘. To compute the probability for a specific outcome,
you specify one new variable and, optionally, the outcome value in option outcome(); if you omit
outcome(), the first outcome value, outcome(#1), is assumed.

Say that you fit a model by typing estimation cmd y x1 x2, and y takes on four values. Then,

you could type predict p1 p2 p3 p4 to obtain all four predicted probabilities; alternatively, you

could type predict p* to generate the four predicted probabilities. To compute specific probabil-

ities one at a time, you can type predict p1, outcome(#1) (or simply predict p1), predict p2,
outcome(#2), and so on. See option outcome() for other ways to refer to outcome values.

xb calculates the linear prediction. You specify one new variable, for example, predict linear, xb.
The linear prediction is defined, ignoring the contribution of the estimated cutpoints.
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stdp calculates the standard error of the linear prediction. You specify one new variable, for example,

predict se, stdp.

outcome(outcome) specifies for which outcome the predicted probabilities are to be calculated.

outcome() should contain either one value of the dependent variable or one of #1, #2, . . . , with #1
meaning the first category of the dependent variable, #2meaning the second category, etc. outcome()
is available only with the default pr option.

nooffset is relevant only if you specified offset(varname) for ologit. It modifies the calculations
made by predict so that they ignore the offset variable; the linear prediction is treated as x𝑗b rather

than as x𝑗b + offset𝑗. nooffset is not allowed with scores.

scores calculates equation-level score variables. The number of score variables created will equal the
number of outcomes in the model. If the number of outcomes in the model was 𝑘, then
the first new variable will contain 𝜕ln𝐿/𝜕(x𝑗b);
the second new variable will contain 𝜕ln𝐿/𝜕𝜅1;

the third new variable will contain 𝜕ln𝐿/𝜕𝜅2;

. . .

and the 𝑘th new variable will contain 𝜕ln𝐿/𝜕𝜅𝑘−1, where 𝜅𝑖 refers to the 𝑖th cutpoint.

margins

Description for margins
margins estimates margins of response for probabilities and linear predictions.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist ] [ , options ]
margins [marginlist ] , predict(statistic ...) [ predict(statistic ...) ... ] [ options ]

statistic Description

default probabilities for each outcome

pr probability for a specified outcome

xb linear prediction

stdp not allowed with margins

pr defaults to the first outcome.

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.
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Remarks and examples
See [U] 20 Estimation and postestimation commands for instructions on obtaining the vari-

ance–covariance matrix of the estimators, predicted values, and hypothesis tests. Also see [R] lrtest

for performing likelihood-ratio tests.

Example 1
In example 2 of [R] ologit, we fit the model ologit rep77 foreign length mpg. The predict

command can be used to obtain the predicted probabilities.

We type predict followed by the names of the new variables to hold the predicted probabilities,

ordering the names from low to high. In our data, the lowest outcome is “poor”, and the highest is

“excellent”. We have five categories, so we must type five names following predict; the choice of
names is up to us:

. use https://www.stata-press.com/data/r18/fullauto
(Automobile models)
. ologit rep77 foreign length mpg
(output omitted )

. predict poor fair avg good exc
(option pr assumed; predicted probabilities)
. list exc good make model rep78 if rep77>=., sep(4) divider

exc good make model rep78

3. .0033341 .0393056 AMC Spirit .
10. .0098392 .1070041 Buick Opel .
32. .0023406 .0279497 Ford Fiesta Good
44. .015697 .1594413 Merc. Monarch Average

53. .065272 .4165188 Peugeot 604 .
56. .005187 .059727 Plym. Horizon Average
57. .0261461 .2371826 Plym. Sapporo .
63. .0294961 .2585825 Pont. Phoenix .

The eight cars listed were introduced after 1977, so they do not have 1977 repair records in our data. We

predicted what their 1977 repair records might have been using the fitted model. We see that, based on

its characteristics, the Peugeot 604 had about a 41.65 + 6.53 ≈ 48.2% chance of a good or excellent

repair record. The Ford Fiesta, which had only a 3% chance of a good or excellent repair record, in fact,

had a good record when it was introduced in the following year.
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Technical note
For ordered logit, predict, xb produces 𝑆𝑗 = 𝑥1𝑗𝛽1 + 𝑥2𝑗𝛽2 + · · · + 𝑥𝑘𝑗𝛽𝑘. The ordered-logit

predictions are then the probability that 𝑆𝑗 + 𝑢𝑗 lies between a pair of cutpoints, 𝜅𝑖−1 and 𝜅𝑖. Some

handy formulas are

Pr(𝑆𝑗 + 𝑢𝑗 < 𝜅) = 1/(1 + 𝑒𝑆𝑗−𝜅)
Pr(𝑆𝑗 + 𝑢𝑗 > 𝜅) = 1 − 1/(1 + 𝑒𝑆𝑗−𝜅)

Pr(𝜅1 < 𝑆𝑗 + 𝑢𝑗 < 𝜅2) = 1/(1 + 𝑒𝑆𝑗−𝜅2) − 1/(1 + 𝑒𝑆𝑗−𝜅1)

Rather than using predict directly, we could calculate the predicted probabilities by hand. If we wished
to obtain the predicted probability that the repair record is excellent and the probability that it is good,

we look back at ologit’s output to obtain the cutpoints. We find that “good” corresponds to the interval

/cut3 < 𝑆𝑗 + 𝑢 < /cut4 and “excellent” to the interval 𝑆𝑗 + 𝑢 > /cut4:

. predict score, xb

. generate probgood = 1/(1+exp(score-_b[/cut4])) - 1/(1+exp(score-_b[/cut3]))

. generate probexc = 1 - 1/(1+exp(score-_b[/cut4]))

The results of our calculation will be the same as those produced in the previous example. We refer to

the estimated cutpoints just as we would any coefficient, so b[/cut3] refers to the value of the /cut3
coefficient; see [U] 13.5 Accessing coefficients and standard errors.

Reference
Fagerland, M.W., and D.W. Hosmer, Jr. 2017. How to test for goodness of fit in ordinal logistic regression models. Stata

Journal 17: 668–686.

Also see
[R] ologit — Ordered logistic regression

[U] 20 Estimation and postestimation commands

https://www.stata-journal.com/article.html?article=st0491
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Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description
The oneway command reports one-way analysis-of-variance (ANOVA) models and performs multiple-

comparison tests.

If you wish to fit more complicated ANOVA layouts or wish to fit analysis-of-covariance (ANCOVA)

models, see [R] anova.

See [D] encode for examples of fitting ANOVAmodels on string variables.

See [R] loneway for an alternative oneway command with slightly different features.

Quick start
One-way ANOVAmodel of y for factor a

oneway y a

Report the mean and std. dev. of y and number of observations for each level of a
oneway y a, tabulate

Report all pairwise comparisons of the means of y across levels of a with 𝑝-values adjusted using Bon-
ferroni’s procedure

oneway y a, bonferroni

Same as above, but adjust 𝑝-values for multiple comparisons using Scheffé’s method
oneway y a, scheffe

Menu
Statistics > Linear models and related > ANOVA/MANOVA > One-way ANOVA

2119



oneway — One-way analysis of variance 2120

Syntax
oneway response var factor var [ if ] [ in ] [weight ] [ , options ]

options Description

Main

bonferroni Bonferroni multiple-comparison test

scheffe Scheffé multiple-comparison test

sidak Šidák multiple-comparison test

tabulate produce summary table

[no]means include or suppress means; default is means
[no]standard include or suppress standard deviations; default is standard
[no]freq include or suppress frequencies; default is freq
[no]obs include or suppress number of obs; default is obs if data are weighted
noanova suppress the ANOVA table

nolabel show numeric codes, not labels

wrap do not break wide tables

missing treat missing values as categories

by and collect are allowed; see [U] 11.1.10 Prefix commands.

aweights and fweights are allowed; see [U] 11.1.6 weight.

Options

� � �
Main �

bonferroni reports the results of a Bonferroni multiple-comparison test.

scheffe reports the results of a Scheffé multiple-comparison test.

sidak reports the results of a Šidák multiple-comparison test.

tabulate produces a table of summary statistics of the response var by levels of the factor var. The
table includes the mean, standard deviation, frequency, and, if the data are weighted, the number of

observations. Individual elements of the table may be included or suppressed by using the [no]means,
[no]standard, [no]freq, and [no]obs options. For example, typing
oneway response factor, tabulate means standard

produces a summary table that contains only the means and standard deviations. You could achieve

the same result by typing

oneway response factor, tabulate nofreq

[no]means includes or suppresses only the means from the table produced by the tabulate option. See
tabulate above.

[no]standard includes or suppresses only the standard deviations from the table produced by the

tabulate option. See tabulate above.

[no]freq includes or suppresses only the frequencies from the table produced by the tabulate option.
See tabulate above.
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[no]obs includes or suppresses only the reported number of observations from the table produced by

the tabulate option. If the data are not weighted, only the frequency is reported. If the data are

weighted, the frequency refers to the sum of the weights. See tabulate above.

noanova suppresses the display of the ANOVA table.

nolabel causes the numeric codes to be displayed rather than the value labels in theANOVA andmultiple-
comparison test tables.

wrap requests that Stata not break up wide tables to make them more readable.

missing requests that missing values of factor var be treated as a category rather than as observations
to be omitted from the analysis.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Obtaining observed means
Multiple-comparison tests
Weighted data
Video example

Introduction
The oneway command reports one-way ANOVA models. To perform a one-way layout of a variable

called endog on exog, type oneway endog exog.

Example 1
We run an experiment varying the amount of fertilizer used in growing apple trees. We test four

concentrations, using each concentration in three groves of 12 trees each. Later in the year, we measure

the average weight of the fruit.

If all had gone well, we would have had 3 observations on the average weight for each of the four con-

centrations. Instead, two of the groves were mistakenly leveled by a confused man on a large bulldozer.

We are left with the following dataset:

. use https://www.stata-press.com/data/r18/apple
(Apple trees)
. describe
Contains data from https://www.stata-press.com/data/r18/apple.dta
Observations: 10 Apple trees

Variables: 2 16 Jan 2022 11:23

Variable Storage Display Value
name type format label Variable label

treatment int %8.0g Fertilizer
weight double %10.0g Average weight in grams

Sorted by:
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. list, abbreviate(10)

treatment weight

1. 1 117.5
2. 1 113.8
3. 1 104.4
4. 2 48.9
5. 2 50.4

6. 2 58.9
7. 3 70.4
8. 3 86.9
9. 4 87.7

10. 4 67.3

To obtain the one-way ANOVA results, we type

. oneway weight treatment
Analysis of variance

Source SS df MS F Prob > F

Between groups 5295.54433 3 1765.18144 21.46 0.0013
Within groups 493.591667 6 82.2652778

Total 5789.136 9 643.237333
Bartlett’s equal-variances test: chi2(3) = 1.3900 Prob>chi2 = 0.708

We find significant (at better than the 1% level) differences among the four concentrations.

Technical note
Rather than using the oneway command, we could have performed this analysis by using anova.

Example 1 in [R] anova repeats this same analysis. You may wish to compare the output.

You will find the oneway command quicker than the anova command, and, as you will learn, oneway
allows you to perform multiple-comparison tests. On the other hand, anova will let you generate pre-
dictions, examine the covariance matrix of the estimators, and perform more general hypothesis tests.

Technical note
Although the output is a usual ANOVA table, let’s run through it anyway. The between-group sum of

squares for the model is 5295.5 with 3 degrees of freedom, resulting in a mean square of 5295.5/3 ≈
1765.2. The corresponding 𝐹 statistic is 21.46 and has a significance level of 0.0013. Thus, the model

appears to be significant at the 0.13% level.

The second line summarizes the within-group (residual) variation. The within-group sum of squares

is 493.59 with 6 degrees of freedom, resulting in a mean squared error of 82.27.

The between- and residual-group variations sum to the total sum of squares (TSS), which is reported

as 5789.1 in the last line of the table. This is the TSS of weight after removal of the mean. Similarly, the
between plus residual degrees of freedom sum to the total degrees of freedom, 9. Remember that there

are 10 observations. Subtracting 1 for the mean, we are left with 9 total degrees of freedom.
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At the bottom of the table, Bartlett’s test for equal variances is reported. The value of the statistic is

1.39. The corresponding significance level (𝜒2 with 3 degrees of freedom) is 0.708, so we cannot reject

the assumption that the variances are homogeneous.

Obtaining observed means

Example 2
We typed oneway weight treatment to obtain an ANOVA table of weight of fruit by fertilizer con-

centration. Although we obtained the table, we obtained no information on which fertilizer seems to

work the best. If we add the tabulate option, we obtain that additional information:

. oneway weight treatment, tabulate
Summary of Average weight in grams

Fertilizer Mean Std. dev. Freq.

1 111.9 6.7535176 3
2 52.733333 5.3928966 3
3 78.65 11.667262 2
4 77.5 14.424978 2

Total 80.62 25.362124 10
Analysis of variance

Source SS df MS F Prob > F

Between groups 5295.54433 3 1765.18144 21.46 0.0013
Within groups 493.591667 6 82.2652778

Total 5789.136 9 643.237333
Bartlett’s equal-variances test: chi2(3) = 1.3900 Prob>chi2 = 0.708

We find that the average weight was largest when we used fertilizer concentration 1.
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Multiple-comparison tests

Example 3: Bonferroni multiple-comparison test
oneway can also perform multiple-comparison tests using either Bonferroni, Scheffé, or Šidák nor-

malizations. For instance, to obtain the Bonferroni multiple-comparison test, we specify the bonferroni
option:

. oneway weight treatment, bonferroni
Analysis of variance

Source SS df MS F Prob > F

Between groups 5295.54433 3 1765.18144 21.46 0.0013
Within groups 493.591667 6 82.2652778

Total 5789.136 9 643.237333
Bartlett’s equal-variances test: chi2(3) = 1.3900 Prob>chi2 = 0.708

Comparison of Average weight in grams by Fertilizer
(Bonferroni)

Row Mean-
Col Mean 1 2 3

2 -59.1667
0.001

3 -33.25 25.9167
0.042 0.122

4 -34.4 24.7667 -1.15
0.036 0.146 1.000

The results of the Bonferroni test are presented as a matrix. The first entry, −59.17, represents the

difference between fertilizer concentrations 2 and 1 (labeled “Row Mean - Col Mean” in the upper stub of
the table). Remember that in the previous example we requested the tabulate option. Looking back, we
find that the means of concentrations 1 and 2 are 111.90 and 52.73, respectively. Thus, 52.73−111.90 =
−59.17.

Underneath that number is reported “0.001”. This is the Bonferroni-adjusted significance of the

difference. The difference is significant at the 0.1% level. Looking down the column, we see that con-

centration 3 is also worse than concentration 1 (4.2% level), as is concentration 4 (3.6% level).

On the basis of this evidence, we would use concentration 1 if we grew apple trees.
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Example 4: Scheffé multiple-comparison test
We can just as easily obtain the Scheffé-adjusted significance levels. Rather than specifying the

bonferroni option, we specify the scheffe option.

We will also add the noanova option to prevent Stata from redisplaying the ANOVA table:

. oneway weight treatment, noanova scheffe
Comparison of Average weight in grams by Fertilizer

(Scheffe)
Row Mean-
Col Mean 1 2 3

2 -59.1667
0.001

3 -33.25 25.9167
0.039 0.101

4 -34.4 24.7667 -1.15
0.034 0.118 0.999

The differences are the same as those we obtained in the Bonferroni output, but the significance levels are

not. According to the Bonferroni-adjusted numbers, the significance of the difference between fertilizer

concentrations 1 and 3 is 4.2%. The Scheffé-adjusted significance level is 3.9%.

We will leave it to you to decide which results are more accurate.

Example 5: Šidák multiple-comparison test
Let’s conclude this example by obtaining the Šidák-adjusted multiple-comparison tests. We do this

to illustrate Stata’s capabilities to calculate these results, because searching across adjustment methods

until you find the results you want is not a valid technique for obtaining significance levels.

. oneway weight treatment, noanova sidak
Comparison of Average weight in grams by Fertilizer

(Sidak)
Row Mean-
Col Mean 1 2 3

2 -59.1667
0.001

3 -33.25 25.9167
0.041 0.116

4 -34.4 24.7667 -1.15
0.035 0.137 1.000

We find results that are similar to the Bonferroni-adjusted numbers.
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� �
Henry Scheffé (1907–1977) was born in New York. He studied mathematics at the University of

Wisconsin, gaining a doctorate with a dissertation on differential equations. He taught mathematics

at Wisconsin, Oregon State University, and Reed College, but his interests changed to statistics and

he joined Wilks at Princeton. After periods at Syracuse, UCLA, and Columbia, Scheffé settled in

Berkeley from 1953. His research increasingly focused on linear models and particularly ANOVA,

on which he produced a celebrated monograph. His death was the result of a bicycle accident.� �
Weighted data

Example 6
oneway can work with both weighted and unweighted data. Let’s assume that we wish to perform

a one-way layout of the deathrate on the four census regions of the United States using state data. Our

data contain three variables, drate (the deathrate), region (the region), and pop (the population of the
state).

To fit the model, we type oneway drate region [weight=pop], although we typically abbreviate
weight as w. We will also add the tabulate option to demonstrate how the table of summary statistics

differs for weighted data:

. use https://www.stata-press.com/data/r18/census8
(1980 Census data by state)
. oneway drate region [w=pop], tabulate
(analytic weights assumed)

Census Summary of Deathrate
region Mean Std. dev. Freq. Obs

NE 97.15 5.82 49135283 9
N Cntrl 88.10 5.58 58865670 12
South 87.05 10.40 74734029 16
West 75.65 8.23 43172490 13

Total 87.34 10.43 225907472 50
Analysis of variance

Source SS df MS F Prob > F

Between groups 2360.92281 3 786.974272 12.17 0.0000
Within groups 2974.09635 46 64.6542685

Total 5335.01916 49 108.877942
Bartlett’s equal-variances test: chi2(3) = 5.4971 Prob>chi2 = 0.139

When the data are weighted, the summary table has four columns rather than three. The column labeled

“Freq.” reports the sum of the weights. The overall frequency tells us that there are approximately 226

million people in the United States, or at least there were in 1980.

The ANOVA table is appropriately weighted. Also see [U] 11.1.6 weight.

Video example
One-way ANOVA in Stata

https://www.youtube.com/watch?v=XEFGGkFRdD4


oneway — One-way analysis of variance 2127

Stored results
oneway stores the following in r():

Scalars

r(N) number of observations r(df m) between-group degrees of freedom

r(F) 𝐹 statistic r(rss) within-group sum of squares

r(df r) within-group degrees of freedom r(chi2bart) Bartlett’s 𝜒2

r(mss) between-group sum of squares r(df bart) Bartlett’s degrees of freedom

Methods and formulas
Methods and formulas are presented under the following headings:

One-way analysis of variance
Bartlett’s test
Multiple-comparison tests

One-way analysis of variance
The model of one-way ANOVA is

𝑦𝑖𝑗 = 𝜇 + 𝛼𝑖 + 𝜖𝑖𝑗

for levels 𝑖 = 1, . . . , 𝑘 and observations 𝑗 = 1, . . . , 𝑛𝑖. Define 𝑦𝑖 as the (weighted) mean of 𝑦𝑖𝑗 over 𝑗
and 𝑦 as the overall (weighted) mean of 𝑦𝑖𝑗. Define 𝑤𝑖𝑗 as the weight associated with 𝑦𝑖𝑗, which is 1 if

the data are unweighted. 𝑤𝑖𝑗 is normalized to sum to 𝑛 = ∑𝑖 𝑛𝑖 if aweights are used and is otherwise
not normalized. 𝑤𝑖 refers to ∑𝑗 𝑤𝑖𝑗, and 𝑤 refers to ∑𝑖 𝑤𝑖.

The between-group sum of squares is then

𝑆1 = ∑
𝑖

𝑤𝑖(𝑦𝑖 − 𝑦)2

The TSS is

𝑆 = ∑
𝑖

∑
𝑗

𝑤𝑖𝑗(𝑦𝑖𝑗 − 𝑦)2

The within-group sum of squares is given by 𝑆𝑒 = 𝑆 − 𝑆1.

The between-group mean square is 𝑠2
1 = 𝑆1/(𝑘 − 1), and the within-group mean square is 𝑠2

𝑒 =
𝑆𝑒/(𝑤 − 𝑘). The test statistic is 𝐹 = 𝑠2

1/𝑠2
𝑒. See, for instance, Snedecor and Cochran (1989).
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Bartlett’s test
Bartlett’s test assumes that you have𝑚 independent, normal, random samples and tests the hypothesis

𝜎2
1 = 𝜎2

2 = · · · = 𝜎2
𝑚. The test statistic, 𝑀, is defined as

𝑀 = (𝑇 − 𝑚) ln�̂�2 − ∑(𝑇𝑖 − 1) ln�̂�2
𝑖

1 + 1
3(𝑚−1) {(∑ 1

𝑇𝑖−1 ) − 1
𝑇 −𝑚 }

where there are 𝑇 overall observations, 𝑇𝑖 observations in the 𝑖th group, and

(𝑇𝑖 − 1)�̂�2
𝑖 =

𝑇𝑖

∑
𝑗=1

(𝑦𝑖𝑗 − 𝑦𝑖)
2

(𝑇 − 𝑚)�̂�2 =
𝑚

∑
𝑖=1

(𝑇𝑖 − 1)�̂�2
𝑖

An approximate test of the homogeneity of variance is based on the statistic 𝑀 with critical values

obtained from the 𝜒2 distribution of 𝑚 − 1 degrees of freedom. See Bartlett (1937) or Draper and

Smith (1998, 56–57).

Multiple-comparison tests
Let’s begin by reviewing the logic behind these adjustments. The “standard” 𝑡 statistic for the com-

parison of two means is

𝑡 =
𝑦𝑖 − 𝑦𝑗

𝑠√ 1
𝑛𝑖

+ 1
𝑛𝑗

where 𝑠 is the overall standard deviation, 𝑦𝑖 is the measured average of 𝑦 in group 𝑖, and 𝑛𝑖 is the

number of observations in the group. We perform hypothesis tests by calculating this 𝑡 statistic. We

simultaneously choose a critical level, 𝛼, and look up the 𝑡 statistic corresponding to that level in a table.
We reject the hypothesis if our calculated 𝑡 exceeds the value we looked up. Alternatively, because we
have a computer at our disposal, we calculate the significance level 𝑒 corresponding to our calculated
𝑡 statistic, and if 𝑒 < 𝛼, we reject the hypothesis.

This logic works well whenwe are performing one test. Now consider what happens whenwe perform

several separate tests, say, 𝑛 of them. Let’s assume, just for discussion, that we set 𝛼 equal to 0.05 and

that we will perform six tests. For each test, we have a 0.05 probability of falsely rejecting the equality-

of-means hypothesis. Overall, then, our chances of falsely rejecting at least one of the hypotheses is

1 − (1 − 0.05)6 ≈ 0.26 if the tests are independent.

The idea behind multiple-comparison tests is to control for the fact that we will perform multiple

tests and to reduce our overall chances of falsely rejecting each hypothesis to 𝛼 rather than letting our

chances increase with each additional test. (See Miller [1981] and Hochberg and Tamhane [1987] for

rather advanced texts on multiple-comparison procedures.)

The Bonferroni adjustment (see Miller [1981]; also see van Belle et al. [2004, 534–537]) does this

by (falsely but approximately) asserting that the critical level we should use, 𝑎, is the true critical level,
𝛼, divided by the number of tests, 𝑛; that is, 𝑎 = 𝛼/𝑛. For instance, if we are going to perform six tests,

each at the 0.05 significance level, we want to adopt a critical level of 0.05/6 ≈ 0.00833.
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We can just as easily apply this logic to 𝑒, the significance level associated with our 𝑡 statistic, as
to our critical level 𝛼. If a comparison has a calculated significance of 𝑒, then its “real” significance,
adjusted for the fact of 𝑛 comparisons, is 𝑛 × 𝑒. If a comparison has a significance level of, say, 0.012,
and we perform six tests, then its “real” significance is 0.072. If we adopt a critical level of 0.05, we

cannot reject the hypothesis. If we adopt a critical level of 0.10, we can reject it.

Of course, this calculation can go above 1, but that just means that there is no𝛼 < 1 for whichwe could

reject the hypothesis. (This situation arises because of the crude nature of the Bonferroni adjustment.)

Stata handles this case by simply calling the significance level 1. Thus, the formula for the Bonferroni

significance level is

𝑒𝑏 = min(1, 𝑒𝑛)

where 𝑛 = 𝑘(𝑘 − 1)/2 is the number of comparisons.
The Šidák adjustment (Šidák [1967]; also seeWiner, Brown, andMichels [1991, 165–166]) is slightly

different and provides a tighter bound. It starts with the assertion that

𝑎 = 1 − (1 − 𝛼)1/𝑛

Turning this formula around and substituting calculated significance levels, we obtain

𝑒𝑠 = min{1, 1 − (1 − 𝑒)𝑛}

For example, if the calculated significance is 0.012 and we perform six tests, the “real” significance is

approximately 0.07.

The Scheffé test (Scheffé [1953, 1959]; also see Kuehl [2000, 97–98]) differs in derivation, but it

attacks the same problem. Let there be 𝑘 means for which we want to make all the pairwise tests. Two

means are declared significantly different if

𝑡 ≥ √(𝑘 − 1)𝐹(𝛼; 𝑘 − 1, 𝜈)

where 𝐹(𝛼; 𝑘−1, 𝜈) is the 𝛼-critical value of the 𝐹 distribution with 𝑘−1 numerator and 𝜈 denominator
degrees of freedom. Scheffé’s test has the nicety that it never declares a contrast significant if the overall

𝐹 test is not significant.

Turning the test around, Stata calculates a significance level

̂𝑒 = 𝐹( 𝑡2

𝑘 − 1
, 𝑘 − 1, 𝜈)

For instance, you have a calculated 𝑡 statistic of 4.0 with 50 degrees of freedom. The simple 𝑡 test says
that the significance level is 0.00021. The 𝐹 test equivalent, 16 with 1 and 50 degrees of freedom, says

the same. If you are comparing three means, however, you calculate an𝐹 test of 8.0 with 2 and 50 degrees

of freedom, which says that the significance level is 0.0010.
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oprobit — Ordered probit regression

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description
oprobit fits ordered probit models of ordinal variable depvar on the independent variables indepvars.

The actual values taken on by the dependent variable are irrelevant, except that larger values are assumed

to correspond to “higher” outcomes.

Quick start
Ordinal probit model of y on x1 and categorical variables a and b

oprobit y x1 i.a i.b

Model of y on x1 and a one-period lagged value of x1 using tsset data
oprobit y x1 L.x1

Same as above, but calculate results for each level of catvar and save statistics to myfile.dta
statsby, by(catvar) saving(myfile): oprobit y x1 L.x1

Menu
Statistics > Ordinal outcomes > Ordered probit regression
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Syntax
oprobit depvar [ indepvars ] [ if ] [ in ] [weight ] [ , options ]

options Description

Model

offset(varname) include varname in model with coefficient constrained to 1

constraints(constraints) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim, opg, robust, cluster clustvar, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)
nocnsreport do not display constraints

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

collinear keep collinear variables

coeflegend display legend instead of statistics

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.

bayes, bootstrap, by, collect, fmm, fp, jackknife, mfp, mi estimate, nestreg, rolling, statsby, stepwise,
and svy are allowed; see [U] 11.1.10 Prefix commands. For more details, see [BAYES] bayes: oprobit and
[FMM] fmm: oprobit.

vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix; see [MI] mi estimate.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
collinear and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

offset(varname), constraints(constraints); see [R] Estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), that al-
low for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods

(bootstrap, jackknife); see [R] vce option.
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� � �
Reporting �

level(#); see [R] Estimation options.

nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. These options are

seldom used.

The following options are available with oprobit but is not shown in the dialog box:

collinear, coeflegend; see [R] Estimation options.

Remarks and examples
An ordered probit model is used to estimate relationships between an ordinal dependent variable and

a set of independent variables. An ordinal variable is a variable that is categorical and ordered, for

instance, “poor”, “good”, and “excellent”, which might indicate a person’s current health status or the

repair record of a car. If there are only two outcomes, see [R] logistic, [R] logit, and [R] probit. This

entry is concerned only with more than two outcomes. If the outcomes cannot be ordered (for example,

residency in the north, east, south, or west), see [R]mlogit. This entry is concerned only with models in

which the outcomes can be ordered. See [R] logistic for a list of related estimation commands.

In ordered probit, an underlying score is estimated as a linear function of the independent variables and

a set of cutpoints. The probability of observing outcome 𝑖 corresponds to the probability that the estimated
linear function, plus random error, is within the range of the cutpoints estimated for the outcome:

Pr(outcome𝑗 = 𝑖) = Pr(𝜅𝑖−1 < 𝛽1𝑥1𝑗 + 𝛽2𝑥2𝑗 + · · · + 𝛽𝑘𝑥𝑘𝑗 + 𝑢𝑗 ≤ 𝜅𝑖)

𝑢𝑗 is assumed to be normally distributed. In either case, we estimate the coefficients 𝛽1, 𝛽2, . . . , 𝛽𝑘
together with the cutpoints 𝜅1, 𝜅2, . . . , 𝜅𝐼−1, where 𝐼 is the number of possible outcomes. 𝜅0 is taken

as −∞, and 𝜅𝐼 is taken as +∞. All of this is a direct generalization of the ordinary two-outcome probit

model.

Example 1
In example 2 of [R] ologit, we use a variation of the automobile dataset (see [U] 1.2.2 Example

datasets) to analyze the 1977 repair records of 66 foreign and domestic cars. We use ordered logit to

explore the relationship of rep77 in terms of foreign (origin of manufacture), length (a proxy for

size), and mpg. Here we fit the same model using ordered probit rather than ordered logit:
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. use https://www.stata-press.com/data/r18/fullauto
(Automobile models)
. oprobit rep77 foreign length mpg
Iteration 0: Log likelihood = -89.895098
Iteration 1: Log likelihood = -78.106316
Iteration 2: Log likelihood = -78.020086
Iteration 3: Log likelihood = -78.020025
Iteration 4: Log likelihood = -78.020025
Ordered probit regression Number of obs = 66

LR chi2(3) = 23.75
Prob > chi2 = 0.0000

Log likelihood = -78.020025 Pseudo R2 = 0.1321

rep77 Coefficient Std. err. z P>|z| [95% conf. interval]

foreign 1.704861 .4246796 4.01 0.000 .8725037 2.537217
length .0468675 .012648 3.71 0.000 .022078 .0716571

mpg .1304559 .0378628 3.45 0.001 .0562463 .2046656

/cut1 10.1589 3.076754 4.128577 16.18923
/cut2 11.21003 3.107527 5.119389 17.30067
/cut3 12.54561 3.155233 6.361467 18.72975
/cut4 13.98059 3.218793 7.671874 20.28931

We find that foreign cars have better repair records, as do larger cars and cars with better mileage ratings.

Stored results
oprobit stores the following in e():
Scalars

e(N) number of observations

e(N cd) number of completely determined observations

e(k cat) number of categories

e(k) number of parameters

e(k aux) number of auxiliary parameters

e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test

e(k dv) number of dependent variables

e(df m) model degrees of freedom

e(r2 p) pseudo-𝑅2

e(ll) log likelihood

e(ll 0) log likelihood, constant-only model

e(N clust) number of clusters

e(chi2) 𝜒2

e(p) 𝑝-value for model test
e(rank) rank of e(V)
e(ic) number of iterations

e(rc) return code

e(converged) 1 if converged, 0 otherwise
Macros

e(cmd) oprobit
e(cmdline) command as typed

e(depvar) name of dependent variable

e(wtype) weight type
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e(wexp) weight expression

e(title) title in estimation output

e(clustvar) name of cluster variable

e(offset) linear offset variable

e(chi2type) Wald or LR; type of model 𝜒2 test

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(opt) type of optimization

e(which) max or min; whether optimizer is to perform maximization or minimization

e(ml method) type of ml method
e(user) name of likelihood-evaluator program

e(technique) maximization technique

e(properties) b V
e(predict) program used to implement predict
e(marginsdefault) default predict() specification for margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(ilog) iteration log (up to 20 iterations)

e(gradient) gradient vector

e(cat) category values

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas
See Methods and formulas of [R] ologit.
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Postestimation commands predict margins Remarks and examples Also see

Postestimation commands
The following postestimation commands are available after oprobit:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters

estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian infor-
mation criteria (AIC, CAIC, AICc, and BIC, respectively)

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estat (svy) postestimation statistics for survey data

estimates cataloging estimation results

etable table of estimation results
∗ forecast dynamic forecasts and simulations
∗ hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

linktest link test for model specification
∗ lrtest likelihood-ratio test

margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

predict probabilities, linear predictions and their SEs, etc.

predictnl point estimates, standard errors, testing, and inference for generalized predictions

pwcompare pairwise comparisons of parameters

suest seemingly unrelated estimation

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

∗forecast, hausman, and lrtest are not appropriate with svy estimation results. forecast is also not appropriate with mi
estimation results.
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predict

Description for predict
predict creates a new variable containing predictions such as probabilities, linear predictions, and

standard errors.

Menu for predict
Statistics > Postestimation

Syntax for predict
predict [ type ] { stub* | newvar | newvarlist } [ if ] [ in ] [ , statistic

outcome(outcome) nooffset ]

predict [ type ] stub* [ if ] [ in ], scores

statistic Description

Main

pr predicted probabilities; the default

xb linear prediction

stdp standard error of the linear prediction

You specify one or 𝑘 new variables with pr, where 𝑘 is the number of outcomes. If you specify one new variable and you do
not specify outcome(), then outcome(#1) is assumed.

You specify one new variable with xb and stdp.
These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for the estimation

sample.

Options for predict

� � �
Main �

pr, the default, computes the predicted probabilities for all outcomes or for a specific outcome. To com-
pute probabilities for all outcomes, you specify 𝑘 new variables, where 𝑘 is the number of categories
of the dependent variable. Alternatively, you can specify stub*; in which case, pr will store predicted
probabilities in variables stub1, stub2, . . . , stub𝑘. To compute the probability for a specific outcome,
you specify one new variable and, optionally, the outcome value in option outcome(); if you omit
outcome(), the first outcome value, outcome(#1), is assumed.

Say that you fit a model by typing estimation cmd y x1 x2, and y takes on four values. Then,

you could type predict p1 p2 p3 p4 to obtain all four predicted probabilities; alternatively, you

could type predict p* to generate the four predicted probabilities. To compute specific probabil-

ities one at a time, you can type predict p1, outcome(#1) (or simply predict p1), predict p2,
outcome(#2), and so on. See option outcome() for other ways to refer to outcome values.

xb calculates the linear prediction. You specify one new variable, for example, predict linear, xb.
The linear prediction is defined, ignoring the contribution of the estimated cutpoints.
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stdp calculates the standard error of the linear prediction. You specify one new variable, for example,

predict se, stdp.

outcome(outcome) specifies for which outcome the predicted probabilities are to be calculated.

outcome() should contain either one value of the dependent variable or one of #1, #2, . . . , with #1
meaning the first category of the dependent variable, #2meaning the second category, etc. outcome()
is available only with the default pr option.

nooffset is relevant only if you specified offset(varname) for oprobit. It modifies the calculations
made by predict so that they ignore the offset variable; the linear prediction is treated as x𝑗b rather

than as x𝑗b + offset𝑗. nooffset is not allowed with scores.

scores calculates equation-level score variables. The number of score variables created will equal the
number of outcomes in the model. If the number of outcomes in the model was 𝑘, then
the first new variable will contain 𝜕ln𝐿/𝜕(x𝑗b);
the second new variable will contain 𝜕ln𝐿/𝜕𝜅1;

the third new variable will contain 𝜕ln𝐿/𝜕𝜅2;

. . .

and the 𝑘th new variable will contain 𝜕ln𝐿/𝜕𝜅𝑘−1, where 𝜅𝑖 refers to the 𝑖th cutpoint.

margins

Description for margins
margins estimates margins of response for probabilities and linear predictions.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist ] [ , options ]
margins [marginlist ] , predict(statistic ...) [ predict(statistic ...) ... ] [ options ]

statistic Description

default probabilities for each outcome

pr probability for a specified outcome

xb linear prediction

stdp not allowed with margins

pr defaults to the first outcome.

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.
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Remarks and examples
See [U] 20 Estimation and postestimation commands for instructions on obtaining the vari-

ance–covariance matrix of the estimators, predicted values, and hypothesis tests. Also see [R] lrtest

for performing likelihood-ratio tests.

Example 1
In example 1 of [R] oprobit, we fit the model oprobit rep77 foreign length mpg. The predict

command can be used to obtain the predicted probabilities. We type predict followed by the names of
the new variables to hold the predicted probabilities, ordering the names from low to high. In our data,

the lowest outcome is “poor” and the highest is “excellent”. We have five categories, so we must type

five names following predict; the choice of names is up to us:

. use https://www.stata-press.com/data/r18/fullauto
(Automobile models)
. oprobit rep77 foreign length mpg
(output omitted )

. predict poor fair avg good exc
(option pr assumed; predicted probabilities)
. list make model exc good if rep77>=., sep(4) divider

make model exc good

3. AMC Spirit .0006044 .0351813
10. Buick Opel .0043803 .1133763
32. Ford Fiesta .0002927 .0222789
44. Merc. Monarch .0093209 .1700846

53. Peugeot 604 .0734199 .4202766
56. Plym. Horizon .001413 .0590294
57. Plym. Sapporo .0197543 .2466034
63. Pont. Phoenix .0234156 .266771

Technical note
For ordered probit, predict, xb produces 𝑆𝑗 = 𝑥1𝑗𝛽1 + 𝑥2𝑗𝛽2 + · · · + 𝑥𝑘𝑗𝛽𝑘. Ordered probit is

identical to ordered logit, except that we use different distribution functions for calculating probabilities.

The ordered-probit predictions are then the probability that 𝑆𝑗 + 𝑢𝑗 lies between a pair of cutpoints 𝜅𝑖−1
and 𝜅𝑖. The formulas for ordered probit are

Pr(𝑆𝑗 + 𝑢 < 𝜅) = Φ(𝜅 − 𝑆𝑗)
Pr(𝑆𝑗 + 𝑢 > 𝜅) = 1 − Φ(𝜅 − 𝑆𝑗) = Φ(𝑆𝑗 − 𝜅)

Pr(𝜅1 < 𝑆𝑗 + 𝑢 < 𝜅2) = Φ(𝜅2 − 𝑆𝑗) − Φ(𝜅1 − 𝑆𝑗)

Rather than using predict directly, we could calculate the predicted probabilities by hand.

. predict pscore, xb

. generate probexc = normal(pscore-_b[/cut4])

. generate probgood = normal(_b[/cut4]-pscore) - normal(_b[/cut3]-pscore)
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Also see
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Description Quick start Menu Syntax
Options for orthog Options for orthpoly Remarks and examples Methods and formulas
References Also see

Description
orthog orthogonalizes a set of variables, creating a new set of orthogonal variables (all of type

double), using a modified Gram–Schmidt procedure (Golub and Van Loan 2013). The order of the

variables determines the orthogonalization; hence, the “most important” variables should be listed first.

Execution time is proportional to the square of the number of variables. With many (>10) variables,

orthog will be fairly slow.

orthpoly computes orthogonal polynomials for one variable.

Quick start
Generate ox1, ox2, and ox3 containing orthogonalized versions of x1, x2, and x3

orthog x1 x2 x3, generate(ox1 ox2 ox3)

Same as above

orthog x1 x2 x3, generate(ox*)

Generate op1, op2, and op3 containing degree 1, 2, and 3 orthogonal polynomials for x1
orthpoly x1, generate(op1 op2 op3) degree(3)

Same as above

orthpoly x1, generate(op1-op3) degree(3)

Same as above, and generate matrix op containing coefficients of the orthogonal polynomials
orthpoly x1, generate(op1-op3) degree(3) poly(op)

Menu
orthog
Data > Create or change data > Other variable-creation commands > Orthogonalize variables

orthpoly
Data > Create or change data > Other variable-creation commands > Orthogonal polynomials
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Syntax
Orthogonalize variables

orthog [ varlist ] [ if ] [ in ] [weight ] , generate(newvarlist) [ matrix(matname) ]

Compute orthogonal polynomial

orthpoly varname [ if ] [ in ] [weight ] ,

{ generate(newvarlist) | poly(matname) } [ degree(#) ]

orthpoly requires that generate(newvarlist) or poly(matname), or both, be specified.
varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.

iweights, aweights, fweights, and pweights are allowed, see [U] 11.1.6 weight.

Options for orthog

� � �
Main �

generate(newvarlist) is required. generate() creates new orthogonal variables of type double. For
orthog, newvarlist will contain the orthogonalized varlist. If varlist contains 𝑑 variables, then so

will newvarlist. newvarlist can be specified by giving a list of exactly 𝑑 new variable names, or it can

be abbreviated using the styles newvar1-newvar𝑑 or newvar*. For these two styles of abbreviation,
new variables newvar1, newvar2, . . . , newvar𝑑 are generated.

matrix(matname) creates a (𝑑 + 1) × (𝑑 + 1) matrix containing the matrix 𝑅 defined by 𝑋 = 𝑄𝑅,
where 𝑋 is the 𝑁 × (𝑑 + 1) matrix representation of varlist plus a column of ones and 𝑄 is the

𝑁 × (𝑑 + 1) matrix representation of newvarlist plus a column of ones (𝑑 = number of variables in

varlist, and 𝑁 = number of observations).

Options for orthpoly

� � �
Main �

generate(newvarlist) or poly(), or both, must be specified. generate() creates new orthogonal

variables of type double. newvarlist will contain orthogonal polynomials of degree 1, 2, . . . , 𝑑 eval-
uated at varname, where 𝑑 is as specified by degree(𝑑). newvarlist can be specified by giving a
list of exactly 𝑑 new variable names, or it can be abbreviated using the styles newvar1- newvar𝑑 or

newvar*. For these two styles of abbreviation, new variables newvar1, newvar2, . . . , newvar𝑑 are

generated.

poly(matname) creates a (𝑑 + 1) × (𝑑 + 1) matrix called matname containing the coefficients of the
orthogonal polynomials. The orthogonal polynomial of degree 𝑖 ≤ 𝑑 is
matname[ 𝑖, 𝑑 + 1 ] + matname[ 𝑖, 1 ]*varname + matname[ 𝑖, 2 ]*varname2

+ · · · + matname[ 𝑖, 𝑖 ]*varname𝑖

The coefficients corresponding to the constant term are placed in the last column of the matrix. The

last row of the matrix is all zeros, except for the last column, which corresponds to the constant term.

degree(#) specifies the highest-degree polynomial to include. Orthogonal polynomials of degree 1, 2,
. . . , 𝑑 = # are computed. The default is 𝑑 = 1.
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Remarks and examples
Orthogonal variables are useful for two reasons. The first is numerical accuracy for highly collinear

variables. Stata’s regress and other estimation commands can face much collinearity and still produce
accurate results. But, at some point, these commands will drop variables because of collinearity. If you

know with certainty that the variables are not perfectly collinear, you may want to retain all their effects

in the model. If you use orthog or orthpoly to produce a set of orthogonal variables, all variables will
be present in the estimation results.

Users are more likely to find orthogonal variables useful for the second reason: ease of interpret-

ing results. orthog and orthpoly create a set of variables such that the “effects” of all the preceding
variables have been removed from each variable. For example, if we issue the command

. orthog x1 x2 x3, generate(q1 q2 q3)

the effect of the constant is removed from x1 to produce q1; the constant and x1 are removed from x2
to produce q2; and finally the constant, x1, and x2 are removed from x3 to produce q3. Hence,

q1 = 𝑟01 + 𝑟11 x1

q2 = 𝑟02 + 𝑟12 x1 + 𝑟22 x2

q3 = 𝑟03 + 𝑟13 x1 + 𝑟23 x2 + 𝑟33 x3

This effect can be generalized and written in matrix notation as

𝑋 = 𝑄𝑅

where𝑋 is the𝑁 ×(𝑑+1)matrix representation of varlist plus a column of ones, and𝑄 is the𝑁 ×(𝑑+1)
matrix representation of newvarlist plus a column of ones (𝑑 = number of variables in varlist and 𝑁 =
number of observations). The (𝑑 + 1) × (𝑑 + 1) matrix 𝑅 is a permuted upper-triangular matrix, that is,

𝑅 would be upper triangular if the constant were first, but the constant is last, so the first row/column has

been permuted with the last row/column. Because Stata’s estimation commands list the constant term

last, this allows 𝑅, obtained via the matrix() option, to be used to transform estimation results.

Example 1: orthog
Consider Stata’s auto.dta dataset. Suppose that we postulate a model in which price depends on

the car’s length, weight, headroom, and trunk size (trunk). These predictors are collinear, but not
extremely so—the correlations are not that close to 1:

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. correlate length weight headroom trunk
(obs=74)

length weight headroom trunk

length 1.0000
weight 0.9460 1.0000

headroom 0.5163 0.4835 1.0000
trunk 0.7266 0.6722 0.6620 1.0000



orthog — Orthogonalize variables and compute orthogonal polynomials 2145

regress certainly has no trouble fitting this model:

. regress price length weight headroom trunk
Source SS df MS Number of obs = 74

F(4, 69) = 10.20
Model 236016580 4 59004145 Prob > F = 0.0000

Residual 399048816 69 5783316.17 R-squared = 0.3716
Adj R-squared = 0.3352

Total 635065396 73 8699525.97 Root MSE = 2404.9

price Coefficient Std. err. t P>|t| [95% conf. interval]

length -101.7092 42.12534 -2.41 0.018 -185.747 -17.67147
weight 4.753066 1.120054 4.24 0.000 2.518619 6.987512

headroom -711.5679 445.0204 -1.60 0.114 -1599.359 176.2236
trunk 114.0859 109.9488 1.04 0.303 -105.2559 333.4277
_cons 11488.47 4543.902 2.53 0.014 2423.638 20553.31

However, we may believe a priori that length is the most important predictor, followed by weight,
headroom, and trunk. We would like to remove the “effect” of length from all the other predictors,

remove weight from headroom and trunk, and remove headroom from trunk. We can do this by

running orthog, and then we fit the model again using the orthogonal variables:

. orthog length weight headroom trunk, gen(olength oweight oheadroom otrunk)
> matrix(R)
. regress price olength oweight oheadroom otrunk

Source SS df MS Number of obs = 74
F(4, 69) = 10.20

Model 236016580 4 59004145 Prob > F = 0.0000
Residual 399048816 69 5783316.17 R-squared = 0.3716

Adj R-squared = 0.3352
Total 635065396 73 8699525.97 Root MSE = 2404.9

price Coefficient Std. err. t P>|t| [95% conf. interval]

olength 1265.049 279.5584 4.53 0.000 707.3454 1822.753
oweight 1175.765 279.5584 4.21 0.000 618.0617 1733.469

oheadroom -349.9916 279.5584 -1.25 0.215 -907.6955 207.7122
otrunk 290.0776 279.5584 1.04 0.303 -267.6262 847.7815
_cons 6165.257 279.5584 22.05 0.000 5607.553 6722.961

Using the matrix R, we can transform the results obtained using the orthogonal predictors back to the

metric of original predictors:

. matrix b = e(b)*inv(R)’

. matrix list b
b[1,5]

length weight headroom trunk _cons
y1 -101.70924 4.7530659 -711.56789 114.08591 11488.475
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Technical note
The matrix 𝑅 obtained using the matrix() option with orthog can also be used to recover 𝑋 (the

original varlist) from 𝑄 (the orthogonalized newvarlist), one variable at a time. Continuing with the

previous example, we illustrate how to recover the trunk variable:

. matrix C = R[1...,”trunk”]’

. matrix score double rtrunk = C

. compare rtrunk trunk
Difference

Count Minimum Average Maximum

rtrunk>trunk 74 8.88e-15 1.91e-14 3.55e-14

Jointly defined 74 8.88e-15 1.91e-14 3.55e-14

Total 74

Here the recovered variable rtrunk is almost exactly the same as the original trunk variable. When

you are orthogonalizing many variables, this procedure can be performed to check the numerical sound-

ness of the orthogonalization. Because of the ordering of the orthogonalization procedure, the last vari-

able and the variables near the end of the varlist are the most important ones to check.

The orthpoly command effectively does for polynomial terms what the orthog command does for
an arbitrary set of variables.

Example 2: orthpoly
Again consider the auto.dta dataset. Suppose that we wish to fit the model

mpg = 𝛽0 + 𝛽1 weight + 𝛽2 weight
2 + 𝛽3 weight

3 + 𝛽4 weight
4 + 𝜖

We will first compute the regression with natural polynomials:

. generate double w1 = weight

. generate double w2 = w1*w1

. generate double w3 = w2*w1

. generate double w4 = w3*w1

. correlate w1-w4
(obs=74)

w1 w2 w3 w4

w1 1.0000
w2 0.9915 1.0000
w3 0.9665 0.9916 1.0000
w4 0.9279 0.9679 0.9922 1.0000



orthog — Orthogonalize variables and compute orthogonal polynomials 2147

. regress mpg w1-w4
Source SS df MS Number of obs = 74

F(4, 69) = 36.06
Model 1652.73666 4 413.184164 Prob > F = 0.0000

Residual 790.722803 69 11.4597508 R-squared = 0.6764
Adj R-squared = 0.6576

Total 2443.45946 73 33.4720474 Root MSE = 3.3852

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

w1 .0289302 .1161939 0.25 0.804 -.2028704 .2607307
w2 -.0000229 .0000566 -0.40 0.687 -.0001359 .0000901
w3 5.74e-09 1.19e-08 0.48 0.631 -1.80e-08 2.95e-08
w4 -4.86e-13 9.14e-13 -0.53 0.596 -2.31e-12 1.34e-12

_cons 23.94421 86.60667 0.28 0.783 -148.8314 196.7198

Some of the correlations among the powers of weight are very large, but this does not create any prob-
lems for regress. However, we may wish to look at the quadratic trend with the constant removed,
the cubic trend with the quadratic and constant removed, etc. orthpoly will generate polynomial terms
with this property:

. orthpoly weight, generate(pw*) deg(4) poly(P)

. regress mpg pw1-pw4
Source SS df MS Number of obs = 74

F(4, 69) = 36.06
Model 1652.73666 4 413.184164 Prob > F = 0.0000

Residual 790.722803 69 11.4597508 R-squared = 0.6764
Adj R-squared = 0.6576

Total 2443.45946 73 33.4720474 Root MSE = 3.3852

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

pw1 -4.638252 .3935245 -11.79 0.000 -5.423312 -3.853192
pw2 .8263545 .3935245 2.10 0.039 .0412947 1.611414
pw3 -.3068616 .3935245 -0.78 0.438 -1.091921 .4781982
pw4 -.209457 .3935245 -0.53 0.596 -.9945168 .5756028

_cons 21.2973 .3935245 54.12 0.000 20.51224 22.08236

Compare the 𝑝-values of the terms in the natural polynomial regression with those in the orthogonal

polynomial regression. With orthogonal polynomials, it is easy to see that the pure cubic and quartic

trends are not significant and that the constant, linear, and quadratic terms each have 𝑝 < 0.05.

The matrix P obtained with the poly() option can be used to transform coefficients for orthogonal

polynomials to coefficients for natural polynomials:

. orthpoly weight, poly(P) deg(4)

. matrix b = e(b)*P

. matrix list b
b[1,5]

deg1 deg2 deg3 deg4 _cons
y1 .02893016 -.00002291 5.745e-09 -4.862e-13 23.944212
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Methods and formulas
orthog’s orthogonalization can be written in matrix notation as

𝑋 = 𝑄𝑅

where𝑋 is the𝑁 ×(𝑑+1)matrix representation of varlist plus a column of ones and𝑄 is the𝑁 ×(𝑑+1)
matrix representation of newvarlist plus a column of ones (𝑑 = number of variables in varlist, and 𝑁 =
number of observations). The (𝑑 + 1) × (𝑑 + 1) matrix 𝑅 is a permuted upper-triangular matrix; that

is, 𝑅 would be upper triangular if the constant were first, but the constant is last, so the first row/column

has been permuted with the last row/column.

𝑄 and 𝑅 are obtained using a modified Gram–Schmidt procedure; see Golub and Van Loan (2013,

254–255) for details. The traditional Gram–Schmidt procedure is notoriously unsound, but the modified

procedure is good. orthog performs two passes of this procedure.

orthpoly uses the Christoffel–Darboux recurrence formula (Abramowitz and Stegun 1964).

Both orthog and orthpoly normalize the orthogonal variables such that

𝑄′𝑊𝑄 = 𝑀𝐼

where 𝑊 = diag(𝑤1, 𝑤2, . . . , 𝑤𝑁) with weights 𝑤1, 𝑤2, . . . , 𝑤𝑁 (all 1 if weights are not specified), and

𝑀 is the sum of the weights (the number of observations if weights are not specified).

References
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Also see
[R] regress — Linear regression
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Description Quick start Menu Syntax
Remarks and examples Stored results Methods and formulas Acknowledgment
References Also see

Description
pcorr displays the partial and semipartial correlation coefficients of a specified variable with each

variable in a varlist after removing the effects of all other variables in the varlist. The squared correlations

and corresponding significance are also reported.

Quick start
Partial and semipartial correlations of v1 with v2, v3, and v4

pcorr v1 v2 v3 v4

Same as above, but for each level of categorical variable catvar
by catvar: pcorr v1 v2 v3 v4

Partial and semipartial correlations of v5 with v6, v7, and v8, and a one-period lag of v5 using tsset
data

pcorr v5 L.v5 v6 v7 v8

Menu
Statistics > Summaries, tables, and tests > Summary and descriptive statistics > Partial correlations

Syntax
pcorr varname varlist [ if ] [ in ] [weight ]

varlist may contain factor variables; see [U] 11.4.3 Factor variables.

varname and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.

by and collect are allowed; see [U] 11.1.10 Prefix commands.

aweights and fweights are allowed; see [U] 11.1.6 weight.

Remarks and examples
Assume that 𝑦 is determined by 𝑥1, 𝑥2, . . . , 𝑥𝑘. The partial correlation between 𝑦 and 𝑥1 is an attempt

to estimate the correlation that would be observed between 𝑦 and 𝑥1 if the other 𝑥’s did not vary. The
semipartial correlation, also called part correlation, between 𝑦 and 𝑥1 is an attempt to estimate the cor-

relation that would be observed between 𝑦 and 𝑥1 after the effects of all other 𝑥’s are removed from 𝑥1
but not from 𝑦.
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Both squared correlations estimate the proportion of the variance of 𝑦 that is explained by each pre-
dictor. The squared semipartial correlation between 𝑦 and 𝑥1 represents the proportion of variance in

𝑦 that is explained by 𝑥1 only. This squared correlation can also be interpreted as the decrease in the

model’s 𝑅2 value that results from removing 𝑥1 from the full model. Thus, one could use the squared

semipartial correlations as criteria for model selection. The squared partial correlation between 𝑦 and 𝑥1
represents the proportion of variance in 𝑦 not associated with any other 𝑥’s that is explained by 𝑥1. Thus,

the squared partial correlation gives an estimate of how much of the variance of 𝑦 not explained by the
other 𝑥’s is explained by 𝑥1.

Example 1
Using our automobile dataset (described in [U] 1.2.2 Example datasets), we can obtain the simple

correlations between price, mpg, weight, and foreign from correlate (see [R] correlate):

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. correlate price mpg weight foreign
(obs=74)

price mpg weight foreign

price 1.0000
mpg -0.4686 1.0000

weight 0.5386 -0.8072 1.0000
foreign 0.0487 0.3934 -0.5928 1.0000

Although correlate gave us the full correlation matrix, our interest is in just the first column. We

find, for instance, that the higher the mpg, the lower the price. We obtain the partial and semipartial

correlation coefficients by using pcorr:

. pcorr price mpg weight foreign
(obs=74)
Partial and semipartial correlations of price with

Partial Semipartial Partial Semipartial Significance
Variable corr. corr. corr.^2 corr.^2 value

mpg 0.0352 0.0249 0.0012 0.0006 0.7693
weight 0.5488 0.4644 0.3012 0.2157 0.0000
foreign 0.5402 0.4541 0.2918 0.2062 0.0000

We now find that the partial and semipartial correlations of price with mpg are near 0. In the simple
correlations, we found that price and foreignwere virtually uncorrelated. In the partial and semipartial
correlations, we find that price and foreign are positively correlated. The nonsignificance of mpg tells
us that the amount in which 𝑅2 decreases by removing mpg from the model is not significant. We find

that removing either weight or foreign results in a significant drop in the 𝑅2 of the model.

Technical note
Use caution when interpreting the above results. As we said at the outset, the partial and semipartial

correlation coefficients are an attempt to estimate the correlation that would be observed if the effects of

all other variables were taken out of both 𝑦 and 𝑥 or only 𝑥. pcorr makes it too easy to ignore the fact
that we are fitting a model. In the example above, the model is

price = 𝛽0 + 𝛽1mpg + 𝛽2weight + 𝛽3foreign + 𝜖
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which is, in all honesty, a rather silly model. Even if we accept the implied economic assumptions of

the model—that consumers value mpg, weight, and foreign—do we really believe that consumers

place equal value on every extra 1,000 pounds of weight? That is, have we correctly parameterized

the model? If we have not, then the estimated partial and semipartial correlation coefficients may not

represent what they claim to represent. Partial and semipartial correlation coefficients are a reasonable

way to summarize data if we are convinced that the underlying model is reasonable. We should not,

however, pretend that there is no underlying model and that these correlation coefficients are unaffected

by the assumptions and parameterization.

Stored results
pcorr stores the following in r():
Scalars

r(N) number of observations

r(df) degrees of freedom

Matrices

r(p corr) partial correlation coefficient vector

r(sp corr) semipartial correlation coefficient vector

Methods and formulas
Results are obtained by fitting a linear regression of varname on varlist; see [R] regress. The partial

correlation coefficient between varname and each variable in varlist is then calculated as

𝑡√
𝑡2 + 𝑛 − 𝑘

(Greene 2018, 39), where 𝑡 is the 𝑡 statistic, 𝑛 is the number of observations, and 𝑘 is the number of

independent variables, including the constant but excluding any dropped variables.

The semipartial correlation coefficient between varname and each variable in varlist is calculated as

sign(𝑡)√𝑡2(1 − 𝑅2)
𝑛 − 𝑘

(Cohen et al. 2003, 89), where 𝑅2 is the model 𝑅2 value, and 𝑡, 𝑛, and 𝑘 are as described above.
The significance is given by 2Pr(𝑡𝑛−𝑘 > |𝑡|), where 𝑡𝑛−𝑘 follows a Student’s 𝑡 distribution with 𝑛−𝑘

degrees of freedom.

Acknowledgment
The addition of semipartial correlation coefficients to pcorr is based on the pcorr2 command by

Richard Williams of the Department of Sociology at the University of Notre Dame.
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Also see
[R] correlate — Correlations of variables

[R] spearman — Spearman’s and Kendall’s correlations
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Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description
permute performs permutation tests using Monte Carlo permutations or by enumeration of all pos-

sible distinct permutations. A single variable is chosen to be permuted, and the permutation distribution

is estimated (or in the case of enumeration, fully determined) for specified statistics returned by a Stata

command or a user-written program.

Quick start
Estimate 𝑝-values for a permutation test of the coefficient of x in a linear regression, permuting values

of the outcome y
permute y _b[x]: regress y x

Test for r(mystat) returned by program myprog, permuting values of y
permute y r(mystat): myprog

Same as above, but increase the number of permutations from the default of 100 to 10,000

permute y r(mystat), reps(10000): myprog

Same as above, but display a dot for every 100 permutations instead of every permutation

permute y r(mystat), reps(10000) dots(100): myprog

Same as above, but set the random-number seed for reproducibility, and save the permuted statistics in

myfile.dta
permute y r(mystat), reps(10000) dots(100) rseed(1) saving(myfile): ///

myprog

Test for r(mystat1) and r(mystat2), naming the statistics stat1 and stat2, respectively
permute y stat1=r(mystat1) stat2=r(mystat2), reps(10000) rseed(1): ///

myprog

Perform permutations within strata defined by svar
permute y stat=r(mystat), reps(10000) rseed(1) strata(svar): myprog

Enumerate the full permutation distribution and display a dot for every 1,000 permutations

permute y stat=r(mystat), enumerate dots(1000): myprog

Menu
Statistics > Resampling > Permutation tests
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Syntax
Perform permutation test

permute permvar exp list [ , options ] : command

Report saved results

permute [ varlist ] [ using filename ] [ , display options ]

options Description

Main

reps(#) perform #Monte Carlo permutations; default is reps(100)
enumerate compute all possible distinct permutations

Options

rseed(#) set random-number seed to #

strata(varlist) permute within strata

saving( filename, . . .) save results to filename with options for saving in double precision

and saving results to filename every # permutations

Reporting

standardize standardize test statistic using permutation distribution
mean and variance

level(#) set confidence level; default is level(95)
title(text) use text as title for permutation results

dots(#) display dots every # permutations

nodots suppress permutation dots

nowarning do not warn when e(sample) is not set
noisily display any output from command

trace trace command

verbose display full table legend

noheader suppress table header

nolegend suppress table legend

Advanced

nodrop do not drop observations

reject(exp) specify criterion for invalid results

eps(#) numerical tolerance; seldom used

collect is allowed; see [U] 11.1.10 Prefix commands.

weights are allowed in command.
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display options Description

standardize standardize test statistic using permutation distribution
mean and variance

level(#) set confidence level; default is level(95)
title(text) use text as title for results

verbose display full table legend

noheader suppress table header

nolegend suppress table legend

eps(#) numerical tolerance; seldom used

exp list contains (name: elist)
elist

eexp

elist contains newvar = (exp)
(exp)

eexp is specname

[eqno]specname
specname is b

b[]
se
se[]

eqno is # #
name

exp is a standard Stata expression; see [U] 13 Functions and expressions.

Distinguish between [ ], which are to be typed, and [ ], which indicate optional arguments.

Options

� � �
Main �

reps(#) specifies the number of Monte Carlo permutations to perform. The default is reps(100).

The default of 100 permutations is chosen for convenience. In real-world applications, you will most

likely need to use more permutations. permute reports the Monte Carlo error, which you can use to

evaluate whether the specified number of permutations provides sufficient precision for the reported

𝑝-value estimates.
enumerate specifies that all possible distinct permutations be computed. This gives the full permutation

distribution and 𝑝-values with no error. reps() and rseed() cannot be specified with enumerate.
The number of all possible distinct permutations is typically extremely large. Only for some small

problems will it be practical to fully enumerate the permutation distribution. If all the values of per-

mvar are unique, the number of possible permutations is 𝑁!, where 𝑁 is the number of observations.

When permvar has a lot of repeated values (when, for example, it is a 0/1 variable), the number of

possible distinct permutations can be considerably less than 𝑁! and may make enumeration feasible.
Before beginning the enumeration, permute will calculate and display the number of distinct permu-
tations, allowing you to press Break when you see that the number of permutations is so large as to

make computation time impossibly long.
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� � �
Options �

rseed(#) sets the random-number seed. Specifying this option is equivalent to typing the following

command prior to calling permute:

. set seed #

strata(varlist) specifies that the permutations be performed within each stratum defined by the values

of varlist.

saving( filename[ , double every(#) replace ]) creates a Stata data file (.dta file) consisting of

variables for each statistic in exp list containing the results for each permutation.

double specifies that the results for each permutation be saved as doubles, meaning 8-byte reals. By
default, they are saved as floats, meaning 4-byte reals.

every(#) specifies that results be written to disk every #th permutation. every() should be speci-
fied only in conjunction with saving() when command takes a long time for each permutation.
This will allow recovery of partial results should some other software crash your computer. See

[P] postfile.

replace specifies that filename be overwritten if it exists.

� � �
Reporting �

standardize specifies that the observed value of each test statistic be standardized. That is, the observed
test statistic 𝑇obs is standardized by calculating [𝑇obs − mean(𝑇 )]/√Var(𝑇 ), where mean(𝑇 ) and
Var(𝑇 ) are the mean and variance of the permutation distribution of 𝑇. Standardized test statistics are
useful for seeing roughly how extreme (and in what direction) the observed test statistic is.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is

level(95) or as set by set level; see [R] level.

title(text) specifies a title to be displayed above the table of permutation results.

dots(#) and nodots specify whether to display permutation dots. By default, one dot character is

displayed for each successful permutation. An “x” is displayed if command returns an error or if any

value in exp list is missing. You can also control whether dots are displayed using set dots; see
[R] set.

dots(#) displays dots every # permutations. dots(0) is a synonym for nodots.

nodots suppresses display of the permutation dots.

nowarning suppresses the printing of a warning message when command does not set e(sample).

noisily requests that any output from command be displayed. This option implies the nodots option.

trace causes a trace of the execution of command to be displayed. This option implies the noisily
option.

verbose requests that the full table legend be displayed when multiple coefficients or standard errors
are specified using the b or se notation.

noheader suppresses display of the table header. This option implies the nolegend option.

nolegend suppresses display of the table legend. The table legend identifies the rows of the table with
the expressions they represent.
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� � �
Advanced �

nodrop prevents permute from dropping observations outside the if and in qualifiers. nodrop will

also cause permute to ignore the contents of e(sample) if it exists as a result of running command.
By default, permute temporarily drops out-of-sample observations.

reject(exp) specifies an expression that indicates when results should be rejected. When exp is true,

the resulting values are reset to missing values.

eps(#) specifies the numerical tolerance for testing 𝑇 ≤ 𝑇obs and 𝑇 ≥ 𝑇obs, where 𝑇 is the test statistic

and 𝑇obs is its observed value. These are considered true if, respectively, 𝑇 ≤ 𝑇obs+# or 𝑇 ≥ 𝑇obs−#.
The default is eps(1e-7). You will not have to specify eps() under normal circumstances.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Monte Carlo permutation tests
Two-sided p-values from permutation tests
One-sided permutation test
Enumeration
Efficiency considerations for Monte Carlo permutations
Efficiency considerations for enumeration

Introduction
Permutation tests are based on the idea of scrambling—that is, permuting—the order of a variable

in all possible ways, calculating the value of a test statistic for each permutation, and taking this set of

values of the statistic as its distribution.

For instance, consider the correlation of two variables, corr(x, y), where x = (𝑥1, . . . , 𝑥𝑛) and y =
(𝑦1, . . . , 𝑦𝑛). We hold the order of x fixed and permute the order of y in all possible ways. For each

permutation y∗, we calculate 𝑇 ∗ = corr(x, y∗). The set of 𝑇 ∗ gives the permutation distribution for the

correlation. This permutation distribution is the distribution of the correlation under the null hypothesis

that the ordering of the elements of y are independent of the ordering of the elements of x, conditional

on the observed values of x and y.

Aside: Actually, the null hypothesis does not require independence. A weaker assumption of ex-

changeability is sufficient. If x and y are observed values of the random variates X = (𝑋1, . . . , 𝑋𝑛) and
Y = (𝑌1, . . . , 𝑌𝑛), then the joint distribution 𝑓(X,Y) is called exchangeable when it is invariant to the
orderings of 𝑋1, . . . , 𝑋𝑛 and 𝑌1, . . . , 𝑌𝑛.

The 𝑝-value for the permutation test is the proportion of permutations that produce a test statistic 𝑇 ∗

as extreme or more extreme than the test statistic 𝑇obs computed using the observed data.

permute estimates 𝑝-values for permutation tests using Monte Carlo permutations or by enumerating

all possible permutations when the enumerate option is specified. To do Monte Carlo permutations,

you type

. permute permvar exp list, reps(#): command

The values in the variable permvar are randomly permuted # times, each time executing command and

collecting the associated values from the expressions in exp list.
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command defines the statistical command to be executed. Most Stata commands and user-written

programs can be used with permute, as long as they follow standard Stata syntax; see [U] 11 Language

syntax. exp list specifies the statistics to be collected from the execution of command. Despite the fact

that permute works with most Stata commands, that does not mean the resulting permutation test is a
sensible test. See, for example, Good (2006).

To enumerate all possible distinct permutations, you type

. permute permvar exp list, enumerate: command

permute may be used for replaying results, but this feature is appropriate only when a dataset gener-
ated by permute is currently in memory or is identified by the using specification.

Monte Carlo permutation tests
We first demonstrate how to apply the permute prefix by testing for a difference in the distribution of

a variable across two groups. Here we perform the test using Monte Carlo permutations. In example 3,

we do the same test using complete enumeration.

Example 1: Wilcoxon rank-sum test
Let’s consider calculating the 𝑝-value for the Wilcoxon rank-sum test performed by ranksum. Sup-

pose that we collected data from some experiment: y is some measure we took on 17 individuals, and
group identifies the group to which an individual belongs.

. use https://www.stata-press.com/data/r18/permute2

. list, sepby(group)

group y

1. 1 6
2. 1 11
3. 1 20
4. 1 2
5. 1 9
6. 1 5

7. 0 2
8. 0 1
9. 0 6

10. 0 0
11. 0 2
12. 0 3
13. 0 3
14. 0 12
15. 0 4
16. 0 1
17. 0 5
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We analyze the data using ranksum:

. ranksum y, by(group)
Two-sample Wilcoxon rank-sum (Mann--Whitney) test

group Obs Rank sum Expected

0 11 79 99
1 6 74 54

Combined 17 153 153
Unadjusted variance 99.00
Adjustment for ties -0.97

Adjusted variance 98.03
H0: y(group==0) = y(group==1)

z = -2.020
Prob > |z| = 0.0434
Exact prob = 0.0436

The test gives an approximate 𝑝-value of 0.0434 and an exact 𝑝-value of 0.0436.
Let’s try to reproduce these results using permute. The test statistic 𝑇 for the Wilcoxon rank-sum

test is the sum of the ranks for the first group, which is 79, and is stored as r(sum obs). We specify

reps(10000) to do 10,000 Monte Carlo permutations and dots(100) to display a dot every 100th

permutation. We set the random-number seed so that we can duplicate our results.

. set seed 1234

. permute group r(sum_obs), reps(10000) dots(100): ranksum y, by(group)
(running ranksum on estimation sample)
warning: ranksum does not set e(sample), so no observations will be excluded

from the permutations because of missing values or other reasons. To
exclude observations, press Break, save the data, drop any
observations that are to be excluded, and rerun permute.

Permutations (10,000): .........1,000.........2,000.........3,000.........4,000
> .........5,000.........6,000.........7,000.........8,000.........9,000.......
> ..10,000 done
Monte Carlo permutation results Number of observations = 17
Permutation variable: group Number of permutations = 10,000

Command: ranksum y, by(group)
_pm_1: r(sum_obs)

Monte Carlo error

T T(obs) Test c n p SE(p) [95% CI(p)]

_pm_1 79 lower 223 10000 .0223 .0015 .0195 .0254
upper 9817 10000 .9817 .0013 .9789 .9842

two-sided .0446 .0021 .0406 .0486

Notes: For lower one-sided test, c = #{T <= T(obs)} and p = p_lower = c/n.
For upper one-sided test, c = #{T >= T(obs)} and p = p_upper = c/n.
For two-sided test, p = 2*min(p_lower, p_upper); SE and CI approximate.

The lengthy message about e(sample) is worth noting. If there were missing values in the data, we
might want to drop those observations before running permute. To suppress the message in future runs,
use the nowarning option.
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The two-sided 𝑝-value obtained by this Monte Carlo procedure is 0.0446, which is close to the exact

𝑝-value of 0.0436 computed by ranksum. See the next section for a description of how two-sided 𝑝-values
are calculated when performing permutation tests. See example 2 for a test that requires a one-sided

𝑝-value.
Note that we typed

. permute group ...

rather than

. permute y ...

We permuted the 0/1 variable group, which defines the groups, rather than the outcome variable y. For a
statistic dependent on only two variables, it obviously does not matter which one we permute in terms of

the theory of the test, but it does matter in terms of the efficiency of how permute does the computation.
permute uses a different random shuffling algorithm for 0/1 (or dichotomous) variables than it does with

other variables. See Efficiency considerations for Monte Carlo permutations below for details.

permute reports standard errors and confidence intervals for 𝑝-values because, as with any other

Monte Carlo procedure, they are approximations to the true exact 𝑝-values. These statistics are useful to
assess the precision of the computed 𝑝-values. If you need more precision, specify more permutations in
the reps() option. SeeMethods and formulas for a description of how the standard errors and confidence

intervals are calculated.

The confidence interval for the Monte Carlo two-sided 𝑝-value in this example is [0.0406, 0.0486].
If we want to increase the precision of the 𝑝-value, we could run permute again with more random

permutations to narrow the confidence interval. The total number of possible distinct permutations of

group, however, is not extremely large, and we can perform the permutation test using enumeration. See

example 3, where we do just that.

Two-sided p-values from permutation tests
In the above example, we used the two-sided 𝑝-value for our hypothesis testing. For permutation

distributions, two-sided 𝑝-values require some explanation about how they are calculated.

permute calculates the two-sided 𝑝-value as 𝑝 = 2 min(𝑝lower, 𝑝upper), where 𝑝lower is the lower one-
sided 𝑝-value and 𝑝upper the upper one-sided 𝑝-value. (More precisely, 𝑝 = min[1, 2 min(𝑝lower, 𝑝upper)]
is used because obviously 𝑝-values must be bounded by 1.)

In general, the 𝑝-value is defined as the probability under the null hypothesis of obtaining a value
of the test statistic 𝑇 equal to or more extreme than the value 𝑇obs that was actually observed. For one-

sided 𝑝-values, what is “more extreme” is clear. For lower one-sided 𝑝-values, it is the probability that
𝑇 ≤ 𝑇obs, and for upper one-sided 𝑝-values, it is the probability that 𝑇 ≥ 𝑇obs. When 𝑇 has a symmetric

distribution, the two-sided 𝑝-value is typically defined as the probability that |𝑇 | ≥ |𝑇obs|. Permutation
distributions, however, are not in general symmetric.

Under a permutation-based null hypothesis, the domain of 𝑇 consists of all the possible permutations

of the underlying data used to calculate 𝑇. The domain is discrete and finite, and hence the permutation
distribution of 𝑇 is discrete and finite. These finite distributions are symmetric only in certain cases.

For instance, with our example of the Wilcoxon rank-sum test, if the data consist of untied ranks, the

distribution is symmetric. When there are ties in the ranks, however, the distribution is in most cases not

symmetric.
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When distributions are asymmetric, what values of 𝑇 are “more extreme” than 𝑇obs? Suppose 𝑇obs is

below the mean of the distribution. Clearly, the lower-tail values 𝑇 ≤ 𝑇obs are more extreme. But what

values of 𝑇 from the upper tail are more extreme?

For asymmetric distributions, the rationale for using 𝑝 = 2 min(𝑝lower, 𝑝upper) for two-sided tests is
the following: It takes the smallest one-sided 𝑝-value and doubles it. Comparing this two-sided 𝑝-value
against a significance level of, say, 0.05 is equivalent to comparing the smallest one-sided 𝑝-value against
a level of 0.025. It essentially turns the two-sided test into a one-sided test with the significance level cut

in half. So this definition conveniently sidesteps the need to define what values of 𝑇 from the opposite

tail from 𝑇obs are more extreme! Also, it is appropriate for both symmetric and asymmetric distributions.

One-sided permutation test
In some cases, we will want to perform a permutation test based on a one-sided 𝑝-value.

Example 2: Permutation tests with ANOVA
Consider some fictional data from an experimental randomized complete-block design in which there

are 5 subjects each receiving 10 different treatments. We want to test whether any of the treatments have

an effect different from the effects of the other treatments.

Let’s load the data and list the data for the first two subjects:

. use https://www.stata-press.com/data/r18/permute1, clear

. sort subject treatment

. list subject treatment y in 1/20, abbrev(10)

subject treatment y

1. 1 1 4.407557
2. 1 2 4.280349
3. 1 3 4.418574
4. 1 4 4.075359
5. 1 5 3.899775

6. 1 6 5.533271
7. 1 7 5.142111
8. 1 8 5.791124
9. 1 9 4.504411

10. 1 10 4.896333

11. 2 1 5.693386
12. 2 2 4.508785
13. 2 3 5.10376
14. 2 4 5.753985
15. 2 5 5.092277

16. 2 6 4.496496
17. 2 7 6.339948
18. 2 8 4.820389
19. 2 9 5.686253
20. 2 10 6.951727
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These data may be analyzed using anova.

. anova y treatment subject
Number of obs = 50 R-squared = 0.3544
Root MSE = .914159 Adj R-squared = 0.1213

Source Partial SS df MS F Prob>F

Model 16.518219 13 1.2706322 1.52 0.1574

treatment 13.022671 9 1.4469634 1.73 0.1174
subject 3.4955481 4 .87388703 1.05 0.3973

Residual 30.08475 36 .83568751

Total 46.602969 49 .951081

anova gives a 𝑝-value of 0.1174 for the treatment effect. This 𝑝-value is calculated with the assump-
tion of normality for the distribution of the outcome conditional on the means of each treatment and

subject effect.

Suppose we do not want to assume normality. The treatments were assigned in a random order to

each of the subjects. A null hypothesis of no treatment effect means that the observed values of y and
their order were determined by factors other than the treatments. The treatments were essentially labels

that had nothing to do with the outcomes, and any other ordering of the labels would be a possible

occurrence. That is, we imagine running the experiment multiple times, each with a different ordering

of the treatments, but each time, we get the same observed values of y. This is the permutation-based
formulation of the null hypothesis.

What about the subjects? Each subject gets each of the 10 treatments, so clearly we must permute the

treatments within each subject independently of the permutations for the other subjects. We can do this

using the strata() option with permute.

If we type ereturn list after anova, we see that the 𝐹 statistic for treatment is stored in e(F 1).
This is our test statistic for our permutation test.

We save the dataset containing all the permutations of the test statistic using the saving() option.
Specifying the test statistic as F treatment=e(F 1) labels the test statistic as F treatment in the

output and is also the name of the variable containing the test statistic in permanova.dta, the dataset
created by saving(). We set the seed for the random-number generator and also specify the nodots
option to suppress the dots in the output.
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. permute treatment F_treatment=e(F_1), reps(10000) strata(subject)
> saving(permanova) rseed(1234) nodots: anova y treatment subject
Monte Carlo permutation results Number of observations = 50
Permutation variable: treatment Number of strata = 5

Number of permutations = 10,000
Command: anova y treatment subject

F_treatment: e(F_1)

Monte Carlo error

T T(obs) Test c n p SE(p) [95% CI(p)]

F_treatment 1.731465 lower 8788 10000 .8788 .0033 .8722 .8851
upper 1212 10000 .1212 .0033 .1149 .1278

two-sided .2424 .0043 .2340 .2508

Notes: For lower one-sided test, c = #{T <= T(obs)} and p = p_lower = c/n.
For upper one-sided test, c = #{T >= T(obs)} and p = p_upper = c/n.
For two-sided test, p = 2*min(p_lower, p_upper); SE and CI approximate.

Our test statistic is an 𝐹 statistic, so we are interested in the number of permutations that have a larger

(more extreme) statistic than the 1.73 we obtained with our original data. Therefore, we want the upper

one-sided 𝑝-value, which is 0.1212. This value is close to the 𝑝-value given by anova of 0.1174 for the
treatment effect.

For an additional example of a permutation test, with an application in epidemiology, see Hayes and

Moulton (2017, 237–241).

Enumeration
When the number of observations,𝑁, in a dataset is small, it may be possible to enumerate all possible

permutations and obtain 𝑝-values without the error involved in computing Monte Carlo 𝑝-values.
When permute does an enumeration, not only does 𝑁 matter, but the number of distinct values of the

permutation variable matters as well. permute does the enumeration by computing only permutations
that give different arrangements of the permutation variable; that is, it does not compute any duplicate

permutations. So the number of distinct values (and their multiplicity) of the permutation variable deter-

mines the number of permutations enumerated and so determines whether enumeration is feasible. See

Efficiency considerations for enumeration below for details.

Example 3: Wilcoxon rank-sum test using enumeration
Here we repeat example 1, but this time we do it by enumerating all possible permutations. We load

the data:

. use https://www.stata-press.com/data/r18/permute2
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The data consist of an outcome y grouped by the variable group. If we tabulate group

. tabulate group
Group Freq. Percent Cum.

0 11 64.71 64.71
1 6 35.29 100.00

Total 17 100.00

we see that group consists of 11 zeros and 6 ones. Hence, there are only (17
6 ) = 12,376 possible distinct

permutations of group.

In example 1, we used ranksum to compute the test statistic, but each time ranksum is called, it

computes the ranks of y. It is unnecessary to recompute the ranks for each permutation. It is better to
compute the ranks just once at the outset. We can do this using the rank() function of egen:

. egen r = rank(y)

The test statistic is the sum of the ranks for either one of the groups. The sum can be computed

efficiently using summarize with an if restriction and the meanonly option.

. permute group r(sum), enumerate nodrop nowarning dots(100): summarize r
> if group == 1, meanonly
(running summarize on estimation sample)
(enumerating all 12,376 possible permutations)
Permutations (12,376): .........1,000.........2,000.........3,000.........4,000
> .........5,000.........6,000.........7,000.........8,000.........9,000.......
> ..10,000.........11,000.........12,000.... done
Enumeration permutation results
Number of observations = 17
Number of permutations = 12,376
Permutation variable: group

Command: summarize r if group == 1, meanonly
_pm_1: r(sum)

T T(obs) Test c n p

_pm_1 74 lower 12142 12376 .9811
upper 270 12376 .0218

two-sided .0436

Notes: For lower one-sided test, c = #{T <= T(obs)} and p = p_lower = c/n.
For upper one-sided test, c = #{T >= T(obs)} and p = p_upper = c/n.
For two-sided test, p = 2*min(p_lower, p_upper).

Note that it is necessary to specify the nodrop option. Otherwise, permute would drop all observations
not satisfying if group == 1 before doing the permutations, and that would not give us what we want.

permute with the enumerate option gave a two-sided 𝑝-value of 0.0436, which is the same as the
exact 𝑝-value reported by ranksum, as it should be.
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With group as the variable being permuted, the number of distinct permutations is quite small. If,
however, we attempt to do the enumeration for all the distinct permutations of r:

. permute r r(sum), enumerate nodrop nowarning dots(100):
> summarize r if group == 1, meanonly
(running summarize on estimation sample)
(enumerating all 3.71e+12 possible permutations)
Permutations (3,705,077,376,000): ..........1,000..........2,000..........3,000
> ..........4,000......... Break
r(1);

Each permutation takes about 0.1 millisecond on our computer. Thus, the enumeration will take 0.1 ×
3.71 × 1012/(365 × 24 × 60 × 60 × 1000) ≈ 12 years, so we pressed Break.

Efficiency considerations for Monte Carlo permutations
Suppose you want to perform a randomization two-sample 𝑡 test, which is like the two-sample 𝑡 test

that assumes normality, only the randomization test is based on permuting the variable that defines the

samples. It is the same as the Wilcoxon rank-sum test, except the observed values of the outcome, rather

than their ranks, are used for the test statistic.

So say we have a variable x with continuous outcomes for two groups defined by the variable group,
with values 0 or 1. The randomization two-sample 𝑡 test could be done using Monte Carlo permutations

by typing

. permute x r(mu_1), reps(10000): ttest x, by(group)

Or by typing

. permute group r(mu_1), reps(10000): ttest x, by(group)

In the first case, x was permuted, and in the second, group. Both are valid ways to do Monte Carlo

permutations. permute is smart, however, and treats a 0/1 variable differently from how it treats a

variable with lots of distinct values.

Suppose there are fewer 1s than 0s in group. Rather than randomly permuting all the 0s and 1s,

permute randomly shuffles the 1s into the 0s. If there are only a few 1s relative to the number of 0s,

this method is much faster than permuting all the values. Hence, if you are doing a permutation test that

involves two variables, pick the one with the fewest distinct values to be the permvar.

When the strata() option is specified, permute uses special code for the case in which the permvar
is dichotomous (with, say, values 𝑦0 and 𝑦1) and each stratum contains a single observation equal to 𝑦1
and all other observations in the stratum equal to 𝑦0 (and 𝑦0 and 𝑦1 do not flip or change in value across

strata). If you are doing a stratified permutation test and you have such a variable whose permutations

will give the test you want, be sure to make it the permvar.

For all types of data, Monte Carlo permutations of the permvar are computed quickly. If the command

calculating the test statistic for each permutation is not fast, it is unlikely you will notice the greater speed

of permuting a dichotomous variable. If, however, you are using a fast command such as regress, you
likely will notice the greater speed.
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Efficiency considerations for enumeration
Doing an enumeration of all possible distinct permutations using the enumerate option, however,

is a different story. Here the selection of the permvar is crucial and typically determines whether it is

feasible to do the enumeration.

Consider performing the randomization 𝑡 test we described earlier using enumeration:
. permute group r(mu_1), enumerate: ttest x, by(group)

Suppose there are 20 observations, 10 with group = 0 and 10 with group = 1. Typing permute group
. . . will enumerate all (20

10) = 184,756 possible distinct permutations of group. (When we say “distinct

permutations”, we mean that duplicate permutations are not computed.)

If, however, we type

. permute x r(mu_1), enumerate: ttest x, by(group)

permute x . . . will attempt to enumerate all possible permutations of x. If all the values of x are unique,
there are 20! ≈ 2.4 × 1018 possible permutations of x, which is much larger than 184,756.

Hence, a dichotomous variable or a variable with few distinct values should always be chosen as the

permvar rather than another variable with many distinct values whenever possible. (To be precise, both

the number of distinct values and their multiplicities determine the number of permutations. SeeMethods

and formulas.)

See example 3 for an example using enumeration.

Stored results
permute stores the following in r():

Scalars

r(N) number of observations for command

r(n reps) number of permutations performed

r(k exp) number of standard expressions

r(k eexp) number of b and se expressions
r(n strata) number of strata, if strata() specified
r(level) confidence level

Macros

r(cmd) permute
r(command) command following colon

r(permvar) permutation variable

r(enumerate) ”enumerate”, if enumerate specified
r(title) title in output

r(rngstate) random-number state used for Monte Carlo permutations

r(exp#) #th expression

r(strata) strata variable, if strata() specified
r(missing) ”missing” when one or more expressions equal missing value

Matrices

r(b) observed statistics

r(b std) standardized observed statistics, if standardize specified
r(n) number of nonmissing results

r(c lower) counts for lower one-sided 𝑝-values
r(c upper) counts for upper one-sided 𝑝-values
r(p lower) lower one-sided 𝑝-values
r(p upper) upper one-sided 𝑝-values
r(p twosided) two-sided 𝑝-values
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r(se p lower) Monte Carlo standard errors of lower one-sided 𝑝-values
r(se p upper) Monte Carlo standard errors of upper one-sided 𝑝-values
r(se p twosided) Monte Carlo standard errors of two-sided 𝑝-values
r(ci p lower) Monte Carlo confidence intervals of lower one-sided 𝑝-values
r(ci p upper) Monte Carlo confidence intervals of upper one-sided 𝑝-values
r(ci p twosided) Monte Carlo confidence intervals of two-sided 𝑝-values

Methods and formulas
One-sided 𝑝-values are based on counts of the test statistic 𝑇 calculated for each permutation that are

more extreme than the observed value 𝑇obs. The lower one-sided 𝑝-value uses the count 𝑐 = #{𝑇 ≤
𝑇obs}, and the upper one-sided 𝑝-value uses 𝑐 = #{𝑇 ≥ 𝑇obs}.

The counts from Monte Carlo permutations are assumed to have a binomial distribution. Standard

errors and confidence intervals are computed using cii proportions 𝑛 𝑐, where 𝑛 is the number of

permutations that yielded nonmissing results and 𝑐 is the count. The confidence intervals are exact

binomial confidence intervals. See Methods and formulas in [R] ci.

permute calculates the two-sided 𝑝-value as 𝑝 = min[1, 2 min(𝑝lower, 𝑝upper)], where 𝑝lower is the
lower one-sided 𝑝-value and 𝑝upper the upper one-sided 𝑝-value. Because the definition of the two-sided
𝑝-value does not yield a simple formula for the standard error or confidence interval for Monte Carlo per-

mutations, the following ad hoc procedure is used. If 𝑝lower is the minimum one-sided 𝑝-value, its count
𝑐lower is doubled. If 𝑝upper is the minimum one-sided 𝑝-value, its count 𝑐upper is doubled. More precisely,

the value 𝑐2 = min[𝑛, 2 min(𝑐lower, 𝑐upper)] is used, and its distribution is assumed to be approximately
binomial. Standard errors and confidence intervals are computed using cii proportions 𝑛 𝑐2, wald.
The confidence intervals produced are asymptotic binomial confidence intervals.

When enumerate is specified, the 𝑝-values have no error.
Suppose there are 𝑁 observations and the variable being permuted contains 𝐾 distinct values, each

with multiplicity 𝑛𝑘, 𝑘 = 1, . . . , 𝐾. The total number of distinct permutations is

𝑁!
𝑛1! 𝑛2! · · · 𝑛𝐾!

This is the number of permutations computed when enumerate is specified.

When standardize is specified, instead of displaying the observed test statistic𝑇obs, the standardized

statistic
𝑇obs − mean(𝑇 )

√Var(𝑇 )

is displayed where mean(𝑇 ) and Var(𝑇 ) are the mean and variance of the permutation distribution of 𝑇:

mean(𝑇 ) = 1
𝑛

𝑛
∑
𝑖=1

𝑇𝑖

Var(𝑇 ) = 1
𝑛

𝑛
∑
𝑖=1

{𝑇𝑖 − mean(𝑇 )}2

𝑛 is the number of permutations, and 𝑇𝑖 is the test statistic calculated for the 𝑖th permutation.
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[R] jackknife — Jackknife estimation

[R] simulate — Monte Carlo simulations

https://www.stata-journal.com/article.html?article=st0214
https://www.stata-journal.com/article.html?article=st0526
https://www.stata-journal.com/article.html?article=st0526
https://doi.org/10.1007/0-8176-4444-X
https://doi.org/10.1007/0-8176-4444-X
https://www.stata.com/bookstore/crt.html
https://www.stata-journal.com/article.html?article=st0134
https://www.stata-journal.com/article.html?article=st0134
https://www.stata-journal.com/article.html?article=st0158


pk — Pharmacokinetic (biopharmaceutical) data

Description Remarks and examples References Also see

Description
The term pk refers to pharmacokinetic data and the Stata commands, all of which begin with the letters

pk, designed to do some of the analyses commonly performed in the pharmaceutical industry. The system

is intended for the analysis of pharmacokinetic data, although some of the commands are for general use.

The pk commands are

pkexamine [R] pkexamine Calculate pharmacokinetic measures

pksumm [R] pksumm Summarize pharmacokinetic data

pkshape [R] pkshape Reshape (pharmacokinetic) Latin-square data

pkcross [R] pkcross Analyze crossover experiments

pkequiv [R] pkequiv Perform bioequivalence tests

pkcollapse [R] pkcollapse Generate pharmacokinetic measurement dataset

Also see [ME] menl for fitting pharmacokinetic models using nonlinear mixed-effects models; for in-

stance, see example 15 in [ME] menl.

Remarks and examples
Several types of clinical trials are commonly performed in the pharmaceutical industry. Examples

include combination trials, multicenter trials, equivalence trials, and active control trials. For each type

of trial, there is an optimal study design for estimating the effects of interest. The pk system can be

used to analyze equivalence trials, which are usually conducted using a crossover design; however, it is

possible to use a parallel design and still draw conclusions about equivalence.

Equivalence trials assess bioequivalence between two drugs. Although proving that two drugs behave

the same is impossible, regulatory agencies believe that if the absorption properties of two drugs are sim-

ilar, the two drugs will produce similar effects and have similar safety profiles. Generally, the goal of an

equivalence trial is to assess the equivalence of a generic drug to an existing drug. This goal is commonly

accomplished by comparing a confidence interval about the difference between a pharmacokinetic mea-

surement of two drugs with an equivalence limit constructed from regulations. If the confidence interval

is entirely within the equivalence limit, the drugs are declared bioequivalent. Another approach to as-

sessing bioequivalence is to use the method of interval hypotheses testing. pkequiv is used to conduct
these tests of bioequivalence.

Several pharmacokinetic measures can be used to ascertain how available a drug is for cellular ab-

sorption. The most common measure is the area under the concentration–time curve (AUC). Another

common measure of drug availability is the maximum concentration (𝐶max) achieved by the drug during

the follow-up period. Stata reports these and other less common measures of drug availability, including

the time at which the maximum drug concentration was observed and the duration of the period during

which the subject was being measured. Stata also reports the elimination rate, that is, the rate at which

the drug is metabolized, and the drug’s half-life, that is, the time it takes for the drug concentration to

fall to one-half of its maximum concentration.
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pkexamine computes and reports all the pharmacokinetic measures that Stata produces, including

four calculations of the AUC. The standard AUC from 0 to the maximum observed time (AUC0,𝑡max) is

computed using cubic splines or the trapezoidal rule. Additionally, pkexamine also computes the AUC
from 0 to infinity by extending the standard concentration–time curve from the maximum observed time

using three different methods. The first method simply extends the standard curve by using a least-

squares linear fit through the last few data points. The second method extends the standard curve by

fitting a decreasing exponential curve through the last few data points. The third method extends the

curve by fitting a least-squares linear regression line on the log concentration. The mathematical details

of these extensions are described in Methods and formulas of [R] pkexamine.

Data from an equivalence trial may also be analyzed using methods appropriate to the particular study

design. When you have a crossover design, pkcross can be used to fit an appropriate ANOVAmodel. A
crossover design is simply a restricted Latin square; therefore, pkcross can also be used to analyze any
Latin-square design.

Some practical concerns arise when dealing with data from equivalence trials. Primarily, the data

must be organized in a manner that Stata can use. The pk commands include pkcollapse and pkshape,
which are designed to help transform data from a common format to one that is suitable for analysis with

Stata.

In the following examples, we illustrate several different data formats that are often encountered

in pharmaceutical research and describe how these formats can be transformed to formats that can be

analyzed with Stata.

Example 1
Assume that we have one subject and are interested in determining the drug profile for that subject. A

reasonable experiment would be to give the subject the drug and then measure the concentration of the

drug in the subject’s blood over a given period. For example, here is part of a dataset from Chow and

Liu (2009, 13):

. use https://www.stata-press.com/data/r18/auc
(Primidone concentrations)
. list, abbrev(14)

id time concentration

1. 1 0 0
2. 1 .5 0
3. 1 1 2.8
4. 1 1.5 4.4
5. 1 2 4.4

6. 1 3 4.7
7. 1 4 4.1
8. 1 6 4
9. 1 8 3.6

10. 1 12 3

11. 1 16 2.5
12. 1 24 2
13. 1 32 1.6
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Examining these data, we notice that the concentration quickly increases, plateaus for a short period,

and then slowly decreases over time. pkexamine is used to calculate the pharmacokinetic measures of
interest. pkexamine is explained in detail in [R] pkexamine. The output is

. pkexamine time concentration
Maximum concentration = 4.7

Time of maximum concentration = 3
Time of last observation (Tmax) = 32

Elimination rate = 0.0279
Half life = 24.8503

Area under the curve

AUC [0, inf.) AUC [0, inf.) AUC [0, inf.)
AUC [0, Tmax] Linear of log conc. Linear fit Exponential fit

85.24 142.603 107.759 142.603

Fit based on last 3 points.

Example 2
Clinical trials require that data be collected on more than one subject. There are several ways to enter

raw measured data collected on several subjects. It would be reasonable to enter for each subject the

drug concentration value at specific points in time. Such data could be

id conc1 conc2 conc3 conc4 conc5 conc6 conc7
1 0 1 4 7 5 3 1
2 0 2 6 5 4 3 2
3 0 1 2 3 5 4 1

where conc1 is the concentration at the first measured time, conc2 is the concentration at the second
measured time, etc. This format requires that each drug concentration measurement be made at the same

time on each subject. Another more flexible way to enter the data is to have an observation with three

variables for each time measurement on a subject. Each observation would have a subject ID, the time

at which the measurement was made, and the corresponding drug concentration at that time. The data

would be as follows:
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. use https://www.stata-press.com/data/r18/pkdata
(Fictional drug concentration data)
. list id conc1 time, sepby(id)

id conc1 time

1. 1 0 0
2. 1 3.073403 .5
3. 1 5.188444 1
4. 1 5.898577 1.5
5. 1 5.096378 2
6. 1 6.094085 3
7. 1 5.158772 4
8. 1 5.7065 6
9. 1 5.272467 8

10. 1 4.4576 12
11. 1 5.146423 16
12. 1 4.947427 24
13. 1 1.920421 32

14. 2 0 0
15. 2 2.48462 .5
16. 2 4.883569 1
17. 2 7.253442 1.5
18. 2 5.849345 2
19. 2 6.761085 3
20. 2 4.33839 4
21. 2 5.04199 6
22. 2 4.25128 8
23. 2 6.205004 12
24. 2 5.566165 16
25. 2 3.689007 24
26. 2 3.644063 32

(output omitted )
207. 16 4.673281 24
208. 16 3.487347 32

Stata expects the data to be organized in the second form, as shown in pkdata.dta. If your data are
organized as described in the first format, you will need to reshape the data to the second form; see

[D] reshape. Because the data in the second (or long) format contain information for one drug on several

subjects, pksumm can be used to produce summary statistics of the pharmacokinetic measurements. The
output is

. pksumm id time conc1

................
Summary statistics for the pharmacokinetic measures

Number of observations = 16
Measure Mean Median Variance Skewness Kurtosis p-value

auc 151.63 152.18 127.58 -0.34 2.07 0.55
aucline 397.09 219.83 178276.59 2.69 9.61 0.00
aucexp 668.60 302.96 720356.98 2.67 9.54 0.00
auclog 665.95 298.03 752573.34 2.71 9.70 0.00
half 90.68 29.12 17750.70 2.36 7.92 0.00

ke 0.02 0.02 0.00 0.88 3.87 0.08
cmax 7.37 7.42 0.40 -0.64 2.75 0.36
tomc 3.38 3.00 7.25 2.27 7.70 0.00
tmax 32.00 32.00 0.00 . . .
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Until now, we have been concerned with the profile of only one drug. We have characterized the

profile of that drug by individual subjects by using pkexamine and by a group of subjects by using

pksumm. The goal of an equivalence trial, however, is to compare two drugs, which we will do in the rest
of this example.

For equivalence trials, the study design most often used is the crossover design. For a complete

discussion of crossover designs, see Ratkowsky, Evans, and Alldredge (1993).

In brief, crossover designs require that each subject be given both treatments at two different times.

The order in which the treatments are applied changes between groups. For example, if we had 16 sub-

jects numbered 1–16, the first 8 would receive reference treatment “R” during the first period of the study,

and then they would be given test treatment “T”. The second 8 subjects would be given treatment “T”

during the first period of the study, and then they would be given treatment “R”. Each subject in the

study will have four variables that describe the observation: a subject identifier, a sequence identifier

that indicates the order of treatment, and two outcome variables, one for each treatment. The outcome

variables for each subject are the pharmacokinetic measures. The data must be transformed from a se-

ries of measurements on individual subjects to data containing the pharmacokinetic measures for each

subject. In Stata parlance, this is referred to as a collapse, which can be done with pkcollapse; see
[R] pkcollapse.

Here is part of our data:

. list, sepby(id)

id seq time conc1 conc2

1. 1 1 0 0 0
2. 1 1 .5 3.073403 3.712592
3. 1 1 1 5.188444 6.230602
4. 1 1 1.5 5.898577 7.885944
5. 1 1 2 5.096378 9.241735
6. 1 1 3 6.094085 13.10507
7. 1 1 4 5.158772 .169429
8. 1 1 6 5.7065 8.759894
9. 1 1 8 5.272467 7.985409

10. 1 1 12 4.4576 7.740126
11. 1 1 16 5.146423 7.607208
12. 1 1 24 4.947427 7.588428
13. 1 1 32 1.920421 2.791115

14. 2 1 0 0 0
15. 2 1 .5 2.48462 .9209593
16. 2 1 1 4.883569 5.925818
17. 2 1 1.5 7.253442 8.710549
18. 2 1 2 5.849345 10.90552
19. 2 1 3 6.761085 8.429898
20. 2 1 4 4.33839 5.573152
21. 2 1 6 5.04199 6.32341
22. 2 1 8 4.25128 .5251224
23. 2 1 12 6.205004 7.415988
24. 2 1 16 5.566165 6.323938
25. 2 1 24 3.689007 1.133553
26. 2 1 32 3.644063 5.759489

27. 3 1 0 0 0
(output omitted )

208. 16 2 32 3.487347 5.213639
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This format is similar to the second format described above, except that now we have measurements

for two drugs at each time for each subject. We transform these data with pkcollapse:

. pkcollapse time conc1 conc2, id(id) keep(seq) stat(auc)

................................

. list, sep(8) abbrev(10)

id seq auc_conc1 auc_conc2

1. 1 1 150.9643 218.5551
2. 2 1 146.7606 133.3201
3. 3 1 160.6548 126.0635
4. 4 1 157.8622 96.17461
5. 5 1 133.6957 188.9038
6. 6 1 160.639 223.6922
7. 7 1 131.2604 104.0139
8. 8 1 168.5186 237.8962

9. 9 2 137.0627 139.7382
10. 10 2 153.4038 202.3942
11. 11 2 163.4593 136.7848
12. 12 2 146.0462 104.5191
13. 13 2 158.1457 165.8654
14. 14 2 147.1977 139.235
15. 15 2 164.9988 166.2391
16. 16 2 145.3823 158.5146

For this example, we chose to use the AUC0,𝑡max for two drugs as our pharmacokinetic measure. We

could have used any of the measures computed by pkexamine. In addition to the AUCs, the dataset also
contains a sequence variable for each subject indicating when each treatment was administered.

The data produced by pkcollapse are in what Stata calls wide format; that is, there is one observation
per subject containing two or more outcomes. To use pkcross and pkequiv, we need to transform these

data to long format, which we can do using pkshape; see [R] pkshape.

Consider the first subject in the dataset. This subject is in sequence 1, which means that treatment “R”

was applied during the first period of the study and treatment “T” was applied in the second period of the

study. We need to split the first observation into two observations so that the outcome measure is only

in one variable. We also need two new variables, one indicating the treatment the subject received and

another recording the period of the study when the subject received that treatment. We might expect the

expansion of the first subject to be

id sequence auc treat period
1 1 150.9643 R 1
1 1 218.5551 T 2

We see that subject number 1 was in sequence 1, had an AUC0,𝑡max of 150.9643 when treatment “R”

was applied in the first period of the study, and had an AUC0,𝑡max of 218.5551 when treatment “T” was

applied in the second period.

Similarly, the expansion of subject 9 (the first subject in sequence 2) would be

id sequence auc treat period
9 2 137.0627 T 1
9 2 139.7382 R 2

Here treatment “T” was applied to the subject during the first period of the study, and treatment “R”

was applied to the subject during the second period of the study.
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An additional complication is common in crossover study designs. The treatment applied in the first

period of the studymight still have some effect on the outcome in the second period. In this example, each

subject was given one treatment followed by another treatment. To get accurate estimates of treatment

effects, it is necessary to account for the carryover effect, the effect that the first treatment has in the

second period of the study. We must, therefore, have a variable that indicates which treatment was

applied in the first treatment period. pkshape creates a variable that indicates the carryover effect. For
treatments applied during the first treatment period, there will never be a carryover effect. The sequence,

treatment, and carryover variables all receive value labels. Thus, the expanded data created by pkshape
for subject 1 and subject 9 will be as shown in the results:

. pkshape id seq auc*, order(RT TR)

. sort id sequence period

. list, sep(16)

id sequence outcome treat carry period

1. 1 RT 150.9643 R 0 1
2. 1 RT 218.5551 T R 2
3. 2 RT 146.7606 R 0 1
4. 2 RT 133.3201 T R 2
5. 3 RT 160.6548 R 0 1
6. 3 RT 126.0635 T R 2
7. 4 RT 157.8622 R 0 1
8. 4 RT 96.17461 T R 2
9. 5 RT 133.6957 R 0 1

10. 5 RT 188.9038 T R 2
11. 6 RT 160.639 R 0 1
12. 6 RT 223.6922 T R 2
13. 7 RT 131.2604 R 0 1
14. 7 RT 104.0139 T R 2
15. 8 RT 168.5186 R 0 1
16. 8 RT 237.8962 T R 2

17. 9 TR 137.0627 T 0 1
18. 9 TR 139.7382 R T 2
19. 10 TR 153.4038 T 0 1
20. 10 TR 202.3942 R T 2
21. 11 TR 163.4593 T 0 1
22. 11 TR 136.7848 R T 2
23. 12 TR 146.0462 T 0 1
24. 12 TR 104.5191 R T 2
25. 13 TR 158.1457 T 0 1
26. 13 TR 165.8654 R T 2
27. 14 TR 147.1977 T 0 1
28. 14 TR 139.235 R T 2
29. 15 TR 164.9988 T 0 1
30. 15 TR 166.2391 R T 2
31. 16 TR 145.3823 T 0 1
32. 16 TR 158.5146 R T 2

Crossover designs do not require that each subject receive each treatment, but if they do, the crossover

design is referred to as a complete crossover design.
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The dataset (pkdata.dta) in this example is organized in a manner that can be analyzed with Stata.
To fit an ANOVAmodel to these data, we can use anova or pkcross. To conduct equivalence tests, we
can use pkequiv.
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Also see
[ME] menl — Nonlinear mixed-effects regression
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pkcollapse — Generate pharmacokinetic measurement dataset

Description Quick start Menu Syntax
Options Remarks and examples Methods and formulas Also see

Description
pkcollapse generates new variables with the pharmacokinetic summary measures of interest.

pkcollapse is one of the pk commands. Please read [R] pk before reading this entry.

Quick start
Single concentration, v1, measured over time, tvar, for patients identified by idvar

pkcollapse tvar v1, id(idvar)

Same as above, but add additional drug concentration data stored in v2
pkcollapse tvar v1 v2, id(idvar)

Same as above, but use trapezoidal rule for calculating area under the concentration–time curve

(AUC0,𝑡max)

pkcollapse tvar v1 v2, id(idvar) trapezoid

Same as above, and increase the number of data points used to estimate AUC0,∞ to 10

pkcollapse tvar v1 v2, id(idvar) trapezoid fit(10)

Retain variables v3 and v4 when collapsing dataset
pkcollapse tvar v1 v2, id(idvar) keep(v3 v4)

Menu
Statistics > Epidemiology and related > Other > Generate pharmacokinetic measurement dataset
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Syntax
pkcollapse time concentration [ concentration [ . . . ] ] [ if ] , id(id var) [ options ]

options Description

Main
∗ id(id var) subject ID variable

stat(measures) create specified measures; default is all

trapezoid use trapezoidal rule; default is cubic splines

fit(#) use # points to estimate AUC0,∞; default is fit(3)
keep(varlist) keep variables in varlist

force force collapse

nodots suppress dots during calculation

∗id(id var) is required.

measures Description

auc AUC0,𝑡max
aucline AUC0,∞ using a linear extension

aucexp AUC0,∞ using an exponential extension

auclog area under the concentration–time curve from 0 to ∞ extended with a
linear fit to log concentration

half half-life of the drug

ke elimination rate

cmax maximum concentration

tmax time at last concentration

tomc time of maximum concentration

Options

� � �
Main �

id(id var) is required and specifies the variable that contains the subject ID over which pkcollapse is
to operate.

stat(measures) specifies the measures to be generated. The default is to generate all the measures.

trapezoid tells Stata to use the trapezoidal rule when calculating the AUC0,𝑡max . The default is to use

cubic splines, which give better results for most functions. When the curve is irregular, trapezoid
may give better results.

fit(#) specifies the number of points to use in estimating the AUC0,∞. The default is fit(3), the last
three points. This number should be viewed as a minimum; the appropriate number of points will

depend on your data.

keep(varlist) specifies the variables to be kept during the collapse. Variables not specified with the

keep() option will be dropped. When keep() is specified, the kept variables are checked to ensure
that all values of the variables are the same within id var.

force forces the collapse, even when values of the keep() variables differ within id var.

nodots suppresses the display of dots during calculation.
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Remarks and examples
pkcollapse generates all the summary pharmacokinetic measures.

Example 1
We demonstrate the use of pkcollapse with pkdata.dta described in example 2 of [R] pk. We

have drug concentration data on 16 subjects. Each subject is measured at 13 time points over a 32-hour

period. Some of the records are as follows:

. use https://www.stata-press.com/data/r18/pkdata
(Fictional drug concentration data)
. list, sep(0)

id seq time conc1 conc2

1. 1 1 0 0 0
2. 1 1 .5 3.073403 3.712592

(output omitted )
14. 2 1 0 0 0
15. 2 1 .5 2.48462 .9209593
16. 2 1 1 4.883569 5.925818
17. 2 1 1.5 7.253442 8.710549
18. 2 1 2 5.849345 10.90552
19. 2 1 3 6.761085 8.429898

(output omitted )
207. 16 2 24 4.673281 6.059818
208. 16 2 32 3.487347 5.213639

Although pksumm allows us to view all the pharmacokinetic measures, we can create a dataset with the

measures by using pkcollapse.

. pkcollapse time conc1 conc2, id(id) stat(auc) keep(seq)

................................

. list, sep(8) abbrev(10)

id seq auc_conc1 auc_conc2

1. 1 1 150.9643 218.5551
2. 2 1 146.7606 133.3201
3. 3 1 160.6548 126.0635
4. 4 1 157.8622 96.17461
5. 5 1 133.6957 188.9038
6. 6 1 160.639 223.6922
7. 7 1 131.2604 104.0139
8. 8 1 168.5186 237.8962

9. 9 2 137.0627 139.7382
10. 10 2 153.4038 202.3942
11. 11 2 163.4593 136.7848
12. 12 2 146.0462 104.5191
13. 13 2 158.1457 165.8654
14. 14 2 147.1977 139.235
15. 15 2 164.9988 166.2391
16. 16 2 145.3823 158.5146
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The resulting dataset contains one observation per subject and is in wide format. If we want to use

pkcross or pkequiv, we must transform these data to long format with the pkshape command, which
we do in example 2 of [R] pk.

Methods and formulas
The statistics generated by pkcollapse are described in [R] pkexamine.

Also see
[R] pk — Pharmacokinetic (biopharmaceutical) data
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Description Quick start Menu Syntax
Options Remarks and examples Methods and formulas References
Also see

Description
pkcross analyzes data from a crossover design experiment. When analyzing pharmaceutical trial

data, if the treatment, carryover, and sequence variables are known, the omnibus test for separability of

the treatment and carryover effects is calculated.

pkcross is one of the pk commands. Please read [R] pk before reading this entry.

Quick start
For pharmacokinetic outcome y measured for subjects identified by idvar given treatments treat in
sequences identified by seq in periods period with potential carryover effects from previous treatment

carry:

Sequence, treatment, and period effects for a 2 × 2 design

pkcross y, param(3) id(idvar) sequence(seq) treatment(treat) ///
period(period)

Same as above, but estimate the carryover effect instead of the sequence effect

pkcross y, param(1) id(idvar) treatment(treat) period(period) ///
carryover(carry)

Only estimate sequence, treatment, and period effects in higher-order designs

pkcross y, id(idvar) sequence(seq) treatment(treat) carryover(none)

Also estimate carryover effect and omnibus measure of separability of treatment and carryover effects

pkcross y, model(seq / idvar|seq treat carry period) ///
treatment(treat) carryover(carry) sequence(seq)

Menu
Statistics > Epidemiology and related > Other > Analyze crossover experiments
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Syntax
pkcross outcome [ if ] [ in ] [ , options ]

options Description

Model

sequence(varname) sequence variable; default is sequence(sequence)
treatment(varname) treatment variable; default is treatment(treat)
period(varname) period variable; default is period(period)
id(varname) ID variable; default is id(id)
carryover(varname) carryover variable; default is carryover(carry)
carryover(none) omit carryover effects from model; default is carryover(carry)
model(string) specify the model to fit

sequential estimate sequential instead of partial sums of squares

Parameterization

param(3) estimate mean and the period, treatment, and sequence effects;
assume no carryover effects exist; the default

param(1) estimate mean and the period, treatment, and carryover effects;
assume no sequence effects exist

param(2) estimate mean, period and treatment effects, and period-by-treatment
interaction; assume no sequence or carryover effects exist

param(4) estimate mean, sequence and treatment effects, and sequence-by-treatment
interaction; assume no period or carryover effects exist

Options

� � �
Model �

sequence(varname) specifies the variable that contains the sequence in which the treatment was ad-
ministered. If this option is not specified, sequence(sequence) is assumed.

treatment(varname) specifies the variable that contains the treatment information. If this option is not
specified, treatment(treat) is assumed.

period(varname) specifies the variable that contains the period information. If this option is not spec-
ified, period(period) is assumed.

id(varname) specifies the variable that contains the subject identifiers. If this option is not specified,
id(id) is assumed.

carryover(varname | none) specifies the variable that contains the carryover information. If

carry(none) is specified, the carryover effects are omitted from the model. If this option is not

specified, carryover(carry) is assumed.

model(string) specifies the model to be fit. For higher-order crossover designs, this option can be

useful if you want to fit a model other than the default. However, anova (see [R] anova) can also
be used to fit a crossover model. The default model for higher-order crossover designs is outcome

predicted by sequence, period, treatment, and carryover effects. By default, the model statement is

model(sequence period treat carry).

sequential specifies that sequential sums of squares be estimated.
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� � �
Parameterization �

param(#) specifies which of the four parameterizations to use for the analysis of a 2 × 2 crossover

experiment. This option is ignored with higher-order crossover designs. The default is param(3).
See the technical note in this entry for 2 × 2 crossover designs for more details.

param(3) estimates the overall mean, the period effects, the treatment effects, and the sequence

effects, assuming that no carryover effects exist. This is the default parameterization.

param(1) estimates the overall mean, the period effects, the treatment effects, and the carryover

effects, assuming that no sequence effects exist.

param(2) estimates the overall mean, the period effects, the treatment effects, and the period-by-

treatment interaction, assuming that no sequence or carryover effects exist.

param(4) estimates the overall mean, the sequence effects, the treatment effects, and the sequence-
by-treatment interaction, assuming that no period or carryover effects exist. When the sequence-by-

treatment interaction is equivalent to the period effect, this reduces to the third parameterization.

Remarks and examples
pkcross is designed to analyze crossover experiments. Use pkshape first to reshape your data; see

[R] pkshape. pkcross assumes that the data were reshaped by pkshape or are organized in the same
manner as produced with pkshape. Washout periods are indicated by the number 0. See the technical

note below for more information on analyzing 2 × 2 crossover experiments.

Technical note
The 2 × 2 crossover design cannot be used to estimate more than four parameters because there are

only four pieces of information (the four cell means) collected. pkcross usesANOVAmodels to analyze
the data, so one of the four parameters must be the overall mean of the model, leaving just 3 degrees of

freedom to estimate the remaining effects (period, sequence, treatment, and carryover). Thus, the model

is overparameterized. Estimation of treatment and carryover effects requires the assumption of either

no period effects or no sequence effects. Some researchers maintain that estimating carryover effects at

the expense of other effects is a bad idea. This is a limitation of this design. pkcross implements four
parameterizations for this model. They are numbered sequentially from one to four and are described in

Options.

Example 1
Consider the example data published in Chow and Liu (2009, 71). There are 24 patients, 12 in each

sequence. Sequence 1 is the reference formulation followed by the test formulation; sequence 2 is the

test formulation followed by the reference formulation. After reshaping the data with pkshape, we have
variables that identify the subjects, periods, treatments, sequence, and carryover treatment. The outcome
variable contains the reported AUC0,𝑡max . To compute the ANOVA table, use pkcross:
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. use https://www.stata-press.com/data/r18/chowliu

. pkshape id seq period1 period2, order(RT TR)

. pkcross outcome
Sequence variable = sequence

Period variable = period
Treatment variable = treat
Carryover variable = carry

ID variable = id
Analysis of variance (ANOVA) for a 2x2 crossover study

Source of variation Partial SS df MS F Prob > F

Intersubjects
Sequence effect 276.00 1 276.00 0.37 0.5468

Residuals 16211.49 22 736.89 4.41 0.0005

Intrasubjects
Treatment effect 62.79 1 62.79 0.38 0.5463

Period effect 35.97 1 35.97 0.22 0.6474
Residuals 3679.43 22 167.25

Total 20265.68 47
Omnibus measure of separability of treatment and carryover = 29.2893%

There is evidence of intersubject variability, but there are no other significant effects. The omnibus test

for separability is a measure reflecting the degree to which the study design allows the treatment effects

to be estimated independently of the carryover effects. The measure of separability of the treatment and

carryover effects indicates approximately 29% separability, which can be interpreted as the degree to

which the treatment and carryover effects are orthogonal. This is a characteristic of the design of the

study. For a complete discussion, see Ratkowsky, Evans, and Alldredge (1993). Compared with the

output in Chow and Liu (2009), the sequence effect is mislabeled as a carryover effect. See Ratkowsky,

Evans, and Alldredge (1993, sec. 3.2) for a complete discussion of the mislabeling.

By specifying param(1), we obtain parameterization 1 for this model.

. pkcross outcome, param(1)
Sequence variable = sequence

Period variable = period
Treatment variable = treat
Carryover variable = carry

ID variable = id
Analysis of variance (ANOVA) for a 2x2 crossover study

Source of variation Partial SS df MS F Prob > F

Treatment effect 301.04 1 301.04 0.67 0.4189
Period effect 255.62 1 255.62 0.57 0.4561

Carryover effect 276.00 1 276.00 0.61 0.4388
Residuals 19890.92 44 452.07

Total 20265.68 47
Omnibus measure of separability of treatment and carryover = 29.2893%
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Example 2
Consider the case of a two-treatment, four-sequence, two-period crossover design. This design is

commonly referred to as Balaam’s design (Balaam 1968). Ratkowsky, Evans, andAlldredge (1993, 140)

published the following data from an amantadine trial, originally published by Taka andArmitage (1983):

. use https://www.stata-press.com/data/r18/balaam, clear

. list, sep(0)

id seq period1 period2 period3

1. 1 -ab 9 8.75 8.75
2. 2 -ab 12 10.5 9.75
3. 3 -ab 17 15 18.5
4. 4 -ab 21 21 21.5
5. 1 -ba 23 22 18
6. 2 -ba 15 15 13
7. 3 -ba 13 14 13.75
8. 4 -ba 24 22.75 21.5
9. 5 -ba 18 17.75 16.75

10. 1 -aa 14 12.5 14
11. 2 -aa 27 24.25 22.5
12. 3 -aa 19 17.25 16.25
13. 4 -aa 30 28.25 29.75
14. 1 -bb 21 20 19.51
15. 2 -bb 11 10.5 10
16. 3 -bb 20 19.5 20.75
17. 4 -bb 25 22.5 23.5

The sequence identifier must be a string with 0s to indicate washout or baseline periods, or a number.

If the sequence identifier is numeric, the order() option must be specified with pkshape. If the se-
quence identifier is a string, pkshape will use the string values to create sequence, period, and treatment
variables. In this example, the dash is used to indicate a baseline period, which is an invalid code for this

purpose. Therefore, we use the subinstr() function to replace each dash with a 0. After doing so, we
can use pkshape to format the data in a way that can be used with pkcross. We leave most pkcross
options at their defaults, but we specify the sequential option to calculate sequential sums of squares
instead of the default partial sums of squares.
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. replace seq = subinstr(seq, ”-”, ”0”, .)
(17 real changes made)
. pkshape id seq period1 period2 period3
. pkcross outcome, sequential

Sequence variable = sequence
Period variable = period

Treatment variable = treat
Carryover variable = carry

ID variable = id
Analysis of variance (ANOVA) for a crossover study

Source of variation SS df MS F Prob > F

Intersubjects
Sequence effect 285.82 3 95.27 1.01 0.4180

Residuals 1221.49 13 93.96 59.96 0.0000

Intrasubjects
Period effect 15.13 2 7.56 6.34 0.0048

Treatment effect 8.48 1 8.48 8.86 0.0056
Carryover effect 0.11 1 0.11 0.12 0.7366

Residuals 29.56 30 0.99

Total 1560.59 50
Omnibus measure of separability of treatment and carryover = 64.6447%

Example 3
For this example, we return to pkdata.dta from example 2 of [R] pk and use pkcollapse and

pkshape on the data as discussed in that example.

. use https://www.stata-press.com/data/r18/pkdata, clear
(Fictional drug concentration data)
. pkcollapse time conc1 conc2, id(id) keep(seq) stat(auc)
................................
. pkshape id seq auc*, order(RT TR)
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After sorting the data with sort, our data appear as follows:

. sort period id

. list, sep(8)

id sequence outcome treat carry period

1. 1 RT 150.9643 R 0 1
2. 2 RT 146.7606 R 0 1
3. 3 RT 160.6548 R 0 1
4. 4 RT 157.8622 R 0 1
5. 5 RT 133.6957 R 0 1
6. 6 RT 160.639 R 0 1
7. 7 RT 131.2604 R 0 1
8. 8 RT 168.5186 R 0 1

9. 9 TR 137.0627 T 0 1
10. 10 TR 153.4038 T 0 1
11. 11 TR 163.4593 T 0 1
12. 12 TR 146.0462 T 0 1
13. 13 TR 158.1457 T 0 1
14. 14 TR 147.1977 T 0 1
15. 15 TR 164.9988 T 0 1
16. 16 TR 145.3823 T 0 1

17. 1 RT 218.5551 T R 2
18. 2 RT 133.3201 T R 2
19. 3 RT 126.0635 T R 2
20. 4 RT 96.17461 T R 2
21. 5 RT 188.9038 T R 2
22. 6 RT 223.6922 T R 2
23. 7 RT 104.0139 T R 2
24. 8 RT 237.8962 T R 2

25. 9 TR 139.7382 R T 2
26. 10 TR 202.3942 R T 2
27. 11 TR 136.7848 R T 2
28. 12 TR 104.5191 R T 2
29. 13 TR 165.8654 R T 2
30. 14 TR 139.235 R T 2
31. 15 TR 166.2391 R T 2
32. 16 TR 158.5146 R T 2
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We now fit an ANOVAmodel using pkcross:

. pkcross outcome
Sequence variable = sequence

Period variable = period
Treatment variable = treat
Carryover variable = carry

ID variable = id
Analysis of variance (ANOVA) for a 2x2 crossover study

Source of variation Partial SS df MS F Prob > F

Intersubjects
Sequence effect 378.04 1 378.04 0.29 0.5961

Residuals 17991.26 14 1285.09 1.40 0.2691

Intrasubjects
Treatment effect 455.04 1 455.04 0.50 0.4931

Period effect 419.47 1 419.47 0.46 0.5102
Residuals 12860.78 14 918.63

Total 32104.59 31
Omnibus measure of separability of treatment and carryover = 29.2893%

Example 4
Consider the case of a six-treatment crossover trial in which the squares are not variance balanced.

The following dataset is from a partially balanced crossover trial published by Patterson and Lucas (1962)

and reproduced in Ratkowsky, Evans, and Alldredge (1993, 231):

. use https://www.stata-press.com/data/r18/nobalance, clear

. list, sep(4)

cow seq period1 period2 period3 period4 block

1. 1 adbe 38.7 37.4 34.3 31.3 1
2. 2 baed 48.9 46.9 42 39.6 1
3. 3 ebda 34.6 32.3 28.5 27.1 1
4. 4 deab 35.2 33.5 28.4 25.1 1

5. 1 dafc 32.9 33.1 27.5 25.1 2
6. 2 fdca 30.4 29.5 26.7 23.1 2
7. 3 cfad 30.8 29.3 26.4 23.2 2
8. 4 acdf 25.7 26.1 23.4 18.7 2

9. 1 efbc 25.4 26 23.9 19.9 3
10. 2 becf 21.8 23.9 21.7 17.6 3
11. 3 fceb 21.4 22 19.4 16.6 3
12. 4 cbfe 22.8 21 18.6 16.1 3
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When there is no variance balance in the design, a square or blocking variable is needed to indicate in

which treatment cell a sequence was observed, but the mechanical steps are the same.

. pkshape cow seq period1 period2 period3 period4

. pkcross outcome, model(block cow|block period|block treat carry) sequential
Number of obs = 48 R-squared = 0.9965
Root MSE = .740408 Adj R-squared = 0.9903

Source Seq. SS df MS F Prob > F

Model 2650.1331 30 88.3377701 161.14 0.0000

block 1607.01128 2 803.505642 1465.71 0.0000
cow|block 628.706274 9 69.8562527 127.43 0.0000

period|block 408.031253 9 45.3368059 82.70 0.0000
treat 2.50000057 5 .500000114 0.91 0.4964
carry 3.88428906 5 .776857812 1.42 0.2680

Residual 9.31945887 17 .548203463

Total 2659.45256 47 56.584097

When the model statement is used and the omnibus measure of separability is desired, specify the vari-

ables in the treatment(), carryover(), and sequence() options to pkcross.

Methods and formulas
pkcross uses ANOVA to fit models for crossover experiments; see [R] anova.

The omnibus measure of separability is

𝑆 = 100(1 − 𝑉 )%

where 𝑉 is Cramér’s 𝑉 and is defined as

𝑉 = {
𝜒2

𝑁
min(𝑟 − 1, 𝑐 − 1)

}

1
2

𝑁 is the sample size and 𝜒2 is calculated as

𝜒2 = ∑
𝑖

∑
𝑗

{
(𝑂𝑖𝑗 − 𝐸𝑖𝑗)

2

𝐸𝑖𝑗
}

where 𝑂 and 𝐸 are the observed and expected counts in an 𝑟 × 𝑐 table of the number of times each
treatment is followed by the other treatments.
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Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description
pkequiv performs bioequivalence testing for two treatments. By default, pkequiv calculates a stan-

dard confidence interval (CI) symmetric about the difference between the two treatment means. pkequiv
also calculates CIs symmetric about 0 and intervals based on Fieller’s theorem. Also, pkequiv can per-
form interval hypothesis tests for bioequivalence.

pkequiv is one of the pk commands. Please read [R] pk before reading this entry.

Quick start
Classic CI for difference in pharmacokinetic outcome y1 between treatments v1 given over period v2 in

sequence v3 with subjects identified by idvar
pkequiv y1 v1 v2 v3 idvar

Same as above, but calculate an exact CI by Fieller’s theorem

pkequiv y1 v1 v2 v3 idvar, fieller

Schuirmann’s two one-sided tests for bioequivalence

pkequiv y1 v1 v2 v3 idvar, tost

Specify the two treatments, 2 and 3, that are to be tested for equivalence

pkequiv y1 v1 v2 v3 idvar, compare(2 3)

Menu
Statistics > Epidemiology and related > Other > Bioequivalence tests

2191
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Syntax
pkequiv outcome treatment period sequence id [ if ] [ in ] [ , options ]

options Description

Options

compare(string) compare the two specified values of the treatment variable

limit(#) equivalence limit (between 0.01 and 0.99); default is limit(0.2)
level(#) set confidence level; default is level(90)
fieller calculate CI by Fieller’s theorem

symmetric calculate symmetric CI

anderson Anderson and Hauck hypothesis test for bioequivalence

tost two one-sided hypothesis tests for bioequivalence

noboot do not estimate probability that CI lies within confidence limits

collect is allowed; see [U] 11.1.10 Prefix commands.

Options

� � �
Options �

compare(string) specifies the two treatments to be tested for equivalence. Sometimes there may be

more than two treatments, but the equivalence can be determined only between any two treatments.

limit(#) specifies the equivalence limit. The default is limit(0.2). The equivalence limit can be
changed only symmetrically; for example, it is not possible to have a 0.15 lower limit and a 0.2 upper

limit in the same test.

level(#) specifies the confidence level, as a percentage, for CIs. The default is level(90). This setting
is not controlled by the set level command.

fieller specifies that a CI based on Fieller’s theorem be calculated.

symmetric specifies that a symmetric CI be calculated.

anderson specifies that the Anderson and Hauck (1983) hypothesis test for bioequivalence be computed.
This option is ignored when calculating a CI based on Fieller’s theorem or when calculating a CI that

is symmetric about 0.

tost specifies that the two one-sided hypothesis tests for bioequivalence be computed. This option is
ignored when calculating a CI based on Fieller’s theorem or when calculating a CI that is symmetric

about 0.

noboot prevents the estimation of the probability that the CI lies within the equivalence limits. If this

option is not specified, this probability is estimated by resampling the data.

Remarks and examples
pkequiv is designed to conduct tests for bioequivalence based on data from a crossover experiment.

pkequiv requires that the user specify the outcome, treatment, period, sequence, and id variables. The
data must be in the same format as that produced by pkshape; see [R] pkshape.
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Example 1
We use pkdata.dta from example 2 of [R] pk. We use pkcollapse and pkshape on the data as

discussed in that example. After sorting the data with sort, our data appear as follows:

. use https://www.stata-press.com/data/r18/pkdata, clear
(Fictional drug concentration data)
. pkcollapse time conc1 conc2, id(id) keep(seq) stat(auc)
................................
. pkshape id seq auc*, order(RT TR)
. sort period id
. list, sep(4)

id sequence outcome treat carry period

1. 1 RT 150.9643 R 0 1
2. 2 RT 146.7606 R 0 1
3. 3 RT 160.6548 R 0 1
4. 4 RT 157.8622 R 0 1

5. 5 RT 133.6957 R 0 1
6. 6 RT 160.639 R 0 1
7. 7 RT 131.2604 R 0 1
8. 8 RT 168.5186 R 0 1

9. 9 TR 137.0627 T 0 1
10. 10 TR 153.4038 T 0 1
11. 11 TR 163.4593 T 0 1
12. 12 TR 146.0462 T 0 1

13. 13 TR 158.1457 T 0 1
14. 14 TR 147.1977 T 0 1
15. 15 TR 164.9988 T 0 1
16. 16 TR 145.3823 T 0 1

17. 1 RT 218.5551 T R 2
18. 2 RT 133.3201 T R 2
19. 3 RT 126.0635 T R 2
20. 4 RT 96.17461 T R 2

21. 5 RT 188.9038 T R 2
22. 6 RT 223.6922 T R 2
23. 7 RT 104.0139 T R 2
24. 8 RT 237.8962 T R 2

25. 9 TR 139.7382 R T 2
26. 10 TR 202.3942 R T 2
27. 11 TR 136.7848 R T 2
28. 12 TR 104.5191 R T 2

29. 13 TR 165.8654 R T 2
30. 14 TR 139.235 R T 2
31. 15 TR 166.2391 R T 2
32. 16 TR 158.5146 R T 2
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We use pkequiv to conduct a bioequivalence test between reference treatment “R” and test treatment
“T”.

. set seed 123

. pkequiv outcome treat period seq id
Classic confidence interval for bioequivalence

[equivalence limits] [ test limits ]

difference: -30.296 30.296 -11.332 26.416
ratio: 80% 120% 92.519% 117.439%

Probability test limits are within equivalence limits = 0.6590
Note: Reference treatment = 1.

The default output for pkequiv shows a CI for the difference between the means (test limits), the ratio
of the means, and the user-specified equivalence limits. The classic CI can be constructed around the

difference between the average measure of effect for the two drugs or around the ratio of the average

measure of effect for the two drugs. pkequiv reports both the difference measure and the ratio measure.
Following Chow and Liu (2009), we can apply the ±20 rule to the difference and ratio measures to

determine equivalence limits. For these data, the CI for the difference must be entirely contained within

the range [ −30.296, 30.296 ] and for the ratio between 80% and 120%. Here the test limits are within

the equivalence limits. Although the test limits are inside the equivalence limits, there is only a 66%

assurance that the observed CI will be within the equivalence limits in the long run. This is an interesting

case because, although this sample shows bioequivalence, the evaluation of the long-run performance

indicates possible problems. These fictitious data were generatedwith high intrasubject variability, which

causes poor long-run performance.

We now use the data published in Chow and Liu (2009, 71), which we describe in example 1 of

[R] pkshape. As shown in example 1, we also use pkshape to reshape the data. We use the same

pkequiv command used above to conduct a bioequivalence test on the data.

. use https://www.stata-press.com/data/r18/chowliu, clear

. pkshape id seq period1 period2, order(RT TR)

. set seed 123

. pkequiv outcome treat period seq id
Classic confidence interval for bioequivalence

[equivalence limits] [ test limits ]

difference: -16.512 16.512 -8.698 4.123
ratio: 80% 120% 89.464% 104.994%

Probability test limits are within equivalence limits = 0.9940
Note: Reference treatment = 1.

For these data, the test limits are well within the equivalence limits, and the probability that the test

limits are within the equivalence limits is 99.4%.
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Example 2
pkequiv displays interval hypothesis tests of bioequivalence if you specify the tost or the anderson

option, or both. For example,

. set seed 123

. pkequiv outcome treat period seq id, tost anderson
Classic confidence interval for bioequivalence

[equivalence limits] [ test limits ]

difference: -16.512 16.512 -8.698 4.123
ratio: 80% 120% 89.464% 104.994%

Probability test limits are within equivalence limits = 0.9940
Schuirmann’s two one-sided tests

upper test statistic = -5.036 p-value = 0.000
lower test statistic = 3.810 p-value = 0.000
Anderson and Hauck’s test

noncentrality parameter = 4.423
test statistic = -0.613 empirical p-value = 0.0005

Note: Reference treatment = 1.

Both of Schuirmann’s one-sided tests are highly significant, suggesting that the two drugs are bioequiv-

alent. A similar conclusion is drawn from the Anderson and Hauck test of bioequivalence.

Stored results
pkequiv stores the following in r():

Scalars

r(stddev) pooled-sample standard deviation of period differences from both sequences

r(uci) upper limit of a classic CI

r(lci) lower limit of a classic CI

r(delta) delta value used in calculating a symmetric CI

r(u3) upper limit of Fieller’s CI

r(l3) lower limit of Fieller’s CI

Methods and formulas
The lower limit for the difference in the two treatments for the classic shortest CI is

𝐿1 = (𝑌𝑇 − 𝑌𝑅) − 𝑡(𝛼,𝑛1+𝑛2−2)�̂�𝑑√ 1
𝑛1

+ 1
𝑛2

The upper limit is

𝑈1 = (𝑌𝑇 − 𝑌𝑅) + 𝑡(𝛼,𝑛1+𝑛2−2)�̂�𝑑√ 1
𝑛1

+ 1
𝑛2
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The limits for the ratio measure are

𝐿2 = ( 𝐿1

𝑌𝑅
+ 1) 100%

and

𝑈2 = ( 𝑈1

𝑌𝑅
+ 1) 100%

where 𝑌𝑇 is the marginal mean of the test formulation of the drug, 𝑌𝑅 is the marginal mean of the

reference formulation of the drug, and 𝑡(𝛼,𝑛1+𝑛2−2) is the 𝑡 distribution with 𝑛1 + 𝑛2 − 2 degrees of

freedom. �̂�𝑑 is the pooled sample variance of the period differences from both sequences, defined as

�̂�𝑑 = 1
𝑛1 + 𝑛2 − 2

2
∑
𝑘=1

𝑛𝑘

∑
𝑖=1

(𝑑𝑖𝑘 − 𝑑.𝑘)2

The finite sample performance of the classical CI is assessed via bootstrap simulation of the CI. One

thousand bootstrap samples are drawn using the patient IDs as clusters. For each sample, the classical CI

is constructed and compared with the equivalence limits.

The upper and lower limits for the symmetric CI are 𝑌𝑅 + Δ and 𝑌𝑅 − Δ, where

Δ = 𝑘1�̂�𝑑√ 1
𝑛1

+ 1
𝑛2

− (𝑌𝑅 − 𝑌𝑇)

and (simultaneously)

Δ = −𝑘2�̂�𝑑√ 1
𝑛1

+ 1
𝑛2

+ (𝑌𝑅 − 𝑌𝑇)

and 𝑘1 and 𝑘2 are computed iteratively to satisfy the above equalities and the condition

∫
𝑘2

𝑘1

𝑓(𝑡)𝑑𝑡 = 1 − 2𝛼

where 𝑓(𝑡) is the probability density function of the 𝑡 distribution with 𝑛1 + 𝑛2 − 2 degrees of freedom.

See Chow and Liu (2009, 88–92) for details about calculating the CI based on Fieller’s theorem.

The two test statistics for the two one-sided tests of equivalence are

𝑇𝐿 =
(𝑌𝑇 − 𝑌𝑅) − 𝜃𝐿

�̂�𝑑√ 1
𝑛1

+ 1
𝑛2

and

𝑇𝑈 =
(𝑌𝑇 − 𝑌𝑅) − 𝜃𝑈

�̂�𝑑√ 1
𝑛1

+ 1
𝑛2

where −𝜃𝐿 = 𝜃𝑈, both of these being the regulated confidence limits.
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The logic of the Anderson and Hauck test is tricky; see Chow and Liu (2009) for a complete expla-

nation. However, the test statistic is

𝑇𝐴𝐻 =
(𝑌𝑇 − 𝑌𝑅) − ( 𝜃𝐿+𝜃𝑈

2 )

�̂�𝑑√ 1
𝑛1

+ 1
𝑛2

and the noncentrality parameter is estimated by

̂𝛿 = 𝜃𝑈 − 𝜃𝐿

2�̂�𝑑√ 1
𝑛1

+ 1
𝑛2

The empirical 𝑝-value is calculated as

𝑝 = 𝐹𝑡 (|𝑇𝐴𝐻| − ̂𝛿) − 𝐹𝑡 (− |𝑇𝐴𝐻| − ̂𝛿)

where 𝐹𝑡 is the cumulative distribution function of the 𝑡 distribution with 𝑛1 +𝑛2 −2 degrees of freedom.
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pkexamine — Calculate pharmacokinetic measures

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Reference Also see

Description
pkexamine calculates pharmacokinetic measures from concentration-and-time subject-level data.

pkexamine computes and displays the maximummeasured concentration, the time at the maximummea-

sured concentration, the time of the last measurement, the elimination time, the half-life, and the area

under the concentration–time curve (AUC0,𝑡max). Three estimates of the AUC from 0 to infinity (AUC0,∞)

are also calculated.

pkexamine is one of the pk commands. Please read [R] pk before reading this entry.

Quick start
Pharmacokinetic measures for concentrations y at times tvar where idvar = 4

pkexamine tvar y if idvar==4

Same as above, but use trapezoidal rule to calculate AUC
0,𝑡max

pkexamine tvar y if idvar==4, trapezoid

Plot concentration–time curve where idvar = 2

pkexamine tvar y if idvar==2, graph

Same as above, and save graph as mygraph
pkexamine tvar y if idvar==2, graph saving(mygraph)

Menu
Statistics > Epidemiology and related > Other > Pharmacokinetic measures
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Syntax
pkexamine time concentration [ if ] [ in ] [ , options ]

options Description

Main

fit(#) use # points to estimate AUC0,∞; default is fit(3)
trapezoid use trapezoidal rule; default is cubic splines

graph graph the AUC

line graph the linear extension

log graph the log extension

exp(#) plot the exponential fit for the AUC0,∞

AUC plot

cline options affect rendition of plotted points connected by lines

marker options change look of markers (color, size, etc.)

marker label options add marker labels; change look or position

Add plots

addplot(plot) add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

by and collect are allowed; see [U] 11.1.10 Prefix commands.

Options

� � �
Main �

fit(#) specifies the number of points, counting back from the last measurement, to use in fitting the

extension to estimate the AUC0,∞. The default is fit(3), or the last three points. This value should
be viewed as a minimum; the appropriate number of points will depend on your data.

trapezoid specifies that the trapezoidal rule be used to calculate the AUC
0,𝑡max . The default is cubic

splines, which give better results for most functions. When the curve is irregular, trapezoid may
give better results.

graph tells pkexamine to graph the concentration–time curve.

line and log specify the estimates of the AUC0,∞ to display when graphing the AUC0,∞. If the graph
option is not also specified, then these options are ignored.

exp(#) specifies that the exponential fit for theAUC0,∞ be plotted. You must specify the maximum time

value to which you want to plot the curve, and this time value must be greater than the maximum time

measurement in the data. If you specify 0, the curve will be plotted to the point at which the linear

extension would cross the 𝑥 axis. If the graph option is not also specified, then this option is ignored.
This option is not valid with the line or log option.
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� � �
AUC plot �

cline options affect the rendition of the plotted points connected by lines; see [G-3] cline options.

marker options specify the look of markers. This look includes the marker symbol, size, color, and

outline; see [G-3] marker options.

marker label options specify if and how the markers are to be labeled; see

[G-3] marker label options.

� � �
Add plots �

addplot(plot) provides a way to add other plots to the generated graph; see [G-3] addplot option.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see

[G-3] saving option).

Remarks and examples
pkexamine computes summary statistics for a given patient in a pharmacokinetic trial. If by idvar: is

specified, statistics will be displayed for each subject in the data.

Example 1
Chow and Liu (2009, 13) present data on a study examining primidone concentrations versus time

over a 32-hour period after dosing a subject.

. use https://www.stata-press.com/data/r18/auc
(Primidone concentrations)
. list, abbrev(14)

id time concentration

1. 1 0 0
2. 1 .5 0
3. 1 1 2.8
4. 1 1.5 4.4
5. 1 2 4.4

6. 1 3 4.7
7. 1 4 4.1
8. 1 6 4
9. 1 8 3.6

10. 1 12 3

11. 1 16 2.5
12. 1 24 2
13. 1 32 1.6
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We use pkexamine to produce the summary statistics:

. pkexamine time concentration, graph
Maximum concentration = 4.7

Time of maximum concentration = 3
Time of last observation (Tmax) = 32

Elimination rate = 0.0279
Half life = 24.8503

Area under the curve

AUC [0, inf.) AUC [0, inf.) AUC [0, inf.)
AUC [0, Tmax] Linear of log conc. Linear fit Exponential fit

85.24 142.603 107.759 142.603

Fit based on last 3 points.
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The maximum concentration of 4.7 occurs at time 3, and the time of the last observation (Tmax) is 32. In

addition toAUC
0,𝑡max , which is calculated from 0 to the maximum value of time, pkexamine also reports

AUC
0,∞, the AUC computed by extending the curve with each of three methods: a linear fit to the log

of the concentration, a linear regression line, and a decreasing exponential regression line. See Methods

and formulas for details on these three methods.

By default, all extensions to the AUC are based on the last three points. In looking at the graph for

these data, it seems more appropriate to use the last seven points to estimate the AUC0,∞:

. pkexamine time concentration, fit(7)
Maximum concentration = 4.7

Time of maximum concentration = 3
Time of last observation (Tmax) = 32

Elimination rate = 0.0349
Half life = 19.8354

Area under the curve

AUC [0, inf.) AUC [0, inf.) AUC [0, inf.)
AUC [0, Tmax] Linear of log conc. Linear fit Exponential fit

85.24 131.027 96.805 129.181

Fit based on last 7 points.
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This approach decreased the estimate of the AUC0,∞ for all extensions. To see a graph of the AUC0,∞
using a linear extension, specify the graph and line options.

. pkexamine time concentration, fit(7) graph line
Maximum concentration = 4.7

Time of maximum concentration = 3
Time of last observation (Tmax) = 32

Elimination rate = 0.0349
Half life = 19.8354

Area under the curve

AUC [0, inf.) AUC [0, inf.) AUC [0, inf.)
AUC [0, Tmax] Linear of log conc. Linear fit Exponential fit

85.24 131.027 96.805 129.181

Fit based on last 7 points.
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Stored results
pkexamine stores the following in r():

Scalars

r(auc) AUC

r(half) half-life of the drug

r(ke) elimination rate

r(tmax) time at last concentration measurement

r(cmax) maximum concentration

r(tomc) time of maximum concentration

r(auc line) AUC0,∞ estimated with a linear fit

r(auc exp) AUC0,∞ estimated with an exponential fit

r(auc ln) AUC0,∞ estimated with a linear fit of the natural log

Methods and formulas
Let 𝑖 index the observations sorted by time, let 𝑘 be the number of observations, and let 𝑓 be the

number of points specified in the fit(#) option.
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The AUC0,𝑡max is defined as

AUC0,𝑡max = ∫
𝑡max

0
𝐶𝑡𝑑𝑡

where 𝐶𝑡 is the concentration at time 𝑡. By default, the integral is calculated numerically using cubic
splines. However, if the trapezoidal rule is used, the AUC0,𝑡max is given as

AUC0,𝑡max =
𝑘

∑
𝑖=2

𝐶𝑖−1 + 𝐶𝑖
2

(𝑡𝑖 − 𝑡𝑖−1)

The AUC0,∞ is the AUC0,𝑡max + AUC𝑡max,∞, or

AUC0,∞ = ∫
𝑡max

0
𝐶𝑡𝑑𝑡 + ∫

∞

𝑡max

𝐶𝑡𝑑𝑡

When using the linear extension to the AUC0,𝑡max , the integration is cut off when the line crosses the 𝑥
axis. The log extension is a linear extension on the log concentration scale. The area for the exponential

extension is

AUC𝑡max,∞ = ∫
∞

𝑡max

𝑒𝛽0+𝑡𝛽1𝑑𝑡 = 𝑒𝛽0+𝑡max𝛽1

−𝛽1

where 𝛽0 > 0 and 𝛽1 < 0 are the intercept and slope, respectively, of an exponential accelerated failure-

time regression of concentration on time.

The elimination rate 𝐾eq is the negative of the slope from a linear regression of log concentration on

time fit to the number of points specified in the fit(#) option:

𝐾eq = −
∑𝑘

𝑖=𝑘−𝑓+1 (𝑡𝑖 − 𝑡) ( ln𝐶𝑖 − ln𝐶)

∑𝑘
𝑖=𝑘−𝑓+1 (𝑡𝑖 − 𝑡)2

The half-life is

𝑡half = ln2
𝐾eq

Reference
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FL: Chapman and Hall/CRC. https://doi.org/10.1201/9781420011678.
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pkshape — Reshape (pharmacokinetic) Latin-square data

Description Quick start Menu Syntax
Options Remarks and examples References Also see

Description
pkshape reshapes data for use with anova, pkcross, and pkequiv; see [R] anova, [R] pkcross, and

[R] pkequiv. Latin-square and crossover data are often organized in a manner that cannot be analyzed

easily with Stata. pkshape reorganizes the data in memory for use in Stata.

pkshape is one of the pk commands. Please read [R] pk before reading this entry.

Quick start
Reshape data when string sequence variable seq = TR or RT for patients identified by idvar observed

at tvar1 and tvar2
pkshape idvar seq tvar1 tvar2

Same as above, but with numeric seq = 1 indicating TR and seq = 2 indicating RT
pkshape idvar seq tvar1 tvar2, order(TR RT)

Indicate that period 2 is a washout and the second treatment is administered in period 3

pkshape idvar seq tvar1 tvar2 tvar3, order(T0R R0T)

Menu
Statistics > Epidemiology and related > Other > Reshape pharmacokinetic Latin-square data
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Syntax
pkshape id sequence period1 period2 [ periodlist ] [ , options ]

Variable id specifies unique subject identifiers. Variable sequence specifies the sequence (numeric or

string) in which treatments were received. Variables period1, period2, and so on specify the pharma-

cokinetic measurements such as AUC in the corresponding periods.

options Description

order(string) apply treatments in specified order; required with numeric sequence

outcome(newvar) name for outcome variable; default is outcome(outcome)
treatment(newvar) name for treatment variable; default is treatment(treat)
carryover(newvar) name for carryover variable; default is carryover(carry)
sequence(newvar) name for sequence variable; default is sequence(sequence)
period(newvar) name for period variable; default is period(period)

Options
order(string) specifies the order in which treatments were applied when generating the sequence, treat-

ment, and carryover variables in the reorganized data. This option is required if the input sequence

variable, sequence, is numeric. It is not allowed if sequence is a string variable. For crossover designs,

any washout periods can be indicated with the number 0.

outcome(newvar) specifies the name for the outcome variable in the reorganized data. By default,

outcome(outcome) is used.

treatment(newvar) specifies the name for the treatment variable in the reorganized data. By default,
treatment(treat) is used.

carryover(newvar) specifies the name for the carryover variable in the reorganized data. By default,
carryover(carry) is used.

sequence(newvar) specifies the name for the sequence variable in the reorganized data. By default,
sequence(sequence) is used.

period(newvar) specifies the name for the period variable in the reorganized data. By default,

period(period) is used.

Remarks and examples
Often, data from a Latin-square experiment are naturally organized in a manner that Stata cannot man-

age easily. pkshape reorganizes Latin-square data so that they can be used with anova (see [R] anova)
or any pk command. This includes the classic 2× 2 crossover design commonly used in pharmaceutical

research, as well as many other Latin-square designs. When using pkshape, newly created variables
will automatically be labeled and system value labels will be created. The value label treatlbl will
be attached to the treatment and carrover variables, to indicate which treatment is applied in a given pe-

riod and which treatment is being carried over from the previous period. The value label seqlbl will
be attached to the sequence variable, indicating the sequence of treatments.

pkshape expects the data to be organized in the same format as that produced by [R] pkcol-

lapse—with variables representing time periods of the study.
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Example 1
Consider the example data published in Chow and Liu (2009, 71). There are 24 patients, 12 in each

sequence. Sequence 1 is the reference formulation followed by the test formulation; sequence 2 is the

test formulation followed by the reference formulation. The measurements reported are theAUC0,𝑡max for

each patient and for each period.

. use https://www.stata-press.com/data/r18/chowliu

. list, sep(4)

id seq period1 period2

1. 1 1 74.675 73.675
2. 4 1 96.4 93.25
3. 5 1 101.95 102.125
4. 6 1 79.05 69.45

5. 11 1 79.05 69.025
6. 12 1 85.95 68.7
7. 15 1 69.725 59.425
8. 16 1 86.275 76.125

9. 19 1 112.675 114.875
10. 20 1 99.525 116.25
11. 23 1 89.425 64.175
12. 24 1 55.175 74.575

13. 2 2 74.825 37.35
14. 3 2 86.875 51.925
15. 7 2 81.675 72.175
16. 8 2 92.7 77.5

17. 9 2 50.45 71.875
18. 10 2 66.125 94.025
19. 13 2 122.45 124.975
20. 14 2 99.075 85.225

21. 17 2 86.35 95.925
22. 18 2 49.925 67.1
23. 21 2 42.7 59.425
24. 22 2 91.725 114.05

Because the outcome for one person is in two different variables, the treatment that was applied to an

individual is a function of the period and the sequence. To analyze this treatment using anova, all the
outcomes must be in one variable, and each covariate must be in its own variable. To reorganize these

data, use pkshape:
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. pkshape id seq period1 period2, order(RT TR)

. sort seq id period

. list, sep(8)

id sequence outcome treat carry period

1. 1 RT 74.675 R 0 1
2. 1 RT 73.675 T R 2
3. 4 RT 96.4 R 0 1
4. 4 RT 93.25 T R 2
5. 5 RT 101.95 R 0 1
6. 5 RT 102.125 T R 2
7. 6 RT 79.05 R 0 1
8. 6 RT 69.45 T R 2

9. 11 RT 79.05 R 0 1
10. 11 RT 69.025 T R 2
11. 12 RT 85.95 R 0 1
12. 12 RT 68.7 T R 2
13. 15 RT 69.725 R 0 1
14. 15 RT 59.425 T R 2
15. 16 RT 86.275 R 0 1
16. 16 RT 76.125 T R 2

17. 19 RT 112.675 R 0 1
18. 19 RT 114.875 T R 2
19. 20 RT 99.525 R 0 1
20. 20 RT 116.25 T R 2
21. 23 RT 89.425 R 0 1
22. 23 RT 64.175 T R 2
23. 24 RT 55.175 R 0 1
24. 24 RT 74.575 T R 2

25. 2 TR 74.825 T 0 1
26. 2 TR 37.35 R T 2
27. 3 TR 86.875 T 0 1
28. 3 TR 51.925 R T 2
29. 7 TR 81.675 T 0 1
30. 7 TR 72.175 R T 2
31. 8 TR 92.7 T 0 1
32. 8 TR 77.5 R T 2

33. 9 TR 50.45 T 0 1
34. 9 TR 71.875 R T 2
35. 10 TR 66.125 T 0 1
36. 10 TR 94.025 R T 2
37. 13 TR 122.45 T 0 1
38. 13 TR 124.975 R T 2
39. 14 TR 99.075 T 0 1
40. 14 TR 85.225 R T 2

41. 17 TR 86.35 T 0 1
42. 17 TR 95.925 R T 2
43. 18 TR 49.925 T 0 1
44. 18 TR 67.1 R T 2
45. 21 TR 42.7 T 0 1
46. 21 TR 59.425 R T 2
47. 22 TR 91.725 T 0 1
48. 22 TR 114.05 R T 2
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Now, the data are organized into separate variables that indicate each factor level for each of the covari-

ates, so the data may be used with anova or pkcross; see [R] anova and [R] pkcross.

Initially, the output from list displayed sequence values 1 and 2, but now we see sequences RT and
TR listed for the individuals. pkshape used the information we provided in the order() option to assign
value labels to the numeric variables sequence, treat, and carry. Because we did not specify any new
variable names, the default names were used.

Example 2
Consider the study of background music on bank teller productivity published in Kutner et al. (2005).

The data are
Week Monday Tuesday Wednesday Thursday Friday

1 18(D) 17(C) 14(A) 21(B) 17(E)

2 13(C) 34(B) 21(E) 16(A) 15(D)

3 7(A) 29(D) 32(B) 27(E) 13(C)

4 17(E) 13(A) 24(C) 31(D) 25(B)

5 21(B) 26(E) 26(D) 31(C) 7(A)

The numbers are the productivity scores, and the letters represent the treatment. We entered the data

into Stata:

. use https://www.stata-press.com/data/r18/music, clear
(Background music and teller productivity)
. list

id seq day1 day2 day3 day4 day5

1. 1 dcabe 18 17 14 21 17
2. 2 cbead 13 34 21 16 15
3. 3 adbec 7 29 32 27 13
4. 4 eacdb 17 13 24 31 25
5. 5 bedca 21 26 26 31 7
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We reshape these data with pkshape:

. pkshape id seq day1 day2 day3 day4 day5

. sort id period

. list, sep(0)

id sequence outcome treat carry period

1. 1 dcabe 18 d 0 1
2. 1 dcabe 17 c d 2
3. 1 dcabe 14 a c 3
4. 1 dcabe 21 b a 4
5. 1 dcabe 17 e b 5
6. 2 cbead 13 c 0 1
7. 2 cbead 34 b c 2
8. 2 cbead 21 e b 3
9. 2 cbead 16 a e 4

10. 2 cbead 15 d a 5
11. 3 adbec 7 a 0 1
12. 3 adbec 29 d a 2
13. 3 adbec 32 b d 3
14. 3 adbec 27 e b 4
15. 3 adbec 13 c e 5
16. 4 eacdb 17 e 0 1
17. 4 eacdb 13 a e 2
18. 4 eacdb 24 c a 3
19. 4 eacdb 31 d c 4
20. 4 eacdb 25 b d 5
21. 5 bedca 21 b 0 1
22. 5 bedca 26 e b 2
23. 5 bedca 26 d e 3
24. 5 bedca 31 c d 4
25. 5 bedca 7 a c 5

Here the sequence variable is a string variable that specifies how the treatments were applied. The

characters in this string variable are used to assign value labels to the newly created sequence, treat,
and carry variables. We could now produce an ANOVA table:

. anova outcome sequence period treat
Number of obs = 25 R-squared = 0.8666
Root MSE = 3.96232 Adj R-squared = 0.7331

Source Partial SS df MS F Prob>F

Model 1223.6 12 101.96667 6.49 0.0014

sequence 82 4 20.5 1.31 0.3226
period 477.2 4 119.3 7.60 0.0027
treat 664.4 4 166.1 10.58 0.0007

Residual 188.4 12 15.7

Total 1412 24 58.833333
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Example 3
Consider the Latin-square crossover example published in Kutner et al. (2005). The example is about

apple sales given different methods for displaying apples.

Pattern Store Week 1 Week 2 Week 3

1 1 9(B) 12(C) 15(A)

2 4(B) 12(C) 9(A)

2 1 12(A) 14(B) 3(C)

2 13(A) 14(B) 3(C)

3 1 7(C) 18(A) 6(B)

2 5(C) 20(A) 4(B)

We entered the data into Stata:

. use https://www.stata-press.com/data/r18/applesales, clear
(Display impact on apple sales)
. list, sep(2)

id seq p1 p2 p3 square

1. 1 1 9 12 15 1
2. 2 1 4 12 9 2

3. 3 2 12 14 3 1
4. 4 2 13 14 3 2

5. 5 3 7 18 6 1
6. 6 3 5 20 4 2

Now, the data can be reorganized using descriptive names for the outcome variables.

. pkshape id seq p1 p2 p3, order(bca abc cab) seq(pattern) treat(displays)

. anova outcome pattern period displays id|pattern
Number of obs = 18 R-squared = 0.9562
Root MSE = 1.59426 Adj R-squared = 0.9069

Source Partial SS df MS F Prob>F

Model 443.66667 9 49.296296 19.40 0.0002

pattern .33333333 2 .16666667 0.07 0.9370
period 233.33333 2 116.66667 45.90 0.0000

displays 189 2 94.5 37.18 0.0001
id|pattern 21 3 7 2.75 0.1120

Residual 20.333333 8 2.5416667

Total 464 17 27.294118

These are the same results reported by Kutner et al. (2005).
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pksumm — Summarize pharmacokinetic data

Description Quick start Menu Syntax
Options Remarks and examples Methods and formulas Also see

Description
pksumm obtains summary measures based on the first four moments from the empirical distribution of

each pharmacokinetic measurement and tests the null hypothesis that the distribution of that measurement

is normally distributed.

pksumm is one of the pk commands. Please read [R] pk before reading this entry.

Quick start
Table of pharmacokinetic measures for concentrations y at times tvar for patients identified by idvar

pksumm idvar tvar y

Add a histogram of AUC0,𝑡max values

pksumm idvar tvar y, graph

Same as above

pksumm idvar tvar y, graph stat(auc)

Same as above, but plot AUC calculated from 0 to ∞ using a linear extension

pksumm idvar tvar y, graph stat(aucline)

Same as above, but use 10 bins for the histogram

pksumm idvar tvar y, graph stat(aucline) bins(10)

Menu
Statistics > Epidemiology and related > Other > Summarize pharmacokinetic data
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Syntax
pksumm id time concentration [ if ] [ in ] [ , options ]

options Description

Main

trapezoid use trapezoidal rule to calculate AUC0,𝑡max ; default is cubic splines

fit(#) use # points to estimate AUC0,∞; default is fit(3)
notimechk do not check whether follow-up time for all subjects is the same

nodots suppress the dots during calculation

graph graph the distribution of statistic

stat(statistic) graph the specified statistic; default is stat(auc)

Histogram, Density plots, Y axis, X axis, Titles, Legend, Overall

histogram options any option other than by() documented in [R] histogram

statistic Description

auc area under the concentration–time curve (AUC0,𝑡max); the default

aucline AUC from 0 to ∞ using a linear extension

aucexp AUC from 0 to ∞ using an exponential extension

auclog area under the concentration–time curve from 0 to ∞ extended with a
linear fit to log concentration

half half-life of the drug

ke elimination rate

cmax maximum concentration

tmax time at last concentration

tomc time of maximum concentration

Options

� � �
Main �

trapezoid specifies that the trapezoidal rule be used to calculate the AUC0,𝑡max . The default is cubic

splines, which give better results for most situations. When the curve is irregular, the trapezoidal rule

may give better results.

fit(#) specifies the number of points, counting back from the last time measurement, to use in fitting

the extension to estimate theAUC0,∞. The default is fit(3), the last three points. This default should
be viewed as a minimum; the appropriate number of points will depend on the data.

notimechk suppresses the check that the follow-up time for all subjects is the same. By default, pksumm
expects the maximum follow-up time to be equal for all subjects.

nodots suppresses the progress dots during calculation. By default, a dot (a period) is displayed for

every call to calculate the pharmacokinetic measures.

graph requests a graph of the distribution of the statistic specified with stat().

stat(statistic) specifies the statistic that pksumm should graph. The default is stat(auc). If the graph
option is not also specified, then this option is ignored.
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� � �
Histogram, Density plots, Y axis, X axis, Titles, Legend, Overall �

histogram options are any of the options documented in [R] histogram, excluding by(). For pksumm,
fraction is the default, not density.

Remarks and examples
pksumm produces summary statistics for the distribution of nine common pharmacokinetic measure-

ments. If there are more than eight subjects, pksumm also computes a test for normality on each measure-
ment. The nine measurements summarized by pksumm are listed above and are described in Methods

and formulas of [R] pkexamine.

Example 1
We demonstrate the use of pksumm on a variation of the data described in [R] pk. We have drug

concentration data on 15 subjects, each measured at 13 time points over a 32-hour period. A few of the

records are as follows:

. use https://www.stata-press.com/data/r18/pksumm

. list, sep(0)

id time conc

1. 1 0 0
2. 1 .5 3.073403
3. 1 1 5.188444
4. 1 1.5 5.898577
5. 1 2 5.096378
6. 1 3 6.094085

(output omitted )
183. 15 0 0
184. 15 .5 3.86493
185. 15 1 6.432444
186. 15 1.5 6.969195
187. 15 2 6.307024
188. 15 3 6.509584
189. 15 4 6.555091
190. 15 6 7.318319
191. 15 8 5.329813
192. 15 12 5.411624
193. 15 16 3.891397
194. 15 24 5.167516
195. 15 32 2.649686
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We can use pksumm to view the summary statistics for all the pharmacokinetic parameters.

. pksumm id time conc

...............
Summary statistics for the pharmacokinetic measures

Number of observations = 15
Measure Mean Median Variance Skewness Kurtosis p-value

auc 150.74 150.96 123.07 -0.26 2.10 0.69
aucline 408.30 214.17 188856.87 2.57 8.93 0.00
aucexp 691.68 297.08 762679.94 2.56 8.87 0.00
auclog 688.98 297.67 797237.24 2.59 9.02 0.00
half 94.84 29.39 18722.13 2.26 7.37 0.00

ke 0.02 0.02 0.00 0.89 3.70 0.09
cmax 7.36 7.42 0.42 -0.60 2.56 0.44
tomc 3.47 3.00 7.62 2.17 7.18 0.00
tmax 32.00 32.00 0.00 . . .

For the 15 subjects, the mean AUC0,𝑡max is 150.74, and 𝜎2 = 123.07. The skewness of −0.26 indicates

that the distribution is slightly skewed left. The 𝑝-value of 0.69 for the 𝜒2 test of normality indicates that

we cannot reject the null hypothesis that the distribution is normal.

If we were to consider any of the three variants of theAUC0,∞, we would see that there is huge variability

and that the distribution is heavily skewed. A skewness different from 0 and a kurtosis different from 3

are expected because the distribution of the AUC0,∞ is not normal.

We now graph the distribution of AUC0,𝑡max by specifying the graph option.

. pksumm id time conc, graph bins(20)

...............
Summary statistics for the pharmacokinetic measures

Number of observations = 15
Measure Mean Median Variance Skewness Kurtosis p-value

auc 150.74 150.96 123.07 -0.26 2.10 0.69
aucline 408.30 214.17 188856.87 2.57 8.93 0.00
aucexp 691.68 297.08 762679.94 2.56 8.87 0.00
auclog 688.98 297.67 797237.24 2.59 9.02 0.00
half 94.84 29.39 18722.13 2.26 7.37 0.00

ke 0.02 0.02 0.00 0.89 3.70 0.09
cmax 7.36 7.42 0.42 -0.60 2.56 0.44
tomc 3.47 3.00 7.62 2.17 7.18 0.00
tmax 32.00 32.00 0.00 . . .
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graph, by default, plots AUC0,𝑡max . To plot a graph of one of the other pharmacokinetic measurements,

we need to specify the stat() option. For example, we can ask Stata to produce a plot of the AUC0,∞
using the log extension:

. pksumm id time conc, stat(auclog) graph bins(20)

...............
Summary statistics for the pharmacokinetic measures

Number of observations = 15
Measure Mean Median Variance Skewness Kurtosis p-value

auc 150.74 150.96 123.07 -0.26 2.10 0.69
aucline 408.30 214.17 188856.87 2.57 8.93 0.00
aucexp 691.68 297.08 762679.94 2.56 8.87 0.00
auclog 688.98 297.67 797237.24 2.59 9.02 0.00
half 94.84 29.39 18722.13 2.26 7.37 0.00

ke 0.02 0.02 0.00 0.89 3.70 0.09
cmax 7.36 7.42 0.42 -0.60 2.56 0.44
tomc 3.47 3.00 7.62 2.17 7.18 0.00
tmax 32.00 32.00 0.00 . . .
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Linear fit to log concentration AUC for AUC 0–inf.

Methods and formulas
The 𝜒2 test for normality is conducted with sktest; see [R] sktest for more information on the test

of normality.

The statistics reported by pksumm are identical to those reported by summarize and sktest; see
[R] summarize and [R] sktest.

Also see
[R] pk — Pharmacokinetic (biopharmaceutical) data



poisson — Poisson regression

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description
poisson fits a Poisson regression of depvar on indepvars, where depvar is a nonnegative count vari-

able.

If you have panel data, see [XT] xtpoisson.

Quick start
Poisson regression of y on x

poisson y x

Add categorical variable a
poisson y x i.a

Add exposure variable v
poisson y x i.a, exposure(v)

With robust standard errors

poisson y x i.a, vce(robust)

Report results as incidence-rate ratios

poisson y x i.a, irr

Replace data in memory with the results of running a Poisson regression model on each level of catvar
statsby, by(catvar) clear: poisson y x

Menu
Statistics > Count outcomes > Poisson regression
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Syntax
poisson depvar [ indepvars ] [ if ] [ in ] [weight ] [ , options ]

options Description

Model

noconstant suppress constant term

exposure(varname𝑒) include ln(varname𝑒) in model with coefficient constrained to 1

offset(varname𝑜) include varname𝑜 in model with coefficient constrained to 1

constraints(constraints) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, opg, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)
irr report incidence-rate ratios

nocnsreport do not display constraints

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

collinear keep collinear variables

coeflegend display legend instead of statistics

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

depvar, indepvars, varname𝑒, and varname𝑜 may contain time-series operators; see [U] 11.4.4 Time-series varlists.

bayes, bootstrap, by, fmm, fp, jackknife, mfp, mi estimate, nestreg, rolling, statsby, stepwise, and svy are
allowed; see [U] 11.1.10 Prefix commands. For more details, see [BAYES] bayes: poisson and [FMM] fmm: poisson.

vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix; see [MI] mi estimate.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
collinear and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

noconstant, exposure(varname𝑒), offset(varname𝑜), constraints(constraints); see [R] Esti-
mation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), that al-
low for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods

(bootstrap, jackknife); see [R] vce option.



poisson — Poisson regression 2220

� � �
Reporting �

level(#); see [R] Estimation options.

irr reports estimated coefficients transformed to incidence-rate ratios, that is, 𝑒𝛽𝑖 rather than 𝛽𝑖. Stan-

dard errors and confidence intervals are similarly transformed. This option affects how results are

displayed, not how they are estimated or stored. irr may be specified at estimation or when replay-
ing previously estimated results.

nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. These options are

seldom used.

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

The following options are available with poisson but are not shown in the dialog box:

collinear, coeflegend; see [R] Estimation options.

Remarks and examples
The basic idea of Poisson regression was outlined by Coleman (1964, 378–379). See Cameron and

Trivedi (2013; 2022, chap. 20) and Johnson, Kemp, and Kotz (2005, chap. 4) for information about the

Poisson distribution. See Cameron and Trivedi (2013), Long (1997, chap. 8), Long and Freese (2014,

chap. 9), McNeil (1996, chap. 6), and Selvin (2011, chap. 6) for an introduction to Poisson regression.

Also see Selvin (2004, chap. 5) for a discussion of the analysis of spatial distributions, which includes a

discussion of the Poisson distribution. An early example of Poisson regression was Cochran (1940).

Poisson regression fits models of the number of occurrences (counts) of an event. The Poisson dis-

tribution has been applied to diverse events, such as the number of soldiers kicked to death by horses

in the Prussian army (von Bortkiewicz 1898); the pattern of hits by buzz bombs launched against Lon-

don during World War II (Clarke 1946); telephone connections to a wrong number (Thorndike 1926);

and disease incidence, typically with respect to time, but occasionally with respect to space. The basic

assumptions are as follows:

1. There is a quantity called the incidence rate that is the rate at which events occur. Examples are 5

per second, 20 per 1,000 person-years, 17 per square meter, and 38 per cubic centimeter.

2. The incidence rate can bemultiplied by exposure to obtain the expected number of observed events.

For example, a rate of 5 per second multiplied by 30 seconds means that 150 events are expected;

a rate of 20 per 1,000 person-years multiplied by 2,000 person-years means that 40 events are

expected; and so on.

3. Over very small exposures 𝜖, the probability of finding more than one event is small compared
with 𝜖.

4. Nonoverlapping exposures are mutually independent.
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With these assumptions, to find the probability of 𝑘 events in an exposure of size 𝐸, you divide 𝐸 into

𝑛 subintervals 𝐸1, 𝐸2, . . . , 𝐸𝑛, and approximate the answer as the binomial probability of observing 𝑘
successes in 𝑛 trials. If you let 𝑛 → ∞, you obtain the Poisson distribution.

In the Poisson regression model, the incidence rate for the 𝑗th observation is assumed to be given by

𝑟𝑗 = 𝑒𝛽0+𝛽1𝑥1,𝑗+···+𝛽𝑘𝑥𝑘,𝑗

If 𝐸𝑗 is the exposure, the expected number of events, 𝐶𝑗, will be

𝐶𝑗 = 𝐸𝑗𝑒𝛽0+𝛽1𝑥1,𝑗+···+𝛽𝑘𝑥𝑘,𝑗

= 𝑒 ln(𝐸𝑗)+𝛽0+𝛽1𝑥1,𝑗+···+𝛽𝑘𝑥𝑘,𝑗

This model is fit by poisson. Without the exposure() or offset() options, 𝐸𝑗 is assumed to be 1

(equivalent to assuming that exposure is unknown), and controlling for exposure, if necessary, is your

responsibility.

Comparing rates is most easily done by calculating incidence-rate ratios (IRRs). For instance, what

is the relative incidence rate of chromosome interchanges in cells as the intensity of radiation increases;

the relative incidence rate of telephone connections to a wrong number as load increases; or the relative

incidence rate of deaths due to cancer for females relative to males? That is, you want to hold all the 𝑥’s
in the model constant except one, say, the 𝑖th. The IRR for a one-unit change in 𝑥𝑖 is

𝑒 ln(𝐸)+𝛽1𝑥1+···+𝛽𝑖(𝑥𝑖+1)+···+𝛽𝑘𝑥𝑘

𝑒 ln(𝐸)+𝛽1𝑥1+···+𝛽𝑖𝑥𝑖+···+𝛽𝑘𝑥𝑘
= 𝑒𝛽𝑖

More generally, the IRR for a Δ𝑥𝑖 change in 𝑥𝑖 is 𝑒𝛽𝑖Δ𝑥𝑖 . The lincom command can be used after

poisson to display incidence-rate ratios for any group relative to another; see [R] lincom.

Example 1
Chatterjee and Hadi (2012, 174) give the number of injury incidents and the proportion of flights for

each airline out of the total number of flights from New York for nine major US airlines in one year:

. use https://www.stata-press.com/data/r18/airline

. list

airline injuries n XYZowned

1. 1 11 0.0950 1
2. 2 7 0.1920 0
3. 3 7 0.0750 0
4. 4 19 0.2078 0
5. 5 9 0.1382 0

6. 6 4 0.0540 1
7. 7 3 0.1292 0
8. 8 1 0.0503 0
9. 9 3 0.0629 1
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To their data, we have added a fictional variable, XYZowned. We will imagine that an accusation is made

that the airlines owned by XYZ Company have a higher injury rate.

. poisson injuries XYZowned, exposure(n) irr
Iteration 0: Log likelihood = -23.027197
Iteration 1: Log likelihood = -23.027177
Iteration 2: Log likelihood = -23.027177
Poisson regression Number of obs = 9

LR chi2(1) = 1.77
Prob > chi2 = 0.1836

Log likelihood = -23.027177 Pseudo R2 = 0.0370

injuries IRR Std. err. z P>|z| [95% conf. interval]

XYZowned 1.463467 .406872 1.37 0.171 .8486578 2.523675
_cons 58.04416 8.558145 27.54 0.000 43.47662 77.49281
ln(n) 1 (exposure)

Note: _cons estimates baseline incidence rate.

We specified irr to see the IRRs rather than the underlying coefficients. We estimate that XYZAirlines’

injury rate is 1.46 times larger than that for other airlines, but the 95% confidence interval is 0.85 to 2.52;

we cannot even reject the hypothesis that XYZAirlines has a lower injury rate.

Technical note
In example 1, we assumed that each airline’s exposure was proportional to its fraction of flights out of

New York. What if “large” airlines, however, also used larger planes, and so had even more passengers

than would be expected, given this measure of exposure? A better measure would be each airline’s

fraction of passengers on flights out of New York, a number that we do not have. Even so, we suppose

that n represents this number to some extent, so a better estimate of the effect might be

. generate lnN=ln(n)

. poisson injuries XYZowned lnN
Iteration 0: Log likelihood = -22.333875
Iteration 1: Log likelihood = -22.332276
Iteration 2: Log likelihood = -22.332276
Poisson regression Number of obs = 9

LR chi2(2) = 19.15
Prob > chi2 = 0.0001

Log likelihood = -22.332276 Pseudo R2 = 0.3001

injuries Coefficient Std. err. z P>|z| [95% conf. interval]

XYZowned .6840667 .3895877 1.76 0.079 -.0795111 1.447645
lnN 1.424169 .3725155 3.82 0.000 .6940517 2.154285

_cons 4.863891 .7090501 6.86 0.000 3.474178 6.253603

Here rather than specifying the exposure() option, we explicitly included the variable that would nor-
malize for exposure in the model. We did not specify the irr option, so we see coefficients rather than
IRRs. We started with the model

rate = 𝑒𝛽0+𝛽1XYZowned
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The observed counts are therefore

count = 𝑛𝑒𝛽0+𝛽1XYZowned = 𝑒 ln(𝑛)+𝛽0+𝛽1XYZowned

which amounts to constraining the coefficient on ln(n) to 1. This is what was estimated when we speci-
fied the exposure(n) option. In the above model, we included the normalizing exposure ourselves and,
rather than constraining the coefficient to be 1, estimated the coefficient.

The estimated coefficient is 1.42, a respectable distance away from 1, and is consistent with our

speculation that larger airlines also use larger airplanes. With this small amount of data, however, we

also have a wide confidence interval that includes 1.

Our estimated coefficient on XYZowned is now 0.684, and the implied IRR is 𝑒0.684 ≈ 1.98 (which we

could also see by typing poisson, irr). The 95% confidence interval for the coefficient still includes

0 (the interval for the IRR includes 1), so although the point estimate is now larger, we still cannot be

certain of our results.

Our expert opinion would be that, although there is not enough evidence to support the charge, there

is enough evidence to justify collecting more data.

Example 2
In a famous age-specific study of coronary disease deaths among male British doctors, Doll and Hill

(1966) reported the following data (reprinted in Lash et al. [2021, 417]):

Smokers Nonsmokers
Age Deaths Person-years Deaths Person-years

35–44 32 52,407 2 18,790
45–54 104 43,248 12 10,673
55–64 206 28,612 28 5,710
65–74 186 12,663 28 2,585
75–84 102 5,317 31 1,462

The first step is to enter these data into Stata, which we have done:

. use https://www.stata-press.com/data/r18/dollhill3, clear
(Doll and Hill (1966))
. list

agecat smokes deaths pyears

1. 35--44 1 32 52,407
2. 45--54 1 104 43,248
3. 55--64 1 206 28,612
4. 65--74 1 186 12,663
5. 75--84 1 102 5,317

6. 35--44 0 2 18,790
7. 45--54 0 12 10,673
8. 55--64 0 28 5,710
9. 65--74 0 28 2,585

10. 75--84 0 31 1,462
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The most “natural” analysis of these data would begin by introducing indicator variables for each age

category and one indicator for smoking:

. poisson deaths smokes i.agecat, exposure(pyears) irr
Iteration 0: Log likelihood = -33.823284
Iteration 1: Log likelihood = -33.600471
Iteration 2: Log likelihood = -33.600153
Iteration 3: Log likelihood = -33.600153
Poisson regression Number of obs = 10

LR chi2(5) = 922.93
Prob > chi2 = 0.0000

Log likelihood = -33.600153 Pseudo R2 = 0.9321

deaths IRR Std. err. z P>|z| [95% conf. interval]

smokes 1.425519 .1530638 3.30 0.001 1.154984 1.759421

agecat
45--54 4.410584 .8605197 7.61 0.000 3.009011 6.464997
55--64 13.8392 2.542638 14.30 0.000 9.654328 19.83809
65--74 28.51678 5.269878 18.13 0.000 19.85177 40.96395
75--84 40.45121 7.775511 19.25 0.000 27.75326 58.95885

_cons .0003636 .0000697 -41.30 0.000 .0002497 .0005296
ln(pyears) 1 (exposure)

Note: _cons estimates baseline incidence rate.

In the above, we specified irr to obtain IRRs. We estimate that smokers have 1.43 times the mortality

rate of nonsmokers. See, however, example 1 in [R] poisson postestimation.

Stored results
poisson stores the following in e():

Scalars

e(N) number of observations

e(k) number of parameters

e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test

e(k dv) number of dependent variables

e(df m) model degrees of freedom

e(r2 p) pseudo-𝑅2

e(ll) log likelihood

e(ll 0) log likelihood, constant-only model

e(N clust) number of clusters

e(chi2) 𝜒2

e(p) 𝑝-value for model test
e(rank) rank of e(V)
e(ic) number of iterations

e(rc) return code

e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) poisson
e(cmdline) command as typed

e(depvar) name of dependent variable

e(wtype) weight type
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e(wexp) weight expression

e(title) title in estimation output

e(clustvar) name of cluster variable

e(offset) linear offset variable

e(chi2type) Wald or LR; type of model 𝜒2 test

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(opt) type of optimization

e(which) max or min; whether optimizer is to perform maximization or minimization

e(ml method) type of ml method
e(user) name of likelihood-evaluator program

e(technique) maximization technique

e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(ilog) iteration log (up to 20 iterations)

e(gradient) gradient vector

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas
The log likelihood (with weights 𝑤𝑗 and offsets) is given by

Pr(𝑌 = 𝑦) = 𝑒−𝜆𝜆𝑦

𝑦!

𝜉𝑗 = x𝑗β + offset𝑗

𝑓(𝑦𝑗) = 𝑒−exp(𝜉𝑗)𝑒𝜉𝑗𝑦𝑗

𝑦𝑗!

ln𝐿 =
𝑛

∑
𝑗=1

𝑤𝑗 {−𝑒𝜉𝑗 + 𝜉𝑗𝑦𝑗 − ln(𝑦𝑗!)}

This command supports the Huber/White/sandwich estimator of the variance and its clustered version

using vce(robust) and vce(cluster clustvar), respectively. See [P] robust, particularly Maximum

likelihood estimators and Methods and formulas.
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poisson also supports estimation with survey data. For details on VCEs with survey data, see

[SVY] Variance estimation.� �
Siméon-Denis Poisson (1781–1840) was a French mathematician and physicist who contributed to

several fields: his name is perpetuated in Poisson brackets, Poisson’s constant, Poisson’s differential

equation, Poisson’s integral, and Poisson’s ratio. Among many other results, he produced a version

of the law of large numbers. His rather misleadingly titled Recherches sur la probabilité des juge-

ments embraces a complete treatise on probability, as the subtitle indicates, including what is now

known as the Poisson distribution. That, however, was discovered earlier by the Huguenot–British

mathematician Abraham de Moivre (1667–1754).� �
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Postestimation commands predict margins estat
Remarks and examples Stored results Methods and formulas Reference
Also see

Postestimation commands
The following postestimation commands are of special interest after poisson:

Command Description

estat gof goodness-of-fit test

lassogof calculate goodness-of-fit predictions

estat gof is not appropriate with svy estimation results.

The following standard postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters

estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian infor-
mation criteria (AIC, CAIC, AICc, and BIC, respectively)

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estat (svy) postestimation statistics for survey data

estimates cataloging estimation results

etable table of estimation results
∗ forecast dynamic forecasts and simulations
∗ hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

linktest link test for model specification
∗ lrtest likelihood-ratio test

margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

predict number of events, incidence rates, probabilities, etc.

predictnl point estimates, standard errors, testing, and inference for generalized predictions

pwcompare pairwise comparisons of parameters

suest seemingly unrelated estimation

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

∗forecast, hausman, and lrtest are not appropriate with svy estimation results. forecast is also not appropriate with mi
estimation results.
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predict

Description for predict
predict creates a new variable containing predictions such as numbers of events, incidence rates,

probabilities, linear predictions, standard errors, and the equation-level score.

Menu for predict
Statistics > Postestimation

Syntax for predict
predict [ type ] newvar [ if ] [ in ] [ , statistic nooffset ]

statistic Description

Main

n number of events; the default

ir incidence rate

pr(n) probability Pr(𝑦𝑗 = n)
pr(a,b) probability Pr(a ≤ 𝑦𝑗 ≤ b)
xb linear prediction

stdp standard error of the linear prediction

score first derivative of the log likelihood with respect to x𝑗β

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted
only for the estimation sample.

Options for predict

� � �
Main �

n, the default, calculates the predicted number of events, which is exp(x𝑗β) if neither offset() nor

exposure() was specified when the model was fit; exp(x𝑗β + offset𝑗) if offset() was specified;
or exp(x𝑗β) × exposure𝑗 if exposure() was specified.

ir calculates the incidence rate exp(x𝑗β), which is the predicted number of events when exposure is 1.
Specifying ir is equivalent to specifying n when neither offset() nor exposure() was specified
when the model was fit.

pr(n) calculates the probability Pr(𝑦𝑗 = n), where n is a nonnegative integer that may be specified as
a number or a variable.

pr(a,b) calculates the probability Pr(a ≤ 𝑦𝑗 ≤ b), where a and b are nonnegative integers that may be
specified as numbers or variables;

b missing (b ≥ .) means +∞;

pr(20,.) calculates Pr(𝑦𝑗 ≥ 20);
pr(20,b) calculates Pr(𝑦𝑗 ≥ 20) in observations for which b ≥ . and calculates
Pr(20 ≤ 𝑦𝑗 ≤ b) elsewhere.
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pr(.,b) produces a syntax error. Amissing value in an observation of the variable a causes a missing

value in that observation for pr(a,b).

xb calculates the linear prediction, which is x𝑗β if neither offset() nor exposure() was specified;

x𝑗β + offset𝑗 if offset() was specified; or x𝑗β + ln(exposure𝑗) if exposure() was specified; see
nooffset below.

stdp calculates the standard error of the linear prediction.

score calculates the equation-level score, 𝜕ln𝐿/𝜕(x𝑗β).
nooffset is relevant only if you specified offset() or exposure() when you fit the model. It modi-

fies the calculations made by predict so that they ignore the offset or exposure variable; the linear
prediction is treated as x𝑗β rather than as x𝑗β+ offset𝑗 or x𝑗β+ ln(exposure𝑗). Specifying predict
..., nooffset is equivalent to specifying predict ..., ir.

margins

Description for margins
margins estimates margins of response for numbers of events, incidence rates, probabilities, and

linear predictions.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist ] [ , options ]
margins [marginlist ] , predict(statistic ...) [ predict(statistic ...) ... ] [ options ]

statistic Description

n number of events; the default

ir incidence rate

pr(n) probability Pr(𝑦𝑗 = n)
pr(a,b) probability Pr(a ≤ 𝑦𝑗 ≤ b)
xb linear prediction

stdp not allowed with margins
score not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.
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estat

Description for estat
estat gof performs a goodness-of-fit test of the model. Both the deviance statistic and the Pearson

statistic are reported. If the tests are significant, the Poisson regression model is inappropriate.

Menu for estat
Statistics > Postestimation

Syntax for estat
estat gof

collect is allowed; see [U] 11.1.10 Prefix commands.

Remarks and examples

Example 1
Continuing with example 2 of [R] poisson, we use estat gof to determine whether the model fits the

data well.

. use https://www.stata-press.com/data/r18/dollhill3
(Doll and Hill (1966))
. poisson deaths smokes i.agecat, exp(pyears) irr
(output omitted )

. estat gof
Deviance goodness-of-fit = 12.13237
Prob > chi2(4) = 0.0164
Pearson goodness-of-fit = 11.15533
Prob > chi2(4) = 0.0249

The deviance goodness-of-fit test tells us that, given the model, we can reject the hypothesis that these

data are Poisson distributed at the 1.64% significance level. The Pearson goodness-of-fit test tells us that

we can reject the hypothesis at the 2.49% significance level.
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So let us now back up and be more careful. We can most easily obtain the incidence-rate ratios within

age categories by using ir; see [R] Epitab:

. ir deaths smokes pyears, by(agecat) nohet
Stratified incidence-rate analysis

Age category IRR [95% conf. interval] M--H weight

35--44 5.736638 1.463557 49.40468 1.472169 (exact)
45--54 2.138812 1.173714 4.272545 9.624747 (exact)
55--64 1.46824 .9863624 2.264107 23.34176 (exact)
65--74 1.35606 .9081925 2.096412 23.25315 (exact)
75--84 .9047304 .6000757 1.399687 24.31435 (exact)

Crude 1.719823 1.391992 2.14353 (exact)
M--H combined 1.424682 1.154703 1.757784

We find that the mortality incidence ratios are greatly different within age category, being highest for the

youngest categories and actually dropping below 1 for the oldest. (In the last case, we might argue that

those who smoke and who have not died by age 75 are self-selected to be particularly robust.)

Seeing this, we will now parameterize the smoking effects separately for each category, although we

will begin by constraining the smoking effects on third and fourth age categories to be equivalent:

. constraint 1 smokes#3.agecat = smokes#4.agecat

. poisson deaths c.smokes#agecat i.agecat, exposure(pyears) irr constraints(1)
Iteration 0: Log likelihood = -31.95424
Iteration 1: Log likelihood = -27.796801
Iteration 2: Log likelihood = -27.574177
Iteration 3: Log likelihood = -27.572645
Iteration 4: Log likelihood = -27.572645
Poisson regression Number of obs = 10

Wald chi2(8) = 632.14
Log likelihood = -27.572645 Prob > chi2 = 0.0000
( 1) [deaths]3.agecat#c.smokes - [deaths]4.agecat#c.smokes = 0

deaths IRR Std. err. z P>|z| [95% conf. interval]

agecat#
c.smokes
35--44 5.736637 4.181256 2.40 0.017 1.374811 23.93711
45--54 2.138812 .6520701 2.49 0.013 1.176691 3.887609
55--64 1.412229 .2017485 2.42 0.016 1.067343 1.868557
65--74 1.412229 .2017485 2.42 0.016 1.067343 1.868557
75--84 .9047304 .1855513 -0.49 0.625 .6052658 1.35236

agecat
45--54 10.5631 8.067701 3.09 0.002 2.364153 47.19623
55--64 47.671 34.37409 5.36 0.000 11.60056 195.8978
65--74 98.22765 70.85012 6.36 0.000 23.89324 403.8244
75--84 199.2099 145.3356 7.26 0.000 47.67693 832.3648

_cons .0001064 .0000753 -12.94 0.000 .0000266 .0004256
ln(pyears) 1 (exposure)

Note: _cons estimates baseline incidence rate.
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. estat gof
Deviance goodness-of-fit = .0773491
Prob > chi2(1) = 0.7809
Pearson goodness-of-fit = .0773885
Prob > chi2(1) = 0.7809

The goodness-of-fit is now small; we are no longer running roughshod over the data. Let us now consider

simplifying the model. The point estimate of the incidence-rate ratio for smoking in age category 1 is

much larger than that for smoking in age category 2, but the confidence interval for smokes#1.agecat
is similarly wide. Is the difference real?

. test smokes#1.agecat = smokes#2.agecat
( 1) [deaths]1b.agecat#c.smokes - [deaths]2.agecat#c.smokes = 0

chi2( 1) = 1.56
Prob > chi2 = 0.2117

The point estimates of the incidence-rate ratio for smoking in the 35–44 age category is much larger than

that for smoking in the 45–54 age category, but there is insufficient data, andwemay be observing random

differences. With that success, might we also combine the smokers in the third and fourth categories with

those in the first and second categories?

. test smokes#2.agecat = smokes#3.agecat, accum
( 1) [deaths]1b.agecat#c.smokes - [deaths]2.agecat#c.smokes = 0
( 2) [deaths]2.agecat#c.smokes - [deaths]3.agecat#c.smokes = 0

chi2( 2) = 4.73
Prob > chi2 = 0.0938

Combining the first four categories may be overdoing it—the 9.38% significance level is enough to stop

us, although others may disagree.
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Thus, we now fit our final model:

. constraint 2 smokes#1.agecat = smokes#2.agecat

. poisson deaths c.smokes#agecat i.agecat, exposure(pyears) irr constraints(1/2)
Iteration 0: Log likelihood = -31.550722
Iteration 1: Log likelihood = -28.525057
Iteration 2: Log likelihood = -28.514535
Iteration 3: Log likelihood = -28.514535
Poisson regression Number of obs = 10

Wald chi2(7) = 642.25
Log likelihood = -28.514535 Prob > chi2 = 0.0000
( 1) [deaths]3.agecat#c.smokes - [deaths]4.agecat#c.smokes = 0
( 2) [deaths]1b.agecat#c.smokes - [deaths]2.agecat#c.smokes = 0

deaths IRR Std. err. z P>|z| [95% conf. interval]

agecat#
c.smokes
35--44 2.636259 .7408403 3.45 0.001 1.519791 4.572907
45--54 2.636259 .7408403 3.45 0.001 1.519791 4.572907
55--64 1.412229 .2017485 2.42 0.016 1.067343 1.868557
65--74 1.412229 .2017485 2.42 0.016 1.067343 1.868557
75--84 .9047304 .1855513 -0.49 0.625 .6052658 1.35236

agecat
45--54 4.294559 .8385329 7.46 0.000 2.928987 6.296797
55--64 23.42263 7.787716 9.49 0.000 12.20738 44.94164
65--74 48.26309 16.06939 11.64 0.000 25.13068 92.68856
75--84 97.87965 34.30881 13.08 0.000 49.24123 194.561

_cons .0002166 .0000652 -28.03 0.000 .0001201 .0003908
ln(pyears) 1 (exposure)

Note: _cons estimates baseline incidence rate.

The above strikes us as a fair representation of the data. The probabilities of observing the deaths seen

in these data are estimated using the following predict command:

. predict p, pr(0, deaths)

. list deaths p

deaths p

1. 32 .6891766
2. 104 .4456625
3. 206 .5455328
4. 186 .4910622
5. 102 .5263011

6. 2 .227953
7. 12 .7981917
8. 28 .4772961
9. 28 .6227565

10. 31 .5475718

The probability Pr(𝑦 ≤ deaths) ranges from 0.23 to 0.80.
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Stored results
estat gof after poisson stores the following in r():

Scalars

r(df) degrees of freedom (Pearson and deviance)

r(chi2 p) 𝜒2 (Pearson)

r(chi2 d) 𝜒2 (deviance)

r(p p) 𝑝-value for 𝜒2 test (Pearson)

r(p d) 𝑝-value for 𝜒2 test (deviance)

Methods and formulas
In the following, we use the same notation as in [R] poisson.

The equation-level score is given by

score(xβ)𝑗 = 𝑦𝑗 − 𝑒𝜉𝑗

The deviance (D) and Pearson (P) goodness-of-fit statistics are given by

ln𝐿max =
𝑛

∑
𝑗=1

𝑤𝑗 [𝑦𝑗{ ln(𝑦𝑗) − 1} − ln(𝑦𝑗!)]

𝜒2
𝐷 = −2{ ln𝐿 − ln𝐿max}

𝜒2
𝑃 =

𝑛
∑
𝑗=1

𝑤𝑗(𝑦𝑗 − 𝑒𝜉𝑗)2

𝑒𝜉𝑗

Reference
Manjón, M., and O. Martínez. 2014. The chi-squared goodness-of-fit test for count-data models. Stata Journal 14:

798–816.

Also see
[R] poisson — Poisson regression

[LASSO] lassogof — Goodness of fit after lasso for prediction

[U] 20 Estimation and postestimation commands

https://www.stata-journal.com/article.html?article=st0360


postest — Postestimation Selector

Description Menu Syntax Remarks and examples Also see

Description
Launch the Postestimation Selector window. The window contains a list of all postestimation features

that are available for the currently active estimation results. To launch the dialog box for an item in the

list, select an item and click on Launch. The list is automatically updated when estimation commands

are run or estimates are restored from memory or disk.

Menu
Statistics > Postestimation

Syntax
postest

Remarks and examples
Remarks are presented under the following headings:

Overview
Video example

Overview
Stata uses an estimation followed by postestimation analysis paradigm. You type regress . . . to fit a

regression model, then you type test . . . to test linear relationships among the estimated parameters, or
you type contrast . . . to compare marginal means, or you type rvfplot to see a residual-versus-fitted
plot, or you type one of a myriad of other postestimation commands. This is an extension of Stata’s “type

a little, get a little” concept. The Postestimation Selector exposes this type of postestimation analysis to

those who prefer to use the dialog boxes to fit and analyze models, or at least they sometimes prefer the

dialogs when exploring their data. We might call this “click a little, get a little”.

The Postestimation Selector knows what is available after any estimation command. It shows the full

list of postestimation features that are available after any estimation, and it shows only those that are

available. For example, if you fit a linear regression, you can choose from 59 postestimation analyses,

including “Likelihood-ratio test comparing models”. If, however, you fit that linear regression using

survey estimation, the likelihood-ratio test is not available because that test has no meaning for survey

estimation. You will, however, see 8 new postestimation features for survey-data analysis, including

“Design and misspecification effects”.

If you are using the menus and dialogs, we recommend you launch the Postestimation Selector and

just leave it up—select Statistics> Postestimation, or type postest at the command line. All available
postestimation features for whatever model you are analyzing will then be just a click away.
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Here is what the Selector looks like after a linear regression,
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And, here is what it looks like with all the groupings expanded.

Video example
Postestimation Selector

Also see
[U] 20 Estimation and postestimation commands

https://www.youtube.com/watch?v=12eU7v2cgBs


predict — Obtain predictions, residuals, etc., after estimation

Description Quick start Menu for predict Syntax
Options Remarks and examples Methods and formulas References
Also see

Description
predict calculates predictions, residuals, influence statistics, and the like after estimation. Exactly

what predict can do is determined by the previous estimation command; command-specific options

are documented with each estimation command. Regardless of command-specific options, the actions

of predict share certain similarities across estimation commands:

1. predict newvar creates newvar containing “predicted values”—numbers related to the𝐸(𝑦𝑗|x𝑗).
For instance, after linear regression, predict newvar creates x𝑗b and, after probit, creates the

probability Φ(x𝑗b).

2. predict newvar, xb creates newvar containing x𝑗b. This may be the same result as option 1 (for

example, linear regression) or different (for example, probit), but regardless, option xb is allowed.

3. predict newvar, stdp creates newvar containing the standard error of the linear prediction x𝑗b.

4. predict newvar, other options may create newvar containing other useful quantities; see help
or the reference manual entry for the particular estimation command to find out about other avail-

able options.

5. nooffset added to any of the above commands requests that the calculation ignore any offset or
exposure variable specified by including the offset(varname𝑜) or exposure(varname𝑒) option
when you fit the model.

predict can be used to make in-sample or out-of-sample predictions:

6. predict calculates the requested statistic for all possible observations, whether they were used in
fitting the model or not. predict does this for standard options 1 through 3 and generally does
this for estimator-specific options 4.

7. predict newvar if e(sample), . . .restricts the prediction to the estimation subsample.

8. Some statistics make sense only with respect to the estimation subsample. In such cases, the

calculation is automatically restricted to the estimation subsample, and the documentation for the

specific option states this. Even so, you can still specify if e(sample) if you are uncertain.

9. predict can make out-of-sample predictions even using other datasets. In particular, you can

. use ds1

. (fit a model)

. use two /* another dataset */

. predict yhat, ... /* fill in the predictions */
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Quick start
Create newvar1 containing the default prediction for the previous estimation command

predict newvar1

Create newvar2 containing the linear prediction
predict newvar2, xb

Same as above, but only for observations used in the previous estimation

predict newvar2 if e(sample), xb

Create newvar3, the default prediction for the first equation in a multiple-equation model
predict newvar3, equation(#1)

Same as above when y1 is the name of the first equation
predict newvar3, equation(y1)

Note: For a complete list of options available with predict after an estimation command, see the cor-
responding postestimation entry.

Menu for predict
Statistics > Postestimation
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Syntax
After single-equation (SE) models

predict [ type ] newvar [ if ] [ in ] [ , single options ]

After multiple-equation (ME) models

predict [ type ] newvar [ if ] [ in ] [ , multiple options ]

predict [ type ] stub* [ if ] [ in ], scores

single options Description

Main

xb calculate linear prediction

stdp calculate standard error of the prediction

score calculate first derivative of the log likelihood with respect to x𝑗β

Options

nooffset ignore any offset() or exposure() variable
other options command-specific options

multiple options Description

Main

equation(eqno[ , eqno ]) specify equations

xb calculate linear prediction

stdp calculate standard error of the prediction

stddp calculate the difference in linear predictions

Options

nooffset ignore any offset() or exposure() variable
other options command-specific options

Options

� � �
Main �

xb calculates the linear prediction from the fitted model. That is, all models can be thought of as estimat-

ing a set of parameters 𝑏1, 𝑏2, . . . , 𝑏𝑘, and the linear prediction is ̂𝑦𝑗 = 𝑏1𝑥1𝑗 + 𝑏2𝑥2𝑗 + · · · + 𝑏𝑘𝑥𝑘𝑗,

often written in matrix notation as ŷ𝑗 = x𝑗b. For linear regression, the values ̂𝑦𝑗 are called the pre-

dicted values or, for out-of-sample predictions, the forecast. For logit and probit, for example, ̂𝑦𝑗 is

called the logit or probit index.

𝑥1𝑗, 𝑥2𝑗, . . . , 𝑥𝑘𝑗 are obtained from the data currently in memory and do not necessarily correspond

to the data on the independent variables used to fit the model (obtaining 𝑏1, 𝑏2, . . . , 𝑏𝑘).

stdp calculates the standard error of the linear prediction. Here the prediction means the same thing as
the “index”, namely, x𝑗b. The statistic produced by stdp can be thought of as the standard error of the
predicted expected value, or mean index, for the observation’s covariate pattern. The standard error

of the prediction is also commonly referred to as the standard error of the fitted value. The calculation

can be made in or out of sample.
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stddp is allowed only after you have previously fit a multiple-equation model. The standard error of the
difference in linear predictions (x1𝑗b − x2𝑗b) between equations 1 and 2 is calculated. This option
requires that equation(eqno1,eqno2) be specified.

score calculates the equation-level score, 𝜕ln𝐿/𝜕(x𝑗β). Here ln𝐿 refers to the log-likelihood function.

scores is the ME model equivalent of the score option, resulting in multiple equation-level score vari-
ables. An equation-level score variable is created for each equation in the model; ancillary parame-

ters—such as ln𝜎 and atanh𝜌—make up separate equations.

equation(eqno[ ,eqno ])—synonym outcome()—is relevant only when you have previously fit a

multiple-equation model. It specifies the equation to which you are referring.

equation() is typically filled in with one eqno—it would be filled in that way with options xb and
stdp, for instance. equation(#1) would mean the calculation is to be made for the first equation,
equation(#2) would mean the second, and so on. You could also refer to the equations by their

names. equation(income) would refer to the equation named income and equation(hours) to
the equation named hours.

If you do not specify equation(), results are the same as if you specified equation(#1).

Other statistics, such as stddp, refer to between-equation concepts. In those cases, you might

specify equation(#1,#2) or equation(income,hours). When two equations must be specified,

equation() is required.

� � �
Options �

nooffset may be combined with most statistics and specifies that the calculation should be made, ig-
noring any offset or exposure variable specified when the model was fit.

This option is available, even if it is not documented for predict after a specific command. If neither
the offset(varname𝑜) option nor the exposure(varname𝑒) option was specified when the model
was fit, specifying nooffset does nothing.

other options refers to command-specific options that are documented with each command.

Remarks and examples
Remarks are presented under the following headings:

Estimation-sample predictions
Out-of-sample predictions
Residuals
Single-equation (SE) models
SE model scores
Multiple-equation (ME) models
ME model scores

Most of the examples are presented using linear regression, but the general syntax is applicable to all

estimators.
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You can think of any estimation command as estimating a set of coefficients 𝑏1, 𝑏2, . . . , 𝑏𝑘 corre-

sponding to the variables 𝑥1, 𝑥2, . . . , 𝑥𝑘, along with a (possibly empty) set of ancillary statistics 𝛾1, 𝛾2,

. . . , 𝛾𝑚. All estimation commands store the 𝑏𝑖s and 𝛾𝑖s. predict accesses that stored information and
combines it with the data currently in memory to make various calculations. For instance, predict can
calculate the linear prediction, ̂𝑦𝑗 = 𝑏1𝑥1𝑗 + 𝑏2𝑥2𝑗 + · · · + 𝑏𝑘𝑥𝑘𝑗. The data on which predict makes
the calculation can be the same data used to fit the model or a different dataset—it does not matter.

predict uses the stored parameter estimates from the model, obtains the corresponding values of 𝑥 for

each observation in the data, and then combines them to produce the desired result.

Estimation-sample predictions

Example 1
We have a 74-observation dataset on automobiles, including the mileage rating (mpg), the car’s weight

(weight), and whether the car is foreign (foreign). We fit the model

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. regress mpg weight if foreign

Source SS df MS Number of obs = 22
F(1, 20) = 17.47

Model 427.990298 1 427.990298 Prob > F = 0.0005
Residual 489.873338 20 24.4936669 R-squared = 0.4663

Adj R-squared = 0.4396
Total 917.863636 21 43.7077922 Root MSE = 4.9491

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

weight -.010426 .0024942 -4.18 0.000 -.0156287 -.0052232
_cons 48.9183 5.871851 8.33 0.000 36.66983 61.16676

If we were to type predict pmpg now, we would obtain the linear predictions for all 74 observations.
To obtain the predictions just for the sample on which we fit the model, we could type

. predict pmpg if e(sample)
(option xb assumed; fitted values)
(52 missing values generated)

Here e(sample) is true only for foreign cars because we typed if foreign when we fit the model and
because there are no missing values among the relevant variables. If there had been missing values,

e(sample) would also account for those.

By the way, the if e(sample) restriction can be used with any Stata command, so we could obtain
summary statistics on the estimation sample by typing

. summarize if e(sample)
(output omitted )
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Out-of-sample predictions
By out-of-sample predictions, we mean predictions extending beyond the estimation sample. In the

example above, typing predict pmpg would generate linear predictions using all 74 observations.

predict will work on other datasets, too. You can use a new dataset and type predict to obtain

results for that sample.

Example 2
Using the same auto dataset, assume that we wish to fit the model

mpg = 𝛽1weight + 𝛽2ln(weight) + 𝛽3foreign + 𝛽4

We first create the ln(weight) variable, and then type the regress command:
. use https://www.stata-press.com/data/r18/auto, clear
(1978 automobile data)
. generate lnweight = ln(weight)
. regress mpg weight lnweight foreign

Source SS df MS Number of obs = 74
F(3, 70) = 52.36

Model 1690.27997 3 563.426657 Prob > F = 0.0000
Residual 753.179489 70 10.759707 R-squared = 0.6918

Adj R-squared = 0.6785
Total 2443.45946 73 33.4720474 Root MSE = 3.2802

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

weight .003304 .0038995 0.85 0.400 -.0044734 .0110813
lnweight -29.59133 11.52018 -2.57 0.012 -52.5676 -6.615061
foreign -2.125299 1.052324 -2.02 0.047 -4.224093 -.0265044
_cons 248.0548 80.37079 3.09 0.003 87.76035 408.3493

If we typed predict pmpg now, wewould obtain predictions for all 74 cars in the current data. Instead,
we are going to use a new dataset.

newautos.dta contains the make, weight, and place of manufacture of two cars, the Pontiac Sunbird
and the Volvo 260. Let’s use the dataset and create the predictions:

. use https://www.stata-press.com/data/r18/newautos, clear
(New automobile models)
. list

make weight foreign

1. Pont. Sunbird 2690 Domestic
2. Volvo 260 3170 Foreign

. predict mpg
(option xb assumed; fitted values)
variable lnweight not found
r(111);
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Things did not work. We typed predict mpg, and Stata responded with the message “variable lnweight
not found”. predict can calculate predicted values on a different dataset only if that dataset contains
the variables that went into the model. Here our dataset does not contain a variable called lnweight.
lnweight is just the log of weight, so we can create it and try again:

. generate lnweight = ln(weight)

. predict mpg
(option xb assumed; fitted values)
. list

make weight foreign lnweight mpg

1. Pont. Sunbird 2690 Domestic 7.897296 23.25097
2. Volvo 260 3170 Foreign 8.061487 17.85295

We obtained our predicted values. The Pontiac Sunbird has a predicted mileage rating of 23.3 mpg,

whereas the Volvo 260 has a predicted rating of 17.9 mpg.

Residuals

Example 3
With many estimators, predict can calculate more than predicted values. With most regression-type

estimators, we can, for instance, obtain residuals. Using our regression example, we return to our original

data and obtain residuals by typing

. use https://www.stata-press.com/data/r18/auto, clear
(1978 automobile data)
. generate lnweight = ln(weight)
. regress mpg weight lnweight foreign
(output omitted )

. predict double resid, residuals

. summarize resid
Variable Obs Mean Std. dev. Min Max

resid 74 -1.31e-14 3.212091 -5.453078 13.83719

We could do this without refitting the model. Stata always remembers the last set of estimates, even as

we use new datasets.

It was not necessary to type the double in predict double resid, residuals, but we wanted to
remind you that you can specify the type of a variable in front of the variable’s name; see [U] 11.4.2 Lists

of new variables. We made the new variable resid a double rather than the default float.

If we had not specified %double, the mean of resid would have been roughly 9 × 10−9 rather than

1×10−14. Although 1×10−14 sounds more precise than 9×10−9, the difference really does not matter.

For linear regression, predict can also calculate standardized residuals and Studentized residuals

with the options rstandard and rstudent; for examples, see [R] regress postestimation.
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Single-equation (SE) models
If you have not read the discussion above on using predict after linear regression, please do so. And

predict’s default calculation almost always produces a statistic in the same metric as the dependent
variable of the fitted model—for example, predicted counts for Poisson regression. In any case, xb can
always be specified to obtain the linear prediction.

predict can calculate the standard error of the prediction, which is obtained by using the covariance
matrix of the estimators.

Example 4
After most binary outcome models (for example, logistic, logit, probit, cloglog, scobit),

predict calculates the probability of a positive outcome if we do not tell it otherwise. We can specify the

xb option if we want the linear prediction (also known as the logit or probit index). The odd abbreviation
xb is meant to suggest xβ. In logit and probit models, for example, the predicted probability is 𝑝 =
𝐹(xβ), where 𝐹() is the logistic or normal cumulative distribution function, respectively.

. logistic foreign mpg weight
(output omitted )

. predict phat
(option pr assumed; Pr(foreign))
. predict idxhat, xb
. summarize foreign phat idxhat

Variable Obs Mean Std. dev. Min Max

foreign 74 .2972973 .4601885 0 1
phat 74 .2972973 .3052979 .000729 .8980594

idxhat 74 -1.678202 2.321509 -7.223107 2.175845

Because this is a logit model, we could obtain the predicted probabilities ourselves from the predicted

index

. generate phat2 = exp(idxhat)/(1+exp(idxhat))

but using predict without options is easier.

Example 5
For all models, predict attempts to produce a predicted value in the same metric as the dependent

variable of the model. We have seen that for dichotomous outcome models, the default statistic pro-

duced by predict is the probability of a success. Similarly, for Poisson regression, the default statistic
produced by predict is the predicted count for the dependent variable. You can always specify the

xb option to obtain the linear combination of the coefficients with an observation’s 𝑥 values (the inner

product of the coefficients and 𝑥 values). For poisson (without an explicit exposure), this is the natural
log of the count.

. use https://www.stata-press.com/data/r18/airline, clear

. poisson injuries XYZowned
(output omitted )
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. predict injhat
(option n assumed; predicted number of events)
. predict idx, xb
. generate exp_idx = exp(idx)
. summarize injuries injhat exp_idx idx

Variable Obs Mean Std. dev. Min Max

injuries 9 7.111111 5.487359 1 19
injhat 9 7.111111 .8333333 6 7.666667

exp_idx 9 7.111111 .8333333 6 7.666667
idx 9 1.955174 .1225612 1.791759 2.036882

We note that our “hand-computed” prediction of the count (exp idx) matches what was produced by
the default operation of predict.

If our model has an exposure-time variable, we can use predict to obtain the linear prediction with or
without the exposure. Let’s verify what we are getting by obtaining the linear prediction with and without

exposure, transforming these predictions to count predictions and comparing them with the default count

prediction from predict. We must remember to multiply by the exposure time when using predict
..., nooffset.

. use https://www.stata-press.com/data/r18/airline, clear

. poisson injuries XYZowned, exposure(n)
(output omitted )

. predict double injhat
(option n assumed; predicted number of events)
. predict double idx, xb
. generate double exp_idx = exp(idx)
. predict double idxn, xb nooffset
. generate double exp_idxn = exp(idxn)*n
. summarize injuries injhat exp_idx exp_idxn idx idxn

Variable Obs Mean Std. dev. Min Max

injuries 9 7.111111 5.487359 1 19
injhat 9 7.111111 3.10936 2.919621 12.06158

exp_idx 9 7.111111 3.10936 2.919621 12.06158
exp_idxn 9 7.111111 3.10936 2.919621 12.06158

idx 9 1.869722 .4671044 1.071454 2.490025

idxn 9 4.18814 .1904042 4.061204 4.442013

Looking at the identical means and standard deviations for injhat, exp idx, and exp idxn, we
see that we can reproduce the default computations of predict for poisson estimations. We have also

demonstrated the relationship between the count predictions and the linear predictions with and without

exposure.
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SE model scores

Example 6
With most maximum likelihood estimators, predict can calculate equation-level scores. The first

derivative of the log likelihood with respect to x𝑗β is the equation-level score.

. use https://www.stata-press.com/data/r18/auto, clear
(1978 automobile data)
. logistic foreign mpg weight
(output omitted )

. predict double sc, score

. summarize sc
Variable Obs Mean Std. dev. Min Max

sc 74 -1.37e-12 .3533133 -.8760856 .8821309

See [P] robust and [SVY] Variance estimation for details regarding the role equation-level scores

play in linearization-based variance estimators.

Technical note
predict after some estimation commands, such as regress and cnsreg, allows the score option

as a synonym for the residuals option.

Multiple-equation (ME) models
If you have not read the above discussion on using predict after SE models, please do so. With the

exception of the ability to select specific equations to predict from, the use of predict after ME models

follows almost the same form that it does for SE models.

Example 7
The details of prediction statistics that are specific to particular ME models are documented with the

estimation command. If you are using ME commands that do not have separate discussions on obtaining

predictions, read Obtaining predicted values in [R] mlogit postestimation, even if your interest is not

in multinomial logistic regression. As a general introduction to the ME models, we will demonstrate

predict after sureg:
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. use https://www.stata-press.com/data/r18/auto, clear
(1978 automobile data)
. sureg (price foreign displ) (weight foreign length)
Seemingly unrelated regression

Equation Obs Params RMSE ”R-squared” chi2 P>chi2

price 74 2 2202.447 0.4348 45.21 0.0000
weight 74 2 245.5238 0.8988 658.85 0.0000

Coefficient Std. err. z P>|z| [95% conf. interval]

price
foreign 3137.894 697.3805 4.50 0.000 1771.054 4504.735

displacement 23.06938 3.443212 6.70 0.000 16.32081 29.81795
_cons 680.8438 859.8142 0.79 0.428 -1004.361 2366.049

weight
foreign -154.883 75.3204 -2.06 0.040 -302.5082 -7.257674
length 30.67594 1.531981 20.02 0.000 27.67331 33.67856
_cons -2699.498 302.3912 -8.93 0.000 -3292.173 -2106.822

sureg estimated two equations, one called price and the other weight; see [R] sureg.

. predict pred_p, equation(price)
(option xb assumed; fitted values)
. predict pred_w, equation(weight)
(option xb assumed; fitted values)
. summarize price pred_p weight pred_w

Variable Obs Mean Std. dev. Min Max

price 74 6165.257 2949.496 3291 15906
pred_p 74 6165.257 1678.805 2664.81 10485.33
weight 74 3019.459 777.1936 1760 4840
pred_w 74 3019.459 726.0468 1501.602 4447.996

You may specify the equation by name, as we did above, or by number: equation(#1)means the same
thing as equation(price) in this case.
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ME model scores

Example 8
ForMEmodels, predict allows you to specify a stub when generating equation-level score variables.

predict generates new variables using this stub by appending an equation index. Depending upon the

command, the index will start with 0 or 1. Here is an example where predict starts indexing the score
variables with 0.

. ologit rep78 mpg weight
(output omitted )

. predict double sc*, scores

. summarize sc*
Variable Obs Mean Std. dev. Min Max

sc0 69 -1.33e-11 .5337363 -.9854088 .921433
sc1 69 -7.69e-13 .186919 -.2738537 .9854088
sc2 69 -2.87e-11 .4061637 -.5188487 1.130178
sc3 69 -1.04e-10 .5315368 -1.067351 .8194842
sc4 69 1.47e-10 .360525 -.921433 .6140182

Although it involves much more typing, we could also specify the new variable names individually.

. predict double (sc_xb sc_1 sc_2 sc_3 sc_4), scores

. summarize sc_*
Variable Obs Mean Std. dev. Min Max

sc_xb 69 -1.33e-11 .5337363 -.9854088 .921433
sc_1 69 -7.69e-13 .186919 -.2738537 .9854088
sc_2 69 -2.87e-11 .4061637 -.5188487 1.130178
sc_3 69 -1.04e-10 .5315368 -1.067351 .8194842
sc_4 69 1.47e-10 .360525 -.921433 .6140182

Methods and formulas
Denote the previously estimated coefficient vector as b and its estimated variance matrix as V.

predict works by recalling various aspects of the model, such as b, and combining that information

with the data currently in memory. Let’s write x𝑗 for the 𝑗th observation currently in memory.
The predicted value (xb option) is defined as ̂𝑦𝑗 = x𝑗b + offset𝑗

The standard error of the prediction (the stdp option) is defined as 𝑠𝑝𝑗
= √x𝑗Vx

′
𝑗

The standard error of the difference in linear predictions between equations 1 and 2 is defined as

𝑠𝑑𝑝𝑗
= {(x1𝑗, −x2𝑗, 0, . . . , 0) V (x1𝑗, −x2𝑗, 0, . . . , 0)′}

1
2

See the individual estimation commands for information about calculating command-specific

predict statistics.
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Options Remarks and examples Methods and formulas References
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Description
predictnl calculates (possibly) nonlinear predictions after any Stata estimation command and op-

tionally calculates the variances, standard errors, Wald test statistics, 𝑝-values, and confidence limits

for these predictions. Unlike its companion nonlinear postestimation commands testnl and nlcom,
predictnl generates functions of the data (that is, predictions), not scalars. The quantities generated by
predictnl are thus vectorized over the observations in the data.

Consider some general prediction, 𝑔(θ, x𝑖), for 𝑖 = 1, . . . , 𝑛, where θ are the model parameters and

x𝑖 are some data for the 𝑖th observation; x𝑖 is assumed fixed. Typically, 𝑔(θ, x𝑖) is estimated by 𝑔(θ̂, x𝑖),
where θ̂ are the estimated model parameters, which are stored in e(b) following any Stata estimation
command.

In its most common use, predictnl generates two variables: one containing the estimated prediction,
𝑔(θ̂, x𝑖), the other containing the estimated standard error of 𝑔(θ̂, x𝑖). The calculation of standard errors
(and other obtainable quantities that are based on the standard errors, such as test statistics) is based on

the delta method, an approximation appropriate in large samples; see Methods and formulas.

predictnl can be used with svy estimation results (assuming that predict is also allowed), see

[SVY] svy postestimation.

The specification of 𝑔(θ̂, x𝑖) is handled by specifying pnl exp, and the values of 𝑔(θ̂, x𝑖) are stored
in the new variable newvar of storage type type. pnl exp is any valid Stata expression and may also

contain calls to two special functions unique to predictnl:

1. predict([predict options]): When you are evaluating pnl exp, predict() is a convenience func-
tion that replicates the calculation performed by the command

predict . . ., predict options

As such, the predict() function may be used either as a shorthand for the formula used to make this
prediction or when the formula is not readily available. When used without arguments, predict()
replicates the default prediction for that particular estimation command.

2. xb([eqno]): The xb() function replicates the calculation of the linear predictor x𝑖b for equation eqno.

If xb() is specified without eqno, the linear predictor for the first equation (or the only equation in
single-equation estimation) is obtained.

For example, xb(#1) (or equivalently, xb() with no arguments) translates to the linear predictor for
the first equation, xb(#2) for the second, and so on. You could also refer to the equations by their
names, such as xb(income).

When specifying pnl exp, both of these functions may be used repeatedly, in combination, and in

combination with other Stata functions and expressions. See Remarks and examples for examples

that use both of these functions.
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Quick start
After regress, create yhat containing the default linear prediction

predictnl yhat = predict()

After probit y x1 x2, create pr1 containing predicted probability that y = 1

predictnl pr1 = predict(pr)

Same as above, and create lb1 and ub1 containing the upper and lower bounds of the 95% confidence

interval for the prediction

predictnl pr1 = predict(pr), ci(lb1 ub1)

Same as above, specified as a function of the linear prediction

predictnl pr1 = normal(xb()), ci(lb1 ub1)

Same as above, specified as a function of the coefficients

predictnl pr1 = normal(_b[_cons]+_b[x1]*x1+_b[x2]*x2), ci(lb1 ub1)

Same as above, but create the prediction using x1 equal to 0
predictnl pr1 = normal(_b[_cons]+_b[x1]*0+_b[x2]*x2), ci(lb1 ub1)

Same as above, but create variable se1 containing the standard error of the prediction
predictnl pr1 = normal(_b[_cons]+_b[x1]*0+_b[x2]*x2), se(se1)

After a multiple-equation model, create ratio as the ratio of the linear predictions from the second and

third equations

predictnl ratio = xb(#2)/xb(#3)

Menu
Statistics > Postestimation
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Syntax
predictnl [ type ] newvar = pnl exp [ if ] [ in ] [ , options ]

options Description

Main

se(newvar) create newvar containing standard errors

variance(newvar) create newvar containing variances

wald(newvar) create newvar containing the Wald test statistic

p(newvar) create newvar containing the 𝑝-value for the Wald test

ci(newvars) create newvars containing lower and upper confidence intervals

level(#) set confidence level; default is level(95)
g(stub) create stub1, stub2, . . . , stubk variables containing observation-

specific derivatives

Advanced

iterate(#) maximum iterations for finding optimal step size; default is 100

force calculate standard errors, etc., even when possibly inappropriate

df(#) use 𝐹 distribution with # denominator degrees of freedom for the
reference distribution of the test statistic

df(#) does not appear in the dialog box.

Options

� � �
Main �

se(newvar) adds newvar of storage type type, where for each i in the prediction sample, newvar[i]
contains the estimated standard error of 𝑔(θ̂, x𝑖).

variance(newvar) adds newvar of storage type type, where for each i in the prediction sample, new-
var[i] contains the estimated variance of 𝑔(θ̂, x𝑖).

wald(newvar) adds newvar of storage type type, where for each i in the prediction sample, newvar[i]
contains the Wald test statistic for the test of the hypothesis 𝐻0 ∶ 𝑔(θ, x𝑖) = 0.

p(newvar) adds newvar of storage type type, where newvar[i] contains the 𝑝-value for theWald test of

𝐻0 ∶ 𝑔(θ, x𝑖) = 0 versus the two-sided alternative.
ci(newvars) requires the specification of two newvars, such that the 𝑖th observation of each will con-

tain the left and right endpoints (respectively) of a confidence interval for 𝑔(θ, x𝑖). The level of the
confidence intervals is determined by level(#).

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is

level(95) or as set by set level; see [U] 20.8 Specifying the width of confidence intervals.

g(stub) specifies that new variables, stub1, stub2, . . . , stubk be created, where k is the dimension of θ.
stub1will contain the observation-specific derivatives of 𝑔(θ, x𝑖) with respect to the first element, 𝜃1,

of θ; stub2 will contain the derivatives of 𝑔(θ, x𝑖) with respect to 𝜃2, etc.; If the derivative of 𝑔(θ, x𝑖)
with respect to a particular coefficient in θ equals zero for all observations in the prediction sample,
the stub variable for that coefficient is not created. The ordering of the parameters in θ is precisely

that of the stored vector of parameter estimates e(b).
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� � �
Advanced �

iterate(#) specifies the maximum number of iterations used to find the optimal step size in the cal-

culation of numerical derivatives of 𝑔(θ, x𝑖) with respect to θ. By default, the maximum number of

iterations is 100, but convergence is usually achieved after only a few iterations. You should rarely

have to use this option.

force forces the calculation of standard errors and other inference-related quantities in situations where
predictnl would otherwise refuse to do so. The calculation of standard errors takes place by eval-
uating (at θ̂) the numerical derivative of 𝑔(θ, x𝑖) with respect to θ. If predictnl detects that 𝑔(⋅) is
possibly a function of random quantities other than θ̂, it will refuse to calculate standard errors or any
other quantity derived from them. The force option forces the calculation to take place anyway. If
you use the force option, there is no guarantee that any inference quantities (for example, standard
errors) will be correct or that the values obtained can be interpreted.

The following option is available with predictnl but is not shown in the dialog box:

df(#) specifies that the 𝐹 distribution with # denominator degrees of freedom be used for the reference

distribution of the test statistic.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Nonlinear transformations and standard errors
Using xb() and predict()
Multiple-equation (ME) estimators
Test statistics and 𝑝-values
Manipulability
Confidence intervals

Introduction
predictnl and nlcom both use the delta method. They take a nonlinear transformation of the es-

timated parameter vector from some fitted model and apply the delta method to calculate the variance,

standard error, Wald test statistic, etc., of this transformation. nlcom is designed for scalar functions of
the parameters, and predictnl is designed for functions of the parameters and of the data, that is, for
predictions.

Nonlinear transformations and standard errors
We begin by fitting a probit model to the low-birthweight data of Hosmer, Lemeshow, and Sturdivant

(2013, 24). The data are described in detail in example 1 of [R] logistic.
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. use https://www.stata-press.com/data/r18/lbw
(Hosmer & Lemeshow data)
. probit low lwt smoke ptl ht
Iteration 0: Log likelihood = -117.336
Iteration 1: Log likelihood = -106.75886
Iteration 2: Log likelihood = -106.67852
Iteration 3: Log likelihood = -106.67851
Probit regression Number of obs = 189

LR chi2(4) = 21.31
Prob > chi2 = 0.0003

Log likelihood = -106.67851 Pseudo R2 = 0.0908

low Coefficient Std. err. z P>|z| [95% conf. interval]

lwt -.0095164 .0036875 -2.58 0.010 -.0167438 -.0022891
smoke .3487004 .2041772 1.71 0.088 -.0514794 .7488803

ptl .365667 .1921201 1.90 0.057 -.0108815 .7422154
ht 1.082355 .410673 2.64 0.008 .2774503 1.887259

_cons .4238985 .4823224 0.88 0.379 -.5214361 1.369233

After we fit such a model, we first would want to generate the predicted probabilities of a low birth-

weight, given the covariate values in the estimation sample. This is easily done using predict after

probit, but it doesn’t answer the question, “What are the standard errors of those predictions?”

For the time being, we will consider ourselves ignorant of any automated way to obtain the predicted

probabilities after probit. The formula for the prediction is

Pr(𝑦 ≠ 0|x𝑖) = Φ(x𝑖β)

where Φ is the standard cumulative normal. Thus for this example, 𝑔(θ, x𝑖) = Φ(x𝑖β). Armed with the
formula, we can use predictnl to generate the predictions and their standard errors:

. predictnl phat = normal(_b[_cons] + _b[ht]*ht + _b[ptl]*ptl +
> _b[smoke]*smoke + _b[lwt]*lwt), se(phat_se)
. list phat phat_se lwt smoke ptl ht in -10/l

phat phat_se lwt smoke ptl ht

180. .2363556 .042707 120 Nonsmoker 0 0
181. .6577712 .1580714 154 Nonsmoker 1 1
182. .2793261 .0519958 106 Nonsmoker 0 0
183. .1502118 .0676339 190 Smoker 0 0
184. .5702871 .0819911 101 Smoker 1 0

185. .4477045 .079889 95 Smoker 0 0
186. .2988379 .0576306 100 Nonsmoker 0 0
187. .4514706 .080815 94 Smoker 0 0
188. .5615571 .1551051 142 Nonsmoker 0 1
189. .7316517 .1361469 130 Smoker 0 1

Thus, subject 180 in our data has an estimated probability of low birthweight of 23.6% with standard

error 4.3%.

Used without options, predictnl is not much different from generate. By specifying the

se(phat se) option, we were able to obtain a variable containing the standard errors of the predic-

tions; therein lies the utility of predictnl.
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Using xb() and predict()
As was the case above, a prediction is often not a function of a few isolated parameters and their

corresponding variables but instead is some (possibly elaborate) function of the entire linear predictor.

For models with many predictors, the brute-force expression for the linear predictor can be cumbersome

to type. An alternative is to use the inline function xb(). xb() is a shortcut for having to type b[ cons]
+ b[ht]*ht + b[ptl]*ptl + ...,

. drop phat phat_se

. predictnl phat = norm(xb()), se(phat_se)

. list phat phat_se lwt smoke ptl ht in -10/l

phat phat_se lwt smoke ptl ht

180. .2363556 .042707 120 Nonsmoker 0 0
181. .6577712 .1580714 154 Nonsmoker 1 1
182. .2793261 .0519958 106 Nonsmoker 0 0
183. .1502118 .0676339 190 Smoker 0 0
184. .5702871 .0819911 101 Smoker 1 0

185. .4477045 .079889 95 Smoker 0 0
186. .2988379 .0576306 100 Nonsmoker 0 0
187. .4514706 .080815 94 Smoker 0 0
188. .5615571 .1551051 142 Nonsmoker 0 1
189. .7316517 .1361469 130 Smoker 0 1

which yields the same results. This approach is easier, produces more readable code, and is less prone to

error, such as forgetting to include a term in the sum.

Here we used xb() without arguments because we have only one equation in our model. In multiple-
equation (ME) settings, xb() (or equivalently xb(#1)) yields the linear predictor from the first equation,

xb(#2) from the second, etc. You can also refer to equations by their names, for example, xb(income).

Technical note
Most estimation commands in Stata allow the postestimation calculation of linear predictors and their

standard errors via predict. For example, to obtain these for the first (or only) equation in the model,
you could type

predict xbvar, xb
predict stdpvar, stdp

Equivalently, you could type

predictnl xbvar = xb(), se(stdpvar)

but we recommend the first method, because it is faster. Aswe demonstrated above, however, predictnl
is more general.

Returning to our probit example, we can further simplify the calculation by using the inline func-
tion predict(). predict(pred options)works by substituting, within our predictnl expression, the
calculation performed by

predict ..., pred options
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In our example, we are interested in the predicted probabilities after a probit regression, normally ob-

tained via

predict ..., p

We can obtain these predictions (and standard errors) by using

. drop phat phat_se

. predictnl phat = predict(p), se(phat_se)

. list phat phat_se lwt smoke ptl ht in -10/l

phat phat_se lwt smoke ptl ht

180. .2363556 .042707 120 Nonsmoker 0 0
181. .6577712 .1580714 154 Nonsmoker 1 1
182. .2793261 .0519958 106 Nonsmoker 0 0
183. .1502118 .0676339 190 Smoker 0 0
184. .5702871 .0819911 101 Smoker 1 0

185. .4477045 .079889 95 Smoker 0 0
186. .2988379 .0576306 100 Nonsmoker 0 0
187. .4514706 .080815 94 Smoker 0 0
188. .5615571 .1551051 142 Nonsmoker 0 1
189. .7316517 .1361469 130 Smoker 0 1

which again replicates what we have already done by other means. However, this version did not require

knowledge of the formula for the predicted probabilities after a probit regression—predict(p) took

care of that for us.

Because the predicted probability is the default prediction after probit, we could have just used

predict() without arguments, namely,

. predictnl phat = predict(), se(phat_se)

Also, the expression pnl exp can be inordinately complicated, with multiple calls to predict() and

xb(). For example,

. predictnl phat = normal(invnormal(predict()) + predict(xb)/xb() - 1),
> se(phat_se)

is perfectly valid and will give the same result as before, albeit a bit inefficiently.

Technical note
When using predict() and xb(), the formula for the calculation is substituted within pnl exp, not

the values that result from the application of that formula. To see this, note the subtle difference between

. predict xbeta, xb

. predictnl phat = normal(xbeta), se(phat_se)

and

. predictnl phat = normal(xb()), se(phat_se)
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Both sequences will yield the same phat, yet for the first sequence, phat se will equal zero for all
observations. The reason is that, once evaluated, xbeta will contain the values of the linear predictor,
yet these values are treated as fixed and nonstochastic as far as predictnl is concerned. By contrast,
because xb() is shorthand for the formula used to calculate the linear predictor, it contains not values,
but references to the estimated regression coefficients and corresponding variables. Thus, the second

method produces the desired result.

Multiple-equation (ME) estimators
In [R] mlogit, data on insurance choice (Tarlov et al. 1989; Wells et al. 1989) were examined, and a

multinomial logit was used to assess the effects of age, gender, race, and site of study (one of three sites)

on the type of insurance:

. use https://www.stata-press.com/data/r18/sysdsn1, clear
(Health insurance data)
. mlogit insure age male nonwhite i.site, nolog
Multinomial logistic regression Number of obs = 615

LR chi2(10) = 42.99
Prob > chi2 = 0.0000

Log likelihood = -534.36165 Pseudo R2 = 0.0387

insure Coefficient Std. err. z P>|z| [95% conf. interval]

Indemnity (base outcome)

Prepaid
age -.011745 .0061946 -1.90 0.058 -.0238862 .0003962

male .5616934 .2027465 2.77 0.006 .1643175 .9590693
nonwhite .9747768 .2363213 4.12 0.000 .5115955 1.437958

site
2 .1130359 .2101903 0.54 0.591 -.2989296 .5250013
3 -.5879879 .2279351 -2.58 0.010 -1.034733 -.1412433

_cons .2697127 .3284422 0.82 0.412 -.3740222 .9134476

Uninsure
age -.0077961 .0114418 -0.68 0.496 -.0302217 .0146294

male .4518496 .3674867 1.23 0.219 -.268411 1.17211
nonwhite .2170589 .4256361 0.51 0.610 -.6171725 1.05129

site
2 -1.211563 .4705127 -2.57 0.010 -2.133751 -.2893747
3 -.2078123 .3662926 -0.57 0.570 -.9257327 .510108

_cons -1.286943 .5923219 -2.17 0.030 -2.447872 -.1260134

Of particular interest is the estimation of the relative risk, which, for a given selection, is the ratio

of the probability of making that selection to the probability of selecting the base category (Indemnity
here), given a set of covariate values. In a multinomial logit model, the relative risk (when comparing to

the base category) simplifies to the exponentiated linear predictor for that selection.
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Using this example, we can estimate the observation-specific relative risks of selecting a prepaid plan

over the base category (with standard errors) by either referring to the Prepaid equation by name or

number,

. predictnl RRppaid = exp(xb(Prepaid)), se(SERRppaid)

or

. predictnl RRppaid = exp(xb(#1)), se(SERRppaid)

because Prepaid is the first equation in the model.

Those of us for whom the simplified formula for the relative risk does not immediately come to mind

may prefer to calculate the relative risk directly from its definition, that is, as a ratio of two predicted

probabilities. After mlogit, the predicted probability for a category may be obtained using predict,
but we must specify the category as the outcome:

. predictnl RRppaid = predict(outcome(Prepaid))/predict(outcome(Indemnity)),
> se(SERRppaid)
(1 missing value generated)
. list RRppaid SERRppaid age male nonwhite site in 1/10

RRppaid SERRpp~d age male nonwhite site

1. .6168578 .1503759 73.722107 0 0 2
2. 1.056658 .1790703 27.89595 0 0 2
3. .8426442 .1511281 37.541397 0 0 1
4. 1.460581 .3671465 23.641327 0 1 3
5. .9115747 .1324168 40.470901 0 0 2

6. 1.034701 .1696923 29.683777 0 0 2
7. .9223664 .1344981 39.468857 0 0 2
8. 1.678312 .4216626 26.702255 1 0 1
9. .9188519 .2256017 63.101974 0 1 3

10. .5766296 .1334877 69.839828 0 0 1

The “(1 missing value generated)” message is not an error; further examination of the data would reveal

that age is missing in one observation and that the offending observation (among others) is not in the
estimation sample. Just as with predict, predictnl can generate predictions in or out of the estimation
sample.

Thus, we estimate (among other things) that a white, female, 73-year-old from site 2 is less likely to

choose a prepaid plan over an indemnity plan—her relative risk is about 62% with standard error 15%.

Test statistics and p-values
Often, a standard error calculation is just a means to an end, and what is really desired is a test of the

hypothesis,

𝐻0 ∶ 𝑔(θ, x𝑖) = 0

versus the two-sided alternative.

We can use predictnl to obtain the Wald test statistics or 𝑝-values (or both) for the above tests,
whether or not we want standard errors. To obtain the Wald test statistics, we use the wald() option; for
𝑝-values, we use p().
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Returning to our mlogit example, suppose that we wanted for each observation a test of whether the
relative risk of choosing a prepaid plan over an indemnity plan is different from one. One way to do this

would be to define 𝑔(⋅) to be the relative risk minus one and then test whether 𝑔(⋅) is different from zero.

. predictnl RRm1 = exp(xb(Prepaid)) - 1, wald(W_RRm1) p(sig_RRm1)
(1 missing value generated)
note: p-values are with respect to the chi-squared(1) distribution.
. list RRm1 W_RRm1 sig_RRm1 age male nonwhite in 1/10

RRm1 W_RRm1 sig_RRm1 age male nonwhite

1. -.3831422 6.491778 .0108375 73.722107 0 0
2. .0566578 .100109 .7516989 27.89595 0 0
3. -.1573559 1.084116 .2977787 37.541397 0 0
4. .4605812 1.573743 .2096643 23.641327 0 1
5. -.0884253 .4459299 .5042742 40.470901 0 0

6. .0347015 .0418188 .8379655 29.683777 0 0
7. -.0776336 .3331707 .563798 39.468857 0 0
8. .6783119 2.587788 .1076906 26.702255 1 0
9. -.0811482 .1293816 .719074 63.101974 0 1

10. -.4233705 10.05909 .001516 69.839828 0 0

The newly created variable W RRm1 contains the Wald test statistic for each observation, and

sig RRm1 contains the 𝑝-value. Thus, our 73-year-old white female represented by the first observa-
tion would have a relative risk of choosing prepaid over indemnity that is significantly different from 1,

at least at the 5% level. For this test, it was not necessary to generate a variable containing the standard

error of the relative risk minus 1, but we could have done so had we wanted. We could have also omitted

specifying wald(W RRm1) if all we cared about were, say, the 𝑝-values for the tests.
In this regard, predictnl acts as an observation-specific version of testnl, with the test results

vectorized over the observations in the data. The 𝑝-values are pointwise—they are not adjusted to reflect

any simultaneous testing over the observations in the data.

Manipulability
There are many ways to specify 𝑔(θ, x𝑖) to yield tests such that, for multiple specifications of 𝑔(⋅),

the theoretical conditions for which

𝐻0 ∶ 𝑔(θ, x𝑖) = 0

is true will be equivalent. However, this does not mean that the tests themselves will be equivalent. This

is known as the manipulability of the Wald test for nonlinear hypotheses; also see [R] boxcox.

As an example, consider the previous section where we defined 𝑔(⋅) to be the relative risk between
choosing a prepaid plan over an indemnity plan, minus 1. We could also have defined 𝑔(⋅) to be the risk
difference—the probability of choosing a prepaid plan minus the probability of choosing an indemnity

plan. Either specification of 𝑔(⋅) yields a mathematically equivalent specification of 𝐻0 ∶ 𝑔(⋅) = 0; that

is, the risk difference will equal zero when the relative risk equals one. However, the tests themselves

do not give the same results:
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. predictnl RD = predict(outcome(Prepaid)) - predict(outcome(Indemnity)),
> wald(W_RD) p(sig_RD)
(1 missing value generated)
note: p-values are with respect to the chi-squared(1) distribution.
. list RD W_RD sig_RD RRm1 W_RRm1 sig_RRm1 in 1/10

RD W_RD sig_RD RRm1 W_RRm1 sig_RRm1

1. -.2303744 4.230243 .0397097 -.3831422 6.491778 .0108375
2. .0266902 .1058542 .7449144 .0566578 .100109 .7516989
3. -.0768078 .9187646 .3377995 -.1573559 1.084116 .2977787
4. .1710702 2.366535 .1239619 .4605812 1.573743 .2096643
5. -.0448509 .4072922 .5233471 -.0884253 .4459299 .5042742

6. .0165251 .0432816 .835196 .0347015 .0418188 .8379655
7. -.0391535 .3077611 .5790573 -.0776336 .3331707 .563798
8. .22382 4.539085 .0331293 .6783119 2.587788 .1076906
9. -.0388409 .1190183 .7301016 -.0811482 .1293816 .719074

10. -.2437626 6.151558 .0131296 -.4233705 10.05909 .001516

In certain cases (such as subject 8), the difference can be severe enough to potentially change the con-

clusion. The reason for this inconsistency is that the nonlinear Wald test is actually a standard Wald test

of a first-order Taylor approximation of 𝑔(⋅), and this approximation can differ according to how 𝑔(⋅) is
specified.

As such, keep in mind the manipulability of nonlinearWald tests when drawing scientific conclusions.

Confidence intervals
We can also use predictnl to obtain confidence intervals for the observation-specific 𝑔(θ, x𝑖) by

using the ci() option to specify two new variables to contain the left and right endpoints of the confi-

dence interval, respectively. For example, we could generate confidence intervals for the risk differences

calculated previously:

. drop RD

. predictnl RD = predict(outcome(Prepaid)) - predict(outcome(Indemnity)),
> ci(RD_lcl RD_rcl)
(1 missing value generated)
note: confidence intervals calculated using Z critical values.
. list RD RD_lcl RD_rcl age male nonwhite in 1/10

RD RD_lcl RD_rcl age male nonwhite

1. -.2303744 -.4499073 -.0108415 73.722107 0 0
2. .0266902 -.1340948 .1874752 27.89595 0 0
3. -.0768078 -.2338625 .080247 37.541397 0 0
4. .1710702 -.0468844 .3890248 23.641327 0 1
5. -.0448509 -.1825929 .092891 40.470901 0 0

6. .0165251 -.1391577 .1722078 29.683777 0 0
7. -.0391535 -.177482 .099175 39.468857 0 0
8. .22382 .0179169 .4297231 26.702255 1 0
9. -.0388409 -.2595044 .1818226 63.101974 0 1

10. -.2437626 -.4363919 -.0511332 69.839828 0 0
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The confidence level, here, 95%, is either set using the level() option or obtained from the current

default level, c(level); see [U] 20.8 Specifying the width of confidence intervals.

From the above output, we can see that, for subjects 1, 8, and 10, a 95% confidence interval for the risk

difference does not contain zero, meaning that, for these subjects, there is some evidence of a significant

difference in risks.

The confidence intervals calculated by predictnl are pointwise; there is no adjustment (such as a
Bonferroni correction) made so that these confidence intervals may be considered jointly at the specified

level.

Methods and formulas
For the 𝑖th observation, consider the transformation 𝑔(θ, x𝑖), estimated by 𝑔(θ̂, x𝑖), for the 1 × 𝑘

parameter vector θ and data x𝑖 (x𝑖 is assumed fixed). The variance of 𝑔(θ̂, x𝑖) is estimated by

V̂ar{𝑔(θ̂, x𝑖)} = GVG′

where G is the vector of derivatives

G = { 𝜕𝑔(θ, x𝑖)
𝜕θ

∣
θ=θ̂

}
(1×𝑘)

and V is the estimated variance–covariance matrix of θ̂. Standard errors, ŝe{𝑔(θ̂, x𝑖)}, are obtained as
the square roots of the variances.

The Wald test statistic for testing

𝐻0 ∶ 𝑔(θ, x𝑖) = 0

versus the two-sided alternative is given by

𝑊𝑖 =
{𝑔(θ̂, x𝑖)}

2

V̂ar{𝑔(θ̂, x𝑖)}

When the variance–covariance matrix of θ̂ is an asymptotic covariance matrix, 𝑊𝑖 is approximately

distributed as 𝜒2 with 1 degree of freedom. For linear regression, 𝑊𝑖 is taken to be approximately

distributed as 𝐹1,𝑟, where 𝑟 is the residual degrees of freedom from the original model fit. The 𝑝-values
for the observation-by-observation tests of 𝐻0 versus the two-sided alternative are given by

𝑝𝑖 = Pr(𝑇 > 𝑊𝑖)

where 𝑇 is either a 𝜒2- or 𝐹-distributed random variable, as described above.
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A (1 − 𝛼) × 100% confidence interval for 𝑔(θ, x𝑖) is given by

𝑔(θ̂, x𝑖) ± 𝑧𝛼/2 [ŝe{𝑔(θ̂, x𝑖)}]

when 𝑊𝑖 is 𝜒2-distributed, and

𝑔(θ̂, x𝑖) ± 𝑡𝛼/2,𝑟 [ŝe{𝑔(θ̂, x𝑖)}]

when 𝑊𝑖 is 𝐹-distributed. 𝑧𝑝 is the 1 − 𝑝 quantile of the standard normal distribution, and 𝑡𝑝,𝑟 is the

1 − 𝑝 quantile of the 𝑡 distribution with 𝑟 degrees of freedom.
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Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description
probit fits a probit model for a binary dependent variable, assuming that the probability of a positive

outcome is determined by the standard normal cumulative distribution function. probit can compute
robust and cluster–robust standard errors and adjust results for complex survey designs.

Quick start
Probit model of y on continuous variable x1

probit y x1

Add square of x1
probit y c.x1##c.x1

Same as above, but report bootstrap standard errors

probit y c.x1##c.x1, vce(bootstrap)

Bootstrap estimates of coefficients

bootstrap _b: probit y c.x1##c.x1

Adjust for complex survey design using svyset data and add x2
svy: probit y c.x1##c.x1 x2

Menu
Statistics > Binary outcomes > Probit regression

2265
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Syntax
probit depvar [ indepvars ] [ if ] [ in ] [weight ] [ , options ]

options Description

Model

noconstant suppress constant term

offset(varname) include varname in model with coefficient constrained to 1

asis retain perfect predictor variables

constraints(constraints) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim, opg, robust, cluster clustvar, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)
nocnsreport do not display constraints

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

nocoef do not display the coefficient table; seldom used

collinear keep collinear variables

coeflegend display legend instead of statistics

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.

bayes, bootstrap, by, collect, fmm, fp, jackknife, mfp, mi estimate, nestreg, rolling, statsby, stepwise, and
svy are allowed; see [U] 11.1.10 Prefix commands. For more details, see [BAYES] bayes: probit and [FMM] fmm: pro-

bit.

vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix; see [MI] mi estimate.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
vce(), nocoef, and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
nocoef, collinear, and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Options

� � �
Model �

noconstant, offset(varname), constraints(constraints); see [R] Estimation options.

asis specifies that all specified variables and observations be retained in the maximization process.

This option is typically not specified and may introduce numerical instability. Normally probit
omits variables that perfectly predict success or failure in the dependent variable along with their

associated observations. In those cases, the effective coefficient on the omitted variables is infinity

(negative infinity) for variables that completely determine a success (failure). Dropping the variable

and perfectly predicted observations has no effect on the likelihood or estimates of the remaining

coefficients and increases the numerical stability of the optimization process. Specifying this option

forces retention of perfect predictor variables and their associated observations.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), that al-
low for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods

(bootstrap, jackknife); see [R] vce option.

� � �
Reporting �

level(#); see [R] Estimation options.

nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. These options are

seldom used.

The following options are available with probit but are not shown in the dialog box:

nocoef specifies that the coefficient table not be displayed. This option is sometimes used by program-
mers but is of no use interactively.

collinear, coeflegend; see [R] Estimation options.
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Remarks and examples
Remarks are presented under the following headings:

Robust standard errors
Model identification
Video examples

probit fits maximum likelihood models with dichotomous dependent (left-hand-side) variables

coded as 0/1 (more precisely, coded as 0 and not 0).

For grouped data or data in binomial form, a probit model can be fit using glm with the

family(binomial) and link(probit) options.

Example 1
We have data on the make, weight, and mileage rating of 22 foreign and 52 domestic automobiles.

We wish to fit a probit model explaining whether a car is foreign based on its weight and mileage. Here

is an overview of our data:

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. keep make mpg weight foreign
. describe
Contains data from https://www.stata-press.com/data/r18/auto.dta
Observations: 74 1978 automobile data

Variables: 4 13 Apr 2022 17:45
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

make str18 %-18s Make and model
mpg int %8.0g Mileage (mpg)
weight int %8.0gc Weight (lbs.)
foreign byte %8.0g origin Car origin

Sorted by: foreign
Note: Dataset has changed since last saved.

. inspect foreign
foreign: Car origin Number of observations

Total Integers Nonintegers
# Negative - - -
# Zero 52 52 -
# Positive 22 22 -
#
# # Total 74 74 -
# # Missing -

0 1 74
(2 unique values)

foreign is labeled and all values are documented in the label.

The foreign variable takes on two unique values, 0 and 1. The value 0 denotes a domestic car, and 1
denotes a foreign car.
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The model that we wish to fit is

Pr(foreign = 1) = Φ(𝛽0 + 𝛽1weight + 𝛽2mpg)

where Φ is the cumulative normal distribution.

To fit this model, we type

. probit foreign weight mpg
Iteration 0: Log likelihood = -45.03321
Iteration 1: Log likelihood = -27.914626
(output omitted )

Iteration 5: Log likelihood = -26.844189
Probit regression Number of obs = 74

LR chi2(2) = 36.38
Prob > chi2 = 0.0000

Log likelihood = -26.844189 Pseudo R2 = 0.4039

foreign Coefficient Std. err. z P>|z| [95% conf. interval]

weight -.0023355 .0005661 -4.13 0.000 -.003445 -.0012261
mpg -.1039503 .0515689 -2.02 0.044 -.2050235 -.0028772

_cons 8.275464 2.554142 3.24 0.001 3.269437 13.28149

We find that heavier cars are less likely to be foreign and that cars yielding better gas mileage are also

less likely to be foreign, at least holding the weight of the car constant.

See [R]Maximize for an explanation of the output.

Technical note
Stata interprets a value of 0 as a negative outcome (failure) and treats all other values (except missing)

as positive outcomes (successes). Thus if your dependent variable takes on the values 0 and 1, then 0 is

interpreted as failure and 1 as success. If your dependent variable takes on the values 0, 1, and 2, then 0

is still interpreted as failure, but both 1 and 2 are treated as successes.

If you prefer a more formal mathematical statement, when you type probit 𝑦 𝑥, Stata fits the model

Pr(𝑦𝑗 ≠ 0 ∣ x𝑗) = Φ(x𝑗β)

where Φ is the standard cumulative normal.
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Robust standard errors
If you specify the vce(robust) option, probit reports robust standard errors; see [U] 20.22 Ob-

taining robust variance estimates.

Example 2
For the model from example 1, the robust calculation increases the standard error of the coefficient

on mpg by almost 15%:
. probit foreign weight mpg, vce(robust) nolog
Probit regression Number of obs = 74

Wald chi2(2) = 30.26
Prob > chi2 = 0.0000

Log pseudolikelihood = -26.844189 Pseudo R2 = 0.4039

Robust
foreign Coefficient std. err. z P>|z| [95% conf. interval]

weight -.0023355 .0004934 -4.73 0.000 -.0033025 -.0013686
mpg -.1039503 .0593548 -1.75 0.080 -.2202836 .0123829

_cons 8.275464 2.539177 3.26 0.001 3.298769 13.25216

Without vce(robust), the standard error for the coefficient on mpg was reported to be 0.052 with a

resulting confidence interval of [ −0.21, −0.00 ].
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Example 3
The vce(cluster clustvar) option can relax the independence assumption required by the probit

estimator to independence between clusters. To demonstrate, we will switch to a different dataset.

We are studying unionization of women in the United States and have a dataset with 26,200 observa-

tions on 4,434 women between 1970 and 1988. We will use the variables age (the women were 14–26
in 1968, and our data span the age range of 16–46), grade (years of schooling completed, ranging from
0 to 18), not smsa (28% of the person-time was spent living outside an SMSA—standard metropolitan

statistical area), south (41% of the person-time was in the South), and year. Each of these variables
is included in the regression as a covariate along with the interaction between south and year. This
interaction, along with the south and year variables, is specified in the probit command using factor-
variables notation, south##c.year. We also have variable union, indicating union membership. Over-
all, 22% of the person-time is marked as time under union membership, and 44% of these women have

belonged to a union.

We fit the following model, ignoring that women are observed an average of 5.9 times each in these

data:

. use https://www.stata-press.com/data/r18/union, clear
(NLS Women 14-24 in 1968)
. probit union age grade not_smsa south##c.year
Iteration 0: Log likelihood = -13864.23
Iteration 1: Log likelihood = -13545.541
Iteration 2: Log likelihood = -13544.385
Iteration 3: Log likelihood = -13544.385
Probit regression Number of obs = 26,200

LR chi2(6) = 639.69
Prob > chi2 = 0.0000

Log likelihood = -13544.385 Pseudo R2 = 0.0231

union Coefficient Std. err. z P>|z| [95% conf. interval]

age .0118481 .0029072 4.08 0.000 .0061502 .017546
grade .0267365 .0036689 7.29 0.000 .0195457 .0339273

not_smsa -.1293525 .0202595 -6.38 0.000 -.1690604 -.0896445
1.south -.8281077 .2472219 -3.35 0.001 -1.312654 -.3435618

year -.0080931 .0033469 -2.42 0.016 -.0146529 -.0015333

south#c.year
1 .0057369 .0030917 1.86 0.064 -.0003226 .0117965

_cons -.6542487 .2007777 -3.26 0.001 -1.047766 -.2607316

The reported standard errors in this model are probably meaningless. Women are observed repeatedly,

and so the observations are not independent. Looking at the coefficients, we find a large southern effect

against unionization and a time trend for the south that is almost significantly different from the overall

downward trend. The vce(cluster clustvar) option provides a way to fit this model and obtains correct
standard errors:
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. probit union age grade not_smsa south##c.year, vce(cluster id)
Iteration 0: Log pseudolikelihood = -13864.23
Iteration 1: Log pseudolikelihood = -13545.541
Iteration 2: Log pseudolikelihood = -13544.385
Iteration 3: Log pseudolikelihood = -13544.385
Probit regression Number of obs = 26,200

Wald chi2(6) = 166.53
Prob > chi2 = 0.0000

Log pseudolikelihood = -13544.385 Pseudo R2 = 0.0231
(Std. err. adjusted for 4,434 clusters in idcode)

Robust
union Coefficient std. err. z P>|z| [95% conf. interval]

age .0118481 .0056625 2.09 0.036 .0007499 .0229463
grade .0267365 .0078124 3.42 0.001 .0114244 .0420486

not_smsa -.1293525 .0403885 -3.20 0.001 -.2085125 -.0501925
1.south -.8281077 .3201584 -2.59 0.010 -1.455607 -.2006089

year -.0080931 .0060829 -1.33 0.183 -.0200153 .0038292

south#c.year
1 .0057369 .0040133 1.43 0.153 -.002129 .0136029

_cons -.6542487 .3485976 -1.88 0.061 -1.337487 .02899

These standard errors are larger than those reported by the inappropriate conventional calculation. By

comparison, another model we could fit is an equal-correlation population-averaged probit model:

. xtprobit union age grade not_smsa south##c.year, pa
Iteration 1: Tolerance = .12544249
Iteration 2: Tolerance = .0034686
Iteration 3: Tolerance = .00017448
Iteration 4: Tolerance = 8.382e-06
Iteration 5: Tolerance = 3.997e-07
GEE population-averaged model Number of obs = 26,200
Group variable: idcode Number of groups = 4,434
Family: Binomial Obs per group:
Link: Probit min = 1
Correlation: exchangeable avg = 5.9

max = 12
Wald chi2(6) = 242.57

Scale parameter = 1 Prob > chi2 = 0.0000

union Coefficient Std. err. z P>|z| [95% conf. interval]

age .0089699 .0053208 1.69 0.092 -.0014586 .0193985
grade .0333174 .0062352 5.34 0.000 .0210966 .0455382

not_smsa -.0715717 .027543 -2.60 0.009 -.1255551 -.0175884
1.south -1.017368 .207931 -4.89 0.000 -1.424905 -.6098308

year -.0062708 .0055314 -1.13 0.257 -.0171122 .0045706

south#c.year
1 .0086294 .00258 3.34 0.001 .0035727 .013686

_cons -.8670997 .294771 -2.94 0.003 -1.44484 -.2893592



probit — Probit regression 2273

The coefficient estimates are similar, but these standard errors are smaller than those produced by

probit, vce(cluster clustvar), as we would expect. If the equal-correlation assumption is valid,

the population-averaged probit estimator above should be more efficient.

Is the assumption valid? That is a difficult question to answer. The default population-averaged

estimates correspond to an assumption of exchangeable correlation within person. It would not be un-

reasonable to assume anAR(1) correlation within person or to assume that the observations are correlated

but that we do not wish to impose any structure. See [XT] xtprobit and [XT] xtgee for full details.

probit, vce(cluster clustvar) is robust to assumptions about within-cluster correlation. That is,
it inefficiently sums within cluster for the standard error calculation rather than attempting to exploit

what might be assumed about the within-cluster correlation.

Model identification
The probit command has one more feature that is probably the most useful. It will automatically

check the model for identification and, if the model is underidentified, omit whatever variables and

observations are necessary for estimation to proceed.

Example 4
Have you ever fit a probit model where one or more of your independent variables perfectly predicted

one or the other outcome?

For instance, consider the following data:

Outcome 𝑦 Independent variable 𝑥
0 1

0 1

0 0

1 0

Say that we wish to predict the outcome on the basis of the independent variable. The outcome is always

zero when the independent variable is one. In our data, Pr(𝑦 = 0 ∣ 𝑥 = 1) = 1, which means that the

probit coefficient on 𝑥 must be minus infinity with a corresponding infinite standard error. At this point,

you may suspect that we have a problem.

Unfortunately, not all such problems are so easily detected, especially if you have many independent

variables in your model. If you have ever had such difficulties, then you have experienced one of the

more unpleasant aspects of computer optimization. The computer has no idea that it is trying to solve

for an infinite coefficient as it begins its iterative process. All it knows is that, at each step, making the

coefficient a little bigger, or a little smaller, works wonders. It continues on its merry way until either

1) the whole thing comes crashing to the ground when a numerical overflow error occurs or 2) it reaches

some predetermined cutoff that stops the process. Meanwhile, you have been waiting. And the estimates

that you finally receive, if any, may be nothing more than numerical roundoff.

Stata watches for these sorts of problems, alerts you, fixes them, and then properly fits the model.
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Let’s return to our automobile data. Among the variables we have in the data is one called repair
that takes on three values. A value of 1 indicates that the car has a poor repair record, 2 indicates an

average record, and 3 indicates a better-than-average record. Here is a tabulation of our data:

. use https://www.stata-press.com/data/r18/repair
(1978 automobile data)
. tabulate foreign repair

Repair
Car origin 1 2 3 Total

Domestic 10 27 9 46
Foreign 0 3 9 12

Total 10 30 18 58

All the cars with poor repair records (repair = 1) are domestic. If we were to attempt to predict

foreign on the basis of the repair records, the predicted probability for the repair = 1 category would

have to be zero. This in turn means that the probit coefficient must be minus infinity, and that would set

most computer programs buzzing.

Let’s try using Stata on this problem.

. probit foreign b3.repair
note: 1.repair != 0 predicts failure perfectly;

1.repair omitted and 10 obs not used.
Iteration 0: Log likelihood = -26.992087
Iteration 1: Log likelihood = -22.276479
Iteration 2: Log likelihood = -22.229184
Iteration 3: Log likelihood = -22.229138
Iteration 4: Log likelihood = -22.229138
Probit regression Number of obs = 48

LR chi2(1) = 9.53
Prob > chi2 = 0.0020

Log likelihood = -22.229138 Pseudo R2 = 0.1765

foreign Coefficient Std. err. z P>|z| [95% conf. interval]

repair
1 0 (empty)
2 -1.281552 .4297326 -2.98 0.003 -2.123812 -.4392911

_cons 1.16e-16 .295409 0.00 1.000 -.578991 .578991

Remember that all the cars with poor repair records (repair = 1) are domestic, so the model cannot

be fit, or at least it cannot be fit if we restrict ourselves to finite coefficients. Stata noted that fact “note:

1.repair != 0 predicts failure perfectly”. This is Stata’s mathematically precise way of saying what we

said in English. When repair is 1, the car is domestic.

Stata thenwent on to say, “1.repair omitted and 10 obs not used”. This is Stata eliminating the problem.

First, 1.repair had to be removed from the model because it would have an infinite coefficient. Then,

the 10 observations that led to the problem had to be eliminated, as well, so as not to bias the remaining

coefficients in the model. The 10 observations that are not used are the 10 domestic cars that have poor

repair records.

Stata then fit what was left of the model, using the remaining observations. Because no observations

remained for cars with poor repair records, Stata reports “(empty)” in the row for repair = 1.
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Technical note
Stata is pretty smart about catching these problems. It will catch “one-way causation by a dummy

variable”, as we demonstrated above.

Stata also watches for “two-way causation”, that is, a variable that perfectly determines the outcome,

both successes and failures. Here Stata says that the variable “predicts outcome perfectly” and stops.

Statistics dictate that no model can be fit.

Stata also checks your data for collinear variables; it will say “so-and-so omitted because of collinear-

ity”. No observations need to be eliminated here and model fitting will proceed without the offending

variable.

It will also catch a subtle problem that can arise with continuous data. For instance, if we were

estimating the chances of surviving the first year after an operation, and if we included in our model age,
and if all the persons over 65 died within the year, Stata will say, “age> 65 predicts failure perfectly”. It

will then inform us about how it resolves the issue and fit what can be fit of our model.

probit (and logit, logistic, and ivprobit) will also occasionally fail to converge and then dis-
play messages such as

Note: 4 failures and 0 successes completely determined.

The cause of this message and what to do if you see it are described in [R] logit.

Video examples
Probit regression with categorical covariates

Probit regression with continuous covariates

Probit regression with categorical and continuous covariates

Stored results
probit stores the following in e():

Scalars

e(N) number of observations

e(N cds) number of completely determined successes

e(N cdf) number of completely determined failures

e(k) number of parameters

e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test

e(k dv) number of dependent variables

e(df m) model degrees of freedom

e(r2 p) pseudo-𝑅2

e(ll) log likelihood

e(ll 0) log likelihood, constant-only model

e(N clust) number of clusters

e(chi2) 𝜒2

e(p) 𝑝-value for model test
e(rank) rank of e(V)
e(ic) number of iterations

e(rc) return code

e(converged) 1 if converged, 0 otherwise

https://www.youtube.com/watch?v=qt8DPrVGCok
https://www.youtube.com/watch?v=AunPalHL_us
https://www.youtube.com/watch?v=JHZKV9DPxfI
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Macros

e(cmd) probit
e(cmdline) command as typed

e(depvar) name of dependent variable

e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(clustvar) name of cluster variable

e(offset) linear offset variable

e(chi2type) Wald or LR; type of model 𝜒2 test

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(opt) type of optimization

e(which) max or min; whether optimizer is to perform maximization or minimization

e(ml method) type of ml method
e(user) name of likelihood-evaluator program

e(technique) maximization technique

e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(ilog) iteration log (up to 20 iterations)

e(gradient) gradient vector

e(mns) vector of means of the independent variables

e(rules) information about perfect predictors

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas
Probit analysis originated in connection with bioassay, and the word probit, a contraction of “probabil-

ity unit”, was suggested by Bliss (1934a, 1934b). For an introduction to probit and logit, see, for example,

Aldrich and Nelson (1984), Cameron and Trivedi (2022), Long (1997), Pampel (2021), or Powers and

Xie (2008). Long and Freese (2014, chap. 5 and 6) and Jones (2007, chap. 3) provide introductions to

probit and logit, along with Stata examples.
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The log-likelihood function for probit is

ln𝐿 = ∑
𝑗∈𝑆

𝑤𝑗 lnΦ(x𝑗β) + ∑
𝑗∉𝑆

𝑤𝑗 ln{1 − Φ(x𝑗β)}

where Φ is the cumulative normal and 𝑤𝑗 denotes the optional weights. ln𝐿 is maximized, as described

in [R]Maximize.

This command supports the Huber/White/sandwich estimator of the variance and its clustered version

using vce(robust) and vce(cluster clustvar), respectively. See [P] robust, particularly Maximum

likelihood estimators and Methods and formulas. The scores are calculated as u𝑗 = {𝜙(x𝑗b)/Φ(x𝑗b)}x𝑗
for the positive outcomes and −[𝜙(x𝑗b)/{1 − Φ(x𝑗b)}]x𝑗 for the negative outcomes, where 𝜙 is the

normal density.

probit also supports estimation with survey data. For details on VCEs with survey data, see

[SVY] Variance estimation.� �
Chester Ittner Bliss (1899–1979) was born in Ohio. He was educated as an entomologist, earning

degrees from Ohio State and Columbia, and was employed by the United States Department of

Agriculture until 1933. When he lost his job because of the Depression, Bliss then worked with

R. A. Fisher in London and at the Institute of Plant Protection in Leningrad before returning to a

post at the Connecticut Agricultural Experiment Station in 1938. He was also a lecturer at Yale

for 25 years. Among many contributions to biostatistics, his development and application of probit

methods to biological problems are outstanding.� �
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Postestimation commands predict margins
Remarks and examples Methods and formulas Also see

Postestimation commands
The following postestimation commands are of special interest after probit:

Command Description

estat classification report various summary statistics, including the classification table

estat gof Pearson or Hosmer–Lemeshow goodness-of-fit test

lroc compute area under ROC curve and graph the curve

lsens graph sensitivity and specificity versus probability cutoff

lassogof calculate goodness-of-fit predictions

These commands are not appropriate with svy estimation results.

The following standard postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters

estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian
information criteria (AIC, CAIC, AICc, and BIC, respectively)

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estat (svy) postestimation statistics for survey data

estimates cataloging estimation results

etable table of estimation results
∗ forecast dynamic forecasts and simulations
∗ hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations
of parameters

linktest link test for model specification
∗ lrtest likelihood-ratio test

margins marginal means, predictive margins, marginal effects, and average marginal
effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combi-
nations of parameters

predict probabilities, linear predictions and their SEs, etc.

predictnl point estimates, standard errors, testing, and inference for generalized predic-
tions

pwcompare pairwise comparisons of parameters

suest seemingly unrelated estimation

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

∗forecast, hausman, and lrtest are not appropriate with svy estimation results. forecast is also not appropriate with mi
estimation results.
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predict

Description for predict
predict creates a new variable containing predictions such as probabilities, linear predictions, stan-

dard errors, deviance residuals, and the equation-level score.

Menu for predict
Statistics > Postestimation

Syntax for predict
predict [ type ] newvar [ if ] [ in ] [ , statistic nooffset rules asif ]

statistic Description

Main

pr probability of a positive outcome; the default

xb linear prediction

stdp standard error of the linear prediction
∗ deviance deviance residual

score first derivative of the log likelihood with respect to x𝑗β

Unstarred statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for the
estimation sample. Starred statistics are calculated only for the estimation sample, even when if e(sample) is not
specified.

Options for predict

� � �
Main �

pr, the default, calculates the probability of a positive outcome.

xb calculates the linear prediction.

stdp calculates the standard error of the linear prediction.

deviance calculates the deviance residual.

score calculates the equation-level score, 𝜕ln𝐿/𝜕(x𝑗β).
nooffset is relevant only if you specified offset(varname) for probit. It modifies the calculations

made by predict so that they ignore the offset variable; the linear prediction is treated as x𝑗b rather

than as x𝑗b + offset𝑗.

rules requests that Stata use any rules that were used to identify the model when making the prediction.
By default, Stata calculates missing for excluded observations.

asif requests that Stata ignore the rules and exclusion criteria and calculate predictions for all observa-
tions possible using the estimated parameter from the model.
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margins

Description for margins
margins estimates margins of response for probabilities and linear predictions.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist ] [ , options ]
margins [marginlist ] , predict(statistic ...) [ predict(statistic ...) ... ] [ options ]

statistic Description

pr probability of a positive outcome; the default

xb linear prediction

stdp not allowed with margins
deviance not allowed with margins
score not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.

Remarks and examples
Remarks are presented under the following headings:

Obtaining predicted values
Performing hypothesis tests

Obtaining predicted values
Once you have fit a probit model, you can obtain the predicted probabilities by using the predict

command for both the estimation sample and other samples; see [U] 20 Estimation and postestimation

commands and [R] predict. Here we will make only a few additional comments.

predict without arguments calculates the predicted probability of a positive outcome. With the xb
option, predict calculates the linear combination x𝑗b, where x𝑗 are the independent variables in the 𝑗th
observation and b is the estimated parameter vector. This is known as the index function because the

cumulative density indexed at this value is the probability of a positive outcome.

In both cases, Stata remembers any rules used to identify the model and calculates missing for ex-

cluded observations unless rules or asif is specified. This is covered in the following example.

With the stdp option, predict calculates the standard error of the prediction, which is not adjusted
for replicated covariate patterns in the data.



probit postestimation — Postestimation tools for probit 2282

You can calculate the unadjusted-for-replicated-covariate-patterns diagonal elements of the hat ma-

trix, or leverage, by typing

. predict pred

. predict stdp, stdp

. generate hat = stdp^2*pred*(1-pred)

Example 1
In example 4 of [R] probit, we fit the probit model probit foreign b3.repair. To obtain predicted

probabilities, we type

. predict p
(option pr assumed; Pr(foreign))
(10 missing values generated)
. summarize foreign p

Variable Obs Mean Std. dev. Min Max

foreign 58 .2068966 .4086186 0 1
p 48 .25 .1956984 .1 .5

Stata remembers any rules used to identify the model and sets predictions to missing for any excluded

observations. In example 4 of [R] probit, probit omitted the variable 1.repair from our model and

excluded 10 observations. When we typed predict p, those same 10 observations were again excluded
and their predictions set to missing.

predict’s rules option uses the rules in the prediction. During estimation, we were told, “1.repair !=
0 predicts failure perfectly”, so the rule is that when 1.repair is not zero, we should predict 0 probability
of success or a positive outcome:

. predict p2, rules
(option pr assumed; Pr(foreign))
. summarize foreign p p2

Variable Obs Mean Std. dev. Min Max

foreign 58 .2068966 .4086186 0 1
p 48 .25 .1956984 .1 .5

p2 58 .2068966 .2016268 0 .5

predict’s asif option ignores the rules and the exclusion criteria and calculates predictions for all
observations possible using the estimated parameters from the model:

. predict p3, asif
(option pr assumed; Pr(foreign))
. summarize for p p2 p3

Variable Obs Mean Std. dev. Min Max

foreign 58 .2068966 .4086186 0 1
p 48 .25 .1956984 .1 .5

p2 58 .2068966 .2016268 0 .5
p3 58 .2931034 .2016268 .1 .5
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Which is right? By default, predict uses the most conservative approach. If many observations had
been excluded due to a simple rule, we could be reasonably certain that the rules prediction is correct.
The asif prediction is correct only if the exclusion is a fluke and we would be willing to exclude the
variable from the analysis, anyway. Then, however, we should refit the model to include the excluded

observations.

Performing hypothesis tests
After estimation with probit, you can perform hypothesis tests by using the test or testnl com-

mand; see [U] 20 Estimation and postestimation commands.

Methods and formulas
Let index 𝑗 be used to index observations. Define 𝑀𝑗 for each observation as the total number of

observations sharing 𝑗’s covariate pattern. Define 𝑌𝑗 as the total number of positive responses among

observations sharing 𝑗’s covariate pattern. Define 𝑝𝑗 as the predicted probability of a positive outcome

for observation 𝑗.
For 𝑀𝑗 > 1, the deviance residual 𝑑𝑗 is defined as

𝑑𝑗 = ±(2[𝑌𝑗 ln(
𝑌𝑗

𝑀𝑗𝑝𝑗
) + (𝑀𝑗 − 𝑌𝑗) ln{

𝑀𝑗 − 𝑌𝑗

𝑀𝑗(1 − 𝑝𝑗)
}])

1/2

where the sign is the same as the sign of (𝑌𝑗 − 𝑀𝑗𝑝𝑗). In the limiting cases, the deviance residual is
given by

𝑑𝑗 =
⎧{
⎨{⎩

−√2𝑀𝑗| ln(1 − 𝑝𝑗)| if 𝑌𝑗 = 0

√2𝑀𝑗| ln𝑝𝑗| if 𝑌𝑗 = 𝑀𝑗

Also see
[R] probit — Probit regression

[R] estat classification — Classification statistics and table

[R] estat gof — Pearson or Hosmer–Lemeshow goodness-of-fit test

[R] lroc — Compute area under ROC curve and graph the curve

[R] lsens — Graph sensitivity and specificity versus probability cutoff

[LASSO] lassogof — Goodness of fit after lasso for prediction

[U] 20 Estimation and postestimation commands
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Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description
proportion produces estimates of proportions, along with standard errors, for the categories identi-

fied by the values in each variable of varlist.

Quick start
Proportions, standard errors, and 95% CIs for each level of v1

proportion v1

Also compute statistics for v2
proportion v1 v2

Same as above, for each subpopulation defined by the levels of catvar
proportion v1 v2, over(catvar)

Standardizing across strata defined by svar with stratum weight wvar1
proportion v1, stdize(svar) stdweight(wvar1)

Weighting by sampling weight wvar2
proportion v1 [pweight=wvar2]

Menu
Statistics > Summaries, tables, and tests > Summary and descriptive statistics > Proportions

2284
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Syntax
proportion varlist [ if ] [ in ] [weight ] [ , options ]

options Description

Model

stdize(varname) variable identifying strata for standardization

stdweight(varname) weight variable for standardization

nostdrescale do not rescale the standard weight variable

if/in/over

over(varlist𝑜) group over subpopulations defined by varlist𝑜

SE/Cluster

vce(vcetype) vcetype may be analytic, cluster clustvar, bootstrap, or
jackknife

Reporting

level(#) set confidence level; default is level(95)
citype(citype) method to compute limits of confidence intervals; default is

citype(logit)
percent report estimated proportions as percentages

noheader suppress table header

display options control column formats, row spacing, line width, display of omitted
variables and base and empty cells, and factor-variable labeling

coeflegend display legend instead of statistics

varlist may contain factor variables; see [U] 11.4.3 Factor variables.

Only numeric, nonnegative, integer-valued variables are allowed in varlist.

bootstrap, collect, jackknife, mi estimate, rolling, statsby, and svy are allowed; see [U] 11.1.10 Prefix com-
mands.

vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix; see [MI] mi estimate.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

citype Description

logit calculate logit-transformed confidence intervals; the default

agresti calculate Agresti–Coull confidence intervals

exact calculate exact (Clopper–Pearson) confidence intervals

jeffreys calculate Jeffreys confidence intervals

normal calculate normal (Wald) confidence intervals

wald synonym for normal
wilson calculate Wilson confidence intervals
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Options

� � �
Model �

stdize(varname) specifies that the point estimates be adjusted by direct standardization across the

strata identified by varname. This option requires the stdweight() option.

stdweight(varname) specifies the weight variable associated with the standard strata identified in the
stdize() option. The standardization weights must be constant within the standard strata.

nostdrescale prevents the standardization weights from being rescaled within the over() groups. This
option requires stdize() but is ignored if the over() option is not specified.

� � �
if/in/over �

over(varlist𝑜) specifies that estimates be computed for multiple subpopulations, which are identified by
the different values of the variables in varlist𝑜. Only numeric, nonnegative, integer-valued variables

are allowed in over(varlist𝑜).

� � �
SE/Cluster �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (analytic), that allow for intragroup correlation (cluster clustvar), and that use
bootstrap or jackknife methods (bootstrap, jackknife); see [R] vce option.

vce(analytic), the default, uses the analytically derived variance estimator associated with the

sample proportion.

� � �
Reporting �

level(#); see [R] Estimation options.

citype(citype) specifies how to compute the limits of confidence intervals. citypemay be one of logit
(default), agresti, exact, jeffreys, normal, wald, or wilson.

percent specifies that the proportions be reported as percentages.

noheader prevents the table header from being displayed.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), and nolstretch; see [R] Estimation

options.

The following option is available with proportion but is not shown in the dialog box:

coeflegend; see [R] Estimation options.
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Remarks and examples

Example 1
We can estimate the proportion of each repair rating in auto2.dta:

. use https://www.stata-press.com/data/r18/auto2
(1978 automobile data)
. proportion rep78
Proportion estimation Number of obs = 69

Logit
Proportion Std. err. [95% conf. interval]

rep78
Poor .0289855 .0201966 .0070794 .1110924
Fair .115942 .0385422 .058317 .2173648

Average .4347826 .0596787 .3214848 .5553295
Good .2608696 .0528625 .1695907 .3788629

Excellent .1594203 .0440694 .0895793 .267702

marginsplot will produce a graph of the results from proportion:

. marginsplot
Variables that uniquely identify proportions: rep78

0

.2

.4

.6

Poor Fair Average Good Excellent
Repair record 1978

Estimated proportions of rep78 with 95% CIs
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Example 2
We can also estimate proportions over groups:

. proportion rep78, over(foreign)
Proportion estimation Number of obs = 69

Logit
Proportion Std. err. [95% conf. interval]

rep78@foreign
Poor Domestic .0416667 .0288424 .0101825 .1552326
Poor Foreign 0 (no observations)

Fair Domestic .1666667 .0537914 .084534 .3022522
Fair Foreign 0 (no observations)

Average Domestic .5625 .0716027 .4184154 .6967587
Average Foreign .1428571 .0763604 .0458191 .3664757

Good Domestic .1875 .0563367 .0993684 .3255432
Good Foreign .4285714 .1079898 .2372889 .6438783

Excellent Domestic .0416667 .0288424 .0101825 .1552326
Excellent Foreign .4285714 .1079898 .2372889 .6438783

To see the results as percentages instead of proportions, we add the percent option:

. proportion rep78, over(foreign) percent
Percent estimation Number of obs = 69

Logit
Percent Std. err. [95% conf. interval]

rep78@foreign
Poor Domestic 4.17 2.88 1.02 15.52
Poor Foreign 0.00 (no observations)

Fair Domestic 16.67 5.38 8.45 30.23
Fair Foreign 0.00 (no observations)

Average Domestic 56.25 7.16 41.84 69.68
Average Foreign 14.29 7.64 4.58 36.65

Good Domestic 18.75 5.63 9.94 32.55
Good Foreign 42.86 10.80 23.73 64.39

Excellent Domestic 4.17 2.88 1.02 15.52
Excellent Foreign 42.86 10.80 23.73 64.39

We can now use marginsplot to graph the percentages for each group. We add the

bydimension(foreign) option to plot the groups in separate graph panels. The xlabel(,
angle(30)) option prevents the 𝑥-axis labels from running into each other.



proportion — Estimate proportions 2289

. marginsplot, bydimension(foreign) xlabel(, angle(30))
Variables that uniquely identify proportions: rep78 foreign
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Repair record 1978

Estimated percentages of rep78 with 95% CIs

We estimate that only 19% of domestic cars have good repair records and only 4% have excellent

repair records. For foreign cars, however, we find that 43% have good repair records and 43% have

excellent repair records.

Example 3
Instead of estimating percentages within the foreign and domestic groupings, we might want to know

overall percentages. For instance, what percentage of all cars are foreign and have excellent repair

records? What percentage are domestic and have average records? We can obtain all such percentages

by specifying an interaction between rep78 and foreign.

. proportion rep78#foreign, percent
Percent estimation Number of obs = 69

Logit
Percent Std. err. [95% conf. interval]

rep78#foreign
Poor#Domestic 2.90 2.02 0.71 11.11
Poor#Foreign 0.00 (no observations)

Fair#Domestic 11.59 3.85 5.83 21.74
Fair#Foreign 0.00 (no observations)

Average#Domestic 39.13 5.88 28.21 51.26
Average#Foreign 4.35 2.46 1.38 12.86

Good#Domestic 13.04 4.05 6.85 23.44
Good#Foreign 13.04 4.05 6.85 23.44

Excellent#Domestic 2.90 2.02 0.71 11.11
Excellent#Foreign 13.04 4.05 6.85 23.44

Looking at the last line of this output, we estimate that 13% of all cars are foreign with excellent repair

records.
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Stored results
proportion stores the following in e():

Scalars

e(N) number of observations

e(N over) number of subpopulations

e(N stdize) number of standard strata

e(N clust) number of clusters

e(k eq) number of equations in e(b)
e(df r) sample degrees of freedom

e(rank) rank of e(V)

Macros

e(cmd) proportion
e(cmdline) command as typed

e(varlist) varlist

e(stdize) varname from stdize()
e(stdweight) varname from stdweight()
e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(clustvar) name of cluster variable

e(over) varlist from over()
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(properties) b V
e(estat cmd) program used to implement estat
e(marginsnotok) predictions disallowed by margins

Matrices

e(b) vector of proportion estimates

e(V) (co)variance estimates

e( N) vector of numbers of nonmissing observations

e( N stdsum) number of nonmissing observations within the standard strata

e( p stdize) standardizing proportions

e(freq) vector of frequency estimates

e(error) error code corresponding to e(b)

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas
The point estimate of a proportion, ̂𝑝 , is computed as the mean of an indicator variable; see [R]mean.

Methods and formulas are presented under the following headings:

Confidence intervals
Survey data and sampling weights
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Confidence intervals
For an overview of confidence interval methods for binomial proportions, see Dean and Pagano

(2015).

Given 𝑘 successes of 𝑛 trials, the estimated proportion (probability of a success) is ̂𝑝 = 𝑘/𝑛 with

estimated standard error ̂𝑠 = √ ̂𝑝(1 − ̂𝑝)/𝑛.

For weighted data, 𝑘 = ∑𝑁
𝑖=1 𝑤𝑖1(obs 𝑖 is a success) and 𝑛 = ∑𝑁

𝑖=1 𝑤𝑖, where 𝑁 is the total number

of observations, 𝑤𝑖 is the weight for the 𝑖th observation, and 1(⋅) denotes the indicator function that
evaluates to 1 if observation 𝑖 is a success and 0 otherwise.

The logit-transformed confidence interval is given by

log( ̂𝑝
1 − ̂𝑝

) ± 𝑡1−𝛼/2,𝜈
̂𝑠

̂𝑝(1 − ̂𝑝)

where 𝑡𝑝,𝜈 is the 𝑝th quantile of Student’s 𝑡 distribution with 𝜈 degrees of freedom.
The endpoints of this confidence interval are transformed back to the proportion metric by using the

inverse of the logit transform

𝑓−1(𝑦) = 𝑒𝑦

1 + 𝑒𝑦

Hence, the displayed confidence intervals for proportions are

𝑓−1 { ln( ̂𝑝
1 − ̂𝑝

) ± 𝑡1−𝛼/2,𝜈
̂𝑠

̂𝑝(1 − ̂𝑝)
}

The Wald-type 100(1 − 𝛼)% confidence interval is given by

̂𝑝 ± 𝑡1−𝛼/2,𝜈 ̂𝑠

The formulas below (for the Wilson, exact, Jeffreys, and Agresti–Coull intervals) are slightly differ-

ent when using the svy prefix, pweights, or the vce(cluster clustvar) option; see Survey data and
sampling weights below.

The Wilson interval is given by

̂𝑝 + 𝑧2
1−𝛼/2/2𝑛 ± 𝑧1−𝛼/2√ ̂𝑝(1 − ̂𝑝)/𝑛 + 𝑧2

1−𝛼/2/4𝑛2

1 + 𝑧2
1−𝛼/2/𝑛

where 𝑧𝑝 is the 𝑝th quantile of the standard normal distribution.
The exact (Clopper–Pearson) interval is given by

{
𝜈1𝐹𝛼/2,𝜈1,𝜈2

𝜈2 + 𝜈1𝐹𝛼/2,𝜈1,𝜈2

;
𝜈3𝐹1−𝛼/2,𝜈3,𝜈4

𝜈4 + 𝜈3𝐹𝛼/2,𝜈3,𝜈4

}

where 𝜈1 = 2𝑘, 𝜈2 = 2(𝑛 − 𝑘 + 1), 𝜈3 = 2(𝑘 + 1), 𝜈4 = 2(𝑛 − 𝑘), and 𝐹𝑝,𝜈1,𝜈2
is the 𝑝th quantile of

an 𝐹 distribution with 𝜈1 and 𝜈2 degrees of freedom.
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The Jeffreys interval is given by

{Beta𝛼/2,𝛼1,𝛽1
; Beta1−𝛼/2,𝛼1,𝛽1

}

where 𝛼1 = 𝑘 + 0.5, 𝛽1 = 𝑛 − 𝑘 + 0.5, and Beta𝑝,𝛼1,𝛽1
is the 𝑝th quantile of a Beta distribution with 𝛼1

and 𝛽1 degrees of freedom.

The Agresti–Coull interval is given by

̃𝑝 ± 𝑧1−𝛼/2√ ̃𝑝(1 − ̃𝑝)/�̃�

where �̃� = 𝑘 + 𝑧2
1−𝛼/2/2, �̃� = 𝑛 + 𝑧2

1−𝛼/2, and ̃𝑝 = �̃�/�̃�.

Survey data and sampling weights
With the svy prefix, pweights, or the vce(cluster clustvar) option, the Wilson, exact, Jeffreys,

and Agresti–Coull intervals use 𝑘∗ in place of 𝑘 and 𝑛∗ in place of 𝑛, where 𝑘∗ = 𝑛∗ ̂𝑝 ,

𝑛∗ = ̂𝑝(1 − ̂𝑝)
̂𝑠2 {

𝑧1−𝛼/2

𝑡1−𝛼/2,𝜈
}

2

and ̂𝑠 is the linearized standard error estimate. For more details about the linearized standard error esti-
mate, see Ratios and other functions of survey data in [SVY] Variance estimation.
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Also see
[R] proportion postestimation — Postestimation tools for proportion

[R] mean — Estimate means

[R] ratio — Estimate ratios

[R] total — Estimate totals

[MI] Estimation — Estimation commands for use with mi estimate

[SVY] Direct standardization — Direct standardization of means, proportions, and ratios

[SVY] Poststratification — Poststratification for survey data

[SVY] Subpopulation estimation — Subpopulation estimation for survey data

[SVY] svy estimation — Estimation commands for survey data

[SVY] Variance estimation — Variance estimation for survey data

[U] 20 Estimation and postestimation commands
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Postestimation commands Remarks and examples Also see

Postestimation commands
The following postestimation commands are available after proportion:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters

estat vce variance–covariance matrix of the estimators (VCE)

estat (svy) postestimation statistics for survey data

estimates cataloging estimation results

etable table of estimation results

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

marginsplot graph the results from proportion

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

pwcompare pairwise comparisons of parameters

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

Remarks and examples

Example 1
In example 2 of [R] proportion, we computed the proportions of cars with different repair records for

each group, foreign or domestic. We use test to test whether the proportion of cars with repair record
equal to 4 is the same for domestic and foreign cars.

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. proportion rep78, over(foreign)
(output omitted )

. test 4.rep78@0.foreign=4.rep78@1.foreign
( 1) 4.rep78@0bn.foreign - 4.rep78@1.foreign = 0

F( 1, 68) = 3.92
Prob > F = 0.0518

There is not a significant difference between those proportions at the 5% level.

2293
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Example 2
Continuing with auto.dta from example 1, we generate a new variable, highprice, that indicates

if the price is larger than $5,000 and then use proportion to see the proportion of cars with high price
among domestic and foreign cars separately.

. generate highprice = price>5000

. proportion highprice, over(foreign)
Proportion estimation Number of obs = 74

Logit
Proportion Std. err. [95% conf. interval]

highprice@foreign
0 Domestic .5576923 .0688744 .4195373 .6874611
0 Foreign .3636364 .1025593 .191094 .5802222
1 Domestic .4423077 .0688744 .3125389 .5804627
1 Foreign .6363636 .1025593 .4197778 .808906

We will compute the odds ratio of having a high price in group Foreign to having a high price in
group Domestic. Usually, odds ratios are computed by using the logistic command, but here we will
perform the computation by using nlcom after proportion.

. nlcom OR: (_b[1.highprice@1.foreign]/_b[0.highprice@1.foreign])/(_b[1.highpri
> ce@0.foreign]/_b[0.highprice@0.foreign])

OR: (_b[1.highprice@1.foreign]/_b[0.highprice@1.foreign])/(_b[1.high
> price@0.foreign]/_b[0.highprice@0.foreign])

Proportion Coefficient Std. err. z P>|z| [95% conf. interval]

OR 2.206522 1.155825 1.91 0.056 -.0588533 4.471897

This is the same odds ratio that we would obtain from

. logistic highprice foreign

The odds ratio is slightly larger than 2, which means that the odds of having a high price among

foreign cars are more than twice that of having a high price among domestic cars.

Also see
[R] proportion — Estimate proportions

[U] 20 Estimation and postestimation commands
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Description Quick start Menu Syntax
Options for prtest Options for prtesti Remarks and examples Stored results
Methods and formulas References Also see

Description
prtest performs tests on the equality of proportions using large-sample statistics. The test can be

performed for one sample against a hypothesized population value or for no difference in population

proportions estimated from two samples. Clustered data are supported.

prtesti is the immediate form of prtest; see [U] 19 Immediate commands.

Quick start
One-sample test that the proportion of 1s in v is equal to 0.1

prtest v == 0.1

Same as above, but using the 90% confidence level and adjusting for clustering with clusters defined by

cvar and an intraclass correlation of 0.5
prtest v == 0.1, level(90) cluster(cvar) rho(0.5)

Test that the proportion of 1s in v is equal between two groups defined by catvar
prtest v, by(catvar)

Same as above, and adjust for clustering with clusters defined by cvar and an intraclass correlation of
0.5 in the two groups

prtest v, by(catvar) cluster(cvar) rho(0.5)

Test equality of proportions between v1 and v2
prtest v1 == v2

Test 𝑝1 = 𝑝2 if ̂𝑝1 = 0.10, ̂𝑝2 = 0.17, 𝑛1 = 29, and 𝑛2 = 36

prtesti 29 0.10 36 0.17

Menu
prtest
Statistics > Summaries, tables, and tests > Classical tests of hypotheses > Proportion test

prtesti
Statistics > Summaries, tables, and tests > Classical tests of hypotheses > Proportion test calculator

2295
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Syntax
One-sample test of proportion

prtest varname == #𝑝 [ if ] [ in ] [ , onesampleopts ]

Two-sample test of proportions using groups

prtest varname [ if ] [ in ] , by(groupvar) [ twosamplegropts ]

Two-sample test of proportions using variables

prtest varname1 == varname2 [ if ] [ in ] [ , level(#) ]

Immediate form of one-sample test of proportion

prtesti #obs1 #𝑝1 #𝑝2 [ , level(#) count ]

Immediate form of two-sample test of proportions

prtesti #obs1 #𝑝1 #obs2 #𝑝2 [ , level(#) count ]

onesampleopts Description

Main

level(#) confidence level; default is level(95)
cluster(varname) variable defining the clusters

rho(#) intraclass correlation

twosamplegropts Description

Main
∗ by(groupvar) variable defining the groups

level(#) confidence level; default is level(95)
cluster(varname) variable defining the clusters

rho(#) common intraclass correlation

rho1(#) intraclass correlation for group 1

rho2(#) intraclass correlation for group 2

∗by(groupvar) is required.

by is allowed with prtest, and collect is allowed with prtest and prtesti; see [U] 11.1.10 Prefix commands.

Options for prtest

� � �
Main �

by(groupvar) specifies a numeric variable that contains the group information for a given observation.
This variable must have only two values. Do not confuse the by() option with the by prefix; both
may be specified.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is

level(95) or as set by set level; see [U] 20.8 Specifying the width of confidence intervals.
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cluster(varname) specifies the variable that identifies clusters. The cluster() option is required to
adjust the computation for clustering.

rho(#) specifies the intraclass correlation for a one-sample test or the common intraclass correlation

for a two-sample test. The rho() option is required to adjust the computation for clustering for a

one-sample test.

rho1(#) specifies the intraclass correlation of the first group for a two-sample test using groups. The
rho() option or both rho1() and rho2() options are required to adjust the computation for cluster-
ing.

rho2(#) specifies the intraclass correlation of the second group for a two-sample test using groups.

The rho() option or both rho1() and rho2() options are required to adjust the computation for

clustering.

Options for prtesti
level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is

level(95) or as set by set level; see [U] 20.8 Specifying the width of confidence intervals.

count specifies that integer counts instead of proportions be used in the immediate forms of prtest.
In the first syntax, prtesti expects that #obs1 and #𝑝1 are counts—#𝑝1 ≤ #obs1—and #𝑝2 is a

proportion. In the second syntax, prtesti expects that all four numbers are integer counts, that

#obs1 ≥ #𝑝1, and that #obs2 ≥ #𝑝2.

Remarks and examples
Remarks are presented under the following headings:

Tests of proportions
Adjust for clustering
Immediate form

Tests of proportions
The prtest output follows the output of ttest in providing a lot of information. Each proportion is

presented along with a confidence interval. The appropriate one- or two-sample test is performed, and

the two-sided and both one-sided results are included at the bottom of the output. For a two-sample test,

the calculated difference is also presented with its confidence interval. This command may be used for

both large-sample testing and large-sample interval estimation. For one-sample tests of proportions with

small-sample sizes and to obtain exact 𝑝-values, researchers should use bitest; see [R] bitest.
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Example 1: One-sample test of proportion
In the first form, prtest tests whether the mean of the sample is equal to a known constant. Assume

that we have a sample of 74 automobiles. We wish to test whether the proportion of automobiles that are

foreign is different from 40%.

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. prtest foreign == 0.4
One-sample test of proportion Number of obs = 74

Variable Mean Std. err. [95% conf. interval]

foreign .2972973 .0531331 .1931583 .4014363

p = proportion(foreign) z = -1.8034
H0: p = 0.4

Ha: p < 0.4 Ha: p != 0.4 Ha: p > 0.4
Pr(Z < z) = 0.0357 Pr(|Z| > |z|) = 0.0713 Pr(Z > z) = 0.9643

The test indicates that we cannot reject the hypothesis that the proportion of foreign automobiles is 0.40

at the 5% significance level.

Example 2: Two-sample test of proportions
We have two headache remedies that we give to patients. Each remedy’s effect is recorded as 0 for

failing to relieve the headache and 1 for relieving the headache. We wish to test the equality of the

proportion of people relieved by the two treatments.

. use https://www.stata-press.com/data/r18/cure

. prtest cure1 == cure2
Two-sample test of proportions cure1: Number of obs = 50

cure2: Number of obs = 59

Variable Mean Std. err. z P>|z| [95% conf. interval]

cure1 .52 .0706541 .3815205 .6584795
cure2 .7118644 .0589618 .5963013 .8274275

diff -.1918644 .0920245 -.372229 -.0114998
under H0: .0931155 -2.06 0.039

diff = prop(cure1) - prop(cure2) z = -2.0605
H0: diff = 0
Ha: diff < 0 Ha: diff != 0 Ha: diff > 0

Pr(Z < z) = 0.0197 Pr(|Z| > |z|) = 0.0394 Pr(Z > z) = 0.9803

We find that the proportions are statistically different from each other at any level greater than 3.9%.
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Adjust for clustering
When observations are not independent and can be grouped into clusters, we need to adjust for cluster-

ing in a proportion test. For example, in a cluster randomized design, groups of individuals are random-

ized instead of individuals. To adjust for clustering, we need to specify the cluster identifier variable in

the cluster() option. In the case of a one-sample proportion test, we need to also specify the intraclass
correlation in the rho() option. In the case of a two sample proportions test, we need to also specify
the common population intraclass correlation in the rho() option or group-specific population intraclass
correlations in the rho1() and rho2() options.

Example 3: One-sample test of proportion, adjusting for clusters
Consider data from Hujoel, Moulton, and Loesche (1990) on the accuracy of an enzymatic diagnostic

test (EDT) of bacterial infections for 29 patients with multiple sites. The EDT was conducted on each

site, a specific area in a patient’s mouth, to determine infection by two strings of bacteria. A separate

reference test was also conducted on each site with an antibody assay against the two strings of bacteria.

The data record whether there was a positive EDT result at each infected site, a true positive result.

We want to test whether the proportion of infected sites that were correctly diagnosed by the EDT is

different from 0.6. Because we have multiple infections per patient, we cluster by the patient-identifier

subject and use a value of 0.2 from Ahn, Heo, and Zhang (2015, 33) for the intrapatient correlation.

To perform the test, we specify the cluster(subject) and rho(0.2) options:

. use https://www.stata-press.com/data/r18/infection
(Target infections detected by EDT (Hujoel, Moulton, and Loesche 1990))
. prtest infect == 0.6, cluster(subject) rho(0.2)
One-sample test of proportion Number of obs = 142
Cluster variable: subject Number of clusters = 29

Avg. cluster size = 4.90
CV cluster size = 0.2419
Intraclass corr. = 0.2000

Variable Mean Std. err. [95% conf. interval]

infection .6619718 .0537974 .5565308 .7674129

p = proportion(infection) z = 1.1123
H0: p = 0.6

Ha: p < 0.6 Ha: p != 0.6 Ha: p > 0.6
Pr(Z < z) = 0.8670 Pr(|Z| > |z|) = 0.2660 Pr(Z > z) = 0.1330

We do not find statistical evidence to reject the null hypothesis of𝐻0∶ 𝑃infection = 0.6 versus the two-sided

alternative 𝐻𝑎∶ 𝑃infection ≠ 0.6 at the 5% significance level; the 𝑝-value = 0.2660 > 0.05.
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Example 4: Two-sample test of proportions using groups, adjusting for clusters
Consider a dataset provided by Hayes and Moulton (2009), which contains a random subsample of

the original participants in a cluster randomized trial of a pneumococcal conjugate vaccine in American

Indian populations in the southwestern United States. There are two groups of infants with 18 clusters in

each group. The control group received a meningococcal C conjugate vaccine (MnCC), and the experi-

mental group received the seven-valent pneumococcal conjugate vaccine (PnCRM7). The two groups are

identified by the vaccine variable, and the pneumonia variable records 1 if an infant had at least one
bacterial pneumonia episode and 0 otherwise. These data are originally from O’Brien et al. (2003).

We want to test the equality of the proportion of cases of pneumonia in the two vaccine groups. We

assume a common known intraclass correlation of 0.02. To perform the test, we type

. use https://www.stata-press.com/data/r18/pneumoniacrt
(Bacterial pneumonia episodes data from CRT (Hayes and Moulton 2009))
. prtest pneumonia, by(vaccine) cluster(cluster) rho(0.02)
Two-sample test of proportions
Cluster variable: cluster
Group: MnCC Group: PnCRM7
Number of obs = 238 Number of obs = 211
Number of clusters = 18 Number of clusters = 18
Avg. cluster size = 13.22 Avg. cluster size = 11.72
CV cluster size = 0.9605 CV cluster size = 0.7976
Intraclass corr. = 0.0200 Intraclass corr. = 0.0200

Group Mean Std. err. z P>|z| [95% conf. interval]

MnCC .2226891 .0329017 .1582029 .2871753
PnCRM7 .1658768 .0299027 .1072686 .224485

diff .0568123 .04446 -.0303278 .1439524
under H0: .0447641 1.27 0.204

diff = prop(MnCC) - prop(PnCRM7) z = 1.2691
H0: diff = 0
Ha: diff < 0 Ha: diff != 0 Ha: diff > 0

Pr(Z < z) = 0.8978 Pr(|Z| > |z|) = 0.2044 Pr(Z > z) = 0.1022

We do not find statistical evidence to reject the null hypothesis of 𝐻0 ∶ 𝑃diff = 0 versus the two-sided

alternative 𝐻𝑎∶ 𝑃diff ≠ 0 at the 5% significance level; the 𝑝-value = 0.2044 > 0.05.
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Immediate form

Example 5: Immediate form of one-sample test of proportion
prtesti is like prtest, except that you specify summary statistics rather than variables as arguments.

For instance, we are reading an article that reports the proportion of registered voters among 50 randomly

selected eligible voters as 0.52. We wish to test whether the proportion is 0.7:

. prtesti 50 0.52 0.70
One-sample test of proportion x: Number of obs = 50

Mean Std. err. [95% conf. interval]

x .52 .0706541 .3815205 .6584795

p = proportion(x) z = -2.7775
H0: p = 0.7

Ha: p < 0.7 Ha: p != 0.7 Ha: p > 0.7
Pr(Z < z) = 0.0027 Pr(|Z| > |z|) = 0.0055 Pr(Z > z) = 0.9973

Example 6: Immediate form of two-sample test of proportions
To judge teacher effectiveness, we wish to test whether the same proportion of people from two classes

will answer an advanced question correctly. In the first classroom of 30 students, 40% answered the

question correctly, whereas in the second classroom of 45 students, 67% answered the question correctly.

. prtesti 30 0.4 45 0.67
Two-sample test of proportions x: Number of obs = 30

y: Number of obs = 45

Mean Std. err. z P>|z| [95% conf. interval]

x .4 .0894427 .2246955 .5753045
y .67 .0700952 .532616 .807384

diff -.27 .1136368 -.4927241 -.0472759
under H0: .1169416 -2.31 0.021

diff = prop(x) - prop(y) z = -2.3088
H0: diff = 0
Ha: diff < 0 Ha: diff != 0 Ha: diff > 0

Pr(Z < z) = 0.0105 Pr(|Z| > |z|) = 0.0210 Pr(Z > z) = 0.9895
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Stored results
One-sample prtest and prtesti store the following in r():
Scalars

r(N) sample size

r(P) sample proportion

r(se) standard error of sample proportion

r(lb) lower confidence bound of sample proportion

r(ub) upper confidence bound of sample proportion

r(z) 𝑧 statistic

r(p l) lower one-sided 𝑝-value
r(p) two-sided 𝑝-value
r(p u) upper one-sided 𝑝-value
r(level) confidence level

Cluster-adjusted one-sample prtest also stores the following in r():
Scalars

r(K) number of clusters 𝐾
r(M) cluster size 𝑀
r(rho) intraclass correlation

r(CV cluster) coefficient of variation for cluster sizes

Two-sample prtest and two-sample prtesti store the following in r():
Scalars

r(N1) sample size of population one

r(N2) sample size of population two

r(P1) sample proportion for population one

r(P2) sample proportion for population two

r(P diff) difference of proportions

r(se1) standard error of population-one sample proportion

r(se2) standard error of population-two sample proportion

r(se diff) standard error of the difference of proportions

r(se diff0) standard error of the difference of proportions under 𝐻0
r(lb1) lower confidence bound of population-one sample proportion

r(ub1) upper confidence bound of population-one sample proportion

r(lb2) lower confidence bound of population-two sample proportion

r(ub2) upper confidence bound of population-two sample proportion

r(lb diff) lower confidence bound of the difference of proportions

r(ub diff) upper confidence bound of the difference of proportions

r(z) 𝑧 statistic

r(p l) lower one-sided 𝑝-value
r(p) two-sided 𝑝-value
r(p u) upper one-sided 𝑝-value
r(level) confidence level

Cluster-adjusted two-sample prtest using the by() option also stores the following in r():
Scalars

r(K1) population-one number of clusters 𝐾1
r(K2) population-two number of clusters 𝐾2
r(M1) population-one cluster size 𝑀1
r(M2) population-two cluster size 𝑀2
r(rho) common intraclass correlation

r(rho1) population-one intraclass correlation

r(rho2) population-two intraclass correlation

r(CV cluster1) population-one coefficient of variation for cluster sizes

r(CV cluster2) population-two coefficient of variation for cluster sizes
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Methods and formulas
Remarks are presented under the following headings:

One-sample test
Two-sample test

For all the tests below, the test statistic 𝑧 has an asymptotic standard normal distribution, and the

𝑝-value is computed as

𝑝 =
⎧{
⎨{⎩

1 − Φ (𝑧) for an upper one-sided test

Φ (𝑧) for a lower one-sided test

2 {1 − Φ (|𝑧|)} for a two-sided test

where Φ(⋅) is the cdf of a standard normal distribution and |𝑧| is an absolute value of 𝑧.
See Acock (2023, 158–164) for additional examples of tests of proportions using Stata.

One-sample test
Let 𝑛 be the number of observations, ̂𝑝 be the observed proportion, and ̂𝑞 = 1 − ̂𝑝.
The one-tailed and two-tailed tests of a population proportion use an asymptotically normally dis-

tributed test statistic calculated as

𝑧 = ̂𝑝 − 𝑝0
𝑠0

where 𝑝0 is the hypothesized proportion, 𝑞0 = 1 − 𝑝0, and 𝑠0 = √𝑝0𝑞0/𝑛 is the standard error of ̂𝑝
under the null hypothesis of 𝑝 = 𝑝0.

A large-sample 100(1 − 𝛼)% confidence interval for a proportion 𝑝 is

̂𝑝 ± 𝑧1−𝛼/2𝑠

where 𝑠 = √ ̂𝑝 ̂𝑞/𝑛 and 𝑧1−𝛼/2 is the (1 − 𝛼/2)th quantile of the standard normal distribution.

With clustered data, suppose that there are 𝐾 clusters, each of size 𝑀𝑖 such that 𝑛 = ∑𝐾
𝑖=1 𝑀𝑖. Let 𝜌

be the intraclass correlation. Following Ahn, Heo, and Zhang (2015), we assume that the cluster sizes𝑀𝑖
are independent and identically distributed. Let 𝐶adj be the adjustment to the standard error for clustered

data,

𝐶adj = √
𝐾

∑
𝑖=1

𝑀𝑖{1 + 𝜌(𝑀𝑖 − 1)}/𝑛

such that 𝑠0,cl = 𝐶adj𝑠0 and 𝑠cl = 𝐶adj𝑠.
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𝐶adj can be equivalently written as

𝐶adj = √1 + 𝜌(𝑀 − 1) + 𝜌𝑀CV2
cl

where 𝑀 = ∑𝐾
𝑖=1 𝑀𝑖/𝐾 is the average cluster size and CVcl is the coefficient of variation for cluster

sizes:

CVcl =
√∑𝐾

𝑖=1(𝑀𝑖 − 𝑀)2/𝐾

𝑀

To adjust the test statistic 𝑧 and the confidence interval for clustering, replace 𝑠0 with 𝑠0,cl and 𝑠
with 𝑠cl in the corresponding formulas. In the presence of clustering, the test statistic 𝑧 is asymptotically
normally distributed conditional on the empirical distribution of 𝑀𝑖’s.

Two-sample test
Let 𝑛1 be the number of observations in population one and 𝑛2 be the number of observations in

population two, ̂𝑝1 be the observed proportion in population one and ̂𝑝2 be the observed proportion in

population two, and ̂𝑞1 = 1− ̂𝑝1 and ̂𝑞2 = 1− ̂𝑝2. Let 𝑥1 and 𝑥2 be the total number of successes in the

two populations.

A test of the difference of two proportions uses an asymptotically normally distributed test statistic

calculated as

𝑧 = ̂𝑝1 − ̂𝑝2
𝑠𝑑0

where 𝑠𝑑0 = √ ̂𝑝𝑝 ̂𝑞𝑝(1/𝑛1 + 1/𝑛2) is the standard error of ̂𝑝1 − ̂𝑝2 under the null hypothesis of 𝑝1 = 𝑝2,

with ̂𝑝𝑝 = (𝑥1 + 𝑥2)/(𝑛1 + 𝑛2) and ̂𝑞𝑝 = 1 − ̂𝑝𝑝.

The 100(1 − 𝛼)% confidence interval for the difference of two proportions is given by

( ̂𝑝1 − ̂𝑝2) ± 𝑧1−𝛼/2√𝑠2
1 + 𝑠2

2

where 𝑠1 = √ ̂𝑝1 ̂𝑞1/𝑛1 and 𝑠2 = √ ̂𝑝2 ̂𝑞2/𝑛2 are the standard errors of the two sample proportions and

𝑧1−𝛼/2 is the (1 − 𝛼/2)th quantile of the standard normal distribution.
With clustered data, suppose that there are 𝐾1 and 𝐾2 clusters in population one and population two

with the corresponding average cluster sizes of 𝑀1 and 𝑀2. Let 𝜌1 and 𝜌2 be the intraclass correlations

and CVcl,1 and CVcl,2 be the coefficients of variation for cluster sizes for population one and population

two. Let𝐶adj,1 and𝐶adj,2 be the adjustments to standard errors of the two sample proportions for clustered

data, defined analogously to 𝐶adj in One-sample test for each population.
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Let 𝑠𝑑0,cl = √ ̂𝑝𝑝 ̂𝑞𝑝 (𝐶2
adj,1/𝑛1 + 𝐶2

adj,2/𝑛2) be the standard error of ̂𝑝1− ̂𝑝2 under the null hypothesis

of 𝑝1 = 𝑝2 adjusted for clustered data. Also, let 𝑠1,cl = 𝐶adj,1𝑠1 and 𝑠2,cl = 𝐶adj,2𝑠2 be the standard errors

of ̂𝑝1 and ̂𝑝2 adjusted for clustered data. To adjust the two-sample test statistic and the confidence interval

for clustering, replace 𝑠𝑑0 with 𝑠𝑑0,cl, 𝑠1 with 𝑠1,cl, and 𝑠2 with 𝑠2,cl in the corresponding formulas.
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pwcompare — Pairwise comparisons

Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas References Also see

Description
pwcompare performs pairwise comparisons across the levels of factor variables from the most re-

cently fit model. pwcompare can compare estimated cell means, marginal means, intercepts, marginal
intercepts, slopes, or marginal slopes—collectively called margins. pwcompare reports the comparisons
as contrasts (differences) ofmargins alongwith significance tests or confidence intervals for the contrasts.

The tests and confidence intervals can be adjusted for multiple comparisons.

pwcompare can be used with svy estimation results; see [SVY] svy postestimation.

See [R]margins, pwcompare for performing pairwise comparisons ofmargins of linear and nonlinear

predictions.

Quick start
All pairwise comparisons of the means of y across levels of a after regress y i.a

pwcompare a

Same as above, and report test statistics and 𝑝-values for tests of differences in means
pwcompare a, effects

Adjust 𝑝-values and confidence intervals for multiple comparisons using Tukey’s method
pwcompare a, effects mcompare(tukey)

Same as above, but adjust for multiple comparisons using Bonferroni’s method

pwcompare a, effects mcompare(bonferroni)

Report means for the levels of a, and group those that are not significantly different
pwcompare a, groups

Pairwise comparisons of cell means after regress y1 a##b
pwcompare a#b

Pairwise comparisons of the marginal means of a
pwcompare a

Pairwise comparisons of slopes for continuous x after regress y1 a##c.x
pwcompare a#c.x

Pairwise comparisons of log odds after logit y2 i.a
pwcompare a

Pairwise comparisons of the means of y2 across levels of a after mvreg y1 y2 y3 = i.a
pwcompare a, equation(y2)

Same as above, but report pairwise comparisons of a for each equation
pwcompare a, atequations

2306
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Pairwise comparisons of overall margins of y1, y2, and y3
pwcompare _eqns

Menu
Statistics > Postestimation

Syntax
pwcompare marginlist [ , options ]

where marginlist is a list of factor variables or interactions that appear in the current estimation results

or eqns to reference equations. The variables may be typed with or without the i. prefix, and you may

use any factor-variable syntax:

. pwcompare i.sex i.group i.sex#i.group

. pwcompare sex group sex#group

. pwcompare sex##group

options Description

Main

mcompare(method) adjust for multiple comparisons; default is mcompare(noadjust)
asobserved treat all factor variables as observed

Equations

equation(eqspec) perform comparisons within equation eqspec

atequations perform comparisons within each equation

Advanced

emptycells(empspec) treatment of empty cells for balanced factors

noestimcheck suppress estimability checks

Reporting

level(#) confidence level; default is level(95)
cieffects show effects table with confidence intervals; the default

pveffects show effects table with 𝑝-values
effects show effects table with confidence intervals and 𝑝-values
cimargins show table of margins and confidence intervals

groups show table of margins and group codes

sort sort the margins or contrasts within each term

post post margins and their VCEs as estimation results

display options control column formats, row spacing, line width, and factor-variable labeling

eform option report exponentiated contrasts

df(#) use 𝑡 distribution with # degrees of freedom for computing 𝑝-values
and confidence intervals

df(#) does not appear in the dialog box.
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method Description

noadjust do not adjust for multiple comparisons; the default

bonferroni [ adjustall ] Bonferroni’s method; adjust across all terms

sidak [ adjustall ] Šidák’s method; adjust across all terms

scheffe Scheffé’s method
∗ tukey Tukey’s method
∗ snk Student–Newman–Keuls’s method
∗ duncan Duncan’s method
∗ dunnett Dunnett’s method

∗tukey, snk, duncan, and dunnett are only allowed with results from anova, manova, regress, and mvreg.
tukey, snk, duncan, and dunnett are not allowed with results from svy.

Time-series operators are allowed if they were used in the estimation.

collect is allowed; see [U] 11.1.10 Prefix commands.

Options

� � �
Main �

mcompare(method) specifies the method for computing 𝑝-values and confidence intervals that account
for multiple comparisons within a factor-variable term.

Most methods adjust the comparisonwise error rate, 𝛼𝑐, to achieve a prespecified experimentwise

error rate, 𝛼𝑒.

mcompare(noadjust) is the default; it specifies no adjustment.
𝛼𝑐 = 𝛼𝑒

mcompare(bonferroni) adjusts the comparisonwise error rate based on the upper limit of the Bon-
ferroni inequality:

𝛼𝑒≤𝑚𝛼𝑐

where m is the number of comparisons within the term.

The adjusted comparisonwise error rate is

𝛼𝑐 = 𝛼𝑒/𝑚

mcompare(sidak) adjusts the comparisonwise error rate based on the upper limit of the probability
inequality

𝛼𝑒≤1 − (1 − 𝛼𝑐)𝑚

where m is the number of comparisons within the term.

The adjusted comparisonwise error rate is

𝛼𝑐 = 1 − (1 − 𝛼𝑒)1/𝑚

This adjustment is exact when the m comparisons are independent.

mcompare(scheffe) controls the experimentwise error rate using the 𝐹 (or 𝜒2) distribution with

degrees of freedom equal to the rank of the term.

For results from anova, regress, manova, and mvreg (see [R] anova, [R] regress, [MV]manova, and

[MV] mvreg), pwcompare allows the following additional methods. These methods are not allowed
with results that used vce(robust) or vce(cluster clustvar).
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mcompare(tukey) uses what is commonly referred to as Tukey’s honestly significant difference.

This method uses the Studentized range distribution instead of the 𝑡 distribution.
mcompare(snk) is a variation on mcompare(tukey) that counts only the number of margins in the

range for a given comparison instead of the full number of margins.

mcompare(duncan) is a variation on mcompare(snk) with additional adjustment to the significance
probabilities.

mcompare(dunnett) uses Dunnett’s method for making comparisons with a reference category.

mcompare(method adjustall) specifies that the multiple-comparison adjustments count all com-
parisons across all terms rather than performing multiple comparisons term by term. This leads to

more conservative adjustments when multiple variables or terms are specified in marginlist. This

option is compatible only with the bonferroni and sidak methods.

asobserved specifies that factor covariates be evaluated using the cell frequencies observed when the
model was fit. The default is to treat all factor covariates as though there were an equal number of

observations at each level.

� � �
Equations �

equation(eqspec) specifies the equation from which margins are to be computed. The default is to

compute margins from the first equation.

atequations specifies that the margins be computed within each equation.

� � �
Advanced �

emptycells(empspec) specifies how empty cells are handled in interactions involving factor variables

that are being treated as balanced.

emptycells(strict) is the default; it specifies that margins involving empty cells be treated as not
estimable.

emptycells(reweight) specifies that the effects of the observed cells be increased to accommodate
any missing cells. This makes the margins estimable but changes their interpretation.

noestimcheck specifies that pwcompare not check for estimability. By default, the requested margins
are checked and those found not estimable are reported as such. Nonestimability is usually caused

by empty cells. If noestimcheck is specified, estimates are computed in the usual way and reported
even though the resulting estimates are manipulable, which is to say they can differ across equivalent

models having different parameterizations.

� � �
Reporting �

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is

level(95) or as set by set level; see [U] 20.8 Specifying the width of confidence intervals.

The significance level used by the groups option is 100 − #, expressed as a percentage.

cieffects specifies that a table of the pairwise comparisons with their standard errors and confidence
intervals be reported. This is the default.

pveffects specifies that a table of the pairwise comparisons with their standard errors, test statistics,
and 𝑝-values be reported.

effects specifies that a table of the pairwise comparisons with their standard errors, test statistics,

𝑝-values, and confidence intervals be reported.
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cimargins specifies that a table of the margins with their standard errors and confidence intervals be
reported.

groups specifies that a table of the margins with their standard errors and group codes be reported. Mar-

gins with the same letter in the group code are not significantly different at the specified significance

level.

sort specifies that the reported tables be sorted on the margins or differences in each term.

post causes pwcompare to behave like a Stata estimation (e-class) command. pwcompare posts the vec-
tor of estimated margins along with the estimated variance–covariance matrix to e(), so you can treat
the estimated margins just as you would results from any other estimation command. For example,

you could use test to perform simultaneous tests of hypotheses on the margins, or you could use

lincom to create linear combinations.

display options: vsquish, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt),
pformat(% fmt), sformat(% fmt), and nolstretch.

vsquish specifies that the blank space separating factor-variable terms or time-series–operated vari-
ables from other variables in the model be suppressed.

nofvlabel displays factor-variable level values rather than attached value labels. This option over-
rides the fvlabel setting; see [R] set showbaselevels.

fvwrap(#) specifies how many lines to allow when long value labels must be wrapped. Labels

requiring more than # lines are truncated. This option overrides the fvwrap setting; see [R] set
showbaselevels.

fvwrapon(style) specifies whether value labels that wrap will break at word boundaries or break

based on available space.

fvwrapon(word), the default, specifies that value labels break at word boundaries.

fvwrapon(width) specifies that value labels break based on available space.

This option overrides the fvwrapon setting; see [R] set showbaselevels.

cformat(% fmt) specifies how to format contrasts or margins, standard errors, and confidence limits

in the table of pairwise comparisons.

pformat(% fmt) specifies how to format 𝑝-values in the table of pairwise comparisons.
sformat(% fmt) specifies how to format test statistics in the table of pairwise comparisons.

nolstretch specifies that the width of the table of pairwise comparisons not be automatically

widened to accommodate longer variable names. The default, lstretch, is to automatically widen
the table of pairwise comparisons up to the width of the Results window. Specifying lstretch
or nolstretch overrides the setting given by set lstretch. If set lstretch has not been set,
the default is lstretch. nolstretch is not shown in the dialog box.

eform option specifies that the contrasts table be displayed in exponentiated form. 𝑒contrast is dis-
played rather than contrast. Standard errors and confidence intervals are also transformed. See

[R] eform option for the list of available options.
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The following option is available with pwcompare but is not shown in the dialog box:

df(#) specifies that the 𝑡 distribution with # degrees of freedom be used for computing 𝑝-values and
confidence intervals. The default is to use e(df r) degrees of freedom or the standard normal dis-

tribution if e(df r) is missing.

Remarks and examples
pwcompare performs pairwise comparisons of margins across the levels of factor variables from the

most recently fit model. The margins can be estimated cell means, marginal means, intercepts, marginal

intercepts, slopes, or marginal slopes. With the exception of slopes, we can also consider these margins

to be marginal linear predictions.

The margins are calculated as linear combinations of the coefficients. Let 𝑘 be the number of levels

for a factor term in our model; then there are 𝑘 margins for that term, and

𝑚 = (𝑘
2
) = 𝑘(𝑘 − 1)

2

unique pairwise comparisons of those margins.

The confidence intervals and 𝑝-values for these pairwise comparisons can be adjusted to account

for multiple comparisons. Bonferroni’s, Šidák’s, and Scheffé’s adjustments can be made for multiple

comparisons after fitting any type of model. In addition, Tukey’s, Student–Newman–Keuls’s, Duncan’s,

and Dunnett’s adjustments are available when fittingANOVA, linear regression,MANOVA, or multivariate

regression models.

Remarks are presented under the following headings:

Pairwise comparisons of means
Marginal means
All pairwise comparisons

Overview of multiple-comparison methods
Fisher’s protected least-significant difference (LSD)
Bonferroni’s adjustment
Šidák’s adjustment
Scheffé’s adjustment
Tukey’s HSD adjustment
Student–Newman–Keuls’s adjustment
Duncan’s adjustment
Dunnett’s adjustment

Example adjustments using one-way models
Fisher’s protected LSD
Tukey’s HSD
Dunnett’s method for comparisons to a control

Two-way models
Pairwise comparisons of slopes
Nonlinear models
Multiple-equation models
Unbalanced data
Empty cells
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Pairwise comparisons of means
Suppose we are interested in the effects of five different fertilizers on wheat yield. We could estimate

the following linear regression model to determine the effect of each type of fertilizer on the yield.

. use https://www.stata-press.com/data/r18/yield
(Artificial wheat yield dataset)
. regress yield i.fertilizer

Source SS df MS Number of obs = 200
F(4, 195) = 5.33

Model 1078.84207 4 269.710517 Prob > F = 0.0004
Residual 9859.55334 195 50.561812 R-squared = 0.0986

Adj R-squared = 0.0801
Total 10938.3954 199 54.9668111 Root MSE = 7.1107

yield Coefficient Std. err. t P>|t| [95% conf. interval]

fertilizer
10-08-22 3.62272 1.589997 2.28 0.024 .4869212 6.758518
16-04-08 .4906299 1.589997 0.31 0.758 -2.645169 3.626428
18-24-06 4.922803 1.589997 3.10 0.002 1.787005 8.058602
29-03-04 -1.238328 1.589997 -0.78 0.437 -4.374127 1.89747

_cons 41.36243 1.124298 36.79 0.000 39.14509 43.57977

In this simple case, the coefficients for fertilizers 10-08-22, 16-04-08, 18-24-06, and 29-03-04 indicate

the difference in the mean yield for that fertilizer versus the mean yield for fertilizer 10-10-10. That the

standard errors of all four coefficients are identical results from having perfectly balanced data.

Marginal means

We can use pwcompare with the cimargins option to compute the mean yield for each of the fertil-
izers.

. pwcompare fertilizer, cimargins
Pairwise comparisons of marginal linear predictions
Margins: asbalanced

Unadjusted
Margin Std. err. [95% conf. interval]

fertilizer
10-10-10 41.36243 1.124298 39.14509 43.57977
10-08-22 44.98515 1.124298 42.7678 47.20249
16-04-08 41.85306 1.124298 39.63571 44.0704
18-24-06 46.28523 1.124298 44.06789 48.50258
29-03-04 40.1241 1.124298 37.90676 42.34145

Looking at the confidence intervals for fertilizers 10-10-10 and 10-08-22 in the table above, we might

be tempted to conclude that these means are not significantly different because the intervals overlap.

However, as discussed in Interaction plots of [R] marginsplot, we cannot draw conclusions about the

differences in means by looking at confidence intervals for the means themselves. Instead, we would

need to look at confidence intervals for the difference in means.
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All pairwise comparisons

By default, pwcompare calculates all pairwise differences of the margins, in this case pairwise differ-
ences of the mean yields.

. pwcompare fertilizer
Pairwise comparisons of marginal linear predictions
Margins: asbalanced

Unadjusted
Contrast Std. err. [95% conf. interval]

fertilizer
10-08-22 vs 10-10-10 3.62272 1.589997 .4869212 6.758518
16-04-08 vs 10-10-10 .4906299 1.589997 -2.645169 3.626428
18-24-06 vs 10-10-10 4.922803 1.589997 1.787005 8.058602
29-03-04 vs 10-10-10 -1.238328 1.589997 -4.374127 1.89747
16-04-08 vs 10-08-22 -3.13209 1.589997 -6.267889 .0037086
18-24-06 vs 10-08-22 1.300083 1.589997 -1.835715 4.435882
29-03-04 vs 10-08-22 -4.861048 1.589997 -7.996847 -1.725249
18-24-06 vs 16-04-08 4.432173 1.589997 1.296375 7.567972
29-03-04 vs 16-04-08 -1.728958 1.589997 -4.864757 1.406841
29-03-04 vs 18-24-06 -6.161132 1.589997 -9.29693 -3.025333

If a confidence interval does not include zero, the means for the compared fertilizers are significantly

different. Therefore, at the 5% significance level, we would reject the hypothesis that the means for

fertilizers 10-10-10 and 10-08-22 are equivalent—as we would do for 18-24-06 vs 10-10-10, 29-03-
04 vs 10-08-22, 18-24-06 vs 16-04-08, and 29-03-04 vs 18-24-06.

We may prefer to see the 𝑝-values instead of looking at confidence intervals to determine whether the
pairwise differences are significantly different from zero. We could use the pveffects option to see the
differences with standard errors and 𝑝-values, or we could use the effects option to see both 𝑝-values
and confidence intervals in the same table. Here we specify effects as well as the sort option so that
the differences are sorted from smallest to largest.
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. pwcompare fertilizer, effects sort
Pairwise comparisons of marginal linear predictions
Margins: asbalanced

Unadjusted Unadjusted
Contrast Std. err. t P>|t| [95% conf. interval]

fertilizer
29-03-04

vs
18-24-06 -6.161132 1.589997 -3.87 0.000 -9.29693 -3.025333
29-03-04

vs
10-08-22 -4.861048 1.589997 -3.06 0.003 -7.996847 -1.725249
16-04-08

vs
10-08-22 -3.13209 1.589997 -1.97 0.050 -6.267889 .0037086
29-03-04

vs
16-04-08 -1.728958 1.589997 -1.09 0.278 -4.864757 1.406841
29-03-04

vs
10-10-10 -1.238328 1.589997 -0.78 0.437 -4.374127 1.89747
16-04-08

vs
10-10-10 .4906299 1.589997 0.31 0.758 -2.645169 3.626428
18-24-06

vs
10-08-22 1.300083 1.589997 0.82 0.415 -1.835715 4.435882
10-08-22

vs
10-10-10 3.62272 1.589997 2.28 0.024 .4869212 6.758518
18-24-06

vs
16-04-08 4.432173 1.589997 2.79 0.006 1.296375 7.567972
18-24-06

vs
10-10-10 4.922803 1.589997 3.10 0.002 1.787005 8.058602

We find that 5 of the 10 pairs of means are significantly different at the 5% significance level.
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We can use the groups option to obtain a table that identifies groups whosemeans are not significantly
different by assigning them the same letter.

. pwcompare fertilizer, groups sort
Pairwise comparisons of marginal linear predictions
Margins: asbalanced

Unadjusted
Margin Std. err. groups

fertilizer
29-03-04 40.1241 1.124298 A
10-10-10 41.36243 1.124298 A
16-04-08 41.85306 1.124298 AB
10-08-22 44.98515 1.124298 BC
18-24-06 46.28523 1.124298 C

Note: Margins sharing a letter in the group label
are not significantly different at the 5%
level.

The letter A that is assigned to fertilizers 29-03-04, 10-10-10, and 16-04-08 designates that the mean

yields for these fertilizers are not different at the 5% level.

Overview of multiple-comparison methods
For a single test, if we choose a 5% significance level, we would have a 5% chance of concluding

that two margins are different when the population values are actually equal. This is known as making

a type I error. When we perform 𝑚 = 𝑘(𝑘 − 1)/2 pairwise comparisons of the 𝑘 margins, we have 𝑚
opportunities to make a type I error.

pwcompare with the mcompare() option allows us to adjust the confidence intervals and 𝑝-values
for each comparison to account for the increased probability of making a type I error when making

multiple comparisons. Bonferroni’s adjustment, Šidák’s adjustment, and Scheffé’s adjustment can be

used whenmaking pairwise comparisons of the margins after any estimation command. Tukey’s honestly

significant difference, Student–Newman–Keuls’s method, Duncan’s method, and Dunnett’s method are

only available when fitting linear models after anova, manova, regress, or mvreg.

Fisher’s protected least-significant difference (LSD)

pwcompare does not offer an mcompare() option specifically for Fisher’s protected least-significant
difference (LSD). In this methodology, no adjustment is made to the confidence intervals or 𝑝-values.
However, it is protected in the sense that no pairwise comparisons are tested unless the joint test for

the corresponding term in the model is significant. Therefore, the default mcompare(noadjust) corre-
sponds to Fisher’s protected LSD assuming that the corresponding joint test was performed before using

pwcompare.

Milliken and Johnson (2009) recommend using this methodology for planned comparisons, assuming

the corresponding joint test is significant.
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Bonferroni’s adjustment

mcompare(bonferroni) adjusts significance levels based on the Bonferroni inequality, which, in the
case of multiple testing, tells us that the maximum error rate for all comparisons is the sum of the error

rates for the individual comparisons. Assuming that we are using the same significance level for all tests,

the experimentwise error rate is the error rate for a single test multiplied by the number of comparisons.

Therefore, a 𝑝-value for each comparison can be computed by multiplying the unadjusted 𝑝-value by
the total number of comparisons. If the adjusted 𝑝-value is greater than 1, then pwcompare will report a
𝑝-value of 1.

Bonferroni’s adjustment is popular because it is easy to compute manually and because it can be

applied to any set of tests, not only the pairwise comparisons available in pwcompare. In addition, this
method does not require equal sample sizes.

Because Bonferroni’s adjustment is so general, it is more conservative than many of the other adjust-

ments. It is especially conservative when a large number of tests is being performed.

Šidák’s adjustment

mcompare(sidak) performs an adjustment using Šidák’s method. This adjustment, like Bonferroni’s
adjustment, is derived from an inequality. However, in this case, the inequality is based on the probability

of notmaking a type I error. For a single test, the probability that we do notmake a type I error is 1−𝛼. For
two independent tests, both using𝛼 as a significance level, the probability is (1−𝛼)(1−𝛼). Likewise, for
𝑚 independent tests, the probability of not making a type I error is (1− 𝛼)𝑚. Therefore, the probability

of making one or more type I errors is 1− (1− 𝛼)𝑚. When tests are not independent, the probability of

making at least one error is less than 1 − (1 − 𝛼)𝑚. Therefore, we can compute an adjusted 𝑝-value as
1 − (1 −𝑢𝑝)𝑚, where 𝑢𝑝 is the unadjusted 𝑝-value for a single comparison.

Šidák’s method is also conservative although slightly less so than Bonferroni’s method. Like Bonfer-

roni’s method, this method does not require equal sample sizes.

Scheffé’s adjustment

Scheffé’s adjustment is used when mcompare(scheffe) is specified. This adjustment is derived from
the joint 𝐹 test and its correspondence to the maximum normalized comparison. To adjust for multiple

comparisons, the absolute value of the 𝑡 statistic for a particular comparison can be compared with a
critical value of √(𝑘 − 1)𝐹𝑘−1,𝜈, where 𝜈 is the residual degrees of freedom. 𝐹𝑘−1,𝜈 is the distribution

of the joint 𝐹 test for the corresponding term in a one-way ANOVA model. Winer, Brown, and Michels

(1991, 191–195) discuss this in detail. For estimation commands that report 𝑧 statistics instead of 𝑡
statistics for the tests on coefficients, a 𝜒2 distribution is used instead of an 𝐹 distribution.

Scheffé’s method allows for making all possible comparisons of the 𝑘 margins, not just the pairwise

comparisons. Unlike the methods described above, it does not take into account the number of compar-

isons that are currently being made. Therefore, this method is even more conservative than the others.

Because this method adjusts for all possible comparisons of the levels of the term, Milliken and Johnson

(2009) recommend using this procedure when making unplanned contrasts that are suggested by the data.

As Winer, Brown, and Michels (1991, 191) put it, this method is often used to adjust for “unfettered data

snooping”. When using this adjustment, a contrast will never be significant if the joint 𝐹 or 𝜒2 test for

the term is not also significant.

This is another method that does not require equal sample sizes.
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Tukey’s HSD adjustment

Tukey’s adjustment is also referred to as Tukey’s honestly significant difference (HSD) and is used

when mcompare(tukey) is specified. It is often applied to all pairwise comparisons of means. Tukey’s
HSD is commonly used as a post hoc test although this is not a requirement.

To adjust for multiple comparisons, Tukey’s method compares the absolute value of the 𝑡 statistic from
the individual comparison with a critical value based on a Studentized range distribution with parameter

equal to the number of levels in the term. When applied to pairwise comparisons of means,

𝑞 = meanmax − meanmin
𝑠

follows a Studentized range distribution with parameter 𝑘 and 𝜈 degrees of freedom. Here meanmax and
meanmin are the largest and smallest marginal means, and 𝑠 is an estimate of the standard error of the

means.

Now for the comparison of the smallest and largest means, we can say that the probability of not

making a type I error is

Pr(meanmax − meanmin
𝑠

≤ 𝑞𝑘,𝜈) = 1 − 𝛼

Then, the following inequality holds for all pairs of means simultaneously:

Pr(
|mean𝑖 − mean𝑗|

𝑠
≤ 𝑞𝑘,𝜈) ≥ 1 − 𝛼

Based on this procedure, Tukey’s HSD computes the 𝑝-value for each of the individual comparisons
using the Studentized range distribution. However, because the equality holds only for the difference in

the largest and smallest means, this procedure produces conservative tests for the remaining comparisons.

Winer, Brown, and Michels (1991, 172–182) discuss this in further detail.

With unequal sample sizes, mcompare(tukey) produces theTukey–Kramer adjustment (Tukey 1953;
Kramer 1956).

Student–Newman–Keuls’s adjustment

The Student–Newman–Keuls (SNK) method is used when mcompare(snk) is specified. It is a mod-
ification to Tukey’s method and is less conservative. In this procedure, we first order the means. We

then test the difference in the smallest and largest means using a critical value from the Studentized

range distribution with parameter 𝑘, where 𝑘 is the number of levels in the term. This step uses the same
methodology as in Tukey’s procedure. However, in the next step, we will then test for differences in the

two sets of means that are the endpoints of the two ranges including 𝑘 − 1 means. Specifically, we test

the difference in the smallest mean and the second-largest mean using a critical value from the Studen-

tized range distribution with parameter 𝑘 − 1. We would also test the difference in the second-smallest

mean and the largest mean using this critical value. Likewise, the means that are the endpoints of ranges

including 𝑘 − 2 means when ordered are tested using the Studentized range distribution with parameter

𝑘 − 2, and so on.

Equal sample sizes are required for this method.
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Duncan’s adjustment

When mcompare(duncan) is specified, tests are adjusted for multiple comparisons using Duncan’s
method, which is sometimes referred to as Duncan’s new multiple range method. This adjustment pro-

duces tests that are less conservative than both Tukey’s HSD and SNK. This procedure is performed

in the same manner as SNK except that the 𝑝-values for the individual comparisons are adjusted as

1 − (1 − snk𝑝𝑖)1/(𝑟+1), where snk𝑝 is the 𝑝-value computed using the SNK method and 𝑟 represents the
number of means that, when ordered, fall between the two that are being compared.

Again, equal sample sizes are required for this adjustment.

Dunnett’s adjustment

Dunnett’s adjustment is obtained by specifying mcompare(dunnett). It is used when one of the

levels of a factor can be considered a control or reference level with which each of the other levels

is being compared. When Dunnett’s adjustment is requested, 𝑘 − 1 instead of 𝑘(𝑘 − 1)/2 pairwise

comparisons are made. Dunnett (1955, 1964) developed tables of critical values for what Miller (1981,

76) refers to as the “many-one 𝑡 statistic”. The 𝑡 statistics for individual comparisons are compared with
these critical values when making many comparisons to a single reference level.

This method also requires equal sample sizes.

Example adjustments using one-way models

Fisher’s protected LSD

Fisher’s protected LSD requires that we first verify that the joint test for a term in our model is sig-

nificant before proceeding with pairwise comparisons. Using our previous example, we could have first

used the contrast command to obtain a joint test for the effects of fertilizer.
. contrast fertilizer
Contrasts of marginal linear predictions
Margins: asbalanced

df F P>F

fertilizer 4 5.33 0.0004

Denominator 195

This test for the effects of fertilizer is highly significant. Now we can say we are using Fisher’s

protected LSD when looking at the unadjusted 𝑝-values that were obtained from our previous command,

. pwcompare fertilizer, effects sort
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Tukey’s HSD

Because we fit a linear regression model and are interested in all pairwise comparisons of the marginal

means, we may instead choose to use Tukey’s HSD.

. pwcompare fertilizer, effects sort mcompare(tukey)
Pairwise comparisons of marginal linear predictions
Margins: asbalanced

Number of
comparisons

fertilizer 10

Tukey Tukey
Contrast Std. err. t P>|t| [95% conf. interval]

fertilizer
29-03-04

vs
18-24-06 -6.161132 1.589997 -3.87 0.001 -10.53914 -1.78312
29-03-04

vs
10-08-22 -4.861048 1.589997 -3.06 0.021 -9.239059 -.4830368
16-04-08

vs
10-08-22 -3.13209 1.589997 -1.97 0.285 -7.510101 1.245921
29-03-04

vs
16-04-08 -1.728958 1.589997 -1.09 0.813 -6.106969 2.649053
29-03-04

vs
10-10-10 -1.238328 1.589997 -0.78 0.936 -5.616339 3.139683
16-04-08

vs
10-10-10 .4906299 1.589997 0.31 0.998 -3.887381 4.868641
18-24-06

vs
10-08-22 1.300083 1.589997 0.82 0.925 -3.077928 5.678095
10-08-22

vs
10-10-10 3.62272 1.589997 2.28 0.156 -.7552913 8.000731
18-24-06

vs
16-04-08 4.432173 1.589997 2.79 0.046 .0541623 8.810185
18-24-06

vs
10-10-10 4.922803 1.589997 3.10 0.019 .5447922 9.300815

This time, our 𝑝-values have been modified, and we find that only four of the pairwise differences are
considered significantly different from zero at the 5% level.

If we are interested only in performing pairwise comparisons of a subset of our means, we can use

factor-variable operators to select the levels of the factor that we want to compare. Here we exclude all

comparisons involving fertilizer 10-10-10.
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. pwcompare i(2/5).fertilizer, effects sort mcompare(tukey)
Pairwise comparisons of marginal linear predictions
Margins: asbalanced

Number of
comparisons

fertilizer 6

Tukey Tukey
Contrast Std. err. t P>|t| [95% conf. interval]

fertilizer
29-03-04

vs
18-24-06 -6.161132 1.589997 -3.87 0.001 -10.28133 -2.040937
29-03-04

vs
10-08-22 -4.861048 1.589997 -3.06 0.013 -8.981242 -.7408538
16-04-08

vs
10-08-22 -3.13209 1.589997 -1.97 0.203 -7.252284 .9881042
29-03-04

vs
16-04-08 -1.728958 1.589997 -1.09 0.698 -5.849152 2.391236
18-24-06

vs
10-08-22 1.300083 1.589997 0.82 0.846 -2.820111 5.420278
18-24-06

vs
16-04-08 4.432173 1.589997 2.79 0.030 .3119792 8.552368

The adjusted 𝑝-values and confidence intervals differ from those in the previous output because

Tukey’s adjustment takes into account the total number of comparisons being made when determining

the appropriate degrees of freedom to use for the Studentized range distribution.
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Dunnett’s method for comparisons to a control

If one of our five fertilizer groups represents fields where no fertilizer was applied, we may want to

use Dunnett’s method to compare each of the four fertilizers with the control group. In this case, we

make only 𝑘 − 1 comparisons for 𝑘 groups.
. pwcompare fertilizer, effects mcompare(dunnett)
Pairwise comparisons of marginal linear predictions
Margins: asbalanced

Number of
comparisons

fertilizer 4

Dunnett Dunnett
Contrast Std. err. t P>|t| [95% conf. interval]

fertilizer
10-08-22

vs
10-10-10 3.62272 1.589997 2.28 0.079 -.2918331 7.537273
16-04-08

vs
10-10-10 .4906299 1.589997 0.31 0.994 -3.423923 4.405183
18-24-06

vs
10-10-10 4.922803 1.589997 3.10 0.008 1.00825 8.837356
29-03-04

vs
10-10-10 -1.238328 1.589997 -0.78 0.852 -5.152881 2.676225

In our previous regress command, fertilizer 10-10-10 was treated as the base. Therefore, by de-

fault, it was treated as the control when using Dunnett’s adjustment, and the pairwise comparisons are

equivalent to the coefficients reported by regress. Based on our regress output, we would conclude
that fertilizers 10-08-22 and 18-24-06 are different from fertilizer 10-10-10 at the 5% level. However,

using Dunnett’s adjustment, we find only fertilizer 18-24-06 to be different from fertilizer 10-10-10 at

this same significance level.

If the model is fit without a base level for a factor variable, then pwcompare will choose the first

level as the reference level. If we want to make comparisons with a different level than the one

mcompare(dunnett) chooses by default, we can use the b. operator to override the default. Here

we use fertilizer 5 (29-03-04) as the reference level.
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. pwcompare b5.fertilizer, effects sort mcompare(dunnett)
Pairwise comparisons of marginal linear predictions
Margins: asbalanced

Number of
comparisons

fertilizer 4

Dunnett Dunnett
Contrast Std. err. t P>|t| [95% conf. interval]

fertilizer
10-10-10

vs
29-03-04 1.238328 1.589997 0.78 0.852 -2.676225 5.152881
16-04-08

vs
29-03-04 1.728958 1.589997 1.09 0.649 -2.185595 5.643511
10-08-22

vs
29-03-04 4.861048 1.589997 3.06 0.009 .9464951 8.775601
18-24-06

vs
29-03-04 6.161132 1.589997 3.87 0.001 2.246579 10.07568

Two-way models
In the previous examples, we have performed pairwise comparisons after fitting a model with a single

factor. Now, we include two factors and their interaction in our model.

. regress yield fertilizer##irrigation
Source SS df MS Number of obs = 200

F(9, 190) = 27.63
Model 6200.81605 9 688.979561 Prob > F = 0.0000

Residual 4737.57936 190 24.9346282 R-squared = 0.5669
Adj R-squared = 0.5464

Total 10938.3954 199 54.9668111 Root MSE = 4.9935

yield Coefficient Std. err. t P>|t| [95% conf. interval]

fertilizer
10-08-22 1.882256 1.57907 1.19 0.235 -1.232505 4.997016
16-04-08 -.5687418 1.57907 -0.36 0.719 -3.683502 2.546019
18-24-06 4.904999 1.57907 3.11 0.002 1.790239 8.01976
29-03-04 -1.217496 1.57907 -0.77 0.442 -4.332257 1.897264

1.irrigation 8.899721 1.57907 5.64 0.000 5.784961 12.01448

fertilizer#
irrigation

10-08-22#1 3.480928 2.233143 1.56 0.121 -.9240084 7.885865
16-04-08#1 2.118743 2.233143 0.95 0.344 -2.286193 6.52368
18-24-06#1 .0356082 2.233143 0.02 0.987 -4.369328 4.440545
29-03-04#1 -.0416636 2.233143 -0.02 0.985 -4.4466 4.363273

_cons 36.91257 1.116571 33.06 0.000 34.7101 39.11504
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We can perform pairwise comparisons of the cell means defined by the fertilizer and irrigation inter-

action.

. pwcompare fertilizer#irrigation, sort groups mcompare(tukey)
Pairwise comparisons of marginal linear predictions
Margins: asbalanced

Number of
comparisons

fertilizer#irrigation 45

Tukey
Margin Std. err. groups

fertilizer#irrigation
29-03-04#0 35.69507 1.116571 A
16-04-08#0 36.34383 1.116571 A
10-10-10#0 36.91257 1.116571 AB
10-08-22#0 38.79482 1.116571 AB
18-24-06#0 41.81757 1.116571 BC
29-03-04#1 44.55313 1.116571 CD
10-10-10#1 45.81229 1.116571 CDE
16-04-08#1 47.36229 1.116571 DEF
18-24-06#1 50.7529 1.116571 EF
10-08-22#1 51.17547 1.116571 F

Note: Margins sharing a letter in the group label are
not significantly different at the 5% level.

Based onTukey’sHSD and a 5% significance level, wewould conclude that themean yield for fertilizer

29-03-04 without irrigation is not significantly different from the mean yields for fertilizers 10-10-10,

10-08-22, and 16-04-08 when used without irrigation but is significantly different from the remaining

means.

Up to this point, most of the pairwise comparisons that we have performed could have also been

obtained with pwmean (see [R] pwmean) if we had not been interested in examining the results from

the estimation command before making pairwise comparisons of the means. For instance, we could

reproduce the results from the above pwcompare command by typing

. pwmean yield, over(fertilizer irrigation) sort group mcompare(tukey)

However, pwcompare extends the capabilities of pwmean in many ways. For instance, pwmean only
allows for pairwise comparisons of the cell means determined by the highest-level interaction of the

variables specified in the over() option. However, pwcompare allows us to fit a single model, such as
the two-way model that we fit above,

. regress yield fertilizer##irrigation
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and compute pairwise comparisons of the marginal means for only one of the variables in the model:

. pwcompare fertilizer, sort effects mcompare(tukey)
Pairwise comparisons of marginal linear predictions
Margins: asbalanced

Number of
comparisons

fertilizer 10

Tukey Tukey
Contrast Std. err. t P>|t| [95% conf. interval]

fertilizer
29-03-04

vs
18-24-06 -6.161132 1.116571 -5.52 0.000 -9.236338 -3.085925
29-03-04

vs
10-08-22 -4.861048 1.116571 -4.35 0.000 -7.936255 -1.785841
16-04-08

vs
10-08-22 -3.13209 1.116571 -2.81 0.044 -6.207297 -.0568832
29-03-04

vs
16-04-08 -1.728958 1.116571 -1.55 0.532 -4.804165 1.346249
29-03-04

vs
10-10-10 -1.238328 1.116571 -1.11 0.802 -4.313535 1.836879
16-04-08

vs
10-10-10 .4906299 1.116571 0.44 0.992 -2.584577 3.565837
18-24-06

vs
10-08-22 1.300083 1.116571 1.16 0.772 -1.775123 4.37529
10-08-22

vs
10-10-10 3.62272 1.116571 3.24 0.012 .5475131 6.697927
18-24-06

vs
16-04-08 4.432173 1.116571 3.97 0.001 1.356967 7.50738
18-24-06

vs
10-10-10 4.922803 1.116571 4.41 0.000 1.847597 7.99801

Here the standard errors for the differences in marginal means and the residual degrees of freedom

are based on the full model. Therefore, the results will differ from those obtained from pwcompare after
fitting the one-way model with only fertilizer (or equivalently using pwmean).
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Pairwise comparisons of slopes
If we fit a model with a factor variable that is interacted with a continuous variable, pwcompare will

even allow us to make pairwise comparisons of the slopes of the continuous variable for the levels of the

factor variable.

In this case, we have a continuous variable, N03 N, indicating the amount of nitrate nitrogen already
existing in the soil, based on a sample taken from each field.

. regress yield fertilizer##c.N03_N
Source SS df MS Number of obs = 200

F(9, 190) = 37.61
Model 7005.69932 9 778.411035 Prob > F = 0.0000

Residual 3932.69609 190 20.6984005 R-squared = 0.6405
Adj R-squared = 0.6234

Total 10938.3954 199 54.9668111 Root MSE = 4.5495

yield Coefficient Std. err. t P>|t| [95% conf. interval]

fertilizer
10-08-22 18.65019 8.452061 2.21 0.029 1.97826 35.32212
16-04-08 -13.34076 10.07595 -1.32 0.187 -33.21585 6.534327
18-24-06 24.35061 9.911463 2.46 0.015 4.799973 43.90125
29-03-04 17.58529 8.446736 2.08 0.039 .9238646 34.24671

N03_N 4.915653 .7983509 6.16 0.000 3.340884 6.490423

fertilizer#
c.N03_N

10-08-22 -1.282039 .8953419 -1.43 0.154 -3.048126 .4840487
16-04-08 -1.00571 .9025862 -1.11 0.267 -2.786087 .7746662
18-24-06 -2.97627 .9136338 -3.26 0.001 -4.778438 -1.174102
29-03-04 -3.275947 .8247385 -3.97 0.000 -4.902767 -1.649127

_cons -5.459168 7.638241 -0.71 0.476 -20.52581 9.607477
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These are the pairwise differences of the slopes of NO3 N for each pair of fertilizers:

. pwcompare fertilizer#c.N03_N, pveffects sort mcompare(scheffe)
Pairwise comparisons of marginal linear predictions
Margins: asbalanced

Number of
comparisons

fertilizer#c.N03_N 10

Scheffe
Contrast Std. err. t P>|t|

fertilizer#c.N03_N
29-03-04 vs 10-10-10 -3.275947 .8247385 -3.97 0.004
18-24-06 vs 10-10-10 -2.97627 .9136338 -3.26 0.034
29-03-04 vs 16-04-08 -2.270237 .4691771 -4.84 0.000
29-03-04 vs 10-08-22 -1.993909 .4550851 -4.38 0.001
18-24-06 vs 16-04-08 -1.97056 .612095 -3.22 0.038
18-24-06 vs 10-08-22 -1.694232 .6013615 -2.82 0.099
10-08-22 vs 10-10-10 -1.282039 .8953419 -1.43 0.727
16-04-08 vs 10-10-10 -1.00571 .9025862 -1.11 0.871
29-03-04 vs 18-24-06 -.2996772 .4900939 -0.61 0.984
16-04-08 vs 10-08-22 .276328 .5844405 0.47 0.994

Using Scheffé’s adjustment, we find that five of the pairs have significantly different slopes at the 5%

level.

Nonlinear models
pwcompare can also perform pairwise comparisons of the marginal linear predictions after fitting a

nonlinear model. For instance, we can use the dataset from Beyond linear models in [R] contrast and fit

the following logistic regression model of patient satisfaction on hospital:

. use https://www.stata-press.com/data/r18/hospital
(Artificial hospital satisfaction data)
. logit satisfied i.hospital
Iteration 0: Log likelihood = -393.72216
Iteration 1: Log likelihood = -387.55736
Iteration 2: Log likelihood = -387.4768
Iteration 3: Log likelihood = -387.47679
Logistic regression Number of obs = 802

LR chi2(2) = 12.49
Prob > chi2 = 0.0019

Log likelihood = -387.47679 Pseudo R2 = 0.0159

satisfied Coefficient Std. err. z P>|z| [95% conf. interval]

hospital
2 .5348129 .2136021 2.50 0.012 .1161604 .9534654
3 .7354519 .2221929 3.31 0.001 .2999618 1.170942

_cons 1.034708 .1391469 7.44 0.000 .7619855 1.307431
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For this model, the marginal linear predictions are the predicted log odds for each hospital and can be

obtained with the cimargins option:

. pwcompare hospital, cimargins
Pairwise comparisons of marginal linear predictions
Margins: asbalanced

Unadjusted
Margin Std. err. [95% conf. interval]

hospital
1 1.034708 .1391469 .7619855 1.307431
2 1.569521 .1620618 1.251886 1.887157
3 1.77016 .1732277 1.43064 2.10968

The pairwise comparisons are, therefore, differences in the log odds. We can specify

mcompare(bonferroni) and effects to request Bonferroni-adjusted 𝑝-values and confidence inter-
vals.

. pwcompare hospital, effects mcompare(bonferroni)
Pairwise comparisons of marginal linear predictions
Margins: asbalanced

Number of
comparisons

satisfied
hospital 3

Bonferroni Bonferroni
Contrast Std. err. z P>|z| [95% conf. interval]

satisfied
hospital
2 vs 1 .5348129 .2136021 2.50 0.037 .0234537 1.046172
3 vs 1 .7354519 .2221929 3.31 0.003 .2035265 1.267377
3 vs 2 .200639 .2372169 0.85 1.000 -.3672535 .7685314

For nonlinear models, only Bonferroni’s adjustment, Šidák’s adjustment, and Scheffé’s adjustment

are available.
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If we want pairwise comparisons reported as odds ratios, we can specify the or option.

. pwcompare hospital, effects mcompare(bonferroni) or
Pairwise comparisons of marginal linear predictions
Margins: asbalanced

Number of
comparisons

satisfied
hospital 3

Bonferroni Bonferroni
Odds ratio Std. err. z P>|z| [95% conf. interval]

satisfied
hospital
2 vs 1 1.707129 .3646464 2.50 0.037 1.023731 2.846733
3 vs 1 2.086425 .4635888 3.31 0.003 1.225718 3.551525
3 vs 2 1.222183 .2899226 0.85 1.000 .6926341 2.156597

Notice that these tests are still performed on the marginal linear predictions. The odds ratios reported

here are the exponentiated versions of the pairwise differences of log odds in the previous output. For

further discussion, see [R] contrast.

Multiple-equation models
pwcompare works with models containing multiple equations. Commands such as intreg and

gnbreg allow their ancillary parameters to be modeled as a function of independent variables, and

pwcompare can compare the margins within these equations. The equation() option can be used to
specify the equation for which pairwise comparisons of the margins should be made. The atequations
option specifies that pairwise comparisons be computed for each equation. In addition, pwcompare
allows a special pseudofactor for equation—called eqns—when working with results from manova,
mvreg, mlogit, and mprobit.
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Here we use the jaw fracture dataset described in example 4 of [MV] manova. We fit a multivariate

regression model including one independent factor variable, fracture.

. use https://www.stata-press.com/data/r18/jaw
(Table 4.6. Two-way unbalanced data for fractures of the jaw, Rencher (1998))
. mvreg y1 y2 y3 = i.fracture
Equation Obs Parms RMSE ”R-sq” F P>F

y1 27 3 10.42366 0.2966 5.060804 0.0147
y2 27 3 6.325398 0.1341 1.858342 0.1777
y3 27 3 5.976973 0.1024 1.368879 0.2735

Coefficient Std. err. t P>|t| [95% conf. interval]

y1
fracture

Two compo.. -8.833333 4.957441 -1.78 0.087 -19.06499 1.398322
One simpl.. 6 5.394759 1.11 0.277 -5.134235 17.13423

_cons 37 3.939775 9.39 0.000 28.8687 45.1313

y2
fracture

Two compo.. -5.761905 3.008327 -1.92 0.067 -11.97079 .446977
One simpl.. -3.053571 3.273705 -0.93 0.360 -9.810166 3.703023

_cons 38.42857 2.390776 16.07 0.000 33.49425 43.36289

y3
fracture

Two compo.. 4.261905 2.842618 1.50 0.147 -1.60497 10.12878
One simpl.. .9285714 3.093377 0.30 0.767 -5.455846 7.312989

_cons 58.57143 2.259083 25.93 0.000 53.90891 63.23395
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pwcompare performs pairwise comparisons of the margins using the coefficients from the first equa-

tion by default:

. pwcompare fracture, mcompare(bonferroni)
Pairwise comparisons of marginal linear predictions
Margins: asbalanced

Number of
comparisons

y1
fracture 3

Bonferroni
Contrast Std. err. [95% conf. interval]

y1
fracture

Two compound fractures
vs

One compound fracture -8.833333 4.957441 -21.59201 3.925341
One simple fracture

vs
One compound fracture 6 5.394759 -7.884173 19.88417
One simple fracture

vs
Two compound fractures 14.83333 4.75773 2.588644 27.07802

We can use the equation() option to get pwcompare to perform comparisons in the y2 equation:

. pwcompare fracture, equation(y2) mcompare(bonferroni)
Pairwise comparisons of marginal linear predictions
Margins: asbalanced

Number of
comparisons

y2
fracture 3

Bonferroni
Contrast Std. err. [95% conf. interval]

y2
fracture

Two compound fractures
vs

One compound fracture -5.761905 3.008327 -13.50426 1.980449
One simple fracture

vs
One compound fracture -3.053571 3.273705 -11.47891 5.371769
One simple fracture

vs
Two compound fractures 2.708333 2.887136 -4.722119 10.13879
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Because we are working with mvreg results, we can use the eqns pseudofactor to compare the

margins between the three dependent variables. The levels of eqns index the equations: 1 for the first
equation, 2 for the second, and 3 for the third.

. pwcompare _eqns, mcompare(bonferroni)
Pairwise comparisons of marginal linear predictions
Margins: asbalanced

Number of
comparisons

_eqns 3

Bonferroni
Contrast Std. err. [95% conf. interval]

_eqns
2 vs 1 -.5654762 2.545923 -7.117768 5.986815
3 vs 1 24.24603 2.320677 18.27344 30.21862
3 vs 2 24.81151 2.368188 18.71664 30.90637

For the previous command, the only methods available are mcompare(bonferroni),
mcompare(sidak), or mcompare(scheffe). Methods that use the Studentized range are not

appropriate for making comparisons across equations.

Unbalanced data
pwcompare treats all factors as balanced when it computes the marginal means. By “balanced”, we

mean that the number of observations in each combination of factor levels (in each cell mean) is equal. We

can alternatively specify the asobserved optionwhenwe have unbalanced data to obtainmarginalmeans
that are based on the observed cell frequencies from the model fit. For more details on the difference in

these two types of marginal means and a discussion of when each may be appropriate, see [R] margins

and [R] contrast.

In addition, when our data are not balanced, some of the multiple-comparison adjustments are no

longer appropriate. Student–Newman–Keuls’s method, Duncan’s method, and Dunnett’s method as-

sume equal numbers of observations per group.



pwcompare — Pairwise comparisons 2332

Here we use an unbalanced dataset and fit a two-wayANOVAmodel for cholesterol levels on race and

age group. Then we perform pairwise comparisons of the mean cholesterol levels for each race, request-

ing Šidák’s adjustment as well as marginal means that are computed using the observed cell frequencies.

. use https://www.stata-press.com/data/r18/cholesterol3
(Artificial cholesterol data, unbalanced)
. anova chol race##agegrp

Number of obs = 67 R-squared = 0.8179
Root MSE = 8.37496 Adj R-squared = 0.7689

Source Partial SS df MS F Prob>F

Model 16379.993 14 1169.9995 16.68 0.0000

race 230.7544 2 115.3772 1.64 0.2029
agegrp 13857.988 4 3464.4969 49.39 0.0000

race#agegrp 857.81521 8 107.2269 1.53 0.1701

Residual 3647.2774 52 70.13995

Total 20027.27 66 303.44349
. pwcompare race, asobserved mcompare(sidak)
Pairwise comparisons of marginal linear predictions
Margins: asobserved

Number of
comparisons

race 3

Sidak
Contrast Std. err. [95% conf. interval]

race
White vs Black -7.232433 2.686089 -13.85924 -.6056277
Other vs Black -5.231198 2.651203 -11.77194 1.309541
Other vs White 2.001235 2.414964 -3.956682 7.959152
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Empty cells
An empty cell is a combination of the levels of factor variables that is not observed in the estimation

sample. When we have empty cells in our data, the marginal means involving those empty cells are not

estimable as described in [R]margins. In addition, all pairwise comparisons involving a marginal mean

that is not estimable are themselves not estimable. Here we use a dataset where we do not have any

observations for white individuals in the 20–29 age group. We can use the emptycells(reweight)
option to reweight the nonempty cells so that we can estimate the marginal mean for whites and compute

pairwise comparisons involving that marginal mean.

. use https://www.stata-press.com/data/r18/cholesterol2
(Artificial cholesterol data, empty cells)
. tabulate race agegrp

Age group
Race 10--19 20--29 30--39 40--59 60--79 Total

Black 5 5 5 5 5 25
White 5 0 5 5 5 20
Other 5 5 5 5 5 25

Total 15 10 15 15 15 70
. anova chol race##agegrp

Number of obs = 70 R-squared = 0.7582
Root MSE = 9.47055 Adj R-squared = 0.7021

Source Partial SS df MS F Prob>F

Model 15751.611 13 1211.6624 13.51 0.0000

race 305.49046 2 152.74523 1.70 0.1914
agegrp 14387.856 4 3596.964 40.10 0.0000

race#agegrp 795.80757 7 113.6868 1.27 0.2831

Residual 5022.7156 56 89.69135

Total 20774.327 69 301.0772
. pwcompare race, emptycells(reweight)
Pairwise comparisons of marginal linear predictions
Margins: asbalanced
Empty cells: reweight

Unadjusted
Contrast Std. err. [95% conf. interval]

race
White vs Black 2.922769 2.841166 -2.768769 8.614308
Other vs Black -4.12621 2.678677 -9.492244 1.239824
Other vs White -7.048979 2.841166 -12.74052 -1.35744

For further details on the emptycells(reweight) option, see [R] margins and [R] contrast.
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Stored results
pwcompare stores the following in r():

Scalars

r(df r) variance degrees of freedom

r(k terms) number of terms in marginlist

r(level) confidence level of confidence intervals

r(balanced) 1 if fully balanced data, 0 otherwise

Macros

r(cmd) pwcompare
r(cmdline) command as typed

r(est cmd) e(cmd) from original estimation results

r(est cmdline) e(cmdline) from original estimation results

r(title) title in output

r(emptycells) empspec from emptycells()
r(groups#) group codes for the #th margin in r(b)
r(mcmethod vs) method from mcompare()
r(mctitle vs) title for method from mcompare()
r(mcadjustall vs) adjustall or empty
r(margin method) asbalanced or asobserved
r(vce) vcetype specified in vce() in original estimation command

Matrices

r(b) margin estimates

r(V) variance–covariance matrix of the margin estimates

r(error) margin estimability codes;

0 means estimable,
8 means not estimable

r(table) matrix containing the margins with their standard errors, test statistics, 𝑝-values, and
confidence intervals

r(M) matrix that produces the margins from the model coefficients

r(b vs) margin difference estimates

r(V vs) variance–covariance matrix of the margin difference estimates

r(error vs) margin difference estimability codes;

0 means estimable,
8 means not estimable

r(table vs) matrix containing the margin differences with their standard errors, test statistics, 𝑝-
values, and confidence intervals

r(L) matrix that produces the margin differences from the model coefficients

r(k groups) number of significance groups for each term
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pwcompare with the post option also stores the following in e():

Scalars

e(df r) variance degrees of freedom

e(k terms) number of terms in marginlist

e(balanced) 1 if fully balanced data, 0 otherwise

Macros

e(cmd) pwcompare
e(cmdline) command as typed

e(properties) b V
e(est cmd) e(cmd) from original estimation results

e(est cmdline) e(cmdline) from original estimation results

e(title) title in output

e(emptycells) empspec from emptycells()
e(margin method) asbalanced or asobserved
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved
e(vce) vcetype specified in vce() in original estimation command

Matrices

e(b) margin estimates

e(V) variance–covariance matrix of the margin estimates

e(error) margin estimability codes;

0 means estimable,
8 means not estimable

e(M) matrix that produces the margins from the model coefficients

e(b vs) margin difference estimates

e(V vs) variance–covariance matrix of the margin difference estimates

e(error vs) margin difference estimability codes;

0 means estimable,
8 means not estimable

e(L) matrix that produces the margin differences from the model coefficients

Methods and formulas
Methods and formulas are presented under the following headings:

Notation
Unadjusted comparisons
Bonferroni’s method
Šidák’s method
Scheffé’s method
Tukey’s method
Student–Newman–Keuls’s method
Duncan’s method
Dunnett’s method
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Notation
pwcompare performs comparisons of margins; see Methods and formulas in [R] contrast.

If there are 𝑘 margins for a given factor term, then there are

𝑚 = (𝑘
2
) = 𝑘(𝑘 − 1)

2

unique pairwise comparisons. Let the 𝑖th pairwise comparison be denoted by

̂𝛿𝑖 = 𝑙′𝑖b

where b is a column vector of coefficients from the fitted model and 𝑙𝑖 is a column vector that forms the
corresponding linear combination. If V̂ denotes the estimated variance matrix for b, then the standard

error for ̂𝛿𝑖 is given by

ŝe( ̂𝛿𝑖) = √𝑙′𝑖V̂𝑙𝑖
The corresponding test statistic is then

𝑡𝑖 =
̂𝛿𝑖

ŝe( ̂𝛿𝑖)

and the limits for a 100(1 − 𝛼)% confidence interval for the expected value of ̂𝛿𝑖 are

̂𝛿𝑖 ± 𝑐𝑖(𝛼) ŝe( ̂𝛿𝑖)

where 𝑐𝑖(𝛼) is the critical value corresponding to the chosen multiple-comparison method.

Unadjusted comparisons
pwcompare computes unadjusted 𝑝-values and confidence intervals by default. pwcompare uses the 𝑡

distribution with 𝜈 = e(df r) degrees of freedom when e(df r) is posted by the estimation command.
The unadjusted two-sided 𝑝-value is

𝑢𝑝𝑖 = 2 Pr(𝑡𝜈 > |𝑡𝑖|)

and the unadjusted critical value 𝑢𝑐𝑖(𝛼) satisfies the following probability statement:

𝛼 = 2 Pr {𝑡𝜈 > 𝑢𝑐𝑖(𝛼)}

pwcompare uses the standard normal distribution when e(df r) is not posted.
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Bonferroni’s method
For mcompare(bonferroni), the adjusted 𝑝-value is

𝑏𝑝𝑖 = min(1, 𝑚 𝑢𝑝𝑖)

and the adjusted critical value is

𝑏𝑐𝑖(𝛼) = 𝑢𝑐𝑖(𝛼/𝑚)

Šidák’s method
For mcompare(sidak), the adjusted 𝑝-value is

si𝑝𝑖 = 1 − (1 − 𝑢𝑝𝑖)𝑚

and the adjusted critical value is

si𝑐𝑖(𝛼) = 𝑢𝑐𝑖{1 − (1 − 𝛼)1/𝑚}

Scheffé’s method
For mcompare(scheffe), the adjusted 𝑝-value is

sc𝑝𝑖 = Pr (𝐹𝑑,𝜈 > 𝑡2
𝑖 /𝑑)

where 𝐹𝑑,𝜈 is distributed as an 𝐹 with 𝑑 numerator and 𝜈 denominator degrees of freedom and 𝑑 is the

rank of the VCE for the term. The adjusted critical value satisfies the following probability statement:

𝛼 = Pr [𝐹𝑑,𝜈 > {sc𝑐𝑖(𝛼)}2/𝑑]

pwcompare uses the 𝜒2 distribution when e(df r) is not posted.

Tukey’s method
For mcompare(tukey), the adjusted 𝑝-value is

𝑡𝑝𝑖 = Pr (𝑞𝑘,𝜈 > |𝑡𝑖|
√

2)

where 𝑞𝑘,𝜈 is distributed as the Studentized range statistic for 𝑘 means and 𝜈 residual degrees of freedom
(Miller 1981). The adjusted critical value satisfies the following probability statement:

𝛼 = Pr{𝑞𝑘,𝜈 > 𝑡𝑐𝑖(𝛼)
√

2}



pwcompare — Pairwise comparisons 2338

Student–Newman–Keuls’s method
For mcompare(snk), suppose 𝑡𝑖 is comparing two margins that have 𝑟 other margins between them.

Then the adjusted 𝑝-value is
snk𝑝𝑖 = Pr (𝑞𝑟+2,𝜈 > |𝑡𝑖|

√
2)

where 𝑟 ranges from 0 to 𝑘 − 2. The adjusted critical value snk𝑐𝑖(𝛼) satisfies the following probability
statement:

𝛼 = Pr{𝑞𝑟+2,𝜈 > snk𝑐𝑖(𝛼)
√

2}

Duncan’s method
For mcompare(duncan), the adjusted 𝑝-value is

dunc𝑝𝑖 = 1 − (1 − snk𝑝𝑖)1/(𝑟+1)

and the adjusted critical value is

dunc𝑐𝑖(𝛼) = snk𝑐𝑖{1 − (1 − 𝛼)𝑟+1}

Dunnett’s method
For mcompare(dunnett), the margins are compared with a reference category, resulting in only 𝑘−1

pairwise comparisons. The adjusted 𝑝-value is

dunn𝑝𝑖 = Pr(𝑑𝑘−1,𝜈 > |𝑡𝑖|)

where 𝑑𝑘−1,𝜈 is distributed as the many-one 𝑡 statistic (Miller 1981, 76). The adjusted critical value

dunn𝑐𝑖(𝛼) satisfies the following probability statement:

𝛼 = Pr{𝑑𝑘−1,𝜈 > dunn𝑐𝑖(𝛼)}

The multiple-comparison methods for mcompare(tukey), mcompare(snk), mcompare(duncan),
and mcompare(dunnett) assume the normal distribution with equal variance; thus, these meth-

ods are allowed only with results from anova, regress, manova, and mvreg. mcompare(snk),
mcompare(duncan), and mcompare(dunnett) assume equal sample size for each marginal mean.

These options will cause pwcompare to report a footnote if unbalanced factors are detected.
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Postestimation commands Remarks and examples Also see

Postestimation commands
The following postestimation commands are available after pwcompare, post:

Command Description

estat vce variance–covariance matrix of the estimators (VCE)

estat (svy) postestimation statistics for survey data

estimates cataloging estimation results

etable table of estimation results

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

Remarks and examples
When we use the post option with pwcompare, the marginal linear predictions are posted as estima-

tion results, and we can use postestimation commands to perform further analysis on them.

In Pairwise comparisons of means of [R] pwcompare, we fit a regression of wheat yield on types of

fertilizers.

. use https://www.stata-press.com/data/r18/yield
(Artificial wheat yield dataset)
. regress yield i.fertilizer
(output omitted )

We also used pwcompare with the cimargins option to obtain the marginal mean yield for each

fertilizer. We can add the post option to this command to post these marginal means and their VCEs as
estimation results.

. pwcompare fertilizer, cimargins post
Pairwise comparisons of marginal linear predictions
Margins: asbalanced

Unadjusted
Margin Std. err. [95% conf. interval]

fertilizer
10-10-10 41.36243 1.124298 39.14509 43.57977
10-08-22 44.98515 1.124298 42.7678 47.20249
16-04-08 41.85306 1.124298 39.63571 44.0704
18-24-06 46.28523 1.124298 44.06789 48.50258
29-03-04 40.1241 1.124298 37.90676 42.34145

2340
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Now, we can use nlcom to compute a percentage improvement in the mean yield for fertilizer 2 when
compared with fertilizer 1.

. nlcom (pct_chg: 100*(_b[2.fertilizer] - _b[1.fertilizer])/_b[1.fertilizer])
pct_chg: 100*(_b[2.fertilizer] - _b[1.fertilizer])/_b[1.fertilizer]

Coefficient Std. err. z P>|z| [95% conf. interval]

pct_chg 8.758479 4.015932 2.18 0.029 .8873982 16.62956

The mean yield for fertilizer 2 is about 9% higher than that of fertilizer 1, with a standard error of 4%.

Also see
[R] pwcompare — Pairwise comparisons

[U] 20 Estimation and postestimation commands
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Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Reference Also see

Description
pwmean performs pairwise comparisons of means. It computes all pairwise differences of themeans of

varname over the combination of the levels of the variables in varlist. The tests and confidence intervals

for the pairwise comparisons assume equal variances across groups. pwmean also allows for adjusting
the confidence intervals and 𝑝-values to account for multiple comparisons using Bonferroni’s method,
Scheffé’s method, Tukey’s method, Dunnett’s method, and others.

See [R] pwcompare for performing pairwise comparisons of means, estimated marginal means, and

other types of marginal linear predictions after anova, regress, and most other estimation commands.

Quick start
All pairwise differences in the means of y over levels of categorical variable catvar

pwmean y, over(catvar)

Same as above, and report test statistics and 𝑝-values for tests that differences equal zero
pwmean y, over(catvar) effects

Adjust 𝑝-values and confidence intervals for multiple comparisons using Tukey’s method
pwmean y, over(catvar) effects mcompare(tukey)

Same as above, but adjust for multiple comparisons using Bonferroni’s method

pwmean y, over(catvar) effects mcompare(bonferroni)

Report mean of y for each level of catvar, grouping means that are not significantly different
pwmean y, over(catvar) groups

Menu
Statistics > Summaries, tables, and tests > Summary and descriptive statistics > Pairwise comparisons of means

2342
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Syntax
pwmean varname [ if ] [ in ], over(varlist) [ options ]

options Description

Main
∗ over(varlist) compare means across each combination of the levels in varlist

mcompare(method) adjust for multiple comparisons; default is mcompare(noadjust)

Reporting

level(#) confidence level; default is level(95)
cieffects display a table of mean differences and confidence intervals; the default

pveffects display a table of mean differences and 𝑝-values
effects display a table of mean differences with 𝑝-values and confidence

intervals

cimeans display a table of means and confidence intervals

groups display a table of means with codes that group them with other means

that are not significantly different

sort sort results tables by displayed mean or difference

display options control column formats, line width, and factor-variable labeling

∗over(varlist) is required.
collect is allowed; see [U] 11.1.10 Prefix commands.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

method Description

noadjust do not adjust for multiple comparisons; the default

bonferroni Bonferroni’s method

sidak Šidák’s method

scheffe Scheffé’s method

tukey Tukey’s method

snk Student–Newman–Keuls’s method

duncan Duncan’s method

dunnett Dunnett’s method

Options

� � �
Main �

over(varlist) is required and specifies that means are computed for each combination of the levels of
the variables in varlist.

mcompare(method) specifies the method for computing 𝑝-values and confidence intervals that account
for multiple comparisons.

Most methods adjust the comparisonwise error rate, 𝛼𝑐, to achieve a prespecified experimentwise

error rate, 𝛼𝑒.

mcompare(noadjust) is the default; it specifies no adjustment.
𝛼𝑐 = 𝛼𝑒
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mcompare(bonferroni) adjusts the comparisonwise error rate based on the upper limit of the Bon-
ferroni inequality:

𝛼𝑒≤𝑚𝛼𝑐

where m is the number of comparisons within the term.

The adjusted comparisonwise error rate is

𝛼𝑐 = 𝛼𝑒/𝑚

mcompare(sidak) adjusts the comparisonwise error rate based on the upper limit of the probability
inequality

𝛼𝑒≤1 − (1 − 𝛼𝑐)𝑚

where m is the number of comparisons within the term.

The adjusted comparisonwise error rate is

𝛼𝑐 = 1 − (1 − 𝛼𝑒)1/𝑚

This adjustment is exact when the m comparisons are independent.

mcompare(scheffe) controls the experimentwise error rate using the 𝐹 (or 𝜒2) distribution with

degrees of freedom equal to 𝑘 − 1 where 𝑘 is the number of means being compared.
mcompare(tukey) uses what is commonly referred to as Tukey’s honestly significant difference.

This method uses the Studentized range distribution instead of the 𝑡 distribution.
mcompare(snk) is a variation on mcompare(tukey) that counts only the number of means partici-

pating in the range for a given comparison instead of the full number of means.

mcompare(duncan) is a variation on mcompare(snk) with additional adjustment to the significance
probabilities.

mcompare(dunnett) uses Dunnett’s method for making comparisons with a reference category.

� � �
Reporting �

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is

level(95) or as set by set level; see [U] 20.8 Specifying the width of confidence intervals.

The significance level used by the groups option is 100 − #, expressed as a percentage.

cieffects specifies that a table of the pairwise comparisons of means with their standard errors and
confidence intervals be reported. This is the default.

pveffects specifies that a table of the pairwise comparisons of means with their standard errors, test
statistics, and 𝑝-values be reported.

effects specifies that a table of the pairwise comparisons of means with their standard errors, test

statistics, 𝑝-values, and confidence intervals be reported.
cimeans specifies that a table of the means with their standard errors and confidence intervals be re-

ported.

groups specifies that a table of the means with their standard errors and group codes be reported. Means

with the same letter in the group code are not significantly different at the specified significance level.

sort specifies that the reported tables be sorted by the mean or difference that is displayed in the table.

display options: nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch.
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nofvlabel displays factor-variable level values rather than attached value labels. This option over-
rides the fvlabel setting; see [R] set showbaselevels.

fvwrap(#) specifies how many lines to allow when long value labels must be wrapped. Labels

requiring more than # lines are truncated. This option overrides the fvwrap setting; see [R] set
showbaselevels.

fvwrapon(style) specifies whether value labels that wrap will break at word boundaries or break

based on available space.

fvwrapon(word), the default, specifies that value labels break at word boundaries.

fvwrapon(width) specifies that value labels break based on available space.

This option overrides the fvwrapon setting; see [R] set showbaselevels.

cformat(% fmt) specifies how to format means, standard errors, and confidence limits in the table of

pairwise comparison of means.

pformat(% fmt) specifies how to format 𝑝-values in the table of pairwise comparison of means.
sformat(% fmt) specifies how to format test statistics in the table of pairwise comparison of means.

nolstretch specifies that the width of the table of pairwise comparisons not be automatically

widened to accommodate longer variable names. The default, lstretch, is to automatically widen
the table of pairwise comparisons up to the width of the Results window. Specifying lstretch
or nolstretch overrides the setting given by set lstretch. If set lstretch has not been set,
the default is lstretch. nolstretch is not shown in the dialog box.

Remarks and examples
pwmean performs pairwise comparisons (differences) of means, assuming a common variance among

groups. It can easily adjust the 𝑝-values and confidence intervals for the differences to account for the
elevated type I error rate due to multiple comparisons. Adjustments for multiple comparisons can be

made using Bonferroni’s method, Scheffé’s method, Tukey’s method, Dunnett’s method, and others.

See [R] margins, pwcompare for performing pairwise comparisons of marginal probabilities and

other linear and nonlinear predictions after estimation commands.

Remarks are presented under the following headings:

Group means
Pairwise differences of means
Group output
Adjusting for multiple comparisons

Tukey’s method
Dunnett’s method

Multiple over() variables
Equal variance assumption

Group means
Suppose we have data on the wheat yield of fields that were each randomly assigned an application

of one of five types of fertilizers. Let’s first look at the mean yield for each type of fertilizer.

. use https://www.stata-press.com/data/r18/yield
(Artificial wheat yield dataset)
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. pwmean yield, over(fertilizer) cimeans
Pairwise comparisons of means with equal variances
Over: fertilizer

Unadjusted
yield Mean Std. err. [95% conf. interval]

fertilizer
10-10-10 41.36243 1.124298 39.14509 43.57977
10-08-22 44.98515 1.124298 42.7678 47.20249
16-04-08 41.85306 1.124298 39.63571 44.0704
18-24-06 46.28523 1.124298 44.06789 48.50258
29-03-04 40.1241 1.124298 37.90676 42.34145

Pairwise differences of means
We can compute all pairwise differences in mean wheat yields for the types of fertilizers.

. pwmean yield, over(fertilizer) effects
Pairwise comparisons of means with equal variances
Over: fertilizer

Unadjusted Unadjusted
yield Contrast Std. err. t P>|t| [95% conf. interval]

fertilizer
10-08-22

vs
10-10-10 3.62272 1.589997 2.28 0.024 .4869212 6.758518
16-04-08

vs
10-10-10 .4906299 1.589997 0.31 0.758 -2.645169 3.626428
18-24-06

vs
10-10-10 4.922803 1.589997 3.10 0.002 1.787005 8.058602
29-03-04

vs
10-10-10 -1.238328 1.589997 -0.78 0.437 -4.374127 1.89747
16-04-08

vs
10-08-22 -3.13209 1.589997 -1.97 0.050 -6.267889 .0037086
18-24-06

vs
10-08-22 1.300083 1.589997 0.82 0.415 -1.835715 4.435882
29-03-04

vs
10-08-22 -4.861048 1.589997 -3.06 0.003 -7.996847 -1.725249
18-24-06

vs
16-04-08 4.432173 1.589997 2.79 0.006 1.296375 7.567972
29-03-04

vs
16-04-08 -1.728958 1.589997 -1.09 0.278 -4.864757 1.406841
29-03-04

vs
18-24-06 -6.161132 1.589997 -3.87 0.000 -9.29693 -3.025333
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The contrast in the row labeled (10-08-22 vs 10-10-10) is the difference in the mean wheat yield for
fertilizer 10-08-22 and fertilizer 10-10-10. At a 5% significance level, we conclude that there is a differ-

ence in the means for these two fertilizers. Likewise, the rows labeled (18-24-06 vs 10-10-10), (29-
03-04 vs 10-08-22), (18-24-06 vs 16-04-08) and (29-03-04 vs 18-24-06) show differences in

these pairs of means. In all, we find that 5 of the 10 mean differences are significantly different from

zero at a 5% significance level.

We can specify the sort option to order the differences from smallest to largest in the table.

. pwmean yield, over(fertilizer) effects sort
Pairwise comparisons of means with equal variances
Over: fertilizer

Unadjusted Unadjusted
yield Contrast Std. err. t P>|t| [95% conf. interval]

fertilizer
29-03-04

vs
18-24-06 -6.161132 1.589997 -3.87 0.000 -9.29693 -3.025333
29-03-04

vs
10-08-22 -4.861048 1.589997 -3.06 0.003 -7.996847 -1.725249
16-04-08

vs
10-08-22 -3.13209 1.589997 -1.97 0.050 -6.267889 .0037086
29-03-04

vs
16-04-08 -1.728958 1.589997 -1.09 0.278 -4.864757 1.406841
29-03-04

vs
10-10-10 -1.238328 1.589997 -0.78 0.437 -4.374127 1.89747
16-04-08

vs
10-10-10 .4906299 1.589997 0.31 0.758 -2.645169 3.626428
18-24-06

vs
10-08-22 1.300083 1.589997 0.82 0.415 -1.835715 4.435882
10-08-22

vs
10-10-10 3.62272 1.589997 2.28 0.024 .4869212 6.758518
18-24-06

vs
16-04-08 4.432173 1.589997 2.79 0.006 1.296375 7.567972
18-24-06

vs
10-10-10 4.922803 1.589997 3.10 0.002 1.787005 8.058602

Ordering the pairwise differences is particularly convenient when we are comparing means for a large

number of groups.
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Group output
We can use the group option to see the mean of each group and a visual representation of the tests

for differences.

. pwmean yield, over(fertilizer) group sort
Pairwise comparisons of means with equal variances
Over: fertilizer

Unadjusted
yield Mean Std. err. groups

fertilizer
29-03-04 40.1241 1.124298 A
10-10-10 41.36243 1.124298 A
16-04-08 41.85306 1.124298 AB
10-08-22 44.98515 1.124298 BC
18-24-06 46.28523 1.124298 C

Note: Means sharing a letter in the group label
are not significantly different at the 5%
level.

Fertilizers 29-03-04, 10-10-10, and 16-04-08 are all in group A. This means that at our 5% level of

significance, we have insufficient information to distinguish their means. Likewise, fertilizers 16-04-08

and 10-08-22 are in group B and cannot be distinguished at the 5% level. The same is true for fertilizers

10-08-22 and 18-24-06 in group C.

Fertilizer 29-03-04 and fertilizer 10-08-22 have no letters in common, indicating that the mean yields

of these two groups are significantly different at the 5% level. We can conclude that any other fertilizers

without a letter in common have significantly different means as well.

Adjusting for multiple comparisons
The statistics in the examples above take no account that we are performing 10 comparisons. With

our 5% significance level and assuming the comparisons are independent, we expect 1 in 20 tests of

comparisons to be significant, even if all the population means are truly the same. If we are performing

many comparisons, then we should account for the fact that some tests will be found significant by

chance alone. More formally, the test for each pairwise comparison is made without adjusting for the

elevated type I experimentwise error rate that is introduced when performing multiple tests. We can use

the mcompare() option to adjust the confidence intervals and 𝑝-values for multiple comparisons.

Tukey’s method

Of the available adjustments for multiple comparisons, Tukey’s honestly significant difference, Stu-

dent–Newman–Keuls’s method, and Duncan’s method are most often used when performing all pairwise

comparisons of means. Of these, Tukey’s method is the most conservative and Duncan’s method is the

least conservative. For further discussion of each of the multiple-comparison adjustments, see [R] pw-

compare.
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Here we use Tukey’s adjustment to compute 𝑝-values and confidence intervals for the pairwise dif-
ferences.

. pwmean yield, over(fertilizer) effects sort mcompare(tukey)
Pairwise comparisons of means with equal variances
Over: fertilizer

Number of
comparisons

fertilizer 10

Tukey Tukey
yield Contrast Std. err. t P>|t| [95% conf. interval]

fertilizer
29-03-04

vs
18-24-06 -6.161132 1.589997 -3.87 0.001 -10.53914 -1.78312
29-03-04

vs
10-08-22 -4.861048 1.589997 -3.06 0.021 -9.239059 -.4830368
16-04-08

vs
10-08-22 -3.13209 1.589997 -1.97 0.285 -7.510101 1.245921
29-03-04

vs
16-04-08 -1.728958 1.589997 -1.09 0.813 -6.106969 2.649053
29-03-04

vs
10-10-10 -1.238328 1.589997 -0.78 0.936 -5.616339 3.139683
16-04-08

vs
10-10-10 .4906299 1.589997 0.31 0.998 -3.887381 4.868641
18-24-06

vs
10-08-22 1.300083 1.589997 0.82 0.925 -3.077928 5.678095
10-08-22

vs
10-10-10 3.62272 1.589997 2.28 0.156 -.7552913 8.000731
18-24-06

vs
16-04-08 4.432173 1.589997 2.79 0.046 .0541623 8.810185
18-24-06

vs
10-10-10 4.922803 1.589997 3.10 0.019 .5447922 9.300815

When using a 5% significance level, Tukey’s adjustment indicates that four pairs of means are different.

With the adjustment, we no longer conclude that the difference in the mean yields for fertilizers 10-08-22

and 10-10-10 is significantly different from zero.



pwmean — Pairwise comparisons of means 2350

Dunnett’s method

Now, let’s suppose that fertilizer 10-10-10 actually represents fields onwhich no fertilizer was applied.

In this case, we can use Dunnett’s method for comparing each of the fertilizers with the control.

. pwmean yield, over(fertilizer) effects mcompare(dunnett)
Pairwise comparisons of means with equal variances
Over: fertilizer

Number of
comparisons

fertilizer 4

Dunnett Dunnett
yield Contrast Std. err. t P>|t| [95% conf. interval]

fertilizer
10-08-22

vs
10-10-10 3.62272 1.589997 2.28 0.079 -.2918331 7.537273
16-04-08

vs
10-10-10 .4906299 1.589997 0.31 0.994 -3.423923 4.405183
18-24-06

vs
10-10-10 4.922803 1.589997 3.10 0.008 1.00825 8.837356
29-03-04

vs
10-10-10 -1.238328 1.589997 -0.78 0.852 -5.152881 2.676225

Using Dunnett’s adjustment, we conclude that only fertilizer 4 (18-24-06) produces a mean yield that is

significantly different from the mean yield of the field with no fertilizer applied.

By default, pwmean treats the lowest level of the group variable as the control. If, for instance, fertilizer
3 (16-04-08) was our control group, we could type

. pwmean yield, over(b3.fertilizer) effects mcompare(dunnett)

using the b3. factor-variable operator to specify this level as the reference level.
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Multiple over() variables
When we specify more than one variable in the over() option, pairwise comparisons are performed

for the means defined by each combination of levels of these variables.

. pwmean yield, over(fertilizer irrigation) group
Pairwise comparisons of means with equal variances
Over: fertilizer irrigation

Unadjusted
yield Mean Std. err. groups

fertilizer#irrigation
10-10-10#0 36.91257 1.116571 A
10-10-10#1 45.81229 1.116571 B
10-08-22#0 38.79482 1.116571 A C
10-08-22#1 51.17547 1.116571 E
16-04-08#0 36.34383 1.116571 A
16-04-08#1 47.36229 1.116571 B
18-24-06#0 41.81757 1.116571 CD
18-24-06#1 50.7529 1.116571 E
29-03-04#0 35.69507 1.116571 A
29-03-04#1 44.55313 1.116571 B D

Note: Means sharing a letter in the group label are not
significantly different at the 5% level.

Here the row labeled 10-10-10#0 is the mean for the fields treated with fertilizer 10-10-10 and without
irrigation. This mean is significantly different from the mean of all fertilizer/irrigation pairings that do

not have an A in the “Unadjusted groups” column. These include all pairings where the fields were

irrigated as well as the fields treated with fertilizer 18-24-06 but without irrigation.

Equal variance assumption
pwmean performs multiple comparisons assuming that there is a common variance for all groups.

In the case of two groups, this is equivalent to performing the familiar two-sample 𝑡 test when equal
variances are assumed.

. ttest yield, by(irrigation)
Two-sample t test with equal variances

Group Obs Mean Std. err. Std. dev. [95% conf. interval]

0 100 37.91277 .5300607 5.300607 36.86102 38.96453
1 100 47.93122 .5630353 5.630353 46.81403 49.0484

Combined 200 42.92199 .5242462 7.413961 41.8882 43.95579

diff -10.01844 .7732872 -11.54338 -8.493509

diff = mean(0) - mean(1) t = -12.9557
H0: diff = 0 Degrees of freedom = 198

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
Pr(T < t) = 0.0000 Pr(|T| > |t|) = 0.0000 Pr(T > t) = 1.0000
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. pwmean yield, over(irrigation) effects
Pairwise comparisons of means with equal variances
Over: irrigation

Unadjusted Unadjusted
yield Contrast Std. err. t P>|t| [95% conf. interval]

irrigation
1 vs 0 10.01844 .7732872 12.96 0.000 8.493509 11.54338

The signs for the difference, the test statistic, and the confidence intervals are reversed because the

difference is taken in the opposite direction. The 𝑝-value from pwmean is equivalent to the one for the
two-sided test in the ttest output.

pwmean extends the capabilities of ttest to allow for simultaneously comparing all pairs of means

and to allow for using one common variance estimate for all the tests instead of computing a separate

pooled variance for each pair of means when using multiple ttest commands. In addition, pwmean
allows adjustments for multiple comparisons, many of which rely on an assumption of equal variances

among groups.

Stored results
pwmean stores the following in e():

Scalars

e(df r) variance degrees of freedom

e(balanced) 1 if fully balanced data, 0 otherwise

Macros

e(cmd) pwmean
e(cmdline) command as typed

e(title) title in output

e(depvar) name of variable from which the means are computed

e(over) varlist from over()
e(properties) b V

Matrices

e(b) mean estimates

e(V) variance–covariance matrix of the mean estimates

e(error) mean estimability codes;

0 means estimable,
8 means not estimable

e(b vs) mean difference estimates

e(V vs) variance–covariance matrix of the mean difference estimates

e(error vs) mean difference estimability codes;

0 means estimable,
8 means not estimable
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In addition to the above, the following is stored in r():

Scalars

r(level) confidence level of confidence intervals

Macros

r(groups#) group codes for the #th margin in r(b)
r(mcmethod vs) method from mcompare()
r(mctitle vs) title for method from mcompare()

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

r(table vs) matrix containing the margin differences with their standard errors, test statistics, 𝑝-
values, and confidence intervals

r(k groups) number of significance groups for each term

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas
pwmean is a convenience command that uses pwcompare after fitting a fully factorial linear model.

See Methods and formulas described in [R] pwcompare.

Reference
Searle, S. R. 1997. Linear Models for Unbalanced Data. New York: Wiley.

Also see
[R] pwmean postestimation — Postestimation tools for pwmean

[R] contrast — Contrasts and linear hypothesis tests after estimation

[R] margins — Marginal means, predictive margins, and marginal effects

[R] margins, pwcompare — Pairwise comparisons of margins

[R] pwcompare — Pairwise comparisons

[R] ttest — 𝑡 tests (mean-comparison tests)
[U] 20 Estimation and postestimation commands
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Postestimation commands Remarks and examples Also see

Postestimation commands
The following postestimation commands are available after pwmean:

Command Description

estat vce variance–covariance matrix of the estimators (VCE)

estimates cataloging estimation results

etable table of estimation results

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

Remarks and examples
In Pairwise differences of means of [R] pwmean, we computed all pairwise differences in mean wheat

yields for five fertilizers.

. use https://www.stata-press.com/data/r18/yield
(Artificial wheat yield dataset)
. pwmean yield, over(fertilizer)
Pairwise comparisons of means with equal variances
Over: fertilizer

Unadjusted
yield Contrast Std. err. [95% conf. interval]

fertilizer
10-08-22 vs 10-10-10 3.62272 1.589997 .4869212 6.758518
16-04-08 vs 10-10-10 .4906299 1.589997 -2.645169 3.626428
18-24-06 vs 10-10-10 4.922803 1.589997 1.787005 8.058602
29-03-04 vs 10-10-10 -1.238328 1.589997 -4.374127 1.89747
16-04-08 vs 10-08-22 -3.13209 1.589997 -6.267889 .0037086
18-24-06 vs 10-08-22 1.300083 1.589997 -1.835715 4.435882
29-03-04 vs 10-08-22 -4.861048 1.589997 -7.996847 -1.725249
18-24-06 vs 16-04-08 4.432173 1.589997 1.296375 7.567972
29-03-04 vs 16-04-08 -1.728958 1.589997 -4.864757 1.406841
29-03-04 vs 18-24-06 -6.161132 1.589997 -9.29693 -3.025333

2354
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After pwmean, we can use testnl to test whether the improvement in mean wheat yield when using
fertilizer 18-24-06 instead of fertilizer 29-03-04 is significantly different from 10%.

. testnl (_b[4.fertilizer] - _b[5.fertilizer])/_b[5.fertilizer] = 0.1
(1) (_b[4.fertilizer] - _b[5.fertilizer])/_b[5.fertilizer] = 0.1

chi2(1) = 1.57
Prob > chi2 = 0.2106

The improvement is not significantly different from 10%.

Also see
[R] pwmean — Pairwise comparisons of means

[U] 20 Estimation and postestimation commands
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Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas References Also see

Description
These commands provide standard quality-control charts. cchart draws a c chart; pchart, a p

(fraction-defective) chart; rchart, an R (range or dispersion) chart; xchart, an X (control line) chart;

and shewhart, vertically aligned X and R charts.

Quick start
c chart for dvar defects per unit identified by uvar

cchart dvar uvar

p chart for dvar defective items out of nvar items inspected from each unit identified by uvar
pchart dvar uvar nvar

Same as above, but stabilize the p chart for unequal numbers of items inspected per unit

pchart dvar uvar nvar, stabilized

R chart for the range of measurements m1, m2, m3, and m4
rchart m1 m2 m3 m4, connect(l)

Same as above, but use known process standard deviation of 0.5 for control limits

rchart m1 m2 m3 m4, connect(l) std(.5)

X chart for measurements m1, m2, m3, and m4
xchart m1 m2 m3 m4, connect(l)

Same as above, but use known process standard deviation of 0.5 and grand mean of 10 for control limits

xchart m1 m2 m3 m4, connect(l) std(.5) mean(10)

Shewhart chart with vertically aligned R and X charts

shewhart m1 m2 m3 m4, connect(l) std(.5) mean(10)

2356
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Menu
cchart
Statistics > Other > Quality control > C chart

pchart
Statistics > Other > Quality control > P chart

rchart
Statistics > Other > Quality control > R chart

xchart
Statistics > Other > Quality control > X-bar chart

shewhart
Statistics > Other > Quality control > Vertically aligned X-bar and R chart

Syntax
Draw a c chart

cchart defect var unit var [ , cchart options ]

Draw a p (fraction-defective) chart

pchart reject var unit var ssize var [ , pchart options ]

Draw an R (range or dispersion) chart

rchart varlist [ if ] [ in ] [ , rchart options ]

Draw an X (control line) chart

xchart varlist [ if ] [ in ] [ , xchart options ]

Draw vertically aligned X and R charts

shewhart varlist [ if ] [ in ] [ , shewhart options ]
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cchart options Description

Main

nograph suppress graph

Plot

connect options affect rendition of the plotted points

marker options change look of markers (color, size, etc.)

marker label options add marker labels; change look or position

Control limits

clopts(cline options) affect rendition of the control limits

Add plots

addplot(plot) add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in
[G-3] twoway options

pchart options Description

Main

stabilized stabilize the p chart when sample sizes are unequal

nograph suppress graph

generate(newvar𝑓 newvarlcl newvarucl) store the fractions of defective elements and the
lower and upper control limits

Plot

connect options affect rendition of the plotted points

marker options change look of markers (color, size, etc.)

marker label options add marker labels; change look or position

Control limits

clopts(cline options) affect rendition of the control limits

Add plots

addplot(plot) add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in
[G-3] twoway options
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rchart options Description

Main

std(#) user-specified standard deviation

nograph suppress graph

Plot

connect options affect rendition of the plotted points

marker options change look of markers (color, size, etc.)

marker label options add marker labels; change look or position

Control limits

clopts(cline options) affect rendition of the control limits

Add plots

addplot(plot) add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in
[G-3] twoway options

xchart options Description

Main

std(#) user-specified standard deviation

mean(#) user-specified mean

lower(#) upper(#) lower and upper limits of the X-bar limits

nograph suppress graph

Plot

connect options affect rendition of the plotted points

marker options change look of markers (color, size, etc.)

marker label options add marker labels; change look or position

Control limits

clopts(cline options) affect rendition of the control limits

Add plots

addplot(plot) add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in
[G-3] twoway options
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shewhart options Description

Main

std(#) user-specified standard deviation

mean(#) user-specified mean

nograph suppress graph

Plot

connect options affect rendition of the plotted points

marker options change look of markers (color, size, etc.)

marker label options add marker labels; change look or position

Control limits

clopts(cline options) affect rendition of the control limits

Y axis, X axis, Titles, Legend, Overall

combine options any options documented in [G-2] graph combine

collect is allowed with all QC commands; see [U] 11.1.10 Prefix commands.

Options

� � �
Main �

stabilized stabilizes the p chart when sample sizes are unequal.

std(#) specifies the standard deviation of the process. The R chart is calculated (based on the range) if

this option is not specified.

mean(#) specifies the grand mean, which is calculated if not specified.

lower(#) and upper(#)must be specified together or not at all. They specify the lower and upper limits
of the X chart. Calculations based on the mean and standard deviation (whether specified by option

or calculated) are used otherwise.

nograph suppresses the graph.

generate(newvar𝑓 newvarlcl newvarucl) stores the plotted values in the p chart. newvar𝑓 will contain
the fractions of defective elements; newvarlcl and newvarucl will contain the lower and upper control

limits, respectively.

� � �
Plot �

connect options affect whether lines connect the plotted points and the rendition of those lines; see

[G-3] connect options.

marker options affect the rendition of markers drawn at the plotted points, including their shape, size,

color, and outline; see [G-3] marker options.

marker label options specify if and how the markers are to be labeled; see [G-3]marker label options.

� � �
Control limits �

clopts(cline options) affects the rendition of the control limits; see [G-3] cline options.
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� � �
Add plots �

addplot(plot) provides a way to add other plots to the generated graph. See [G-3] addplot option.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see

[G-3] saving option).

combine options (shewhart only) are any of the options documented in [G-2] graph combine. These

include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see

[G-3] saving option).

Remarks and examples
Control charts may be used to define the goal of a repetitive process, to control that process, and to

determine if the goal has been achieved. Walter A. Shewhart of Bell Telephone Laboratories devised the

first control chart in 1924. In 1931, Shewhart published Economic Control of Quality of Manufactured

Product. According to Burr, “Few fields of knowledge have ever been so completely explored and charted

in the first exposition” (1976, 29). Shewhart states that “a phenomenonwill be said to be controlled when,

through the use of past experience, we can predict, at least within limits, how the phenomenon may be

expected to vary in the future. Here it is understood that prediction within limits means that we can state,

at least approximately, the probability that the observed phenomenon will fall within given limits” (1931,

6).

For more information on quality-control charts, see Burr (1976), Duncan (1986), Harris (1999), or

Ryan (2011).

Example 1: cchart
cchart graphs a c chart showing the number of nonconformities in a unit, where defect var records

the number of defects in each inspection unit and unit var records the unit number. The unit numbers

need not be in order. For instance, consider the following example dataset from Ryan (2011, 186):

. use https://www.stata-press.com/data/r18/ncu

. describe
Contains data from https://www.stata-press.com/data/r18/ncu.dta
Observations: 30

Variables: 2 2 Dec 2022 15:15

Variable Storage Display Value
name type format label Variable label

day byte %9.0g Day in April
defects byte %9.0g Number of nonconforming units

Sorted by:
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. list in 1/5

day defects

1. 1 7
2. 2 5
3. 3 11
4. 4 13
5. 5 9

. cchart defects day, title(c chart for nonconforming transistors)
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0 units are out of control.

c chart for nonconforming transistors

The expected number of defects is 10.6, with lower and upper control limits of 0.8327 and 20.37, respec-

tively. No units are out of control.

Example 2: pchart
pchart graphs a p chart, which shows the fraction of nonconforming items in a subgroup, where re-

ject var records the number rejected in each inspection unit, unit var records the inspection unit number,

and ssize var records the number inspected in each unit.

Consider the example dataset from Ryan (2011, 186) of the number of nonconforming transistors out

of 1,000 inspected each day during the month of April:

. use https://www.stata-press.com/data/r18/ncu2

. describe
Contains data from https://www.stata-press.com/data/r18/ncu2.dta
Observations: 30

Variables: 3 2 Dec 2022 15:16

Variable Storage Display Value
name type format label Variable label

day byte %9.0g Day in April
rejects byte %9.0g Number of nonconforming units
ssize int %9.0g Sample size

Sorted by:
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. list in 1/5

day rejects ssize

1. 1 7 1000
2. 2 5 1000
3. 3 11 1000
4. 4 13 1000
5. 5 9 1000

. pchart rejects day ssize

.0008846
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All the points are within the control limits, which are 0.0009 for the lower limit and 0.0203 for the upper

limit.

Here the sample sizes are fixed at 1,000, so the ssize variable contains 1,000 for each observation.
Sample sizes need not be fixed, however. Say that our data were slightly different:

. use https://www.stata-press.com/data/r18/ncu3

. list in 1/5

day rejects ssize

1. 1 7 920
2. 2 5 920
3. 3 11 920
4. 4 13 950
5. 5 9 950
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. pchart rejects day ssize

.0119445
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Here the control limits are, like the sample size, no longer constant. The stabilize option will stabilize
the control chart:

. pchart rejects day ssize, stabilize
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0 units are out of control.
Stabilized p Chart, average number of defects = .0119.

Example 3: rchart
rchart displays an R chart showing the range for repeated measurements at various times. Variables

within observations record measurements. Observations represent different samples.
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For instance, say that we take five samples of 5 observations each. In our first sample, our measure-

ments are 10, 11, 10, 11, and 12. The data are

. list

m1 m2 m3 m4 m5

1. 10 11 10 11 12
2. 12 10 9 10 9
3. 10 11 10 12 10
4. 9 9 9 10 11
5. 12 12 12 12 13

. rchart m1-m5, connect(l)
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The expected range in each sample is 2 with lower and upper control limits of 0 and 4.23, respectively.

If we know that the process standard deviation is 0.3, we could specify

. rchart m1-m5, connect(l) std(.3)
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Example 4: xchart
xchart graphs an X chart for repeated measurements at various times. Variables within observa-

tions record measurements, and observations represent different samples. Using the same data as in the

previous example, we type

. xchart m1-m5, connect(l)
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The average measurement in the sample is 10.64, and the lower and upper control limits are 9.486 and

11.794, respectively. Suppose that we knew from prior information that the mean of the process is 11.

Then, we would type

. xchart m1-m5, connect(l) mean(11)
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If we also know that the standard deviation of the process is 0.3, we could type

. xchart m1-m5, connect(l) mean(11) std(.3)

10.59751
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Finally, xchart allows us to specify our own control limits:

. xchart m1-m5, connect(l) mean(11) lower(10) upper(12)
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Example 5: shewhart
shewhart displays a vertically aligned X and R chart in the same image. To produce the best-looking

combined image possible, you will want to use the xchart and rchart commands separately and then
combine the graphs. shewhart, however, is more convenient.
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Using the same data as previously, but realizing that the standard deviation should have been 0.4, we

type

. shewhart m1-m5, connect(l) mean(11) std(.4)
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� �
WalterAndrew Shewhart (1891–1967) was born in Illinois and educated as a physicist, with degrees

from the Universities of Illinois and California. After a brief period teaching physics, he worked for

the Western Electric Company and (from 1925) the Bell Telephone Laboratories. His name is most

associated with control charts used in quality controls, but his many other interests ranged generally

from quality assurance to the philosophy of science.� �
Stored results

cchart stores the following in r():

Scalars

r(cbar) expected number of nonconformities

r(lcl c) lower control limit

r(ucl c) upper control limit

r(N) number of observations

r(out c) number of units out of control

r(below c) number of units below the lower limit

r(above c) number of units above the upper limit

pchart stores the following in r():

Scalars

r(pbar) average fraction of nonconformities

r(lcl p) lower control limit

r(ucl p) upper control limit

r(N) number of observations

r(out p) number of units out of control

r(below p) number of units below the lower limit

r(above p) number of units above the upper limit
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rchart stores the following in r():

Scalars

r(central line) ordinate of the central line

r(lcl r) lower control limit

r(ucl r) upper control limit

r(N) number of observations

r(out r) number of units out of control

r(below r) number of units below the lower limit

r(above r) number of units above the upper limit

xchart stores the following in r():

Scalars

r(xbar) grand mean

r(lcl x) lower control limit

r(ucl x) upper control limit

r(N) number of observations

r(out x) number of units out of control

r(below x) number of units below the lower limit

r(above x) number of units above the upper limit

shewhart stores in r() the combination of stored results from xchart and rchart.

Methods and formulas
For the c chart, the number of defects per unit, 𝐶, is taken to be a value of a random variable having a

Poisson distribution. If 𝑘 is the number of units available for estimating 𝜆, the parameter of the Poisson
distribution, and if𝐶𝑖 is the number of defects in the 𝑖th unit, then 𝜆 is estimated by𝐶 = ∑𝑖 𝐶𝑖/𝑘. Then

central line = 𝐶

UCL = 𝐶 + 3√𝐶

LCL = 𝐶 − 3√𝐶

Control limits for the p chart are based on the sampling theory for proportions, using the normal

approximation to the binomial. If 𝑘 samples are taken, the estimator of 𝑝 is given by 𝑝 = ∑𝑖 𝑝𝑖/𝑘,
where 𝑝𝑖 = 𝑥𝑖/𝑛𝑖, and 𝑥𝑖 is the number of defects in the 𝑖th sample of size 𝑛𝑖. The central line and the

control limits are given by

central line = 𝑝

UCL = 𝑝 + 3√𝑝(1 − 𝑝)/𝑛𝑖

LCL = 𝑝 − 3√𝑝(1 − 𝑝)/𝑛𝑖

Control limits for the R chart are based on the distribution of the range of samples of size 𝑛 from a

normal population. If the standard deviation of the process, 𝜎, is known,

central line = 𝑑2𝜎
UCL = 𝐷2𝜎
LCL = 𝐷1𝜎
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where 𝑑2, 𝐷1, and 𝐷2 are functions of the number of observations in the sample and are obtained from

the table published in Beyer (1976).

When 𝜎 is unknown,

central line = 𝑅
UCL = (𝐷2/𝑑2)𝑅
LCL = (𝐷1/𝑑2)𝑅

where 𝑅 = ∑𝑖 𝑅𝑖/𝑘 is the range of the 𝑘 sample ranges 𝑅𝑖.

Control limits for the X chart are given by

central line = 𝑥
UCL = 𝑥 + (3/

√
𝑛)𝜎

LCL = 𝑥 − (3/
√

𝑛)𝜎

if 𝜎 is known. If 𝜎 is unknown,

central line = 𝑥
UCL = 𝑥 + 𝐴2𝑅
LCL = 𝑥 − 𝐴2𝑅

where𝑅 is the average range as defined above and𝐴2 is a function (op. cit.) of the number of observations

in the sample.� �
Isobel Loutit (1909–2009) is known for her work during World War II to improve the accuracy of

targeting for anti-aircraft guns and as a contributor to the field of quality control. Loutit was born in

Selkirk Manitoba, Canada. She graduated from the University of Manitoba in 1929 with a degree in

mathematics and was one of the first women to work as a professional statistician in Canada. After

graduation, she obtained a job teaching French. However, because of her training, she served as a

substitute math teacher when needed.

When World War II started, Loutit took a job as a quality control statistician at Northern Electric.

Shortly after that, the Canadian government advertised for women with technical training to fill jobs

that had been vacated by men who had gone to war. She took a position testing equipment for the

military. This job eventually returned her to Northern Electric, this time as a government employee

verifying the accuracy of Northern Electric’s Vickers anti-aircraft gun predictor, which was used to

aim artillery at incoming planes. Recognizing the quality of her work, the CEO of Northern Electric

rehired Loutit as an engineer, the only position for which her pay would not be capped as a woman.

She later became the first female manager at Northern Electric and the first woman to chair the

Montreal Section of the American Society for Quality Control.� �
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Description
qreg fits quantile (includingmedian) regressionmodels, also known as least absolute value, minimum

absolute deviation, or minimum L1-norm value. The quantile regression models fit by qreg express the
quantiles of the conditional distribution as linear functions of the independent variables.

iqreg estimates interquantile range regressions, regressions of the difference in quantiles. The esti-
mated variance–covariance matrix of the estimators (VCE) is obtained via bootstrapping.

sqreg estimates simultaneous-quantile regression. It produces the same coefficients as qreg for each
quantile. Reported standard errors will be similar, but sqreg obtains an estimate of the VCE via boot-
strapping, and the VCE includes between-quantile blocks. Thus, you can test and construct confidence

intervals comparing coefficients describing different quantiles.

bsqreg is equivalent to sqreg with one quantile.

Quick start
Quantile regression

Median regression of y on x1 and x2
qreg y x1 x2

Add categorical covariate a using factor-variable syntax
qreg y x1 x2 i.a

Same as above, but with standard errors using a biweight kernel for the nonparametric density estimator

qreg y x1 x2 i.a, vce(, kernel(biweight))

Quantile regression of the 75th percentile of y on x1, x2, and a
qreg y x1 x2 i.a, quantile(.75)

Interquantile range regression

Difference between the 90th and 10th quantiles of y on x1, x2, and a with bootstrap standard errors
iqreg y x1 x2 i.a, quantiles(.1 .9)

2372
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Simultaneous-quantile regression

Simultaneous estimation of quantile regressions for the 10th and 90th quantiles of y with bootstrap stan-
dard errors

sqreg y x1 x2 i.a, quantiles(.1 .9)

Same as above, but for the 25th, 50th, and 75th quantiles of y
sqreg y x1 x2 i.a, quantiles(.25 .5 .75)

Same as above, but increase the number of bootstrap replications to 500

sqreg y x1 x2 i.a, quantiles(.25 .5 .75) reps(500)

Bootstrapped quantile regression

Single quantile regression for the 25th quantile with bootstrap standard errors

bsqreg y x1 x2 i.a, quantile(.25)

Menu
qreg
Statistics > Nonparametric analysis > Quantile regression

iqreg
Statistics > Nonparametric analysis > Interquantile regression

sqreg
Statistics > Nonparametric analysis > Simultaneous-quantile regression

bsqreg
Statistics > Nonparametric analysis > Bootstrapped quantile regression
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Syntax
Quantile regression

qreg depvar [ indepvars ] [ if ] [ in ] [weight ] [ , qreg options ]

Interquantile range regression

iqreg depvar [ indepvars ] [ if ] [ in ] [ , iqreg options ]

Simultaneous-quantile regression

sqreg depvar [ indepvars ] [ if ] [ in ] [ , sqreg options ]

Bootstrapped quantile regression

bsqreg depvar [ indepvars ] [ if ] [ in ] [ , bsqreg options ]

qreg options Description

Model

quantile(#) estimate # quantile; default is quantile(.5)

SE/Robust

vce([ vcetype ], [ vceopts ]) technique used to estimate standard errors

Reporting

level(#) set confidence level; default is level(95)
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Optimization

optimization options control the optimization process; seldom used

wlsiter(#) attempt # weighted least-squares iterations before doing linear
programming iterations

vcetype Description

iid compute the VCE assuming the residuals are i.i.d.

robust compute the robust VCE

vceopts Description

denmethod nonparametric density estimation technique

bwidth bandwidth method used by the density estimator

denmethod Description

fitted use the empirical quantile function using fitted values; the default

residual use the empirical residual quantile function

kernel[ (kernel) ] use a nonparametric kernel density estimator; default is
epanechnikov
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bwidth Description

hsheather Hall–Sheather’s bandwidth; the default

bofinger Bofinger’s bandwidth

chamberlain Chamberlain’s bandwidth

kernel Description

epanechnikov Epanechnikov kernel function; the default

epan2 alternative Epanechnikov kernel function

biweight biweight kernel function

cosine cosine trace kernel function

gaussian Gaussian kernel function

parzen Parzen kernel function

rectangle rectangle kernel function

triangle triangle kernel function

iqreg options Description

Model

quantiles(# #) interquantile range; default is quantiles(.25 .75)
reps(#) perform # bootstrap replications; default is reps(20)

Reporting

level(#) set confidence level; default is level(95)
nodots suppress display of the replication dots

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

sqreg options Description

Model

quantiles(# [ # [ # ... ] ]) estimate # quantiles; default is quantiles(.5)
reps(#) perform # bootstrap replications; default is reps(20)

Reporting

level(#) set confidence level; default is level(95)
nodots suppress display of the replication dots

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling
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bsqreg options Description

Model

quantile(#) estimate # quantile; default is quantile(.5)
reps(#) perform # bootstrap replications; default is reps(20)

Reporting

level(#) set confidence level; default is level(95)
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

+These features are part of StataNow.

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

by, collect, mi estimate, rolling, and statsby, are allowed by qreg, iqreg, sqreg, and bsqreg; bayes+, mfp,
nestreg, and stepwise are allowed only with qreg; see [U] 11.1.10 Prefix commands. For more details, see
[BAYES] bayes: qreg.

qreg allows fweights, iweights, and pweights; see [U] 11.1.6 weight.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options for qreg

� � �
Model �

quantile(#) specifies the quantile to be estimated and should be a number between 0 and 1, exclusive.
Numbers larger than 1 are interpreted as percentages. The default value of 0.5 corresponds to the

median.� � �
SE/Robust �

vce([ vcetype ], [ vceopts ]) specifies the type of VCE to compute and the density estimation method to
use in computing the VCE.

vcetype specifies the type of VCE to compute. Available types are iid and robust.

vce(iid), the default, computes the VCE under the assumption that the residuals are independent
and identically distributed (i.i.d.).

vce(robust) computes the robust VCE under the assumption that the residual density is contin-
uous and bounded away from 0 and infinity at the specified quantile(); see Koenker (2005,
sec. 4.2).

vceopts consists of available denmethod and bwidth options.

denmethod specifies themethod to use for the nonparametric density estimator. Available methods

are fitted, residual, or kernel[ (kernel) ], where the optional kernel must be one of the
kernel choices listed below.

fitted and residual specify that the nonparametric density estimator use some of the struc-
ture imposed by quantile regression. The default fitted uses a function of the fitted values
and residual uses a function of the residuals. vce(robust, residual) is not allowed.

kernel() specifies that the nonparametric density estimator use a kernel method. The avail-
able kernel functions are epanechnikov, epan2, biweight, cosine, gaussian, parzen,
rectangle, and triangle. The default is epanechnikov. See [R] kdensity for the kernel
function forms.
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bwidth specifies the bandwidth method to use by the nonparametric density estimator. Available

methods are hsheather for the Hall–Sheather bandwidth, bofinger for the Bofinger band-
width, and chamberlain for the Chamberlain bandwidth.

See Koenker (2005, sec. 3.4 and 4.10) for a description of the sparsity estimation techniques and the

Hall–Sheather and Bofinger bandwidth formulas. See Chamberlain (1994, eq. 2.2) for the Chamber-

lain bandwidth.

� � �
Reporting �

level(#); see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Optimization �

optimization options: iterate(#), [no]log, trace. iterate() specifies the maximum number of

iterations; log/nolog specifies whether to show the iteration log (see set iterlog in [R] set iter);
and trace specifies that the iteration log should include the current parameter vector. These options
are seldom used.

wlsiter(#) specifies the number of weighted least-squares iterations that will be attempted before the
linear programming iterations are started. The default is wlsiter(1). If there are convergence prob-
lems, increasing this number should help.

Options for iqreg

� � �
Model �

quantiles(# #) specifies the quantiles to be compared. The first number must be less than the second,
and both should be between 0 and 1, exclusive. Numbers larger than 1 are interpreted as percentages.

Not specifying this option is equivalent to specifying quantiles(.25 .75), meaning the interquan-
tile range.

reps(#) specifies the number of bootstrap replications to be used to obtain an estimate of the vari-

ance–covariance matrix of the estimators (standard errors). reps(20) is the default and is arguably
too small. reps(100) would perform 100 bootstrap replications. reps(1000) would perform 1,000

replications.

� � �
Reporting �

level(#); see [R] Estimation options.

nodots suppresses display of the replication dots.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.
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Options for sqreg

� � �
Model �

quantiles(# [ # [ # ... ] ]) specifies the quantiles to be estimated and should contain numbers between
0 and 1, exclusive. Numbers larger than 1 are interpreted as percentages. The default value of 0.5

corresponds to the median.

reps(#) specifies the number of bootstrap replications to be used to obtain an estimate of the vari-

ance–covariance matrix of the estimators (standard errors). reps(20) is the default and is arguably
too small. reps(100) would perform 100 bootstrap replications. reps(1000) would perform 1,000

replications.

� � �
Reporting �

level(#); see [R] Estimation options.

nodots suppresses display of the replication dots.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

Options for bsqreg

� � �
Model �

quantile(#) specifies the quantile to be estimated and should be a number between 0 and 1, exclusive.
Numbers larger than 1 are interpreted as percentages. The default value of 0.5 corresponds to the

median.

reps(#) specifies the number of bootstrap replications to be used to obtain an estimate of the vari-

ance–covariance matrix of the estimators (standard errors). reps(20) is the default and is arguably
too small. reps(100) would perform 100 bootstrap replications. reps(1000) would perform 1,000

replications.

� � �
Reporting �

level(#); see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.
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Remarks and examples
Remarks are presented under the following headings:

Median regression
Quantile regression
Estimated standard errors
Interquantile and simultaneous-quantile regression
What are the parameters?

Median regression
qreg fits quantile regression models. The default form is median regression, where the objective is

to estimate the median of the dependent variable, conditional on the values of the independent variables.

This method is similar to ordinary regression, where the objective is to estimate the conditional mean of

the dependent variable. Simply put, median regression finds a line through the data that minimizes the

sum of the absolute residuals rather than the sum of the squares of the residuals, as in ordinary regression.

Equivalently, median regression expresses the median of the conditional distribution of the dependent

variable as a linear function of the conditioning (independent) variables. Cameron and Trivedi (2022,

chap. 15) provide a nice introduction to quantile regression using Stata.

Example 1: Estimating the conditional median
Consider a two-group experimental design with 5 observations per group:

. use https://www.stata-press.com/data/r18/twogrp

. list

x y

1. 0 0
2. 0 1
3. 0 3
4. 0 4
5. 0 95

6. 1 14
7. 1 19
8. 1 20
9. 1 22

10. 1 23

. qreg y x
Iteration 1: WLS sum of weighted deviations = 60.941342
Iteration 1: Sum of abs. weighted deviations = 55.5
Iteration 2: Sum of abs. weighted deviations = 55
Median regression Number of obs = 10
Raw sum of deviations 78.5 (about 14)
Min sum of deviations 55 Pseudo R2 = 0.2994

y Coefficient Std. err. t P>|t| [95% conf. interval]

x 17 18.23213 0.93 0.378 -25.04338 59.04338
_cons 3 12.89207 0.23 0.822 -26.72916 32.72916
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We have estimated the equation

ymedian = 3 + 17 x

We look back at our data. x takes on the values 0 and 1, so the median for the x = 0 group is 3, whereas

for x = 1 it is 3+ 17 = 20. The output reports that the raw sum of absolute deviations about 14 is 78.5;

that is, the sum of |y−14| is 78.5. Fourteen is the unconditional median of y, although in these data, any
value between 14 and 19 could also be considered an unconditional median (we have an even number

of observations, so the median is bracketed by those two values). In any case, the raw sum of deviations

of y about the median would be the same no matter what number we choose between 14 and 19. (With

a “median” of 14, the raw sum of deviations is 78.5. Now think of choosing a slightly larger number for

the median and recalculating the sum. Half the observations will have larger negative residuals, but the

other half will have smaller positive residuals, resulting in no net change.)

We turn now to the actual estimated equation. The sum of the absolute deviations about the solution

ymedian = 3 + 17x is 55. The pseudo-𝑅2 is calculated as 1 − 55/78.5 ≈ 0.2994. This result is based

on the idea that the median regression is the maximum likelihood estimate for the double-exponential

distribution.

Technical note
qreg is an alternative to regular regression or robust regression—see [R] regress and [R] rreg. Let’s

compare the results:

. regress y x
Source SS df MS Number of obs = 10

F(1, 8) = 0.00
Model 2.5 1 2.5 Prob > F = 0.9586

Residual 6978.4 8 872.3 R-squared = 0.0004
Adj R-squared = -0.1246

Total 6980.9 9 775.655556 Root MSE = 29.535

y Coefficient Std. err. t P>|t| [95% conf. interval]

x -1 18.6794 -0.05 0.959 -44.07477 42.07477
_cons 20.6 13.20833 1.56 0.157 -9.858465 51.05847

Unlike qreg, regress fits ordinary linear regression and is concerned with predicting the mean rather
than the median, so both results are, in a technical sense, correct. Putting aside those technicalities,

however, we tend to use either regression to describe the central tendency of the data, of which the mean

is one measure and the median another. Thus, we can ask, “which method better describes the central

tendency of these data?”

Means—and therefore ordinary linear regression—are sensitive to outliers, and our data were pur-

posely designed to contain two such outliers: 95 for x = 0 and 14 for x = 1. These two outliers dom-

inated the ordinary regression and produced results that do not reflect the central tendency well—you

are invited to enter the data and graph y against x.
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Robust regression attempts to correct the outlier-sensitivity deficiency in ordinary regression:

. rreg y x, genwt(wt)
Huber iteration 1: Maximum difference in weights = .7311828
Huber iteration 2: Maximum difference in weights = .17695779
Huber iteration 3: Maximum difference in weights = .03149585

Biweight iteration 4: Maximum difference in weights = .1979335
Biweight iteration 5: Maximum difference in weights = .23332905
Biweight iteration 6: Maximum difference in weights = .09960067
Biweight iteration 7: Maximum difference in weights = .02691458
Biweight iteration 8: Maximum difference in weights = .0009113
Robust regression Number of obs = 10

F( 1, 8) = 80.63
Prob > F = 0.0000

y Coefficient Std. err. t P>|t| [95% conf. interval]

x 18.16597 2.023114 8.98 0.000 13.50066 22.83128
_cons 2.000003 1.430558 1.40 0.200 -1.298869 5.298875

Here rreg discarded the first outlier completely. (We know this because we included the genwt()
option on rreg and, after fitting the robust regression, examined the weights.) For the other “outlier”,
rreg produced a weight of 0.47.

In any case, the answers produced by qreg and rreg to describe the central tendency are similar, but
the standard errors are different. In general, robust regression will have smaller standard errors because

it is not as sensitive to the exact placement of observations near the median. You are welcome to try

removing the first outlier in the qreg estimation to observe an improvement in the standard errors by
typing

. qreg y x if _n!=5

Also, some authors (Rousseeuw and Leroy 1987, 11) have noted that quantile regression, unlike the

unconditional median, may be sensitive to even one outlier if its leverage is high enough. Rousseeuw

and Leroy (1987) discuss estimators that are more robust to perturbations to the data than either mean

regression or quantile regression.

In the end, quantile regression may be more useful for the interpretation of the parameters that it

estimates than for its robustness to perturbations to the data.
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Example 2: Median regression
Let’s now consider a less artificial example using the automobile data described in [U] 1.2.2 Example

datasets. Using median regression, we will regress each car’s price on its weight and length and whether

it is of foreign manufacture:

. use https://www.stata-press.com/data/r18/auto, clear
(1978 automobile data)
. qreg price weight length foreign
Iteration 1: WLS sum of weighted deviations = 56397.829
Iteration 1: Sum of abs. weighted deviations = 55950.5
Iteration 2: Sum of abs. weighted deviations = 55264.718
Iteration 3: Sum of abs. weighted deviations = 54762.283
Iteration 4: Sum of abs. weighted deviations = 54734.152
Iteration 5: Sum of abs. weighted deviations = 54552.638
note: alternate solutions exist.
Iteration 6: Sum of abs. weighted deviations = 54465.511
Iteration 7: Sum of abs. weighted deviations = 54443.699
Iteration 8: Sum of abs. weighted deviations = 54411.294
Median regression Number of obs = 74
Raw sum of deviations 71102.5 (about 4934)
Min sum of deviations 54411.29 Pseudo R2 = 0.2347

price Coefficient Std. err. t P>|t| [95% conf. interval]

weight 3.933588 1.328718 2.96 0.004 1.283543 6.583632
length -41.25191 45.46469 -0.91 0.367 -131.9284 49.42456

foreign 3377.771 885.4198 3.81 0.000 1611.857 5143.685
_cons 344.6489 5182.394 0.07 0.947 -9991.31 10680.61

The estimated equation is

price
median

= 3.93 weight − 41.25 length + 3377.8 foreign + 344.65

The output may be interpreted in the same way as linear regression output; see [R] regress. The variables

weight and foreign are significant, but length is not significant. The median price of the cars in these
data is $4,934. This value is a median (one of the two center observations), not the median, which would

typically be defined as the midpoint of the two center observations.

Quantile regression
Quantile regression is similar to median regression in that it estimates an equation expressing a quan-

tile of the conditional distribution, albeit one that generally differs from the 0.5 quantile that is themedian.

For example, specifying quantile(.25) estimates the parameters that describe the 25th percentile (first
quartile) of the conditional distribution.

Quantile regression allows for effects of the independent variables to differ over the quantiles. For

example, Chamberlain (1994) finds that union membership has a larger effect on the lower quantiles than

on the higher quantiles of the conditional distribution of US wages. That the effects of the independent

variables may vary over quantiles of the conditional distribution is an important advantage of quantile

regression over mean regression.
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Example 3: Estimating quantiles other than the median
Returning to real data, the equation for the 25th percentile of price conditional on weight, length,

and foreign in our automobile data is

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. qreg price weight length foreign, quantile(.25)
Iteration 1: WLS sum of weighted deviations = 49469.235
Iteration 1: Sum of abs. weighted deviations = 49728.883
Iteration 2: Sum of abs. weighted deviations = 45669.89
Iteration 3: Sum of abs. weighted deviations = 43416.646
Iteration 4: Sum of abs. weighted deviations = 41947.221
Iteration 5: Sum of abs. weighted deviations = 41093.025
Iteration 6: Sum of abs. weighted deviations = 37623.424
Iteration 7: Sum of abs. weighted deviations = 35721.453
Iteration 8: Sum of abs. weighted deviations = 35226.308
Iteration 9: Sum of abs. weighted deviations = 34823.319
Iteration 10: Sum of abs. weighted deviations = 34801.777
.25 Quantile regression Number of obs = 74
Raw sum of deviations 41912.75 (about 4187)
Min sum of deviations 34801.78 Pseudo R2 = 0.1697

price Coefficient Std. err. t P>|t| [95% conf. interval]

weight 1.831789 .6328903 2.89 0.005 .5695289 3.094049
length 2.84556 21.65558 0.13 0.896 -40.34514 46.03626

foreign 2209.925 421.7401 5.24 0.000 1368.791 3051.059
_cons -1879.775 2468.46 -0.76 0.449 -6802.963 3043.413

Compared with our previous median regression, the coefficient on length now has a positive sign, and

the coefficients on foreign and weight are reduced. The actual lower quartile is $4,187, substantially
less than the median $4,934.

We can also estimate the upper quartile as a function of the same three variables:

. qreg price weight length foreign, quantile(.75)
Iteration 1: WLS sum of weighted deviations = 55465.741
Iteration 1: Sum of abs. weighted deviations = 55652.957
Iteration 2: Sum of abs. weighted deviations = 52994.785
Iteration 3: Sum of abs. weighted deviations = 50189.446
Iteration 4: Sum of abs. weighted deviations = 49898.245
Iteration 5: Sum of abs. weighted deviations = 49398.106
Iteration 6: Sum of abs. weighted deviations = 49241.835
Iteration 7: Sum of abs. weighted deviations = 49197.967
.75 Quantile regression Number of obs = 74
Raw sum of deviations 79860.75 (about 6342)
Min sum of deviations 49197.97 Pseudo R2 = 0.3840

price Coefficient Std. err. t P>|t| [95% conf. interval]

weight 9.22291 1.785767 5.16 0.000 5.66131 12.78451
length -220.7833 61.10352 -3.61 0.001 -342.6504 -98.91616

foreign 3595.133 1189.984 3.02 0.004 1221.785 5968.482
_cons 20242.9 6965.02 2.91 0.005 6351.61 34134.2
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This result tells a different story: weight is much more important, and length is now significant—with

a negative coefficient! The prices of high-priced cars seem to be determined by factors different from

those affecting the prices of low-priced cars.

Technical note
One explanation for having substantially different regression functions for different quantiles is that

the data are heteroskedastic, as we will demonstrate below. The following statements create a sharply

heteroskedastic set of data:

. drop _all

. set obs 10000
Number of observations (_N) was 0, now 10,000.
. set seed 50550
. generate x = .1 + .9 * runiform()
. generate y = x * runiform()^2

Let’s now fit the regressions for the 5th and 95th quantiles:

. qreg y x, quantile(.05)
Iteration 1: WLS sum of weighted deviations = 555.44181
Iteration 1: Sum of abs. weighted deviations = 555.25622
Iteration 2: Sum of abs. weighted deviations = 115.02628
Iteration 3: Sum of abs. weighted deviations = 89.617883
Iteration 4: Sum of abs. weighted deviations = 89.61679
.05 Quantile regression Number of obs = 10,000
Raw sum of deviations 89.68001 (about .00105493)
Min sum of deviations 89.61679 Pseudo R2 = 0.0007

y Coefficient Std. err. t P>|t| [95% conf. interval]

x .0028667 .0004395 6.52 0.000 .0020052 .0037283
_cons -.0001135 .0002661 -0.43 0.670 -.0006352 .0004081

. qreg y x, quantile(.95)
Iteration 1: WLS sum of weighted deviations = 624.91903
Iteration 1: Sum of abs. weighted deviations = 621.88928
Iteration 2: Sum of abs. weighted deviations = 182.03243
Iteration 3: Sum of abs. weighted deviations = 170.42588
Iteration 4: Sum of abs. weighted deviations = 169.05915
Iteration 5: Sum of abs. weighted deviations = 169.05911
.95 Quantile regression Number of obs = 10,000
Raw sum of deviations 275.9779 (about .60579139)
Min sum of deviations 169.0591 Pseudo R2 = 0.3874

y Coefficient Std. err. t P>|t| [95% conf. interval]

x .9010814 .008758 102.89 0.000 .883914 .9182488
_cons -.0004053 .0053028 -0.08 0.939 -.0107999 .0099893

The coefficient on x, in particular, differs markedly between the two estimates. For the mathematically
inclined, it is not too difficult to show that the theoretical lines are y = 0.0025 x for the 5th percentile

and y = 0.9025 x for the 95th, numbers in close agreement with our numerical results.
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The estimator for the standard errors computed by qreg assumes that the sample is independent and
identically distributed (i.i.d.); see Estimated standard errors and Methods and formulas for details. Be-

cause the data are conditionally heteroskedastic, we should have used bsqreg to consistently estimate
the standard errors using a bootstrap method.

Estimated standard errors
The variance–covariance matrix of the estimator (VCE) depends on the reciprocal of the density of the

dependent variable evaluated at the quantile of interest. This function, known as the “sparsity function”,

is hard to estimate.

The default method, which uses the fitted values for the predicted quantiles, generally performs well,

but other methods may be preferred in larger samples. The vce() suboptions denmethod and bwidth

provide other estimators of the sparsity function, the details of which are described in Methods and

formulas.

For models with heteroskedastic errors, option vce(robust) computes a Huber (1967) form of sand-

wich estimate (Koenker 2005). Alternatively, Gould (1992, 1997b) introduced generalized versions of

qreg that obtain estimates of the standard errors by using bootstrap resampling (see Efron and Tibshirani
[1993] or Wu [1986] for an introduction to bootstrap standard errors). The iqreg, sqreg, and bsqreg
commands provide a bootstrapped estimate of the entire variance–covariance matrix of the estimators.

Example 4: Obtaining robust standard errors
Example 2 of qreg on real data above was a median regression of price on weight, length, and

foreign using auto.dta. Suppose, after investigation, we are convinced that car price observations are
not independent. We decide that standard errors robust to non-i.i.d. errors would be appropriate and use

the option vce(robust).
. use https://www.stata-press.com/data/r18/auto, clear
(1978 automobile data)
. qreg price weight length foreign, vce(robust)
Iteration 1: WLS sum of weighted deviations = 56397.829
Iteration 1: Sum of abs. weighted deviations = 55950.5
Iteration 2: Sum of abs. weighted deviations = 55264.718
Iteration 3: Sum of abs. weighted deviations = 54762.283
Iteration 4: Sum of abs. weighted deviations = 54734.152
Iteration 5: Sum of abs. weighted deviations = 54552.638
note: alternate solutions exist.
Iteration 6: Sum of abs. weighted deviations = 54465.511
Iteration 7: Sum of abs. weighted deviations = 54443.699
Iteration 8: Sum of abs. weighted deviations = 54411.294
Median regression Number of obs = 74
Raw sum of deviations 71102.5 (about 4934)
Min sum of deviations 54411.29 Pseudo R2 = 0.2347

Robust
price Coefficient std. err. t P>|t| [95% conf. interval]

weight 3.933588 1.694477 2.32 0.023 .55406 7.313116
length -41.25191 51.73571 -0.80 0.428 -144.4355 61.93171

foreign 3377.771 728.5115 4.64 0.000 1924.801 4830.741
_cons 344.6489 5096.528 0.07 0.946 -9820.055 10509.35
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We see that the robust standard error for weight increases, making it less significant in modifying the
median automobile price. The standard error for length also increases, but the standard error for the
foreign indicator decreases.

For comparison, we repeat the estimation using bootstrap standard errors:

. use https://www.stata-press.com/data/r18/auto, clear
(1978 automobile data)
. set seed 1001
. bsqreg price weight length foreign
(fitting base model)
Bootstrap replications (20): .........10.........20 done
Median regression, bootstrap(20) SEs Number of obs = 74
Raw sum of deviations 71102.5 (about 4934)
Min sum of deviations 54411.29 Pseudo R2 = 0.2347

price Coefficient Std. err. t P>|t| [95% conf. interval]

weight 3.933588 2.941839 1.34 0.186 -1.933726 9.800901
length -41.25191 73.47105 -0.56 0.576 -187.7853 105.2815

foreign 3377.771 1352.518 2.50 0.015 680.2582 6075.284
_cons 344.6489 5927.045 0.06 0.954 -11476.47 12165.77

The coefficient estimates are the same—indeed, they are obtained using the same technique. Only the

standard errors differ. Therefore, the 𝑡 statistics, significance levels, and confidence intervals also differ.
Because bsqreg (as well as sqreg and iqreg) obtains standard errors by randomly resampling the

data, the standard errors it produces will not be the same from run to run unless we first set the random-

number seed to the same number; see [R] set seed.
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By default, bsqreg, sqreg, and iqreg use 20 replications. We can control the number of replications

by specifying the reps() option:

. bsqreg price weight length i.foreign, reps(1000)
(fitting base model)
Bootstrap replications (1,000): .........10.........20.........30.........40...
> ......50.........60.........70.........80.........90.........100.........110.
> ........120.........130.........140.........150.........160.........170......
> ...180.........190.........200.........210.........220.........230.........24
> 0.........250.........260.........270.........280.........290.........300....
> .....310.........320.........330.........340.........350.........360.........
> 370.........380.........390.........400.........410.........420.........430..
> .......440.........450.........460.........470.........480.........490.......
> ..500.........510.........520.........530.........540.........550.........560
> .........570.........580.........590.........600.........610.........620.....
> ....630.........640.........650.........660.........670.........680.........6
> 90.........700.........710.........720.........730.........740.........750...
> ......760.........770.........780.........790.........800.........810........
> .820.........830.........840.........850.........860.........870.........880.
> ........890.........900.........910.........920.........930.........940......
> ...950.........960.........970.........980.........990.........1,000 done
Median regression, bootstrap(1000) SEs Number of obs = 74
Raw sum of deviations 71102.5 (about 4934)
Min sum of deviations 54411.29 Pseudo R2 = 0.2347

price Coefficient Std. err. t P>|t| [95% conf. interval]

weight 3.933588 2.58771 1.52 0.133 -1.227437 9.094613
length -41.25191 68.02626 -0.61 0.546 -176.926 94.42219

foreign
Foreign 3377.771 1070.777 3.15 0.002 1242.174 5513.368

_cons 344.6489 5862.991 0.06 0.953 -11348.72 12038.02

A comparison of the standard errors is informative.

qreg bsqreg bsqreg
Variable qreg vce(robust) reps(20) reps(1000)

weight 1.329 1.694 2.942 2.588
length 45.46 51.74 73.47 68.03
1.foreign 885.4 728.5 1353. 1071.
cons 5182. 5097. 5927. 5863.

The results shown above are typical for models with heteroskedastic errors. (Our dependent variable is

price; if our model had been in terms of ln(price), the standard errors estimated by qreg and bsqreg
would have been nearly identical.) Also, even for heteroskedastic errors, 20 replications is generally

sufficient for hypothesis tests against 0.
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Interquantile and simultaneous-quantile regression
Consider a quantile regression model where the 𝑞th quantile is given by

𝑄𝑞(𝑦) = 𝑎𝑞 + 𝑏𝑞,1𝑥1 + 𝑏𝑞,2𝑥2

For instance, the 75th and 25th quantiles are given by

𝑄0.75(𝑦) = 𝑎0.75 + 𝑏0.75,1𝑥1 + 𝑏0.75,2𝑥2

𝑄0.25(𝑦) = 𝑎0.25 + 𝑏0.25,1𝑥1 + 𝑏0.25,2𝑥2

The difference in the quantiles is then

𝑄0.75(𝑦) − 𝑄0.25(𝑦) = (𝑎0.75 − 𝑎0.25) + (𝑏0.75,1 − 𝑏0.25,1)𝑥1 + (𝑏0.75,2 − 𝑏0.25,2)𝑥2

qreg fits models such as 𝑄0.75(𝑦) and 𝑄0.25(𝑦). iqreg fits interquantile models, such as 𝑄0.75(𝑦) −
𝑄0.25(𝑦). The relationships of the coefficients estimated by qreg and iqreg are exactly as shown:

iqreg reports coefficients that are the difference in coefficients of two qreg models, and, of course,

iqreg reports the appropriate standard errors, which it obtains by bootstrapping.

sqreg is like qreg in that it estimates the equations for the quantiles

𝑄0.75(𝑦) = 𝑎0.75 + 𝑏0.75,1𝑥1 + 𝑏0.75,2𝑥2

𝑄0.25(𝑦) = 𝑎0.25 + 𝑏0.25,1𝑥1 + 𝑏0.25,2𝑥2

The coefficients it obtains are the same that would be obtained by estimating each equation separately

using qreg. sqreg differs from qreg in that it estimates the equations simultaneously and obtains an
estimate of the entire variance–covariance matrix of the estimators by bootstrapping. Thus, you can

perform hypothesis tests concerning coefficients both within and across equations.

For example, to fit the above model, you could type

. qreg y x1 x2, quantile(.25)

. qreg y x1 x2, quantile(.75)

By doing this, you would obtain estimates of the parameters, but you could not test whether 𝑏0.25,1 =
𝑏0.75,1 or, equivalently, 𝑏0.75,1 − 𝑏0.25,1 = 0. If your interest really is in the difference of coefficients,

you could type

. iqreg y x1 x2, quantiles(.25 .75)

The “coefficients” reported would be the difference in quantile coefficients. You could also estimate both

quantiles simultaneously and then test the equality of the coefficients:

. sqreg y x1 x2, quantiles(.25 .75)

. test [q25]x1 = [q75]x1

Whether you use iqreg or sqreg makes no difference for this test. sqreg, however, because it esti-
mates the quantiles simultaneously, allows you to test other hypotheses. iqreg, by focusing on quantile
differences, presents results in a way that is easier to read.

Finally, sqreg can estimate quantiles singly,

. sqreg y x1 x2, quantiles(.5)

and can thereby be used as a substitute for the slower bsqreg. (Gould [1997b] presents timings demon-
strating that sqreg is faster than bsqreg.) sqreg can also estimate more than two quantiles simultane-
ously:

. sqreg y x1 x2, quantiles(.25 .5 .75)
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Example 5: Simultaneous quantile estimation
In demonstrating qreg, we performed quantile regressions using auto.dta. We discovered that the

regression of price on weight, length, and foreign produced vastly different coefficients for the

0.25, 0.5, and 0.75 quantile regressions. Here are the coefficients that we obtained:

25th 50th 75th
Variable percentile percentile percentile

weight 1.83 3.93 9.22
length 2.85 −41.25 −220.8
foreign 2209.9 3377.8 3595.1
cons −1879.8 344.6 20242.9

All we can say, having estimated these equations separately, is that price seems to depend differently
on the weight, length, and foreign variables depending on the portion of the price distribution we
examine. We cannot be more precise because the estimates have been made separately. With sqreg,
however, we can estimate all the effects simultaneously:

. use https://www.stata-press.com/data/r18/auto, clear
(1978 automobile data)
. set seed 1001
. sqreg price weight length foreign, q(.25 .5 .75) reps(100)
(fitting base model)
Bootstrap replications (100): .........10.........20.........30.........40.....
> ....50.........60.........70.........80.........90.........100 done
Simultaneous quantile regression Number of obs = 74
bootstrap(100) SEs .25 Pseudo R2 = 0.1697

.50 Pseudo R2 = 0.2347

.75 Pseudo R2 = 0.3840

Bootstrap
price Coefficient std. err. t P>|t| [95% conf. interval]

q25
weight 1.831789 1.206151 1.52 0.133 -.573803 4.237381
length 2.84556 26.775 0.11 0.916 -50.55549 56.24661

foreign 2209.925 946.9585 2.33 0.022 321.2762 4098.575
_cons -1879.775 3243.182 -0.58 0.564 -8348.097 4588.548

q50
weight 3.933588 2.34028 1.68 0.097 -.7339531 8.601129
length -41.25191 59.58361 -0.69 0.491 -160.0877 77.58386

foreign 3377.771 1081.475 3.12 0.003 1220.836 5534.706
_cons 344.6489 5062.804 0.07 0.946 -9752.795 10442.09

q75
weight 9.22291 2.631084 3.51 0.001 3.975378 14.47044
length -220.7833 89.54754 -2.47 0.016 -399.3802 -42.18635

foreign 3595.133 1208.769 2.97 0.004 1184.319 6005.947
_cons 20242.9 9682.24 2.09 0.040 932.2846 39553.52

The coefficient estimates above are the same as those previously estimated, although the standard error

estimates are a little different. sqreg obtains estimates of variance by bootstrapping. The important

thing here, however, is that the full covariance matrix of the estimators has been estimated and stored,

and thus it is now possible to perform hypothesis tests. Are the effects of weight the same at the 25th
and 75th percentiles?
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. test [q25]weight = [q75]weight
( 1) [q25]weight - [q75]weight = 0

F( 1, 70) = 8.57
Prob > F = 0.0046

It appears that they are not. We can obtain a confidence interval for the difference by using lincom:

. lincom [q75]weight-[q25]weight
( 1) - [q25]weight + [q75]weight = 0

price Coefficient Std. err. t P>|t| [95% conf. interval]

(1) 7.391121 2.524626 2.93 0.005 2.355914 12.42633

Indeed, we could test whether the weight and length sets of coefficients are equal at the three quantiles
estimated:

. quietly test [q25]weight = [q50]weight

. quietly test [q25]weight = [q75]weight, accumulate

. quietly test [q25]length = [q50]length, accumulate

. test [q25]length = [q75]length, accumulate
( 1) [q25]weight - [q50]weight = 0
( 2) [q25]weight - [q75]weight = 0
( 3) [q25]length - [q50]length = 0
( 4) [q25]length - [q75]length = 0

F( 4, 70) = 2.25
Prob > F = 0.0727

iqreg focuses on one quantile comparison but presents results that are more easily interpreted:

. set seed 1001

. iqreg price weight length foreign, q(.25 .75) reps(100) nolog

.75-.25 Interquantile regression Number of obs = 74
bootstrap(100) SEs .75 Pseudo R2 = 0.3840

.25 Pseudo R2 = 0.1697

Bootstrap
price Coefficient std. err. t P>|t| [95% conf. interval]

weight 7.391121 2.524626 2.93 0.005 2.355914 12.42633
length -223.6288 84.21504 -2.66 0.010 -391.5904 -55.66724

foreign 1385.208 1321.832 1.05 0.298 -1251.103 4021.519
_cons 22122.68 9329.178 2.37 0.020 3516.219 40729.14

Looking only at the 0.25 and 0.75 quantiles (the interquartile range), the iqreg command output

is easily interpreted. Increases in weight correspond significantly to increases in price dispersion.

Increases in length correspond to decreases in price dispersion. The foreign variable does not sig-
nificantly change price dispersion.

Do not make too much of these results; the purpose of this example is simply to illustrate the sqreg
and iqreg commands and to do so in a context that suggests why analyzing dispersion might be of

interest.
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lincom after sqreg produced the same 𝑡 statistic for the interquartile range of weight, as did the
iqreg command above. In general, they will not agree exactly because of the randomness of boot-

strapping, unless the random-number seed is set to the same value before estimation (as was done here).

Gould (1997a) presents simulation results showing that the coverage—the actual percentage of con-

fidence intervals containing the true value—for iqreg is appropriate.

What are the parameters?
In this section, we use a specific data-generating process (DGP) to illustrate the interpretation of the

parameters estimated by qreg. If simulation experiments are not intuitive to you, skip this section.

In general, quantile regression parameterizes the quantiles of the distribution of 𝑦 conditional on the
independent variables x as xβ, where β is a vector of estimated parameters. In our example, we include

a constant term and a single independent variable, and we express quantiles of the distribution of 𝑦
conditional on 𝑥 as 𝛽0 + 𝛽1𝑥.

We use simulated data to illustrate what we mean by a conditional distribution and how to interpret

the parameters β estimated by qreg. We also note how we could change our example to illustrate a DGP

for which the estimator in qreg would be misspecified.

We suppose that the distribution of 𝑦 conditional on 𝑥 has aWeibull form. If 𝑦 has aWeibull distribu-

tion, the distribution function is 𝐹(𝑦) = 1 − exp{−(𝑦/𝜆)𝑘}, where the scale parameter 𝜆 > 0 and the

shape parameter 𝑘 > 0. We can make 𝑦 have aWeibull distribution function conditional on 𝑥 by making

the scale parameter or the shape parameter functions of 𝑥. In our example, we specify a particular DGP by
supposing that 𝜆 = (1+𝛼𝑥), 𝛼 = 1.5, 𝑥 = 1+

√
𝜈, and that 𝜈 has a 𝜒2(1) distribution. For the moment,

we leave the parameter 𝑘 as is so that we can discuss how this decision relates to model specification.

Plugging in for 𝜆 yields the functional form for the distribution of 𝑦 conditional on 𝑥, which is known
as the conditional distribution function and is denoted 𝐹(𝑦|𝑥). 𝐹(𝑦|𝑥) is the distribution for 𝑦 for each
given value of 𝑥.

Some algebra yields that 𝐹(𝑦|𝑥) = 1 − exp[−{𝑦/(1 + 𝛼𝑥)}𝑘]. Letting 𝜏 = 𝐹(𝑦|𝑥) implies that
0 ≤ 𝜏 ≤ 1, because probabilities must be between 0 and 1.

To obtain the 𝜏 quantile of the distribution of 𝑦 conditional on 𝑥, we solve

𝜏 = 1 − exp[−{𝑦/(1 + 𝛼𝑥)}𝑘]

for 𝑦 as a function of 𝜏, 𝑥, 𝛼, and 𝑘. The solution is

𝑦 = (1 + 𝛼𝑥){− ln(1 − 𝜏)}(1/𝑘) (1)

For any value of 𝜏 ∈ (0, 1), expression (1) gives the 𝜏 quantile of the distribution of 𝑦 conditional on
𝑥. To use qreg, we must rewrite (1) as a function of 𝑥, 𝛽0, and 𝛽1. Some algebra yields that (1) can be

rewritten as

𝑦 = 𝛽0 + 𝛽1 ∗ 𝑥
where 𝛽0 = {− ln(1− 𝜏)}(1/𝑘) and 𝛽1 = 𝛼{− ln(1− 𝜏)}(1/𝑘). We can express the conditional quantiles

as linear combinations of 𝑥, which is a property of the estimator implemented in qreg.
If we parameterize 𝑘 as a nontrivial function of 𝑥, the conditional quantiles will not be linear in 𝑥.

If the conditional quantiles cannot be represented as linear functions of 𝑥, we cannot estimate the true
parameters of the DGP. This restriction illustrates the limits of the estimator implemented in qreg.
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We set 𝑘 = 2 for our example.

Conditional quantile regression allows the coefficients to change with the specified quantile. For

our DGP, the coefficients 𝛽0 and 𝛽1 increase as 𝜏 gets larger. Substituting in for 𝛼 and 𝑘 yields that

𝛽0 = √− ln(1 − 𝜏) and 𝛽1 = 1.5√− ln(1 − 𝜏). Table 1 presents the true values for 𝛽0 and 𝛽1 implied

by our DGP when 𝜏 ∈ {0.25, 0.5, 0.8}.

Table 1: True values for 𝛽0 and 𝛽1

𝜏 𝛽0 𝛽1

0.25 0.53636 0.80454

0.5 0.8325546 1.248832

0.8 1.268636 1.902954

We can also use (1) to generate data from the specified distribution of 𝑦 conditional on 𝑥 by plugging

in random uniform numbers for 𝜏. Each random uniform number substituted in for 𝜏 in (1) yields a draw
from the conditional distribution of 𝑦 given 𝑥.

Example 6
In this example, we generate 100,000 observations from our specified DGP by substituting random

uniform numbers for 𝜏 in (1), with 𝛼 = 1.5, 𝑘 = 2, 𝑥 = 1+
√

𝜈, and 𝜈 coming from a 𝜒2(1) distribution.
We begin by executing the code that implements this method; below, we discuss each line of the

output produced.

. clear // drop existing variables

. set seed 1234571 // set random-number seed

. set obs 100000 // set number of observations
Number of observations (_N) was 0, now 100,000.
. generate double tau = runiform() // generate uniform variate
. generate double x = 1 + sqrt(rchi2(1)) // generate values for x
. generate double lambda = 1 + 1.5*x // lambda is 1 + alpha*x
. generate double k = 2 // fix value of k
. // generate random values for y
. // given x
. generate double y = lambda*((-ln(1-tau))^(1/k))

Although the comments at the end of each line briefly describe what each line is doing, we provide a

more careful description. The first line drops any variables in memory. The second sets the seed of the

random-number generator so that we will always get the same sequence of random uniform numbers.

The third line sets the sample size to 100,000 observations, and the fourth line reports the change in

sample size.

The fifth line substitutes random uniform numbers for 𝜏. This line is the key to the algorithm. This
standard method, known as inverse-probability transforms, for computing random numbers is discussed

by Cameron and Trivedi (2022, 220–221), among others.

Lines 6–8 generate 𝑥, 𝜆, and 𝑘 per our specified DGP. Lines 9–11 implement (1) using the previously

generated 𝜆, 𝑥, and 𝑘.
At the end, we have 100,000 observations on 𝑦 and 𝑥, with 𝑦 coming from the conditional distribution

that we specified above.
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Example 7
In the example below, we use qreg to estimate 𝛽1 and 𝛽0, the parameters from the conditional quantile

function, for the 0.5 quantile from our simulated data.

. qreg y x, quantile(.5)
Iteration 1: WLS sum of weighted deviations = 68573.243
Iteration 1: Sum of abs. weighted deviations = 68571.918
Iteration 2: Sum of abs. weighted deviations = 68308.342
Iteration 3: Sum of abs. weighted deviations = 68241.17
Iteration 4: Sum of abs. weighted deviations = 68232.043
Iteration 5: Sum of abs. weighted deviations = 68230.304
Iteration 6: Sum of abs. weighted deviations = 68229.643
Iteration 7: Sum of abs. weighted deviations = 68229.532
Iteration 8: Sum of abs. weighted deviations = 68229.514
Iteration 9: Sum of abs. weighted deviations = 68229.508
Iteration 10: Sum of abs. weighted deviations = 68229.506
Iteration 11: Sum of abs. weighted deviations = 68229.505
Median regression Number of obs = 100,000
Raw sum of deviations 73861.64 (about 2.9443724)
Min sum of deviations 68229.51 Pseudo R2 = 0.0763

y Coefficient Std. err. t P>|t| [95% conf. interval]

x 1.266062 .0117759 107.51 0.000 1.242981 1.289143
_cons .8083315 .0222972 36.25 0.000 .7646291 .8520338

In the qreg output, the results for x correspond to the estimate of 𝛽1, and the results for cons
correspond to the estimate of 𝛽0. The reported estimates are close to their true values of 1.248832 and

0.8325546, which are given in table 1.

The intuition in this example comes from the ability of qreg to recover the true parameters of our
specified DGP. As we increase the number of observations in our sample size, the qreg estimates will get
closer to the true values.
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Example 8
In the example below, we estimate the parameters of the conditional quantile function for the 0.25

quantile and compare them with the true values.

. qreg y x, quantile(.25)
Iteration 1: WLS sum of weighted deviations = 65395.359
Iteration 1: Sum of abs. weighted deviations = 65397.892
Iteration 2: Sum of abs. weighted deviations = 52640.481
Iteration 3: Sum of abs. weighted deviations = 50706.508
Iteration 4: Sum of abs. weighted deviations = 49767.356
Iteration 5: Sum of abs. weighted deviations = 49766.98
Iteration 6: Sum of abs. weighted deviations = 49765.818
Iteration 7: Sum of abs. weighted deviations = 49765.589
Iteration 8: Sum of abs. weighted deviations = 49765.549
Iteration 9: Sum of abs. weighted deviations = 49765.533
Iteration 10: Sum of abs. weighted deviations = 49765.528
Iteration 11: Sum of abs. weighted deviations = 49765.527
Iteration 12: Sum of abs. weighted deviations = 49765.527
Iteration 13: Sum of abs. weighted deviations = 49765.527
.25 Quantile regression Number of obs = 100,000
Raw sum of deviations 51945.91 (about 1.8560913)
Min sum of deviations 49765.53 Pseudo R2 = 0.0420

y Coefficient Std. err. t P>|t| [95% conf. interval]

x .8207143 .0106425 77.12 0.000 .799855 .8415735
_cons .5075988 .0201512 25.19 0.000 .4681026 .547095

As above, qreg reports the estimates of 𝛽1 and 𝛽0 in the output table for x and cons, respectively.
The reported estimates are close to their true values of 0.80454 and 0.53636, which are given in table 1.

As expected, the estimates are close to their true values. Also as expected, the estimates for the 0.25

quantile are smaller than the estimates for the 0.5 quantile.



qreg — Quantile regression 2395

Example 9
We finish this section by estimating the parameters of the conditional quantile function for the 0.8

quantile and comparing them with the true values.

. qreg y x, quantile(.8)
Iteration 1: WLS sum of weighted deviations = 66126.751
Iteration 1: Sum of abs. weighted deviations = 66130.001
Iteration 2: Sum of abs. weighted deviations = 55084.287
Iteration 3: Sum of abs. weighted deviations = 52914.276
Iteration 4: Sum of abs. weighted deviations = 52101.59
Iteration 5: Sum of abs. weighted deviations = 51899.426
Iteration 6: Sum of abs. weighted deviations = 51898.269
Iteration 7: Sum of abs. weighted deviations = 51898.268
Iteration 8: Sum of abs. weighted deviations = 51898.267
.8 Quantile regression Number of obs = 100,000
Raw sum of deviations 60129.76 (about 4.7060381)
Min sum of deviations 51898.27 Pseudo R2 = 0.1369

y Coefficient Std. err. t P>|t| [95% conf. interval]

x 1.911771 .014834 128.88 0.000 1.882697 1.940846
_cons 1.254583 .0280877 44.67 0.000 1.199531 1.309634

As above, qreg reports the estimates of 𝛽1 and 𝛽0 in the output table for x and cons, respectively.
The reported estimates are close to their true values of 1.902954 and 1.268636, which are given in table 1.

As expected, the estimates are close to their true values. Also as expected, the estimates for the 0.8

quantile are larger than the estimates for the 0.5 quantile.

Stored results
qreg stores the following in e():

Scalars

e(N) number of observations

e(df m) model degrees of freedom

e(df r) residual degrees of freedom

e(q) quantile requested

e(q v) value of the quantile

e(r2 p) pseudo-𝑅2

e(sum adev) sum of absolute deviations

e(sum rdev) sum of raw deviations

e(sum w) sum of weights

e(f r) density estimate

e(sparsity) sparsity estimate

e(bwidth) bandwidth

e(kbwidth) kernel bandwidth

e(rank) rank of e(V)
e(convcode) 0 if converged; otherwise, return code for why nonconvergence

Macros

e(cmd) qreg
e(cmdline) command as typed

e(depvar) name of dependent variable

e(bwmethod) bandwidth method; hsheather, bofinger, or chamberlain
e(denmethod) density estimation method; fitted, residual, or kernel
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e(kernel) kernel function

e(wtype) weight type

e(wexp) weight expression

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(properties) b V
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of the estimators

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

iqreg stores the following in e():

Scalars

e(N) number of observations

e(df r) residual degrees of freedom

e(q0) lower quantile requested

e(q1) upper quantile requested

e(reps) number of replications

e(r2 p q0) lower quantile pseudo-𝑅2

e(r2 p q1) upper quantile pseudo-𝑅2

e(sumrdev0) lower quantile sum of raw deviations

e(sumrdev1) upper quantile sum of raw deviations

e(sumadev0) lower quantile sum of absolute deviations

e(sumadev1) upper quantile sum of absolute deviations

e(rank) rank of e(V)
e(convcode) 0 if converged; otherwise, return code for why nonconvergence

Macros

e(cmd) iqreg
e(cmdline) command as typed

e(depvar) name of dependent variable

e(vcetype) title used to label Std. err.

e(properties) b V
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of the estimators

Functions

e(sample) marks estimation sample
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In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

sqreg stores the following in e():

Scalars

e(N) number of observations

e(df r) residual degrees of freedom

e(n q) number of quantiles requested

e(q#) the quantiles requested

e(reps) number of replications

e(r2 p q#) pseudo-𝑅2 for q#
e(sumrdv#) sum of raw deviations for q#
e(sumadv#) sum of absolute deviations for q#
e(rank) rank of e(V)
e(convcode) 0 if converged; otherwise, return code for why nonconvergence

Macros

e(cmd) sqreg
e(cmdline) command as typed

e(depvar) name of dependent variable

e(eqnames) names of equations

e(vcetype) title used to label Std. err.

e(properties) b V
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of the estimators

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

bsqreg stores the following in e():

Scalars

e(N) number of observations

e(df r) residual degrees of freedom

e(q) quantile requested

e(q v) value of the quantile

e(reps) number of replications

e(r2 p) pseudo-𝑅2

e(sum adev) sum of absolute deviations

e(sum rdev) sum of raw deviations
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e(rank) rank of e(V)
e(convcode) 0 if converged; otherwise, return code for why nonconvergence

Macros

e(cmd) bsqreg
e(cmdline) command as typed

e(depvar) name of dependent variable

e(properties) b V
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of the estimators

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas
Methods and formulas are presented under the following headings:

Introduction
Linear programming formulation of quantile regression
Standard errors when residuals are i.i.d.
Pseudo-𝑅2

Introduction
According to Stuart and Ord (1991, 1084), the method of minimum absolute deviations was first

proposed by Boscovich in 1757 and was later developed by Laplace; Stigler (1986, 39–55) and Hald

(1998, 97–103, 112–116) provide historical details. According to Bloomfield and Steiger (1980), Harris

(1950) later observed that the problem of minimum absolute deviations could be turned into the linear

programming problem that was first implemented by Wagner (1959). Interest has grown in this method

because robust methods and extreme value modeling have become more popular. Statistical and com-

putational properties of minimum absolute deviation estimators are surveyed by Narula and Wellington

(1982). Cameron and Trivedi (2005), Hao and Naiman (2007), and Wooldridge (2010) provide excel-

lent introductions to quantile regression methods, while Koenker (2005) gives an in-depth review of the

topic.
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Linear programming formulation of quantile regression
Define 𝜏 as the quantile to be estimated; the median is 𝜏 = 0.5. For each observation 𝑖, let 𝜀𝑖 be the

residual

𝜀𝑖 = 𝑦𝑖 − x′
𝑖β̂𝜏

The objective function to be minimized is

𝑐𝜏(𝜀𝑖) = (𝜏1 {𝜀𝑖 ≥ 0} + (1 − 𝜏)1 {𝜀𝑖 < 0}) |𝜀𝑖|
= (𝜏1 {𝜀𝑖 ≥ 0} − (1 − 𝜏)1 {𝜀𝑖 < 0}) 𝜀𝑖

= (𝜏 − 1 {𝜀𝑖 < 0}) 𝜀𝑖 (2)

where 1{⋅} is the indicator function. This function is sometimes referred to as the check function because
it resembles a check mark (Wooldridge 2010, 450); the slope of 𝑐𝜏(𝜀𝑖) is 𝜏 when 𝜀𝑖 > 0 and is 𝜏 − 1

when 𝜀𝑖 < 0, but is undefined for 𝜀𝑖 = 0. Choosing the β̂𝜏 that minimize 𝑐𝜏(𝜀𝑖) is equivalent to finding
the β̂𝜏 that make xβ̂𝜏 best fit the quantiles of the distribution of 𝑦 conditional on x.

This minimization problem is set up as a linear programming problem and is solved with linear pro-

gramming techniques, as suggested by Armstrong, Frome, and Kung (1979) and described in detail by

Koenker (2005). Here 2𝑛 slack variables, u𝑛×1 and v𝑛×1, are introduced, where 𝑢𝑖 ≥ 0, 𝑣𝑖 ≥ 0, and

𝑢𝑖 × 𝑣𝑖 = 0, reformulating the problem as

minβ𝜏,u,v {𝜏1′
𝑛u + (1 − 𝜏)1′

𝑛v | y − Xβ𝜏 = u − v}

where 1𝑛 is a vector of 1s. This is a linear objective function on a polyhedral constraint set with (𝑛
𝑘)

vertices, and our goal is to find the vertex that minimizes (2). Each step in the search is described by

a set of 𝑘 observations through which the regression plane passes, called the basis. A step is taken by

replacing a point in the basis if the linear objective function can be improved. If this occurs, a line is

printed in the iteration log. The definition of convergence is exact in the sense that no amount of added

iterations could improve the objective function.

A series of weighted least-squares (WLS) regressions is used to identify a set of observations as a

starting basis. TheWLS algorithm for 𝜏 = 0.5 is taken from Schlossmacher (1973) with a generalization

for 0 < 𝜏 < 1 implied from Hunter and Lange (2000).

Standard errors when residuals are i.i.d.
The estimator for the VCE implemented in qreg assumes that the errors of the model are independent

and identically distributed (i.i.d.). When the errors are i.i.d., the large-sample VCE is

cov(β𝜏) = 𝜏(1 − 𝜏)
𝑓2

𝑌(𝜉𝜏)
{𝐸(x𝑖x

′
𝑖)}

−1
(3)

where 𝜉𝜏 = 𝐹 −1
𝑌 (𝜏) and 𝐹𝑌(𝑦) is the distribution function of 𝑌 with density 𝑓𝑌(𝑦). See Koenker (2005,

73) for this result. From (3), we see that the regression precision depends on the inverse of the density

function, termed the sparsity function, 𝑠𝜏 = 1/𝑓𝑌(𝜉𝜏).
While 1/𝑛 ∑𝑛

𝑖=1 x𝑖x
′
𝑖 estimates 𝐸(x𝑖x

′
𝑖), estimating the sparsity function is more difficult. qreg

provides several methods to estimate the sparsity function. The different estimators are specified through

the suboptions of vce(iid, denmethod bwidth). The suboption denmethod specifies the functional form
for the sparsity estimator. The default is fitted.
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Here we outline the logic underlying the fitted estimator. Because 𝐹𝑌(𝑦) is the distribution function
for 𝑌, we have 𝑓𝑌(𝑦) = {𝑑𝐹𝑦(𝑦)}/𝑑𝑦, 𝜏 = 𝐹𝑌(𝜉𝜏), and 𝜉𝜏 = 𝐹 −1

𝑌 (𝜏). When differentiating the identity

𝐹𝑌{𝐹 −1
𝑌 (𝜏)} = 𝜏, the sparsity function can be written as 𝑠𝜏 = {𝐹 −1

𝑌 (𝜏)}/𝑑𝑡. Numerically, we can
approximate the derivative using the centered difference,

𝐹 −1
𝑌 (𝜏)
𝑑𝑡

≈ 𝐹 −1
𝑌 (𝜏 + ℎ) − 𝐹 −1

𝑌 (𝜏 − ℎ)
2ℎ

=
𝜉𝜏+ℎ − 𝜉𝜏−ℎ

2ℎ
= ̂𝑠𝜏 (4)

where ℎ is the bandwidth.

The empirical quantile function is computed by first estimating β𝜏+ℎ and β𝜏−ℎ, and then computing

̂𝐹 −1
𝑌 (𝜏 + ℎ) = x′β̂𝜏+ℎ and ̂𝐹 −1

𝑌 (𝜏 − ℎ) = x′β̂𝜏−ℎ, where x is the sample mean of the independent

variables x. These quantities are then substituted into (4).

Alternatively, as the option suggests, vce(iid, residual) specifies that qreg use the empirical

quantile function of the residuals to estimate the sparsity. Here we substitute 𝐹𝜖, the distribution of the

residuals, for 𝐹𝑌, which only differ by their first moments.

The 𝑘 residuals associated with the linear programming basis will be zero, where 𝑘 is the number of

regression coefficients. These zero residuals are removed before computing the 𝜏 +ℎ and 𝜏 −ℎ quantiles,
𝜀(𝜏+ℎ) = ̂𝐹 −1

𝜖 (𝜏 + ℎ) and 𝜀(𝜏−ℎ) = ̂𝐹 −1
𝜖 (𝜏 − ℎ). The ̂𝐹 −1

𝜖 estimates are then substituted for 𝐹 −1
𝑌 in (4).

Each of the estimators for the sparsity function depends on a bandwidth. The vce() suboption bwidth
specifies the bandwidth method to use. The three bandwidth options and their citations are hsheather
(Hall and Sheather 1988), bofinger (Bofinger 1975), and chamberlain (Chamberlain 1994).

Their formulas are

ℎ𝑠 = 𝑛−1/3Φ−1 (1 − 𝛼
2

)
2/3

[3
2

× 𝜙{Φ−1(𝜏)}2

2Φ−1(𝜏)2 + 1
]

1/3

ℎ𝑏 = 𝑛−1/5 [
9
2 𝜙{Φ−1(𝜏)}4

{2Φ−1(𝜏)2 + 1}2 ]
1/5

ℎ𝑐 = Φ−1 (1 − 𝛼
2

) √𝜏(1 − 𝜏)
𝑛

where ℎ𝑠 is the Hall–Sheather bandwidth, ℎ𝑏 is the Bofinger bandwidth, ℎ𝑐 is the Chamberlain band-

width, Φ() and 𝜙() are the standard normal distribution and density functions, 𝑛 is the sample size, and

100(1 − 𝛼) is the confidence level set by the level() option. Koenker (2005) discusses the derivation
of the Hall–Sheather and the Bofinger bandwidth formulas. You should avoid modifying the confidence

level when replaying estimates that use the Hall–Sheather or Chamberlain bandwidths because these

methods use the confidence level to estimate the coefficient standard errors.

Finally, the vce() suboption kernel(kernel) specifies that qreg use one of several kernel density
estimators to estimate the sparsity function. kernel allows you to choose which kernel function to use,

where the default is the Epanechnikov kernel. See [R] kdensity for the functional form of the eight

kernels.

The kernel bandwidth is computed using an adaptive estimate of scale

ℎ𝑘 = min(�̂�,
𝑟𝑞

1.34
) × {Φ−1(𝜏 + ℎ) − Φ−1(𝜏 − ℎ)}
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where ℎ is one of ℎ𝑠, ℎ𝑏, or ℎ𝑐; 𝑟𝑞 is the interquartile range; and �̂� is the standard deviation of y; see

Silverman (1986, 47) and Koenker (2005, 81) for discussions. Let ̂𝑓𝜖(𝜀𝑖) be the kernel density estimate
for the 𝑖th residual, and then the kernel estimator for the sparsity function is

̂𝑠𝜏 = 𝑛ℎ𝑘

∑𝑛
𝑖=1

̂𝑓𝜖(𝜀𝑖)

Finally, substituting your choice of sparsity estimate into (3) results in the i.i.d. variance–covariance

matrix

V𝑛 = ̂𝑠2
𝜏𝜏(1 − 𝜏) (

𝑛
∑
𝑖=1

x𝑖x
′
𝑖)

−1

Pseudo-R2

The pseudo-𝑅2 is calculated as

1 − sum of weighted deviations about estimated quantile

sum of weighted deviations about raw quantile

This is based on the likelihood for a double-exponential distribution 𝑒𝑣𝑖|𝜀𝑖|, where 𝑣𝑖 are multipliers

𝑣𝑖 = {𝜏 if 𝜀𝑖 > 0
(1 − 𝜏) otherwise

Minimizing the objective function (2) with respect to β𝜏 also minimizes ∑𝑖 |𝜀𝑖|𝑣𝑖, the sum of weighted

least absolute deviations. For example, for the 50th percentile 𝑣𝑖 = 1, for all 𝑖, and we have median
regression. If we want to estimate the 75th percentile, we weight the negative residuals by 0.25 and the

positive residuals by 0.75. It can be shown that the criterion is minimized when 75% of the residuals are

negative.
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Postestimation commands predict margins estat
Remarks and examples Also see

Postestimation commands
The following postestimation command is of special interest after sqreg:

Command Description

estat coefplot plot coefficients and their confidence intervals at different quantiles

The following postestimation commands are available after qreg, iqreg, bsqreg, and sqreg:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estimates cataloging estimation results

etable table of estimation results
† forecast dynamic forecasts and simulations
∗ hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

linktest link test for model specification

margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

predict predictions and their SEs, residuals, etc.

predictnl point estimates, standard errors, testing, and inference for generalized predictions

pwcompare pairwise comparisons of parameters

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

∗hausman is not appropriate after bsqreg, isqreg, or sqreg.
†forecast is not appropriate with mi estimation results.

2404
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predict

Description for predict
predict creates a new variable containing predictions such as linear predictions, standard errors, and

residuals.

Menu for predict
Statistics > Postestimation

Syntax for predict
For qreg, iqreg, and bsqreg

predict [ type ] newvar [ if ] [ in ] [ , [ xb | stdp | residuals ] ]

For sqreg

predict [ type ] newvar [ if ] [ in ] [ , equation(eqno[ ,eqno ]) statistic ]

statistic Description

Main

xb linear prediction; the default

stdp standard error of the linear prediction

stddp standard error of the difference in linear predictions

residuals residuals

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted
only for the estimation sample.

Options for predict

� � �
Main �

xb, the default, calculates the linear prediction.

stdp calculates the standard error of the linear prediction.

stddp is allowed only after you have fit a model using sqreg. The standard error of the difference in
linear predictions (x1𝑗b − x2𝑗b) between equations 1 and 2 is calculated.

residuals calculates the residuals, that is, 𝑦𝑗 − x𝑗b.

equation(eqno[ ,eqno ]) specifies the equation to which you are making the calculation.
equation() is filled in with one eqno for the xb, stdp, and residuals options. equation(#1)
would mean that the calculation is to be made for the first equation, equation(#2) would mean the
second, and so on. You could also refer to the equations by their names. equation(income) would
refer to the equation named income and equation(hours) to the equation named hours.

If you do not specify equation(), results are the same as if you had specified equation(#1).

To use stddp, you must specify two equations. You might specify equation(#1, #2) or

equation(q80, q20) to indicate the 80th and 20th quantiles.
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margins

Description for margins
margins estimates margins of response for linear predictions.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist ] [ , options ]
margins [marginlist ] , predict(statistic ...) [ options ]

statistic Description

xb linear prediction; the default

stdp not allowed with margins
stddp not allowed with margins
residuals not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.
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estat

Description for estat
estat coefplot plots the estimated coefficients and their confidence intervals (CIs) after sqreg.

Menu for estat
Statistics > Postestimation

Syntax for estat
estat coefplot [ varname ] [ , options ]

varname is one of the variables specified when fitting sqreg; the default is the first endogenous variable.

options Description

noci do not plot the CIs

nools do not plot the ordinary least-squares (OLS) estimates

Plot

connect options change look of lines or connecting method

marker options change look of markers (color, size, etc.)

CI plot

ciopts(area options) affect rendition of the pointwise CIs

Line options

lineopts(cline options) affect rendition of reference line identifying the OLS estimates

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

Options for estat
noci removes plots of the pointwise CIs. The default is to plot the CIs.

nools removes the plot of the OLS estimates. The default is to plot the OLS reference line.

� � �
Plot �

connect options specify how points on a graph are to be connected; [G-3] connect options.

marker options affect the rendition of markers drawn at the plotted points, including their shape, size,

color, and outline; see [G-3] marker options.

� � �
CI plot �

ciopts(area options) affects rendition of the pointwise CIs; see [G-3] area options.
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� � �
Line options �

lineopts(cline options) affects rendition of reference line identifying the OLS estimates; see

[G-3] cline options.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see

[G-3] saving option).

Remarks and examples

Example 1: Predictions after qreg and iqreg
In example 4 of [R] qreg, we fit regressions for the lower and the upper quartile of the price variable.

The predict command can be used to obtain the linear prediction after each regression.

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. qreg price weight length foreign, quantile(.25)
(output omitted )

. predict q25
(option xb assumed; fitted values)
. qreg price weight length foreign, quantile(.75)
(output omitted )

. predict q75
(option xb assumed; fitted values)

We can use the variables generated by predict to compute the predicted interquartile range, that is,

. generate iqr1 = q75 - q25

If we directly perform the interquartile range regression with the iqreg command, we can predict the
interquartile range and also the standard error for the prediction.

. iqreg price weight length foreign, quantile(.25 .75)
(output omitted )

. predict iqr2
(option xb assumed; fitted values)
. predict stdp, stdp
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We now plot the predicted interquartile range versus variable length:

. scatter iqr2 length
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As stated in example 5 of [R] qreg, the negative coefficient for the length variable means that in-
creases in length imply decreases in the interquartile range and therefore in price dispersion. Conse-

quently, we could have expected a downward trend in the plot, but there is not. This is because the

regression output indicates that when we hold the rest of the variables constant, an increase in length
leads to a decrease in iqr2. However, there is a high correlation between weight and length, which
could be masking the effect of length on iqr2. We can achieve a better visualization by using a contour

plot.

. twoway contour iqr2 weight length, level(10)
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We can see the effect by setting a fixed value of length on the vertical axis, say, 3,000 lbs. When we

move from left to right on the horizontal axis, we see that for small values of length, iqr2 values are
shown in red, meaning high values, and when we move toward the right, the graph indicates transition

into increasingly smaller values.
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Example 2: Coefficients plot after sqreg
In example 5 of [R] qreg, we simultaneously estimated the quantile regressions at different quantile

indexes.

. use https://www.stata-press.com/data/r18/auto, clear
(1978 automobile data)
. set seed 1001
. sqreg price weight length foreign, q(.25 .5 .75) reps(100)
(output omitted )

We can now use estat coefplot to visualize the coefficients at different quantiles. For example, we
can type estat coefplot weight to see the trend of the effects of weight on price across quantiles.

. estat coefplot weight
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The resulting graph shows that there is an upward trend in the effects. For reference, the red line shows

the OLS estimates.

Also see
[R] qreg — Quantile regression

[U] 20 Estimation and postestimation commands
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Description Syntax Remarks and examples Also see

Description
query displays the settings of various Stata parameters.

Syntax
query [ memory | output | interface | graphics | network | update |

trace | mata | java | lapack | putdocx | putpdf | python | rng |

sort | unicode | other ]

Remarks and examples
query provides more system information than you will ever want to know. You do not need to under-

stand every line of output that query produces if all you need is one piece of information. Here is what
happens when you type query:

. query

Memory settings
set maxvar 5000 2048-120000; max. vars allowed
set niceness 5 0-10
set min_memory 0 0-1600g
set max_memory . 32m-1600g or .
set segmentsize 32m 1m-32g
set adosize 1000 kilobytes
set max_preservemem 1g 0-1600g

Output settings
set more off
set rmsg off
set dp period may be period or comma
set linesize 80 characters
set pagesize 32 lines

set iterlog on

set level 95 percent confidence intervals
set clevel 95 percent credible intervals

set showbaselevels may be empty, off, on, or all
set showemptycells may be empty, off, or on
set showomitted may be empty, off, or on
set fvlabel on
set fvwrap 1
set fvwrapon word may be word or width

2411
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set lstretch may be empty, off, or on

set cformat may be empty or a numerical format
set pformat may be empty or a numerical format
set sformat may be empty or a numerical format

set coeftabresults on
set dots on

set logtype smcl may be smcl or text
set logmsg on

set collect_label default
set collect_style default
set table_style table
set etable_style etable
set dtable_style dtable
set collect_warn on

Interface settings
set dockable on
set floatwindows off
set locksplitters off
set pinnable on
set taskbargroups on
set doublebuffer on

set linegap 1 pixels
set scrollbufsize 204800 characters
set fastscroll on
set reventries 5000 lines

set maxdb 50 dialog boxes

Graphics settings
set graphics on
set autotabgraphs on
set scheme stcolor
set printcolor asis may be automatic, asis, gs1, gs2, gs3
set copycolor asis may be automatic, asis, gs1, gs2, gs3

Network settings
set httpproxy off
set httpproxyhost
set httpproxyport 80

set httpproxyauth off
set httpproxyuser
set httpproxypw

Update settings
set update_query off
set update_interval 7
set update_prompt on
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Trace (programming debugging) settings
set trace off
set tracedepth 32000
set traceexpand on
set tracesep on
set traceindent on
set tracenumber off
set tracehilite

Mata settings
set matastrict off
set matalnum off
set mataoptimize on
set matafavor space may be space or speed
set matacache 2000 kilobytes
set matalibs lmatabase;lmataado;lmatabma;lmatacollect;lmataerm;lm

> atafc;lmatagsem;lmatalasso;lmatamcmc;lmatameta;lmatami;lmatamixlog;lmatanumli
> b;lmataopt;lmatapath;lmatapostest;lmatapss;lmatasem;lmatasp;lmatasvy;lmatatab

set matamofirst off
set matasolvetol . may be . or any double-precision number

Java settings
set java_heapmax 4096m
set java_home C:\Program Files\Stata18\utilities\java\windows-

> x64\zulu-jdk17.0.12\

LAPACK settings
set lapack_mkl on
set lapack_mkl_cnr default

putdocx settings
set docx_hardbreak off
set docx_paramode off
set docx_maxtable 500 1-10000

putpdf settings
set pdf_maxtable 500 1-10000

Python settings
set python_exec
set python_userpath

RNG settings
set rng default may be default, mt64, mt64s, or kiss32
set rngstate XAA00000000000000000000000000000000000000...
set rngstream 1 rng stream number

sort settings
set sortmethod default may be default, fsort, or qsort

fsort current sort method
set sortrngstate 1001XZA112210f4b16c1cb10507a1f38cb440c400...

Unicode settings
set locale_ui en_US
set locale_functions en_US
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Other settings
set type float may be float or double
set maxiter 300 max iterations for estimation commands
set searchdefault all may be local, net, or all
set varabbrev on
set emptycells keep may be keep or drop
set fvtrack term may be term or factor
set fvbase on
set processors 4 1-4
set kmp_blocktime -1 time duration in milliseconds
set odbcdriver unicode may be unicode, ansi, or default
set haverdir
set fredkey
set collect_double on
set dtascomplevel 1 dtas default compression level; 0-9
set reshape_favor default may be default, memory, or speed
set doeditbackup on

The output is broken into several divisions: memory, output, interface, graphics, network, update, trace,

Mata, Java, LAPACK, putdocx, putpdf, Python, RNG, sort, Unicode, and other settings. We will discuss

each one in turn.

We generated the output above using Stata/MP for Windows. Here is what happens when we type

query and we are running Stata/SE for Mac:

. query

Memory settings
set maxvar 5000 2048-32767; max. vars allowed
set niceness 5 0-10
set min_memory 0 0-1600g
set max_memory . 32m-1600g or .
set segmentsize 32m 1m-32g
set adosize 1000 kilobytes

Output settings
set more off
set rmsg off
set dp period may be period or comma
set linesize 80 characters
set pagesize 23 lines

set iterlog on

set level 95 percent confidence intervals
set clevel 95 percent credible intervals

set showbaselevels may be empty, off, on, or all
set showemptycells may be empty, off, or on
set showomitted may be empty, off, or on
set fvlabel on
set fvwrap 1
set fvwrapon word may be word or width

set lstretch may be empty, off, or on



query — Display system parameters 2415

set cformat may be empty or a numerical format
set pformat may be empty or a numerical format
set sformat may be empty or a numerical format

set coeftabresults on
set dots on

set logtype smcl may be smcl or text
set logmsg on

set collect_label default
set collect_style default
set table_style table
set etable_style etable
set dtable_style dtable
set collect_warn on

set notifyuser on
set playsnd off
set include_bitmap on

Interface settings
set revkeyboard on
set varkeyboard on
set smoothfonts on

set linegap 1 pixels
set scrollbufsize 204800 characters
set reventries 5000 lines

set maxdb 50 dialog boxes

Graphics settings
set graphics on
set scheme stcolor
set printcolor asis may be automatic, asis, gs1, gs2, gs3
set copycolor asis may be automatic, asis, gs1, gs2, gs3
set maxbezierpath 0 bezier path elements

Network settings
set httpproxy off
set httpproxyhost
set httpproxyport 80

set httpproxyauth off
set httpproxyuser
set httpproxypw

Update settings
set update_query off
set update_interval 7
set update_prompt on
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Trace (programming debugging) settings
set trace off
set tracedepth 32000
set traceexpand on
set tracesep on
set traceindent on
set tracenumber off
set tracehilite

Mata settings
set matastrict off
set matalnum off
set mataoptimize on
set matafavor space may be space or speed
set matacache 2000 kilobytes
set matalibs lmatabase;lmatamcmc;lmatabma;lmatacollect;lmatatab;lm

> atamixlog;lmatami;lmatasem;lmatagsem;lmatasp;lmatapss;lmatalasso;lmatapostest;
> lmatapath;lmatameta;lmataopt;lmatasvy;lmatanumlib;lmataado;lmataerm;lmatafc

set matamofirst off
set matasolvetol . may be . or any double-precision number

Java settings
set java_heapmax 4096m
set java_home /Users/Stata18/utilities/java/macosx-x64

> /zulu-jdk17.0.12/

LAPACK settings
set lapack_mkl on
set lapack_mkl_cnr default

putdocx settings
set docx_hardbreak off
set docx_paramode off
set docx_maxtable 500 1-10000

putpdf settings
set pdf_maxtable 500 1-10000

Python settings
set python_exec /usr/bin/python
set python_userpath

RNG settings
set rng default may be default, mt64, mt64s, or kiss32
set rngstate XAA00000000000000000000000000000000000000...
set rngstream 1 rng stream number

sort settings
set sortmethod default may be default, fsort, or qsort

fsort current sort method
set sortrngstate 1001XZA112210f4b16c1cb10507a1f38cb440c400...

Unicode settings
set locale_ui en_US
set locale_functions en_US
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Other settings
set type float may be float or double
set maxiter 300 max iterations for estimation commands
set searchdefault all may be local, net, or all
set varabbrev on
set emptycells keep may be keep or drop
set fvtrack term may be term or factor
set fvbase on
set processors 1
set odbcmgr iodbc may be iodbc or unixodbc
set odbcdriver unicode may be unicode, ansi, or default
set fredkey
set collect_double on
set dtascomplevel 1 dtas default compression level; 0-9
set reshape_favor default may be default, memory, or speed
set doeditbackup on

Memory settings

Memory settings indicate how memory is allocated, the maximum number of variables, and the max-

imum size of a matrix.

For more information, see

maxvar [D] memory

niceness [D] memory

min memory [D] memory

max memory [D] memory

segmentsize [D] memory

adosize [P] sysdir

max preservemem [P] preserve
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Output settings

Output settings show how Stata displays output on the screen and in log files.

For more information, see

more [R] more

rmsg [P] rmsg

dp [D] format

linesize [R] log

pagesize [R] more

iterlog [R] set iter

level [R] level

clevel [BAYES] set clevel

showbaselevels [R] set showbaselevels

showemptycells [R] set showbaselevels

showomitted [R] set showbaselevels

fvlabel [R] set showbaselevels

fvwrap [R] set showbaselevels

fvwrapon [R] set showbaselevels

lstretch [R] set

cformat [R] set cformat

pformat [R] set cformat

sformat [R] set cformat

coeftabresults [R] set

dots [R] set

logtype [R] log

logmsg [R] log

collect label [TABLES] set collect label

collect style [TABLES] set collect style

table style [TABLES] set table style

etable style [TABLES] set etable style

dtable style [TABLES] set dtable style

collect warn [TABLES] set collect warn

notifyuser [R] set

playsnd [R] set

include bitmap [R] set



query — Display system parameters 2419

Interface settings

Interface settings control how Stata’s interface works.

For more information, see

dockable [R] set

floatwindows [R] set

locksplitters [R] set

pinnable [R] set

taskbargroups [R] set

doublebuffer [R] set

revkeyboard [R] set

varkeyboard [R] set

smoothfonts [R] set

linegap [R] set

scrollbufsize [R] set

fastscroll [R] set

reventries [R] set

maxdb [R] db

Graphics settings

Graphics settings indicate how Stata’s graphics are displayed.

For more information, see

graphics [G-2] set graphics

autotabgraphs [R] set

scheme [G-2] set scheme

printcolor [G-2] set printcolor

copycolor [G-2] set printcolor

maxbezierpath [R] set

Network settings

Network settings determine how Stata interacts with the Internet.

For more information, see [R] netio.

Update settings

Update settings determine how Stata performs updates.

For more information, see [R] update.

Trace settings

Trace settings adjust Stata’s behavior and are particularly useful in debugging code.

For more information, see [P] trace.
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Mata settings

Mata settings affect Mata’s system parameters.

For more information, see [M-3] mata set.

Java settings

Java settings control the Java Runtime Environment.

For more information, see [P] Java utilities.

LAPACK settings

LAPACK settings control the Intel MKL LAPACK routines.

For more information, see [M-1] LAPACK.

putdocx settings

putdocx settings control how spacing is handled in blocks of text and the number of tables allowed.

For more information, see [RPT] set docx and [RPT] putdocx table.

putpdf settings

putpdf settings control the number of tables allowed.

For more information, see [RPT] putpdf table.

Python settings

Python settings control the version and search paths of Python.

For more information, see [P] PyStata integration.

RNG settings

The RNG settings set Stata’s random-number generators.

For more information, see [R] set rng, [R] set seed (set rngstate), and [R] set rngstream.

sort settings

The sort settings affect sort, gsort, and other commands that use sorting as part of their computation.

For more information, see [P] set sortmethod and [P] set sortrngstate.

Unicode settings

Unicode settings affect Stata’s localization package for the user interface.

For more information, see [P] set locale ui and [P] set locale functions.
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Other settings

The other settings are a miscellaneous collection.

For more information, see

type [D] generate

maxiter [R] set iter

searchdefault [R] search

varabbrev [R] set

emptycells [R] set

fvtrack [R] set

fvbase [R] set

processors [R] set

kmp blocktime [R] set

odbcmgr [D] odbc

odbcdriver [D] odbc

haverdir [D] import haver

fredkey [D] import fred

collect double [TABLES] set collect double

dtascomplevel [R] set

reshape favor [D] reshape

doeditbackup [R] set

In general, the parameters displayed by query can be changed by set; see [R] set.

Also see
[R] set — Overview of system parameters

[M-3] mata set — Set and display Mata system parameters

[P] creturn — Return c-class values



ranksum — Equality tests on unmatched data

Description Quick start Menu Syntax
Options for ranksum Options for median Remarks and examples Stored results
Methods and formulas References Also see

Description
ranksum tests the hypothesis that two independent samples (that is, unmatched data) are from pop-

ulations with the same distribution by using the Wilcoxon rank-sum test, which is also known as the

Mann–Whitney two-sample statistic (Wilcoxon 1945; Mann and Whitney 1947).

median performs a nonparametric k-sample test on the equality of medians. It tests the null hypothesis
that the k samples were drawn from populations with the same median. For two samples, the 𝜒2 test

statistic is computed both with and without a continuity correction.

ranksum and median are for use with unmatched data. For equality tests on matched data, see

[R] signrank.

Quick start
Wilcoxon rank-sum test

Test for equality of distributions of v over two groups defined by the levels of catvar1
ranksum v, by(catvar1)

Compute an exact 𝑝-value for the Wilcoxon rank-sum test

ranksum v, by(catvar1) exact

Estimate the probability that a case from the first level of catvar1 has a greater value of v than a case
from the second level of catvar1

ranksum v, by(catvar1) porder

Nonparametric equality-of-medians test

Equality of medians test for v over two or more groups defined by the levels of catvar2
median v, by(catvar2)

Also report Fisher’s exact test

median v, by(catvar2) exact

Same as above, but split cases at the median evenly between the above and below groups

median v, by(catvar2) exact medianties(split)

Menu
ranksum
Statistics > Nonparametric analysis > Tests of hypotheses > Wilcoxon rank-sum test

median
Statistics > Nonparametric analysis > Tests of hypotheses > K-sample equality-of-medians test

2422
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Syntax
Wilcoxon rank-sum test

ranksum varname [ if ] [ in ] , by(groupvar) [ exact porder ]

Nonparametric equality-of-medians test

median varname [ if ] [ in ] [weight ] , by(groupvar) [median options]

ranksum options Description

Main
∗ by(groupvar) grouping variable

exact report exact 𝑝-value for rank-sum test; by default, exact 𝑝-value
is computed when total sample size ≤ 200

porder probability that variable for first group is larger than variable for
second group

median options Description

Main
∗ by(groupvar) grouping variable

exact report 𝑝-value from Fisher’s exact test

medianties(below) assign values equal to the median to below group

medianties(above) assign values equal to the median to above group

medianties(drop) drop values equal to the median from the analysis

medianties(split) split values equal to the median equally between the two groups

∗by(groupvar) is required.
by and collect are allowed with ranksum and median; see [U] 11.1.10 Prefix commands.

fweights are allowed with median; see [U] 11.1.6 weight.

Options for ranksum

� � �
Main �

by(groupvar) is required. It specifies the name of the grouping variable.

exact specifies that the exact 𝑝-value be computed in addition to the approximate 𝑝-value. The exact
𝑝-value is based on the actual randomization distribution of the test statistic. The approximate 𝑝-value
is based on a normal approximation to the randomization distribution. By default, the exact 𝑝-value is
computed for sample sizes 𝑛 = 𝑛1 +𝑛2 ≤ 200 because the normal approximation may not be precise

in small samples. The exact computation can be suppressed by specifying noexact. For sample sizes
larger than 200, you must specify exact to compute the exact 𝑝-value. The exact computation is
available for sample sizes 𝑛 ≤ 1000. As the sample size approaches 1,000, the computation takes

significantly longer.

porder displays an estimate of the probability that a random draw from the first population is larger than

a random draw from the second population.
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Options for median

� � �
Main �

by(groupvar) is required. It specifies the name of the grouping variable.

exact displays the 𝑝-value calculated by Fisher’s exact test. For two samples, both one- and two-sided
𝑝-values are displayed.

medianties(below | above | drop | split) specifies how values equal to the overall median are to be

handled. The median test computes the median for varname by using all observations and then di-

vides the observations into those falling above the median and those falling below the median. When

values for an observation are equal to the sample median, they can be dropped from the analysis

by specifying medianties(drop); added to the group above or below the median by specifying

medianties(above) or medianties(below), respectively; or if there is more than 1 observa-

tion with values equal to the median, they can be equally divided into the two groups by specifying

medianties(split). If this option is not specified, medianties(below) is assumed.

Remarks and examples

Example 1
Weare testing the effectiveness of a new fuel additive. We run an experiment with 24 cars: 12 cars with

the fuel treatment and 12 cars without. We input these data by creating a dataset with 24 observations.

mpg records the mileage rating, and treat records 0 if the mileage corresponds to untreated fuel and 1
if it corresponds to treated fuel.

. use https://www.stata-press.com/data/r18/fuel2

. ranksum mpg, by(treat)
Two-sample Wilcoxon rank-sum (Mann--Whitney) test

treat Obs Rank sum Expected

Untreated 12 128 150
Treated 12 172 150

Combined 24 300 300
Unadjusted variance 300.00
Adjustment for ties -4.04

Adjusted variance 295.96
H0: mpg(treat==Untreated) = mpg(treat==Treated)

z = -1.279
Prob > |z| = 0.2010
Exact prob = 0.2117

Because the total sample is only 24 cars, the exact 𝑝-value is computed by default. If the sample size were
greater than 200, we would have to specify the exact option if we wanted the exact 𝑝-value computed.

Despite the small sample size, the 𝑝-value computed using a normal approximation, 0.2010, is similar
to the exact 𝑝-value, 0.2117. These results indicate that the distributions are not statistically different at
a 0.05 significance level.
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Similarly, the median test,

. median mpg, by(treat) exact
Median test

Greater Whether car received
than the fuel additive
median Untreated Treated Total

no 7 5 12
yes 5 7 12

Total 12 12 24
Pearson chi2(1) = 0.6667 Pr = 0.414
Fisher’s exact = 0.684

1-sided Fisher’s exact = 0.342
Continuity corrected:

Pearson chi2(1) = 0.1667 Pr = 0.683

fails to reject the null hypothesis that there is no difference between the fuel with the additive and the

fuel without the additive.

Compare these results from these two tests with those obtained from the signrank and signtest
where we found significant differences; see [R] signrank. An experiment run on 24 different cars is not

as powerful as a before-and-after comparison using the same 12 cars.

Stored results
ranksum stores the following in r():
Scalars

r(N) sample size

r(N 1) sample size of first group

r(N 2) sample size of second group

r(z) 𝑧 statistic

r(Var a) adjusted variance

r(group1) value of variable for first group

r(sum obs) observed sum of ranks for first group

r(sum exp) expected sum of ranks for first group

r(p) two-sided 𝑝-value from normal approximation

r(p l) lower one-sided 𝑝-value from normal approximation

r(p u) upper one-sided 𝑝-value from normal approximation

r(p exact) two-sided exact 𝑝-value
r(p l exact) lower one-sided exact 𝑝-value
r(p u exact) upper one-sided exact 𝑝-value
r(porder) probability that draw from first population is larger than draw from second population

median stores the following in r():
Scalars

r(N) sample size

r(chi2) Pearson’s 𝜒2

r(chi2 cc) continuity-corrected Pearson’s 𝜒2

r(groups) number of groups compared

r(p) 𝑝-value for Pearson’s 𝜒2 test

r(p cc) continuity-corrected 𝑝-value
r(p exact) Fisher’s exact 𝑝-value
r(p1 exact) one-sided Fisher’s exact 𝑝-value
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Methods and formulas
For a practical introduction to these techniques with an emphasis on examples rather than theory, see

Acock (2023), Bland (2015), or Sprent and Smeeton (2007). For a summary of these tests, see Snedecor

and Cochran (1989).

Methods and formulas are presented under the following headings:

ranksum
median

ranksum
For theWilcoxon rank-sum test, there are two independent random variables, 𝑋1 and 𝑋2, and we test

the null hypothesis that 𝑋1 ∼ 𝑋2. We have a sample of size 𝑛1 from 𝑋1 and another of size 𝑛2 from

𝑋2.

The data are then ranked without regard to the sample to which they belong. If the data are tied,

averaged ranks are used. Wilcoxon’s test statistic (1945) is the sum of the ranks for the observations in

the first sample:

𝑇 =
𝑛1

∑
𝑖=1

𝑅1𝑖

Mann and Whitney’s 𝑈 statistic (1947) is the number of pairs (𝑋1𝑖, 𝑋2𝑗) such that 𝑋1𝑖 > 𝑋2𝑗. These

statistics differ only by a constant:

𝑈 = 𝑇 − 𝑛1(𝑛1 + 1)
2

Fisher’s principle of randomization provides a method for calculating the distribution of the test statis-

tic. The randomization distribution consists of all the possible values of 𝑇 resulting from the ( 𝑛
𝑛1

) ways
to choose 𝑛1 ranks from the set of all 𝑛 = 𝑛1 + 𝑛2 observed ranks (untied or tied) and assign them to the

first sample. When the exact option is specified (or implied for 𝑛 ≤ 200), this distribution is computed

using a recursive algorithm whose computational time is proportional to 𝑛4. (See Fisher [1935] for the

principle of randomization; Wilcoxon, Katti, and Wilcox [1970] for the computation with untied ranks;

and Hill and Peto [1971] for the general recursive algorithm.)

𝑝-values can also be computed using a normal approximation to the randomization distribution. It is
a straightforward exercise to verify that

𝐸(𝑇 ) = 𝑛1(𝑛 + 1)
2

and Var(𝑇 ) = 𝑛1𝑛2𝑠2

𝑛
where 𝑠 is the standard deviation of the combined ranks, 𝑟𝑖, for both groups:

𝑠2 = 1
𝑛 − 1

𝑛
∑
𝑖=1

(𝑟𝑖 − 𝑟)2

This formula for the variance is exact and holds both when there are no ties and when there are ties

and we use averaged ranks. (Indeed, the variance formula holds for the randomization distribution of

choosing 𝑛1 numbers from any set of 𝑛 numbers.)

For the normal approximation, we calculate

𝑧 = 𝑇 − 𝐸(𝑇 )
√Var(𝑇 )
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When the porder option is specified, the probability

𝑝 = 𝑈
𝑛1𝑛2

is computed.

Technical note
We follow the great majority of the literature in naming these tests forWilcoxon, Mann, andWhitney.

However, they were independently developed by several other researchers in the late 1940s and early

1950s. In addition to Wilcoxon, Mann, andWhitney, credit is due to Festinger (1946), Whitfield (1947),

Haldane and Smith (1947), and Van der Reyden (1952). Leon Festinger (1919–1989), John Burdon

SandersonHaldane (1892–1964), andCedricAusten Bardell Smith (1917–2002) arewell known for other

work, but little seems to be known about Whitfield or van der Reyden. For a detailed study, including

information on these researchers, see Berry, Mielke, and Johnston (2012).

median
The median test examines whether it is likely that two or more samples came from populations with

the same median. The null hypothesis is that the samples were drawn from populations with the same

median. The alternative hypothesis is that at least one sample was drawn from a population with a

different median. The test should be used only with ordinal or interval data.

Assume that there are score values for k independent samples to be compared. The median test is

performed by first computing the median score for all observations combined, regardless of the sample

group. Each score is compared with this computed grand median and is classified as being above the

grand median, below the grand median, or equal to the grand median. Observations with scores equal

to the grand median can be dropped, added to the “above” group, added to the “below” group, or split

between the two groups.

Once all observations are classified, the data are cast into a 2 × 𝑘 contingency table, and a Pearson’s
𝜒2 test or Fisher’s exact test is performed.� �
Henry Berthold Mann (1905–2000) was born in Vienna, Austria, where he completed a doctorate

in algebraic number theory. He moved to the United States in 1938 and for several years made his

livelihood by tutoring in New York. During this time, he proved a celebrated conjecture in number

theory and studied statistics at Columbia with Abraham Wald, with whom he wrote three papers.

After the war, he taught at Ohio State and the Universities of Wisconsin andArizona. In addition to

his work in number theory and statistics, he made major contributions to algebra and combinatorics.

Donald Ransom Whitney (1915–2007) studied at Oberlin, Princeton, and Ohio State Universities

and worked at the latter throughout his career. His PhD thesis under Henry Mann was on nonpara-

metric statistics. It was this work that produced the test that bears their names.� �
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ratio — Estimate ratios

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description
ratio produces estimates of ratios, along with standard errors.

Quick start
Estimate, standard error, and 95% confidence interval for the ratio of v1 to v2

ratio v1/v2

With bootstrap standard errors

ratio v1/v2, vce(bootstrap)

Ratios of v1 to v2 and v3 to v2
ratio (v1/v2) (v3/v2)

Same as above, but name the ratios ratio1 and ratio2
ratio (ratio1: v1/v2) (ratio2: v3/v2)

Test that ratio1 is equal to ratio2
test ratio1 = ratio2

Ratio of v1 to v2 over strata defined by levels of svar
ratio v1/v2, over(svar)

Direct standardization across categories cvar, weighting by standardization weight wvar
ratio v1/v2, stdize(cvar) stdweight(wvar)

Menu
Statistics > Summaries, tables, and tests > Summary and descriptive statistics > Ratios

2429
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Syntax
Basic syntax

ratio [ name: ] varname [ / ] varname

Full syntax

ratio ([ name: ] varname [ / ] varname)
[ ([ name: ] varname [ / ] varname) ... ] [ if ] [ in ] [weight ] [ , options ]

options Description

Model

stdize(varname) variable identifying strata for standardization

stdweight(varname) weight variable for standardization

nostdrescale do not rescale the standard weight variable

if/in/over

over(varlist) group over subpopulations defined by varlist

SE/Cluster

vce(vcetype) vcetype may be linearized, cluster clustvar, bootstrap, or
jackknife

Reporting

level(#) set confidence level; default is level(95)
noheader suppress table header

nolegend suppress table legend

display options control column formats, line width, display of empty cells, and
factor-variable labeling

coeflegend display legend instead of statistics

bootstrap, collect, jackknife, mi estimate, rolling, statsby, and svy are allowed; see [U] 11.1.10 Prefix com-

mands.

vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix; see [MI] mi estimate.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Options

� � �
Model �

stdize(varname) specifies that the point estimates be adjusted by direct standardization across the

strata identified by varname. This option requires the stdweight() option.

stdweight(varname) specifies the weight variable associated with the standard strata identified in the
stdize() option. The standardization weights must be constant within the standard strata.

nostdrescale prevents the standardization weights from being rescaled within the over() groups. This
option requires stdize() but is ignored if the over() option is not specified.

� � �
if/in/over �

over(varlist) specifies that estimates be computed for multiple subpopulations, which are identified by
the different values of the variables in varlist. Only numeric, nonnegative, integer-valued variables

are allowed in over(varlist).

� � �
SE/Cluster �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (linearized), that allow for intragroup correlation (cluster clustvar), and that
use bootstrap or jackknife methods (bootstrap, jackknife); see [R] vce option.

vce(linearized), the default, uses the linearized or sandwich estimator of variance.

� � �
Reporting �

level(#); see [R] Estimation options.

noheader prevents the table header from being displayed. This option implies nolegend.

nolegend prevents the table legend identifying the ratios from being displayed.

display options: vsquish, noemptycells, nofvlabel, fvwrap(#), fvwrapon(style),
cformat(% fmt), and nolstretch; see [R] Estimation options.

The following option is available with ratio but is not shown in the dialog box:

coeflegend; see [R] Estimation options.
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Remarks and examples

Example 1
Using the fuel data from example 3 of [R] ttest, we estimate the ratio of mileage for the cars without

the fuel treatment (mpg1) to those with the fuel treatment (mpg2).

. use https://www.stata-press.com/data/r18/fuel

. ratio myratio: mpg1/mpg2
Ratio estimation Number of obs = 12

myratio: mpg1/mpg2

Linearized
Ratio std. err. [95% conf. interval]

myratio .9230769 .032493 .8515603 .9945936

Using these results, we can test to see if this ratio is significantly different from one.

. test myratio = 1
( 1) myratio = 1

F( 1, 11) = 5.60
Prob > F = 0.0373

We find that the ratio is different from one at the 5% significance level but not at the 1% significance

level.

Example 2
Using state-level census data, we want to test whether the marriage rate is equal to the deathrate.

. use https://www.stata-press.com/data/r18/census2
(1980 Census data by state)
. ratio (deathrate: death/pop) (marrate: marriage/pop)
Ratio estimation Number of obs = 50

deathrate: death/pop
marrate: marriage/pop

Linearized
Ratio std. err. [95% conf. interval]

deathrate .0087368 .0002052 .0083244 .0091492
marrate .0105577 .0006184 .009315 .0118005

. test deathrate = marrate
( 1) deathrate - marrate = 0

F( 1, 49) = 6.93
Prob > F = 0.0113
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Stored results
ratio stores the following in e():
Scalars

e(N) number of observations

e(N over) number of subpopulations

e(N stdize) number of standard strata

e(N clust) number of clusters

e(k eq) number of equations in e(b)
e(df r) sample degrees of freedom

e(rank) rank of e(V)
Macros

e(cmd) ratio
e(cmdline) command as typed

e(varlist) varlist

e(stdize) varname from stdize()
e(stdweight) varname from stdweight()
e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(clustvar) name of cluster variable

e(over) varlist from over()
e(namelist) ratio identifiers

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(properties) b V
e(estat cmd) program used to implement estat
e(marginsnotok) predictions disallowed by margins

Matrices

e(b) vector of ratio estimates

e(V) (co)variance estimates

e( N) vector of numbers of nonmissing observations

e( N stdsum) number of nonmissing observations within the standard strata

e( p stdize) standardizing proportions

e(error) error code corresponding to e(b)
Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():
Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas
Methods and formulas are presented under the following headings:

The ratio estimator
Survey data
The survey ratio estimator
The standardized ratio estimator
The poststratified ratio estimator
The standardized poststratified ratio estimator
Subpopulation estimation
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The ratio estimator
Let 𝑅 = 𝑌 /𝑋 be the ratio to be estimated, where 𝑌 and 𝑋 are totals; see [R] total. The estimate

for 𝑅 is �̂� = ̂𝑌 /𝑋 (the ratio of the sample totals). From the delta method (that is, a first-order Taylor

expansion), the approximate variance of the sampling distribution of the linearized �̂� is

𝑉 (�̂�) ≈ 1
𝑋2 {𝑉 ( ̂𝑌 ) − 2𝑅Cov( ̂𝑌 , 𝑋) + 𝑅2𝑉 (𝑋)}

Direct substitution of𝑋, �̂�, and the estimated variances and covariance of𝑋 and ̂𝑌 leads to the following

variance estimator:

̂𝑉 (�̂�) = 1
𝑋2

{ ̂𝑉 ( ̂𝑌 ) − 2�̂�Ĉov( ̂𝑌 , 𝑋) + �̂�2 ̂𝑉 (𝑋)} (1)

Survey data
See [SVY] Variance estimation, [SVY] Direct standardization, and [SVY] Poststratification for

discussions that provide background information for the following formulas.

The survey ratio estimator
Let 𝑌𝑗 and 𝑋𝑗 be survey items for the 𝑗th individual in the population, where 𝑗 = 1, . . . , 𝑀 and 𝑀 is

the size of the population. The associated population ratio for the items of interest is 𝑅 = 𝑌 /𝑋 where

𝑌 =
𝑀

∑
𝑗=1

𝑌𝑗 and 𝑋 =
𝑀

∑
𝑗=1

𝑋𝑗

Let 𝑦𝑗 and 𝑥𝑗 be the corresponding survey items for the 𝑗th sampled individual from the population,

where 𝑗 = 1, . . . , 𝑚 and 𝑚 is the number of observations in the sample.

The estimator �̂� for the population ratio 𝑅 is �̂� = ̂𝑌 /𝑋, where

̂𝑌 =
𝑚

∑
𝑗=1

𝑤𝑗𝑦𝑗 and 𝑋 =
𝑚

∑
𝑗=1

𝑤𝑗𝑥𝑗

and 𝑤𝑗 is a sampling weight. The score variable for the ratio estimator is

𝑧𝑗(�̂�) =
𝑦𝑗 − �̂�𝑥𝑗

𝑋
=

𝑋𝑦𝑗 − ̂𝑌 𝑥𝑗

𝑋2
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The standardized ratio estimator
Let 𝐷𝑔 denote the set of sampled observations that belong to the 𝑔th standard stratum and define

𝐼𝐷𝑔
(𝑗) to indicate if the 𝑗th observation is a member of the 𝑔th standard stratum; where 𝑔 = 1, . . . , 𝐿𝐷

and 𝐿𝐷 is the number of standard strata. Also, let 𝜋𝑔 denote the fraction of the population that belongs

to the 𝑔th standard stratum, thus 𝜋1 + · · · + 𝜋𝐿𝐷
= 1. Note that 𝜋𝑔 is derived from the stdweight()

option.

The estimator for the standardized ratio is

�̂�𝐷 =
𝐿𝐷

∑
𝑔=1

𝜋𝑔

̂𝑌𝑔

𝑋𝑔

where

̂𝑌𝑔 =
𝑚

∑
𝑗=1

𝐼𝐷𝑔
(𝑗) 𝑤𝑗𝑦𝑗

and 𝑋𝑔 is similarly defined. The score variable for the standardized ratio is

𝑧𝑗(�̂�𝐷) =
𝐿𝐷

∑
𝑔=1

𝜋𝑔𝐼𝐷𝑔
(𝑗)

𝑋𝑔𝑦𝑗 − ̂𝑌𝑔𝑥𝑗

𝑋2
𝑔

The poststratified ratio estimator
Let 𝑃𝑘 denote the set of sampled observations that belong to poststratum 𝑘, and define 𝐼𝑃𝑘

(𝑗) to
indicate if the 𝑗th observation is a member of poststratum 𝑘, where 𝑘 = 1, . . . , 𝐿𝑃 and 𝐿𝑃 is the number

of poststrata. Also, let 𝑀𝑘 denote the population size for poststratum 𝑘. 𝑃𝑘 and 𝑀𝑘 are identified by

specifying the poststrata() and postweight() options on svyset; see [SVY] svyset.

The estimator for the poststratified ratio is

�̂�𝑃 =
̂𝑌 𝑃

𝑋𝑃

where

̂𝑌 𝑃 =
𝐿𝑃

∑
𝑘=1

𝑀𝑘

𝑀𝑘

̂𝑌𝑘 =
𝐿𝑃

∑
𝑘=1

𝑀𝑘

𝑀𝑘

𝑚
∑
𝑗=1

𝐼𝑃𝑘
(𝑗) 𝑤𝑗𝑦𝑗

and 𝑋𝑃 is similarly defined. The score variable for the poststratified ratio is

𝑧𝑗(�̂�𝑃) =
𝑧𝑗( ̂𝑌 𝑃) − �̂�𝑃𝑧𝑗(𝑋𝑃)

𝑋𝑃
=

𝑋𝑃𝑧𝑗( ̂𝑌 𝑃) − ̂𝑌 𝑃𝑧𝑗(𝑋𝑃)
(𝑋𝑃)2

where

𝑧𝑗( ̂𝑌 𝑃) =
𝐿𝑃

∑
𝑘=1

𝐼𝑃𝑘
(𝑗)𝑀𝑘

𝑀𝑘
(𝑦𝑗 −

̂𝑌𝑘

𝑀𝑘
)

and 𝑧𝑗(𝑋𝑃) is similarly defined.
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The standardized poststratified ratio estimator
The estimator for the standardized poststratified ratio is

�̂�𝐷𝑃 =
𝐿𝐷

∑
𝑔=1

𝜋𝑔

̂𝑌 𝑃
𝑔

𝑋𝑃
𝑔

where

̂𝑌 𝑃
𝑔 =

𝐿𝑝

∑
𝑘=1

𝑀𝑘

𝑀𝑘

̂𝑌𝑔,𝑘 =
𝐿𝑝

∑
𝑘=1

𝑀𝑘

𝑀𝑘

𝑚
∑
𝑗=1

𝐼𝐷𝑔
(𝑗)𝐼𝑃𝑘

(𝑗) 𝑤𝑗𝑦𝑗

and 𝑋𝑃
𝑔 is similarly defined. The score variable for the standardized poststratified ratio is

𝑧𝑗(�̂�𝐷𝑃) =
𝐿𝐷

∑
𝑔=1

𝜋𝑔
𝑋𝑃

𝑔 𝑧𝑗( ̂𝑌 𝑃
𝑔 ) − ̂𝑌 𝑃

𝑔 𝑧𝑗(𝑋𝑃
𝑔 )

(𝑋𝑃
𝑔 )2

where

𝑧𝑗( ̂𝑌 𝑃
𝑔 ) =

𝐿𝑃

∑
𝑘=1

𝐼𝑃𝑘
(𝑗)𝑀𝑘

𝑀𝑘
{𝐼𝐷𝑔

(𝑗)𝑦𝑗 −
̂𝑌𝑔,𝑘

𝑀𝑘
}

and 𝑧𝑗(𝑋𝑃
𝑔 ) is similarly defined.

Subpopulation estimation
Let 𝑆 denote the set of sampled observations that belong to the subpopulation of interest, and define

𝐼𝑆(𝑗) to indicate if the 𝑗th observation falls within the subpopulation.

The estimator for the subpopulation ratio is �̂�𝑆 = ̂𝑌 𝑆/𝑋𝑆, where

̂𝑌 𝑆 =
𝑚

∑
𝑗=1

𝐼𝑆(𝑗) 𝑤𝑗𝑦𝑗 and 𝑋𝑆 =
𝑚

∑
𝑗=1

𝐼𝑆(𝑗) 𝑤𝑗𝑥𝑗

Its score variable is

𝑧𝑗(�̂�𝑆) = 𝐼𝑆(𝑗)
𝑦𝑗 − �̂�𝑆𝑥𝑗

𝑋𝑆
= 𝐼𝑆(𝑗)

𝑋𝑆𝑦𝑗 − ̂𝑌 𝑆𝑥𝑗

(𝑋𝑆)2

The estimator for the standardized subpopulation ratio is

�̂�𝐷𝑆 =
𝐿𝐷

∑
𝑔=1

𝜋𝑔

̂𝑌 𝑆
𝑔

𝑋𝑆
𝑔

where

̂𝑌 𝑆
𝑔 =

𝑚
∑
𝑗=1

𝐼𝐷𝑔
(𝑗)𝐼𝑆(𝑗) 𝑤𝑗𝑦𝑗

and 𝑋𝑆
𝑔 is similarly defined. Its score variable is

𝑧𝑗(�̂�𝐷𝑆) =
𝐿𝐷

∑
𝑔=1

𝜋𝑔𝐼𝐷𝑔
(𝑗)𝐼𝑆(𝑗)

𝑋𝑆
𝑔 𝑦𝑗 − ̂𝑌 𝑆

𝑔 𝑥𝑗

(𝑋𝑆
𝑔 )2
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The estimator for the poststratified subpopulation ratio is

�̂�𝑃𝑆 =
̂𝑌 𝑃𝑆

𝑋𝑃𝑆

where

̂𝑌 𝑃𝑆 =
𝐿𝑃

∑
𝑘=1

𝑀𝑘

𝑀𝑘

̂𝑌 𝑆
𝑘 =

𝐿𝑃

∑
𝑘=1

𝑀𝑘

𝑀𝑘

𝑚
∑
𝑗=1

𝐼𝑃𝑘
(𝑗)𝐼𝑆(𝑗) 𝑤𝑗𝑦𝑗

and 𝑋𝑃𝑆 is similarly defined. Its score variable is

𝑧𝑗(�̂�𝑃𝑆) =
𝑋𝑃𝑆𝑧𝑗( ̂𝑌 𝑃𝑆) − ̂𝑌 𝑃𝑆𝑧𝑗(𝑋𝑃𝑆)

(𝑋𝑃𝑆)2

where

𝑧𝑗( ̂𝑌 𝑃𝑆) =
𝐿𝑃

∑
𝑘=1

𝐼𝑃𝑘
(𝑗)𝑀𝑘

𝑀𝑘
{𝐼𝑆(𝑗) 𝑦𝑗 −

̂𝑌 𝑆
𝑘

𝑀𝑘
}

and 𝑧𝑗(𝑋𝑃𝑆) is similarly defined.
The estimator for the standardized poststratified subpopulation ratio is

�̂�𝐷𝑃𝑆 =
𝐿𝐷

∑
𝑔=1

𝜋𝑔

̂𝑌 𝑃𝑆
𝑔

𝑋𝑃𝑆
𝑔

where

̂𝑌 𝑃𝑆
𝑔 =

𝐿𝑝

∑
𝑘=1

𝑀𝑘

𝑀𝑘

̂𝑌 𝑆
𝑔,𝑘 =

𝐿𝑝

∑
𝑘=1

𝑀𝑘

𝑀𝑘

𝑚
∑
𝑗=1

𝐼𝐷𝑔
(𝑗)𝐼𝑃𝑘

(𝑗)𝐼𝑆(𝑗) 𝑤𝑗𝑦𝑗

and 𝑋𝑃𝑆
𝑔 is similarly defined. Its score variable is

𝑧𝑗(�̂�𝐷𝑃𝑆) =
𝐿𝐷

∑
𝑔=1

𝜋𝑔
𝑋𝑃𝑆

𝑔 𝑧𝑗( ̂𝑌 𝑃𝑆
𝑔 ) − ̂𝑌 𝑃𝑆

𝑔 𝑧𝑗(𝑋𝑃𝑆
𝑔 )

(𝑋𝑃𝑆
𝑔 )2

where

𝑧𝑗( ̂𝑌 𝑃𝑆
𝑔 ) =

𝐿𝑃

∑
𝑘=1

𝐼𝑃𝑘
(𝑗)𝑀𝑘

𝑀𝑘
{𝐼𝐷𝑔

(𝑗)𝐼𝑆(𝑗) 𝑦𝑗 −
̂𝑌 𝑆
𝑔,𝑘

𝑀𝑘
}

and 𝑧𝑗(𝑋𝑃𝑆
𝑔 ) is similarly defined.
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Cochran, W. G. 1977. Sampling Techniques. 3rd ed. New York: Wiley.

Stuart, A., and J. K. Ord. 1994. Distribution Theory. Vol. 1 of Kendall’s Advanced Theory of Statistics, 6th ed. London:

Arnold.
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Also see
[R] ratio postestimation — Postestimation tools for ratio

[R] mean — Estimate means

[R] proportion — Estimate proportions

[R] total — Estimate totals

[MI] Estimation — Estimation commands for use with mi estimate

[SVY] Direct standardization — Direct standardization of means, proportions, and ratios

[SVY] Poststratification — Poststratification for survey data

[SVY] Subpopulation estimation — Subpopulation estimation for survey data

[SVY] svy estimation — Estimation commands for survey data

[SVY] Variance estimation — Variance estimation for survey data

[U] 20 Estimation and postestimation commands



ratio postestimation — Postestimation tools for ratio

Postestimation commands Remarks and examples Also see

Postestimation commands
The following postestimation commands are available after ratio:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters

estat vce variance–covariance matrix of the estimators (VCE)

estat (svy) postestimation statistics for survey data

estimates cataloging estimation results

etable table of estimation results

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

marginsplot graph the results from ratio

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

pwcompare pairwise comparisons of parameters

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

Remarks and examples
For examples of the use of test after ratio, see [R] ratio.

Also see
[R] ratio — Estimate ratios

[U] 20 Estimation and postestimation commands
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Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description
reg3 estimates a system of structural equations, where some equations contain endogenous variables

among the explanatory variables. Estimation is via three-stage least squares (3SLS); see Zellner and Theil

(1962). Typically, the endogenous explanatory variables are dependent variables from other equations

in the system. reg3 supports iterated GLS estimation and linear constraints.

reg3 can also estimate systems of equations by seemingly unrelated regression estimation (SURE),
multivariate regression (MVREG), and equation-by-equation ordinary least squares (OLS) or two-stage

least squares (2SLS).

Nomenclature
Under 3SLS or 2SLS estimation, a structural equation is defined as one of the equations specified in

the system. A dependent variable will have its usual interpretation as the left-hand-side variable in an

equation with an associated disturbance term. All dependent variables are explicitly taken to be endoge-

nous to the system and are treated as correlated with the disturbances in the system’s equations. Unless

specified in an endog() option, all other variables in the system are treated as exogenous to the system

and uncorrelated with the disturbances. The exogenous variables are taken to be instruments for the

endogenous variables.

Quick start
System of equations regressing y1 on x1, x2, and y2 and y2 on x1, x3, and y1

reg3 (y1 x1 x2 y2) (y2 x1 x3 y1)

Same as above, but name equations eq1 and eq2
reg3 (eq1: y1 x1 x2 y2) (eq2: y2 x1 x3 y1)

Same as above, but specify that x1 is endogenous and add instrumental variable v1
reg3 (eq1: y1 x1 x2 y2) (eq2: y2 x1 x3 y1), endog(x1) exog(v1)

Same as above, but with iterated estimation

reg3 (eq1: y1 x1 x2 y2) (eq2: y2 x1 x3 y1), endog(x1) exog(v1) ireg3

Menu
Statistics > Endogenous covariates > Three-stage least squares
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Syntax
Basic syntax

reg3 (depvar1 varlist1) (depvar2 varlist2) ... (depvar𝑁 varlist𝑁) [ if ] [ in ] [weight ]

Full syntax

reg3 ([eqname1:]depvar1𝑎 [depvar1𝑏 ...= ]varlist1 [ , noconstant ])
([eqname2:]depvar2𝑎 [depvar2𝑏 ...= ]varlist2 [ , noconstant ])
...

([eqname𝑁:]depvar𝑁𝑎 [depvar𝑁𝑏 ...= ]varlist𝑁 [ , noconstant ])
[ if ] [ in ] [weight ] [ , options ]

options Description

Model

ireg3 iterate until estimates converge

3sls three-stage least squares; the default

2sls two-stage least squares

ols ordinary least squares (OLS)

sure seemingly unrelated regression estimation (SURE)

mvreg sure with OLS degrees-of-freedom adjustment

corr(correlation) unstructured or independent correlation structure; default is
unstructured

exog(varlist) exogenous variables not specified in system equations

endog(varlist) additional right-hand-side endogenous variables

inst(varlist) full list of exogenous variables

allexog all right-hand-side variables are exogenous

noconstant suppress constant from instrument list

constraints(constraints) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be unadjusted, robust, or cluster clustvar

df adj.

small report small-sample statistics

dfk use small-sample adjustment

dfk2 use alternate adjustment

Reporting

level(#) set confidence level; default is level(95)
first report first-stage regression

nocnsreport do not display constraints

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling
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Optimization

optimization options control the optimization process; seldom used

noheader suppress display of header

notable suppress display of coefficient table

nofooter suppress display of footer

coeflegend display legend instead of statistics

varlist1, . . . , varlist𝑁 and the exog() and the inst() varlist may contain factor variables; see [U] 11.4.3 Factor variables.
You must have the same levels of factor variables in all equations that have factor variables.

depvar and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.

bootstrap, by, collect, fp, jackknife, rolling, and statsby are allowed; see [U] 11.1.10 Prefix commands.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
aweights are not allowed with the jackknife prefix; see [R] jackknife.
aweights and fweights are allowed; see [U] 11.1.6 weight.
noheader, notable, nofooter, and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Explicit equation naming (eqname:) cannot be combined with multiple dependent variables in an equa-
tion specification.

Options

� � �
Model �

ireg3 causes reg3 to iterate over the estimated disturbance covariance matrix and parameter estimates
until the parameter estimates converge. Although the iteration is usually successful, there is no guar-

antee that it will converge to a stable point. Under SURE, this iteration converges to the maximum

likelihood estimates.

3sls specifies the full 3SLS estimation of the system and is the default for reg3.

2sls causes reg3 to perform equation-by-equation 2SLS on the full system of equations. This option

implies dfk, small, and corr(independent).

Cross-equation testing should not be performed after estimation with this option. With 2sls, no
covariance is estimated between the parameters of the equations. For cross-equation testing, use

3sls.

ols causes reg3 to perform equation-by-equation OLS on the system—even if dependent variables ap-

pear as regressors or the regressors differ for each equation; see [MV] mvreg. ols implies allexog,
dfk, small, and corr(independent); nodfk and nosmall may be specified to override dfk and
small.

The covariance of the coefficients between equations is not estimated under this option, and cross-

equation tests should not be performed after estimation with ols. For cross-equation testing, use sure
or 3sls (the default).

sure causes reg3 to perform a SURE of the system—even if dependent variables from some equations

appear as regressors in other equations; see [R] sureg. sure is a synonym for allexog.
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mvreg is identical to sure, except that the disturbance covariance matrix is estimated with an OLS

degrees-of-freedom adjustment—the dfk option. If the regressors are identical for all equations, the
parameter point estimates will be the standardMVREG results. If any of the regressors differ, the point

estimates are those for SUREwith an OLS degrees-of-freedom adjustment in computing the covariance

matrix. nodfk and nosmall may be specified to override dfk and small.

corr(correlation) specifies the assumed form of the correlation structure of the equation disturbances

and is rarely requested explicitly. For the family of models fit by reg3, the only two allowable

correlation structures are unstructured and independent. The default is unstructured.

This option is used almost exclusively to estimate a system of equations by 2SLS or to perform OLS

regression with reg3 on multiple equations. In these cases, the correlation is set to independent,
forcing reg3 to treat the covariance matrix of equation disturbances as diagonal in estimating model
parameters. Thus, a set of two-stage coefficient estimates can be obtained if the system contains

endogenous right-hand-side variables, or OLS regression can be imposed, even if the regressors differ

across equations. Without imposing independent disturbances, reg3 would estimate the former by
3SLS and the latter by SURE.

Any tests performed after estimation with the independent option will treat coefficients in dif-

ferent equations as having no covariance; cross-equation tests should not be used after specifying

corr(independent).

exog(varlist) specifies additional exogenous variables that are included in none of the system equations.

This can occur when the system contains identities that are not estimated. If implicitly exogenous vari-

ables from the equations are listed here, reg3 will just ignore the additional information. Specified
variables will be added to the exogenous variables in the system and used in the first stage as instru-

ments for the endogenous variables. By specifying dependent variables from the structural equations,

you can use exog() to override their endogeneity.

endog(varlist) identifies variables in the system that are not dependent variables but are endogenous

to the system. These variables must appear in the variable list of at least one equation in the system.

Again, the need for this identification often occurs when the system contains identities. For exam-

ple, a variable that is the sum of an exogenous variable and a dependent variable may appear as an

explanatory variable in some equations.

inst(varlist) specifies a full list of all exogenous variables and may not be used with the endog() or
exog() options. It must contain a full list of variables to be used as instruments for the endogenous
regressors. Like exog(), the list may contain variables not specified in the system of equations. This

option can be used to achieve the same results as the endog() and exog() options, and the choice is
a matter of convenience. Any variable not specified in the varlist of the inst() option is assumed to
be endogenous to the system. As with exog(), including the dependent variables from the structural

equations will override their endogeneity.

allexog indicates that all right-hand-side variables are to be treated as exogenous—even if they appear

as the dependent variable of another equation in the system. This option can be used to enforce a

SURE or MVREG estimation even when some dependent variables appear as regressors.

noconstant, constraints(constraints); see [R] Estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (unadjusted), that are robust to some kinds of misspecification (robust), and
that allow for intragroup correlation (cluster clustvar); see [R] vce option.
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vce(unadjusted), the default, specifies that an unadjusted (nonrobust) VCE matrix be used; this

results in efficient estimates when assuming homoskedasticity.

� � �
df adj. �

small specifies that small-sample statistics be computed. It shifts the test statistics from 𝜒2 and

𝑧 statistics to 𝐹 statistics and 𝑡 statistics. This option is intended primarily to support MVREG. Al-

though the standard errors from each equation are computed using the degrees of freedom for the

equation, the degrees of freedom for the 𝑡 statistics are all taken to be those for the first equation. This
approach poses no problem under MVREG because the regressors are the same across equations.

dfk specifies the use of an alternative divisor in computing the covariance matrix for the equation residu-
als. As an asymptotically justified estimator, reg3 by default uses the number of sample observations
𝑛 as a divisor. When the dfk option is set, a small-sample adjustment is made, and the divisor is

taken to be √(𝑛 − 𝑘𝑖)(𝑛 − 𝑘𝑗), where 𝑘𝑖 and 𝑘𝑗 are the number of parameters in equations 𝑖 and 𝑗,
respectively.

dfk2 specifies the use of an alternative divisor in computing the covariancematrix for the equation errors.
When the dfk2 option is set, the divisor is taken to be the mean of the residual degrees of freedom
from the individual equations.

� � �
Reporting �

level(#); see [R] Estimation options.

first requests that the first-stage regression results be displayed during estimation.

nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Optimization �

optimization options control the iterative process that minimizes the sum of squared errors when ireg3
is specified. These options are seldom used.

iterate(#) specifies the maximum number of iterations. When the number of iterations equals #,

the optimizer stops and presents the current results, even if the convergence tolerance has not been

reached. The default is the number set using set maxiter, which is 300 by default.

trace adds to the iteration log a display of the current parameter vector.

log and nolog specify whether to display the iteration log. The iteration log is displayed by default
unless you used set iterlog off to suppress it; see set iterlog in [R] set iter.

tolerance(#) specifies the tolerance for the coefficient vector. When the relative change in the

coefficient vector from one iteration to the next is less than or equal to #, the optimization process is

stopped. tolerance(1e-6) is the default.

The following options are available with reg3 but are not shown in the dialog box:

noheader suppresses display of the header reporting the estimation method and the table of equation

summary statistics.

notable suppresses display of the coefficient table.
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nofooter suppresses display of the footer reporting the list of endogenous and exogenous variables in
the model.

coeflegend; see [R] Estimation options.

Remarks and examples
reg3 estimates systems of structural equations where some equations contain endogenous variables

among the explanatory variables. Generally, these endogenous variables are the dependent variables of

other equations in the system, though not always. The disturbance is correlated with the endogenous

variables—violating the assumptions of OLS. Further, because some of the explanatory variables are the

dependent variables of other equations in the system, the error terms among the equations are expected to

be correlated. reg3 uses an instrumental-variables approach to produce consistent estimates and gener-
alized least squares (GLS) to account for the correlation structure in the disturbances across the equations.

Good general references on three-stage estimation include Davidson and MacKinnon (1993, 651–661)

and Greene (2018, 363–365).

Three-stage least squares can be thought of as producing estimates from a three-step process.

Step 1. Develop instrumented values for all endogenous variables. These instrumented values can simply

be considered as the predicted values resulting from a regression of each endogenous variable on all

exogenous variables in the system. This stage is identical to the first step in 2SLS and is critical for

the consistency of the parameter estimates.

Step 2. Obtain a consistent estimate for the covariance matrix of the equation disturbances. These

estimates are based on the residuals from a 2SLS estimation of each structural equation.

Step 3. Perform a GLS-type estimation using the covariance matrix estimated in the second stage and

with the instrumented values in place of the right-hand-side endogenous variables.

Technical note
The estimation and use of the covariance matrix of disturbances in three-stage estimation is almost

identical to the SURE method—sureg. As with SURE, using this covariance matrix improves the effi-

ciency of the three-stage estimator. Even without the covariance matrix, the estimates would be con-

sistent. (They would be 2SLS estimates.) This improvement in efficiency comes with a caveat. All the

parameter estimates now depend on the consistency of the covariance matrix estimates. If one equation

in the system is misspecified, the disturbance covariance estimates will be inconsistent, and the resulting

coefficients will be biased and inconsistent. Alternatively, if each equation is estimated separately by

2SLS ([R] regress), only the coefficients in the misspecified equation are affected.

Technical note
If an equation is just identified, the 3SLS point estimates for that equation are identical to the 2SLS

estimates. However, as with sureg, even if all equations are just identified, fitting the model via reg3
has at least one advantage over fitting each equation separately via ivregress; by using reg3, tests
involving coefficients in different equations can be performed easily using test or testnl.
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Example 1
A simple macroeconomic model relates consumption (consump) to private and government wages

paid (wagepriv and wagegovt). Simultaneously, private wages depend on consumption, total govern-
ment expenditures (govt), and the lagged stock of capital in the economy (capital1). Although this is
not a plausible model, it does meet the criterion of being simple. This model could be written as

consump = 𝛽0 + 𝛽1 wagepriv + 𝛽2 wagegovt + 𝜖1

wagepriv = 𝛽3 + 𝛽4 consump + 𝛽5 govt + 𝛽6 capital1 + 𝜖2

If we assume that this is the full system, consump and wagepriv will be endogenous variables, with
wagegovt, govt, and capital1 exogenous. Data for the US economy on these variables are taken from
Klein (1950). This model can be fit with reg3 by typing

. use https://www.stata-press.com/data/r18/klein

. reg3 (consump wagepriv wagegovt) (wagepriv consump govt capital1)
Three-stage least-squares regression

Equation Obs Params RMSE ”R-squared” chi2 P>chi2

consump 22 2 1.776297 0.9388 208.02 0.0000
wagepriv 22 3 2.372443 0.8542 80.04 0.0000

Coefficient Std. err. z P>|z| [95% conf. interval]

consump
wagepriv .8012754 .1279329 6.26 0.000 .5505314 1.052019
wagegovt 1.029531 .3048424 3.38 0.001 .432051 1.627011

_cons 19.3559 3.583772 5.40 0.000 12.33184 26.37996

wagepriv
consump .4026076 .2567312 1.57 0.117 -.1005764 .9057916

govt 1.177792 .5421253 2.17 0.030 .1152461 2.240338
capital1 -.0281145 .0572111 -0.49 0.623 -.1402462 .0840173

_cons 14.63026 10.26693 1.42 0.154 -5.492552 34.75306

Endogenous: consump wagepriv
Exogenous: wagegovt govt capital1

Without showing the 2SLS results, we note that the consumption function in this system falls under the

conditions noted earlier. That is, the 2SLS and 3SLS coefficients for the equation are identical.
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Example 2
Some of the most common simultaneous systems encountered are supply-and-demand models. A

simple system could be specified as

qDemand = 𝛽0 + 𝛽1 price + 𝛽2 pcompete + 𝛽3 income + 𝜖1

qSupply = 𝛽4 + 𝛽5 price + 𝛽6 praw + 𝜖2

Equilibrium condition: quantity = qDemand = qSupply

where

quantity is the quantity of a product produced and sold,

price is the price of the product,

pcompete is the price of a competing product,

income is the average income level of consumers, and

praw is the price of raw materials used to produce the product.

In this system, price is assumed to be determined simultaneously with demand. The important statisti-

cal implications are that price is not a predetermined variable and that it is correlated with the disturbances

of both equations. The system is somewhat unusual: quantity is associated with two disturbances. This

fact really poses no problem because the disturbances are specified on the behavioral demand and sup-

ply equations—two separate entities. Often one of the two equations is rewritten to place price on the

left-hand side, making this endogeneity explicit in the specification.

To provide a concrete illustration of the effects of simultaneous equations, we can simulate data for

the above system by using known coefficients and disturbance properties. Specifically, we will simulate

the data as

qDemand = 40 − 1.0 price + 0.25 pcompete + 0.5 income + 𝜖1

qSupply = 0.5 price − 0.75 praw + 𝜖2

where

𝜖1 ∼ 𝑁(0, 3.8)

𝜖2 ∼ 𝑁(0, 2.4)

For comparison, we can estimate the supply and demand equations separately by OLS. The estimates

for the demand equation are

. use https://www.stata-press.com/data/r18/supDem

. regress quantity price pcompete income
Source SS df MS Number of obs = 49

F(3, 45) = 1.00
Model 23.1579302 3 7.71931008 Prob > F = 0.4004

Residual 346.459313 45 7.69909584 R-squared = 0.0627
Adj R-squared = 0.0002

Total 369.617243 48 7.70035923 Root MSE = 2.7747

quantity Coefficient Std. err. t P>|t| [95% conf. interval]

price .1186265 .1716014 0.69 0.493 -.2269965 .4642496
pcompete .0946416 .1200815 0.79 0.435 -.1472149 .3364981
income .0785339 .1159867 0.68 0.502 -.1550754 .3121432
_cons 7.563261 5.019479 1.51 0.139 -2.54649 17.67301
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The OLS estimates for the supply equation are

. regress quantity price praw
Source SS df MS Number of obs = 49

F(2, 46) = 35.71
Model 224.819549 2 112.409774 Prob > F = 0.0000

Residual 144.797694 46 3.14777596 R-squared = 0.6082
Adj R-squared = 0.5912

Total 369.617243 48 7.70035923 Root MSE = 1.7742

quantity Coefficient Std. err. t P>|t| [95% conf. interval]

price .724675 .1095657 6.61 0.000 .5041307 .9452192
praw -.8674796 .1066114 -8.14 0.000 -1.082077 -.652882
_cons -6.97291 3.323105 -2.10 0.041 -13.66197 -.283847

Examining the coefficients from these regressions, we note that they are not close to the known param-

eters used to generate the simulated data. In particular, the positive coefficient on price in the demand
equation stands out. We constructed our simulated data to be consistent with economic theory—people

demand less of a product if its price rises and more if their personal income rises. Although the price
coefficient is statistically insignificant, the positive value contrasts starkly with what is predicted from

economic price theory and the −1.0 value that we used in the simulation. Likewise, we are disappointed

with the insignificance and level of the coefficient on average income. The supply equation has cor-
rect signs on the two main parameters, but their levels are different from the known values. In fact,

the coefficient on price (0.724675) is different from the simulated parameter (0.5) at the 5% level of

significance.

All of these problems are to be expected. We explicitly constructed a simultaneous system of equations

that violated one of the assumptions of least squares. Specifically, the disturbances were correlated with

one of the regressors—price.

Two-stage least squares can be used to address the correlation between regressors and disturbances.

Using instruments for the endogenous variable, price, 2SLS will produce consistent estimates of the
parameters in the system. Let’s use ivregress (see [R] ivregress) to see how our simulated system

behaves when fit using 2SLS.

. ivregress 2sls quantity (price = praw) pcompete income
Instrumental-variables 2SLS regression Number of obs = 49

Wald chi2(3) = 8.77
Prob > chi2 = 0.0326
R-squared = .
Root MSE = 3.7333

quantity Coefficient Std. err. z P>|z| [95% conf. interval]

price -1.015817 .374209 -2.71 0.007 -1.749253 -.282381
pcompete .3319504 .172912 1.92 0.055 -.0069508 .6708517
income .5090607 .1919482 2.65 0.008 .1328491 .8852723
_cons 39.89988 10.77378 3.70 0.000 18.78366 61.01611

Endogenous: price
Exogenous: pcompete income praw
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. ivregress 2sls quantity (price = pcompete income) praw
Instrumental-variables 2SLS regression Number of obs = 49

Wald chi2(2) = 39.25
Prob > chi2 = 0.0000
R-squared = 0.5928
Root MSE = 1.7525

quantity Coefficient Std. err. z P>|z| [95% conf. interval]

price .5773133 .1749974 3.30 0.001 .2343247 .9203019
praw -.7835496 .1312414 -5.97 0.000 -1.040778 -.5263213
_cons -2.550694 5.273067 -0.48 0.629 -12.88571 7.784327

Endogenous: price
Exogenous: praw pcompete income

We are now much happier with the estimation results. All the coefficients from both equations are

close to the true parameter values for the system. In particular, the coefficients are all well within 95%

confidence intervals for the parameters. The missing 𝑅2 in the demand equation seems unusual; we will

discuss that more later.

Finally, this system could be estimated using 3SLS. To demonstrate how large systems might be han-

dled and to avoid multiline commands, we will use global macros (see [P]macro) to hold the specifica-

tions for our equations.

. global demand ”(qDemand: quantity price pcompete income)”

. global supply ”(qSupply: quantity price praw)”

. reg3 $demand $supply, endog(price)

We must specify price as endogenous because it does not appear as a dependent variable in either

equation. Without this option, reg3 would assume that there are no endogenous variables in the system
and produce seemingly unrelated regression (sureg) estimates. The reg3 output from our series of

commands is

Three-stage least-squares regression

Equation Obs Params RMSE ”R-squared” chi2 P>chi2

qDemand 49 3 3.739686 -0.8540 8.68 0.0338
qSupply 49 2 1.752501 0.5928 39.25 0.0000

Coefficient Std. err. z P>|z| [95% conf. interval]

qDemand
price -1.014345 .3742036 -2.71 0.007 -1.74777 -.2809194

pcompete .2647206 .1464194 1.81 0.071 -.0222561 .5516973
income .5299146 .1898161 2.79 0.005 .1578819 .9019472
_cons 40.08749 10.77072 3.72 0.000 18.97726 61.19772

qSupply
price .5773133 .1749974 3.30 0.001 .2343247 .9203019
praw -.7835496 .1312414 -5.97 0.000 -1.040778 -.5263213
_cons -2.550694 5.273067 -0.48 0.629 -12.88571 7.784327

Endogenous: quantity price
Exogenous: pcompete income praw
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The use of 3SLS over 2SLS is essentially an efficiency issue. The coefficients of the demand equation

from 3SLS are close to the coefficients from two-stage least squares, and those of the supply equation

are identical. The latter case was mentioned earlier for systems with some exactly identified equations.

However, even for the demand equation, we do not expect the coefficients to change systematically.

What we do expect from three-stage least squares are more precise estimates of the parameters given the

validity of our specification and reg3’s use of the covariances among the disturbances.

Let’s summarize the results. With OLS, we got obviously biased estimates of the parameters. No

amount of data would have improved the OLS estimates—they are inconsistent in the face of the violated

OLS assumptions. With 2SLS, we obtained consistent estimates of the parameters, and these would have

improved with more data. With 3SLS, we obtained consistent estimates of the parameters that are more

efficient than those obtained by 2SLS.

Technical note
We noted earlier that the 𝑅2 was missing from the two-stage estimates of the demand equation. Now

we see that the 𝑅2 is negative for the three-stage estimates of the same equation. How can we have a

negative 𝑅2?

In most estimators, other than least squares, the 𝑅2 is no more than a summary measure of the overall

in-sample predictive power of the estimator. The computational formula for 𝑅2 is 𝑅2 = 1 − RSS/TSS,
where RSS is the residual sum of squares (sum of squared residuals) and TSS is the total sum of squared

deviations about themean of the dependent variable. In a standard linearmodel with a constant, themodel

from which the TSS is computed is nested within the full model from which RSS is computed—they both

have a constant term based on the same data. Thus, it must be that TSS ≥ RSS and 𝑅2 is constrained

between 0 and 1.

For 2SLS and 3SLS, some of the regressors enter the model as instruments when the parameters are

estimated. However, because our goal is to fit the structural model, the actual values, not the instru-

ments for the endogenous right-hand-side variables, are used to determine 𝑅2. The model residuals are

computed over a different set of regressors from those used to fit the model. The two- or three-stage

estimates are no longer nested within a constant-only model of the dependent variable, and the residual

sum of squares is no longer constrained to be smaller than the total sum of squares.

A negative 𝑅2 in 3SLS should be taken for exactly what it is—an indication that the structural model

predicts the dependent variable worse than a constant-only model. Is this a problem? It depends on the

application. Three-stage least squares applied to our contrived supply-and-demand example produced

good estimates of the known true parameters. Still, the demand equation produced an 𝑅2 of −0.854.

How do we feel about our parameter estimates? This should be determined by the estimates themselves,

their associated standard errors, and the overall model significance. On this basis, negative 𝑅2 and all,

we feel pretty good about all the parameter estimates for both the supply and demand equations. Would

we want to make predictions about equilibrium quantity by using the demand equation alone? Probably

not. Would we want to make these quantity predictions by using the supply equation? Possibly, because

based on in-sample predictions, they seem better than those from the demand equations. However, both

the supply and demand estimates are based on limited information. If we are interested in predicting

quantity, a reduced-form equation containing all our independent variables would usually be preferred.
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Technical note
As a matter of syntax, we could have specified the supply-and-demand model on one line without

using global macros.

. reg3 (quantity price pcompete income) (quantity price praw), endog(price)
Three-stage least-squares regression

Equation Obs Params RMSE ”R-squared” chi2 P>chi2

quantity 49 3 3.739686 -0.8540 8.68 0.0338
2quantity 49 2 1.752501 0.5928 39.25 0.0000

Coefficient Std. err. z P>|z| [95% conf. interval]

quantity
price -1.014345 .3742036 -2.71 0.007 -1.74777 -.2809194

pcompete .2647206 .1464194 1.81 0.071 -.0222561 .5516973
income .5299146 .1898161 2.79 0.005 .1578819 .9019472
_cons 40.08749 10.77072 3.72 0.000 18.97726 61.19772

2quantity
price .5773133 .1749974 3.30 0.001 .2343247 .9203019
praw -.7835496 .1312414 -5.97 0.000 -1.040778 -.5263213
_cons -2.550694 5.273067 -0.48 0.629 -12.88571 7.784327

Endogenous: quantity price
Exogenous: pcompete income praw

However, here reg3 has been forced to create a unique equation name for the supply equa-

tion—2quantity. Both the supply and demand equations could not be designated as quantity, so
a number was prefixed to the name for the supply equation.

We could have specified

. reg3 (qDemand: quantity price pcompete income) (qSupply: quantity price praw),
> endog(price)

and obtained the same results and equation labeling as when we used global macros to hold the equation

specifications.

Without explicit equation names, reg3 always assumes that the dependent variable should be used to
name equations. When each equation has a different dependent variable, this rule causes no problems

and produces easily interpreted result tables. If the same dependent variable appears in more than one

equation, however, reg3 will create a unique equation name based on the dependent variable name.

Because equation names must be used for cross-equation tests, you have more control in this situation if

explicit names are placed on the equations.
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Example 3: Using the full syntax of reg3
Klein’s (1950) model of the US economy is often used to demonstrate system estimators. It contains

several common features that will serve to demonstrate the full syntax of reg3. The Klein model is

defined by the following seven relationships:

c = 𝛽0 + 𝛽1p + 𝛽2L.p + 𝛽3w + 𝜖1 (1)

i = 𝛽4 + 𝛽5p + 𝛽6L.p + 𝛽7L.k + 𝜖2 (2)

wp = 𝛽8 + 𝛽9y + 𝛽10L.y + 𝛽11yr + 𝜖3 (3)

y = c + i + g (4)

p = y − t − wp (5)

k = L.k + i (6)

w = wg + wp (7)

Here we have used Stata’s lag operator L. to represent variables that appear with a one-period lag in our
model; see [U] 13.10 Time-series operators.

The variables in the model are listed below. Two sets of variable names are shown. The concise

first name uses traditional economics mnemonics, whereas the second name provides more guidance

for everyone else. The concise names serve to keep the specification of the model small (and quite

understandable to economists).

Short name Long name Variable definition Type

c consump Consumption endogenous
p profits Private industry profits endogenous
wp wagepriv Private wage bill endogenous
wg wagegovt Government wage bill exogenous
w wagetot Total wage bill endogenous
i invest Investment endogenous
k capital Capital stock endogenous
y totinc Total income/demand endogenous
g govt Government spending exogenous
t taxnetx Indirect bus. taxes + net exports exogenous
yr year Year—1931 exogenous

Equations (1)–(3) are behavioral and contain explicit disturbances (𝜖1, 𝜖2, and 𝜖3). The remaining

equations are identities that specify additional variables in the system and their accounting relationships

with the variables in the behavioral equations. Some variables are explicitly endogenous by appearing

as dependent variables in (1)–(3). Others are implicitly endogenous as linear combinations that contain

other endogenous variables (for example, w and p). Still other variables are implicitly exogenous by

appearing in the identities but not in the behavioral equations (for example, wg and g).



reg3 — Three-stage estimation for systems of simultaneous equations 2453

Using the concise names, we can fit Klein’s model with the following command:

. use https://www.stata-press.com/data/r18/klein2

. reg3 (c p L.p w) (i p L.p L.k) (wp y L.y yr), endog(w p y) exog(t wg g)
Three-stage least-squares regression

Equation Obs Params RMSE ”R-squared” chi2 P>chi2

c 21 3 .9443305 0.9801 864.59 0.0000
i 21 3 1.446736 0.8258 162.98 0.0000
wp 21 3 .7211282 0.9863 1594.75 0.0000

Coefficient Std. err. z P>|z| [95% conf. interval]

c
p

--. .1248904 .1081291 1.16 0.248 -.0870387 .3368194
L1. .1631439 .1004382 1.62 0.104 -.0337113 .3599992

w .790081 .0379379 20.83 0.000 .715724 .8644379
_cons 16.44079 1.304549 12.60 0.000 13.88392 18.99766

i
p

--. -.0130791 .1618962 -0.08 0.936 -.3303898 .3042316
L1. .7557238 .1529331 4.94 0.000 .4559805 1.055467

k
L1. -.1948482 .0325307 -5.99 0.000 -.2586072 -.1310893

_cons 28.17785 6.793768 4.15 0.000 14.86231 41.49339

wp
y

--. .4004919 .0318134 12.59 0.000 .3381388 .462845
L1. .181291 .0341588 5.31 0.000 .1143411 .2482409

yr .149674 .0279352 5.36 0.000 .094922 .2044261
_cons 1.797216 1.115854 1.61 0.107 -.3898181 3.984251

Endogenous: c i wp w p y
Exogenous: L.p L.k L.y yr t wg g

We used the exog() option to identify t, wg, and g as exogenous variables in the system. These variables
must be identified because they are part of the system but appear directly in none of the behavioral

equations. Without this option, reg3 would not know they were part of the system and could be used

as instrumental variables. The endog() option specifying w, p, and y is also required. Without this

information, reg3would be unaware that these variables are linear combinations that include endogenous
variables. We did not include k in the endog() option because only its lagged value appears in the

behavioral equations.
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Technical note
Rather than listing additional endogenous and exogenous variables, we could specify the full list of

exogenous variables in an inst() option,

. reg3 (c p L.p w) (i p L.p L.k) (wp y L.y yr), inst(g t wg yr L.p L.k L.y)

or equivalently,

. global conseqn ”(c p L.p w)”

. global inveqn ”(i p L.p L.k)”

. global wageqn ”(wp y L.y yr)”

. global inlist ”g t wg yr L.p L.k L.y”

. reg3 $conseqn $inveqn $wageqn, inst($inlist)

Macros and explicit equations can also be mixed in the specification

. reg3 $conseqn (i p L.p L.k) $wageqn, endog(w p y) exog(t wg g)

or

. reg3 (c p L.p w) $inveqn (wp y L.y yr), endog(w p y) exog(t wg g)

Placing the equation-binding parentheses in the global macros was also arbitrary. We could have used

. global consump ”c p L.p w”

. global invest ”i p L.p L.k”

. global wagepriv ”wp y L.y yr”

. reg3 ($consump) ($invest) ($wagepriv), endog(w p y) exog(t wg g)

reg3 is tolerant of all combinations, and these commands will produce identical output.
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Switching to the full variable names, we can fit Klein’s model with the commands below. We will

use global macros to store the lists of endogenous and exogenous variables. Again, this is not necessary:

these lists could have been typed directly on the command line. However, assigning the lists to local

macros makes additional processing easier if alternative models are to be fit. We will also use the ireg3
option to produce the iterated estimates.

. use https://www.stata-press.com/data/r18/kleinfull

. global conseqn ”(consump profits L.profits wagetot)”

. global inveqn ”(invest profits L.profits L.capital)”

. global wageqn ”(wagepriv totinc L.totinc year)”

. global enlist ”wagetot profits totinc”

. global exlist ”taxnetx wagegovt govt”

. reg3 $conseqn $inveqn $wageqn, endog($enlist) exog($exlist) ireg3
Iteration 1: Tolerance = .3712549
Iteration 2: Tolerance = .1894712
Iteration 3: Tolerance = .1076401
(output omitted )

Iteration 24: Tolerance = 7.049e-07
Three-stage least-squares regression, iterated

Equation Obs Params RMSE ”R-squared” chi2 P>chi2

consump 21 3 .9565088 0.9796 970.31 0.0000
invest 21 3 2.134327 0.6209 56.78 0.0000
wagepriv 21 3 .7782334 0.9840 1312.19 0.0000

Coefficient Std. err. z P>|z| [95% conf. interval]

consump
profits

--. .1645096 .0961979 1.71 0.087 -.0240348 .3530539
L1. .1765639 .0901001 1.96 0.050 -.0000291 .3531569

wagetot .7658011 .0347599 22.03 0.000 .6976729 .8339294
_cons 16.55899 1.224401 13.52 0.000 14.15921 18.95877

invest
profits

--. -.3565316 .2601568 -1.37 0.171 -.8664296 .1533664
L1. 1.011299 .2487745 4.07 0.000 .5237098 1.498888

capital
L1. -.2602 .0508694 -5.12 0.000 -.3599022 -.1604978

_cons 42.89629 10.59386 4.05 0.000 22.13271 63.65987

wagepriv
totinc

--. .3747792 .0311027 12.05 0.000 .3138191 .4357394
L1. .1936506 .0324018 5.98 0.000 .1301443 .257157

year .1679262 .0289291 5.80 0.000 .1112263 .2246261
_cons 2.624766 1.195559 2.20 0.028 .2815124 4.968019

Endogenous: consump invest wagepriv wagetot profits totinc
Exogenous: L.profits L.capital L.totinc year taxnetx wagegovt govt
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Example 4: Constraints with reg3
As a simple example of constraints, (1) above may be rewritten with both wages explicitly appearing

(rather than as a variable containing the sum). Using the longer variable names, we have

consump = 𝛽0 + 𝛽1 profits + 𝛽2 L.profits + 𝛽3 wagepriv + 𝛽12 wagegovt + 𝜖1

To retain the effect of the identity in (7), we need 𝛽3 = 𝛽12 as a constraint on the system. We obtain

this result by defining the constraint in the usual way and then specifying its use in reg3. Because reg3
is a system estimator, we will need to use the full equation syntax of constraint. The assumption that
the following commands are entered after the model above has been estimated. We are simply changing

the definition of the consumption equation (consump) and adding a constraint on two of its parameters.
The rest of the model definition is carried forward.

. global conseqn ”(consump profits L.profits wagepriv wagegovt)”

. constraint define 1 [consump]wagepriv = [consump]wagegovt

. reg3 $conseqn $inveqn $wageqn, endog($enlist) exog($exlist) constr(1) ireg3
note: additional endogenous variables not in the system have no effect and are

ignored (wagetot).
Iteration 1: Tolerance = .3712547
Iteration 2: Tolerance = .189471
Iteration 3: Tolerance = .10764
(output omitted )

Iteration 24: Tolerance = 7.049e-07
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Three-stage least-squares regression, iterated

Equation Obs Params RMSE ”R-squared” chi2 P>chi2

consump 21 3 .9565086 0.9796 970.31 0.0000
invest 21 3 2.134326 0.6209 56.78 0.0000
wagepriv 21 3 .7782334 0.9840 1312.19 0.0000

( 1) [consump]wagepriv - [consump]wagegovt = 0

Coefficient Std. err. z P>|z| [95% conf. interval]

consump
profits

--. .1645097 .0961978 1.71 0.087 -.0240346 .353054
L1. .1765639 .0901001 1.96 0.050 -.0000291 .3531568

wagepriv .7658012 .0347599 22.03 0.000 .6976729 .8339294
wagegovt .7658012 .0347599 22.03 0.000 .6976729 .8339294

_cons 16.55899 1.224401 13.52 0.000 14.1592 18.95877

invest
profits

--. -.3565311 .2601567 -1.37 0.171 -.8664288 .1533666
L1. 1.011298 .2487744 4.07 0.000 .5237096 1.498887

capital
L1. -.2601999 .0508694 -5.12 0.000 -.359902 -.1604977

_cons 42.89626 10.59386 4.05 0.000 22.13269 63.65984

wagepriv
totinc

--. .3747792 .0311027 12.05 0.000 .313819 .4357394
L1. .1936506 .0324018 5.98 0.000 .1301443 .257157

year .1679262 .0289291 5.80 0.000 .1112263 .2246261
_cons 2.624766 1.195559 2.20 0.028 .281512 4.968019

Endogenous: consump invest wagepriv wagetot profits totinc
Exogenous: L.profits wagegovt L.capital L.totinc year taxnetx govt

As expected, none of the parameter or standard error estimates has changed from the previous esti-

mates (before the seventh significant digit). We have simply decomposed the total wage variable into its

two parts and constrained the coefficients on these parts. The warning about additional endogenous vari-

ables was just reg3’s way of letting us know that we had specified some information that was irrelevant

to the estimation of the system. We had left the wagetot variable in our endog macro. It does not mean
anything to the system to specify wagetot as endogenous because it is no longer in the system. That’s
fine with reg3 and fine for our current purposes.
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We can also impose constraints across the equations. For example, the admittedly meaningless con-

straint of requiring profits to have the same effect in both the consumption and investment equations
could be imposed. Retaining the constraint on the wage coefficients, we would estimate this constrained

system.

. constraint define 2 [consump]profits = [invest]profits

. reg3 $conseqn $inveqn $wageqn, endog($enlist) exog($exlist) constr(1 2) ireg3
note: additional endogenous variables not in the system have no effect and are

ignored (wagetot).
Iteration 1: Tolerance = .1427927
Iteration 2: Tolerance = .032539
Iteration 3: Tolerance = .00307811
Iteration 4: Tolerance = .00016903
Iteration 5: Tolerance = .00003409
Iteration 6: Tolerance = 7.763e-06
Iteration 7: Tolerance = 9.240e-07
Three-stage least-squares regression, iterated

Equation Obs Params RMSE ”R-squared” chi2 P>chi2

consump 21 3 .9504669 0.9798 1019.54 0.0000
invest 21 3 1.247066 0.8706 144.57 0.0000
wagepriv 21 3 .7225276 0.9862 1537.45 0.0000

( 1) [consump]wagepriv - [consump]wagegovt = 0
( 2) [consump]profits - [invest]profits = 0

Coefficient Std. err. z P>|z| [95% conf. interval]

consump
profits

--. .1075413 .0957767 1.12 0.262 -.0801777 .2952602
L1. .1712756 .0912613 1.88 0.061 -.0075932 .3501444

wagepriv .798484 .0340876 23.42 0.000 .7316734 .8652946
wagegovt .798484 .0340876 23.42 0.000 .7316734 .8652946

_cons 16.2521 1.212157 13.41 0.000 13.87631 18.62788

invest
profits

--. .1075413 .0957767 1.12 0.262 -.0801777 .2952602
L1. .6443378 .1058682 6.09 0.000 .43684 .8518356

capital
L1. -.1766669 .0261889 -6.75 0.000 -.2279962 -.1253375

_cons 24.31931 5.284325 4.60 0.000 13.96222 34.6764

wagepriv
totinc

--. .4014106 .0300552 13.36 0.000 .3425035 .4603177
L1. .1775359 .0321583 5.52 0.000 .1145068 .240565

year .1549211 .0282291 5.49 0.000 .099593 .2102492
_cons 1.959788 1.14467 1.71 0.087 -.2837242 4.203299

Endogenous: consump invest wagepriv wagetot profits totinc
Exogenous: L.profits wagegovt L.capital L.totinc year taxnetx govt
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Technical note
Identification in a system of simultaneous equations involves the notion that there is enough informa-

tion to estimate the parameters of the model given the specified functional form. Under-identification

usually manifests itself as one matrix in the 3SLS computations. The most commonly violated order

condition for 2SLS or 3SLS involves the number of endogenous and exogenous variables. There must

be at least as many noncollinear exogenous variables in the remaining system as there are endogenous

right-hand-side variables in an equation. This condition must hold for each structural equation in the

system.

Put as a set of rules the following:

1. Count the number of right-hand-side endogenous variables in an equation and call this 𝑚𝑖.

2. Count the number of exogenous variables in the same equation and call this 𝑘𝑖.

3. Count the total number of exogenous variables in all the structural equations plus any additional

variables specified in an exog() or inst() option and call this 𝐾.

4. If 𝑚𝑖 > (𝐾 − 𝑘𝑖) for any structural equation (𝑖), then the system is underidentified and cannot be

estimated by 3SLS.

We are also possibly in trouble if any of the exogenous variables are linearly dependent. We must

have 𝑚𝑖 linearly independent variables among the exogenous variables represented by (𝐾 − 𝑘𝑖).
The complete conditions for identification involve rank-order conditions on several matrices. For a

full treatment, see Theil (1971) or Greene (2018, 363–365).

� �
Henri Theil (1924–2000) was born in Amsterdam and awarded a PhD in 1951 by the University of

Amsterdam. He researched and taught econometric theory, statistics, microeconomics, macroeco-

nomic modeling, and economic forecasting, and policy at (now) Erasmus University Rotterdam, the

University of Chicago, and the University of Florida. Theil’s many specific contributions include

work on 2SLS and 3SLS, inequality and concentration, and consumer demand.� �
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Stored results
reg3 stores the following in e():

Scalars

e(N) number of observations

e(k) number of parameters

e(k eq) number of equations in e(b)
e(mss #) model sum of squares for equation #

e(df m#) model degrees of freedom for equation #

e(rss #) residual sum of squares for equation #

e(df r) residual degrees of freedom (small)
e(r2 #) 𝑅2 for equation #

e(F #) 𝐹 statistic for equation # (small)
e(rmse #) root mean squared error for equation #

e(dfk2 adj) divisor used with VCE when dfk2 specified
e(ll) log likelihood

e(N clust) number of clusters

e(chi2 #) 𝜒2 for equation #

e(p #) 𝑝-value for model test for equation #
e(cons #) 1 when equation # has a constant, 0 otherwise

e(rank) rank of e(V)
e(ic) number of iterations

Macros

e(cmd) reg3
e(cmdline) command as typed

e(depvar) names of dependent variables

e(exog) names of exogenous variables

e(endog) names of endogenous variables

e(eqnames) names of equations

e(corr) correlation structure

e(wtype) weight type

e(wexp) weight expression

e(method) 3sls, 2sls, ols, sure, or mvreg
e(small) small, if specified
e(dfk) dfk, if specified
e(clustvar) name of cluster variable

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(properties) b V
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(marginsdefault) default predict() specification for margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(Sigma) �̂� matrix

e(V) variance–covariance matrix of the estimators

Functions

e(sample) marks estimation sample
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In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas
The most concise way to represent a system of equations for 3SLS requires thinking of the individual

equations and their associated data as being stacked. reg3 does not expect the data in this format, but it
is a convenient shorthand. The system could then be formulated as

⎡
⎢⎢
⎣

y1
y2
⋮
y𝑀

⎤
⎥⎥
⎦

=
⎡
⎢⎢
⎣

Z1 0 . . . 0
0 Z2 . . . 0
⋮ ⋮ ⋱ ⋮
0 0 . . . Z𝑀

⎤
⎥⎥
⎦

⎡
⎢
⎢
⎣

β1
β2
⋮

β𝑀

⎤
⎥
⎥
⎦

+
⎡
⎢⎢
⎣

ε1
ε2
⋮

ε𝑀

⎤
⎥⎥
⎦

In full matrix notation, this is just

y = ZB + ε

The Z elements in these matrices represent both the endogenous and the exogenous right-hand-side vari-

ables in the equations.

Also assume that there will be correlation between the disturbances of the equations so that

𝐸(εε′) = 𝚺

where the disturbances are further assumed to have an expected value of 0; 𝐸(ε) = 0.
The first stage of 3SLS regression requires developing instrumented values for the endogenous vari-

ables in the system. These values can be derived as the predictions from a linear regression of each

endogenous regressor on all exogenous variables in the system or, more succinctly, as the projection of

each regressor through the projection matrix of all exogenous variables onto the regressors. Designating

the set of all exogenous variables as X results in

̂z𝑖 = X(X′X)−1
X′z𝑖 for each 𝑖

Taken collectively, these Ẑ contain the instrumented values for all the regressors. They take on the

actual values for the exogenous variables and first-stage predictions for the endogenous variables. Given

these instrumented variables, a generalized least squares (GLS) or Aitken (1935) estimator can be formed

for the parameters of the system

B̂ = {Ẑ′(𝚺−1 ⊗ I)Ẑ}
−1
Ẑ′(𝚺−1 ⊗ I)y

All that remains is to obtain a consistent estimator for 𝚺. This estimate can be formed from the residuals

of 2SLS estimates of each equation in the system. Alternately, and identically, the residuals can be com-

puted from the estimates formed by taking 𝚺 to be an identity matrix. This maintains the full system of

coefficients and allows constraints to be applied when the residuals are computed.
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If we take E to be the matrix of residuals from these estimates, a consistent estimate of 𝚺 is

�̂� = E′E

𝑛

where 𝑛 is the number of observations in the sample. An alternative divisor for this estimate can be

obtained with the dfk option as outlined under options.

With the estimate of �̂� placed into the GLS estimating equation,

B̂ = {Ẑ′(�̂�
−1

⊗ I)Ẑ}
−1
Ẑ′(�̂�

−1
⊗ I)y

is the 3SLS estimates of the system parameters.

The asymptotic variance–covariance matrix of the estimator is just the standard formulation for a GLS

estimator

V ̂B = {Ẑ′(�̂�
−1

⊗ I)Ẑ}
−1

Iterated 3SLS estimates can be obtained by computing the residuals from the three-stage parameter

estimates, using these to formulate a new �̂�, and recomputing the parameter estimates. This process

is repeated until the estimates B̂ converge—if they converge. Convergence is not guaranteed. When

estimating a system by SURE, these iterated estimates will be the maximum likelihood estimates for the

system. The iterated solution can also be used to produce estimates that are invariant to choice of system

and restriction parameterization for many linear systems under full 3SLS.

The exposition above follows the parallel developments in Greene (2018) and Davidson and MacK-

innon (1993).

This command supports the Huber/White/sandwich estimator of the variance and its clustered version

using vce(robust) and vce(cluster clustvar), respectively. See [P] robust, particularly Introduc-

tion and Methods and formulas.� �
Alexander Craig Aitken (1895–1967) was born in Dunedin, New Zealand. He attended the Univer-

sity of Otago on a full scholarship but left the university to enlist in the New Zealand Expeditionary

Force during World War I. He would later reflect on the time he spent in active service and publish

two war memoirs.

After returning from the war, he completed his studies at the University of Otago and then worked on

his PhD at the University of Edinburgh under E. T.Whittaker. Although he suffered weeks of illness

during the course of his postgraduate studies, he managed to write an impressive thesis on data

smoothing. He then became a professor of mathematics, and later the Chair of Pure Mathematics,

a post he would hold until his retirement in 1965.

Among his many accolades, he was elected a Fellow of the Royal Society of Edinburgh and a

Fellow of the Royal Society of Literature, following the publication of his second war memoir. He

published many papers on numerical analysis and statistics as well as a couple of books on matrices.

Aitken is credited with deriving the generalized least squares estimator, which has been referred to

as Aitken’s generalized least squares. Aside from his many academic contributions, he had mental

calculating abilities like no other. He is known to have multiplied two 9-digit numbers in less than

a minute and could recite up to 707 digits of 𝜋.� �
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Postestimation commands predict margins
Remarks and examples Methods and formulas Reference
Also see

Postestimation commands
The following postestimation commands are available after reg3:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters
∗ estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian infor-

mation criteria (AIC, CAIC, AICc, and BIC, respectively)

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estimates cataloging estimation results

etable table of estimation results

forecast dynamic forecasts and simulations

hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

predict predictions and their SEs, residuals, etc.

predictnl point estimates, standard errors, testing, and inference for generalized predictions

pwcompare pairwise comparisons of parameters

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

∗estat ic is not appropriate after reg3, 2sls.

2464
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predict

Description for predict
predict creates a new variable containing predictions such as linear predictions, standard errors,

residuals, and differences between the linear predictions of two equations.

Menu for predict
Statistics > Postestimation

Syntax for predict
predict [ type ] newvar [ if ] [ in ] [ , equation(eqno[ ,eqno ]) statistic ]

statistic Description

Main

xb linear prediction; the default

stdp standard error of the linear prediction

residuals residuals

difference difference between the linear predictions of two equations

stddp standard error of the difference in linear predictions

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted
only for the estimation sample.

Options for predict

� � �
Main �

equation(eqno[ ,eqno ]) specifies to which equation you are referring.
equation() is filled in with one eqno for the xb, stdp, and residuals options. equation(#1)
would mean the calculation is to be made for the first equation, equation(#2) would mean the

second, and so on. You could also refer to the equations by their names. equation(income) would
refer to the equation named income and equation(hours) to the equation named hours.

If you do not specify equation(), results are the same as if you specified equation(#1).

difference and stddp refer to between-equation concepts. To use these options, you must specify
two equations, for example, equation(#1,#2) or equation(income,hours). When two equations

must be specified, equation() is required.

xb, the default, calculates the linear prediction (fitted values)—the prediction of x𝑗b for the specified

equation.

stdp calculates the standard error of the prediction for the specified equation. It can be thought of as the
standard error of the predicted expected value or mean for the observation’s covariate pattern. The

standard error of the prediction is also referred to as the standard error of the fitted value.

residuals calculates the residuals.
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difference calculates the difference between the linear predictions of two equations in the system. With

equation(#1,#2), difference computes the prediction of equation(#1)minus the prediction of
equation(#2).

stddp is allowed only after you have previously fit a multiple-equation model. The standard error of the
difference in linear predictions (x1𝑗b − x2𝑗b) between equations 1 and 2 is calculated.

For more information on using predict after multiple-equation estimation commands, see [R] predict.

margins

Description for margins
margins estimates margins of response for linear predictions and differences between the linear pre-

dictions of two equations.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist ] [ , options ]
margins [marginlist ] , predict(statistic ...) [ predict(statistic ...) ... ] [ options ]

statistic Description

default linear predictions for each equation

xb linear prediction for a specified equation

difference difference between the linear predictions of two equations

stdp not allowed with margins
residuals not allowed with margins
stddp not allowed with margins

xb defaults to the first equation.

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.
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Remarks and examples

Example 1: Using predict
In example 2 of [R] reg3, we fit a simple supply-and-demand model. Here we obtain the fitted supply

and demand curves assuming that the exogenous regressors equal their sample means. We first replace
each of the three exogenous regressors with their sample means, then we call predict to obtain the

predictions.

. use https://www.stata-press.com/data/r18/supDem

. global demand ”(qDemand: quantity price pcompete income)”

. global supply ”(qSupply: quantity price praw)”

. reg3 $demand $supply, endog(price)
(output omitted )

. summarize pcompete, meanonly

. replace pcompete = r(mean)
(49 real changes made)
. summarize income, meanonly
. replace income = r(mean)
(49 real changes made)
. summarize praw, meanonly
. replace praw = r(mean)
(49 real changes made)
. predict demand, equation(qDemand)
(option xb assumed; fitted values)
. predict supply, equation(qSupply)
(option xb assumed; fitted values)
. graph twoway line demand price, sort || line supply price, ytitle(” ”)
> legend(label(1 ”Fitted values: qDemand”) label(2 ”Fitted values: qSupply”))

5

10

15

20

 

25 30 35 40
price

Fitted values: qDemand
Fitted values: qSupply

As we would expect based on economic theory, the demand curve slopes downward while the sup-

ply curve slopes upward. With the exogenous variables at their mean levels, the equilibrium price and

quantity are slightly less than 33 and 13, respectively.
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Example 2: Obtaining forecasts
In example 3 of [R] reg3, we fit Klein’s (1950) model of the US economy. That model includes

three stochastic equations we fit using reg3 as well as four identities. Here we briefly illustrate how the

forecast command can be used to obtain forecasts for all the endogenous variables in the model. For
a more detailed discussion of how to forecast with this model, see [TS] forecast.

In Stata, we type

. use https://www.stata-press.com/data/r18/klein2, clear

. reg3 (c p L.p w) (i p L.p L.k) (wp y L.y yr), endog(w p y) exog(t wg g)
(output omitted )

. estimates store kleineqs

. forecast create kleinmodel
Forecast model kleinmodel started.

. forecast estimates kleineqs
Added estimation results from reg3.
Forecast model kleinmodel now contains 3 endogenous variables.

. forecast identity y = c + i + g
Forecast model kleinmodel now contains 4 endogenous variables.

. forecast identity p = y - t - wp
Forecast model kleinmodel now contains 5 endogenous variables.

. forecast identity k = L.k + i
Forecast model kleinmodel now contains 6 endogenous variables.

. forecast identity w = wg + wp
Forecast model kleinmodel now contains 7 endogenous variables.

. forecast solve, begin(1937)
Computing dynamic forecasts for model kleinmodel.

Starting period: 1937
Ending period: 1941
Forecast prefix: f_
1937: ...........................................
1938: ............................................
1939: ...........................................
1940: .........................................
1941: .............................................
Forecast 7 variables spanning 5 periods.

Here we have obtained dynamic forecasts for our 7 endogenous variables beginning in 1937. By

default, the variables containing the forecasts begin with the prefix f . Next we plot the forecast and

actual values of consumption:
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. tsline c f_c

40

50

60

70

1920 1925 1930 1935 1940
Year

Consumption Consumption (kleinmodel f_)

For more information about producing forecasts, see [TS] forecast.

Methods and formulas
The computational formulas for the statistics produced by predict can be found in [R] predict and

[R] regress postestimation.

Reference
Klein, L. R. 1950. Economic Fluctuations in the United States 1921–1941. New York: Wiley.

Also see
[R] reg3 — Three-stage estimation for systems of simultaneous equations

[U] 20 Estimation and postestimation commands
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Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Acknowledgments References Also see

Description
regress performs ordinary least-squares linear regression. regress can also perform weighted esti-

mation, compute robust and cluster–robust standard errors, and adjust results for complex survey designs.

Quick start
Simple linear regression of y on x1

regress y x1

Regression of y on x1, x2, and indicators for categorical variable a
regress y x1 x2 i.a

Add the interaction between continuous variable x2 and a
regress y x1 c.x2##i.a

Fit model for observations where v1 is greater than zero
regress y x1 x2 i.a if v1>0

With cluster–robust standard errors for clustering by levels of cvar
regress y x1 x2 i.a, vce(cluster cvar)

With cluster–robust standard errors for clustering by levels of cvar1 and cvar2
regress y x1 x2 i.a, vce(cluster cvar1 cvar2)

With bootstrap standard errors

regress y x1 x2 i.a, vce(bootstrap)

Report standardized coefficients

regress y x1 x2 i.a, beta

Adjust for complex survey design using svyset data
svy: regress y x1 x2 i.a

Use sampling weight wvar
regress y x1 x2 i.a [pweight=wvar]

Menu
Statistics > Linear models and related > Linear regression

2470
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Syntax
regress depvar [ indepvars ] [ if ] [ in ] [weight ] [ , options ]

options Description

Model

noconstant suppress constant term

hascons has user-supplied constant

tsscons compute total sum of squares with constant; seldom used

SE/Robust

vce(vcetype) vcetype may be ols, robust, cluster clustvarlist, bootstrap,
jackknife, hc2 [ clustvar ], or hc3

Reporting

level(#) set confidence level; default is level(95)
beta report standardized beta coefficients

eform(string) report exponentiated coefficients and label as string

depname(varname) substitute dependent variable name; programmer’s option

clustertable display table of multiway cluster combinations

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

noheader suppress output header

notable suppress coefficient table

plus make table extendable

mse1 force mean squared error to 1
coeflegend display legend instead of statistics

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.

bayes, bootstrap, by, collect, fmm, fp, jackknife, mfp, mi estimate, nestreg, rolling, statsby, stepwise,
and svy are allowed; see [U] 11.1.10 Prefix commands. For more details, see [BAYES] bayes: regress and
[FMM] fmm: regress.

vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix; see [MI] mi estimate.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
aweights are not allowed with the jackknife prefix; see [R] jackknife.
hascons, tsscons, vce(), beta, noheader, notable, plus, depname(), mse1, and weights are not allowed with the svy

prefix; see [SVY] svy.

aweights, fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
noheader, notable, plus, mse1, and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Options

� � �
Model �

noconstant; see [R] Estimation options.

hascons indicates that a user-defined constant or its equivalent is specified among the independent vari-
ables in indepvars. Some caution is recommended when specifying this option, as resulting estimates

may not be as accurate as they otherwise would be. Use of this option requires “sweeping” the constant

last, so the moment matrix must be accumulated in absolute rather than deviation form. This option

may be safely specified when the means of the dependent and independent variables are all reasonable

and there is not much collinearity between the independent variables. The best procedure is to view

hascons as a reporting option—estimate with and without hascons and verify that the coefficients
and standard errors of the variables not affected by the identity of the constant are unchanged.

tsscons forces the total sum of squares to be computed as though the model has a constant, that is, as

deviations from the mean of the dependent variable. This is a rarely used option that has an effect

only when specified with noconstant. It affects the total sum of squares and all results derived from

the total sum of squares.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (ols), that are robust to some kinds of misspecification (robust), that allow for in-

tragroup correlation (cluster clustvarlist), and that use bootstrap or jackknife methods (bootstrap,
jackknife); see [R] vce option.

vce(ols), the default, uses the standard variance estimator for ordinary least-squares regression.

vce(cluster clustvarlist) specifies that standard errors allow for intragroup correlation within

groups defined by one or more variables in clustvarlist, relaxing the usual requirement that

the observations be independent. For example, vce(cluster clustvar1) produces clus-

ter–robust standard errors that allow for observations that are independent across groups defined

by clustvar1 but not necessarily independent within groups. You could also type vce(cluster
clustvar1 clustvar2 . . . cluster𝑝) to account for correlation within groups formed by 𝑝 vari-
ables (multiway clustering).

regress also allows the following:

vce(hc2 [ clustvar ][ , dfadjust ]) and vce(hc3) specify alternative bias corrections for the robust
variance calculation. vce(hc2) and vce(hc3) may not be specified with the svy prefix. In the
unclustered case, vce(robust) uses �̂�2

𝑗 = {𝑛/(𝑛 − 𝑘)}𝑢2
𝑗 as an estimate of the variance of the

𝑗th observation, where 𝑛 is the number of observations, 𝑘 is the number of regressors, 𝑢𝑗 is the

calculated residual, and 𝑛/(𝑛 − 𝑘) is included to improve the overall estimate’s small-sample

properties.
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vce(hc2) instead uses 𝑢2
𝑗 /(1 − ℎ𝑗𝑗) as the observation’s variance estimate, where ℎ𝑗𝑗 is the

diagonal element of the hat (projection) matrix. This estimate is unbiased if the model really

is homoskedastic. vce(hc2) tends to produce slightly more conservative confidence intervals.

vce(hc2 clustvar) produces estimates that allow for intragroup correlation within groups defined

by clustvar. dfadjust computes the Bell and McCaffrey (2002) adjusted degrees of freedom

based on clustvar. Note that dfadjust does not affect multiple-imputation results when the com-
mand is used with mi estimate. See Methods and formulas for a description of the computation

when clustvar is specified.

vce(hc3) uses 𝑢2
𝑗 /(1− ℎ𝑗𝑗)2 as suggested by Davidson and MacKinnon (1993), who report that

this method tends to produce better results when the model really is heteroskedastic. vce(hc3)
produces confidence intervals that tend to be even more conservative.

See Davidson and MacKinnon (1993, 554–556) and Angrist and Pischke (2009, 294–308) for

more discussion on these two bias corrections.

� � �
Reporting �

level(#); see [R] Estimation options.

beta asks that standardized beta coefficients be reported instead of confidence intervals. The beta co-
efficients are the regression coefficients obtained by first standardizing all variables to have a mean

of 0 and a standard deviation of 1. betamay not be specified with vce(cluster clustvarlist) or the
svy prefix.

eform(string) is used only in programs and ado-files that use regress to fit models other than linear
regression. eform() specifies that the coefficient table be displayed in exponentiated form as defined

in [R]Maximize and that string be used to label the exponentiated coefficients in the table.

depname(varname) is used only in programs and ado-files that use regress to fit models other than
linear regression. depname() may be specified only at estimation time. varname is recorded as

the identity of the dependent variable, even though the estimates are calculated using depvar. This

method affects the labeling of the output—not the results calculated—but could affect subsequent

calculations made by predict, where the residual would be calculated as deviations from varname

rather than depvar. depname() is most typically used when depvar is a temporary variable (see

[P] macro) used as a proxy for varname.

depname() is not allowed with the svy prefix.

clustertable displays a table reporting cluster combinations and the number of clusters per combina-
tion. This option is available only when vce(cluster clustvarlist) is specified with more than one
variable in clustvarlist to compute multiway cluster–robust standard errors.

display options: noci, nopvalues, dfci, dfpvalues, noomitted, vsquish, noemptycells,
baselevels, allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt),
pformat(% fmt), sformat(% fmt), and nolstretch; see [R] Estimation options.

dfci specifies that parameter degrees of freedom and confidence intervals be reported in the coeffi-

cient table.

dfpvalues specifies that parameter degrees of freedom and 𝑝-values be reported in the coefficient
table.
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The following options are available with regress but are not shown in the dialog box:

noheader suppresses the display of theANOVA table and summary statistics at the top of the output; only
the coefficient table is displayed. This option is often used in programs and ado-files.

notable suppresses display of the coefficient table.

plus specifies that the output table be made extendable. This option is often used in programs and

ado-files.

mse1 is used only in programs and ado-files that use regress to fit models other than linear regres-

sion and is not allowed with the svy prefix. mse1 sets the mean squared error to 1, forcing the

variance–covariance matrix of the estimators to be (X′X)−1 (see Methods and formulas below) and

affecting calculated standard errors. Degrees of freedom for 𝑡 statistics is calculated as 𝑛 rather than

𝑛 − 𝑘.
coeflegend; see [R] Estimation options.

Remarks and examples
Remarks are presented under the following headings:

Ordinary least squares
Treatment of the constant
Robust standard errors
Weighted regression
Video examples

regress performs linear regression, including ordinary least squares and weighted least squares. See
[U] 27 Overview of Stata estimation commands for a list of other regression commands that may be

of interest. For a general discussion of linear regression, see Kutner et al. (2005).

See Stock and Watson (2019) and Wooldridge (2020) for an excellent treatment of estimation, infer-

ence, interpretation, and specification testing in linear regressionmodels. SeeWooldridge (2010, chap. 4)

for a more advanced discussion along the same lines.

See Hamilton (2013, chap. 7) and Cameron and Trivedi (2022, chap. 3) for an introduction to linear

regression using Stata. Dohoo, Martin, and Stryhn (2012, 2010) discuss linear regression using examples

from epidemiology, and Stata datasets and do-files used in the text are available. Cameron and Trivedi

(2022) discuss linear regression using econometric examples with Stata. Mitchell (2021) shows how to

use graphics and postestimation commands to understand a fitted regression model.

Chatterjee and Hadi (2012) explain regression analysis by using examples containing typical prob-

lems that youmight encounter when performing exploratory data analysis. We also recommendWeisberg

(2014), who emphasizes the importance of the assumptions of linear regression and problems resulting

from these assumptions. Becketti (2020) discusses regression analysis with an emphasis on time-series

data. Angrist and Pischke (2009) approach regression as a tool for exploring relationships, estimating

treatment effects, and providing answers to public policy questions. For a mathematically rigorous treat-

ment, see Peracchi (2001, chap. 6). Finally, see Plackett (1972) if you are interested in the history of

regression. Least squares, which dates back to the 1790s, was discovered independently by Legendre

and Gauss.
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Ordinary least squares

Example 1: Basic linear regression
Suppose that we have data on the mileage rating and weight of 74 automobiles. The variables in our

data are mpg, weight, and foreign. The last variable assumes the value 1 for foreign and 0 for domestic
automobiles. We wish to fit the model

mpg = 𝛽0 + 𝛽1weight + 𝛽2foreign + 𝜖

This model can be fit with regress by typing
. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. regress mpg weight foreign

Source SS df MS Number of obs = 74
F(2, 71) = 69.75

Model 1619.2877 2 809.643849 Prob > F = 0.0000
Residual 824.171761 71 11.608053 R-squared = 0.6627

Adj R-squared = 0.6532
Total 2443.45946 73 33.4720474 Root MSE = 3.4071

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

weight -.0065879 .0006371 -10.34 0.000 -.0078583 -.0053175
foreign -1.650029 1.075994 -1.53 0.130 -3.7955 .4954422
_cons 41.6797 2.165547 19.25 0.000 37.36172 45.99768

regress produces a variety of summary statistics along with the table of regression coefficients. At
the upper left, regress reports an analysis-of-variance (ANOVA) table. The column headings SS, df, and
MS stand for “sum of squares”, “degrees of freedom”, and “mean square”, respectively. In this example,

the total sum of squares is 2,443.5: 1,619.3 accounted for by the model and 824.2 left unexplained.

Because the regression included a constant, the total sum reflects the sum after removal of means, as does

the sum of squares due to the model. The table also reveals that there are 73 total degrees of freedom

(counted as 74 observations less 1 for the mean removal), of which 2 are consumed by the model, leaving

71 for the residual.

To the right of the ANOVA table are presented other summary statistics. The 𝐹 statistic associated

with the ANOVA table is 69.75. The statistic has 2 numerator and 71 denominator degrees of freedom.

The 𝐹 statistic tests the hypothesis that all coefficients excluding the constant are zero. The chance of

observing an 𝐹 statistic that large or larger is reported as 0.0000, which is Stata’s way of indicating a

number smaller than 0.00005. The 𝑅2 for the regression is 0.6627, and the 𝑅2 adjusted for degrees of

freedom (𝑅2
𝑎) is 0.6532. The root mean squared error, labeled Root MSE, is 3.4071. It is the square root

of the mean squared error reported for the residual in the ANOVA table.

Finally, Stata produces a table of the estimated coefficients. The first line of the table indicates that

the left-hand-side variable is mpg. Thereafter follow the estimated coefficients. Our fitted model is

mpg hat = 41.68 − 0.0066 weight − 1.65 foreign

Reported to the right of the coefficients in the output are the standard errors. For instance, the standard

error for the coefficient on weight is 0.0006371. The corresponding 𝑡 statistic is −10.34, which has a

two-sided significance level of 0.000. This number indicates that the significance is less than 0.0005.

The 95% confidence interval for the coefficient is [ −0.0079, −0.0053 ].
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Example 2: Transforming the dependent variable
If we had a graph comparing mpg with weight, we would notice that the relationship is distinctly

nonlinear. This is to be expected because energy usage per distance should increase linearly with weight,

but mpg is measuring distance per energy used. We could obtain a better model by generating a new

variable measuring the number of gallons used per 100 miles (gp100m) and then using this new variable

in our model:

gp100m = 𝛽0 + 𝛽1weight + 𝛽2foreign + 𝜖

We can now fit this model:

. generate gp100m = 100/mpg

. regress gp100m weight foreign
Source SS df MS Number of obs = 74

F(2, 71) = 113.97
Model 91.1761694 2 45.5880847 Prob > F = 0.0000

Residual 28.4000913 71 .400001287 R-squared = 0.7625
Adj R-squared = 0.7558

Total 119.576261 73 1.63803097 Root MSE = .63246

gp100m Coefficient Std. err. t P>|t| [95% conf. interval]

weight .0016254 .0001183 13.74 0.000 .0013896 .0018612
foreign .6220535 .1997381 3.11 0.003 .2237871 1.02032
_cons -.0734839 .4019932 -0.18 0.855 -.8750354 .7280677

Fitting the physically reasonable model increases our 𝑅2 to 0.7625.

Example 3: Obtaining beta coefficients
regress shares the features of all estimation commands. Among other things, this means that after

running a regression, we can use test to test hypotheses about the coefficients, estat vce to examine
the covariance matrix of the estimators, and predict to obtain predicted values, residuals, and influence
statistics. See [U] 20 Estimation and postestimation commands. Options that affect how estimates are

displayed, such as beta or level(), can be used when replaying results.

Suppose that we meant to specify the beta option to obtain beta coefficients (regression coefficients
normalized by the ratio of the standard deviation of the regressor to the standard deviation of the depen-

dent variable). Even though we forgot, we can specify the option now:

. regress, beta
Source SS df MS Number of obs = 74

F(2, 71) = 113.97
Model 91.1761694 2 45.5880847 Prob > F = 0.0000

Residual 28.4000913 71 .400001287 R-squared = 0.7625
Adj R-squared = 0.7558

Total 119.576261 73 1.63803097 Root MSE = .63246

gp100m Coefficient Std. err. t P>|t| Beta

weight .0016254 .0001183 13.74 0.000 .9870255
foreign .6220535 .1997381 3.11 0.003 .2236673
_cons -.0734839 .4019932 -0.18 0.855 .
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Treatment of the constant
By default, regress includes an intercept (constant) term in the model. The noconstant option

suppresses it, and the hascons option tells regress that the model already has one.

Example 4: Suppressing the constant term
Wewish to fit a regression of the weight of an automobile against its length, and we wish to impose

the constraint that the weight is zero when the length is zero.

If we simply type regress weight length, we are fitting the model

weight = 𝛽0 + 𝛽1 length + 𝜖

Here a length of zero corresponds to a weight of 𝛽0. We want to force 𝛽0 to be zero or, equivalently,

estimate an equation that does not include an intercept:

weight = 𝛽1 length + 𝜖

We do this by specifying the noconstant option:
. regress weight length, noconstant

Source SS df MS Number of obs = 74
F(1, 73) = 3450.13

Model 703869302 1 703869302 Prob > F = 0.0000
Residual 14892897.8 73 204012.299 R-squared = 0.9793

Adj R-squared = 0.9790
Total 718762200 74 9713002.7 Root MSE = 451.68

weight Coefficient Std. err. t P>|t| [95% conf. interval]

length 16.29829 .2774752 58.74 0.000 15.74528 16.8513

In our data, length is measured in inches and weight in pounds. We discover that each inch of length

adds 16 pounds to the weight.
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Sometimes there is no need for Stata to include a constant term in the model. Most commonly, this

occurs when the model contains a set of mutually exclusive indicator variables. hascons is a variation
of the noconstant option—it tells Stata not to add a constant to the regression because the regression

specification already has one, either directly or indirectly.

For instance, we now refit ourmodel of weight as a function of length and include separate constants
for foreign and domestic cars by specifying bn.foreign. bn.foreign is factor-variable notation for
“no base for foreign” or “include all levels of variable foreign in the model”; see [U] 11.4.3 Factor
variables.

. regress weight length bn.foreign, hascons
Source SS df MS Number of obs = 74

F(2, 71) = 316.54
Model 39647744.7 2 19823872.3 Prob > F = 0.0000

Residual 4446433.7 71 62625.8268 R-squared = 0.8992
Adj R-squared = 0.8963

Total 44094178.4 73 604029.841 Root MSE = 250.25

weight Coefficient Std. err. t P>|t| [95% conf. interval]

length 31.44455 1.601234 19.64 0.000 28.25178 34.63732

foreign
Domestic -2850.25 315.9691 -9.02 0.000 -3480.274 -2220.225
Foreign -2983.927 275.1041 -10.85 0.000 -3532.469 -2435.385

Technical note
There is a subtle distinction between the hascons and noconstant options. We can most easily

reveal it by refitting the last regression, specifying noconstant rather than hascons:

. regress weight length bn.foreign, noconstant
Source SS df MS Number of obs = 74

F(3, 71) = 3802.03
Model 714315766 3 238105255 Prob > F = 0.0000

Residual 4446433.7 71 62625.8268 R-squared = 0.9938
Adj R-squared = 0.9936

Total 718762200 74 9713002.7 Root MSE = 250.25

weight Coefficient Std. err. t P>|t| [95% conf. interval]

length 31.44455 1.601234 19.64 0.000 28.25178 34.63732

foreign
Domestic -2850.25 315.9691 -9.02 0.000 -3480.274 -2220.225
Foreign -2983.927 275.1041 -10.85 0.000 -3532.469 -2435.385

Comparing this output with that produced by the previous regress command, we see that they are
almost, but not quite, identical. The parameter estimates and their associated statistics—the second half

of the output—are identical. The overall summary statistics and the ANOVA table—the first half of the

output—are different, however.

In the first case, the 𝑅2 is shown as 0.8992; here it is shown as 0.9938. In the first case, the 𝐹 statistic

is 316.54; now it is 3,802.03. The numerator degrees of freedom is different as well. In the first case,

the numerator degrees of freedom is 2; now the degrees of freedom is 3. Which is correct?



regress — Linear regression 2479

Both are. Specifying the hascons option causes regress to adjust theANOVA table and its associated
statistics for the explanatory power of the constant. The regression in effect has a constant; it is just

written in such a way that a separate constant is unnecessary. No such adjustment is made with the

noconstant option.

Technical note
When the hascons option is specified, regress checks to make sure that the model does in fact have

a constant term. If regress cannot find a constant term, it automatically adds one. Fitting a model of
weight on length and specifying the hascons option, we obtain

. regress weight length, hascons
note: option hascons false.

Source SS df MS Number of obs = 74
F(1, 72) = 613.27

Model 39461306.8 1 39461306.8 Prob > F = 0.0000
Residual 4632871.55 72 64345.4382 R-squared = 0.8949

Adj R-squared = 0.8935
Total 44094178.4 73 604029.841 Root MSE = 253.66

weight Coefficient Std. err. t P>|t| [95% conf. interval]

length 33.01988 1.333364 24.76 0.000 30.36187 35.67789
_cons -3186.047 252.3113 -12.63 0.000 -3689.02 -2683.073

Even though we specified hascons, regress included a constant, anyway. It also added a note to our
output: “note: option hascons false”.

Technical note
Even if the model specification effectively includes a constant term, we need not specify the hascons

option. regress is always on the lookout for collinear variables and omits them from the model. For

instance,

. regress weight length bn.foreign
note: 1.foreign omitted because of collinearity.

Source SS df MS Number of obs = 74
F(2, 71) = 316.54

Model 39647744.7 2 19823872.3 Prob > F = 0.0000
Residual 4446433.7 71 62625.8268 R-squared = 0.8992

Adj R-squared = 0.8963
Total 44094178.4 73 604029.841 Root MSE = 250.25

weight Coefficient Std. err. t P>|t| [95% conf. interval]

length 31.44455 1.601234 19.64 0.000 28.25178 34.63732

foreign
Domestic 133.6775 77.47615 1.73 0.089 -20.80555 288.1605
Foreign 0 (omitted)

_cons -2983.927 275.1041 -10.85 0.000 -3532.469 -2435.385
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Robust standard errors
regress with the vce(robust) option substitutes a robust variance matrix calculation for the con-

ventional calculation, or if vce(cluster clustvarlist) is specified, allows relaxing the assumption of

independence within groups. How this method works is explained in [U] 20.22 Obtaining robust vari-

ance estimates. Below, we show how well this approach works.

Example 5: Heteroskedasticity and robust standard errors
Specifying the vce(robust) option is equivalent to requestingWhite-corrected standard errors in the

presence of heteroskedasticity. We use the automobile data and, in the process of looking at the energy

efficiency of cars, analyze a variable with considerable heteroskedasticity.

We will examine the amount of energy—measured in gallons of gasoline—that the cars in the data

need to move 1,000 pounds of their weight 100 miles. We are going to examine the relative efficiency

of foreign and domestic cars.

. generate gpmw = ((1/mpg)/weight)*100*1000

. summarize gpmw
Variable Obs Mean Std. dev. Min Max

gpmw 74 1.682184 .2426311 1.09553 2.30521

In these data, the engines consume between 1.10 and 2.31 gallons of gas to move 1,000 pounds of the

car’s weight 100 miles. If we ran a regression with conventional standard errors of gpmw on foreign,
we would obtain

. regress gpmw foreign
Source SS df MS Number of obs = 74

F(1, 72) = 20.07
Model .936705572 1 .936705572 Prob > F = 0.0000

Residual 3.36079459 72 .046677703 R-squared = 0.2180
Adj R-squared = 0.2071

Total 4.29750017 73 .058869865 Root MSE = .21605

gpmw Coefficient Std. err. t P>|t| [95% conf. interval]

foreign .2461526 .0549487 4.48 0.000 .1366143 .3556909
_cons 1.609004 .0299608 53.70 0.000 1.549278 1.66873

regress with the vce(robust) option, on the other hand, reports

. regress gpmw foreign, vce(robust)
Linear regression Number of obs = 74

F(1, 72) = 13.13
Prob > F = 0.0005
R-squared = 0.2180
Root MSE = .21605

Robust
gpmw Coefficient std. err. t P>|t| [95% conf. interval]

foreign .2461526 .0679238 3.62 0.001 .1107489 .3815563
_cons 1.609004 .0234535 68.60 0.000 1.56225 1.655758
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The point estimates are the same (foreign cars need one-quarter gallon more gas), but the standard errors

differ by roughly 20%. Conventional regression reports the 95% confidence interval as [ 0.14, 0.36 ],
whereas the robust standard errors make the interval [ 0.11, 0.38 ].

Which is right? Notice that gpmw is a variable with considerable heteroskedasticity:

. tabulate foreign, summarize(gpmw)
Summary of gpmw

Car origin Mean Std. dev. Freq.

Domestic 1.6090039 .16845182 52
Foreign 1.8551565 .30186861 22

Total 1.6821844 .24263113 74

Thus, here we favor the robust standard errors. In [U] 20.22 Obtaining robust variance estimates,

we show another example using linear regression where it makes little difference whether we specify

vce(robust). The linear-regression assumptions were true, and we obtained nearly linear-regression
results. The advantage of the robust estimate is that in neither case did we have to check assumptions.

Technical note
regress purposefully suppresses displaying the ANOVA table when vce(robust) is specified. This

is done because the sums of squares are no longer appropriate for use in the usual hypothesis tests, even

though computationally the sums of squares remain the same. In the nonrobust setting, the 𝐹 statistic

reported by regress is defined in terms of the sums of squares, as in ANOVA. When vce(robust) is
specified, theANOVA test is not valid, and the 𝐹 statistic corresponds to aWald test based on the robustly

estimated variance matrix.

Some references give formulas for the 𝐹 statistic in terms of either 𝑅2 or the root MSE. It is not

appropriate to use those formulas for the 𝐹 statistic with robust standard errors because the 𝑅2 and root

MSE are calculated from the sums of squares. Moreover, the rootMSE can no longer be used as an estimate

for 𝜎 because there is no longer a single 𝜎 to estimate—the variance of the residual varies observation

by observation. However, regress continues to report the 𝑅2 and the root MSE in the robust setting

because those statistics are still usable in other settings. In particular, 𝑅2 remains valid as a goodness-

of-fit statistic.

Example 6: Alternative robust standard errors
The vce(hc2) and vce(hc3) options modify the robust variance calculation. In the context of linear

regression without clustering, the idea behind the robust calculation is somehow to measure 𝜎2
𝑗 , the

variance of the residual associated with the 𝑗th observation, and then to use that estimate to improve the
estimated variance of β̂. Because residuals have (theoretically and practically) mean 0, one estimate of
𝜎2

𝑗 is the observation’s squared residual itself—𝑢2
𝑗 . A finite-sample correction could improve that by

multiplying 𝑢2
𝑗 by 𝑛/(𝑛 − 𝑘), and, as a matter of fact, vce(robust) uses {𝑛/(𝑛 − 𝑘)}𝑢2

𝑗 as its estimate

of the residual’s variance.
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vce(hc2) and vce(hc3) use alternative estimators of the observation-specific variances. For in-

stance, if the residuals are homoskedastic, we can show that the expected value of 𝑢2
𝑗 is 𝜎2(1 − ℎ𝑗𝑗),

where ℎ𝑗𝑗 is the 𝑗th diagonal element of the projection (hat) matrix. ℎ𝑗𝑗 has average value 𝑘/𝑛, so 1−ℎ𝑗𝑗
has average value 1−𝑘/𝑛 = (𝑛−𝑘)/𝑛. Thus, the default robust estimator �̂�𝑗 = {𝑛/(𝑛−𝑘)}𝑢2

𝑗 amounts

to dividing 𝑢2
𝑗 by the average of the expectation.

vce(hc2) divides 𝑢2
𝑗 by 1 − ℎ𝑗𝑗 itself, so it should yield better estimates if the residuals really are

homoskedastic. vce(hc3) divides 𝑢2
𝑗 by (1− ℎ𝑗𝑗)2 and has no such clean interpretation. Davidson and

MacKinnon (1993) show that 𝑢2
𝑗 /(1−ℎ𝑗𝑗)2 approximates a more complicated estimator that they obtain

by jackknifing (MacKinnon and White 1985). Angrist and Pischke (2009) also illustrate the relative

merits of these adjustments.

Here are the results of refitting our efficiency model using vce(hc2) and vce(hc3):

. regress gpmw foreign, vce(hc2)
Linear regression Number of obs = 74

F(1, 72) = 12.93
Prob > F = 0.0006
R-squared = 0.2180
Root MSE = .21605

Robust HC2
gpmw Coefficient std. err. t P>|t| [95% conf. interval]

foreign .2461526 .0684669 3.60 0.001 .1096662 .3826389
_cons 1.609004 .0233601 68.88 0.000 1.562437 1.655571

. regress gpmw foreign, vce(hc3)
Linear regression Number of obs = 74

F(1, 72) = 12.38
Prob > F = 0.0008
R-squared = 0.2180
Root MSE = .21605

Robust HC3
gpmw Coefficient std. err. t P>|t| [95% conf. interval]

foreign .2461526 .069969 3.52 0.001 .1066719 .3856332
_cons 1.609004 .023588 68.21 0.000 1.561982 1.656026
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Example 7: Standard errors for clustered data
The vce(cluster clustvarlist) and vce(hc2 clustvar) options relax the assumption of indepen-

dence. Below, we have 28,534 observations on 4,711 women aged 14–46 years. Data were collected

on these women between 1968 and 1988. We are going to fit a classic earnings model, and we begin by

ignoring that the majority of the women in the dataset have multiple observations.

. use https://www.stata-press.com/data/r18/regsmpl, clear
(NLS women 14-26 in 1968)
. regress ln_wage age c.age#c.age tenure

Source SS df MS Number of obs = 28,101
F(3, 28097) = 1842.45

Model 1054.52501 3 351.508335 Prob > F = 0.0000
Residual 5360.43962 28,097 .190783344 R-squared = 0.1644

Adj R-squared = 0.1643
Total 6414.96462 28,100 .228290556 Root MSE = .43679

ln_wage Coefficient Std. err. t P>|t| [95% conf. interval]

age .0752172 .0034736 21.65 0.000 .0684088 .0820257

c.age#c.age -.0010851 .0000575 -18.86 0.000 -.0011979 -.0009724

tenure .0390877 .0007743 50.48 0.000 .0375699 .0406054
_cons .3339821 .0504413 6.62 0.000 .2351148 .4328495

The number of observations in our model is 28,101 because Stata drops observations that have a missing

value for one or more of the variables in the model. We can be reasonably certain that the standard errors

reported above are meaningless. Without a doubt, a woman with higher-than-average wages in one year

typically has higher-than-average wages in other years, and so the residuals are not independent. One

way to deal with this is to use cluster–robust standard errors. We do this by specifying vce(cluster
id) or vce(hc2 id), which treat only observations with different person ids as truly independent:

. regress ln_wage age c.age#c.age tenure, vce(cluster id)
Linear regression Number of obs = 28,101

F(3, 4698) = 748.82
Prob > F = 0.0000
R-squared = 0.1644
Root MSE = .43679

(Std. err. adjusted for 4,699 clusters in idcode)

Robust
ln_wage Coefficient std. err. t P>|t| [95% conf. interval]

age .0752172 .0045711 16.45 0.000 .0662557 .0841788

c.age#c.age -.0010851 .0000778 -13.94 0.000 -.0012377 -.0009325

tenure .0390877 .0014425 27.10 0.000 .0362596 .0419157
_cons .3339821 .0641918 5.20 0.000 .208136 .4598282

For comparison, we focus on the tenure coefficient, which in economics jargon can be interpreted as the

rate of return for keeping your job. The 95% confidence interval we previously estimated—an interval

we do not believe—is [ 0.038, 0.041 ]. The robust interval is twice as wide, being [ 0.036, 0.042 ]. For
this example, vce(hc2 id) gives standard errors similar to vce(cluster id).
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Another possible way to account for the lack of independence is to fit a random-effects model. Here

is the random-effects result:

. xtreg ln_wage age c.age#c.age tenure, re
Random-effects GLS regression Number of obs = 28,101
Group variable: idcode Number of groups = 4,699
R-squared: Obs per group:

Within = 0.1370 min = 1
Between = 0.2154 avg = 6.0
Overall = 0.1608 max = 15

Wald chi2(3) = 4717.05
corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000

ln_wage Coefficient Std. err. z P>|z| [95% conf. interval]

age .0568296 .0026958 21.08 0.000 .0515459 .0621132

c.age#c.age -.0007566 .0000447 -16.93 0.000 -.0008441 -.000669

tenure .0260135 .0007477 34.79 0.000 .0245481 .0274789
_cons .6136792 .0394611 15.55 0.000 .5363368 .6910216

sigma_u .33542449
sigma_e .29674679

rho .56095413 (fraction of variance due to u_i)

Robust regression estimated the 95% interval [ 0.036, 0.042 ], and xtreg (see [XT] xtreg) estimates

[ 0.025, 0.027 ]. Which is better? The random-effects regression estimator assumes a lot. We can check

some of these assumptions by performing a Hausman test. Using estimates (see [R] estimates store),

we store the random-effects estimation results, and then we run the required fixed-effects regression to

perform the test.

. estimates store random

. xtreg ln_wage age c.age#c.age tenure, fe
Fixed-effects (within) regression Number of obs = 28,101
Group variable: idcode Number of groups = 4,699
R-squared: Obs per group:

Within = 0.1375 min = 1
Between = 0.2066 avg = 6.0
Overall = 0.1568 max = 15

F(3, 23399) = 1243.00
corr(u_i, Xb) = 0.1380 Prob > F = 0.0000

ln_wage Coefficient Std. err. t P>|t| [95% conf. interval]

age .0522751 .002783 18.78 0.000 .0468202 .05773

c.age#c.age -.0006717 .0000461 -14.56 0.000 -.0007621 -.0005813

tenure .021738 .000799 27.21 0.000 .020172 .023304
_cons .687178 .0405944 16.93 0.000 .6076103 .7667456

sigma_u .38743138
sigma_e .29674679

rho .6302569 (fraction of variance due to u_i)

F test that all u_i=0: F(4698, 23399) = 7.98 Prob > F = 0.0000
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. hausman . random
Coefficients

(b) (B) (b-B) sqrt(diag(V_b-V_B))
. random Difference Std. err.

age .0522751 .0568296 -.0045545 .0006913
c.age#c.age -.0006717 -.0007566 .0000849 .0000115

tenure .021738 .0260135 -.0042756 .0002816

b = Consistent under H0 and Ha; obtained from xtreg.
B = Inconsistent under Ha, efficient under H0; obtained from xtreg.

Test of H0: Difference in coefficients not systematic
chi2(3) = (b-B)’[(V_b-V_B)^(-1)](b-B)

= 336.62
Prob > chi2 = 0.0000

The Hausman test casts grave suspicions on the random-effects model we just fit, so we should be careful

in interpreting those results.

Meanwhile, our robust regression results still stand, as long as we are careful about the interpretation.

The correct interpretation is that, if the data collection were repeated (on women sampled the sameway as

in the original sample), and if we were to refit the model, 95% of the time we would expect the estimated

coefficient on tenure to be in the range [ 0.036, 0.042 ].
Evenwith robust regression, wemust be careful about going beyond that statement. Here theHausman

test is probably picking up something that differs within and between person, which would cast doubt

on our robust regression model in terms of interpreting [ 0.036, 0.042 ] to contain the rate of return for
keeping a job, economywide, for all women, without exception.
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Let’s take this example a bit further by also recognizing workers with the same education level, grade,
may be more alike than those with different education levels. Here we will use multiway clustering

(Cameron, Gelbach, andMiller 2008) to account for correlations within individuals over years and within

education levels, assuming observations from different people and different education level are indepen-

dent.

. regress ln_wage age c.age#c.age tenure, vce(cluster idcode grade) clustertable
Linear regression Number of obs = 28,099
Clusters per comb.: Cluster comb. = 3
min = 19 F(3, 18) = 247.23
avg = 3,138 Prob > F = 0.0000
max = 4,697 R-squared = 0.1644

Adj R-squared = 0.1644
Root MSE = 0.4368

Clusters
Cluster combination per comb.

idcode 4,697
grade 19

idcode#grade 4,697

(Std. err. adjusted for multiway clustering)

Robust
ln_wage Coefficient std. err. t P>|t| [95% conf. interval]

age .0751665 .018361 4.09 0.001 .0365914 .1137415

c.age#c.age -.0010842 .0002504 -4.33 0.000 -.0016103 -.0005581

tenure .0391104 .0018302 21.37 0.000 .0352653 .0429554
_cons .334631 .2769961 1.21 0.243 -.2473162 .9165782

Cluster combinations formed by idcode and grade.

With the clustertable option, the output includes a table that describes the cluster combinations and
reports the number of levels for each cluster combination. We clustered on two variables, so there are

three cluster combinations, and, in general, for 𝑝 cluster variables, there are 𝑝2 − 1 cluster combinations.

The 𝑡-statistic degrees of freedom is chosen from the cluster combination that has the smallest number of

levels. In this case, we have 19−1 = 18 degrees of freedom, and theWald test𝐹 statistic, computed from

the cluster–robust VCE, has a denominator degrees of freedom of 18. The 95% confidence interval for

tenure increases slightly to [ 0.035, 0.043 ]. Yet the confidence intervals here are not strictly comparable;
this model is fit to two fewer observations because of missing values in the cluster variable grade, and
we conjecture that observations are correlated within grade.
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Weighted regression
regress can perform weighted and unweighted regression. We indicate the weight by specifying the

[weight] qualifier.

Example 8: Using means as regression variables
We have census data recording the deathrate (drate) and median age (medage) for each state. The

data also record the region of the country in which each state is located and the overall population of the

state:

. use https://www.stata-press.com/data/r18/census9
(1980 Census data by state)
. describe
Contains data from https://www.stata-press.com/data/r18/census9.dta
Observations: 50 1980 Census data by state

Variables: 6 2 Dec 2022 15:22

Variable Storage Display Value
name type format label Variable label

state str13 %-13s State
state2 str2 %-2s Two-letter state abbreviation
drate int %9.0g Deathrate
pop long %12.0gc Population
medage float %9.2f Median age
region byte %-8.0g cenreg Census region

Sorted by:

Wecan use factor variables to include dummy variables for region. Because the variables in the regression

reflect means rather than individual observations, the appropriate method of estimation is analytically

weighted least squares (Davidson andMacKinnon 2004, 261–262), where the weight is total population:

. regress drate medage i.region [aweight=pop]
(sum of wgt is 225,907,472)

Source SS df MS Number of obs = 50
F(4, 45) = 37.21

Model 4096.6093 4 1024.15232 Prob > F = 0.0000
Residual 1238.40987 45 27.5202192 R-squared = 0.7679

Adj R-squared = 0.7472
Total 5335.01916 49 108.877942 Root MSE = 5.246

drate Coefficient Std. err. t P>|t| [95% conf. interval]

medage 4.283183 .5393329 7.94 0.000 3.196911 5.369455

region
N Cntrl .3138738 2.456431 0.13 0.899 -4.633632 5.26138
South -1.438452 2.320244 -0.62 0.538 -6.111663 3.234758
West -10.90629 2.681349 -4.07 0.000 -16.30681 -5.505777

_cons -39.14727 17.23613 -2.27 0.028 -73.86262 -4.431915

Toweight the regression by population, we added the qualifier [aweight=pop] to the end of the regress
command. Stata informed us that the sum of the weight is 2.2591 × 108; there were approximately 226

million people residing in the United States according to our 1980 data.
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In the weighted regression, we see that the coefficient on West is statistically significant but that

the coefficients on N Cntrl and South are not. We use testparm to test the joint significance of the
region variable. Because we fit a weighted regression, testparm uses the appropriately weighted

variance–covariance matrix.

. testparm i.region
( 1) 2.region = 0
( 2) 3.region = 0
( 3) 4.region = 0

F( 3, 45) = 9.84
Prob > F = 0.0000

The results indicate that the region variables are jointly significant. Note that we could have performed

this same test by typing contrast region. You may prefer to use the contrast command because, in
addition to the joint test, you can perform other tests such as comparisons of each region’s mean to the

grand mean; see [R] contrast for more information.

regress also accepts frequency weights (fweights). Frequency weights are appropriate when the
data do not reflect cell means but instead represent replicated observations. Specifying aweights or
fweights will not change the parameter estimates, but it will change the corresponding significance

levels.

For instance, if we specified [fweight=pop] in the weighted regression example above—which

would be statistically incorrect—Stata would treat the data as if the data represented 226 million inde-

pendent observations on death rates and median age. The data most certainly do not represent that—they

represent 50 observations on state averages.

With aweights, Stata treats the number of observations on the process as the number of observations
in the data. When we specify fweights, Stata treats the number of observations as if it were equal to the
sum of the weights; see Methods and formulas below.

Technical note
A frequent inquiry sent to StataCorp Technical Services is to describe the effect of specifying

[aweight=exp] with regress in terms of transformation of the dependent and independent variables.
The mechanical answer is that typing

. regress y x1 x2 [aweight=n]

is equivalent to fitting the model

𝑦𝑗√𝑛𝑗 = 𝛽0√𝑛𝑗 + 𝛽1𝑥1𝑗√𝑛𝑗 + 𝛽2𝑥2𝑗√𝑛𝑗 + 𝑢𝑗√𝑛𝑗

This regression will reproduce the coefficients and covariance matrix produced by the aweighted regres-
sion. The mean squared errors (estimates of the variance of the residuals) will, however, be different.

The transformed regression reports 𝑠2
𝑡 , an estimate of Var(𝑢𝑗

√𝑛𝑗). The aweighted regression reports
𝑠2

𝑎, an estimate of Var(𝑢𝑗
√𝑛𝑗√𝑁/ ∑𝑘 𝑛𝑘), where 𝑁 is the number of observations. Thus,

𝑠2
𝑎 = 𝑁

∑𝑘 𝑛𝑘
𝑠2

𝑡 = 𝑠2
𝑡

𝑛
(1)

The logic for this adjustment is as follows: Consider the model

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝑢
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Assume that, were this model fit on individuals, Var(𝑢) = 𝜎2
𝑢, a constant. Assume that individual data

are not available; what is available are averages (𝑦𝑗, 𝑥1𝑗, 𝑥2𝑗) for 𝑗 = 1, . . . , 𝑁, and each average is

calculated over 𝑛𝑗 observations. Then it is still true that

𝑦𝑗 = 𝛽0 + 𝛽1𝑥1𝑗 + 𝛽2𝑥2𝑗 + 𝑢𝑗

where 𝑢𝑗 is the average of 𝑛𝑗 mean 0, variance 𝜎2
𝑢 deviates and has variance 𝜎2

𝑢 = 𝜎2
𝑢/𝑛𝑗. Thus,

multiplying through by
√𝑛𝑗 produces

𝑦𝑗√𝑛𝑗 = 𝛽0√𝑛𝑗 + 𝛽1𝑥1𝑗√𝑛𝑗 + 𝛽2𝑥2𝑗√𝑛𝑗 + 𝑢𝑗√𝑛𝑗

and Var(𝑢𝑗
√𝑛𝑗) = 𝜎2

𝑢. The mean squared error, 𝑠2
𝑡 , reported by fitting this transformed regression is an

estimate of 𝜎2
𝑢. The coefficients and covariance matrix could also be obtained by aweighted regress.

The only difference would be in the reported mean squared error, which from (1) is 𝜎2
𝑢/𝑛. On average,

each observation in the data reflects the averages calculated over 𝑛 = ∑𝑘 𝑛𝑘/𝑁 individuals, and thus

this reported mean squared error is the average variance of an observation in the dataset. We can retrieve

the estimate of 𝜎2
𝑢 by multiplying the reported mean squared error by 𝑛.

More generally, aweights are used to solve general heteroskedasticity problems. In these cases, we
have the model

𝑦𝑗 = 𝛽0 + 𝛽1𝑥1𝑗 + 𝛽2𝑥2𝑗 + 𝑢𝑗

and the variance of 𝑢𝑗 is thought to be proportional to 𝑎𝑗. If the variance is proportional to 𝑎𝑗, it is

also proportional to 𝛼𝑎𝑗, where 𝛼 is any positive constant. Not quite arbitrarily, but with no loss of

generality, we could choose 𝛼 = ∑𝑘(1/𝑎𝑘)/𝑁, the average value of the inverse of 𝑎𝑗. We can then

write Var(𝑢𝑗) = 𝑘𝛼𝑎𝑗𝜎2, where 𝑘 is the constant of proportionality that is no longer a function of the

scale of the weights.

Dividing this regression through by the
√𝑎𝑗,

𝑦𝑗/√𝑎𝑗 = 𝛽0/√𝑎𝑗 + 𝛽1𝑥1𝑗/√𝑎𝑗 + 𝛽2𝑥2𝑗/√𝑎𝑗 + 𝑢𝑗/√𝑎𝑗

produces a model with Var(𝑢𝑗/
√𝑎𝑗) = 𝑘𝛼𝜎2, which is the constant part of Var(𝑢𝑗). This variance is a

function of 𝛼, the average of the reciprocal weights; if the weights are scaled arbitrarily, then so is this
variance.

We can also fit this model by typing

. regress y x1 x2 [aweight=1/a]

This input will produce the same estimates of the coefficients and covariance matrix; the reported mean

squared error is, from (1), {𝑁/ ∑𝑘(1/𝑎𝑘)}𝑘𝛼𝜎2 = 𝑘𝜎2. This variance is independent of the scale of

𝑎𝑗.

Video examples
Simple linear regression in Stata

Fitting and interpreting regression models: Linear regression with categorical predictors

Fitting and interpreting regression models: Linear regression with continuous predictors

Fitting and interpreting regression models: Linear regression with continuous and categorical predictors

https://www.youtube.com/watch?v=HafqFSB9x70
https://youtu.be/_ti7Lju1odk
https://youtu.be/D5Szv8SwJN4
https://youtu.be/7f8dQfYoCG8
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Stored results
regress stores the following in e():

Scalars

e(N) number of observations

e(mss) model sum of squares

e(df m) model degrees of freedom

e(rss) residual sum of squares

e(df r) residual degrees of freedom

e(r2) 𝑅2

e(r2 a) adjusted 𝑅2

e(F) 𝐹 statistic

e(rmse) root mean squared error

e(ll) log likelihood under additional assumption of i.i.d. normal errors

e(ll 0) log likelihood, constant-only model

e(sum w) sum of weights

e(N clust) number of clusters

e(rank) rank of e(V)

Macros

e(cmd) regress
e(cmdline) command as typed

e(depvar) name of dependent variable

e(wtype) weight type

e(wexp) weight expression

e(model) ols
e(title) title in estimation output when vce() is not ols
e(clustvar) names of cluster variables

e(cluster#) cluster combination #

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of the estimators

e(beta) standardized coefficients

e(V modelbased) model-based variance

e(adj df) adjusted degrees of freedom when vce(hc2, dfadjust) is specified
e(kcluster) cluster sizes, multiway clustering

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.
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Methods and formulas
Methods and formulas are presented under the following headings:

Coefficient estimation and ANOVA table
Weighted regression
A general notation for the robust variance calculation
Robust calculation for regress

Coefficient estimation and ANOVA table
Variables printed in lowercase and not boldfaced (for example, 𝑥) are scalars. Variables printed in

lowercase and boldfaced (for example, x) are column vectors. Variables printed in uppercase and bold-

faced (for example, X) are matrices.

Let X denote the matrix of observations on the right-hand-side variables, y the vector of observations

on the left-hand-side variables. Define A as X′X and a as X′y. The coefficient vector b is defined as

A−1a. Although not shown in the notation, unless hascons is specified, A and a are accumulated in

deviation form and the constant is calculated separately. This comment applies to all statistics listed

below.

The total sum of squares, TSS, equals y′y if there is no intercept and y′y−{(1′y)2/𝑛} otherwise. The
degrees of freedom is 𝑛 − 𝑐, where 𝑛 is the number of observations and 𝑐 = 1 if there is a constant in

the regression and 0 otherwise.

The residual sum of squares, RSS, is defined as (y−Xb)′(y−Xb). The degrees of freedom is 𝑛 − 𝑘,
where 𝑛 is the number of observations and 𝑘 is the number of right-hand-side variables (including the

constant).

The model sum of squares, MSS, equals TSS − RSS. The degrees of freedom is 𝑘 − 𝑐.
The mean squared error, 𝑠2, is defined as RSS/(𝑛 − 𝑘). The root mean squared error is 𝑠, its square

root.

The 𝐹 statistic with 𝑘 − 𝑐 and 𝑛 − 𝑘 degrees of freedom is defined as

𝐹 = MSS

(𝑘 − 𝑐)𝑠2

The 𝑅2 is defined as 𝑅2 = 1 − RSS/TSS.
The adjusted 𝑅2 is defined as 𝑅2

𝑎 = 1 − (1 − 𝑅2)(𝑛 − 𝑐)/(𝑛 − 𝑘).
The conventional estimate of variance is 𝑠2A−1. The calculation of variance estimates when robust

variance estimates are specified is described below.

Weighted regression
Let v be a column vector of weights specified by the user. Let w be a column vector of normalized

weights, w = {v/(1′v)}(1′1). For fweights, w = v. For historical reasons, iweights are treated like
fweights when robust standard errors are not specified. Instead, when vce(robust), vce(cluster
clustvarlist), vce(hc2), or vce(hc3) is specified, iweights are treated like aweights.



regress — Linear regression 2492

If the user specifies weights, the number of observations, 𝑛, in the above formulas is defined as 1′w.

For iweights, this is truncated to an integer. The sum of the weights is 1′v. X′X, X′y, and y′y are

replaced in the above formulas by X′DX, X′Dy, and y′Dy, respectively, where D is a diagonal matrix

whose diagonal elements are the elements of w.

A general notation for the robust variance calculation
Put aside all context of linear regression and the notation that goes with it—we will return to it. First,

we are going to establish a notation for describing robust variance calculations.

The calculation formula for the robust variance calculation is

𝒱 = 𝑞𝑐V̂(
𝑀

∑
𝑘=1

u
(𝐺)′
𝑘 u

(𝐺)
𝑘 )V̂

where

u
(𝐺)
𝑘 = ∑

𝑗∈𝐺𝑘

𝑤𝑗u𝑗

𝐺1, 𝐺2, . . . , 𝐺𝑀 are the clusters specified by vce(cluster clustvarlist)when clustvarlist contains only
one variable, and 𝑤𝑗 are the user-specified weights, normalized if aweights or pweights are specified
and equal to 1 if no weights are specified.

For fweights without clusters, the variance formula is

𝒱 = 𝑞𝑐V̂(
𝑁

∑
𝑗=1

𝑤𝑗u
′
𝑗u𝑗)V̂

which is the same as expanding the dataset and making the calculation on the unweighted data.

If vce(cluster clustvarlist) is not specified, 𝑀 = 𝑁, and each cluster contains 1 observation. The

inputs into this calculation are

• V̂, which is typically a conventionally calculated variance matrix;

• u𝑗, 𝑗 = 1, . . . , 𝑁, a row vector of scores; and

• 𝑞c, a constant finite-sample adjustment.

Thus, we can now describe how estimators apply the robust calculation formula by defining V̂, u𝑗, and

𝑞c.
Two definitions are popular enough for 𝑞c to deserve a name. The regression-like formula for 𝑞c

(Fuller et al. 1986) is

𝑞c = 𝑁 − 1
𝑁 − 𝑘

𝑀
𝑀 − 1

where 𝑀 is the number of clusters and 𝑁 is the number of observations. For weights, 𝑁 refers to the sum

of the weights if weights are frequency weights and the number of observations in the dataset (ignoring

weights) in all other cases. Also note that, weighted or not, 𝑀 = 𝑁 when vce(cluster clustvarlist) is
not specified, and then 𝑞c = 𝑁/(𝑁 − 𝑘).
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The asymptotic-like formula for 𝑞c is

𝑞c = 𝑀
𝑀 − 1

where 𝑀 = 𝑁 if vce(cluster clustvarlist) is not specified.

See [U] 20.22 Obtaining robust variance estimates and [P] robust for a discussion of the robust

variance estimator and a development of these formulas.

Robust calculation for regress
For regress, V̂ = A−1. The other terms are vce(robust), but not vce(hc2) or vce(hc3),

u𝑗 = (𝑦𝑗 − x𝑗b)x𝑗

and 𝑞c is given by its regression-like definition. vce(hc2),

u𝑗 = 1
√1 − ℎ𝑗𝑗

(𝑦𝑗 − x𝑗b)x𝑗

where 𝑞c = 1 and ℎ𝑗𝑗 = x𝑗(X′X)−1x𝑗
′. vce(hc3),

u𝑗 = 1
1 − ℎ𝑗𝑗

(𝑦𝑗 − x𝑗b)x𝑗

where 𝑞c = 1 and ℎ𝑗𝑗 = x𝑗(X′X)−1x𝑗
′. vce(hc2 clustvar),

u𝑗 = (y𝑗 − X𝑗b)′(I𝐺𝑗
− H𝑗𝑗)

− 1
2
X𝑗

where 𝑞c = 1, H𝑗𝑗 = X𝑗(X′X)−1X𝑗
′ for cluster 𝑗 of size 𝐺𝑗, 𝐺𝑗 × 𝑘 data matrix X𝑗, and 𝐺𝑗 × 1 vector

y𝑗. (I𝐺𝑗
−H𝑗𝑗)− 1

2 is the inverse of the symmetric square root of (I𝐺𝑗
−H𝑗𝑗) (Bell and McCaffrey 2002).

vce(hc2 [ clustvar ], dfadjust) directs regress to compute the adjusted degrees of freedom de-

scribed by Imbens and Kolesár (2016). Define the 𝑁 × 𝑀 matrix G such that the 𝑗th column is

(I𝑁 − H)𝑗
′ (I𝐺𝑗

− H𝑗𝑗)
− 1

2
X𝑗 (X′X)−1 𝑒𝑙

where 𝑗 = 1, . . . , 𝑀, 𝑒𝑙 is a unary vector for the 𝑙th regressor, 𝑙 = 1, . . . , 𝑘, and (I𝑁 −H)𝑗 is the 𝐺𝑗 × 𝑁
subset of the 𝑁 × 𝑁 matrix (I𝑁 −H) for cluster 𝑗. The Bell and McCaffrey (2002) adjusted degrees of

freedom for the 𝑙th regressor is

𝐾𝑙 = tr (G′G)2

tr ((G′G)2)

=
(∑𝑀

𝑖=1 𝜆𝑖)
2

∑𝑀
𝑖=1 𝜆2

𝑖

where tr(⋅) is the trace function and 𝜆𝑖 are the eigenvalues of G
′G.



regress — Linear regression 2494

When 𝑀 is large, or when there are no clusters and 𝑀 = 𝑁, computing the eigenvalues can be time

consuming. We define

a𝑗 = (I𝐺𝑗
− H𝑗𝑗)

− 1
2
X𝑗 (X′X)−1

e𝐿,𝑘

b𝑗 = H𝑗a𝑗

A = (a′
1a1, . . . , a′

𝑀a𝑀)′ = (𝐴1, 𝐴2, . . . , 𝐴𝑀)′

B = (b1, . . . ,b𝑀) = ⎛⎜
⎝

𝐵1,1 𝐵1,2 · · · 𝐵1,𝑀
⋮ ⋮ ⋱ ⋮

𝐵𝑁,1 𝐵𝑁,2 · · · 𝐵𝑁,𝑀

⎞⎟
⎠

for 𝑗 = 1, . . . , 𝑀 and H𝑗 = X (X′X)−1
X′

𝑗. Then G
′G = diag (A) − B′B (Kolesár 2023).

We now express the adjusted degrees of freedom as

𝐾𝑙 = (∑𝑀
𝑗=1 𝐴𝑗 − ∑𝑁

𝑖=1 ∑𝑀
𝑗=1 𝐵2

𝑖𝑗)
2

∑𝑀
𝑗=1 𝐴2

𝑗 − 2 ∑𝑀
𝑗=1 𝐴𝑗 ∑𝑁

𝑖=1 𝐵2
𝑖𝑗 + ∑𝑀

𝑗1=1 ∑𝑀
𝑗2=1 (b′

𝑗1
b𝑗2

)
2

which can be computed efficiently in Mata and using QR decomposition. For example, by decomposing

X = QR, where Q is 𝑛 × 𝑘 and orthonormal and R is 𝑘 × 𝑘 and upper triangular, we can rewrite the

matrix B so that it has dimension 𝑘 × 𝑀 instead of 𝑁 × 𝑀.

When weights are specified, we use the weighted covariate matrix X̃ = diag (w)
1
2 X and its cor-

responding projection matrix H̃, as well as the cluster covariance matrices X̃𝑗, their projection matrices

H̃𝑗𝑗, and weighted residuals ̃ε𝑗 = diag (w𝑗)
1
2 ̂ε𝑗. When frequency weights are specified without clusters,

we substitute 1/√1 − ℎ𝑗𝑗 with 1/√𝑤𝑗 − ℎ̃𝑗𝑗, where 𝑗 = 1, . . . , 𝑁. Also, when there are no clusters,

the weights are included in the degrees-of-freedom algebra

𝐾𝑙 = (∑𝑁
𝑗=1 𝑤𝑗𝐴𝑗 − ∑𝑘

𝑖=1 ∑𝑁
𝑗=1 𝐵2

𝑖𝑗)
2

∑𝑁
𝑗=1 𝑤𝑗𝐴2

𝑗 − 2 ∑𝑁
𝑗=1 𝐴𝑗 ∑𝑘

𝑖=1 𝐵2
𝑖𝑗 + ∑𝑁

𝑗1=1 ∑𝑁
𝑗2=1 (b′

𝑗1
b𝑗2

)
2

Here we substituted 𝑘 for 𝑁 in the row dimension of B as it is when using QR decomposition to perform

the computations.

With weights, the vce(hc2 clustvar) computation discussed above is modified to

u𝑗 = (diag (w𝑗)
1
2 (y𝑗 − X𝑗b))

′
(I𝐺𝑗

− H̃𝑗𝑗)
− 1

2
X̃𝑗

= (ỹ𝑗 − X̃𝑗b)
′
(I𝐺𝑗

− H̃𝑗𝑗)
− 1

2
X̃𝑗
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Multiway clustering
When you type vce(cluster clustvarlist) with more than one variable, the variance–covariance

estimator uses multiway cluster–robust variance estimation. This is carried out by estimating the robust

VCE for all combinations of the specified cluster variables and summing. For 𝑝 cluster variables, there

will be 𝑃 = 2𝑝 − 1 cluster variable combinations. Let V𝑖 be the 𝑖th robust VCE, 𝑖 = 1, . . . , 𝑃. Define
𝑆𝑗, 𝑗 = 1, . . . , 𝑝, as the set of indices 𝑖 involving 𝑗 cluster variables. The size, or cardinality, of 𝑆𝑗

is |𝑆𝑗| = (𝑝
𝑗) and ∑𝑝

𝑗=1 (𝑝
𝑗) = 2𝑝 − 1. For example, for 𝑝 = 4, |𝑆1| = (41) = 4, |𝑆2| = (42) = 6,

|𝑆3| = (43) = 4, and |𝑆4| = (44) = 1. The multiway cluster–robust VCE is then

V∗ =
𝑝

∑
𝑗=1

(−1)𝑗−1 ∑
𝑖∈𝑆𝑗

V𝑖

You are more likely to cluster on two or, maybe, three variables. In the case of two cluster variables,

the computation would be

V∗ = 𝑉1 + 𝑉2 − 𝑉12

where 𝑉1 corresponds to the variance–covariance computation clustering at the level of the first cluster,

𝑉2 corresponds to the second level, and 𝑉12 corresponds to the variance–covariance computation for the

group formed by the intersection of both clustering levels.

An eigendecomposition on V∗ ensures the matrix to be positive semidefinite. Let the columns of

matrix U contain the eigenvectors of V∗ and the vector contain u, its eigenvalues. If V∗ is not positive

definite, some of the elements of u will be less than 0. Let u+ contain all the nonnegative elements of u

and zeros where 𝑢𝑖 < 0. The matrix V+ = U ⋅ diag(u+) ⋅ U′ will then be positive semidefinite.

Acknowledgments
The robust estimate of variance was first implemented in Stata by Mead Over of the Center for Global

Development, Dean Jolliffe of the World Bank, and Andrew Foster of the Department of Economics at

Brown University (Over, Jolliffe, and Foster 1996).



regress — Linear regression 2496

� �
The history of regression is long and complicated: the books by Stigler (1986) and Hald (1998) are

devoted largely to the story. Legendre published first on least squares in 1805. Gauss published later

in 1809, but he had the idea earlier. Gauss, and especially Laplace, tied least squares to a normal

errors assumption. The idea of the normal distribution can itself be traced back to De Moivre in

1733. Laplace discussed a variety of other estimation methods and error assumptions over his long

career, while linear models long predate either innovation. Most of this work was linked to problems

in astronomy and geodesy.

A second wave of ideas started when Galton used graphical and descriptive methods on data bearing

on heredity to develop what he called regression. His term reflects the common phenomenon that

characteristics of offspring are positively correlated with those of parents but with regression slope

such that offspring “regress toward the mean”. Galton’s work was rather intuitive: contributions

from Pearson, Edgeworth, Yule, and others introduced more formal machinery, developed related

ideas on correlation, and extended application into the biological and social sciences. So most of

the elements of regression as we know it were in place by 1900.

Pierre-Simon Laplace (1749–1827) was born in Normandy and was early recognized as a remark-

able mathematician. He weathered a changing political climate well enough to rise to Minister of

the Interior under Napoleon in 1799 (although only for 6 weeks) and to be made a Marquis by Louis

XVIII in 1817. He made many contributions to mathematics and physics, his two main interests

being theoretical astronomy and probability theory (including statistics). Laplace transforms are

named for him.

Adrien-Marie Legendre (1752–1833) was born in Paris (or possibly in Toulouse) and educated in

mathematics and physics. He worked in number theory, geometry, differential equations, calculus,

function theory, applied mathematics, and geodesy. The Legendre polynomials are named for him.

His main contribution to statistics is as one of the discoverers of least squares. He died in poverty,

having refused to bow to political pressures.

Johann Carl Friedrich Gauss (1777–1855) was born in Braunschweig (Brunswick), now in Ger-

many. He studied there and at Göttingen. His doctoral dissertation at the University of Helmstedt

was a discussion of the fundamental theorem of algebra. He made many fundamental contributions

to geometry, number theory, algebra, real analysis, differential equations, numerical analysis, statis-

tics, astronomy, optics, geodesy, mechanics, and magnetism. An outstanding genius, Gauss worked

mostly in isolation in Göttingen.

Francis Galton (1822–1911) was born in Birmingham, England, into a well-to-do family with many

connections: he and Charles Darwin were first cousins. After an unsuccessful foray into medicine,

he became independently wealthy at the death of his father. Galton traveled widely in Europe, the

Middle East, andAfrica, and became celebrated as an explorer and geographer. His pioneering work

on weather maps helped in the identification of anticyclones, which he named. From about 1865,

most of his work was centered on quantitative problems in biology, anthropology, and psychology.

In a sense, Galton (re)invented regression, and he certainly named it. Galton also promoted the nor-

mal distribution, correlation approaches, and the use of median and selected quantiles as descriptive

statistics. He was knighted in 1909.� �

https://www.stata.com/giftshop/bookmarks/series2/legendre/
https://www.stata.com/giftshop/bookmarks/series1/gauss/
https://www.stata.com/giftshop/bookmarks/series2/galton/
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Postestimation commands Predictions margins
DFBETA influence statistics Tests for violation of assumptions Variance inflation factors
Measures of effect size Methods and formulas Acknowledgments
References Also see

Postestimation commands
The following postestimation commands are of special interest after regress:

Command Description

dfbeta DFBETA influence statistics

estat hettest tests for heteroskedasticity

estat imtest information matrix test

estat ovtest Ramsey regression specification-error test for omitted variables

estat szroeter Szroeter’s rank test for heteroskedasticity

estat vif variance inflation factors for the independent variables

estat esize 𝜂2, 𝜀2, and 𝜔2 effect sizes

estat moran Moran’s test of residual correlation with nearby residuals

lassogof calculate goodness-of-fit predictions

These commands are not appropriate with svy estimation results.

2500
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The following standard postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters

estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian infor-
mation criteria (AIC, CAIC, AICc, and BIC, respectively)

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estat (svy) postestimation statistics for survey data

estimates cataloging estimation results

etable table of estimation results
∗ forecast dynamic forecasts and simulations
∗ hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

linktest link test for model specification
∗ lrtest likelihood-ratio test

margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

predict predictions and their SEs, leverage statistics, distance statistics, etc.

predictnl point estimates, standard errors, testing, and inference for generalized predictions

pwcompare pairwise comparisons of parameters

suest seemingly unrelated estimation

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

∗forecast, hausman, and lrtest are not appropriate with svy estimation results. forecast is also not appropriate with mi
estimation results.
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Predictions

Description for predict
predict creates a new variable containing predictions such as linear predictions, residuals, standard-

ized residuals, Studentized residuals, Cook’s distance, leverage, probabilities, expected values, DFBETAs

for varname, standard errors, COVRATIOs, DFITS, and Welsch distances.

Menu for predict
Statistics > Postestimation

Syntax for predict
predict [ type ] newvar [ if ] [ in ] [ , statistic ]

statistic Description

Main

xb linear prediction; the default

residuals residuals

score score; equivalent to residuals
rstandard standardized residuals

rstudent Studentized (jackknifed) residuals

cooksd Cook’s distance

leverage | hat leverage (diagonal elements of hat matrix)

pr(a,b) Pr(𝑦𝑗 | 𝑎 < 𝑦𝑗 < 𝑏)
e(a,b) 𝐸(𝑦𝑗 | 𝑎 < 𝑦𝑗 < 𝑏)
ystar(a,b) 𝐸(𝑦∗

𝑗), 𝑦∗
𝑗 = max{𝑎,min(𝑦𝑗, 𝑏)}

∗ dfbeta(varname) DFBETA for varname

stdp standard error of the linear prediction

stdf standard error of the forecast

stdr standard error of the residual
∗ covratio COVRATIO
∗ dfits DFITS
∗ welsch Welsch distance

Unstarred statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for the
estimation sample. Starred statistics are calculated only for the estimation sample, even when if e(sample) is not
specified.

rstandard, rstudent, cooksd, leverage, dfbeta(), stdf, stdr, covratio, dfits, and welsch are not available if any
vce() other than vce(ols) was specified with regress.

xb, residuals, score, and stdp are the only options allowed with svy estimation results.

where a and b may be numbers or variables; a missing (a ≥ .) means −∞, and b missing (b ≥ .) means +∞; see
[U] 12.2.1 Missing values.
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Options for predict

� � �
Main �

xb, the default, calculates the linear prediction.

residuals calculates the residuals.

score is equivalent to residuals in linear regression.

rstandard calculates the standardized residuals.

rstudent calculates the Studentized (jackknifed) residuals.

cooksd calculates the Cook’s 𝐷 influence statistic (Cook 1977).

leverage or hat calculates the diagonal elements of the projection (“hat”) matrix.

pr(a,b) calculates Pr(a < x𝑗b + 𝑢𝑗 < b), the probability that 𝑦𝑗|x𝑗 would be observed in the interval

(a, b).
a and b may be specified as numbers or variable names; lb and ub are variable names;

pr(20,30) calculates Pr(20 < x𝑗b + 𝑢𝑗 < 30);
pr(lb,ub) calculates Pr(lb < x𝑗b + 𝑢𝑗 < ub); and
pr(20,ub) calculates Pr(20 < x𝑗b + 𝑢𝑗 < ub).
a missing (a ≥ .) means −∞; pr(.,30) calculates Pr(−∞ < x𝑗b + 𝑢𝑗 < 30);
pr(lb,30) calculates Pr(−∞ < x𝑗b + 𝑢𝑗 < 30) in observations for which lb ≥ .
and calculates Pr(𝑙𝑏 < x𝑗b + 𝑢𝑗 < 30) elsewhere.
b missing (b ≥ .) means +∞; pr(20,.) calculates Pr(+∞ > x𝑗b + 𝑢𝑗 > 20);
pr(20,ub) calculates Pr(+∞ > x𝑗b + 𝑢𝑗 > 20) in observations for which ub ≥ .
and calculates Pr(20 < x𝑗b + 𝑢𝑗 < ub) elsewhere.

e(a,b) calculates 𝐸(x𝑗b + 𝑢𝑗 | a < x𝑗b + 𝑢𝑗 < b), the expected value of 𝑦𝑗|x𝑗 conditional on 𝑦𝑗|x𝑗
being in the interval (a, b), meaning that 𝑦𝑗|x𝑗 is truncated. a and b are specified as they are for pr().

ystar(a,b) calculates 𝐸(𝑦∗
𝑗), where 𝑦∗

𝑗 = 𝑎 if x𝑗b+𝑢𝑗 ≤ 𝑎, 𝑦∗
𝑗 = 𝑏 if x𝑗b+𝑢𝑗 ≥ 𝑏, and 𝑦∗

𝑗 = x𝑗b+𝑢𝑗
otherwise, meaning that 𝑦∗

𝑗 is censored. a and b are specified as they are for pr().

dfbeta(varname) calculates the DFBETA for varname, the difference between the regression coefficient
when the 𝑗th observation is included and excluded, said difference being scaled by the estimated stan-
dard error of the coefficient. varnamemust have been included among the regressors in the previously

fitted model. The calculation is automatically restricted to the estimation subsample.

stdp calculates the standard error of the prediction, which can be thought of as the standard error of the
predicted expected value or mean for the observation’s covariate pattern. The standard error of the

prediction is also referred to as the standard error of the fitted value.

stdf calculates the standard error of the forecast, which is the standard error of the point prediction for
1 observation. It is commonly referred to as the standard error of the future or forecast value. By

construction, the standard errors produced by stdf are always larger than those produced by stdp;
see Methods and formulas.

stdr calculates the standard error of the residuals.

covratio calculates COVRATIO (Belsley, Kuh, and Welsch 1980), a measure of the influence of the 𝑗th
observation based on considering the effect on the variance–covariance matrix of the estimates. The

calculation is automatically restricted to the estimation subsample.
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dfits calculates DFITS (Welsch and Kuh 1977) and attempts to summarize the information in the lever-

age versus residual-squared plot into one statistic. The calculation is automatically restricted to the

estimation subsample.

welsch calculates Welsch distance (Welsch 1982) and is a variation on dfits. The calculation is auto-
matically restricted to the estimation subsample.

Remarks and examples for predict
Remarks are presented under the following headings:

Terminology
Fitted values and residuals
Prediction standard errors
Prediction with weighted data
Leverage statistics
Standardized and Studentized residuals
DFITS, Cook’s Distance, and Welsch Distance
COVRATIO

Terminology

Many of these commands concern identifying influential data in linear regression. This is, unfortu-

nately, a field that is dominated by jargon, codified and partially begun by Belsley, Kuh, and Welsch

(1980). In the words of Chatterjee and Hadi (1986, 416), “Belsley, Kuh, and Welsch’s book, Regression

Diagnostics, was a very valuable contribution to the statistical literature, but it unleashed on an unsus-

pecting statistical community a computer speak (à la Orwell), the likes of which we have never seen.”

Things have only gotten worse since then. Chatterjee and Hadi’s (1986, 1988) own attempts to clean up

the jargon did not improve matters (see Hoaglin and Kempthorne [1986], Velleman [1986], and Welsch

[1986]). We apologize for the jargon, and for our contribution to the jargon in the form of inelegant

command names, we apologize most of all.

Model sensitivity refers to how estimates are affected by subsets of our data. Imagine data on 𝑦 and
𝑥, and assume that the data are to be fit by the regression 𝑦𝑖 = 𝛼 + 𝛽𝑥𝑖 + 𝜖𝑖. The regression estimates of

𝛼 and 𝛽 are 𝑎 and 𝑏, respectively. Now imagine that the estimated 𝑎 and 𝑏 would be different if a small
portion of the dataset, perhaps even one observation, were deleted. As a data analyst, you would like to

think that you are summarizing tendencies that apply to all the data, but you have just been told that the

model you fit is unduly influenced by one point or just a few points and that, as a matter of fact, there is

another model that applies to the rest of the data—a model that you have ignored. The search for subsets

of the data that, if deleted, would change the results markedly is a predominant theme of this entry.

There are three key issues in identifying model sensitivity to individual observations, which go by

the names residuals, leverage, and influence. In our 𝑦𝑖 = 𝑎 + 𝑏𝑥𝑖 + 𝑒𝑖 regression, the residuals are, of

course, 𝑒𝑖—they reveal how much our fitted value ̂𝑦𝑖 = 𝑎 + 𝑏𝑥𝑖 differs from the observed 𝑦𝑖. A point

(𝑥𝑖, 𝑦𝑖) with a corresponding large residual is called an outlier. Say that you are interested in outliers
because you somehow think that such points will exert undue influence on your estimates. Your feelings

are generally right, but there are exceptions. A point might have a huge residual and yet not affect the

estimated 𝑏 at all. Nevertheless, studying observations with large residuals almost always pays off.
(𝑥𝑖, 𝑦𝑖) can be an outlier in another way—just as 𝑦𝑖 can be far from ̂𝑦𝑖, 𝑥𝑖 can be far from the center of

mass of the other 𝑥’s. Such an “outlier” should interest you just as much as the more traditional outliers.
Picture a scatterplot of 𝑦 against 𝑥 with thousands of points in some sort of mass at the lower left of the

graph and one point at the upper right of the graph. Now, run a regression line through the points—the



regress postestimation — Postestimation tools for regress 2505

regression line will come close to the point at the upper right of the graph and may in fact, go through

it. That is, this isolated point will not appear as an outlier as measured by residuals because its residual

will be small. Yet this point might have a dramatic effect on our resulting estimates in the sense that,

were you to delete the point, the estimates would change markedly. Such a point is said to have high

leverage. Just as with traditional outliers, a high leverage point does not necessarily have an undue effect

on regression estimates, but if it does not, it is more the exception than the rule.

Now, all of this is a most unsatisfactory state of affairs. Points with large residuals may, but need not,

have a large effect on our results, and points with small residuals may still have a large effect. Points

with high leverage may, but need not, have a large effect on our results, and points with low leverage

may still have a large effect. Can you not identify the influential points and simply have the computer

list them for you? You can, but you will have to define what you mean by “influential”.

“Influential” is defined with respect to some statistic. For instance, youmight ask which points in your

data have a large effect on your estimated 𝑎, which points have a large effect on your estimated 𝑏, which
points have a large effect on your estimated standard error of 𝑏, and so on, but do not be surprised when
the answers to these questions are different. In any case, obtaining suchmeasures is not difficult—all you

have to do is fit the regression excluding each observation one at a time and record the statistic of interest

which, in the day of the modern computer, is not too onerous. Moreover, you can save considerable

computer time by doing algebra ahead of time and working out formulas that will calculate the same

answers as if you ran each of the regressions. (Ignore the question of pairs of observations that, together,

exert undue influence, and triples, and so on, which remains largely unsolved and for which the brute

force fit-every-possible-regression procedure is not a viable alternative.)

Fitted values and residuals

Typing predict newvarwith no options creates newvar containing the fitted values. Typing predict
newvar, resid creates newvar containing the residuals.

Example 1
Continuing with example 1 from [R] regress, we wish to fit the following model:

mpg = 𝛽0 + 𝛽1weight + 𝛽2foreign + 𝜖

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. regress mpg weight foreign

Source SS df MS Number of obs = 74
F(2, 71) = 69.75

Model 1619.2877 2 809.643849 Prob > F = 0.0000
Residual 824.171761 71 11.608053 R-squared = 0.6627

Adj R-squared = 0.6532
Total 2443.45946 73 33.4720474 Root MSE = 3.4071

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

weight -.0065879 .0006371 -10.34 0.000 -.0078583 -.0053175
foreign -1.650029 1.075994 -1.53 0.130 -3.7955 .4954422
_cons 41.6797 2.165547 19.25 0.000 37.36172 45.99768
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That done, we can now obtain the predicted values from the regression. We will store them in a new

variable called pmpg by typing predict pmpg. Because predict produces no output, we will follow
that by summarizing our predicted and observed values.

. predict pmpg
(option xb assumed; fitted values)
. summarize pmpg mpg

Variable Obs Mean Std. dev. Min Max

pmpg 74 21.2973 4.709779 9.794333 29.82151
mpg 74 21.2973 5.785503 12 41

Example 2: Out-of-sample predictions
We can just as easily obtain predicted values from the model by using a wholly different dataset from

the one on which the model was fit. The only requirement is that the data have the necessary variables,

which here are weight and foreign.

Using the data on two new cars (the Pontiac Sunbird and the Volvo 260) from newautos.dta, we
can obtain out-of-sample predictions (or forecasts) by typing

. use https://www.stata-press.com/data/r18/newautos, clear
(New automobile models)
. predict pmpg
(option xb assumed; fitted values)
. list, divider

make weight foreign pmpg

1. Pont. Sunbird 2690 Domestic 23.95829
2. Volvo 260 3170 Foreign 19.14607

The Pontiac Sunbird has a predicted mileage rating of 23.96 mpg, whereas the Volvo 260 has a predicted

rating of 19.15 mpg. In comparison, the actual mileage ratings are 24 for the Pontiac and 17 for the

Volvo.

Prediction standard errors

predict can calculate the standard error of the forecast (stdf option), the standard error of the

prediction (stdp option), and the standard error of the residual (stdr option). It is easy to confuse stdf
and stdp because both are often called the prediction error. Consider the prediction ̂𝑦𝑗 = x𝑗b, where b

is the estimated coefficient (column) vector and x𝑗 is a (row) vector of independent variables for which

you want the prediction. First, ̂𝑦𝑗 has a variance due to the variance of the estimated coefficient vector b,

Var( ̂𝑦𝑗) = Var(x𝑗b) = 𝑠2ℎ𝑗

where ℎ𝑗 = x𝑗(X′X)−1x′
𝑗 and 𝑠2 is the mean squared error of the regression. Do not panic over the

algebra—just remember that Var( ̂𝑦𝑗) = 𝑠2ℎ𝑗, whatever 𝑠2 and ℎ𝑗 are. stdp calculates this quantity.

This is the error in the prediction due to the uncertainty about b.
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If you are about to hand this number out as your forecast, however, there is another error. According

to your model, the true value of 𝑦𝑗 is given by

𝑦𝑗 = x𝑗b + 𝜖𝑗 = ̂𝑦𝑗 + 𝜖𝑗

and thus the Var(𝑦𝑗) = Var( ̂𝑦𝑗) + Var(𝜖𝑗) = 𝑠2ℎ𝑗 + 𝑠2, which is the square of stdf. stdf, then, is the
sum of the error in the prediction plus the residual error.

stdr has to do with an analysis-of-variance decomposition of 𝑠2, the estimated variance of 𝑦. The
standard error of the prediction is 𝑠2ℎ𝑗, and therefore 𝑠2ℎ𝑗 + 𝑠2(1 − ℎ𝑗) = 𝑠2 decomposes 𝑠2 into the

prediction and residual variances.

Example 3: Standard error of the forecast
Returning to our model of mpg on weight and foreign, we previously predicted the mileage rating

for the Pontiac Sunbird and Volvo 260 as 23.96 and 19.15 mpg, respectively. We now want to put a

standard error around our forecast. Remember, the data for these two cars were in newautos.dta:

. use https://www.stata-press.com/data/r18/newautos, clear
(New automobile models)
. predict pmpg
(option xb assumed; fitted values)
. predict se_pmpg, stdf
. list, divider

make weight foreign pmpg se_pmpg

1. Pont. Sunbird 2690 Domestic 23.95829 3.462791
2. Volvo 260 3170 Foreign 19.14607 3.525875

Thus, an approximate 95% confidence interval for themileage rating of theVolvo 260 is 19.15±2⋅3.53 =
[ 12.09, 26.21 ].

Prediction with weighted data

predict can be used after frequency-weighted (fweight) estimation, just as it is used after un-

weighted estimation. The technical note below concerns the use of predict after analytically weighted
(aweight) estimation.

Technical note
After analytically weighted estimation, predict is willing to calculate only the prediction (no op-

tions), residual (residual option), standard error of the prediction (stdp option), and diagonal ele-

ments of the projection matrix (hat option). For analytically weighted estimation, the standard error of
the forecast and residuals, the standardized and Studentized residuals, and Cook’s 𝐷 are not statistically

well-defined concepts.



regress postestimation — Postestimation tools for regress 2508

Leverage statistics

In addition to providing fitted values and the associated standard errors, the predict command can
also be used to generate various statistics used to detect the influence of individual observations. This

section provides a brief introduction to leverage (hat) statistics, and some of the following subsections

discuss other influence statistics produced by predict.

Example 4: Diagonal elements of projection matrix
The diagonal elements of the projection matrix, obtained by the hat option, are a measure of distance

in explanatory variable space. leverage is a synonym for hat.
. use https://www.stata-press.com/data/r18/auto, clear
(1978 automobile data)
. regress mpg weight foreign
(output omitted )

. predict xdist, hat

. summarize xdist, detail
Leverage

Percentiles Smallest
1% .0192325 .0192325
5% .0192686 .0192366
10% .0193448 .019241 Obs 74
25% .0220291 .0192686 Sum of wgt. 74
50% .0383797 Mean .0405405

Largest Std. dev. .0207624
75% .0494002 .0880814
90% .0693432 .099715 Variance .0004311
95% .0880814 .099715 Skewness 1.159745
99% .1003283 .1003283 Kurtosis 4.083313

Some 5%of our sample has an xdistmeasure in excess of 0.08. Let’s force them to reveal their identities:

. list foreign make mpg if xdist>.08, divider

foreign make mpg

24. Domestic Ford Fiesta 28
26. Domestic Linc. Continental 12
27. Domestic Linc. Mark V 12
43. Domestic Plym. Champ 34
64. Foreign Peugeot 604 14

To understand why these cars are on this list, we must remember that the explanatory variables in our

model are weight and foreign and that xdist measures distance in this metric. The Ford Fiesta and
the Plymouth Champ are the two lightest domestic cars in our data. The Lincolns are the two heaviest

domestic cars, and the Peugeot is the heaviest foreign car.

See lvr2plot in [R] regress postestimation diagnostic plots for information on a leverage-versus-

squared-residual plot.
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Standardized and Studentized residuals

The terms standardized and Studentized residuals have meant different things to different authors. In

Stata, predict defines the standardized residual as ̂𝑒𝑠𝑖
= 𝑒𝑖/(𝑠√1 − ℎ𝑖) and the Studentized residual as

𝑟𝑖 = 𝑒𝑖/(𝑠(𝑖)√1 − ℎ𝑖), where 𝑠(𝑖) is the root mean squared error of a regression with the 𝑖th observation
removed. Stata’s definition of the Studentized residual is the same as the one given in Bollen and Jack-

man (1990, 264) and is what Chatterjee and Hadi (1988, 74) call the “externally Studentized” residual.

Stata’s “standardized” residual is the same as what Chatterjee and Hadi (1988, 74) call the “internally

Studentized” residual.

Standardized and Studentized residuals are attempts to adjust residuals for their standard errors. Al-

though the 𝜖𝑖 theoretical residuals are homoskedastic by assumption (that is, they all have the same

variance), the calculated 𝑒𝑖 are not. In fact,

Var(𝑒𝑖) = 𝜎2(1 − ℎ𝑖)

whereℎ𝑖 are the leveragemeasures obtained from the diagonal elements of hatmatrix. Thus, observations

with the greatest leverage have corresponding residuals with the smallest variance.

Standardized residuals use the root mean squared error of the regression for 𝜎. Studentized residuals
use the root mean squared error of a regression omitting the observation in question for 𝜎. In general,
Studentized residuals are preferable to standardized residuals for purposes of outlier identification. Stu-

dentized residuals can be interpreted as the 𝑡 statistic for testing the significance of a dummy variable
equal to 1 in the observation in question and 0 elsewhere (Belsley, Kuh, and Welsch 1980). Such a

dummy variable would effectively absorb the observation and so remove its influence in determining the

other coefficients in the model. Caution must be exercised here, however, because of the simultaneous

testing problem. You cannot simply list the residuals that would be individually significant at the 5%

level—their joint significance would be far less (their joint significance level would be far greater).

Example 5: Standardized and Studentized residuals
In the Terminology section of Remarks and examples for predict, we distinguished residuals from

leverage and speculated on the impact of an observation with a small residual but large leverage. If we

adjust the residuals for their standard errors, however, the adjusted residual would be (relatively) larger

and perhaps large enough so that we could simply examine the adjusted residuals. Taking our price on
weight and foreign##c.mpg model from example 1 of [R] regress postestimation diagnostic plots,

we can obtain the in-sample standardized and Studentized residuals by typing

. use https://www.stata-press.com/data/r18/auto, clear
(1978 automobile data)
. regress price weight foreign##c.mpg
(output omitted )

. predict esta if e(sample), rstandard

. predict estu if e(sample), rstudent
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In the lvr2plot section of [R] regress postestimation diagnostic plots, we discovered that the VWDiesel

has the highest leverage in our data, but a corresponding small residual. The standardized and Studentized

residuals for the VW Diesel are

. list make price esta estu if make==”VW Diesel”

make price esta estu

71. VW Diesel 5,397 .6142691 .6114758

The Studentized residual of 0.611 can be interpreted as the 𝑡 statistic for including a dummy variable for
VW Diesel in our regression. Such a variable would not be significant.

DFITS, Cook’s Distance, and Welsch Distance

DFITS (Welsch and Kuh 1977), Cook’s Distance (Cook 1977), andWelsch Distance (Welsch 1982) are

three attempts to summarize the information in the leverage versus residual-squared plot into one statistic.

That is, the goal is to create an index that is affected by the size of the residuals—outliers—and the size

of ℎ𝑖—leverage. Viewed mechanically, one way to write DFITS (Bollen and Jackman 1990, 265) is

DFITS𝑖 = 𝑟𝑖√
ℎ𝑖

1 − ℎ𝑖

where 𝑟𝑖 are the Studentized residuals. Thus, large residuals increase the value of DFITS, as do large

values of ℎ𝑖. Viewed more traditionally, DFITS is a scaled difference between predicted values for the 𝑖th
case when the regression is fit with and without the 𝑖th observation, hence the name.

The mechanical relationship between DFITS and Cook’s Distance, 𝐷𝑖 (Bollen and Jackman 1990,

266), is

𝐷𝑖 = 1
𝑘

𝑠2
(𝑖)

𝑠2 DFITS2
𝑖

where 𝑘 is the number of variables (including the constant) in the regression, 𝑠 is the root mean squared
error of the regression, and 𝑠(𝑖) is the root mean squared error when the 𝑖th observation is omitted. Viewed
more traditionally, 𝐷𝑖 is a scaled measure of the distance between the coefficient vectors when the 𝑖th
observation is omitted.

The mechanical relationship between DFITS and Welsch’s Distance, 𝑊𝑖 (Chatterjee and Hadi 1988,

123), is

𝑊𝑖 = DFITS𝑖√
𝑛 − 1
1 − ℎ𝑖

The interpretation of 𝑊𝑖 is more difficult because it is based on the empirical influence curve. Although

DFITS and Cook’s distance are similar, the Welsch distance measure includes another normalization by

leverage.

Belsley, Kuh, and Welsch (1980, 28) suggest that DFITS values greater than 2√𝑘/𝑛 deserve more

investigation, and so values of Cook’s distance greater than 4/𝑛 should also be examined (Bollen and

Jackman 1990, 265–266). Through similar logic, the cutoff for Welsch distance is approximately 3
√

𝑘
(Chatterjee and Hadi 1988, 124).
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Example 6: DFITS influence measure
Continuing with our model of price on weight and foreign##c.mpg, we can obtain the DFITS

influence measure:

. predict e if e(sample), resid

. predict dfits, dfits

We did not specify if e(sample) in computing the DFITS statistic. DFITS is available only over the

estimation sample, so specifying if e(sample) would have been redundant. It would have done no

harm, but it would not have changed the results.

Our model has 𝑘 = 5 independent variables (𝑘 includes the constant) and 𝑛 = 74 observations;

following the 2√𝑘/𝑛 cutoff advice, we type

. list make price e dfits if abs(dfits) > 2*sqrt(5/74), divider

make price e dfits

12. Cad. Eldorado 14,500 7271.96 .9564455
13. Cad. Seville 15,906 5036.348 1.356619
24. Ford Fiesta 4,389 3164.872 .5724172
27. Linc. Mark V 13,594 3109.193 .5200413
28. Linc. Versailles 13,466 6560.912 .8760136

42. Plym. Arrow 4,647 -3312.968 -.9384231

We calculate Cook’s distance and list the observations greater than the suggested 4/𝑛 cutoff:

. predict cooksd if e(sample), cooksd

. list make price e cooksd if cooksd > 4/74, divider

make price e cooksd

12. Cad. Eldorado 14,500 7271.96 .1492676
13. Cad. Seville 15,906 5036.348 .3328515
24. Ford Fiesta 4,389 3164.872 .0638815
28. Linc. Versailles 13,466 6560.912 .1308004
42. Plym. Arrow 4,647 -3312.968 .1700736

Herewe used if e(sample) because Cook’s distance is not restricted to the estimation sample by default.
It is worth comparing this list with the preceding one.
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Finally, we use Welsch distance and the suggested 3
√

𝑘 cutoff:
. predict wd, welsch
. list make price e wd if abs(wd) > 3*sqrt(5), divider

make price e wd

12. Cad. Eldorado 14,500 7271.96 8.394372
13. Cad. Seville 15,906 5036.348 12.81125
28. Linc. Versailles 13,466 6560.912 7.703005
42. Plym. Arrow 4,647 -3312.968 -8.981481

Here we did not need to specify if e(sample) because welsch automatically restricts the prediction to
the estimation sample.

COVRATIO

COVRATIO (Belsley, Kuh, and Welsch 1980) measures the influence of the 𝑖th observation by con-
sidering the effect on the variance–covariance matrix of the estimates. The measure is the ratio of the

determinants of the covariances matrix, with and without the 𝑖th observation. The resulting formula is

COVRATIO𝑖 = 1
1 − ℎ𝑖

(
𝑛 − 𝑘 − ̂𝑒2

𝑠𝑖

𝑛 − 𝑘 − 1
)

𝑘

where ̂𝑒𝑠𝑖
is the standardized residual.

For noninfluential observations, the value of COVRATIO is approximately 1. Large values of the resid-

uals or large values of leverage will cause deviations from 1, although if both are large, COVRATIO may

tend back toward 1 and therefore not identify such observations (Chatterjee and Hadi 1988, 139).

Belsley, Kuh, and Welsch (1980) suggest that observations for which

|COVRATIO𝑖 − 1| ≥ 3𝑘
𝑛

are worthy of further examination.
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Example 7: COVRATIO influence measure
Using our model of price on weight and foreign##c.mpg, we can obtain the COVRATIO measure

and list the observations outside the suggested cutoff by typing

. predict covr, covratio

. list make price e covr if abs(covr-1) >= 3*5/74, divider

make price e covr

12. Cad. Eldorado 14,500 7271.96 .3814242
13. Cad. Seville 15,906 5036.348 .7386969
28. Linc. Versailles 13,466 6560.912 .4761695
43. Plym. Champ 4,425 1621.747 1.27782
53. Audi 5000 9,690 591.2883 1.206842

57. Datsun 210 4,589 19.81829 1.284801
64. Peugeot 604 12,990 1037.184 1.348219
66. Subaru 3,798 -909.5894 1.264677
71. VW Diesel 5,397 999.7209 1.630653
74. Volvo 260 11,995 1327.668 1.211888

The covratio option automatically restricts the prediction to the estimation sample.
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margins

Description for margins
margins estimates margins of response for linear predictions.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist ] [ , options ]
margins [marginlist ] , predict(statistic ...) [ options ]

statistic Description

xb linear prediction; the default

pr(a,b) not allowed with margins
e(a,b) not allowed with margins
ystar(a,b) not allowed with margins
residuals not allowed with margins
score not allowed with margins
rstandard not allowed with margins
rstudent not allowed with margins
cooksd not allowed with margins
leverage | hat not allowed with margins

not allowed with margins
dfbeta(varname) not allowed with margins
stdp not allowed with margins
stdf not allowed with margins
stdr not allowed with margins
covratio not allowed with margins
dfits not allowed with margins
welsch not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.
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DFBETA influence statistics

Description for dfbeta
dfbeta will calculate one, more than one, or all the DFBETAs after regress. Although predict will

also calculate DFBETAs, predict can do this for only one variable at a time. dfbeta is a convenience
tool for those who want to calculate DFBETAs for multiple variables. The names for the new variables

created are chosen automatically and begin with the letters dfbeta .

Menu for dfbeta
Statistics > Linear models and related > Regression diagnostics > DFBETAs

Syntax for dfbeta
dfbeta [ indepvar [ indepvar [. . .] ] ] [ , stub(name) ]

Option for dfbeta
stub(name) specifies the leading characters dfbeta uses to name the new variables to be generated.

The default is stub( dfbeta ).

Remarks and examples for dfbeta
DFBETAs are perhaps the most direct influence measure of interest to model builders. DFBETAs focus

on one coefficient andmeasure the difference between the regression coefficient when the 𝑖th observation
is included and excluded, the difference being scaled by the estimated standard error of the coefficient.

Belsley, Kuh, and Welsch (1980, 28) suggest observations with |DFBETA𝑖| > 2/
√

𝑛 as deserving special

attention, but it is also common practice to use 1 (Bollen and Jackman 1990, 267), meaning that the

observation shifted the estimate at least one standard error.

Example 8: DFBETAs influence measure; the dfbeta() option
Using our model of price on weight and foreign##c.mpg, let’s first ask which observations have

the greatest impact on the determination of the coefficient on 1.foreign. We will use the suggested

2/
√

𝑛 cutoff:

. use https://www.stata-press.com/data/r18/auto, clear
(1978 automobile data)
. regress price weight foreign##c.mpg
(output omitted )



regress postestimation — Postestimation tools for regress 2516

. sort foreign make

. predict dfor, dfbeta(1.foreign)

. list make price foreign dfor if abs(dfor) > 2/sqrt(74), divider

make price foreign dfor

12. Cad. Eldorado 14,500 Domestic -.5290519
13. Cad. Seville 15,906 Domestic .8243419
28. Linc. Versailles 13,466 Domestic -.5283729
42. Plym. Arrow 4,647 Domestic -.6622424
43. Plym. Champ 4,425 Domestic .2371104

64. Peugeot 604 12,990 Foreign .2552032
69. Toyota Corona 5,719 Foreign -.256431

The Cadillac Seville shifted the coefficient on 1.foreign 0.82 standard deviations!

Now let us ask which observations have the greatest effect on the mpg coefficient:

. predict dmpg, dfbeta(mpg)

. list make price mpg dmpg if abs(dmpg) > 2/sqrt(74), divider

make price mpg dmpg

12. Cad. Eldorado 14,500 14 -.5970351
13. Cad. Seville 15,906 21 1.134269
28. Linc. Versailles 13,466 14 -.6069287
42. Plym. Arrow 4,647 28 -.8925859
43. Plym. Champ 4,425 34 .3186909

Once again, we see the Cadillac Seville heading the list, indicating that our regression results may be

dominated by this one car.

Example 9: DFBETAs influence measure; the dfbeta command
We can use predict, dfbeta() or the dfbeta command to generate the DFBETAs. dfbeta makes

up names for the new variables automatically and, without arguments, generates the DFBETAs for all the

variables in the regression:

. dfbeta
Generating DFBETA variables ...

_dfbeta_1: DFBETA weight
_dfbeta_2: DFBETA 1.foreign
_dfbeta_3: DFBETA mpg
_dfbeta_4: DFBETA 1.foreign#c.mpg

dfbeta created four new variables in our dataset: dfbeta 1, containing the DFBETAs for weight;
dfbeta 2, containing the DFBETAs for mpg; and so on. Had we wanted only the DFBETAs for mpg and
weight, we might have typed

. dfbeta mpg weight
Generating DFBETA variables ...

_dfbeta_5: DFBETA weight
_dfbeta_6: DFBETA mpg
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In the example above, we typed dfbeta mpg weight instead of dfbeta; if we had typed dfbeta followed
by dfbeta mpg weight, here is what would have happened:

. dfbeta
Generating DFBETA variables ...

_dfbeta_7: DFBETA weight
_dfbeta_8: DFBETA 1.foreign
_dfbeta_9: DFBETA mpg

_dfbeta_10: DFBETA 1.foreign#c.mpg

. dfbeta mpg weight
Generating DFBETA variables ...

_dfbeta_11: DFBETA weight
_dfbeta_12: DFBETA mpg

dfbeta would have made up different names for the new variables. dfbeta never replaces existing

variables—it instead makes up a different name, so we need to pay attention to dfbeta’s output.

Tests for violation of assumptions

Description for estat hettest
estat hettest performs three versions of the Breusch–Pagan (1979) and Cook–Weisberg (1983)

test for heteroskedasticity. All three versions of this test present evidence against the null hypothesis that

t = 0 in Var(𝑒) = 𝜎2exp(zt). In the normal version, performed by default, the null hypothesis also

includes the assumption that the regression disturbances are independent-normal draws with variance

𝜎2. The normality assumption is dropped from the null hypothesis in the iid and fstat versions, which
respectively produce the score and 𝐹 tests discussed in Methods and formulas. If varlist is not specified,

the fitted values are used for z. If varlist or the rhs option is specified, the variables specified are used
for z.

Menu for estat
Statistics > Postestimation

Syntax for estat hettest
estat hettest [ varlist ] [ , rhs [ normal | iid | fstat ] mtest[ (spec) ] ]

collect is allowed with estat hettest; see [U] 11.1.10 Prefix commands.

Options for estat hettest
rhs specifies that tests for heteroskedasticity be performed for the right-hand-side (explanatory) variables

of the fitted regression model. The rhs option may be combined with a varlist.

normal, the default, causes estat hettest to compute the original Breusch–Pagan/Cook–Weisberg

test, which assumes that the regression disturbances are normally distributed.

iid causes estat hettest to compute the 𝑁 ∗ 𝑅2 version of the score test that drops the normality

assumption.

fstat causes estat hettest to compute the 𝐹-statistic version that drops the normality assumption.
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mtest[ (spec) ] specifies that multiple testing be performed. The argument specifies how 𝑝-values are
adjusted. The following specifications, spec, are supported:

bonferroni Bonferroni’s multiple testing adjustment

holm Holm’s multiple testing adjustment

sidak Šidák’s multiple testing adjustment

noadjust no adjustment is made for multiple testing

mtest may be specified without an argument. This is equivalent to specifying mtest(noadjust);
that is, tests for the individual variables should be performed with unadjusted 𝑝-values. By default,
estat hettest does not perform multiple testing. mtest may not be specified with iid or fstat.

Description for estat imtest
estat imtest performs an information matrix test for the regression model and an orthogonal de-

composition into tests for heteroskedasticity, skewness, and kurtosis due to Cameron and Trivedi (1990);

White’s test for homoskedasticity against unrestricted forms of heteroskedasticity (1980) is available as

an option. White’s test is usually similar to the first term of the Cameron–Trivedi decomposition.

Menu for estat
Statistics > Postestimation

Syntax for estat imtest
estat imtest [ , preserve white ]

collect is allowed with estat imtest; see [U] 11.1.10 Prefix commands.

Options for estat imtest
preserve specifies that the data in memory be preserved, all variables and cases that are not needed

in the calculations be dropped, and at the conclusion the original data be restored. This option is

costly for large datasets. However, because estat imtest has to perform an auxiliary regression on

𝑘(𝑘 + 1)/2 temporary variables, where 𝑘 is the number of regressors, it may not be able to perform

the test otherwise.

white specifies that White’s original heteroskedasticity test also be performed.



regress postestimation — Postestimation tools for regress 2519

Description for estat ovtest
estat ovtest performs two versions of the Ramsey (1969) regression specification-error test (RE-

SET) for omitted variables. This test amounts to fitting 𝑦 = xb + zt + 𝑢 and then testing t = 0. If the

rhs option is not specified, powers of the fitted values are used for z. If rhs is specified, powers of the
individual elements of x are used.

Menu for estat
Statistics > Postestimation

Syntax for estat ovtest
estat ovtest [ , rhs ]

collect is allowed with estat ovtest; see [U] 11.1.10 Prefix commands.

Option for estat ovtest
rhs specifies that powers of the right-hand-side (explanatory) variables be used in the test rather than

powers of the fitted values.

Description for estat szroeter
estat szroeter performs Szroeter’s rank test for heteroskedasticity for each of the variables in

varlist or for the explanatory variables of the regression if rhs is specified.

Menu for estat
Statistics > Postestimation

Syntax for estat szroeter
estat szroeter [ varlist ] [ , rhs mtest(spec) ]
Either varlist or rhs must be specified.

Options for estat szroeter
rhs specifies that tests for heteroskedasticity be performed for the right-hand-side (explanatory) variables

of the fitted regression model. The rhs option may be combined with a varlist.

mtest(spec) specifies that multiple testing be performed. The argument specifies how 𝑝-values are
adjusted. The following specifications, spec, are supported:

bonferroni Bonferroni’s multiple testing adjustment

holm Holm’s multiple testing adjustment

sidak Šidák’s multiple testing adjustment

noadjust no adjustment is made for multiple testing

estat szroeter always performs multiple testing. By default, it does not adjust the 𝑝-values.



regress postestimation — Postestimation tools for regress 2520

Remarks and examples for estat hettest, estat imtest, estat ovtest, and estat
szroeter

We introduce some regression diagnostic commands that are designed to test for certain violations

that rvfplot (see [R] regress postestimation diagnostic plots) less formally attempts to detect. estat
ovtest provides Ramsey’s test for omitted variables—a pattern in the residuals. estat hettest pro-
vides a test for heteroskedasticity—the increasing or decreasing variation in the residuals with fitted

values, with respect to the explanatory variables, or with respect to yet other variables. The score test

implemented in estat hettest (Breusch and Pagan 1979; Cook and Weisberg 1983) performs a score

test of the null hypothesis that 𝑏 = 0 against the alternative hypothesis of multiplicative heteroskedas-

ticity. estat szroeter provides a rank test for heteroskedasticity, which is an alternative to the score
test computed by estat hettest. Finally, estat imtest computes an information matrix test, includ-
ing an orthogonal decomposition into tests for heteroskedasticity, skewness, and kurtosis (Cameron and

Trivedi 1990). The heteroskedasticity test computed by estat imtest is similar to the general test for
heteroskedasticity that was proposed by White (1980). Cameron and Trivedi (2022, chap. 3) discuss

most of these tests and provides more examples.

Example 10: estat ovtest, estat hettest, estat szroeter, and estat imtest
We use our model of price on weight and foreign##c.mpg.

. use https://www.stata-press.com/data/r18/auto, clear
(1978 automobile data)
. regress price weight foreign##c.mpg
(output omitted )

. estat ovtest
Ramsey RESET test for omitted variables
Omitted: Powers of fitted values of price
H0: Model has no omitted variables
F(3, 66) = 7.77
Prob > F = 0.0002
. estat hettest
Breusch--Pagan/Cook--Weisberg test for heteroskedasticity
Assumption: Normal error terms
Variable: Fitted values of price
H0: Constant variance

chi2(1) = 6.50
Prob > chi2 = 0.0108
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Testing for heteroskedasticity in the right-hand-side variables is requested by specifying the rhs op-
tion. By specifying the mtest(bonferroni) option, we request that tests be conducted for each of the
variables, with a Bonferroni adjustment for the 𝑝-values to accommodate our testing multiple hypotheses.

. estat hettest, rhs mtest(bonf)
Breusch--Pagan/Cook--Weisberg test for heteroskedasticity
Assumption: Normal error terms
H0: Constant variance

Variable chi2 df p

weight 15.24 1 0.0004*
foreign
Foreign 6.15 1 0.0525*

mpg 9.04 1 0.0106*
foreign#
c.mpg

Foreign 6.02 1 0.0566*

Simultaneous 15.60 4 0.0036

* Bonferroni-adjusted p-values
. estat szroeter, rhs mtest(holm)
Szroeter’s test for homoskedasticity
H0: Variance constant
Ha: Variance monotonic in variables

Variable chi2 df p

weight 17.07 1 0.0001*
foreign
Foreign 6.15 1 0.0260*

mpg 11.45 1 0.0021*
foreign#
c.mpg

Foreign 6.17 1 0.0260*

* Holm-adjusted p-values

Finally, we request the information matrix test, which is a conditional moments test with second-,

third-, and fourth-order moment conditions.

. estat imtest
Cameron & Trivedi’s decomposition of IM-test

Source chi2 df p

Heteroskedasticity 18.86 10 0.0420
Skewness 11.69 4 0.0198
Kurtosis 2.33 1 0.1273

Total 32.87 15 0.0049

We find evidence for omitted variables, heteroskedasticity, and nonnormal skewness.
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So, why bother with the various graphical commands when the tests seem so much easier to interpret?

In part, it is a matter of taste: both are designed to uncover the same problem, and both are, in fact, going

about it in similar ways. One is based on a formal calculation, whereas the other is based on personal

judgment in evaluating a graph. On the other hand, the tests are seeking evidence of specific problems,

whereas judgment is more general. The careful analyst will use both.

We performed the omitted-variable test first. Omitted variables are a more serious problem than het-

eroskedasticity or the violations of higher moment conditions tested by estat imtest. If this were not
a manual, having found evidence of omitted variables, we would never have run the estat hettest,
estat szroeter, and estat imtest commands, at least not until we solved the omitted-variable prob-
lem.

Technical note
estat ovtest and estat hettest both perform two flavors of their respective tests. By default,

estat ovtest looks for evidence of omitted variables by fitting the original model augmented by ̂𝑦2, ̂𝑦3,

and ̂𝑦4, which are the fitted values from the original model. Under the assumption of no misspecification,

the coefficients on the powers of the fitted values will be zero. With the rhs option, estat ovtest
instead augments the original model with powers (second through fourth) of the explanatory variables

(except for dummy variables).

estat hettest, by default, looks for heteroskedasticity by modeling the variance as a function of the
fitted values. If, however, we specify a variable or variables, the variance will be modeled as a function of

the specified variables. In our example, if we had, a priori, some reason to suspect heteroskedasticity and

that the heteroskedasticity is a function of a car’s weight, then using a test that focuses on weight would be

more powerful than the more general tests such as White’s test or the first term in the Cameron–Trivedi

decomposition test.

estat hettest, by default, computes the original Breusch–Pagan/Cook–Weisberg test, which in-

cludes the assumption of normally distributed errors. Koenker (1981) derived an 𝑁 ∗ 𝑅2 version of this

test that drops the normality assumption. Wooldridge (2020, 270) gives an 𝐹-statistic version that does
not require the normality assumption.

Stored results for estat hettest, estat imtest, and estat ovtest
estat hettest stores the following results for the (multivariate) score test in r():

Scalars

r(chi2) 𝜒2 test statistic

r(df) #df for the asymptotic 𝜒2 distribution under 𝐻0
r(p) 𝑝-value

estat hettest, fstat stores results for the (multivariate) score test in r():

Scalars

r(F) test statistic

r(df m) #df of the test for the 𝐹 distribution under 𝐻0
r(df r) #df of the residuals for the 𝐹 distribution under 𝐻0
r(p) 𝑝-value



regress postestimation — Postestimation tools for regress 2523

estat hettest (if mtest is specified) and estat szroeter store the following in r():
Matrices

r(mtest) a matrix of test results, with rows corresponding to the univariate tests

mtest[.,1] 𝜒2 test statistic

mtest[.,2] #df

mtest[.,3] unadjusted 𝑝-value
mtest[.,4] adjusted 𝑝-value (if an mtest() adjustment method is specified)

Macros

r(mtmethod) adjustment method for 𝑝-value

estat imtest stores the following in r():
Scalars

r(chi2 t) IM-test statistic (= r(chi2 h) + r(chi2 s) + r(chi2 k))
r(df t) df for limiting 𝜒2 distribution under 𝐻0 (= r(df h) + r(df s) + r(df k))
r(chi2 h) heteroskedasticity test statistic

r(df h) df for limiting 𝜒2 distribution under 𝐻0
r(chi2 s) skewness test statistic

r(df s) df for limiting 𝜒2 distribution under 𝐻0
r(chi2 k) kurtosis test statistic

r(df k) df for limiting 𝜒2 distribution under 𝐻0
r(chi2 w) White’s heteroskedasticity test (if white specified)
r(df w) df for limiting 𝜒2 distribution under 𝐻0

estat ovtest stores the following in r():
Scalars

r(p) two-sided 𝑝-value
r(F) 𝐹 statistic

r(df) degrees of freedom

r(df r) residual degrees of freedom

Variance inflation factors

Description for estat vif
estat vif calculates the centered or uncentered variance inflation factors (VIFs) for the independent

variables specified in a linear regression model.

Menu for estat
Statistics > Postestimation

Syntax for estat vif
estat vif [ , uncentered ]

Option for estat vif
uncentered requests the computation of the uncentered variance inflation factors. The uncentered VIFs

are often used to detect the collinearity of the regressors with the constant. uncenteredmust be spec-
ified if the regression model did not include a constant term because centered VIFs are not appropriate

for these models.
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Remarks and examples for estat vif
Problems arise in regression when the predictors are highly correlated. In this situation, there may

be a significant change in the regression coefficients if you add or delete an independent variable. The

estimated standard errors of the fitted coefficients are inflated, or the estimated coefficients may not be

statistically significant even though a statistical relation exists between the dependent and independent

variables.

Data analysts rely on these facts to check informally for the presence of multicollinearity. estat vif,
another command for use after regress, calculates the variance inflation factors and tolerances for each
of the independent variables.

The output shows the variance inflation factors together with their reciprocals. Some analysts com-

pare the reciprocals with a predetermined tolerance. In the comparison, if the reciprocal of the VIF is

smaller than the tolerance, the associated predictor variable is removed from the regression model. How-

ever, most analysts rely on informal rules of thumb applied to the VIF; see Chatterjee and Hadi (2012).

According to these rules, there is evidence of multicollinearity if

1. The largest VIF is greater than 10 (some choose a more conservative threshold value of 30).

2. The mean of all the VIFs is considerably larger than 1.

Example 11: estat vif
We examine a regression model fit using the ubiquitous automobile dataset:

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. regress price mpg rep78 trunk headroom length turn displ gear_ratio

Source SS df MS Number of obs = 69
F(8, 60) = 6.33

Model 264102049 8 33012756.2 Prob > F = 0.0000
Residual 312694909 60 5211581.82 R-squared = 0.4579

Adj R-squared = 0.3856
Total 576796959 68 8482308.22 Root MSE = 2282.9

price Coefficient Std. err. t P>|t| [95% conf. interval]

mpg -144.84 82.12751 -1.76 0.083 -309.1195 19.43948
rep78 727.5783 337.6107 2.16 0.035 52.25638 1402.9
trunk 44.02061 108.141 0.41 0.685 -172.2935 260.3347

headroom -807.0996 435.5802 -1.85 0.069 -1678.39 64.19062
length -8.688914 34.89848 -0.25 0.804 -78.49626 61.11843
turn -177.9064 137.3455 -1.30 0.200 -452.6383 96.82551

displacement 30.73146 7.576952 4.06 0.000 15.5753 45.88762
gear_ratio 1500.119 1110.959 1.35 0.182 -722.1303 3722.368

_cons 6691.976 7457.906 0.90 0.373 -8226.058 21610.01
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. estat vif
Variable VIF 1/VIF

length 8.22 0.121614
displacement 6.50 0.153860

turn 4.85 0.205997
gear_ratio 3.45 0.290068

mpg 3.03 0.330171
trunk 2.88 0.347444

headroom 1.80 0.554917
rep78 1.46 0.686147

Mean VIF 4.02

The results are mixed. Although we have no VIFs greater than 10, the mean VIF is greater than 1, though

not considerably so. We could continue the investigation of collinearity, but given that other authors

advise that collinearity is a problem only when VIFs exist that are greater than 30 (contradicting our rule

above), we will not do so here.

Example 12: estat vif, with strong evidence of multicollinearity
This example comes from a dataset described in Kutner, Nachtsheim, and Neter (2004, 257) that

examines body fat as modeled by caliper measurements on the triceps, midarm, and thigh.

. use https://www.stata-press.com/data/r18/bodyfat
(Body fat)
. regress bodyfat tricep thigh midarm

Source SS df MS Number of obs = 20
F(3, 16) = 21.52

Model 396.984607 3 132.328202 Prob > F = 0.0000
Residual 98.4049068 16 6.15030667 R-squared = 0.8014

Adj R-squared = 0.7641
Total 495.389513 19 26.0731323 Root MSE = 2.48

bodyfat Coefficient Std. err. t P>|t| [95% conf. interval]

triceps 4.334085 3.015511 1.44 0.170 -2.058512 10.72668
thigh -2.856842 2.582015 -1.11 0.285 -8.330468 2.616785
midarm -2.186056 1.595499 -1.37 0.190 -5.568362 1.19625
_cons 117.0844 99.78238 1.17 0.258 -94.44474 328.6136

. estat vif
Variable VIF 1/VIF

triceps 708.84 0.001411
thigh 564.34 0.001772
midarm 104.61 0.009560

Mean VIF 459.26
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Here we see strong evidence of multicollinearity in our model. More investigation reveals that the mea-

surements on the thigh and the triceps are highly correlated:

. correlate triceps thigh midarm
(obs=20)

triceps thigh midarm

triceps 1.0000
thigh 0.9238 1.0000
midarm 0.4578 0.0847 1.0000

If we remove the predictor tricep from the model (because it had the highest VIF), we get

. regress bodyfat thigh midarm
Source SS df MS Number of obs = 20

F(2, 17) = 29.40
Model 384.279748 2 192.139874 Prob > F = 0.0000

Residual 111.109765 17 6.53586854 R-squared = 0.7757
Adj R-squared = 0.7493

Total 495.389513 19 26.0731323 Root MSE = 2.5565

bodyfat Coefficient Std. err. t P>|t| [95% conf. interval]

thigh .8508818 .1124482 7.57 0.000 .6136367 1.088127
midarm .0960295 .1613927 0.60 0.560 -.2444792 .4365383
_cons -25.99696 6.99732 -3.72 0.002 -40.76001 -11.2339

. estat vif
Variable VIF 1/VIF

midarm 1.01 0.992831
thigh 1.01 0.992831

Mean VIF 1.01

Note how the coefficients change and how the estimated standard errors for each of the regression coef-

ficients become much smaller. The calculated value of 𝑅2 for the overall regression for the subset model

does not appreciably decline when we remove the correlated predictor. Removing an independent vari-

able from the model is one way to deal with multicollinearity. Other methods include ridge regression,

weighted least squares, and restricting the use of the fitted model to data that follow the same pattern of

multicollinearity. In economic studies, it is sometimes possible to estimate the regression coefficients

from different subsets of the data by using cross-section and time series.

All examples above demonstrated the use of centered VIFs. As pointed out by Belsley (1991), the

centered VIFs may fail to discover collinearity involving the constant term. One solution is to use the

uncentered VIFs instead. According to the definition of the uncentered VIFs, the constant is viewed as a

legitimate explanatory variable in a regression model, which allows one to obtain the VIF value for the

constant term.
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Example 13: estat vif, with strong evidence of collinearity with the constant term
Consider the extreme example in which one of the regressors is highly correlated with the constant.

We simulate the data and examine both centered and uncentered VIF diagnostics after fitted regression

model as follows.

. use https://www.stata-press.com/data/r18/extreme_collin

. regress y one x z
Source SS df MS Number of obs = 100

F(3, 96) = 2710.27
Model 223801.985 3 74600.6617 Prob > F = 0.0000

Residual 2642.42124 96 27.5252213 R-squared = 0.9883
Adj R-squared = 0.9880

Total 226444.406 99 2287.31723 Root MSE = 5.2464

y Coefficient Std. err. t P>|t| [95% conf. interval]

one -3.278582 10.5621 -0.31 0.757 -24.24419 17.68702
x 2.038696 .0242673 84.01 0.000 1.990526 2.086866
z 4.863137 .2681036 18.14 0.000 4.330956 5.395319

_cons 9.760075 10.50935 0.93 0.355 -11.10082 30.62097

. estat vif
Variable VIF 1/VIF

z 1.03 0.968488
x 1.03 0.971307

one 1.00 0.995425

Mean VIF 1.02
. estat vif, uncentered

Variable VIF 1/VIF

one 402.94 0.002482
_cons 401.26 0.002492

z 2.93 0.341609
x 1.13 0.888705

Mean VIF 202.06

According to the values of the centered VIFs (1.03, 1.03, 1.00), no harmful collinearity is detected in

the model. However, by the construction of these simulated data, we know that one is highly collinear
with the constant term. As such, the large values of uncentered VIFs for one (402.94) and cons (401.26)
reveal high collinearity of the variable one with the constant term.
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Measures of effect size

Description for estat esize
estat esize calculates effect sizes for linear models after regress or anova. By default, estat

esize reports 𝜂2 estimates (Kerlinger and Lee 2000), which are equivalent to𝑅2 estimates. If the option

epsilon is specified, estat esize reports 𝜀2 estimates (Grissom and Kim 2012). If the option omega
is specified, estat esize reports 𝜔2 estimates (Grissom and Kim 2012). Both 𝜀2 and 𝜔2 are adjusted

𝑅2 estimates. Confidence intervals for 𝜂2 estimates are estimated by using the noncentral 𝐹 distribution

(Smithson 2001). See Kline (2013) or Thompson (2006) for further information.

Menu for estat
Statistics > Postestimation

Syntax for estat esize
estat esize [ , epsilon omega level(#) ]

collect is allowed with estat esize; see [U] 11.1.10 Prefix commands.

Options for estat esize
epsilon specifies that the 𝜖2 estimates of effect size be reported. The default is 𝜂2 estimates.

omega specifies that the 𝜔2 estimates of effect size be reported. The default is 𝜂2 estimates.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is

level(95) or as set by set level; see [U] 20.8 Specifying the width of confidence intervals.

Remarks and examples for estat esize
Whereas 𝑝-values are used to assess the statistical significance of a result, measures of effect size are

used to assess the practical significance of a result. Effect sizes can be broadly categorized as “mea-

sures of group differences” (the 𝑑 family) and “measures of association” (the 𝑟 family); see Ellis (2010,
table 1.1). The 𝑑 family includes estimators such as Cohen’s 𝐷, Hedges’s 𝐺, and Glass’s Δ (also see

[R] esize). The 𝑟 family includes estimators such as the point-biserial correlation coefficient, 𝜂2, 𝜖2, and

𝜔2. For an introduction to the concepts and calculation of effect sizes, see Kline (2013) or Thompson

(2006). For a more detailed discussion, see Kirk (1996), Ellis (2010), Cumming (2012), Grissom and

Kim (2012), and Kelley and Preacher (2012).
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Example 14: Calculating effect sizes for a linear regression model
Suppose we fit a linear regression model for low-birthweight infants.

. use https://www.stata-press.com/data/r18/lbw
(Hosmer & Lemeshow data)
. regress bwt smoke i.race

Source SS df MS Number of obs = 189
F(3, 185) = 8.69

Model 12346897.6 3 4115632.54 Prob > F = 0.0000
Residual 87568400.9 185 473342.708 R-squared = 0.1236

Adj R-squared = 0.1094
Total 99915298.6 188 531464.354 Root MSE = 688

bwt Coefficient Std. err. t P>|t| [95% conf. interval]

smoke -428.0254 109.0033 -3.93 0.000 -643.0746 -212.9761

race
Black -450.54 153.066 -2.94 0.004 -752.5194 -148.5607
Other -454.1813 116.436 -3.90 0.000 -683.8944 -224.4683

_cons 3334.858 91.74301 36.35 0.000 3153.86 3515.855

We can use the estat esize command to calculate 𝜂2 for the entire model and a partial 𝜂2 for each

term in the model.

. estat esize
Effect sizes for linear models

Source Eta-squared df [95% conf. interval]

Model .1235736 3 .0399862 .2041365

smoke .0769345 1 .0193577 .1579213
race .0908394 2 .0233037 .1700334

Note: Eta-squared values for individual model terms are partial.

The overall model effect size is 0.124. This means that roughly 12.4% of the variation in bwt is explained
by the model. The partial effect size for smoke is 0.077. This means that roughly 7.7% of the variation

in bwt is explained by smoke after you remove the variation explained by all other terms.

The omega option causes estat esize to report 𝜔2 and partial 𝜔2.

. estat esize, omega
Effect sizes for linear models

Source Omega-squared df

Model .1088457 3

smoke .0715877 1
race .0806144 2

Note: Omega-squared values for individual
model terms are partial.
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Example 15: Calculating effect size for an ANOVA model
We can use estat esize after ANOVAmodels as well.

. anova bwt smoke race
Number of obs = 189 R-squared = 0.1236
Root MSE = 687.999 Adj R-squared = 0.1094

Source Partial SS df MS F Prob>F

Model 12346898 3 4115632.5 8.69 0.0000

smoke 7298536.6 1 7298536.6 15.42 0.0001
race 8749453.3 2 4374726.6 9.24 0.0001

Residual 87568401 185 473342.71

Total 99915299 188 531464.35
. estat esize
Effect sizes for linear models

Source Eta-squared df [95% conf. interval]

Model .1235736 3 .0399862 .2041365

smoke .0769345 1 .0193577 .1579213
race .0908394 2 .0233037 .1700334

Note: Eta-squared values for individual model terms are partial.

Technical note
𝜂2 was developed in the context of analysis of variance. Thus, the published research on the calcu-

lation of confidence intervals focuses on cases where the numerator degrees of freedom are relatively

small (for example, df < 20).

Some combinations of the 𝐹 statistic, numerator degrees of freedom, and denominator degrees of

freedom yield confidence limits that do not contain the corresponding estimated value for an 𝜂2. This

problem is most commonly observed for larger numerator degrees of freedom.

Nothing in the literature suggests alternative methods for constructing confidence intervals in such

cases; therefore, we recommend cautious interpretation of confidence intervals for 𝜂2 when the numerator

degrees of freedom are greater than 20.
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Stored results for estat esize
estat esize stores the following results in r():

Scalars

r(level) confidence level

Matrices

r(esize) a matrix of effect sizes, confidence intervals, degrees of freedom, and 𝐹 statistics with rows corre-

sponding to each term in the model

esize[.,1] 𝜂2

esize[.,2] lower confidence bound for 𝜂2

esize[.,3] upper confidence bound for 𝜂2

esize[.,4] 𝜀2

esize[.,5] 𝜔2

esize[.,6] numerator degrees of freedom

esize[.,7] denominator degrees of freedom

esize[.,8] 𝐹 statistic

Methods and formulas
See Hamilton (2013, chap. 7), Kohler and Kreuter (2012, sec. 9.3), or Baum (2006, chap. 5) for an

overview of using Stata to perform regression diagnostics. See Peracchi (2001, chap. 8) for a mathemat-

ically rigorous discussion of diagnostics.

Methods and formulas are presented under the following headings:

predict
Special-interest postestimation commands

predict
Assume that you have already fit the regression model

y = Xb + e

where X is 𝑛 × 𝑘.
Denote the previously estimated coefficient vector by b and its estimated variance matrix by V.

predict works by recalling various aspects of the model, such as b, and combining that information

with the data currently in memory. Let x𝑗 be the 𝑗th observation currently in memory, and let 𝑠2 be the

mean squared error of the regression.

If the user specified weights in regress, then X′X in the following formulas is replaced by X′DX,

where D is defined in Weighted regression under Methods and formulas in [R] regress.

Let V = 𝑠2(X′X)−1. Let 𝑘 be the number of independent variables including the intercept, if any,

and let 𝑦𝑗 be the observed value of the dependent variable.

The predicted value (xb option) is defined as ̂𝑦𝑗 = x𝑗b.
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Let ℓ𝑗 represent a lower bound for an observation 𝑗 and 𝑢𝑗 represent an upper bound. The probability

that 𝑦𝑗|x𝑗 would be observed in the interval (ℓ𝑗, 𝑢𝑗)—the pr(ℓ, 𝑢) option—is

𝑃(ℓ𝑗, 𝑢𝑗) = Pr(ℓ𝑗 < x𝑗b + 𝑒𝑗 < 𝑢𝑗) = Φ (
𝑢𝑗 − ̂𝑦𝑗

𝑠
) − Φ (

ℓ𝑗 − ̂𝑦𝑗

𝑠
)

where for the pr(ℓ, 𝑢), e(ℓ, 𝑢), and ystar(ℓ, 𝑢) options, ℓ𝑗 and 𝑢𝑗 can be anywhere in the range

(−∞, +∞).
The option e(ℓ, 𝑢) computes the expected value of 𝑦𝑗|x𝑗 conditional on 𝑦𝑗|x𝑗 being in the interval

(ℓ𝑗, 𝑢𝑗), that is, when 𝑦𝑗|x𝑗 is truncated. It can be expressed as

𝐸(ℓ𝑗, 𝑢𝑗) = 𝐸(x𝑗b + 𝑒𝑗 | ℓ𝑗 < x𝑗b + 𝑒𝑗 < 𝑢𝑗) = ̂𝑦𝑗 − 𝑠
𝜙 ( 𝑢𝑗− ̂𝑦𝑗

𝑠 ) − 𝜙 ( ℓ𝑗− ̂𝑦𝑗
𝑠 )

Φ ( 𝑢𝑗− ̂𝑦𝑗
𝑠 ) − Φ ( ℓ𝑗− ̂𝑦𝑗

𝑠 )

where 𝜙 is the normal density and Φ is the cumulative normal.

You can also compute ystar(ℓ, 𝑢)—the expected value of 𝑦𝑗|x𝑗, where 𝑦𝑗 is assumed censored at

ℓ𝑗 and 𝑢𝑗:

𝑦∗
𝑗 =

⎧{
⎨{⎩

ℓ𝑗 if x𝑗b + 𝑒𝑗 ≤ ℓ𝑗
x𝑗b + 𝑒𝑗 if ℓ𝑗 < x𝑗b + 𝑒𝑗 < 𝑢𝑗
𝑢𝑗 if x𝑗b + 𝑒𝑗 ≥ 𝑢𝑗

This computation can be expressed in several ways, but the most intuitive formulation involves a

combination of the two statistics just defined:

𝑦∗
𝑗 = 𝑃(−∞, ℓ𝑗)ℓ𝑗 + 𝑃(ℓ𝑗, 𝑢𝑗)𝐸(ℓ𝑗, 𝑢𝑗) + 𝑃(𝑢𝑗, +∞)𝑢𝑗

A diagonal element of the projection matrix (hat) or (leverage) is given by

ℎ𝑗 = x𝑗(X′X)−1x′
𝑗

The standard error of the prediction (the stdp option) is defined as 𝑠𝑝𝑗
= √x𝑗Vx

′
𝑗

and can also be written as 𝑠𝑝𝑗
= 𝑠√ℎ𝑗.

The standard error of the forecast (stdf) is defined as 𝑠𝑓𝑗
= 𝑠√1 + ℎ𝑗.

The standard error of the residual (stdr) is defined as 𝑠𝑟𝑗
= 𝑠√1 − ℎ𝑗.

The residuals (residuals) are defined as ̂𝑒𝑗 = 𝑦𝑗 − ̂𝑦𝑗.

The standardized residuals (rstandard) are defined as ̂𝑒𝑠𝑗
= ̂𝑒𝑗/𝑠𝑟𝑗

.
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The Studentized residuals (rstudent) are defined as

𝑟𝑗 =
̂𝑒𝑗

𝑠(𝑗)√1 − ℎ𝑗

where 𝑠(𝑗) represents the root mean squared error with the 𝑗th observation removed, which is given by

𝑠2
(𝑗) = 𝑠2(𝑛 − 𝑘)

𝑛 − 𝑘 − 1
−

̂𝑒2
𝑗

(𝑛 − 𝑘 − 1)(1 − ℎ𝑗)

where 𝑛 is the number of observations and 𝑘 is the number of right-hand-side variables (including the

constant).

Cook’s 𝐷 (cooksd) is given by

𝐷𝑗 =
̂𝑒2
𝑠𝑗

(𝑠𝑝𝑗
/𝑠𝑟𝑗

)2

𝑘
=

ℎ𝑗 ̂𝑒2
𝑗

𝑘𝑠2(1 − ℎ𝑗)2

DFITS (dfits) is given by

DFITS𝑗 = 𝑟𝑗√
ℎ𝑗

1 − ℎ𝑗

Welsch distance (welsch) is given by

𝑊𝑗 =
𝑟𝑗√ℎ𝑗(𝑛 − 1)

1 − ℎ𝑗

COVRATIO (covratio) is given by

COVRATIO𝑗 = 1
1 − ℎ𝑗

(
𝑛 − 𝑘 − ̂𝑒2

𝑠𝑗

𝑛 − 𝑘 − 1
)

𝑘

The DFBETAs (dfbeta) for a particular regressor 𝑥𝑖 are given by

DFBETA𝑗 =
𝑟𝑗𝑢𝑗

√𝑈2(1 − ℎ𝑗)

where 𝑢𝑗 are the residuals obtained from a regression of 𝑥𝑖 on the remaining 𝑥’s and 𝑈2 = ∑
𝑗

𝑢2
𝑗 .

Special-interest postestimation commands
The omitted-variable test (Ramsey 1969) reported by estat ovtest fits the regression 𝑦𝑖 = x𝑖b +

z𝑖t + 𝑢𝑖 and then performs a standard 𝐹 test of t = 0. The default test uses z𝑖 = ( ̂𝑦2
𝑖 , ̂𝑦3

𝑖 , ̂𝑦4
𝑖 ). If

rhs is specified, z𝑖 = (𝑥2
1𝑖, 𝑥3

1𝑖, 𝑥4
1𝑖, 𝑥2

2𝑖, . . . , 𝑥4
𝑚𝑖). In either case, the variables are normalized to have

minimum 0 and maximum 1 before powers are calculated.

The test for heteroskedasticity (Breusch and Pagan 1979; Cook andWeisberg 1983) modelsVar(𝑒𝑖) =
𝜎2 exp(zt), where z is a variable list specified by the user, the list of right-hand-side variables, or the
fitted values xβ̂. The test is of t = 0. Mechanically, estat hettest fits the augmented regression

̂𝑒2
𝑖 /�̂�2 = 𝑎 + z𝑖t + 𝑣𝑖.
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The original Breusch–Pagan/Cook–Weisberg version of the test assumes that the 𝑒𝑖 are normally

distributed under the null hypothesis which implies that the score test statistic 𝑆 is equal to the model

sum of squares from the augmented regression divided by 2. Under the null hypothesis, 𝑆 has the 𝜒2

distribution with 𝑚 degrees of freedom, where 𝑚 is the number of columns of z.

Koenker (1981) derived a score test of the null hypothesis that t = 0 under the assumption that the 𝑒𝑖
are independent and identically distributed (i.i.d.). Koenker showed that 𝑆 = 𝑁 ∗ 𝑅2 has a large-sample

𝜒2 distribution with 𝑚 degrees of freedom, where 𝑁 is the number of observations and 𝑅2 is from the

augmented regression and 𝑚 is the number of columns of z. estat hettest, iid produces this version
of the test.

Wooldridge (2020, 270) showed that an 𝐹 test of t = 0 in the augmented regression can also be used

under the assumption that the 𝑒𝑖 are i.i.d. estat hettest, fstat produces this version of the test.

Szroeter’s class of tests for homoskedasticity against the alternative that the residual variance increases

in some variable 𝑥 is defined in terms of

𝐻 =
∑𝑛

𝑖=1 ℎ(𝑥𝑖)𝑒2
𝑖

∑𝑛
𝑖=1 𝑒2

𝑖

where ℎ(𝑥) is some weight function that increases in 𝑥 (Szroeter 1978). 𝐻 is a weighted average of the

ℎ(𝑥), with the squared residuals serving as weights. Under homoskedasticity,𝐻 should be approximately

equal to the unweighted average of ℎ(𝑥). Large values of 𝐻 suggest that 𝑒2
𝑖 tends to be large where ℎ(𝑥)

is large; that is, the variance indeed increases in 𝑥, whereas small values of 𝐻 suggest that the variance

actually decreases in 𝑥. estat szroeter uses ℎ(𝑥𝑖) = rank(𝑥𝑖 in 𝑥1 . . .𝑥𝑛); see Judge et al. [1985,
452] for details. estat szroeter displays a normalized version of 𝐻,

𝑄 = √ 6𝑛
𝑛2 − 1

𝐻

which is approximately 𝑁(0, 1) distributed under the null (homoskedasticity).
estat hettest and estat szroeter provide adjustments of 𝑝-values for multiple testing. The sup-

ported methods are described in [R] test.

estat imtest performs the information matrix test for the regression model, as well as an orthogonal
decomposition into tests for heteroskedasticity 𝛿1, nonnormal skewness 𝛿2, and nonnormal kurtosis 𝛿3
(Cameron and Trivedi 1990; Long and Trivedi 1993). The decomposition is obtained via three auxiliary

regressions. Let 𝑒 be the regression residuals, �̂�2 be the maximum likelihood estimate of 𝜎2 in the

regression, 𝑛 be the number of observations, 𝑋 be the set of 𝑘 variables specified with estat imtest,
and 𝑅2

un be the uncentered 𝑅2 from a regression. 𝛿1 is obtained as 𝑛𝑅2
un from a regression of 𝑒2 − �̂�2

on the cross products of the variables in 𝑋. 𝛿2 is computed as 𝑛𝑅2
un from a regression of 𝑒3 − 3�̂�2𝑒

on 𝑋. Finally, 𝛿3 is obtained as 𝑛𝑅2
un from a regression of 𝑒4 − 6�̂�2𝑒2 − 3�̂�4 on 𝑋. 𝛿1, 𝛿2, and 𝛿3

are asymptotically 𝜒2 distributed with 1/2𝑘(𝑘 + 1), 𝐾, and 1 degree of freedom. The information test

statistic 𝛿 = 𝛿1 + 𝛿2 + 𝛿3 is asymptotically 𝜒2 distributed with 1/2𝑘(𝑘 +3) degrees of freedom. White’s

test for heteroskedasticity is computed as 𝑛𝑅2 from a regression of �̂�2 on 𝑋 and the cross products of

the variables in 𝑋. This test statistic is usually close to 𝛿1.
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estat vif calculates the centered variance inflation factor (VIF𝑐) (Chatterjee and Hadi 2012,

248–251) for 𝑥𝑗, given by

VIF𝑐(𝑥𝑗) = 1
1 − �̂�2

𝑗

where �̂�2
𝑗 is the square of the centered multiple correlation coefficient that results when 𝑥𝑗 is regressed

against all other explanatory variables, including the constant.

The uncentered variance inflation factor (VIF𝑢𝑐) (Belsley 1991, 28–29) for 𝑥𝑗 is given by

VIF𝑢𝑐(𝑥𝑗) = 1
1 − �̃�2

𝑗

where �̃�2
𝑗 is the square of the uncentered multiple correlation coefficient that results when 𝑥𝑗 is regressed

against all other explanatory variables and a constant of 1. If the original regression model was fit without

a constant, the constant would also be omitted from the regression of 𝑥𝑗.

The methods and formulas for estat esize are described in Methods and formulas of [R] esize.
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Description rvfplot avplot avplots cprplot acprplot
rvpplot lvr2plot Methods and formulas References Also see

Description
The following postestimation commands are of special interest after regress:

Command Description

rvfplot residual-versus-fitted plot

avplot added-variable plot

avplots all added-variables plots in one image

cprplot component-plus-residual plot

acprplot augmented component-plus-residual plot

rvpplot residual-versus-predictor plot

lvr2plot leverage-versus-squared-residual plot

These commands are not appropriate with svy estimation results.

For a discussion of the terminology used in this entry, see the Terminology section of

Remarks and examples for predict in [R] regress postestimation.

rvfplot

Description for rvfplot
rvfplot graphs a residual-versus-fitted plot, a graph of the residuals against the fitted values.

Menu for rvfplot
Statistics > Linear models and related > Regression diagnostics > Residual-versus-fitted plot

Syntax for rvfplot
rvfplot [ , rvfplot options ]

rvfplot options Description

Plot

marker options change look of markers (color, size, etc.)

marker label options add marker labels; change look or position

Add plots

addplot(plot) add plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

2538
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Options for rvfplot

� � �
Plot �

marker options affect the rendition of markers drawn at the plotted points, including their shape, size,

color, and outline; see [G-3] marker options.

marker label options specify if and how the markers are to be labeled; see [G-3]marker label options.

� � �
Add plots �

addplot(plot) provides a way to add plots to the generated graph. See [G-3] addplot option.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see

[G-3] saving option).

Remarks and examples for rvfplot
rvfplot graphs the residuals against the fitted values.

Example 1
Using auto.dta described in [U] 1.2.2 Example datasets, we will use regress to fit a model

of price on weight, mpg, foreign, and the interaction of foreign with mpg. We specify

foreign##c.mpg to obtain the interaction of foreign with mpg; see [U] 11.4.3 Factor variables.
. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. regress price weight foreign##c.mpg

Source SS df MS Number of obs = 74
F(4, 69) = 21.22

Model 350319665 4 87579916.3 Prob > F = 0.0000
Residual 284745731 69 4126749.72 R-squared = 0.5516

Adj R-squared = 0.5256
Total 635065396 73 8699525.97 Root MSE = 2031.4

price Coefficient Std. err. t P>|t| [95% conf. interval]

weight 4.613589 .7254961 6.36 0.000 3.166263 6.060914

foreign
Foreign 11240.33 2751.681 4.08 0.000 5750.878 16729.78

mpg 263.1875 110.7961 2.38 0.020 42.15527 484.2197

foreign#c.mpg
Foreign -307.2166 108.5307 -2.83 0.006 -523.7294 -90.70368

_cons -14449.58 4425.72 -3.26 0.002 -23278.65 -5620.51



regress postestimation diagnostic plots — Postestimation plots for regress 2540

Once we have fit a model, we may use any of the regression diagnostics commands. rvfplot (read
residual-versus-fitted plot) graphs the residuals against the fitted values:

. rvfplot, yline(0)
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All the diagnostic plot commands allow the graph twoway and graph twoway scatter options; we

specified a yline(0) to draw a line across the graph at 𝑦 = 0; see [G-2] graph twoway scatter.

In a well-fitted model, there should be no pattern to the residuals plotted against the fitted val-

ues—something not true of our model. Ignoring the two outliers at the top center of the graph, we

see curvature in the pattern of the residuals, suggesting a violation of the assumption that price is linear
in our independent variables. We might also have seen increasing or decreasing variation in the residu-

als—heteroskedasticity. Any pattern whatsoever indicates a violation of the least-squares assumptions.
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avplot

Description for avplot
avplot graphs an added-variable plot (a.k.a. partial-regression leverage plot, partial regression plot,

or adjusted partial residual plot) after regress. indepvarmay be an independent variable (a.k.a. predic-
tor, carrier, or covariate) that is currently in the model or not.

Menu for avplot
Statistics > Linear models and related > Regression diagnostics > Added-variable plot

Syntax for avplot
avplot indepvar [ , avplot options ]

avplot options Description

Plot

marker options change look of markers (color, size, etc.)

marker label options add marker labels; change look or position

Reference line

rlopts(cline options) affect rendition of the reference line

Add plots

addplot(plot) add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

Options for avplot

� � �
Plot �

marker options affects the rendition of markers drawn at the plotted points, including their shape, size,

color, and outline; see [G-3] marker options.

marker label options specify if and how the markers are to be labeled; see [G-3]marker label options.

� � �
Reference line �

rlopts(cline options) affects the rendition of the reference line. See [G-3] cline options.

� � �
Add plots �

addplot(plot) provides a way to add plots to the generated graph. See [G-3] addplot option.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see

[G-3] saving option).



regress postestimation diagnostic plots — Postestimation plots for regress 2542

Remarks and examples for avplot
avplot graphs an added-variable plot, also known as the partial-regression leverage plot.

One of the wonderful features of one-regressor regressions (regressions of 𝑦 on one 𝑥) is that we
can graph the data and the regression line. There is no easier way to understand the regression than to

examine such a graph. Unfortunately, we cannot do this when we have more than one regressor. With

two regressors, it is still theoretically possible—the graph must be drawn in three dimensions, but with

three or more regressors no graph is possible.

The added-variable plot is an attempt to project multidimensional data back to the two-dimensional

world for each of the original regressors. This is, of course, impossible without making some conces-

sions. Call the coordinates on an added-variable plot 𝑦 and 𝑥. The added-variable plot has the following
properties:

• There is a one-to-one correspondence between (𝑥𝑖, 𝑦𝑖) and the 𝑖th observation used in the original
regression.

• A regression of 𝑦 on 𝑥 has the same coefficient and standard error (up to a degree-of-freedom adjust-

ment) as the estimated coefficient and standard error for the regressor in the original regression.

• The “outlierness” of each observation in determining the slope is in some sense preserved.

It is equally important to note the properties that are not listed. The 𝑦 and 𝑥 coordinates of the added-

variable plot cannot be used to identify functional form, or, at least, not well (see Mallows [1986]). In

the construction of the added-variable plot, the relationship between 𝑦 and 𝑥 is forced to be linear.

Example 2
Let’s use the same model as we used in example 1.

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. regress price weight foreign##c.mpg
(output omitted )

We can now examine the added-variable plot for mpg.

. avplot mpg
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coef = 263.18749, se = 110.79612, t = 2.38



regress postestimation diagnostic plots — Postestimation plots for regress 2543

This graph suggests a problem in determining the coefficient on mpg. Were this a one-regressor regres-

sion, the two points at the top-left corner and the one at the top right would cause us concern, and so it

does in our more complicated multiple-regressor case. To identify the problem points, we retyped our

command, modifying it to read avplot mpg, mlabel(make), and discovered that the two cars at the top
left are the Cadillac Eldorado and the Lincoln Versailles; the point at the top right is the Cadillac Seville.

These three cars account for 100% of the luxury cars in our data, suggesting that our model is misspeci-

fied. By the way, the point at the lower right of the graph, also cause for concern, is the PlymouthArrow,

our data entry error.

Technical note
Stata’s avplot command can be used with regressors already in the model, as we just did, or with

potential regressors not yet in the model. In either case, avplotwill produce the correct graph. The name
“added-variable plot” is unfortunate in the case when the variable is already among the list of regressors

but is, we think, still preferable to the name “partial-regression leverage plot” assigned by Belsley, Kuh,

and Welsch (1980, 30) and more in the spirit of the original use of such plots by Mosteller and Tukey

(1977, 271–279). Welsch (1986, 403), however, disagrees: “I am sorry to see that Chatterjee and Hadi

[1986] endorse the term ‘added-variable plot’ when 𝑋𝑗 is part of the original model” and goes on to

suggest the name “adjusted partial residual plot”.

avplots

Description for avplots
avplots graphs all the added-variable plots in one image.

Menu for avplots
Statistics > Linear models and related > Regression diagnostics > Added-variable plot

Syntax for avplots
avplots [ , avplots options ]

avplots options Description

Plot

marker options change look of markers (color, size, etc.)

marker label options add marker labels; change look or position

combine options any of the options documented in [G-2] graph combine

Reference line

rlopts(cline options) affect rendition of the reference line

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options
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Options for avplots

� � �
Plot �

marker options affects the rendition of markers drawn at the plotted points, including their shape, size,

color, and outline; see [G-3] marker options.

marker label options specify if and how the markers are to be labeled; see [G-3]marker label options.

combine options are any of the options documented in [G-2] graph combine. These include options for

titling the graph (see [G-3] title options) and for saving the graph to disk (see [G-3] saving option).

� � �
Reference line �

rlopts(cline options) affects the rendition of the reference line. See [G-3] cline options.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see

[G-3] saving option).

Remarks and examples for avplots

Example 3
In example 2, we used avplot to examine the added-variable plot for mpg in our regression of price

on weight and foreign##c.mpg. Now, let’s use avplots to graph an added-variable plot for every

regressor in the data.

. avplots
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cprplot

Description for cprplot
cprplot graphs a component-plus-residual plot (a.k.a. partial residual plot) after regress. indepvar

must be an independent variable that is currently in the model.

Menu for cprplot
Statistics > Linear models and related > Regression diagnostics > Component-plus-residual plot

Syntax for cprplot
cprplot indepvar [ , cprplot options ]

cprplot options Description

Plot

marker options change look of markers (color, size, etc.)

marker label options add marker labels; change look or position

Reference line

rlopts(cline options) affect rendition of the reference line

Options

lowess add a lowess smooth of the plotted points

lsopts(lowess options) affect rendition of the lowess smooth

mspline add median spline of the plotted points

msopts(mspline options) affect rendition of the spline

Add plots

addplot(plot) add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options
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Options for cprplot

� � �
Plot �

marker options affects the rendition of markers drawn at the plotted points, including their shape, size,

color, and outline; see [G-3] marker options.

marker label options specify if and how the markers are to be labeled; see [G-3]marker label options.

� � �
Reference line �

rlopts(cline options) affects the rendition of the reference line. See [G-3] cline options.

� � �
Options �

lowess adds a lowess smooth of the plotted points to assist in detecting nonlinearities.

lsopts(lowess options) affects the rendition of the lowess smooth. For an explanation of these options,
especially the bwidth() option, see [R] lowess. Specifying lsopts() implies the lowess option.

mspline adds a median spline of the plotted points to assist in detecting nonlinearities.

msopts(mspline options) affects the rendition of the spline. For an explanation of these options, es-
pecially the bands() option, see [G-2] graph twoway mspline. Specifying msopts() implies the

mspline option.

� � �
Add plots �

addplot(plot) provides a way to add other plots to the generated graph. See [G-3] addplot option.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see

[G-3] saving option).

Remarks and examples for cprplot
Added-variable plots are successful at identifying outliers, but they cannot be used to identify func-

tional form. The component-plus-residual plot (Ezekiel 1924; Larsen and McCleary 1972) is another

attempt at projecting multidimensional data into a two-dimensional form, but with different properties.

Although the added-variable plot can identify outliers, the component-plus-residual plot cannot. It can,

however, be used to examine the functional form assumptions of the model. Both plots have the prop-

erty that a regression line through the coordinates has a slope equal to the estimated coefficient in the

regression model.
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Example 4
We illustrate component-plus-residual plots using a variation of auto.dta.

. use https://www.stata-press.com/data/r18/auto1
(Automobile models)
. regress price mpg weight

Source SS df MS Number of obs = 74
F(2, 71) = 14.90

Model 187716578 2 93858289 Prob > F = 0.0000
Residual 447348818 71 6300687.58 R-squared = 0.2956

Adj R-squared = 0.2757
Total 635065396 73 8699525.97 Root MSE = 2510.1

price Coefficient Std. err. t P>|t| [95% conf. interval]

mpg -55.9393 75.24136 -0.74 0.460 -205.9663 94.08771
weight 1.710992 .5861682 2.92 0.005 .5422063 2.879779
_cons 2197.9 3190.768 0.69 0.493 -4164.311 8560.11

In fact, we know that the effects of mpg in this model are nonlinear—if we added mpg squared to the
model, its coefficient would have a 𝑡 statistic of 2.38, the 𝑡 statistic on mpg would become −2.48, and

weight’s effect would become about one-third of its current value and become statistically insignificant.
Pretend that we do not know this.

The component-plus-residual plot for mpg is

. cprplot mpg, mspline msopts(bands(13))
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We are supposed to examine the above graph for nonlinearities or, equivalently, ask if the regression line,

which has slope equal to the estimated effect of mpg in the original model, fits the data adequately. To
assist our eyes, we added a median spline. Perhaps some people may detect nonlinearity from this graph,

but we assert that if we had not previously revealed the nonlinearity of mpg and if we had not added the
median spline, the graph would not overly bother us.
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acprplot

Description for acprplot
acprplot graphs an augmented component-plus-residual plot (a.k.a. augmented partial residual plot)

as described by Mallows (1986). This seems to work better than the component-plus-residual plot for

identifying nonlinearities in the data.

Menu for acprplot
Statistics > Linear models and related > Regression diagnostics > Augmented component-plus-residual plot

Syntax for acprplot
acprplot indepvar [ , acprplot options ]

acprplot options Description

Plot

marker options change look of markers (color, size, etc.)

marker label options add marker labels; change look or position

Reference line

rlopts(cline options) affect rendition of the reference line

Options

lowess add a lowess smooth of the plotted points

lsopts(lowess options) affect rendition of the lowess smooth

mspline add median spline of the plotted points

msopts(mspline options) affect rendition of the spline

Add plots

addplot(plot) add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

Options for acprplot

� � �
Plot �

marker options affects the rendition of markers drawn at the plotted points, including their shape, size,

color, and outline; see [G-3] marker options.

marker label options specify if and how the markers are to be labeled; see [G-3]marker label options.

� � �
Reference line �

rlopts(cline options) affects the rendition of the reference line. See [G-3] cline options.

� � �
Options �

lowess adds a lowess smooth of the plotted points to assist in detecting nonlinearities.
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lsopts(lowess options) affects the rendition of the lowess smooth. For an explanation of these options,
especially the bwidth() option, see [R] lowess. Specifying lsopts() implies the lowess option.

mspline adds a median spline of the plotted points to assist in detecting nonlinearities.

msopts(mspline options) affects the rendition of the spline. For an explanation of these options, es-
pecially the bands() option, see [G-2] graph twoway mspline. Specifying msopts() implies the

mspline option.

� � �
Add plots �

addplot(plot) provides a way to add other plots to the generated graph. See [G-3] addplot option.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see

[G-3] saving option).

Remarks and examples for acprplot
In the cprplot section above, we discussed the component-plus-residual plot. Mallows (1986) pro-

posed an augmented component-plus-residual plot that is often more sensitive to detecting nonlinearity.

Example 5
Let’s compare the augmented component-plus-residual plot with the component-plus-residual plot of

example 4.

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. regress price weight foreign##c.mpg
(output omitted )

. acprplot mpg, mspline msopts(bands(13))
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It does do somewhat better.
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rvpplot

Description for rvpplot
rvpplot graphs a residual-versus-predictor plot (a.k.a. independent variable plot or carrier plot), a

graph of the residuals against the specified predictor.

Menu for rvpplot
Statistics > Linear models and related > Regression diagnostics > Residual-versus-predictor plot

Syntax for rvpplot
rvpplot indepvar [ , rvpplot options ]

rvpplot options Description

Plot

marker options change look of markers (color, size, etc.)

marker label options add marker labels; change look or position

Add plots

addplot(plot) add plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

Options for rvpplot

� � �
Plot �

marker options affects the rendition of markers drawn at the plotted points, including their shape, size,

color, and outline; see [G-3] marker options.

marker label options specify if and how the markers are to be labeled; see [G-3]marker label options.

� � �
Add plots �

addplot(plot) provides a way to add other plots to the generated graph; see [G-3] addplot option.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see

[G-3] saving option).
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Remarks and examples for rvpplot
The residual-versus-predictor plot is a simple way to look for violations of the regression assumptions.

If the assumptions are correct, there should be no pattern on the graph.

Example 6
Let’s use our model of price on mpg and weight.

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. regress price weight foreign##c.mpg
(output omitted )

. rvpplot mpg, yline(0)
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Remember, any pattern counts as a problem, and in this graph, we see that the variation in the residuals

decreases as mpg increases.
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lvr2plot

Description for lvr2plot
lvr2plot graphs a leverage-versus-squared-residual plot (a.k.a. L-R plot).

Menu for lvr2plot
Statistics > Linear models and related > Regression diagnostics > Leverage-versus-squared-residual plot

Syntax for lvr2plot
lvr2plot [ , lvr2plot options ]

lvr2plot options Description

Plot

marker options change look of markers (color, size, etc.)

marker label options add marker labels; change look or position

Add plots

addplot(plot) add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

Options for lvr2plot

� � �
Plot �

marker options affects the rendition of markers drawn at the plotted points, including their shape, size,

color, and outline; see [G-3] marker options.

marker label options specify if and how the markers are to be labeled; see [G-3]marker label options.

� � �
Add plots �

addplot(plot) provides a way to add other plots to the generated graph. See [G-3] addplot option.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see

[G-3] saving option).
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Remarks and examples for lvr2plot
One of the most useful diagnostic graphs is provided by lvr2plot (leverage-versus-residual-squared

plot), a graph of leverage against the (normalized) residuals squared.

Example 7
We illustrate lvr2plot using our model in example 1.

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. regress price weight foreign##c.mpg
(output omitted )

. lvr2plot
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The lines on the chart show the average values of leverage and the (normalized) residuals squared. Points

above the horizontal line have higher-than-average leverage; points to the right of the vertical line have

larger-than-average residuals.

One point immediately catches our eye, and four more make us pause. The point at the top of the

graph has high leverage and a smaller-than-average residual. The other points that bother us all have

higher-than-average leverage, two with smaller-than-average residuals and two with larger-than-average

residuals.
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A less pretty but more useful version of the above graph specifies that make be used as the symbol
(see [G-3] marker label options):

. lvr2plot, mlabel(make) mlabp(0) m(none) mlabsize(small)
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The VW Diesel, Plymouth Champ, Plymouth Arrow, and Peugeot 604 are the points that cause us the

most concern. When we further examine our data, we discover that the VW Diesel is the only diesel in

our data and that the data for the Plymouth Arrow were entered incorrectly into the computer. No such

simple explanations were found for the Plymouth Champ and Peugeot 604.

Methods and formulas
See Hamilton (2013, 209–214) and Kohler and Kreuter (2012, sec. 9.3) for a discussion of these

diagnostic graphs.

The lvr2plot command plots leverage against the squares of the normalized residuals. The normal-
ized residuals are defined as ̂𝑒𝑛𝑗

= ̂𝑒𝑗/(∑𝑖 ̂𝑒2
𝑖 )1/2.
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Postestimation commands
The following postestimation commands for time series are available for regress:

Command Description

estat archlm test for ARCH effects in the residuals

estat bgodfrey Breusch–Godfrey test for higher-order serial correlation

estat durbinalt Durbin’s alternative test for serial correlation

estat dwatson Durbin–Watson 𝑑 statistic to test for first-order serial correlation
estat sbcusum perform cumulative sum test for parameter stability

estat sbknown perform tests for a structural break with a known break date

estat sbsingle perform tests for a structural break with an unknown break date

These commands provide regression diagnostic tools specific to time series. You must tsset your data before using these
commands; see [TS] tsset.

estat archlm

Description for estat archlm
estat archlm performs Engle’s Lagrange multiplier (LM) test for the presence of autoregressive

conditional heteroskedasticity.

Menu for estat
Statistics > Postestimation

Syntax for estat archlm
estat archlm [ , archlm options ]

archlm options Description

lags(numlist) test numlist lag orders

force allow test after regress, vce(robust)

collect is allowed; see [U] 11.1.10 Prefix commands.

2556
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Options for estat archlm
lags(numlist) specifies a list of numbers, indicating the lag orders to be tested. The test will be per-

formed separately for each order. The default is order one.

force allows the test to be run after regress, vce(robust). The command will not work if the

vce(cluster clustvar) option is specified with regress; see [R] regress.

estat bgodfrey

Description for estat bgodfrey
estat bgodfrey performs the Breusch–Godfrey test for higher-order serial correlation in the distur-

bance. This test does not require that all the regressors be strictly exogenous.

Menu for estat
Statistics > Postestimation

Syntax for estat bgodfrey
estat bgodfrey [ , bgodfrey options ]

bgodfrey options Description

lags(numlist) test numlist lag orders

nomiss0 do not use Davidson and MacKinnon’s approach

small obtain 𝑝-values using the 𝐹 or 𝑡 distribution

collect is allowed; see [U] 11.1.10 Prefix commands.

Options for estat bgodfrey
lags(numlist) specifies a list of numbers, indicating the lag orders to be tested. The test will be per-

formed separately for each order. The default is order one.

nomiss0 specifies that Davidson and MacKinnon’s approach (1993, 358), which replaces the missing

values in the initial observations on the lagged residuals in the auxiliary regression with zeros, not be

used.

small specifies that the 𝑝-values of the test statistics be obtained using the 𝐹 or 𝑡 distribution instead of
the default 𝜒2 or normal distribution.



regress postestimation time series — Postestimation tools for regress with time series 2558

estat durbinalt

Description for estat durbinalt
estat durbinalt performs Durbin’s alternative test for serial correlation in the disturbance. This

test does not require that all the regressors be strictly exogenous.

Menu for estat
Statistics > Postestimation

Syntax for estat durbinalt
estat durbinalt [ , durbinalt options ]

durbinalt options Description

lags(numlist) test numlist lag orders

nomiss0 do not use Davidson and MacKinnon’s approach

robust compute standard errors using the robust/sandwich estimator

small obtain 𝑝-values using the 𝐹 or 𝑡 distribution
force allow test after regress, vce(robust) or after newey

collect is allowed; see [U] 11.1.10 Prefix commands.

Options for estat durbinalt
lags(numlist) specifies a list of numbers, indicating the lag orders to be tested. The test will be per-

formed separately for each order. The default is order one.

nomiss0 specifies that Davidson and MacKinnon’s approach (1993, 358), which replaces the missing

values in the initial observations on the lagged residuals in the auxiliary regression with zeros, not be

used.

robust specifies that the Huber/White/sandwich robust estimator for the variance–covariance matrix be

used in Durbin’s alternative test.

small specifies that the 𝑝-values of the test statistics be obtained using the 𝐹 or 𝑡 distribution instead of
the default 𝜒2 or normal distribution. This option may not be specified with robust, which always
uses an 𝐹 or a 𝑡 distribution.

force allows the test to be run after regress, vce(robust) and after newey (see [R] regress and

[TS] newey). The command will not work if the vce(cluster clustvar) option is specified with

regress.
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estat dwatson

Description for estat dwatson
estat dwatson computes the Durbin–Watson 𝑑 statistic (Durbin and Watson 1950) to test for first-

order serial correlation in the disturbance when all the regressors are strictly exogenous.

Menu for estat
Statistics > Postestimation

Syntax for estat dwatson
estat dwatson

collect is allowed; see [U] 11.1.10 Prefix commands.

Remarks and examples
The Durbin–Watson test is used to determine whether the error term in a linear regression model

follows an AR(1) process. For the linear model

𝑦𝑡 = x𝑡β + 𝑢𝑡

the AR(1) process can be written as

𝑢𝑡 = 𝜌𝑢𝑡−1 + 𝜖𝑡

In general, an AR(1) process requires only that 𝜖𝑡 be independent and identically distributed (i.i.d.). The

Durbin–Watson test, however, requires 𝜖𝑡 to be distributed 𝑁(0, 𝜎2) for the statistic to have an exact
distribution. Also, the Durbin–Watson test can be applied only when the regressors are strictly exoge-

nous. A regressor 𝑥 is strictly exogenous if Corr(𝑥𝑠, 𝑢𝑡) = 0 for all 𝑠 and 𝑡, which precludes the use of
the Durbin–Watson statistic with models where lagged values of the dependent variable are included as

regressors.

The null hypothesis of the test is that there is no first-order autocorrelation. The Durbin–Watson

𝑑 statistic can take on values between 0 and 4 and under the null 𝑑 is equal to 2. Values of 𝑑 less

than 2 suggest positive autocorrelation (𝜌 > 0), whereas values of 𝑑 greater than 2 suggest negative

autocorrelation (𝜌 < 0). Calculating the exact distribution of the 𝑑 statistic is difficult, but empirical

upper and lower bounds have been established based on the sample size and the number of regressors.

Extended tables for the 𝑑 statistic have been published by Savin andWhite (1977). For example, suppose

you have amodel with 30 observations and three regressors (including the constant term). For a test of the

null hypothesis of no autocorrelation versus the alternative of positive autocorrelation, the lower bound

of the 𝑑 statistic is 1.284, and the upper bound is 1.567 at the 5% significance level. You would reject

the null if 𝑑 < 1.284, and you would fail to reject if 𝑑 > 1.567. A value falling within the range (1.284,

1.567) leads to no conclusion about whether or not to reject the null hypothesis.
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When lagged dependent variables are included among the regressors, the past values of the error

term are correlated with those lagged variables at time 𝑡, implying that they are not strictly exogenous
regressors. The inclusion of covariates that are not strictly exogenous causes the 𝑑 statistic to be biased

toward the acceptance of the null hypothesis. Durbin (1970) suggested an alternative test for models with

lagged dependent variables and extended that test to the more general AR(𝑝) serial correlation process

𝑢𝑡 = 𝜌1𝑢𝑡−1 + · · · + 𝜌𝑝𝑢𝑡−𝑝 + 𝜖𝑡

where 𝜖𝑡 is i.i.d. with variance 𝜎2 but is not assumed or required to be normal for the test.

The null hypothesis of Durbin’s alternative test is

𝐻0 ∶ 𝜌1 = 0, . . . , 𝜌𝑝 = 0

and the alternative is that at least one of the 𝜌’s is nonzero. Although the null hypothesis was originally
derived for anAR(𝑝) process, this test turns out to have power againstMA(𝑝) processes as well. Hence, the
actual null of this test is that there is no serial correlation up to order 𝑝 because the MA(𝑝) and the AR(𝑝)
models are locally equivalent alternatives under the null. See Godfrey (1988, 113–115) for a discussion

of this result.

Durbin’s alternative test is in fact a LM test, but it is most easily computed with a Wald test on the

coefficients of the lagged residuals in an auxiliary OLS regression of the residuals on their lags and all

the covariates in the original regression. Consider the linear regression model

𝑦𝑡 = 𝛽1𝑥1𝑡 + · · · + 𝛽𝑘𝑥𝑘𝑡 + 𝑢𝑡 (1)

in which the covariates 𝑥1 through 𝑥𝑘 are not assumed to be strictly exogenous and 𝑢𝑡 is assumed to be

i.i.d. and to have finite variance. The process is also assumed to be stationary. (See Wooldridge [2020,

sec. 11.1] for a discussion of stationarity.) Estimating the parameters in (1) by OLS obtains the residuals

�̂�𝑡. Next another OLS regression is performed of �̂�𝑡 on �̂�𝑡−1, . . . , �̂�𝑡−𝑝 and the other regressors,

�̂�𝑡 = 𝛾1�̂�𝑡−1 + · · · + 𝛾𝑝�̂�𝑡−𝑝 + 𝛽1𝑥1𝑡 + · · · + 𝛽𝑘𝑥𝑘𝑡 + 𝜖𝑡 (2)

where 𝜖𝑡 stands for the random-error term in this auxiliary OLS regression. Durbin’s alternative test is

then obtained by performing a Wald test that 𝛾1, . . . , 𝛾𝑝 are jointly zero. The test can be made robust to

an unknown form of heteroskedasticity by using a robust VCE estimator when estimating the regression

in (2). When there are only strictly exogenous regressors and 𝑝 = 1, this test is asymptotically equivalent

to the Durbin–Watson test.

The Breusch–Godfrey test is also an LM test of the null hypothesis of no autocorrelation versus the

alternative that 𝑢𝑡 follows an AR(𝑝) or MA(𝑝) process. Like Durbin’s alternative test, it is based on the
auxiliary regression (2), and it is computed as𝑁𝑅2, where𝑁 is the number of observations and𝑅2 is the

simple 𝑅2 from the regression. This test and Durbin’s alternative test are asymptotically equivalent. The

test statistic𝑁𝑅2 has an asymptotic 𝜒2 distribution with 𝑝 degrees of freedom. It is valid with or without
the strict exogeneity assumption but is not robust to conditional heteroskedasticity, even if a robust VCE

is used when fitting (2).

In fitting (2), the values of the lagged residuals will be missing in the initial periods. As noted by

Davidson andMacKinnon (1993), the residuals will not be orthogonal to the other covariates in the model

in this restricted sample, which implies that the 𝑅2 from the auxiliary regression will not be zero when

the lagged residuals are left out. Hence, Breusch and Godfrey’s 𝑁𝑅2 version of the test may overreject

in small samples. To correct this problem, Davidson and MacKinnon (1993) recommend setting the
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missing values of the lagged residuals to zero and running the auxiliary regression in (2) over the full

sample used in (1). This small-sample correction has become conventional for both the Breusch–Godfrey

and Durbin’s alternative test, and it is the default for both commands. Specifying the nomiss0 option
overrides this default behavior and treats the initial missing values generated by regressing on the lagged

residuals as missing. Hence, nomiss0 causes these initial observations to be dropped from the sample

of the auxiliary regression.

Durbin’s alternative test and the Breusch–Godfrey test were originally derived for the case covered

by regress without the vce(robust) option. However, after regress, vce(robust) and newey,
Durbin’s alternative test is still valid and can be invoked if the robust and force options are specified.

Example 1: tests for serial correlation
Using data from Klein (1950), we first fit an OLS regression of consumption on the government wage

bill:

. use https://www.stata-press.com/data/r18/klein

. tsset yr
Time variable: yr, 1920 to 1941

Delta: 1 unit
. regress consump wagegovt

Source SS df MS Number of obs = 22
F(1, 20) = 17.72

Model 532.567711 1 532.567711 Prob > F = 0.0004
Residual 601.207167 20 30.0603584 R-squared = 0.4697

Adj R-squared = 0.4432
Total 1133.77488 21 53.9892799 Root MSE = 5.4827

consump Coefficient Std. err. t P>|t| [95% conf. interval]

wagegovt 2.50744 .5957173 4.21 0.000 1.264796 3.750085
_cons 40.84699 3.192183 12.80 0.000 34.18821 47.50577

If we assume that wagegov is a strictly exogenous variable, we can use the Durbin–Watson test to

check for first-order serial correlation in the errors.

. estat dwatson
Durbin--Watson d-statistic( 2, 22) = .3217998

The Durbin–Watson 𝑑 statistic, 0.32, is far from the center of its distribution (𝑑 = 2.0). Given 22

observations and two regressors (including the constant term) in the model, the lower 5% bound is about

0.997, much greater than the computed 𝑑 statistic. Assuming that wagegov is strictly exogenous, we

can reject the null of no first-order serial correlation. Rejecting the null hypothesis does not necessarily

mean an AR process; other forms of misspecification may also lead to a significant test statistic. If we

are willing to assume that the errors follow an AR(1) process and that wagegov is strictly exogenous, we
could refit the model using arima or prais and model the error process explicitly; see [TS] arima and

[TS] prais.
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If we are not willing to assume that wagegov is strictly exogenous, we could instead use Durbin’s

alternative test or the Breusch–Godfrey to test for first-order serial correlation. Because we have only

22 observations, we will use the small option.

. estat durbinalt, small
Durbin’s alternative test for autocorrelation

lags(p) F df Prob > F

1 35.035 ( 1, 19 ) 0.0000

H0: no serial correlation
. estat bgodfrey, small
Breusch--Godfrey LM test for autocorrelation

lags(p) F df Prob > F

1 14.264 ( 1, 19 ) 0.0013

H0: no serial correlation

Both tests strongly reject the null of no first-order serial correlation, so we decide to refit the model

with two lags of consump included as regressors and then rerun estat durbinalt and estat bgodfrey.
Because the revised model includes lagged values of the dependent variable, the Durbin–Watson test is

not applicable.

. regress consump wagegovt L.consump L2.consump
Source SS df MS Number of obs = 20

F(3, 16) = 44.01
Model 702.660311 3 234.220104 Prob > F = 0.0000

Residual 85.1596011 16 5.32247507 R-squared = 0.8919
Adj R-squared = 0.8716

Total 787.819912 19 41.4642059 Root MSE = 2.307

consump Coefficient Std. err. t P>|t| [95% conf. interval]

wagegovt .6904282 .3295485 2.10 0.052 -.0081835 1.38904

consump
L1. 1.420536 .197024 7.21 0.000 1.002864 1.838208
L2. -.650888 .1933351 -3.37 0.004 -1.06074 -.241036

_cons 9.209073 5.006701 1.84 0.084 -1.404659 19.82281
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. estat durbinalt, small lags(1/2)
Durbin’s alternative test for autocorrelation

lags(p) F df Prob > F

1 0.080 ( 1, 15 ) 0.7805
2 0.260 ( 2, 14 ) 0.7750

H0: no serial correlation
. estat bgodfrey, small lags(1/2)
Breusch--Godfrey LM test for autocorrelation

lags(p) F df Prob > F

1 0.107 ( 1, 15 ) 0.7484
2 0.358 ( 2, 14 ) 0.7056

H0: no serial correlation

Although wagegov and the constant term are no longer statistically different from zero at the 5% level, the

output from estat durbinalt and estat bgodfrey indicates that including the two lags of consump
has removed any serial correlation from the errors.

Engle (1982) suggests an LM test for checking for autoregressive conditional heteroskedasticity

(ARCH) in the errors. The 𝑝th-order ARCH model can be written as

𝜎2
𝑡 = 𝐸(𝑢2

𝑡 |𝑢𝑡−1, . . . , 𝑢𝑡−𝑝)
= 𝛾0 + 𝛾1𝑢2

𝑡−1 + · · · + 𝛾𝑝𝑢2
𝑡−𝑝

To test the null hypothesis of no autoregressive conditional heteroskedasticity (that is, 𝛾1 = · · · = 𝛾𝑝 =
0), we first fit the OLS model (1), obtain the residuals �̂�𝑡, and run another OLS regression on the lagged

residuals:

�̂�2
𝑡 = 𝛾0 + 𝛾1�̂�2

𝑡−1 + · · · + 𝛾𝑝�̂�2
𝑡−𝑝 + 𝜖 (3)

The test statistic is 𝑁𝑅2, where 𝑁 is the number of observations in the sample and 𝑅2 is the 𝑅2 from

the regression in (3). Under the null hypothesis, the test statistic follows a 𝜒2
𝑝 distribution.

Example 2: estat archlm
We refit the original model that does not include the two lags of consump and then use estat archlm

to see if there is any evidence that the errors are autoregressive conditional heteroskedastic.

. regress consump wagegovt
Source SS df MS Number of obs = 22

F(1, 20) = 17.72
Model 532.567711 1 532.567711 Prob > F = 0.0004

Residual 601.207167 20 30.0603584 R-squared = 0.4697
Adj R-squared = 0.4432

Total 1133.77488 21 53.9892799 Root MSE = 5.4827

consump Coefficient Std. err. t P>|t| [95% conf. interval]

wagegovt 2.50744 .5957173 4.21 0.000 1.264796 3.750085
_cons 40.84699 3.192183 12.80 0.000 34.18821 47.50577
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. estat archlm, lags(1 2 3)
LM test for autoregressive conditional heteroskedasticity (ARCH)

lags(p) chi2 df Prob > chi2

1 5.543 1 0.0186
2 9.431 2 0.0090
3 9.039 3 0.0288

H0: no ARCH effects vs. H1: ARCH(p) disturbance

estat archlm shows the results for tests of ARCH(1), ARCH(2), and ARCH(3) effects, respectively. At
the 5% significance level, all three tests reject the null hypothesis that the errors are not autoregressive

conditional heteroskedastic. See [TS] arch for information on fitting ARCH models.

Stored results
estat archlm stores the following in r():

Scalars

r(N) number of observations

r(k) number of regressors

r(N gaps) number of gaps

Macros

r(lags) lag order

Matrices

r(arch) test statistic for each lag order

r(df) degrees of freedom

r(p) two-sided 𝑝-values

estat bgodfrey stores the following in r():

Scalars

r(N) number of observations

r(k) number of regressors

r(N gaps) number of gaps

Macros

r(lags) lag order

Matrices

r(chi2) 𝜒2 statistic for each lag order

r(F) 𝐹 statistic for each lag order (small only)
r(df r) residual degrees of freedom (small only)
r(df) degrees of freedom

r(p) two-sided 𝑝-values
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estat durbinalt stores the following in r():

Scalars

r(N) number of observations

r(k) number of regressors

r(N gaps) number of gaps

Macros

r(lags) lag order

Matrices

r(chi2) 𝜒2 statistic for each lag order

r(F) 𝐹 statistic for each lag order (small only)
r(df r) residual degrees of freedom (small only)
r(df) degrees of freedom

r(p) two-sided 𝑝-values

estat dwatson stores the following in r():

Scalars

r(N) number of observations

r(k) number of regressors

r(N gaps) number of gaps

r(dw) Durbin–Watson statistic

Methods and formulas
Consider the regression

𝑦𝑡 = 𝛽1𝑥1𝑡 + · · · + 𝛽𝑘𝑥𝑘𝑡 + 𝑢𝑡 (4)

in which some of the covariates are not strictly exogenous. In particular, some of the 𝑥𝑖𝑡 may be lags of

the dependent variable. We are interested in whether the 𝑢𝑡 are serially correlated.

The Durbin–Watson 𝑑 statistic reported by estat dwatson is

𝑑 =

𝑛−1
∑
𝑡=1

(�̂�𝑡+1 − �̂�𝑡)2

𝑛
∑
𝑡=1

�̂�2
𝑡

where �̂�𝑡 represents the residual of the 𝑡th observation.
To compute Durbin’s alternative test and the Breusch–Godfrey test against the null hypothesis that

there is no 𝑝th order serial correlation, we fit the regression in (4), compute the residuals, and then fit the
following auxiliary regression of the residuals �̂�𝑡 on 𝑝 lags of �̂�𝑡 and on all the covariates in the original

regression in (4):

�̂�𝑡 = 𝛾1�̂�𝑡−1 + · · · + 𝛾𝑝�̂�𝑡−𝑝 + 𝛽1𝑥1𝑡 + · · · + 𝛽𝑘𝑥𝑘𝑡 + 𝜖 (5)

Durbin’s alternative test is computed by performing a Wald test to determine whether the coefficients

of �̂�𝑡−1, . . . , �̂�𝑡−𝑝 are jointly different from zero. By default, the statistic is assumed to be distributed

𝜒2(p). When small is specified, the statistic is assumed to follow an 𝐹(𝑝, 𝑁 − 𝑝 − 𝑘) distribution.
The reported 𝑝-value is a two-sided 𝑝-value. When robust is specified, the Wald test is performed

using the Huber/White/sandwich estimator of the variance–covariance matrix, and the test is robust to

an unspecified form of heteroskedasticity.
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The Breusch–Godfrey test is computed as 𝑁𝑅2, where 𝑁 is the number of observations in the aux-

iliary regression (5) and 𝑅2 is the 𝑅2 from the same regression (5). Like Durbin’s alternative test, the

Breusch–Godfrey test is asymptotically distributed 𝜒2(𝑝), but specifying small causes the 𝑝-value to
be computed using an 𝐹(𝑝, 𝑁 − 𝑝 − 𝑘).

By default, the initial missing values of the lagged residuals are replaced with zeros, and the auxiliary

regression is run over the full sample used in the original regression of (4). Specifying the nomiss0
option causes these missing values to be treated as missing values, and the observations are dropped

from the sample.

Engle’s LM test for ARCH(𝑝) effects fits an OLS regression of �̂�2
𝑡 on �̂�2

𝑡−1, . . . , �̂�2
𝑡−𝑝:

�̂�2
𝑡 = 𝛾0 + 𝛾1�̂�2

𝑡−1 + · · · + 𝛾𝑝�̂�2
𝑡−𝑝 + 𝜖

The test statistic is 𝑛𝑅2 and is asymptotically distributed 𝜒2(𝑝).

Acknowledgment
The original versions of estat archlm, estat bgodfrey, and estat durbinalt were written by

Christopher F. Baum of the Department of Economics at Boston College and author of the Stata Press

books An Introduction to Modern Econometrics Using Stata and An Introduction to Stata Programming

and coauthor of the Stata Press book Environmental Econometrics Using Stata.

References
Baum, C. F. 2006. An Introduction to Modern Econometrics Using Stata. College Station, TX: Stata Press.

Beran, R. J., and N. I. Fisher. 1998. A conversation with Geoff Watson. Statistical Science 13: 75–93. https://doi.org/10.

1214/ss/1028905975.

Breusch, T. S. 1978. Testing for autocorrelation in dynamic linear models. Australian Economic Papers 17: 334–355.

https://doi.org/10.1111/j.1467-8454.1978.tb00635.x.

Davidson, R., and J. G. MacKinnon. 1993. Estimation and Inference in Econometrics. NewYork: Oxford University Press.

Durbin, J. 1970. Testing for serial correlation in least-squares regressions when some of the regressors are lagged depen-

dent variables. Econometrica 38: 410–421. https://doi.org/10.2307/1909547.

Durbin, J., and S. J. Koopman. 2012. Time Series Analysis by State Space Methods. 2nd ed. Oxford: Oxford University

Press.

Durbin, J., and G. S. Watson. 1950. Testing for serial correlation in least squares regression. I. Biometrika 37: 409–428.

https://doi.org/10.2307/2332391.

———. 1951. Testing for serial correlation in least squares regression. II. Biometrika 38: 159–177. https://doi.org/10.

2307/2332325.

Engle, R. F. 1982. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom in-

flation. Econometrica 50: 987–1007. https://doi.org/10.2307/1912773.

Fisher, N. I., and P. Hall. 1998. Geoffrey Stuart Watson: Tributes and obituary (3 December 1921–3 January 1998).

Australian and New Zealand Journal of Statistics 40: 257–267. https://doi.org/10.1111/1467-842X.00030.

Godfrey, L. G. 1978. Testing against general autoregressive andmoving average error models when the regressors include

lagged dependent variables. Econometrica 46: 1293–1301. https://doi.org/10.2307/1913829.

———. 1988.Misspecification Tests in Econometrics: The Lagrange Multiplier Principle and OtherApproaches. Economet-

ric Society Monographs, No. 16. Cambridge: Cambridge University Press. https://doi.org/10.1017/CCOL0521266165.

Klein, L. R. 1950. Economic Fluctuations in the United States 1921–1941. New York: Wiley.

Koopman, S. J. 2012. James Durbin, FBA, 1923–2012. Journal of the Royal Statistical Society, A ser., 175: 1060–1064.

https://doi.org/10.1111/j.1467-985X.2012.01068.x.

https://www.stata-press.com/books/imeus.html
https://www.stata-press.com/books/isp.html
https://www.stata-press.com/books/environmental-econometrics-using-stata/
https://www.stata-press.com/books/imeus.html
https://doi.org/10.1214/ss/1028905975
https://doi.org/10.1214/ss/1028905975
https://doi.org/10.1111/j.1467-8454.1978.tb00635.x
https://www.stata.com/bookstore/eie.html
https://doi.org/10.2307/1909547
https://doi.org/10.2307/2332391
https://doi.org/10.2307/2332325
https://doi.org/10.2307/2332325
https://doi.org/10.2307/1912773
https://doi.org/10.1111/1467-842X.00030
https://doi.org/10.2307/1913829
https://doi.org/10.1017/CCOL0521266165
https://doi.org/10.1111/j.1467-985X.2012.01068.x


regress postestimation time series — Postestimation tools for regress with time series 2567

Phillips, P. C. B. 1988. The ET Interview: Professor James Durbin. Econometric Theory 4: 125–157. https://doi.org/10.

1017/S0266466600011907.

Savin, N. E., and K. J. White. 1977. The Durbin–Watson test for serial correlation with extreme sample sizes or many

regressors. Econometrica 45: 1989–1996. https://doi.org/10.2307/1914122.

Wooldridge, J. M. 2020. Introductory Econometrics: AModern Approach. 7th ed. Boston: Cengage.� �
James Durbin (1923–2012) was a British statistician who was born in Wigan, near Manchester. He

studied mathematics at Cambridge and after military service and various research posts joined the

London School of Economics in 1950. Later in life, he was also affiliated with University College

London. His many contributions to statistics centered on serial correlation, time series (including

major contributions to structural or unobserved components models), sample survey methodology,

goodness-of-fit tests, and sample distribution functions, with emphasis on applications in the so-

cial sciences. He served terms as president of the Royal Statistical Society and the International

Statistical Institute.

Geoffrey Stuart Watson (1921–1998) was born in Victoria, Australia, and earned degrees at Mel-

bourne University and North Carolina State University. After a visit to the University of Cam-

bridge, he returned toAustralia, working at Melbourne and then theAustralian National University.

Following periods at Toronto and Johns Hopkins, he settled at Princeton. Throughout his wide-

ranging career, he made many notable accomplishments and important contributions, including the

Durbin–Watson test for serial correlation, the Nadaraya–Watson estimator in nonparametric regres-

sion, and methods for analyzing directional data.

Leslie G. Godfrey (1946– ) was born in London and earned degrees at the Universities of Exeter

and London. He is now a professor of econometrics at the University of York. His interests center

on implementation and interpretation of tests of econometric models, including nonnested models.

Trevor Stanley Breusch (1953– ) was born in Queensland and earned degrees at the University of

Queensland and Australian National University (ANU). After a post at the University of Southamp-

ton, he returned to work at ANU. His background is in econometric methods and his recent interests

include political values and social attitudes, earnings and income, and measurement of underground

economic activity.� �
Also see
[R] regress — Linear regression

[R] regress postestimation — Postestimation tools for regress

[R] regress postestimation diagnostic plots — Postestimation plots for regress

[TS] tsset — Declare data to be time-series data

https://doi.org/10.1017/S0266466600011907
https://doi.org/10.1017/S0266466600011907
https://doi.org/10.2307/1914122
https://www.stata.com/bookstore/introductory-econometrics/
https://www.stata.com/giftshop/bookmarks/series7/durbin/


reri — Relative excess risk due to interaction

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Acknowledgment References Also see

Description
reri reports three statistics that assess two-way interactions in an additive model of relative risk.

The statistics are of interest for determining how two risk factors interact to produce a positive result

for the outcome of interest. The estimates of the interactions themselves are reported as excess relative

risks (ERRs). Statistics reported for the interaction are the relative excess risk due to interaction (RERI),

attributable proportion (AP), and synergy index (SI); reri supports binomial generalized linear, Poisson,
negative binomial, logistic, Cox, parametric survival, and interval-censored parametric and semipara-

metric survival models.

Quick start
Report ERRs, RERI,AP, and SI for the interaction of exposures exp1 and exp2 from a binomial generalized

linear model for y fit by binreg
reri binreg y exp1 exp2

Same as above, but use poisson to fit the model
reri poisson y exp1 exp2

Same as above, but report incidence-rate ratios for the interactions rather than ERRs

reri poisson y exp1 exp2, irr

Same as above, but include the covariate x, and specify noisily to view the full Poisson model

reri poisson y exp1 exp2 x, irr noisily

Same as above, but report ERRs for the interactions as well as incidence-rate ratios for the full model

reri poisson y exp1 exp2 x, irr err noisily

Fit a Coxmodel using stset data stratified by svar, and report ERRs, RERI,AP, and SI for the interactions
of exp1 and exp2

reri stcox exp1 exp2, strata(svar)

Same as above, but fit a Weibull model

reri streg exp1 exp2, strata(svar) distribution(weibull)

Fit a Weibull model with interval-censored survival data, with variables t1 and t2 giving lower and

upper endpoints for the censoring interval, and report ERRs, RERI, AP, and SI for the interactions

reri stintreg exp1 exp2, distribution(weibull) interval(t1 t2)

Menu
Statistics > Epidemiology and related > Other > Relative excess risk due to interaction (RERI)

2568
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Syntax
reri cmd depvar var1 var2 [ control vars ] [ if ] [ in ] [weight ]

[ , options cmd options ]

cmd defines the estimation command to be executed and may be one of the following:

binreg, logistic, nbreg, poisson, stcox, stintcox, stintreg, and streg

depvar is required for all except stcox, stintcox, stintreg, and streg, which do not allow depvar.

var1 and var2 are binary variables (integer valued and nonnegative) whose interactions are to be tested

for additivity.

options Description

Model

baselevel1(#) specify base level for var1

baselevel2(#) specify base level for var2

Reporting

noisily display output from cmd

err report interactions as ERR, the default

coef type report interactions as coef type rather than ERR

level(#) set confidence level; default is level(95)
nofvlabel display numeric values rather than value labels

nolegend do not display the legend for the interactions

var1 and var2 cannot be factor variables, but control vars may contain factor variables; see [U] 11.4.3 Factor variables.

cmd options are any options allowed by cmd, except options or, hr, rd, and vce(jackknife1) are not allowed when cmd
is binreg.

When cmd is poisson, vce(robust) is used by default when depvar is 0/1.
bootstrap, by, collect, jackknife, and statsby are allowed; see [U] 11.1.10 Prefix commands.

Weights are allowed if cmd allows them; see [U] 11.1.6 weight.

All postestimation commands behave as they would after cmd; see the postestimation manual entry for cmd.

Options

� � �
Model �

baselevel1(#) and baselevel2(#) specify base levels for var1 and var2, respectively, the two vari-
ables that give the interactions of interest.

If var1 and var2 are 0/1 variables, then by default, the RERI statistic is a test of whether the ERR of

interaction 01 (01 meaning var1 = 0 and var2 = 1) plus the ERR of interaction 10 equals the ERR of

interaction 11. In shorthand notation, we say we are testing 01 + 10 = 11 on the ERR scale.

Specifying baselevel1(#) or baselevel2(#) allows the base levels of the interactions to be

changed. For example, with 0/1 variables, baselevel1(1) sets the base level for var1 to 1, and

RERI tests whether 11 + 00 = 01.
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If baselevel1(#) is not specified, the base level of var1 is the default base level of the factor variable
i.var1. The default base level is the smallest of the two values of var1, unless the default has been
changed by fvset. This is similarly true for baselevel2(#) and var2. See [U] 11.4.3.2 Base levels
and [R] fvset. Note that base levels cannot be set using factor-variable notation when specifying var1

and var2.

� � �
Reporting �

noisily displays all output from cmd.

err specifies that the coefficients of the interactions be displayed as ERRs. This is the default. ERR is

equal to relative risk minus one. See Remarks and examples below.

coef type specifies an alternative scale for the coefficients of the interactions instead of ERRs. Allowed

coef type depends on cmd and can be rr, or, irr, or hr, whichever is allowed by cmd. In addition,
coef type can be coef, which displays the interaction terms as unscaled coefficients.

For binreg, coef type rr displays the interactions as relative-risk ratios. The other models fit by

binreg using options or, hr, and rd are not available with reri. For logistic, coef type or dis-
plays the interactions as odds ratios. For poisson and nbreg, coef type irr displays the interactions
as incidence-rate ratios. For stcox, stintcox, stintreg, and streg, coef type hr displays the in-
teractions as hazard ratios. For the survival-time commands, nohr may be used as a synonym for

coef.

When noisily is specified, err and a coef type may be specified simultaneously. In this case,

the table of interactions displayed by reri reports ERRs, and the coefficient table produced by cmd
displays coefficients on the coef type scale.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is

level(95) or as set by set level; see [R] level.

nofvlabel specifies that numeric values rather than value labels be displayed in the legend and cmd

output.

nolegend suppresses the display of the legend for the interactions.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Additive versus multiplicative interactions
Incidence-rate ratios, hazard ratios, and odds ratios

Introduction
reri reports three statistics that assess additive interactions of relative risk: RERI, AP, and SI (Lash

et al. 2021). These measures are typically of interest when working with epidemiologic data. When one

assesses the effect of multiple exposures on an outcome, determining whether one exposure modifies the

effect of another can be an important piece of the puzzle.

When there are two exposures that affect an outcome, we often want to model how the exposures

interact. That is, for binary exposures 𝐴 and 𝐵, we want to model the risk of a positive outcome for
subjects having both 𝐴 and 𝐵 compared with subjects having only 𝐴 and those having only 𝐵.
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Typically, a multiplicative model for the interaction is fit to the data: the risk for those with 𝐴 and

𝐵 is hypothesized to equal the risk for only 𝐴 times the risk for only 𝐵. If the risk for 𝐴 and 𝐵 equals

the multiplicative risk, then we say there is no interaction of 𝐴 and 𝐵. If the risk is greater than the
multiplicative risk, we say there is a positive interaction of 𝐴 and 𝐵. Multiplicative models are com-

putationally convenient because they are simple to specify, and it is easy to test whether the interaction

term is greater (or less) than multiplicative.

Inherent to this model is the hypothesis that the risk is multiplicative. For many biological processes,

however, an additive model of risk may model the process better than a multiplicative one (see, for

example, Andersson et al. [2005]). That is, the risk for subjects with 𝐴 and 𝐵 is hypothesized to equal

the risk for only 𝐴 plus the risk for only 𝐵. For this hypothesis, we want to look at how much the risk

for 𝐴 and 𝐵 is greater (or less) than the additive risk.

The RERI statistic is this risk difference formulated using relative risks. ARERI statistic that is 0 means

the risk is additive. One that is positive means the risk is superadditive, and one that is negative means

the risk is subadditive. The test of statistical significance of the RERI statistic is straightforward, but it is

not as simple as the test for the multiplicative model (see Methods and formulas).

Besides the RERI statistic, there are two other related statistics for additive models: AP and SI. The AP

is the proportion of risk of 𝐴 and 𝐵 due to the superadditivity of exposures 𝐴 and 𝐵. The SI recasts the
RERI statistic as a ratio, rather than a difference.

Let’s formally define these statistics. Let 𝑝𝐴+𝐵+ be the probability of having a positive outcome for

subjects positive for binary exposure 𝐴 and positive for binary exposure 𝐵. Define 𝑝𝐴−𝐵+, 𝑝𝐴+𝐵−, and

𝑝𝐴−𝐵− similarly. An additive model for the probabilities is

𝑝𝐴+𝐵+ = 𝑝𝐴−𝐵− + (𝑝𝐴−𝐵+ − 𝑝𝐴−𝐵−) + (𝑝𝐴+𝐵− − 𝑝𝐴−𝐵−)

Said in words, the probability of a positive outcome for 𝐴+𝐵+ equals the probability for the base

category 𝐴−𝐵− plus the amounts that probabilities for 𝐴−𝐵+ and 𝐴+𝐵− exceed the probability for

the base category.

If we divide this equation by 𝑝𝐴−𝐵− and note that 𝑝𝐴+𝐵+/𝑝𝐴−𝐵− = RR𝐴+𝐵+, the relative risk for

𝐴+𝐵+ (and similarly for RR𝐴−𝐵+ and RR𝐴+𝐵−), we get

RR𝐴+𝐵+ = RR𝐴−𝐵+ + RR𝐴+𝐵− − 1

ERR is defined as ERR = RR − 1. In terms of ERR, the additive model becomes

ERR𝐴+𝐵+ = ERR𝐴−𝐵+ + ERR𝐴+𝐵−

The RERI statistic is defined as

RERI = ERR𝐴+𝐵+ − ERR𝐴−𝐵+ − ERR𝐴+𝐵−

Hence, RERI is 0 for a perfectly additive model. If it is negative, the effect of the 𝐴+𝐵+ interaction is

less than additive (subadditive). If positive, the effect is more than additive (superadditive).

The AP is simply RERI scaled by the relative risk (not ERR) of 𝐴+𝐵+. That is,

AP = RERI

RR𝐴+𝐵+
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WhenAP is positive, it represents the proportion of risk of𝐴+𝐵+ due to the superadditivity of exposures

𝐴 and 𝐵 (that is, the amount greater than additivity). Note that it is a proportion of risk, not relative risk,

as one can see by multiplying both numerator and denominator by the reference probability 𝑝𝐴−𝐵−.

The SI is a ratio measure:

SI =
ERR𝐴+𝐵+

ERR𝐴−𝐵+ + ERR𝐴+𝐵−

The SI is 1, rather than 0, for a perfectly additive model. It is < 1 for a subadditive model and > 1 for

a superadditive model. Note that because ERRs can be negative (they are always ≥ −1), the SI can be

negative, making interpretation difficult. The SI is intended as a measure for cases in which all ERRs of

the model are positive, but this will not always be the case. ERRs will be determined by the data and the

specification of the model. See Knol et al. (2011) and example 4 for discussions about negative ERRs.

Additive versus multiplicative interactions
Typically, interactions are fit and tested by specifying main effects and interactions of the main effects

(Rothman, Greenland, and Walker 1980). Suppose 𝑥𝐴+ is a 0/1 variable that is 1 when exposure 𝐴 is

positive and 0 when it is negative. The variable 𝑥𝐵+ is defined similarly for exposure 𝐵. Let 𝑥𝐴+𝐵+ be

the 0/1 variable that is 1 when both 𝐴 and 𝐵 are positive and 0 otherwise.

When we specify a model and include terms

𝑏1𝑥𝐴+ + 𝑏2𝑥𝐵+ + 𝑏3𝑥𝐴+𝐵+

we call 𝑏1𝑥𝐴+ and 𝑏2𝑥𝐵+ main effects and 𝑏3𝑥𝐴+𝐵+ their interaction. The test of the interaction is the

test of 𝑏3 = 0.

It is a model of interaction that is additive in these terms. However, when the statistics of interest are

risk ratios, odds ratios, or hazard ratios, the model is generally called multiplicative because it is multi-

plicative in these statistics. The risk ratios (or odds ratios or hazard ratios) are given by the exponentiated

coefficients; that is, RR𝐴+ = 𝑒𝑏1 , RR𝐵+ = 𝑒𝑏2 , etc. The risk ratio for 𝐴+𝐵+ is RR𝐴+𝐵+ = 𝑒𝑏1𝑒𝑏2𝑒𝑏3 .

If the interaction is multiplicative, 𝑒𝑏3 = 1 and

RR𝐴+𝐵+ = RR𝐴+ × RR𝐵+

As mentioned earlier, many biological processes more closely follow an additive model of risk than

a multiplicative one. The additive model of ERR is

ERR𝐴+𝐵+ = ERR𝐴−𝐵+ + ERR𝐴+𝐵−

Note that unlike the multiplicative model with main effects, the three states in the additive model,

𝐴−𝐵+, 𝐴+𝐵−, and 𝐴+𝐵+, are disjoint.

reri is called with the syntax

reri cmd depvar var1 var2 ...

reri uses var1 and var2 to create the three terms for the additive model using factor-variable notation.
Suppose var1 is xa, a 0/1 variable, indicating whether a subject has exposure 𝐴. Suppose var2 is xb for
exposure 𝐵. Then, the terms needed to test for additive ERR are, in factor-variable notation,

0.xa#1.xb 1.xa#0.xb 1.xa#1.xb

reri creates these terms and calls cmd to fit the model. Then, it uses nlcom to calculate the RERI, AP,
and SI statistics and their standard errors. See Methods and formulas.
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Incidence-rate ratios, hazard ratios, and odds ratios
Incidence rates and hazards are measures of risk. An incidence rate is a probability adjusted for time at

risk. Ahazard is a conditional probability when the distribution is discrete and an incremental conditional

probability when the distribution is continuous (Kalbfleisch and Prentice 2002). Hence, incidence-rate

ratios and hazard ratios are measures of relative risk. So using RERI, AP, and SI statistics with models

that estimate incidence-rate ratios (poisson and nbreg) or hazard ratios (stcox, stintcox, streg,
stintreg) presents no difficulties.

Odds ratios, however, are different. As is well known, the odds ratio approximates the risk ratio in

the population when the prevalence of the outcome in the population is low (see, for example, Greenland

and Thomas [1982]). So if your data are from a case–control study and the population prevalence of a

positive outcome is low, then odds ratios from a logistic regression will approximate the risk ratios in

the population, and the RERI, AP, and SI statistics are appropriate. On the other hand, if the population

prevalence is high, the odds ratio is typically a poor approximation to the risk ratio (unless it is close to

1), and interpretation of the RERI, AP, and SI statistics may be problematic (see, for example, Skrondal

[2003]).

If the study you are analyzing is a cohort study, observational study, or a randomized controlled trial

with a binary outcome, you can estimate risk directly rather than fitting a logistic regression. A binomial

model of risk or a Poisson model can be fit (using an appropriate variance estimator; see Cummings

[2009] and example 2).

If time to outcome is measured, then a survival model may be fit, and there are no issues interpreting

the RERI and SI statistics. Interpreting theAP statistic is a little trickier because it relates to the hazard at a

point in time rather than risk in a population, so the proportion is the proportion of the hazard at a given

time.

Example 1: Binomial model of risk
We have simulated data on birth defects that mimic the results from Brender et al. (2013), an obser-

vational study of birth defects. Three binary outcomes are included in these data and are tube, palate,
and heart, representing neural tube defects, palate defects, and heart defects, respectively. Predictors of
birth defects are two measures of nitrate intake: drug, with values 0/1, indicating nitrosatable drug ex-
posure; and nitrate, also with values 0/1, representing either low or high daily consumption of nitrates

from drinking water.



reri — Relative excess risk due to interaction 2574

We load the dataset and describe it.

. use https://www.stata-press.com/data/r18/nitrates
(Simulated prenatal nitrate intake and birth defects data)
. describe
Contains data from https://www.stata-press.com/data/r18/nitrates.dta
Observations: 1,367 Simulated prenatal nitrate

intake and birth defects data
Variables: 6 4 Oct 2022 16:05

(_dta has notes)

Variable Storage Display Value
name type format label Variable label

id int %9.0g Identification number
tube byte %9.0g case Neural tube defect
heart byte %9.0g case Conotruncal heart defect
palate byte %9.0g case Cleft palate
drug byte %9.0g yesno Nitrosatable drug exposure
nitrate byte %9.0g nitrate Total nitrate intake

Sorted by: id

We first examine the outcome tube. We want to see whether the interactions of the two predictors

drug and nitrate follow an additive model of risk. Because this is an observational study, a binomial

model of risk is appropriate, and we can fit it using binreg.

The syntax of reri is reri cmd depvar var1 var2, where var1 and var2 are the binary predictors of
interest. Note that var1 and var2 are specified without using factor-variable notation. reri will create
the interactions automatically. Here’s the result:

. reri binreg tube drug nitrate
Fitting binreg ...
Interaction of drug and nitrate on an additive scale
Model: Binomial generalized linear Number of observations = 1,284
drug#nitrate

- + No#High
+ - Yes#Low
+ + Yes#High

EIM
ERR std. err. z P>|z| [95% conf. interval]

drug#nitrate
- + .1161419 .1571024 0.78 0.435 -.1529507 .4707206
+ - .2385481 .2392316 1.11 0.268 -.1517982 .8085336
+ + .7769424 .407042 2.51 0.012 .1342 1.783922

RERI .4222523 .453286 0.93 0.352 -.466172 1.310677
Attr. prop. .2376286 .2187062 1.09 0.277 -.1910276 .6662848
Synergy ind. 2.190483 2.034328 0.84 0.398 .3548285 13.52263

Note: P>|z| for synergy index (SI) is for test H0: SI = 1.

Note that the interactions created by reri represent disjoint groups in the data. The -+ interaction is
for drug = No and nitrate = High. The +- and ++ interactions are defined similarly as shown in the
legend. The interaction – is, of course, the reference category.
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By default, reri displays the model coefficients for the -+, +-, and ++ interactions as ERR, which is
relative risk minus one. So ERR greater than 0 means that relative risk is greater than 1. If the model is

additive, we would have

ERR++ = ERR−+ + ERR+−

The RERI statistic is the difference between the two sides of this equation:

RERI = ERR++ − ERR−+ − ERR+−

The estimates are ERR−+ = 0.116 and ERR+− = 0.239, so ERR−+ + ERR+− = 0.355. The estimate of

ERR++ is 0.777, which is greater than ERR−+ +ERR+−. So the model is superadditive. The RERI statistic

is 0.422, the difference between 0.777 and 0.355.

The 𝑝-value for RERI is a test of the null hypothesis RERI = 0. That is, a small 𝑝-value provides
evidence to reject the additive model for the interactions. In this case, 𝑝 = 0.352, so we do not have

enough evidence to reject the additive model, despite the observed superadditivity.

The AP is

AP = RERI

RR++

It is the proportion of risk for the ++ interaction that is due to the risk that is above additive. In this

case, AP is 0.238 or 23.8%. Its 𝑝-value is a test of the null hypothesis AP = 0. This null hypothesis is

equivalent to the null hypothesis RERI = 0, so 𝑝-values will be similar.
The SI is

SI =
ERR++

ERR−+ + ERR+−

It is how many times larger (or smaller) is ERR++ = 0.777 than ERR−+ + ERR+− = 0.355. In this

example, it is about twice as large, or more precisely, 2.19 times as large. The null hypothesis is SI = 1,

rather than 0. The SI is a rather odd statistic because it is a test of an additive model using a multiplicative

scale!
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reri can optionally display the interaction coefficients from binreg as relative risk (that is, risk

ratios) rather than ERR. This is done by specifying the rr option. We do so and also specify the noisily
option to see the output from binreg.

. reri binreg tube drug nitrate, rr noisily
Fitting binreg:
Iteration 1: Deviance = 1176.736
Iteration 2: Deviance = 1176.736
Generalized linear models Number of obs = 1,284
Optimization : MQL Fisher scoring Residual df = 1,280

(IRLS EIM) Scale parameter = 1
Deviance = 1176.735717 (1/df) Deviance = .9193248
Pearson = 1283.999016 (1/df) Pearson = 1.003124
Variance function: V(u) = u*(1-u/1) [Binomial]
Link function : g(u) = ln(u) [Log]

BIC = -7985.166

EIM
tube Risk ratio std. err. z P>|z| [95% conf. interval]

drug#nitrate
No#High 1.116142 .1571024 0.78 0.435 .8470493 1.470721
Yes#Low 1.238548 .2392316 1.11 0.268 .8482018 1.808534

Yes#High 1.776942 .407042 2.51 0.012 1.1342 2.783922

_cons .157969 .013697 -21.28 0.000 .1332805 .1872307

Note: _cons estimates baseline risk.
Interaction of drug and nitrate on an additive scale
drug#nitrate

- + No#High
+ - Yes#Low
+ + Yes#High

EIM
Risk ratio std. err. z P>|z| [95% conf. interval]

drug#nitrate
- + 1.116142 .1571024 0.78 0.435 .8470493 1.470721
+ - 1.238548 .2392316 1.11 0.268 .8482018 1.808534
+ + 1.776942 .407042 2.51 0.012 1.1342 2.783922

RERI .4222523 .453286 0.93 0.352 -.466172 1.310677
Attr. prop. .2376286 .2187062 1.09 0.277 -.1910276 .6662848
Synergy ind. 2.190483 2.034328 0.84 0.398 .3548285 13.52263

Note: P>|z| for synergy index (SI) is for test H0: SI = 1.

We see the output of binreg followed by the output of reri. In this case, reri displays the interaction
coefficients as risk ratios, matching the output of binreg. Risk ratios are just ERRs plus one, so point
estimates and confidence intervals for the interactions are just shifted by one from the previous results,

and standard errors and 𝑝-values are unchanged. The RERI, AP, and SI statistics are all exactly the same

as they were in the previous results.
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For comparison, we can fit a binreg model specifying the interaction in the standard manner: main
effects for drug and nitrate and a single interaction term for drug = Yes and nitrate = High.

. binreg tube drug##nitrate, rr
Iteration 1: Deviance = 1617.128
Iteration 2: Deviance = 1213.623
Iteration 3: Deviance = 1177.487
Iteration 4: Deviance = 1176.736
Iteration 5: Deviance = 1176.736
Iteration 6: Deviance = 1176.736
Generalized linear models Number of obs = 1,284
Optimization : MQL Fisher scoring Residual df = 1,280

(IRLS EIM) Scale parameter = 1
Deviance = 1176.735717 (1/df) Deviance = .9193248
Pearson = 1283.99895 (1/df) Pearson = 1.003124
Variance function: V(u) = u*(1-u/1) [Binomial]
Link function : g(u) = ln(u) [Log]

BIC = -7985.166

EIM
tube Risk ratio std. err. z P>|z| [95% conf. interval]

drug
Yes 1.238548 .2392315 1.11 0.268 .8482019 1.808533

nitrate
High 1.116142 .1571023 0.78 0.435 .8470494 1.47072

drug#nitrate
Yes#High 1.285408 .3952681 0.82 0.414 .7035471 2.348491

_cons .157969 .013697 -21.28 0.000 .1332805 .1872307

Note: _cons estimates baseline risk.

This model is not as easy to interpret as the previous ones and shows no evidence that drug, nitrate,
or their interaction has any effect on neural tube defects. However, the previous model fit with disjoint

interactions provided strong evidence that the relative risk of neural tube defects was greater for the ++
group when compared with the reference group; in that model, the risk ratio for the ++ group was greater
than 1, and the 𝑝-value was 0.012.

Note that when running binreg directly, we must specify the rr model option. When reri calls

binreg, it automatically fits an rrmodel. Specifying rr with reri is merely a display option; it reports
relative risk rather than ERR.
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Technical note
As mentioned earlier, when reri is called with, say,

reri cmd y x1 x2 ...

it creates disjoint interactions and runs

cmd y 0.x1#1.x2 1.x1#0.x2 1.x1#1.x2 ...

(assuming that x1 and x2 are 0/1 and that 0 is taken as the base category for both).

If reri gives an error message and you cannot figure out the reason why, run

cmd y 0.x1#1.x2 1.x1#0.x2 1.x1#1.x2 $...$

and see whether this gives any problems such as dropped terms or dropped observations.

Example 2: Poisson model
We continue with our previous example. We again fit a model for the outcome tube, representing

neural tube birth defects. Our predictors, as in the previous example, are drug (nitrosatable drug expo-
sure) and nitrate (drinking water nitrate intake). The only difference is that we specify poisson rather
than binreg.

. reri poisson tube drug nitrate
Fitting poisson ...
Interaction of drug and nitrate on an additive scale
Model: Poisson Number of observations = 1,284
drug#nitrate

- + No#High
+ - Yes#Low
+ + Yes#High

Robust
ERR std. err. z P>|z| [95% conf. interval]

drug#nitrate
- + .1161419 .1571636 0.78 0.435 -.1530418 .4708787
+ - .2385481 .2393248 1.11 0.268 -.1519233 .8088004
+ + .7769424 .4072075 2.51 0.012 .133993 1.78443

RERI .4222523 .4534688 0.93 0.352 -.4665302 1.311035
Attr. prop. .2376286 .2187937 1.09 0.277 -.1911993 .6664564
Synergy ind. 2.190483 2.035131 0.84 0.399 .3545735 13.53235

Note: P>|z| for synergy index (SI) is for test H0: SI = 1.

We see that the reported point estimates for the interactions, RERI, AP, and SI are identical to the ones

estimated when we used binreg. The standard errors are almost the same, differing only in the fourth
significant digit.
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When the outcome is 0/1, reri poisson by default reports standard errors calculated using

vce(robust). This is because when the outcome is 0/1, the distribution is binomial (Bernoulli), not
Poisson, and vce(robust) gives standard errors that are valid in this case. The other vcetypes allowed
with poisson are available and can be selected by specifying the vce() option with reri. See [R] pois-
son and [R] vce option.

binreg by default fits models using iterated, reweighted least-squares optimization and uses the ex-
pected information matrix for the variance estimator. poisson uses maximum likelihood optimization.

Point estimates will theoretically be the same but will have numerical differences because of the different

optimizers used. Different variance estimators are used, so slight differences, as we observed here, are

to be expected.

One advantage of using poisson with reri rather than binreg is that maximum likelihood opti-

mization is more robust than iterated, reweighted least-squares optimization. There can be convergence

problems with iterated, reweighted least squares when maximum likelihood will converge without any

difficulty.

binreg does have an ml option for maximum likelihood optimization. We can also specify

vce(robust) to reproduce the results given by poisson.

. reri binreg tube drug nitrate, ml vce(robust)
Fitting binreg ...
Interaction of drug and nitrate on an additive scale
Model: Binomial generalized linear Number of observations = 1,284
drug#nitrate

- + No#High
+ - Yes#Low
+ + Yes#High

Robust
ERR std. err. z P>|z| [95% conf. interval]

drug#nitrate
- + .1161419 .1571636 0.78 0.435 -.1530418 .4708787
+ - .2385481 .2393248 1.11 0.268 -.1519233 .8088004
+ + .7769424 .4072075 2.51 0.012 .133993 1.78443

RERI .4222523 .4534688 0.93 0.352 -.4665302 1.311035
Attr. prop. .2376286 .2187937 1.09 0.277 -.1911993 .6664564
Synergy ind. 2.190483 2.035131 0.84 0.399 .3545735 13.53235

Note: P>|z| for synergy index (SI) is for test H0: SI = 1.

reri binreg with ml and vce(robust) gives the same results as reri poisson. But if we want
maximum likelihood with the robust variance estimator, we might as well just use reri poisson.
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Example 3: Logistic model
We continue with the previous example. These data were simulated to mimic an observational study

with full data from several sites over a set period of time. So risk ratios can be estimated directly. But

let’s pretend it was a case–control study. The outcomes, birth defects, have low prevalences, so odds

ratios from a logistic regression should be good approximations to the risk ratios.

We specify logistic with reri:

. reri logistic tube drug nitrate
Fitting logistic ...
Interaction of drug and nitrate on an additive scale
Model: Logistic Number of observations = 1,284
drug#nitrate

- + No#High
+ - Yes#Low
+ + Yes#High

ERR Std. err. z P>|z| [95% conf. interval]

drug#nitrate
- + .141003 .1933785 0.78 0.436 -.1814898 .5905577
+ - .2965734 .3085999 1.09 0.275 -.1867932 1.067251
+ + 1.080139 .6495028 2.35 0.019 .1280107 2.835939

RERI .642563 .691611 0.93 0.353 -.7129695 1.998096
Attr. prop. .3089038 .2594074 1.19 0.234 -.1995252 .8173329
Synergy ind. 2.468459 2.456832 0.91 0.364 .3509409 17.36273

Note: P>|z| for synergy index (SI) is for test H0: SI = 1.

The ERRs reported are the odds ratios minus one. Calculating ERR using odds ratios assumes that the

odds ratios are approximations to the risk ratios.

Here we see that RERI = 0.643, AP = 0.309, and SI = 2.47. When we used poisson and binreg,
we got RERI = 0.422, AP = 0.238, and SI = 2.19. Results are similar but not that close numerically.

If we have data from an observational study, a cohort, or a randomized controlled trial, we can estimate

risk ratios directly, and we should do so using poisson or binreg. If it is a case–control study, we have
no choice but to use logistic.
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Example 4: Negative ERRs
We present data from example 2 in [ST] stcox. The data represent 48 participants in a cancer drug

trial. Some receive treatment (drug = 1) and some receive a placebo (drug = 0). The data contain

the participants’ age and time until death. It has already been stset and is ready to be analyzed using a
survival model.

We load the dataset, describe it, and run st to see the survival-time settings.

. use https://www.stata-press.com/data/r18/drugtr
(Patient survival in drug trial)
. describe
Contains data from https://www.stata-press.com/data/r18/drugtr.dta
Observations: 48 Patient survival in drug trial

Variables: 8 3 Mar 2022 02:12

Variable Storage Display Value
name type format label Variable label

studytime byte %8.0g Months to death or end of exp.
died byte %8.0g 1 if patient died
drug byte %8.0g Drug type (0=placebo)
age byte %8.0g Patient’s age at start of exp.
_st byte %8.0g 1 if record is to be used; 0

otherwise
_d byte %8.0g 1 if failure; 0 if censored
_t byte %10.0g Analysis time when record ends
_t0 byte %10.0g Analysis time when record begins

Sorted by:
. st
-> stset studytime, failure(died)
Survival-time data settings

Failure event: died!=0 & died<.
Observed time interval: (0, studytime]

Exit on or before: failure

The RERI statistic requires two 0/1 predictors. These data have two predictors, drug and age, but age
is not 0/1. Let’s create a 0/1 variable from age. First, we summarize age:

. summarize age, detail
Patient’s age at start of exp.

Percentiles Smallest
1% 47 47
5% 48 48
10% 49 48 Obs 48
25% 50.5 49 Sum of wgt. 48
50% 56 Mean 55.875

Largest Std. dev. 5.659205
75% 60 65
90% 65 67 Variance 32.0266
95% 67 67 Skewness .3161066
99% 67 67 Kurtosis 2.125197
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The age of the participants ranges from 47 to 67 years. Median age is 56. Second, we create the

variable older with older = 1 representing those with ages >56 and older = 0 those with ages ≤56.

We give it a value label as well.

. generate older = cond(age > 56, 1, 0)

. label define older_lbl 0 ”age<=56” 1 ”age>56”

. label values older older_lbl

Now, we run reri stcox:

. reri stcox drug older
Fitting stcox ...
Interaction of drug and older on an additive scale
Model: Cox proportional hazards Number of observations = 48
drug#older

- + 0#age>56
+ - 1#age<=56
+ + 1#age>56

ERR Std. err. z P>|z| [95% conf. interval]

drug#older
- + .6268459 .7688877 1.03 0.303 -.3557603 3.108141
+ - -.9158604 .0532904 -3.91 0.000 -.9756843 -.7088514
+ + -.7313977 .1392912 -2.53 0.011 -.9027935 -.2577947

RERI -.4423833 .7436483 -0.59 0.552 -1.899907 1.015141
Attr. prop. -1.646983 2.711232 -0.61 0.544 -6.960901 3.666935
Synergy ind. 2.530662 6.713001 0.35 0.726 .0139727 458.3401

Notes: P>|z| for synergy index (SI) is for test H0: SI = 1.
Some estimates of excess relative risk are not positive.

The ERR is negative for the +- (drug = 1 and older = 0) and ++ (drug = 1 and older = 1)

interactions. This means the relative risk is less than one.

The RERI, AP, and SI statistics were designed for models in which the -+, +-, and ++ interactions

each have positive ERRs. That is, values of 1 for the predictors are hypothesized to be associated with

increased risk. Clearly, this is not true here. drug = 1 is hypothesized to be associated with decreased

risk. We incorrectly specified the model for reri. drug = 0 should be the category hypothesized for a

positive ERR.
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We can correct this by specifying the option baselevel1(1), which tells reri to use drug = 1 as

the base level for the first predictor.

. reri stcox drug older, baselevel1(1)
Fitting stcox ...
Interaction of drug and older on an additive scale
Model: Cox proportional hazards Number of observations = 48
drug#older

- + 1#age>56
+ - 0#age<=56
+ + 0#age>56

ERR Std. err. z P>|z| [95% conf. interval]

drug#older
- + 2.192339 1.962714 1.89 0.059 -.0433052 9.652331
+ - 10.885 7.527446 3.91 0.000 2.434672 40.12572
+ + 18.33507 12.94706 4.42 0.000 4.20437 70.83291

RERI 5.257728 8.484262 0.62 0.535 -11.37112 21.88658
Attr. prop. .271927 .3309285 0.82 0.411 -.376681 .920535
Synergy ind. 1.402049 .677738 0.70 0.484 .5436253 3.615984

Note: P>|z| for synergy index (SI) is for test H0: SI = 1.

The ERRs are now all positive, and the model is easy to interpret. The RERI statistic is 5.26, so the

effects are superadditive. But the RERI statistic has a 𝑝-value of 0.535, so we cannot reject the additive
model.

The message of this example is clear. If you have negative ERRs, first check that you correctly speci-

fied the hypothesized direction of effects. If the model is correctly specified and there are negative ERRs

(not close to 0), then the RERI,AP, and SI statistics may not be useful descriptors for the observed effects.

Stored results
reri stores the following in r():

Scalars

r(N) number of observations

r(reri) RERI

r(ap) AP

r(si) SI

r(level) confidence level

Matrices

r(reri table) table of results

The e() and r() stored results from cmd are returned as well.
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Methods and formulas
The RERI statistic is

RERI = ERR𝐴+𝐵+ − ERR𝐴−𝐵+ − ERR𝐴+𝐵−

where ERR = RR− 1 is the ERR and RR denotes relative risk. Here 𝐴+𝐵+ refers to subjects positive for

exposure 𝐴 and positive for exposure 𝐵, with 𝐴−𝐵+ and 𝐴+𝐵− defined similarly.

The AP is

AP = RERI

RR𝐴+𝐵+

The SI is

SI =
ERR𝐴+𝐵+

ERR𝐴−𝐵+ + ERR𝐴+𝐵−

When incidence-rate ratios, odds ratios, or hazard ratios are estimated rather than risk ratios, they are

used in the calculation in place of relative risk.

Standard errors are calculated by nlcom using the “delta method”. See Methods and formulas in

[R] nlcom for details. The standard error for the SI is calculated by first calculating the standard error for

the logarithm of SI and then transforming the result back to the SI scale.
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#review — Review previous commands

Description Syntax Remarks and examples

Description
The #review command displays the last few lines typed at the terminal.

Syntax
#review [ #1 [ #2 ] ]

Remarks and examples
#review (pronounced pound-review) is a Stata preprocessor command. #commands do not generate

a return code or generate ordinary Stata errors. The only error message associated with #commands is
“unrecognized #command”.

The #review command displays the last few lines typed at the terminal. If no arguments follow

#review, the last 20 lines typed at the terminal are displayed. The first argument specifies the number
of lines to be reviewed, so #review 10 displays the last 10 lines typed. The second argument specifies
the number of lines to be displayed, so #review 10 5 displays five lines, starting at the 10th previous
line.

Stata reserves a buffer for #review lines and stores as many previous lines in the buffer as will fit,
rolling out the oldest line to make room for the newest. Requests to #review lines no longer stored will
be ignored. Only lines typed at the terminal are placed in the #review buffer. See [U] 10.5 Editing

previous lines in Stata.

Example 1
Typing #review by itself will show the last 20 lines you typed at the terminal:

. #review
20 webuse auto
19 describe
18 notes
17 * comments go into the #review buffer, too
16 tabulate rep78
15 codebook foreign
14 regress mpg weight i.foreign
13 generate gp100m = 100/mpg
12 label variable gp100m ”Gallons per 100 miles”
11 tabulate rep78, summarize(gp100m)
10 ttest gp100m, by(foreign)
9 regress gp100m weight i.foreign
8 regress, beta
7 margins foreign
6 generate gpmw = ((100/mpg)/weight)*1000
5 summarize gpmw
4 twoway scatter price gpmw
3 regress gpmw i.foreign
2 regress gpmw i.foreign, vce(robust)
1 #review
.
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Typing #review 15 2 shows the 15th and 14th previous lines:

. #review 15 2
15 regress mpg weight i.foreign
14 generate gp100m = 100/mpg
.



roc — Receiver operating characteristic (ROC) analysis

Description References

Description
ROC analysis quantifies the accuracy of diagnostic tests or other evaluation modalities used to dis-

criminate between two states or conditions, which are here referred to as normal and abnormal or control

and case. The discriminatory accuracy of a diagnostic test is measured by its ability to correctly classify

known normal and abnormal subjects. For this reason, we often refer to the diagnostic test as a classifier.

The analysis uses the ROC curve, a graph of the sensitivity versus 1 − specificity of the diagnostic test.

The sensitivity is the fraction of positive cases that are correctly classified by the diagnostic test, whereas

the specificity is the fraction of negative cases that are correctly classified. Thus the sensitivity is the

true-positive rate, and the specificity is the true-negative rate.

There are six ROC commands:

Command Entry Description

roccomp [R] roccomp Tests of equality of ROC areas

rocgold [R] roccomp Tests of equality of ROC areas against a standard ROC curve

rocfit [R] rocfit Parametric ROC models

rocreg [R] rocreg Nonparametric and parametric ROC regression models

rocregplot [R] rocregplot Plot marginal and covariate-specific ROC curves

roctab [R] roctab Nonparametric ROC analysis

Postestimation commands are available after rocfit and rocreg; see [R] rocfit postestimation and

[R] rocreg postestimation.

Both nonparametric and parametric (semiparametric) methods have been suggested for generating the

ROC curve. The roctab command performs nonparametric ROC analysis for a single classifier. roccomp
extends the nonparametric ROC analysis function of roctab to situations where we have multiple diag-
nostic tests of interest to be compared and tested. The rocgold command also provides ROC analysis

for multiple classifiers. rocgold compares each classifier’s ROC curve to a “gold standard” ROC curve

and makes adjustments for multiple comparisons in the analysis. Both rocgold and roccomp also allow
parametric estimation of the ROC curve through a binormal fit. In a binormal fit, both the control and the

case populations are normal.

The rocfit command also estimates the ROC curve of a classifier through a binormal fit. Unlike

roctab, roccomp, and rocgold, rocfit is an estimation command. In postestimation, graphs of the
ROC curve and confidence bands can be produced. Additional tests on the parameters can also be con-

ducted.

ROC analysis can be interpreted as a two-stage process. First, the control distribution of the classifier

is estimated, assuming a normal model or using a distribution-free estimation technique. The classifier

is standardized using the control distribution to 1− percentile value, the false-positive rate. Second, the

ROC curve is estimated as the case distribution of the standardized classifier values.

Covariates may affect both stages of ROC analysis. The first stage may be affected, yielding a

covariate-adjusted ROC curve. The second stage may also be affected, producing multiple covariate-

specific ROC curves.
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The rocreg command performs ROC analysis under both types of covariate effects. Both parametric
(semiparametric) and nonparametric methods may be used by rocreg. Like rocfit, rocreg is an

estimation command and provides many postestimation capabilities.

The global performance of a diagnostic test is commonly summarized by the area under the ROC curve

(AUC). This area can be interpreted as the probability that the result of a diagnostic test of a randomly

selected abnormal subject will be greater than the result of the same diagnostic test from a randomly

selected normal subject. The greater the AUC, the better the global performance of the diagnostic test.

Each of the ROC commands provides computation of the AUC.

Citing a lack of clinical relevance for the AUC, other ROC summary measures have been suggested.

These include the partial area under the ROC curve for a given false-positive rate 𝑡 [pAUC(𝑡)]. This is the
area under the ROC curve from the false-positive rate of 0 to 𝑡. The ROC value at a particular false-positive
rate and the false-positive rate for a particular ROC value are also useful summary measures for the ROC

curve. These three measures are directly estimated by rocreg during the model fit or postestimation

stages. Point estimates of ROC value are computed by the other ROC commands, but no standard errors

are reported.

See Pepe (2003) for a discussion of ROC analysis. Pepe has posted Stata datasets and programs used

to reproduce results presented in the book (https://www.stata.com/bookstore/pepe.html).
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Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description
roccomp and rocgold are used to perform receiver operating characteristic (ROC) analyseswith rating

and discrete classification data.

The two variables refvar and classvarmust be numeric. The reference variable indicates the true state

of the observation, such as diseased and nondiseased or normal and abnormal, and must be coded as 0

and 1. The rating or outcome of the diagnostic test or test modality is recorded in classvar, which must

be at least ordinal, with higher values indicating higher risk.

roccomp tests the equality of two or more ROC areas obtained from applying two or more test modal-

ities to the same sample or to independent samples. roccomp expects the data to be in wide form when

comparing areas estimated from the same sample and in long form for areas estimated from independent

samples.

rocgold independently tests the equality of the ROC area of each of several test modalities, specified
by classvar, against a “gold standard” ROC curve, goldvar. For each comparison, rocgold reports the
raw and the Bonferroni-adjusted 𝑝-value. Optionally, Šidák’s adjustment for multiple comparisons can
be obtained.

See [R] rocfit and [R] rocreg for commands that fit maximum-likelihood ROC models.

Quick start
Equality of AUCs for rating v1 of true state true between samples defined by catvar

roccomp true v1, by(catvar)

Equality of AUCs for ratings v1 and v2 for the same sample
roccomp true v1 v2

Same as above, but plot ROC curves without reporting summary statistics and test of equality

roccomp true v1 v2, graph

Same as above, but plot v1 with a dashed line and v2 with a solid line
roccomp true v1 v2, graph plot1opts(lpattern(dash)) ///

plot2opts(lpattern(solid))

Use contrast matrix mymat to compare ROC areas for v1, v2, v3, and v4
matrix mymat = (1,0,-1,0 \ 0,1,0,-1)
roccomp true v1 v2 v3 v4, test(mymat)

Test equality of ROC area for v1 against a “gold standard” gold
rocgold true gold v1

2590



roccomp — Tests of equality of ROC areas 2591

Menu
roccomp
Statistics > Epidemiology and related > ROC analysis > Test equality of two or more ROC areas

rocgold
Statistics > Epidemiology and related > ROC analysis > Test equality of ROC area against gold standard

Syntax
Test equality of ROC areas

roccomp refvar classvar [classvars] [ if ] [ in ] [weight ] [ , roccomp options ]

Test equality of ROC area against a standard ROC curve

rocgold refvar goldvar classvar [classvars] [ if ] [ in ] [weight ] [ , rocgold options ]

roccomp options Description

Main

by(varname) split into groups by variable

test(matname) use contrast matrix for comparing ROC areas

graph graph the ROC curve

norefline suppress plotting the 45-degree reference line

separate place each ROC curve on its own graph

summary report the area under the ROC curve

binormal estimate areas by using binormal distribution assumption

line#opts(cline options) affect rendition of the #th binormal fit line

level(#) set confidence level; default is level(95)

Plot

plot#opts(plot options) affect rendition of the #th ROC curve

Reference line

rlopts(cline options) affect rendition of the reference line

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options
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rocgold options Description

Main

sidak adjust the 𝑝-value by using Šidák’s method
test(matname) use contrast matrix for comparing ROC areas

graph graph the ROC curve

norefline suppress plotting the 45-degree reference line

separate place each ROC curve on its own graph

summary report the area under the ROC curve

binormal estimate areas by using binormal distribution assumption

line#opts(cline options) affect rendition of the #th binormal fit line

level(#) set confidence level; default is level(95)

Plot

plot#opts(plot options) affect rendition of the #th ROC curve; plot 1 is the “gold standard”

Reference line

rlopts(cline options) affect rendition of the reference line

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

plot options Description

marker options change look of markers (color, size, etc.)

marker label options add marker labels; change look or position

cline options change look of the line

collect is allowed with roccomp and rocgold; see [U] 11.1.10 Prefix commands.

fweights are allowed; see [U] 11.1.6 weight.

Options

� � �
Main �

by(varname) (roccomp only) is required when comparing independent ROC areas. The by() variable
identifies the groups to be compared.

sidak (rocgold only) requests that the 𝑝-value be adjusted for the effect of multiple comparisons by
using Šidák’s method. Bonferroni’s adjustment is reported by default.

test(matname) specifies the contrast matrix to be used when comparing ROC areas. By default, the

null hypothesis that all areas are equal is tested.

graph produces graphical output of the ROC curve.

norefline suppresses plotting the 45-degree reference line from the graphical output of the ROC curve.

separate is meaningful only with roccomp and specifies that each ROC curve be placed on its own

graph rather than one curve on top of the other.

summary reports the area under the ROC curve, its standard error, and its confidence interval. This option
is needed only when also specifying graph.
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binormal specifies that the areas under the ROC curves to be compared should be estimated using the bi-
normal distribution assumption. By default, areas to be compared are computed using the trapezoidal

rule.

line#opts(cline options) affect the rendition of the line representing the #th ROC curve drawn using

the binormal distribution assumption; see [G-3] cline options. These lines are drawn only if the

binormal option is specified.

level(#) specifies the confidence level, as a percentage, for the confidence intervals. The default is

level(95) or as set by set level; see [R] level.

� � �
Plot �

plot#opts(plot options) affect the rendition of the #th ROC curve—the curve’s plotted points con-

nected by lines. The plot options can affect the size and color of markers, whether and how the

markers are labeled, and whether and how the points are connected; see [G-3] marker options,

[G-3] marker label options, and [G-3] cline options.

For rocgold, plot1opts() are applied to the ROC for the gold standard.

� � �
Reference line �

rlopts(cline options) affects the rendition of the reference line; see [G-3] cline options.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options. These include options

for titling the graph (see [G-3] title options), options for saving the graph to disk (see [G-3] sav-

ing option), and the by() option (see [G-3] by option).

Remarks and examples
Remarks are presented under the following headings:

Introduction
Comparing areas under the ROC curve
Correlated data
Independent data
Comparing areas with a gold standard

Introduction
roccomp provides comparison of the ROC curves of multiple classifiers. rocgold compares the ROC

curves ofmultiple classifiers with a single “gold standard” classifier. Adjustment of inference formultiple

comparisons is also provided by rocgold.

See Pepe (2003) for a discussion of ROC analysis. Pepe has posted Stata datasets and programs used

to reproduce results presented in the book (https://www.stata.com/bookstore/pepe.html).

https://www.stata.com/bookstore/pepe.html
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Comparing areas under the ROC curve
The area under multiple ROC curves can be compared by using roccomp. The command syntax is

slightly different if the ROC curves are correlated (that is, different diagnostic tests are applied to the

same sample) or independent (that is, diagnostic tests are applied to different samples).

Correlated data

Example 1
Hanley and McNeil (1983) presented data from an evaluation of two computer algorithms designed

to reconstruct CT images from phantoms. We will call these two algorithms’ modalities 1 and 2. A

sample of 112 phantoms was selected; 58 phantoms were considered normal, and the remaining 54 were

abnormal. Each of the two modalities was applied to each phantom, and the resulting images were rated

by a reviewer using a six-point scale: 1 = definitely normal, 2 = probably normal, 3 = possibly normal,

4 = possibly abnormal, 5 = probably abnormal, and 6 = definitely abnormal. Because each modality

was applied to the same sample of phantoms, the two sets of outcomes are correlated.

We list the first 7 observations:

. use https://www.stata-press.com/data/r18/ct
(Reconstruction of CT images)
. list in 1/7, sep(0)

mod1 mod2 status

1. 2 1 0
2. 5 5 1
3. 2 1 0
4. 2 3 0
5. 5 6 1
6. 2 2 0
7. 3 2 0

The data are in wide form, which is required when dealing with correlated data. Each observation

corresponds to one phantom. The variable mod1 identifies the rating assigned for the first modality, and
mod2 identifies the rating assigned for the second modality. The true status of the phantoms is given by
status=0 if they are normal and status=1 if they are abnormal. The observations with at least one

missing rating were dropped from the analysis.
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We plot the two ROC curves and compare their areas.

. roccomp status mod1 mod2, graph summary
ROC Asymptotic normal

Obs area Std. err. [95% conf. interval]

mod1 112 0.8828 0.0317 0.82067 0.94498
mod2 112 0.9302 0.0256 0.88005 0.98042

H0: area(mod1) = area(mod2)
chi2(1) = 2.31 Prob>chi2 = 0.1282

0.00

0.25

0.50

0.75

1.00

S
en

si
tiv

ity

0.00 0.25 0.50 0.75 1.00
1-specificity

mod1 ROC area: 0.8828
mod2 ROC area: 0.9302
Reference

By default, roccomp, with the graph option specified, plots the ROC curves on the same graph. Op-
tionally, the curves can be plotted side by side, each on its own graph, by also specifying separate.

For each curve, roccomp reports summary statistics and provides a test for the equality of the area
under the curves, using an algorithm suggested by DeLong, DeLong, and Clarke-Pearson (1988).

Although the area under the ROC curve for modality 2 is larger than that of modality 1, the 𝜒2 test

yielded a 𝑝-value of 0.1282, suggesting that there is no significant difference between these two areas.
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The roccomp command can also be used to compare more than two ROC areas. To illustrate this, we

modified the previous dataset by including a fictitious third modality.

. use https://www.stata-press.com/data/r18/ct2
(Reconstruction of CT images)
. roccomp status mod1 mod2 mod3, graph summary

ROC Asymptotic normal
Obs area Std. err. [95% conf. interval]

mod1 112 0.8828 0.0317 0.82067 0.94498
mod2 112 0.9302 0.0256 0.88005 0.98042
mod3 112 0.9240 0.0241 0.87670 0.97132

H0: area(mod1) = area(mod2) = area(mod3)
chi2(2) = 6.54 Prob>chi2 = 0.0381
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1-specificity

mod1 ROC area: 0.8828
mod2 ROC area: 0.9302
mod3 ROC area: 0.924
Reference

By default, roccomp tests whether the areas under the ROC curves are all equal. Other comparisons can
be tested by creating a contrast matrix and specifying test(matname), where matname is the name of
the contrast matrix.

For example, assume that we are interested in testing whether the area under the ROC for mod1 is equal
to that of mod3. To do this, we can first create an appropriate contrast matrix and then specify its name
with the test() option.

Of course, this is a trivial example because we could have just specified

. roccomp status mod1 mod3

without including mod2 to obtain the same test results. However, for illustration, we will continue with
this example.
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The contrast matrix must have its number of columns equal to the number of classvars (that is, the

total number of ROC curves) and a number of rows less than or equal to the number of classvars, and the

elements of each row must add to zero.

. matrix C=(1,0,-1)

. roccomp status mod1 mod2 mod3, test(C)
ROC Asymptotic normal

Obs area Std. err. [95% conf. interval]

mod1 112 0.8828 0.0317 0.82067 0.94498
mod2 112 0.9302 0.0256 0.88005 0.98042
mod3 112 0.9240 0.0241 0.87670 0.97132

H0: Comparison as defined by contrast matrix: C
chi2(1) = 5.25 Prob>chi2 = 0.0220

Although all three areas are reported, the comparison is made using the specified contrast matrix.

Perhaps more interesting would be a comparison of the area from mod1 and the average area of mod2
and mod3.

. matrix C=(1,-.5,-.5)

. roccomp status mod1 mod2 mod3, test(C)
ROC Asymptotic normal

Obs area Std. err. [95% conf. interval]

mod1 112 0.8828 0.0317 0.82067 0.94498
mod2 112 0.9302 0.0256 0.88005 0.98042
mod3 112 0.9240 0.0241 0.87670 0.97132

H0: Comparison as defined by contrast matrix: C
chi2(1) = 3.43 Prob>chi2 = 0.0642

Other contrasts could be made. For example, we could test if mod3 is different from at least one of

the other two by first creating the following contrast matrix:

. matrix C=(-1,0,1 \ 0,-1,1)

. mat list C
C[2,3]

c1 c2 c3
r1 -1 0 1
r2 0 -1 1



roccomp — Tests of equality of ROC areas 2598

Independent data

Example 2
In example 1, we noted that because each test modality was applied to the same sample of phantoms,

the classification outcomes were correlated. Now, assume that we have collected the same data presented

by Hanley and McNeil (1983), except that we applied the first test modality to one sample of phantoms

and the second test modality to a different sample of phantoms. The resulting measurements are now

considered independent.

Here are a few of the observations.

. use https://www.stata-press.com/data/r18/ct3
(Reconstruction of CT images)
. list in 1/7, sep(0)

pop status rating mod

1. 12 0 1 1
2. 31 0 1 2
3. 1 1 1 1
4. 3 1 1 2
5. 28 0 2 1
6. 19 0 2 2
7. 3 1 2 1

The data are in long form, which is required when dealing with independent data. The data consist

of 24 observations: 6 observations corresponding to abnormal phantoms and 6 to normal phantoms

evaluated using the first modality, and similarly 6 observations corresponding to abnormal phantoms

and 6 to normal phantoms evaluated using the second modality. The number of phantoms corresponding

to each observation is given by the pop variable. Once again, we have frequency-weighted data. The
variable mod identifies the modality, and rating is the assigned classification.

We can better view our data by using the table command.

. table (mod status) (rating) [fw=pop], totals(mod mod#status mod#rating)

Rating
1 2 3 4 5 6 Total

Modality
1
Status
0 12 28 8 6 4 58
1 1 3 6 13 22 9 54
Total 13 31 14 19 26 9 112

2
Status
0 31 19 5 3 58
1 3 2 5 19 15 10 54
Total 34 21 10 22 15 10 112

The status variable indicates the true status of the phantoms: status = 0 if they are normal and

status = 1 if they are abnormal.
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We now compare the areas under the two ROC curves.

. roccomp status rating [fw=pop], by(mod) graph summary
ROC Asymptotic normal

mod Obs area Std. err. [95% conf. interval]

1 112 0.8828 0.0317 0.82067 0.94498
2 112 0.9302 0.0256 0.88005 0.98042

H0: area(1) = area(2)
chi2(1) = 1.35 Prob>chi2 = 0.2447
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1 ROC area: 0.8828
2 ROC area: 0.9302
Reference

Comparing areas with a gold standard
The area under multiple ROC curves can be compared with a gold standard using rocgold. The com-

mand syntax is similar to that of roccomp. The tests are corrected for the effect of multiple comparisons.

Example 3
We will use the same data (presented by Hanley and McNeil [1983]) as in the roccomp examples.

Let’s assume that the first modality is considered to be the standard against which both the second and

third modalities are compared.

We want to plot and compare both the areas of the ROC curves of mod2 and mod3 with mod1. Because
we consider mod1 to be the gold standard, it is listed first after the reference variable in the rocgold
command line.

. use https://www.stata-press.com/data/r18/ct2
(Reconstruction of CT images)
. rocgold status mod1 mod2 mod3, graph summary

ROC Bonferroni
area Std. err. chi2 df Pr>chi2 Pr>chi2

mod1 (standard) 0.8828 0.0317
mod2 0.9302 0.0256 2.3146 1 0.1282 0.2563
mod3 0.9240 0.0241 5.2480 1 0.0220 0.0439
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mod1 ROC area: 0.8828
mod2 ROC area: 0.9302
mod3 ROC area: 0.924
Reference

Equivalently, we could have done this in two steps by using the roccomp command.

. roccomp status mod1 mod2, graph summary

. roccomp status mod1 mod3, graph summary

Stored results
roccomp stores the following in r():

Scalars

r(N g) number of groups r(df) 𝜒2 degrees of freedom

r(p) 𝑝-value for 𝜒2 test r(chi2) 𝜒2

Matrices

r(V) variance–covariance matrix

rocgold stores the following in r():

Scalars

r(N g) number of groups

Matrices

r(V) variance–covariance matrix r(p) vector of 𝑝-values for 𝜒2 tests

r(chi2) 𝜒2 vector r(p adj) vector of adjusted 𝑝-values
r(df) 𝜒2 degrees-of-freedom vector
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Methods and formulas
Assume that we applied a diagnostic test to each of 𝑁𝑛 normal and 𝑁𝑎 abnormal subjects. Further

assume that the higher the outcome value of the diagnostic test, the higher the risk of the subject being ab-

normal. Let ̂𝜃 be the estimated area under the curve, and let𝑋𝑖, 𝑖 = 1, 2, . . . , 𝑁𝑎 and𝑌𝑗, 𝑗 = 1, 2, . . . , 𝑁𝑛
be the values of the diagnostic test for the abnormal and normal subjects, respectively.

Areas under ROC curves are compared using an algorithm suggested by DeLong, DeLong, and Clarke-

Pearson (1988). Let θ̂ = (𝜃1, 𝜃2, . . . , 𝜃𝑘) be a vector representing the areas under 𝑘 ROC curves. See

Methods and formulas in [R] roctab for the definition of these area estimates.

For the 𝑟th area, define

𝑉 𝑟
10(𝑋𝑖) = 1

𝑁𝑛

𝑁𝑛

∑
𝑗=1

𝜓(𝑋𝑟
𝑖 , 𝑌 𝑟

𝑗 )

and for each normal subject, 𝑗, define

𝑉 𝑟
01(𝑌𝑗) = 1

𝑁𝑎

𝑁𝑎

∑
𝑖=1

𝜓(𝑋𝑟
𝑖 , 𝑌 𝑟

𝑗 )

where

𝜓(𝑋𝑟, 𝑌 𝑟) =
⎧{
⎨{⎩

1 𝑌 𝑟 < 𝑋𝑟

1
2 𝑌 𝑟 = 𝑋𝑟

0 𝑌 𝑟 > 𝑋𝑟

Define the 𝑘 × 𝑘 matrix S10 such that the (𝑟, 𝑠)th element is

𝑆𝑟,𝑠
10 = 1

𝑁𝑎 − 1

𝑁𝑎

∑
𝑖=1

{𝑉 𝑟
10(𝑋𝑖) − 𝜃𝑟}{𝑉 𝑠

10(𝑋𝑖) − 𝜃𝑠}

and S01 such that the (𝑟, 𝑠)th element is

𝑆𝑟,𝑠
01 = 1

𝑁𝑛 − 1

𝑁𝑛

∑
𝑗=1

{𝑉 𝑟
01(𝑌𝑖) − 𝜃𝑟}{𝑉 𝑠

01(𝑌𝑖) − 𝜃𝑠}

Then, the covariance matrix is

𝑆 = 1
𝑁𝑎

𝑆10 + 1
𝑁𝑛

𝑆01

Let L be a contrast matrix defining the comparison, so that

(θ̂ − θ)′L′(LSL′)−1
L(θ̂ − θ)

has a 𝜒2 distribution with degrees of freedom equal to the rank of LSL′.
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Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description
rocfit fits maximum-likelihood ROCmodels assuming a binormal distribution of the latent variable.

The two variables refvar and classvarmust be numeric. The reference variable indicates the true state

of the observation, such as diseased and nondiseased or normal and abnormal, and must be coded as 0

and 1. The rating or outcome of the diagnostic test or test modality is recorded in classvar, which must

be at least ordinal, with higher values indicating higher risk.

See [R] roc for other commands designed to perform receiver operating characteristic (ROC) analyses

with rating and discrete classification data.

Quick start
Binary true state, true, as a function of classification variable class

rocfit true class

Same as above, but with frequency weights wvar
rocfit true class [fweight = wvar]

Specify that class is continuous and generate v1 containing classification groups
rocfit true class, continuous(3) generate(v1)

Menu
Statistics > Epidemiology and related > ROC analysis > Parametric ROC analysis without covariates
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Syntax
rocfit refvar classvar [ if ] [ in ] [weight ] [ , rocfit options ]

rocfit options Description

Model

continuous(#) divide classvar into # groups of approximately equal length

generate(newvar) create newvar containing classification groups

SE

vce(vcetype) vcetype may be oim or opg

Reporting

level(#) set confidence level; default is level(95)

Maximization

maximize options control the maximization process; seldom used

collect and fp are allowed; see [U] 11.1.10 Prefix commands.

fweights are allowed; see [U] 11.1.6 weight.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

continuous(#) specifies that the continuous classvar be divided into # groups of approximately equal
length. This option is required when classvar takes on more than 20 distinct values.

continuous(.) may be specified to indicate that classvar be used as it is, even though it could have

more than 20 distinct values.

generate(newvar) specifies the new variable that is to contain values indicating the groups produced

by continuous(#). generate() may be specified only with continuous().

� � �
SE �

vce(vcetype) specifies the type of standard error reported. vcetype may be either oim or opg; see
[R] vce option.

� � �
Reporting �

level(#); see [R] Estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. These options are

seldom used.

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).
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Remarks and examples
Dorfman and Alf (1969) developed a generalized approach for obtaining maximum likelihood esti-

mates of the parameters for a smooth fitting ROC curve. The most commonly used method for ordinal

data, and the one implemented here, is based upon the binormal model; see Pepe (2003), Pepe, Longton,

and Janes (2009), and Janes, Longton, and Pepe (2009) for methods of ROC analysis for continuous data,

including methods for adjusting for covariates.

The model assumes the existence of an unobserved, continuous, latent variable that is normally dis-

tributed (perhaps after a monotonic transformation) in both the normal and abnormal populations with

means 𝜇𝑛 and 𝜇𝑎 and variances 𝜎2
𝑛 and 𝜎2

𝑎, respectively. The model further assumes that the𝐾 categories

of the rating variable result from partitioning the unobserved latent variable by 𝐾 − 1 fixed boundaries.

The method fits a straight line to the empirical ROC points plotted using normal probability scales on

both axes. Maximum likelihood estimates of the line’s slope and intercept and the 𝐾 − 1 boundaries are

obtained simultaneously. See Methods and formulas for details.

The intercept from the fitted line is a measurement of (𝜇𝑎 − 𝜇𝑛)/𝜎𝑎, and the slope measures 𝜎𝑛/𝜎𝑎.

Thus, the intercept is the standardized difference between the two latent population means, and the slope

is the ratio of the two standard deviations. The null hypothesis that there is no difference between the two

population means is evaluated by testing that the intercept= 0, and the null hypothesis that the variances

in the two populations are equal is evaluated by testing that the slope= 1.

Example 1
We use Hanley and McNeil’s (1982) dataset, described in example 1 of [R] roctab, to fit a smooth

ROC curve assuming a binormal model.

. use https://www.stata-press.com/data/r18/hanley
(Tomographic images)
. rocfit disease rating
Fitting binormal model:
Iteration 0: Log likelihood = -123.68069
Iteration 1: Log likelihood = -123.64867
Iteration 2: Log likelihood = -123.64855
Iteration 3: Log likelihood = -123.64855
Binormal model of disease on rating Number of obs = 109
Goodness-of-fit chi2(2) = 0.21
Prob > chi2 = 0.9006
Log likelihood = -123.64855

Coefficient Std. err. z P>|z| [95% conf. interval]

intercept 1.656782 0.310456 5.34 0.000 1.048300 2.265265
slope (*) 0.713002 0.215882 -1.33 0.184 0.289881 1.136123

/cut1 0.169768 0.165307 1.03 0.304 -0.154227 0.493764
/cut2 0.463215 0.167235 2.77 0.006 0.135441 0.790990
/cut3 0.766860 0.174808 4.39 0.000 0.424243 1.109477
/cut4 1.797938 0.299581 6.00 0.000 1.210770 2.385106
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Indices from binormal fit
Index Estimate Std. err. [95% conf. interval]

ROC area 0.911331 0.029506 0.853501 0.969161
delta(m) 2.323671 0.502370 1.339044 3.308298

d(e) 1.934361 0.257187 1.430284 2.438438
d(a) 1.907771 0.259822 1.398530 2.417012

(*) z test for slope==1

rocfit outputs the MLE for the intercept and slope of the fitted regression line along with, here, four

boundaries (because there are five ratings) labeled /cut1 through /cut4. Also rocfit computes and
reports four indices based on the fitted ROC curve: the area under the curve (labeled ROC area), 𝛿(𝑚)
(labeled delta(m)), 𝑑𝑒 (labeled d(e)), and 𝑑𝑎 (labeled d(a)). More information about these indices

can be found in Methods and formulas and in Erdreich and Lee (1981).

Stored results
rocfit stores the following in e():

Scalars

e(N) number of observations

e(k) number of parameters

e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test

e(k dv) number of dependent variables

e(df m) model degrees of freedom

e(ll) log likelihood

e(chi2 gf) goodness-of-fit 𝜒2

e(df gf) goodness-of-fit degrees of freedom

e(p gf) 𝑝-value for goodness-of-fit test
e(area) area under the ROC curve

e(se area) standard error for the area under the ROC curve

e(deltam) delta(m)
e(se delm) standard area for delta(m)
e(de) d(e) index
e(se de) standard error for d(e) index
e(da) d(a) index
e(se da) standard error for d(a) index
e(rank) rank of e(V)
e(ic) number of iterations

e(rc) return code

e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) rocfit
e(cmdline) command as typed

e(depvar) refvar and classvar

e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(chi2type) GOF; type of model 𝜒2 test

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(opt) type of optimization

e(which) max or min; whether optimizer is to perform maximization or minimization
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e(ml method) type of ml method
e(user) name of likelihood-evaluator program

e(technique) maximization technique

e(properties) b V

Matrices

e(b) coefficient vector

e(ilog) iteration log (up to 20 iterations)

e(gradient) gradient vector

e(V) variance–covariance matrix of the estimators

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas
Dorfman and Alf (1969) developed a general procedure for obtaining maximum likelihood estimates

of the parameters of a smooth-fitting ROC curve. The most common method, and the one implemented

in Stata, is based upon the binormal model.

The model assumes that there is an unobserved continuous latent variable that is normally distributed

in both the normal and abnormal populations. The idea is better explained with the following illustration:

54321

4
Z

3
Z

2
Z

1
Z

Abnorma lNorma l

The latent variable is assumed to be normally distributed for both the normal and abnormal subjects,

perhaps after a monotonic transformation, with means 𝜇𝑛 and 𝜇𝑎 and variances 𝜎2
𝑛 and 𝜎2

𝑎, respectively.

This latent variable is assumed to be partitioned into the 𝑘 categories of the rating variable by 𝑘 − 1

fixed boundaries. In the above figure, the 𝑘 = 5 categories of the rating variable identified on the bottom

result from the partition of the four boundaries Z1 through Z4.
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Let𝑅𝑗 for 𝑗 = 1, 2, . . . , 𝑘 indicate the categories of the rating variable, let 𝑖 = 1 if the subject belongs

to the normal group, and let 𝑖 = 2 if the subject belongs to the abnormal group.

Then,

𝑝(𝑅𝑗|𝑖 = 1) = 𝐹(𝑍𝑗) − 𝐹(𝑍𝑗−1)

where 𝑍𝑘 = (𝑥𝑘 − 𝜇𝑛)/𝜎𝑛, 𝐹 is the cumulative normal distribution, 𝐹(𝑍0) = 0, and 𝐹(𝑍𝑘) = 1. Also,

𝑝(𝑅𝑗|𝑖 = 2) = 𝐹(𝑏𝑍𝑗 − 𝑎) − 𝐹(𝑏𝑍𝑗−1 − 𝑎)

where 𝑏 = 𝜎𝑛/𝜎𝑎 and 𝑎 = (𝜇𝑎 − 𝜇𝑛)/𝜎𝑎.

The parameters 𝑎, 𝑏 and the 𝑘 − 1 fixed boundaries 𝑍𝑗 are simultaneously estimated by maximizing

the log-likelihood function

log𝐿 =
2

∑
𝑖=1

𝑘
∑
𝑗=1

𝑟𝑖𝑗log{𝑝(𝑅𝑗|𝑖)}

where 𝑟𝑖𝑗 is the number of 𝑅𝑗s in group 𝑖.
The area under the fitted ROC curve is computed as

Φ( 𝑎√
1 + 𝑏2

)

where Φ is the standard normal cumulative distribution function.

Point estimates for the ROC curve indices are as follows:

𝛿(𝑚) = 𝑎
𝑏

𝑑𝑒 = 2𝑎
𝑏 + 1

𝑑𝑎 = 𝑎
√

2√
1 + 𝑏2

Variances for these indices are computed using the delta method.

The 𝛿(𝑚) estimates (𝜇𝑎 − 𝜇𝑛)/𝜎𝑛, 𝑑𝑒 estimates 2(𝜇𝑎 − 𝜇𝑛)/(𝜎𝑎 − 𝜎𝑛), and 𝑑𝑎 estimates
√

2(𝜇𝑎 −
𝜇𝑛)/(𝜎2

𝑎 − 𝜎2
𝑛)2.

Simultaneous confidence bands for the entire curve are obtained, as suggested byMa and Hall (1993),

by first obtainingWorking–Hotelling (1929) confidence bands for the fitted straight line in normal prob-

ability coordinates and then transforming them back to ROC coordinates.
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Postestimation commands rocplot Remarks and examples Also see

Postestimation commands
The following command is of special interest after rocfit:

Command Description

rocplot plot the fitted ROC curve and simultaneous confidence bands

The following standard postestimation commands are also available:

Command Description

estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian infor-
mation criteria (AIC, CAIC, AICc, and BIC, respectively)

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estimates cataloging estimation results

etable table of estimation results
∗ lincom point estimates, standard errors, testing, and inference for linear combinations of

parameters
∗ test Wald tests of simple and composite linear hypotheses

∗See Using lincom and test below.

2610
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rocplot

Description for rocplot
rocplot plots the fitted ROC curve and simultaneous confidence bands.

Menu for rocplot
Statistics > Epidemiology and related > ROC analysis > ROC curves after rocfit

Syntax for rocplot
rocplot [ , rocplot options ]

rocplot options Description

Main

confband display confidence bands

norefline suppress plotting the reference line

level(#) set confidence level; default is level(95)

Plot

plotopts(plot options) affect rendition of the ROC points

Fit line

lineopts(cline options) affect rendition of the fitted ROC line

CI plot

ciopts(area options) affect rendition of the confidence bands

Reference line

rlopts(cline options) affect rendition of the reference line

Add plots

addplot(plot) add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

plot options Description

marker options change look of markers (color, size, etc.)

marker label options add marker labels; change look or position

cline options change look of the line
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Options for rocplot

� � �
Main �

confband specifies that simultaneous confidence bands be plotted around the ROC curve.

norefline suppresses plotting the 45-degree reference line from the graphical output of the ROC curve.

level(#) specifies the confidence level, as a percentage, for the confidence bands. The default is

level(95) or as set by set level; see [R] level.

� � �
Plot �

plotopts(plot options) affects the rendition of the plotted ROC points, including the size and color of

markers, whether and how the markers are labeled, and whether and how the points are connected.

For the full list of available plot options, see [G-3]marker options, [G-3]marker label options, and

[G-3] cline options.

� � �
Fit line �

lineopts(cline options) affects the rendition of the fitted ROC line; see [G-3] cline options.

� � �
CI plot �

ciopts(area options) affects the rendition of the confidence bands; see [G-3] area options.

� � �
Reference line �

rlopts(cline options) affects the rendition of the reference line; see [G-3] cline options.

� � �
Add plots �

addplot(plot) provides a way to add other plots to the generated graph. See [G-3] addplot option.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see

[G-3] saving option).

Remarks and examples
Remarks are presented under the following headings:

Using lincom and test
Using rocplot
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Using lincom and test
intercept, slope, and /cut#, shown in example 1 of [R] rocfit, are equation names and not variable

names, so they need to be referenced as described in Special syntaxes after multiple-equation estimation

of [R] test. For example, instead of typing

. test intercept
intercept not found
r(111);

you should type

. test [intercept]_cons
( 1) [intercept]_cons = 0

chi2( 1) = 28.48
Prob > chi2 = 0.0000

Using rocplot

Example 1
In example 1 of [R] rocfit, we fit a ROC curve by typing rocfit disease rating.

In the output table for our model, we are testing whether the variances of the two latent populations

are equal by testing that the slope = 1.

We plot the fitted ROC curve.

. rocplot, confband
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.75
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S
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0 .25 .5 .75 1
1 - specificity

Area under curve = 0.9113  se(area) = 0.0295

Also see
[R] rocfit — Parametric ROC models

[U] 20 Estimation and postestimation commands
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Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Acknowledgments References Also see

Description
The rocreg command is used to perform receiver operating characteristic (ROC) analyses with rating

and discrete classification data under the presence of covariates.

The two variables refvar and classvarmust be numeric. The reference variable indicates the true state

of the observation—such as diseased and nondiseased or normal and abnormal—and must be coded as

0 and 1. The refvar coded as 0 can also be called the control population, while the refvar coded as 1
comprises the case population. The rating or outcome of the diagnostic test or test modality is recorded

in classvar, which must be ordinal, with higher values indicating higher risk.

rocreg can fit three models: a nonparametric model, a parametric probit model that uses the bootstrap
for inference, and a parametric probit model fit using maximum likelihood.

Quick start
Nonparametric estimation with bootstrap resampling

Area under the ROC curve for test classifier v1 and true state true using seed 20547
rocreg true v1, bseed(20547)

Add v2 as an additional classifier
rocreg true v1 v2, bseed(20547)

Same as above, but estimate ROC value for a false-positive rate of 0.7

rocreg true v1 v2, bseed(20547) roc(.7)

Covariate stratification of controls by categorical variable a using seed 121819
rocreg true v1 v2, bseed(121819) ctrlcov(a)

Linear control covariate adjustment with binary variable b and continuous variable x
rocreg true v1 v2, bseed(121819) ctrlcov(b x) ctrlmodel(linear)
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Parametric estimation

Area under the ROC curve for test classifier v1 and true state true by estimating equations using seed
200512

rocreg true v1, probit bseed(200512)

And save results to myfile.dta for use by rocregplot
rocreg true v1, probit bseed(200512) bsave(myfile)

Add v2 as a classifier and x as a control covariate in a linear control covariate-adjustment model
rocreg true v1 v2, probit bseed(200512) ctrlcov(x) ctrlmodel(linear)

Also treat x as a ROC covariate
rocreg true v1 v2, probit bseed(200512) ctrlcov(x) ///

ctrlmodel(linear) roccov(x)

Estimate AUC by maximum likelihood instead of bootstrap resampling

rocreg true v1, probit ml

Menu
Statistics > Epidemiology and related > ROC analysis > ROC regression models
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Syntax
Perform nonparametric analysis of ROC curve under covariates, using bootstrap

rocreg refvar classvar [ classvars ] [ if ] [ in ] [ , np options ]

Perform parametric analysis of ROC curve under covariates, using bootstrap

rocreg refvar classvar [ classvars ] [ if ] [ in ], probit [ probit options ]

Perform parametric analysis of ROC curve under covariates, using maximum likelihood

rocreg refvar classvar [ classvars ] [ if ] [ in ] [weight ] , probit ml

[ probit ml options ]

np options Description

Model

auc estimate total area under the ROC curve; the default

roc(numlist) estimate ROC for given false-positive rates

invroc(numlist) estimate false-positive rates for given ROC values

pauc(numlist) estimate partial area under the ROC curve (pAUC) up to each
false-positive rate

cluster(varname) variable identifying resampling clusters

ctrlcov(varlist) adjust control distribution for covariates in varlist

ctrlmodel(strata | linear) stratify or regress on covariates; default is ctrlmodel(strata)
pvc(empirical | normal) use empirical or normal distribution percentile value estimates;

default is pvc(empirical)
tiecorrected adjust for tied observations; not allowed with pvc(normal)

Bootstrap

nobootstrap do not perform bootstrap, just output point estimates

bseed(#) random-number seed for bootstrap

breps(#) number of bootstrap replications; default is breps(1000)
bootcc perform case–control (stratified on refvar) sampling rather than

cohort sampling in bootstrap

nobstrata ignore covariate stratification in bootstrap sampling

nodots suppress bootstrap replication dots

Reporting

level(#) set confidence level; default is level(95)
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probit options Description

Model
∗ probit fit the probit model

roccov(varlist) covariates affecting ROC curve

fprpts(#) number of false-positive rate points to use in fitting ROC

curve; default is fprpts(10)
ctrlfprall fit ROC curve at each false-positive rate in control population

cluster(varname) variable identifying resampling clusters

ctrlcov(varlist) adjust control distribution for covariates in varlist

ctrlmodel(strata | linear) stratify or regress on covariates; default is ctrlmodel(strata)
pvc(empirical | normal) use empirical or normal distribution percentile value estimates;

default is pvc(empirical)
tiecorrected adjust for tied observations; not allowed with pvc(normal)

Bootstrap

nobootstrap do not perform bootstrap, just output point estimates

bseed(#) random-number seed for bootstrap

breps(#) number of bootstrap replications; default is breps(1000)
bootcc perform case–control (stratified on refvar) sampling rather than

cohort sampling in bootstrap

nobstrata ignore covariate stratification in bootstrap sampling

nodots suppress bootstrap replication dots

bsave(filename, ...) save bootstrap replicates from parametric estimation

bfile(filename) use bootstrap replicates dataset for estimation replay

Reporting

level(#) set confidence level; default is level(95)

∗probit is required.

probit ml options Description

Model
∗ probit fit the probit model
∗ ml fit the probit model by maximum likelihood estimation

roccov(varlist) covariates affecting ROC curve

cluster(varname) variable identifying clusters

ctrlcov(varlist) adjust control distribution for covariates in varlist

Reporting

level(#) set confidence level; default is level(95)
display options control column formats, line width, and display of omitted variables

Maximization

maximize options control the maximization process; seldom used

∗probit and ml are required.
fweights, iweights, and pweights are allowed with maximum likelihood estimation; see [U] 11.1.6 weight.

collect is allowed; see [U] 11.1.10 Prefix commands.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Options
Options are presented under the following headings:

Options for nonparametric ROC estimation, using bootstrap
Options for parametric ROC estimation, using bootstrap
Options for parametric ROC estimation, using maximum likelihood

Options for nonparametric ROC estimation, using bootstrap

� � �
Model �

auc estimates the total area under the ROC curve. This is the default summary statistic.

roc(numlist) estimates the ROC corresponding to each of the false-positive rates in numlist. The values
of numlist must be in the range (0,1).

invroc(numlist) estimates the false-positive rates corresponding to each of the ROC values in numlist.
The values of numlist must be in the range (0,1).

pauc(numlist) estimates the partial area under the ROC curve up to each false-positive rate in numlist.

The values of numlist must in the range (0,1].

cluster(varname) specifies the variable identifying resampling clusters.

ctrlcov(varlist) specifies the covariates to be used to adjust the control population.

ctrlmodel(strata | linear) specifies how to model the control population of classifiers on

ctrlcov(). When ctrlmodel(linear) is specified, linear regression is used. The default is

ctrlmodel(strata); that is, the control population of classifiers is stratified on the control vari-
ables.

pvc(empirical | normal) determines how the percentile values of the control population will be calcu-

lated. When pvc(normal) is specified, the standard normal cumulative distribution function (CDF)
is used for calculation. Specifying pvc(empirical) will use the empirical CDFs of the control pop-
ulation classifiers for calculation. The default is pvc(empirical).

tiecorrected adjusts the percentile values for ties. For each value of the classifier, one half the proba-
bility that the classifier equals that value under the control population is added to the percentile value.

tiecorrected is not allowed with pvc(normal).

� � �
Bootstrap �

nobootstrap specifies that bootstrap standard errors not be calculated.

bseed(#) specifies the random-number seed to be used in the bootstrap.

breps(#) sets the number of bootstrap replications. The default is breps(1000).

bootcc performs case–control (stratified on refvar) sampling rather than cohort bootstrap sampling.

nobstrata ignores covariate stratification in bootstrap sampling.

nodots suppresses bootstrap replication dots.

� � �
Reporting �

level(#); see [R] Estimation options.
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Options for parametric ROC estimation, using bootstrap

� � �
Model �

probit fits the probit model. This option is required and implies parametric estimation.

roccov(varlist) specifies the covariates that will affect the ROC curve.

fprpts(#) sets the number of false-positive rate points to use in modeling the ROC curve. These points
form an equispaced grid on (0,1). The default is fprpts(10).

ctrlfprall models the ROC curve at each false-positive rate in the control population.

cluster(varname) specifies the variable identifying resampling clusters.

ctrlcov(varlist) specifies the covariates to be used to adjust the control population.

ctrlmodel(strata | linear) specifies how to model the control population of classifiers on

ctrlcov(). When ctrlmodel(linear) is specified, linear regression is used. The default is

ctrlmodel(strata); that is, the control population of classifiers is stratified on the control vari-
ables.

pvc(empirical | normal) determines how the percentile values of the control population will be calcu-

lated. When pvc(normal) is specified, the standard normal CDF is used for calculation. Specifying
pvc(empirical) will use the empirical CDFs of the control population classifiers for calculation.

The default is pvc(empirical).

tiecorrected adjusts the percentile values for ties. For each value of the classifier, one half the proba-
bility that the classifier equals that value under the control population is added to the percentile value.

tiecorrected is not allowed with pvc(normal).

� � �
Bootstrap �

nobootstrap specifies that bootstrap standard errors not be calculated.

bseed(#) specifies the random-number seed to be used in the bootstrap.

breps(#) sets the number of bootstrap replications. The default is breps(1000).

bootcc performs case–control (stratified on refvar) sampling rather than cohort bootstrap sampling.

nobstrata ignores covariate stratification in bootstrap sampling.

nodots suppresses bootstrap replication dots.

bsave(filename, ...) saves bootstrap replicates from parametric estimation in the given filename with

specified options (that is, replace). bsave() is only allowed with parametric analysis using boot-
strap.

bfile(filename) specifies to use the bootstrap replicates dataset for estimation replay. bfile() is only
allowed with parametric analysis using bootstrap.

� � �
Reporting �

level(#); see [R] Estimation options.
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Options for parametric ROC estimation, using maximum likelihood

� � �
Model �

probit fits the probit model. This option is required and implies parametric estimation.

ml fits the probit model by maximum likelihood estimation. This option is required and must be specified

with probit.

roccov(varlist) specifies the covariates that will affect the ROC curve.

cluster(varname) specifies the variable used for clustering.

ctrlcov(varlist) specifies the covariates to be used to adjust the control population.

� � �
Reporting �

level(#); see [R] Estimation options.

display options: noomitted, cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch;
see [R] Estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. These options are

seldom used. The technique(bhhh) option is not allowed.

Remarks and examples
Remarks are presented under the following headings:

Introduction
ROC statistics
Covariate-adjusted ROC curves
Parametric ROC curves: Estimating equations
Parametric ROC curves: Maximum likelihood

Introduction
Receiver operating characteristic (ROC) analysis provides a quantitative measure of the accuracy of

diagnostic tests to discriminate between two states or conditions. These conditions may be referred

to as normal and abnormal, nondiseased and diseased, or control and case. We will use these terms

interchangeably. The discriminatory accuracy of a diagnostic test is measured by its ability to correctly

classify known control and case subjects.

The analysis uses the ROC curve, a graph of the sensitivity versus 1 − specificity of the diagnostic

test. The sensitivity is the fraction of positive cases that are correctly classified by the diagnostic test,

whereas the specificity is the fraction of negative cases that are correctly classified. Thus, the sensitivity

is the true-positive rate, and the specificity is the true-negative rate. We also call 1 − specificity the

false-positive rate.

These rates are functions of the possible outcomes of the diagnostic test. At each outcome, a decision

will be made by the user of the diagnostic test to classify the tested subject as either normal or abnormal.

The true-positive and false-positive rates measure the probability of correct classification or incorrect

classification of the subject as abnormal. Given the classification role of the diagnostic test, we will refer

to it as the classifier.
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Using this basic definition of the ROC curve, Pepe (2000) and Pepe (2003) describe how ROC analysis

can be performed as a two-stage process. In the first stage, the control distribution of the classifier is

estimated. The specificity is then determined as the percentiles of the classifier values calculated based

on the control population. The false-positive rates are calculated as 1 − specificity. In the second stage,

the ROC curve is estimated as the cumulative distribution of the case population’s “false-positive” rates,

also known as the survival function under the case population of the previously calculated percentiles.

We use the terms ROC value and true-positive value interchangeably.

This formulation of ROC curve analysis provides simple, nonparametric estimates of several ROC curve

summary parameters: area under the ROC curve, partial area under the ROC curve, ROC value for a given

false-positive rate, and false-positive rate (also known as invROC) for a given ROC value. In the next

section, we will show how to use rocreg to compute these estimates with bootstrap inference. There
we will also show how rocreg complements the other nonparametric Stata ROC commands roctab and
roccomp.

Other factors beyond condition status and the diagnostic test may affect both stages of ROC analysis.

For example, a test center may affect the control distribution of the diagnostic test. Disease severity may

affect the distribution of the standardized diagnostic test under the case population. Our analysis of the

ROC curve in these situations will be more accurate if we take these covariates into account.

In a nonparametric ROC analysis, covariates may only affect the first stage of estimation; that is, they

may be used to adjust the control distribution of the classifier. In a parametric ROC analysis, it is assumed

that ROC follows a normal distribution, and thus covariates may enter the model at both stages; they may

be used to adjust the control distribution and to model ROC as a function of these covariates and the

false-positive rate. In parametric models, both sets of covariates need not be distinct but, in fact, they are

often the same.

To model covariate effects on the first stage of ROC analysis, Janes and Pepe (2009) propose a

covariate-adjusted ROC curve. We will demonstrate the covariate adjustment capabilities of rocreg
in Covariate-adjusted ROC curves.

To account for covariate effects at the second stage, we assume a parametric model. Particularly, the

ROC curve is a generalized linear model of the covariates. We will thus have a separate ROC curve for

each combination of the relevant covariates. In Parametric ROC curves: Estimating equations, we show

how to fit the model with estimating equations and bootstrap inference using rocreg. This method,

documented as the “pdf” approach in Alonzo and Pepe (2002), works well with weak assumptions about

the control distribution.

Also in Parametric ROC curves: Estimating equations, we show how to fit a constant-only parametric

model (involving no covariates) of the ROC curve with weak assumptions about the control distribution.

The constant-only model capabilities of rocreg in this context will be compared with those of rocfit.
roccomp has the binormal option, which will allow it to compute area under the ROC curve according

to a normal ROC curve, equivalent to that obtained by rocfit. We will compare this functionality with

that of rocreg.

In Parametric ROC curves: Maximum likelihood, we demonstrate maximum likelihood estimation

of the ROC curve model with rocreg. There we assume a normal linear model for the classifier on the
covariates and case–control status. This method is documented in Pepe (2003). We will also demonstrate

how to use this method with no covariates, and we will compare rocreg under the constant-only model
with rocfit and roccomp.

The rocregplot command is used repeatedly in this entry. This command provides graphical output
for rocreg and is documented in [R] rocregplot.
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ROC statistics
roctab computes the ROC curve by calculating the false-positive rate and true-positive rate empir-

ically at every value of the input classifier. It makes no distributional assumptions about the case or

control distributions. We can get identical behavior from rocreg by using the default option settings.

Example 1: Nonparametric ROC, AUC
Hanley and McNeil (1982) presented data from a study in which a reviewer was asked to classify,

using a five-point scale, a random sample of 109 tomographic images from patients with neurological

problems. The rating scale was as follows: 1 is definitely normal, 2 is probably normal, 3 is questionable,

4 is probably abnormal, and 5 is definitely abnormal. The true disease status was normal for 58 of the

patients and abnormal for the remaining 51 patients.

Here we list 9 of the 109 observations:

. use https://www.stata-press.com/data/r18/hanley
(Tomographic images)
. list disease rating in 1/9

disease rating

1. 1 5
2. 0 1
3. 1 5
4. 0 4
5. 0 1

6. 0 3
7. 1 5
8. 0 5
9. 0 1

For each observation, disease identifies the true disease status of the subject (0 is normal, 1 is abnormal),
and rating contains the classification value assigned by the reviewer.

We run roctab on these data, specifying the graph option so that the ROC curve is rendered. We then

calculate the false-positive and true-positive rates of the ROC curve by using rocreg. We graph the rates

with rocregplot. Because we focus on rocreg output later, for now we use the quietly prefix to

omit the output of rocreg. Both graphs are combined using graph combine (see [G-2] graph combine)

for comparison. To ease the comparison, we specify the aspectratio(1) option in roctab; this is the
default aspect ratio in rocregplot.
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. roctab disease rating, graph aspectratio(1) name(a) nodraw title(”roctab”)

. quietly rocreg disease rating

. rocregplot, name(b) nodraw legend(off) title(”rocreg”)

. graph combine a b
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Both roctab and rocreg compute the same false-positive rate and ROC values. The stairstep line

connection style of the graph on the right emphasizes the empirical nature of its estimates. The control

distribution of the classifier is estimated using the empirical CDF estimate. Similarly, the ROC curve, the

distribution of the resulting case observation false-positive rate values, is estimated using the empirical

CDF. Note the footnote in the roctab plot. By default, roctab will estimate the area under the ROC

curve (AUC) using a trapezoidal approximation to the estimated false-positive rate and true-positive rate

points.

TheAUC can be interpreted as the probability that a randomly selected member of the case population

will have a larger classifier value than a randomly selected member of the control population. It can also

be viewed as the average ROC value, averaged uniformly over the (0,1) false-positive rate domain (Pepe

2003).

The nonparametric estimator of the AUC (DeLong, DeLong, and Clarke-Pearson 1988; Hanley and

Hajian-Tilaki 1997) used by rocreg is equivalent to the sample mean of the percentile values of the case
observations. Thus to calculate the nonparametricAUC estimate, we only need to calculate the percentile

values of the case observations with respect to the control distribution.

This estimate can differ from the trapezoidal approximation estimate. Under discrete classification

data, like we have here, there may be ties between classifier values from case to control. The trapezoidal

approximation uses linear interpolation between the classifier values to correct for ties. Correcting the

nonparametric estimator involves adding a correction term to each observation’s percentile value, which

measures the probability that the classifier is equal to (instead of less than) the observation’s classifier

value.

The tie-corrected nonparametric estimate (trapezoidal approximation) is used when we think the true

ROC curve is smooth. This means that the classifier we measure is a discretized approximation of a true

latent and a continuous classifier.

We now recompute the ROC curve of rating for classifying disease and calculate the AUC. Spec-
ifying the tiecorrected option allows tie correction to be used in the rocreg calculation. Under

nonparametric estimation, rocreg bootstraps to obtain standard errors and confidence intervals for re-



rocreg — Receiver operating characteristic (ROC) regression 2624

quested statistics. We use the default 1,000 bootstrap replications to obtain confidence intervals for our

parameters. This is a reasonable lower bound to the number of replications (Mooney and Duval 1993)

required for estimating percentile confidence intervals. By specifying the summary option in roctab, we
will obtain output showing the trapezoidal approximation of theAUC estimate, along with standard error

and confidence interval estimates for the trapezoidal approximation suggested by DeLong, DeLong, and

Clarke-Pearson (1988).

. roctab disease rating, summary
ROC Asymptotic normal

Obs area Std. err. [95% conf. interval]

109 0.8932 0.0307 0.83295 0.95339
. rocreg disease rating, tiecorrected bseed(29092)
(running rocregstat on estimation sample)
Bootstrap replications (1,000): .........10.........20.........30.........40....
> .....50.........60.........70.........80.........90.........100.........110...
> ......120.........130.........140.........150.........160.........170.........
> 180.........190.........200.........210.........220.........230.........240...
> ......250.........260.........270.........280.........290.........300.........
> 310.........320.........330.........340.........350.........360.........370...
> ......380.........390.........400.........410.........420.........430.........
> 440.........450.........460.........470.........480.........490.........500...
> ......510.........520.........530.........540.........550.........560.........
> 570.........580.........590.........600.........610.........620.........630...
> ......640.........650.........660.........670.........680.........690.........
> 700.........710.........720.........730.........740.........750.........760...
> ......770.........780.........790.........800.........810.........820.........
> 830.........840.........850.........860.........870.........880.........890...
> ......900.........910.........920.........930.........940.........950.........
> 960.........970.........980.........990.........1,000 done
Bootstrap results Number of obs = 109

Replications = 1,000
Nonparametric ROC estimation
Control standardization: empirical, corrected for ties
ROC method : empirical
Area under the ROC curve

Status : disease
Classifier: rating

Observed Bootstrap
AUC coefficient Bias std. err. [95% conf. interval]

.8931711 .0010376 .0309808 .8324498 .9538923 (N)
.8223829 .9475383 (P)
.8084577 .9435818 (BC)

The estimates of AUC match well. The standard error from roctab is close to the bootstrap standard
error calculated by rocreg. The bootstrap standard error generalizes to the more complex models that
we consider later, whereas the roctab standard-error calculation does not.

The AUC can be used to compare different classifiers. It is the most popular summary statistic for

comparisons (Pepe, Longton, and Janes 2009). roccomp will compute the trapezoidal approximation

of the AUC and graph the ROC curves of multiple classifiers. Using the DeLong, DeLong, and Clarke-

Pearson (1988) covariance estimates for the AUC estimate, roccomp performs a Wald test of the null

hypothesis that all classifier AUC values are equal. rocreg has similar capabilities.
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Example 2: Nonparametric ROC, AUC, multiple classifiers
Hanley and McNeil (1983) presented data from an evaluation of two computer algorithms designed

to reconstruct CT images from phantoms. We will call these two algorithms modalities 1 and 2. A

sample of 112 phantoms was selected; 58 phantoms were considered normal, and the remaining 54 were

abnormal. Each of the two modalities was applied to each phantom, and the resulting images were rated

by a reviewer using a six-point scale: 1 is definitely normal, 2 is probably normal, 3 is possibly normal,

4 is possibly abnormal, 5 is probably abnormal, and 6 is definitely abnormal. Because each modality

was applied to the same sample of phantoms, the two sets of outcomes are correlated.

We list the first seven observations:

. use https://www.stata-press.com/data/r18/ct, clear
(Reconstruction of CT images)
. list in 1/7, sep(0)

mod1 mod2 status

1. 2 1 0
2. 5 5 1
3. 2 1 0
4. 2 3 0
5. 5 6 1
6. 2 2 0
7. 3 2 0

Each observation corresponds to one phantom. The mod1 variable identifies the rating assigned for
the first modality, and the mod2 variable identifies the rating assigned for the second modality. The true
status of the phantoms is given by status==0 if they are normal and status==1 if they are abnormal.
The observations with at least one missing rating were dropped from the analysis.

A fictitious dataset was created from this true dataset, adding a third test modality. We will use

roccomp to compute the AUC statistic for each modality in these data and compare the AUC of the three
modalities. We obtain the same behavior from rocreg. As before, the tiecorrected option is specified
so that the AUC is calculated with the trapezoidal approximation.

. use https://www.stata-press.com/data/r18/ct2
(Reconstruction of CT images)
. roccomp status mod1 mod2 mod3, summary

ROC Asymptotic normal
Obs area Std. err. [95% conf. interval]

mod1 112 0.8828 0.0317 0.82067 0.94498
mod2 112 0.9302 0.0256 0.88005 0.98042
mod3 112 0.9240 0.0241 0.87670 0.97132

H0: area(mod1) = area(mod2) = area(mod3)
chi2(2) = 6.54 Prob>chi2 = 0.0381
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. rocreg status mod1 mod2 mod3, tiecorrected bseed(38038) nodots
Bootstrap results Number of obs = 112

Replications = 1,000
Nonparametric ROC estimation
Control standardization: empirical, corrected for ties
ROC method : empirical
Area under the ROC curve

Status : status
Classifier: mod1

Observed Bootstrap
AUC coefficient Bias std. err. [95% conf. interval]

.8828225 -.0010192 .0318564 .820385 .94526 (N)
.8150605 .9398384 (P)
.8119603 .9392538 (BC)

Status : status
Classifier: mod2

Observed Bootstrap
AUC coefficient Bias std. err. [95% conf. interval]

.9302363 .0005148 .0257043 .8798567 .9806159 (N)
.8746504 .9769936 (P)
.8616987 .9688995 (BC)

Status : status
Classifier: mod3

Observed Bootstrap
AUC coefficient Bias std. err. [95% conf. interval]

.9240102 .0001857 .0240864 .8768018 .9712187 (N)
.8727464 .9658895 (P)
.8629984 .9621795 (BC)

H0: All classifiers have equal AUC values
Ha: At least one classifier has a different AUC value
P-value: .0339546 Test based on bootstrap (N) assumptions.

We see that the AUC estimates are equivalent, and the standard errors are quite close as well. The 𝑝-
value for the tests of equalAUC under rocreg leads to similar inference as the 𝑝-value from roccomp. The
Wald test performed by rocreg uses the joint bootstrap estimate variance matrix of the three AUC esti-

mators rather than the DeLong, DeLong, and Clarke-Pearson (1988) variance estimate used by roccomp.

roccomp is used here on potentially correlated classifiers that are recorded in wide-format data. It
can also be used on long-format data to compare independent classifiers. Further details can be found in

[R] roccomp.

Citing theAUC’s lack of clinical relevance, there is argument against using it as a key summary statistic

of the ROC curve (Pepe 2003; Cook 2007). Pepe, Longton, and Janes (2009) suggest using the estimate

of the ROC curve itself at a particular point, or the estimate of the false-positive rate at a given ROC value,

also known as invROC.
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Recall from example 1 how nonparametric rocreg graphs look, with the stairstep pattern in the ROC
curve. In an ideal world, the graph would be a smooth one-to-one function, and it would be trivial to

map a false-positive rate to its corresponding true-positive rate and vice versa.

However, smooth ROC curves can only be obtained by assuming a parametric model that uses linear

interpolation between observed false-positive rates and between observed true-positive rates, and rocreg
is certainly capable of that; see example 1 of [R] rocregplot. However, under nonparametric estimation,

the mapping between false-positive rates and true-positive rates is not one to one, and estimates tend to

be less reliable the further you are from an observed data point. This is somewhat mitigated by using

tie-corrected rates (the tiecorrected option).

Whenwe examine continuous data, the difference between the tie-corrected estimates and the standard

estimates becomes negligible, and the empirical estimate of the ROC curve becomes close to the smooth

ROC curve obtained by linear interpolation. So the nonparametric ROC and invROC estimates work well.

Fixing one rate value of interest can be difficult and subjective (Pepe 2003). Acompromise measure is

the partial area under the ROC curve (pAUC) (McClish 1989; Thompson and Zucchini 1989). This is the

integral of the ROC curve from 0 and above to a given false-positive rate (perhaps the largest clinically

acceptable value). Like the AUC estimate, the nonparametric estimate of the pAUC can be written as

a sample average of the case observation percentiles, but with an adjustment based on the prescribed

maximum false-positive rate (Dodd and Pepe 2003). A tie correction may also be applied so that it

reflects the trapezoidal approximation.

We cannot compare rocreg with roctab or roccomp on the estimation of pAUC, because pAUC is

not computed by the latter two.

Example 3: Nonparametric ROC, other statistics
To see how rocreg estimates ROC, invROC, and pAUC, we will examine a new study. Wieand et al.

(1989) examined a pancreatic cancer study with two continuous classifiers, here called y1 (CA 19-9) and
y2 (CA 125). This study was also examined in Pepe, Longton, and Janes (2009). The indicator of cancer
in a subject is recorded as d. The study was a case–control study, stratifying participants on disease
status.

We list the first five observations:

. use https://research.fredhutch.org/content/dam/stripe/diagnostic-biomarkers-
> statistical-center/files/wiedat2b.dta, clear
(S. Wieand - Pancreatic cancer diagnostic marker data)
. list in 1/5

y1 y2 d

1. 28 13.3 no
2. 15.5 11.1 no
3. 8.2 16.7 no
4. 3.4 12.6 no
5. 17.3 7.4 no

We will estimate the ROC curves at a large value (0.7) and a small value (0.2) of the false-positive

rate. These values are specified in roc(). The false-positive rate for ROC or sensitivity value of 0.6

will also be estimated by specifying invroc(). Percentile confidence intervals for these parameters are
displayed in the graph obtained by rocregplot after rocreg. The pAUC statistic will be calculated for
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the false-positive rate of 0.5, which is specified as an argument to the pauc() option. Following Pepe,
Longton, and Janes (2009), we use a stratified bootstrap, sampling separately from the case and control

populations by specifying the bootcc option. This reflects the case–control nature of the study.

All four statistics can be estimated simultaneously by rocreg. For clarity, however, we will estimate
each statistic with a separate call to rocreg. rocregplot is used after estimation to graph the ROC

and false-positive rate estimates. The display of the individual, observation-specific false-positive rate

and ROC values will be omitted in the plot. This is accomplished by specifying msymbol(i) in our

plot1opts() and plot2opts() options to rocregplot.

. rocreg d y1 y2, roc(.7) bseed(8378923) bootcc nodots
Bootstrap results
Number of strata = 2 Number of obs = 141

Replications = 1,000
Nonparametric ROC estimation
Control standardization: empirical
ROC method : empirical
ROC curve

Status : d
Classifier: y1

Observed Bootstrap
ROC coefficient Bias std. err. [95% conf. interval]

.7 .9222222 .0010222 .0332527 .8570482 .9873962 (N)
.8555555 .9777778 (P)
.8555555 .9777778 (BC)

Status : d
Classifier: y2

Observed Bootstrap
ROC coefficient Bias std. err. [95% conf. interval]

.7 .8888889 -.0046556 .0444103 .8018463 .9759314 (N)
.7833333 .9666666 (P)
.7666667 .9555556 (BC)

H0: All classifiers have equal ROC values
Ha: At least one classifier has a different ROC value
Test based on bootstrap (N) assumptions
ROC P-value

.7 .5537371
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. rocregplot, plot1opts(msymbol(i)) plot2opts(msymbol(i))
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In this study, we see that classifier y1 (CA 19-9) is a uniformly better test than is classifier y2 (CA

125) until high levels of false-positive rate and sensitivity or ROC value are reached. At the high level of

false-positive rate, 0.7, the ROC value does not significantly differ between the two classifiers. This can

be seen in the plot by the overlapping confidence intervals.

. rocreg d y1 y2, roc(.2) bseed(8378923) bootcc nodots
Bootstrap results
Number of strata = 2 Number of obs = 141

Replications = 1,000
Nonparametric ROC estimation
Control standardization: empirical
ROC method : empirical
ROC curve

Status : d
Classifier: y1

Observed Bootstrap
ROC coefficient Bias std. err. [95% conf. interval]

.2 .7777778 .0020778 .0487666 .6821969 .8733586 (N)
.6777778 .8722222 (P)
.6555555 .8555555 (BC)

Status : d
Classifier: y2

Observed Bootstrap
ROC coefficient Bias std. err. [95% conf. interval]

.2 .4888889 -.0054 .1348859 .2245173 .7532605 (N)
.2222222 .6944444 (P)
.2111111 .6777778 (BC)
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H0: All classifiers have equal ROC values
Ha: At least one classifier has a different ROC value
Test based on bootstrap (N) assumptions
ROC P-value

.2 .0461582
. rocregplot, plot1opts(msymbol(i)) plot2opts(msymbol(i))
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The sensitivity for the false-positive rate of 0.2 is found to be higher under y1 than under y2, and this
difference is significant at the 0.05 level. In the plot, this is shown by the vertical confidence intervals.

. rocreg d y1 y2, invroc(.6) bseed(8378923) bootcc nodots
Bootstrap results
Number of strata = 2 Number of obs = 141

Replications = 1,000
Nonparametric ROC estimation
Control standardization: empirical
ROC method : empirical
False-positive rate

Status : d
Classifier: y1

Observed Bootstrap
invROC coefficient Bias std. err. [95% conf. interval]

.6 0 .0149412 .0255885 -.0501525 .0501525 (N)
0 .0784314 (P)
0 .1372549 (BC)

Status : d
Classifier: y2

Observed Bootstrap
invROC coefficient Bias std. err. [95% conf. interval]

.6 .254902 .0074118 .0729374 .1119474 .3978566 (N)
.1372549 .4313726 (P)
.1176471 .3921569 (BC)
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H0: All classifiers have equal invROC values
Ha: At least one classifier has a different invROC value
Test based on bootstrap (N) assumptions
invROC P-value

.6 .0010863
. rocregplot, plot1opts(msymbol(i)) plot2opts(msymbol(i))
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We find significant evidence that false-positive rates corresponding to a sensitivity of 0.6 are different

from y1 to y2. This is visually indicated by the horizontal confidence intervals, which are separated from
each other.

. rocreg d y1 y2, pauc(.5) bseed(8378923) bootcc nodots
Bootstrap results
Number of strata = 2 Number of obs = 141

Replications = 1,000
Nonparametric ROC estimation
Control standardization: empirical
ROC method : empirical
Partial area under the ROC curve

Status : d
Classifier: y1

Observed Bootstrap
pAUC coefficient Bias std. err. [95% conf. interval]

.5 .3932462 .0011971 .0219031 .3503169 .4361755 (N)
.3489107 .4338235 (P)
.3453159 .4315904 (BC)
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Status : d
Classifier: y2

Observed Bootstrap
pAUC coefficient Bias std. err. [95% conf. interval]

.5 .2496732 .0033901 .0362569 .1786109 .3207355 (N)
.1837691 .3224946 (P)
.1721133 .3108932 (BC)

H0: All classifiers have equal pAUC values
Ha: At least one classifier has a different pAUC value
Test based on bootstrap (N) assumptions
pAUC P-value

.5 .001023

We also find significant evidence supporting the hypothesis that the pAUC for y1 up to a false-positive
rate of 0.5 differs from the area of the same region under the ROC curve of y2.

Covariate-adjusted ROC curves
When covariates affect the control distribution of the diagnostic test, thresholds for the test being

classified as abnormal may be chosen that vary with the covariate values. These conditional thresholds

will be more accurate than the marginal thresholds that would normally be used, because they take into

account the specific distribution of the diagnostic test under the given covariate values as opposed to the

marginal distribution over all covariate values.

By using these covariate-specific thresholds, we are essentially creating new classifiers for each

covariate-value combination, and thus we are creating multiple ROC curves. As explained in Pepe (2003),

when the case and control distributions of the covariates are the same, the marginal ROC curve will al-

ways be bound above by these covariate-specific ROC curves. So using conditional thresholds will never

provide a less powerful test diagnostic in this case.

In the marginal ROC curve calculation, the classifiers are standardized to percentiles according to the

control distribution, marginalized over the covariates. Thus, the ROC curve is the CDF of the standardized

case observations. The covariate-adjusted ROC curve is the CDF of one minus the conditional control

percentiles for the case observations, and the marginal ROC curve is the CDF of one minus the marginal

control percentiles for the case observations (Pepe and Cai 2004). Thus, the standardization of classifier

to false-positive rate value is conditioned on the specific covariate values under the covariate-adjusted

ROC curve.

The covariate-adjusted ROC curve (Janes and Pepe 2009) at a given false-positive rate 𝑡 is equivalent
to the expected value of the covariate-specific ROC at 𝑡 over all covariate combinations. When the co-

variates in question do not affect the case distribution of the classifier, the covariate-specific ROC will

have the same value at each covariate combination. So here the covariate-adjusted ROC is equivalent to

the covariate-specific ROC, regardless of covariate values.

When covariates do affect the case distribution of the classifier, users of the diagnostic test would

likely want to model the covariate-specific ROC curves separately. Tools to do this can be found in the

parametric modeling discussion in the following two sections. Regardless, the covariate-adjusted ROC

curve can serve as a meaningful summary of covariate-adjusted accuracy.
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Also note that the ROC summary statistics defined in the previous section have covariate-adjusted

analogs. These analogs are estimated in a similar manner as under the marginal ROC curve (Janes, Long-

ton, and Pepe 2009). The options for their calculation in rocreg are identical to those given in the

previous section. Further details can be found in Methods and formulas.

Example 4: Nonparametric ROC, linear covariate adjustment
Norton et al. (2000) studied data from a neonatal audiology study on three tests to identify hearing

impairment in newborns. These data were also studied in Janes, Longton, and Pepe (2009). Here we list

5 of the 5,058 observations.

. use https://www.stata-press.com/data/r18/nnhs, clear
(Norton - neonatal audiology data)
. list in 1/5

id ear male currage d y1 y2 y3

1. B0157 R M 42.42 0 -3.1 -9 -1.5
2. B0157 L M 42.42 0 -4.5 -8.7 -2.71
3. B0158 R M 40.14 1 -3.2 -13.2 -2.64
4. B0161 L F 38.14 0 -22.1 -7.8 -2.59
5. B0167 R F 37 0 -10.9 -6.6 -1.42

The classifiers y1 (DPOAE 65 at 2 kHz), y2 (TEOAE 80 at 2 kHz), and y3 (ABR) and the hearing

impairment indicator d are recorded along with some relevant covariates. The infant’s age is recorded
in months as currage, and the infant’s gender is indicated by male. Over 90% of the newborns were

tested in each ear (ear), so we will cluster on infant ID (id).

Following the strategy of Janes, Longton, and Pepe (2009), we will first perform ROC analysis for

the classifiers while adjusting for the covariate effects of the infant’s gender and age. This is done by

specifying these variables in the ctrlcov() option. We adjust using a linear regression rule, by spec-

ifying ctrlmodel(linear). This means that when a user of the diagnostic test chooses a threshold
conditional on the age and gender covariates, they assume that the diagnostic test classifier has some

linear dependence on age and gender and equal variance as their levels vary. Our cluster adjustment is

made by specifying the cluster() option.

We will focus on the first classifier. The percentile, or specificity, values are calculated empirically by

default, and thus so are the false-positive rates, (1 − specificity). Also by default, the ROC curve values

are empirically defined by the false-positive rates. To draw the ROC curve, we again use rocregplot.
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The AUC is calculated by default. For brevity, we specify the nobootstrap option so that bootstrap
sampling is not performed. The AUC point estimate will be sufficient for our purposes.

. rocreg d y1, ctrlcov(male currage) ctrlmodel(linear) cluster(id) nobootstrap
Nonparametric ROC estimation Number of obs = 5,056
Covariate control : linear regression
Control variables : male currage
Control standardization: empirical
ROC method : empirical
Status : d
Classifier: y1
Covariate control adjustment model:
Linear regression Number of obs = 4,907

F(2, 2685) = 13.80
Prob > F = 0.0000
R-squared = 0.0081
Root MSE = 7.7515

(Std. err. adjusted for 2,686 clusters in id)

Robust
y1 Coefficient std. err. t P>|t| [95% conf. interval]

male .2471744 .2603598 0.95 0.343 -.2633516 .7577005
currage -.2032456 .0389032 -5.22 0.000 -.2795288 -.1269624
_cons -1.239484 1.487855 -0.83 0.405 -4.156942 1.677973

Area under the ROC curve
Status : d
Classifier: y1

Observed Bootstrap
AUC coefficient Bias std. err. [95% conf. interval]

.6293994 . . . . (N)
. . (P)
. . (BC)
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. rocregplot
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Our covariate control adjustment model shows that currage has a negative effect on y1 (DPOAE 65
at 2 kHz) under the control population. At the 0.001 significance level, we reject that its contribution to

y1 is zero, and the point estimate has a negative sign. This result does not directly tell us about the effect
of currage on the ROC curve of y1 as a classifier of d. None of the case observations are used in the
linear regression, so information on currage for abnormal cases is not used in the model. This result
does show us how to calculate false-positive rates for tests that use thresholds conditional on a child’s

sex and current age. We will see how currage affects the ROC curve when y1 is used as a classifier and
conditional thresholds are used based on male and currage in the following section, Parametric ROC
curves: Estimating equations.

Technical note
Under this nonparametric estimation, rocreg saved the false-positive rate for each observation’s

y1 values in the utility variable fpr y1. The true-positive rates are stored in the utility variable

roc y1. For other models, say with classifier yname, these variables would be named fpr yname

and roc yname. They will also be overwritten with each call of rocreg. The variables roc * and
fpr * are usually for internal rocreg use only and are overwritten with each call of rocreg. They
are only created for nonparametric models or parametric models that do not involve ROC covariates. In

these models, covariates may only affect the first stage of estimation, the control distribution, and not the

ROC curve itself. In parametric models that allow ROC covariates, different covariate values would lead

to different ROC curves.

To see how the covariate-adjusted ROC curve estimate differs from the standard marginal estimate, we

will reestimate the ROC curve for classifier y1 without covariate adjustment. We rename these variables

before the new estimation and then draw an overlaid twoway line (see [G-2] graph twoway line) plot

to compare the two.
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. rename _fpr_y1 o_fpr_y1

. rename _roc_y1 o_roc_y1

. label variable o_roc_y1 ”Covariate adjusted”

. rocreg d y1, cluster(id) nobootstrap
Nonparametric ROC estimation Number of obs = 5,058
Control standardization: empirical
ROC method : empirical
Area under the ROC curve

Status : d
Classifier: y1

Observed Bootstrap
AUC coefficient Bias std. err. [95% conf. interval]

.6279645 . . . . (N)
. . (P)
. . (BC)

. label variable _roc_y1 ”Marginal”

. label variable o_fpr_y1 ”False-positive rate for y1”

. twoway line _roc_y1 _fpr_y1, sort(_fpr_y1 _roc_y1) connect(J) ||
> line o_roc_y1 o_fpr_y1, sort(o_fpr_y1 o_roc_y1)
> connect(J) lpattern(dash) aspectratio(1) legend(cols(1))

0

.2

.4

.6

.8

1

0 .2 .4 .6 .8 1

Marginal
Covariate adjusted

Though they are close, particularly in AUC, there are clearly some points of difference between the

estimates. So the covariate-adjusted ROC curve may be useful here.

In our examples thus far, we have used the empirical CDF estimator to estimate the control distribu-

tion. rocreg allows some flexibility here. The pvc(normal) option may be specified to calculate the
percentile values according to a Gaussian distribution of the control.

Covariate adjustment in rocreg may also be performed with stratification instead of linear regres-
sion. Under the stratification method, the unique values of the stratified covariates each define separate

parameters for the control distribution of the classifier. A user of the diagnostic test chooses a threshold

based on the control distribution conditioned on the unique covariate value parameters.



rocreg — Receiver operating characteristic (ROC) regression 2637

We will demonstrate the use of normal percentile values and covariate stratification in our next ex-

ample.

Example 5: Nonparametric ROC, covariate stratification
The hearing test study of Stover et al. (1996) examined the effectiveness of negative signal-to-noise

ratio, nsnr, as a classifier of hearing loss. The test was administered under nine different settings, cor-
responding to different frequency, xf, and intensity, xl, combinations. Here we list 10 of the 1,848

observations.

. use https://www.stata-press.com/data/r18/dp, clear
(Stover - DPOAE test data)
. list in 1/10

id d nsnr xf xl xd

1. 101 1 18 10.01 5.5 3.5
2. 101 1 19 20.02 5.5 3
3. 101 1 7.6 10.01 6 3.5
4. 101 1 15 20.02 6 3
5. 101 1 16 10.01 6.5 3.5

6. 101 1 5.8 20.02 6.5 3
7. 102 0 -2.6 10.01 5.5 .
8. 102 0 -3 14.16 5.5 .
9. 102 1 10 20.02 5.5 1

10. 102 0 -5.8 10.01 6 .

Hearing loss is represented by d. The covariate xd is a measure of the degree of hearing loss. We will

use this covariate in later analysis, because it only affects the case distribution of the classifier. Multiple

measurements are taken for each individual, id, so we will cluster by individual.

We evaluate the effectiveness of nsnr using xf and xl as stratification covariates with rocreg; the
default method of covariate adjustment.

Asmentioned before, the default false-positive rate calculationmethod in rocreg estimates the condi-
tional control distribution of the classifiers empirically. For comparison, we will also estimate a separate

ROC curve using false-positive rates assuming the conditional control distribution is normal. This be-

havior is requested by specifying the pvc(normal) option. Using the rocregplot option name() to
store the ROC plots and using the graph combine command, we are able to compare the Gaussian and
empirical ROC curves side by side. As before, for brevity we specify the nobootstrap option to suppress
bootstrap sampling.
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. rocreg d nsnr, ctrlcov(xf xl) cluster(id) nobootstrap
Nonparametric ROC estimation Number of obs = 1,848
Covariate control : stratification
Control variables : xf xl
Control standardization: empirical
ROC method : empirical
Area under the ROC curve

Status : d
Classifier: nsnr

Observed Bootstrap
AUC coefficient Bias std. err. [95% conf. interval]

.9264192 . . . . (N)
. . (P)
. . (BC)

. rocregplot, title(Empirical FPR) name(a) nodraw

. rocreg d nsnr, pvc(normal) ctrlcov(xf xl) cluster(id) nobootstrap
Nonparametric ROC estimation Number of obs = 1,848
Covariate control : stratification
Control variables : xf xl
Control standardization: normal
ROC method : empirical
Area under the ROC curve

Status : d
Classifier: nsnr

Observed Bootstrap
AUC coefficient Bias std. err. [95% conf. interval]

.9309901 . . . . (N)
. . (P)
. . (BC)

. rocregplot, title(Normal FPR) name(b) nodraw

. graph combine a b, xsize(5)
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On cursory visual inspection, we see little difference between the two curves. The AUC values are close

as well. So it is sensible to assume that we have Gaussian percentile values for control standardization.

Parametric ROC curves: Estimating equations
We now assume a parametric model for covariate effects on the second stage of ROC analysis. Par-

ticularly, the ROC curve is a probit model of the covariates. We will thus have a separate ROC curve for

each combination of the relevant covariates.

Under weak assumptions about the control distribution of the classifier, we can fit this model by

using estimating equations as described in Alonzo and Pepe (2002). This method can be also be used

without covariate effects in the second stage, assuming a parametric model for the single (constant only)

ROC curve. Covariates may still affect the first stage of estimation, so we parametrically model the

single covariate-adjusted ROC curve (from the previous section). The marginal ROC curve, involving no

covariates in either stage of estimation, can be fit parametrically as well.

In addition to the Alonzo and Pepe (2002) explanation, further details are given in Pepe, Longton,

and Janes (2009); Janes, Longton, and Pepe (2009); Pepe (2003); and Janes and Pepe (2009).

The parametric models that we consider assume that the ROC curve is a cumulative distribution func-

tion 𝑔 invoked with input of a linear polynomial in the corresponding quantile function invoked on the
false-positive rate 𝑢. In this context, we assume that 𝑔 corresponds to a standard normal cumulative

distribution function, Φ. So the corresponding quantile function is Φ−1. The constant intercept of the

polynomial may depend on covariates, but the slope term 𝛼 (the quantile coefficient) may not.

ROC (𝑢) = 𝑔{x′β + 𝛼𝑔−1 (𝑢)}

The first step of the algorithm involves the choice of false-positive rates to use in the parametric

fit. These are typically a set of equispaced points spanning the interval (0,1). Alonzo and Pepe (2002)

examined the effect of fitting large and small sets of points, finding that relatively small sets could be

used with little loss of efficiency. Alternatively, the set can be formed by using the observed false-positive

rates in the data (Pepe 2003). Further details on the algorithm are provided in Methods and formulas.

Under parametric estimation, all the summary measures we defined earlier, except the AUC, are not

calculated until postestimation. In models with covariates, each covariate combination would yield a

different ROC curve and thus different summary parameters, so no summary parameters are initially esti-

mated. In marginal parametric models (where there are no ROC covariates, but there are potentially con-

trol covariates), we will calculate theAUC and leave the other measures for postestimation; see [R] rocreg

postestimation. As with the other parameters, we bootstrap for standard errors and inference.

We will now demonstrate how rocreg performs the Alonzo and Pepe (2002) algorithm using the

previous section’s examples and others.

Example 6: Parametric ROC, linear covariate adjustment
We return to the neonatal audiology study with gender and age covariates (Norton et al. 2000), which

we discussed in example 4. Janes, Longton, and Pepe (2009) suspected the current age of the infant would

play a role in the case distribution of the classifier y1 (DPOAE 65 at 2 kHz). They postulated a probit link
between the ROC curve and the covariate-adjusted false-positive rates. We follow their investigation and

reach similar results.
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In example 4, we saw the results of adjusting for the currage and male variables in the control

population for classifier y1. Now, we see how currage affects the ROC curve when y1 is used with

thresholds conditioned on male and currage.

We specify the covariates that should affect the ROC curve in the roccov() option. By default, rocreg
will choose 10 equally spaced false-positive rates in the (0,1) interval as fitting points. The fprpts()
option allows the user to specify more or fewer points. We specify the bsave() option with the nnhs2y1
dataset so that we can use the bootstrap resamples in postestimation.

. use https://www.stata-press.com/data/r18/nnhs, clear
(Norton - neonatal audiology data)
. rocreg d y1, probit ctrlcov(currage male) ctrlmodel(linear) roccov(currage)
> cluster(id) bseed(56930) bsave(nnhs2y1) nodots
Bootstrap results Number of obs = 5,056

Replications = 1,000
Parametric ROC estimation
Covariate control : linear regression
Control variables : currage male
Control standardization: empirical
ROC method : parametric Link: probit
Status : d
Classifier: y1
Covariate control adjustment model:
Linear regression Number of obs = 4,907

F(2, 2685) = 13.80
Prob > F = 0.0000
R-squared = 0.0081
Root MSE = 7.7515

(Std. err. adjusted for 2,686 clusters in id)

Robust
y1 Coefficient std. err. t P>|t| [95% conf. interval]

currage -.2032456 .0389032 -5.22 0.000 -.2795288 -.1269624
male .2471744 .2603598 0.95 0.343 -.2633516 .7577005
_cons -1.239484 1.487855 -0.83 0.405 -4.156942 1.677973

Status : d
Classifier: y1
ROC Model :

(Replications based on 2,741 clusters in id)

Observed Bootstrap
y1 coefficient Bias std. err. [95% conf. interval]

_cons -1.272505 -.058656 1.157249 -3.540671 .995661 (N)
-3.703316 .8687538 (P)
-3.550433 1.094785 (BC)

currage .0448228 .0015634 .0300731 -.0141194 .1037649 (N)
-.0107322 .108762 (P)
-.0156332 .1044122 (BC)

probit

_cons .9372393 .0153781 .0739921 .7922176 1.082261 (N)
.8027433 1.108293 (P)
.78655 1.077874 (BC)
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Note how the number of clusters—here infants—changes from the covariate control adjustment

model fit to the ROC model. The control fit is limited to control cases and thus fewer infants. The

ROC is fit on all the data, so the variance is adjusted for all clustering on all infants.

With a 0.05 level of statistical significance, we cannot reject the null hypothesis that currage has

no effect on the ROC curve at a given false-positive rate. This is because each of our 95% bootstrap

confidence intervals contains 0. This corresponds with the finding in Janes, Longton, and Pepe (2009)

where the reported 95% intervals each contained 0. We cannot reject that the intercept parameter 𝛽0,

reported as cons in the main table, is 0 at the 0.05 level either. The slope parameter 𝛼, reported as
cons in the probit table, is close to 1 and cannot be rejected as being 1 at the 0.05 level. Under the
assumption that the ROC coefficients except 𝛼 are 0 and that 𝛼 = 1, the ROC curve at false-positive rate

𝑢 is equal to 𝑢. In other words, we cannot reject that the false-positive rate is equal to the true-positive
rate, and so the test is noninformative. Further investigation of the results requires postestimation; see

[R] rocreg postestimation.

The fitting point set can be formed by using the observed false-positive rates (Pepe 2003). Our next

example will illustrate this.

Example 7: Parametric ROC, covariate stratification
We return to the hearing test study of Stover et al. (1996), which we discussed in example 5. Pepe

(2003) suspected that intensity, xd, would play a role in the case distribution of the negative signal-to-
noise ratio (nsnr) classifier. A ROC regression was fit with covariate adjustment for xf and xl with

stratification, and for ROC covariates xf, xl, and xd. There is no prohibition against the same covariate
being used in the first and second stages of ROC calculation. The false-positive rate fitting point set was

composed of all observed false-positive rates in the control data.

We fit the model with rocreg here. Using observed false-positive rates as the fitting point set can
make the dataset very large, so fitting the model is computationally intensive. We demonstrate the fitting

algorithmwithout precise confidence intervals, focusing instead on the coefficient estimates and standard

errors. We will thus perform only 50 bootstrap replications, a reasonable number to obtain accurate stan-

dard error estimates (Mooney and Duval 1993). The number of replications is specified in the breps()
option.

The ROC covariates are specified in roccov(). We specify that all observed false-positive rates in

the control observations be used as fitting points with the ctrlfprall option. The nobstrata option
specifies that the bootstrap is not stratified. The covariate stratification in the first stage of estimation

does not affect the resampling. We will return to this example in postestimation, so we save the bootstrap

results in the nsnrf dataset with the bsave() option.
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. use https://www.stata-press.com/data/r18/dp
(Stover - DPOAE test data)
. rocreg d nsnr, probit ctrlcov(xf xl) roccov(xf xl xd) ctrlfprall cluster(id)
> nobstrata bseed(156385) breps(50) bsave(nsnrf)
(running rocregstat on estimation sample)
Bootstrap replications (50): .........10.........20.........30.........40.......
> ..50 done
Bootstrap results Number of obs = 1,848

Replications = 50
Parametric ROC estimation
Covariate control : stratification
Control variables : xf xl
Control standardization: empirical
ROC method : parametric Link: probit

Status : d
Classifier: nsnr
ROC Model :

(Replications based on 208 clusters in id)

Observed Bootstrap
nsnr coefficient Bias std. err. [95% conf. interval]

_cons 3.247872 .0868351 .8985028 1.486839 5.008905 (N)
1.834415 5.606226 (P)
1.834415 6.275457 (BC)

xf .0502557 .0079289 .0290622 -.0067051 .1072166 (N)
-.0033383 .1145611 (P)
-.0454014 .0883843 (BC)

xl -.4327223 -.024214 .1249467 -.6776134 -.1878313 (N)
-.7207585 -.2425129 (P)
-.7207585 -.1547958 (BC)

xd .4431764 .0200785 .0875782 .2715264 .6148264 (N)
.3388809 .6706273 (P)
.3388809 .6706273 (BC)

probit

_cons 1.032657 .0026243 .1287713 .7802699 1.285044 (N)
.8308481 1.284435 (P)
.7808038 1.284435 (BC)

We obtain results similar to those reported in Pepe (2003, 159). We find that the coefficients for xl
and xd differ from 0 at the 0.05 level of significance. So over certain covariate combinations, we can

have a variety of informative tests using nsnr as a classifier.

As mentioned before, when there are no covariates, rocreg can still fit a parametric model for the
ROC curve of a classifier by using the Alonzo and Pepe (2002) method. roccomp and rocfit can fit
marginal probit models as well. We will compare the behavior of rocreg with that of roccomp and

rocfit for probit models without covariates.

When the binormal option is specified, roccomp calculates the AUC for input classifiers according

to the maximum likelihood algorithm of rocfit. The rocfit algorithm expects discrete classifiers but

can slice continuous classifiers into discrete partitions. Further, the case and control distributions are

both assumed normal. Actually, the observed classification values are taken as discrete indicators of the

latent normally distributed classification values. This method is documented in Dorfman andAlf (1969).
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Alonzo and Pepe (2002) compared their estimating equations probability density function method

(with empirical estimation of the false-positive rates) to the maximum likelihood approach of Dorfman

and Alf (1969) and found that they had similar efficiency and mean squared error. So we should expect

rocfit and rocreg to give similar results when fitting a simple probit model.

Example 8: Parametric ROC, marginal model
We return to the Hanley andMcNeil (1982) data. Wewill fit a probit model to the ROC curve, assuming

that the rating variable is a discrete indicator of an underlying latent normal random variable in both

the case and control populations of disease. We invoke rocfit with the default options. rocreg is
invoked with the probit option. The percentile values are calculated empirically. Because there are

fewer categories than 10, there will be fewer than 10 false-positive rates that trigger a different true-

positive rate value. So for efficiency, we invoke rocreg with the ctrlfprall option.

. use https://www.stata-press.com/data/r18/hanley
(Tomographic images)
. rocfit disease rating, nolog
Binormal model of disease on rating Number of obs = 109
Goodness-of-fit chi2(2) = 0.21
Prob > chi2 = 0.9006
Log likelihood = -123.64855

Coefficient Std. err. z P>|z| [95% conf. interval]

intercept 1.656782 0.310456 5.34 0.000 1.048300 2.265265
slope (*) 0.713002 0.215882 -1.33 0.184 0.289881 1.136123

/cut1 0.169768 0.165307 1.03 0.304 -0.154227 0.493764
/cut2 0.463215 0.167235 2.77 0.006 0.135441 0.790990
/cut3 0.766860 0.174808 4.39 0.000 0.424243 1.109477
/cut4 1.797938 0.299581 6.00 0.000 1.210770 2.385106

Indices from binormal fit
Index Estimate Std. err. [95% conf. interval]

ROC area 0.911331 0.029506 0.853501 0.969161
delta(m) 2.323671 0.502370 1.339044 3.308298

d(e) 1.934361 0.257187 1.430284 2.438438
d(a) 1.907771 0.259822 1.398530 2.417012

(*) z test for slope==1
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. rocreg disease rating, probit ctrlfprall bseed(8574309) nodots
Bootstrap results Number of obs = 109

Replications = 1,000
Parametric ROC estimation
Control standardization: empirical
ROC method : parametric Link: probit

Status : disease
Classifier: rating
ROC Model :

Observed Bootstrap
rating coefficient Bias std. err. [95% conf. interval]

_cons 1.635041 .0850129 .3706472 .9085857 2.361496 (N)
1.139856 2.649876 (P)
1.103894 2.428801 (BC)

probit

_cons .6951252 .0642966 .275061 .1560155 1.234235 (N)
.3242299 1.409152 (P)
.2721681 1.292525 (BC)

Observed Bootstrap
AUC coefficient Bias std. err. [95% conf. interval]

.9102903 -.0029679 .0300486 .8513963 .9691844 (N)
.8448006 .9602325 (P)
.8475004 .9607949 (BC)

We see that the intercept and slope parameter estimates are close. The intercept ( cons in the main
table) is clearly nonzero. Under rocreg, the slope ( cons in the probit table) and its percentile and
bias-corrected confidence intervals are close to those of rocfit. The area under the ROC curve for each
of the rocreg and rocfit estimators also matches closely.

Now, we will compare the parametric fit of rocreg under the constant probit model with roccomp.

Example 9: Parametric ROC, marginal model, multiple classifiers
We now use the fictitious dataset generated from Hanley and McNeil (1983). To fit a probit model

using roccomp, we specify the binormal option. Our specification of rocreg remains the same as

before.

rocregplot is used to render the model produced by rocreg. We specify several graph options to

both roccomp and rocregplot to ease comparison. When the binormal option is specified along with
graph, roccomp will draw the binormal fitted lines in addition to connected line plots of the empirical

false-positive and true-positive rates.
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In this plot, we overlay scatterplots of the empirical false-positive rates (because percentile value

calculation defaulted to pvc(empirical)) and the parametric true-positive rates.

. use https://www.stata-press.com/data/r18/ct2, clear
(Reconstruction of CT images)
. roccomp status mod1 mod2 mod3, summary binormal graph aspectratio(1)
> plot1opts(connect(i) msymbol(o))
> plot2opts(connect(i) msymbol(s))
> plot3opts(connect(i) msymbol(t))
> legend(label(1 ”Modality 1”) label(3 ”Modality 2”)
> label(5 ”Modality 3”) label(2 ”Modality 1 fit”)
> label(4 ”Modality 2 fit”) label(6 ”Modality 3 fit”)
> order(1 3 5 2 4 6) pos(6))
> title(roccomp) name(a) nodraw
Fitting binormal model for: mod1
Fitting binormal model for: mod2
Fitting binormal model for: mod3

ROC
Obs area Std. err. [95% conf. interval]

mod1 112 0.8945 0.0305 0.83482 0.95422
mod2 112 0.9382 0.0264 0.88647 0.99001
mod3 112 0.9376 0.0223 0.89382 0.98139

H0: area(mod1) = area(mod2) = area(mod3)
chi2(2) = 8.27 Prob>chi2 = 0.0160

. rocreg status mod1 mod2 mod3, probit ctrlfprall bseed(867340912) nodots
Bootstrap results Number of obs = 112

Replications = 999
Parametric ROC estimation
Control standardization: empirical
ROC method : parametric Link: probit

Status : status
Classifier: mod1
ROC Model :

Observed Bootstrap
mod1 coefficient Bias std. err. [95% conf. interval]

_cons 1.726034 .164964 .5823832 .5845836 2.867484 (N)
1.197595 3.410778 (P)
1.154531 3.027969 (BC)

probit

_cons .9666323 .1104948 .4635417 .0581071 1.875157 (N)
.5102274 2.319844 (P)
.5193889 2.319844 (BC)

Observed Bootstrap
AUC coefficient Bias std. err. [95% conf. interval]

.8927007 .000062 .0306285 .83267 .9527315 (N)
.8297837 .946722 (P)
.8262202 .9423347 (BC)
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Status : status
Classifier: mod2
ROC Model :

Observed Bootstrap
mod2 coefficient Bias std. err. [95% conf. interval]

_cons 1.696811 .0760455 .4750493 .7657314 2.627891 (N)
1.191126 2.854689 (P)
1.205256 2.916377 (BC)

probit

_cons .4553828 .0245707 .304156 -.140752 1.051518 (N)
.0857558 1.070745 (P)
.1495717 1.434937 (BC)

Observed Bootstrap
AUC coefficient Bias std. err. [95% conf. interval]

.938734 -.0033942 .0268351 .8861382 .9913297 (N)
.875 .9774636 (P)

.8775983 .9777322 (BC)

Status : status
Classifier: mod3
ROC Model :

Observed Bootstrap
mod3 coefficient Bias std. err. [95% conf. interval]

_cons 2.281359 .1143008 .5773577 1.149758 3.412959 (N)
1.653256 3.882332 (P)
1.65594 3.882332 (BC)

probit

_cons 1.107736 .0482007 .4195496 .2854334 1.930038 (N)
.6128833 2.256342 (P)
.6514254 2.527536 (BC)

Observed Bootstrap
AUC coefficient Bias std. err. [95% conf. interval]

.9368321 -.0008781 .0226477 .8924435 .9812207 (N)
.887858 .9720291 (P)
.8866298 .971411 (BC)

H0: All classifiers have equal AUC values
Ha: At least one classifier has a different AUC value
P-value: .0599896 Test based on bootstrap (N) assumptions.
. rocregplot, title(rocreg) nodraw name(b)
> plot1opts(msymbol(o)) plot2opts(msymbol(s)) plot3opts(msymbol(t))
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. graph combine a b, xsize(5)
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We see differing true-positive rate values in the scattered points, which is expected because roccomp
gives the empirical estimate and rocreg gives the parametric estimate. However, the estimated curves
and areas under the ROC curve look similar. Using the Wald test based on the bootstrap covariance,

rocreg rejects the null hypothesis that each test has the sameAUC at the 0.1 significance level. roccomp
formulates the asymptotic covariance using the rocfit estimates ofAUC. Examination of its output leads
to rejection of the null hypothesis that the AUCs are equal across each test at the 0.05 significance level.

Parametric ROC curves: Maximum likelihood
The Alonzo and Pepe (2002) method of fitting a parametric model to the ROC curve is powerful

because it can be generally applied, but that can be a limitation as well. Whenever we invoke the method

and want anything other than point estimates of the parameters, we must perform bootstrap resampling.

An alternative is to use maximum likelihood inference to fit the ROC curve. This method can save

computational time by avoiding the bootstrap.

rocreg implements maximum likelihood estimation for ROC curve analysis when both the case and

control populations are normal. Particularly, the classifier is a normal linear model on certain covari-

ates, and the covariate effect and variance of the classifier may change between the case and control

populations. This model is defined in Pepe (2003, 145).

𝑦 = z′β
0

+ 𝐷x′β
1

+ 𝜎 (𝐷) 𝜖

Our error term, 𝜖, is a standard normal random variable. The variable𝐷 is our true status variable, being 1

for the case population observations and 0 for the control population observations. The variance function

𝜎 is defined as

𝜎 (𝐷) = 𝜎0 (𝐷 = 0) + 𝜎1 (𝐷 = 1)

This provides two variance parameters in the model and does not depend on covariate values.

Suppose a covariate 𝑥𝑖 is present in z and x. The coefficient 𝛽1𝑖 represents the interaction effect of

the 𝑥𝑖 and 𝐷. It is the extra effect that 𝑥𝑖 has on classifier 𝑦 under the case population, 𝐷 = 1, beyond

the main effect 𝛽0𝑖. These β1 coefficients are directly related to the ROC curve of 𝑦.
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Under this model, the ROC curve is derived to be

ROC (𝑢) = Φ [ 1
𝜎1

{x′β
1

+ 𝜎0Φ−1 (𝑢)}]

For convenience, we reparameterize the model at this point, creating the parameters 𝛽𝑖 = 𝜎−1
1 𝛽1𝑖 and

𝛼 = 𝜎−1
1 𝜎0. We refer to 𝛽0 as the constant intercept, i cons. The parameter 𝛼 is referred to as the

constant slope, s cons.
ROC (𝑢) = Φ{x′β + 𝛼Φ−1 (𝑢)}

We may interpret the final coefficients as the standardized linear effect of the ROC covariate on the

classifier under the case population. The marginal effect of the covariate on the classifier in the control

population is removed, and it is rescaled by the case population standard deviation of the classifier when

all ROC covariate effects are removed. An appreciable effect on the classifier by a ROC covariate in this

measure leads to an appreciable effect on the classifier’s ROC curve by the ROC covariate.

The advantage of estimating the control coefficients β0 is similar to the gains of estimating the co-

variate control models in the estimating equations ROC method and nonparametric ROC estimation. This

model would similarly apply when evaluating a test that is conditioned on control covariates.

Again, we note that under parametric estimation, all the summary measures we defined earlier except

the AUC are not calculated until postestimation. In models with covariates, each covariate combination

would yield a different ROC curve and thus different summary parameters, so no summary parameters

are estimated initially. In marginal parametric models, we will calculate the AUC and leave the other

measures for postestimation. There is a simple closed-form formula for theAUC under the probit model.

Using this formula, the delta method can be invoked for inference on theAUC. Details onAUC estimation

for probit marginal models are found in Methods and formulas.

We will demonstrate the maximum likelihood method of rocreg by revisiting the models of the

previous section.

Example 10: Maximum likelihood ROC, single classifier
Returning to the hearing test study of Stover et al. (1996), we use a similar covariate grouping as

before. The frequency xf and intensity xl are control covariates (z), while all three covariates xf, xl,
and hearing loss degree xd are case covariates (x). In example 7, we fit this model using the Alonzo

and Pepe (2002) method. Earlier we stratified on the control covariates and estimated the conditioned

control distribution of nsnr empirically. Now, we assume a normal linear model for nsnr on xf and xl
under the control population.
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We fit the model by specifying the control covariates in the ctrlcov() option and the case covariates
in the roccov() option. The ml option tells rocreg to perform maximum likelihood estimation.

. use https://www.stata-press.com/data/r18/dp, clear
(Stover - DPOAE test data)
. rocreg d nsnr, ctrlcov(xf xl) roccov(xf xl xd) probit ml cluster(id) nolog
Parametric ROC estimation Number of obs = 112

Replications = 999
Covariate control : linear regression
Control variables : xf xl
Control standardization: normal
ROC method : parametric Link: probit
Status : d
Classifiers: nsnr
Classifier : nsnr
Covariate control adjustment model:

(Std. err. adjusted for 208 clusters in id)

Robust
Coefficient std. err. z P>|z| [95% conf. interval]

casecov
xf .4690907 .1408683 3.33 0.001 .192994 .7451874
xl -3.187785 .8976521 -3.55 0.000 -4.947151 -1.42842
xd 3.042998 .3569756 8.52 0.000 2.343339 3.742657

_cons 23.48064 5.692069 4.13 0.000 12.32439 34.63689

casesd
_cons 7.979708 .354936 22.48 0.000 7.284047 8.67537

ctrlcov
xf -.1447499 .0615286 -2.35 0.019 -.2653438 -.0241561
xl -.8631348 .2871976 -3.01 0.003 -1.426032 -.3002378

_cons 1.109477 1.964004 0.56 0.572 -2.7399 4.958854

ctrlsd
_cons 7.731203 .3406654 22.69 0.000 7.063511 8.398894

Status : d
ROC Model :

(Std. err. adjusted for 208 clusters in id)

Robust
Coefficient std. err. z P>|z| [95% conf. interval]

nsnr
i_cons 2.942543 .7569821 3.89 0.000 1.458885 4.426201

xf .0587854 .0175654 3.35 0.001 .024358 .0932129
xl -.3994865 .1171914 -3.41 0.001 -.6291775 -.1697955
xd .381342 .0449319 8.49 0.000 .2932771 .4694068

s_cons .9688578 .0623476 15.54 0.000 .8466587 1.091057

We find the results are similar to those of example 7. Frequency (xf) and intensity (xl) have a negative
effect on the classifier nsnr in the control population.

The negative control effect is mitigated for xf in the case population, but the effect for xl is even

more negative there. Hearing loss severity, xd, has a positive effect on nsnr in the case population, and
it is undefined in the control population.
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The ROC coefficients are shown in the ROC Model table. Each are different from 0 at the 0.05 level. At

this level, we also cannot conclude that the variances differ from case to control populations, because 1 is

in the 95% confidence interval for s cons, the ratio of the case to control standard deviation parameters.

Both frequency (xf) and hearing loss severity (xd) make a positive contribution to the ROC curve and
thus make the test more powerful. Intensity (xl) has a negative effect on the ROC curve and weakens

the test. We previously saw in example 5 that the control distribution appears to be normal, so using

maximum likelihood to fit this model is a reasonable approach.

This model was also fit in Pepe (2003, 147). Pepe used separate least-squares estimates for the case

and control samples. We obtain similar results for the coefficients, but the maximum likelihood fitting

yields slightly different standard deviations by considering both case and control observations concur-

rently. In addition, a misprint in Pepe (2003, 147) reports a coefficient of −4.91 for xl in the case

population instead of −3.19 as reported by Stata.

Inference on multiple classifiers using the Alonzo and Pepe (2002) estimating equation method is per-

formed by fitting each model separately and bootstrapping to determine the dependence of the estimates.

Using the maximum likelihood method, we also fit each model separately. We use suest (see [R] suest)
to estimate the joint variance–covariance of our parameter estimates.

For our models, we can view the score equation for each model as an estimating equation. The

estimate that solves the estimating equation (that makes the score 0) is asymptotically normal with a

variance matrix that can be estimated using the inverse of the squared scores. By stacking the score

equations of the separate models, we can estimate the variance matrix for all the parameter estimates

by using this rule. This is an informal explanation; further details can be found in [R] suest and in the

references Rogers (1993); White (1982 and 1996).

Now, we will examine a case with multiple classification variables.
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Example 11: Maximum likelihood ROC, multiple classifiers
We return to the neonatal audiology study with gender and age covariates (Norton et al. 2000). In

example 6, we fit a model with male and currage as control covariates, and currage as a ROC covariate
for the classifier y1 (DPOAE 65 at 2 kHz). We will refit this model, extending it to include the classifier

y2 (TEOAE 80 at 2 kHz).

. use https://www.stata-press.com/data/r18/nnhs
(Norton - neonatal audiology data)
. rocreg d y1 y2, probit ml ctrlcov(currage male) roccov(currage) cluster(id)
> nolog
Parametric ROC estimation Number of obs = 1,848
Covariate control : linear regression
Control variables : currage male
Control standardization: normal
ROC method : parametric Link: probit
Status : d
Classifiers: y1 y2
Classifier : y1
Covariate control adjustment model:

Coefficient Std. err. z P>|z| [95% conf. interval]

casecov
currage .494211 .2126672 2.32 0.020 .077391 .9110311
_cons -15.00403 8.238094 -1.82 0.069 -31.1504 1.142338

casesd
_cons 8.49794 .4922792 17.26 0.000 7.533091 9.46279

ctrlcov
currage -.2032048 .0323803 -6.28 0.000 -.266669 -.1397406

male .2369359 .2201391 1.08 0.282 -.1945288 .6684006
_cons -1.23534 1.252775 -0.99 0.324 -3.690734 1.220055

ctrlsd
_cons 7.749156 .0782225 99.07 0.000 7.595843 7.902469

Classifier : y2
Covariate control adjustment model:

Coefficient Std. err. z P>|z| [95% conf. interval]

casecov
currage .5729861 .2422662 2.37 0.018 .0981532 1.047819
_cons -18.2597 9.384968 -1.95 0.052 -36.6539 .1344949

casesd
_cons 9.723858 .5632985 17.26 0.000 8.619813 10.8279

ctrlcov
currage -.1694575 .0291922 -5.80 0.000 -.2266732 -.1122419

male .7122587 .1993805 3.57 0.000 .3214802 1.103037
_cons -5.651728 1.129452 -5.00 0.000 -7.865415 -3.438042

ctrlsd
_cons 6.986167 .0705206 99.07 0.000 6.84795 7.124385
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Status : d
ROC Model :

(Std. err. adjusted for 2,741 clusters in id)

Robust
Coefficient std. err. z P>|z| [95% conf. interval]

y1
i_cons -1.765608 1.105393 -1.60 0.110 -3.932138 .4009225

currage .0581566 .0290177 2.00 0.045 .0012828 .1150303
s_cons .9118864 .0586884 15.54 0.000 .7968593 1.026913

y2
i_cons -1.877825 .905174 -2.07 0.038 -3.651933 -.1037167

currage .0589258 .0235849 2.50 0.012 .0127002 .1051514
s_cons .7184563 .0565517 12.70 0.000 .607617 .8292957

Both classifiers have similar results. The results for y1 show the same direction as the estimating

equation results in example 6. However, we can now reject the null hypothesis that the ROC currage
coefficient is 0 at the 0.05 level.

In example 6, we could not reject that the slope parameter s conswas 1 and that the constant intercept
or ROC coefficient for current age was 0. The resulting ROC curve implied a noninformative test using y1
as a classifier. This is not the case with our current results. As currage increases, we expect a steeper
ROC curve and thus a more powerful test, for both classifiers y1 (DPOAE 65 at 2 kHz) and y2 (TEOAE 80
at 2 kHz).

In example 10, the clustering of observations within infant id was adjusted in the individual fit of
nsnr. In our current example, the adjustment for the clustering of observations within id is performed
during concurrent estimation, as opposed to during the individual classifier fits (as in example 10). This

adjustment, performed by suest, is still accurate.

Now, we will fit constant probit models and compare rocreg with rocfit and roccomp with the

binormal option. Our first applications of rocfit and roccomp are taken directly from examples 8 and

9. The Dorfman andAlf (1969) algorithm that rocfitworks with uses discrete classifiers or uses slicing
to make a classifier discrete. So we are applying the maximum likelihood method of rocreg on discrete
classification data here, where it expects continuous data. We expect to see some discrepancies, but we

do not find great divergence in the estimates. After revisiting examples 8 and 9, we will fit a probit model

with a continuous classifier and no covariates using rocreg, and we will compare the results with those
from rocfit.
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Example 12: Maximum likelihood ROC, marginal model
Using the Hanley and McNeil (1982) data, discussed in example 1 and in example 8, we fit a constant

probit model of the classifier rating with true status disease. rocreg is invoked with the ml option
and compared with rocfit.

. use https://www.stata-press.com/data/r18/hanley, clear
(Tomographic images)
. rocfit disease rating, nolog
Binormal model of disease on rating Number of obs = 109
Goodness-of-fit chi2(2) = 0.21
Prob > chi2 = 0.9006
Log likelihood = -123.64855

Coefficient Std. err. z P>|z| [95% conf. interval]

intercept 1.656782 0.310456 5.34 0.000 1.048300 2.265265
slope (*) 0.713002 0.215882 -1.33 0.184 0.289881 1.136123

/cut1 0.169768 0.165307 1.03 0.304 -0.154227 0.493764
/cut2 0.463215 0.167235 2.77 0.006 0.135441 0.790990
/cut3 0.766860 0.174808 4.39 0.000 0.424243 1.109477
/cut4 1.797938 0.299581 6.00 0.000 1.210770 2.385106

Indices from binormal fit
Index Estimate Std. err. [95% conf. interval]

ROC area 0.911331 0.029506 0.853501 0.969161
delta(m) 2.323671 0.502370 1.339044 3.308298

d(e) 1.934361 0.257187 1.430284 2.438438
d(a) 1.907771 0.259822 1.398530 2.417012

(*) z test for slope==1
. rocreg disease rating, probit ml nolog
Binormal model of disease on rating Number of obs = 109

GOF chi2(0) = .
Log likelihood = -123.64855 Prob > chi2 = .
Control standardization: normal
ROC method : parametric Link: probit
Status : disease
Classifiers: rating
Classifier : rating
Covariate control adjustment model:

Coefficient Std. err. z P>|z| [95% conf. interval]

casecov
_cons 2.3357 .2334285 10.01 0.000 1.878188 2.793211

casesd
_cons 1.117131 .1106124 10.10 0.000 .9003344 1.333927

ctrlcov
_cons 2.017241 .1732589 11.64 0.000 1.67766 2.356823

ctrlsd
_cons 1.319501 .1225125 10.77 0.000 1.07938 1.559621
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Status : disease
ROC Model :

Coefficient Std. err. z P>|z| [95% conf. interval]

rating
i_cons 2.090802 .2941411 7.11 0.000 1.514297 2.667308
s_cons 1.181151 .1603263 7.37 0.000 .8669177 1.495385

auc .9116494 .0261658 34.84 0.000 .8603654 .9629333

We compare the estimates for these models:

rocfit rocreg, ml
slope 0.7130 1.1812

SE of slope 0.2159 0.1603

intercept 1.6568 2.0908

SE of intercept 0.3105 0.2941

AUC 0.9113 0.9116

SE of AUC 0.0295 0.0262

We find that both the intercept and the slope are estimated as higher with the maximum likelihood

method under rocreg than with rocfit. The AUC (ROC area in rocfit) is close for both commands.
We find that the standard errors of each of these estimates is slightly lower under rocreg than rocfit
as well.

Both rocfit and rocreg suggest that the slope parameter of the ROC curve (slope in rocfit and
s cons in rocreg) is not significantly different from 1. Thus, we cannot reject that the classifier has

the same variance in both case and control populations. There is, however, significant evidence that

the intercepts (i cons in rocreg and intercept in rocfit) differ from 0. Because of the positive

direction of the intercept estimates, the ROC curve for rating as a classifier of disease suggests that
rating provides an informative test. This is also suggested by the high AUC, which is significantly

different from 0.5, that is, a flip of a coin.
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Example 13: Maximum likelihood ROC, marginal model, multiple classifiers
We use the fictitious dataset generated from Hanley and McNeil (1983), which we previously used in

example 2 and in example 9. To fit a probit model using roccomp, we specify the binormal option. We

perform parametric, maximum likelihood ROC analysis using rocreg. We use rocregplot to plot the
ROC curves created by rocreg.

. use https://www.stata-press.com/data/r18/ct2, clear
(Reconstruction of CT images)
. roccomp status mod1 mod2 mod3, summary binormal graph aspectratio(1)
> plot1opts(connect(i) msymbol(o))
> plot2opts(connect(i) msymbol(s))
> plot3opts(connect(i) msymbol(t))
> legend(label(1 ”Modality 1”) label(3 ”Modality 2”)
> label(5 ”Modality 3”) label(2 ”Modality 1 fit”)
> label(4 ”Modality 2 fit”) label(6 ”Modality 3 fit”)
> order(1 3 5 2 4 6) pos(6)) title(roccomp) name(a) nodraw
Fitting binormal model for: mod1
Fitting binormal model for: mod2
Fitting binormal model for: mod3

ROC
Obs area Std. err. [95% conf. interval]

mod1 112 0.8945 0.0305 0.83482 0.95422
mod2 112 0.9382 0.0264 0.88647 0.99001
mod3 112 0.9376 0.0223 0.89382 0.98139

H0: area(mod1) = area(mod2) = area(mod3)
chi2(2) = 8.27 Prob>chi2 = 0.0160

. rocreg status mod1 mod2 mod3, probit ml nolog
Parametric ROC estimation Number of obs = 109
Control standardization: normal
ROC method : parametric Link: probit
Status : status
Classifiers: mod1 mod2 mod3
Classifier : mod1
Covariate control adjustment model:

Coefficient Std. err. z P>|z| [95% conf. interval]

casecov
_cons 2.118135 .2165905 9.78 0.000 1.693626 2.542645

casesd
_cons 1.166078 .1122059 10.39 0.000 .9461589 1.385998

ctrlcov
_cons 2.344828 .1474147 15.91 0.000 2.0559 2.633755

ctrlsd
_cons 1.122677 .1042379 10.77 0.000 .9183746 1.32698
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Classifier : mod2
Covariate control adjustment model:

Coefficient Std. err. z P>|z| [95% conf. interval]

casecov
_cons 2.659642 .2072731 12.83 0.000 2.253395 3.06589

casesd
_cons 1.288468 .1239829 10.39 0.000 1.045466 1.53147

ctrlcov
_cons 1.655172 .1105379 14.97 0.000 1.438522 1.871823

ctrlsd
_cons .8418313 .0781621 10.77 0.000 .6886365 .9950262

Classifier : mod3
Covariate control adjustment model:

Coefficient Std. err. z P>|z| [95% conf. interval]

casecov
_cons 2.353768 .1973549 11.93 0.000 1.966959 2.740576

casesd
_cons 1.143359 .1100198 10.39 0.000 .9277243 1.358994

ctrlcov
_cons 2.275862 .1214094 18.75 0.000 2.037904 2.51382

ctrlsd
_cons .9246267 .0858494 10.77 0.000 .7563649 1.092888

Status : status
ROC Model :

Robust
Coefficient std. err. z P>|z| [95% conf. interval]

mod1
i_cons 1.81646 .3144804 5.78 0.000 1.20009 2.432831
s_cons .9627801 .1364084 7.06 0.000 .6954245 1.230136

auc .904657 .0343518 26.34 0.000 .8373287 .9719853

mod2
i_cons 2.064189 .3267274 6.32 0.000 1.423815 2.704563
s_cons .6533582 .1015043 6.44 0.000 .4544135 .8523029

auc .9580104 .0219713 43.60 0.000 .9149473 1.001073

mod3
i_cons 2.058643 .2890211 7.12 0.000 1.492172 2.625113
s_cons .8086932 .1163628 6.95 0.000 .5806262 1.03676

auc .9452805 .0236266 40.01 0.000 .8989732 .9915877

H0: All classifiers have equal AUC values
Ha: At least one classifier has a different AUC value
P-value: .0808808
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. rocregplot, title(rocreg) nodraw name(b)
> plot1opts(msymbol(o)) plot2opts(msymbol(s)) plot3opts(msymbol(t))
. graph combine a b, xsize(5)
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We compare the AUC estimates for these models:

roccomp rocreg, ml
mod1 0.8945 0.9047

mod2 0.9382 0.9580

mod3 0.9376 0.9453

Each classifier has a higher estimated AUC under rocreg than roccomp. Each curve appears to be
raised and smoothed in the rocreg fit as compared with roccomp. They are different, but not drastically
different. The inference on whether the curve areas are the same is similar to example 9. We reject

equality at the 0.10 level under rocreg and at the 0.05 level under roccomp.

Each intercept is significantly different from 0 at the 0.05 level and is estimated in a positive direction.

Though all but classifier mod2 has 1 in their slope confidence intervals, the high intercepts suggest steep
ROC curves and powerful tests.

Also note that the false-positive and true-positive rate points are calculated empirically in the roccomp
graph and parametrically in rocreg. In example 9, the false-positive rates calculated by rocreg were
calculated empirically, similar to roccomp. But in this example, the rates are calculated based on normal
percentiles.

Now, we will generate an example to compare rocfit and rocreg under maximum likelihood esti-

mation of a continuous classifier.

Example 14: Maximum likelihood ROC, graphical comparison with rocfit
We generate 500 realizations of a population under threat of disease. One quarter of the population has

the disease. A classifier x is measured, which has a control distribution of 𝑁(1, 3) and a case distribution
of 𝑁(1 + 5, 2). We will invoke rocreg with the ml option on this generated data. We specify the

continuous() option for rocfit and invoke it on the data as well. The continuous() option tells
rocfit how many discrete slices to partition the data into before fitting.
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For comparison of the two curves, we will use the rocfit postestimation command, rocplot; see
[R] rocfit postestimation. This command graphs the empirical false-positive and true-positive rates with

an overlaid fit of the binormal curve estimated by rocfit. rocplot also supports an addplot() option.
We use the saved variables from rocreg in this option to overlay a line plot of the rocreg fit.

. clear

. set seed 8675309

. set obs 500
Number of observations (_N) was 0, now 500.
. generate d = runiform() < .25
. quietly generate double epsilon = 3*invnormal(runiform()) if d == 0
. quietly replace epsilon = 2*invnormal(runiform()) if d == 1
. quietly generate double x = 1 + d*5 + epsilon
. rocreg d x, probit ml nolog
Parametric ROC estimation Number of obs = 112
Control standardization: normal
ROC method : parametric Link: probit
Status : d
Classifiers: x
Classifier : x
Covariate control adjustment model:

Coefficient Std. err. z P>|z| [95% conf. interval]

casecov
_cons 4.823931 .2305469 20.92 0.000 4.372067 5.275795

casesd
_cons 1.926652 .1204158 16.00 0.000 1.690642 2.162663

ctrlcov
_cons 1.14378 .155409 7.36 0.000 .8391841 1.448376

ctrlsd
_cons 2.99742 .1098907 27.28 0.000 2.782038 3.212802

Status : d
ROC Model :

Coefficient Std. err. z P>|z| [95% conf. interval]

x
i_cons 2.503789 .1969952 12.71 0.000 2.117686 2.889893
s_cons 1.555766 .1127296 13.80 0.000 1.33482 1.776712

auc .912102 .0123921 73.60 0.000 .8878139 .9363902
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. rocfit d x, continuous(10) nolog
Binormal model of d on x Number of obs = 500
Goodness-of-fit chi2(7) = 1.33
Prob > chi2 = 0.9877
Log likelihood = -914.15521

Coefficient Std. err. z P>|z| [95% conf. interval]

intercept 2.647297 0.277012 9.56 0.000 2.104362 3.190231
slope (*) 1.670103 0.195433 3.43 0.001 1.287062 2.053145

/cut1 -2.079091 0.153221 -13.57 0.000 -2.379398 -1.778783
/cut2 -1.383360 0.093448 -14.80 0.000 -1.566515 -1.200205
/cut3 -0.905227 0.075606 -11.97 0.000 -1.053413 -0.757041
/cut4 -0.252654 0.065679 -3.85 0.000 -0.381382 -0.123925
/cut5 0.310051 0.065913 4.70 0.000 0.180863 0.439239
/cut6 0.915048 0.072958 12.54 0.000 0.772054 1.058042
/cut7 1.512188 0.092153 16.41 0.000 1.331570 1.692805
/cut8 2.095878 0.136662 15.34 0.000 1.828026 2.363731
/cut9 2.516563 0.181939 13.83 0.000 2.159970 2.873156

Indices from binormal fit
Index Estimate Std. err. [95% conf. interval]

ROC area 0.913079 0.012942 0.887713 0.938445
delta(m) 1.585110 0.107531 1.374352 1.795868

d(e) 1.982917 0.121777 1.744239 2.221596
d(a) 1.923275 0.115671 1.696565 2.149985

(*) z test for slope==1
. rocplot, plotopts(msymbol(i)) lineopts(lpattern(dash))
> norefline addplot(line _roc_x _fpr_x, sort(_fpr_x _roc_x)
> lpattern(solid)) aspectratio(1) legend(off)
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Area under curve = 0.9131  se(area) = 0.0129

We find that the curves are close. As before, the rocfit estimates are lower for the slope and intercept
than under rocreg. TheAUC estimates are close. Though the slope confidence interval contains 1, a high
ROC intercept suggests a steep ROC curve and thus a powerful test.
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Stored results
Nonparametric rocreg stores the following in e():

Scalars

e(N) number of observations

e(N strata) number of covariate strata

e(N clust) number of clusters

e(level) confidence level for bootstrap CIs

e(rank) rank of e(V)

Macros

e(cmd) rocreg
e(cmdline) command as typed

e(classvars) classification variable list

e(refvar) status variable, reference variable

e(ctrlmodel) covariate-adjustment specification

e(ctrlcov) covariate-adjustment variables

e(pvc) percentile value calculation method

e(title) title in estimation output

e(tiecorrected) tiecorrected, if specified
e(nobootstrap) nobootstrap, if specified
e(rngstate) random-number state used in bootstrap, if bootstrap was performed

e(breps) number of bootstrap resamples, if bootstrap performed

e(bootcc) bootcc, if specified
e(nobstrata) nobstrata, if specified
e(clustvar) name of cluster variable

e(exp#) expression for the #th statistic

e(roc) false-positive rates where ROC was estimated

e(invroc) ROC values where false-positive rates were estimated

e(pauc) false-positive rates where pAUC was estimated

e(auc) indicates thatAUC was calculated

e(vce) bootstrap
e(properties) b V (or b if bootstrap not performed)

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of the estimators

e(b bs) bootstrap estimates

e(reps) number of nonmissing results

e(bias) estimated biases

e(se) estimated standard errors

e(z0) median biases

e(ci normal) normal-approximation confidence intervals

e(ci percentile) percentile confidence intervals

e(ci bc) bias-corrected confidence intervals

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.
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Parametric, bootstrap rocreg stores the following in e():

Scalars

e(N) number of observations

e(N strata) number of covariate strata

e(N clust) number of clusters

e(level) confidence level for bootstrap CIs

e(rank) rank of e(V)

Macros

e(cmd) rocreg
e(cmdline) command as typed

e(classvars) classification variable list

e(refvar) status variable, reference variable

e(ctrlmodel) covariate-adjustment specification

e(ctrlcov) covariate-adjustment variables

e(pvc) percentile value calculation method

e(title) title in estimation output

e(tiecorrected) tiecorrected, if specified
e(probit) probit, if specified
e(roccov) ROC covariates

e(fprpts) number of points used as false-positive rate fit points

e(ctrlfprall) indicates whether all observed false-positive rates were used as fit points

e(nobootstrap) nobootstrap, if specified
e(rngstate) random-number state used in bootstrap

e(breps) number of bootstrap resamples

e(bootcc) bootcc, if specified
e(nobstrata) nobstrata, if specified
e(clustvar) name of cluster variable

e(exp#) expression for the #th statistic

e(vce) bootstrap
e(properties) b V (or b if nobootstrap is specified)
e(predict) program used to implement predict

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of the estimators

e(b bs) bootstrap estimates

e(reps) number of nonmissing results

e(bias) estimated biases

e(se) estimated standard errors

e(z0) median biases

e(ci normal) normal-approximation confidence intervals

e(ci percentile) percentile confidence intervals

e(ci bc) bias-corrected confidence intervals

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.
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Parametric, maximum likelihood rocreg stores the following in e():

Scalars

e(N) number of observations

e(N clust) number of clusters

e(rank) rank of e(V)

Macros

e(cmd) rocreg
e(cmdline) command as typed

e(classvars) classification variable list

e(refvar) status variable

e(ctrlmodel) linear
e(ctrlcov) control population covariates

e(roccov) ROC covariates

e(probit) probit, if specified
e(pvc) normal
e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(clustvar) name of cluster variable

e(vce) cluster if clustering used
e(vcetype) robust if multiple classifiers or clustering used
e(ml) ml, if specified
e(predict) program used to implement predict

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of the estimators

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas
Assume that we applied a diagnostic test to each of 𝑁0 control and 𝑁1 case subjects. Further assume

that the higher the outcome value of the diagnostic test, the higher the risk of the subject being abnormal.

Let 𝑦1𝑖, 𝑖 = 1, 2, . . . , 𝑁1, and 𝑦0𝑗, 𝑗 = 1, 2, . . . , 𝑁0, be the values of the diagnostic test for the case

and control subjects, respectively. The true status variable 𝐷 identifies an observation as case 𝐷 = 1 or

control 𝐷 = 0. The CDF of the classifier 𝑌 is 𝐹. Conditional on 𝐷, we write the CDF as 𝐹𝐷.

Methods and formulas are presented under the following headings:

ROC statistics
Covariate-adjusted ROC curves
Parametric ROC curves: Estimating equations
Parametric ROC curves: Maximum likelihood
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ROC statistics
Weobtain these definitions and their estimates from Pepe (2003) and Pepe, Longton, and Janes (2009).

The false-positive and true-positive rates at cutoff 𝑐 are defined as

FPR (𝑦) = 𝑃 (𝑌 ≥ 𝑦∣𝐷 = 0)

TPR (𝑦) = 𝑃 (𝑌 ≥ 𝑦∣𝐷 = 1)

The true-positive rate, or ROC value at false-positive rate 𝑢, is given by

ROC (𝑢) = 𝑃 (1 − 𝐹0 (𝑌) ≤ 𝑢∣𝐷 = 1)

When 𝑌 is continuous, the false-positive rate can be written as

FPR (𝑦) = 1 − 𝐹0 (𝑦)

The empirical CDF for the sample 𝑧1, . . . , 𝑧𝑛 is given by

̂𝐹 (𝑧) =
𝑛

∑
𝑖=1

𝐼 (𝑧 < 𝑧𝑖)
𝑛

The empirical estimates F̂PR and R̂OC both use this empirical CDF estimator.

The area under the ROC curve is defined as

AUC = ∫
1

0
ROC (𝑢) 𝑑𝑢

The partial area under the ROC curve for false-positive rate 𝑎 is defined as

pAUC (𝑎) = ∫
𝑎

0
ROC (𝑢) 𝑑𝑢

The nonparametric estimate for the AUC is given by

ÂUC =
𝑁1

∑
𝑖=1

1 − F̂PR (𝑦1𝑖)
𝑁1

The nonparametric estimate of pAUC is given by

p̂AUC (𝑎) =
𝑁1

∑
𝑖=1

max {1 − F̂PR (𝑦1𝑖) − (1 − 𝑎), 0}
𝑁1

For discrete classifiers, a correction term is subtracted from the false-positive rate estimate so that the

ÂUC and p̂AUC estimates correspond with a trapezoidal approximation to the area of the ROC curve.

FPR𝑐 (𝑦) = 1 − ̂𝐹0 (𝑦) − 1
2

𝑁0

∑
𝑗=1

𝐼 (𝑦 = 𝑦0𝑗)
𝑁0
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In the nonparametric estimation of the ROC curve, all inference is performed using the bootstrap
command (see [R] bootstrap). rocreg also allows users to calculate the ROC curve and related statistics
by assuming a normal control distribution. So these formulas are updated by replacing 𝐹0 by Φ (with

adjustment of the marginal mean and variance of the control distribution).

Covariate-adjusted ROC curves
Suppose we observe covariate vector 𝑍 in addition to the classifier 𝑌. Let 𝑍1𝑖, 𝑖 = 1, 2, . . . , 𝑁1, and

𝑍0𝑗, 𝑗 = 1, 2, . . . , 𝑁0, be the values of the covariates for the case and control subjects, respectively.

The covariate-adjusted ROC curve is defined by Janes and Pepe (2009) as

AROC (𝑡) = 𝐸 {ROC (𝑡∣𝑍0)}

It is calculated by replacing the marginal control CDF estimate, ̂𝐹0, with the conditional control CDF

estimate, ̂𝐹0𝑍. If we used a normal control CDF, then we would replace the marginal control mean and

variance with the conditional control mean and variance. The formulas of the previous section can be

updated for covariate-adjustment by making this substitution of the conditional CDF for the marginal CDF

in the false-positive rate calculation.

Because the calculation of the ROC value is now performed based on the conditionally calculated

false-positive rate, no further conditioning is made in its calculation under nonparametric estimation.

rocreg supports covariate adjustment with stratification and linear regression. Under stratification,
separate parameters are estimated for the control distribution at each level of the covariates. Under linear

regression, the classifier is regressed on the covariates over the control distribution, and the resulting

coefficients serve as parameters for ̂𝐹0𝑍.

Parametric ROC curves: Estimating equations
Under nonparametric estimation of the ROC curve with covariate adjustment, no further conditioning

occurs in the ROC curve calculation beyond the use of covariate-adjusted false-positive rates as inputs.

Under parametric estimation of the ROC curve, we can relax this restriction. We model the ROC curve

as a cumulative distribution function 𝑔 (standard normal Φ) invoked with input of a linear polynomial
in the corresponding quantile function (here Φ−1) invoked on the false-positive rate 𝑢. The constant
intercept of the polynomial may depend on covariates; the slope term 𝛼 (quantile coefficient) may not.

ROC (𝑢) = 𝑔{x′β + 𝛼𝑔−1 (𝑢)}

Pepe (2003) notes that having a binormal ROC (𝑔 = Φ) is equivalent to specifying that somemonotone
transformation of the data exists to make the case and control classifiers normally distributed. This

specification applies to the marginal case and control.

Under weak assumptions about the control distribution of the classifier, we can fit this model by using

estimating equations (Alonzo and Pepe 2002). The method can be used without covariate effects in the

second stage, assuming a parametric model for the single ROC curve. Using the Alonzo and Pepe (2002)

method, the covariate-adjusted ROC curve may be fit parametrically. The marginal ROC curve, involving

no covariates in either stage of estimation, can be fit parametrically as well. In addition to the Alonzo and

Pepe (2002) explanation, further details are given in Pepe, Longton, and Janes (2009); Janes, Longton,

and Pepe (2009); Pepe (2003); and Janes and Pepe (2009).
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The algorithm can be described as follows:

1. Estimate the false-positive rates of the classifier fpr. These may be computed in any fashion

outlined so far: covariate-adjusted, empirically, etc.

2. Determine a set of 𝑛𝑝 false-positive rates to use as fitting points 𝑓1, . . . , 𝑓𝑛𝑝
. These may be an

equispaced grid on (0, 1) or the set of observed false-positive rates from part 1.

3. Expand the case observation portion of the data to include a subobservation for each fitting point.

So there are now 𝑁1(𝑛𝑝 − 1) additional observations in the data.

4. Generate a new dummy variable u. For subobservation 𝑗, u = 𝐼 (fpr ≤ 𝑓𝑗).

5. Generate a new variable quant containing the quantiles of the false-positive rate fitting points.

For subobservation 𝑗, quant = 𝑔−1 (𝑓𝑗).

6. Perform a binary regression (probit, 𝑔 = Φ) of fpr on the covariates x and quantile variable

quant.

The coefficients of part 6 are the coefficients of the ROC model. The coefficients of the covariates

coincide naturally with estimates of β, and the 𝛼 parameter is estimated by the coefficient on quant.
Because the method is so general and makes few distributional assumptions, bootstrapping must be per-

formed for inference. If multiple classifiers are to be fit, the algorithm is performed separately for each

in each bootstrap, and the bootstrap is used to estimate covariances.

We mentioned earlier that in parametric estimation, the AUC was the only summary parameter that

could be estimated initially. This is true when we fit the marginal probit model because there are no

covariates in part 6 of the algorithm.

To calculate the AUC statistic under a marginal probit model, we use the formula

AUC = Φ ( 𝛽0√
1 + 𝛼2

)

Alternatively, the AUC for the probit model can be calculated as pAUC(1) in postestimation. Under both

models, bootstrapping is performed for inference on the AUC.

Parametric ROC curves: Maximum likelihood
rocreg supports another form of parametric ROC estimation: maximum likelihood with a normally

distributed classifier. This method assumes that the classifier is a normal linear model on certain co-

variates, and the covariate effect and variance of the classifier may change between the case and control

populations. The model is defined in Pepe (2003, 145).

𝑦 = z′β
0

+ 𝐷x′β
1

+ 𝜎 (𝐷) 𝜖

Our error term, 𝜖, is a standard normal random variable. The variable𝐷 is our true status variable, being 1

for the case population observations and 0 for the control population observations. The variance function

𝜎 is defined as

𝜎 (𝐷) = 𝜎0 (𝐷 = 0) + 𝜎1 (𝐷 = 1)

This provides two variance parameters in the model and does not depend on covariate values.
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Under this model, the ROC curve is easily derived to be

ROC (𝑢) = Φ [ 1
𝜎1

{x′β
1

+ 𝜎0Φ−1 (𝑢)}]

We reparameterize the model, creating the parameters 𝛽𝑖 = 𝜎−1
1 𝛽1𝑖 and 𝛼 = 𝜎−1

1 𝜎0. We refer to 𝛽0 as

the constant intercept, i cons. The parameter 𝛼 is referred to as the constant slope, s cons.

ROC (𝑢) = Φ{x′β + 𝛼Φ−1 (𝑢)}

The original model defining the classifier 𝑦 leads to the following single observation likelihoods for
𝐷 = 0 and 𝐷 = 1:

𝐿(β
0
,β

1
, 𝜎1, 𝜎0, ∣𝐷 = 0, 𝑦, z, x) = 1√

2𝜋𝜎0
exp

−(𝑦 − z′β
0
)2

2𝜎2
0

𝐿(β
0
,β

1
, 𝜎1, 𝜎0, ∣𝐷 = 1, 𝑦, z, x) = 1√

2𝜋𝜎1
exp

−(𝑦 − z′β
0

− x′β
1
)2

2𝜎2
1

These can be combined to yield the observation-level log likelihood:

ln𝐿(β
0
,β

1
, 𝜎1, 𝜎0, ∣𝐷, 𝑦, z, x) = − ln2𝜋

2

− 𝐼 (𝐷 = 0) { ln𝜎0 +
(𝑦 − z′β

0
)2

2𝜎2
0

}

− 𝐼 (𝐷 = 1) { ln𝜎1 +
(𝑦 − z′β

0
− x′β

1
)2

2𝜎2
1

}

When there are multiple classifiers, each classifier is fit separately with maximum likelihood. Then,

the results are combined by stacking the scores and using the sandwich variance estimator. For more

information, see [R] suest and the references White (1982); Rogers (1993); and White (1996).
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Postestimation commands predict estat
Remarks and examples Stored results Methods and formulas
References Also see

Postestimation commands
The following commands are of special interest after rocreg:

Command Description

estat nproc nonparametric ROC curve estimation, keeping fit information from rocreg
rocregplot plot marginal and covariate-specific ROC curves

The following standard postestimation commands are also available:

Command Description

estimates cataloging estimation results

etable table of estimation results

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

predict roc curve predictions

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

2669
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predict

Description for predict
Use of predict after fitting a parametric model with rocreg allows calculation of all the ROC curve

summary statistics for covariate-specific ROC curves. The ROC values for given false-positive rates,

false-positive rate for given ROC values, area under the ROC curve (AUC), and partial areas under the ROC

curve (pAUC) for a given false-positive rate can all be calculated.

Menu for predict
Statistics > Postestimation

Syntax for predict
predict [ type ] newvar [ if ] [ in ] [ , statistic options ]

statistic Description

Main

at(varname) input variable for statistic

auc total area under the ROC curve; the default

roc ROC values for given false-positive rates in at()
invroc false-positive rate for given ROC values in at()
pauc partial area under the ROC curve up to each false-positive

rate in at()
classvar(varname) statistic for given classifier

options Description

Options

intpts(#) points in numeric integration of pAUC calculation

se(newvar) predict standard errors

ci(stubname) produce confidence intervals, stored as variables with prefix
stubname and suffixes l and u

level(#) set confidence level; default is level(95)
∗ bfile(filename, ...) load dataset containing bootstrap replicates from rocreg
∗ btype(n | p | bc) produce normal-based (n), percentile (p), or bias-corrected (bc)

confidence intervals; default is btype(n)
∗bfile() and btype() are only allowed with parametric analysis using bootstrap inference.
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Options for predict

� � �
Main �

at(varname) records the variable to be used as input for the above predictions.

auc predicts the total area under the ROC curve defined by the covariate values in the data. This is the

default statistic.

roc predicts the ROC values for false-positive rates stored in varname specified in at().

invroc predicts the false-positive rates for given ROC values stored in varname specified in at().

pauc predicts the partial area under the ROC curve up to each false-positive rate stored in varname spec-
ified in at().

classvar(varname) performs the prediction for the specified classifier.

� � �
Options �

intpts(#) specifies that # points be used in the pAUC calculation.

se(newvar) specifies that standard errors be produced and stored in newvar.

ci(stubname) requests that confidence intervals be produced and the lower and upper bounds be stored
in stubname l and stubname u, respectively.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is

level(95) or as set by set level; see [U] 20.8 Specifying the width of confidence intervals.

bfile(filename, ...) uses bootstrap replicates of parameters from rocreg stored in filename to esti-
mate standard errors and confidence intervals of predictions.

btype(n | p | bc) specifies whether to produce normal-based (n), percentile (p), or bias-corrected (bc)
confidence intervals. The default is btype(n).
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estat

Description for estat
estat nproc allows calculation of all the ROC curve summary statistics for covariate-specific ROC

curves, as well as for a nonparametric ROC estimation. Under nonparametric estimation, a single ROC

curve is estimated by rocreg. Covariates can affect this estimation, but there are no separate covariate-
specific ROC curves. Thus, the input arguments for estat nproc are taken in the command line rather
than from the data as variable values.

Menu for estat
Statistics > Postestimation

Syntax for estat nproc
estat nproc [ , estat nproc options ]

estat nproc options Description

Main

auc estimate total area under the ROC curve

roc(numlist) estimate ROC values for given false-positive rates

invroc(numlist) estimate false-positive rate for given ROC values

pauc(numlist) estimate partial area under the ROC curve up to each false-positive rate

At least one option must be specified.

Options for estat nproc

� � �
Main �

auc estimates the total area under the ROC curve.

roc(numlist) estimates the ROC for each of the false-positive rates in numlist. The values in numlist

must be in the range (0,1).

invroc(numlist) estimates the false-positive rate for each of the ROC values in numlist. The values in

numlist must be in the range (0,1).

pauc(numlist) estimates the partial area under the ROC curve up to each false-positive rate in numlist.

The values in numlist must be in the range (0,1].

Remarks and examples
Remarks are presented under the following headings:

Using predict after rocreg
Using estat nproc
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Using predict after rocreg
predict, after parametric rocreg, predicts the AUC, the ROC value, the false-positive rate (invROC),

or the pAUC value. The default is auc.

We begin by estimating the area under the ROC curve for each of the three age-specific ROC curves in

example 1 of [R] rocregplot: 30, 40, and 50 months.

Example 1: Parametric ROC, AUC
In example 6 of [R] rocreg, a probit ROC model was fit to audiology test data from Norton et al.

(2000). The estimating equations method of Alonzo and Pepe (2002) was used to fit the model. Gender

and age were covariates that affected the control distribution of the classifier y1 (DPOAE 65 at 2 kHz).
Age was a ROC covariate for the model, so we fit separate ROC curves at each age.

Following Janes, Longton, and Pepe (2009), we drew the ROC curves for ages 30, 40, and 50 months

in example 1 of [R] rocregplot. Now, we use predict to estimate the AUC for the ROC curve at each of
those ages.

The bootstrap dataset saved by rocreg in example 6 of [R] rocreg, nnhs2y1.dta, is used in the
bfile() option.

We will store the AUC prediction in the new variable predAUC. We specify the se() option with the
new variable name seAUC to produce an estimate of the prediction’s standard error. By specifying the
stubname cin in ci(), we tell predict to create normal-based confidence intervals (the default) as new
variables cin l and cin u.

. use https://www.stata-press.com/data/r18/nnhs
(Norton - neonatal audiology data)
. rocreg d y1, probit ctrlcov(currage male) ctrlmodel(linear) roccov(currage)
> cluster(id) bseed(56930) bsave(nnhs2y1)
(output omitted )

. set obs 5061
Number of observations (_N) was 5,058, now 5,061.
. quietly replace currage = 30 in 5059
. quietly replace currage = 40 in 5060
. quietly replace currage = 50 in 5061
. predict predAUC in 5059/5061, auc se(seAUC) ci(cin) bfile(nnhs2y1)
. list currage predAUC seAUC cin* in 5059/5061

currage predAUC seAUC cin_l cin_u

5059. 30 .5209999 .076013 .3720171 .6699827
5060. 40 .6479176 .0284218 .592212 .7036232
5061. 50 .7601378 .0794346 .6044489 .9158267

As expected, we find the AUC to increase with age.

Essentially, we have a stored bootstrap sample of ROC covariate coefficient estimates in

nnhs2y1.dta. We calculate the AUC using each set of coefficient estimates, resulting in a sample of

AUC estimates. Then, the bootstrap standard error and confidence intervals are calculated based on this

AUC sample. Further details of the computation of the standard error and percentile confidence intervals

can be found in Methods and formulas and in [R] bootstrap.
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We can also produce percentile or bias-corrected confidence intervals by specifying btype(p) or

btype(bc), which we now demonstrate.

. drop *AUC*

. predict predAUC in 5059/5061, auc se(seAUC) ci(cip) bfile(nnhs2y1) btype(p)

. list currage predAUC cip* in 5059/5061

currage predAUC cip_l cip_u

5059. 30 .5209999 .3625608 .6615624
5060. 40 .6479176 .5874361 .702619
5061. 50 .7601378 .5836248 .8910214

. drop *AUC*

. predict predAUC in 5059/5061, auc se(seAUC) ci(cibc) bfile(nnhs2y1) btype(bc)

. list currage predAUC cibc* in 5059/5061

currage predAUC cibc_l cibc_u

5059. 30 .5209999 .3733315 .6669934
5060. 40 .6479176 .5901812 .7038136
5061. 50 .7601378 .5738162 .8882028

predict can also estimate the ROC value and the false-positive rate (invROC).

Example 2: Parametric ROC, invROC, and ROC value
In example 7 of [R] rocreg, we fit the ROC curve for status variable hearing loss (d) and classifier

negative signal-to-noise ratio nsnr with ROC covariates frequency (xf), intensity (xl), and hearing loss
severity (xd). The data were obtained from Stover et al. (1996). The model fit was probit with bootstrap

resampling. We saved 50 bootstrap replications in the dataset nsnrf.dta.

The covariate value combinations xf = 10.01, xl = 5.5, and xd = .5, and xf = 10.01, xl = 6.5, and
xd = 4 are of interest. In example 3 of [R] rocregplot, we estimated the ROC values for false-positive

rates 0.2 and 0.7 and the false-positive rate for a ROC value of 0.5 by using rocregplot. We will use

predict to replicate the estimation.

We begin by appending observations with our desired covariate combinations to the data. We also

create two new variables: rocinp, which contains the ROC values for which we wish to predict the

corresponding invROC values, and invrocinp, which contains the invROC values corresponding to the

ROC values we wish to predict.



rocreg postestimation — Postestimation tools for rocreg 2675

. clear

. input xf xl xd rocinp invrocinp
xf xl xd rocinp invrocinp

1. 10.01 5.5 .5 .2 .
2. 10.01 6.5 4 .2 .
3. 10.01 5.5 .5 .7 .5
4. 10.01 6.5 4 .7 .5
5. end

. save newdata
file newdata.dta saved
. use https://www.stata-press.com/data/r18/dp
(Stover - DPOAE test data)
. quietly rocreg d nsnr, ctrlcov(xf xl) roccov(xf xl xd) probit cluster(id)
> nobstrata ctrlfprall bseed(156385) breps(50) ctrlmodel(strata) bsave(nsnrf)
. append using newdata
. list xf xl xd invrocinp rocinp in 1849/1852

xf xl xd invroc~p rocinp

1849. 10.01 5.5 .5 . .2
1850. 10.01 6.5 4 . .2
1851. 10.01 5.5 .5 .5 .7
1852. 10.01 6.5 4 .5 .7

Now, we will use predict to estimate the ROC value for the false-positive rates stored in rocinp.
We specify the roc option, and we specify rocinp in the at() option. The other options, se() and

ci(), are used to obtain standard errors and confidence intervals, respectively. The dataset of bootstrap
samples, nsnrf.dta, is specified in bfile(). After prediction, we list the point estimates and standard
errors.

. predict rocit in 1849/1852, roc at(rocinp) se(seroc) ci(cin) bfile(nsnrf)

. list xf xl xd rocinp rocit seroc if !missing(rocit)

xf xl xd rocinp rocit seroc

1849. 10.01 5.5 .5 .2 .7652956 .0624187
1850. 10.01 6.5 4 .2 .9672505 .0162785
1851. 10.01 5.5 .5 .7 .9835816 .0133583
1852. 10.01 6.5 4 .7 .999428 .0007784

These results match example 3 of [R] rocregplot. We list the confidence intervals next. These also

conform to the rocregplot results from example 3 in [R] rocregplot. We begin with the confidence

intervals for ROC under the covariate values xf=10.01, xl=5.5, and xd=.5.

. list xf xl xd rocinp rocit cin* if inlist(_n, 1849, 1851)

xf xl xd rocinp rocit cin_l cin_u

1849. 10.01 5.5 .5 .2 .7652956 .6429572 .887634
1851. 10.01 5.5 .5 .7 .9835816 .9573998 1.009763
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Now, we list the ROC confidence intervals under the covariate values xf=10.01, xl=6.5, and xd=4.

. list xf xl xd rocinp rocit cin* if inlist(_n, 1850, 1852)

xf xl xd rocinp rocit cin_l cin_u

1850. 10.01 6.5 4 .2 .9672505 .9353452 .9991558
1852. 10.01 6.5 4 .7 .999428 .9979024 1.000954

Now, we will predict the false-positive rate for a ROC value by specifying the invroc option. We

pass the invrocinp variable as an argument to the at() option. Again, we list the point estimates and
standard errors first.

. drop ci*

. predict invrocit in 1849/1852, invroc at(invrocinp) se(serocinv) ci(cin)
> bfile(nsnrf)
. list xf xl xd invrocinp invrocit serocinv if !missing(invrocit)

xf xl xd invroc~p invrocit serocinv

1851. 10.01 5.5 .5 .5 .0615144 .0209516
1852. 10.01 6.5 4 .5 .0043298 .003835

These also match those of example 3 of [R] rocregplot. Listing the confidence intervals shows iden-

tical results as well. First, we list the confidence intervals under the covariate values xf=10.01, xl=5.5,
and xd=.5.

. list xf xl xd invrocinp invrocit cin* in 1851

xf xl xd invroc~p invrocit cin_l cin_u

1851. 10.01 5.5 .5 .5 .0615144 .0204499 .1025789

Now, we list the confidence intervals for false-positive rate under the covariate values xf=10.01,
xl=6.5, and xd=4.

. list xf xl xd invrocinp invrocit cin* in 1852

xf xl xd invroc~p invrocit cin_l cin_u

1852. 10.01 6.5 4 .5 .0043298 -.0031867 .0118463

The predict command can also be used after a maximum-likelihood ROC model is fit.
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Example 3: Maximum likelihood ROC, invROC, and ROC value
In the previous example, we revisited the estimating equations fit of a probit model with ROC covari-

ates frequency (xf), intensity (xl), and hearing loss severity (xd) to the Stover et al. (1996) audiology
study data. Amaximum likelihood fit of the same model was performed in example 10 of [R] rocreg. In

example 2 of [R] rocregplot, we used rocregplot to estimate ROC values and false-positive rates for

this model under two covariate configurations. We will use predict to obtain the same estimates. We

will also estimate the partial area under the ROC curve.

We append the data as in the previous example. This leads to the following four final observations in

the data.

. use https://www.stata-press.com/data/r18/dp, clear
(Stover - DPOAE test data)
. rocreg d nsnr, probit ctrlcov(xf xl) roccov(xf xl xd) ml cluster(id)
(output omitted )

. append using newdata

. list xf xl xd invrocinp rocinp in 1849/1852

xf xl xd invroc~p rocinp

1849. 10.01 5.5 .5 . .2
1850. 10.01 6.5 4 . .2
1851. 10.01 5.5 .5 .5 .7
1852. 10.01 6.5 4 .5 .7

Now, we predict the ROC value for false-positive rates of 0.2 and 0.7. Under maximum likelihood

prediction, only Wald-type confidence intervals are produced. We specify a new variable name for the

standard error in the se() option and a stubname for the confidence interval variables in the ci() option.

. predict rocit in 1849/1852, roc at(rocinp) se(seroc) ci(ci)

. list xf xl xd rocinp rocit seroc ci_l ci_u if !missing(rocit), noobs

xf xl xd rocinp rocit seroc ci_l ci_u

10.01 5.5 .5 .2 .7608593 .0510501 .660803 .8609157
10.01 6.5 4 .2 .9499408 .0179824 .914696 .9851856
10.01 5.5 .5 .7 .978951 .0097382 .9598644 .9980376
10.01 6.5 4 .7 .9985001 .0009657 .9966073 1.000393

These results match our estimates in example 2 of [R] rocregplot. We also match example 2 of

[R] rocregplot when we estimate the false-positive rate for a ROC value of 0.5.

. drop ci*

. predict invrocit in 1851/1852, invroc at(invrocinp) se(serocinv) ci(ci)

. list xf xl xd invrocinp invrocit serocinv ci_l ci_u if !missing(invrocit),
> noobs

xf xl xd invroc~p invrocit serocinv ci_l ci_u

10.01 5.5 .5 .5 .0578036 .0198626 .0188736 .0967336
10.01 6.5 4 .5 .0055624 .0032645 -.0008359 .0119607
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Example 4: Maximum likelihood ROC, pAUC, and ROC value
In example 13 of [R] rocreg, we fit a maximum-likelihood marginal probit model to each classifier

of the fictitious dataset generated from Hanley and McNeil (1983). In example 5 of [R] rocregplot,

rocregplot was used to draw the ROC for the mod1 and mod3 classifiers. Estimates of the ROC value

and false-positive rate were also obtained with Wald-type confidence intervals.

We return to this example, this time using predict to estimate the ROC value and false-positive rate.
We will also estimate the pAUC for the false-positive rates of 0.3 and 0.8.

First, we add the input variables to the data. The variable paucinp will hold the 0.3 and 0.8 false-
positive rates that we will input to pAUC. The variable invrocinp holds the ROC value of 0.8 for which
we will estimate the false-positive rate. Finally, the variable rocinp holds the false-positive rates of 0.15
and 0.75 for which we will estimate the ROC value.

. use https://www.stata-press.com/data/r18/ct2, clear
(Reconstruction of CT images)
. rocreg status mod1 mod2 mod3, probit ml
(output omitted )

. quietly generate paucinp = .3 in 111

. quietly replace paucinp = .8 in 112

. quietly generate invrocinp = .8 in 112

. quietly generate rocinp = .15 in 111

. quietly replace rocinp = .75 in 112

Then, we estimate the ROC value for false-positive rates 0.15 and 0.75 under classifier mod1. The
point estimate is stored in roc1. Wald confidence intervals and standard errors are also estimated. We

find that these results match those of example 5 of [R] rocregplot.

. predict roc1 in 111/112, classvar(mod1) roc at(rocinp) se(sr1) ci(cir1)

. list rocinp roc1 sr1 cir1* in 111/112

rocinp roc1 sr1 cir1_l cir1_u

111. .15 .7934935 .0801363 .6364293 .9505578
112. .75 .9931655 .0069689 .9795067 1.006824

Now, we perform the same estimation under the classifier mod3.

. predict roc3 in 111/112, classvar(mod3) roc at(roci) se(sr3) ci(cir3)

. list rocinp roc3 sr3 cir3* in 111/112

rocinp roc3 sr3 cir3_l cir3_u

111. .15 .8888596 .0520118 .7869184 .9908009
112. .75 .9953942 .0043435 .9868811 1.003907
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Next, we estimate the false-positive rate for the ROC value of 0.8. These results also match example 5

of [R] rocregplot.

. predict invroc1 in 112, classvar(mod1) invroc at(invrocinp) se(sir1) ci(ciir1)

. list invrocinp invroc1 sir1 ciir1* in 112

invroc~p invroc1 sir1 ciir1_l ciir1_u

112. .8 .1556435 .069699 .0190361 .292251

. predict invroc3 in 112, classvar(mod3) invroc at(invrocinp) se(sir3) ci(ciir3)

. list invrocinp invroc3 sir3 ciir3* in 112

invroc~p invroc3 sir3 ciir3_l ciir3_u

112. .8 .0661719 .045316 -.0226458 .1549896

Finally, we estimate the pAUC for false-positive rates of 0.3 and 0.8. The point estimate is calculated

by numeric integration. Wald confidence intervals are obtained with the delta method. Further details

are presented in Methods and formulas.

. predict pauc1 in 111/112, classvar(mod1) pauc at(paucinp) se(sp1) ci(cip1)

. list paucinp pauc1 sp1 cip1* in 111/112

paucinp pauc1 sp1 cip1_l cip1_u

111. .3 .221409 .0240351 .174301 .268517
112. .8 .7033338 .0334766 .6377209 .7689466

. predict pauc3 in 111/112, classvar(mod3) pauc at(paucinp) se(sp3) ci(cip3)

. list paucinp pauc3 sp3 cip3* in 111/112

paucinp pauc3 sp3 cip3_l cip3_u

111. .3 .2540215 .0173474 .2200213 .2880217
112. .8 .7420408 .0225192 .6979041 .7861776

Using estat nproc
When you initially use rocreg to fit a nonparametric ROC curve, you can obtain bootstrap estimates

of a ROC value, false-positive rate, area under the ROC curve, and partial area under the ROC curve. The

estat nproc command allows the user to estimate these parameters after rocreg has originally been
used.

The seed and resampling settings used by rocreg are used by estat nproc. So the results for these
new statistics are identical to what they would be if they had been initially estimated in the rocreg
command. These new statistics, together with those previously estimated in rocreg, are returned in
r().

We demonstrate with an example.
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Example 5: Nonparametric ROC, invROC, and pAUC
In example 3 of [R] rocreg, we examined data from a pancreatic cancer study (Wieand et al. 1989).

Two continuous classifiers, y1 (CA 19-9) and y2 (CA 125), were used for the true status variable d. In that
example, we estimated various quantities including the false-positive rate for a ROC value of 0.6 and the

pAUC for a false-positive rate of 0.5. Here we replicate that estimation with a call to rocreg to estimate
the former and follow that with a call to estat nproc to estimate the latter. For simplicity, we restrict
estimation to classifier y1 (CA 19-9).

We start by executing rocreg, estimating the false-positive rate for a ROC value of 0.6. This value is
specified in invroc(). Case–control resampling is used by specifying the bootcc option.

. use https://research.fredhutch.org/content/dam/stripe/diagnostic-biomarkers-
> statistical-center/files/wiedat2b.dta, clear
(S. Wieand - Pancreatic cancer diagnostic marker data)
. rocreg d y1, invroc(.6) bseed(8378923) bootcc nodots
Bootstrap results
Number of strata = 2 Number of obs = 141

Replications = 1,000
Nonparametric ROC estimation
Control standardization: empirical
ROC method : empirical
False-positive rate

Status : d
Classifier: y1

Observed Bootstrap
invROC coefficient Bias std. err. [95% conf. interval]

.6 0 .0149412 .0255885 -.0501525 .0501525 (N)
0 .0784314 (P)
0 .1372549 (BC)
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Now, we will estimate the pAUC for the false-positive rate of 0.5 using estat nproc and the pauc()
option.

. matrix list e(b)
symmetric e(b)[1,1]

y1:
invroc_1

y1 0
. estat nproc, pauc(.5)
Bootstrap results
Number of strata = 2 Number of obs = 141

Replications = 1,000
Nonparametric ROC estimation
Control standardization: empirical
ROC method : empirical
False-positive rate

Status : d
Classifier: y1

Observed Bootstrap
invROC coefficient Bias std. err. [95% conf. interval]

.6 0 .0149412 .0255885 -.0501525 .0501525 (N)
0 .0784314 (P)
0 .1372549 (BC)

Partial area under the ROC curve
Status : d
Classifier: y1

Observed Bootstrap
pAUC coefficient Bias std. err. [95% conf. interval]

.5 .3932462 .0011971 .0219031 .3503169 .4361755 (N)
.3489107 .4338235 (P)
.3453159 .4315904 (BC)
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. matrix list r(b)
r(b)[1,2]

y1: y1:
invroc_1 pauc_1

y1 0 .39324619
. matrix list e(b)
symmetric e(b)[1,1]

y1:
invroc_1

y1 0
. matrix list r(V)
symmetric r(V)[2,2]

y1: y1:
invroc_1 pauc_1

y1:invroc_1 .00065477
y1:pauc_1 -.00033586 .00047975

. matrix list e(V)
symmetric e(V)[1,1]

y1:
invroc_1

y1:invroc_1 .00065477

The advantages of using estat nproc are twofold. First, you can estimate additional parameters of
interest without having to respecify the bootstrap settings you did with rocreg; instead estat nproc
uses the bootstrap settings that were stored by rocreg. Second, parameters estimated with estat nproc
are added to those parameters estimated by rocreg and returned in the matrices r(b) (parameter esti-
mates) and r(V) (variance–covariance matrix). Thus, you can also obtain correlations between any

quantities you wish to estimate.

Stored results
estat nproc stores the following in r():
Matrices

r(b) coefficient vector

r(V) variance–covariance matrix of the estimators

r(ci normal) normal-approximation confidence intervals

r(ci percentile) percentile confidence intervals

r(ci bc) bias-corrected confidence intervals

Methods and formulas
Details on computation of the nonparametric ROC curve and the estimation of the parametric ROC

curve model coefficients can be found in [R] rocreg. Here we describe how to estimate the ROC curve

summary statistics for a parametric model. The cumulative distribution function, 𝑔, can be the standard
normal cumulative distribution function, Φ.

Methods and formulas are presented under the following headings:

Parametric model: Summary parameter definition
Maximum likelihood estimation
Estimating equations estimation
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Parametric model: Summary parameter definition
Conditioning on covariates x, we have the following ROC curve model:

ROC (𝑢) = 𝑔{x′β + 𝛼𝑔−1 (𝑢)}

x can be constant, and β = 𝛽0, the constant intercept.

We can solve this equation to obtain the false-positive rate value 𝑢 for a ROC value of 𝑟:

𝑢 = 𝑔 [{𝑔−1 (𝑟) − x′β}𝛼−1]

The partial area under the ROC curve for the false-positive rate 𝑢 is defined by

pAUC (𝑢) = ∫
𝑢

𝑜
𝑔{x′β + 𝛼𝑔−1 (𝑡)}𝑑𝑡

The area under the ROC curve is defined by

AUC = ∫
1

𝑜
𝑔{x′β + 𝛼𝑔−1 (𝑡)}𝑑𝑡

When 𝑔 is the standard normal cumulative distribution function Φ, we can express the AUC as

AUC = Φ ( x′β√
1 + 𝛼2

)

Maximum likelihood estimation
We allow maximum likelihood estimation under probit parametric models, so 𝑔 = Φ. The ROC value,

false-positive rate, andAUC parameters all have closed-form expressions in terms of the covariate values

x, coefficient vector β, and slope parameter 𝛼. So to estimate these three types of summary parameters,
we use the delta method (Oehlert 1992; Phillips and Park 1988). Particularly, we use the nlcom command
(see [R] nlcom) to implement the delta method.

To estimate the partial area under the ROC curve for false-positive rate 𝑢, we use numeric integration.
Atrapezoidal approximation is used in calculating the integrals. Anumeric integral of the ROC(𝑡) function
conditioned on the covariate values x, coefficient vector estimate β̂, and slope parameter estimate ̂𝛼 is

computed over the range 𝑡 = [0, 𝑢]. This gives us the point estimate of pAUC(𝑢).
To calculate the standard error and confidence intervals for the point estimate of pAUC(𝑢), we again

use the delta method. Details on the delta method algorithm can be found in Methods and formulas of

[R] nlcom and the earlier mentioned references.

Under maximum likelihood estimation, the coefficient estimates β̂ and slope estimate ̂𝛼 are asymp-

totically normal with variance matrix V. For convenience, we rename the parameter vector [β′, 𝛼] to the
𝑘-parameter vector θ = [𝜃1, . . . , 𝜃𝑘]. We will also explicitly refer to the conditioning of the ROC curve

by θ in its mention as ROC(𝑡,θ).
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Under the delta method, the continuous scalar function of the estimate θ̂, 𝑓(θ̂) has asymptotic mean
𝑓(θ) and asymptotic covariance

V̂ar{𝑓(θ̂)} = fVf′

where f is the 1 × 𝑘 matrix of derivatives for which

f1𝑗 = 𝜕𝑓(θ)
𝜕𝜃𝑗

𝑗 = 1, . . . , 𝑘

The asymptotic covariance of 𝑓(θ̂) is estimated and then used in conjunction with 𝑓(θ̂) for further
inference, including Wald confidence intervals, standard errors, and hypothesis testing.

In the case of pAUC(𝑢) estimation, our 𝑓(θ̂) is the aforementioned numeric integral of the ROC curve.
It estimates 𝑓(θ), the true integral of the ROC curve on the [0, 𝑢] range. TheV variancematrix is estimated

using the likelihood information that rocreg calculated, and the estimation is performed by rocreg
itself.

The partial derivatives of 𝑓(θ) can be determined by using Leibnitz’s rule (Weisstein 2011):

f1𝑗 = 𝜕
𝜕𝜃𝑗

∫
𝑢

0
ROC(𝑡,θ)𝑑𝑡 = ∫

𝑢

0

𝜕
𝜕𝜃𝑗

ROC(𝑡,θ)𝑑𝑡 𝑗 = 1, . . . , 𝑘

When 𝜃𝑗 corresponds with the slope parameter 𝛼, we obtain the following partial derivative:

𝜕
𝜕𝛼

pAUC(𝑢) = ∫
𝑢

0
𝜙{x′β + 𝛼Φ−1 (𝑡)}Φ−1 (𝑡) 𝑑𝑡

The partial derivative of 𝑓(θ) [pAUC(u)] for 𝛽0 is the following:

𝜕
𝜕𝛽0

pAUC(𝑢) = ∫
𝑢

0
𝜙{x′β + 𝛼Φ−1 (𝑡)}𝑑𝑡

For a nonintercept coefficient, we obtain the following:

𝜕
𝜕𝛽𝑖

pAUC(𝑢) = ∫
𝑢

0
𝑥𝑖𝜙{x′β + 𝛼Φ−1 (𝑡)}𝑑𝑡

We can estimate each of these integrals by numeric integration, plugging in the estimates β̂ and ̂𝛼
for the parameters. This, together with the previously calculated estimate V̂, provides an estimate of the

asymptotic covariance of 𝑓(θ̂) = p̂AUC(𝑢), which allows us to perform further statistical inference on

pAUC(𝑢).

Estimating equations estimation
When we fit a model using the Alonzo and Pepe (2002) estimating equations method, we use the

bootstrap to perform inference on the ROC curve summary parameters. Each bootstrap sample provides

a sample of the coefficient estimates β and the slope estimates 𝛼. Using the formulas in Parametric

model: Summary parameter definition under Methods and formulas, we can obtain an estimate of the

ROC, false-positive rate, or AUC for each resample. Using numeric integration (with the trapezoidal

approximation), we can also estimate the pAUC of the resample.
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By making these calculations, we obtain a bootstrap sample of our summary parameter estimate. We

then obtain bootstrap standard errors, normal approximation confidence intervals, percentile confidence

intervals, and bias-corrected confidence intervals using this bootstrap sample. Further details can be

found in [R] bootstrap.
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Description Quick start Menu Syntax
probit options common options boot options Remarks and examples
Methods and formulas References Also see

Description
Under parametric estimation, rocregplot plots the fitted ROC curves for specified covariate values

and classifiers. If rocreg, probit or rocreg, probit mlwere previously used, the false-positive rates
(for specified ROC values) and ROC values (for specified false-positive rates) for each curve may also be

plotted, along with confidence intervals.

Under nonparametric estimation, rocregplot will plot the fitted ROC curves using the fpr * and
roc * variables produced by rocreg. Point estimates and confidence intervals for false-positive rates
and ROC values that were computed in rocreg may be plotted as well.

Quick start
Plot ROC curve after any rocreg command

rocregplot

Name graph mygraph and save as myfile.gph
rocregplot, name(mygraph) saving(myfile)

Plot ROC curve only for v2 after fitting a model with v1 and v2
rocregplot, classvars(v2)

Add bias-corrected CI for the ROC value at a false-positive rate of 0.7 from estimation with bootstrap

resampling that specified roc(.7)
rocregplot, btype(bc)

Plots following parametric estimation only

Plot curve evaluated at x = 30 and x = 50
rocregplot, at1(x=30) at2(x=50)

After bootstrap resampling with resampled observations saved in myfile.dta
rocregplot, at1(x=30) at2(x=50) bfile(myfile)

And draw CI for ROC values at false-positive rates 0.1, 0.2, and 0.3

rocregplot, at1(x=30) at2(x=50) roc(.1 .2 .3) bfile(myfile)

Menu
Statistics > Epidemiology and related > ROC analysis > ROC curves after rocreg

2686
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Syntax
Plot ROC curve after nonparametric analysis

rocregplot [ , common options boot options ]

Plot ROC curve after parametric analysis using bootstrap

rocregplot [ , probit options common options boot options ]

Plot ROC curve after parametric analysis using maximum likelihood

rocregplot [ , probit options common options ]

probit options Description

Main

at(varname=# [varname=# . . .]) value of specified covariates and mean of unspecified covariates

[at1(varname=# [varname=# . . .])
[at2(varname=# [varname=# . . .])
[. . .]]]

∗ roc(numlist) show estimated ROC values for given false-positive rates
∗ invroc(numlist) show estimated false-positive rates for given ROC values

level(#) set confidence level; default is level(95)

Curve

line#opts(cline options) affect rendition of ROC curve #

∗Only one of roc() or invroc() may be specified.

common options Description

Main

classvars(varlist) restrict plotting of ROC curves to specified classifiers

norefline suppress plotting the reference line

Scatter

plot#opts(scatter options) affect rendition of the classifier #s false-positive rate
and ROC scatter points; not allowed with at()

Reference line

rlopts(cline options) affect rendition of the reference line

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in
[G-3] twoway options
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boot options Description

Bootstrap
∗ bfile(filename) load dataset containing bootstrap replicates from rocreg
btype(n | p | bc) plot normal-based (n), percentile (p), or bias-corrected (bc)

confidence intervals; default is btype(n)
∗ bfile() is only allowed with parametric analysis using bootstrap inference; in which case this option is
required with roc() or invroc().

probit options

� � �
Main �

at(varname=# ...) requests that the covariates specified by varname be set to #. By default,

rocregplot evaluates the function by setting each covariate to its mean value. This option causes the
ROC curve to be evaluated at the value of the covariates listed in at() and at the mean of all unlisted
covariates.

at1(varname=# ...), at2(varname=# ...), . . . , at10(varname=# ...) specify that ROC curves

(up to 10) be plotted on the same graph. at1(), at2(), . . . , at10() work like the at() option. They
request that the function be evaluated at the value of the covariates specified and at the mean of all

unlisted covariates. at1() specifies the values of the covariates for the first curve, at2() specifies
the values of the covariates for the second curve, and so on.

roc(numlist) specifies that estimated ROC values for given false-positive rates be graphed.

invroc(numlist) specifies that estimated false-positive rates for given ROC values be graphed.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is

level(95) or as set by set level; see [U] 20.8 Specifying the width of confidence intervals.

level() may be specified with either roc() or invroc().

� � �
Curve �

line#opts(cline options) affects the rendition of ROC curve #. See [G-3] cline options.

common options

� � �
Main �

classvars(varlist) restricts plotting ROC curves to specified classification variables.

norefline suppresses plotting the reference line.

� � �
Scatter �

plot#opts(scatter options) affects the rendition of classifier #’s false-positive rate and ROC scatter

points. This option applies only to non-ROC covariate estimation graphing. See [G-2] graph twoway

scatter.

� � �
Reference line �

rlopts(cline options) affects the rendition of the reference line. See [G-3] cline options.
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� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and options for saving the graph to disk

(see [G-3] saving option).

boot options

� � �
Bootstrap �

bfile(filename) uses bootstrap replicates of parameters from rocreg stored in filename to estimate

standard errors and confidence intervals of predictions. bfile()must be specified with either roc()
or invroc() if parametric estimation with bootstrapping was used.

btype(n | p | bc) indicates the desired type of confidence interval rendering. n draws normal-based, p
draws percentile, and bc draws bias-corrected confidence intervals for specified false-positive rates
and ROC values in roc() and invroc(). The default is btype(n).

Remarks and examples
Remarks are presented under the following headings:

Plotting covariate-specific ROC curves
Plotting marginal ROC curves

Plotting covariate-specific ROC curves
The rocregplot command is also demonstrated in [R] rocreg. We will further demonstrate its use

with several examples. Particularly, wewill show how rocregplot can draw the ROC curves of covariate

models that have been fit using rocreg.

Example 1: Parametric ROC
In example 6 of [R] rocreg, we fit a probit ROCmodel to audiology test data from Norton et al. (2000).

The estimating equation method of Alonzo and Pepe (2002) was used to the fit the model. Gender and

age were covariates that affected the control distribution of the classifier y1 (DPOAE 65 at 2 kHz). Age
was a ROC covariate for the model, so we fit separate ROC curves at each age.
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Following Janes, Longton, and Pepe (2009), we draw the ROC curves for ages 30, 40, and 50 months.

The at1(), at2(), and at3() options are used to specify the age covariates.

. use https://www.stata-press.com/data/r18/nnhs
(Norton - neonatal audiology data)
. rocreg d y1, probit ctrlcov(currage male) ctrlmodel(linear) roccov(currage)
> cluster(id) bseed(56930) bsave(nnhs2y1, replace)
(output omitted )

. rocregplot, at1(currage=30) at2(currage=40) at3(currage=50)
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Here we use the default entries of the legend, which indicate the “at #” within the specified at* options
and the classifier to which the curve corresponds. ROC curve one corresponds with currage=30, two
with currage=40, and three with currage=50. The positive effect of age on the ROC curve is evident. At
an age of 30 months (currage=30), the ROC curve of y1 (DPOAE 65 at 2 kHz) is nearly equivalent to that
of a noninformative test that gives equal probability to hearing loss. At age 50 months (currage=50),
corresponding to some of the oldest children in the study, the ROC curve shows that test y1 (DPOAE 65
at 2 kHz) is considerably more powerful than the noninformative test.

You may create your own legend by specifying the legend() option. The default legend is designed
for the possibility of multiple covariates. Here we could change the legend entries to currage values
and gain some extra clarity. However, this may not be feasible when there are many covariates present.

We can also use rocregplot after maximum likelihood estimation.

Example 2: Maximum likelihood ROC
We return to the audiology study with frequency (xf), intensity (xl), and hearing loss severity (xd)

covariates from Stover et al. (1996) that we examined in example 10 of [R] rocreg. Negative signal-to-

noise ratio is again used as a classifier. Using maximum likelihood, we fit a probit model to these data

with the indicated ROC covariates.

After fitting the model, we wish to compare the ROC curves of two covariate combinations. The

first has an intensity value of 5.5 (the lowest intensity, corresponding to 55 decibels) and a frequency of

10.01 (the lowest frequency, corresponding to 1001 hertz). We give the first combination a hearing loss

severity value of 0.5 (the lowest). The second covariate combination has the same frequency, but the

highest intensity value of 6.5 (65 decibels). We give this second covariate set a higher severity value of

4. We will visually compare the two ROC curves resulting from these two covariate value combinations.
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We specify false-positive rates of 0.7 first followed by 0.2 in the roc() option to visually compare
the size of the ROC curve at large and small false-positive rates. Because maximum likelihood estimation

was used to fit the model, a Wald confidence interval is produced for the estimated ROC value and false-

positive rate parameters. Further details are found in Methods and formulas.

. use https://www.stata-press.com/data/r18/dp
(Stover - DPOAE test data)
. rocreg d nsnr, probit ctrlcov(xf xl) roccov(xf xl xd) ml cluster(id)
(output omitted )

. rocregplot, at1(xf=10.01, xl=5.5, xd=.5) at2(xf=10.01, xl=6.5, xd=4) roc(.7)
ROC curve

Status : d
Classifier: nsnr

Under covariates:
at1

xf 10.01
xl 5.5
xd .5

ROC Coefficient Std. err. [95% conf. interval]

.7 .978951 .0097382 .9598645 .9980376

Under covariates:
at2

xf 10.01
xl 6.5
xd 4

ROC Coefficient Std. err. [95% conf. interval]

.7 .9985001 .0009657 .9966073 1.000393
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At the higher false-positive rate value of 0.7, we see little difference in the ROC values and note that

the confidence intervals nearly overlap. Now, we view the same curves with the lower false-positive rate

compared.

. rocregplot, at1(xf=10.01, xl=5.5, xd=.5) at2(xf=10.01, xl=6.5, xd=4) roc(.2)
ROC curve

Status : d
Classifier: nsnr

Under covariates:
at1

xf 10.01
xl 5.5
xd .5

ROC Coefficient Std. err. [95% conf. interval]

.2 .7608593 .0510501 .660803 .8609157

Under covariates:
at2

xf 10.01
xl 6.5
xd 4

ROC Coefficient Std. err. [95% conf. interval]

.2 .9499408 .0179824 .914696 .9851856
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The lower false-positive rate of 0.2 shows clearly distinguishable ROC values. Now, we specify option

invroc(.5) to view how the false-positive rates vary at a ROC value of 0.5.
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. rocregplot, at1(xf=10.01, xl=5.5, xd=.5) at2(xf=10.01, xl=6.5, xd=4) invroc(.5)
False-positive rate

Status : d
Classifier: nsnr

Under covariates:
at1

xf 10.01
xl 5.5
xd .5

invROC Coefficient Std. err. [95% conf. interval]

.5 .0578036 .0198626 .0188736 .0967336

Under covariates:
at2

xf 10.01
xl 6.5
xd 4

invROC Coefficient Std. err. [95% conf. interval]

.5 .0055624 .0032645 -.0008359 .0119607
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At a ROC value of 0.5, the false-positive rates for both curves are small and close to one another.
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Technical note
We can use the testnl command to support our visual observations with statistical inference. We

use it to perform a Wald test of the null hypothesis that the two ROC curves just rendered are equal at a

false-positive rate of 0.7.

. testnl normal(_b[i_cons]+10.01*_b[xf]+5.5*_b[xl]
> +.5*_b[xd]+_b[s_cons]*invnormal(.7)) =
> normal(_b[i_cons]+10.01*_b[xf]+6.5*_b[xl]
> + 4*_b[xd]+_b[s_cons]*invnormal(.7))
(1) normal(_b[i_cons]+10.01*_b[xf]+5.5*_b[xl] +.5*_b[xd]+_b[s_cons]*invnormal(.7)) =

normal(_b[i_cons]+10.01*_b[xf]+6.5*_b[xl] + 4*_b[xd]+_b[s_cons]*invnormal(.7))
chi2(1) = 4.53

Prob > chi2 = 0.0332

The test is significant at the 0.05 level, and thus we find that the two curves are significantly different.

Now, we will use testnl again to test equality of the false-positive rates for each curve with a ROC value
of 0.5. The inverse ROC formula used is derived in Methods and formulas.

. testnl normal((invnormal(.5)-(_b[i_cons]+10.01*_b[xf]+5.5*_b[xl]+.5*_b[xd]))
> /_b[s_cons]) =
> normal((invnormal(.5)-(_b[i_cons]+10.01*_b[xf]+6.5*_b[xl]+4*_b[xd]))
> /_b[s_cons])
(1) normal((invnormal(.5)-(_b[i_cons]+10.01*_b[xf]+5.5*_b[xl]+.5*_b[xd]))

> /_b[s_cons]) = normal((invnormal(.5)-(_b[i_cons]+10.01*_b[xf]+6.5*_b[xl]
> +4*_b[xd])) /_b[s_cons])

chi2(1) = 8.01
Prob > chi2 = 0.0046

We again reject the null hypothesis that the two curves are equal at the 0.05 level.

The model of our last example was also fit using the estimating equations method in example 7 of

[R] rocreg. We will demonstrate rocregplot after that model fit as well.
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Example 3: Parametric ROC, invROC, and ROC value
In example 2, we used rocregplot after a maximum likelihood model fit of the ROC curve for clas-

sifier nsnr and covariates frequency (xf), intensity (xl), and hearing loss severity (xd). The data were
obtained from the audiology study described in Stover et al. (1996). In example 7 of [R] rocreg, we fit

the model using the estimating equations method of Alonzo and Pepe (2002). Under this method, boot-

strap resampling is used to make inferences. We saved 50 bootstrap replications in nsnrf.dta, which
we re-create below.

We use rocregplot to draw the ROC curves for nsnr under the covariate values xf = 10.01,
xl = 5.5, and xd = .5, and xf = 10.01, xl = 6.5, and xd = 4. The at#() options are used to spec-

ify the covariate values. The previous bootstrap results are made available to rocregplot with the

bfile() option. As before, we will specify 0.2 and 0.7 as false-positive rates in the roc() option and
0.5 as a ROC value in the invroc() option. We do not specify btype() and thus our graph will contain
normal-based bootstrap confidence bands, the default.

. use https://www.stata-press.com/data/r18/dp
(Stover - DPOAE test data)
. rocreg d nsnr, probit ctrlcov(xf xl) roccov(xf xl xd) cluster(id)
> nobstrata ctrlfprall bseed(156385) breps(50) bsave(nsnrf, replace)
(output omitted )

. rocregplot, at1(xf=10.01, xl=5.5, xd=.5) at2(xf=10.01, xl=6.5, xd=4)
> roc(.7) bfile(nsnrf)
ROC curve

Status : d
Classifier: nsnr

Under covariates:
at1

xf 10.01
xl 5.5
xd .5

(Replications based on 208 clusters in id)

Observed Bootstrap
ROC coefficient Bias std. err. [95% conf. interval]

.7 .9835816 .0026679 .0133583 .9573998 1.009763 (N)
.9475966 .9983087 (P)
.9453403 .9983087 (BC)

Under covariates:
at2

xf 10.01
xl 6.5
xd 4

(Replications based on 208 clusters in id)

Observed Bootstrap
ROC coefficient Bias std. err. [95% conf. interval]

.7 .999428 .0001748 .0007784 .9979024 1.000954 (N)
.9975154 .9999899 (P)
.9965358 .9999899 (BC)
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As shown in the graph, we find that the ROC values at a false-positive rate of 0.7 are close together, as

they were in the maximum likelihood estimation in example 2. We now repeat this process for the lower

false-positive rate of 0.2 by using the roc(.2) option.

. rocregplot, at1(xf=10.01, xl=5.5, xd=.5) at2(xf=10.01, xl=6.5, xd=4)
> roc(.2) bfile(nsnrf)
ROC curve

Status : d
Classifier: nsnr

Under covariates:
at1

xf 10.01
xl 5.5
xd .5

(Replications based on 208 clusters in id)

Observed Bootstrap
ROC coefficient Bias std. err. [95% conf. interval]

.2 .7652956 -.006687 .0624187 .6429572 .8876341 (N)
.6654987 .8837934 (P)
.6444601 .8837934 (BC)

Under covariates:
at2

xf 10.01
xl 6.5
xd 4

(Replications based on 208 clusters in id)

Observed Bootstrap
ROC coefficient Bias std. err. [95% conf. interval]

.2 .9672505 -.0015124 .0162785 .9353452 .9991558 (N)
.9372331 .9976121 (P)
.9218445 .9926328 (BC)
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The ROC values are slightly higher at the false-positive rate of 0.2 than they were in the maximum

likelihood estimation in example 2. To see if the false-positive rates differ at a ROC value of 0.5, we

specify the invroc(.5) option.

. rocregplot, at1(xf=10.01, xl=5.5, xd=.5) at2(xf=10.01, xl=6.5, xd=4)
> invroc(.5) bfile(nsnrf)
False-positive rate

Status : d
Classifier: nsnr

Under covariates:
at1

xf 10.01
xl 5.5
xd .5

(Replications based on 208 clusters in id)

Observed Bootstrap
invROC coefficient Bias std. err. [95% conf. interval]

.5 .0615144 .0012744 .0209516 .0204499 .1025789 (N)
.0234184 .09672 (P)
.0234184 .09672 (BC)

Under covariates:
at2

xf 10.01
xl 6.5
xd 4

(Replications based on 208 clusters in id)

Observed Bootstrap
invROC coefficient Bias std. err. [95% conf. interval]

.5 .0043298 -.000139 .003835 -.0031867 .0118463 (N)
.0002028 .0136293 (P)
.0012615 .0192129 (BC)
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The point estimates of the ROC value and false-positive rate are both computed directly using the point

estimates of the ROC coefficients. Calculation of the standard errors and confidence intervals is slightly

more complicated. Essentially, we have stored a sample of our ROC covariate coefficient estimates in

nsnrf.dta. We then calculate the ROC value or false-positive rate estimates using each set of coefficient

estimates, resulting in a sample of point estimates. Then, the bootstrap standard error and confidence

intervals are calculated based on these bootstrap samples. Details of the computation of the standard

error and percentile confidence intervals can be found in Methods and formulas and in [R] bootstrap.

Asmentioned in [R] rocreg, 50 resamples is a reasonable lower bound for obtaining bootstrap standard

errors (Mooney and Duval 1993). However, it may be too low for obtaining percentile and bias-corrected

confidence intervals. Normal-based confidence intervals are valid when the bootstrap distribution ex-

hibits normality. See [R] bootstrap postestimation for more details.

We can assess the normality of the bootstrap distribution by using a normal probability plot. Stata

provides this in the pnorm command (see [R] Diagnostic plots). We will use nsnrf.dta to draw a

normal probability plot for the ROC estimate corresponding to a false-positive rate of 0.2. We use the

covariate values xf = 10.01, xl = 6.5, and xd = 4.

. use nsnrf
(bootstrap: rocregstat)
. generate double rocp2 = nsnr_b_i_cons + 10.01*nsnr_b_xf + 6.5*nsnr_b_xl +
> 4*nsnr_b_xd+nsnr_b_s_cons*invnormal(.2)
. replace rocp2 = normal(rocp2)
(50 real changes made)
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. pnorm rocp2
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The closeness of the points to the horizontal line on the normal probability plot shows us that the

bootstrap distribution is approximately normal. So it is reasonable to use the normal-based confidence

intervals for ROC at a false-positive rate of 0.2 under covariate values xf = 10.01, xl = 6.5, and xd = 4.

Plotting marginal ROC curves
The rocregplot command can also be used after fitting models with no covariates. We will demon-

strate this with an empirical ROC model fit in [R] rocreg.

Example 4: Nonparametric ROC
We run rocregplot after fitting the single-classifier, empirical ROC model shown in example 1 of

[R] rocreg. There we empirically predicted the ROC curve of the classifier rating for the true status

variable disease from the Hanley and McNeil (1982) data. The rocreg command saves variables

roc rating and fpr rating, which give the ROC values and false-positive rates, respectively, for

every value of rating. These variables are used by rocregplot to render the ROC curve.
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. use https://www.stata-press.com/data/r18/hanley, clear
(Tomographic images)
. rocreg disease rating, noboot
Nonparametric ROC estimation Number of obs = 109
Control standardization: empirical
ROC method : empirical
Area under the ROC curve

Status : disease
Classifier: rating

Observed Bootstrap
AUC coefficient Bias std. err. [95% conf. interval]

.8407708 . . . . (N)
. . (P)
. . (BC)

. rocregplot
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We end our discussion of rocregplot by showing its use after a marginal probit model.

Example 5: Maximum likelihood ROC, invROC, and ROC value
In example 13 of [R] rocreg, we fit a maximum-likelihood probit model to each classifier of the

fictitious dataset generated from Hanley and McNeil (1983).

We use rocregplot after the original rocreg command to draw the ROC curves for classifiers mod1
and mod3. This is accomplished by specifying the two variables in the classvars() option. We will use

the roc() option to obtain confidence intervals for ROC values at false-positive rates of 0.15 and 0.75.

We will specify the invroc() option to obtain false-positive rate confidence intervals for a ROC value

of 0.8. As mentioned previously, these are Wald confidence intervals.
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First, we will view results for a false-positive rate of 0.75.

. use https://www.stata-press.com/data/r18/ct2, clear
(Reconstruction of CT images)
. rocreg status mod1 mod2 mod3, probit ml
(output omitted )

. rocregplot, classvars(mod1 mod3) roc(.75)
ROC curve

Status : status
Classifier: mod1

ROC Coefficient Std. err. [95% conf. interval]

.75 .9931655 .0069689 .9795067 1.006824

Status : status
Classifier: mod3

ROC Coefficient Std. err. [95% conf. interval]

.75 .9953942 .0043435 .9868811 1.003907
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We see that the estimates for each of the two ROC curves are close. Because this is a marginal model,

the actual false-positive rate and the true-positive rate for each observation are plotted in the graph. The

added point estimates of the ROC value at false-positive rate 0.75 are shown as diamond (mod3) and circle
(mod1) symbols in the upper-right-hand corner of the graph at FPR = 0.75. Confidence bands are also

plotted at FPR = 0.75 but are so narrow that they are barely noticeable. Under both classifiers, the ROC

value at 0.75 is very high. Now, we will compare these results to those with a lower false-positive rate

of 0.15.
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. rocregplot, classvars(mod1 mod3) roc(.15)
ROC curve

Status : status
Classifier: mod1

ROC Coefficient Std. err. [95% conf. interval]

.15 .7934935 .0801363 .6364292 .9505578

Status : status
Classifier: mod3

ROC Coefficient Std. err. [95% conf. interval]

.15 .8888596 .0520118 .7869184 .9908008
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The ROC value for the false-positive rate of 0.15 is more separated in the two classifiers. Here we see

that mod3 has a larger ROC value than mod1 for this false-positive rate, but the confidence intervals of the
estimates overlap.
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By specifying invroc(.8), we obtain invROC confidence intervals corresponding to a ROC value of
0.8.

. rocregplot, classvars(mod1 mod3) invroc(.8)
False-positive rate

Status : status
Classifier: mod1

invROC Coefficient Std. err. [95% conf. interval]

.8 .1556435 .069699 .019036 .2922509

Status : status
Classifier: mod3

invROC Coefficient Std. err. [95% conf. interval]

.8 .0661719 .045316 -.0226458 .1549896
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For estimation of the false-positive rate at a ROC value of 0.8, the confidence intervals overlap. Both

classifiers require only a small false-positive rate to achieve a ROC value of 0.8.

Methods and formulas
Details on computation of the nonparametric ROC curve and the estimation of the parametric ROC

curve model coefficients can be found in [R] rocreg. Here we describe how to estimate the ROC values

and false-positive rates of a parametric model. The cumulative distribution function 𝑔 can be the standard
normal cumulative distribution function.

Methods and formulas are presented under the following headings:

Parametric model: Summary parameter definition
Maximum likelihood estimation
Estimating equations estimation
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Parametric model: Summary parameter definition
Conditioning on covariates x, we have the following ROC curve model:

ROC (𝑢) = 𝑔{x′β + 𝛼𝑔−1 (𝑢)}

x can be constant, and β = 𝛽0, the constant intercept.

With simple algebra, we can solve this equation to obtain the false-positive rate value 𝑢 for a ROC

value of 𝑟:
𝑢 = 𝑔 [{𝑔−1 (𝑟) − x′β}𝛼−1]

Maximum likelihood estimation
We allow maximum likelihood estimation under probit parametric models, so 𝑔 = Φ. The ROC value

and false-positive rate parameters all have closed-form expressions in terms of the covariate values x,

coefficient vectorβ, and slope parameter𝛼. Thus to estimate these two types of summary parameters, we
use the delta method (Oehlert 1992; Phillips and Park 1988). Particularly, we use the nlcom command
(see [R] nlcom) to implement the delta method.

Under maximum likelihood estimation, the coefficient estimates β̂ and slope estimate ̂𝛼 are asymp-

totically normal with variance matrix V. For convenience, we rename the parameter vector [β′, 𝛼] to the
𝑘-parameter vector θ = [𝜃1, . . . , 𝜃𝑘]. We will also explicitly refer to the conditioning of the ROC curve

by θ in its mention as ROC(𝑡,θ).

Under the delta method, the continuous scalar function of the estimate θ̂, 𝑓(θ̂) has asymptotic mean
𝑓(θ) and asymptotic covariance

V̂ar{𝑓(θ̂)} = fVf′

where f is the 1 × 𝑘 matrix of derivatives for which

f1𝑗 = 𝜕𝑓(θ)
𝜕𝜃𝑗

𝑗 = 1, . . . , 𝑘

The asymptotic covariance of 𝑓(θ̂) is estimated and then used in conjunction with 𝑓(θ̂) for further
inference, including Wald confidence intervals, standard errors, and hypothesis testing.

Estimating equations estimation
When we fit a model using the Alonzo and Pepe (2002) estimating equations method, we use the

bootstrap to perform inference on the ROC curve summary parameters. Each bootstrap sample provides

a sample of the coefficient estimates β and the slope estimates 𝛼. Using the formulas above, we can
obtain an estimate of the ROC value or false-positive rate for each resample.

By making these calculations, we obtain a bootstrap sample of our summary parameter estimate. We

then obtain bootstrap standard errors, normal approximation confidence intervals, percentile confidence

intervals, and bias-corrected confidence intervals using this bootstrap sample. Further details can be

found in [R] bootstrap.
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roctab — Nonparametric ROC analysis

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description
The above command is used to perform receiver operating characteristic (ROC) analyses with rating

and discrete classification data.

The two variables refvar and classvarmust be numeric. The reference variable indicates the true state

of the observation, such as diseased and nondiseased or normal and abnormal, and must be coded as 0

and 1. The rating or outcome of the diagnostic test or test modality is recorded in classvar, which must

be at least ordinal, with higher values indicating higher risk.

roctab performs nonparametric ROC analyses. By default, roctab calculates the area under the

ROC curve. Optionally, roctab can plot the ROC curve, display the data in tabular form, and produce

Lorenz-like plots.

See [R] rocfit for a command that fits maximum-likelihood ROC models.

Quick start
AUC, standard error, and CI for ROC curve of binary true state, true, as a function of classification

variable v
roctab true v

Also plot the ROC curve

roctab true v, graph summary

Same as above, but plot sensitivity versus specificity instead of the ROC curve

roctab true v, specificity summary

Exact binomial CI instead of asymptotic normal CI for AUC estimate

roctab true v, binomial

Gini and Pietra indices

roctab true v, lorenz

Menu
Statistics > Epidemiology and related > ROC analysis > Nonparametric ROC analysis without covariates

2706
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Syntax
roctab refvar classvar [ if ] [ in ] [weight ] [ , options ]

options Description

Main

lorenz report Gini and Pietra indices

binomial calculate exact binomial confidence intervals

nolabel display numeric codes rather than value labels

detail show details on sensitivity/specificity for each cutpoint

table display the raw data in a 2 × 𝑘 contingency table
bamber calculate standard errors by using the Bamber method

hanley calculate standard errors by using the Hanley method

graph graph the ROC curve

norefline suppress plotting the 45-degree reference line

summary report the area under the ROC curve

specificity graph sensitivity versus specificity

level(#) set confidence level; default is level(95)

Plot

plotopts(plot options) affect rendition of the ROC curve

Reference line

rlopts(cline options) affect rendition of the reference line

Add plots

addplot(plot) add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

collect is allowed; see [U] 11.1.10 Prefix commands.

fweights are allowed; see [U] 11.1.6 weight.

plot options Description

marker options change look of markers (color, size, etc.)

marker label options add marker labels; change look or position

cline options change look of the line

Options

� � �
Main �

lorenz specifies that the Gini and Pietra indices be reported. Optionally, graphwill plot the Lorenz-like
curve.

binomial specifies that exact binomial confidence intervals be calculated.

nolabel specifies that numeric codes be displayed rather than value labels.

detail outputs a table displaying the sensitivity, specificity, the percentage of subjects correctly classi-
fied, and two likelihood ratios for each possible cutpoint of classvar.
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table outputs a 2 × 𝑘 contingency table displaying the raw data.

bamber specifies that the standard error for the area under the ROC curve be calculated using the method
suggested by Bamber (1975). Otherwise, standard errors are obtained as suggested by DeLong, De-

Long, and Clarke-Pearson (1988).

hanley specifies that the standard error for the area under the ROC curve be calculated using the method
suggested by Hanley and McNeil (1982). Otherwise, standard errors are obtained as suggested by

DeLong, DeLong, and Clarke-Pearson (1988).

graph produces graphical output of the ROC curve. If lorenz is specified, graphical output of a Lorenz-
like curve will be produced.

norefline suppresses plotting the 45-degree reference line from the graphical output of the ROC curve.

summary reports the area under the ROC curve, its standard error, and its confidence interval. If lorenz
is specified, Lorenz indices are reported. This option is needed only when also specifying graph.

specificity produces a graph of sensitivity versus specificity instead of sensitivity versus

(1 − specificity). specificity implies graph.

level(#) specifies the confidence level, as a percentage, for the confidence intervals. The default is

level(95) or as set by set level; see [R] level.

� � �
Plot �

plotopts(plot options) affects the rendition of the plotted ROC curve—the curve’s plotted points

connected by lines. The plot options can affect the size and color of markers, whether and how

the markers are labeled, and whether and how the points are connected; see [G-3] marker options,

[G-3] marker label options, and [G-3] cline options.

� � �
Reference line �

rlopts(cline options) affects the rendition of the reference line; see [G-3] cline options.

� � �
Add plots �

addplot(plot) provides a way to add other plots to the generated graph; see [G-3] addplot option.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see

[G-3] saving option).

Remarks and examples
Remarks are presented under the following headings:

Introduction
Nonparametric ROC curves
Lorenz-like curves
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Introduction
The roctab command provides nonparametric estimation of the ROC for a given classifier and true-

status reference variable. The Lorenz curve functionality of roctab, which provides an alternative to
standard ROC analysis, is discussed in Lorenz-like curves.

See Pepe (2003) for a discussion of ROC analysis. Pepe has posted Stata datasets and programs used

to reproduce results presented in the book (https://www.stata.com/bookstore/pepe.html).

Nonparametric ROC curves
The points on the nonparametric ROC curve are generated using each possible outcome of the diag-

nostic test as a classification cutpoint and computing the corresponding sensitivity and 1 − specificity.

These points are then connected by straight lines, and the area under the resulting ROC curve is computed

using the trapezoidal rule.

Example 1
Hanley and McNeil (1982) presented data from a study in which a reviewer was asked to classify,

using a five-point scale, a random sample of 109 tomographic images from patients with neurological

problems. The rating scale was as follows: 1= definitely normal, 2= probably normal, 3= questionable,

4 = probably abnormal, and 5 = definitely abnormal. The true disease status was normal for 58 of the

patients and abnormal for the remaining 51 patients.

Here we list 9 of the 109 observations:

. use https://www.stata-press.com/data/r18/hanley
(Tomographic images)
. list disease rating in 1/9

disease rating

1. 1 5
2. 0 1
3. 1 5
4. 0 4
5. 0 1

6. 0 3
7. 1 5
8. 0 5
9. 0 1

For each observation, disease identifies the true disease status of the subject (0= normal, 1= abnor-

mal), and rating contains the classification value assigned by the reviewer.

https://www.stata.com/bookstore/pepe.html
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We can use roctab to calculate and plot the nonparametric ROC curve by specifying both the summary
and graph options. By also specifying the table option, we obtain a contingency table summarizing
our dataset.

. roctab disease rating, table graph summary
True

disease
status of rating
subject 1 2 3 4 5 Total

0 33 6 6 11 2 58
1 3 2 2 11 33 51

Total 36 8 8 22 35 109
ROC Asymptotic normal

Obs area Std. err. [95% conf. interval]

109 0.8932 0.0307 0.83295 0.95339

0.00

0.25

0.50

0.75

1.00

S
en

si
tiv

ity

0.00 0.25 0.50 0.75 1.00
1 - specificity

Area under ROC curve = 0.8932

By default, roctab reports the area under the curve, its standard error, and its confidence interval.
The graph option can be used to plot the ROC curve.

The ROC curve is plotted by computing the sensitivity and specificity using each value of the rating

variable as a possible cutpoint. A point is plotted on the graph for each of the cutpoints. These plotted

points are joined by straight lines to form the ROC curve, and the area under the ROC curve is computed

using the trapezoidal rule.
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We can tabulate the computed sensitivities and specificities for each of the possible cutpoints by

specifying detail.

. roctab disease rating, detail
Detailed report of sensitivity and specificity

Correctly
Cutpoint Sensitivity Specificity classified LR+ LR-

( >= 1 ) 100.00% 0.00% 46.79% 1.0000
( >= 2 ) 94.12% 56.90% 74.31% 2.1835 0.1034
( >= 3 ) 90.20% 67.24% 77.98% 2.7534 0.1458
( >= 4 ) 86.27% 77.59% 81.65% 3.8492 0.1769
( >= 5 ) 64.71% 96.55% 81.65% 18.7647 0.3655
( > 5 ) 0.00% 100.00% 53.21% 1.0000

ROC Asymptotic normal
Obs area Std. err. [95% conf. interval]

109 0.8932 0.0307 0.83295 0.95339

Each cutpoint in the table indicates the ratings used to classify tomographs as being from an abnormal

subject. For example, the first cutpoint (>= 1) indicates that all tomographs rated as 1 or greater are
classified as coming from abnormal subjects. Because all tomographs have a rating of 1 or greater, all

are considered abnormal. Consequently, all abnormal cases are correctly classified (sensitivity= 100%),

but none of the normal patients is classified correctly (specificity= 0%). For the second cutpoint (>=2),
tomographs with ratings of 1 are classified as normal, and those with ratings of 2 or greater are classified

as abnormal. The resulting sensitivity and specificity are 94.12% and 56.90%, respectively. Using this

cutpoint, we correctly classified 74.31% of the 109 tomographs. Similar interpretations can be used on

the remaining cutpoints. As mentioned, each cutpoint corresponds to a point on the nonparametric ROC

curve. The first cutpoint (>=1) corresponds to the point at (1,1), and the last cutpoint (> 5) corresponds
to the point at (0,0).

detail also reports two likelihood ratios suggested by Choi (1998): the likelihood ratio for a positive
test result (LR+) and the likelihood ratio for a negative test result (LR–). The LR+ is the ratio of the

probability of a positive test among the truly positive subjects to the probability of a positive test among

the truly negative subjects. The LR– is the ratio of the probability of a negative test among the truly

positive subjects to the probability of a negative test among the truly negative subjects. Choi points out

that LR+ corresponds to the slope of the line from the origin to the point on the ROC curve determined by

the cutpoint. Similarly, LR– corresponds to the slope from the point (1,1) to the point on the ROC curve

determined by the cutpoint.
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By default, roctab calculates the standard error for the area under the curve by using an algorithm
suggested by DeLong, DeLong, and Clarke-Pearson (1988) and asymptotic normal confidence intervals.

Optionally, standard errors based on methods suggested by Bamber (1975) or Hanley andMcNeil (1982)

can be computed by specifying bamber or hanley, respectively, and an exact binomial confidence in-
terval can be obtained by specifying binomial.

. roctab disease rating, bamber
ROC Bamber Asymptotic normal

Obs area std. err. [95% conf. interval]

109 0.8932 0.0306 0.83317 0.95317
. roctab disease rating, hanley binomial

ROC Hanley Binomial exact
Obs area std. err. [95% conf. interval]

109 0.8932 0.0320 0.81559 0.94180

Lorenz-like curves
For applications where it is known that the risk status increases or decreases monotonically with

increasing values of the diagnostic test, the ROC curve and associated indices are useful in assessing

the overall performance of a diagnostic test. When the risk status does not vary monotonically with

increasing values of the diagnostic test, however, the resulting ROC curve can be nonconvex and its

indices can be unreliable. For these situations, Lee (1999) proposed an alternative to the ROC analysis

based on Lorenz-like curves and the associated Pietra and Gini indices.

Lee (1999) mentions at least three specific situations where results from Lorenz curves are superior

to those obtained from ROC curves: 1) a diagnostic test with similar means but very different standard

deviations in the abnormal and normal populations, 2) a diagnostic test with bimodal distributions in

either the normal or abnormal population, and 3) a diagnostic test distributed symmetrically in the normal

population and skewed in the abnormal.

When the risk status increases or decreases monotonically with increasing values of the diagnostic

test, the ROC and Lorenz curves yield interchangeable results.
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Example 2
To illustrate the use of the lorenz option, we constructed a fictitious dataset that yields results similar

to those presented in Table III of Lee (1999). The data assume that a 12-point rating scale was used to

classify 442 diseased and 442 healthy subjects. We list a few of the observations.

. use https://www.stata-press.com/data/r18/lorenz, clear

. list in 1/7, noobs sep(0)

disease class pop

0 5 66
1 11 17
0 6 85
0 3 19
0 10 19
0 2 7
1 4 16

The data consist of 24 observations: 12 observations from diseased individuals and 12 from nondis-

eased individuals. Each observation corresponds to one of the 12 classification values of the rating-scale

variable, class. The number of subjects represented by each observation is given by the pop variable,
making this a frequency-weighted dataset. The data were generated assuming a binormal distribution

of the latent variable with similar means for the normal and abnormal populations but with the standard

deviation for the abnormal population five times greater than that of the normal population.

. roctab disease class [fweight=pop], graph summary
ROC Asymptotic normal

Obs area Std. err. [95% conf. interval]

884 0.5774 0.0215 0.53517 0.61959

0.00

0.25

0.50

0.75

1.00

S
en

si
tiv

ity

0.00 0.25 0.50 0.75 1.00
1 - specificity

Area under ROC curve = 0.5774

The resulting ROC curve is nonconvex or, as termed by Lee, “wiggly”. Lee argues that for this and

similar situations, the Lorenz curve and indices are preferred.
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. roctab disease class [fweight=pop], lorenz summary graph
Lorenz curve

Pietra index = 0.6493
Gini index = 0.7441

0

.1

.2

.3

.4

.5

.6

.7

.8

.9

1

C
um

ul
at

iv
e 

%
 o

f d
is

ea
se

=
1

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1
Cumulative % of disease=0

Lorenz curve

Like ROC curves, a more bowed Lorenz curve suggests a better diagnostic test. This bowedness is

quantified by the Pietra index, which is geometrically equivalent to twice the largest triangle that can be

inscribed in the area between the curve and the diagonal line, and the Gini index, which is equivalent

to twice the area between the Lorenz curve and the diagonal. Lee (1999) provides several additional

interpretations for the Pietra and Gini indices.

Stored results
roctab stores the following in r():
Scalars

r(N) number of observations

r(se) standard error for the area under the ROC curve

r(lb) lower bound of CI for the area under the ROC curve

r(ub) upper bound of CI for the area under the ROC curve

r(level) confidence level

r(area) area under the ROC curve

r(pietra) Pietra index

r(gini) Gini index

Macros

r(cutpoints) description of cutpoints (detail only)
Matrices

r(detail) matrix with details on sensitivity and specificity for each cutpoint (detail only)

Methods and formulas
Assume that we applied a diagnostic test to each of 𝑁𝑛 normal and 𝑁𝑎 abnormal subjects. Further

assume that the higher the outcome value of the diagnostic test, the higher the risk of the subject being ab-

normal. Let ̂𝜃 be the estimated area under the curve, and let𝑋𝑖, 𝑖 = 1, 2, . . . , 𝑁𝑎 and𝑌𝑗, 𝑗 = 1, 2, . . . , 𝑁𝑛
be the values of the diagnostic test for the abnormal and normal subjects, respectively.
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The points on the nonparametric ROC curve are generated using each possible outcome of the diag-

nostic test as a classification cutpoint and computing the corresponding sensitivity and 1 − specificity.

These points are then connected by straight lines, and the area under the resulting ROC curve is computed

using the trapezoidal rule.

The default standard error for the area under the ROC curve is computed using the algorithm described

by DeLong, DeLong, and Clarke-Pearson (1988). For each abnormal subject, 𝑖, define

𝑉10(𝑋𝑖) = 1
𝑁𝑛

𝑁𝑛

∑
𝑗=1

𝜓(𝑋𝑖, 𝑌𝑗)

and for each normal subject, 𝑗, define

𝑉01(𝑌𝑗) = 1
𝑁𝑎

𝑁𝑎

∑
𝑖=1

𝜓(𝑋𝑖, 𝑌𝑗)

where

𝜓(𝑋, 𝑌 ) =
⎧{
⎨{⎩

1 𝑌 < 𝑋
1
2 𝑌 = 𝑋
0 𝑌 > 𝑋

Define

𝑆10 = 1
𝑁𝑎 − 1

𝑁𝑎

∑
𝑖=1

{𝑉10(𝑋𝑖) − ̂𝜃}2

and

𝑆01 = 1
𝑁𝑛 − 1

𝑁𝑛

∑
𝑗=1

{𝑉01(𝑌𝑗) − ̂𝜃}2

The variance of the estimated area under the ROC curve is given by

var( ̂𝜃) = 1
𝑁𝑎

𝑆10 + 1
𝑁𝑛

𝑆01

The hanley standard error for the area under the ROC curve is computed using the algorithm described

by Hanley and McNeil (1982). It requires the calculation of two quantities: 𝑄1 is Pr(two randomly

selected abnormal subjects will both have a higher score than a randomly selected normal subject), and

𝑄2 is Pr(one randomly selected abnormal subject will have a higher score than any two randomly selected

normal subjects). The Hanley and McNeil variance of the estimated area under the ROC curve is

var( ̂𝜃) =
̂𝜃(1 − ̂𝜃) + (𝑁𝑎 − 1)(𝑄1 − ̂𝜃2) + (𝑁𝑛 − 1)(𝑄2 − ̂𝜃2)

𝑁𝑎𝑁𝑛
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The bamber standard error for the area under the ROC curve is computed using the algorithm described

by Bamber (1975). For any two 𝑌 values, 𝑌𝑗 and 𝑌𝑘, and any 𝑋𝑖 value, define

𝑏𝑦𝑦𝑥 = 𝑝(𝑌𝑗, 𝑌𝑘 < 𝑋𝑖) + 𝑝(𝑋𝑖 < 𝑌𝑗, 𝑌𝑘) − 2𝑝(𝑌𝑗 < 𝑋𝑖 < 𝑌𝑘)

and similarly, for any two 𝑋 values, 𝑋𝑖 and 𝑋𝑙, and any 𝑌𝑗 value, define

𝑏𝑥𝑥𝑦 = 𝑝(𝑋𝑖, 𝑋𝑙 < 𝑌𝑗) + 𝑝(𝑌𝑗 < 𝑋𝑖, 𝑋𝑙) − 2𝑝(𝑋𝑖 < 𝑌𝑗 < 𝑋𝑙)

Bamber’s unbiased estimate of the variance for the area under the ROC curve is

var( ̂𝜃) = 1
4

(𝑁𝑎 −1)(𝑁𝑛 −1){𝑝(𝑋 ≠ 𝑌 )+(𝑁𝑎 −1)𝑏𝑥𝑥𝑦 +(𝑁𝑛 −1)𝑏𝑦𝑦𝑥 −4(𝑁𝑎 +𝑁𝑛 −1)( ̂𝜃−0.5)2}

Asymptotic confidence intervals are constructed and reported by default, assuming a normal distri-

bution for the area under the ROC curve.

Exact binomial confidence intervals are calculated as described in [R] ci, with 𝑝 equal to the area

under the ROC curve.
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Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Acknowledgment References Also see

Description
rreg performs one version of robust regression of depvar on indepvars.

Also see Robust standard errors in [R] regress for standard regression with robust variance estimates

and [R] qreg for quantile (including median) regression.

Quick start
Robust regression of y on x

rreg y x

Add a categorical covariate a using factor-variable syntax
rreg y x i.a

Same as above, but set the tuning parameter to 8

rreg y x i.a, tune(8)

Generate a new variable wvar containing the final weight for each observation
rreg y x i.a, genwt(wvar)

Set confidence level to 99%

rreg y x i.a, level(99)

Menu
Statistics > Linear models and related > Other > Robust regression

2718
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Syntax
rreg depvar [ indepvars ] [ if ] [ in ] [ , options ]

options Description

Model

tune(#) use # as the biweight tuning constant; default is tune(7)

Reporting

level(#) set confidence level; default is level(95)
genwt(newvar) create newvar containing the weights assigned to each observation

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Optimization

optimization options control the optimization process; seldom used

graph graph weights during convergence

coeflegend display legend instead of statistics

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.

by, collect, mfp, mi estimate, rolling, and statsby are allowed; see [U] 11.1.10 Prefix commands.

coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

tune(#) is the biweight tuning constant. The default is tune(7), meaning seven times the median

absolute deviation from the median residual; see Methods and formulas. Lower tuning constants

downweight outliers rapidly but may lead to unstable estimates (less than 6 is not recommended).

Higher tuning constants produce milder downweighting.

� � �
Reporting �

level(#); see [R] Estimation options.

genwt(newvar) creates the new variable newvar containing the weights assigned to each observation.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Optimization �

optimization options: iterate(#), tolerance(#), [no]log. iterate() specifies themaximumnum-

ber of iterations; iterations stop when the maximum change in weights drops below tolerance();
and log/nolog specifies whether to show the iteration log (see set iterlog in [R] set iter). These
options are seldom used.
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graph allows you to graphically watch the convergence of the iterative technique. The weights obtained
from the most recent round of estimation are graphed against the weights obtained from the previous

round.

The following option is available with rreg but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

Remarks and examples
rreg first performs an initial screening based on Cook’s distance> 1 to eliminate gross outliers

before calculating starting values and then performs Huber iterations followed by biweight iterations, as

suggested by Li (1985).

Example 1
We wish to examine the relationship between mileage rating, weight, and location of manufacture for

the 74 cars in the auto.dta. As a point of comparison, we begin by fitting an ordinary regression:

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. regress mpg weight foreign

Source SS df MS Number of obs = 74
F(2, 71) = 69.75

Model 1619.2877 2 809.643849 Prob > F = 0.0000
Residual 824.171761 71 11.608053 R-squared = 0.6627

Adj R-squared = 0.6532
Total 2443.45946 73 33.4720474 Root MSE = 3.4071

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

weight -.0065879 .0006371 -10.34 0.000 -.0078583 -.0053175
foreign -1.650029 1.075994 -1.53 0.130 -3.7955 .4954422
_cons 41.6797 2.165547 19.25 0.000 37.36172 45.99768

We now compare this with the results from rreg:

. rreg mpg weight foreign
Huber iteration 1: Maximum difference in weights = .80280176
Huber iteration 2: Maximum difference in weights = .2915438
Huber iteration 3: Maximum difference in weights = .08911171
Huber iteration 4: Maximum difference in weights = .02697328

Biweight iteration 5: Maximum difference in weights = .29186818
Biweight iteration 6: Maximum difference in weights = .11988101
Biweight iteration 7: Maximum difference in weights = .03315872
Biweight iteration 8: Maximum difference in weights = .00721325
Robust regression Number of obs = 74

F( 2, 71) = 168.32
Prob > F = 0.0000

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

weight -.0063976 .0003718 -17.21 0.000 -.007139 -.0056562
foreign -3.182639 .627964 -5.07 0.000 -4.434763 -1.930514
_cons 40.64022 1.263841 32.16 0.000 38.1202 43.16025
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Note the large change in the foreign coefficient.

Technical note
It would have been better if we had fit the previous robust regression by typing rreg mpg weight

foreign, genwt(w). The new variable, w, would then contain the estimated weights. Let’s pretend that
we did this:

. rreg mpg weight foreign, genwt(w)
(output omitted )

. summarize w, detail
Robust Regression Weight

Percentiles Smallest
1% 0 0
5% .0442957 0
10% .4674935 0 Obs 74
25% .8894815 .0442957 Sum of wgt. 74
50% .9690193 Mean .8509966

Largest Std. dev. .2746451
75% .9949395 .9996715
90% .9989245 .9996953 Variance .0754299
95% .9996715 .9997343 Skewness -2.287952
99% .9998585 .9998585 Kurtosis 6.874605

We discover that 3 observations in our data were dropped altogether (they have weight 0). We could

further explore our data:

. sort w

. list make mpg weight w if w <.467, sep(0)

make mpg weight w

1. Datsun 210 35 2,020 0
2. Subaru 35 2,050 0
3. VW Diesel 41 2,040 0
4. Plym. Arrow 28 3,260 .04429567
5. Cad. Seville 21 4,290 .08241943
6. Toyota Corolla 31 2,200 .10443129
7. Olds 98 21 4,060 .28141296

Being familiar with the automobile data, we immediately spotted two things: the VW is the only diesel

car in our data, and the weight recorded for the Plymouth Arrow is incorrect.
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Example 2
If we specify no explanatory variables, rreg produces a robust estimate of the mean:

. rreg mpg
Huber iteration 1: Maximum difference in weights = .64471879
Huber iteration 2: Maximum difference in weights = .05098336
Huber iteration 3: Maximum difference in weights = .0099887

Biweight iteration 4: Maximum difference in weights = .25197391
Biweight iteration 5: Maximum difference in weights = .00358606
Robust regression Number of obs = 74

F( 0, 73) = 0.00
Prob > F = .

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

_cons 20.68825 .641813 32.23 0.000 19.40912 21.96738

The estimate is given by the coefficient on cons. The mean is 20.69 with an estimated standard error
of 0.6418. The 95% confidence interval is [ 19.4, 22.0 ]. By comparison, ci means (see [R] ci) gives us
the standard calculation:

. ci means mpg
Variable Obs Mean Std. err. [95% conf. interval]

mpg 74 21.2973 .6725511 19.9569 22.63769

Stata has an active user community working in the area of robust statistics. You may also be inter-

ested in robust estimators and outlier detection tools from Verardi and McCathie (2012), Verardi and

Dehon (2010), Jann (2010), and Verardi and Croux (2009), to name a few. See [R] ssc for how to install

community-contributed packages.
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Stored results
rreg stores the following in e():

Scalars

e(N) number of observations

e(mss) model sum of squares

e(df m) model degrees of freedom

e(rss) residual sum of squares

e(df r) residual degrees of freedom

e(r2) 𝑅2

e(r2 a) adjusted 𝑅2

e(F) 𝐹 statistic

e(rmse) root mean squared error

e(rank) rank of e(V)

Macros

e(cmd) rreg
e(cmdline) command as typed

e(depvar) name of dependent variable

e(genwt) variable containing the weights

e(title) title in estimation output

e(model) ols
e(properties) b V
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of the estimators

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas
See Berk (1990), Goodall (1983), and Rousseeuw and Leroy (1987) for a general description of the

issues and methods. Hamilton (1991a, 1992) provides a more detailed description of rreg and some

Monte Carlo evaluations.

rreg begins by fitting the regression (see [R] regress), calculating Cook’s 𝐷 (see [R] predict and

[R] regress postestimation), and excluding any observation for which 𝐷 > 1.

Thereafter, rreg works iteratively: it performs a regression, calculates case weights from absolute

residuals, and regresses again using those weights. Iterations stop when the maximum change in weights

drops below tolerance(). Weights derive from one of two weight functions, Huber weights and bi-

weights. Huber weights (Huber 1964) are used until convergence, and then, from that result, biweights

are used until convergence. The biweight was proposed by Beaton and Tukey (1974, 151–152) after
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the Princeton robustness study (Andrews et al. 1972) had compared various estimators. Both weighting

functions are used because Huber weights have problems dealing with severe outliers, whereas biweights

sometimes fail to converge or have multiple solutions. The initial Huber weighting should improve the

behavior of the biweight estimator.

In Huber weighting, cases with small residuals receive weights of 1; cases with larger residuals receive

gradually smaller weights. Let 𝑒𝑖 = 𝑦𝑖 −X𝑖b represent the 𝑖th-case residual. The 𝑖th scaled residual 𝑢𝑖 =
𝑒𝑖/𝑠 is calculated, where 𝑠 = 𝑀/0.6745 is the residual scale estimate and 𝑀 = med(|𝑒𝑖 −med(𝑒𝑖)|) is
the median absolute deviation from the median residual. Huber estimation obtains case weights:

𝑤𝑖 = {1 if |𝑢𝑖| ≤ 𝑐ℎ
𝑐ℎ/|𝑢𝑖| otherwise

rreg defines 𝑐ℎ = 1.345, so downweighting begins with cases whose absolute residual exceeds

(1.345/0.6745)𝑀 ≈ 2𝑀.

With biweights, all cases with nonzero residuals receive some downweighting, according to the

smoothly decreasing biweight function

𝑤𝑖 = {{1 − (𝑢𝑖/𝑐𝑏)2}2 if |𝑢𝑖| ≤ 𝑐𝑏
0 otherwise

where 𝑐𝑏 = 4.685 × tune()/7. Thus when tune() = 7, cases with absolute residuals of

(4.685/0.6745)𝑀 ≈ 7𝑀 or more are assigned 0 weight and thus are effectively dropped. Goodall (1983,

377) suggests using a value between 6 and 9, inclusive, for tune() in the biweight case and states that
performance is good between 6 and 12, inclusive.

The tuning constants 𝑐ℎ = 1.345 and 𝑐𝑏 = 4.685 (assuming tune() is set at the default 7) give rreg
about 95% of the efficiency of OLS when applied to data with normally distributed errors (Hamilton

1991b). Lower tuning constants downweight outliers more drastically (but give up Gaussian efficiency);

higher tuning constants make the estimator more like OLS.

Standard errors are calculated using the pseudovalues approach described in Street, Carroll, and Rup-

pert (1988).

Acknowledgment
The current version of rreg is due to the work of Lawrence Hamilton of the Department of Sociology

at the University of New Hampshire.
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Postestimation commands predict margins Also see

Postestimation commands
The following postestimation commands are available after rreg:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estimates cataloging estimation results

etable table of estimation results
∗ forecast dynamic forecasts and simulations

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

predict predictions and their SEs, residuals, etc.

predictnl point estimates, standard errors, testing, and inference for generalized predictions

pwcompare pairwise comparisons of parameters

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

∗forecast is not appropriate with mi estimation results.

2726
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predict

Description for predict
predict creates a new variable containing predictions such as linear predictions, standard errors,

residuals, and diagonal elements of the hat matrix.

Menu for predict
Statistics > Postestimation

Syntax for predict
predict [ type ] newvar [ if ] [ in ] [ , statistic ]

statistic Description

Main

xb linear prediction; the default

stdp standard error of the linear prediction

residuals residuals

hat diagonal elements of the hat matrix

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted
only for the estimation sample.

Options for predict

� � �
Main �

xb, the default, calculates the linear prediction.

stdp calculates the standard error of the linear prediction.

residuals calculates the residuals.

hat calculates the diagonal elements of the hat matrix. You must have run the rreg command with the
genwt() option.
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margins

Description for margins
margins estimates margins of response for linear predictions.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist ] [ , options ]
margins [marginlist ] , predict(statistic ...) [ options ]

statistic Description

xb linear prediction; the default

stdp not allowed with margins
residuals not allowed with margins
hat not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.

Also see
[R] rreg — Robust regression

[U] 20 Estimation and postestimation commands
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Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Acknowledgment References

Description
runtest tests whether the observations of varname are serially independent—that is, whether they

occur in a random order—by counting howmany runs there are above and below a threshold. By default,

the median is used as the threshold. A small number of runs indicates positive serial correlation; a large

number indicates negative serial correlation.

Quick start
Run test for the serial independence of the observations of v1

runtest v1

Use the mean of v1, rather than the median, as the threshold for counting runs
runtest v1, mean

Use 10 as the threshold for counting runs

runtest v1, threshold(10)

Same as above, but ignore any values of v1 equal to the threshold when counting runs
runtest v1, threshold(10) drop

Menu
Statistics > Nonparametric analysis > Tests of hypotheses > Test for random order

2729
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Syntax
runtest varname [ in ] [ , options ]

options Description

continuity continuity correction

drop ignore values equal to the threshold

split randomly split values equal to the threshold as above or below the

threshold; default is to count as below

mean use mean as threshold; default is median

threshold(#) assign arbitrary threshold; default is median

collect is allowed; see [U] 11.1.10 Prefix commands.

Options
continuity specifies a continuity correction that may be helpful in small samples. If there are fewer

than 10 observations either above or below the threshold, however, the tables in Swed and Eisenhart

(1943) provide more reliable critical values. By default, no continuity correction is used.

drop directs runtest to ignore any values of varname that are equal to the threshold valuewhen counting
runs and tabulating observations. By default, runtest counts a value as being above the threshold
when it is strictly above the threshold and as being below the threshold when it is less than or equal

to the threshold.

split directs runtest to randomly split values of varname that are equal to the threshold. In other

words, when varname is equal to threshold, a “coin” is flipped. If it comes up heads, the value is

counted as above the threshold. If it comes up tails, the value is counted as below the threshold.

mean directs runtest to tabulate runs above and below the mean rather than the median.

threshold(#) specifies an arbitrary threshold to use in counting runs. For example, if varname has

already been coded as a 0/1 variable, the median generally will not be a meaningful separating value.

Remarks and examples
runtest performs a nonparametric test of the hypothesis that the observations of varname occur in a

random order by counting howmany runs there are above and below a threshold. If varname is positively

serially correlated, it will tend to remain above or below its median for several observations in a row;

that is, there will be relatively few runs. If, on the other hand, varname is negatively serially correlated,

observations above the median will tend to be followed by observations below the median and vice versa;

that is, there will be relatively many runs.

By default, runtest uses the median for the threshold, and this is not necessarily the best choice.

If mean is specified, the mean is used instead of the median. If threshold(#) is specified, # is used.
Because runtest divides the data into two states—above and below the threshold—it is appropriate

for data that are already binary; for example, win or lose, live or die, rich or poor, etc. Such variables are

often coded as 0 for one state and 1 for the other. Here you should specify threshold(0) because, by
default, runtest separates the observations into those that are greater than the threshold and those that
are less than or equal to the threshold.
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Aswith most nonparametric procedures, the treatment of ties complicates the test. Observations equal

to the threshold value are ties and can be treated in one of three ways. By default, they are treated as if

they were below the threshold. If drop is specified, they are omitted from the calculation and the total

number of observations is adjusted. If split is specified, each is randomly assigned to the above- and
below-threshold groups. The random assignment is different each time the procedure is run unless you

specify the random-number seed; see [R] set seed.

Example 1
We can use runtest to check regression residuals for serial correlation.

. use https://www.stata-press.com/data/r18/run1

. scatter resid year, connect(l) yline(0) title(Regression residuals)
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The graph gives the impression that these residuals are positively correlated. Excursions above or below

zero—the natural threshold for regression residuals—tend to last for several observations. runtest can
evaluate the statistical significance of this impression.

. runtest resid, thresh(0)
N(resid <= 0) = 8
N(resid > 0) = 8

obs = 16
N(runs) = 5

z = -2.07
Prob>|z| = .04

There are five runs in these 16 observations. Using the normal approximation to the true distribution of

the number of runs, the five runs in this series are fewer than would be expected if the residuals were

serially independent. The 𝑝-value is 0.04, indicating a two-sided significant result at the 5% level. If

the alternative hypothesis is positive serial correlation, rather than any deviation from randomness, then

the one-sided 𝑝-value is 0.04/2 = 0.015. With so few observations, however, the normal approximation

may be inaccurate. (Tables compiled by Swed and Eisenhart list five runs as the 5% critical value for a

one-sided test.)

runtest is a nonparametric test. It ignores the magnitudes of the observations and notes only whether
the values are above or below the threshold. We can demonstrate this feature by reducing the information

about the regression residuals in this example to a 0/1 variable that indicates only whether a residual is

positive or negative.
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. generate byte sign = resid>0

. runtest sign, thresh(0)
N(sign <= 0) = 8
N(sign > 0) = 8

obs = 16
N(runs) = 5

z = -2.07
Prob>|z| = .04

As expected, runtest produces the same answer as before.

Technical note
The run test can also be used to test the null hypothesis that two samples are drawn from the same

underlying distribution. The run test is sensitive to differences in the shapes, as well as the locations, of

the empirical distributions.

Suppose, for example, that two different additives are added to the oil in 10 different cars during an

oil change. The cars are run until a viscosity test determines that another oil change is needed, and the

number of miles traveled between oil changes is recorded. The data are

. use https://www.stata-press.com/data/r18/additive, clear

. list

additive miles

1. 1 4024
2. 1 4756
3. 1 7993
4. 1 5025
5. 1 4188

6. 2 3007
7. 2 1988
8. 2 1051
9. 2 4478

10. 2 4232

To test whether the additives generate different distributions of miles between oil changes, we sort the

data by miles and then use runtest to see whether the marker for each additive occurs in random order:

. sort miles

. runtest additive, thresh(1)
N(additive <= 1) = 5
N(additive > 1) = 5

obs = 10
N(runs) = 4

z = -1.34
Prob>|z| = .18

Here the additives do not produce statistically different results.
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Technical note
A test that is related to the run test is the runs up-and-down test. In the latter test, the data are clas-

sified not by whether they lie above or below a threshold but by whether they are steadily increasing

or decreasing. Thus an unbroken string of increases in the variable of interest is counted as one run, as

is an unbroken string of decreases. According to Madansky (1988), the run test is superior to the runs

up-and-down test for detecting trends in the data, but the runs up-and-down test is superior for detecting

autocorrelation.

runtest can be used to perform a runs up-and-down test. Using the regression residuals from the

example above, we can perform a runtest on their first differences:

. use https://www.stata-press.com/data/r18/run1

. generate resid_D = resid - resid[_n-1]
(1 missing value generated)
. runtest resid_D, thresh(0)
N(resid_D <= 0) = 7
N(resid_D > 0) = 8

obs = 15
N(runs) = 6

z = -1.33
Prob>|z| = .18

Edgington (1961) has compiled a table of the small-sample distribution of the runs up-and-down

statistic, and this table is reprinted in Madansky (1988). For large samples, the 𝑧 statistic reported by

runtest is incorrect for the runs up-and-down test. Let 𝑁 be the number of observations (15 here), and

let 𝑟 be the number of runs (6). The expected number of runs in the runs up-and-down test is

𝜇𝑟 = 2𝑁 − 1
3

the variance is

𝜎2
𝑟 = 16𝑁 − 29

90
and the correct 𝑧 statistic is

̂𝑧 = 𝑟 − 𝜇𝑟
𝜎𝑟

Technical note
runtest will tolerate missing values at the beginning or end of a series, as occurred in the technical

note above (generating first differences resulted in a missing value for the first observation). runtest,
however, will issue an error message if there are any missing observations in the interior of the series

(in the portion covered by the in range qualifier). To perform the test anyway, simply drop the missing
observations before using runtest.
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Stored results
runtest stores the following in r():

Scalars

r(N) number of observations r(p) 𝑝-value of 𝑧
r(N below) number below the threshold r(z) 𝑧 statistic

r(N above) number above the threshold r(n runs) number of runs

r(mean) expected number of runs r(Var) variance of the number of runs

Methods and formulas
runtest begins by calculating the number of observations below the threshold, 𝑛0; the number of

observations above the threshold, 𝑛1; the total number of observations, 𝑁 = 𝑛0 +𝑛1; and the number of

runs, 𝑟. These statistics are always reported, so the exact tables of critical values in Swed and Eisenhart
(1943) may be consulted if necessary.

The expected number of runs under the null is

𝜇𝑟 = 2𝑛0𝑛1
𝑁

+ 1

the variance is

𝜎2
𝑟 = 2𝑛0𝑛1 (2𝑛0𝑛1 − 𝑁)

𝑁2 (𝑁 − 1)
and the normal approximation test statistic is

̂𝑧 = 𝑟 − 𝜇𝑟
𝜎𝑟

Acknowledgment
runtest was written by Sean Becketti, author of the Stata Press book Introduction to Time Series

Using Stata, Revised Edition.
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scobit — Skewed logistic regression

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description
scobit fits a maximum-likelihood skewed logit model.

Quick start
Skewed logistic regression of binary variable y on x1 and x2

scobit y x1 x2

With robust standard errors

scobit y x1 x2, vce(robust)

Same as above, and display coefficients and std. err. with two digits to the right of the decimal

scobit y x1 x2, vce(robust) cformat(%8.2f)

Same as above, and also display 𝑝-values with two digits to the right of the decimal
scobit y x1 x2, vce(robust) cformat(%8.2f) pformat(%5.2f)

Menu
Statistics > Binary outcomes > Skewed logistic regression
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Syntax
scobit depvar [ indepvars ] [ if ] [ in ] [weight ] [ , options ]

options Description

Model

noconstant suppress constant term

offset(varname) include varname in model with coefficient constrained to 1

asis retain perfect predictor variables

constraints(constraints) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, opg, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)
nocnsreport do not display constraints

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process

collinear keep collinear variables

coeflegend display legend instead of statistics

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

bootstrap, by, collect, fp, jackknife, nestreg, rolling, statsby, stepwise, and svy are allowed; see
[U] 11.1.10 Prefix commands.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
collinear and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

noconstant, offset(varname), constraints(constraints); see [R] Estimation options.

asis forces retention of perfect predictor variables and their associated perfectly predicted observations
and may produce instabilities in maximization; see [R] probit.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), that al-
low for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods

(bootstrap, jackknife); see [R] vce option.
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� � �
Reporting �

level(#); see [R] Estimation options.

nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. These options are

seldom used.

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

The following options are available with scobit but are not shown in the dialog box:

collinear, coeflegend; see [R] Estimation options.

Remarks and examples
Remarks are presented under the following headings:

Skewed logistic model
Robust standard errors

Skewed logistic model
scobit fits maximum likelihood models with dichotomous dependent variables coded as 0/1 (or,

more precisely, coded as 0 and not 0).

Example 1
We have data on the make, weight, and mileage rating of 22 foreign and 52 domestic automobiles.

We wish to fit a model explaining whether a car is foreign based on its mileage. Here is an overview of

our data:
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. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. keep make mpg weight foreign
. describe
Contains data from https://www.stata-press.com/data/r18/auto.dta
Observations: 74 1978 automobile data

Variables: 4 13 Apr 2022 17:45
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

make str18 %-18s Make and model
mpg int %8.0g Mileage (mpg)
weight int %8.0gc Weight (lbs.)
foreign byte %8.0g origin Car origin

Sorted by: foreign
Note: Dataset has changed since last saved.

. inspect foreign
foreign: Car origin Number of observations

Total Integers Nonintegers
# Negative - - -
# Zero 52 52 -
# Positive 22 22 -
#
# # Total 74 74 -
# # Missing -

0 1 74
(2 unique values)

foreign is labeled and all values are documented in the label.

The variable foreign takes on two unique values, 0 and 1. The value 0 denotes a domestic car, and 1
denotes a foreign car.

The model that we wish to fit is

Pr(foreign = 1) = 𝐹(𝛽0 + 𝛽1mpg)

where 𝐹(𝑧) = 1 − 1/{1 + exp(𝑧)}𝛼.

To fit this model, we type

. scobit foreign mpg
Fitting logistic model:
Iteration 0: Log likelihood = -45.03321
Iteration 1: Log likelihood = -39.380959
Iteration 2: Log likelihood = -39.288802
Iteration 3: Log likelihood = -39.28864
Iteration 4: Log likelihood = -39.28864
Fitting full model:
Iteration 0: Log likelihood = -39.28864
Iteration 1: Log likelihood = -39.286393
Iteration 2: Log likelihood = -39.284415
Iteration 3: Log likelihood = -39.284234
Iteration 4: Log likelihood = -39.284197
Iteration 5: Log likelihood = -39.284196
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Skewed logistic regression Number of obs = 74
Zero outcomes = 52

Log likelihood = -39.2842 Nonzero outcomes = 22

foreign Coefficient Std. err. z P>|z| [95% conf. interval]

mpg .1813879 .2407362 0.75 0.451 -.2904463 .6532222
_cons -4.274883 1.399305 -3.06 0.002 -7.017471 -1.532295

/lnalpha -.4450405 3.879885 -0.11 0.909 -8.049476 7.159395

alpha .6407983 2.486224 .0003193 1286.133

LR test of alpha=1: chi2(1) = 0.01 Prob > chi2 = 0.9249
Note: Likelihood-ratio tests are recommended for inference with scobit models.

We find that cars yielding better gas mileage are less likely to be foreign. The likelihood-ratio test at the

bottom of the output indicates that the model is not significantly different from a logit model. Therefore,

we should use the more parsimonious model.

Technical note
Stata interprets a value of 0 as a negative outcome (failure) and treats all other values (except missing)

as positive outcomes (successes). Thus if the dependent variable takes on the values 0 and 1, then 0 is

interpreted as failure and 1 as success. If the dependent variable takes on the values 0, 1, and 2, then 0 is

still interpreted as failure, but both 1 and 2 are treated as successes.

Formally, when we type scobit 𝑦 𝑥, Stata fits the model

Pr(𝑦𝑗 ≠ 0 ∣ x𝑗) = 1 − 1/{1 + exp(x𝑗β)}
𝛼

Robust standard errors
If you specify the vce(robust) option, scobit reports robust standard errors as described in

[U] 20.22 Obtaining robust variance estimates. For the model of foreign on mpg, the robust cal-
culation increases the standard error of the coefficient on mpg by around 25%:

. scobit foreign mpg, vce(robust) nolog
Skewed logistic regression Number of obs = 74

Zero outcomes = 52
Log pseudolikelihood = -39.2842 Nonzero outcomes = 22

Robust
foreign Coefficient std. err. z P>|z| [95% conf. interval]

mpg .1813879 .3028487 0.60 0.549 -.4121847 .7749606
_cons -4.274883 1.335521 -3.20 0.001 -6.892455 -1.657311

/lnalpha -.4450405 4.71561 -0.09 0.925 -9.687466 8.797385

alpha .6407983 3.021755 .0000621 6616.919
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Without vce(robust), the standard error for the coefficient on mpg was reported to be 0.241, with a

resulting confidence interval of [ −0.29, 0.65 ].
Specifying the vce(cluster clustvar) option relaxes the independence assumption required by the

skewed logit estimator to being just independence between clusters. To demonstrate this, we will switch

to a different dataset.

Example 2
We are studying the unionization of women in the United States and have a dataset with 26,200

observations on 4,434 women between 1970 and 1988. For our purposes, we will use the variables

age (the women were 14–26 in 1968 and the data thus span the age range of 16–46), grade (years of
schooling completed, ranging from 0 to 18), not smsa (28% of the person-time was spent living outside

an SMSA—standard metropolitan statistical area), south (41% of the person-time was in the South),

and year. Each of these variables is included in the regression as a covariate along with the interaction
between south and year. This interaction, along with the south and year variables, is specified in

the scobit command using factor-variables notation, south##c.year. We also have variable union.
Overall, 22% of the person-time is marked as time under union membership and 44% of these women

have belonged to a union.

We fit the following model, ignoring that women are observed an average of 5.9 times each in these

data:

. use https://www.stata-press.com/data/r18/union, clear
(NLS Women 14-24 in 1968)
. scobit union age grade not_smsa south##c.year, nrtol(1e-3)
(output omitted )

Skewed logistic regression Number of obs = 26,200
Zero outcomes = 20,389

Log likelihood = -13540.61 Nonzero outcomes = 5,811

union Coefficient Std. err. z P>|z| [95% conf. interval]

age .0185363 .0043615 4.25 0.000 .0099879 .0270848
grade .0452801 .0057124 7.93 0.000 .034084 .0564761

not_smsa -.1886826 .0317801 -5.94 0.000 -.2509705 -.1263947
1.south -1.422372 .3949301 -3.60 0.000 -2.196421 -.6483233

year -.0133016 .0049575 -2.68 0.007 -.0230181 -.0035851

south#c.year
1 .0105663 .0049233 2.15 0.032 .0009167 .0202158

_cons -10.3557 68.9757 -0.15 0.881 -145.5456 124.8342

/lnalpha 9.136018 68.97395 0.13 0.895 -126.0504 144.3225

alpha 9283.719 640334.8 1.81e-55 4.77e+62

LR test of alpha=1: chi2(1) = 3.76 Prob > chi2 = 0.0524
Note: Likelihood-ratio tests are recommended for inference with scobit models.

The reported standard errors in this model are probably meaningless. Women are observed repeatedly, so

the observations are not independent. Looking at the coefficients, we find a large southern effect against

unionization and a different time trend for the south. The vce(cluster clustvar) option provides a way
to fit this model and obtains correct standard errors:
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. scobit union age grade not_smsa south##c.year, vce(cluster id) nrtol(1e-3)
(output omitted )

Skewed logistic regression Number of obs = 26,200
Zero outcomes = 20,389

Log pseudolikelihood = -13540.61 Nonzero outcomes = 5,811
(Std. err. adjusted for 4,434 clusters in idcode)

Robust
union Coefficient std. err. z P>|z| [95% conf. interval]

age .0185363 .0084867 2.18 0.029 .0019027 .03517
grade .0452801 .0125765 3.60 0.000 .0206306 .0699295

not_smsa -.1886826 .0642037 -2.94 0.003 -.3145194 -.0628457
1.south -1.422372 .5064933 -2.81 0.005 -2.415081 -.4296635

year -.0133016 .0090622 -1.47 0.142 -.0310632 .0044599

south#c.year
1 .0105663 .0063172 1.67 0.094 -.0018153 .0229478

_cons -10.3557 .9416702 -11.00 0.000 -12.20134 -8.510064

/lnalpha 9.136018 .7432386 12.29 0.000 7.679297 10.59274

alpha 9283.719 6900.019 2163.098 39844.45

scobit, vce(cluster clustvar) is robust to assumptions about within-cluster correlation. That is, it
inefficiently sums within cluster for the standard error calculation rather than attempting to exploit what

might be assumed about the within-cluster correlation (as do the xtgee population-averaged models; see
[XT] xtgee).

Technical note
The scobit model can be difficult to fit because of the functional form. Often, it requires many it-

erations, or the optimizer prints out warning and informative messages during the optimization. For

example, without the nrtol(1e-3) option, the model using the union dataset will not converge. See
[R]Maximize for details about the optimizer.

Technical note
The main reason for using scobit rather that logit is that the effects of the regressors on the proba-

bility of success are not constrained to be the largest when the probability is 0.5. Rather, the independent

variables might show their largest impact when the probability of success is 0.3 or 0.6. This added flexi-

bility results because the scobit function, unlike the logit function, can be skewed and is not constrained

to be mirror symmetric about the 0.5 probability of success.

As Nagler (1994) pointed out, the point of maximum impact is constrained under the scobit model to

fall within the interval (0, 1−𝑒(−1)) or approximately (0, 0.63). Achen (2002) notes that if we believe the
maximum impact to be outside that range, we can instead fit the “power logit” model by simply reversing

the 0s and 1s of our outcome variable and fitting a scobit model on failure, rather than success. We would

need to reverse the signs of the coefficients if we wanted to interpret them in terms of impact on success,
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or we could leave them as they are and interpret them in terms of impact on failure. The important thing

to remember is that the scobit model, unlike the logit model, is not invariant to the choice of which result

is assigned to success.

Stored results
scobit stores the following in e():
Scalars

e(N) number of observations

e(k) number of parameters

e(k eq) number of equations in e(b)
e(k aux) number of auxiliary parameters

e(k dv) number of dependent variables

e(ll) log likelihood

e(ll c) log likelihood, comparison model

e(N f) number of failures (zero outcomes)

e(N s) number of successes (nonzero outcomes)

e(alpha) alpha

e(N clust) number of clusters

e(chi2 c) 𝜒2 for comparison test

e(rank) rank of e(V)
e(ic) number of iterations

e(rc) return code

e(converged) 1 if converged, 0 otherwise
Macros

e(cmd) scobit
e(cmdline) command as typed

e(depvar) name of dependent variable

e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(clustvar) name of cluster variable

e(offset) linear offset variable

e(chi2 ct) Wald or LR; type of model 𝜒2 test corresponding to e(chi2 c)
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(opt) type of optimization

e(which) max or min; whether optimizer is to perform maximization or minimization

e(ml method) type of ml method
e(user) name of likelihood-evaluator program

e(technique) maximization technique

e(properties) b V
e(predict) program used to implement predict
e(footnote) program used to implement the footnote display

e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(ilog) iteration log (up to 20 iterations)

e(gradient) gradient vector

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

Functions

e(sample) marks estimation sample
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In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas
Skewed logit analysis is an alternative to logit that relaxes the assumption that individuals with initial

probability of 0.5 are most sensitive to changes in independent variables.

The log-likelihood function for skewed logit is

ln𝐿 = ∑
𝑗∈𝑆

𝑤𝑗 ln𝐹(x𝑗b) + ∑
𝑗∉𝑆

𝑤𝑗 ln{1 − 𝐹(x𝑗b)}

where 𝑆 is the set of all observations 𝑗 such that 𝑦𝑗 ≠ 0, 𝐹(𝑧) = 1− 1/{1+ exp(𝑧)}𝛼
, and 𝑤𝑗 denotes

the optional weights. ln𝐿 is maximized as described in [R]Maximize.

This command supports the Huber/White/sandwich estimator of the variance and its clustered version

using vce(robust) and vce(cluster clustvar), respectively. See [P] robust, particularly Maximum

likelihood estimators and Methods and formulas.

scobit also supports estimation with survey data. For details on VCEs with survey data, see

[SVY] Variance estimation.
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Also see
[R] scobit postestimation — Postestimation tools for scobit

[R] cloglog — Complementary log–log regression

[R] glm — Generalized linear models

[R] logistic — Logistic regression, reporting odds ratios

[SVY] svy estimation — Estimation commands for survey data

[U] 20 Estimation and postestimation commands
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Postestimation commands predict margins Remarks and examples Also see

Postestimation commands
The following postestimation commands are available after scobit:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters

estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian infor-
mation criteria (AIC, CAIC, AICc, and BIC, respectively)

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estat (svy) postestimation statistics for survey data

estimates cataloging estimation results

etable table of estimation results
∗ forecast dynamic forecasts and simulations

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

∗ lrtest likelihood-ratio test

margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

predict probabilities, linear predictions and their SEs, etc.

predictnl point estimates, standard errors, testing, and inference for generalized predictions

pwcompare pairwise comparisons of parameters

suest seemingly unrelated estimation

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

∗forecast and lrtest are not appropriate with svy estimation results.
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predict

Description for predict
predict creates a new variable containing predictions such as probabilities, linear predictions, and

standard errors.

Menu for predict
Statistics > Postestimation

Syntax for predict
predict [ type ] newvar [ if ] [ in ] [ , statistic nooffset ]

predict [ type ] stub* [ if ] [ in ], scores

statistic Description

Main

pr probability of a positive outcome; the default

xb x𝑗b, linear prediction

stdp standard error of the linear prediction

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for the estimation
sample.

Options for predict

� � �
Main �

pr, the default, calculates the probability of a positive outcome.

xb calculates the linear prediction.

stdp calculates the standard error of the linear prediction.

nooffset is relevant only if you specified offset(varname) for scobit. It modifies the calculations
made by predict so that they ignore the offset variable; the linear prediction is treated as x𝑗b rather

than as x𝑗b + offset𝑗.

scores calculates equation-level score variables.

The first new variable will contain 𝜕ln𝐿/𝜕(x𝑗β).
The second new variable will contain 𝜕ln𝐿/𝜕 ln𝛼.
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margins

Description for margins
margins estimates margins of response for probabilities and linear predictions.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist ] [ , options ]
margins [marginlist ] , predict(statistic ...) [ predict(statistic ...) ... ] [ options ]

statistic Description

pr probability of a positive outcome; the default

xb x𝑗b, linear prediction

stdp not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.

Remarks and examples
Once you have fit a model, you can obtain the predicted probabilities by using the predict command

for both the estimation sample and other samples; see [U] 20 Estimation and postestimation commands

and [R] predict. Here we will make only a few additional comments.

predict without arguments calculates the predicted probability of a positive outcome. With the

xb option, it calculates the linear combination x𝑗b, where x𝑗 are the independent variables in the 𝑗th
observation and b is the estimated parameter vector.

With the stdp option, predict calculates the standard error of the prediction, which is not adjusted
for replicated covariate patterns in the data.
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Example 1
In example 1 of [R] scobit, we fit the model scobit foreign mpg. To obtain predicted probabilities,

we type

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. keep make mpg weight foreign
. scobit foreign mpg
(output omitted )

. predict p
(option pr assumed; Pr(foreign))
. summarize foreign p

Variable Obs Mean Std. dev. Min Max

foreign 74 .2972973 .4601885 0 1
p 74 .2974049 .182352 .0714664 .871624

Also see
[R] scobit — Skewed logistic regression

[U] 20 Estimation and postestimation commands
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Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description
sdtest performs tests on the equality of standard deviations (variances). In the first form, sdtest

tests that the standard deviation of varname is #. In the second form, sdtest performs the same test,
using the standard deviations of the two groups defined by groupvar. In the third form, sdtest tests that
varname1 and varname2 have the same standard deviation.

sdtesti is the immediate form of sdtest; see [U] 19 Immediate commands.

Both the traditional 𝐹 test for the homogeneity of variances and Bartlett’s generalization of this test to

𝐾 samples are sensitive to the assumption that the data are drawn from an underlying Gaussian distribu-

tion. See, for example, the cautionary results discussed by Markowski and Markowski (1990). Levene

(1960) proposed a test statistic for equality of variance that was found to be robust under nonnormal-

ity. Then Brown and Forsythe (1974) proposed alternative formulations of Levene’s test statistic that use

more robust estimators of central tendency in place of themean. These reformulations were demonstrated

to be more robust than Levene’s test when dealing with skewed populations.

robvar reports Levene’s robust test statistic (𝑊0) for the equality of variances between the groups

defined by groupvar and the two statistics proposed by Brown and Forsythe that replace the mean in

Levene’s formula with alternative location estimators. The first alternative (𝑊50) replaces the mean

with the median. The second alternative replaces the mean with the 10% trimmed mean (𝑊10).

Quick start
Test that the standard deviation of v1 is equal to 2

sdtest v1=2

Equality of standard deviations (variances) test for v1 comparing the two groups defined by catvar1
sdtest v1, by(catvar1)

Robust equality of variances test for v1 comparing the groups defined by catvar1
robvar v1, by(catvar1)

Compare the variances of v2 and v3
sdtest v2 == v3

Same as above, but with separate tests for each group defined by catvar2
by catvar2, sort: sdtest v2 == v3

Test sd1 = sd2 for sd1 = 34, sd2 = 45, 𝑁1 = 143, and 𝑁2 = 184

sdtesti 143 . 34 184 . 45
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Menu
sdtest
Statistics > Summaries, tables, and tests > Classical tests of hypotheses > Variance-comparison test

sdtesti

Statistics > Summaries, tables, and tests > Classical tests of hypotheses > Variance-comparison test calculator

robvar
Statistics > Summaries, tables, and tests > Classical tests of hypotheses > Robust equal-variance test

Syntax
One-sample variance-comparison test

sdtest varname == # [ if ] [ in ] [ , level(#) ]

Two-sample variance-comparison test using groups

sdtest varname [ if ] [ in ] , by(groupvar) [ level(#) ]

Two-sample variance-comparison test using variables

sdtest varname1 == varname2 [ if ] [ in ] [ , level(#) ]

Immediate form of one-sample variance-comparison test

sdtesti #obs { #mean | . } #sd #val [ , level(#) ]

Immediate form of two-sample variance-comparison test

sdtesti #obs,1 { #mean,1 | . } #sd,1 #obs,2 { #mean,2 | . } #sd,2 [ , level(#) ]

Robust tests for equality of variances

robvar varname [ if ] [ in ] , by(groupvar)
by and collect are allowed with sdtest and robvar, and collect is allowed with sdtesti; see [U] 11.1.10 Prefix

commands.

Options
level(#) specifies the confidence level, as a percentage, for confidence intervals of the means. The

default is level(95) or as set by set level; see [U] 20.8 Specifying the width of confidence

intervals.

by(groupvar) specifies the groupvar that defines the groups to be compared. For sdtest, there should
be two groups, but for robvar there may be more than two groups. Do not confuse the by() option
with the by prefix; both may be specified.
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Remarks and examples
Remarks are presented under the following headings:

Basic form
Immediate form
Robust test

Basic form
sdtest performs two different statistical tests: one testing equality of variances and the other testing

that the standard deviation is equal to a known constant. Which test it performs is determined by whether

you type a variable name or a number to the right of the equal sign.

Example 1: One-sample test of variance
We have a sample of 74 automobiles. For each automobile, we know the mileage rating. We wish to

test whether the overall standard deviation is 5 mpg:

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. sdtest mpg == 5
One-sample test of variance

Variable Obs Mean Std. err. Std. dev. [95% conf. interval]

mpg 74 21.2973 .6725511 5.785503 19.9569 22.63769

sd = sd(mpg) c = chi2 = 97.7384
H0: sd = 5 Degrees of freedom = 73

Ha: sd < 5 Ha: sd != 5 Ha: sd > 5
Pr(C < c) = 0.9717 2*Pr(C > c) = 0.0565 Pr(C > c) = 0.0283

Example 2: Variance ratio test
We are testing the effectiveness of a new fuel additive. We run an experiment on 12 cars, running

each without and with the additive. The data can be found in [R] ttest. The results for each car are stored

in the variables mpg1 and mpg2:

. use https://www.stata-press.com/data/r18/fuel

. sdtest mpg1==mpg2
Variance ratio test

Variable Obs Mean Std. err. Std. dev. [95% conf. interval]

mpg1 12 21 .7881701 2.730301 19.26525 22.73475
mpg2 12 22.75 .9384465 3.250874 20.68449 24.81551

Combined 24 21.875 .6264476 3.068954 20.57909 23.17091

ratio = sd(mpg1) / sd(mpg2) f = 0.7054
H0: ratio = 1 Degrees of freedom = 11, 11

Ha: ratio < 1 Ha: ratio != 1 Ha: ratio > 1
Pr(F < f) = 0.2862 2*Pr(F < f) = 0.5725 Pr(F > f) = 0.7138

We cannot reject the hypothesis that the standard deviations are the same.
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In [R] ttest, we draw an important distinction between paired and unpaired data, which, in this exam-

ple, means whether there are 12 cars in a before-and-after experiment or 24 different cars. For sdtest,
on the other hand, there is no distinction. If the data had been unpaired and stored as described in [R] ttest,

we could have typed sdtest mpg, by(treated), and the results would have been the same.

Immediate form

Example 3: sdtesti
Immediate commands are used not with data, but with reported summary statistics. For instance, to

test whether a variable on which we have 75 observations and a reported standard deviation of 6.5 comes

from a population with underlying standard deviation 6, we would type

. sdtesti 75 . 6.5 6
One-sample test of variance

Obs Mean Std. err. Std. dev. [95% conf. interval]

x 75 . .7505553 6.5 . .

sd = sd(x) c = chi2 = 86.8472
H0: sd = 6 Degrees of freedom = 74

Ha: sd < 6 Ha: sd != 6 Ha: sd > 6
Pr(C < c) = 0.8542 2*Pr(C > c) = 0.2916 Pr(C > c) = 0.1458

The mean plays no role in the calculation, so it may be omitted.

To test whether the variable comes from a population with the same standard deviation as another for

which we have a calculated standard deviation of 7.5 over 65 observations, we would type

. sdtesti 75 . 6.5 65 . 7.5
Variance ratio test

Obs Mean Std. err. Std. dev. [95% conf. interval]

x 75 . .7505553 6.5 . .
y 65 . .9302605 7.5 . .

Combined 140 . . . . .

ratio = sd(x) / sd(y) f = 0.7511
H0: ratio = 1 Degrees of freedom = 74, 64

Ha: ratio < 1 Ha: ratio != 1 Ha: ratio > 1
Pr(F < f) = 0.1172 2*Pr(F < f) = 0.2344 Pr(F > f) = 0.8828
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Robust test

Example 4: robvar
We wish to test whether the standard deviation of the length of stay for patients hospitalized for a

given medical procedure differs by gender. Our data consist of observations on the length of hospital

stay for 1778 patients: 884 males and 894 females. Length of stay, lengthstay, is highly skewed

(skewness coefficient = 4.912591) and thus violates Bartlett’s normality assumption. Therefore, we use

robvar to compare the variances.

. use https://www.stata-press.com/data/r18/stay

. robvar lengthstay, by(sex)
Summary of Length of stay in days

Gender Mean Std. dev. Freq.

Male 9.0874434 9.7884747 884
Female 8.800671 9.1081478 894

Total 8.9432508 9.4509466 1,778
W0 = 0.55505315 df(1, 1776) Pr > F = 0.45635888
W50 = 0.42714734 df(1, 1776) Pr > F = 0.51347664
W10 = 0.44577674 df(1, 1776) Pr > F = 0.50443411

For these data, we cannot reject the null hypothesis that the variances are equal. However, Bartlett’s test

yields a significance probability of 0.0319 because of the pronounced skewness of the data.

Technical note
robvar implements both the conventional Levene’s test centered at the mean and a median-centered

test. In a simulation study, Conover, Johnson, and Johnson (1981) compare the properties of the two

tests and recommend using the median test for asymmetric data, although for small sample sizes the test

is somewhat conservative. See Carroll and Schneider (1985) for an explanation of why both mean- and

median-centered tests have approximately the same level for symmetric distributions, but for asymmetric

distributions the median test is closer to the correct level.



sdtest — Variance-comparison tests 2753

Stored results
sdtest and sdtesti store the following in r():
Scalars

r(N) number of observations

r(p l) lower one-sided 𝑝-value
r(p u) upper one-sided 𝑝-value
r(p) two-sided 𝑝-value
r(F) 𝐹 statistic

r(sd) standard deviation

r(sd 1) standard deviation for first variable

r(sd 2) standard deviation for second variable

r(df) degrees of freedom

r(df 1) numerator degrees of freedom

r(df 2) denominator degrees of freedom

r(chi2) 𝜒2

robvar stores the following in r():
Scalars

r(N) number of observations

r(w50) Brown and Forsythe’s 𝐹 statistic (median)

r(p w50) Brown and Forsythe’s 𝑝-value
r(w0) Levene’s 𝐹 statistic

r(p w0) Levene’s 𝑝-value
r(w10) Brown and Forsythe’s 𝐹 statistic (trimmed mean)

r(p w10) Brown and Forsythe’s 𝑝-value (trimmed mean)
r(df 1) numerator degrees of freedom

r(df 2) denominator degrees of freedom

Methods and formulas
See Armitage et al. (2002, 149–153) or Bland (2015, 144–145) for an introduction and explanation

of the calculation of these tests.

The test for 𝜎 = 𝜎0 is given by

𝜒2 = (𝑛 − 1)𝑠2

𝜎2
0

which is distributed as 𝜒2 with 𝑛 − 1 degrees of freedom.

The test for 𝜎2
𝑥 = 𝜎2

𝑦 is given by

𝐹 = 𝑠2
𝑥

𝑠2
𝑦

which is distributed as 𝐹 with 𝑛𝑥 − 1 and 𝑛𝑦 − 1 degrees of freedom.

Let 𝑋𝑖𝑗 be the 𝑗th observation of 𝑋 for the 𝑖th group. Let 𝑍𝑖𝑗 = |𝑋𝑖𝑗 − 𝑋𝑖|, where 𝑋𝑖 is the mean

of 𝑋 in the 𝑖th group. Levene’s test statistic is

𝑊0 =
∑𝑖 𝑛𝑖(𝑍𝑖 − 𝑍)2/(𝑔 − 1)

∑𝑖 ∑𝑗(𝑍𝑖𝑗 − 𝑍𝑖)2/ ∑𝑖(𝑛𝑖 − 1)

where 𝑛𝑖 is the number of observations in group 𝑖 and 𝑔 is the number of groups. 𝑊50 is obtained by

replacing 𝑋𝑖 with the 𝑖th group median of 𝑋𝑖𝑗, whereas 𝑊10 is obtained by replacing 𝑋𝑖 with the 10%

trimmed mean for group 𝑖.
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search — Search Stata documentation and other resources

Description Quick start Menu
Syntax Options for search Option for set searchdefault
Remarks and examples Acknowledgment Also see

Description
search searches a keyword database and the Internet for Stata materials related to your query.

Capitalization of the words following search is irrelevant, as is the inclusion or exclusion of special
characters such as commas and hyphens.

set searchdefault affects the default behavior of the search command. all is the default.

search, all is the best way to search for information on a topic across all sources, including the sys-
tem help, the FAQs at the Stata website, the Stata Journal, and all Stata-related Internet sources including

community-contributed additions. From the results, you can click to go to a source or to install additions.

Quick start
Search local keyword database and materials available via Stata’s net command for all words (word1,

word2, and word3)
search word1 word2 word3

Same as above, but match any word (word1, word2, or word3)
search word1 word2 word3, or

Search for Stata Journal articles about new commands like regress
search regress, sj

Search the manuals for entries about tabulate and related commands
search tabulate, manual

Menu
Help > Search...

2755
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Syntax
search word [word . . .] [ , search options ]

set searchdefault { all | local | net } [ , permanently ]

search options Description

all search across both the local keyword database and the net material; the default
local search using Stata’s keyword database

net search across materials available via Stata’s net command

author search by author’s name

entry search by entry ID

exact search across both the local keyword database and the net materials; prevents
matching on abbreviations

faq search the FAQs posted to the Stata and other select websites

historical search entries that are of historical interest only

or list an entry if any of the words typed after search are associated with the entry
manual search the entries in the Stata Documentation

sj search the entries in the Stata Journal

Options for search
all, the default (unless changed by set searchdefault), specifies that the search be performed across

both the local keyword database and the net materials. The results of a search performed with all
and no other options will be displayed in the Viewer window.

local specifies that the search be performed using only Stata’s keyword database. The results of a search
performed with local and no other options will be displayed in the Viewer window.

net specifies that the search be performed across the materials available via Stata’s net command. Using
searchword [word . . .], net is equivalent to typing net searchword [word . . .] (without options);
see [R] net search. The results of a search performed with net and no other options will be displayed
in the Viewer window.

author specifies that the search be performed on the basis of the author’s name rather than keywords.
A search with the author option is performed on the local keyword database only, and the results are
displayed in the Results window.

entry specifies that the search be performed on the basis of entry IDs rather than keywords. A search

with the entry option is performed on the local keyword database only, and the results are displayed
in the Results window.

exact prevents matching on abbreviations. A search with the exact option is performed across both the
local keyword database and the net materials, and the results are displayed in the Results window.

faq limits the search to the FAQs on the Stata and other select websites. A search with the faq option is
performed on the local keyword database only, and the results are displayed in the Results window.

https://www.stata.com
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historical adds to the search entries that are of historical interest only. By default, such entries are not
listed. Past entries are classified as historical if they discuss a feature that later became an official part

of Stata. Updates to historical entries will always be found, even if historical is not specified. A
search with the historical option is performed on the local keyword database only, and the results
are displayed in the Results window.

or specifies that an entry be listed if any of the words typed after search are associated with the entry.
The default is to list the entry only if all the words specified are associated with the entry. A search

with the or option is performed on the local keyword database only, and the results are displayed in
the Results window.

manual limits the search to entries in the Stata Documentation; that is, the search is limited to the User’s
Guide and all the reference manuals. A search with the manual option is performed on the local

keyword database only, and the results are displayed in the Results window.

sj limits the search to entries in the Stata Journal; see [R] sj. A search with the sj option is performed
on the local keyword database only, and the results are displayed in the Results window.

Option for set searchdefault
permanently specifies that, in addition to making the change right now, the searchdefault setting be

remembered and become the default setting when you invoke Stata.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Internet searches
Author searches
Entry ID searches
Return codes

Introduction
See [U] 4 Stata’s help and search facilities for a tutorial introduction to search. search is one of

Stata’s most useful commands. To understand the advanced features of search, you need to know how

it works.

search has a database—files—containing the titles, etc., of every entry in the Stata Documenta-

tion, undocumented help files, NetCourses, Stata Press books, FAQs posted on the Stata website, videos

posted on the Stata YouTube channel, selected articles on StataCorp’s official blog, selected community-

contributed FAQs and examples, and the articles in the Stata Journal. In these files is a list of words,

called keywords, associated with each entry.

When you type search xyz, search reads the database and compares the list of keywords with xyz.
If it finds xyz in the list or a keyword that allows an abbreviation of xyz, it displays the entry.

When you type search xyz abc, search does the same thing but displays an entry only if it con-

tains both keywords. The order does not matter, so you can search linear regression or search
regression linear.



search — Search Stata documentation and other resources 2758

Obviously, how many entries search finds depends on how the search database was constructed. We

have included a plethora of keywords under the theory that, for a given request, it is better to list too

much rather than risk listing nothing at all. Still, you are in the position of guessing the keywords. Do

you look up normality test, normality tests, or tests of normality? Well, normality test would be best,

but all would work. In general, use the singular, and strike the unnecessary words. For guidelines for

specifying keywords, see [U] 4.6 More on search.

set searchdefault allows you to specify where search searches. set searchdefault all,
the default, indicates that both the keyword database and the Internet are to be searched. set
searchdefault local restricts search to using only Stata’s keyword database. set searchdefault
net restricts search to searching only the Internet.

Internet searches
search with the net option searches the Internet for community-contributed additions to Stata, in-

cluding, but not limited to, community-contributed additions published in the Stata Journal (SJ). search
keywords, net performs the same search as the command net search (with no options); see [R] net
search.

. search random effect, net
Search of web resources from Stata and other users

(contacting https://www.stata.com)
# packages found (Stata Journal listed first)
------------------------------------------------------
(output omitted )

st0468_1 from http://www.stata-journal.com/software/sj18-4
SJ18-4 st0468_1. Update: Estimate hybrid and... / Update: Estimate hybrid
and correlated random- / effects and Mundlak mixed-effects models for /
linear and nonlinear outcomes / by Reinhard Schunck, GESIS --
Leibniz-Institute / for the Social Sciences, Cologne, Germany / Francisco

st0543 from http://www.stata-journal.com/software/sj18-4
SJ18-4 st0543. Fit dynamic random-effects probit... / Fit dynamic
random-effects probit models with / unobserved heterogeneity / by Raffaele
Grotti, / Department of Political and Social Sciences / European
University Institute / San Domenico di Fiesole, Italy / Giorgio Cutuli,

(output omitted )

(end of search)

Author searches
search ordinarily compares the words following searchwith the keywords for the entry. If you spec-

ify the author option, however, it compares the words with the author’s name. In the search database,
we have filled in author names for all SJ inserts.

For instance, in the Acknowledgments of [R] kdensity, you will discover the name Isaías H. Salgado-

Ugarte. You want to know if he has written any articles in the SJ. To find out, you type

. search Salgado-Ugarte, author
(output omitted )
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Names like Salgado-Ugarte are confusing to many people. search does not require you to specify the
entire name; what you type is compared with each “word” of the name and, if any part matches, the entry

is listed. The hyphen is a special character, and you can omit it. Thus, you can obtain the same list by

looking up Salgado, Ugarte, or Salgado Ugarte without the hyphen.

Entry ID searches
If you specify the entry option, search compares what you have typed with the entry ID. The entry

ID is not the title—it is the reference listed to the left of the title that tells you where to look. For instance,

in

regress . . . . . . . . . . . . . . . . . . . . . . Linear regression
(help regress)

[R] regress is the entry ID. This is a reference, of course, to this manual. In

FAQ . . . . . . . . . . . Analysis of multiple failure-time survival data
. . . . . . . . . . . . . . . . . . . . . . . M. Cleves and I. Canette
07/09 How do I analyze multiple failure-time data using Stata?

https://www.stata.com/support/faqs/statistics/multiple-failure-
type-data/

“FAQ” is the entry ID. In

SJ-7-1 st0118 . . A survey on survey stat.: What is and can be done in Stata
. . . . . . . . . . . . . . . . . . . . . . F. Kreuter and R. Valliant
Q1/07 SJ7(1):1--21 (no commands)
discusses survey issues in analyzing complex survey
data and describes some of Stata’s capabilities for
such analyses

“SJ-7-1” is the entry ID.

search with the entry option searches these entry IDs.

Thus you could generate a table of contents for the User’s Guide by typing

. search [U], entry
(output omitted )

You could generate a table of contents for Stata Journal, Volume 1, Issue 1, by typing

. search sj-1-1, entry
(output omitted )
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Return codes
In addition to indexing the entries in the User’s Guide and all the Reference manuals, search also

can be used to search return codes.

To see information on return code 131, type

. search rc 131
[P] error . . . . . . . . . . . . . . . . . . . . . . . . Return code 131

not possible with test;
You requested a test of a hypothesis that is nonlinear in the
variables. test tests only linear hypotheses. Use testnl.

(output omitted )

If you want a list of all Stata return codes, type

. search error, entry
(output omitted )

Acknowledgment
We thank Nicholas J. Cox of the Department of Geography at DurhamUniversity, UK, who is coeditor

of the Stata Journal and author of Speaking Stata Graphics for his contributions to the search command.

Also see
[R] help — Display help in Stata

[R] net search — Search the Internet for installable packages

[U] 4 Stata’s help and search facilities

https://www.stata-journal.com/
https://www.stata-press.com/books/speaking-stata-graphics/


serrbar — Graph standard error bar chart

Description Quick start Menu Syntax
Options Remarks and examples Acknowledgment Also see

Description
serrbar is typically used with a dataset containing means, standard deviations or standard errors,

and an xvar. serrbar uses these data to create a standard error bar chart. The means are plotted against
xvar, and error bars around the means have a width determined by the standard deviation or standard

error. While it is most common to use serrbar with this type of data, serrbar may also be used to
create a scatterplot with error bars for other types of data.

Quick start
Plot of y versus x with error bars representing y ± s

serrbar y s x

Same as above, but with error bars for y ± 2 × s
serrbar y s x, scale(2)

Menu
Statistics > Other > Quality control > Standard error bar chart
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Syntax
serrbar mvar svar xvar [ if ] [ in ] [ , options ]

options Description

Main

scale(#) scale length of graph bars; default is scale(1)

Error bars

rcap options affect rendition of capped spikes

Plotted points

mvopts(scatter options) affect rendition of plotted points

Add plots

addplot(plot) add other plots to generated graph

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

Options

� � �
Main �

scale(#) controls the length of the bars. The upper and lower limits of the bars will bemvar+scale()×
svar and mvar − scale() × svar. The default is scale(1).

� � �
Error bars �

rcap options affect the rendition of the plotted error bars (the capped spikes). See [G-2] graph twoway

rcap.

� � �
Plotted points �

mvopts(scatter options) affects the rendition of the plotted points (mvar versus xvar). See [G-2] graph
twoway scatter.

� � �
Add plots �

addplot(plot) provides a way to add other plots to the generated graph; see [G-3] addplot option.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see

[G-3] saving option).
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Remarks and examples

Example 1
In quality-control applications, the three most commonly used variables with this command are the

process mean, process standard deviation, and time. For instance, we have data on the average weights

and standard deviations from an assembly line in San Francisco for the period January 8 to January 16.

Our data are

. use https://www.stata-press.com/data/r18/assembly

. list, sep(0) divider

date mean std

1. 108 192.22 3.94
2. 109 192.64 2.83
3. 110 192.37 4.58
4. 113 194.76 3.25
5. 114 192.69 2.89
6. 115 195.02 1.73
7. 116 193.40 2.62

We type serrbar mean std date, scale(2) but, after seeing the result, decide to make it fancier:

. serrbar mean std date, scale(2) title(”Observed weight variation”)
> sub(”San Francisco plant, 1/8 to 1/16”) yline(195) yaxis(1 2)
> ylab(195, axis(2)) ytitle(””, axis(2))
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Acknowledgment
serrbar was written by Nicholas J. Cox of the Department of Geography at Durham University, UK,

who is coeditor of the Stata Journal and author of Speaking Stata Graphics.

Also see
[R] QC — Quality control charts
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set — Overview of system parameters

Description Syntax Remarks and examples Also see

Description
This entry provides a reference to Stata’s set commands. For many entries, more thorough informa-

tion is provided elsewhere; see the Reference field in each entry below for the location of this information.

To reset system parameters to factory defaults, see [R] set defaults.

Syntax
set [ setcommand ...]

set typed without arguments is equivalent to query typed without arguments.

Remarks and examples
set adosize

Syntax: set adosize # [ , permanently ]
Default: 1,000

Description: sets the maximum amount of memory that automatically loaded do-files

may consume. 10 ≤ # ≤ 10000.
Reference: [P] sysdir

set autotabgraphs (Windows only)

Syntax: set autotabgraphs {on | off} [ , permanently ]
Default: off
Description: determines whether graphs are created as tabs within one window or as separate

windows.

Reference: help autotabgraphs

set cformat
Syntax: set cformat [ fmt ] [ , permanently ]
Description: specifies the output format of coefficients, standard errors, and confidence limits

in coefficient tables. fmt is a numerical format; see [D] format.

Reference: [R] set cformat

set clevel
Syntax: set clevel # [ , permanently ]
Default: 95
Description: sets the default credible level for credible intervals for all commands

that report credible intervals. 10.00 ≤ # ≤ 99.99, and # can have at
most two digits after the decimal point.

Reference: [BAYES] set clevel
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set coeftabresults
Syntax: set coeftabresults {on | off}
Default: on
Description: determines whether coefficient table results are stored in r().

There is no permanently option because permanently is implied.
Reference: help coeftabresults

set collect double
Syntax: set collect double {on | off} [ , permanently ]
Default: on
Description: controls the storage type for numeric values that are saved in collections when

using collect save.
Reference: [TABLES] set collect double

set collect label
Syntax: set collect label {default | label} [ , permanently ]
Default: default
Description: controls the default labels used in tables created by collect.
Reference: [TABLES] set collect label

set collect style
Syntax: set collect style {default | style} [ , permanently ]
Default: default
Description: controls the default styles used in tables created by collect.
Reference: [TABLES] set collect style

set collect warn
Syntax: set collect warn {on | off} [ , permanently ]
Default: on
Description: controls whether collect shows notes warning about unrecognized tags.
Reference: [TABLES] set collect warn
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set conren (Unix console only)
Syntax 1: set conren
Syntax 2: set conren clear
Syntax 3: set conren [sf | bf | it]

{result | [txt | text] | input | error | link | hilite}
[char[char...]]

Syntax 4: set conren {ulon | uloff} [char [char ...]]
Syntax 5: set conren reset [char [char ...]]
Description: can possibly make the output on your screen appear prettier.

set conren displays a list of the currently defined display codes.
set conren clear clears all codes.
set conren followed by a font type (bf, sf, or it) and display context (result,
error, link, or hilite) and then followed by a series of space-separated
characters sets the code for the specified font type and display context. If the font

type is omitted, the code is set to the same specified code for all three font types.

set conren ulon and set conren uloff set the codes for turning on and off
underlining.

set conren reset sets the code that will turn off all display and underlining codes.
Reference: [GSU] conren

set copycolor (Mac and Windows only)

Syntax: set copycolor {automatic | asis | gs1 | gs2 | gs3} [ , permanently ]
Default: automatic
Description: determines how colors are handled when graphs are copied to the Clipboard.

Reference: [G-2] set printcolor

set dockable (Windows only)

Syntax: set dockable {on | off} [ , permanently ]
Default: on
Description: determines whether to enable the use of dockable window characteristics,

including the ability to dock or tab a window into another window.

Reference: help dockable

set docx hardbreak
Syntax: set docx hardbreak {on | off}
Default: off
Description: determines whether spaces are added after hard line breaks within text blocks.

Reference: [RPT] set docx

set docx maxtable
Syntax: set docx maxtable # [ , permanently ]
Default: 500
Description: sets the maximum number of tables allowed in putdocx.
Reference: [RPT] putdocx table
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set docx paramode
Syntax: set docx paramode {on | off}
Default: off
Description: determines whether empty lines in a text block signal the beginning of a

new paragraph.

Reference: [RPT] set docx

set doeditbackup
Syntax: set doeditbackup {on | off}
Default: on
Description: determines whether to enable automatic backups of documents in the Do-file Editor.

Reference: help doeditbackup

set dots
Syntax: set dots {on | off} [ , permanently ]
Default: on
Description: enables or disables commands that support the dots() option from reporting a

dot each time statistics are computed from a sample or resample of the dataset.

Reference: help dots

set doublebuffer (Windows only)

Syntax: set doublebuffer {on | off} [ , permanently ]
Default: on
Description: enables or disables double buffering of the Results, Viewer, and Data Editor

windows. Double buffering prevents the windows from flickering when redrawn

or resized. Users who encounter performance problems such as the Results window

outputting very slowly should disable double buffering.

Reference: help doublebuffer

set dp
Syntax: set dp {comma | period} [ , permanently ]
Default: period
Description: determines whether a period or a comma is to be used as the decimal point.

Reference: [D] format

set dtable style
Syntax: set dtable style {dtable | style} [ , permanently ]
Default: dtable
Description: controls the default styles used in tables created by dtable.
Reference: [TABLES] set dtable style
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set dtascomplevel
Syntax: set dtascomplevel #
Default: 1
Description: sets the compression level for frames save, where # can be any integer

between 0 and 9.

Reference: help dtascomplevel

set emptycells
Syntax: set emptycells {keep | drop} [ , permanently ]
Default: keep
Description: sets what to do with empty cells in interactions.

Reference: [R] set emptycells

set etable style
Syntax: set etable style {etable | style} [ , permanently ]
Default: etable
Description: controls the default styles used in tables created by etable.
Reference: [TABLES] set etable style

set fastscroll (Unix and Windows only)

Syntax: set fastscroll {on | off} [ , permanently ]
Default: on
Description: sets the scrolling method for new output in the Results window. Setting

fastscroll to on is faster but can be jumpy. Setting fastscroll to off
is slower but smoother.

Reference: help fastscroll

set floatwindows (Windows only)

Syntax: set floatwindows {on | off}
Default: off
Description: determines whether to enable floating window behavior for dialog boxes and dockable

window. The term “float” in this context means that a window will always float

over the main Stata window; these windows cannot be placed behind the main Stata

window. There is no permanently option because permanently is implied.
Reference: help floatwindows

set fredkey
Syntax: set fredkey key [ , permanently ]
Description: sets the API key for importing data from the Federal Reserve Economic Data.

Reference: [D] import fred

set fvbase
Syntax: set fvbase{ on | off }
Description: specifies whether to automatically determine the default base level for factor variables.

Reference: help fvbase
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set fvlabel
Syntax: set fvlabel { on | off } [ , permanently ]
Description: specifies whether to display factor-variable value labels in coefficient tables.

Reference: [R] set showbaselevels

set fvtrack
Syntax: set fvtrack { term | factor } [ , permanently ]
Description: allows you to control how Stata keeps track of factor levels when you use

factor-variables notation.

Reference: help fvtrack

set fvwrap
Syntax: set fvwrap # [ , permanently ]
Description: specifies that long value labels wrap # lines in coefficient tables.

Reference: [R] set showbaselevels

set fvwrapon
Syntax: set fvwrapon { word | width } [ , permanently ]
Description: specifies whether value labels that wrap will break at word boundaries or break

based on available space.

Reference: [R] set showbaselevels

set graphics
Syntax: set graphics {on | off}
Default: on; default is off for console Stata
Description: determines whether graphs are displayed on your monitor.

Reference: [G-2] set graphics

set haverdir
Syntax: set haverdir ”path” [ , permanently ]
Description: specifies the directory where the Haver databases are stored.

Reference: [D] import haver

set httpproxy
Syntax: set httpproxy {on | off} [ , init ]
Default: off
Description: turns on/off the use of a proxy server. There is no permanently option because

permanently is implied.
Reference: [R] netio

set httpproxyauth
Syntax: set httpproxyauth {on | off}
Default: off
Description: determines whether authorization is required for the proxy server.

There is no permanently option because permanently is implied.
Reference: [R] netio
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set httpproxyhost
Syntax: set httpproxyhost [”]name[”]
Description: sets the name of a host to be used as a proxy server. There is no permanently

option because permanently is implied.
Reference: [R] netio

set httpproxyport
Syntax: set httpproxyport #
Default: 8080 if Stata cannot autodetect the proper setting for your computer.
Description: sets the port number for a proxy server. There is no permanently option

because permanently is implied.
Reference: [R] netio

set httpproxypw
Syntax: set httpproxypw [”]password[”]
Description: sets the appropriate password. There is no permanently option because

permanently is implied.
Reference: [R] netio

set httpproxyuser
Syntax: set httpproxyuser [”]name[”]
Description: sets the appropriate user ID. There is no permanently option because

permanently is implied.
Reference: [R] netio

set include bitmap (Mac only)

Syntax: set include bitmap {on | off} [ , permanently ]
Default: on
Description: sets the output behavior when copying an image to the Clipboard.

Reference: help include bitmap

set iterlog
Syntax: set iterlog { on | off } [ , permanently ]
Description: specifies whether to display an iteration log.

Reference: [R] set iter

set java heapmax
Syntax: set java heapmax { default | #[ m | g ] }
Description: sets the maximum amount of heap memory allocated for the Java Virtual Machine.

Reference: set java heapmax is a synonym for java set heapmax; see [P] Java utilities

set java home
Syntax: set java home { default | ”path to java home dir” }
Description: sets the path to the Java Runtime Environment.

Reference: set java home is a synonym for java set home; see [P] Java utilities
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set kmp blocktime
Syntax: set kmp blocktime # [ , permanently ]
Default: -1
Description: controls the behavior of the OpenMP runtime library regarding the suspension

of threads in Stata when they are idle. This can be changed only in Stata/MP.

Reference: help kmp blocktime

set lapack mkl
Syntax: set lapack mkl { on | off } [ , permanently ]
Default: on
Description: specifies whether to use Intel MKL LAPACK routines.

Reference: [M-1] LAPACK

set lapack mkl cnr
Syntax: set lapack mkl cnr { default | auto | compatible | off }
Default: on
Description: sets the conditional numerical reproducibility mode for Intel MKL LAPACK routines.

Reference: [M-1] LAPACK

set level
Syntax: set level # [ , permanently ]
Default: 95
Description: sets the default confidence level for confidence intervals for all commands

that report confidence intervals. 10.00 ≤ # ≤ 99.99, and # can have at
most two digits after the decimal point.

Reference: [R] level

set linegap
Syntax: set linegap #
Default: 1
Description: sets the space between lines, in pixels, in the Results window. There is no

permanently option because permanently is implied.
Reference: help linegap

set linesize
Syntax: set linesize #
Default: 1 less than the full width of the screen

Description: sets the line width, in characters, for both the screen and the log file.

Reference: [R] log

set locale functions
Syntax: set locale functions locale
Default: en US
Description: sets the locale to be used by functions that take locale as an optional argument.

Reference: [P] set locale functions
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set locale ui
Syntax: set locale ui locale
Default: en US
Description: sets the locale that Stata uses for the user interface.

Reference: [P] set locale ui

set locksplitters (Windows only)

Syntax: set locksplitters {on | off} [ , permanently ]
Default: off
Description: determines whether splitters should be locked so that docked windows

cannot be resized.

Reference: help locksplitters

set logmsg
Syntax: set logmsg {on | off}
Default: on
Description: specifies whether the default message is displayed at the top and bottom of log files.

Reference: [R] log

set logtype
Syntax: set logtype {text | smcl} [ , permanently ]
Default: smcl
Description: sets the default log filetype.

Reference: [R] log

set lstretch
Syntax: set lstretch [ on | off ] [ , permanently ]
Default: on
Description: specifies whether to automatically widen the coefficient table up to the width of

the Results window to accommodate longer variable names.

Reference: help lstretch

set matacache, set matafavor, set matalibs, set matalnum, set matamofirst,
set mataoptimize, set matasolvetol, and set matastrict; see [M-3] mata set.

set maxbezierpath (Mac only)

Syntax: set maxbezierpath # [ , permanently ]
Default: 0
Description: sets the maximum number of lines that can be added to a Bézier path

when rendering a Stata graph to the screen.

Reference: help maxbezierpath
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set maxdb
Syntax: set maxdb # [ , permanently ]
Default: 50
Description: sets the maximum number of dialog boxes whose contents are remembered

from one invocation to the next during a session. 5 ≤ # ≤ 1000
Reference: [R] db

set maxiter
Syntax: set maxiter # [ , permanently ]
Default: 300
Description: sets the default maximum number of iterations for estimation commands.

0 ≤ # ≤ 16000
Reference: [R] set iter

set max memory
Syntax: set max memory #[b | k | m | g] [ , permanently ]
Default: . (all the memory the operating system will supply)

Description: specifies the maximum amount of memory Stata can use to store your data.

2 × segmentsize ≤ # ≤ .
Reference: [D] memory

set max preservemem
Syntax: set max preservemem #[b | k | m | g] [ , permanently ]
Default: 1g (1 gigabyte)
Description: controls the maximum amount of memory preserve will use to store

preserved datasets in memory.

Reference: [P] preserve

set maxvar
Syntax: set maxvar # [ , permanently ]
Default: 5000 for Stata/MP and Stata/SE and 2048 for Stata/BE
Description: sets the maximum number of variables. This can be changed only in Stata/MP and

Stata/SE. 2048 ≤ # ≤ 32767
Reference: [D] memory

set min memory
Syntax: set min memory #[b | k | m | g] [ , permanently ]
Default: 0
Description: specifies an amount of memory Stata will not fall below. This setting affects

efficiency, not the size of datasets you can analyze. 0 ≤ # ≤ max memory
Reference: [D] memory
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set more
Syntax: set more {on | off} [ , permanently ]
Default: off
Description: pauses when more is displayed, continuing only when the user presses a key.

Reference: [R] more

set niceness
Syntax: set niceness # [ , permanently ]
Default: 5

Description: affects how soon Stata gives back unused segments to the operating system.

0 ≤ # ≤ 10
Reference: [D] memory

set notifyuser (Mac only)

Syntax: set notifyuser {on | off} [ , permanently ]
Default: on
Description: sets the default Notification Manager behavior in Stata.

Reference: help notifyuser

set obs
Syntax: set obs #
Default: current number of observations

Description: changes the number of observations in the current dataset. # must be at least

as large as the current number of observations. If there are variables in memory,

the values of all new observations are set to missing.

Reference: [D] obs

set odbcdriver
Syntax: set odbcdriver {unicode | ansi} [ , permanently ]
Default: unicode
Description: determines whether Unicode or ANSI is your ODBC driver.

Reference: [D] odbc

set odbcmgr (Mac and Unix only)

Syntax: set odbcmgr {iodbc | unixodbc} [ , permanently ]
Default: iodbc
Description: determines whether iODBC or unixODBC is your ODBC driver manager.

Reference: [D] odbc
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set output
Syntax: set output {proc | inform | error}
Default: proc
Description: specifies the output to be displayed. proc means display all output; inform

suppresses procedure output but displays informative messages and error messages;

error suppresses all output except error messages. set output is seldom used.

Reference: [P] quietly

set pagesize
Syntax: set pagesize #
Default: 2 less than the physical number of lines on the screen

Description: sets the number of lines between more messages.

Reference: [R] more

set pdf maxtable
Syntax: set pdf maxtable # [ , permanently ]
Default: 500
Description: sets the maximum number of tables allowed in putpdf.
Reference: [RPT] putpdf table

set pformat
Syntax: set pformat [ fmt ] [ , permanently ]
Description: specifies the output format of 𝑝-values in coefficient tables.

fmt is a numerical format; see [D] format.

Reference: [R] set cformat

set pinnable (Windows only)

Syntax: set pinnable {on | off} [ , permanently ]
Default: on
Description: determines whether to enable the use of pinnable window characteristics for certain

windows in Stata.

Reference: help pinnable

set playsnd (Mac only)

Syntax: set playsnd {on | off} [ , permanently ]
Default: on
Description: sets the sound behavior for the Notification Manager behavior in Stata.

Reference: help playsnd

set printcolor
Syntax: set printcolor {automatic | asis | gs1 | gs2 | gs3} [ , permanently ]
Default: automatic
Description: determines how colors are handled when graphs are printed.

Reference: [G-2] set printcolor
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set processors
Syntax: set processors #
Description: sets the number of processors or cores that Stata/MP will use. The default

is the number of processors available on the computer, or the number of

processors allowed by Stata/MP’s license, whichever is less.

Reference: help processors

set python exec
Syntax: set python exec pyexecutable [ , permanently ]
Description: sets which version of Python to use.

Reference: set python exec is a synonym for python set exec;
see [P] PyStata integration

set python userpath
Syntax: set python userpath path [ path . . . ] [ , permanently prepend ]
Description: sets the user’s own module search paths in addition to the system search paths.

Reference: set python userpath is a synonym for python set userpath;
see [P] PyStata integration

set reshape favor
Syntax: set reshape favor {default | memory | speed}[ , permanently ]
Description: sets the default method for reshaping data.

Reference: [D] reshape

set reventries
Syntax: set reventries # [ , permanently ]
Default: 5000
Description: sets the number of scrollback lines available in the History window.

5 ≤ # ≤ 32000.
Reference: help reventries

set revkeyboard (Mac only)

Syntax: set revkeyboard {on | off} [ , permanently ]
Default: on
Description: sets the keyboard navigation behavior for the History window. on indicates

that you can use the keyboard to navigate and enter items from the History

window into the Command window. off indicates that all keyboard input be
directed at the Command window; items can be entered from the History

window only by using the mouse.

Reference: help revkeyboard
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set rmsg
Syntax: set rmsg {on | off} [ , permanently ]
Default: off
Description: indicates whether a return message telling the execution time is to be displayed at

the completion of each command.

Reference: [P] rmsg

set rng
Syntax: set rng {default | mt64 | mt64s | kiss32}
Default: default
Description: determines which random-number generator Stata’s random-number functions

and commands will use.

Reference: [R] set rng

set rngstate
Syntax: set rngstate statecode
Description: resets the state of the random-number generator to the value specified.

Reference: [R] set seed

set rngstream
Syntax: set rngstream #
Description: specifies the stream from which Stata’s stream random-number generator

should draw random numbers.

Reference: [R] set rngstream

set scheme
Syntax: set scheme schemename [ , permanently ]
Default: s2color
Description: determines the overall look for graphs.

Reference: [G-2] set scheme

set scrollbufsize
Syntax: set scrollbufsize #
Default: 200000
Description: sets the scrollback buffer size, in bytes, for the Results window;

may be set between 10,000 and 2,000,000.

Reference: help scrollbufsize
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set searchdefault
Syntax: set searchdefault {local | net | all} [ , permanently ]
Default: local
Description: sets the default behavior of the search command. set searchdefault local

restricts search to use only Stata’s keyword database. set searchdefault net
restricts search to searching only the Internet. set searchdefault all
indicates that both the keyword database and the Internet are to be searched.

Reference: [R] search

set seed
Syntax: set seed #
Default: 123456789
Description: specifies initial value of the random-number seed used by the

random-number functions, such as runiform() and rnormal().
Reference: [R] set seed

set segmentsize
Syntax: set segmentsize #[b | k | m | g] [ , permanently ]
Default: 32m for 64-bit machines
Description: Stata allocates memory for data in units of segmentsize. This setting changes the

amount of memory in a single segment.

1m ≤ # ≤ 32g for 64-bit machines
Reference: [D] memory

set sformat
Syntax: set sformat [ fmt ] [ , permanently ]
Description: specifies the output format of test statistics in coefficient tables.

fmt is a numerical format; see [D] format.

Reference: [R] set cformat

set showbaselevels
Syntax: set showbaselevels { on | off | all } [ , permanently ]
Description: specifies whether to display base levels of factor variables and their interactions

in coefficient tables.

Reference: [R] set showbaselevels

set showemptycells
Syntax: set showemptycells { on | off } [ , permanently ]
Description: specifies whether to display empty cells in coefficient tables.

Reference: [R] set showbaselevels

set showomitted
Syntax: set showomitted { on | off } [ , permanently ]
Description: specifies whether to display omitted coefficients in coefficient tables.

Reference: [R] set showbaselevels
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set smoothfonts (Mac only)

Syntax: set smoothfonts {on | off}
Default: on
Description: determines whether to use font smoothing (antialiased text) in the Results, Viewer,

and Data Editor windows.

Reference: help smoothfonts

set sortmethod
Syntax: set sortmethod {default | fsort | qsort}
Default: default
Description: determines which sorting method will be used by sort, gsort, and any other

commands that use sorting as part of their computation.

Reference: [P] set sortmethod

set sortrngstate
Syntax: set sortrngstate #
Default: 1001XZA112210f4b16c1cb10507a1f38cb440c40003c9a83566fa1201b69...
Description: specifies the initial value of the state used for the random-number generator that

randomizes data before they are sorted. This value is used by sort, gsort, and
any other commands that use sorting as part of their computation.

Reference: [P] set sortrngstate

set table style
Syntax: set table style {table | style} [ , permanently ]
Default: table
Description: controls the default styles used in tables created by table.
Reference: [TABLES] set table style

set taskbargroups (Windows only)

Syntax: set taskbargroups {on | off}
Default: on
Description: determines whether to enable taskbar grouping of windows in Stata.

Reference: help taskbargroups

set trace
Syntax: set trace {on | off}
Default: off
Description: determines whether to trace the execution of programs for debugging.

Reference: [P] trace
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set tracedepth
Syntax: set tracedepth #
Default: 32000 (equivalent to ∞)

Description: if trace is set on, traces execution of programs and nested programs up to
tracedepth. For example, if tracedepth is 2, the current program and any

subroutine called would be traced, but subroutines of subroutines would not

be traced.

Reference: [P] trace

set traceexpand
Syntax: set traceexpand {on | off} [ , permanently ]
Default: on
Description: if trace is set on, shows lines both before and after macro expansion. If

traceexpand is set off, only the line before macro expansion is shown.
Reference: [P] trace

set tracehilite
Syntax: set tracehilite ”pattern” [ , word ]
Default: ””
Description: highlights pattern in the trace output.

Reference: [P] trace

set traceindent
Syntax: set traceindent {on | off} [ , permanently ]
Default: on
Description: if trace is set on, indents displayed lines according to their nesting level. The

lines of the main program are not indented. Two spaces of indentation are used for

each level of nested subroutine.

Reference: [P] trace

set tracenumber
Syntax: set tracenumber {on | off} [ , permanently ]
Default: off
Description: if trace is set on, shows the nesting level numerically in front of the line.

Lines of the main program are preceded by 01, lines of subroutines called by the

main program are preceded by 02, etc.

Reference: [P] trace

set tracesep
Syntax: set tracesep {on | off} [ , permanently ]
Default: on
Description: if trace is set on, displays a horizontal separator line that displays the name

of the subroutine whenever a subroutine is called or exits.

Reference: [P] trace
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set type
Syntax: set type {float | double} [ , permanently ]
Default: float
Description: specifies the default storage type assigned to new variables.

Reference: [D] generate

set update interval (Mac and Windows only)

Syntax: set update interval #
Default: 7
Description: sets the number of days to elapse before performing the next automatic

update query.
Reference: [R] update

set update prompt (Mac and Windows only)

Syntax: set update prompt {on | off}
Default: on
Description: determines whether a dialog is to be displayed before performing an automatic

update query. There is no permanently option because permanently is implied.
Reference: [R] update

set update query (Mac and Windows only)

Syntax: set update query {on | off}
Default: on
Description: determines whether update query is to be automatically performed when Stata

is launched. There is no permanently option because permanently is implied.
Reference: [R] update

set varabbrev
Syntax: set varabbrev {on | off} [ , permanently ]
Default: on
Description: indicates whether Stata should allow variable abbreviations.

Reference: [P] varabbrev

set varkeyboard (Mac only)

Syntax: set varkeyboard {on | off} [ , permanently ]
Default: on
Description: sets the keyboard navigation behavior for the Variables window. on indicates

that you can use the keyboard to navigate and enter items from the Variables

window into the Command window. off indicates that all keyboard input be
directed at the Command window; items can be entered from the Variables

window only by using the mouse.

Reference: help varkeyboard
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Also see
[R] query — Display system parameters

[R] set defaults — Reset system parameters to original Stata defaults

[M-3] mata set — Set and display Mata system parameters

[P] creturn — Return c-class values



set cformat — Format settings for coefficient tables

Description Syntax Option Remarks and examples Also see

Description
set cformat specifies the output format of coefficients, standard errors, and confidence limits in

coefficient tables.

set pformat specifies the output format of 𝑝-values in coefficient tables.
set sformat specifies the output format of test statistics in coefficient tables.

Syntax
set cformat [ fmt ] [ , permanently ]

set pformat [ fmt ] [ , permanently ]

set sformat [ fmt ] [ , permanently ]

where fmt is a numerical format.

Option
permanently specifies that, in addition to making the change right now, the setting be remembered and

become the default setting when you invoke Stata.

Remarks and examples
The formatting of the numbers in the coefficient table can be controlled by using the set cformat,

set pformat, and set sformat commands or by using the cformat(% fmt), pformat(% fmt), and
sformat(% fmt) options at the time of estimation or on replay of the estimation command. See [R] Es-
timation options.

The maximum format widths for set cformat, set pformat, and set sformat in coefficient tables
are 9, 5, and 8, respectively.

2783
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Example 1
We use auto.dta to illustrate.

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. regress mpg weight displacement

Source SS df MS Number of obs = 74
F(2, 71) = 66.79

Model 1595.40969 2 797.704846 Prob > F = 0.0000
Residual 848.049768 71 11.9443629 R-squared = 0.6529

Adj R-squared = 0.6432
Total 2443.45946 73 33.4720474 Root MSE = 3.4561

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

weight -.0065671 .0011662 -5.63 0.000 -.0088925 -.0042417
displacement .0052808 .0098696 0.54 0.594 -.0143986 .0249602

_cons 40.08452 2.02011 19.84 0.000 36.05654 44.11251

. set cformat %9.2f

. regress mpg weight displacement
Source SS df MS Number of obs = 74

F(2, 71) = 66.79
Model 1595.40969 2 797.704846 Prob > F = 0.0000

Residual 848.049768 71 11.9443629 R-squared = 0.6529
Adj R-squared = 0.6432

Total 2443.45946 73 33.4720474 Root MSE = 3.4561

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

weight -0.01 0.00 -5.63 0.000 -0.01 -0.00
displacement 0.01 0.01 0.54 0.594 -0.01 0.02

_cons 40.08 2.02 19.84 0.000 36.06 44.11

. regress mpg weight displacement, cformat(%9.3f)
Source SS df MS Number of obs = 74

F(2, 71) = 66.79
Model 1595.40969 2 797.704846 Prob > F = 0.0000

Residual 848.049768 71 11.9443629 R-squared = 0.6529
Adj R-squared = 0.6432

Total 2443.45946 73 33.4720474 Root MSE = 3.4561

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

weight -0.007 0.001 -5.63 0.000 -0.009 -0.004
displacement 0.005 0.010 0.54 0.594 -0.014 0.025

_cons 40.085 2.020 19.84 0.000 36.057 44.113



set cformat — Format settings for coefficient tables 2785

To reset the cformat setting to its command-specific default, type

. set cformat

. regress mpg weight displacement
Source SS df MS Number of obs = 74

F(2, 71) = 66.79
Model 1595.40969 2 797.704846 Prob > F = 0.0000

Residual 848.049768 71 11.9443629 R-squared = 0.6529
Adj R-squared = 0.6432

Total 2443.45946 73 33.4720474 Root MSE = 3.4561

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

weight -.0065671 .0011662 -5.63 0.000 -.0088925 -.0042417
displacement .0052808 .0098696 0.54 0.594 -.0143986 .0249602

_cons 40.08452 2.02011 19.84 0.000 36.05654 44.11251

Also see
[R] Estimation options — Estimation options

[R] query — Display system parameters

[R] set — Overview of system parameters

[U] 20.9 Formatting the coefficient table



set defaults — Reset system parameters to original Stata defaults

Description
set defaults resets settings made by set to the original default settings that were shipped with

Stata.

set defaults may not be used with java, lapack, putdocx, python, rng, or sort system-

parameter categories.

Syntax
set defaults { category | all} [ , permanently ]

where category is one of memory | output | interface | graphics |

network | update | trace | mata | unicode | other

Option
permanently specifies that, in addition to making the change right now, the settings be remembered and

become the default settings when you invoke Stata.

Remarks and examples

Example 1
To assist us in debugging a new command, we modified some of the trace settings. To return them

to their original values, we type

. set_defaults trace
-> set trace off
-> set tracedepth 32000
-> set traceexpand on
-> set tracesep on
-> set traceindent on
-> set tracenumber off
-> set tracehilite ””
(preferences reset)

Also see
[R] query — Display system parameters

[R] set — Overview of system parameters

[M-3] mata set — Set and display Mata system parameters
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Description
set emptycells allows you to control how Stata handles interaction terms with empty cells. Stata

can keep empty cells or drop them. The default is to keep empty cells.

Syntax
set emptycells { keep | drop } [ , permanently ]

Option
permanently specifies that, in addition to making the change right now, the setting be remembered and

become the default setting when you invoke Stata.

Remarks and examples
By default, Stata keeps empty cells so they can be reported in the coefficient table. For example, type

. use https://www.stata-press.com/data/r18/auto

. regress mpg rep78#foreign, baselevels

and you will see a regression of mpg on 10 indicator variables because rep78 takes on 5 values and

foreign takes on 2 values in the auto dataset. Two of those cells will be reported as empty because the
data contain no observations of foreign cars with a rep78 value of 1 or 2.

Many real datasets contain a large number of empty cells, and this could cause the “unable to allocate

matrix” error message, r(915). In that case, type

. set emptycells drop

to get Stata to drop empty cells from the list of coefficients. If you commonly fit models with empty

cells, you can permanently set Stata to drop empty cells by typing the following:

. set emptycells drop, permanently

Also see
[R] set — Overview of system parameters
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Description Syntax Option Remarks and examples Also see

Description
set iterlog and set maxiter control the display of the iteration log and the maximum number of

iterations, respectively, for estimation commands that iterate and for the Mata optimization functions

moptimize(), optimize(), and solvenl().

set iterlog specifies whether to display the iteration log. The default setting is on, which displays
the log. You can specify set iterlog off to suppress it. To changewhether the iteration log is displayed
for a particular estimation command, you need not reset iterlog; you can specify the log or nolog
option with that command. If you do not specify log or nolog, the iterlog setting is used. To view
the current setting of iterlog, type display c(iterlog).

set maxiter specifies the default maximum number of iterations. To change the maximum number

of iterations performed by a particular estimation command, you need not reset maxiter; you can specify
the iterate(#) option with that command. If you do not specify iterate(#), the maxiter value is
used. To view the current setting of maxiter, type display c(maxiter).

Syntax
Set whether to display the iteration log

set iterlog { on | off } [ , permanently ]

Set default maximum iterations

set maxiter # [ , permanently ]
# is any number between 0 and 16,000; the initial value is set to 300.

Option
permanently specifies that, in addition to making the change right now, the setting be remembered and

become the default setting when you invoke Stata.

Remarks and examples
The iterlog setting is particularly useful in combination with the nolog and log options; see ex-

ample 1 below. Also see [R]Maximize for details about the options. The iterlog setting has no effect
on commands that suppress the iteration log by default, for example, commands prefixed with svy. To
display the log with those commands, you need to use the log option.
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You will rarely need to modify the maxiter setting to change the maximum number of iterations

used by Stata’s iterative commands. Instead, you may want to specify the iterate() option with these
commands. For example, specifying iterate(0) is useful for viewing results evaluated at the initial
value of the coefficient vector.

The iterlog and maxiter settings also control the default output displayed by theMata optimization

functions moptimize(), optimize(), and solvenl().

Example 1: Display and suppress the iteration log
Stata estimation commands that iterate usually display the iteration log by default:

. sysuse auto
(1978 automobile data)
. logit foreign mpg
Iteration 0: Log likelihood = -45.03321
Iteration 1: Log likelihood = -39.380959
Iteration 2: Log likelihood = -39.288802
Iteration 3: Log likelihood = -39.28864
Iteration 4: Log likelihood = -39.28864
Logistic regression Number of obs = 74

LR chi2(1) = 11.49
Prob > chi2 = 0.0007

Log likelihood = -39.28864 Pseudo R2 = 0.1276

foreign Coefficient Std. err. z P>|z| [95% conf. interval]

mpg .1597621 .0525876 3.04 0.002 .0566922 .262832
_cons -4.378866 1.211295 -3.62 0.000 -6.752961 -2.004771

You can suppress the log by specifying the nolog option:

. logit foreign mpg, nolog
Logistic regression Number of obs = 74

LR chi2(1) = 11.49
Prob > chi2 = 0.0007

Log likelihood = -39.28864 Pseudo R2 = 0.1276

foreign Coefficient Std. err. z P>|z| [95% conf. interval]

mpg .1597621 .0525876 3.04 0.002 .0566922 .262832
_cons -4.378866 1.211295 -3.62 0.000 -6.752961 -2.004771

If you want to suppress the iteration log from all estimation commands every time they are run within

the current Stata session, type

. set iterlog off
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We can run logit again but nowwithout the nolog option, and the iteration log will not be displayed:

. logit foreign mpg
Logistic regression Number of obs = 74

LR chi2(1) = 11.49
Prob > chi2 = 0.0007

Log likelihood = -39.28864 Pseudo R2 = 0.1276

foreign Coefficient Std. err. z P>|z| [95% conf. interval]

mpg .1597621 .0525876 3.04 0.002 .0566922 .262832
_cons -4.378866 1.211295 -3.62 0.000 -6.752961 -2.004771

Or we can run a different command, for example, mlogit, and the log will still be suppressed:

. mlogit rep78 mpg
Multinomial logistic regression Number of obs = 69

LR chi2(4) = 15.88
Prob > chi2 = 0.0032

Log likelihood = -85.752375 Pseudo R2 = 0.0847

rep78 Coefficient Std. err. z P>|z| [95% conf. interval]

1
mpg .0708122 .1471461 0.48 0.630 -.2175888 .3592132

_cons -4.137144 3.15707 -1.31 0.190 -10.32489 2.0506

2
mpg -.0164251 .0926724 -0.18 0.859 -.1980597 .1652096

_cons -1.005118 1.822129 -0.55 0.581 -4.576426 2.56619

3 (base outcome)

4
mpg .0958626 .0633329 1.51 0.130 -.0282676 .2199927

_cons -2.474187 1.341131 -1.84 0.065 -5.102756 .1543813

5
mpg .2477469 .0764076 3.24 0.001 .0979908 .397503

_cons -6.653164 1.841794 -3.61 0.000 -10.26301 -3.043314
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With the iterlog setting off, we can display the iteration log for specific commands by specifying
the log option:

. mlogit rep78 mpg, log
Iteration 0: Log likelihood = -93.692061
Iteration 1: Log likelihood = -86.581485
Iteration 2: Log likelihood = -85.767758
Iteration 3: Log likelihood = -85.752385
Iteration 4: Log likelihood = -85.752375
Iteration 5: Log likelihood = -85.752375
Multinomial logistic regression Number of obs = 69

LR chi2(4) = 15.88
Prob > chi2 = 0.0032

Log likelihood = -85.752375 Pseudo R2 = 0.0847

rep78 Coefficient Std. err. z P>|z| [95% conf. interval]

1
mpg .0708122 .1471461 0.48 0.630 -.2175888 .3592132

_cons -4.137144 3.15707 -1.31 0.190 -10.32489 2.0506

2
mpg -.0164251 .0926724 -0.18 0.859 -.1980597 .1652096

_cons -1.005118 1.822129 -0.55 0.581 -4.576426 2.56619

3 (base outcome)

4
mpg .0958626 .0633329 1.51 0.130 -.0282676 .2199927

_cons -2.474187 1.341131 -1.84 0.065 -5.102756 .1543813

5
mpg .2477469 .0764076 3.24 0.001 .0979908 .397503

_cons -6.653164 1.841794 -3.61 0.000 -10.26301 -3.043314

You can switch back to displaying iteration logs by typing

. set iterlog on

The default setting will be restored automatically the next time you invoke Stata. If you want the

setting to be remembered for future Stata sessions, specify the permanently option with set iterlog.

Also see
[R]Maximize — Details of iterative maximization

[R] set — Overview of system parameters

[M-5] moptimize( ) — Model optimization

[M-5] optimize( ) — Function optimization

[M-5] solvenl( ) — Solve systems of nonlinear equations



set rng — Set which random-number generator (RNG) to use

Description Syntax Remarks and examples Reference Also see

Description
set rng determines which random-number generator (RNG) Stata’s random-number functions and

commands will use.

Syntax
set rng { default | mt64 | mt64s | kiss32 }

Remarks and examples
Remarks are presented under the following headings:

Introduction
Random-number generators in Stata

Introduction
By default, Stata uses the 64-bit Mersenne Twister (mt64) RNG. mt64s is a stream RNG based on the

64-bit Mersenne Twister. Earlier versions of Stata used the 32-bit KISS (keep it simple stupid) (kiss32)
RNG.

With set rng default (the default), code running under version control will automatically use the
appropriate RNG—mt64 in Stata 14 and later and kiss32 for earlier code.

The scope of set rng is the Stata session, do-file, or program in which rng is set.

Unless you want to simultaneously draw random numbers in separate instances of Stata, we rec-

ommend that you do not change Stata’s default behavior for its RNGs. See [R] set rngstream for an

introduction to simultaneously drawing random numbers in separate instances of Stata.

See [FN] Random-number functions, [R] set seed, and [R] set rngstream for more information.

Random-number generators in Stata
The default RNG in Stata is the 64-bit Mersenne Twister. See Matsumoto and Nishimura (1998)

for more details. The default RNG in Stata 13 and earlier versions was George Marsaglia’s 32-bit KISS

generator (G. Marsaglia, 1994, pers. comm.). The KISS generator is still available under version control

or via set rng. Multiple independent random-number streams (based on the 64-bit Mersenne Twister)

are also supported for use in multiple simultaneous instances of Stata; see [R] set rngstream for more

information on this. The abbreviations mt64, kiss32, and mt64s are used, respectively, to specify these
three generators in Stata commands and functions.
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So far, we have discussed two ways you can specify the RNG: with set rng and through version

control. Another way to specify the RNG is with functions and system parameters explicitly named

after the generators. In fact, all random-number functions have variants that are explicitly named af-

ter each generator, using the generator abbreviation as the suffix. For example, runiform mt64(),
runiform kiss32(), and runiform mt64s() are variants of runiform() for each generator. Simi-
larly, we have rnormal mt64(), rnormal kiss32(), rnormal mt64s(), etc.

The system parameters seed and rngstate also have variants explicitly named after each

generator: seed mt64, seed kiss32, seed mt64s, rngstate mt64, rngstate kiss32, and

rngstate mt64s.

For example, here is how you can use functions and parameters specific to mt64 to set the seed,

generate random numbers, preserve a state, generate more numbers, and restore the previously preserved

state:

. set seed_mt64 482637

. generate u = runiform_mt64()

. local state = c(rngstate_mt64)

. generate l = rlogistic_mt64()

. set rngstate_mt64 ‘state’

Note that calling functions and setting parameters specific to, say, kiss32, will not change the current
RNG, the seed of the current RNG, or the state of the current RNG—unless the current RNG is kiss32.

Reference
Matsumoto, M., and T. Nishimura. 1998. Mersenne Twister: A 623-dimensionally equidistributed uniform pseudo-

random number generator.ACM Transactions on Modeling and Computer Simulation 8: 3–30. https://doi.org/10.1145/

272991.272995.

Also see
[R] set — Overview of system parameters

[R] set rngstream — Specify the stream for the stream random-number generator

[R] set seed — Specify random-number seed and state

[FN] Random-number functions

[P] version — Version control

https://doi.org/10.1145/272991.272995
https://doi.org/10.1145/272991.272995
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Description Syntax Remarks and examples References Also see

Description
set rngstream specifies the subsequence, known as a stream, from which Stata’s stream random-

number generator should draw random numbers. When performing a bootstrap estimation or a Monte

Carlo simulation in parallel on multiple machines, you should set the same seed on all machines but set

a different stream on each machine. This will ensure that random numbers drawn on different machines

are independent. We strongly recommend that you set the seed and the stream only once in each Stata

session.

Syntax
set rngstream #

# is any integer between 1 and 32,767.

Remarks and examples
Stata’s stream random-number generator, the stream 64-bit Mersenne Twister (mt64s), allows sepa-

rate instances of Stata to simultaneously draw independent random numbers. This feature enables you

to use bootstrap and to run Monte Carlo simulations in parallel on multiple machines.

What we call random numbers are elements in a sequence of deterministic numbers that appear to

be random. A seed specifies a starting value in this sequence. In figure 1, each tick is an element in a

random sequence and setting the seed to 12345 means that the tick identified by the arrow below is the

first number drawn.

Figure 1. Seed specifies first number in random sequence

A stream random-number generator partitions a sequence of random numbers into nonoverlapping

subsequences known as streams. The random numbers in each stream are independent of those in other

streams because they come from distinct nonoverlapping subsets of the original sequence.
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Figure 2 depicts a stream version of the generator depicted in figure 1. The stream version also starts

at the place implied by seed 12345, but it additionally partitions the random numbers into 4 streams and

a set of unused numbers.

Figure 2. A stream version of figure 1 generator

In contrast to nonstream random-number generators, setting the seed for a random-number generator

controls not just where the sequence starts but also how the sequence is partitioned. Compare figure 2

with figure 3 for an illustration.

Figure 3. Changing the seed changes the streams

Seed 123456 specifies the first random number, and the streams of random numbers in figure 3 differ

from those in figure 2.

The mt64s generator is a stream version of Stata’s default generator, the 64-bit Mersenne Twister

implemented in mt64; see Matsumoto and Nishimura (1998) and Random-number generators in Stata

in [R] set rng for more details. Our implementation of the method discussed in Haramoto et al. (2008)

partitions the mt64 sequence into 32,767 streams, each containing 2128 random numbers. The remaining

numbers are unused. The mt64s seed determines the starting point of every stream in the Mersenne

Twister sequence.

Stream 1 of mt64s has the same starting point as the mt64 generator. That is, given the same seed,
mt64s with rngstream set to 1 will generate the same random numbers as mt64.

The mt64s generator is designed to simultaneously draw independent random numbers on different

machines. To draw from different streams that guarantee independence, use the same seed and change

the stream. For example, to draw some uniform(0,1) random numbers from stream 10 of the mt64s
generator under seed 123, type

. set rng mt64s

. set rngstream 10

. set seed 123

. generate u = runiform()

If we wanted to simultaneously draw some uniform(0,1) random numbers on another machine from

stream 11 of the mt64s generator, we would type

. set rng mt64s

. set rngstream 11

. set seed 123

. generate u = runiform()

Again, each seed creates a different partition of the mt64 sequence into nonoverlapping subsets.

We strongly recommend that you set the stream and the seed once in each Stata session and draw

numbers only from this stream.
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c(rngstream) returns the current stream number. c(rngseed mt64s) returns the last seed that was
set for mt64s. See [P] creturn for more details. See [R] set seed for details about storing and restoring
the current position in the random sequence.

As with the single-stream generators, use local state = c(rngstate) to store the current position
in the current random stream; see [R] set seed for details. The mt64s state encodes the seed used in

addition to the stream number, because the seed determines the position of every random number in

every stream. Unlike the case of single-stream generators, restoring the state also restores the seed. For

example, suppose you save an mt64s state with local state = c(rngstate) change the seed and the
stream, and later restore that state with set rngstate ‘state’. The current mt64s seed is changed

to the one encoded in state. In addition to changing the current stream to the one encoded in state,
the current mt64s seed is changed to the one encoded in state. This behavior ensures any subsequent
stream changes draw from nonoverlapping subsets.

set rngstream also sets the random-number generator to mt64s.

Example 1: Using stream random numbers to parallelize a bootstrap
We illustrate how to simultaneously perform 100 bootstrap replications on machine 1 and 100 boot-

strap replications on machine 2. We focus on the mechanics of distributing the draws over machines

using stream random numbers; see [R] bootstrap for an introduction to the bootstrap.

On machine 1, we type

. clear all

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. set rng mt64s
. set rngstream 1
. set seed 12345
. bootstrap, reps(100) saving(machine1, replace): regress mpg weight gear foreign
(running regress on estimation sample)
(file machine1.dta not found)
Bootstrap replications (100): .........10.........20.........30.........40......
> ...50.........60.........70.........80.........90.........100 done
Linear regression Number of obs = 74

Replications = 100
Wald chi2(3) = 191.66
Prob > chi2 = 0.0000
R-squared = 0.6670
Adj R-squared = 0.6527
Root MSE = 3.4096

Observed Bootstrap Normal-based
mpg coefficient std. err. z P>|z| [95% conf. interval]

weight -.006139 .0005462 -11.24 0.000 -.0072095 -.0050685
gear_ratio 1.457113 1.271301 1.15 0.252 -1.03459 3.948817

foreign -2.221682 1.090115 -2.04 0.042 -4.358267 -.0850957
_cons 36.10135 4.720623 7.65 0.000 26.8491 45.3536
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On machine 2, we type

. clear all

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. set rng mt64s
. set rngstream 2
. set seed 12345
. bootstrap, reps(100) saving(machine2, replace): regress mpg weight gear foreign
(running regress on estimation sample)
(file machine2.dta not found)
Bootstrap replications (100): .........10.........20.........30.........40......
> ...50.........60.........70.........80.........90.........100 done
Linear regression Number of obs = 74

Replications = 100
Wald chi2(3) = 121.48
Prob > chi2 = 0.0000
R-squared = 0.6670
Adj R-squared = 0.6527
Root MSE = 3.4096

Observed Bootstrap Normal-based
mpg coefficient std. err. z P>|z| [95% conf. interval]

weight -.006139 .0005909 -10.39 0.000 -.0072972 -.0049809
gear_ratio 1.457113 1.267439 1.15 0.250 -1.027022 3.941249

foreign -2.221682 1.253503 -1.77 0.076 -4.678502 .2351393
_cons 36.10135 4.419797 8.17 0.000 27.43871 44.764

After copying machine2.dta from machine 2 to the working directory on machine 1, we produce

the combined results by typing

. clear all

. use machine1
(bootstrap: regress)
. append using machine2
. bstat
Bootstrap results Number of obs = 74

Replications = 200
Command: regress mpg weight gear foreign

Observed Bootstrap Normal-based
coefficient std. err. z P>|z| [95% conf. interval]

weight -.006139 .0005678 -10.81 0.000 -.0072519 -.0050262
gear_ratio 1.457113 1.266586 1.15 0.250 -1.02535 3.939577

foreign -2.221682 1.187847 -1.87 0.061 -4.549819 .1064562
_cons 36.10135 4.562644 7.91 0.000 27.15873 45.04397
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We used regress in this example, but the divide-and-conquer strategy reduces computation time for
any command that works with bootstrap. In fact, problems that take longer produce more noticeable
speed improvements. For computationally intensive problems, the two-machine time will be about one-

half the one-machine time. Using distinct streams on many different machines can dramatically reduce

the time required for computationally intensive problems.

Example 2: Using stream random numbers to parallelize a Monte Carlo simulation
Wewant to simultaneously perform 100 Monte Carlo replications on machine 3 and 100 Monte Carlo

replications on machine 4. Again, we focus entirely on the mechanics of distributing the draws over

machines. See Drukker (2015) for an introduction to Monte Carlo simulations using Stata.

As discussed in [R] simulate, the simulate command uses an ado-file that draws from the popu-

lation of interest; it then computes and returns the estimates. Our program chi2sim draws from a 𝜒2

distribution with one degree of freedom.

program define chi2sim, rclass
version 18.0 // (or version 18.5 for StataNow)
drop _all
set obs 200
tempvar z
generate ‘z’ = rchi2(1)
summarize ‘z’
return scalar mean = r(mean)
return scalar Var = r(Var)

end

On machine 3, we type

. set rng mt64s

. set rngstream 3

. set seed 12345

. simulate mean=r(mean) var=r(Var), reps(500) saving(machine3, replace): chi2sim
Command: chi2sim

mean: r(mean)
var: r(Var)

(file machine3.dta not found)
Simulations (500): .........10.........20.........30.........40.........50......
> ...60.........70.........80.........90.........100.........110.........120....
> .....130.........140.........150.........160.........170.........180.........1
> 90.........200.........210.........220.........230.........240.........250....
> .....260.........270.........280.........290.........300.........310.........3
> 20.........330.........340.........350.........360.........370.........380....
> .....390.........400.........410.........420.........430.........440.........4
> 50.........460.........470.........480.........490.........500 done
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On machine 4, we run a do-file that performs

. set rng mt64s

. set rngstream 4

. set seed 12345

. simulate mean=r(mean) var=r(Var), reps(500) saving(machine4, replace): chi2sim
Command: chi2sim

mean: r(mean)
var: r(Var)

(file machine4.dta not found)
Simulations (500): .........10.........20.........30.........40.........50......
> ...60.........70.........80.........90.........100.........110.........120....
> .....130.........140.........150.........160.........170.........180.........1
> 90.........200.........210.........220.........230.........240.........250....
> .....260.........270.........280.........290.........300.........310.........3
> 20.........330.........340.........350.........360.........370.........380....
> .....390.........400.........410.........420.........430.........440.........4
> 50.........460.........470.........480.........490.........500 done

After copying machine4.dta from machine 4 to the working directory on machine 3, we combine

the results by typing

. clear all

. use machine3
(simulate: chi2sim)
. append using machine4
. summarize mean var

Variable Obs Mean Std. dev. Min Max

mean 1,000 1.00296 .1011507 .7098877 1.330305
var 1,000 2.01955 .5194171 .8931134 4.381884

As in example 1, more machines enable further parallelization.

Technical note
While mt64s has been made robust to switching between streams within a Stata session, convoluted

combinations of set rngstream # and set seed # can lead to drawing the same random numbers, just

as it can in the case of single-stream generators. We strongly recommend that you do not switch between

streams within a session.
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Example 3: Position within a stream is stored
This example illustrates that the sequence picks up where it left off when the stream is switched, and it

illustrates that clear rngstream resets all streams to their beginning positions. These features facilitate
advanced programming techniques, and we recommend against using this feature in standard use.

. clear all

. set obs 10
Number of observations (_N) was 0, now 10.
. set rng mt64s
. set rngstream 5
. set seed 12345
. generate x = runiform() in 1/5
(5 missing values generated)
. set rngstream 6
. generate y = runiform()
. set rngstream 5
. replace x = runiform() in 6/10
(5 real changes made)
. clear rngstream
. set rngstream 5
. generate z = runiform()
. list

x y z

1. .5095264 .8838338 .5095264
2. .9766202 .7677673 .9766202
3. .3933811 .5665985 .3933811
4. .950057 .3141659 .950057
5. .5862163 .6635106 .5862163

6. .4837167 .6781911 .4837167
7. .1752382 .7169843 .1752382
8. .2302023 .7554966 .2302023
9. .4927879 .8685812 .4927879

10. .9114158 .5634732 .9114158

After setting the rngstream to 5 and setting the seed, we put the first 5 draws from stream 5 into

observations 1–5 of x, switch to rngstream 6, put the first 10 random draws from stream 6 into y, return
to rngstream 5, and put the next 5 draws from stream 5 into observations 6–10 of x. Then we use clear
rngstream to initialize each rngstream at its initial position for seed 12345 and put the first 10 draws
from stream 5 into z.

That the random numbers in x match those in z illustrates that the sequence picks up where it left off
when the stream is switched and the seed has not been changed.
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References
Drukker, D. M. 2015. Monte Carlo simulations using Stata. The Stata Blog: Not Elsewhere Classified. https://blog.stata.

com/2015/10/06/monte-carlo-simulations-using-stata/.

Haramoto, H., M. Matsumoto, T. Nishimura, F. Panneton, and P. L’Ecuyer. 2008. Efficient jump ahead for 𝐹2-linear

random number generators. INFORMS Journal on Computing 20: 385–390. https://doi.org/10.1287/ijoc.1070.0251.

Matsumoto, M., and T. Nishimura. 1998. Mersenne Twister: A 623-dimensionally equidistributed uniform pseudo-

random number generator.ACM Transactions on Modeling and Computer Simulation 8: 3–30. https://doi.org/10.1145/

272991.272995.

Taylor, M. A. 2018. Simulating the central limit theorem. Stata Journal 18: 345–356.

Vega Yon, G. G., and B. Quistorff. 2019. parallel: A command for parallel computing. Stata Journal 19: 667–684.

Also see
[R] set — Overview of system parameters

[R] set rng — Set which random-number generator (RNG) to use

[R] set seed — Specify random-number seed and state

[D] clear — Clear memory

[FN] Random-number functions

https://blog.stata.com/2015/10/06/monte-carlo-simulations-using-stata/
https://blog.stata.com/2015/10/06/monte-carlo-simulations-using-stata/
https://doi.org/10.1287/ijoc.1070.0251
https://doi.org/10.1145/272991.272995
https://doi.org/10.1145/272991.272995
https://www.stata-journal.com/article.html?article=st0525
https://doi.org/10.1177/1536867X19874242


set seed — Specify random-number seed and state

Description Syntax Remarks and examples Reference Also see

Description
set seed # specifies the initial value of the random-number seed used by the random-number func-

tions, such as runiform() and rnormal().

set rngstate statecode resets the state of the random-number generator to the value specified, which
is a state previously obtained from creturn value c(rngstate).

set seed # and set rngstate statecode apply to the current random-number generator. Every

random-number generator in Stata has its own seed and state encoding.

Syntax
set seed #

set rngstate statecode

# is any number between 0 and 231 − 1 (or 2,147,483,647).

statecode is a random-number state previously obtained from creturn value c(rngstate).

Remarks and examples
Remarks are presented under the following headings:

Examples
Setting the seed
How to choose a seed
Do not set the seed too often
Preserving and restoring the random-number generator state

Examples
1. Specify initial value of random-number seed

. set seed 339487731

2. Create variable u containing uniformly distributed pseudorandom numbers on the interval (0, 1)
. generate u = runiform()

3. Create variable z containing normally distributed randomnumberswithmean 0 and standard deviation

1

. generate z = rnormal()

4. Obtain state of pseudorandom-number generator and store it in a local macro named state

. local state = c(rngstate)

5. Restore pseudorandom-number generator state to that previously stored in local macro named state

. set rngstate ‘state’

2802
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Setting the seed
Stata’s random-number generation functions, such as runiform() and rnormal(), do not really

produce random numbers. These functions are deterministic algorithms that produce numbers that can

pass for random. runiform() produces numbers that can pass for independent draws from a rectan-

gular distribution over (0, 1); rnormal() produces numbers that can pass for independent draws from
N(0, 1). Stata’s random-number functions are formally called pseudorandom-number functions. The

default pseudorandom-number generator introduced in Stata 14 is the 64-bit Mersenne Twister. See

Matsumoto and Nishimura (1998) and Random-number generators in Stata in [R] set rng for more de-

tails.

The sequences the random-number functions produce are determined by the seed, which is just a

number and which is set to 123456789 every time Stata is launched. This means that runiform()
produces the same sequence each time you start Stata. The first time you use runiform() after Stata is
launched, runiform() returns 0.348871704556195. The second time you use it, runiform() returns
0.266885709753138. The third time you use it, . . . .

To obtain different sequences, you must specify different seeds using the set seed command. You
might specify the seed 472195:

. set seed 472195

If you were now to use runiform(), the first call would return 0.713028143573182, the second call
would return 0.920524469911484, and so on. Whenever you set seed 472195, runiform()will return
those numbers the first two times you use it.

Thus, you set the seed to obtain different pseudorandom sequences from the pseudorandom-number

functions.

If you record the seed you set, pseudorandom results such as results from a simulation or imputed

values from mi impute can be reproduced later. Whatever you do after setting the seed, if you set the

seed to the same value and repeat what you did, you will obtain the same results.

How to choose a seed
Your best choice for the seed is an element chosen randomly from the set {0, 1, . . . , 231 − 1} (where

231 − 1 = 2,147,483,647). We recommend that, but that is difficult to achieve because finding easy-to-

access, truly random sources is difficult.

One person we know uses digits from the serial numbers from dollar bills he finds in his wallet. Of

course, the numbers he obtains are not really random, but they are good enough, and they are probably a

good deal more random than the seeds most people choose. Some people use dates and times, although

we recommend against that because, over the day, it just gets later and later, and that is a pattern. Others

try to make up a random number, figuring if they include enough digits, the result just has to be random.

This is a variation on the five-second rule for dropped food, and we admit to using both of these rules.

It does not really matter how you set the seed, as long as there is no obvious pattern in the seeds that

you set and as long as you do not set the seed too often during a session.

Nonetheless, here are two methods that we have seen used but you should not use:

1. The first time you set the seed, you set the number 1. The next time, you set 2, and then 3, and

so on. Variations on this included setting 1001, 1002, 1003, . . . , or setting 1001, 2001, 3001,

and so on.

Do not follow any of these procedures. The seeds you set must not exhibit a pattern.
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2. To set the seed, you obtain a pseudorandom number from runiform() and then use the digits
from that to form the seed.

This is a bad idea because the pseudorandom-number generator can converge to a cycle. If

you obtained the pseudorandom-number generator unrelated to those in Stata, this would work

well, but then you would have to find a rule to set the first generator’s seed.

Choosing seeds that do not exhibit a pattern is of great importance. That the seeds satisfy the other

properties of randomness is minor by comparison.

Do not set the seed too often
We cannot emphasize this enough: Do not set the seed too often.

To see why this is such a bad idea, consider the limiting case: You set the seed, draw one pseudoran-

dom number, reset the seed, draw again, and so continue. The pseudorandom numbers you obtain will

be nothing more than the seeds you run through a mathematical function. The results you obtain will not

pass for random unless the seeds you choose pass for random. If you already had such numbers, why are

you even bothering to use the pseudorandom-number generator?

The definition of too often is more than once per problem.

If you are running a simulation of 10,000 replications, set the seed at the start of the simulation and

do not reset it until the 10,000th replication is finished. The pseudorandom-number generators provided

by Stata have long periods. The longer you go between setting the seed, the more random-like are the

numbers produced.

It is sometimes useful later to be able to reproduce in isolation any one of the replications, and so

you might be tempted to set the seed to a known value for each of the replications. We negatively

mentioned setting the seed to 1, 2, . . . , and it is in exactly such situations that we have seen this done.

The advantage, however, is that you could reproduce the fifth replication merely by setting the seed to

5 and then repeating whatever it is that is to be replicated. If this is your goal, you do not need to reset

the seed. You can record the state of the random-number generator, save the state with your replication

results, and then use the recorded states later to reproduce whichever of the replications that you wish.

This will be discussed in Preserving and restoring the random-number generator state.

There is another reason youmight be tempted to set the seedmore than once per problem. It sometimes

happens that you run a simulation, let’s say for 5,000 replications, and then you decide you should have

run it for 10,000 replications. Instead of running all 10,000 replications afresh, you decide to save time

by running another 5,000 replications and then combining those results with your previous 5,000 results.

That is okay. We at StataCorp do this kind of thing. If you do this, it is important that you set the seed

especially well, particularly if you repeat this process to add yet another 5,000 replications. It is also

important that in each run there be a large enough number of replications, which is say thousands of

them.

Even so, do not do this: You want 500,000 replications. To obtain them, you run in batches of 1,000,

setting the seed 500 times. Unless you have a truly random source for the seeds, it is unlikely you can

produce a patternless sequence of 500 seeds. The fact that you ran 1,000 replications in between choosing

the seeds does not mitigate the requirement that there be no pattern to the seeds you set.

In all cases, the best solution is to set the seed only once and then use the method we suggest in the

next section.
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Preserving and restoring the random-number generator state
In the previous section, we discussed the case in which you might be tempted to set the seed more

frequently than otherwise necessary, either to save time or to be able to rerun any one of the replications.

In such cases, there is an alternative to setting a new seed: recording the state of the pseudorandom-

number generator and then restoring the state later should the need arise.

The state of the default random-number generator in Stata, the 64-bit Mersenne Twister, is a string of

about 5,000 characters. The state can be displayed by typing display c(rngstate). It is more practical
to save the state, say, in a local macro named state:

. local state = c(rngstate)

The state can later be restored by typing

. set rngstate ‘state’

The state string specifies an entry point into the sequence produced by the pseudorandom-number

generator. Let us explain.

The best way to use a pseudorandom-number generator would be to choose a seed once, draw ran-

dom numbers until you use up the generator, and then get a new generator and choose a new key.

Pseudorandom-number generators have a period, after which they repeat the original sequence. That

is what we mean by using up a generator. The period of the 64-bit Mersenne Twister, the default

pseudorandom-number generator in Stata, is 219937 − 1. This is roughly 106000. It is difficult to imagine

that you could ever use up this generator.

The string reported by c(rngstate) is an encoded form of the information necessary for Stata to

reestablish exactly where it is located in the pseudorandom-number generator’s sequence.

We are not seriously suggesting you choose only one seed over your entire lifetime, but let’s look at

how you might do that. Sometime after birth, when you needed your first random number, you would

set your seed,

. set seed 1073741823

On that day, you would draw, say, 10,000 pseudorandom numbers, perhaps to impute some missing

values. Being done for the day, you can save the state, and then later restore it.

When you type set rngstate followed by a saved state string, Stata reestablishes the previous state.
Thus, the next time you draw a pseudorandom number, Stata will produce the 10,001st result after setting

seed 1073741823. Let’s assume that you draw 100,000 numbers this day. Done for the day, you save the

state string.

On the third day, after setting the state to the saved state string above, you will be in a position to draw

the 110,001st pseudorandom number.

In this way, you would eat your way through the 219937 − 1 random numbers, but you would be

unlikely ever to make it to the end.

We do not expect you to set the seed just once in your life, but using the state string makes it easy to

set the seed just once for a problem.

When we do simulations at StataCorp, we record c(rngstate) for each replication. Just like ev-

erybody else, we record results from replications as observations in datasets; we just happen to have an

extra variable in the dataset, namely, a string variable named state. That string is filled in observation
by observation from the then-current values of c(rngstate), which is a function and so can be used in
any context that a function can be used in Stata.
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Anytime we want to reproduce a particular replication, we thus have the information we need to

reset the pseudorandom-number generator, and having it in the dataset is convenient because we had

to go there anyway to determine which replication we wanted to reproduce. If we want to add more

replications later, we have a state string that we can use to continue from where we left off.

Reference
Matsumoto, M., and T. Nishimura. 1998. Mersenne Twister: A 623-dimensionally equidistributed uniform pseudo-

random number generator.ACM Transactions on Modeling and Computer Simulation 8: 3–30. https://doi.org/10.1145/

272991.272995.

Also see
[R] set — Overview of system parameters

[R] set rng — Set which random-number generator (RNG) to use

[R] set rngstream — Specify the stream for the stream random-number generator

[FN] Random-number functions

[P] version — Version control
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set showbaselevels — Display settings for coefficient tables

Description Syntax Option Remarks and examples Also see

Description
set showbaselevels specifies whether to display base levels of factor variables and their interac-

tions in coefficient tables. set showbaselevels on specifies that base levels be reported for factor

variables and for interactions whose bases cannot be inferred from their component factor variables. set
showbaselevels all specifies that all base levels of factor variables and interactions be reported.

set showemptycells specifies whether to display empty cells in coefficient tables.

set showomitted specifies whether to display omitted coefficients in coefficient tables.

set fvlabel specifies whether to display factor-variable value labels in coefficient tables. set
fvlabel on, the default, specifies that the labels be displayed. set fvlabel off specifies that the

levels of factor variables rather than the labels be displayed.

set fvwrap # specifies that long value labels wrap # lines in the coefficient table. The default is set
fvwrap 1, which means that long value labels will be abbreviated to fit on one line.

set fvwrapon specifies whether value labels that wrap will break at word boundaries or break based
on available space. set fvwrapon word, the default, specifies that value labels break at word boundaries.
set fvwrapon width specifies that value labels break based on available space.

Syntax
set showbaselevels { on | off | all } [ , permanently ]

set showemptycells { on | off } [ , permanently ]

set showomitted { on | off } [ , permanently ]

set fvlabel { on | off } [ , permanently ]

set fvwrap # [ , permanently ]

set fvwrapon { word | width } [ , permanently ]

Option
permanently specifies that, in addition to making the change right now, the setting be remembered and

become the default setting when you invoke Stata.
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Remarks and examples

Example 1
We illustrate the first three set commands using cholesterol2.dta.

. use https://www.stata-press.com/data/r18/cholesterol2
(Artificial cholesterol data, empty cells)
. generate x = race
. regress chol race##agegrp x
note: 2.race#2.agegrp identifies no observations in the sample.
note: x omitted because of collinearity.

Source SS df MS Number of obs = 70
F(13, 56) = 13.51

Model 15751.6113 13 1211.66241 Prob > F = 0.0000
Residual 5022.71559 56 89.6913498 R-squared = 0.7582

Adj R-squared = 0.7021
Total 20774.3269 69 301.077201 Root MSE = 9.4706

chol Coefficient Std. err. t P>|t| [95% conf. interval]

race
White 12.84185 5.989703 2.14 0.036 .8430383 24.84067
Other -.167627 5.989703 -0.03 0.978 -12.16644 11.83119

agegrp
20--29 17.24681 5.989703 2.88 0.006 5.247991 29.24562
30--39 31.43847 5.989703 5.25 0.000 19.43966 43.43729
40--59 34.86613 5.989703 5.82 0.000 22.86732 46.86495
60--79 44.43374 5.989703 7.42 0.000 32.43492 56.43256

race#agegrp
White#20--29 0 (empty)
White#30--39 -22.83983 8.470719 -2.70 0.009 -39.80872 -5.870939
White#40--59 -14.67558 8.470719 -1.73 0.089 -31.64447 2.293306
White#60--79 -10.51115 8.470719 -1.24 0.220 -27.48004 6.457735
Other#20--29 -6.054425 8.470719 -0.71 0.478 -23.02331 10.91446
Other#30--39 -11.48083 8.470719 -1.36 0.181 -28.44971 5.488063
Other#40--59 -.6796112 8.470719 -0.08 0.936 -17.6485 16.28928
Other#60--79 -1.578052 8.470719 -0.19 0.853 -18.54694 15.39084

x 0 (omitted)
_cons 175.2309 4.235359 41.37 0.000 166.7464 183.7153

. set showemptycells off

. set showomitted off

. set showbaselevels all
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. regress chol race##agegrp x
note: 2.race#2.agegrp identifies no observations in the sample.
note: x omitted because of collinearity.

Source SS df MS Number of obs = 70
F(13, 56) = 13.51

Model 15751.6113 13 1211.66241 Prob > F = 0.0000
Residual 5022.71559 56 89.6913498 R-squared = 0.7582

Adj R-squared = 0.7021
Total 20774.3269 69 301.077201 Root MSE = 9.4706

chol Coefficient Std. err. t P>|t| [95% conf. interval]

race
Black 0 (base)
White 12.84185 5.989703 2.14 0.036 .8430383 24.84067
Other -.167627 5.989703 -0.03 0.978 -12.16644 11.83119

agegrp
10--19 0 (base)
20--29 17.24681 5.989703 2.88 0.006 5.247991 29.24562
30--39 31.43847 5.989703 5.25 0.000 19.43966 43.43729
40--59 34.86613 5.989703 5.82 0.000 22.86732 46.86495
60--79 44.43374 5.989703 7.42 0.000 32.43492 56.43256

race#agegrp
Black#10--19 0 (base)
Black#20--29 0 (base)
Black#30--39 0 (base)
Black#40--59 0 (base)
Black#60--79 0 (base)
White#10--19 0 (base)
White#30--39 -22.83983 8.470719 -2.70 0.009 -39.80872 -5.870939
White#40--59 -14.67558 8.470719 -1.73 0.089 -31.64447 2.293306
White#60--79 -10.51115 8.470719 -1.24 0.220 -27.48004 6.457735
Other#10--19 0 (base)
Other#20--29 -6.054425 8.470719 -0.71 0.478 -23.02331 10.91446
Other#30--39 -11.48083 8.470719 -1.36 0.181 -28.44971 5.488063
Other#40--59 -.6796112 8.470719 -0.08 0.936 -17.6485 16.28928
Other#60--79 -1.578052 8.470719 -0.19 0.853 -18.54694 15.39084

_cons 175.2309 4.235359 41.37 0.000 166.7464 183.7153
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To restore the display of empty cells, omitted predictors, and baselevels to their command-specific

default behavior, type

. set showemptycells

. set showomitted

. set showbaselevels

. regress chol race##agegrp x
note: 2.race#2.agegrp identifies no observations in the sample.
note: x omitted because of collinearity.

Source SS df MS Number of obs = 70
F(13, 56) = 13.51

Model 15751.6113 13 1211.66241 Prob > F = 0.0000
Residual 5022.71559 56 89.6913498 R-squared = 0.7582

Adj R-squared = 0.7021
Total 20774.3269 69 301.077201 Root MSE = 9.4706

chol Coefficient Std. err. t P>|t| [95% conf. interval]

race
White 12.84185 5.989703 2.14 0.036 .8430383 24.84067
Other -.167627 5.989703 -0.03 0.978 -12.16644 11.83119

agegrp
20--29 17.24681 5.989703 2.88 0.006 5.247991 29.24562
30--39 31.43847 5.989703 5.25 0.000 19.43966 43.43729
40--59 34.86613 5.989703 5.82 0.000 22.86732 46.86495
60--79 44.43374 5.989703 7.42 0.000 32.43492 56.43256

race#agegrp
White#20--29 0 (empty)
White#30--39 -22.83983 8.470719 -2.70 0.009 -39.80872 -5.870939
White#40--59 -14.67558 8.470719 -1.73 0.089 -31.64447 2.293306
White#60--79 -10.51115 8.470719 -1.24 0.220 -27.48004 6.457735
Other#20--29 -6.054425 8.470719 -0.71 0.478 -23.02331 10.91446
Other#30--39 -11.48083 8.470719 -1.36 0.181 -28.44971 5.488063
Other#40--59 -.6796112 8.470719 -0.08 0.936 -17.6485 16.28928
Other#60--79 -1.578052 8.470719 -0.19 0.853 -18.54694 15.39084

x 0 (omitted)
_cons 175.2309 4.235359 41.37 0.000 166.7464 183.7153
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Example 2
We illustrate the last three set commands using jaw.dta.

. use https://www.stata-press.com/data/r18/jaw, clear
(Table 4.6. Two-way unbalanced data for fractures of the jaw, Rencher (1998))
. mvreg y1 y2 y3 = i.fracture
Equation Obs Parms RMSE ”R-sq” F P>F

y1 27 3 10.42366 0.2966 5.060804 0.0147
y2 27 3 6.325398 0.1341 1.858342 0.1777
y3 27 3 5.976973 0.1024 1.368879 0.2735

Coefficient Std. err. t P>|t| [95% conf. interval]

y1
fracture

Two compou.. -8.833333 4.957441 -1.78 0.087 -19.06499 1.398322
One simple.. 6 5.394759 1.11 0.277 -5.134235 17.13423

_cons 37 3.939775 9.39 0.000 28.8687 45.1313

y2
fracture

Two compou.. -5.761905 3.008327 -1.92 0.067 -11.97079 .446977
One simple.. -3.053571 3.273705 -0.93 0.360 -9.810166 3.703023

_cons 38.42857 2.390776 16.07 0.000 33.49425 43.36289

y3
fracture

Two compou.. 4.261905 2.842618 1.50 0.147 -1.60497 10.12878
One simple.. .9285714 3.093377 0.30 0.767 -5.455846 7.312989

_cons 58.57143 2.259083 25.93 0.000 53.90891 63.23395
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. set fvwrap 2

. mvreg y1 y2 y3 = i.fracture
Equation Obs Parms RMSE ”R-sq” F P>F

y1 27 3 10.42366 0.2966 5.060804 0.0147
y2 27 3 6.325398 0.1341 1.858342 0.1777
y3 27 3 5.976973 0.1024 1.368879 0.2735

Coefficient Std. err. t P>|t| [95% conf. interval]

y1
fracture

Two compound
fractures -8.833333 4.957441 -1.78 0.087 -19.06499 1.398322
One simple
fracture 6 5.394759 1.11 0.277 -5.134235 17.13423

_cons 37 3.939775 9.39 0.000 28.8687 45.1313

y2
fracture

Two compound
fractures -5.761905 3.008327 -1.92 0.067 -11.97079 .446977
One simple
fracture -3.053571 3.273705 -0.93 0.360 -9.810166 3.703023

_cons 38.42857 2.390776 16.07 0.000 33.49425 43.36289

y3
fracture

Two compound
fractures 4.261905 2.842618 1.50 0.147 -1.60497 10.12878
One simple
fracture .9285714 3.093377 0.30 0.767 -5.455846 7.312989

_cons 58.57143 2.259083 25.93 0.000 53.90891 63.23395
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. set fvwrapon width

. mvreg y1 y2 y3 = i.fracture
Equation Obs Parms RMSE ”R-sq” F P>F

y1 27 3 10.42366 0.2966 5.060804 0.0147
y2 27 3 6.325398 0.1341 1.858342 0.1777
y3 27 3 5.976973 0.1024 1.368879 0.2735

Coefficient Std. err. t P>|t| [95% conf. interval]

y1
fracture

Two compound
fractures -8.833333 4.957441 -1.78 0.087 -19.06499 1.398322

One simple f
racture 6 5.394759 1.11 0.277 -5.134235 17.13423

_cons 37 3.939775 9.39 0.000 28.8687 45.1313

y2
fracture

Two compound
fractures -5.761905 3.008327 -1.92 0.067 -11.97079 .446977

One simple f
racture -3.053571 3.273705 -0.93 0.360 -9.810166 3.703023

_cons 38.42857 2.390776 16.07 0.000 33.49425 43.36289

y3
fracture

Two compound
fractures 4.261905 2.842618 1.50 0.147 -1.60497 10.12878

One simple f
racture .9285714 3.093377 0.30 0.767 -5.455846 7.312989

_cons 58.57143 2.259083 25.93 0.000 53.90891 63.23395
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. set fvlabel off

. mvreg y1 y2 y3 = i.fracture
Equation Obs Parms RMSE ”R-sq” F P>F

y1 27 3 10.42366 0.2966 5.060804 0.0147
y2 27 3 6.325398 0.1341 1.858342 0.1777
y3 27 3 5.976973 0.1024 1.368879 0.2735

Coefficient Std. err. t P>|t| [95% conf. interval]

y1
fracture

2 -8.833333 4.957441 -1.78 0.087 -19.06499 1.398322
3 6 5.394759 1.11 0.277 -5.134235 17.13423

_cons 37 3.939775 9.39 0.000 28.8687 45.1313

y2
fracture

2 -5.761905 3.008327 -1.92 0.067 -11.97079 .446977
3 -3.053571 3.273705 -0.93 0.360 -9.810166 3.703023

_cons 38.42857 2.390776 16.07 0.000 33.49425 43.36289

y3
fracture

2 4.261905 2.842618 1.50 0.147 -1.60497 10.12878
3 .9285714 3.093377 0.30 0.767 -5.455846 7.312989

_cons 58.57143 2.259083 25.93 0.000 53.90891 63.23395
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To restore these last three set commands to their defaults, type

. set fvlabel on

. set fvwrap 1

. set fvwrapon word

. mvreg y1 y2 y3 = i.fracture
Equation Obs Parms RMSE ”R-sq” F P>F

y1 27 3 10.42366 0.2966 5.060804 0.0147
y2 27 3 6.325398 0.1341 1.858342 0.1777
y3 27 3 5.976973 0.1024 1.368879 0.2735

Coefficient Std. err. t P>|t| [95% conf. interval]

y1
fracture

Two compou.. -8.833333 4.957441 -1.78 0.087 -19.06499 1.398322
One simple.. 6 5.394759 1.11 0.277 -5.134235 17.13423

_cons 37 3.939775 9.39 0.000 28.8687 45.1313

y2
fracture

Two compou.. -5.761905 3.008327 -1.92 0.067 -11.97079 .446977
One simple.. -3.053571 3.273705 -0.93 0.360 -9.810166 3.703023

_cons 38.42857 2.390776 16.07 0.000 33.49425 43.36289

y3
fracture

Two compou.. 4.261905 2.842618 1.50 0.147 -1.60497 10.12878
One simple.. .9285714 3.093377 0.30 0.767 -5.455846 7.312989

_cons 58.57143 2.259083 25.93 0.000 53.90891 63.23395

Also see
[R] set — Overview of system parameters

[R] query — Display system parameters
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Description Quick start Menu Syntax
Option for signrank Remarks and examples Stored results Methods and formulas
References Also see

Description
signrank tests the equality of matched pairs of observations by using the Wilcoxon matched-pairs

signed-rank test (Wilcoxon 1945). The null hypothesis is that both distributions are the same.

signtest also tests the equality of matched pairs of observations (Arbuthnott [1710], but better ex-
plained by Snedecor and Cochran [1989]) by calculating the differences between varname and the ex-

pression. The null hypothesis is that the median of the differences is zero; no further assumptions are

made about the distributions. This, in turn, is equivalent to the hypothesis that the true proportion of

positive (negative) signs is one-half.

For equality tests on unmatched data, see [R] ranksum.

Quick start
Wilcoxon matched-pairs signed-rank test for v1 and v2

signrank v1 = v2

Compute an exact 𝑝-value for the signed-rank test
signrank v1 = v2, exact

Conduct signed-rank test separately for groups defined by levels of catvar
by catvar: signrank v1 = v2

Test that the median of differences between matched pairs v1 and v2 is 0
signtest v1 = v2

Menu
signrank
Statistics > Nonparametric analysis > Tests of hypotheses > Wilcoxon matched-pairs signed-rank test

signtest
Statistics > Nonparametric analysis > Tests of hypotheses > Test equality of matched pairs

2816
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Syntax
Wilcoxon matched-pairs signed-rank test

signrank varname = exp [ if ] [ in ] [ , exact ]

Sign test of matched pairs

signtest varname = exp [ if ] [ in ]

by and collect are allowed with signrank and signtest; see [U] 11.1.10 Prefix commands.

Option for signrank

� � �
Main �

exact specifies that the exact 𝑝-value be computed in addition to the approximate 𝑝-value. The exact
𝑝-value is based on the actual randomization distribution of the test statistic. The approximate 𝑝-value
is based on a normal approximation to the randomization distribution. By default, the exact 𝑝-value
is computed for sample sizes 𝑛 ≤ 200 because the normal approximation may not be precise in small

samples. The exact computation can be suppressed by specifying noexact. For sample sizes larger
than 200, you must specify exact to compute the exact 𝑝-value. The exact computation is available
for sample sizes 𝑛 ≤ 2000.

Remarks and examples

Example 1: signrank
We are testing the effectiveness of a new fuel additive. We run an experiment with 12 cars. We first

run each car without the fuel treatment and measure the mileage. We then add the fuel treatment and

repeat the experiment. The results of the experiment are

Without With Without With
treatment treatment treatment treatment

20 24 18 17
23 25 24 28
21 21 20 24
25 22 24 27
18 23 23 21
17 18 19 23
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We create two variables called mpg1 and mpg2, representing mileage without and with the treatment,
respectively. We can test the null hypothesis that the treatment had no effect by typing

. use https://www.stata-press.com/data/r18/fuel

. signrank mpg1 = mpg2
Wilcoxon signed-rank test

Sign Obs Sum ranks Expected

Positive 3 13.5 38.5
Negative 8 63.5 38.5

Zero 1 1 1

All 12 78 78
Unadjusted variance 162.50
Adjustment for ties -1.62
Adjustment for zeros -0.25

Adjusted variance 160.62
H0: mpg1 = mpg2

z = -1.973
Prob > |z| = 0.0485
Exact prob = 0.0479

Despite the small sample size, the 𝑝-value computed using a normal approximation, 0.0485, is similar to
the exact 𝑝-value, 0.0479. These results indicate that we can reject the null hypothesis at a significance
level of 0.05.

Example 2: signtest
signtest tests that the median of the differences is zero, making no further assumptions, whereas

signrank assumed that the distributions are equal as well. Using the data above, we type

. signtest mpg1 = mpg2
Sign test

Sign Observed Expected

Positive 3 5.5
Negative 8 5.5

Zero 1 1

All 12 12
One-sided tests:
H0: median of mpg1 - mpg2 = 0 vs.
Ha: median of mpg1 - mpg2 > 0

Pr(#positive >= 3) =
Binomial(n = 11, x >= 3, p = 0.5) = 0.9673

H0: median of mpg1 - mpg2 = 0 vs.
Ha: median of mpg1 - mpg2 < 0

Pr(#negative >= 8) =
Binomial(n = 11, x >= 8, p = 0.5) = 0.1133

Two-sided test:
H0: median of mpg1 - mpg2 = 0 vs.
Ha: median of mpg1 - mpg2 != 0

Pr(#positive >= 8 or #negative >= 8) =
min(1, 2*Binomial(n = 11, x >= 8, p = 0.5)) = 0.2266
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The summary table indicates that there were three comparisons for which mpg1 exceeded mpg2, eight
comparisons for which mpg2 exceeded mpg1, and one comparison for which they were the same.

The 𝑝-values displayed below the summary table are based on a binomial(𝑛, 𝑝 = 1/2) distribution for
the test statistic, which is the number of positive or negative signs. Zeros are ignored. The 𝑛 for the test is

the number of nonzero differences. Because no approximation is used, the 𝑝-values are “exact” 𝑝-values.
The 𝑝-value for the one-sided test, where the alternative hypothesis is that the median of mpg1 − mpg2
is smaller than zero, is 0.1133. The 𝑝-value for the two-sided test, where the alternative hypothesis is
simply that the median of the differences is different from zero, is 0.2266 = 2 × 0.1133.

Stored results
signrank stores the following in r():

Scalars

r(N) sample size

r(N pos) number of positive comparisons

r(N neg) number of negative comparisons

r(N tie) number of tied comparisons

r(z) 𝑧 statistic

r(Var a) adjusted variance

r(sum pos) sum of the positive ranks

r(sum neg) sum of the negative ranks

r(p) two-sided 𝑝-value from normal approximation

r(p l) lower one-sided 𝑝-value from normal approximation

r(p u) upper one-sided 𝑝-value from normal approximation

r(p exact) two-sided exact 𝑝-value
r(p l exact) lower one-sided exact 𝑝-value
r(p u exact) upper one-sided exact 𝑝-value

signtest stores the following in r():

Scalars

r(N) sample size

r(N pos) number of positive comparisons

r(N neg) number of negative comparisons

r(N tie) number of tied comparisons

r(p) two-sided 𝑝-value
r(p l) lower one-sided 𝑝-value
r(p u) upper one-sided 𝑝-value

Methods and formulas
For a practical introduction to these techniques with an emphasis on examples rather than theory, see

Bland (2015) or Sprent and Smeeton (2007). For a summary of these tests, see Snedecor and Cochran

(1989).

Methods and formulas are presented under the following headings:

signrank
signtest
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signrank
Both the sign test and Wilcoxon signed-rank tests test the null hypothesis that the distribution of a

random variable𝐷 = varname−exp hasmedian zero. The sign test makes no additional assumptions, but
theWilcoxon signed-rank test makes the additional assumption that the distribution of𝐷 is symmetric. If

𝐷 = 𝑋1 − 𝑋2, where 𝑋1 and 𝑋2 have the same distribution, then it follows that the distribution of 𝐷 is

symmetric about zero. Thus, the Wilcoxon signed-rank test is often described as a test of the hypothesis

that two distributions are the same, that is, 𝑋1 ∼ 𝑋2.

Let 𝑑𝑗 denote the difference for any matched pair of observations,

𝑑𝑗 = 𝑥1𝑗 − 𝑥2𝑗 = varname− exp

for 𝑗 = 1, 2, . . . , 𝑛.
Rank the absolute values of the differences, |𝑑𝑗|, and assign any tied values the average rank. Consider

the signs of 𝑑𝑗, and let

𝑟𝑗 = sign(𝑑𝑗) rank(|𝑑𝑗|)

be the signed ranks. The test statistic is

𝑇obs =
𝑛

∑
𝑗=1

𝑟𝑗 = (sum of ranks for + signs) − (sum of ranks for − signs)

The distribution of the test statistic is based on Fisher’s principle of randomization (Fisher 1935).

Fisher’s idea (stated in a modern way) was to look at a family of transformations of the observed data

such that the a priori likelihood (under the null hypothesis) of the transformed data is the same as the

likelihood of the observed data. The distribution of the test statistic is then produced by calculating its

value for each of the transformed “randomization” datasets, assuming that each dataset is equally likely.

The null hypothesis is that the distribution of 𝑑𝑗 is symmetric about 0. Hence, the likelihood is un-

changed if we flip signs on the 𝑑𝑗. The randomization distribution of our test statistic, 𝑇, is all of its
values resulting from the 2𝑛 possible sign changes for the 𝑑𝑗. Namely, the distribution is all the 2𝑛

possible values of

𝑇 =
𝑛

∑
𝑗=1

𝑆𝑗𝑟𝑗

where 𝑟𝑗 are the observed signed ranks (considered fixed) and 𝑆𝑗 is either +1 or −1. When the exact
option is specified (or implied for 𝑛 ≤ 200), this distribution is computed using a recursive algorithm

whose computational time is proportional to 𝑛3. (See Fisher [1935] for the principle of randomization;

Wilcoxon, Katti, andWilcox [1970] for the computation with untied ranks; and Baker and Tilbury [1993]

for the general recursive algorithm.)

𝑝-values can also be computed using a normal approximation to the randomization distribution. For
the randomization distribution, the mean and variance are given by

𝐸(𝑇 ) = 0 and Varadj(𝑇 ) =
𝑛

∑
𝑗=1

𝑟2
𝑗
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The test statistic for the Wilcoxon signed-rank test is often expressed (equivalently) as the sum of the

positive signed ranks, 𝑇+, where

𝐸(𝑇+) = 𝑛(𝑛 + 1)
4

and Varadj(𝑇+) = 1
4

𝑛
∑
𝑗=1

𝑟2
𝑗

Zeros and ties do not affect the theory above, and the exact variance is still given by the above formula

for Varadj(𝑇+). When 𝑑𝑗 = 0 is observed, 𝑟𝑗 will always be zero in each of the randomization datasets,

using sign(0) = 0. (This method of handling zeros is based on the theoretical arguments made by Pratt

[1959].) When there are ties, averaged ranks are assigned for each group of ties and then treated the same

as other ranks.

The “unadjusted variance” reported by signrank is the variance that the randomization distribution
would have had if there had been no ties or zeros:

Varunadj(𝑇+) = 1
4

𝑛
∑
𝑗=1

𝑗2 = 𝑛(𝑛 + 1)(2𝑛 + 1)
24

The adjustment for zeros is the change in the variance when the ranks for the zeros are signed to make

𝑟𝑗 = 0,

ΔVarzero adj(𝑇+) = −1
4

𝑛0

∑
𝑗=1

𝑗2 = −𝑛0(𝑛0 + 1)(2𝑛0 + 1)
24

where 𝑛0 is the number of zeros. The adjustment for ties is the change in the variance when the ranks

(for nonzero observations) are replaced by averaged ranks:

ΔVarties adj(𝑇+) = Varadj(𝑇+) − Varunadj(𝑇+) − ΔVarzero adj(𝑇+)

A normal approximation is used to calculate

𝑧 =
𝑇+ − 𝐸(𝑇+)

√Varadj(𝑇+)

signtest
The test statistic for the sign test is the number 𝑛+ of differences

𝑑𝑗 = 𝑥1𝑗 − 𝑥2𝑗 = varname− exp

greater than zero.

Again, the distribution of the test statistic is based on Fisher’s principle of randomization, which we

described above for signrank. For the sign test, the “data” are simply the set of signs of the differences.
Under the null hypothesis of the sign test, the probability that 𝑑𝑗 is less than zero is equal to the probability

that 𝑑𝑗 is greater than zero. Thus, you can transform the observed signs by flipping any number of them,

and the set of signs will have the same likelihood. The 2𝑛 possible sign changes form the family of

randomization datasets. If you have no zeros, this procedure leads to 𝑛+ ∼ binomial(𝑛, 𝑝 = 1/2).
But what if some differences are zero? If you do have zeros, changing their signs leaves them as

zeros. So, if you observe 𝑛0 zeros, each of the 2
𝑛 sign-change datasets will also have 𝑛0 zeros. Hence,

the values of 𝑛+ calculated over the sign-change datasets range from 0 to 𝑛−𝑛0, and the “randomization”

distribution of 𝑛+ is binomial(𝑛 − 𝑛0, 𝑝 = 1/2).
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The work of Arbuthnott (1710) and later eighteenth-century contributions is discussed by Hald (2003,

chap. 17).� �
Frank Wilcoxon (1892–1965) was born in Ireland to American parents. After working in various

occupations (including merchant seaman, oil-well pump attendant, and tree surgeon), he settled in

chemistry, gaining degrees from Rutgers and Cornell and employment from various companies.

Working mainly on the development of fungicides and insecticides, Wilcoxon became interested in

statistics in 1925 and made several key contributions to nonparametric methods. After retiring from

industry, he taught statistics at Florida State until his death.� �
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Description Quick start Syntax Options
Remarks and examples References Also see

Description
simulate eases the programming task of performing Monte Carlo–type simulations. Typing

. simulate exp list, reps(#): command

runs command for # replications and collects the results in exp list.

command defines the command that performs one simulation. Most Stata commands and user-written

programs can be used with simulate, as long as they follow standard Stata syntax; see [U] 11 Language

syntax. The by prefix may not be part of command.

exp list specifies the expression to be calculated from the execution of command. If no expressions

are given, exp list assumes a default, depending upon whether command changes results in e() or r().
If command changes results in e(), the default is b. If command changes results in r() (but not e()),
the default is all the scalars posted to r(). It is an error not to specify an expression in exp list otherwise.

Quick start
Simple program for use with simulate

Define program myreg to generate data and fit a linear regression
program myreg, eclass

drop _all
set obs 25
generate x = rnormal()
generate y = 3*x + 1 + rnormal()
regress y x

end

Perform simulation

Record coefficients and SEs from 1,000 simulated replications of program myreg
simulate _b _se, reps(1000): myreg

Same as above, and set random-number seed to 5,762 for reproducible results

simulate _b _se, reps(1000) seed(5762): myreg

2823
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Syntax
simulate [ exp list ], reps(#) [ options ] : command

options Description

nodots suppress replication dots

dots(#) display dots every # replications

noisily display any output from command

trace trace command

saving( filename, . . .) save results to filename

nolegend suppress table legend

verbose display the full table legend

seed(#) set random-number seed to #

All weight types supported by command are allowed; see [U] 11.1.6 weight.

exp list contains (name: elist)
elist

eexp

elist contains newvar = (exp)
(exp)

eexp is specname

[eqno]specname
specname is b

b[]
se
se[]

eqno is # #
name

exp is a standard Stata expression; see [U] 13 Functions and expressions.

Distinguish between [ ], which are to be typed, and [ ], which indicate optional arguments.

Options
reps(#) is required—it specifies the number of replications to be performed.

nodots and dots(#) specify whether to display replication dots. By default, one dot character is dis-
played for each successful replication. An “x” is displayed if command returns an error or if any value

in exp list is missing. You can also control whether dots are displayed using set dots; see [R] set.

nodots suppresses display of the replication dots.

dots(#) displays dots every # replications. dots(0) is a synonym for nodots.

noisily requests that any output from command be displayed. This option implies the nodots option.

trace causes a trace of the execution of command to be displayed. This option implies the noisily
option.
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saving( filename[ , suboptions ]) creates a Stata data file (.dta file) consisting of (for each statistic in
exp list) a variable containing the replicates.

double specifies that the results for each replication be saved as doubles, meaning 8-byte reals. By
default, they are saved as floats, meaning 4-byte reals.

every(#) specifies that results be written to disk every #th replication. every() should be specified
only in conjunctionwith saving()when command takes a long time for each replication. This will
allow recovery of partial results should some other software crash your computer. See [P] postfile.

replace specifies that filename be overwritten if it exists.

nolegend suppresses display of the table legend. The table legend identifies the rows of the table with
the expressions they represent.

verbose requests that the full table legend be displayed. By default, coefficients and standard errors are
not displayed.

seed(#) sets the random-number seed. Specifying this option is equivalent to typing the following

command before calling simulate:

. set seed #

Remarks and examples
For an introduction to Monte Carlo methods, see Cameron and Trivedi (2022, chap. 5). White (2010)

provides a command for analyzing results of simulation studies.

Example 1: Simulating basic summary statistics
We have a dataset containing means and variances of 100-observation samples from a lognormal

distribution (as a first step in evaluating, say, the coverage of a 95%, 𝑡-based confidence interval). Then
we perform the experiment 1,000 times.

The following command definition will generate 100 independent observations from a lognormal

distribution and compute the summary statistics for this sample.

program lnsim, rclass
version 18.0 // (or version 18.5 for StataNow)
drop _all
set obs 100
generate z = exp(rnormal())
summarize z
return scalar mean = r(mean)
return scalar Var = r(Var)

end

We can save 1,000 simulated means and variances from lnsim by typing

. set seed 1234

. simulate mean=r(mean) var=r(Var), reps(1000) nodots: lnsim
Command: lnsim

mean: r(mean)
var: r(Var)
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. describe *
Variable Storage Display Value

name type format label Variable label

mean float %9.0g r(mean)
var float %9.0g r(Var)
. summarize

Variable Obs Mean Std. dev. Min Max

mean 1,000 1.630648 .2173062 1.106372 2.612052
var 1,000 4.60798 4.502166 .966087 70.5597

Technical note
Before executing our lnsim simulator, we can verify that it works by executing it interactively.

. set seed 1234

. lnsim
Number of observations (_N) was 0, now 100.

Variable Obs Mean Std. dev. Min Max

z 100 1.534256 1.584568 .0400387 9.818309
. return list
scalars:

r(Var) = 2.510857086217961
r(mean) = 1.53425569280982

Example 2: Simulating a regression model
Consider a more complicated problem. Let’s experiment with fitting 𝑦𝑗 = 𝑎 + 𝑏𝑥𝑗 + 𝑢𝑗 when the

true model has 𝑎 = 1, 𝑏 = 2, 𝑢𝑗 = 𝑧𝑗 + 𝑐𝑥𝑗, and when 𝑧𝑗 is 𝑁(0, 1). We will save the parameter

estimates and standard errors and experiment with varying 𝑐. 𝑥𝑗 will be fixed across experiments but

will originally be generated as 𝑁(0, 1). We begin by interactively making the true data:

. drop _all

. set obs 100
Number of observations (_N) was 0, now 100.
. set seed 54321
. generate x = rnormal()
. generate true_y = 1+2*x
. save truth
file truth.dta saved

Our program is

program hetero1
version 18.0 // (or version 18.5 for StataNow)
args c
use truth, clear
generate y = true_y + (rnormal() + ‘c’*x)
regress y x

end
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Note the use of ‘c’ in our statement for generating y. c is a local macro generated from args c and thus
refers to the first argument supplied to hetero1. If we want 𝑐 = 3 for our experiment, we type

. simulate _b _se, reps(10000): hetero1 3
(output omitted )

Our program hetero1 could, however, be more efficient because it rereads the file truth once every
replication. It would be better if we could read the data just once. In fact, if we read in the data right

before running simulate, we really should not have to reread for each subsequent replication. A faster

version reads

program hetero2
version 18.0 // (or version 18.5 for StataNow)
args c
capture drop y
generate y = true_y + (rnormal() + ‘c’*x)
regress y x

end

Requiring that the current dataset has the variables true y and xmay become inconvenient. Another
improvement would be to require that the user supply variable names, such as in

program hetero3
version 18.0 // (or version 18.5 for StataNow)
args truey x c
capture drop y
generate y = ‘truey’ + (rnormal() + ‘c’*‘x’)
regress y x

end

Thus, we can type

. simulate _b _se, reps(10000): hetero3 true_y x 3
(output omitted )

Example 3: Simulating a ratio of statistics
Now, let’s consider the problem of simulating the ratio of two medians. Suppose that each sample

of size 𝑛𝑖 comes from a normal population with a mean 𝜇𝑖 and standard deviation 𝜎𝑖, where 𝑖 = 1, 2.
We write the program below and save it as a text file called myratio.ado (see [U] 17 Ado-files). Our
program is an rclass command that requires six arguments as input, identified by the local macros n1,
mu1, sigma1, n2, mu2, and sigma2, which correspond to 𝑛1, 𝜇1, 𝜎1, 𝑛2, 𝜇2, and 𝜎2, respectively. With

these arguments, myratio will generate the data for the two samples, use summarize to compute the
two medians and store the ratio of the medians in r(ratio).

program myratio, rclass
version 18.0 // (or version 18.5 for StataNow)
args n1 mu1 sigma1 n2 mu2 sigma2
// generate the data
drop _all
local N = ‘n1’+‘n2’
set obs ‘N’
tempvar y
generate ‘y’ = rnormal()
replace ‘y’ = cond(_n<=‘n1’,‘mu1’+‘y’*‘sigma1’,‘mu2’+‘y’*‘sigma2’)
// calculate the medians
tempname m1
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summarize ‘y’ if _n<=‘n1’, detail
scalar ‘m1’ = r(p50)
summarize ‘y’ if _n>‘n1’, detail
// store the results
return scalar ratio = ‘m1’ / r(p50)

end

The result of running our simulation is

. set seed 19192

. simulate ratio=r(ratio), reps(1000) nodots: myratio 5 3 1 10 3 2
Command: myratio 5 3 1 10 3 2
ratio: r(ratio)

. summarize
Variable Obs Mean Std. dev. Min Max

ratio 1,000 1.10875 .5219166 .3606606 9.857285

Technical note
Stata lets us do simulations of simulations and simulations of bootstraps. Stata’s bootstrap com-

mand (see [R] bootstrap) works much like simulate, except that it feeds the user-written program a

bootstrap sample. Say that we want to evaluate the bootstrap estimator of the standard error of the median

when applied to lognormally distributed data. We want to perform a simulation, resulting in a dataset of

medians and bootstrap estimated standard errors.

As background, summarize (see [R] summarize) calculates summary statistics, leaving the mean

in r(mean) and the standard deviation in r(sd). summarize with the detail option also calculates

summary statistics, but more of them, and leaves the median in r(p50).

Thus, our plan is to perform simulations by randomly drawing a dataset: we calculate the median of

our random sample, we use bootstrap to obtain a dataset of medians calculated from bootstrap samples

of our random sample, the standard deviation of those medians is our estimate of the standard error, and

the summary statistics are stored in the results of summarize.

Our simulator is

program define bsse, rclass
version 18.0 // (or version 18.5 for StataNow)
drop _all
set obs 100
generate x = rnormal()
tempfile bsfile
bootstrap midp=r(p50), rep(100) saving(‘bsfile’): summarize x, detail
use ‘bsfile’, clear
summarize midp
return scalar mean = r(mean)
return scalar sd = r(sd)

end
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We can obtain final results, running our simulation 1,000 times, by typing

. set seed 48901

. simulate med=r(mean) bs_se=r(sd), reps(1000): bsse
Command: bsse

med: r(mean)
bs_se: r(sd)

Simulations (1,000): .........10.........20.........30.........40.........50....
> .....60.........70.........80.........90.........100.........110.........120..
> .......130.........140.........150.........160.........170.........180........
> .190.........200.........210.........220.........230.........240.........250..
> .......260.........270.........280.........290.........300.........310........
> .320.........330.........340.........350.........360.........370.........380..
> .......390.........400.........410.........420.........430.........440........
> .450.........460.........470.........480.........490.........500.........510..
> .......520.........530.........540.........550.........560.........570........
> .580.........590.........600.........610.........620.........630.........640..
> .......650.........660.........670.........680.........690.........700........
> .710.........720.........730.........740.........750.........760.........770..
> .......780.........790.........800.........810.........820.........830........
> .840.........850.........860.........870.........880.........890.........900..
> .......910.........920.........930.........940.........950.........960........
> .970.........980.........990.........1,000 done
. summarize

Variable Obs Mean Std. dev. Min Max

med 1,000 -.0013359 .1221602 -.3795549 .3656219
bs_se 1,000 .1278773 .0303109 .0614031 .2484805

This is a case where the simulation dots (drawn by default, unless the nodots option is specified) will
give us an idea of how long this simulation will take to finish as it runs.
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Also see
[R] bootstrap — Bootstrap sampling and estimation

[R] jackknife — Jackknife estimation

[R] permute — Permutation tests

[R] set rngstream — Specify the stream for the stream random-number generator
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Description Remarks and examples Also see

Description
The Stata Journal (SJ) is a quarterly journal containing articles about statistics, data analysis, teaching

methods, and effective use of Stata’s language. The SJ publishes reviewed articles with shorter notes and

comments, regular columns, tips, book reviews, and other material of interest to researchers applying

statistics in a variety of disciplines. The SJ began publication in the fourth quarter of 2001 with SJVolume

1 Number 1. You can read all about the SJ at https://www.stata-journal.com.

The SJ is a printed and electronic journal with corresponding software. You must subscribe to the SJ;

see https://www.stata-journal.com/subscription/ to purchase a subscription or an individual article. Elec-

tronic copies of SJ articles that are older than three years are available at no charge from https://www.stata-

journal.com/archives.html.

The software is available at no charge; see below for installation instructions.

Remarks and examples
Remarks are presented under the following headings:

Installing the Stata Journal software
Obtaining from the Internet by pointing and clicking
Obtaining from the Internet via command mode

Installing the Stata Journal software
Each issue of the Stata Journal is labeled Volume #, Number #. Volume 1 refers to the first year of

publication, Volume 2 to the second, and so on. Issues are numbered 1, 2, 3, and 4 within each year. The

first issue of the Journal was published in the fourth quarter of 2001, and that issue is numbered Volume

1, Number 1. For installation purposes, we refer to this issue as sj1-1.

The articles, columns, notes, and comments that make up the Stata Journal are assigned a letter-and-

number code, called an insert tag, such as st0001, an0034, or ds0011. The letters represent a category: st

is the statistics category, an is the announcements category, etc. The numbers are assigned sequentially,

so st0001 is the first article in the statistics category.

Sometimes inserts are subsequently updated, either to fix bugs or to add new features. A number

such as st0001 1 indicates that this article, column, note, or comment is an update to the original st0001

article. Updates are complete; that is, installing st0001 1 provides all the features of the original article

and more.

The Stata Journal software may be obtained by pointing and clicking or by using command mode.

The sections below detail how to install an insert. In all cases, pretend that you wish to install insert

st0274 from sj12-4.

2830
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Obtaining from the Internet by pointing and clicking

1. Select Help > SJ and community-contributed features.

2. Click on Stata Journal.

3. Click on sj12-4.

4. Click on st0274.

5. Click on (click here to install).

Obtaining from the Internet via command mode

Type the following:

. net from https://www.stata-journal.com/software

. net cd sj12-4

. net describe st0274

. net install st0274

The above could be shortened to

. net from https://www.stata-journal.com/software/sj12-4

. net describe st0274

. net install st0274

Alternatively, you could type

. net sj 12-4

. net describe st0274

. net install st0274

but going about it the long way is more entertaining, at least the first time.

Also see
[R] search — Search Stata documentation and other resources

[R] net — Install and manage community-contributed additions from the Internet

[R] net search — Search the Internet for installable packages

[R] update — Check for official updates

[U] 3.4 The Stata Journal

[U] 29 Using the Internet to keep up to date

[GSM] 19 Updating and extending Stata—Internet functionality

[GSU] 19 Updating and extending Stata—Internet functionality

[GSW] 19 Updating and extending Stata—Internet functionality
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Description Quick start Menu Syntax
Option Remarks and examples Stored results Methods and formulas
Acknowledgments References Also see

Description
For each variable in varlist, sktest presents a test for normality based on skewness and another based

on kurtosis and then combines the two tests into an overall test statistic. sktest requires a minimum
of eight observations to make its calculations. See [MV] mvtest normality for multivariate tests of

normality.

Quick start
Test for normality of v1 based on skewness and kurtosis

sktest v1

Separate tests for v1 and v2
sktest v1 v2

With frequency weights in wvar
sktest v1 v2 [fweight=wvar]

Suppress adjustment to the overall 𝜒2 test

sktest v1 v2, noadjust

Menu
Statistics > Summaries, tables, and tests > Distributional plots and tests > Skewness and kurtosis normality tests

2832
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Syntax
sktest varlist [ if ] [ in ] [weight ] [ , options ]

options Description

Main

noadjust do not adjust the overall 𝜒2 test statistic and its 𝑝-value

nolstretch do not automatically widen table for long variable names

collect is allowed; see [U] 11.1.10 Prefix commands.

aweights and fweights are allowed; see [U] 11.1.6 weight.
nolstretch does not appear in the dialog box.

Option

� � �
Main �

noadjust suppresses the empirical adjustment made by Royston (1991c) to the overall 𝜒2 test statistic

and its 𝑝-value and presents the unaltered test as described by D’Agostino, Belanger, and D’Agostino
(1990).

The following option is available with sktest but is not shown in the dialog box:

nolstretch; see [R] Estimation options.

Remarks and examples
Also see [R] swilk for the Shapiro–Wilk and Shapiro–Francia tests for normality. Those tests are,

in general, preferred for nonaggregated data (Gould and Rogers 1991; Gould 1992; Royston 1991c).

Moreover, a normal quantile plot should be used with any test for normality; see [R] Diagnostic plots

for more information.

Example 1
Using our automobile dataset, we will test whether the variables mpg and trunk are normally dis-

tributed:

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. sktest mpg trunk
Skewness and kurtosis tests for normality

Joint test
Variable Obs Pr(skewness) Pr(kurtosis) Adj chi2(2) Prob>chi2

mpg 74 0.0015 0.0804 10.95 0.0042
trunk 74 0.9115 0.0445 4.19 0.1228
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We can reject the hypothesis that mpg is normally distributed, but we cannot reject the hypothesis that
trunk is normally distributed, at least at the 12% level. The kurtosis for trunk is 2.19, as can be verified
by issuing the command

. summarize trunk, detail
(output omitted )

and the 𝑝-value of 0.0445 shown in the table above indicates that it is significantly different from the

kurtosis of a normal distribution at the 5% significance level. However, on the basis of skewness alone,

we cannot reject the hypothesis that trunk is normally distributed.

Technical note
sktest implements the test as described by D’Agostino, Belanger, and D’Agostino (1990) but with

the adjustment made by Royston (1991c). In the above example, if we had specified the noadjust
option, the 𝜒2 values would have been 13.13 for mpg and 4.05 for trunk. With the adjustment, the 𝜒2

value might show as ‘.’. This result should be interpreted as an absurdly large number; the data are most
certainly not normal.

Stored results
sktest stores the following in r():

Scalars

r(N) number of observations

r(chi2) overall 𝜒2

r(p skew) 𝑝-value for test based on skewness
r(p kurt) 𝑝-value for test based on kurtosis
r(p chi2) 𝑝-value for overall 𝜒2 test

Matrices

r(table) matrix of displayed results, one row per variable

Methods and formulas
sktest implements the test described by D’Agostino, Belanger, and D’Agostino (1990) with the

empirical correction developed by Royston (1991c).

Let 𝑔1 denote the coefficient of skewness and 𝑏2 denote the coefficient of kurtosis as calculated by

summarize, and let 𝑛 denote the sample size. If weights are specified, then 𝑔1, 𝑏2, and 𝑛 denote the

weighted coefficients of skewness and kurtosis and weighted sample size, respectively. See [R] summa-

rize for the formulas for skewness and kurtosis.
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To perform the test of skewness, we compute

𝑌 = 𝑔1 {(𝑛 + 1)(𝑛 + 3)
6(𝑛 − 2)

}
1/2

𝛽2(𝑔1) = 3(𝑛2 + 27𝑛 − 70)(𝑛 + 1)(𝑛 + 3)
(𝑛 − 2)(𝑛 + 5)(𝑛 + 7)(𝑛 + 9)

𝑊 2 = −1 + [2 {𝛽2(𝑔1) − 1}]1/2

and

𝛼 = {2/(𝑊 2 − 1)}1/2

Then, the distribution of the test statistic

𝑍1 = 1√
ln𝑊

ln [𝑌 /𝛼 + {(𝑌 /𝛼)2 + 1}1/2]

is approximately standard normal under the null hypothesis that the data are distributed normally.

To perform the test of kurtosis, we compute

𝐸(𝑏2) = 3(𝑛 − 1)
𝑛 + 1

var(𝑏2) = 24𝑛(𝑛 − 2)(𝑛 − 3)
(𝑛 + 1)2(𝑛 + 3)(𝑛 + 5)

𝑋 = {𝑏2 − 𝐸(𝑏2)} /√var(𝑏2)

√𝛽1(𝑏2) = 6(𝑛2 − 5𝑛 + 2)
(𝑛 + 7)(𝑛 + 9)

{ 6(𝑛 + 3)(𝑛 + 5)
𝑛(𝑛 − 2)(𝑛 − 3)

}
1/2

and

𝐴 = 6 + 8
√𝛽1(𝑏2)

[ 2
√𝛽1(𝑏2)

+ {1 + 4
𝛽1(𝑏2)

}
1/2

]

Then, the distribution of the test statistic

𝑍2 = 1
√2/(9𝐴)

⎡⎢
⎣

(1 − 2
9𝐴

) − { 1 − 2/𝐴
1 + 𝑋√2/(𝐴 − 4)

}
1/3

⎤⎥
⎦

is approximately standard normal under the null hypothesis that the data are distributed normally.

D’Agostino, Balanger, and D’Agostino Jr.’s omnibus test of normality uses the statistic

𝐾2 = 𝑍2
1 + 𝑍2

2

which has approximately a 𝜒2 distribution with 2 degrees of freedom under the null of normality.
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Royston (1991c) proposed the following adjustment to the test of normality, which sktest uses by
default. Let Φ(𝑥) denote the cumulative standard normal distribution function for 𝑥, and let Φ−1(𝑝)
denote the inverse cumulative standard normal function [that is, 𝑥 = Φ−1 {Φ(𝑥)}]. Define the following
terms:

𝑍𝑐 = −Φ−1 { exp(−1
2

𝐾2)}

𝑍𝑡 = 0.55𝑛0.2 − 0.21
𝑎1 = (−5 + 3.46 ln𝑛) exp(−1.37 ln𝑛)
𝑏1 = 1 + (0.854 − 0.148 ln𝑛) exp(−0.55 ln𝑛)
𝑎2 = 𝑎1 − {2.13/(1 − 2.37 ln𝑛)} 𝑍𝑡

and

𝑏2 = 2.13/(1 − 2.37 ln𝑛) + 𝑏1

If 𝑍𝑐 < −1 set 𝑍 = 𝑍𝑐; else if 𝑍𝑐 < 𝑍𝑡 set 𝑍 = 𝑎1 + 𝑏1𝑍𝑐; else set 𝑍 = 𝑎2 + 𝑏2𝑍𝑐. Define

𝑃 = 1 − Φ(𝑍). Then, 𝐾2 = −2 ln𝑃 is approximately distributed 𝜒2 with 2 degrees of freedom.

The relative merits of the skewness and kurtosis test versus the Shapiro–Wilk and Shapiro–Francia

tests have been a subject of debate. Our recommendation is to use the Shapiro–Francia test whenever

possible, that is, whenever dealing with nonaggregated or ungrouped data (Gould and Rogers 1991;

Gould 1992); see [R] swilk. If normality is rejected, use sktest to determine the source of the problem.

As both D’Agostino, Belanger, and D’Agostino (1990) and Royston (1991d) mention, researchers

should also examine the normal quantile plot to determine normality rather than blindly relying on a few

test statistics. See the qnorm command documented in [R] Diagnostic plots for more information on

normal quantile plots.

sktest is similar in spirit to the Jarque–Bera (1987) test of normality. The Jarque–Bera test statistic
is also calculated from the sample skewness and kurtosis, though it is based on asymptotic standard errors

with no corrections for sample size. In effect, sktest offers two adjustments for sample size, that of
Royston (1991c) and that of D’Agostino, Belanger, and D’Agostino (1990).
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Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description
slogit fitsAnderson’s (1984) maximum-likelihood stereotype logistic regression model for categor-

ical dependent variables. Stereotype logistic models can be used when the relevance of the ordering is

unclear. These models do not impose the proportional-odds assumption.

Quick start
One-dimensional model of y as a function of x1 and x2

slogit y x1 x2

Add indicators for categorical variable a and set y = 1 as the base category

slogit y x1 x2 i.a, baseoutcome(1)

Multidimensional model reparameterizing a multinomial logit when y has 4 categories
slogit y x1 x2 i.a, dimensions(3) baseoutcome(1)

Menu
Statistics > Categorical outcomes > Stereotype logistic regression
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Syntax
slogit depvar [ indepvars ] [ if ] [ in ] [weight ] [ , options ]

options Description

Model

dimension(#) dimension of the model; default is dimension(1)
baseoutcome(# | lbl) set the base outcome to # or lbl; default is the last outcome

constraints(numlist) apply specified linear constraints

nocorner do not generate the corner constraints

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, opg, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)
nocnsreport do not display constraints

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

initialize(initype) method of initializing scale parameters; initype can be constant,
random, or svd; see Options for details

nonormalize do not normalize the numeric variables

collinear keep collinear variables

coeflegend display legend instead of statistics

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

bootstrap, by, collect, fp, jackknife, rolling, statsby, and svy are allowed; see [U] 11.1.10 Prefix commands.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
collinear and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

dimension(#) specifies the dimension of the model, which is the number of equations required to de-
scribe the relationship between the dependent variable and the independent variables. The maximum

dimension is min(𝑚 − 1, 𝑝), where 𝑚 is the number of categories of the dependent variable and 𝑝 is
the number of independent variables in the model. The stereotype model with maximum dimension

is a reparameterization of the multinomial logistic model.

baseoutcome(# | lbl) specifies the outcome level whose scale parameters and intercept are constrained
to be zero. The base outcome may be specified as a number or a label. By default, slogit assumes
that the outcome levels are ordered and uses the largest level of the dependent variable as the base

outcome.
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constraints(numlist); see [R] Estimation options.

By default, the linear equality constraints suggested by Anderson (1984), termed the corner con-

straints, are generated for you. You can add constraints to these as needed, or you can turn off the

corner constraints by specifying nocorner. These constraints are in addition to the constraints placed
on the 𝜙 parameters corresponding to baseoutcome(#).

nocorner specifies that slogit not generate the corner constraints. If you specify nocorner, you must
specify at least dimension() × dimension() constraints for the model to be identified.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), that al-
low for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods

(bootstrap, jackknife); see [R] vce option.

If specifying vce(bootstrap) or vce(jackknife), you must also specify baseoutcome().

� � �
Reporting �

level(#), nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. These options are

seldom used.

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

initialize(constant | random | svd) specifies how initial estimates are computed. The default,

initialize(constant), is to set the scale parameters to the constant min(1/2, 1/𝑑), where 𝑑 is

the dimension specified in dimension().

initialize(random) requests that uniformly distributed random numbers between 0 and 1 be used

as initial values for the scale parameters. If you specify this option, you should also use set seed
to ensure that you can replicate your results; see [R] set seed.

initialize(svd) requests that a singular value decomposition (SVD) be performed on the matrix of
regression estimates from mlogit to reduce its rank to the dimension specified in dimension().
slogit uses the reduced-rank components of the SVD as initial estimates for the scale and regres-

sion coefficients. For details, see Methods and formulas.

nonormalize specifies that the numeric variables not be normalized. Normalization of the numeric

variables improves numerical stability but consumes more memory in generating temporary double-

precision variables. Variables that are of type byte are not normalized, and if initial estimates are

specified using the from() option, normalization of variables is not performed. See Methods and

formulas for more information.
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The following options are available with slogit but are not shown in the dialog box:

collinear, coeflegend; see [R] Estimation options.

Remarks and examples
Remarks are presented under the following headings:

Introduction
One-dimensional model
Higher-dimension models

Introduction
Like multinomial logistic and ordered logistic models, stereotype logistic models are used with cate-

gorical dependent variables. They are often used when subjects are requested to assess or judge some-

thing. In a multinomial logistic model, the categories cannot be ranked. By contrast, in an ordered

logistic model, the categories follow a natural ranking scheme and are subject to the proportional-odds

assumption. Stereotype logistic regression can be viewed as a compromise between these two models

and is primarily used when you are unsure of the relevance of the ordering of the outcome.

A common case is when subjects are asked to assess or judge something. For example, consider a

survey in which consumers are asked to rate the quality of a product on a scale from 1 to 5, with 1 indi-

cating poor quality and 5 indicating excellent quality. If the categories are monotonically related to one

underlying latent variable, the ordered logistic model is appropriate. However, suppose that consumers

weigh two or three latent factors when assessing quality. The stereotype logistic model is preferred to

the ordered logistic model in this case because it allows you to specify multiple equations to capture the

effects of the latent variables. Unlike multinomial logit models, the number of equations you specify

could be fewer than 𝑚 − 1, where 𝑚 is the number of categories of the dependent variable. Stereotype

logistic models are also used when categories may be indistinguishable. Suppose that a consumer must

choose amongA, B, C, or D. Multinomial logistic modeling assumes that the four choices are distinct in

the sense that a consumer choosing one of the goods can distinguish its characteristics from the others. If

goodsA and B are in fact similar, consumers may be randomly picking between the two. One alternative

is to combine the two categories and fit a three-category multinomial logistic model. A more flexible

alternative is to use a stereotype logistic model.

In the multinomial logistic model, you estimate𝑚−1 parameter vectors β̃𝑘, 𝑘 = 1, . . . , 𝑚−1, where

𝑚 is the number of categories of the dependent variable. The stereotype logistic model is a restriction

on the multinomial model in the sense that there are 𝑑 parameter vectors, where 𝑑 is between one and

min(𝑚 − 1, 𝑝), and 𝑝 is the number of regressors. The relationship between the stereotype model’s

coefficients β𝑗, 𝑗 = 1, . . . , 𝑑, and the multinomial model’s coefficients is β̃𝑘 = − ∑𝑑
𝑗=1 𝜙𝑗𝑘β𝑗. The 𝜙s

are scale parameters to be estimated along with the β𝑗s.
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Given a row vector of covariates x, let 𝜂𝑘 = 𝜃𝑘−∑𝑑
𝑗=1 𝜙𝑗𝑘xβ𝑗. The probability of observing outcome

𝑘 is

Pr(𝑌𝑖 = 𝑘) =

⎧
{{{
⎨
{{{
⎩

exp (𝜂𝑘)

1 +
𝑚−1
∑
𝑙=1

exp (𝜂𝑙)
𝑘 < 𝑚

1

1 +
𝑚−1
∑
𝑙=1

exp (𝜂𝑙)
𝑘 = 𝑚

This model includes a set of 𝜃 parameters so that each equation has an unrestricted constant term. If

𝑑 = 𝑚 − 1, the stereotype model is just a reparameterization of the multinomial logistic model. To

identify the 𝜙s and the βs, you must place at least 𝑑2 restrictions on the parameters. By default, slogit
uses the “corner constraints” 𝜙𝑗𝑗 = 1 and 𝜙𝑗𝑘 = 0 for 𝑗 ≠ 𝑘, 𝑘 ≤ 𝑑, and 𝑗 ≤ 𝑑.

For a discussion of the stereotype logistic model, see Lunt (2005).

One-dimensional model

Example 1
We have 2 years of repair rating data on the make, price, mileage rating, and gear ratio of 104 foreign

and 44 domestic automobiles (with 13 missing values on repair rating). We wish to fit a stereotype

logistic model to discriminate between the levels of repair rating using mileage, price, gear ratio, and

origin of the manufacturer. Here is an overview of our data:

. use https://www.stata-press.com/data/r18/auto2yr
(Automobile models)
. tabulate repair

Repair
rating Freq. Percent Cum.

Poor 5 3.70 3.70
Fair 19 14.07 17.78

Average 57 42.22 60.00
Good 38 28.15 88.15

Excellent 16 11.85 100.00

Total 135 100.00

The variable repair can take five values, 1, . . . , 5, which represent the subjective rating of the car

model’s repair record as Poor, Fair, Average, Good, and Excellent.

We wish to fit the one-dimensional stereotype logistic model

𝜂𝑘 = 𝜃𝑘 − 𝜙𝑘 (𝛽1foreign + 𝛽2mpg + 𝛽3price + 𝛽4gratio)

for 𝑘 < 5 and 𝜂5 = 0. To fit this model, we type
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. slogit repair foreign mpg price gratio
Iteration 0: Log likelihood = -237.99802 (not concave)
Iteration 1: Log likelihood = -204.98644 (not concave)
Iteration 2: Log likelihood = -169.79473 (not concave)
Iteration 3: Log likelihood = -167.53649
Iteration 4: Log likelihood = -164.63477
Iteration 5: Log likelihood = -163.20867 (not concave)
Iteration 6: Log likelihood = -160.67522
Iteration 7: Log likelihood = -159.69646
Iteration 8: Log likelihood = -159.35057
Iteration 9: Log likelihood = -159.28495
Iteration 10: Log likelihood = -159.25748
Iteration 11: Log likelihood = -159.25691
Iteration 12: Log likelihood = -159.25691
Stereotype logistic regression Number of obs = 135

Wald chi2(4) = 9.33
Log likelihood = -159.25691 Prob > chi2 = 0.0535
( 1) [phi1_1]_cons = 1

repair Coefficient Std. err. z P>|z| [95% conf. interval]

foreign 5.947382 2.094126 2.84 0.005 1.84297 10.05179
mpg .1911968 .08554 2.24 0.025 .0235414 .3588521

price -.0000576 .0001357 -0.42 0.671 -.0003236 .0002083
gratio -4.307571 1.884713 -2.29 0.022 -8.00154 -.6136017

/phi1_1 1 (constrained)
/phi1_2 1.262268 .3530565 3.58 0.000 .5702904 1.954247
/phi1_3 1.17593 .3169397 3.71 0.000 .5547394 1.79712
/phi1_4 .8657195 .2411228 3.59 0.000 .3931275 1.338311
/phi1_5 0 (base outcome)

/theta1 -6.864749 4.21252 -1.63 0.103 -15.12114 1.391639
/theta2 -7.613977 4.861803 -1.57 0.117 -17.14294 1.914981
/theta3 -5.80655 4.987508 -1.16 0.244 -15.58189 3.968786
/theta4 -3.85724 3.824132 -1.01 0.313 -11.3524 3.637922
/theta5 0 (base outcome)

(repair=Excellent is the base outcome)

The coefficient associatedwith the first scale parameter, 𝜙11, is 1, and its standard error and other statistics

are missing. This is the corner constraint applied to the one-dimensional model; in the header, this

constraint is listed as [phi1 1] cons = 1. Also, the 𝜙 and 𝜃 parameters that are associated with the base
outcome are identified. Keep in mind, though, that there are no coefficient estimates for [phi1 5] cons
or [theta5] cons in the ereturn matrix e(b). The Wald statistic is for a test of the joint significance

of the regression coefficients on foreign, mpg, price, and gratio.

The one-dimensional stereotype model restricts the multinomial logistic regression coefficients β̃𝑘,

𝑘 = 1, . . . , 𝑚 − 1 to be parallel; that is, β̃𝑘 = −𝜙𝑘β. As Lunt (2001) discusses, in the one-dimensional
stereotype model, one linear combination x𝑖β best discriminates the outcomes of the dependent variable,

and the scale parameters 𝜙𝑘 measure the distance between the outcome levels and the linear predictor.

If 𝜙1 ≥ 𝜙2 ≥ · · · 𝜙𝑚−1 ≥ 𝜙𝑚 ≡ 0, the model suggests that the subjective assessment of the dependent

variable is indeed ordered. Here the maximum likelihood estimates of the 𝜙’s are not monotonic, as
would be assumed in an ordered logit model.
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We test that 𝜙1 = 𝜙2 by typing

. test [phi1_2]_cons = [phi1_1]_cons
( 1) - [phi1_1]_cons + [phi1_2]_cons = 0

chi2( 1) = 0.55
Prob > chi2 = 0.4576

Because the two parameters are not statistically different, we decide to add a constraint to force 𝜙1 = 𝜙2:

. constraint define 1 [phi1_2]_cons = [phi1_1]_cons

. slogit repair foreign mpg price gratio, constraint(1) nolog
Stereotype logistic regression Number of obs = 135

Wald chi2(4) = 21.28
Log likelihood = -159.65769 Prob > chi2 = 0.0003
( 1) [phi1_1]_cons = 1
( 2) - [phi1_1]_cons + [phi1_2]_cons = 0

repair Coefficient Std. err. z P>|z| [95% conf. interval]

foreign 7.166515 1.690177 4.24 0.000 3.853828 10.4792
mpg .2340043 .0807042 2.90 0.004 .0758271 .3921816

price -.000041 .0001618 -0.25 0.800 -.0003581 .000276
gratio -5.218107 1.798717 -2.90 0.004 -8.743528 -1.692686

/phi1_1 1 (constrained)
/phi1_2 1 (constrained)
/phi1_3 .9751096 .1286563 7.58 0.000 .7229478 1.227271
/phi1_4 .7209343 .1220353 5.91 0.000 .4817494 .9601191
/phi1_5 0 (base outcome)

/theta1 -8.293452 4.645182 -1.79 0.074 -17.39784 .8109369
/theta2 -6.958451 4.629292 -1.50 0.133 -16.0317 2.114795
/theta3 -5.620232 4.953981 -1.13 0.257 -15.32986 4.089392
/theta4 -3.745624 3.809189 -0.98 0.325 -11.2115 3.720249
/theta5 0 (base outcome)

(repair=Excellent is the base outcome)

The 𝜙 estimates are now monotonically decreasing and the standard errors of the 𝜙’s are small relative to
the size of the estimates, so we conclude that, with the exception of outcomes Poor and Fair, the groups

are distinguishable for the one-dimensional model and that the quality assessment can be ordered.

Higher-dimension models
The stereotype logistic model is not limited to ordered categorical dependent variables; you can use

it on nominal data to reduce the dimension of the regressions. Recall that a multinomial model fit to a

categorical dependent variable with 𝑚 levels will have 𝑚 − 1 sets of regression coefficients. However,

a model with fewer dimensions may fit the data equally well, suggesting that some of the categories are

indistinguishable.

Example 2
As discussed in [R] mlogit, we have data on the type of health insurance available to 616 psycho-

logically depressed subjects in the United States (Tarlov et al. 1989; Wells et al. 1989). Patients may

have either an indemnity (fee-for-service) plan or a prepaid plan, such as an HMO, or may be uninsured.

Demographic variables include age, gender, race, and site.
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First, we fit the saturated, two-dimensional model that is equivalent to a multinomial logistic model.

We choose the base outcome to be 1 (indemnity insurance) because that is the default for mlogit.

. use https://www.stata-press.com/data/r18/sysdsn1
(Health insurance data)
. slogit insure age male nonwhite i.site, dim(2) base(1)
Iteration 0: Log likelihood = -534.36165
Iteration 1: Log likelihood = -534.36165
Stereotype logistic regression Number of obs = 615

Wald chi2(10) = 38.17
Log likelihood = -534.36165 Prob > chi2 = 0.0000
( 1) [phi1_2]_cons = 1
( 2) [phi1_3]_cons = 0
( 3) [phi2_2]_cons = 0
( 4) [phi2_3]_cons = 1

insure Coefficient Std. err. z P>|z| [95% conf. interval]

dim1
age .011745 .0061946 1.90 0.058 -.0003962 .0238862

male -.5616934 .2027465 -2.77 0.006 -.9590693 -.1643175
nonwhite -.9747768 .2363213 -4.12 0.000 -1.437958 -.5115955

site
2 -.1130359 .2101903 -0.54 0.591 -.5250013 .2989296
3 .5879879 .2279351 2.58 0.010 .1412433 1.034733

dim2
age .0077961 .0114418 0.68 0.496 -.0146294 .0302217

male -.4518496 .3674867 -1.23 0.219 -1.17211 .268411
nonwhite -.2170589 .4256361 -0.51 0.610 -1.05129 .6171725

site
2 1.211563 .4705127 2.57 0.010 .2893747 2.133751
3 .2078123 .3662926 0.57 0.570 -.510108 .9257327

/phi1_1 0 (base outcome)
/phi1_2 1 (constrained)
/phi1_3 0 (omitted)

/phi2_1 0 (base outcome)
/phi2_2 0 (omitted)
/phi2_3 1 (constrained)

/theta1 0 (base outcome)
/theta2 .2697127 .3284422 0.82 0.412 -.3740222 .9134476
/theta3 -1.286943 .5923219 -2.17 0.030 -2.447872 -.1260134

(insure=Indemnity is the base outcome)
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For comparison, we also fit the model by using mlogit:

. mlogit insure age male nonwhite i.site, nolog
Multinomial logistic regression Number of obs = 615

LR chi2(10) = 42.99
Prob > chi2 = 0.0000

Log likelihood = -534.36165 Pseudo R2 = 0.0387

insure Coefficient Std. err. z P>|z| [95% conf. interval]

Indemnity (base outcome)

Prepaid
age -.011745 .0061946 -1.90 0.058 -.0238862 .0003962

male .5616934 .2027465 2.77 0.006 .1643175 .9590693
nonwhite .9747768 .2363213 4.12 0.000 .5115955 1.437958

site
2 .1130359 .2101903 0.54 0.591 -.2989296 .5250013
3 -.5879879 .2279351 -2.58 0.010 -1.034733 -.1412433

_cons .2697127 .3284422 0.82 0.412 -.3740222 .9134476

Uninsure
age -.0077961 .0114418 -0.68 0.496 -.0302217 .0146294

male .4518496 .3674867 1.23 0.219 -.268411 1.17211
nonwhite .2170589 .4256361 0.51 0.610 -.6171725 1.05129

site
2 -1.211563 .4705127 -2.57 0.010 -2.133751 -.2893747
3 -.2078123 .3662926 -0.57 0.570 -.9257327 .510108

_cons -1.286943 .5923219 -2.17 0.030 -2.447872 -.1260134

Apart from having opposite signs, the coefficients from the stereotype logistic model are identical to

those from the multinomial logit model. Recall the definition of 𝜂𝑘 given in the Remarks and examples,

particularly the minus sign in front of the summation. One other difference in the output is that the

constant estimates labeled /theta in the slogit output are the constants labeled cons in the mlogit
output.
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Next, we examine the one-dimensional model.

. slogit insure age male nonwhite i.site, dim(1) base(1) nolog
Stereotype logistic regression Number of obs = 615

Wald chi2(5) = 28.20
Log likelihood = -539.75205 Prob > chi2 = 0.0000
( 1) [phi1_2]_cons = 1

insure Coefficient Std. err. z P>|z| [95% conf. interval]

age .0108366 .0061918 1.75 0.080 -.0012992 .0229723
male -.5032537 .2078171 -2.42 0.015 -.9105678 -.0959396

nonwhite -.9480351 .2340604 -4.05 0.000 -1.406785 -.489285

site
2 -.2444316 .2246366 -1.09 0.277 -.6847113 .1958481
3 .556665 .2243799 2.48 0.013 .1168886 .9964415

/phi1_1 0 (base outcome)
/phi1_2 1 (constrained)
/phi1_3 .0383539 .4079705 0.09 0.925 -.7612535 .8379613

/theta1 0 (base outcome)
/theta2 .187542 .3303847 0.57 0.570 -.4600001 .835084
/theta3 -1.860134 .2158898 -8.62 0.000 -2.28327 -1.436997

(insure=Indemnity is the base outcome)

We have reduced a two-dimensional multinomial model to one dimension, reducing the number of esti-

mated parameters by four and decreasing the model likelihood by ≈ 5.4.

slogit does not report a model likelihood-ratio test. The test of 𝑑 = 1 (a one-dimensional model)

versus 𝑑 = 0 (the null model) does not have an asymptotic 𝜒2 distribution because the unconstrained

𝜙 parameters (/phi1 3 in this example) cannot be identified if β = 0. More generally, this problem

precludes testing any hierarchical model of dimension 𝑑 versus 𝑑 −1. Of course, the likelihood-ratio test

of a full-dimension model versus 𝑑 = 0 is valid because the full model is just multinomial logistic, and

all the 𝜙 parameters are fixed at 0 or 1.
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Technical note
The stereotype model is a special case of the reduced-rank vector generalized linear model discussed

by Yee and Hastie (2003). If we define 𝜂𝑖𝑘 = 𝜃𝑘 − ∑𝑑
𝑗=1 𝜙𝑗𝑘x𝑖β𝑗, for 𝑘 = 1, . . . , 𝑚 − 1, we can write

the expression in matrix notation as

η𝑖 = θ + 𝚽 (x𝑖B)′

where𝚽 is a (𝑚−1)×𝑑matrix containing the 𝜙𝑗𝑘 parameters and B is a 𝑝×𝑑matrix with columns con-
taining the β𝑗 parameters, 𝑗 = 1, . . . , 𝑑. The factorization𝚽B′ is not unique because 𝚽B′ =𝚽MM−1B′

for any nonsingular 𝑑 × 𝑑 matrixM. To avoid this identifiability problem, we chooseM = 𝚽−1
1 , where

𝚽 = (𝚽1
𝚽2

)

and 𝚽1 is 𝑑 × 𝑑 of rank 𝑑 so that

𝚽M = ( I𝑑
𝚽2𝚽−1

1
)

and I𝑑 is a 𝑑 × 𝑑 identity matrix. Thus, the corner constraints used by slogit are 𝜙𝑗𝑗 ≡ 1 and 𝜙𝑗𝑘 ≡ 0

for 𝑗 ≠ 𝑘 and 𝑘, 𝑗 ≤ 𝑑.

Stored results
slogit stores the following in e():

Scalars

e(N) number of observations

e(k) number of parameters

e(k indvars) number of independent variables

e(k out) number of outcomes

e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test

e(df m) Wald test degrees of freedom

e(df 0) null model degrees of freedom

e(k dim) model dimension

e(i base) base outcome index

e(ll) log likelihood

e(ll 0) null model log likelihood

e(N clust) number of clusters

e(chi2) 𝜒2

e(p) 𝑝-value for model test
e(ic) number of iterations

e(rank) rank of e(V)
e(rc) return code

e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) slogit
e(cmdline) command as typed

e(depvar) name of dependent variable

e(indvars) independent variables

e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(clustvar) name of cluster variable
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e(out#) outcome labels, # = 1, . . . ,e(k out)
e(chi2type) Wald; type of model 𝜒2 test

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(opt) type of optimization

e(which) max or min; whether optimizer is to perform maximization or minimization

e(ml method) type of ml method
e(user) name of likelihood-evaluator program

e(technique) maximization technique

e(properties) b V
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(marginsdefault) default predict() specification for margins
e(footnote) program used to implement the footnote display

e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(outcomes) outcome values

e(Cns) constraints matrix

e(ilog) iteration log (up to 20 iterations)

e(gradient) gradient vector

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas
slogit obtains the maximum likelihood estimates for the stereotype logistic model by using ml; see

[R] ml. Each set of regression estimates, one set of β𝑗s for each dimension, constitutes one ml model
equation. The 𝑑 × (𝑚 − 1) 𝜙s and the (𝑚 − 1) 𝜃s are ml ancillary parameters.
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Without loss of generality, let the base outcome level be the 𝑚th level of the dependent variable.

Define the row vector φ𝑘 = (𝜙1𝑘, . . . , 𝜙𝑑𝑘) for 𝑘 = 1, . . . , 𝑚 − 1, and define the 𝑝 × 𝑑 matrix B =
(β1, . . . ,β𝑑). For observation 𝑖, the log odds of outcome level 𝑘 relative to level 𝑚, 𝑘 = 1, . . . , 𝑚 − 1

is the index

ln{ Pr(𝑌𝑖 = 𝑘)
Pr(𝑌𝑖 = 𝑚)

} = 𝜂𝑖𝑘 = 𝜃𝑘 − φ𝑘 (x𝑖B)′

= 𝜃𝑘 − φ𝑘ν
′
𝑖

The row vector ν𝑖 can be interpreted as a latent variable reducing the 𝑝-dimensional vector of covariates
to a more interpretable 𝑑 < 𝑝 dimension.

The probability of the 𝑖th observation having outcome level 𝑘 is then

Pr(𝑌𝑖 = 𝑘) = 𝑝𝑖𝑘 =

⎧
{{{
⎨
{{{
⎩

𝑒𝜂𝑖𝑘

1 +
𝑚−1
∑
𝑗=1

𝑒𝜂𝑖𝑗

, if 𝑘 < 𝑚

1

1 +
𝑚−1
∑
𝑗=1

𝑒𝜂𝑖𝑗

, if 𝑘 = 𝑚

from which the log-likelihood function is computed as

𝐿 =
𝑛

∑
𝑖=1

𝑤𝑖

𝑚
∑
𝑘=1

𝐼𝑘(𝑦𝑖) ln(𝑝𝑖𝑘) (1)

Here 𝑤𝑖 is the weight for observation 𝑖 and

𝐼𝑘(𝑦𝑖) = {1 , if observation 𝑦𝑖 has outcome 𝑘
0 , otherwise

Numeric variables are normalized for numerical stability during optimization where a new double-

precision variable ̃𝑥𝑗 is created from variable 𝑥𝑗, 𝑗 = 1, . . . , 𝑝, such that ̃𝑥𝑗 = (𝑥𝑗 − 𝑥𝑗)/𝑠𝑗. This

feature is turned off if you specify nonormalize, or if you use the from() option for initial estimates.
Normalization is not performed on byte variables, including the indicator variables generated by [R] xi.

The linear equality constraints for regression parameters, if specified, must be scaled also. Assume that

a constraint is applied to the regression parameter associated with variable 𝑗 and dimension 𝑖, 𝛽𝑗𝑖, and

the corresponding element of the constraint matrix (see [P] makecns) is divided by 𝑠𝑗.

After convergence, the parameter estimates for variable 𝑗 and dimension 𝑖— ̃𝛽𝑗𝑖, say—are trans-

formed back to their original scale, 𝛽𝑗𝑖 = ̃𝛽𝑗𝑖/𝑠𝑗. For the intercepts, you compute

𝜃𝑘 = ̃𝜃𝑘 +
𝑑

∑
𝑖=1

𝜙𝑖𝑘

𝑝

∑
𝑗=1

̃𝛽𝑗𝑖𝑥𝑗

𝑠𝑗
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Initial values are computed using estimates obtained using mlogit to fit a multinomial logistic model.
Let the 𝑝 × (𝑚 − 1) matrix B̃ contain the multinomial logistic regression parameters less the 𝑚 −
1 intercepts. Each 𝜙 is initialized with constant values min (1/2, 1/𝑑), the initialize(constant)
option (the default), or, with uniform random numbers, the initialize(random) option. Constraints
are then applied to the starting values so that the structure of the (𝑚 − 1) × 𝑑 matrix 𝚽 is

𝚽 =
⟮
⟮
⟮
⟮

φ1
φ2
⋮

φ𝑚−1

⟯
⟯
⟯
⟯

= ⟮
I𝑑
�̃�⟯

where I𝑑 is a 𝑑 × 𝑑 identity matrix. Assume that only the corner constraints are used, but any constraints
you place on the scale parameters are also applied to the initial scale estimates, so the structure of 𝚽 will

change accordingly. The 𝜙 parameters are invariant to the scale of the covariates, so initial estimates in

[ 0, 1 ] are reasonable. The constraints guarantee that the rank of 𝚽 is at least 𝑑, so the initial estimates
for the stereotype regression parameters are obtained from B = B̃𝚽(𝚽′𝚽)−1.

One other approach for initial estimates is provided: initialize(svd). It starts with the mlogit
estimates and computes B̃′ = UDV′, where U𝑚−1×𝑝 and V𝑝×𝑝 are orthonormal matrices and D𝑝×𝑝 is a

diagonal matrix containing the singular values of B̃. The estimates for 𝚽 and B are the first 𝑑 columns

of U and VD, respectively (Yee and Hastie 2003).

The score for regression coefficients is

u𝑖(β𝑗) = 𝜕𝐿𝑖𝑘
𝜕β𝑗

= x𝑖 (
𝑚−1
∑
𝑙=1

𝜙𝑗𝑙𝑝𝑖𝑙 − 𝜙𝑗𝑘)

the score for the scale parameters is

𝑢𝑖(𝜙𝑗𝑙) = 𝜕𝐿𝑖𝑘
𝜕𝜙𝑗𝑙

= {
x𝑖β𝑗(𝑝𝑖𝑘 − 1), if 𝑙 = 𝑘
x𝑖β𝑗𝑝𝑖𝑙, if 𝑙 ≠ 𝑘

for 𝑙 = 1, . . . , 𝑚 − 1; and the score for the intercepts is

𝑢𝑖(𝜃𝑙) = 𝜕𝐿𝑖𝑘
𝜕𝜃𝑙

= {1 − 𝑝𝑖𝑘, if 𝑙 = 𝑘
−𝑝𝑖𝑙, if 𝑙 ≠ 𝑘

This command supports the Huber/White/sandwich estimator of the variance and its clustered version

using vce(robust) and vce(cluster clustvar), respectively. See [P] robust, particularly Maximum

likelihood estimators and Methods and formulas.

slogit also supports estimation with survey data. For details on VCEs with survey data, see

[SVY] Variance estimation.
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Postestimation commands predict margins
Remarks and examples Methods and formulas Also see

Postestimation commands
The following postestimation commands are available after slogit:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters

estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian infor-
mation criteria (AIC, CAIC, AICc, and BIC, respectively)

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estat (svy) postestimation statistics for survey data

estimates cataloging estimation results

etable table of estimation results
∗ hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

∗ lrtest likelihood-ratio test

margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

predict probabilities, linear predictions and their SEs, etc.

predictnl point estimates, standard errors, testing, and inference for generalized predictions

pwcompare pairwise comparisons of parameters

suest seemingly unrelated estimation

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

∗hausman and lrtest are not appropriate with svy estimation results.
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predict

Description for predict
predict creates a new variable containing predictions such as probabilities, indexes for the 𝑘th out-

come, and standard errors.

Menu for predict
Statistics > Postestimation

Syntax for predict
predict [ type ] { stub* | newvar | newvarlist } [ if ] [ in ] [ , statistic outcome(outcome) ]

predict [ type ] stub* [ if ] [ in ], scores

statistic Description

Main

pr probability of one of or all the dependent variable outcomes; the default

xb index for the 𝑘th outcome
stdp standard error of the index for the 𝑘th outcome

You specify one or 𝑘 new variables with pr, where 𝑘 is the number of outcomes. If you specify one new variable and you do
not specify outcome(), then outcome(#1) is assumed.

You specify one new variable with xb and stdp. If you do not specify outcome(), then outcome(#1) is assumed.
These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for the estimation

sample.

Options for predict

� � �
Main �

pr, the default, computes the predicted probabilities for all outcomes or for a specific outcome. To com-
pute probabilities for all outcomes, you specify 𝑘 new variables, where 𝑘 is the number of categories
of the dependent variable. Alternatively, you can specify stub*; in which case, pr will store predicted
probabilities in variables stub1, stub2, . . . , stub𝑘. To compute the probability for a specific outcome,
you specify one new variable and, optionally, the outcome value in option outcome(); if you omit
outcome(), the first outcome value, outcome(#1), is assumed.

Say that you fit a model by typing estimation cmd y x1 x2, and y takes on four values. Then,

you could type predict p1 p2 p3 p4 to obtain all four predicted probabilities; alternatively, you

could type predict p* to generate the four predicted probabilities. To compute specific probabil-

ities one at a time, you can type predict p1, outcome(#1) (or simply predict p1), predict p2,
outcome(#2), and so on. See option outcome() for other ways to refer to outcome values.

xb calculates the index, 𝜃𝑘 − ∑𝑑
𝑗=1 𝜙jkx𝑖β𝑗, for outcome level 𝑘 ≠ e(i base) and dimension 𝑑 =

e(k dim). It returns a vector of zeros if 𝑘 = e(i base). A synonym for xb is index. If outcome()
is not specified, outcome(#1) is assumed.

stdp calculates the standard error of the index. A synonym for stdp is seindex. If outcome() is not
specified, outcome(#1) is assumed.
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outcome(outcome) specifies for which outcome the predicted probabilities are to be calculated.

outcome() should contain either one value of the dependent variable or one of #1, #2, . . . , with #1
meaning the first category of the dependent variable, #2meaning the second category, etc. outcome()
is not allowed with scores.

scores calculates the equation-level score variables. For models with 𝑑 dimensions and 𝑚 levels, 𝑑 +
(𝑑 + 1)(𝑚 − 1) new variables are created. Assume 𝑗 = 1, . . . , 𝑑 and 𝑘 = 1, . . . , 𝑚 in the following.

The first 𝑑 new variables will contain 𝜕 ln𝐿/𝜕(xβ𝑗).

The next 𝑑(𝑚 − 1) new variables will contain 𝜕 ln𝐿/𝜕𝜙𝑗𝑘.

The last 𝑚 − 1 new variables will contain 𝜕 ln𝐿/𝜕𝜃𝑘.

margins

Description for margins
margins estimates margins of response for probabilities and indexes for the 𝑘th outcome.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist ] [ , options ]
margins [marginlist ] , predict(statistic ...) [ predict(statistic ...) ... ] [ options ]

statistic Description

default probabilities for each outcome

pr probability of one of or all the dependent variable outcomes

xb index for the 𝑘th outcome
stdp not allowed with margins

pr and xb default to the first outcome.

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.
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Remarks and examples
Once you have fit a stereotype logistic model, you can obtain the predicted probabilities by using

the predict command for both the estimation sample and other samples; see [U] 20 Estimation and

postestimation commands and [R] predict.

predict without arguments (or with the pr option) calculates the predicted probability of each out-
come of the dependent variable. You must therefore give a new variable name for each of the outcomes.

To compute the estimated probability of one outcome, you use the outcome(outcome) option where

outcome is the level encoding the outcome. If the dependent variable’s levels are labeled, the outcomes

can also be identified by the label values (see [D] label).

The xb option in conjunction with outcome(outcome) specifies that the index be computed for the
outcome encoded by level outcome. Its approximate standard error is computed if the stdp option is

specified. Only one of the pr, xb, or stdp options can be specified with a call to predict.

Example 1
In example 2 of [R] slogit, we fit the one-dimensional stereotype model, where the depvar is insure

with levels 𝑘 = 1 for outcome Indemnity, 𝑘 = 2 for Prepaid, and 𝑘 = 3 for Uninsure. The base outcome

for the model is Indemnity, so for 𝑘 ≠ 1 the vector of indices for the 𝑘th level is

η𝑘 = 𝜃𝑘 − 𝜙𝑘 (𝛽1age + 𝛽2male + 𝛽3nonwhite + 𝛽42.site + 𝛽53.site)

We estimate the group probabilities by calling predict after slogit.

. use https://www.stata-press.com/data/r18/sysdsn1
(Health insurance data)
. slogit insure age male nonwhite i.site, dim(1) base(1) nolog
(output omitted )

. predict pIndemnity pPrepaid pUninsure, p

. list pIndemnity pPrepaid pUninsure insure in 1/10

pIndem~y pPrepaid pUnins~e insure

1. .5419344 .3754875 .0825782 Indemnity
2. .4359638 .496328 .0677081 Prepaid
3. .5111583 .4105107 .0783309 Indemnity
4. .3941132 .5442234 .0616633 Prepaid
5. .4655651 .4625064 .0719285 .

6. .4401779 .4915102 .0683118 Prepaid
7. .4632122 .4651931 .0715948 Prepaid
8. .3772302 .5635696 .0592002 .
9. .4867758 .4383018 .0749225 Uninsure

10. .5823668 .3295802 .0880531 Prepaid

Observations 5 and 8 are not used to fit the model because insure is missing at these points, but predict
estimates the probabilities for these observations because none of the independent variables is missing.

You can use if e(sample) in the call to predict to use only those observations that are used to fit the
model.
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Methods and formulas
predict

Let level 𝑏 be the base outcome that is used to fit the stereotype logistic regression model of dimension
𝑑. The index for observation 𝑖 and level 𝑘 ≠ 𝑏 is 𝜂𝑖𝑘 = 𝜃𝑘 − ∑𝑑

𝑗=1 𝜙𝑗𝑘x𝑖β𝑗. This is the log odds of

outcome encoded as level 𝑘 relative to that of 𝑏 so that we define 𝜂𝑖𝑏 ≡ 0. The outcome probabilities for

this model are defined as Pr(𝑌𝑖 = 𝑘) = 𝑒𝜂𝑖𝑘/ ∑𝑚
𝑗=1 𝑒𝜂𝑖𝑗 . Unlike in mlogit, ologit, and oprobit, the

index is no longer a linear function of the parameters. The standard error of index 𝜂𝑖𝑘 is thus computed

using the delta method (see also [R] predictnl).

The equation-level score for regression coefficients is

𝜕 ln𝐿𝑖𝑘
𝜕x𝑖β𝑗

= (
𝑚−1
∑
𝑙=1

𝜙𝑗𝑙𝑝𝑖𝑙 − 𝜙𝑗𝑘)

the equation-level score for the scale parameters is

𝜕 ln𝐿𝑖𝑘
𝜕𝜙𝑗𝑙

= {
x𝑖β𝑗(𝑝𝑖𝑘 − 1), if 𝑙 = 𝑘
x𝑖β𝑗𝑝𝑖𝑙, if 𝑙 ≠ 𝑘

for 𝑙 = 1, . . . , 𝑚 − 1; and the equation-level score for the intercepts is

𝜕 ln𝐿𝑖𝑘
𝜕𝜃𝑙

= {1 − 𝑝𝑖𝑘, if 𝑙 = 𝑘
−𝑝𝑖𝑙, if 𝑙 ≠ 𝑘

Also see
[R] slogit — Stereotype logistic regression

[U] 20 Estimation and postestimation commands
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Description Quick start Menu Syntax
Option Remarks and examples Methods and formulas Acknowledgments
References Also see

Description
smooth applies the specified resistant, nonlinear smoother to varname and stores the smoothed series

in newvar.

Quick start
Running median smoother of span 3 for v, placing smoothed values in the new variable newv

smooth 3 v, generate(newv)

Same as above, but with a compound smoother of running medians, first of span 3, then span 5

smooth 35 v, generate(newv)

Same as above, but repeating the span-5 running median until convergence

smooth 35R v, generate(newv)

Same as above, splitting any repeated values after the span-3 running median

smooth 3S5R v, generate(newv)

Same as above, but apply the compound smoother to the resulting rough

smooth 3S5R,twice v, generate(newv)

Menu
Statistics > Nonparametric analysis > Robust nonlinear smoother
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Syntax
smooth smoother[ , twice ] varname [ if ] [ in ], generate(newvar)

where smoother is specified as Sm[ Sm[ . . . ] ] and Sm is one of

{ 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 }[ R ]
3[ R ]S[ S | R ][ S | R ]. . .
E
H

Letters may be specified in lowercase if preferred. Examples of smoother[ ,twice ] include

3RSSH 3RSSH,twice 4253H 4253H,twice 43RSR2H,twice
3rssh 3rssh,twice 4253h 4253h,twice 43rsr2h,twice

Option
generate(newvar) is required; it specifies the name of the new variable that will contain the smoothed

values.

Remarks and examples
Smoothing is an exploratory data-analysis technique for making the general shape of a series apparent.

In this approach (Tukey 1977), the observed data series is assumed to be the sum of an underlying process

that evolves smoothly (the smooth) and of an unsystematic noise component (the rough); that is,

data = smooth + rough

Smoothed values 𝑧𝑡 are obtained by taking medians (or some other location estimate) of each point in

the original data 𝑦𝑡 and a few of the points around it. The number of points used is called the span of

the smoother. Thus, a span-3 smoother produces 𝑧𝑡 by taking the median of 𝑦𝑡−1, 𝑦𝑡, and 𝑦𝑡+1. smooth
provides running median smoothers of spans 1 to 9—indicated by the digit that specifies their span.

Median smoothers are resistant to isolated outliers, so they provide robustness to spikes in the data. Be-

cause the median is also a nonlinear operator, such smoothers are known as robust (or resistant) nonlinear

smoothers.

smooth also provides the Hanning linear, nonrobust smoother, indicated by the letter H. Hanning is a
span-3 smoother with binomial weights. Repeated applications of H—HH, HHH, etc.— provide binomial

smoothers of span 5, 7, etc. See Cox (1997, 2004) for a graphical application of this fact.

Because one smoother usually cannot adequately separate the smooth from the rough, compound

smoothers—multiple smoothers applied in sequence—are used. The smoother 35H, for instance, then
smooths the data with a span-3 median smoother, smooths the result with a span-5 median smoother,

and finally smooths that result with the Hanning smoother. smooth allows you to specify any number of
smoothers in any sequence.
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Three refinements can be combined with the running median and Hanning smoothers. First, the

endpoints of a smooth can be given special treatment. This is specified by the E operator. Second,

smoothing by 3, the span-3 running median, tends to produce flat-topped hills and valleys. The splitting
operator, S, “splits” these repeated values, applies the endpoint operator to them, and then “rejoins” the
series. Finally, it is sometimes useful to repeat an odd-span median smoother or the splitting operator

until the smooth no longer changes. Following a digit or an S with an R specifies this type of repetition.

Even the best smoother may fail to separate the smooth from the rough adequately. To guard against

losing any systematic components of the data series, after smoothing, the smoother can be reapplied to

the resulting rough, and any recovered signal can be added back to the original smooth. The twice
operator specifies this procedure. More generally, an arbitrary smoother can be applied to the rough

(using a second smooth command), and the recovered signal can be added back to the smooth. This

more general procedure is called reroughing (Tukey 1977).

The details of each of the smoothers and operators are explained in Methods and formulas below.

Example 1
smooth is designed to recover the general features of a series that has been contaminated with noise.

To demonstrate this, we construct a series, add noise to it, and then smooth the noisy version to recover
an estimate of the original data. First, we construct and display the data:

. drop _all

. set obs 10

. set seed 123456789

. generate time = _n

. label variable time ”Time”

. generate x = _n^3 - 10*_n^2 + 5*_n

. label variable x ”Signal”

. generate z = x + 50*rnormal()

. label variable z ”Observed series”

. scatter x z time, c(l .) m(i o) ytitle(””)
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Now we smooth the noisy series, z, assumed to be the only data we would observe:

. smooth 4253eh,twice z, gen(sz)

. label variable sz ”Smoothed series”

. scatter x z time, c(l . l) m(i o i) ytitle(””) || scatter sz time,
> c(l . l) m(i o i) ytitle(””) clpattern(dash_dot)
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Example 2
Salgado-Ugarte and Curts-García (1993) provide data on the frequencies of observed fish lengths. In

this example, the series to be smoothed—the frequencies—is ordered by fish length rather than by time.

. use https://www.stata-press.com/data/r18/fishdata, clear

. smooth 4253eh,twice freq, gen(sfreq)

. scatter sfreq freq length, c(l .) m(i o)
> title(”Smoothed frequencies of fish lengths”) ytitle(””) xlabel(#4)
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4253EH,twice of frequencies
Frequency of indiv counts

Smoothed frequencies of fish lengths
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Technical note
smooth allows missing values at the beginning and end of the series, but missing values in the middle

are not allowed. Leading and trailing missing values are ignored. If you wish to ignore missing values

in the middle of the series, you must drop the missing observations before using smooth. Doing so,
of course, would violate smooth’s assumption that observations are equally spaced—each observation

represents a year, a quarter, or a month (or a 1-year birth-rate category). In practice, smooth produces
good results as long as the spaces between adjacent observations do not vary too much.

Smoothing is usually applied to time series, but any variable with a natural order can be smoothed.

For example, a smoother might be applied to the birth rate recorded by the age of the mothers (birthrate

for 17-year-olds, birthrate for 18-year-olds, and so on).

Methods and formulas
Methods and formulas are presented under the following headings:

Running median smoothers of odd span
Running median smoothers of even span
Repeat operator
Endpoint rule
Splitting operator
Hanning smoother
Twicing

Running median smoothers of odd span
The smoother 3 defines

𝑧𝑡 = median(𝑦𝑡−1, 𝑦𝑡, 𝑦𝑡+1)

The smoother 5 defines
𝑧𝑡 = median(𝑦𝑡−2, 𝑦𝑡−1, 𝑦𝑡, 𝑦𝑡+1, 𝑦𝑡+2)

and so on. The smoother 1 defines 𝑧𝑡 = median(𝑦𝑡), so it does nothing.
Endpoints are handled by using smoothers of shorter, odd span. Thus, for 3,

𝑧1 = 𝑦1

𝑧2 = median(𝑦1, 𝑦2, 𝑦3)
⋮

𝑧𝑁−1 = median(𝑦𝑁−2, 𝑦𝑁−1, 𝑦𝑁)
𝑍𝑁 = 𝑦𝑁
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For 5,

𝑧1 = 𝑦1

𝑧2 = median(𝑦1, 𝑦2, 𝑦3)
𝑧3 = median(𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5)
𝑧4 = median(𝑦2, 𝑦3, 𝑦4, 𝑦5, 𝑦6)

⋮
𝑧𝑁−2 = median(𝑦𝑁−4, 𝑦𝑁−3, 𝑦𝑁−2, 𝑦𝑁−1, 𝑦𝑁)
𝑧𝑁−1 = median(𝑦𝑁−2, 𝑦𝑁−1, 𝑦𝑁)

𝑍𝑁 = 𝑦𝑁

and so on.

Running median smoothers of even span
Define the median() function as returning the linearly interpolated value when given an even number

of arguments. Thus, the smoother 2 defines

𝑧𝑡+0.5 = (𝑦𝑡 + 𝑦𝑡+1)/2

The smoother 4 defines 𝑧𝑡+0.5 as the linearly interpolated median of (𝑦𝑡−1, 𝑦𝑡, 𝑦𝑡+1, 𝑦𝑡+2), and so on.
Endpoints are always handled using smoothers of shorter, even span. Thus, for 4,

𝑧0.5 = 𝑦1

𝑧1.5 = median(𝑦1, 𝑦2) = (𝑦1 + 𝑦2)/2
𝑧2.5 = median(𝑦1, 𝑦2, 𝑦3, 𝑦4)

⋮
𝑧𝑁−2.5 = median(𝑦𝑁−4, 𝑦𝑁−3, 𝑦𝑁−2, 𝑦𝑁)
𝑧𝑁−1.5 = median(𝑦𝑁−2, 𝑦𝑁−1)
𝑧𝑁−0.5 = median(𝑦𝑁−1, 𝑦𝑁)
𝑧𝑁+0.5 = 𝑦𝑁
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As defined above, an even-span smoother increases the length of the series by 1 observation. However,

the series can be recentered on the original observation numbers, and the “extra” observation can be

eliminated by smoothing the series again with another even-span smoother. For instance, the smooth of

4 illustrated above could be followed by a smooth of 2 to obtain

𝑧∗
1 = (𝑧0.5 + 𝑧1.5)/2

𝑧∗
2 = (𝑧1.5 + 𝑧2.5)/2

𝑧∗
3 = (𝑧2.5 + 𝑧3.5)/2
⋮

𝑧∗
𝑁−2 = (𝑧

𝑁−2.5 + 𝑧
𝑁−1.5)/2

𝑧∗
𝑁−1 = (𝑧

𝑁−1.5 + 𝑧
𝑁−0.5)/2

𝑧∗
𝑁 = (𝑧

𝑁−0.5 + 𝑧
𝑁+0.5)/2

smooth keeps track of the number of even smoothers applied to the data and expands and shrinks the
length of the series accordingly. To ensure that the final smooth has the same number of observations as

varname, smooth requires you to specify an even number of even-span smoothers. However, the pairs
of even-span smoothers need not be contiguous; for instance, 4253 and 4523 are both allowed.

Repeat operator
R indicates that a smoother is to be repeated until convergence, that is, until repeated applications of

the smoother produce the same series. Thus, 3 applies the smoother of running medians of span 3. 33
applies the smoother twice. 3R produces the result of repeating 3 an infinite number of times. R should
be used only with odd-span smoothers because even-span smoothers are not guaranteed to converge.

The smoother 453R2 applies a span-4 smoother, followed by a span-5 smoother, followed by repeated
applications of a span-3 smoother, followed by a span-2 smoother.

Endpoint rule
The endpoint rule E modifies the values 𝑧1 and 𝑧𝑁 according to the following formulas:

𝑧1 = median(3𝑧2 − 2𝑧3, 𝑧1, 𝑧2)
𝑧𝑁 = median(3𝑧𝑁−2 − 2𝑧𝑁−1, 𝑧𝑁, 𝑧𝑁−1)

When the endpoint rule is not applied, endpoints are typically “copied in”; that is, 𝑧1 = 𝑦1 and 𝑧𝑁 = 𝑦𝑁.
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Splitting operator
The smoothers 3 and 3R can produce flat-topped hills and valleys. The split operator attempts to

eliminate such hills and valleys by splitting the sequence, applying the endpoint rule E, rejoining the
series, and then resmoothing by 3R.

The S operator may be applied only after 3, 3R, or S.

We recommend that the S operator be repeated once (SS) or until no further changes take place (SR).

Hanning smoother
H is the Hanning linear smoother:

𝑧𝑡 = (𝑦𝑡−1 + 2𝑦𝑡 + 𝑦𝑡+1)/4

Endpoints are copied in: 𝑧1 = 𝑦1 and 𝑧𝑁 = 𝑦𝑁. H should be applied only after all nonlinear smoothers.

Twicing
A smoother divides the data into a smooth and a rough:

data = smooth + rough

If the smoothing is successful, the rough should exhibit no pattern. Twicing refers to applying the

smoother to the observed, calculating the rough, and then applying the smoother to the rough. The

resulting “smoothed rough” is then added back to the smooth from the first step.

Acknowledgments
smooth was originally written by William Gould (1992)—at which time it was named nlsm—and
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published.
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Description
spearman displays Spearman’s rank correlation coefficients for all pairs of variables in varlist or, if

varlist is not specified, for all the variables in the dataset. When there are two variables, an exact 𝑝-value
can be calculated optionally using permutations.

ktau displays Kendall’s rank correlation coefficients between the variables in varlist or, if varlist is
not specified, for all the variables in the dataset. ktau is intended for use on small- and moderate-sized
datasets; it requires considerable computation time for larger datasets.

Quick start
Spearman’s rank correlation coefficient with approximate 𝑝-value for v1 and v2

spearman v1 v2

As above, but report an exact 𝑝-value calculated using Monte Carlo permutations

spearman v1 v2, exact

As above, but perform 100,000 Monte Carlo permutations rather than the default of 10,000, and set the

random-number seed for reproducibility

spearman v1 v2, exact(montecarlo, reps(100000) rseed(1234))

Display Spearman’s rank correlation coefficients in a matrix for all pairs of v1, v2, and v3
spearman v1 v2 v3

Display 𝑝-values as well as correlation coefficients
spearman v1 v2 v3, stats(rho p)

Same as above, but perform Bonferroni’s adjustment to 𝑝-values
spearman v1 v2 v3, stats(rho p) bonferroni

Kendall’s rank correlation coefficients, scores, and standard errors of the scores for pairs of v1, v2, and
v3

ktau v1 v2 v3, stats(taua taub score se)

Same as above, but use pairwise instead of casewise deletion

ktau v1 v2 v3, stats(taua taub score se) pw

Menu
spearman
Statistics > Nonparametric analysis > Tests of hypotheses > Spearman’s rank correlation

ktau
Statistics > Nonparametric analysis > Tests of hypotheses > Kendall’s rank correlation

2867
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Syntax
Spearman’s rank correlation coefficients

spearman [ varlist ] [ if ] [ in ] [ , spearman options ]

Kendall’s rank correlation coefficients

ktau [ varlist ] [ if ] [ in ] [ , ktau options ]

spearman options Description

Main

stats(spearman list) list of statistics; select up to three statistics; default is stats(rho)
print(#) 𝑝-value cutoff for displaying coefficients
star(#) 𝑝-value cutoff for displaying a star
bonferroni report Bonferroni-adjusted 𝑝-values
sidak report Šidák-adjusted 𝑝-values
pw calculate each pairwise correlation coefficient using all available data

matrix display output in matrix form

exact[ (exact specs) ] report an exact 𝑝-value (available only when varlist is two variables)

ktau options Description

Main

stats(ktau list) list of statistics; select up to six statistics; default is stats(taua)
print(#) 𝑝-value cutoff for displaying coefficients
star(#) 𝑝-value cutoff for displaying a star
bonferroni report Bonferroni-adjusted 𝑝-values
sidak report Šidák-adjusted 𝑝-values
pw calculate each pairwise correlation coefficient using all available data

matrix display output in matrix form

by and collect are allowed with spearman and ktau; see [U] 11.1.10 Prefix commands.

where the elements of spearman list may be

rho correlation coefficient
obs number of observations
p 𝑝-value

and the elements of ktau list may be

taua correlation coefficient 𝜏𝑎
taub correlation coefficient 𝜏𝑏
score score
se standard error of score
obs number of observations
p 𝑝-value
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Options for spearman

� � �
Main �

stats(spearman list) specifies the statistics to be displayed in the matrix of output. stats(rho) is
the default. Up to three statistics may be specified; stats(rho obs p) would display the correlation
coefficient, number of observations, and 𝑝-value. If varlist contains only two variables, all statistics
are shown in tabular form, and stats(), print(), and star() have no effect unless the matrix
option is specified.

print(#) specifies the 𝑝-value cutoff for correlation coefficients to be printed. Correlation coefficients
with larger 𝑝-values are left blank in the matrix. Typing spearman, print(.10) would display only
those correlation coefficients that have 𝑝-values less than or equal to 0.10.

star(#) specifies the 𝑝-value cutoff for correlation coefficients to be marked with a star. Typing

spearman, star(.05) would star all correlation coefficients that have 𝑝-values less than or equal to
0.05.

bonferroni makes the Bonferroni adjustment to 𝑝-values. This adjustment affects displayed 𝑝-values
and the print() and star() options. Thus, spearman, print(.05) bonferroni prints coeffi-

cients with Bonferroni-adjusted 𝑝-values of 0.05 or less.
sidak makes the Šidák adjustment to 𝑝-values. This adjustment affects displayed 𝑝-values and the

print() and star() options. Thus, spearman, print(.05) sidak prints coefficients with Šidák-
adjusted 𝑝-values of 0.05 or less.

pw specifies that correlations be calculated using pairwise deletion of observations with missing values.
By default, spearman uses casewise deletion, where observations are ignored if any of the variables
in varlist are missing.

matrix forces spearman to display the statistics as a matrix, even if varlist contains only two variables.
matrix is implied if more than two variables are specified.

exact and exact(exact specs) specify that an exact 𝑝-value be reported. This option is available only
when varlist contains only two variables.

exact specifies that an exact 𝑝-value from a Monte Carlo permutation test be reported. exact is a
synonym for exact(montecarlo).

exact(montecarlo[ , options ] | enumerate[ , options ]) specifies that an exact 𝑝-value be re-

ported in addition to the approximate 𝑝-value. Specifying exact(montecarlo) does a Monte

Carlo permutation test. Specifying exact(enumerate) does an enumeration of all possible per-
mutations. Because the number of all possible permutations is typically extremely large, enumer-

ation is feasible only for very small datasets. The number of permutations will be displayed, and

you can click on Break to stop the computation. The exact 𝑝-value is computed by permute.
exact(montecarlo[ , options ]) allows options show, reps(#), rseed(#),
saving( filename[ , sav options ]), level(#), dots(#), nodots, and eps(#). The show
option specifies that the table produced by permute also be displayed. By default,

10,000 Monte Carlo permutations are done. That is, the default is the same as specifying

exact(montecarlo, reps(10000)). The default for dots() is dots(100) when reps()
is ≥ 10,000; otherwise, it is dots(1). See Options in [R] permute.

exact(enumerate[ , options ]) allows options show, saving( filename[ , sav options ]),
dots(#), nodots, and eps(#). The show option specifies that the table produced by permute
also be displayed. The default for dots() is dots(100). See Options in [R] permute.
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Options for ktau

� � �
Main �

stats(ktau list) specifies the statistics to be displayed in the matrix of output. stats(taua) is the

default. Up to six statistics may be specified; stats(taua taub score se obs p) would display the
correlation coefficients 𝜏𝑎 and 𝜏𝑏, score, standard error of score, number of observations, and 𝑝-value.
If varlist contains only two variables, all statistics are shown in tabular form and stats(), print(),
and star() have no effect unless the matrix option is specified.

print(#) specifies the 𝑝-value cutoff for correlation coefficients to be printed. Correlation coefficients
with larger 𝑝-values are left blank in the matrix. Typing ktau, print(.10)would display only those
correlation coefficients that have 𝑝-values less than or equal to 0.10.

star(#) specifies the 𝑝-value cutoff for correlation coefficients to be marked with a star. Typing ktau,
star(.05) would star all correlation coefficients that have 𝑝-values less than or equal to 0.05.

bonferroni makes the Bonferroni adjustment to 𝑝-values. This adjustment affects displayed 𝑝-values
and the print() and star() options. Thus, ktau, print(.05) bonferroni prints coefficients

with Bonferroni-adjusted 𝑝-values of 0.05 or less.
sidak makes the Šidák adjustment to 𝑝-values. This adjustment affects displayed 𝑝-values and the

print() and star() options. Thus, ktau, print(.05) sidak prints coefficients with Šidák-

adjusted 𝑝-values of 0.05 or less.
pw specifies that correlations be calculated using pairwise deletion of observations with missing values.

By default, ktau uses casewise deletion, where observations are ignored if any of the variables in

varlist are missing.

matrix forces ktau to display the statistics as a matrix, even if varlist contains only two variables.

matrix is implied if more than two variables are specified.
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Remarks and examples

Example 1
We wish to calculate the correlation coefficients among marriage rate (mrgrate), divorce rate

(divorce rate), and median age (medage) in state data. We can calculate the standard Pearson corre-

lation coefficients and 𝑝-values by typing
. use https://www.stata-press.com/data/r18/states2
(State data)
. pwcorr mrgrate divorce_rate medage, sig

mrgrate divorc~e medage

mrgrate 1.0000

divorce_rate 0.7895 1.0000
0.0000

medage 0.0011 -0.1526 1.0000
0.9941 0.2900

We can calculate Spearman’s rank correlation coefficients by typing

. spearman mrgrate divorce_rate medage, stats(rho p)
Number of observations = 50

Key

rho
p-value

mrgrate divorc~e medage

mrgrate 1.0000
.

divorce_rate 0.6933 1.0000
0.0000 .

medage -0.4869 -0.2455 1.0000
0.0004 0.0857 .

The large difference in the results is caused by one observation. Nevada’s marriage rate is almost 10

times higher than the state with the next-highest marriage rate. An important feature of the Spearman

rank correlation is its reduced sensitivity to extreme values compared with the Pearson correlation.
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We can calculate Kendall’s rank correlations by typing

. ktau mrgrate divorce_rate medage, stats(taua taub p)
Number of observations = 50

Key

tau_a
tau_b
p-value

mrgrate divorc~e medage

mrgrate 0.9829
1.0000

.

divorce_rate 0.5110 0.9804
0.5206 1.0000
0.0000 .

medage -0.3486 -0.1698 0.9845
-0.3544 -0.1728 1.0000
0.0004 0.0828 .

There are tied values for variables mrgrate, divorce rate, and medage, so average ranks are used for
the tied values. As a result, 𝜏𝑎 < 1 on the diagonal (see Methods and formulas for the definition of 𝜏𝑎).

According to Conover (1999, 323), “Spearman’s 𝜌 tends to be larger than Kendall’s 𝜏 in absolute

value. However, as a test of significance, there is no strong reason to prefer one over the other because

both will produce nearly identical results in most cases.”

Newson (2000a, 2000b, 2000c, 2001, 2003, 2005, 2006) introduces confidence intervals for Kendall’s

𝜏𝑎. The community-contributed somersd command provides these confidence intervals along with ad-
ditional rank statistics such as Somers’𝐷 and Harrell’s 𝐶 and their corresponding confidence intervals.

See Seed (2001) for confidence intervals for Spearman’s rank correlation.

Example 2
We illustrate spearman and ktau with the auto data, which contains some missing values.

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. spearman mpg rep78
Number of observations = 69

Spearman’s rho = 0.3098
Test of H0: mpg and rep78 are independent

Prob = 0.0098
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Because we specified two variables, spearman displayed the sample size, correlation, and 𝑝-value in
tabular form. To obtain just the correlation coefficient displayed in matrix form, we type

. spearman mpg rep78, stats(rho) matrix
Number of observations = 69

mpg rep78

mpg 1.0000
rep78 0.3098 1.0000

We can specify the pw option with spearman and ktau so that all nonmissing observations between
a pair of variables when calculating their correlation coefficient are used. In the output below, some

correlations are based on 74 observations, whereas others are based on 69 because 5 observations contain

a missing value for rep78.

. spearman mpg price rep78, pw stats(rho obs p) star(0.01)
Number of observations:

min = 69
avg = 71
max = 74

Key

rho
Number of obs
p-value

mpg price rep78

mpg 1.0000
74
.

price -0.5419* 1.0000
74 74

0.0000 .

rep78 0.3098* 0.1028 1.0000
69 69 69

0.0098 0.4000 .
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The bonferroni and sidak options provide adjusted 𝑝-values:
. ktau mpg price rep78, stats(taua taub score se p) bonferroni
Number of observations = 69

Key

tau_a
tau_b
score
se of score
p-value

mpg price rep78

mpg 0.9471
1.0000

2222.0000
191.8600

.

price -0.3973 1.0000
-0.4082 1.0000

-932.0000 2346.0000
192.4561 193.0682
0.0000 .

rep78 0.2076 0.0648 0.7136
0.2525 0.0767 1.0000

487.0000 152.0000 1674.0000
181.7024 182.2233 172.2161
0.0224 1.0000 .

Example 3
We continue with the auto data and show an example of spearman with the exact option.

. set seed 1234

. spearman mpg gear_ratio if foreign == 1, exact
Permutations (10,000): .........1,000.........2,000.........3,000.........4,000.
> ........5,000.........6,000.........7,000.........8,000.........9,000.........
> 10,000 done
Number of observations = 22

Spearman’s rho = 0.4881
Test of H0: mpg and gear_ratio are independent

Prob = 0.0222
Exact prob = 0.0214 (10,000 Monte Carlo permutations)

By default, exact does a Monte Carlo permutation test with 10,000 permutations. Because it is a Monte

Carlo test, we set the random-number generator seed before running spearman for reproducibility.

The exact 𝑝-value from the Monte Carlo permutation test is 0.0214, which is close to the approximate

𝑝-value of 0.0222. Note that the approximate 𝑝-value is not based on the normal distribution or the 𝑡
distribution. It is calculated using a beta distribution fit to the first four moments of the null distribution

of Spearman’s rank correlation, and these four moments are calculated exactly for any value of 𝑁, the

number of observations. See Methods and formulas below.
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Let’s increase the number ofMonte Carlo permutations to 1,000,000 to see how close the approximate

𝑝-value is to the exact 𝑝-value. We specify dots(10000) to see a dot every 10,000th permutation, rather
than the default of every 1,000th permutation. This time we set the random-number generator seed using

a suboption. The exact 𝑝-value is computed by permute, and we can see permute’s output by specifying
the show suboption.

. spearman mpg gear_ratio if foreign == 1,
> exact(montecarlo, reps(1000000) dots(10000) rseed(1234) show)
Permutations (1,000,000): .........100,000.........200,000.........300,000......
> ...400,000.........500,000.........600,000.........700,000.........800,000....
> .....900,000.........1,000,000 done
Monte Carlo permutation results Number of observations = 22
Permutation variable: mpg Number of permutations = 1,000,000

Monte Carlo error

T T(obs) Test c n p SE(p) [95% CI(p)]

rho .4880642 lower 988530 1000000 .9885 .0001 .9883 .9887
upper 11510 1000000 .0115 .0001 .0113 .0117

two-sided .0230 .0001 .0227 .0233

Notes: For lower one-sided test, c = #{T <= T(obs)} and p = p_lower = c/n.
For upper one-sided test, c = #{T >= T(obs)} and p = p_upper = c/n.
For two-sided test, p = 2*min(p_lower, p_upper); SE and CI approximate.

Number of observations = 22
Spearman’s rho = 0.4881

Test of H0: mpg and gear_ratio are independent
Prob = 0.0222

Exact prob = 0.0230 (1,000,000 Monte Carlo permutations)

With this increase in the number of permutations, the exact 𝑝-value is now calculated as 0.0230. From

the table produced by permute, we see that this 𝑝-value has a confidence interval of [0.0227, 0.0233],
accounting for the Monte Carlo error. The approximate 𝑝-value of 0.0222 falls outside this confidence
interval, but it is still very close. Not bad for 𝑁 = 22.

Example 4
For very small sample sizes, an exact 𝑝-value can be computed by enumerating the full permutation

distribution. Here is an example using the auto data with sample size 𝑁 = 11.

. spearman mpg gear_ratio if foreign == 1 & mpg <= 24,
> exact(enumerate, dots(10000))
(enumerating all 831,600 possible permutations)
Permutations (831,600): .........100,000.........200,000.........300,000........
> .400,000.........500,000.........600,000.........700,000.........800,000.... d
> one
Number of observations = 11

Spearman’s rho = 0.5636
Test of H0: mpg and gear_ratio are independent

Prob = 0.0722
Exact prob = 0.0747 (enumerated all 831,600 permutations)

The exact 𝑝-value is 0.0747. The approximate 𝑝-value is 0.0722, which is quite close to the exact 𝑝-value
in this case, even with only 11 observations.
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For 𝑁 = 11, the permutation distribution consists of 11! = 39,916,800 permutations. However, the

output above says that there are only 831,600 permutations. This is because the values of mpg in this
sample are not all unique.

. tabulate mpg if foreign == 1 & mpg <= 24
Mileage
(mpg) Freq. Percent Cum.

14 1 9.09 9.09
17 2 18.18 27.27
18 2 18.18 45.45
21 2 18.18 63.64
23 3 27.27 90.91
24 1 9.09 100.00

Total 11 100.00

The multiplicities in the values of mpg yield permutations that give identical results, and we need

to enumerate only the permutations that are distinct. From the values of mpg, we see that each distinct
permutation has a multiplicity of 2! 2! 2! 3! = 48, and 39,916,800/48 = 831,600, which reduces consid-

erably the number of permutations that need to be computed.

permute, which computes the permutations, permutes the first variable of the two in the spearman
varlist command. So to best exploit this, the variable that produces the most multiplicities in the permu-

tations should be placed first in varlist when doing an enumeration.

� �
Charles Edward Spearman (1863–1945) was a British psychologist who made contributions to cor-

relation, factor analysis, test reliability, and psychometrics. After several years’military service, he

obtained a PhD in experimental psychology at Leipzig and became a professor at University Col-

lege London, where he sustained a long program of work on the interpretation of intelligence tests.

Ironically, the rank correlation version bearing his name is not the formula he advocated.

Maurice George Kendall (1907–1983) was a British statistician who contributed to rank correla-

tion, time series, multivariate analysis, among other topics, and wrote many statistical texts. Most

notably, perhaps, his advanced survey of the theory of statistics went through several editions, later

ones withAlan Stuart; the baton has since passed to others. Kendall was employed in turn as a gov-

ernment and business statistician, as a professor at the London School of Economics, as a consultant,

and as director of the World Fertility Survey. He was knighted in 1974.� �
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Stored results
spearman stores the following in r():

Scalars

r(N) number of observations (last variable pair)

r(rho) 𝜌 (last variable pair)

r(p) two-sided 𝑝-value (last variable pair)
r(p l) lower one-sided 𝑝-value (last variable pair)
r(p u) upper one-sided 𝑝-value (last variable pair)
r(p exact) two-sided exact 𝑝-value
r(p l exact) lower one-sided exact 𝑝-value
r(p u exact) upper one-sided exact 𝑝-value
r(n perm) number of permutations performed

Macros

r(exact) ”montecarlo” or ”enumerate”
r(rngstate) random-number state used for Monte Carlo permutations

Matrices

r(Nobs) number of observations

r(Rho) 𝜌
r(P) two-sided 𝑝-value

If exact(. . ., show) is specified, the stored results from permute are returned as well; see Stored
results in [R] permute.

ktau stores the following in r():

Scalars

r(N) number of observations (last variable pair)

r(tau a) 𝜏a (last variable pair)
r(tau b) 𝜏b (last variable pair)
r(score) Kendall’s score (last variable pair)

r(se score) standard error of score (last variable pair)

r(p) two-sided 𝑝-value (last variable pair)
Matrices

r(Nobs) number of observations

r(Tau a) 𝜏a
r(Tau b) 𝜏b
r(Score) Kendall’s score

r(Se Score) standard error of score

r(P) two-sided 𝑝-value

Methods and formulas
Methods and formulas are presented under the following headings:

Spearman’s rank correlation
Exact p-values
Kendall’s tau

Spearman’s rank correlation
Spearman’s (1904) rank correlation is calculated as Pearson’s correlation computed on the ranks (av-

eraged for ties) (Conover 1999, 314–315). Ranks are as calculated by egen; see [D] egen.
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If 𝑥𝑖 and 𝑦𝑖, where 𝑖 = 1, 2, . . . , 𝑛, are the ranks of one variable pair, and 𝑛 is the number of obser-

vations, then Spearman’s rank correlation is

𝜌 =
∑𝑖(𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦)

√∑𝑖(𝑥𝑖 − 𝑥)2√∑𝑖 = (𝑦𝑖 − 𝑦)2

where 𝑥 = (∑𝑖 𝑥𝑖)/𝑛 is the mean of 𝑥 and 𝑦 is defined similarly.
Under the null hypothesis of independence (or, more generally, exchangeability), the distribution of

𝜌 is given by all the possible permutations of 𝑥𝑖 with 𝑦𝑖 fixed. For the permutation distribution, an

equivalent statistic to 𝜌 is
𝑇 = ∑𝑖 𝑥𝑖 𝑦𝑖

The moments of 𝑇 for the permutation distribution can be computed exactly. Its mean is

𝐸(𝑇 ) = 1
𝑛

{∑𝑖 𝑥𝑖}{∑𝑖 𝑦𝑖}

Assume now that the ranks, 𝑥𝑖 and 𝑦𝑖, are adjusted so that their means are zero. With this assumption,

we have (Stuart, Ord, and Arnold 1999, eqs. 27.42 and 27.43)

𝐸(𝑇 2) = 1
𝑛 − 1

{∑𝑖 𝑥2
𝑖 }{∑𝑖 𝑦2

𝑖 }

𝐸(𝑇 3) = 1
𝑛

{∑𝑖 𝑥3
𝑖 }{∑𝑖 𝑦3

𝑖 }

+ 3
𝑛(𝑛 − 1)

{∑𝑖≠𝑗 𝑥2
𝑖 𝑥𝑗}{∑𝑖≠𝑗 𝑦2

𝑖 𝑦𝑗}

+ 36
𝑛(𝑛 − 1)(𝑛 − 2)

{∑𝑖<𝑗<𝑘 𝑥𝑖𝑥𝑗𝑥𝑘}{∑𝑖<𝑗<𝑘 𝑦𝑖𝑦𝑗𝑦𝑘}

𝐸(𝑇 4) = 1
𝑛

{∑𝑖 𝑥4
𝑖 }{∑𝑖 𝑦4

𝑖 }

+ 4
𝑛(𝑛 − 1)

{∑𝑖≠𝑗 𝑥3
𝑖 𝑥𝑗}{∑𝑖≠𝑗 𝑦3

𝑖 𝑦𝑗}

+ 12
𝑛(𝑛 − 1)

{∑𝑖<𝑗 𝑥2
𝑖 𝑥2

𝑗 }{∑𝑖<𝑗 𝑦2
𝑖 𝑦2

𝑗 }

+ 24
𝑛(𝑛 − 1)(𝑛 − 2)

{∑𝑖≠𝑗,𝑘;𝑗<𝑘 𝑥2
𝑖 𝑥𝑗𝑥𝑘}{∑𝑖≠𝑗,𝑘;𝑗<𝑘 𝑦2

𝑖 𝑦𝑗𝑦𝑘}

+ 576
𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)

{∑𝑖<𝑗<𝑘<𝑙 𝑥𝑖𝑥𝑗𝑥𝑘𝑥𝑙}{∑𝑖<𝑗<𝑘<𝑙 𝑦𝑖𝑦𝑗𝑦𝑘𝑦𝑙}

Note that Stuart, Ord, and Arnold (1999, eq. 27.43) express 𝐸(𝑇 3) and 𝐸(𝑇 4) in terms of 𝑘 statistics,

but that formulation is exactly equivalent to the equations given above.
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An approximate 𝑝-value for Spearman’s rank correlation is calculated by fitting a four-parameter beta
distribution to the first four moments of 𝑇. (See Lord [1965] and Hanson [1991] for a description of
the technique of fitting a four-parameter beta distribution to moments of another distribution.) The four-

parameter beta distribution with domain [𝑙, 𝑢] is

𝑓(𝑥) = (−𝑙 + 𝑥)𝛼−1(𝑢 − 𝑥)𝛽−1

(𝑢 − 𝑙)𝛼+𝛽−1𝐵(𝛼, 𝛽)

where 0 ≤ 𝑙 < 𝑢 ≤ 1 and 𝐵(𝛼, 𝛽) is the beta function with 𝛼 > 0 and 𝛽 > 0.

The parameters for the beta distribution are calculated as follows. Let 𝑚 be the mean of 𝑇, 𝑣 its

variance, 𝑔3 its skewness, and 𝑔4 its kurtosis (see Methods and formulas in [R] summarize). Define

𝑟 = 6(𝑔4 − 𝑔2
3 − 1)

6 + 3𝑔2
3 − 2𝑔4

and

𝑑 = 1 − 24(𝑟 + 1)
(𝑟 + 2)(𝑟 + 3)𝑔4 − 3(𝑟 − 6)(𝑟 + 1)

Let

𝑎 = 𝑟(1 −
√

𝑑)
2

𝑏 = 𝑟(1 +
√

𝑑)
2

If 𝑔3 > 0, then 𝛼 = 𝑎 and 𝛽 = 𝑏; otherwise, 𝛼 = 𝑏 and 𝛽 = 𝑎. The domain boundaries are given by

𝑙 = 𝑚 − 𝛼√𝑣(𝛼 + 𝛽 + 1)
𝛼𝛽

𝑢 = 𝑚 + 𝛽√𝑣(𝛼 + 𝛽 + 1)
𝛼𝛽

To calculate the 𝑝-values, we first scale the observed value of 𝑇 to the domain of beta:

𝑠 = 𝑇obs − 𝑙
𝑢 − 𝑙

Then the lower and upper one-sided 𝑝-values are given by

𝑝lower = ibeta(𝛼, 𝛽, 𝑠)
𝑝upper = ibetatail(𝛼, 𝛽, 𝑠)

where ibeta is Stata’s two-parameter cumulative beta distribution and ibetatail is the function for its
upper tail; see [FN] Statistical functions. The two-sided 𝑝-value is given by

𝑝 = min{1, 2min(𝑝lower, 𝑝upper)}



spearman — Spearman’s and Kendall’s correlations 2880

Exact p-values
Exact 𝑝-values for Spearman’s rank correlation are computed by permute. For details on the permu-

tation computation, see [R] permute.

Kendall’s tau
Kendall’s 𝜏 is calculated in the following manner. For any two pairs of ranks (𝑥𝑖, 𝑦𝑖) and (𝑥𝑗, 𝑦𝑗),

1 ≤ 𝑖, 𝑗 ≤ 𝑛, define them as concordant if

(𝑥𝑖 − 𝑥𝑗)(𝑦𝑖 − 𝑦𝑗) > 0

and discordant if this product is less than zero.

Kendall’s (1938; also see Kendall and Gibbons [1990] or Bland [2015], 187–188) score 𝑆 is defined

as 𝐶 − 𝐷, where 𝐶 (𝐷) is the number of concordant (discordant) pairs. Let 𝑁 = 𝑛(𝑛 −1)/2 be the total
number of pairs, so 𝜏a is given by

𝜏a = 𝑆
𝑁

and 𝜏b is given by

𝜏b = 𝑆√
𝑁 − 𝑈

√
𝑁 − 𝑉

where

𝑈 =
𝑁1

∑
𝑖=1

𝑢𝑖(𝑢𝑖 − 1)/2

𝑉 =
𝑁2

∑
𝑗=1

𝑣𝑗(𝑣𝑗 − 1)/2

and where 𝑁1 is the number of sets of tied 𝑥 values, 𝑢𝑖 is the number of tied 𝑥 values in the 𝑖th set, 𝑁2
is the number of sets of tied 𝑦 values, and 𝑣𝑗 is the number of tied 𝑦 values in the 𝑗th set.

Under the null hypothesis of independence, the variance of 𝑆 is exactly (Kendall and Gibbons 1990,

66)

Var(𝑆) = 1
18

{𝑛(𝑛 − 1)(2𝑛 + 5) −
𝑁1

∑
𝑖=1

𝑢𝑖(𝑢𝑖 − 1)(2𝑢𝑖 + 5) −
𝑁2

∑
𝑗=1

𝑣𝑗(𝑣𝑗 − 1)(2𝑣𝑗 + 5)}

+ 1
9𝑛(𝑛 − 1)(𝑛 − 2)

{
𝑁1

∑
𝑖=1

𝑢𝑖(𝑢𝑖 − 1)(𝑢𝑖 − 2)}{
𝑁2

∑
𝑗=1

𝑣𝑗(𝑣𝑗 − 1)(𝑣𝑗 − 2)}

+ 1
2𝑛(𝑛 − 1)

{
𝑁1

∑
𝑖=1

𝑢𝑖(𝑢𝑖 − 1)}{
𝑁2

∑
𝑗=1

𝑣𝑗(𝑣𝑗 − 1)}
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Using a normal approximation with a continuity correction,

𝑧 = |𝑆| − 1
√Var(𝑆)

For the hypothesis of independence, the statistics 𝑆, 𝜏a, and 𝜏b produce equivalent tests and give the same
𝑝-value.

For Kendall’s 𝜏, the normal approximation is surprisingly accurate for sample sizes as small as 8,
at least for calculating 𝑝-values under the null hypothesis for continuous variables. See Kendall and

Gibbons [1990, chap. 4], who also present some tables for calculating exact 𝑝-values for 𝑛 < 10.

Let 𝑣 be the number of variables specified so that 𝑘 = 𝑣(𝑣 − 1)/2 correlation coefficients are to be
estimated. If bonferroni is specified, the adjusted 𝑝-value is 𝑝′ = min(1, 𝑘𝑝). If sidak is specified,
𝑝′ = min{1, 1− (1− 𝑝)𝑛}. See Methods and formulas in [R] oneway for a more complete description

of the logic behind these adjustments.

Early work on rank correlation is surveyed by Kruskal (1958).
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spikeplot — Spike plots and rootograms

Description Quick start Menu Syntax
Options Remarks and examples Acknowledgments References
Also see

Description
spikeplot produces a frequency plot for a variable in which the frequencies are depicted as vertical

lines from zero. The frequency may be a count, a fraction, or the square root of the count (Tukey’s

rootogram, circa 1965). The vertical lines may also originate from a baseline other than zero at the user’s

option.

Quick start
Spike plot of v1

spikeplot v1

Same as above, but apply frequency weights wvar
spikeplot v1 [fweight = wvar]

Plot proportions of the total number of observations instead of frequencies

spikeplot v1, fraction

Tukey’s rootogram of v2
spikeplot v2, root

Menu
Graphics > Distributional graphs > Spike plot and rootogram

2883
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Syntax
spikeplot varname [ if ] [ in ] [weight ] [ , options ]

options Description

Main

round(#) round varname to nearest multiple of # (bin width)

fraction make vertical scale the proportion of total values; default is frequencies

root make vertical scale show square roots of frequencies

Plot

spike options affect rendition of plotted spikes

Add plots

addplot(plot) add other plots to generated graph

Y axis, X axis, Titles, Legend, Overall, By

twoway options any options documented in [G-3] twoway options

fweights, aweights, and iweights are allowed; see [U] 11.1.6 weight.

Options

� � �
Main �

round(#) rounds the values of varname to the nearest multiple of #. This action effectively specifies
the bin width.

fraction specifies that the vertical scale be the proportion of total values (percentage) rather than the
count.

root specifies that the vertical scale show square roots. This option may not be specified if fraction
is specified.

� � �
Plot �

spike options affect the rendition of the plotted spikes; see [G-2] graph twoway spike.

� � �
Add plots �

addplot(plot) provides a way to add other plots to the generated graph. See [G-3] addplot option.

� � �
Y axis, X axis, Titles, Legend, Overall, By �

twoway options are any of the options documented in [G-3] twoway options. These include options

for titling the graph (see [G-3] title options), options for saving the graph to disk (see [G-3] sav-

ing option), and the by() option (see [G-3] by option).
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Remarks and examples

Example 1
Cox and Brady (1997a) present an illustrative example using the age structure of the population of

Ghana from the 1960 census (rounded to the nearest 1,000). The dataset has ages from 0 (less than 1

year) to 90. To view the distribution of ages, we would like to use each integer from 0 to 90 as the bins

for the dataset.

. use https://www.stata-press.com/data/r18/ghanaage
(Age structure of population of Ghana)
. spikeplot age [fw=pop], ytitle(”Population in 1,000s”) xlab(0(10)90)
> xmtick(5(10)85)
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The resulting graph shows a “heaping” of ages at the multiples of 5. Also, ages ending in even numbers

are more frequent than ages ending in odd numbers (except for 5). This preference for reporting ages is

well known in demography and other social sciences.

Note also that we used the ytitle() option to override the default title of “Frequency” and that

we used the xlab() and xmtick() options with numlists to further customize the resulting graph. See
[U] 11.1.8 numlist for details on specifying numlists.

Example 2
The rootogram is a plot of the square-root transformation of the frequency counts. The square root of

a normal distribution is a multiple of another normal distribution.

. clear

. set seed 1234567

. set obs 5000
Number of observations (_N) was 0, now 5,000.
. generate normal = rnormal()
. label variable normal ”Gaussian(0,1) random numbers”
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. spikeplot normal, round(.10) xlab(-4(1)4)
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. spikeplot normal, round(.10) xlab(-4(1)4) root
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Interpreting a histogram in terms of normality is thus similar to interpreting the rootogram for normality.

This example also shows how the round() option is used to bin the values for a spike plot of a

continuous variable.
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Example 3
spikeplot can also be used to produce time-series plots. varname should be the time variable, and

weights should be specified as the values for those times. To get a plot of daily rainfalls, we type

. spikeplot day [fw=rain] if rain, ytitle(”Daily rainfall in mm”)

The base() option of graph twoway spikemay be used to set a different baseline, such as when we
want to show variations relative to an average or to some other measure of level.
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[R] histogram — Histograms for continuous and categorical variables
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https://www.stata.com/products/stb/journals/stb40.pdf
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Description Quick start Syntax Options
Remarks and examples Acknowledgments References Also see

Description
ssc works with packages (and files) from the Statistical Software Components (SSC) Archive, which

is often called the Boston College Archive and is provided by http://repec.org.

The SSC has become the premier Stata download site for community-contributed software on the

web. ssc provides a convenient interface to the resources available there. For example, on Statalist (see
https://www.statalist.org/), users will often write

The program can be found by typing ssc install newprogramname.

Typing that would load everything associated with newprogramname, including the help files.

If you are searching for what is available, type ssc new and ssc hot, and see [R] search. search
searches the SSC and other places, too. search provides a GUI interface from which programs can be

installed, including the programs at the SSCArchive.

You can uninstall particular packages by using ssc uninstall. For the packages that you keep, see
[R] ado update for an automated way of keeping those packages up to date.

Command overview
ssc new summarizes the packages made available or updated recently. Output is presented in the Stata

Viewer, and from there you may click to find out more about individual packages or to install them.

ssc hot lists the most popular packages—popular based on a moving average of the number of down-

loads in the past three months. By default, 10 packages are listed.

ssc describe pkgname describes, but does not install, the specified package. Use search to find pack-
ages; see [R] search. If you know the package name but do not know the exact spelling, type ssc
describe followed by one letter, a–z or (underscore), to list all the packages starting with that

letter.

ssc install pkgname installs the specified package. You do not have to describe a package before
installing it. (You may also install a package by using net install; see [R] net.)

ssc uninstall pkgname removes the previously installed package from your computer. It does not

matter how the package was installed. (ssc uninstall is a synonym for ado uninstall, so either
may be used to installed any package.)

ssc type filename types a specific file stored at SSC. ssc cat is a synonym for ssc type, which may
appeal to those familiar with Unix.

ssc copy filename copies a specific file stored at SSC to your computer. By default, the file is copied to
the current directory, but you can use options to change this. ssc copy is a rarely used alternative to
ssc install . . ., all. ssc cp is a synonym for ssc copy.

2888
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Quick start
Describe mycommand at SSC

ssc describe mycommand

Install mycommand from SSC

ssc install mycommand

Same as above, but replace previously installed version of mycommand
ssc install mycommand, replace

See a summary of all new and recently updated packages on SSC

ssc new

See a summary of the 10 most popular SSC packages

ssc hot

Same as above, but see the top 25 packages

ssc hot, n(25)

Syntax
Summary of packages most recently added or updated at SSC

ssc new [ , saving(filename[ , replace ]) type ]

Summary of most popular packages at SSC

ssc hot [ , n(#) author(name) ]

Describe a specified package at SSC

ssc describe { pkgname | letter } [ , saving(filename[ , replace ]) ]

Install a specified package from SSC

ssc install pkgname [ , all replace ]

Uninstall from your computer a previously installed package from SSC

ssc uninstall pkgname

Type a specific file stored at SSC

ssc type filename [ , asis ]

Copy a specific file from SSC to your computer

ssc copy filename [ , plus personal replace public binary ]

where letter in ssc describe is a–z or .
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Options
Options are presented under the following headings:

Options for use with ssc new
Options for use with ssc hot
Option for use with ssc describe
Options for use with ssc install
Option for use with ssc type
Options for use with ssc copy

Options for use with ssc new
saving(filename[ , replace ]) specifies that the “what’s new” summary be saved in filename. If

filename is specified without a suffix, filename.smcl is assumed. If saving() is not specified,

saving(ssc results.smcl) is assumed.

type specifies that the “what’s new” results be displayed in the Results window rather than in the Viewer.

Options for use with ssc hot
n(#) specifies the number of packages to list; n(10) is the default. Specify n(.) to list all packages in

order of popularity.

author(name) lists the 10 most popular packages by the specified author. If n(#) is also specified, the
top # packages are listed.

Option for use with ssc describe
saving(filename[ , replace ]) specifies that, in addition to the description’s being displayed on your

screen, it be saved in the specified file.

If filename is specified without an extension, .smcl will be assumed, and the file will be saved as a
SMCL file.

If filename is specified with an extension, no default extension is added. If the extension is .log, the
file will be stored as a text file.

If replace is specified, filename is replaced if it already exists.

Options for use with ssc install
all specifies that any ancillary files associated with the package be downloaded to your current directory,

in addition to the program and help files being installed. Ancillary files are files that do not end in

.ado or .sthlp and typically contain datasets or examples of the use of the new command.

You can find out which files are associated with the package by typing ssc describe pkgname before
or after installing. If you install without using the all option and then want the ancillary files, you
can ssc install again.

replace specifies that any files being downloaded that already exist on your computer be replaced by
the downloaded files. If replace is not specified and any files already exist, none of the files from
the package is downloaded or installed.
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It is better not to specify the replace option and wait to see if there is a problem. If there is a problem,
it is usually better to uninstall the old package by using ssc uninstall or ado uninstall (which
are, in fact, the same command).

Option for use with ssc type
asis affects how files with the suffixes .smcl and .sthlp are displayed. The default is to interpret

SMCL directives the file might contain. asis specifies that the file be displayed in raw, uninterpreted
form.

Options for use with ssc copy
plus specifies that the file be copied to the PLUS directory, the directory where community-contributed

additions are installed. Typing sysdir will display the identity of the PLUS directory on your com-
puter; see [P] sysdir.

personal specifies that the file be copied to your PERSONAL directory as reported by sysdir; see [P] sys-
dir.

If neither plus nor personal is specified, the default is to copy the file to the current directory.

replace specifies that, if the file already exists on your computer, the new file replace it.

public specifies that the new file be made readable by everyone; otherwise, the file will be created

according to the default permission you have set with your operating system.

binary specifies that the file being copied is a binary file and that it is to be copied as is. The default is
to assume that the file is a text file and change the end-of-line characters to those appropriate for your

computer/operating system.

Remarks and examples
Users can add new features to Stata, and some users choose to make new features that they have

written available to others via the web. The files that comprise a new feature are called a package, and a

package usually consists of one or more ado-files and help files. The net command (see [R] net) makes
it reasonably easy to install and uninstall packages regardless of where they are on the web. One site, the

SSC, has become particularly popular as a repository for additions to Stata. Command ssc is an easier
to use version of net designed especially for the SSC.

Many packages are available at the SSC. Packages have names, such as oaxaca, estout, or egenmore.
At SSC, capitalization is not significant, so Oaxaca, ESTOUT, and EGENmore are ways of writing the same
package names.

When you type

. ssc install oaxaca

the files associated with the package are downloaded and installed on your computer. Package names

usually correspond to the names of the command being added to Stata, so one would expect that installing

the package oaxaca will add command oaxaca to Stata on your computer, and expect that typing help
oaxaca will provide the documentation. That is the situation here, but that is not always so. Before or
after installing a package, type ssc describe pkgname to obtain the details.
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Example 1
ssc new summarizes the packages most recently made available or updated. Output is presented in

theViewer, fromwhich youmay click on a package name to find out more or install it. Try it for yourself!

Type ssc new in the Command window.

ssc hot provides a list of the most popular packages at SSC.

. ssc hot
Top 10 packages at SSC

Sep 2024
Rank # hits Package Author(s)

1 51657.2 reghdfe Sergio Correia
2 48498.0 estout Ben Jann
3 47416.0 unique Tony Brady
4 47030.3 outreg2 Roy Wada
5 35310.3 asdoc Attaullah Shah
6 31918.0 winsor2 Yujun Lian
7 27743.6 ftools Sergio Correia
8 25306.6 egenmore Nicholas J. Cox
9 19392.0 distinct Nicholas J. Cox, Gary Longton
10 17075.6 gtools Mauricio Caceres Bravo

(Click on package name for description)

Use the n(#) option to change the number of packages listed:

. ssc hot, n(20)
Top 20 packages at SSC

Sep 2024
Rank # hits Package Author(s)

1 51657.2 reghdfe Sergio Correia
2 48498.0 estout Ben Jann
3 47416.0 unique Tony Brady
4 47030.3 outreg2 Roy Wada
5 35310.3 asdoc Attaullah Shah
6 31918.0 winsor2 Yujun Lian
7 27743.6 ftools Sergio Correia
8 25306.6 egenmore Nicholas J. Cox
9 19392.0 distinct Nicholas J. Cox, Gary Longton
10 17075.6 gtools Mauricio Caceres Bravo
11 15899.0 coefplot Ben Jann
12 14721.7 nearmrg Eric Booth
13 13793.7 winsor Nicholas J. Cox
14 13720.0 ivreg2 Christopher F Baum, Mark E Schaffer,

Steven Stillman
15 13671.8 ivreg210 Mark E Schaffer, Christopher F Baum,

Steven Stillman
16 13617.1 ivreg29 Mark E Schaffer, Christopher F Baum,

Steven Stillman
17 13558.3 ivreg28 Mark E Schaffer, Steven Stillman,

Christopher F Baum
18 12779.4 labutil Nicholas J. Cox
19 12776.5 tscollap Christopher F Baum
20 12663.7 tableplot Nicholas J. Cox

(Click on package name for description)
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The author(name) option allows you to list the most popular packages by a specific person:

. ssc hot, author(baum)
Top 10 packages at SSC by author Baum

Sep 2024
Rank # hits Package Author(s)

14 13720.0 ivreg2 Christopher F Baum, Mark E Schaffer,
Steven Stillman

15 13671.8 ivreg210 Mark E Schaffer, Christopher F Baum,
Steven Stillman

(output omitted )

(Click on package name for description)

ssc describe pkgname describes, but does not install, the specified package. You must already

know the name of the package. See [R] search for assistance in searching for packages. Sometimes you

know the package name, but you do not know the exact spelling. Then, you can type ssc describe
followed by one letter, a–z or , to list all the packages starting with that letter; even so, using search
is better.

. ssc describe i

http://fmwww.bc.edu/repec/bocode/i/
(no title)

PACKAGES you could -net describe-:
(output omitted )

ivreg2 module for extended instrumental variables/2SLS and GMM
estimation

ivreg210 module for extended instrumental variables/2SLS and GMM
estimation (v10)

ivreg28 module for extended instrumental variables/2SLS and GMM
estimation (v8)

ivreg29 module for extended instrumental variables/2SLS and GMM
estimation (v9)

ivreg2h module to perform instrumental variables estimation
using heteroskedasticity-based instruments

ivreg2hdfe module to estimate an Instrumental Variable Linear
Regression Model with two High Dimensional Fixed
Effects

ivreg2m module to identify treatment-effects estimates with
potentially misreported and endogenous program
participation

ivreg_ss module to compute confidence intervals, standard errors,
and p-values in an IV regression in which the excluded
instrumental variable has a shift-share structure

ivreghdfe module for extended instrumental variable regressions
with multiple levels of fixed effects

ivregress2 module to export first and second-stage results similar
to ivregress

(output omitted )

(type ssc describe pkgname for more information on pkgname)
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The default setting for the saving() option is for the output to be saved with the .smcl extension.
You could also save the file with a log extension, and in this case, the file would be stored as a text file.
For example, we could type

. ssc describe i, saving(i.index)

or the following:

. ssc describe ivreg2, saving(ivreg2.log)

ssc install pkgname installs the specified package. You do not have to describe a package before
installing it. There are ways of installing packages other than ssc install, such as net; see [R] net. It
does not matter how a package is installed. For instance, a package can be installed using net and still
be uninstalled using ssc.

. ssc install ivreg2
checking ivreg2 consistency and verifying not already installed...
installing into C:\ado\plus\...
installation complete.

ssc uninstall pkgname removes the specified, previously installed package from your computer.

You can uninstall immediately after installation or at any time in the future. (Technical note: ssc
uninstall is a synonym for ado uninstall, so it can uninstall any installed package, not just packages
obtained from the SSC.)

. ssc uninstall ivreg2
package ivreg2 from http://fmwww.bc.edu/repec/bocode/i

'IVREG2': module for extended instrumental variables/2SLS and GMM
estimation

(package uninstalled)

ssc type filename types a specific file stored at the SSC. Although not shown in the syntax diagram,
ssc cat is a synonym for ssc type, which may appeal to those familiar with Unix. To view only the

ivreg2 help file from the ivreg2 package, you would type

. ssc type ivreg2.sthlp

help for ivreg2

Extended instrumental variables/2SLS, GMM and AC/HAC, LIML and k-class regression

Full syntax
(output omitted )

ssc copy filename copies a specific file stored at the SSC to your computer. By default, the file

is copied to the current directory, but you can use options to change this. ssc copy is a rarely used

alternative to ssc install . . ., all. ssc cp is a synonym for ssc copy.

. ssc copy ivreg2.ado
(file ivreg2.ado copied to current directory)

For more details on the SSCArchive and for information on how to submit your own programs to the

SSC, see http://repec.org/bocode/s/sscsubmit.html.

http://repec.org/bocode/s/sscsubmit.html
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stem — Stem-and-leaf displays

Description Quick start Menu Syntax
Options Remarks and examples Stored results References
Also see

Description
stem displays stem-and-leaf plots.

Quick start
Stem-and-leaf plot for v1

stem v1

Same as above, with 2 lines per interval of 10

stem v1, lines(2)

Specify that each stem has a width of 5 (equivalent to above)

stem v1, width(5)

Stem-and-leaf plot for v2 with an interval of 100
stem v2, digits(2)

Same as above, with 4 lines per interval of 100

stem v2, digits(2) lines(4)

Display v2 rounded to the nearest hundred
stem v2, round(100)

Do not display empty stems

stem v2, prune

Menu
Statistics > Summaries, tables, and tests > Distributional plots and tests > Stem-and-leaf display
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Syntax
stem varname [ if ] [ in ] [ , options ]

options Description

Main

prune do not print stems that have no leaves

round(#) round data to this value; default is round(1)
truncate(#) truncate data to this value

digits(#) digits per leaf; default is digits(1)
lines(#) number of stems per interval of 10digits

width(#) stem width; equal to 10digits/width

by and collect are allowed; see [U] 11.1.10 Prefix commands.

Options

� � �
Main �

prune prevents printing any stems that have no leaves.

round(#) rounds the data to this value and displays the plot in these units. If round() is not specified,
noninteger data will be rounded automatically.

truncate(#) truncates the data to this value and displays the plot in these units.

digits(#) sets the number of digits per leaf. The default is 1.

lines(#) sets the number of stems per every data interval of 10digits. The value of lines() must

divide 10digits; that is, if digits(1) is specified, then lines() must divide 10. If digits(2) is
specified, then lines() must divide 100, etc. Only one of lines() or width() may be specified.
If neither is specified, an appropriate value will be set automatically.

width(#) sets the width of a stem. lines() is equal to 10digits/width, and this option is merely an al-
ternative way of setting lines(). The value of width()must divide 10digits. Only one of width()
or lines() may be specified. If neither is specified, an appropriate value will be set automatically.

Note: If lines() or width() is not specified, digits() may be decreased in some circumstances to
make a better-looking plot. If lines() or width() is set, the user-specified value of digits() will not
be altered.
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Remarks and examples

Example 1
Stem-and-leaf displays are a compact way to present considerable information about a batch of data.

For instance, using our automobile data (described in [U] 1.2.2 Example datasets):

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. stem mpg
Stem-and-leaf plot for mpg (Mileage (mpg))
1t 22
1f 44444455
1s 66667777
1. 88888888899999999
2* 00011111
2t 22222333
2f 444455555
2s 666
2. 8889
3* 001
3t
3f 455
3s
3.
4* 1

The stem-and-leaf display provides a way to list our data. The expression to the left of the vertical bar is

called the stem; the digits to the right are called the leaves. All the stems that begin with the same digit

and the corresponding leaves, written beside each other, reconstruct an observation of the data. Thus, if

we look at the four stems that begin with the digit 1 and their corresponding leaves, we see that we have

two cars rated at 12 mpg, 6 cars at 14, 2 at 15, and so on. The car with the highest mileage rating in our

data is rated at 41 mpg.

The above plot is a five-line plot with lines() equal to 5 (five lines per interval of 10) and width()
equal to 2 (two leaves per stem).

Instead, we could specify lines(2):

. stem mpg, lines(2)
Stem-and-leaf plot for mpg (Mileage (mpg))
1* 22444444
1. 556666777788888888899999999
2* 00011111222223334444
2. 555556668889
3* 0014
3. 55
4* 1

stem mpg, width(5) would produce the same plot as above.

The stem-and-leaf display provides a crude histogram of our data, one not so pretty as that produced

by histogram (see [R] histogram), but one that is nonetheless informative.
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Example 2
The miles per gallon rating fits easily into a stem-and-leaf display because, in our data, it has two

digits. However, stem does not require two digits.

. stem price, lines(1) digits(3)
Stem-and-leaf plot for price (Price)

3*** 291,299,667,748,798,799,829,895,955,984,995
4*** 010,060,082,099,172,181,187,195,296,389,424,425,453,482,499, ... (26)
5*** 079,104,172,189,222,379,397,705,719,788,798,799,886,899
6*** 165,229,295,303,342,486,850
7*** 140,827
8*** 129,814
9*** 690,735
10*** 371,372
11*** 385,497,995
12*** 990
13*** 466,594
14*** 500
15*** 906

The (26) at the right of the second stem shows that there were 26 leaves on this stem—too many to

display on one line.

We can make a more compact stem-and-leaf plot by rounding. To display stem in units of 100, we
could type

. stem price, round(100)
Stem-and-leaf plot for price (Price)
price rounded to nearest multiple of 100
plot in units of 100

3* 33778889
4* 00001112222344455555667777899
5* 11222447788899
6* 2233359
7* 18
8* 18
9* 77
10* 44
11* 45
12* 0
13* 056
14* 5
15* 9

price, in our data, has four or five digits. stem presented the display in terms of units of 100, so a car
that cost $3,291 was treated for display purposes as $3,300.

Technical note
Stem-and-leaf diagrams have been used in Japanese railway timetables, as shown in Tufte (1990,

46–47).
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Stored results
stem stores the following in r():

Scalars

r(width) width of a stem

r(digits) number of digits per leaf; default is 1

Macros

r(round) number specified in round()
r(truncate) number specified in truncate()
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Also see
[R] histogram — Histograms for continuous and categorical variables

[R] lv — Letter-value displays

https://www.stata-journal.com/article.html?article=gr0028


stepwise — Stepwise estimation

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description
stepwise performs stepwise estimation. Typing

. stepwise, pr(#): command

performs backward-selection estimation for command. The stepwise selection method is determined by

the following option combinations:

options Description

pr(#) backward selection
pr(#) hierarchical backward hierarchical selection
pr(#) pe(#) backward stepwise

pe(#) forward selection
pe(#) hierarchical forward hierarchical selection
pr(#) pe(#) forward forward stepwise

command defines the estimation command to be executed. The following Stata commands are sup-

ported by stepwise:

betareg, clogit, cloglog, glm, intreg, logistic, logit, nbreg,
ologit, oprobit, poisson, probit, qreg, regress, scobit, stcox,
stcrreg, stintreg, streg, tobit

stepwise expects command to have the following form:

command name [ depvar ] term [ term ... ] [ if ] [ in ] [weight ] [ , command options ]
where term is either varname or (varlist) (a varlist in parentheses indicates that this group of variables
is to be included or excluded together). depvar is not present when command name is stcox, stcrreg,
stintreg, or streg; otherwise, depvar is assumed to be present. For intreg, depvar is actually two
dependent variable names (depvar1 and depvar2).

sw is a synonym for stepwise.

For model selection and estimation using lasso, see the Stata Lasso Reference Manual.
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Quick start
Backward selection, removing terms with 𝑝 ≥ 0.2

stepwise, pr(.2): regress y x1 x2 x3 x4

Same as above, and select from the indicators for categorical variable a
stepwise, pr(.2): regress y x1 x2 x3 x4 i.a

Same as above, but force x1 to be included in model
stepwise, pr(.2) lockterm1: regress y x1 x2 x3 x4 i.a

Consider the indicators for a as a group for inclusion in model
stepwise, pr(.2): regress y x1 x2 x3 x4 (i.a)

Add d1, d2, and d3, and force them to be included in model

stepwise, pr(.2) lockterm1: regress y (d1 d2 d3) x1 x2 x3 x4 (i.a)

Forward selection, adding terms with 𝑝 < 0.1

stepwise, pe(.1): regress y x1 x2 x3 x4

Backward stepwise selection, removing terms with 𝑝 ≥ 0.2 and adding those with 𝑝 < 0.1

stepwise, pr(.2) pe(.1): regress y x1 x2 x3 x4

Forward stepwise selection, adding terms with 𝑝 < 0.1 and removing those with 𝑝 ≥ 0.2

stepwise, pr(.2) pe(.1) forward: regress y x1 x2 x3 x4

Backward hierarchical selection

stepwise, pr(.2) hierarchical: regress y x1 x2 x3 x4

Forward hierarchical selection

stepwise, pe(.1) hierarchical: regress y x1 x2 x3 x4

Note: In the above examples, regress could be replaced with any estimation command allowing the
stepwise prefix.

Menu
Statistics > Other > Stepwise estimation
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Syntax
stepwise [ , options ] : command

options Description

Model
∗ pr(#) significance level for removal from the model
∗ pe(#) significance level for addition to the model

Model2

forward perform forward-stepwise selection

hierarchical perform hierarchical selection

lockterm1 keep the first term

lr perform likelihood-ratio test instead of Wald test

Reporting

display options control columns and column formats and line width

∗At least one of pr(#) or pe(#) must be specified.
by is allowed; see [U] 11.1.10 Prefix commands.

Weights are allowed if command allows them; see [U] 11.1.6 weight.

All postestimation commands behave as they would after command without the stepwise prefix; see the postestimation
manual entry for command.

Options

� � �
Model �

pr(#) specifies the significance level for removal from the model; terms with 𝑝 ≥ pr() are eligible for
removal.

pe(#) specifies the significance level for addition to the model; terms with 𝑝 < pe() are eligible for
addition.

� � �
Model 2 �

forward specifies the forward-stepwise method and may be specified only when both pr() and pe()
are also specified. Specifying both pr() and pe() without forward results in backward-stepwise

selection. Specifying only pr() results in backward selection, and specifying only pe() results in
forward selection.

hierarchical specifies hierarchical selection.

lockterm1 specifies that the first term be included in the model and not be subjected to the selection

criteria.

lr specifies that the test of term significance be the likelihood-ratio test. The default is the less compu-

tationally expensive Wald test; that is, the test is based on the estimated variance–covariance matrix

of the estimators.

� � �
Reporting �

display options: noci, nopvalues, cformat(% fmt), pformat(% fmt), sformat(% fmt), and

nolstretch; see [R] Estimation options.
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Remarks and examples
Remarks are presented under the following headings:

Introduction
Search logic for a step
Full search logic
Examples
Estimation sample considerations
Messages
Programming for stepwise

Introduction
Typing

. stepwise, pr(.10): regress y1 x1 x2 d1 d2 d3 x4 x5

performs a backward-selection search for the regression model y1 on x1, x2, d1, d2, d3, x4, and x5. In
this search, each explanatory variable is said to be a term. Typing

. stepwise, pr(.10): regress y1 x1 x2 (d1 d2 d3) (x4 x5)

performs a similar backward-selection search, but the variables d1, d2, and d3 are treated as one term,
as are x4 and x5. That is, d1, d2, and d3 may or may not appear in the final model, but they appear or
do not appear together.

Example 1
Using the automobile dataset, we fit a backward-selection model of mpg:

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. stepwise, pr(.2): regress mpg c.weight##c.weight displ gear turn headroom
> i.foreign price
note: 0b.foreign omitted because of estimability.
Wald test, begin with full model:
p = 0.7116 >= 0.2000, removing headroom
p = 0.6138 >= 0.2000, removing displacement
p = 0.3278 >= 0.2000, removing price

Source SS df MS Number of obs = 74
F(5, 68) = 33.39

Model 1736.31455 5 347.262911 Prob > F = 0.0000
Residual 707.144906 68 10.3991898 R-squared = 0.7106

Adj R-squared = 0.6893
Total 2443.45946 73 33.4720474 Root MSE = 3.2248

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

weight -.0158002 .0039169 -4.03 0.000 -.0236162 -.0079842

c.weight#
c.weight 1.77e-06 6.20e-07 2.86 0.006 5.37e-07 3.01e-06

foreign
Foreign -3.615107 1.260844 -2.87 0.006 -6.131082 -1.099131

gear_ratio 2.011674 1.468831 1.37 0.175 -.9193321 4.94268
turn -.3087038 .1763099 -1.75 0.084 -.6605248 .0431172
_cons 59.02133 9.3903 6.29 0.000 40.28327 77.75938
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This estimation treated each variable as its own term and thus considered each one separately. The engine

displacement and gear ratio should really be considered together:

. stepwise, pr(.2): regress mpg c.weight##c.weight (displ gear) turn headroom
> i.foreign price
note: 0b.foreign omitted because of estimability.
Wald test, begin with full model:
p = 0.7116 >= 0.2000, removing headroom
p = 0.3944 >= 0.2000, removing displacement gear_ratio
p = 0.2798 >= 0.2000, removing price

Source SS df MS Number of obs = 74
F(4, 69) = 40.76

Model 1716.80842 4 429.202105 Prob > F = 0.0000
Residual 726.651041 69 10.5311745 R-squared = 0.7026

Adj R-squared = 0.6854
Total 2443.45946 73 33.4720474 Root MSE = 3.2452

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

weight -.0160341 .0039379 -4.07 0.000 -.0238901 -.0081782

c.weight#
c.weight 1.70e-06 6.21e-07 2.73 0.008 4.58e-07 2.94e-06

foreign
Foreign -2.758668 1.101772 -2.50 0.015 -4.956643 -.5606925

turn -.2862724 .176658 -1.62 0.110 -.6386955 .0661508
_cons 65.39216 8.208778 7.97 0.000 49.0161 81.76823

Search logic for a step
Before discussing the complete search logic, consider the logic for a step—the first step—in detail.

The other steps follow the same logic. If you type

. stepwise, pr(.20): regress y1 x1 x2 (d1 d2 d3) (x4 x5)

the logic is
1. Fit the model y on x1 x2 d1 d2 d3 x4 x5.
2. Consider dropping x1.
3. Consider dropping x2.
4. Consider dropping d1 d2 d3.
5. Consider dropping x4 x5.
6. Find the term above that is least significant. If its significance

level is ≥ 0.20, remove that term.
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If you type

. stepwise, pr(.20) hierarchical: regress y1 x1 x2 (d1 d2 d3) (x4 x5)

the logic would be different because the hierarchical option states that the terms are ordered. The
initial logic would become

1. Fit the model y on x1 x2 d1 d2 d3 x4 x5.
2. Consider dropping x4 x5—the last term.

3. If the significance of this last term is ≥ 0.20, remove the term.

The process would then stop or continue. It would stop if x4 x5 were not omitted, and otherwise,

stepwise would continue to consider the significance of the next-to-last term, d1 d2 d3.

Specifying pe() rather than pr() switches to forward estimation. If you type

. stepwise, pe(.20): regress y1 x1 x2 (d1 d2 d3) (x4 x5)

stepwise performs forward-selection search. The logic for the first step is

1. Fit a model of y on nothing (meaning a constant).
2. Consider adding x1.
3. Consider adding x2.
4. Consider adding d1 d2 d3.
5. Consider adding x4 x5.
6. Find the term above that is most significant. If its significance

level is < 0.20, add that term.

As with backward estimation, if you specify hierarchical,

. stepwise, pe(.20) hierarchical: regress y1 x1 x2 (d1 d2 d3) (x4 x5)

the search for the most significant term is restricted to the next term:

1. Fit a model of y on nothing (meaning a constant).
2. Consider adding x1—the first term.

3. If the significance is < 0.20, add the term.

If x1 were added, stepwise would next consider x2; otherwise, the search process would stop.

stepwise can also use a stepwise selection logic that alternates between adding and removing terms.
The full logic for all the possibilities is given below.
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Full search logic

Option Logic

pr() Fit the full model on all explanatory variables.

(backward selection) While the least-significant term is “insignificant”, remove it

and reestimate.

pr() hierarchical Fit full model on all explanatory variables.

(backward hierarchical selection) While the last term is “insignificant”, remove it

and reestimate.

pr() pe() Fit full model on all explanatory variables.

(backward stepwise) If the least-significant term is “insignificant”, remove it and

reestimate; otherwise, stop.

Do that again: if the least-significant term is “insignificant”,

remove it and reestimate; otherwise, stop.

Repeatedly,

if the most-significant excluded term is “significant”, add

it and reestimate;

if the least-significant included term is “insignificant”,

remove it and reestimate;

until neither is possible.

pe() Fit “empty” model.

(forward selection) While the most-significant excluded term is “significant”,

add it and reestimate.

pe() hierarchical Fit “empty” model.

(forward hierarchical selection) While the next term is “significant”, add it

and reestimate.

pr() pe() forward Fit “empty” model.

(forward stepwise) If the most-significant excluded term is “significant”,

add it and reestimate; otherwise, stop.

Do that again: if the most-significant excluded term is

“significant”, add it and reestimate; otherwise, stop.

Repeatedly,

if the least-significant included term is “insignificant”,

remove it and reestimate;

if the most-significant excluded term is “significant”,

add it and reestimate;

until neither is possible.
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Examples
The following two statements are equivalent; both include solely single-variable terms:

. stepwise, pr(.2): regress price mpg weight displ

. stepwise, pr(.2): regress price (mpg) (weight) (displ)

The following two statements are equivalent; the last term in each is r1, . . . , r4:

. stepwise, pr(.2) hierarchical: regress price mpg weight displ (r1-r4)

. stepwise, pr(.2) hierarchical: regress price (mpg) (weight) (displ) (r1-r4)

To group variables weight and displ into one term, type

. stepwise, pr(.2) hierarchical: regress price mpg (weight displ) (r1-r4)

stepwise can be used with commands other than regress; for instance,

. stepwise, pr(.2): logit outcome (sex weight) treated1 treated2

. stepwise, pr(.2): logistic outcome (sex weight) treated1 treated2

Either statement would fit the same model because logistic and logit both perform logistic regres-

sion; they differ only in how they report results; see [R] logit and [R] logistic.

We use the lockterm1 option to force the first term to be included in the model. To keep treated1
and treated2 in the model no matter what, we type

. stepwise, pr(.2) lockterm1: logistic outcome (treated1 treated2) ...

After stepwise estimation, we can type stepwise without arguments to redisplay results,

. stepwise
(output from logistic appears )

or type the underlying estimation command:

. logistic
(output from logistic appears )

At estimation time, we can specify options unique to the command being stepped:

. stepwise, pr(.2): logit outcome (sex weight) treated1 treated2, or

or is logit’s option to report odds ratios rather than coefficients; see [R] logit.

Estimation sample considerations
Whether you use backward or forward estimation, stepwise forms an estimation sample by taking

observations with nonmissing values of all the variables specified (except for depvar1 and depvar2 for

intreg). The estimation sample is held constant throughout the stepping. Thus, if you type

. stepwise, pr(.2) hierarchical: regress amount sk edul sval

and variable sval is missing in half the data, that half of the data will not be used in the reported model,
even if sval is not included in the final model.
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The function e(sample) identifies the sample that was used. e(sample) contains 1 for observations
used and 0 otherwise. For instance, if you type

. stepwise, pr(.2) pe(.10): logistic outcome x1 x2 (x3 x4) (x5 x6 x7)

and the final model is outcome on x1, x5, x6, and x7, you could re-create the final regression by typing

. logistic outcome x1 x5 x6 x7 if e(sample)

You could obtain summary statistics within the estimation sample of the independent variables by typing

. summarize x1 x5 x6 x7 if e(sample)

If you fit another model, e(sample) will automatically be redefined. Typing

. stepwise, lock pr(.2): logistic outcome (x1 x2) (x3 x4) (x5 x6 x7)

would automatically drop e(sample) and re-create it.

Messages
note: omitted because of estimability.

This indicates that a variable was omitted because its coefficient could not be estimated. This message

is most commonly issued because the variable is collinear with other variables in the model. For instance,

say that you type

. stepwise, pr(.2): regress y x1 x2 x3 x4

and x2 is collinear with x3, one of these variables will automatically be omitted. If you type

. stepwise, pr(.2): regress y x1 x2 i.a

and include indicators for factor variable a in yourmodel, the set of indicators for a are perfectly collinear,
and one will be omitted with the note indicating that it was omitted because of estimability.

note: omitted because of estimability.
note: obs omitted because of estimability.

You probably received this message in fitting a logistic or probit model. Regardless of estimation

strategy, stepwise checks that the full model can be fit. The indicated variable had a 0 or infinite

standard error.

For logistic, logit, and probit, this message is typically caused by one-way causation. Assume that

you type

. stepwise, pr(.2): logistic outcome (x1 x2 x3) d1

and assume that variable d1 is an indicator (dummy) variable. Further assume that whenever d1 = 1,

outcome = 1 in the data. Then the coefficient on d1 is infinite. One (conservative) solution to this

problem is to drop the d1 variable and the d1==1 observations. The underlying estimation commands
probit, logit, and logistic report the details of the difficulty and solution; stepwise simply accu-
mulates such problems and reports the above summary messages. Thus, if you see this message, you

could type

. logistic outcome x1 x2 x3 d1

to see the details. Although you should think carefully about such situations, Stata’s solution of dropping

the offending variables and observations is, in general, appropriate.
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Programming for stepwise
stepwise requires that command name follow standard Stata syntax and allow the if qualifier; see

[U] 11 Language syntax. Furthermore, command name must have sw or swml as a program property;

see [P] program properties. If command name has swml as a property, command namemust store the

log-likelihood value in e(ll) and model degrees of freedom in e(df m).

Stored results
stepwise stores whatever is stored by the underlying estimation command.

Also, stepwise stores stepwise in e(stepwise).

Methods and formulas
Some statisticians do not recommend stepwise procedures; see Sribney (1998) for a summary.
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Also see
[R] nestreg — Nested model statistics

[LASSO] Lasso intro — Introduction to lasso
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Description Syntax Option Remarks and examples References Also see

Description
Results of calculations are stored by many Stata commands so that they can be easily accessed and

substituted into later commands.

return list lists results stored in r().

ereturn list lists results stored in e().

sreturn list lists results stored in s().

This entry discusses using stored results. Programmers wishing to store results should see [P] return

and [P] ereturn.

Syntax
List results from general commands, stored in r()

return list [ , all ]

List results from estimation commands, stored in e()

ereturn list [ , all ]

List results from parsing commands, stored in s()

sreturn list

Option
all is for use with return list and ereturn list. all specifies that hidden and historical stored

results be listed along with the usual stored results. This option is seldom used. See Using hidden

and historical stored results and Programming hidden and historical stored results under Remarks and

examples of [P] return for more information. These sections are written in terms of return list,
but everything said there applies equally to ereturn list.

all is not allowed with sreturn list because s() does not allow hidden or historical results.

2912
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Remarks and examples
Stata commands are classified as being

r-class general commands that store results in r()
e-class estimation commands that store results in e()
s-class parsing commands that store results in s()
n-class commands that do not store in r(), e(), or s()

There is also a c-class, c(), containing the values of system parameters and settings, along with certain

constants, such as the value of pi; see [P] creturn. A program, however, cannot be c-class.

You can look at the Stored results section of the manual entry of a command to determine whether it

is r-, e-, s-, or n-class, but it is easy enough to guess.

Commands producing statistical results are either r-class or e-class. They are e-class if they present

estimation results and r-class otherwise. s-class is a class used by programmers and is primarily used in

subprograms performing parsing. n-class commands explicitly state where the result is to go. For in-

stance, generate and replace are n-class because their syntax is generate varname = . . . and replace
varname = . . ..

After executing a command, you can type return list, ereturn list, or sreturn list to see

what has been stored.

Example 1
. use https://www.stata-press.com/data/r18/auto4
(1978 automobile data)
. describe
Contains data from https://www.stata-press.com/data/r18/auto4.dta
Observations: 74 1978 automobile data

Variables: 6 6 Apr 2022 00:20

Variable Storage Display Value
name type format label Variable label

price int %8.0gc Price
weight int %8.0gc Weight (lbs.)
mpg byte %8.0g Mileage (mpg)
make str17 %-17s Make and model
length int %8.0g Length (in.)
rep78 byte %8.0g Repair record 1978

Sorted by:
. return list
scalars:

r(changed) = 0
r(width) = 25

r(k) = 6
r(N) = 74

macros:
r(datalabel) : ”1978 automobile data”
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To view all stored results, including those that are historical or hidden, specify the all option.

. return list, all
scalars:

r(changed) = 0
r(width) = 25

r(k) = 6
r(N) = 74

macros:
r(datalabel) : ”1978 automobile data”

Historical; used before Stata 12, may exist only under version control

scalars:
r(widthmax) = 1048576

r(k_max) = 5000
r(N_max) = 2147483619

r(widthmax), r(k max), and r(N max) are historical stored results. They are no longer relevant be-
cause Stata dynamically adjusts memory beginning with Stata 12.

Technical note
In the above example, we stated that r(widthmax) and r(N max) are no longer relevant. In fact, they

are not useful. Stata no longer has a fixed memory size, so the methods used to calculate r(widthmax)
and r(N max) are no longer appropriate.

Example 2
You can use stored results in expressions.

. summarize mpg
Variable Obs Mean Std. dev. Min Max

mpg 74 21.2973 5.785503 12 41
. return list
scalars:

r(N) = 74
r(sum_w) = 74
r(mean) = 21.2972972972973
r(Var) = 33.47204738985561
r(sd) = 5.785503209735141

r(min) = 12
r(max) = 41
r(sum) = 1576

. generate double mpgstd = (mpg-r(mean))/r(sd)

. summarize mpgstd
Variable Obs Mean Std. dev. Min Max

mpgstd 74 -1.64e-16 1 -1.606999 3.40553

Be careful to use results stored in r() soon because they will be replaced the next time you execute

another r-class command. For instance, although r(mean) was 21.3 (approximately) after summarize
mpg, it is −1.64e–16 now because you just ran summarize with mpgstd.



Stored results — Stored results 2915

Example 3
e-class is really no different from r-class, except for where results are stored and that, when an esti-

mation command stores results, it tends to store a lot of them:

. regress mpg weight length
(output omitted )

. ereturn list
scalars:

e(N) = 74
e(df_m) = 2
e(df_r) = 71

e(F) = 69.34050004300227
e(r2) = .6613903979336323

e(rmse) = 3.413681741382589
e(mss) = 1616.08062422659
e(rss) = 827.3788352328695
e(r2_a) = .6518520992838754

e(ll) = -194.3267619410807
e(ll_0) = -234.3943376482347
e(rank) = 3

macros:
e(cmdline) : ”regress mpg weight length”

e(title) : ”Linear regression”
e(marginsok) : ”XB default”

e(vce) : ”ols”
e(depvar) : ”mpg”

e(cmd) : ”regress”
e(properties) : ”b V”

e(predict) : ”regres_p”
e(model) : ”ols”

e(estat_cmd) : ”regress_estat”
matrices:

e(b) : 1 x 3
e(V) : 3 x 3

e(beta) : 1 x 2
functions:

e(sample)

These e-class results will stick around until you run another estimation command. Typing return list
and ereturn list is the easy way to find out what a command stores.

Both r- and e-class results come in four types: scalars, macros, matrices, and functions. (s-class results

come in only one type—macros—and as earlier noted, s-class is used solely by programmers, so ignore

it.)

Scalars are just that—numbers by any other name. You can subsequently refer to r(mean) or e(rmse)
in numeric expressions and obtain the result to full precision.

Macros are strings. For instance, e(depvar) contains “mpg”. You can refer to it, too, in subsequent
expressions, but really that would be of most use to programmers, who will refer to it using constructs

like ”‘e(depvar)’”. In any case, macros are macros, and you obtain their contents just as you would a
local macro, by enclosing their name in single quotes. The name here is the full name, so ‘e(depvar)’
is mpg.

Matrices are matrices, and all estimation commands store e(b) and e(V) containing the coefficient
vector and variance–covariance matrix of the estimates (VCE).



Stored results — Stored results 2916

Functions are stored by e-class commands only, and the only function existing is e(sample).
e(sample) evaluates to 1 (meaning true) if the observation was used in the previous estimation and

to 0 (meaning false) otherwise.

Technical note
Say that some command set r(scalar) and r(macro), the first being stored as a scalar and the second

as a macro. In theory, in subsequent use you are supposed to refer to r(scalar) and ‘r(macro)’. In
fact, however, you can refer to either one with or without quotes, so you could refer to ‘r(scalar)’
and r(macro). Programmers sometimes do this.

When you refer to r(scalar), you are referring to the full double-precision stored result. Think
of r(scalar) without quotes as a function returning the value of the stored result scalar. When you

refer to r(scalar) in quotes, Stata understands ‘r(scalar)’ to mean “substitute the printed result of
evaluating r(scalar)”. Pretend that r(scalar) equals the number 23. Then, ‘r(scalar)’ is 23, the
character 2 followed by 3.

Referring to r(scalar) in quotes is sometimes useful. Say that you want to use the immediate

command cii with r(scalar). The immediate command cii requires its arguments to be num-

bers—numeric literals in programmer’s jargon—and it will not take an expression. Thus, you could not

type ‘cii r(scalar) . . .’. You could, however, type ‘cii ‘r(scalar)’ . . .’ because ‘r(scalar)’ is
just a numeric literal.

For r(macro), you are supposed to refer to it in quotes: ‘r(macro)’. If, however, you omit the
quotes in an expression context, Stata evaluates the macro and then pretends that it is the result of

function-returning-string. There are side effects of this, the most important being that the result is

trimmed to 80 characters.

Referring to r(macro) without quotes is never a good idea; the feature was included merely for

completeness.

You can even refer to r(matrix) in quotes (assume that r(matrix) is a matrix). ‘r(matrix)’ does
not result in the matrix being substituted; it returns the word matrix. Programmers sometimes find that
useful.
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[P] ereturn — Post the estimation results
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Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Acknowledgment References Also see

Description
suest is a postestimation command; see [U] 20 Estimation and postestimation commands.

suest combines the estimation results—parameter estimates and associated (co)variance matri-

ces—stored under namelist into one parameter vector and simultaneous (co)variance matrix of the sand-

wich/robust type. This (co)variance matrix is appropriate even if the estimates were obtained on the same

or on overlapping data.

Typical applications of suest are tests for intramodel and cross-model hypotheses using test or

testnl, for example, a generalized Hausman specification test. lincom and nlcom may be used after
suest to estimate linear combinations and nonlinear functions of coefficients. suest may also be used
to adjust a standard VCE for clustering or survey design effects.

Different estimators are allowed, for example, a regress model and a probit model; the only re-
quirement is that predict produce equation-level scores with the score option after an estimation com-
mand. The models may be estimated on different samples, due either to explicit if or in selection or to
missing values. If weights are applied, the sameweights (type and values) should be applied to all models

in namelist. The estimators should be estimated without vce(robust) or vce(cluster clustvar) op-
tions. suest returns the robustVCE, allows the vce(cluster clustvar) option, and automatically works
with results from the svy prefix command (only for vce(linearized)). See example 8 in [SVY] svy
postestimation for an example using suest with svy: ologit.

Because suest posts its results like a proper estimation command, its results can be stored via

estimates store. Moreover, like other estimation commands, suest typed without arguments replays
the results.

Quick start
Combined results for stored estimates m1 and m2

suest m1 m2

Same as above, but report exponentiated coefficients and label them “Odds ratio”

suest m1 m2, eform(Odds ratio)

With cluster–robust standard errors adjusting for clustering by levels of cvar
suest m1 m2, vce(cluster cvar)

Use svyset data after specifying command prefix svy: to estimate m1 and m2
suest m1 m2

2917
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Menu
Statistics > Postestimation

Syntax
suest namelist [ , options ]

where namelist is a list of one or more names under which estimation results were stored via estimates
store; see [R] estimates store. Wildcards may be used. * and all refer to all stored results. A period

(.) may be used to refer to the last estimation results, even if they have not (yet) been stored.

options Description

SE/Robust

svy survey data estimation

vce(vcetype) vcetype may be robust or cluster clustvar

Reporting

level(#) set confidence level; default is level(95)
dir display a table describing the models

eform(string) report exponentiated coefficients and label as string

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

coeflegend display legend instead of statistics

collect is allowed; see [U] 11.1.10 Prefix commands.

coeflegend does not appear in the dialog box.

Options

� � �
SE/Robust �

svy specifies that estimation results should be modified to reflect the survey design effects according to
the svyset specifications, see [SVY] svyset.

The svy option is implied when suest encounters survey estimation results from the svy prefix; see
[SVY] svy. Poststratification is allowed only with survey estimation results from the svy prefix.

vce(vcetype) specifies the type of standard error reported, which includes types that are robust to some
kinds of misspecification (robust) and that allow for intragroup correlation (cluster clustvar); see
[R] vce option.

The vce() option may not be combined with the svy option or estimation results from the svy prefix.

� � �
Reporting �

level(#) specifies the confidence level, as a percentage, for confidence intervals of the coefficients;

see [R] level.

dir displays a table describing the models in namelist just like estimates dir namelist.
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eform(string) displays the coefficient table in exponentiated form: for each coefficient, exp(𝑏) rather
than 𝑏 is displayed, and standard errors and confidence intervals are transformed. string is the table
header that will be displayed above the transformed coefficients and must be 11 characters or fewer,

for example, eform(”Odds ratio”).

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

The following option is available with suest but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

Remarks and examples
Remarks are presented under the following headings:

Using suest
Remarks on regress
Testing the assumption of the independence of irrelevant alternatives
Testing proportionality
Testing cross-model hypotheses

Using suest
If you plan to use suest, you must take precautions when fitting the original models. These restric-

tions are relaxed when using svy commands; see [SVY] svy postestimation.

1. suest works with estimation commands that allow predict to generate equation-level score

variables when supplied with the score (or scores) option. For example, equation-level score
variables are generated after running mlogit by typing

. predict sc*, scores

To ensure that suest generates the appropriate scores and therefore an appropriateVCE, you should
not modify the values of the variables used in the models in between fitting the models and using

suest.

2. Estimation should take place without the vce(robust) or vce(cluster clustvar) option. suest
always computes the robust estimator of the (co)variance, and suest has a vce(cluster clust-
var) option.

The within-model covariance matrices computed by suest are identical to those obtained by spec-
ifying a vce(robust) or vce(cluster clustvar) option during estimation. suest, however, also
estimates the between-model covariances of parameter estimates.

3. Finally, the estimation results to be combined should be stored by estimates store; see [R] es-
timates store.
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After estimating and storing a series of estimation results, you are ready to combine the estimation

results with suest,

. suest name1 [ name2 ... ] [ , vce(cluster clustvar) ]

and you can subsequently use postestimation commands, such as test, to test hypotheses. Here an

important issue is how suest assigns names to the equations. If you specify onemodel name, the original
equation names are left unchanged; otherwise, suest constructs new equation names. The coefficients

of a single-equation model (such as logit and poisson) that was estimate stored under name X are

collected under equation X. With a multiequation model stored under name X, suest prefixes X to an

original equation name eq, forming equation name, X eq.

Technical note
Earlier we said that standard errors from suest are identical to those obtained by specifying the

vce(robust) option with each command individually. Thus if you fit a logistic model using logit
with the vce(robust) option, you will get the same standard errors when you type

. suest .

directly after logit using the same data without the vce(robust) option.

This is not true for multiple estimation results when the estimation samples are not all the same.

The standard errors from suest will be slightly smaller than those from individual model fits using the

vce(robust) option because suest uses a larger number of observations to estimate the simultaneous
(co)variance matrix.

Technical note
In rare circumstances, suest may have to truncate equation names to 32 characters. When equation

names are not unique because of truncation, suest numbers the equations withinmodels, using equations
named X #.

Remarks on regress
regress (see [R] regress) does not include its ancillary parameter, the residual variance, in its coef-

ficient vector and (co)variance matrix. Moreover, while the score option is allowed with predict after
regress, a score variable is generated for the mean but not for the variance parameter. suest contains
special code that assigns the equation name mean to the coefficients for the mean, adds the equation

lnvar for the log variance, and computes the appropriate two score variables itself.
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Testing the assumption of the independence of irrelevant alternatives
The multinomial logit model and the closely related conditional logit model satisfy a probabilistic

version of the assumption of the independence of irrelevant alternatives (IIA), implying that the ratio of

the probabilities for two alternatives does not depend on what other alternatives are available. Hausman

and McFadden (1984) proposed a test for this assumption that is implemented in the hausman command.
The standard Hausman test has several limitations. First, the test statistic may be undefined because

the estimated VCE does not satisfy the required asymptotic properties of the test. Second, the classic

Hausman test applies only to the test of the equality of two estimators. Third, the test requires access

to a fully efficient estimator; such an estimator may not be available, for example, if you are analyzing

complex survey data. Using suest can overcome these three limitations.

Example 1
In our first example, we follow the analysis of the type of health insurance reported in [R] mlogit

and demonstrate the hausman command with the suest/test combination. We fit the full multinomial

logit model for all three alternatives and two restricted multinomial models in which one alternative is

excluded. After fitting each of these models, we give them a title with the estimates title command
and then store them with the estimates store command.

. use https://www.stata-press.com/data/r18/sysdsn4
(Health insurance data)
. mlogit insure age male
Iteration 0: Log likelihood = -555.85446
Iteration 1: Log likelihood = -551.32973
Iteration 2: Log likelihood = -551.32802
Iteration 3: Log likelihood = -551.32802
Multinomial logistic regression Number of obs = 615

LR chi2(4) = 9.05
Prob > chi2 = 0.0598

Log likelihood = -551.32802 Pseudo R2 = 0.0081

insure Coefficient Std. err. z P>|z| [95% conf. interval]

Indemnity (base outcome)

Prepaid
age -.0100251 .0060181 -1.67 0.096 -.0218204 .0017702

male .5095747 .1977893 2.58 0.010 .1219147 .8972346
_cons .2633838 .2787575 0.94 0.345 -.2829708 .8097383

Uninsure
age -.0051925 .0113821 -0.46 0.648 -.0275011 .0171161

male .4748547 .3618462 1.31 0.189 -.2343508 1.18406
_cons -1.756843 .5309602 -3.31 0.001 -2.797506 -.7161803

. estimates title: All three insurance forms

. estimates store m1

. quietly mlogit insure age male if insure != ”Uninsure”:insure

. estimates title: insure != ”Uninsure”:insure

. estimates store m2

. quietly mlogit insure age male if insure != ”Prepaid”:insure

. estimates title: insure != ”Prepaid”:insure

. estimates store m3
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Having performed the three estimations, we inspect the results. estimates dir provides short de-
scriptions of the models that were stored using estimates store. Typing estimates table lists the
coefficients, displaying blanks for a coefficient not contained in a model.

. estimates dir

Dependent Number of
Name Command variable param. Title

m1 mlogit insure 9 All three insurance forms
m2 mlogit insure 6 insure != "Uninsure":insure
m3 mlogit insure 6 insure != "Prepaid":insure

. estimates table m1 m2 m3, star stats(N ll) keep(Prepaid: Uninsure:)

Variable m1 m2 m3

Prepaid
age -.01002511 -.01015205

male .50957468** .51440033**
_cons .26338378 .26780432

Uninsure
age -.00519249 -.00410547

male .47485472 .45910738
_cons -1.7568431*** -1.8017743***

Statistics
N 615 570 338

ll -551.32802 -390.48643 -131.76807

Legend: * p<0.05; ** p<0.01; *** p<0.001

Comparing the coefficients betweenmodels does not suggest substantial differences. We can formally

test that coefficients are the same for the full model m1 and the restricted models m2 and m3 by using the
hausman command. hausman expects the models to be specified in the order “always consistent” first
and “efficient under 𝐻0” second.

. hausman m2 m1, alleqs constant
Coefficients

(b) (B) (b-B) sqrt(diag(V_b-V_B))
m2 m1 Difference Std. err.

age -.0101521 -.0100251 -.0001269 .
male .5144003 .5095747 .0048256 .0123338
_cons .2678043 .2633838 .0044205 .

b = Consistent under H0 and Ha; obtained from mlogit.
B = Inconsistent under Ha, efficient under H0; obtained from mlogit.

Test of H0: Difference in coefficients not systematic
chi2(3) = (b-B)’[(V_b-V_B)^(-1)](b-B)

= 0.08
Prob > chi2 = 0.9944
(V_b-V_B is not positive definite)
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. hausman m3 m1, alleqs constant
Coefficients

(b) (B) (b-B) sqrt(diag(V_b-V_B))
m3 m1 Difference Std. err.

age -.0041055 -.0051925 .001087 .0021355
male .4591074 .4748547 -.0157473 .
_cons -1.801774 -1.756843 -.0449311 .1333421

b = Consistent under H0 and Ha; obtained from mlogit.
B = Inconsistent under Ha, efficient under H0; obtained from mlogit.

Test of H0: Difference in coefficients not systematic
chi2(3) = (b-B)’[(V_b-V_B)^(-1)](b-B)

= -0.18
Warning: chi2 < 0 ==> model fitted on these data

fails to meet the asymptotic assumptions
of the Hausman test; see suest for a
generalized test.

According to the test of m1 against m2, we cannot reject the hypothesis that the coefficients of m1 and
m2 are the same. The second Hausman test is not well defined—something that happens fairly often. The

problem is due to the estimator of the variance V(b-B) as V(b)-V(B), which is a feasible estimator only
asymptotically. Here it simply is not a proper variance matrix, and the Hausman test becomes undefined.

suest m1 m2 estimates the simultaneous (co)variance of the coefficients of models m1 and m2. Al-
though suest is technically a postestimation command, it acts like an estimation command in that it

stores the simultaneous coefficients in e(b) and the full (co)variance matrix in e(V). We could have

used the estat vce command to display the full (co)variance matrix to show that the cross-model co-

variances were indeed estimated. Typically, we would not have a direct interest in e(V).

. suest m1 m2, noomitted
Simultaneous results for m1, m2 Number of obs = 615

Robust
Coefficient std. err. z P>|z| [95% conf. interval]

m1_Indemnity

m1_Prepaid
age -.0100251 .0059403 -1.69 0.091 -.0216679 .0016176

male .5095747 .1988159 2.56 0.010 .1199027 .8992467
_cons .2633838 .277307 0.95 0.342 -.280128 .8068956

m1_Uninsure
age -.0051925 .0109005 -0.48 0.634 -.0265571 .0161721

male .4748547 .3677326 1.29 0.197 -.2458879 1.195597
_cons -1.756843 .4971383 -3.53 0.000 -2.731216 -.78247

m2_Indemnity

m2_Prepaid
age -.0101521 .0058988 -1.72 0.085 -.0217135 .0014094

male .5144003 .1996133 2.58 0.010 .1231654 .9056352
_cons .2678043 .2744019 0.98 0.329 -.2700134 .8056221
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suest created equation names by combining the name under which we stored the results using

estimates store with the original equation names. Thus, in the simultaneous estimation result, equa-
tion Prepaid originating in model m1 is named m1 Prepaid. According to the McFadden–Hausman

specification of a test for IIA, the coefficients of the equations m1 PrePaid and m2 PrePaid should be
equal. This equality can be tested easily with the test command. The cons option specifies that the
intercept cons be included in the test.

. test [m1_Prepaid = m2_Prepaid], cons
( 1) [m1_Prepaid]age - [m2_Prepaid]age = 0
( 2) [m1_Prepaid]male - [m2_Prepaid]male = 0
( 3) [m1_Prepaid]_cons - [m2_Prepaid]_cons = 0

chi2( 3) = 0.89
Prob > chi2 = 0.8266

The Hausman test via suest is comparable with that computed by hausman, but they use different
estimators of the variance of the difference of the estimates. The hausman command estimates 𝑉 (𝑏−𝐵)
by 𝑉 (𝑏) − 𝑉 (𝐵), whereas suest estimates 𝑉 (𝑏 − 𝐵) by 𝑉 (𝑏) − cov(𝑏, 𝐵) − cov(𝐵, 𝑏) + 𝑉 (𝐵). One
advantage of the second estimator is that it is always admissible, so the resulting test is always well

defined. This quality is illustrated in the Hausman-type test of IIA comparing models m1 and m3.

. suest m1 m3, noomitted
Simultaneous results for m1, m3 Number of obs = 615

Robust
Coefficient std. err. z P>|z| [95% conf. interval]

m1_Indemnity

m1_Prepaid
age -.0100251 .0059403 -1.69 0.091 -.0216679 .0016176

male .5095747 .1988159 2.56 0.010 .1199027 .8992467
_cons .2633838 .277307 0.95 0.342 -.280128 .8068956

m1_Uninsure
age -.0051925 .0109005 -0.48 0.634 -.0265571 .0161721

male .4748547 .3677326 1.29 0.197 -.2458879 1.195597
_cons -1.756843 .4971383 -3.53 0.000 -2.731216 -.78247

m3_Indemnity

m3_Uninsure
age -.0041055 .0111185 -0.37 0.712 -.0258974 .0176865

male .4591074 .3601307 1.27 0.202 -.2467357 1.164951
_cons -1.801774 .5226351 -3.45 0.001 -2.82612 -.7774283

. test [m1_Uninsure = m3_Uninsure], cons
( 1) [m1_Uninsure]age - [m3_Uninsure]age = 0
( 2) [m1_Uninsure]male - [m3_Uninsure]male = 0
( 3) [m1_Uninsure]_cons - [m3_Uninsure]_cons = 0

chi2( 3) = 1.49
Prob > chi2 = 0.6845

Although the classic Hausman test computed by hausman is not defined here, the suest-based test
is just fine. We cannot reject the equality of the common coefficients across m1 and m3.
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A second advantage of the suest approach is that we can estimate the (co)variance matrix of the

multivariate normal distribution of the estimators of the three models m1, m2, and m3 and test that the

common coefficients are equal.

. suest m*, noomitted
Simultaneous results for m1, m2, m3 Number of obs = 615

Robust
Coefficient std. err. z P>|z| [95% conf. interval]

m1_Indemnity

m1_Prepaid
age -.0100251 .0059403 -1.69 0.091 -.0216679 .0016176

male .5095747 .1988159 2.56 0.010 .1199027 .8992467
_cons .2633838 .277307 0.95 0.342 -.280128 .8068956

m1_Uninsure
age -.0051925 .0109005 -0.48 0.634 -.0265571 .0161721

male .4748547 .3677326 1.29 0.197 -.2458879 1.195597
_cons -1.756843 .4971383 -3.53 0.000 -2.731216 -.78247

m2_Indemnity

m2_Prepaid
age -.0101521 .0058988 -1.72 0.085 -.0217135 .0014094

male .5144003 .1996133 2.58 0.010 .1231654 .9056352
_cons .2678043 .2744019 0.98 0.329 -.2700134 .8056221

m3_Indemnity

m3_Uninsure
age -.0041055 .0111185 -0.37 0.712 -.0258974 .0176865

male .4591074 .3601307 1.27 0.202 -.2467357 1.164951
_cons -1.801774 .5226351 -3.45 0.001 -2.82612 -.7774283

. test [m1_Prepaid = m2_Prepaid] , cons notest
( 1) [m1_Prepaid]age - [m2_Prepaid]age = 0
( 2) [m1_Prepaid]male - [m2_Prepaid]male = 0
( 3) [m1_Prepaid]_cons - [m2_Prepaid]_cons = 0
. test [m1_Uninsure = m3_Uninsure], cons acc
( 1) [m1_Prepaid]age - [m2_Prepaid]age = 0
( 2) [m1_Prepaid]male - [m2_Prepaid]male = 0
( 3) [m1_Prepaid]_cons - [m2_Prepaid]_cons = 0
( 4) [m1_Uninsure]age - [m3_Uninsure]age = 0
( 5) [m1_Uninsure]male - [m3_Uninsure]male = 0
( 6) [m1_Uninsure]_cons - [m3_Uninsure]_cons = 0

chi2( 6) = 1.95
Prob > chi2 = 0.9240

Again, we do not find evidence against the correct specification of the multinomial logit for type

of insurance. The classic Hausman test assumes that one of the estimators (named B in hausman) is
efficient, that is, it has minimal (asymptotic) variance. This assumption ensures that 𝑉 (𝑏) − 𝑉 (𝐵) is
an admissible, viable estimator for 𝑉 (𝑏 − 𝐵). The assumption that we have an efficient estimator is a
restrictive one. It is violated, for instance, if our data are clustered. We want to adjust for clustering

via a vce(cluster clustvar) option by requesting the cluster-adjusted sandwich estimator of variance.
Consequently, in such a case, hausman cannot be used. This problem does not exist with the suest
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version of the Hausman test. To illustrate this feature, we suppose that the data are clustered by city—we

constructed an imaginary variable cityid for this illustration. If we plan to apply suest, we would
not specify the vce(cluster clustvar) option at the time of estimation. suest has a vce(cluster
clustvar) option. Thus, we do not need to refit the models; we can call suest and test right away.

. suest m1 m2, vce(cluster cityid) noomitted
Simultaneous results for m1, m2 Number of obs = 615

(Std. err. adjusted for 260 clusters in cityid)

Robust
Coefficient std. err. z P>|z| [95% conf. interval]

m1_Indemnity

m1_Prepaid
age -.0100251 .005729 -1.75 0.080 -.0212538 .0012035

male .5095747 .1910496 2.67 0.008 .1351244 .884025
_cons .2633838 .2698797 0.98 0.329 -.2655708 .7923384

m1_Uninsure
age -.0051925 .0104374 -0.50 0.619 -.0256495 .0152645

male .4748547 .3774021 1.26 0.208 -.2648399 1.214549
_cons -1.756843 .4916613 -3.57 0.000 -2.720481 -.7932048

m2_Indemnity

m2_Prepaid
age -.0101521 .0057164 -1.78 0.076 -.0213559 .0010518

male .5144003 .1921385 2.68 0.007 .1378158 .8909848
_cons .2678043 .2682193 1.00 0.318 -.2578959 .7935045

. test [m1_Prepaid = m2_Prepaid], cons
( 1) [m1_Prepaid]age - [m2_Prepaid]age = 0
( 2) [m1_Prepaid]male - [m2_Prepaid]male = 0
( 3) [m1_Prepaid]_cons - [m2_Prepaid]_cons = 0

chi2( 3) = 0.79
Prob > chi2 = 0.8529

suest provides some descriptive information about the clustering on cityid. Like any other estima-
tion command, suest informs us that the standard errors are adjusted for clustering. The Hausman-type
test obtained from the test command uses a simultaneous (co)variance of m1 and m2 appropriately ad-
justed for clustering. In this example, we still do not have reason to conclude that the multinomial logit

model in this application is misspecified, that is, that IIA is violated.

The multinomial logistic regression model is a special case of the conditional logistic regression

model; see [R] clogit. Like the multinomial logistic regression model, the conditional logistic regres-

sion model also makes the IIA assumption. Consider an example, introduced in [CM] cmclogit, in which

the demand forAmerican, Japanese, and European cars is modeled in terms of the number of local dealers

of the respective brands and of some individual attributes incorporated in interaction with the nationality

of cars. We want to perform a Hausman-type test for IIA comparing the decision between all national-

ities with the decision between non-American cars. The following code fragment demonstrates how to

conduct a Hausman test for IIA via suest in this case.
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. clogit choice japan europe maleJap maleEur incJap incEur dealer, group(id)

. estimates store allcars

. clogit choice japan maleJap incJap dealer if car!=1 , group(id)

. estimates store foreign

. suest allcars foreign

. test [allcars_choice=foreign_choice], common

Testing proportionality
The applications of suest that we have discussed so far concern Hausman-type tests for misspecifi-

cation. To test such a hypothesis, we compared two estimators that have the same probability limit if the

hypothesis holds true, but otherwise have different limits. We may also want to compare the coefficients

of models (estimators) for other substantive reasons. Although we most often want to test whether co-

efficients differ between models or estimators, we may occasionally want to test other constraints (see

Hausman and Ruud [1987]).

Example 2
In this example, using simulated labor market data for siblings, we consider two dependent variables,

income (inc) and whether a person was promoted in the last year (promo). We apply familiar economic

arguments regarding human capital, according to which employees have a higher income and a higher

probability of being promoted, by having more human capital. Human capital is acquired through formal

education (edu) and on-the-job training experience (exp). We study whether income and promotion are

“two sides of the same coin”, that is, whether they reflect a common latent variable, “human capital”.

Accordingly, we want to compare the effects of different aspects of human capital on different outcome

variables.

We estimate fairly simple labor market equations. The income model is estimated with regress, and
the estimation results are stored under the name Inc.

. use https://www.stata-press.com/data/r18/income

. regress inc edu exp male
Source SS df MS Number of obs = 277

F(3, 273) = 42.34
Model 2058.44672 3 686.148908 Prob > F = 0.0000

Residual 4424.05183 273 16.2053181 R-squared = 0.3175
Adj R-squared = 0.3100

Total 6482.49855 276 23.4873136 Root MSE = 4.0256

inc Coefficient Std. err. t P>|t| [95% conf. interval]

edu 2.213707 .243247 9.10 0.000 1.734828 2.692585
exp 1.47293 .231044 6.38 0.000 1.018076 1.927785

male .5381153 .4949466 1.09 0.278 -.436282 1.512513
_cons 1.255497 .3115808 4.03 0.000 .642091 1.868904

. est store Inc

Being sibling data, the observations are clustered on family of origin, famid. In the estimation of
the regression parameters, we did not specify a vce(cluster famid) option to adjust standard errors
for clustering on family (famid). Thus, the standard errors reported by regress are potentially flawed.
This problem will, however, be corrected by specifying a vce(cluster clustvar) option with suest.
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Next, we estimate the promotion equationwith probit and again store the results under an appropriate
name.

. probit promo edu exp male, nolog
Probit regression Number of obs = 277

LR chi2(3) = 49.76
Prob > chi2 = 0.0000

Log likelihood = -158.43888 Pseudo R2 = 0.1357

promo Coefficient Std. err. z P>|z| [95% conf. interval]

edu .4593002 .0898537 5.11 0.000 .2831901 .6354102
exp .3593023 .0805774 4.46 0.000 .2013735 .5172312

male .2079983 .1656413 1.26 0.209 -.1166527 .5326494
_cons -.464622 .1088166 -4.27 0.000 -.6778985 -.2513454

. est store Promo

The coefficients in the income and promotion equations definitely seem to be different. However,

because the scales of the two variables are different, we would not expect the coefficients to be equal.

The correct hypothesis here is that the proportionality of the coefficients of the two models, apart from

the constant, are equal. This formulation would still reflect that the relative effects of the different aspects

of human capital do not differ between the dependent variables. We can obtain a nonlinear Wald test for

the hypothesis of proportionality by using the testnl command on the combined estimation results of
the two estimators. Thus, we first have to form the combined estimation results. At this point, we specify

the vce(cluster famid) option to adjust for the clustering of observations on famid.

. suest Inc Promo, vce(cluster famid)
Simultaneous results for Inc, Promo Number of obs = 277

(Std. err. adjusted for 135 clusters in famid)

Robust
Coefficient std. err. z P>|z| [95% conf. interval]

Inc_mean
edu 2.213707 .2483907 8.91 0.000 1.72687 2.700543
exp 1.47293 .1890583 7.79 0.000 1.102383 1.843478

male .5381153 .4979227 1.08 0.280 -.4377952 1.514026
_cons 1.255497 .3374977 3.72 0.000 .594014 1.916981

Inc_lnvar
_cons 2.785339 .079597 34.99 0.000 2.629332 2.941347

Promo_promo
edu .4593002 .0886982 5.18 0.000 .2854549 .6331454
exp .3593023 .079772 4.50 0.000 .2029522 .5156525

male .2079983 .1691053 1.23 0.219 -.1234419 .5394386
_cons -.464622 .1042169 -4.46 0.000 -.6688833 -.2603607
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The standard errors reported by suest are identical to those reported by the respective estimation

commands when invoked with the vce(cluster famid) option. We are now ready to test for propor-

tionality:

𝐻0 ∶
𝛽Income
edu

𝛽Promotion
edu

=
𝛽Income
exp

𝛽Promotion
exp

=
𝛽Income
male

𝛽Promotion
male

It is straightforward to translate this into syntax suitable for testnl, recalling that the coefficient of

variable v in equation eq is denoted by [eq]v.

. testnl [Inc_mean]edu/[Promo_promo]edu =
> [Inc_mean]exp/[Promo_promo]exp =
> [Inc_mean]male/[Promo_promo]male
(1) [Inc_mean]edu/[Promo_promo]edu = [Inc_mean]exp/[Promo_promo]exp
(2) [Inc_mean]edu/[Promo_promo]edu = [Inc_mean]male/[Promo_promo]male

chi2(2) = 0.61
Prob > chi2 = 0.7385

From the evidence, we fail to reject the hypotheses that the coefficients of the income and promotion

equations are proportional. Thus, it is not unreasonable to assume that income and promotion can be

explained by the same latent variable, “labor market success”.

A disadvantage of the nonlinear Wald test is that it is not invariant with respect to representation:

a Wald test for a mathematically equivalent formulation of the nonlinear constraint usually leads to a

different test result. An equivalent formulation of the proportionality hypothesis is

𝐻0: 𝛽Income
edu 𝛽Promotion

exp = 𝛽Promotion
edu 𝛽Income

exp and

𝛽Income
edu 𝛽Promotion

male = 𝛽Promotion
edu 𝛽Income

male

This formulation is “more linear” in the coefficients. The asymptotic 𝜒2 distribution of the nonlinear

Wald statistic can be expected to be more accurate for this representation.

. testnl ([Inc_mean]edu*[Promo_promo]exp = [Inc_mean]exp*[Promo_promo]edu)
> ([Inc_mean]edu*[Promo_promo]male = [Inc_mean]male*[Promo_promo]edu)
(1) [Inc_mean]edu*[Promo_promo]exp = [Inc_mean]exp*[Promo_promo]edu
(2) [Inc_mean]edu*[Promo_promo]male = [Inc_mean]male*[Promo_promo]edu

chi2(2) = 0.46
Prob > chi2 = 0.7936

Here the two representations lead to similar test statistics and 𝑝-values. As before, we fail to reject
the hypothesis of proportionality of the coefficients of the two models.

Testing cross-model hypotheses

Example 3
In this example, we demonstrate how some cross-model hypotheses can be tested using the facilities

already available inmost estimation commands. This demonstrationwill explain the intricate relationship

between the cluster adjustment of the robust estimator of variance and the suest command. It will also
be made clear that a new facility is required to perform more general cross-model testing.
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We want to test whether the effect of 𝑥1 on the binary variable 𝑦1 is the same as the effect of 𝑥2 on the

binary 𝑦2; see Clogg, Petkova, and Haritou (1995). In this setting, 𝑥1 may equal 𝑥2, and 𝑦1 may equal

𝑦2. We assume that logistic regression models can be used to model the responses, and for simplicity, we

ignore further predictor variables in these models. If the two logit models are fit on independent samples

so that the estimators are (stochastically) independent, a Wald test for b[x1] = b[x2] rejects the null
hypothesis if

̂𝑏(𝑥1) − ̂𝑏(𝑥2)

[�̂�2{�̂�(𝑥1)} + �̂�2{ ̂𝑏(𝑥2)}]
1/2

is larger than the appropriate 𝜒2
1 threshold. If the models are fit on the same sample (or on dependent

samples), so that the estimators are stochastically dependent, the above test that ignores the covariance

between the estimators is not appropriate.

It is instructive to see how this problem can be tackled by “stacking” data. In the stacked format, we

doubled the number of observations. The dependent variable is 𝑦1 in the first half of the data and is 𝑦2
in the second half of the data. The predictor variable 𝑧1 is set to 𝑥1 in the first half of the expanded data

and to 0 in the rest. Similarly, 𝑧2 is 0 in the first half and 𝑥2 in the second half. The following diagram

illustrates the transformation, in the terminology of the reshape command, from wide to long format.

⎛⎜⎜⎜⎜⎜
⎝

id 𝑦1 𝑦2 𝑥1 𝑥2

1 𝑦11 𝑦21 𝑥11 𝑥21
2 𝑦12 𝑦22 𝑥12 𝑥22
3 𝑦13 𝑦23 𝑥13 𝑥23

⎞⎟⎟⎟⎟⎟
⎠

⟹

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

id 𝑦 𝑧1 𝑧2 model

1 𝑦11 𝑥11 0 1
2 𝑦12 𝑥12 0 1
3 𝑦13 𝑥13 0 1
1 𝑦21 0 𝑥21 2
2 𝑦22 0 𝑥22 2
3 𝑦23 0 𝑥23 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

The observations in the long-format data organization are clustered on the original subjects and are

identified with the identifier id. The clustering on id has to be accounted for when fitting a simultaneous
model. The simplest way to deal with clustering is to use the cluster adjustment of the robust or sandwich

estimator; see [P] robust. The data manipulation can be accomplished easily with the stack command;
see [D] stack. Subsequently, we fit a simultaneous logit model and perform aWald test for the hypothesis

that the coefficients of z1 and z2 are the same. A full setup to obtain the cross-model Wald test could

then be as follows:

. generate zero = 0 // a variable that is always 0

. generate one = 1 // a variable that is always 1

. generate two = 2 // a variable that is always 2

. stack id y1 x1 zero one id y2 zero x2 two, into(id y z1 z2 model)

. generate model2 = (model==2)

. logit y model2 z1 z2, vce(cluster id)

. test _b[z1] = _b[z2]
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The coefficient of z1 represents the effect of x1 on y1, and similarly, z2 for the effect of x2 on y2.
The variable model2 is a dummy for the “second model”, which is included to allow the intercept in the

second model to differ from that in the first model. The estimates of the coefficient of z1 and its standard
error in the combined model are the same as the estimates of the coefficient of z1 and its standard error
if we fit the model on the unstacked data.

. logit y1 x1, vce(robust)

The vce(cluster clustvar) option specified with the logit command for the stacked data ensures
that the covariances of b[z1] and b[z2] are indeed estimated. This estimation ensures that the Wald

test for the equality of the coefficients is correct. If we had not specified the vce(cluster clustvar) op-
tion, the (co)variance matrix of the coefficients would have been block-diagonal; that is, the covariances

of b[z1] and b[z2] would have been 0. Then, test would have effectively used the invalid formula
for the Wald test for two independent samples.

In this example, the two logit models were fit on the same data. The same setup would apply, without

modification, when the two logit models were fit on overlapping data that resulted, for instance, if the 𝑦
or 𝑥 variables were missing in some observations.

The suest command allows us to obtain the above Wald test more efficiently by avoiding the data

manipulation, obviating the need to fit a model with twice the number of coefficients. The test statistic

produced by the above code fragment is identical to that obtained via suest on the original (unstacked)
data:

. logit y1 x1

. estimates store M1

. logit y2 x2

. estimates store M2

. suest M1 M2

. test [M1]x1=[M2]x2

The stacking method can be applied not only to the testing of cross-model hypotheses for logitmod-
els but also to any estimation command that supports the vce(cluster clustvar) option. The stacking
approach clearly generalizes to stacking more than two logit or other models, testing more general linear

hypotheses, and testing nonlinear cross-model hypotheses (see [R] testnl). In all of these cases, suest
would yield identical statistical results but at smaller costs in terms of data management, computer stor-

age, and computer time.

Is suest nothing but a convenience command? No, there are two disadvantages to the stacking

method, both of which are resolved via suest. First, if the models include ancillary parameters (in a
regression model, the residual variance; in an ordinal response model, the cutpoints; and in lognormal

survival-time regression, the time scale parameter), these parameters are constrained to be equal between

the stacked models. In suest, this constraint is relaxed. Second, the stacking method does not generalize
to compare different statistical models, such as a probit model and a regression model. As demonstrated

in the previous section, suest can deal with this situation.
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Stored results
suest stores the following in e():

Scalars

e(N) number of observations

e(N clust) number of clusters

e(rank) rank of e(V)

Macros

e(cmd) suest
e(eqnames#) original names of equations of model #

e(names) list of model names

e(wtype) weight type

e(wexp) weight expression

e(clustvar) name of cluster variable

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(properties) b V

Matrices

e(b) stacked coefficient vector of the models

e(V) variance–covariance matrix of the estimators

Functions

e(sample) marks estimation sample

Methods and formulas
The estimation of the simultaneous (co)variance of a series of 𝑘 estimators is a nonstandard application

of the sandwich estimator, as implemented by the command [P] robust. You may want to read this

manual entry before reading further.

The starting point is that we have fit 𝑘 different models on the same data—partially overlapping or

nonoverlapping data are special cases. We want to derive the simultaneous distribution of these 𝑘 estima-
tors, for instance, to test a cross-estimator hypothesis 𝐻0. As in the framework of Hausman testing, 𝐻0
will often be of the form that different estimators have the same probability limit under some hypothesis,

while the estimators have different limits if the hypothesis is violated.

We consider (vector) estimators β̂𝑖 to be defined as “the” solution of the estimation equations G𝑖,

G𝑖(b𝑖) = ∑
𝑗

𝑤𝑖𝑗u𝑖𝑗(b𝑖) = 0, 𝑖 = 1, . . . , 𝑘

We refer to the u𝑖𝑗 as the “scores”. Specifying someweights𝑤𝑖𝑗 = 0 trivially accommodates for partially
overlapping or even disjointed data. Under “suitable regularity conditions” (see White [1982; 1996] for

details), the β̂𝑖 are asymptotically normally distributed, with the variance estimated consistently by the

sandwich estimator

𝑉𝑖 = Var(β̂𝑖) = D−1
𝑖 ∑

𝑗
𝑤𝑖𝑗u𝑖𝑗u

′
𝑖𝑗 D

−1
𝑖

where D𝑖 is the Jacobian of G𝑖 evaluated at β̂𝑖. In the context of maximum likelihood estimation, D𝑖
can be estimated consistently by (minus) the Hessian of the log likelihood or by the Fisher information

matrix. If the model is also well specified, the sandwiched term (∑𝑗 𝑤𝑖𝑗u𝑖𝑗u
′
𝑖𝑗) converges in probability

to D𝑖, so 𝑉𝑖 may be consistently estimated by D
−1
𝑖 .
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To derive the simultaneous distribution of the estimators, we consider the “stacked” estimation equa-

tion,

G(β̂) = {G1(β̂1)′ G1(β̂2)′ . . . G𝑘(β̂𝑘)′}
′

= 0

Under “suitable regularity conditions” (seeWhite [1996] for details), β̂ is asymptotically jointly normally

distributed. The Jacobian and scores of the simultaneous equation are easily expressed in the Jacobian

and scores of the separate equations. The Jacobian of G,

D(β̂) = 𝑑G(β)
𝑑β

∣
β=β̂

is block diagonal with blocksD1, . . . , D𝑘. The inverse ofD(β̂) is again block diagonal, with the inverses
of D𝑖 on the diagonal. The scores u of G are simply obtained as the concatenated scores of the separate

equations:

u𝑗 = (u′
1𝑗 u′

2𝑗 . . . u′
𝑘𝑗)′

Out-of-sample (that is, where 𝑤𝑖𝑗 = 0) values of the score variables are defined as 0 (thus we drop the 𝑖
subscript from the common weight variable). The sandwich estimator for the asymptotic variance of β̂
reads

𝑉 = Var(β̂) = D(β̂)−1 (∑
𝑗

𝑤𝑗u𝑗u
′
𝑗) D(β̂)−1

Taking a “partitioned” look at this expression, we see that 𝑉 (β̂𝑖) is estimated by

D−1
𝑖 (∑

𝑗
𝑤𝑗u𝑖𝑗u

′
𝑖𝑗)D−1

𝑖

which is, yet again, the familiar sandwich estimator for β̂𝑖 based on the separate estimation equation

G𝑖. Thus, considering several estimators simultaneously in this way does not affect the estimators of the

asymptotic variances of these estimators. However, as a bonus of stacking, we obtained a sandwich-type

estimate of the covariance 𝑉𝑖ℎ of estimators β̂𝑖 and β̂ℎ,

𝑉𝑖ℎ = Cov(β̂𝑖, β̂ℎ) = D−1
𝑖 (∑

𝑗
𝑤𝑗u𝑖𝑗u

′
ℎ𝑗) D−1

ℎ

which is also obtained by White (1982).

This estimator for the covariance of estimators is an application of the cluster modification of the

sandwich estimator proposed by Rogers (1993). Consider the stacked data format as discussed in the

logit example, and assume that Stata would be able to estimate a “stacked model” in which different

models apply to different observations, for example, a probit model for the first half, a regression model

for the second half, and a one-to-one cluster relation between the first and second half. If there are no

common parameters to both models, the score statistics of parameters for the stacked models are zero in

the half of the data in which they do not occur. In Rogers’s method, we have to sum the score statistics

over the observations within a cluster. This step boils down to concatenating the score statistics at the

level of the cluster.
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We compare the sandwich estimator of the (co)variance 𝑉12 of two estimators with the estimator of

variance ̃𝑉12 applied in the classic Hausman test. Hausman (1978) showed that if β̂1 is consistent under

𝐻0 and β̂2 is efficient under 𝐻0, then asymptotically

Cov(β̂1, β̂2) = Var(β̂2)

and so var(β̂1 − β̂2) is consistently estimated by 𝑉1 − 𝑉2.
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Also see
[R] estimates — Save and manipulate estimation results

[R] hausman — Hausman specification test

[R] lincom — Linear combinations of parameters

[R] nlcom — Nonlinear combinations of parameters

[R] test — Test linear hypotheses after estimation

[R] testnl — Test nonlinear hypotheses after estimation

[P] robust — Robust variance estimates



summarize — Summary statistics

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description
summarize calculates and displays a variety of univariate summary statistics. If no varlist is specified,

summary statistics are calculated for all the variables in the dataset.

Quick start
Basic summary statistics for continuous variable v1

summarize v1

Same as above, and include v2 and v3
summarize v1-v3

Same as above, and provide additional detail about the distribution

summarize v1-v3, detail

Summary statistics reported separately for each level of catvar
by catvar: summarize v1

With frequency weight wvar
summarize v1 [fweight=wvar]

Menu
Statistics > Summaries, tables, and tests > Summary and descriptive statistics > Summary statistics

2936
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Syntax
summarize [ varlist ] [ if ] [ in ] [weight ] [ , options ]

options Description

Main

detail display additional statistics

meanonly suppress the display; calculate only the mean; programmer’s option

format use variable’s display format

separator(#) draw separator line after every # variables; default is separator(5)
display options control spacing, line width, and base and empty cells

varlist may contain factor variables; see [U] 11.4.3 Factor variables.

varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.

by, collect, rolling, and statsby are allowed; see [U] 11.1.10 Prefix commands.

aweights, fweights, and iweights are allowed. However, iweights may not be used with the detail option; see
[U] 11.1.6 weight.

Options

� � �
Main �

detail produces additional statistics, including skewness, kurtosis, the four smallest and four largest

values, and various percentiles.

meanonly, which is allowed only when detail is not specified, suppresses the display of results and
calculation of the variance. Ado-file writers will find this useful for fast calls.

format requests that the summary statistics be displayed using the display formats associated with the
variables rather than the default g display format; see [U] 12.5 Formats: Controlling how data are

displayed.

separator(#) specifies how often to insert separation lines into the output. The default is

separator(5), meaning that a line is drawn after every five variables. separator(10)would draw
a line after every 10 variables. separator(0) suppresses the separation line.

display options: vsquish, noemptycells, baselevels, allbaselevels, nofvlabel,
fvwrap(#), and fvwrapon(style); see [R] Estimation options.

Remarks and examples
summarize can produce two different sets of summary statistics. Without the detail option, the

number of nonmissing observations, the mean and standard deviation, and the minimum and maximum

values are presented. With detail, the same information is presented along with the variance, skewness,
and kurtosis; the four smallest and four largest values; and the 1st, 5th, 10th, 25th, 50th (median), 75th,

90th, 95th, and 99th percentiles.

Also see [R] ci for calculating the standard error and confidence intervals of the mean.
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Example 1: summarize with the separator() option
We have data containing information on various automobiles, among which is the variable mpg, the

mileage rating. We can obtain a quick summary of the mpg variable by typing

. use https://www.stata-press.com/data/r18/auto2
(1978 automobile data)
. summarize mpg

Variable Obs Mean Std. dev. Min Max

mpg 74 21.2973 5.785503 12 41

We see that we have 74 observations. Themean of mpg is 21.3miles per gallon, and the standard deviation
is 5.79. The minimum is 12, and the maximum is 41.

If we had not specified the variable (or variables) we wanted to summarize, we would have obtained

summary statistics on all the variables in the dataset:

. summarize, separator(4)
Variable Obs Mean Std. dev. Min Max

make 0
price 74 6165.257 2949.496 3291 15906

mpg 74 21.2973 5.785503 12 41
rep78 69 3.405797 .9899323 1 5

headroom 74 2.993243 .8459948 1.5 5
trunk 74 13.75676 4.277404 5 23
weight 74 3019.459 777.1936 1760 4840
length 74 187.9324 22.26634 142 233

turn 74 39.64865 4.399354 31 51
displacement 74 197.2973 91.83722 79 425
gear_ratio 74 3.014865 .4562871 2.19 3.89

foreign 74 .2972973 .4601885 0 1

There are only 69 observations on rep78, so some of the observations are missing. There are no obser-
vations on make because it is a string variable.
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� �
The idea of the mean is quite old (Plackett 1958), but its extension to a scheme of moment-based

measures was not done until the end of the 19th century. Between 1893 and 1905, Pearson dis-

cussed and named the standard deviation, skewness, and kurtosis, but he was not the first to use

any of these. Thiele (1889), in contrast, had earlier firmly grasped the notion that the 𝑚𝑟 provide a

systematic basis for discussing distributions. However, even earlier anticipations can also be found.

For example, Euler in 1778 used 𝑚2 and 𝑚3 in passing in a treatment of estimation (Hald 1998,

87), but seemingly did not build on that.

Similarly, the idea of the median is quite old. The history of the interquartile range is tangled up

with that of the probable error, a long-popular measure. Extending this in various ways to a more

general approach based on quantiles (to use a later term) occurred to several people in the nineteenth

century. Galton (1875) is a nice example, particularly because he seems so close to the key idea of

the quantiles as a function, which took another century to reemerge strongly.

Thorvald Nicolai Thiele (1838–1910) was a Danish scientist who worked in astronomy, mathemat-

ics, actuarial science, and statistics. He made many pioneering contributions to statistics, several of

which were overlooked until recently. Thiele advocated graphical analysis of residuals checking for

trends, symmetry of distributions, and changes of sign, and he even warned against overinterpreting

such graphs.� �
Example 2: summarize with the detail option

The detail option provides all the information of a normal summarize and more. The format of the
output also differs, as shown here:

. summarize mpg, detail
Mileage (mpg)

Percentiles Smallest
1% 12 12
5% 14 12
10% 14 14 Obs 74
25% 18 14 Sum of wgt. 74
50% 20 Mean 21.2973

Largest Std. dev. 5.785503
75% 25 34
90% 29 35 Variance 33.47205
95% 34 35 Skewness .9487176
99% 41 41 Kurtosis 3.975005

As in the previous example, we see that the mean of mpg is 21.3 miles per gallon and that the standard
deviation is 5.79. We also see the various percentiles. The median of mpg (the 50th percentile) is 20

miles per gallon. The 25th percentile is 18, and the 75th percentile is 25.

When we performed summarize, we learned that the minimum and maximum were 12 and 41, re-

spectively. We now see that the four smallest values in our dataset are 12, 12, 14, and 14. The four

largest values are 34, 35, 35, and 41. The skewness of the distribution is 0.95, and the kurtosis is 3.98.

(A normal distribution would have a skewness of 0 and a kurtosis of 3.)
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Skewness is a measure of the lack of symmetry of a distribution. If the distribution is symmetric, the

coefficient of skewness is 0. If the coefficient is negative, the median is usually greater than the mean

and the distribution is said to be skewed left. If the coefficient is positive, the median is usually less than

the mean and the distribution is said to be skewed right. Kurtosis (from the Greek kyrtosis, meaning

curvature) is a measure of peakedness of a distribution. The smaller the coefficient of kurtosis, the flatter

the distribution. The normal distribution has a coefficient of kurtosis of 3 and provides a convenient

benchmark.

Technical note
The convention of calculating the median of an even number of values by averaging the central two

order statistics is of long standing. (That is, given 8 values, average the 4th and 5th smallest values, or

given 42, average the 21st and 22nd smallest.) Stigler (1977) filled a much-needed gap in the literature

by naming such paired central order statistics as “comedians”, although it remains unclear how far he

was joking.

Example 3: summarize with the by prefix
summarize can usefully be combined with the by varlist: prefix. In our dataset, we have a variable,

foreign, that distinguishes foreign and domestic cars. We can obtain summaries of mpg and weight
within each subgroup by typing

. by foreign: summarize mpg weight

-> foreign = Domestic
Variable Obs Mean Std. dev. Min Max

mpg 52 19.82692 4.743297 12 34
weight 52 3317.115 695.3637 1800 4840

-> foreign = Foreign
Variable Obs Mean Std. dev. Min Max

mpg 22 24.77273 6.611187 14 41
weight 22 2315.909 433.0035 1760 3420

Domestic cars in our dataset average 19.8 miles per gallon, whereas foreign cars average 24.8.
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Because by varlist: can be combined with summarize, it can also be combined with summarize,
detail:

. by foreign: summarize mpg, detail

-> foreign = Domestic
Mileage (mpg)

Percentiles Smallest
1% 12 12
5% 14 12
10% 14 14 Obs 52
25% 16.5 14 Sum of wgt. 52
50% 19 Mean 19.82692

Largest Std. dev. 4.743297
75% 22 28
90% 26 29 Variance 22.49887
95% 29 30 Skewness .7712432
99% 34 34 Kurtosis 3.441459

-> foreign = Foreign
Mileage (mpg)

Percentiles Smallest
1% 14 14
5% 17 17
10% 17 17 Obs 22
25% 21 18 Sum of wgt. 22
50% 24.5 Mean 24.77273

Largest Std. dev. 6.611187
75% 28 31
90% 35 35 Variance 43.70779
95% 35 35 Skewness .657329
99% 41 41 Kurtosis 3.10734
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Technical note
summarize respects display formats if we specify the format option. When we type summarize

price weight, we obtain

. summarize price weight
Variable Obs Mean Std. dev. Min Max

price 74 6165.257 2949.496 3291 15906
weight 74 3019.459 777.1936 1760 4840

The display is accurate but is not as aesthetically pleasing as we may wish, particularly if we plan to use

the output directly in published work. By placing formats on the variables, we can control how the table

appears:

. format price weight %9.2fc

. summarize price weight, format
Variable Obs Mean Std. dev. Min Max

price 74 6,165.26 2,949.50 3,291.00 15,906.00
weight 74 3,019.46 777.19 1,760.00 4,840.00

If you specify a weight (see [U] 11.1.6 weight), each observation is multiplied by the value of the

weighting expression before the summary statistics are calculated so that the weighting expression is

interpreted as the discrete density of each observation.

Example 4: summarize with factor variables
You can also use summarize to obtain summary statistics for factor variables. For example, if you

type

. summarize i.rep78
Variable Obs Mean Std. dev. Min Max

rep78
Poor 69 .0289855 .1689948 0 1
Fair 69 .115942 .3225009 0 1

Average 69 .4347826 .4993602 0 1
Good 69 .2608696 .4423259 0 1

Excellent 69 .1594203 .3687494 0 1

you obtain the sample proportions for the five levels of the rep78 variable. For example, 11.6% of the

69 cars with nonmissing values of rep78 have a fair repair record.

We could have used tabulate oneway rep78 to obtain the sample proportions along with the cu-
mulative proportions. Alternatively, we could have used proportions rep78 to obtain the sample

proportions along with the standard errors of the proportions instead of the standard deviations of the

proportions.
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Example 5: summarize with weights
We have 1980 census data on each of the 50 states. Included in our variables is medage, the median

age of the population of each state. If we type summarize medage, we obtain unweighted statistics:

. use https://www.stata-press.com/data/r18/census, clear
(1980 Census data by state)
. summarize medage

Variable Obs Mean Std. dev. Min Max

medage 50 29.54 1.693445 24.2 34.7

Also among our variables is pop, the population in each state. Typing summarize medage [w=pop]
produces population-weighted statistics:

. summarize medage [w=pop]
(analytic weights assumed)

Variable Obs Weight Mean Std. Dev. Min Max

medage 50 225907472 30.11047 1.66933 24.2 34.7

The number listed under Weight is the sum of the weighting variable, pop, indicating that there are

roughly 226 million people in the United States. The pop-weighted mean of medage is 30.11 (compared
with 29.54 for the unweighted statistic), and the weighted standard deviation is 1.67 (compared with

1.69).

Example 6: summarize with weights and the detail option
We can obtain detailed summaries of weighted data as well. When we do this, all the statistics are

weighted, including the percentiles.

. summarize medage [w=pop], detail
(analytic weights assumed)

Median age

Percentiles Smallest
1% 27.1 24.2
5% 27.7 26.1
10% 28.2 27.1 Obs 50
25% 29.2 27.4 Sum of wgt. 225907472
50% 29.9 Mean 30.11047

Largest Std. dev. 1.66933
75% 30.9 32
90% 32.1 32.1 Variance 2.786661
95% 32.2 32.2 Skewness .5281972
99% 34.7 34.7 Kurtosis 4.494223
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Technical note
If you are writing a program and need to access the mean of a variable, the meanonly option provides

for fast calls. For example, suppose that your program reads as follows:

program mean
summarize ‘1’, meanonly
display ” mean = ” r(mean)

end

The result of executing this is

. use https://www.stata-press.com/data/r18/auto2
(1978 automobile data)
. mean price
mean = 6165.2568

Video example
Descriptive statistics in Stata

Stored results
summarize stores the following in r():

Scalars

r(N) number of observations r(p50) 50th percentile (detail only)
r(mean) mean r(p75) 75th percentile (detail only)
r(skewness) skewness (detail only) r(p90) 90th percentile (detail only)
r(min) minimum r(p95) 95th percentile (detail only)
r(max) maximum r(p99) 99th percentile (detail only)
r(sum w) sum of the weights r(Var) variance

r(p1) 1st percentile (detail only) r(kurtosis) kurtosis (detail only)
r(p5) 5th percentile (detail only) r(sum) sum of variable

r(p10) 10th percentile (detail only) r(sd) standard deviation

r(p25) 25th percentile (detail only)

Methods and formulas
Let 𝑥 denote the variable on which we want to calculate summary statistics, and let 𝑥𝑖, 𝑖 = 1, . . . , 𝑛,

denote an individual observation on 𝑥. Let 𝑣𝑖 be the weight, and if no weight is specified, define 𝑣𝑖 = 1

for all 𝑖.
Define the total number of observations as 𝑁 = 𝑛 if 𝑣𝑖 is an aweight and as

𝑁 =
𝑛

∑
𝑖=1

𝑣𝑖

otherwise.

https://www.youtube.com/watch?v=kKFbnEWwa2s
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Additionally, define the normalized weight as

𝑤𝑖 = 𝑛𝑣𝑖
∑𝑛

𝑖=1 𝑣𝑖

if 𝑣𝑖 is an aweight and as 𝑤𝑖 = 𝑣𝑖 otherwise.

The mean, 𝑥, is defined as

𝑥 = 1
𝑁

𝑛
∑
𝑖=1

𝑤𝑖𝑥𝑖

The variance, 𝑠2, is defined as

𝑠2 = 1
𝑁 − 1

𝑛
∑
𝑖=1

𝑤𝑖(𝑥𝑖 − 𝑥)2

The standard deviation, 𝑠, is defined as
√

𝑠2.

Define 𝑚𝑟 as the 𝑟th moment about the mean 𝑥:

𝑚𝑟 = 1
𝑁

𝑛
∑
𝑖=1

𝑤𝑖(𝑥𝑖 − 𝑥)𝑟

The coefficient of skewness is then defined as 𝑚3𝑚−3/2
2 . The coefficient of kurtosis is defined as

𝑚4𝑚−2
2 .

Let 𝑥(𝑖) refer to the 𝑥 in ascending order, and let 𝑤(𝑖) refer to the corresponding weights of 𝑥(𝑖). The

four smallest values are 𝑥(1), 𝑥(2), 𝑥(3), and 𝑥(4). The four largest values are 𝑥(𝑛), 𝑥(𝑛−1), 𝑥(𝑛−2), and

𝑥(𝑛−3).

To obtain the 𝑝th percentile, which we will denote as 𝑥[𝑝], let 𝑃 = 𝑁𝑝/100. Let

𝑊(𝑖) =
𝑖

∑
𝑗=1

𝑤(𝑗)

Find the first index 𝑖 such that 𝑊(𝑖) > 𝑃. The 𝑝th percentile is then

𝑥[𝑝] =
⎧{
⎨{⎩

𝑥(𝑖−1) + 𝑥(𝑖)

2
if 𝑊(𝑖−1) = 𝑃

𝑥(𝑖) otherwise
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Description Quick start Menu Syntax
Options Remarks and examples Acknowledgments References

Description
sunflower draws density-distribution sunflower plots (Plummer and Dupont 2003). Dark sunflow-

ers, light sunflowers, and marker symbols represent high-, medium-, and low-density regions of the data,

respectively. These plots are useful for displaying bivariate data whose density is too great for conven-

tional scatterplots to be effective.

Quick start
Density-distribution sunflower plot showing the relationship between x and y

sunflower y x

Set the center of the reference bin to x = 5 and y = 8

sunflower y x, xcenter(5) ycenter(8)

Same as above, but specify the width of the hexagonal bins to be 1.5

sunflower y x, xcenter(5) ycenter(8) binwidth(1.5)

Same as above, but set the minimum number of observations needed for a bin to be represented by a light

sunflower to 4

sunflower y x, xcenter(5) ycenter(8) binwidth(1.5) light(4)

Use the s1color scheme
sunflower y x, scheme(s1color)

Specify that only the petals are shown and the hexegons are omitted

sunflower y x, flowersonly

Suppress display of the table

sunflower y x, notable

Menu
Graphics > Smoothing and densities > Density-distribution sunflower plot

2947
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Syntax
sunflower yvar xvar [ if ] [ in ] [weight ] [ , options ]

options Description

Main

nograph do not show graph

notable do not show summary table; implied when by() is specified
marker options affect rendition of markers drawn at the plotted points

Bins/Petals

binwidth(#) width of the hexagonal bins

binar(#) aspect ratio of the hexagonal bins

bin options affect rendition of hexagonal bins

light(#) minimum observations for a light sunflower; default is light(3)
dark(#) minimum observations for a dark sunflower; default is dark(13)
xcenter(#) 𝑥-coordinate of the reference bin
ycenter(#) 𝑦-coordinate of the reference bin
petalweight(#) observations in a dark sunflower petal

petallength(#) length of sunflower petal as a percentage

petal options affect rendition of sunflower petals

flowersonly show petals only; do not render bins

nosinglepetal suppress single petals

Add plots

addplot(plot) add other plots to generated graph

Y axis, X axis, Titles, Legend, Overall, By

twoway options any options documented in [G-3] twoway options

bin options Description

[l|d]bstyle(areastyle) overall look of hexagonal bins

[l|d]bcolor(colorstyle) outline and fill color

[l|d]bfcolor(colorstyle) fill color

[l|d]blstyle(linestyle) overall look of outline

[l|d]blcolor(colorstyle) outline color

[l|d]blwidth(linewidthstyle) thickness of outline

petal options Description

[l|d]flstyle(linestyle) overall style of sunflower petals

[l|d]flcolor(colorstyle) color of sunflower petals

[l|d]flwidth(linewidthstyle) thickness of sunflower petals

All options are rightmost; see [G-4] Concept: repeated options.

fweights are allowed; see [U] 11.1.6 weight.
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Options

� � �
Main �

nograph prevents the graph from being generated.

notable prevents the summary table from being displayed. This option is implied when the by() option
is specified.

marker options affect the rendition of markers drawn at the plotted points, including their shape, size,

color, and outline; see [G-3] marker options.

� � �
Bins/Petals �

binwidth(#) specifies the horizontal width of the hexagonal bins in the same units as xvar. By default,

binwidth = max(rbw, nbw)

where

rbw = range of xvar/40

nbw = range of xvar/max(1,nb)

and

nb = int(min(sqrt(𝑛),10 * log10(𝑛)))

where

𝑛 = the number of observations in the dataset

binar(#) specifies the aspect ratio for the hexagonal bins. The height of the bins is given by

binheight = binwidth× #× 2/
√

3

where binheight and binwidth are specified in the units of yvar and xvar, respectively. The default is

binar(r), where r results in the rendering of regular hexagons.

bin options affect how the hexagonal bins are rendered.

lbstyle(areastyle) and dbstyle(areastyle) specify the look of the light and dark hexagonal bins,
respectively. The options listed below allow you to change each attribute, but lbstyle() and

dbstyle() provide the starting points. See [G-4] areastyle for a list of available area styles.

lbcolor(colorstyle) and dbcolor(colorstyle) specify one color to be used both to outline the shape
and to fill the interior of the light and dark hexagonal bins, respectively. See [G-4] colorstyle for a

list of color choices.

lbfcolor(colorstyle) and dbfcolor(colorstyle) specify the color to be used to fill the interior of
the light and dark hexagonal bins, respectively. See [G-4] colorstyle for a list of color choices.

lblstyle(linestyle) and dblstyle(linestyle) specify the overall style of the line used to outline the
area, which includes its pattern (solid, dashed, etc.), thickness, and color. The other options listed

below allow you to change the line’s attributes, but lblstyle() and dblstyle() are the starting
points. See [G-4] linestyle for a list of choices.

lblcolor(colorstyle) and dblcolor(colorstyle) specify the color to be used to outline the light and
dark hexagonal bins, respectively. See [G-4] colorstyle for a list of color choices.
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lblwidth(linewidthstyle) and dblwidth(linewidthstyle) specify the thickness of the line to be used
to outline the light and dark hexagonal bins, respectively. See [G-4] linewidthstyle for a list of

choices.

light(#) specifies the minimum number of observations needed for a bin to be represented by a light

sunflower. The default is light(3).

dark(#) specifies the minimum number of observations needed for a bin to be represented by a dark

sunflower. The default is dark(13).

xcenter(#) and ycenter(#) specify the center of the reference bin. The default values are the median
values of xvar and yvar, respectively. The centers of the other bins are implicitly defined by the

location of the reference bin together with the common bin width and height.

petalweight(#) specifies the number of observations represented by each petal of a dark sunflower.
The default value is chosen so that the maximum number of petals on a dark sunflower is 14.

petallength(#) specifies the length of petals in the sunflowers. The value specified is interpreted as a
percentage of half the bin width. The default is 100%.

petal options affect how the sunflower petals are rendered.

lflstyle(linestyle) and dflstyle(linestyle) specify the overall style of the light and dark sun-

flower petals, respectively.

lflcolor(colorstyle) and dflcolor(colorstyle) specify the color of the light and dark sunflower
petals, respectively.

lflwidth(linewidthstyle) and dflwidth(linewidthstyle) specify the width of the light and dark

sunflower petals, respectively.

flowersonly suppresses rendering of the bins. This option is equivalent to specifying lbcolor(none)
and dbcolor(none).

nosinglepetal suppresses flowers from being drawn in light bins that contain only 1 observation and

dark bins that contain as many observations as the petal weight (see the petalweight() option).

� � �
Add plots �

addplot(plot) provides a way to add other plots to the generated graph; see [G-3] addplot option.

� � �
Y axis, X axis, Titles, Legend, Overall, By �

twoway options are any of the options documented in [G-3] twoway options. These include options

for titling the graph (see [G-3] title options), options for saving the graph to disk (see [G-3] sav-

ing option), and the by() option (see [G-3] by option).

Remarks and examples
A sunflower is several line segments of equal length, called petals, that radiate from a central point.

There are two varieties of sunflowers: light and dark. Each petal of a light sunflower represents 1 ob-

servation. Each petal of a dark sunflower represents several observations. Dark and light sunflowers

represent high- and medium-density regions of the data, and marker symbols represent individual obser-

vations in low-density regions.
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sunflower divides the plane defined by the variables yvar and xvar into contiguous hexagonal bins.
The number of observations contained within a bin determines how the bin will be represented.

• When there are fewer than light(#) observations in a bin, each point is plotted using the usual
marker symbols in a scatterplot.

• Bins with at least light(#) but fewer than dark(#) observations are represented by a light
sunflower. Each petal of a light sunflower represents one observation in the bin.

• Bins with at least dark(#) observations are represented by a dark sunflower. Each petal of a
dark sunflower represents multiple observations.

See Dupont (2009, 87–92) for a discussion of sunflower plots and how to create them using Stata.

Example 1
Using the auto dataset, we want to examine the relationship between weight and mpg. To do that, we

type

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. sunflower mpg weight, binwid(500) petalw(2) dark(8) scheme(stcolor)
Bin width = 500
Bin height = 6.50422
Bin aspect ratio = .0112656
Max obs in a bin = 15
Light = 3
Dark = 8
X-center = 3190
Y-center = 20
Petal weight = 2

Flower Petal No. of No. of Estimated Actual
type weight petals flowers obs obs

none 13 13
light 1 3 1 3 3
light 1 4 5 20 20
light 1 6 1 6 6
light 1 7 1 7 7
dark 2 5 1 10 10
dark 2 8 1 16 15

75 74
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The two darkly shaded sunflowers immediately catch our eyes, indicating a group of 10 cars that are

heavy (nearly 4,000 pounds) and fuel inefficient and a group 16 of cars that get about 20 miles per gallon

and weight in the neighborhood of 3,000 pounds. The lighter sunflowers each indicate groups of three

to seven cars that share similar weight and fuel economy characteristics. To obtain the number of cars in

each group, we count the number of petals in each flower and consult the graph legend to see how many

observations each petal represents.
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Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description
sureg fits seemingly unrelated regression models (Zellner 1962; Zellner and Huang 1962; Zellner

1963). The acronyms SURE and SUR are often used for the estimator.

Quick start
Model of y1 and y2 as a function of x1, x2, and x3

sureg (y1 x1 x2 x3) (y2 x1 x2 x3)

Same as above

sureg (y1 y2 = x1 x2 x3)

Same as above, but obtain small-sample statistics and use small-sample adjustment

sureg (y1 y2 = x1 x2 x3), small dfk

Also perform Breusch–Pagan test

sureg (y1 y2 = x1 x2 x3), small dfk corr

Model of y1 as a function of x1 and x2 and y2 as a function of x2 and lag of x2 using tsset data
sureg (y1 x1 x2) (y2 x2 L.x2)

Menu
Statistics > Linear models and related > Multiple-equation models > Seemingly unrelated regression

2953
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Syntax
Basic syntax

sureg (depvar1 varlist1) (depvar2 varlist2) . . . (depvar𝑁 varlist𝑁)

[ if ] [ in ] [weight ]

Full syntax

sureg ([eqname1:]depvar1𝑎 [depvar1𝑏 ...= ]varlist1 [ , noconstant ])

([eqname2:]depvar2𝑎 [depvar2𝑏 ...= ]varlist2 [ , noconstant ])

...

([eqname𝑁:]depvar𝑁𝑎 [depvar𝑁𝑏 ...= ]varlist𝑁 [ , noconstant ])

[ if ] [ in ] [weight ] [ , options ]

Explicit equation naming (eqname:) cannot be combined with multiple dependent variables in an equa-
tion specification.

options Description

Model

isure iterate until estimates converge

constraints(constraints) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be unadjusted, robust, or cluster clustvar

df adj.

small report small-sample statistics

dfk use small-sample adjustment

dfk2 use alternate adjustment

Reporting

level(#) set confidence level; default is level(95)
corr perform Breusch–Pagan test

nocnsreport do not display constraints

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Optimization

optimization options control the optimization process; seldom used

noheader suppress header table from above coefficient table

notable suppress coefficient table

coeflegend display legend instead of statistics
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varlist1, . . . , varlist𝑁 may contain factor variables; see [U] 11.4.3 Factor variables. You must have the same levels of factor
variables in all equations that have factor variables.

depvars and the varlists may contain time-series operators; see [U] 11.4.4 Time-series varlists.

bootstrap, by, collect, fp, jackknife, rolling, and statsby are allowed; see [U] 11.1.10 Prefix commands.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
aweights are not allowed with the jackknife prefix; see [R] jackknife.
aweights and fweights are allowed; see [U] 11.1.6 weight.
noheader, notable, and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

isure specifies that sureg iterate over the estimated disturbance covariance matrix and parameter es-
timates until the parameter estimates converge. Under seemingly unrelated regression, this iteration

converges to the maximum likelihood results. If this option is not specified, sureg produces two-step
estimates.

constraints(constraints); see [R] Estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (unadjusted), that are robust to some kinds of misspecification (robust), and
that allow for intragroup correlation (cluster clustvar); see [R] vce option.

vce(unadjusted), the default, specifies that an unadjusted (nonrobust) VCE matrix be used; this

results in efficient estimates when assuming homoskedasticity.

� � �
df adj. �

small specifies that small-sample statistics be computed. It shifts the test statistics from 𝜒2 and

𝑧 statistics to 𝐹 statistics and 𝑡 statistics. Although the standard errors from each equation are com-

puted using the degrees of freedom for the equation, the degrees of freedom for the 𝑡 statistics are all
taken to be those for the first equation.

dfk specifies the use of an alternative divisor in computing the covariance matrix for the equation residu-
als. As an asymptotically justified estimator, sureg by default uses the number of sample observations
(𝑛) as a divisor. When the dfk option is set, a small-sample adjustment is made and the divisor is
taken to be √(𝑛 − 𝑘𝑖)(𝑛 − 𝑘𝑗), where 𝑘𝑖 and 𝑘𝑗 are the number of parameters in equations 𝑖 and 𝑗,
respectively.

dfk2 specifies the use of an alternative divisor in computing the covariance matrix for the equation

residuals. When the dfk2 option is set, the divisor is taken to be the mean of the residual degrees of
freedom from the individual equations.

� � �
Reporting �

level(#); see [R] Estimation options.

corr displays the correlation matrix of the residuals between equations and performs a Breusch–Pagan
test for independent equations; that is, the disturbance covariance matrix is diagonal.
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nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Optimization �

optimization options control the iterative process that minimizes the sum of squared errors when isure
is specified. These options are seldom used.

iterate(#) specifies the maximum number of iterations. When the number of iterations equals #,

the optimizer stops and presents the current results, even if the convergence tolerance has not been

reached. The default is the number set using set maxiter, which is 300 by default.

trace adds to the iteration log a display of the current parameter vector.

log and nolog specify whether to display the iteration log. The iteration log is displayed by default
unless you used set iterlog off to suppress it; see set iterlog in [R] set iter.

tolerance(#) specifies the tolerance for the coefficient vector. When the relative change in the

coefficient vector from one iteration to the next is less than or equal to #, the optimization process is

stopped. tolerance(1e-6) is the default.

The following options are available with sureg but are not shown in the dialog box:

noheader suppresses display of the header reporting 𝐹 statistics, 𝑅2, and root mean squared error above

the coefficient table.

notable suppresses display of the coefficient table.

coeflegend; see [R] Estimation options.

Remarks and examples
Seemingly unrelated regression models are so called because they appear to be joint estimates from

several regression models, each with its own error term. The regressions are related because the (con-

temporaneous) errors associated with the dependent variables may be correlated. Chapter 6 of Cameron

and Trivedi (2022) contains a discussion of the seemingly unrelated regression model and the feasible

generalized least-squares estimator underlying it.

Example 1
When we fit models with the same set of right-hand-side variables, the seemingly unrelated regression

results (in terms of coefficients and standard errors) are the same as fitting the models separately (using,

say, regress). The same is true when the models are nested. Even in such cases, sureg is useful when
we want to perform joint tests. For instance, let us assume that we think

price = 𝛽0 + 𝛽1foreign + 𝛽2length + 𝑢1

weight = 𝛾0 + 𝛾1foreign + 𝛾2length + 𝑢2

Because the models have the same set of explanatory variables, we could estimate the two equations

separately. Yet, we might still choose to estimate them with sureg because we want to perform the joint

test 𝛽1 = 𝛾1 = 0.
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We use the small and dfk options to obtain small-sample statistics comparable with regress or

mvreg.

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. sureg (price foreign length) (weight foreign length), small dfk
Seemingly unrelated regression

Equation Obs Params RMSE ”R-squared” F P>F

price 74 2 2474.593 0.3154 16.35 0.0000
weight 74 2 250.2515 0.8992 316.54 0.0000

Coefficient Std. err. t P>|t| [95% conf. interval]

price
foreign 2801.143 766.117 3.66 0.000 1286.674 4315.611
length 90.21239 15.83368 5.70 0.000 58.91219 121.5126
_cons -11621.35 3124.436 -3.72 0.000 -17797.77 -5444.93

weight
foreign -133.6775 77.47615 -1.73 0.087 -286.8332 19.4782
length 31.44455 1.601234 19.64 0.000 28.27921 34.60989
_cons -2850.25 315.9691 -9.02 0.000 -3474.861 -2225.639

Note: Small-sample degrees-of-freedom adjustment applied when estimating
covariance matrix of residuals.

These two equations have a common set of regressors, and we could have used a shorthand syntax to

specify the equations:

. sureg (price weight = foreign length), small dfk

Here the results presented by sureg are the same as if we had estimated the equations separately:

. regress price foreign length
(output omitted )

. regress weight foreign length
(output omitted )

There is, however, a difference. We have allowed 𝑢1 and 𝑢2 to be correlated and have estimated the

full variance–covariance matrix of the coefficients. sureg has estimated the correlations, but it does not
report them unless we specify the corr option. We did not remember to specify corr when we fit the
model, but we can redisplay the results:

. sureg, notable noheader corr
Note: Small-sample degrees-of-freedom adjustment applied when estimating

covariance matrix of residuals.
Correlation matrix of residuals:

price weight
price 1.0000
weight 0.5840 1.0000
Breusch--Pagan test of independence: chi2(1) = 25.237, Pr = 0.0000

The notable and noheader options prevented sureg from redisplaying the header and coefficient ta-

bles. We find that, for the same cars, the correlation of the residuals in the price and weight equations
is 0.5840 and that we can reject the hypothesis that this correlation is zero.
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We can test that the coefficients on foreign are jointly zero in both equations—as we set out to

do—by typing test foreign; see [R] test. When we type a variable without specifying the equation,

that variable is tested for zero in all equations in which it appears:

. test foreign
( 1) [price]foreign = 0
( 2) [weight]foreign = 0

F( 2, 142) = 17.99
Prob > F = 0.0000

Example 2
When the models do not have the same set of explanatory variables and are not nested, sureg may

lead to more efficient estimates than running the models separately as well as allowing joint tests. This

time, let us assume that we believe

price = 𝛽0 + 𝛽1foreign + 𝛽2mpg + 𝛽3displ + 𝑢1

weight = 𝛾0 + 𝛾1foreign + 𝛾2length + 𝑢2

To fit this model, we type

. sureg (price foreign mpg displ) (weight foreign length), corr
Seemingly unrelated regression

Equation Obs Params RMSE ”R-squared” chi2 P>chi2

price 74 3 2165.321 0.4537 49.64 0.0000
weight 74 2 245.2916 0.8990 661.84 0.0000

Coefficient Std. err. z P>|z| [95% conf. interval]

price
foreign 3058.25 685.7357 4.46 0.000 1714.233 4402.267

mpg -104.9591 58.47209 -1.80 0.073 -219.5623 9.644042
displacement 18.18098 4.286372 4.24 0.000 9.779842 26.58211

_cons 3904.336 1966.521 1.99 0.047 50.0263 7758.645

weight
foreign -147.3481 75.44314 -1.95 0.051 -295.2139 .517755
length 30.94905 1.539895 20.10 0.000 27.93091 33.96718
_cons -2753.064 303.9336 -9.06 0.000 -3348.763 -2157.365

Correlation matrix of residuals:
price weight

price 1.0000
weight 0.3285 1.0000
Breusch--Pagan test of independence: chi2(1) = 7.984, Pr = 0.0047



sureg — Zellner’s seemingly unrelated regression 2959

In comparison, if we had fit the price model separately,

. regress price foreign mpg displ
Source SS df MS Number of obs = 74

F(3, 70) = 20.13
Model 294104790 3 98034929.9 Prob > F = 0.0000

Residual 340960606 70 4870865.81 R-squared = 0.4631
Adj R-squared = 0.4401

Total 635065396 73 8699525.97 Root MSE = 2207

price Coefficient Std. err. t P>|t| [95% conf. interval]

foreign 3545.484 712.7763 4.97 0.000 2123.897 4967.072
mpg -98.88559 63.17063 -1.57 0.122 -224.8754 27.10426

displacement 22.40416 4.634239 4.83 0.000 13.16146 31.64686
_cons 2796.91 2137.873 1.31 0.195 -1466.943 7060.763

The coefficients are slightly different, but the standard errors are uniformly larger. This would still be

true if we specified the dfk option to make a small-sample adjustment to the estimated covariance of the
disturbances.

Technical note
Constraints can be applied to SUREmodels using Stata’s standard syntax for constraints. For a general

discussion of constraints, see [R] constraint; for examples similar to seemingly unrelated regression

models, see [R] reg3.

Stored results
sureg stores the following in e():

Scalars

e(N) number of observations

e(k) number of parameters

e(k eq) number of equations in e(b)
e(mss #) model sum of squares for equation #

e(df m#) model degrees of freedom for equation #

e(rss #) residual sum of squares for equation #

e(df r) residual degrees of freedom

e(r2 #) 𝑅2 for equation #

e(F #) 𝐹 statistic for equation # (small only)
e(rmse #) root mean squared error for equation #

e(dfk2 adj) divisor used with VCE when dfk2 specified
e(ll) log likelihood

e(N clust) number of clusters

e(chi2 #) 𝜒2 for equation #

e(p #) 𝑝-value for equation #
e(cons #) 1 if equation # has a constant, 0 otherwise
e(chi2 bp) Breusch–Pagan 𝜒2

e(df bp) degrees of freedom for Breusch–Pagan 𝜒2 test

e(rank) rank of e(V)
e(ic) number of iterations
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Macros

e(cmd) sureg
e(cmdline) command as typed

e(method) sure or isure
e(depvar) names of dependent variables

e(exog) names of exogenous variables

e(eqnames) names of equations

e(wtype) weight type

e(wexp) weight expression

e(corr) correlation structure

e(small) small, if specified
e(dfk) dfk or dfk2, if specified
e(clustvar) name of cluster variable

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(properties) b V
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(marginsdefault) default predict() specification for margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(Sigma) �̂�, covariance matrix of residuals

e(V) variance–covariance matrix of the estimators

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():
Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas
sureg uses the asymptotically efficient, feasible, generalized least-squares algorithm described in

Greene (2018, 328–339). The computing formulas are given on page 328–335.

The 𝑅2 reported is the percent of variance explained by the predictors. It may be used for descriptive

purposes, but 𝑅2 is not a well-defined concept when GLS is used.

sureg will refuse to compute the estimators if the same equation is named more than once or the

covariance matrix of the residuals is singular.

The Breusch and Pagan (1980) 𝜒2 statistic—a Lagrange multiplier statistic—is given by

𝜆 = 𝑇
𝑀

∑
𝑚=2

𝑚−1
∑
𝑛=1

𝑟2
𝑚𝑛

where 𝑟𝑚𝑛 is the estimated correlation between the residuals of the 𝑀 equations and 𝑇 is the number of

observations. It is distributed as 𝜒2 with 𝑀(𝑀 − 1)/2 degrees of freedom.
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This command supports the Huber/White/sandwich estimator of the variance and its clustered version

using vce(robust) and vce(cluster clustvar), respectively. See [P] robust, particularly Introduc-

tion and Methods and formulas.� �
Arnold Zellner (1927–2010) was born in NewYork. He studied physics at Harvard and economics

at Berkeley, and then he taught economics at the Universities of Washington and Wisconsin before

settling in Chicago in 1966. Among his many major contributions to econometrics and statistics are

his work on seemingly unrelated regression, three-stage least squares, and Bayesian econometrics.� �
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Postestimation commands predict margins Remarks and examples Also see

Postestimation commands
The following postestimation commands are available after sureg:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters

estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian infor-
mation criteria (AIC, CAIC, AICc, and BIC, respectively)

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estimates cataloging estimation results

etable table of estimation results

forecast dynamic forecasts and simulations

hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

predict predictions and their SEs, residuals, etc.

predictnl point estimates, standard errors, testing, and inference for generalized predictions

pwcompare pairwise comparisons of parameters

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

2962
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predict

Description for predict
predict creates a new variable containing predictions such as linear predictions, standard errors,

residuals, and differences between the linear predictions.

Menu for predict
Statistics > Postestimation

Syntax for predict
predict [ type ] newvar [ if ] [ in ] [ , equation(eqno[ ,eqno ]) statistic ]

statistic Description

Main

xb linear prediction; the default

stdp standard error of the linear prediction

residuals residuals

difference difference between the linear predictions of two equations

stddp standard error of the difference in linear predictions

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted
only for the estimation sample.

Options for predict

� � �
Main �

equation(eqno[ ,eqno ]) specifies to which equation(s) you are referring.
equation() is filled in with one eqno for the xb, stdp, and residuals options. equation(#1)
would mean that the calculation is to be made for the first equation, equation(#2) would mean the
second, and so on. You could also refer to the equations by their names. equation(income) would
refer to the equation named income and equation(hours) to the equation named hours.

If you do not specify equation(), the results are the same as if you specified equation(#1).

difference and stddp refer to between-equation concepts. To use these options, you must specify
two equations, for example, equation(#1,#2) or equation(income,hours). When two equations

must be specified, equation() is required.

xb, the default, calculates the linear prediction (fitted values)—the prediction of x𝑗b for the specified

equation.

stdp calculates the standard error of the prediction for the specified equation. It can be thought of as the
standard error of the predicted expected value or mean for the observation’s covariate pattern. The

standard error of the prediction is also referred to as the standard error of the fitted value.

residuals calculates the residuals.
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difference calculates the difference between the linear predictions of two equations in the system. With

equation(#1,#2), difference computes the prediction of equation(#1)minus the prediction of
equation(#2).

stddp is allowed only after you have previously fit a multiple-equation model. The standard error of the
difference in linear predictions (x1𝑗b − x2𝑗b) between equations 1 and 2 is calculated.

For more information on using predict after multiple-equation estimation commands, see [R] predict.

margins

Description for margins
margins estimates margins of response for linear predictions and differences between the linear pre-

dictions.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist ] [ , options ]
margins [marginlist ] , predict(statistic ...) [ predict(statistic ...) ... ] [ options ]

statistic Description

default linear predictions for each equation

xb linear prediction for a specified equation

difference difference between the linear predictions of two equations

stdp not allowed with margins
residuals not allowed with margins
stddp not allowed with margins

xb defaults to the first equation.

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.



sureg postestimation — Postestimation tools for sureg 2965

Remarks and examples
For an example of cross-equation testing of parameters using the test command, see example 1 in

[R] sureg.

Example 1
In example 1 of [R] sureg, we fit a seemingly unrelated regressions model of price and weight.

Here we obtain the fitted values.

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. sureg (price foreign length) (weight foreign length), small dfk
(output omitted )

. predict phat, equation(price)
(option xb assumed; fitted values)
. predict what, equation(weight)
(option xb assumed; fitted values)
. summarize price phat weight what

Variable Obs Mean Std. dev. Min Max

price 74 6165.257 2949.496 3291 15906
phat 74 6165.257 1656.407 1639.872 9398.138

weight 74 3019.459 777.1936 1760 4840
what 74 3019.459 736.9666 1481.199 4476.331

Just as in single-equation OLS regression, in a SURE model the sample mean of the fitted values for

an equation equals the sample mean of the dependent variable.

Example 2
Suppose that for whatever reason we were interested in the difference between the predicted values

of price and weight. predict has an option to compute this difference in one step:

. predict diff, equation(price, weight) difference

diff is the same as phat - what:

. generate mydiff = phat - what

. summarize diff mydiff
Variable Obs Mean Std. dev. Min Max

diff 74 3145.797 1233.26 -132.2275 5505.914
mydiff 74 3145.797 1233.26 -132.2275 5505.914

Also see
[R] sureg — Zellner’s seemingly unrelated regression

[U] 20 Estimation and postestimation commands



swilk — Shapiro–Wilk and Shapiro–Francia tests for normality

Description Quick start Menu Syntax
Options for swilk Options for sfrancia Remarks and examples Stored results
Methods and formulas Acknowledgment References Also see

Description
swilk performs the Shapiro–Wilk 𝑊 test for normality for each variable in the specified varlist.

Likewise, sfrancia performs the Shapiro–Francia 𝑊 ′ test for normality. See [MV] mvtest normality

for multivariate tests of normality.

Quick start
Shapiro–Wilk test of normality

Shapiro–Wilk test for v1
swilk v1

Separate tests of normality for v1 and v2
swilk v1 v2

Generate new variable w containing 𝑊 test coefficients

swilk v1, generate(w)

Specify that average ranks should not be used for tied values

swilk v1 v2, noties

Test that v3 is distributed lognormally
generate lnv3 = ln(v3)
swilk lnv3

Shapiro–Francia test of normality

Shapiro–Francia test for v1
sfrancia v1

Separate tests of normality for v1 and v2
sfrancia v1 v2

Same as above, but use the Box–Cox transformation

sfrancia v1 v2, boxcox

Specify that average ranks should not be used for tied values

sfrancia v1 v2, noties
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Menu
swilk
Statistics > Summaries, tables, and tests > Distributional plots and tests > Shapiro-Wilk normality test

sfrancia
Statistics > Summaries, tables, and tests > Distributional plots and tests > Shapiro-Francia normality test

Syntax
Shapiro–Wilk normality test

swilk varlist [ if ] [ in ] [ , swilk options ]

Shapiro–Francia normality test

sfrancia varlist [ if ] [ in ][ , sfrancia options ]

swilk options Description

Main

generate(newvar) create newvar containing 𝑊 test coefficients

lnnormal test for three-parameter lognormality

noties do not use average ranks for tied values

sfrancia options Description

Main

boxcox use the Box–Cox transformation for 𝑊 ′; the default is to use the
log transformation

noties do not use average ranks for tied values

by and collect are allowed with swilk and sfrancia; see [U] 11.1.10 Prefix commands.

Options for swilk

� � �
Main �

generate(newvar) creates new variable newvar containing the 𝑊 test coefficients.

lnnormal specifies that the test be for three-parameter lognormality, meaning that ln(𝑋−𝑘) is tested for
normality, where 𝑘 is calculated from the data as the value that makes the skewness coefficient zero.

When simply testing ln(𝑋) for normality, do not specify this option. See [R] lnskew0 for estimation
of 𝑘.

noties suppresses use of averaged ranks for tied values when calculating the 𝑊 test coefficients.
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Options for sfrancia

� � �
Main �

boxcox specifies that the Box–Cox transformation of Royston (1983) for calculating𝑊 ′ test coefficients

be used instead of the default log transformation (Royston 1993a). Under the Box–Cox transforma-

tion, the normal approximation to the sampling distribution of 𝑊 ′, used by sfrancia, is valid for
5 ≤ 𝑛 ≤ 1000. Under the log transformation, it is valid for 10 ≤ 𝑛 ≤ 5000.

noties suppresses use of averaged ranks for tied values when calculating the 𝑊 ′ test coefficients.

Remarks and examples
swilk can be used with 4 ≤ 𝑛 ≤ 2000 observations. sfrancia can be used with 10 ≤ 𝑛 ≤ 5000

observations; however, if the boxcox option is specified, it can be used with 5 ≤ 𝑛 ≤ 1000 observations.

Also see [R] sktest for the skewness and kurtosis test described by D’Agostino, Belanger,

and D’Agostino (1990) with the empirical correction developed by Royston (1991b). While the

Shapiro–Wilk and Shapiro–Francia tests for normality are, in general, preferred for nonaggregated data

(Gould and Rogers 1991; Gould 1992b; Royston 1991b), the skewness and kurtosis test will permit

more observations. Moreover, a normal quantile plot should be used with any test for normality; see

[R] Diagnostic plots for more information.

Example 1
Using our automobile dataset, we will test whether the variables mpg and trunk are normally dis-

tributed:

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. swilk mpg trunk

Shapiro--Wilk W test for normal data
Variable Obs W V z Prob>z

mpg 74 0.94821 3.335 2.627 0.00430
trunk 74 0.97921 1.339 0.637 0.26215

. sfrancia mpg trunk
Shapiro--Francia W’ test for normal data

Variable Obs W’ V’ z Prob>z

mpg 74 0.94872 3.650 2.510 0.00604
trunk 74 0.98446 1.106 0.195 0.42271

We can reject the hypothesis that mpg is normally distributed, but we cannot reject that trunk is normally
distributed.

The values reported under 𝑊 and 𝑊 ′ are the Shapiro–Wilk and Shapiro–Francia test statistics. The

tests also report 𝑉 and 𝑉 ′ (Royston 1991d), which are more appealing indexes for departure from nor-

mality. The median values of 𝑉 and 𝑉 ′ are 1 for samples from normal populations. Large values indicate

nonnormality. There is no more information in 𝑉 (𝑉 ′) than in 𝑊 (𝑊 ′)—one is just the transform of the

other.
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Example 2
We have data on a variable called studytime, which we suspect is distributed lognormally:

. use https://www.stata-press.com/data/r18/cancer
(Patient survival in drug trial)
. generate lnstudytime = ln(studytime)
. swilk lnstudytime

Shapiro--Wilk W test for normal data
Variable Obs W V z Prob>z

lnstudytime 48 0.92731 3.311 2.547 0.00543

We can reject the lognormal assumption. We do not specify the lnnormal option when testing for

lognormality. The lnnormal option is for three-parameter lognormality.

Example 3
Having discovered that ln(studytime) is not distributed normally, we now test that ln(studytime−

𝑘) is normally distributed, where 𝑘 is chosen so that the resulting skewness is zero. We obtain the estimate

for 𝑘 from lnskew0; see [R] lnskew0:

. lnskew0 lnstudytimek = studytime, level(95)
Transform k [95% conf. interval] Skewness

ln(studytim-k) -11.01181 -infinity -.9477328 -.0000173
. swilk lnstudytimek, lnnormal

Shapiro--Wilk W test for 3-parameter lognormal data
Variable Obs W V z Prob>z

lnstudytimek 48 0.97064 1.337 1.261 0.10363

We cannot reject the hypothesis that ln(studytime + 11.01181) is distributed normally. We do specify

the lnnormal option when using an estimated value of 𝑘.

Stored results
swilk and sfrancia store the following in r():

Scalars

r(N) number of observations r(W) W or W ′

r(p) 𝑝-value r(V) V or V ′

r(z) 𝑧 statistic
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Methods and formulas
The Shapiro–Wilk test is based on Shapiro and Wilk (1965) with a new approximation accurate for

4 ≤ 𝑛 ≤ 2000 (Royston 1992). The calculations made by swilk are based on Royston (1982, 1992,
1993b).

The Shapiro–Francia test (Shapiro and Francia 1972; Royston 1983; Royston 1993a) is an approxi-

mate test that is similar to the Shapiro–Wilk test for very large samples.

The relative merits of the Shapiro–Wilk and Shapiro–Francia tests the versus skewness and kurtosis

test have been a subject of debate. The interested reader is directed to the articles in the Stata Technical

Bulletin. Our recommendation is to use the Shapiro–Francia test whenever possible, that is, whenever

dealing with nonaggregated or ungrouped data (Gould and Rogers 1991; Gould 1992b); see [R] swilk.

If normality is rejected, use sktest to determine the source of the problem. As both D’Agostino, Be-
langer, andD’Agostino (1990) andRoyston (1991c)mention, researchers should also examine the normal

quantile plot to determine normality rather than blindly relying on a few test statistics. See the qnorm
command documented in [R] Diagnostic plots for more information on normal quantile plots.

� �
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Description
symmetry performs asymptotic symmetry and marginal homogeneity tests, as well as an exact sym-

metry test on 𝐾 × 𝐾 tables where there is a 1-to-1 matching of cases and controls (nonindependence).

This testing is used to analyze matched-pair case–control data with multiple discrete levels of the ex-

posure (outcome) variable. In genetics, the test is known as the transmission/disequilibrium test (TDT)

and is used to test the association between transmitted and nontransmitted parental marker alleles to an

affected child (Spieldman, McGinnis, and Ewens 1993). For 2 × 2 tables, the asymptotic test statistics

reduce to the McNemar test statistic, and the exact symmetry test produces an exact McNemar test; see

[R] Epitab. For many exposure variables, symmetry can optionally perform a test for linear trend in the

log relative risk.

symmetry expects the data to be in the wide format; that is, each observation contains the matched
case and control values in variables casevar and controlvar. Variables can be numeric or string.

symmi is the immediate form of symmetry. The symmi command uses the values specified on the
command line; rows are separated by ‘\’, and options are the same as for symmetry. See [U] 19 Imme-

diate commands for a general introduction to immediate commands.

Quick start
Symmetry and marginal homogeneity tests for 1-to-1 matched case–control studies

symmetry case control

Same as above

symmetry control case

Exact test of table symmetry

symmetry case control, exact

Report the contribution from each off-diagonal pair to the overall 𝜒2-statistic

symmetry control case, contrib

Test for a linear trend in the log of the relative risk

symmetry control case, trend

Request marginal homogeneity statistics that do not require the inversion of the variance–covariance

matrix

symmetry case control, mh

Using frequency weight variable wvar
symmetry case control [fweight=wvar]
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Menu
symmetry
Statistics > Epidemiology and related > Other > Symmetry and marginal homogeneity test

symmi
Statistics > Epidemiology and related > Other > Symmetry and marginal homogeneity test calculator

Syntax
Symmetry and marginal homogeneity tests

symmetry casevar controlvar [ if ] [ in ] [weight ] [ , options ]

Immediate form of symmetry and marginal homogeneity tests

symmi #11 #12 [...] \ #21 #22 [...] [\...] [ if ] [ in ] [ , options ]

options Description

Main

notable suppress output of contingency table

contrib report contribution of each off-diagonal cell pair

exact perform exact test of table symmetry

mh perform two marginal homogeneity tests

trend perform a test for linear trend in the (log) relative risk (RR)

cc use continuity correction when calculating test for linear trend

collect is allowed with symmetry; see [U] 11.1.10 Prefix commands.

fweights are allowed; see [U] 11.1.6 weight.

Options

� � �
Main �

notable suppresses the output of the contingency table. By default, symmetry displays the 𝑛 × 𝑛
contingency table at the top of the output.

contrib reports the contribution of each off-diagonal cell pair to the overall symmetry 𝜒2.

exact performs an exact test of table symmetry. This option is recommended for sparse tables. CAUTION:
The exact test requires substantial amounts of time and memory for large tables.

mh performs two marginal homogeneity tests that do not require the inversion of the variance–covariance
matrix.

By default, symmetry produces the Stuart–Maxwell test statistic, which requires the inversion of the

nondiagonal variance–covariance matrix, V. When the table is sparse, the matrix may not be of full

rank, and then the command substitutes a generalized inverse V∗ for V−1. mh calculates optional

marginal homogeneity statistics that do not require the inversion of the variance–covariance matrix.

These tests may be preferred in certain situations. See Methods and formulas and Bickeböller and

Clerget-Darpoux (1995) for details on these test statistics.
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trend performs a test for linear trend in the (log) relative risk (RR). This option is allowed only for

numeric exposure (outcome) variables, and its use should be restricted to measurements on the ordinal

or the interval scales.

cc specifies that the continuity correction be used when calculating the test for linear trend. This correc-
tion should be specified only when the levels of the exposure variable are equally spaced.

Remarks and examples
symmetry and symmimay be used to analyze 1-to-1 matched case–control data with multiple discrete

levels of the exposure (outcome) variable.

Example 1
Consider a survey of 344 individuals (BMDP1990, 267–270) whowere asked in October 1986whether

they agreed with President Reagan’s handling of foreign affairs. In January 1987, after the Iran-Contra

affair became public, these same individuals were surveyed again and asked the same question. We

would like to know if public opinion changed over this period.

We first describe the dataset and list a few observations.

. use https://www.stata-press.com/data/r18/iran

. describe
Contains data from https://www.stata-press.com/data/r18/iran.dta
Observations: 344

Variables: 2 29 Jan 2022 02:37

Variable Storage Display Value
name type format label Variable label

before byte %8.0g vlab Public opinion before IC
after byte %8.0g vlab Public opinion after IC

Sorted by:
. list in 1/5

before after

1. Agree Agree
2. Agree Disagree
3. Agree Unsure
4. Disagree Agree
5. Disagree Disagree

Each observation corresponds to one of the 344 individuals. The data are in wide form so that each

observation has a before and an after measurement. We now perform the test without options.
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. symmetry before after

Public
opinion Public opinion after IC
before IC Agree Disagree Unsure Total

Agree 47 56 38 141
Disagree 28 61 31 120
Unsure 26 47 10 83

Total 101 164 79 344

chi2 df Prob>chi2

Symmetry (asymptotic) 14.87 3 0.0019
Marginal homogeneity (Stuart--Maxwell) 14.78 2 0.0006

The test first tabulates the data in a 𝐾 × 𝐾 table and then performs Bowker’s (1948) test for table

symmetry and the Stuart–Maxwell (Stuart 1955; Maxwell 1970) test for marginal homogeneity.

Both the symmetry test and the marginal homogeneity test are highly significant, thus indicating a

shift in public opinion.

An exact test of symmetry is provided for use on sparse tables. This test is computationally intensive,

so it should not be used on large tables. Because we are working on a fast computer, we will run the

symmetry test again and this time include the exact option. We will suppress the output of the contin-

gency table by specifying notable and include the contrib option so that we may further examine the
cells responsible for the significant result.

. symmetry before after, contrib exact mh notable
Contribution
to symmetry

Cells chi-squared

n1_2 & n2_1 9.3333
n1_3 & n3_1 2.2500
n2_3 & n3_2 3.2821

chi2 df Prob>chi2

Symmetry (asymptotic) 14.87 3 0.0019
Marginal homogeneity (Stuart--Maxwell) 14.78 2 0.0006
Marginal homogeneity (Bickenboller) 13.53 2 0.0012
Marginal homogeneity (no diagonals) 15.25 2 0.0005

Symmetry (exact significance probability) 0.0018

The largest contribution to the symmetry 𝜒2 is due to cells 𝑛12 and 𝑛21. These correspond to changes

between the agree and disagree categories. Of the 344 individuals, 56 (16.3%) changed from the agree

to the disagree response, whereas only 28 (8.1%) changed in the opposite direction.

For these data, the results from the exact test are similar to those from the asymptotic test.
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Example 2
Breslow and Day (1980, 163) reprinted data fromMack et al. (1976) from a case–control study of the

effect of exogenous estrogen on the risk of endometrial cancer. The data consist of 59 elderly women

diagnosed with endometrial cancer and 59 disease-free control subjects living in the same community

as the cases. Cases and controls were matched on age, marital status, and time living in the community.

The data collected included information on the daily dose of conjugated estrogen therapy. Breslow and

Day analyzed these data by creating four levels of the dose variable. Here are the data as entered into a

Stata dataset:

. use https://www.stata-press.com/data/r18/bd163

. list, noobs divider

case control count

0 0 6
0 0.1-0.299 2
0 0.3-0.625 3
0 0.626+ 1

0.1-0.299 0 9

0.1-0.299 0.1-0.299 4
0.1-0.299 0.3-0.625 2
0.1-0.299 0.626+ 1
0.3-0.625 0 9
0.3-0.625 0.1-0.299 2

0.3-0.625 0.3-0.625 3
0.3-0.625 0.626+ 1

0.626+ 0 12
0.626+ 0.1-0.299 1
0.626+ 0.3-0.625 2

0.626+ 0.626+ 1

This dataset is in a different format from that of the previous example. Instead of each observation

representing onematched pair, each observation represents possiblymultiple pairs indicated by the count
variable. For instance, the first observation corresponds to six matched pairs where neither the case nor

the control was on estrogen, the second observation corresponds to two matched pairs where the case

was not on estrogen and the control was on 0.1 to 0.299 mg/day, etc.

To use symmetry to analyze this dataset, we must specify fweight to indicate that in our data there
are observations corresponding to more than one matched pair.
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. symmetry case control [fweight=count]

Dosage
level for Dosage level for control
case 0 0.1-0.299 0.3-0.625 0.626+ Total

0 6 2 3 1 12
0.1-0.299 9 4 2 1 16
0.3-0.625 9 2 3 1 15

0.626+ 12 1 2 1 16

Total 36 9 10 4 59

chi2 df Prob>chi2

Symmetry (asymptotic) 17.10 6 0.0089
Marginal homogeneity (Stuart--Maxwell) 16.96 3 0.0007

Both the test of symmetry and the test of marginal homogeneity are highly significant, thus leading

us to reject the null hypothesis that there is no effect of exposure to estrogen on the risk of endometrial

cancer.

Breslow and Day perform a test for trend assuming that the estrogen exposure levels were equally

spaced by recoding the exposure levels as 1, 2, 3, and 4.

We can easily reproduce their results by recoding our data in this way and by specifying the trend
option. Two new numeric variables were created, ca and co, corresponding to the variables case and
control, respectively. Below, we list some of the data and our results from symmetry:

. encode case, gen(ca)

. encode control, gen(co)

. label values ca

. label values co

. list in 1/4

case control count ca co

1. 0 0 6 1 1
2. 0 0.1-0.299 2 1 2
3. 0 0.3-0.625 3 1 3
4. 0 0.626+ 1 1 4

. symmetry ca co [fw=count], notable trend cc
chi2 df Prob>chi2

Symmetry (asymptotic) 17.10 6 0.0089
Marginal homogeneity (Stuart--Maxwell) 16.96 3 0.0007

Linear trend in the (log) RR 14.43 1 0.0001

We requested the continuity correction by specifying cc. Doing so is appropriate because our coded

exposure levels are equally spaced.

The test for trend was highly significant, indicating an increased risk of endometrial cancer with

increased dosage of conjugated estrogen.
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Youmust be cautious: theway inwhich you code the exposure variable affects the linear trend statistic.

If instead of coding the levels as 1, 2, 3, and 4, we had instead used 0, 0.2, 0.46, and 0.7 (roughly the

midpoint in the range of each level), we would have obtained a 𝜒2 statistic of 11.19 for these data.

Stored results
symmetry stores the following in r():

Scalars

r(N pair) number of matched pairs

r(chi2) asymptotic symmetry 𝜒2

r(df) asymptotic symmetry degrees of freedom

r(p) asymptotic symmetry 𝑝-value
r(chi2 sm) MH (Stuart–Maxwell) 𝜒2

r(df sm) MH (Stuart–Maxwell) degrees of freedom

r(p sm) MH (Stuart–Maxwell) 𝑝-value
r(chi2 b) MH (Bickenböller) 𝜒2

r(df b) MH (Bickenböller) degrees of freedom

r(p b) MH (Bickenböller) 𝑝-value
r(chi2 nd) MH (no diagonals) 𝜒2

r(df nd) MH (no diagonals) degrees of freedom

r(p nd) MH (no diagonals) 𝑝-value
r(chi2 t) 𝜒2 for linear trend

r(p trend) 𝑝-value for linear trend
r(p exact) exact symmetry 𝑝-value

Methods and formulas
Methods and formulas are presented under the following headings:

Asymptotic tests
Exact symmetry test

Asymptotic tests
Consider a square table with 𝐾 exposure categories, that is, 𝐾 rows and 𝐾 columns. Let 𝑛𝑖𝑗 be the

count corresponding to row 𝑖 and column 𝑗 of the table, 𝑁𝑖𝑗 = 𝑛𝑖𝑗 + 𝑛𝑗𝑖, for 𝑖, 𝑗 = 1, 2, . . . , 𝐾, and 𝑛𝑖.,

and let 𝑛.𝑗 be the marginal totals for row 𝑖 and column 𝑗, respectively. Asymptotic tests for symmetry
and marginal homogeneity for this 𝐾 × 𝐾 table are calculated as follows:

The null hypothesis of complete symmetry 𝑝𝑖𝑗 = 𝑝𝑗𝑖, 𝑖 ≠ 𝑗, is tested by calculating the test statistic
(Bowker 1948)

𝑇cs = ∑
𝑖<𝑗

(𝑛𝑖𝑗 − 𝑛𝑗𝑖)2

𝑛𝑖𝑗 + 𝑛𝑗𝑖

which is asymptotically distributed as 𝜒2 with 𝐾(𝐾 − 1)/2 − 𝑅 degrees of freedom, where 𝑅 is the

number of off-diagonal cells with 𝑁𝑖𝑗 = 0 as discussed in Hoenig, Morgan, and Brown (1995).
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The null hypothesis of marginal homogeneity, 𝑝𝑖. = 𝑝.𝑖, is tested by calculating the Stuart–Maxwell

test statistic (Stuart 1955; Maxwell 1970),

𝑇sm = d′V
−1
d

where d is a column vector with elements equal to the differences 𝑑𝑖 = 𝑛𝑖. − 𝑛.𝑖 for 𝑖 = 1, 2, . . . , 𝐾,

and V is the variance–covariance matrix with elements

𝑣𝑖𝑖 = 𝑛𝑖. + 𝑛.𝑖 − 2𝑛𝑖𝑖

𝑣𝑖𝑗 = −(𝑛𝑖𝑗 + 𝑛𝑗𝑖), 𝑖 ≠ 𝑗

𝑇sm is asymptotically 𝜒2 with 𝐾 − 1 degrees of freedom.

This test statistic properly accounts for the dependence between the table’s rows and columns. When

the matrix V is not of full rank, a generalized inverse V∗ is substituted for V−1.

The Bickeböller and Clerget-Darpoux (1995) marginal homogeneity test statistic is calculated by

𝑇mh = ∑
𝑖

(𝑛𝑖. − 𝑛.𝑖)2

𝑛𝑖. + 𝑛.𝑖

This statistic is asymptotically distributed, under the assumption of marginal independence, as 𝜒2 with

𝐾 − 1 degrees of freedom.

Themarginal homogeneity (no diagonals) test statistic𝑇 0
mh is calculated in the sameway as𝑇mh, except

that the diagonal elements do not enter into the calculation of the marginal totals. Unlike the previous

test statistic, 𝑇 0
mh reduces to a McNemar test statistic for 2× 2 tables. The test statistic {(𝐾 − 1)/2}𝑇 0

mh

is asymptotically distributed as 𝜒2 with 𝐾 − 1 degrees of freedom (Cleves, Olson, and Jacobs 1997;

Spieldman and Ewens 1996).

Breslow and Day’s test statistic for linear trend in the (log) of RR is

{∑𝑖<𝑗(𝑛𝑖𝑗 − 𝑛𝑗𝑖)(𝑋𝑗 − 𝑋𝑖) − 𝑐𝑐}
2

∑𝑖<𝑗(𝑛𝑖𝑗 + 𝑛𝑗𝑖)(𝑋𝑗 − 𝑋𝑖)2

where the 𝑋𝑗 are the doses associated with the various levels of exposure and 𝑐𝑐 is the continuity cor-
rection; it is asymptotically distributed as 𝜒2 with 1 degree of freedom.

The continuity correction option is applicable onlywhen the levels of the exposure variable are equally

spaced.

Exact symmetry test
The exact test is based on a permutation algorithm applied to the null distribution. The distribution

of the off-diagonal elements 𝑛𝑖𝑗, 𝑖 ≠ 𝑗, conditional on the sum of the complementary off-diagonal cells,

𝑁𝑖𝑗 = 𝑛𝑖𝑗 + 𝑛𝑗𝑖, can be written as the product of 𝐾(𝐾 − 1)/2 binomial random variables,

𝑃(n) = ∏
𝑖<𝑗

(𝑁𝑖𝑗
𝑛𝑖𝑗

)𝜋𝑖𝑗
𝑛𝑖𝑗(1 − 𝜋𝑖𝑗)𝑛𝑖𝑗



symmetry — Symmetry and marginal homogeneity tests 2980

where n is a vector with elements 𝑛𝑖𝑗 and 𝜋𝑖𝑗 = 𝐸(𝑛𝑖𝑗/𝑁𝑖𝑗|𝑁𝑖𝑗). Under the null hypothesis of complete
symmetry, 𝜋𝑖𝑗 = 𝜋𝑗𝑖 = 1/2, and thus the permutation distribution is given by

𝑃0(n) = ∏
𝑖<𝑗

(𝑁𝑖𝑗
𝑛𝑖𝑗

)(1

2
)

𝑁𝑖𝑗

The exact significance test is performed by evaluating

𝑃cs = ∑
𝑛∈𝑝

𝑃0(n)

where 𝑝 = {𝑛 ∶ 𝑃0(n) < 𝑃0(n∗)} and n∗ is the observed contingency table data vector. The algorithm

evaluates 𝑝cs exactly. For information about permutation tests, see Good (2005, 2006).

References
Bickeböller, H., and F. Clerget-Darpoux. 1995. Statistical properties of the allelic and genotypic transmission/disequilib-

rium test for multiallelic markers. Genetic Epidemiology 12: 865–870. https://doi.org/10.1002/gepi.1370120656.

BMDP. 1990. BMDP Statistical Software Manual. Oakland, CA: University of California Press.

Bowker, A. H. 1948. A test for symmetry in contingency tables. Journal of the American Statistical Association 43:

572–574. https://doi.org/10.2307/2280710.

Breslow, N. E., andN. E. Day. 1980.TheAnalysis of Case–Control Studies. Vol. 1 of StatisticalMethods in Cancer Research.

Lyon: IARC.

Cleves, M. A., J. M. Olson, and K. B. Jacobs. 1997. Exact transmission-disequilibrium tests with multiallelic markers.

Genetic Epidemiology 14: 337–347. https://doi.org/10.1002/(SICI)1098-2272(1997)14:4<337::AID-GEPI1>3.0.CO;

2-0.

Good, P. I. 2005. Permutation, Parametric, and Bootstrap Tests of Hypotheses: A Practical Guide to Resampling Methods for

Testing Hypotheses. 3rd ed. New York: Springer. https://doi.org/10.1007/b138696.

———. 2006. Resampling Methods: A Practical Guide to Data Analysis. 3rd ed. Boston: Birkhäuser. https://doi.org/10.

1007/0-8176-4444-X.

Hoenig, J. M., M. J. Morgan, and C. A. Brown. 1995. Analysing differences between two age determination methods by

tests of symmetry. Canadian Journal of Fisheries and Aquatic Sciences 52: 364–368. https://doi.org/10.1139/f95-038.

Mack, T. M., M. C. Pike, B. E. Henderson, R. I. Pfeffer, V. R. Gerkins, M. Arthur, and S. E. Brown. 1976. Estrogens and

endometrial cancer in a retirement community. New England Journal of Medicine 294: 1262–1267. https://doi.org/10.

1056/NEJM197606032942304.

Maxwell, A. E. 1970. Comparing the classification of subjects by two independent judges. British Journal of Psychiatry

116: 651–655. https://doi.org/10.1192/bjp.116.535.651.

Spieldman, R. S., andW. J. Ewens. 1996. TheTDTand other family-based tests for linkage disequilibrium and association.

American Journal of Human Genetics 59: 983–989.

Spieldman, R. S., R. E. McGinnis, andW. J. Ewens. 1993. Transmission test for linkage disequilibrium: The insulin gene

region and insulin-dependence diabetes mellitus (IDDM).American Journal of Human Genetics 52: 506–516.

Stuart, A. 1955.A test for homogeneity of the marginal distributions in a two-way classification. Biometrika 42: 412–416.

https://doi.org/10.2307/2333387.

Also see
[R] Epitab — Tables for epidemiologists

https://doi.org/10.1002/gepi.1370120656
https://doi.org/10.2307/2280710
https://www.stata.com/bookstore/smcr1.html
https://doi.org/10.1002/(SICI)1098-2272(1997)14:4<337::AID-GEPI1>3.0.CO;2-0
https://doi.org/10.1002/(SICI)1098-2272(1997)14:4<337::AID-GEPI1>3.0.CO;2-0
https://doi.org/10.1007/b138696
https://doi.org/10.1007/0-8176-4444-X
https://doi.org/10.1007/0-8176-4444-X
https://doi.org/10.1139/f95-038
https://doi.org/10.1056/NEJM197606032942304
https://doi.org/10.1056/NEJM197606032942304
https://doi.org/10.1192/bjp.116.535.651
https://doi.org/10.2307/2333387


table intro — Introduction to tables of frequencies, summaries, and command results

Description Remarks and examples Reference Also see

Description
Tables allow us to effectively communicate information about our data and results from our analyses.

The table command is a flexible tool for creating tables. It allows you to create tabulations, tables of
summary statistics, tables of results from hypothesis tests, tables of regression results, and more. table
also allows you to customize the table so that it effectively communicates the results.

Remarks and examples
Remarks are presented under the following headings:

Overview
Tabulations
Tables of summary statistics
Tables of results from other commands
Flexible tables combining results
Formatting, customizing, and exporting tables

Overview
The table command allows you to create various types of tables.

1. Tabulations of one, two, or more categorical variables, reporting frequencies, percentages, or pro-

portions.

2. Tables of summary statistics such as means, standard deviations, medians, and the like—perhaps

computed across levels of one or more categorical variables.

3. Tables of results from other Stata commands, such as regression results or results of classic hy-

pothesis tests.

4. Tables combining summary statistics and results from other Stata commands.

table obtains the statistics it reports in two ways. The table command itself can compute summary
statistics. table also provides a command() option that allows you to run any Stata command and include
its results in the table.

table also provides much flexibility for you to arrange the results in your table in a meaningful way.
You can control how the rows, columns, and potentially even separate tables are defined. For instance,

you might type

. table (var1) (var2) ...

to place the levels of var1 on the rows and the levels of var2 on the columns. The first set of parentheses
is used to define the rows, and the second set is used to define the columns. The parentheses could be

omitted in this case, but for clarity we will use them in our discussion here.
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We could use the levels of both var1 and var2 to define the rows.

. table (var1 var2) ...

If we have an additional variable, var3, we can define rows by both var1 and var2 and the columns by
var3 by typing

. table (var1 var2) (var3) ...

or we can place the levels of var2 and var3 on the columns,

. table (var1) (var2 var3) ...

We could even create separate tables for the levels of var3,

. table (var1) (var2) (var3) ...

The third set of parentheses defines the separate tables.

If our table reports multiple statistics, say, means and standard deviations, we can use the keyword

result to specify how they are included in the table layout. To place the statistics on separate rows, we

could type

. table (var1 result) (var2) ...

The flexibility of the table layout goes beyond these examples. You can add additional variables to

define rows, columns, and tables as is appropriate for the table you wish to create.

In addition to controlling the layout of your table, you can customize the results by specifying formats,

including stars representing significance, and selecting from styles that determine how the headers of the

table are displayed.
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Tabulations
Tabulations allow you to examine the distribution of your data across the levels of one or more cate-

gorical variables. Tabulations often report frequencies, percentages, and proportions.

With table, you can easily create one-way tabulations, two-way tabulations, three-way tabulations,
and even more complex tabulations. For example, we could create a two-way tabulation of region and
diabetes, reporting frequencies,

. table (region) (diabetes)

Diabetes status
Not diabetic Diabetic Total

Region
NE 1,997 98 2,095
MW 2,648 125 2,773
S 2,692 161 2,853
W 2,513 115 2,628
Total 9,850 499 10,349

or we can report percentages,

. table (region) (diabetes), statistic(percent)

Diabetes status
Not diabetic Diabetic Total

Region
NE 19.30 0.95 20.24
MW 25.59 1.21 26.79
S 26.01 1.56 27.57
W 24.28 1.11 25.39
Total 95.18 4.82 100.00

To learn how to create tabulations, see

[R] table oneway One-way tabulation

[R] table twoway Two-way tabulation

[R] table multiway Multiway tables

In these entries, we provide simplified syntax for creating the specific type of tabulation you are in-

terested in, and we provide a number of examples demonstrating how to build these tables and customize

the results.
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Tables of summary statistics
table can compute summary statistics such as minimums, maximums, means, standard deviations,

medians, and interquartile ranges. Summary statistics can be computed for one or more variables. Sum-

mary statistics can also be computed separately for groups of data. For example, we can create a table

reporting the means of age, height, and bmi,
. table, statistic(mean age height bmi)

Age (years) 47.57965
Height (cm) 167.6509
Body mass index (BMI) 25.5376

or we can compute these means separately for males and females,

. table () (sex), statistic(mean age height bmi)

Sex
Male Female Total

Age (years) 47.4238 47.72057 47.57965
Height (cm) 174.7421 161.2393 167.6509
Body mass index (BMI) 25.50999 25.56256 25.5376

To learn how to create tables of summary statistics, including the simplified table syntax and worked
examples, see

[R] table summary Table of summary statistics

You can also create a table of summary statistics with dtable. The advantage of using dtable is that
you can create a table with a title and notes and export it to a variety of file types, all in a single step.

Unlike table, however, dtable has a predefined layout, and you will not be able to specify how the

results should be arranged in the table.

Tables of results from other commands
With table’s command() option, you can run any Stata command and place statistics reported by that

command in your table. For instance, you might use test to test for differences in means or use regress
to fit a linear regression model. You can include any stored results from these commands in your table.

For example, we can create a table to compare coefficients from linear regressions of bpsysol on age
and weight fit separately for males and females.

. table (colname) (sex result), command(regress bpsystol age weight)

Sex
Male Female Total

Age (years) .4789361 .7735499 .6379892
Weight (kg) .3346106 .4586108 .4069041
Intercept 84.08037 61.70456 71.27096
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To learn how to create tables with results from other commands, including simplified table syntax
and worked examples, see

[R] table hypothesis tests Table of hypothesis tests

[R] table regression Table of regression results

Flexible tables combining results
table can create tables with combinations of frequencies, other summary statistics, and results from

other table commands. To see the full syntax and discussion of how table automates the table layout,
see

[R] table Table of frequencies, summaries, and command results

Formatting, customizing, and exporting tables
table allows you to customize your results by specifying the layout and with options that change the

numeric formatting, add characters such as percent signs or parentheses to specific types of statistics,

add stars representing significance levels, and modify the look of confidence intervals. In addition, Stata

provides predefined styles that you may select from using the style() option. These styles control

which labels are displayed in the headers of the tables, how the labels are aligned, how the statistics are

aligned within the cells, and more. To learn about the predefined styles that you can select from, see

[TABLES] Predefined styles. Examples of using the style() and other formatting options are provided
in the entries for specific types of tables listed in the previous sections.

The results from table can be customized even beyond what its formatting options allow. table is
unique in that it stores its results in a format that we refer to as a “collection”. Stata’s collect suite of
commands can be used to produce highly customized tables from results in a collection and to export

those tables to presentation-ready formats such as HTML, Word, LATEX, PDF, Excel, and more. Examples

of using collect to modify labels and table layout are also provided in the entries for the specific types
of tables listed in the previous sections. To learn more about the collect commands, see [TABLES] Intro
and the entries discussed therein.

Reference
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Description Quick start Menu Syntax
Options Remarks and examples Stored results References
Also see

Description
In this entry, we discuss how to use table to create a one-way tabulation, including frequencies,

percentages, and proportions.

Quick start
One-way table of frequencies, with rows corresponding to the levels of a1

table a1

Same as above, but with columns corresponding to the levels of a1
table () a1

Same as above, but treat missing values like other values of a1
table () a1, missing

One-way table of frequencies, using the collection style mystyle
table a1, style(mystyle)

One-way table of frequencies and percentages

table a1, statistic(frequency) statistic(percent)

Menu
Statistics > Summaries, tables, and tests > Tables of frequencies, summaries, and command results
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Syntax
Basic one-way tabulation

table varname [ if ] [ in ] [weight ] [ , options ]

Customized one-way tabulation

table [ (rowspec) ] [ (colspec) ] [ if ] [ in ] [weight ] [ , options ]

rowspec and colspec may be empty or may include varname, result, or varname and result, where
result refers to the requested statistics.

options Description

Main

nototals suppress the marginal totals

Statistics

statistic(stat) statistic to be reported; default is
statistic(frequency) when no weights
are specified and statistic(sumw) otherwise

Formats

nformat(% fmt [ results ][ , basestyle ]) specify numeric format

sformat(sfmt [ results ]) specify string format

Options

missing treat numeric missing values of varname like other
values

name(cname) collect results into a collection named cname

append append results to an existing collection

replace replace results of an existing collection

label(filename) specify the collection labels

style(filename [ , override ]) specify the collection style

markvar(newvar) create newvar that identifies observations used
in the tabulation

fweights, aweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
strL variables are not allowed; see [U] 12.4.8 strL.
markvar() does not appear in the dialog box.
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Options

� � �
Main �

nototals prevents table from displaying the row or column totals.

� � �
Statistics �

statistic(stat) specifies the statistic to be displayed. statistic() may be repeated to request mul-
tiple statistics.

Available statistics are

stat Definition

frequency frequency

sumw sum of weights

proportion proportion

percent percentage

rawproportion proportion ignoring optionally specified weights

rawpercent percentage ignoring optionally specified weights

� � �
Formats �

nformat(% fmt [ results ][ , basestyle ]) changes the numeric format, such as the number of decimal
places, for specified results. If results are not specified, the numeric format is changed for all results.

results may be any statistic named in option statistic() (that is, any stat).

This option is repeatable, and when multiple formats apply to one result, the rightmost specification

is applied.

This option does not affect the format of numeric layout variables (rowspec and colspec). The default

format of these variables is taken from the dataset.

basestyle indicates that the format be applied to results that do not already have their own format
instead of overriding the format for all results.

sformat(sfmt [ results ]) changes the string format for specified results. You can, for instance, add

symbols or text to the values reported in the table by modifying the string format.

sfmt may contain a mix of text and %s. Here %s refers to the numeric value that is formatted as

specified using nformat(). The text will be placed around the numeric values in your table as it is
placed around %s in this option. For instance, to place parentheses around the percent statistics, you
can specify sformat(”(%s)” percent).

results may be any statistic named in option statistic() (that is, any stat).

Two text characters must be specified using a special character sequence if you want them to be

displayed in your table. To include %, type %%. To include \, type \\. For instance, to place a percent
sign following percent statistics, you can specify sformat(”%s%%” percent).

This option is repeatable, and when multiple formats apply to one result, the rightmost specification

is applied.
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� � �
Options �

missing specifies that numeric missing values of varname be treated as valid categories. By default,
observations with a numeric missing value in varname are omitted.

name(cname) specifies that a collection named cname be associated with the collected statistics and

results. The default is name(Table).

append specifies that table append its collection information into the collection named in name().

replace permits table to overwrite an existing collection. This option is implied for name(Table)
when append is not specified.

label(filename) specifies the filename containing the collection labels to use for your table. Labels in
filename will be loaded for the table, and any labels not specified in filename will be taken from

the labels defined in c(collect label). The default is to use only the collection labels set in

c(collect label); see [TABLES] set collect label.

style(filename [ , override ]) specifies the filename containing the collection styles to use for your
table. The default collection styles will be discarded, and only the collection styles in filename will

be applied.

If you prefer the default collection styles but also want to apply any styles in filename, specify

override. If there are conflicts between the default collection styles and those in filename, the ones
in filename will take precedence.

The default is to use only the collection styles set in c(table style); see [TABLES] set table style.

The following option is available with table but is not shown in the dialog box:

markvar(newvar) generates an indicator variable that identifies the observations used in the tabulation.

Remarks and examples
Remarks are presented under the following headings:

Tabulation of one variable
Tabulation, including percentages
Customizing results
Advanced customization
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Tabulation of one variable
To obtain a one-way tabulation that reports the number of observations for each level of a categorical

variable, we need specify only the name of the categorical variable following table.

To demonstrate, we use data from the Second National Health and Nutrition Examination Survey

(NHANES II) (McDowell et al. 1981). We tabulate the hlthstat variable, which contains individuals’
self-reported health status categories.

. use https://www.stata-press.com/data/r18/nhanes2l
(Second National Health and Nutrition Examination Survey)
. table hlthstat

Frequency

Health status
Excellent 2,407
Very good 2,591
Good 2,938
Fair 1,670
Poor 729
Total 10,335

We see that more people self-reported having excellent, very good, or good health status than reported

having fair or poor health status.

Above, we see frequencies for those who reported a health status. This information is not available

for some individuals in the dataset. We can determine howmany missing values we have for this variable

by adding the missing option

. table hlthstat, missing

Frequency

Health status
Excellent 2,407
Very good 2,591
Good 2,938
Fair 1,670
Poor 729
. 2
Blank but applicable 14
Total 10,351

We find that there is missing health status data for 16 individuals—2 with a generic missing value

and 14 whose responses were labeled “Blank but applicable”.
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Tabulation, including percentages
In addition to frequencies, we can report the proportion or percentage of observations in each

health status category. By default, table reports frequencies, which is equivalent to including the

statistic(frequency) option. Here we include that option along with the statistic(percent)
option to report both frequencies and percentages.

. table hlthstat, statistic(frequency) statistic(percent)

Frequency Percent

Health status
Excellent 2,407 23.29
Very good 2,591 25.07
Good 2,938 28.43
Fair 1,670 16.16
Poor 729 7.05
Total 10,335 100.00

Now, it is clear that 28.43% of respondents reported having good health.

Customizing results
There are a number of ways that you can customize the results in your table.

In some cases, you may prefer to place frequencies and percentages on the rows and the levels of

the variable being tabulated on the columns. To do this, you can include both the row and column

specifications in parentheses following table. Here we use result in the first set of parentheses to

request that the statistics be placed on rows and the variable hlthstat in the second set of parentheses
to request that the levels of this variable be placed on the columns.

. table (result) (hlthstat), statistic(frequency) statistic(percent)

Health status
Excellent Very good Good Fair Poor Total

Frequency 2,407 2,591 2,938 1,670 729 10,335
Percent 23.29 25.07 28.43 16.16 7.05 100.00

Alternatively, we could have omitted result and typed

. table () (hlthstat), statistic(freq) statistic(percent)

Because we requested that hlthstat be moved to the columns by specifying it in the second set of

parentheses, table automatically moves the requested statistics to the rows.
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If instead of a short and wide table, you prefer a tall and narrow table, you can specify that both

the levels of hlthstat and the statistics be used to define the rows by including the variable name and
result in the first set of parentheses.

. table (hlthstat result), statistic(frequency) statistic(percent)

Health status
Excellent
Frequency 2,407
Percent 23.29

Very good
Frequency 2,591
Percent 25.07

Good
Frequency 2,938
Percent 28.43

Fair
Frequency 1,670
Percent 16.16

Poor
Frequency 729
Percent 7.05

Total
Frequency 10,335
Percent 100.00

In addition to modifying the layout of the table, we may want to customize the results reported within

the cells of the table. For instance, we can specify that the percentages be reported using only one decimal

place by using the nformat() option. Here we return to the two-column table layout.

. table hlthstat, statistic(frequency) statistic(percent)
> nformat(%5.1f percent)

Frequency Percent

Health status
Excellent 2,407 23.3
Very good 2,591 25.1
Good 2,938 28.4
Fair 1,670 16.2
Poor 729 7.1
Total 10,335 100.0
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The table command produces its output using a default set of styles, typically those defined in the
table style but could be any other style that you have set as the default by using set table style.
When customizing our tables, we can take advantage of one of the styles described in [TABLES] Prede-

fined styles. For instance, for tables with only one or two row variables, row labels that are right-aligned

may be preferred. Here we use the table-right style.

. table hlthstat, statistic(frequency) statistic(percent)
> nformat(%5.1f percent) style(table-right)

Frequency Percent

Health status
Excellent 2,407 23.3
Very good 2,591 25.1

Good 2,938 28.4
Fair 1,670 16.2
Poor 729 7.1
Total 10,335 100.0

Advanced customization
Customization can go beyond the predefined styles and options available to you in the table com-

mand. table creates a collection of results that can be used in combination with the collect suite of
commands to produce highly customized tables and to export those tables to presentation-ready formats

such as HTML, Word, LATEX, PDF, Excel, and more.

Continuing with our example above, if we want to shorten the labels on the column headings, we could

use the collect label levels command to define our new labels. After a change using collect, we
can use collect preview to see the results.

. collect label levels result frequency ”Freq” percent ”%”, modify

. collect preview

Freq %

Health status
Excellent 2,407 23.3
Very good 2,591 25.1

Good 2,938 28.4
Fair 1,670 16.2
Poor 729 7.1
Total 10,335 100.0

We could continue making style edits to this table. When we are happy with the result, we can then

export it to the format of our choice using collect export.

See [TABLES] collect label for details on the collect label command we used here, and for an

overview of the collect suite, see [TABLES] Intro.
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Stored results
table stores the following in r():

Scalars

r(N) number of observations

References
Bruun, N. H. 2022. Interactively building table reports with basetable. Stata Journal 22: 416–429.

McDowell, A., A. Engel, J. T. Massey, and K. Maurer. 1981. “Plan and operation of the Second National Health and

Nutrition Examination Survey, 1976–1980”. In Vital and Health Statistics, ser. 1, no. 15. Hyattsville, MD: National

Center for Health Statistics.

Also see
[R] table — Table of frequencies, summaries, and command results

[R] table intro — Introduction to tables of frequencies, summaries, and command results

[R] table multiway — Multiway tables

[R] table twoway — Two-way tabulation

[R] tabulate oneway — One-way table of frequencies

[TABLES] Intro — Introduction

https://doi.org/10.1177/1536867X221106417
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Description Quick start Menu Syntax
Options Remarks and examples Stored results References
Also see

Description
In this entry, we discuss how to use table to create a two-way tabulation, including frequencies,

percentages, and proportions.

Quick start
Table of frequencies, with rows defined by categories of a1 and columns defined by categories of a2

table a1 a2

Same as above, but treat missing values like other values

table a1 a2, missing

Table with the percentage of observations in each cell

table a1 a2, statistic(percent)

For each category of a1, report the percentage of observations across levels of a2
table a1 a2, statistic(percent, across(a2))

Report frequencies and the proportion of observations across categories of a1, enclosed within parenthe-
ses

table a1 a2, statistic(frequency) ///
statistic(proportion, across(a1)) sformat(”(%s)” proportion)

Menu
Statistics > Summaries, tables, and tests > Tables of frequencies, summaries, and command results

2995
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Syntax
Basic two-way tabulation

table rowvar colvar [ if ] [ in ] [weight ] [ , options ]

Customized two-way tabulation

table [ (rowspec) ] [ (colspec) ] [ if ] [ in ] [weight ] [ , options ]

rowspec may be empty or may include rowvar, result, or rowvar and result, where result refers to
the requested statistics.

colspec may be empty or may include colvar, result, or colvar and result, where result refers to
the requested statistics.

options Description

Main

totals(totals) report only the specified totals

nototals suppress the marginal totals

Statistics

statistic(stat[ , statopts ]) statistic to be reported; default is
statistic(frequency) when no weights
are specified and statistic(sumw) otherwise

Formats

nformat(% fmt [ results ][ , basestyle ]) specify numeric format

sformat(sfmt [ results ]) specify string format

Options

missing treat numeric missing values of rowvar and colvar
like other values

zerocounts report 0 for empty cell counts

name(cname) collect results into a collection named cname

append append results to an existing collection

replace replace results of an existing collection

label(filename) specify the collection labels

style(filename [ , override ]) specify the collection style

markvar(newvar) create newvar that identifies observations used
in the tabulation

fweights, aweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
strL variables are not allowed; see [U] 12.4.8 strL.
markvar() does not appear in the dialog box.
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Options

� � �
Main �

totals(totals) and nototals control which totals are to be displayed in the table. By default, all totals
are reported.

totals(totals) specifies which margin totals to display in the reported table. totals can contain

rowvar, colvar, and their interaction. Interactions can be specified by using the # operator.

nototals prevents table from displaying any totals.

� � �
Statistics �

statistic(stat[ , statopts ]) specifies the statistic to be displayed. statistic() may be repeated to
request multiple statistics.

Available statistics are

stat Definition

frequency frequency

sumw sum of weights

proportion proportion

percent percentage

rawproportion proportion ignoring optionally specified weights

rawpercent percentage ignoring optionally specified weights

The following options may be specified in combination with statistics proportion, percent,
rawproportion, and rawpercent:

statopts Definition

across(rowvar) percentages or proportions across rows

across(colvar) percentages or proportions across columns

total compute overall percentages or proportions

� � �
Formats �

nformat(% fmt [ results ][ , basestyle ]) changes the numeric format, such as the number of decimal
places, for specified results. If results are not specified, the numeric format is changed for all results.

results may be any statistic named in option statistic() (that is, any stat).

This option is repeatable, and when multiple formats apply to one result, the rightmost specification

is applied.

This option does not affect the format of numeric layout variables (rowspec and colspec). The default

format of these variables is taken from the dataset.

basestyle indicates that the format be applied to results that do not already have their own format
instead of overriding the format for all results.
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sformat(sfmt [ results ]) changes the string format for specified results. You can, for instance, add

symbols or text to the values reported in the table by modifying the string format.

sfmt may contain a mix of text and %s. Here %s refers to the numeric value that is formatted as

specified using nformat(). The text will be placed around the numeric values in your table as it is
placed around %s in this option. For instance, to place parentheses around the percent statistics, you
can specify sformat(”(%s)” percent).

results may be any statistic named in option statistic() (that is, any stat).

Two text characters must be specified using a special character sequence if you want them to be

displayed in your table. To include %, type %%. To include \, type \\. For instance, to place a percent
sign following percent statistics, you can specify sformat(”%s%%” percent).

This option is repeatable, and when multiple formats apply to one result, the rightmost specification

is applied.

� � �
Options �

missing specifies that numeric missing values of rowvar or colvar be treated as valid categories. By
default, observations with a numeric missing value in rowvar or colvar are omitted.

zerocounts specifies that table report a 0 in empty cells for the frequency statistic.

name(cname) specifies that a collection named cname be associated with the collected statistics and

results. The default is name(Table).

append specifies that table append its collection information into the collection named in name().

replace permits table to overwrite an existing collection. This option is implied for name(Table)
when append is not specified.

label(filename) specifies the filename containing the collection labels to use for your table. Labels in
filename will be loaded for the table, and any labels not specified in filename will be taken from

the labels defined in c(collect label). The default is to use only the collection labels set in

c(collect label); see [TABLES] set collect label.

style(filename [ , override ]) specifies the filename containing the collection styles to use for your
table. The default collection styles will be discarded, and only the collection styles in filename will

be applied.

If you prefer the default collection styles but also want to apply any styles in filename, specify

override. If there are conflicts between the default collection styles and those in filename, the ones
in filename will take precedence.

The default is to use only the collection styles set in c(table style); see [TABLES] set table style.

The following option is available with table but is not shown in the dialog box:

markvar(newvar) generates an indicator variable that identifies the observations used in the tabulation.

Remarks and examples
Remarks are presented under the following headings:

Tabulation of two variables
Tabulation, including percentages
Customizing results
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Tabulation of two variables
To obtain a two-way tabulation that reports the number of observations across the levels of two cate-

gorical variables, we need to specify only the names of the categorical variables following table.

To demonstrate, we use data from the Second National Health and Nutrition Examination Survey

(NHANES II) (McDowell et al. 1981) and create a two-way tabulation of self-reported health status

(hlthstat) by region of the USA (region).

. use https://www.stata-press.com/data/r18/nhanes2l
(Second National Health and Nutrition Examination Survey)
. table hlthstat region

Region
NE MW S W Total

Health status
Excellent 562 730 546 569 2,407
Very good 558 721 651 661 2,591
Good 631 735 807 765 2,938
Fair 257 419 532 462 1,670
Poor 77 167 317 168 729
Total 2,085 2,772 2,853 2,625 10,335

We can examine the missing values as well by adding the missing option.

. table hlthstat region, missing

Region
NE MW S W Total

Health status
Excellent 562 730 546 569 2,407
Very good 558 721 651 661 2,591
Good 631 735 807 765 2,938
Fair 257 419 532 462 1,670
Poor 77 167 317 168 729
. 1 1 2
Blank but applicable 10 1 3 14
Total 2,096 2,774 2,853 2,628 10,351

We find that 16 individuals have a missing health status, and the majority of these are from individuals

in the Northeast. The empty cells correspond to regions in which all the individuals have a nonmissing

health status; we can fill in these empty cells with 0s:
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. table hlthstat region, missing zerocounts

Region
NE MW S W Total

Health status
Excellent 562 730 546 569 2,407
Very good 558 721 651 661 2,591
Good 631 735 807 765 2,938
Fair 257 419 532 462 1,670
Poor 77 167 317 168 729
. 1 1 0 0 2
Blank but applicable 10 1 0 3 14
Total 2,096 2,774 2,853 2,628 10,351

Tabulation, including percentages
Instead of frequencies, we can request that table report the percentage of observations in each cell

of the table by specifying the statistic(percent) option.
. table hlthstat region, statistic(percent)

Region
NE MW S W Total

Health status
Excellent 5.44 7.06 5.28 5.51 23.29
Very good 5.40 6.98 6.30 6.40 25.07
Good 6.11 7.11 7.81 7.40 28.43
Fair 2.49 4.05 5.15 4.47 16.16
Poor 0.75 1.62 3.07 1.63 7.05
Total 20.17 26.82 27.61 25.40 100.00

We see that 5.44% of all observations correspond to individuals in excellent health who live in the

Northeast.

Rather than looking at overall percentages, we might want to examine the distribution of observations

within each health status level across the four regions. To do this, we can add the across(region)
option.

. table hlthstat region, statistic(percent, across(region))

Region
NE MW S W Total

Health status
Excellent 23.35 30.33 22.68 23.64 100.00
Very good 21.54 27.83 25.13 25.51 100.00
Good 21.48 25.02 27.47 26.04 100.00
Fair 15.39 25.09 31.86 27.66 100.00
Poor 10.56 22.91 43.48 23.05 100.00
Total 20.17 26.82 27.61 25.40 100.00

Of individuals reporting excellent health, 23.35% live in the Northeast, while 30.33% live in the

Midwest, 22.68% live in the South, and 23.64% live in the West.
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We can also look at the distribution of observations across health status categories within each region.

. table hlthstat region, statistic(percent, across(hlthstat))

Region
NE MW S W Total

Health status
Excellent 26.95 26.33 19.14 21.68 23.29
Very good 26.76 26.01 22.82 25.18 25.07
Good 30.26 26.52 28.29 29.14 28.43
Fair 12.33 15.12 18.65 17.60 16.16
Poor 3.69 6.02 11.11 6.40 7.05
Total 100.00 100.00 100.00 100.00 100.00

Of individuals living in the South, 11.11% report having poor health. This is notably higher than the

percentage of individuals reporting poor health in the other regions.

It is often helpful to see both frequencies and percentages in the same table. To do this, we can add

the statistic(frequency) option to our command.

. table hlthstat region, statistic(frequency)
> statistic(percent, across(hlthstat))

Region
NE MW S W Total

Health status
Excellent
Frequency 562 730 546 569 2,407
Percent 26.95 26.33 19.14 21.68 23.29

Very good
Frequency 558 721 651 661 2,591
Percent 26.76 26.01 22.82 25.18 25.07

Good
Frequency 631 735 807 765 2,938
Percent 30.26 26.52 28.29 29.14 28.43

Fair
Frequency 257 419 532 462 1,670
Percent 12.33 15.12 18.65 17.60 16.16

Poor
Frequency 77 167 317 168 729
Percent 3.69 6.02 11.11 6.40 7.05

Total
Frequency 2,085 2,772 2,853 2,625 10,335
Percent 100.00 100.00 100.00 100.00 100.00
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Customizing results
There are several ways that we can customize the results of our two-way tabulation.

For instance, in some cases, we may prefer to omit the row and column totals. We can specify the

nototals option to suppress these totals.
. table hlthstat region, statistic(frequency)
> statistic(percent, across(hlthstat)) nototals

Region
NE MW S W

Health status
Excellent
Frequency 562 730 546 569
Percent 26.95 26.33 19.14 21.68

Very good
Frequency 558 721 651 661
Percent 26.76 26.01 22.82 25.18

Good
Frequency 631 735 807 765
Percent 30.26 26.52 28.29 29.14

Fair
Frequency 257 419 532 462
Percent 12.33 15.12 18.65 17.60

Poor
Frequency 77 167 317 168
Percent 3.69 6.02 11.11 6.40

Or perhaps we want to see row totals or column totals but not both. We can include the totals(region)
option to display only the region totals.

. table hlthstat region, statistic(frequency)
> statistic(percent, across(hlthstat)) totals(region)

Region
NE MW S W

Health status
Excellent
Frequency 562 730 546 569
Percent 26.95 26.33 19.14 21.68

Very good
Frequency 558 721 651 661
Percent 26.76 26.01 22.82 25.18

Good
Frequency 631 735 807 765
Percent 30.26 26.52 28.29 29.14

Fair
Frequency 257 419 532 462
Percent 12.33 15.12 18.65 17.60

Poor
Frequency 77 167 317 168
Percent 3.69 6.02 11.11 6.40

Total
Frequency 2,085 2,772 2,853 2,625
Percent 100.00 100.00 100.00 100.00
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Once we have the statistics we want in our table, we can format the way that they appear. If, for

instance, we want to add a percent sign to each of our percentages, we can specify the sformat(”%s%%”
percent) option. The sformat() option specifies that we want to add string characters to the numbers
in the table. Within it, we refer to the numeric values as %s and place any string characters we want

around this. The percent sign is unique because it already has special meaning in this context. Therefore,

we must type two percent signs, %%, to display one. Finally, by adding percent within the sformat()
option, we specify that we want to apply this format only to the percent statistics.

. table hlthstat region, statistic(frequency)
> statistic(percent, across(hlthstat)) totals(region)
> sformat(”%s%%” percent)

Region
NE MW S W

Health status
Excellent
Frequency 562 730 546 569
Percent 26.95% 26.33% 19.14% 21.68%

Very good
Frequency 558 721 651 661
Percent 26.76% 26.01% 22.82% 25.18%

Good
Frequency 631 735 807 765
Percent 30.26% 26.52% 28.29% 29.14%

Fair
Frequency 257 419 532 462
Percent 12.33% 15.12% 18.65% 17.60%

Poor
Frequency 77 167 317 168
Percent 3.69% 6.02% 11.11% 6.40%

Total
Frequency 2,085 2,772 2,853 2,625
Percent 100.00% 100.00% 100.00% 100.00%

Now that we have added the percent sign, we could argue that the labels Frequency and Percent are
unnecessary. If we remove these statistic names from the row labels, we might also want to right-align

the remaining labels in row headers. Finally, for readability, we could insert blank lines between levels

of hlthstat. We could use the collect suite of commands to make these style changes. Fortunately,
however, one of our predefined styles, table-tab2, includes these style changes, and we can select it
using the style() option.
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. table hlthstat region, statistic(frequency)
> statistic(percent, across(hlthstat)) totals(region)
> sformat(”%s%%” percent) style(table-tab2)

Region
NE MW S W

Health status
Excellent 562 730 546 569

26.95% 26.33% 19.14% 21.68%

Very good 558 721 651 661
26.76% 26.01% 22.82% 25.18%

Good 631 735 807 765
30.26% 26.52% 28.29% 29.14%

Fair 257 419 532 462
12.33% 15.12% 18.65% 17.60%

Poor 77 167 317 168
3.69% 6.02% 11.11% 6.40%

Total 2,085 2,772 2,853 2,625
100.00% 100.00% 100.00% 100.00%

You can learn more about the predefined styles described at [TABLES] Predefined styles. If none of

these provide the exact style you want for your table, you can further customize the results by using the

collect suite of commands. To learn more, see [TABLES] Intro.

If you wish to include this table in a paper, on a webpage, or in another format, you can easily export

it in LATEX, Word, Excel, HTML, and a variety of other formats by using collect export.

Stored results
table stores the following in r():

Scalars

r(N) number of observations

References
Huber, C. 2021. Customizable tables in Stata 17, part 1: The new table command. The Stata Blog: Not Elsewhere

Classified. https://blog.stata.com/2021/06/07/customizable-tables-in-stata-17-part-1-the-new-table-command/.

McDowell, A., A. Engel, J. T. Massey, and K. Maurer. 1981. “Plan and operation of the Second National Health and

Nutrition Examination Survey, 1976–1980”. In Vital and Health Statistics, ser. 1, no. 15. Hyattsville, MD: National

Center for Health Statistics.

https://blog.stata.com/2021/06/07/customizable-tables-in-stata-17-part-1-the-new-table-command/
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Description Quick start Menu Syntax
Options Remarks and examples Stored results Reference
Also see

Description
In this entry, we discuss how to use the table command to create tables displaying frequencies,

percentages, and proportions across levels of three or more variables. Additionally, we demonstrate how

a single table command can create multiple tables corresponding to levels of variables or different

statistics.

Quick start
Table of frequencies with rows defined by the levels of a1 and columns defined by the categories of a2

and a3
table (a1) (a2 a3)

Same as above, but with rows defined by levels of a1 and a2 and columns defined by levels of a3
table (a1 a2) (a3)

Separate tables for each level a3 with the rows of each table defined by the levels of a1 and the columns
defined by levels of a2

table (a1) (a2) (a3)

Report percentages of observations in each cell rather than frequencies

table (a1) (a2 a3), statistic(percent)

Report both frequencies and percentages

table (a1) (a2 a3), statistic(percent) statistic(frequency)

Report the percentages across levels of a3
table (a1) (a2 a3), statistic(percent, across(a3))

Menu
Statistics > Summaries, tables, and tests > Tables of frequencies, summaries, and command results

3006
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Syntax
Table with rows defined by multiple variables

table rowvars colvar [ if ] [ in ] [weight ] [ , options ]

Table with columns defined by multiple variables

table rowvar (colvars) [ if ] [ in ] [weight ] [ , options ]

Table with rows and columns defined by multiple variables

table (rowvars) (colvars) [ if ] [ in ] [weight ] [ , options ]

Multiple multiway tables

table (rowvars) (colvars) (tabvars) [ if ] [ in ] [weight ] [ , options ]

Customized multiway tables

table (rowspec) (colspec) [ (tabspec) ] [ if ] [ in ] [weight ] [ , options ]

rowspec, colspec, and tabspec may be empty or may include variable names or any of the following

keywords:
keyword Description

result requested statistics

across index across() specifications
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options Description

Main

totals(totals) report only the specified totals

nototals suppress the marginal totals

Statistics

statistic(stat[ , statopts ]) statistic to be reported; default is
statistic(frequency) when no weights
are specified and statistic(sumw) otherwise

Formats

nformat(% fmt [ results ][ , basestyle ]) specify numeric format

sformat(sfmt [ results ]) specify string format

Options

listwise use listwise deletion to handle missing values

missing treat numeric missing values like other values

showcounts show sample size for all variables in statistic()
option

zerocounts report 0 for empty cell counts

name(cname) collect results into a collection named cname

append append results to an existing collection

replace replace results of an existing collection

label(filename) specify the collection labels

style(filename [ , override ]) specify the collection style

markvar(newvar) create newvar to identify observations used to
compute the statistics

fweights, aweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
strL variables are not allowed; see [U] 12.4.8 strL.
markvar() does not appear in the dialog box.

Options

� � �
Main �

totals(totals) and nototals control which totals are to be displayed in the table. By default, all totals
are reported.

totals(totals) specifies that totals be displayed only for the variables or interactions specified. totals
can contain rowvars, colvars, tabvars, and interactions between any of these variables. Interactions

can be specified by using the # operator.

nototals prevents table from displaying any totals.
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� � �
Statistics �

statistic(stat[ , statopts ]) specifies the statistic to be displayed. statistic() may be repeated to
request multiple statistics.

Available statistics are

stat Definition

frequency frequency

sumw sum of weights

proportion proportion

percent percentage

rawproportion proportion ignoring optionally specified weights

rawpercent percentage ignoring optionally specified weights

The following options may be specified in combination with statistics proportion, percent,
rawproportion, and rawpercent:

statopts Definition

across(cellspec) percentages or proportions across levels of variables or interactions

total compute overall percentages or proportions

cellspec may contain rowvars, colvars, tabvars, or an interaction between any of these variables.

Interactions can be specified by using the # operator.

� � �
Formats �

nformat(% fmt [ results ][ , basestyle ]) changes the numeric format, such as the number of decimal
places, for specified results. If results are not specified, the numeric format is changed for all results.

results may be any statistic named in option statistic() (that is, any stat).

This option is repeatable, and when multiple formats apply to one result, the rightmost specification

is applied.

This option does not affect the format of numeric layout variables (rowspec, colspec, and tabspec).

The default format of these variables is taken from the dataset.

basestyle indicates that the format be applied to results that do not already have their own format
instead of overriding the format for all results.

sformat(sfmt [ results ]) changes the string format for specified results. You can, for instance, add

symbols or text to the values reported in the table by modifying the string format.

sfmt may contain a mix of text and %s. Here %s refers to the numeric value that is formatted as

specified using nformat(). The text will be placed around the numeric values in your table as it is
placed around %s in this option. For instance, to place parentheses around the percent statistics, you
can specify sformat(”(%s)” percent).

results may be any statistic named in option statistic() (that is, any stat).

Two text characters must be specified using a special character sequence if you want them to be

displayed in your table. To include %, type %%. To include \, type \\. For instance, to place a percent
sign following percent statistics, you can specify sformat(”%s%%” percent).

This option is repeatable, and when multiple formats apply to one result, the rightmost specification

is applied.
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� � �
Options �

listwise handles missing values through listwise deletion, meaning that the entire observation is omit-
ted from the sample if any variable specified in a statistic() option is missing for that observation.
By default, table will omit an observation only if all variables specified in all statistic() options
are missing for that observation.

missing specifies that numeric missing values of any rowvars, colvars, or tabvars be treated as valid
categories. By default, observations with a numeric missing value in rowvars, colvars, or tabvars are

omitted.

showcounts specifies that table report the sample size for each variable specified in option

statistic().

zerocounts specifies that table report a 0 in empty cells for the frequency statistic.

name(cname) specifies that a collection named cname be associated with the collected statistics and

results. The default is name(Table).

append specifies that table append its collection information into the collection named in name().

replace permits table to overwrite an existing collection. This option is implied for name(Table)
when append is not specified.

label(filename) specifies the filename containing the collection labels to use for your table. Labels in
filename will be loaded for the table, and any labels not specified in filename will be taken from

the labels defined in c(collect label). The default is to use only the collection labels set in

c(collect label); see [TABLES] set collect label.

style(filename [ , override ]) specifies the filename containing the collection styles to use for your
table. The default collection styles will be discarded, and only the collection styles in filename will

be applied.

If you prefer the default collection styles but also want to apply any styles in filename, specify

override. If there are conflicts between the default collection styles and those in filename, the ones
in filename will take precedence.

The default is to use only the collection styles set in c(table style); see [TABLES] set table style.

The following option is available with table but is not shown in the dialog box:

markvar(newvar) generates an indicator variable that identifies the observations used in the tabulation.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Tables with columns defined by multiple variables
Appending tables
Multiple tables with specified totals
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Introduction
The table command allows you to create complex tables beyond one- and two-way tabulations. In

multiway tabulations, you can display frequencies across levels of two or more variables. You can have

levels of one variable nested within levels of another variable in columns, in rows, or in both dimensions.

And with a single command, you can create separate tables for levels of one or more variables or for

different results.

Tables with columns defined by multiple variables
We use data from the Second National Health and Nutrition Examination Survey (NHANES II) (Mc-

Dowell et al. 1981). The data contain some demographic information, such as the age, sex, and race of

participants. The dataset also contains some measures of health, including whether the individual has

high blood pressure (highbp).

Before we create any tables, we will modify a few labels in our dataset so that they will appear as we

wish in our tables.

. use https://www.stata-press.com/data/r18/nhanes2l
(Second National Health and Nutrition Examination Survey)
. label define yesno 0 ”No” 1 ”Yes”
. label values highbp diabetes heartatk yesno
. label variable diabetes ”Diabetes”

Suppose we want to examine how many males and females in each age group have high blood pres-

sure. Let’s place the levels of age group on the rows and the levels of high blood pressure and sex on the

columns.

. table (agegrp) (sex highbp), nototals

Sex
Male Female

High blood pressure High blood pressure
No Yes No Yes

Age group
20--29 825 291 1,103 101
30--39 480 290 687 165
40--49 336 274 434 228
50--59 255 347 335 354
60--69 568 801 625 866
70+ 147 301 180 358

By default, table includes the totals for each category; we added the nototals option to suppress
them here.
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To better compare the occurrence of high blood pressure, let’s now compute percentages of highbp.
Below, we create the same table, but within each sex and age group combination, we report the percentage

of individuals with and without high blood pressure.

. table (agegrp) (sex highbp), nototals statistic(percent, across(highbp))

Sex
Male Female

High blood pressure High blood pressure
No Yes No Yes

Age group
20--29 73.92 26.08 91.61 8.39
30--39 62.34 37.66 80.63 19.37
40--49 55.08 44.92 65.56 34.44
50--59 42.36 57.64 48.62 51.38
60--69 41.49 58.51 41.92 58.08
70+ 32.81 67.19 33.46 66.54

Here we see that 26.08% of males in their 20s have high blood pressure and only 8.39% of females

in their 20s have high blood pressure.

If we had simply typed statistic(percent), then we would see the percentage of observations in
each cell. With the suboption across(), we can compute the percentage within each sex and age group
combination (across levels of highbp).

Next, let’s request that percentages be calculated across the categories of high blood pressure and sex.

We can alternatively think of this as being percentages within age group.

. table (agegrp) (sex highbp), nototals statistic(percent, across(highbp#sex))

Sex
Male Female

High blood pressure High blood pressure
No Yes No Yes

Age group
20--29 35.56 12.54 47.54 4.35
30--39 29.59 17.88 42.36 10.17
40--49 26.42 21.54 34.12 17.92
50--59 19.75 26.88 25.95 27.42
60--69 19.86 28.01 21.85 30.28
70+ 14.91 30.53 18.26 36.31

Here we see that 12.54% of individuals in their 20s are males with high blood pressure and 4.35% are

females with high blood pressure.

We can reverse the order of our column variables so that we have the levels of sex nested within

levels of high blood pressure. We will again request percentages across the categories of highbp.
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. table (agegrp) (highbp sex), nototals statistic(percent, across(highbp))

High blood pressure
No Yes
Sex Sex

Male Female Male Female

Age group
20--29 73.92 91.61 26.08 8.39
30--39 62.34 80.63 37.66 19.37
40--49 55.08 65.56 44.92 34.44
50--59 42.36 48.62 57.64 51.38
60--69 41.49 41.92 58.51 58.08
70+ 32.81 33.46 67.19 66.54

The last two columns represent the percentage of males with high blood pressure in the age group and

the percentage of females with high blood pressure in the age group. We can clearly see that, across all

age groups, the percent of males who have high blood pressure is greater than the percentage of females

with high blood pressure.

Perhaps we want a table that includes only the two columns on the right. To create a table with

the percentages of individuals with high blood pressure, we can take advantage of a unique feature of

table—its results are automatically stored in a “collection” and can be easily customized. Specifically,

when we create a table using the table command, the results are stored in a collection named Table, and
these results replace the results from any previous table command. The collect suite of commands
can be used to change the layout, style, and formatting of tables created from results in collection; see

[TABLES] Intro to learn about collections of results and creating customized tables. For our table, we

will use the collect layout command, which specifies how items from a collection should be arranged.

Below, we arrange the percentages in a table with rows defined by the categories of agegrp and columns
defined by the categories of sex and category 1 of highbp.

. collect layout (agegrp) (highbp[1]#sex)
Collection: Table

Rows: agegrp
Columns: highbp[1]#sex
Table 1: 7 x 2

High blood pressure
Yes
Sex

Male Female

Age group
20--29 26.07527 8.388704
30--39 37.66234 19.3662
40--49 44.91803 34.44109
50--59 57.6412 51.37881
60--69 58.50986 58.08182
70+ 67.1875 66.54275
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Appending tables
When we specify multiple variables for the row or column specification, the levels of one variable

are nested within the levels of another. When you simply wish to join rows or columns from multiple

tables, this can be easily done with the append option.

For example, we first create a table with the percentage of males and females in each age group with

diabetes.

. table (sex agegrp) (diabetes), nototals statistic(percent, across(diabetes))

Diabetes
No Yes

Sex
Male
Age group
20--29 99.64 0.36
30--39 99.61 0.39
40--49 97.38 2.62
50--59 94.68 5.32
60--69 91.96 8.04
70+ 88.39 11.61

Female
Age group
20--29 99.09 0.91
30--39 97.88 2.12
40--49 96.07 3.93
50--59 94.19 5.81
60--69 91.42 8.58
70+ 89.03 10.97

Wewant to include the same information for highbp and heartatk in the same table, which indicates
whether someone has had a heart attack. To do this, we will run the table command three times, once
specifying each of these variables as the column variable. We will use the name(table1) option to

specify that the results be stored in a collection named table1. To the second and third table commands,
wewill add the append option so that all the results are stored in the same collection rather than overriding
the results from the previous command.

. quietly: table (sex agegrp) (diabetes), nototals
> statistic(percent, across(diabetes)) name(table1)
. quietly: table (sex agegrp) (highbp), nototals
> statistic(percent, across(highbp)) name(table1) append
. quietly: table (sex agegrp) (heartatk), nototals
> statistic(percent, across(heartatk)) name(table1) append
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With the results from all our table commands stored in one collection, we can again take advantage
of the collect layout command to arrange results into a table. We request that sex and agegroup
define the rows. By including the # between variable names, we specify that we want the levels of these
variables to be interacted to form the rows. We request that levels of diabetes, highbp, and heartatk
form the columns. Because we did not include # between the variable names, their levels will not be
interacted. Instead, they will be listed one after the other.

. collect layout (sex#agegrp) (diabetes highbp heartatk)
Collection: table1

Rows: sex#agegrp
Columns: diabetes highbp heartatk
Table 1: 17 x 6

Diabetes High blood pressure Prior heart attack
No Yes No Yes No Yes

Sex
Male
Age group
20--29 99.64 0.36 73.92 26.08 100.00
30--39 99.61 0.39 62.34 37.66 99.74 0.26
40--49 97.38 2.62 55.08 44.92 98.03 1.97
50--59 94.68 5.32 42.36 57.64 92.36 7.64
60--69 91.96 8.04 41.49 58.51 86.56 13.44
70+ 88.39 11.61 32.81 67.19 83.48 16.52

Female
Age group
20--29 99.09 0.91 91.61 8.39 99.92 0.08
30--39 97.88 2.12 80.63 19.37 99.76 0.24
40--49 96.07 3.93 65.56 34.44 98.79 1.21
50--59 94.19 5.81 48.62 51.38 96.66 3.34
60--69 91.42 8.58 41.92 58.08 94.57 5.43
70+ 89.03 10.97 33.46 66.54 92.01 7.99
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Multiple tables with specified totals
There may be times when instead of creating one large table for multiple variables, you would prefer

to create separate tables for each level of one or more variables or for different statistics. For example,

we previously had levels of age group nested within categories of sex. Now, we would like to create

tables that show how males and females in each age group rate their own health. The variable hlthstat
records how individuals self-rate their health. Let’s create a table that shows what percent of males in

each age group selected each of the health categories and a separate table to list the percent of females.

. table (agegrp) (hlthstat) (sex), statistic(percent, across(hlthstat))
Sex = Male

Health status
Excellent Very good Good Fair Poor Total

Age group
20--29 39.61 32.71 20.97 5.82 0.90 100.00
30--39 36.88 29.61 26.10 5.84 1.56 100.00
40--49 28.03 25.90 29.51 12.30 4.26 100.00
50--59 17.80 21.30 35.11 15.97 9.82 100.00
60--69 13.33 19.56 28.94 23.00 15.16 100.00
70+ 14.77 14.99 26.62 28.41 15.21 100.00
Total 25.50 24.71 27.30 14.71 7.78 100.00

Sex = Female

Health status
Excellent Very good Good Fair Poor Total

Age group
20--29 32.39 34.55 24.92 6.98 1.16 100.00
30--39 29.76 30.71 28.12 9.29 2.12 100.00
40--49 26.71 23.07 29.29 15.63 5.31 100.00
50--59 17.15 20.93 33.43 20.20 8.28 100.00
60--69 10.76 20.31 33.22 25.49 10.22 100.00
70+ 10.78 19.14 26.39 30.48 13.20 100.00
Total 21.29 25.40 29.45 17.47 6.40 100.00

Sex = Total

Health status
Excellent Very good Good Fair Poor Total

Age group
20--29 35.86 33.66 23.02 6.42 1.03 100.00
30--39 33.15 30.19 27.16 7.65 1.85 100.00
40--49 27.34 24.43 29.39 14.03 4.81 100.00
50--59 17.46 21.10 34.21 18.23 9.00 100.00
60--69 11.99 19.95 31.17 24.30 12.59 100.00
70+ 12.59 17.26 26.50 29.54 14.11 100.00
Total 23.29 25.07 28.43 16.16 7.05 100.00

We see that 14.77% of males in their 70s and beyond rated their health as excellent and 10.78% of

females in their 70s and beyond rated their health as excellent.
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Note that we actually created three tables, one for males, one for females, and one for everybody.

We are mainly interested in the first two tables and would like to drop the third table. But if we use the

nototals option, we will not get the row totals we see above. Instead, we can specify which totals we

do want with the totals() option:

. table (agegrp) (hlthstat) (sex), statistic(percent, across(hlthstat))
> totals(sex#agegrp sex#hlthstat sex)
Sex = Male

Health status
Excellent Very good Good Fair Poor Total

Age group
20--29 39.61 32.71 20.97 5.82 0.90 100.00
30--39 36.88 29.61 26.10 5.84 1.56 100.00
40--49 28.03 25.90 29.51 12.30 4.26 100.00
50--59 17.80 21.30 35.11 15.97 9.82 100.00
60--69 13.33 19.56 28.94 23.00 15.16 100.00
70+ 14.77 14.99 26.62 28.41 15.21 100.00
Total 25.50 24.71 27.30 14.71 7.78 100.00

Sex = Female

Health status
Excellent Very good Good Fair Poor Total

Age group
20--29 32.39 34.55 24.92 6.98 1.16 100.00
30--39 29.76 30.71 28.12 9.29 2.12 100.00
40--49 26.71 23.07 29.29 15.63 5.31 100.00
50--59 17.15 20.93 33.43 20.20 8.28 100.00
60--69 10.76 20.31 33.22 25.49 10.22 100.00
70+ 10.78 19.14 26.39 30.48 13.20 100.00
Total 21.29 25.40 29.45 17.47 6.40 100.00

sex#agegrp gives us the row totals, the total for each age group within each category of sex.
sex#hlthstat provides us with the column totals, one of which would be the total percent of females
that rated their health as excellent. Finally, sex gives us the total in the rightmost cell in the bottom of

each table.
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In all our previous tables, we used variables to define the rows and columns, but you can also use

results in the row, column, and table identifiers. For example, suppose that in addition to reporting

percentages for males and females in each age group, we wanted to report frequencies. We can create

separate tables for the percentages and frequencies by specifying result in the third set of parentheses.
To include the totals for each age group and for each category of sex, we specify the interaction of sex
and agegrp in the totals() option:

. table (sex agegrp) (hlthstat) (result), statistic(percent, across(hlthstat))
> statistic(frequency) totals(sex#agegrp)
Percent

Health status
Excellent Very good Good Fair Poor Total

Sex
Male
Age group
20--29 39.61 32.71 20.97 5.82 0.90 100.00
30--39 36.88 29.61 26.10 5.84 1.56 100.00
40--49 28.03 25.90 29.51 12.30 4.26 100.00
50--59 17.80 21.30 35.11 15.97 9.82 100.00
60--69 13.33 19.56 28.94 23.00 15.16 100.00
70+ 14.77 14.99 26.62 28.41 15.21 100.00

Female
Age group
20--29 32.39 34.55 24.92 6.98 1.16 100.00
30--39 29.76 30.71 28.12 9.29 2.12 100.00
40--49 26.71 23.07 29.29 15.63 5.31 100.00
50--59 17.15 20.93 33.43 20.20 8.28 100.00
60--69 10.76 20.31 33.22 25.49 10.22 100.00
70+ 10.78 19.14 26.39 30.48 13.20 100.00

Frequency

Health status
Excellent Very good Good Fair Poor Total

Sex
Male
Age group
20--29 442 365 234 65 10 1,116
30--39 284 228 201 45 12 770
40--49 171 158 180 75 26 610
50--59 107 128 211 96 59 601
60--69 182 267 395 314 207 1,365
70+ 66 67 119 127 68 447

Female
Age group
20--29 390 416 300 84 14 1,204
30--39 253 261 239 79 18 850
40--49 176 152 193 103 35 659
50--59 118 144 230 139 57 688
60--69 160 302 494 379 152 1,487
70+ 58 103 142 164 71 538

In the table of frequencies, we see that of the 1,204 females in their 20s, only 390 rated their health

as excellent. In the table of percentages, we see that this is equal to 32.39% of females in their 20s.
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If we wish to include one of these tables, for example, in a paper or on a webpage, we can easily

export it in LATEX, Word, Excel, HTML, and a variety of other formats by using collect export.

Stored results
table stores the following in r():

Scalars

r(N) number of observations

Reference
McDowell, A., A. Engel, J. T. Massey, and K. Maurer. 1981. “Plan and operation of the Second National Health and

Nutrition Examination Survey, 1976–1980”. In Vital and Health Statistics, ser. 1, no. 15. Hyattsville, MD: National

Center for Health Statistics.

Also see
[R] table — Table of frequencies, summaries, and command results

[R] table intro — Introduction to tables of frequencies, summaries, and command results

[R] table oneway — One-way tabulation

[R] table twoway — Two-way tabulation

[TABLES] Intro — Introduction
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Description Quick start Menu Syntax
Options Remarks and examples Stored results References
Also see

Description
In this entry, we discuss how to use table to create a table of summary statistics.

Quick start
Table with the mean of v1, v2, and v3 for each category of a1 and a2; rows are defined by categories of

a1 and variables v1, v2, and v3
table a1 a2, stat(mean v1 v2 v3)

Same as above, but also report standard deviations and suppress the totals; rows are defined by the results

for each variable within each category of a1
table (a1 var result) (a2), stat(mean v1 v2 v3) ///
stat(sd v1 v2 v3) nototals

Table with number of observations in each category of a2 and a3, for each level of a1
table a1, stat(fvfrequency a2 a3)

Same as above, and report percentage of observations in each category

table a1, stat(fvfrequency a2 a3) ///
stat(fvpercent a2 a3)

Same as above, and report the percentages with a percent sign, using two decimal places, and enclose

them in parentheses

table (a1) (var result), stat(fvfrequency a2 a3) ///
stat(fvpercent a2 a3) ///
nformat(%5.2f fvpercent) sformat(”(%s%%)” fvpercent)

Menu
Statistics > Summaries, tables, and tests > Tables of frequencies, summaries, and command results

3020
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Syntax
Basic table of summary statistics

table [ rowvar ] [ colvar ] [ if ] [ in ] [weight ], statistic(statspec)
[ statistic(statspec) [ . . . ] ] [ options ]

Customized table of summary statistics

table [ (rowspec) ] [ (colspec) ] [ (tabspec) ] [ if ] [ in ] [weight ], statistic(statspec)
[ statistic(statspec) [ . . . ] ] [ options ]

rowspec, colspec, and tabspec may be empty or may include variable names or any of the following

keywords:
keyword Description

result requested statistics

var variables from statistic() option
across index across() specifications

options Description

Main

totals(totals) report only the specified totals

nototals suppress the marginal totals

Statistics

statistic(statspec) statistic to be reported; default is
statistic(frequency) when no weights
are specified and statistic(sumw) otherwise

Formats

nformat(% fmt [ results ][ , basestyle ]) specify numeric format

sformat(sfmt [ results ]) specify string format

Options

listwise use listwise deletion to handle missing values

missing treat numeric missing values of variables in rowspec,
colspec, and tabspec like other values

showcounts show sample size for all variables in statistic()
option

zerocounts report 0 for empty cell counts

name(cname) collect results into a collection named cname

append append results to an existing collection

replace replace results of an existing collection

label(filename) specify the collection labels

style(filename [ , override ]) specify the collection style

markvar(newvar) create newvar that identifies observations used
in the tabulation
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fweights, aweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
strL variables are not allowed; see [U] 12.4.8 strL.
markvar() does not appear in the dialog box.

Options

� � �
Main �

totals(totals) and nototals control which totals are to be displayed in the table. By default, all totals
are reported.

totals(totals) specifies which margin totals to display in the reported table. totals can contain

variables in rowspec, colspec, tabspec, and their interaction. Interactions can be specified by using

the # operator.

nototals prevents table from displaying any totals.

� � �
Statistics �

statistic(statspec) specifies the statistic to be displayed. statistic() may be repeated to re-

quest multiple statistics. Frequency statistics, summary statistics, and ratio statistics are available by

specifying statistic(freqstat), statistic(sumstat varlist), and statistic(ratiostat [ varlist ]
[ , ratio options ]), respectively.
statistic() may be repeated to request multiple statistics.

statistic(freqstat) specifies that frequencies be computed.

freqstat Definition

frequency frequency

sumw sum of weights
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statistic(sumstat varlist) specifies that summary statistic sumstat be computed for the variables
in varlist.

sumstat Definition

mean mean

semean standard error of the mean

sebinomial standard error of the mean, binomial

sepoisson standard error of the mean, Poisson

variance variance

sd standard deviation

skewness skewness

kurtosis kurtosis

cv coefficient of variation

count number of nonmissing values

median median

p# #th percentile

q1 first quartile

q2 second quartile

q3 third quartile

iqr interquartile range

min minimum value

max maximum value

range range

first first value

last last value

firstnm first nonmissing value

lastnm last nonmissing value

total total

rawtotal unweighted total

fvfrequency frequency of each factor-variable level

fvrawfrequency unweighted frequency of each factor-variable level

fvproportion proportion within each factor-variable level

fvrawproportion unweighted proportion within each factor-variable level

fvpercent percentage within each factor-variable level

fvrawpercent unweighted percentage within each factor-variable level
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statistic(ratiostat [ varlist ] [ , ratio options ]) specifies that ratio statistic ratiostat be computed.
If varlist is specified, ratios are computed based on the totals of the specified variables. If varlist

is not specified, ratios are computed based on frequencies.

ratiostat Definition

proportion proportion

percent percentage

rawproportion proportion ignoring optionally specified weights

rawpercent percentage ignoring optionally specified weights

ratio options Definition

across(cellspec) percentages or proportions across levels of

variables or interactions

total compute overall percentages or proportions

cellspecmay contain any variables in rowspec, colspec, tabspec, or an interaction between any of

these variables. Interactions can be specified by using the # operator.

� � �
Formats �

nformat(% fmt [ results ][ , basestyle ]) changes the numeric format, such as the number of decimal
places, for specified results. If results are not specified, the numeric format is changed for all results.

resultsmay be any statistic named in option statistic() (that is, any freqstat, sumstat, or ratiostat).

This option is repeatable, and when multiple formats apply to one result, the rightmost specification

is applied.

This option does not affect the format of numeric layout variables (rowspec, colspec, and tabspec)

or the format of factor variables specified in the statistic() option. The default format of these
variables is taken from the dataset.

basestyle indicates that the format be applied to results that do not already have their own format
instead of overriding the format for all results.

sformat(sfmt [ results ]) changes the string format for specified results. You can, for instance, add

symbols or text to the values reported in the table by modifying the string format.

sfmt may contain a mix of text and %s. Here %s refers to the numeric value that is formatted as

specified using nformat(). The text will be placed around the numeric values in your table as it is
placed around %s in this option. For instance, to place parentheses around the percent statistics, you
can specify sformat(”(%s)” percent).

resultsmay be any statistic named in option statistic() (that is, any freqstat, sumstat, or ratiostat).

Two text characters must be specified using a special character sequence if you want them to be

displayed in your table. To include %, type %%. To include \, type \\. For instance, to place a percent
sign following percent statistics, you can specify sformat(”%s%%” percent).

This option is repeatable, and when multiple formats apply to one result, the rightmost specification

is applied.
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� � �
Options �

listwise handles missing values through listwise deletion, meaning that the entire observation is omit-
ted from the sample if any variable specified in a statistic() option is missing for that observation.
By default, table will omit an observation only if all variables specified in all statistic() options
are missing for that observation.

missing specifies that numeric missing values of any variables specified in rowspec, colspec, or tabspec
be treated as valid categories. By default, observations with a numeric missing value in any of these

variables are omitted.

This option does not apply to factor variables specified with statistics fvfrequency,
fvrawfrequency, fvproportion, fvrawproportion, fvpercent, or fvrawpercent.

showcounts specifies that table report the sample size for each variable specified in option

statistic().

zerocounts specifies that table report a 0 in empty cells for results count, frequency, fvfrequency,
and fvrawfrequency.

name(cname) specifies that a collection named cname be associated with the collected statistics and

results. The default is name(Table).

append specifies that table append its collection information into the collection named in name().

replace permits table to overwrite an existing collection. This option is implied for name(Table)
when append is not specified.

label(filename) specifies the filename containing the collection labels to use for your table. Labels in
filename will be loaded for the table, and any labels not specified in filename will be taken from

the labels defined in c(collect label). The default is to use only the collection labels set in

c(collect label); see [TABLES] set collect label.

style(filename [ , override ]) specifies the filename containing the collection styles to use for your
table. The default collection styles will be discarded, and only the collection styles in filename will

be applied.

If you prefer the default collection styles but also want to apply any styles in filename, specify

override. If there are conflicts between the default collection styles and those in filename, the ones
in filename will take precedence.

The default is to use only the collection styles set in c(table style); see [TABLES] set table style.

The following option is available with table but is not shown in the dialog box:

markvar(newvar) generates an indicator variable that identifies the observations used in the tabulation.
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Remarks and examples
Remarks are presented under the following headings:

Basic summary statistic tables
Classic Table 1

Basic summary statistic tables
The table command can be used to compute a variety of summary statistics and display them in a

table. Summary statistics can be computed for the full dataset or across levels of one or more categorical

variables.

To demonstrate, we use data from the Second National Health and Nutrition Examination Survey

(NHANES II) (McDowell et al. 1981) and create a table reporting the mean body mass index (BMI) of

individuals across four regions of the USA. We use the statistic() option to request that means be

computed, and we specify region as our row variable for the table. Thus, means are computed for each

region separately and for all the regions combined (Total).

. use https://www.stata-press.com/data/r18/nhanes2l
(Second National Health and Nutrition Examination Survey)
. table region, statistic(mean bmi)

Mean

Region
NE 25.57535
MW 25.51936
S 25.63317
W 25.42299
Total 25.5376

The mean BMI is very similar across regions. We might want to look at some additional statistics.

We can add the minimums and maximums in our table by repeating our statistic() option for each
statistic; we will use the stat() abbreviation.

. table region, stat(mean bmi) stat(min bmi) stat(max bmi)

Mean Minimum value Maximum value

Region
NE 25.57535 15.36715 57.10803
MW 25.51936 14.1351 61.1297
S 25.63317 12.3856 55.43552
W 25.42299 15.69046 54.05056
Total 25.5376 12.3856 61.1297
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If we want to include even more statistics, the table will become very wide. We can move the statistics

to the rows of our table by specifying the keyword result in the first set of parentheses. We place region
on the columns by specifying this variable in the second set of parentheses.

. table (result) (region),
> stat(mean bmi) stat(median bmi) stat(sd bmi)
> stat(min bmi) stat(max bmi)

Region
NE MW S W Total

Mean 25.57535 25.51936 25.63317 25.42299 25.5376
Median 25.00623 24.71567 24.98451 24.66734 24.81812
Standard deviation 4.72798 4.905965 5.084678 4.883534 4.914969
Minimum value 15.36715 14.1351 12.3856 15.69046 12.3856
Maximum value 57.10803 61.1297 55.43552 54.05056 61.1297

Instead of computing many statistics for one variable, we might want to compute one statistic for

multiple variables. To do this, we can include a list of variables within a single statistic() option.
Let’s compute the means of age, BMI, and systolic blood pressure (bpsystol).

. table (result) (region), stat(mean age bmi bpsystol)

Region
NE MW S W Total

Age (years) 47.81584 46.52776 48.19068 47.83828 47.57965
Body mass index (BMI) 25.57535 25.51936 25.63317 25.42299 25.5376
Systolic blood pressure 131.3836 130.4863 131.1626 130.5936 130.8817

Classic Table 1
In many reports, the first discussion of the data is accompanied by a “Table 1”, a reporting of summary

statistics for all variables of interest. Often the table includes a mixture of continuous and categorical

variables. We may also want to specify these in a particular order based on importance. In many cases,

the table hasmultiple columns with the summary statistics reported for each level of a categorical variable

of interest.

Here we will demonstrate how to create one variety of such a table. We have two factor variables of

interest, diabetes and hlthstat, for which we would like to compute the percentage of individuals in
each category. We will use the fvpercent statistic to obtain these percentages. We also have three con-

tinuous variables, age, bmi, and bpsystol, for which we would like to compute means. We specify the

statistic() options in the order we wish to see the results in the table. To specify that the variables in
the statistic() options appear on the rows, we include the keyword var in the first set of parentheses.
We place region on the columns by listing it in the second set of parentheses.
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. table (var) (region),
> statistic(fvpercent diabetes)
> statistic(mean age bmi)
> statistic(fvpercent hlthstat)
> statistic(mean bpsystol)

Region
NE MW S W Total

Diabetes status=Not diabetic
Factor-variable percent 95.32 95.49 94.36 95.62 95.18

Diabetes status=Diabetic
Factor-variable percent 4.68 4.51 5.64 4.38 4.82

Age (years)
Mean 47.81584 46.52776 48.19068 47.83828 47.57965

Body mass index (BMI)
Mean 25.57535 25.51936 25.63317 25.42299 25.5376

Health status=Excellent
Factor-variable percent 26.95 26.33 19.14 21.68 23.29

Health status=Very good
Factor-variable percent 26.76 26.01 22.82 25.18 25.07

Health status=Good
Factor-variable percent 30.26 26.52 28.29 29.14 28.43

Health status=Fair
Factor-variable percent 12.33 15.12 18.65 17.60 16.16

Health status=Poor
Factor-variable percent 3.69 6.02 11.11 6.40 7.05

Systolic blood pressure
Mean 131.3836 130.4863 131.1626 130.5936 130.8817

We have the statistics we want, but clearly our table could be improved. Let’s start by applying one

of the predefined styles, table-1, by adding the style() option.

. table (var) (region),
> statistic(fvpercent diabetes)
> statistic(mean age bmi)
> statistic(fvpercent hlthstat)
> statistic(mean bpsystol) style(table-1)

Region
NE MW S W Total

Diabetes status
Not diabetic 95.32 95.49 94.36 95.62 95.18

Diabetic 4.68 4.51 5.64 4.38 4.82

Age (years) 47.81584 46.52776 48.19068 47.83828 47.57965

Body mass index (BMI) 25.57535 25.51936 25.63317 25.42299 25.5376

Health status
Excellent 26.95 26.33 19.14 21.68 23.29
Very good 26.76 26.01 22.82 25.18 25.07

Good 30.26 26.52 28.29 29.14 28.43
Fair 12.33 15.12 18.65 17.60 16.16
Poor 3.69 6.02 11.11 6.40 7.05

Systolic blood pressure 131.3836 130.4863 131.1626 130.5936 130.8817
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This style removes the labels for the type of statistic being reported, cleans up the reporting of factor

variables in the row headers, and right-aligns the content in the row headers. In addition, we may want

to specify that the means be reported to two decimal places using the nformat(%6.2f mean) option.

. table (var) (region),
> statistic(fvpercent diabetes)
> statistic(mean age bmi)
> statistic(fvpercent hlthstat )
> statistic(mean bpsystol) style(table-1) nformat(%6.2f mean)

Region
NE MW S W Total

Diabetes status
Not diabetic 95.32 95.49 94.36 95.62 95.18

Diabetic 4.68 4.51 5.64 4.38 4.82

Age (years) 47.82 46.53 48.19 47.84 47.58

Body mass index (BMI) 25.58 25.52 25.63 25.42 25.54

Health status
Excellent 26.95 26.33 19.14 21.68 23.29
Very good 26.76 26.01 22.82 25.18 25.07

Good 30.26 26.52 28.29 29.14 28.43
Fair 12.33 15.12 18.65 17.60 16.16
Poor 3.69 6.02 11.11 6.40 7.05

Systolic blood pressure 131.38 130.49 131.16 130.59 130.88
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Let’s go one step further. Perhaps we want the mean and standard deviation of each continuous

variable, and we want the frequency and percent for each factor variable. We need to specify a few more

statistic() options.

. table (var) (region),
> stat(fvfreq diabetes) statistic(fvpercent diabetes)
> statistic(mean age bmi) statistic(sd age bmi)
> statistic(fvfreq hlthstat) statistic(fvpercent hlthstat)
> statistic(mean bpsystol) statistic(sd bpsystol)
> style(table-1) nformat(%6.2f mean sd)

Region
NE MW S W Total

Diabetes status
Not diabetic 1,997 2,648 2,692 2,513 9,850

95.32 95.49 94.36 95.62 95.18
Diabetic 98 125 161 115 499

4.68 4.51 5.64 4.38 4.82

Age (years) 47.82 46.53 48.19 47.84 47.58
17.02 17.38 16.86 17.53 17.21

Body mass index (BMI) 25.58 25.52 25.63 25.42 25.54
4.73 4.91 5.08 4.88 4.91

Health status
Excellent 562 730 546 569 2,407

26.95 26.33 19.14 21.68 23.29
Very good 558 721 651 661 2,591

26.76 26.01 22.82 25.18 25.07
Good 631 735 807 765 2,938

30.26 26.52 28.29 29.14 28.43
Fair 257 419 532 462 1,670

12.33 15.12 18.65 17.60 16.16
Poor 77 167 317 168 729

3.69 6.02 11.11 6.40 7.05

Systolic blood pressure 131.38 130.49 131.16 130.59 130.88
24.31 22.50 24.21 22.42 23.33
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Finally, to distinguish among our statistics, we can use the sformat() option to add parentheses

around our standard deviations and percent signs to our percentages.

. table (var) (region),
> stat(fvfreq diabetes) statistic(fvpercent diabetes)
> statistic(mean age bmi) statistic(sd age bmi)
> statistic(fvfreq hlthstat) statistic(fvpercent hlthstat)
> statistic(mean bpsystol) statistic(sd bpsystol)
> style(table-1) nformat(%6.2f mean sd)
> sformat(”(%s)” sd) sformat(”%s%%” fvpercent)

Region
NE MW S W Total

Diabetes status
Not diabetic 1,997 2,648 2,692 2,513 9,850

95.32% 95.49% 94.36% 95.62% 95.18%
Diabetic 98 125 161 115 499

4.68% 4.51% 5.64% 4.38% 4.82%

Age (years) 47.82 46.53 48.19 47.84 47.58
(17.02) (17.38) (16.86) (17.53) (17.21)

Body mass index (BMI) 25.58 25.52 25.63 25.42 25.54
(4.73) (4.91) (5.08) (4.88) (4.91)

Health status
Excellent 562 730 546 569 2,407

26.95% 26.33% 19.14% 21.68% 23.29%
Very good 558 721 651 661 2,591

26.76% 26.01% 22.82% 25.18% 25.07%
Good 631 735 807 765 2,938

30.26% 26.52% 28.29% 29.14% 28.43%
Fair 257 419 532 462 1,670

12.33% 15.12% 18.65% 17.60% 16.16%
Poor 77 167 317 168 729

3.69% 6.02% 11.11% 6.40% 7.05%

Systolic blood pressure 131.38 130.49 131.16 130.59 130.88
(24.31) (22.50) (24.21) (22.42) (23.33)

We have added many customizations to our table. However, you may prefer a different look. For

another style, you can select from the predefined styles described in [TABLES] Predefined styles. If

none of these provide the exact style you want for your table, you can further customize the results by

using the collect suite of commands. To learn more, see [TABLES] Intro.

If you wish to include this table in a paper, on a webpage, or in another format, you can easily export

it in LATEX, Word, Excel, HTML, and a variety of other formats by using collect export.

Stored results
table stores the following in r():

Scalars

r(N) number of observations
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Description Quick start Menu Syntax
Options Remarks and examples Stored results Reference
Also see

Description
In this entry, we discuss how to use table to create tables with results of hypothesis tests.

Quick start
Table with pairwise correlations stored in matrix r(C)

table (rowname) (colname), command(r(C): pwcorr v1 v2 v3)

Table with all the numeric scalars returned by ttest; rows correspond to the different results
table (result) (command), command(ttest v1, by(catvar))

Table with means and two-sided 𝑝-values; columns correspond to the different results
table (command) (result), ///
command(r(mu_1) r(mu_2) r(p): ttest v1, by(catvar))

Same as above, but with statistics for v1 and v2
table (command) (result), ///
command(r(mu_1) r(mu_2) r(p): ttest v1, by(catvar)) ///
command(r(mu_1) r(mu_2) r(p): ttest v2, by(catvar))

Menu
Statistics > Summaries, tables, and tests > Tables of frequencies, summaries, and command results

3033
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Syntax
table ([ rowspec ]) ([ colspec ]) [ (tabspec) ] [ if ] [ in ] [weight ],
command(cmdspec) [ command(cmdspec) ... ] [ options ]

rowspec, colspec, and tabspec may be empty or may include variable names or any of the following

keywords:
keyword Description

result requested statistics

stars stars denoting statistical significance

command index option command()
colname column names for matrix statistics

rowname row names for matrix statistics

options Description

Commands

command(cmdspec) collect results from the specified Stata command

Formats

nformat(% fmt [ results ][ , basestyle ]) specify numeric format

sformat(sfmt [ results ]) specify string format

Stars

stars(starspec) add stars to denote statistical significance

Options

missing treat numeric missing values like other values

name(cname) collect results into a collection named cname

append append results to an existing collection

replace replace results of an existing collection

label(filename) specify the collection labels

style(filename [ , override ]) specify the collection style

noisily display output from each command

fweights, aweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
strL variables are not allowed; see [U] 12.4.8 strL.
noisily does not appear in the dialog box.
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Options

� � �
Commands �

command(cmdspec) specifies the Stata commands from which to collect results. command() may be

repeated to collect results from multiple commands.

cmdspec is [ explist: ] command [ arguments ] [ , cmdoptions ]
explist specifies which results to collect and report in the table. explist may include result identi-

fiers and named expressions.

result identifiers are results stored in r() and e() by the command. For instance, result iden-
tifiers could be r(mean), r(C), or e(chi2). After estimation commands, result identifiers
also include the following:

Identifier Result

r b coefficients or transformed coefficients reported by command

r se standard errors of r b
r z test statistics for r b
r z abs absolute value of r z
r p 𝑝-values for r b
r lb lower bounds of confidence intervals for r b
r ub upper bounds of confidence intervals for r b
r ci confidence intervals for r b
r crlb lower bounds of credible intervals for r b
r crub upper bounds of credible intervals for r b
r cri credible intervals for r b
r df degrees of freedom for r b

named expressions are specified as name = exp, where name may be any valid Stata name and
exp is an expression, typically an expression that involves one or more result identifiers. An

example of a named expression is sd = sqrt(r(variance)).

For r-class commands, the default is to include all numeric scalars posted to r() in the table
results. For e-class commands, the default is to include r b in the table results.

command is any command that follows standard Stata syntax.

arguments may be anything so long as they do not include an if clause, in range, or weight

specification.

Any if or in qualifier and weights should be specified directly with table, not within the
command() option. Weights are passed to command only if they are specified.

cmdoptions may be anything supported by command.

� � �
Formats �

nformat(% fmt [ results ][ , basestyle ]) changes the numeric format, such as the number of decimal
places, for specified results. If results are not specified, the numeric format is changed for all results.

results may be any name in the e() or r() results produced by commands specified in option

command().

This option is repeatable, and when multiple formats apply to one result, the rightmost specification

is applied.
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This option does not affect the format of numeric layout variables (rowspec, colspec, and tabspec).

The default format of these variables is taken from the dataset.

basestyle indicates that the format be applied to results that do not already have their own format
instead of overriding the format for all results.

sformat(sfmt [ results ]) changes the string format for specified results. You can, for instance, add

symbols or text to the values reported in the table by modifying the string format.

sfmt may contain a mix of text and %s. Here %s refers to the numeric value that is formatted as

specified using nformat(). The text will be placed around the numeric values in your table as it is
placed around %s in this option. For instance, to place parentheses around the percent statistics, you
can specify sformat(”(%s)” percent).

results may be any name in the e() or r() results produced by commands specified in option

command().

Two text characters must be specified using a special character sequence if you want them to be

displayed in your table. To include %, type %%. To include \, type \\. For instance, to place a percent
sign following percent statistics, you can specify sformat(”%s%%” percent).

This option is repeatable, and when multiple formats apply to one result, the rightmost specification

is applied.

� � �
Stars �

stars(starspec) specifies that stars representing statistical significance be included in the table. starspec
identifies the result whose values determine significance, which characters should represent each

significance level, and where these characters should be displayed in the table. starspec is

starres [ #1 ”label1” [ #2 ”label2” [ #3 ”label3” [ #4 ”label4” [ #5 ”label5” ] ] ] ] ]
[ , attach(attachres) result dimension starsnoteopts ]

starres is the name of the result whose values determine which characters, typically which number

of stars, are to be displayed.

label1 specifies the characters to be displayed when starres < #1.

label2 specifies the characters to be displayed when starres < #2.

label3 specifies the characters to be displayed when starres < #3.

label4 specifies the characters to be displayed when starres < #4.

label5 specifies the characters to be displayed when starres < #5.

attach(attachres) specifies the name of the result to which the characters defined by label1, . . . ,
label5 are to be attached. If attach() is not specified, a new result named stars is created
and is automatically added to the table.

result and dimension control how collect stars adds itemswhen labeling significant results.
These options are mutually exclusive.

result specifies the default behavior, and this option is necessary only if the following

dimension behavior is in effect and you want to change back to the result behavior.

dimension specifies that dimension stars be added to the collection. Items will be tagged
with stars[value], and the labels will be tagged with stars[label]. Use this option for
layouts where results are to be stacked within columns, and use new dimension stars in
the column specification of the layout.
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starsnoteopts control the display and composition of the stars note.

noshownote and shownote control whether to display the stars note.

increasing and decreasing control the order of 𝑝-values in the stars note.
pvname(string) specifies a name for the 𝑝-value in the stars note. The default is pvname(p).
delimiter(string) specifies the delimiter between labels in the stars note. The default is

delimiter(”,”).

nformat(% fmt) specifies the numeric format for the cutoff values in the stars note. The default
is nformat(%9.0g).

prefix(string) specifies the prefix for the stars note. The prefix is empty by default.

suffix(string) specifies the suffix for the stars note. The suffix is empty by default.

For example, stars( r p 0.01 ”***” 0.05 ”**” 0.1 ”*”, attach( r b)) could be added to
a table of regression results to specify that stars be defined based on the 𝑝-values in r p and be
attached to the reported coefficients ( r b).

� � �
Options �

missing specifies that numeric missing values of any variables specified in rowspec, colspec, or tabspec
be treated as valid categories. By default, observations with a numeric missing value in any of these

variables are omitted.

name(cname) specifies that a collection named cname be associated with the collected statistics and

results. The default is name(Table).

append specifies that table append its collection information into the collection named in name().

replace permits table to overwrite an existing collection. This option is implied for name(Table)
when append is not specified.

label(filename) specifies the filename containing the collection labels to use for your table. Labels in
filename will be loaded for the table, and any labels not specified in filename will be taken from

the labels defined in c(collect label). The default is to use only the collection labels set in

c(collect label); see [TABLES] set collect label.

style(filename [ , override ]) specifies the filename containing the collection styles to use for your
table. The default collection styles will be discarded, and only the collection styles in filename will

be applied.

If you prefer the default collection styles but also want to apply any styles in filename, specify

override. If there are conflicts between the default collection styles and those in filename, the ones
in filename will take precedence.

The default is to use only the collection styles set in c(table style); see [TABLES] set table style.

The following option is available with table but is not shown in the dialog box:

noisily specifies that output from the commands specified in command() options be displayed. By

default, output from commands is suppressed.
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Remarks and examples
Remarks are presented under the following headings:

Introduction
Creating tables from scalars
Creating tables from matrices

Introduction
The table command can be used to create tables with results of hypothesis tests. For example, you

can create a table with results from a mean-comparison test, a test of proportions, or a test of normality.

table does not perform hypothesis tests directly. Rather, table will run any Stata command that

you include in its command() option and place results from that command into the table. You determine

which results you would like to see in the table. You can select any of the results stored by the command.

Creating tables from scalars
We have data from the Second National Health and Nutrition Examination Survey (NHANES II) (Mc-

Dowell et al. 1981). The data contain some demographic information, such as the age, sex, and race of

participants. The data also contain some measures of health, including whether the individual has high

blood pressure (highbp), has diabetes, or has had a heart attack previously (heartatk).

Suppose we want to examine the proportion of males and females that have high blood pressure,

that have diabetes, and that have had a heart attack previously. With prtest, we can test whether the
proportions are equal between males and females. For example, let’s perform a test of proportions for

diabetes:

. use https://www.stata-press.com/data/r18/nhanes2l
(Second National Health and Nutrition Examination Survey)
. prtest diabetes, by(sex)
Two-sample test of proportions Male: Number of obs = 4915

Female: Number of obs = 5434

Group Mean Std. err. z P>|z| [95% conf. interval]

Male .0441506 .0029302 .0384074 .0498937
Female .0518955 .0030091 .0459978 .0577932

diff -.0077449 .0042001 -.0159769 .0004871
under H0: .0042169 -1.84 0.066

diff = prop(Male) - prop(Female) z = -1.8366
H0: diff = 0
Ha: diff < 0 Ha: diff != 0 Ha: diff > 0

Pr(Z < z) = 0.0331 Pr(|Z| > |z|) = 0.0663 Pr(Z > z) = 0.9669

We would like to create a table that includes the proportion of men who have diabetes, the proportion

of women who have diabetes, the difference in these proportions, and the 𝑝-value for a two-sided test.
First, we need to determine how to refer to these statistics.
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. return list
scalars:

r(N1) = 4915
r(N2) = 5434
r(P1) = .0441505595116989
r(P2) = .0518954729481045

r(P_diff) = -.0077449134364056
r(se1) = .0029302258134317
r(se2) = .003009075122777

r(se_diff0) = .0042169418903878
r(se_diff) = .0042000900481081

r(lb1) = .0384074224508032
r(ub1) = .0498936965725946
r(lb2) = .0459977940806861
r(ub2) = .0577931518155229

r(lb_diff) = -.0159769386625226
r(ub_diff) = .0004871117897114

r(z) = -1.836618487454034
r(p_l) = .0331331180748532

r(p) = .0662662361497065
r(p_u) = .9668668819251468

r(level) = 95

The statistics we want to see are stored as r(P1), r(P2), r(P diff), and r(p). We can specify this

in the command() option by typing

. table ..., command(r(P1) r(P2) r(P_diff) r(p): prtest diabetes, by(sex))

This will get the results we want into our table. Furthermore, because we know what these values repre-

sent, we can give them names that will appear in the table headers. We can, for instance, type

. table ..., command(Males=r(P1) Females=r(P2) Difference=r(P_diff) ///
r(p): prtest diabetes, by(sex))

We can specify similar command() options for heartatk and highbp as well.

In addition, we need to specify how our results will be laid out in the table. Below, we type command
in the first set of parentheses so that the rows correspond to the different commands. We type result in
the second set of parentheses to specify that statistics appear in the columns.

Finally, we add two options to customize the results. We specify a numeric format so that the statistics

be displayed only with three digits after the decimal. We also choose the predefined style table-right
so that our row headers will be right-aligned. See [TABLES] Predefined styles for information on this

and other styles.

. table (command) (result),
> command(Males=r(P1) Females=r(P2) Difference=r(P_diff) r(p):
> prtest diabetes, by(sex))
> command(Males=r(P1) Females=r(P2) Difference=r(P_diff) r(p):
> prtest heartatk, by(sex))
> command(Males=r(P1) Females=r(P2) Difference=r(P_diff) r(p):
> prtest highbp, by(sex))
> nformat(%5.3f) style(table-right)

Males Females Difference Two-sided p-value

prtest diabetes, by(sex) 0.044 0.052 -0.008 0.066
prtest heartatk, by(sex) 0.065 0.029 0.036 0.000
prtest highbp, by(sex) 0.469 0.381 0.088 0.000
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Our table now includes all the statistics we want. Yet we might want to make some modifications. Table

customization can go beyond the predefined styles and options available to you in the table command.
table creates a collection of results that can be used in combination with the collect suite of commands
to produce highly customized tables and to export those tables to presentation-ready formats, such as

HTML, Word, LATEX, PDF, Excel, and more.

For this table, we want to modify the labels in our row headers. Instead of showing the full command

that was run, row headers will identify the variable we are testing. In addition, we will modify the label

for our 𝑝-value. We want to use the label p-value. Because this is not a valid Stata name, we could not
specify it in the table command as we did with Males. However, we can use collect label levels
to modify the label on our 𝑝-values.

After applying the label updates, we use collect preview to see our updated table.

. collect label levels command 1 ”Diabetes” 2 ”Heart attack” 3 ”High BP”, modify

. collect label levels result p ”p-value”, modify

. collect preview

Males Females Difference p-value

Diabetes 0.044 0.052 -0.008 0.066
Heart attack 0.065 0.029 0.036 0.000

High BP 0.469 0.381 0.088 0.000

Creating tables from matrices
You may find that the results you want to include in your table are stored in a matrix; these results

can also be easily included in a table.

To demonstrate, we create a table with 𝑝-values for tests of normality for height, weight, and dias-
tolic blood pressure (bpdiast). The command sktest performs tests based on skewness, kurtosis, and
a combined test statistic.

. sktest height weight bpdiast
Skewness and kurtosis tests for normality

Joint test
Variable Obs Pr(skewness) Pr(kurtosis) Adj chi2(2) Prob>chi2

height 10,351 0.0000 0.0000 147.47 0.0000
weight 10,351 0.0000 0.0000 801.40 0.0000

bpdiast 10,351 0.0000 0.0000 362.54 0.0000

Let’s look at the returned results.

. return list
scalars:

r(N) = 10351
r(p_skew) = 1.58706287446e-72
r(p_kurt) = 6.22330331716e-26
r(chi2) = 362.5385838320567

r(p_chi2) = 1.88689086684e-79
matrices:

r(table) : 3 x 5

The statistics we want plus a few others are stored in r(table).
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Now, let’s place these values in a table. We specify that our table be arranged with the row names

(rowname) of the matrix defining the rows of the table. Similarly, the column names (colname) of the
matrix define the columns of the table. Then, we specify that we want to collect the results from the

matrix r(table) from the sktest command.

. table (rowname) (colname),
> command(r(table): sktest height weight bpdiast)

N p_skew p_kurt chi2 p_chi2

Height (cm) 10351 .0000179 1.87e-35 147.4712 9.48e-33
Weight (kg) 10351 1.6e-166 1.63e-49 801.3958 9.5e-175
Diastolic blood pressure 10351 1.59e-72 6.22e-26 362.5386 1.89e-79

Because the row names in r(table) corresponded to variables, our table automatically put the

variable labels in the row headers. However, the column headers are not nicely labeled.

We can create better labels and modify our table in many other ways. table creates a collection of
results that can be used in combination with the collect suite of commands to further customize tables.

To clean up our table, let’s use collect label levels to modify the labels for the 𝑝-values for
the skewness, kurtosis, and joint tests; these are the statistics we will include in our table below. To

use collect label levels, we need to know just a little about the collect system. In collections,

values are organized according to dimensions and levels within those dimensions. In fact, we use these

dimensions in table. The keywords that we can use to define our rows and columns are dimensions.
Here colname is our dimension that defines the columns, and its levels are N, p skew, . . . . To modify
labels, we need to tell collect label levels which dimension (colname) we would like to change
and then specify labels for levels of that dimension.

We specify the dimension and then the label for each level:

. collect label levels colname p_skew ”Skewness p-value”
> p_kurt ”Kurtosis p-value” p_chi2 ”Joint p-value”, modify

To learn more about modifying labels, see [TABLES] collect label.

Let’s also change the numeric format of our 𝑝-values. With collect style cell, we can modify all
cells in the table, all cells in a particular dimension, or particular cells of a particular dimension. Below,

we specify the numeric formatting for only three levels of colname.

. collect style cell colname[p_skew p_kurt p_chi2], nformat(%7.3f)
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Finally, we want to show only the three 𝑝-values in our table. We can use collect layout to specify
the statistics we want to include in our final table.

. collect layout (rowname) (colname[p_skew p_kurt p_chi2])
Collection: Table

Rows: rowname
Columns: colname[p_skew p_kurt p_chi2]
Table 1: 3 x 3

Skewness p-value Kurtosis p-value Joint p-value

Height (cm) 0.000 0.000 0.000
Weight (kg) 0.000 0.000 0.000
Diastolic blood pressure 0.000 0.000 0.000

Notably, all 𝑝-values for all tests are very small, so this is not a particularly exciting table. However, our
table customizations made it easy to quickly see the results of tests of normality for all our variables.

Stored results
table stores the following in r():

Scalars

r(N) number of observations

Reference
McDowell, A., A. Engel, J. T. Massey, and K. Maurer. 1981. “Plan and operation of the Second National Health and

Nutrition Examination Survey, 1976–1980”. In Vital and Health Statistics, ser. 1, no. 15. Hyattsville, MD: National

Center for Health Statistics.

Also see
[R] table — Table of frequencies, summaries, and command results

[R] table intro — Introduction to tables of frequencies, summaries, and command results

[R] table regression — Table of regression results

[TABLES] Intro — Introduction
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Description Quick start Menu Syntax
Options Remarks and examples Stored results References
Also see

Description
In this entry, we discuss how to create tables of regression results. These tables can include coeffi-

cients, standard errors, confidence intervals, and many more results stored by estimation commands.

Quick start
Table of regression coefficients; rows correspond to covariates (colname)

table colname, command(regress y x1 x2 x3)

Table of coefficients and confidence intervals; columns correspond to the statistics (result)
table (colname) (result), command(_r_b _r_ci: regress y x1 x2 x3)

Same as above, but use the labels defined in mylabels.stjson and the styles in mystyle.stjson
table (colname) (result), ///
command(_r_b _r_ci: regress y x1 x2 x3) ///
label(mylabels) style(mystyle)

Menu
Statistics > Summaries, tables, and tests > Tables of frequencies, summaries, and command results
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Syntax
table ([ rowspec ]) ([ colspec ]) [ (tabspec) ] [ if ] [ in ] [weight ],
command(cmdspec) [ command(cmdspec) ... ] [ options ]

rowspec, colspec, and tabspec may be empty or may include variable names or any of the following

keywords:
keyword Description

result requested statistics

stars stars denoting statistical significance

command index option command()
colname column names for matrix statistics

rowname row names for matrix statistics

coleq column equation names for matrix statistics

roweq row equation names for matrix statistics

options Description

Commands

command(cmdspec) collect results from the specified Stata command

Formats

nformat(% fmt [ results ][ , basestyle ]) specify numeric format

sformat(sfmt [ results ]) specify string format

cidelimiter(char) use character as delimiter for confidence interval limits

cridelimiter(char) use character as delimiter for credible interval limits

Stars

stars(starspec) add stars to denote statistical significance

Options

missing treat numeric missing values like other values

name(cname) collect results into a collection named cname

append append results to an existing collection

replace replace results of an existing collection

label(filename) specify the collection labels

style(filename [ , override ]) specify the collection style

noisily display output from each command

fweights, aweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
strL variables are not allowed; see [U] 12.4.8 strL.
noisily does not appear in the dialog box.
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Options

� � �
Commands �

command(cmdspec) specifies the Stata commands from which to collect results. command() may be

repeated to collect results from multiple commands.

cmdspec is [ explist: ] command [ arguments ] [ , cmdoptions ]
explist specifies which results to collect and report in the table. explist may include result identi-

fiers and named expressions.

result identifiers are results stored in r() and e() by the command. For instance, result iden-
tifiers could be r(mean), r(C), or e(chi2). After estimation commands, result identifiers
also include the following:

Identifier Result

r b coefficients or transformed coefficients reported by command

r se standard errors of r b
r z test statistics for r b
r z abs absolute value of r z
r p 𝑝-values for r b
r lb lower bounds of confidence intervals for r b
r ub upper bounds of confidence intervals for r b
r ci confidence intervals for r b
r crlb lower bounds of credible intervals for r b
r crub upper bounds of credible intervals for r b
r cri credible intervals for r b
r df degrees of freedom for r b

named expressions are specified as name = exp, where name may be any valid Stata name and
exp is an expression, typically an expression that involves one or more result identifiers. An

example of a named expression is sd = sqrt(r(variance)).

For r-class commands, the default is to include all numeric scalars posted to r() in the table
results. For e-class commands, the default is to include r b in the table results.

command is any command that follows standard Stata syntax.

arguments may be anything so long as they do not include an if clause, in range, or weight

specification.

Any if or in qualifier and weights should be specified directly with table, not within the
command() option. Weights are passed to command only if they are specified.

cmdoptions may be anything supported by command.

� � �
Formats �

nformat(% fmt [ results ][ , basestyle ]) changes the numeric format, such as the number of decimal
places, for specified results. If results are not specified, the numeric format is changed for all results.

results may be any name in the e() or r() results produced by commands specified in option

command().

This option is repeatable, and when multiple formats apply to one result, the rightmost specification

is applied.
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This option does not affect the format of numeric layout variables (rowspec, colspec, and tabspec).

The default format of these variables is taken from the dataset.

basestyle indicates that the format be applied to results that do not already have their own format
instead of overriding the format for all results.

sformat(sfmt [ results ]) changes the string format for specified results. You can, for instance, add

symbols or text to the values reported in the table by modifying the string format.

sfmt may contain a mix of text and %s. Here %s refers to the numeric value that is formatted as

specified using nformat(). The text will be placed around the numeric values in your table as it is
placed around %s in this option. For instance, to place parentheses around the percent statistics, you
can specify sformat(”(%s)” percent).

results may be any name in the e() or r() results produced by commands specified in option

command().

Two text characters must be specified using a special character sequence if you want them to be

displayed in your table. To include %, type %%. To include \, type \\. For instance, to place a percent
sign following percent statistics, you can specify sformat(”%s%%” percent).

This option is repeatable, and when multiple formats apply to one result, the rightmost specification

is applied.

cidelimiter(char) changes the delimiter between confidence interval limits to char. The default is
cidelimiter(” ”), that is, two spaces.

cridelimiter(char) changes the delimiter between credible interval limits to char. The default is

cridelimiter(” ”), that is, two spaces.

� � �
Stars �

stars(starspec) specifies that stars representing statistical significance be included in the table. starspec
identifies the result whose values determine significance, which characters should represent each

significance level, and where these characters should be displayed in the table. starspec is

starres [ #1 ”label1” [ #2 ”label2” [ #3 ”label3” [ #4 ”label4” [ #5 ”label5” ] ] ] ] ]
[ , attach(attachres) result dimension starsnoteopts ]

starres is the name of the result whose values determine which characters, typically which number

of stars, are to be displayed.

label1 specifies the characters to be displayed when starres < #1.

label2 specifies the characters to be displayed when starres < #2.

label3 specifies the characters to be displayed when starres < #3.

label4 specifies the characters to be displayed when starres < #4.

label5 specifies the characters to be displayed when starres < #5.

attach(attachres) specifies the name of the result to which the characters defined by label1, . . . ,
label5 are to be attached. If attach() is not specified, a new result named stars is created
and is automatically added to the table.

result and dimension control how collect stars adds itemswhen labeling significant results.
These options are mutually exclusive.

result specifies the default behavior, and this option is necessary only if the following

dimension behavior is in effect and you want to change back to the result behavior.
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dimension specifies that dimension stars be added to the collection. Items will be tagged
with stars[value], and the labels will be tagged with stars[label]. Use this option for
layouts where results are to be stacked within columns, and use new dimension stars in
the column specification of the layout.

starsnoteopts control the display and composition of the stars note.

noshownote and shownote control whether to display the stars note.

increasing and decreasing control the order of 𝑝-values in the stars note.
pvname(string) specifies a name for the 𝑝-value in the stars note. The default is pvname(p).
delimiter(string) specifies the delimiter between labels in the stars note. The default is

delimiter(”,”).

nformat(% fmt) specifies the numeric format for the cutoff values in the stars note. The default
is nformat(%9.0g).

prefix(string) specifies the prefix for the stars note. The prefix is empty by default.

suffix(string) specifies the suffix for the stars note. The suffix is empty by default.

For example, stars( r p 0.01 ”***” 0.05 ”**” 0.1 ”*”, attach( r b)) could be added to
a table of regression results to specify that stars be defined based on the 𝑝-values in r p and be
attached to the reported coefficients ( r b).

� � �
Options �

missing specifies that numeric missing values of any variables specified in rowspec, colspec, or tabspec
be treated as valid categories. By default, observations with a numeric missing value in any of these

variables are omitted.

name(cname) specifies that a collection named cname be associated with the collected statistics and

results. The default is name(Table).

append specifies that table append its collection information into the collection named in name().

replace permits table to overwrite an existing collection. This option is implied for name(Table)
when append is not specified.

label(filename) specifies the filename containing the collection labels to use for your table. Labels in
filename will be loaded for the table, and any labels not specified in filename will be taken from

the labels defined in c(collect label). The default is to use only the collection labels set in

c(collect label); see [TABLES] set collect label.

style(filename [ , override ]) specifies the filename containing the collection styles to use for your
table. The default collection styles will be discarded, and only the collection styles in filename will

be applied.

If you prefer the default collection styles but also want to apply any styles in filename, specify

override. If there are conflicts between the default collection styles and those in filename, the ones
in filename will take precedence.

The default is to use only the collection styles set in c(table style); see [TABLES] set table style.

The following option is available with table but is not shown in the dialog box:

noisily specifies that output from the commands specified in command() options be displayed. By

default, output from commands is suppressed.
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Remarks and examples
Remarks are presented under the following headings:

Introduction
Tables with results from a single command
Tables with results from multiple estimation commands
Regression results with factor variables

Introduction
The table command allows us to create tables of regression results. You can create a table that reports

coefficients, standard errors, test statistics, confidence intervals, and other statistics from a single model

or a table that compares results from multiple models.

table does not fit models directly. Rather, table will run any Stata command that you include in its
command() option and place results from that command into the table. You determine which results you

would like to see in the table. You can select any of the results stored by the command.

You can also create a table of regression results with etable. However, etablewill create tables only
with active estimation results, results from margins, or results stored with estimates store. If you are
working with any of these results, you can use etable to create and export a table of regression results.
However, if you want to include results from other commands, you should use the table command.

Tables with results from a single command
We have data from the Second National Health and Nutrition Examination Survey (NHANES II) (Mc-

Dowell et al. 1981). The data contain some demographic information, such as the participants’ age. The

data also contain some measures of health, including the individual’s weight, systolic blood pressure
(bpsystol), and whether the individual has diabetes.

Here we will create a table with results from a linear regression model for systolic blood pressure as

a function of age and weight. We type the command to fit the model in the command() option. In the
first set of parentheses following table, we specify that we want the rows to correspond to the levels
of colname—this is how we refer to the list of covariates in our regression model. In the second set of

parentheses, we specify that we want the columns to correspond to the statistics (result).
. use https://www.stata-press.com/data/r18/nhanes2l
(Second National Health and Nutrition Examination Survey)
. table (colname) (result), command(regress bpsystol age weight)

Coefficient

Age (years) .6379892
Weight (kg) .4069041
Intercept 71.27096

Our table is fairly simple. By default, table includes only the reported coefficients when an estima-
tion command is specified in the command() option.
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The table command can easily be used to compare results across groups in our data. For instance,
if we want to fit the same model for males and females, we can add sex to our column specification.

. table (colname) (sex result), command(regress bpsystol age weight)

Sex
Male Female Total

Age (years) .4789361 .7735499 .6379892
Weight (kg) .3346106 .4586108 .4069041
Intercept 84.08037 61.70456 71.27096

We can now easily compare results for males, females, and both together.

We may want to see additional statistics reported. Let’s extend our table to include both coefficients

and standard errors. We can refer to the reported coefficients using the keyword r b and to the reported
standard errors as r se, and we can list these in the command() option before our regression command.
Here we also move result to the first set of parentheses so that coefficients and standard errors will be
displayed on separate rows.

. table (colname result) (sex),
> command(_r_b _r_se: regress bpsystol age weight)

Sex
Male Female Total

Age (years)
Coefficient .4789361 .7735499 .6379892
Std. error .0156578 .0155743 .0111315

Weight (kg)
Coefficient .3346106 .4586108 .4069041
Std. error .0197112 .0182401 .0124786

Intercept
Coefficient 84.08037 61.70456 71.27096
Std. error 1.74867 1.376067 1.041742

We now have the statistics we want in this table, but we may want to modify the look a bit. table
allows us to customize the results in our table in a number of ways. We can use the nformat() option
to report all results to two decimal places, and we can use the sformat() option to place parentheses
around our standard errors.

. table (colname result) (sex),
> command(_r_b _r_se: regress bpsystol age weight)
> nformat(%6.2f) sformat(”(%s)” _r_se)

Sex
Male Female Total

Age (years)
Coefficient 0.48 0.77 0.64
Std. error (0.02) (0.02) (0.01)

Weight (kg)
Coefficient 0.33 0.46 0.41
Std. error (0.02) (0.02) (0.01)

Intercept
Coefficient 84.08 61.70 71.27
Std. error (1.75) (1.38) (1.04)
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Now that we have the parentheses to distinguish standard errors from coefficients, we may not want

to see those labels in the row header. We add the style(table-reg3) option to use the predefined style
table-reg3, which hides the names of these statistics, right-aligns the names of the variables in the row
headers, center aligns the statistics horizontally within each column, and adds vertical space between

variables.

. table (colname result) (sex),
> command(_r_b _r_se: regress bpsystol age weight)
> nformat(%05.3f) sformat(”(%s)” _r_se) style(table-reg3)

Sex
Male Female Total

Age (years) 0.479 0.774 0.638
(0.016) (0.016) (0.011)

Weight (kg) 0.335 0.459 0.407
(0.020) (0.018) (0.012)

Intercept 84.080 61.705 71.271
(1.749) (1.376) (1.042)

Tables with results from multiple estimation commands
Above, we fit the same model to the full dataset and then to groups of observations within that dataset.

We may alternatively want to fit different models and display their results in a single table. To do this,

we specify multiple command() options.
. table (colname result) (command),
> command(_r_b _r_se: regress bpsystol age weight)
> command(_r_b _r_se: regress bpsystol age weight iron vitaminc zinc)
> nformat(%6.2f) sformat(”(%s)” _r_se) style(table-reg3)

1 2

Age (years) 0.64 0.64
(0.01) (0.01)

Weight (kg) 0.41 0.40
(0.01) (0.01)

Serum iron (mcg/dL) -0.01
(0.01)

Serum vitamin C (mg/dL) -0.79
(0.36)

Serum zinc (mcg/dL) -0.05
(0.01)

Intercept 71.27 77.50
(1.04) (1.75)

We may want to modify this table a bit further. Customization of tables can go beyond the predefined

styles and options available to you in the table command. table creates a collection of results that can
be used in combination with the collect suite of commands to produce highly customized tables.
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If we want to add more descriptive labels for the two models, we can use the collect label levels
command to define our new labels. After a change using collect, we can type collect preview to
see the results.

. collect label levels command 1 ”Model 1” 2 ”Model 2”, modify

. collect style header command, level(label)

. collect preview

Model 1 Model 2

Age (years) 0.64 0.64
(0.01) (0.01)

Weight (kg) 0.41 0.40
(0.01) (0.01)

Serum iron (mcg/dL) -0.01
(0.01)

Serum vitamin C (mg/dL) -0.79
(0.36)

Serum zinc (mcg/dL) -0.05
(0.01)

Intercept 71.27 77.50
(1.04) (1.75)
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Regression results with factor variables
The examples above included only continuous covariates in the models. When we include factor vari-

ables, there are a variety of ways that they can be displayed in the headers of the tables. In [TABLES] Pre-

defined styles, you will find a number of styles that you can choose from. We demonstrate a few here.

We will start with the table-reg1 style. This style is our default table style, except that it identifies
the commands in the headers using values 1, 2, . . . rather than labeling them with the full command we

typed in the command() option.
. table (colname) (command result),
> command(regress bpsystol i.agegrp i.sex weight)
> command(regress bpsystol i.agegrp##i.sex weight)
> style(table-reg1)

1 2

Age group=20--29 0 0
Age group=30--39 1.195226 -.7808968
Age group=40--49 7.251555 2.749774
Age group=50--59 15.94216 10.43724
Age group=60--69 22.83932 16.53001
Age group=70+ 30.46609 23.3076
Sex=Male 0 0
Sex=Female 1.040833 -6.777535
Weight (kg) .4359741 .4242392
Age group=20--29 # Sex=Male 0
Age group=20--29 # Sex=Female 0
Age group=30--39 # Sex=Male 0
Age group=30--39 # Sex=Female 3.942553
Age group=40--49 # Sex=Male 0
Age group=40--49 # Sex=Female 8.79336
Age group=50--59 # Sex=Male 0
Age group=50--59 # Sex=Female 10.6501
Age group=60--69 # Sex=Male 0
Age group=60--69 # Sex=Female 12.20669
Age group=70+ # Sex=Male 0
Age group=70+ # Sex=Female 13.51823
Intercept 86.71019 91.57774

In some cases, for clarity, it is helpful to see both the factor variables and their levels. The table-reg1
style provides this in the output.
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When we have nice value labels on our factor variables, we may want to see only those. The table-
reg1-fv1 style removes the extra labels. Our table above also reports zero-valued coefficients for base
categories in both the main effects of the factor variables and in their interactions. The table-reg1-fv1
style omits the rows for the base categories in the interactions.

. table (colname) (command result),
> command(regress bpsystol i.agegrp i.sex weight)
> command(regress bpsystol i.agegrp##i.sex weight)
> style(table-reg1-fv1)

1 2

20--29 0 0
30--39 1.195226 -.7808968
40--49 7.251555 2.749774
50--59 15.94216 10.43724
60--69 22.83932 16.53001
70+ 30.46609 23.3076
Male 0 0
Female 1.040833 -6.777535
Weight (kg) .4359741 .4242392
30--39 # Female 3.942553
40--49 # Female 8.79336
50--59 # Female 10.6501
60--69 # Female 12.20669
70+ # Female 13.51823
Intercept 86.71019 91.57774

Sometimes, the tables are more readable when the row headers are right aligned. We can use the

table-reg2-fv1 style in this case. Let’s also change the numeric format of all the results so that they
report only two decimal places.

. table (colname) (command result),
> command(regress bpsystol i.agegrp i.sex weight)
> command(regress bpsystol i.agegrp##i.sex weight)
> style(table-reg2-fv1) nformat(%6.2f)

1 2

20--29 0.00 0.00
30--39 1.20 -0.78
40--49 7.25 2.75
50--59 15.94 10.44
60--69 22.84 16.53
70+ 30.47 23.31

Male 0.00 0.00
Female 1.04 -6.78

Weight (kg) 0.44 0.42
30--39 # Female 3.94
40--49 # Female 8.79
50--59 # Female 10.65
60--69 # Female 12.21
70+ # Female 13.52

Intercept 86.71 91.58
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There are many ways that we can further customize our table using the collect suite of commands.
We can add column titles for our models as we did above. In addition, we can use collect style row
to specify a character to be used between terms in an interaction.

. collect label levels command 1 ”Model 1” 2 ”Model 2”, modify

. collect style header command, level(label)

. collect style row stack, delimiter(” X ”)

. collect preview

Model 1 Model 2

20--29 0.00 0.00
30--39 1.20 -0.78
40--49 7.25 2.75
50--59 15.94 10.44
60--69 22.84 16.53
70+ 30.47 23.31

Male 0.00 0.00
Female 1.04 -6.78

Weight (kg) 0.44 0.42
30--39 X Female 3.94
40--49 X Female 8.79
50--59 X Female 10.65
60--69 X Female 12.21
70+ X Female 13.52

Intercept 86.71 91.58

If one of the predefined styles in [TABLES] Predefined styles does not suit your needs for factor-

variable results (or for any other table customization), you can create your own style. To do this, you will

use series of collect style commands, and then you can save the style to use later; see [TABLES] collect
style save.

If you wish to include your table in a paper, on a webpage, or in another format, you can easily export

it in LATEX, Word, Excel, HTML, and a variety of other formats by using collect export.

Stored results
table stores the following in r():

Scalars

r(N) number of observations
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Also see
[R] table — Table of frequencies, summaries, and command results

[R] table hypothesis tests — Table of hypothesis tests

[R] table intro — Introduction to tables of frequencies, summaries, and command results

[R] etable — Create a table of estimation results

[TABLES] Intro — Introduction



table — Table of frequencies, summaries, and command results

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Reference Also see

Description
table is a flexible command for creating tables of many types—tabulations, tables of summary statis-

tics, tables of regression results, and more. table can calculate summary statistics to display in the table.
table can also include results from other Stata commands.

Quick start
Two-way tabulation of a1 and a2

table a1 a2

Table of means for v1 and v2 across the levels of a1
table a1, statistic(mean v1 v2)

Two-way table with a1 defining rows and a2 defining columns, with frequencies and pairwise correlation
coefficients between v3 and v4 computed for every cell

table a1 a2, command(pwcorr v3 v4)

Table of regression coefficients with means of the covariates; rows correspond to covariates and columns

correspond to the statistics

table (colname) (statcmd result),
command(regress y x1 x2)
statistic(mean x1 x2)

Same as above, and include standard deviations for the covariates

table (colname) (statcmd result),
command(regress y x1 x2)
statistic(mean x1 x2)
statistic(sd x1 x2)

Menu
Statistics > Summaries, tables, and tests > Tables of frequencies, summaries, and command results
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Syntax
Basic syntax for a one-way table

table rowvar

table () colvar

Basic syntax for a two-way table

table rowvar colvar

Basic syntax for an 𝑛-way table

table rowvars colvar

table rowvar (colvars)

table (rowvars) (colvars)

Basic syntax for multiple 𝑛-way tables

table (rowvars) (colvars) (tabvars)

Full syntax

table (rowspec) (colspec) [ (tabspec) ] [ if ] [ in ] [weight ] [ , options ]

rowspec, colspec, and tabspec may be empty or may include variable names or any of the following

keywords:

keyword Description

result requested statistics

stars stars denoting statistical significance

var variables from statistic() option
across index across() specifications
colname column names for matrix statistics

rowname row names for matrix statistics

coleq column equation names for matrix statistics

roweq row equation names for matrix statistics

command index option command()
statcmd index options statistic() and command()
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options Description

Main

totals(totals) report only the specified totals

nototals suppress the marginal totals

Statistics

statistic(statspec) statistic to be reported; default is
statistic(frequency) when no weights
are specified and statistic(sumw) otherwise

Commands

command(cmdspec) collect results from the specified Stata command

Formats

nformat(% fmt [ results ][ , basestyle ]) specify numeric format

sformat(sfmt [ results ]) specify string format

cidelimiter(char) use character as delimiter for confidence interval limits

cridelimiter(char) use character as delimiter for credible interval limits

Stars

stars(starspec) add stars to denote statistical significance

Options

listwise use listwise deletion to handle missing values

missing treat numeric missing values like other values

showcounts show sample size for all variables in statistic()
option

zerocounts report 0 for empty cell counts

name(cname) collect results into a collection named cname

append append results to an existing collection

replace replace results of an existing collection

label(filename) specify the collection labels

style(filename [ , override ]) specify the collection style

markvar(newvar) create newvar that identifies observations used
in the tabulation

noisily display output from each command

fweights, aweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
strL variables are not allowed; see [U] 12.4.8 strL.
markvar() and noisily do not appear in the dialog box.
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Options

� � �
Main �

totals(totals) and nototals control which totals are to be displayed in the table. By default, all totals
are reported.

totals(totals) specifies which margin totals to display in the reported table. totals can contain

variables in rowspec, colspec, tabspec, and their interaction. Interactions can be specified by using

the # operator.

nototals prevents table from displaying any totals.

� � �
Statistics �

statistic(statspec) specifies the statistic to be displayed. Frequency statistics, summary statistics,

and ratio statistics are available by specifying statistic(freqstat), statistic(sumstat varlist),
and statistic(ratiostat [ varlist ] [ , ratio options ]), respectively.
statistic() may be repeated to request multiple statistics.

statistic(freqstat) specifies that frequencies be computed.

freqstat Definition

frequency frequency

sumw sum of weights
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statistic(sumstat varlist) specifies that summary statistic sumstat be computed for the variables
in varlist.

sumstat Definition

mean mean

semean standard error of the mean

sebinomial standard error of the mean, binomial

sepoisson standard error of the mean, Poisson

variance variance

sd standard deviation

skewness skewness

kurtosis kurtosis

cv coefficient of variation

svycv coefficient of variation (svy)

geomean geometric mean

geosd geometric standard deviation

count number of nonmissing values

median median

p# #th percentile

q1 first quartile

q2 second quartile

q3 third quartile

iqr interquartile range

min minimum value

max maximum value

range range

first first value

last last value

firstnm first nonmissing value

lastnm last nonmissing value

total total

rawtotal unweighted total

fvfrequency frequency of each factor-variable level

fvrawfrequency unweighted frequency of each factor-variable level

fvproportion proportion within each factor-variable level

fvrawproportion unweighted proportion within each factor-variable level

fvpercent percentage within each factor-variable level

fvrawpercent unweighted percentage within each factor-variable level
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statistic(ratiostat [ varlist ] [ , ratio options ]) specifies that ratio statistic ratiostat be computed.
If varlist is specified, ratios are computed based on the totals of the specified variables. If varlist

is not specified, ratios are computed based on frequencies.

ratiostat Definition

proportion proportion

percent percentage

rawproportion proportion ignoring optionally specified weights

rawpercent percentage ignoring optionally specified weights

ratio options Definition

across(cellspec) percentages or proportions across levels of

variables or interactions

total compute overall percentages or proportions

cellspec may contain rowvars, colvars, tabvars, or an interaction between any of these variables.

Interactions can be specified by using the # operator.

� � �
Commands �

command(cmdspec) specifies the Stata commands from which to collect results. command() may be

repeated to collect results from multiple commands.

cmdspec is [ explist: ] command [ arguments ] [ , cmdoptions ]
explist specifies which results to collect and report in the table. explist may include result identi-

fiers and named expressions.

result identifiers are results stored in r() and e() by the command. For instance, result iden-
tifiers could be r(mean), r(C), or e(chi2). After estimation commands, result identifiers
also include the following:

Identifier Result

r b coefficients or transformed coefficients reported by command

r se standard errors of r b
r z test statistics for r b
r z abs absolute value of r z
r p 𝑝-values for r b
r lb lower bounds of confidence intervals for r b
r ub upper bounds of confidence intervals for r b
r ci confidence intervals for r b
r crlb lower bounds of credible intervals for r b
r crub upper bounds of credible intervals for r b
r cri credible intervals for r b
r df degrees of freedom for r b

named expressions are specified as name = exp, where name may be any valid Stata name and
exp is an expression, typically an expression that involves one or more result identifiers. An

example of a named expression is sd = sqrt(r(variance)).
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For r-class commands, the default is to include all numeric scalars posted to r() in the table
results. For e-class commands, the default is to include r b in the table results.

command is any command that follows standard Stata syntax.

arguments may be anything so long as they do not include an if clause, in range, or weight

specification.

Any if or in qualifier and weights should be specified directly with table, not within the
command() option.

cmdoptions may be anything supported by command.

� � �
Formats �

nformat(% fmt [ results ][ , basestyle ]) changes the numeric format, such as the number of decimal
places, for specified results. If results are not specified, the numeric format is changed for all results.

resultsmay be any statistic named in option statistic() (that is, any freqstat, sumstat, or ratiostat)
or may be any name in the e() or r() results produced by commands specified in option command().

This option is repeatable, and when multiple formats apply to one result, the rightmost specification

is applied.

This option does not affect the format of numeric layout variables (rowspec, colspec, and tabspec)

or the format of factor variables specified in the statistic() option. The default format of these
variables is taken from the dataset.

basestyle indicates that the format be applied to results that do not already have their own format
instead of overriding the format for all results.

sformat(sfmt [ results ]) changes the string format for specified results. You can, for instance, add

symbols or text to the values reported in the table by modifying the string format.

sfmt may contain a mix of text and %s. Here %s refers to the numeric value that is formatted as

specified using nformat(). The text will be placed around the numeric values in your table as it is
placed around %s in this option. For instance, to place parentheses around the percent statistics, you
can specify sformat(”(%s)” percent).

resultsmay be any statistic named in option statistic() (that is, any freqstat, sumstat, or ratiostat)
or may be any name in the e() or r() results produced by commands specified in option command().

Two text characters must be specified using a special character sequence if you want them to be

displayed in your table. To include %, type %%. To include \, type \\. For instance, to place a percent
sign following percent statistics, you can specify sformat(”%s%%” percent).

This option is repeatable, and when multiple formats apply to one result, the rightmost specification

is applied.

cidelimiter(char) changes the delimiter between confidence interval limits to char. The default is
cidelimiter(” ”), that is, two spaces.

cridelimiter(char) changes the delimiter between credible interval limits to char. The default is

cridelimiter(” ”), that is, two spaces.
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� � �
Stars �

stars(starspec) specifies that stars representing statistical significance be included in the table. starspec
identifies the result whose values determine significance, which characters should represent each

significance level, and where these characters should be displayed in the table. starspec is

starres [ #1 ”label1” [ #2 ”label2” [ #3 ”label3” [ #4 ”label4” [ #5 ”label5” ] ] ] ] ]
[ , attach(attachres) result dimension starsnoteopts ]

starres is the name of the result whose values determine which characters, typically which number

of stars, are to be displayed.

label1 specifies the characters to be displayed when starres < #1.

label2 specifies the characters to be displayed when starres < #2.

label3 specifies the characters to be displayed when starres < #3.

label4 specifies the characters to be displayed when starres < #4.

label5 specifies the characters to be displayed when starres < #5.

attach(attachres) specifies the name of the result to which the characters defined by label1, . . . ,
label5 are to be attached. If attach() is not specified, a new result named stars is created
and is automatically added to the table.

result and dimension control how collect stars adds itemswhen labeling significant results.
These options are mutually exclusive.

result specifies the default behavior, and this option is necessary only if the following

dimension behavior is in effect and you want to change back to the result behavior.

dimension specifies that dimension stars be added to the collection. Items will be tagged
with stars[value], and the labels will be tagged with stars[label]. Use this option for
layouts where results are to be stacked within columns, and use new dimension stars in
the column specification of the layout.

starsnoteopts control the display and composition of the stars note.

noshownote and shownote control whether to display the stars note.

increasing and decreasing control the order of 𝑝-values in the stars note.
pvname(string) specifies a name for the 𝑝-value in the stars note. The default is pvname(p).
delimiter(string) specifies the delimiter between labels in the stars note. The default is

delimiter(”,”).

nformat(% fmt) specifies the numeric format for the cutoff values in the stars note. The default
is nformat(%9.0g).

prefix(string) specifies the prefix for the stars note. The prefix is empty by default.

suffix(string) specifies the suffix for the stars note. The suffix is empty by default.

For example, stars( r p 0.01 ”***” 0.05 ”**” 0.1 ”*”, attach( r b)) could be added to
a table of regression results to specify that stars be defined based on the 𝑝-values in r p and be
attached to the reported coefficients ( r b).
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� � �
Options �

listwise handles missing values through listwise deletion, meaning that the entire observation is omit-
ted from the sample if any variable specified in a statistic() option is missing for that observation.
By default, table will omit an observation only if all variables specified in all statistic() options
are missing for that observation.

missing specifies that numeric missing values of any variables specified in rowspec, colspec, or tabspec
be treated as valid categories. By default, observations with a numeric missing value in any of these

variables are omitted.

This option does not apply to factor variables specified with statistics fvfrequency,
fvrawfrequency, fvproportion, fvrawproportion, fvpercent, or fvrawpercent.

showcounts specifies that table report the sample size for each variable specified in option

statistic().

zerocounts specifies that table report a 0 in empty cells for results count, frequency, fvfrequency,
and fvrawfrequency.

name(cname) specifies that a collection named cname be associated with the collected statistics and

results. The default is name(Table).

append specifies that table append its collection information into the collection named in name().

replace permits table to overwrite an existing collection. This option is implied for name(Table)
when append is not specified.

label(filename) specifies the filename containing the collection labels to use for your table. Labels in
filename will be loaded for the table, and any labels not specified in filename will be taken from

the labels defined in c(collect label). The default is to use only the collection labels set in

c(collect label); see [TABLES] set collect label.

style(filename [ , override ]) specifies the filename containing the collection styles to use for your
table. The default collection styles will be discarded, and only the collection styles in filename will

be applied.

If you prefer the default collection styles but also want to apply any styles in filename, specify

override. If there are conflicts between the default collection styles and those in filename, the ones
in filename will take precedence.

The default is to use only the collection styles set in c(table style); see [TABLES] set table style.

The following options are available with table but are not shown in the dialog box:

markvar(newvar) generates an indicator variable that identifies the observations used in the tabulation.

noisily specifies that output from the commands specified in command() options be displayed. By

default, output from commands is suppressed.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Specifying the table layout
Advanced table customization
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Introduction
The table command can create many customized tables, ranging from simple one-way tabulations

to multiple 𝑛-way tables with summary statistics and estimation results. table can compute and report
frequencies, proportions, percentiles, and other summary statistics. It can also run other Stata commands

and include their results in the table. This means you can combine the summary statistics computed

by table with test statistics, correlations, regression coefficients, and other results collected from Stata

commands. In addition to building tables with the desired statistics, you can customize them by format-

ting the values in the table and applying predefined styles and labels that affect how the row headers,

column headers, and values are displayed in the table.

table can accommodate a variety of layouts. You can define the rows, columns, and even separate
tables by levels of categorical variables, statistics, or Stata commands.

If your goal is simply to create a table of estimation results or descriptive statistics, you can use the

etable and dtable commands, respectively. These commands allow you to create these tables and

export them to a variety of file types in a single step. However, unlike table, these commands create
tables with a predefined layout. Therefore, if you want control over the layout or you wish to include

a combination of summary statistics, estimation results, and results from other Stata commands, you

should use the table command.

In the following entries, we provide simplified syntax, examples, and discussion for specialized types

of tables that can be created using table. If you are interested in creating one of these types of tables,
we suggest reading the corresponding entry.

[R] table oneway One-way tabulation

[R] table twoway Two-way tabulation

[R] table multiway Multiway tables

[R] table summary Table of summary statistics

[R] table hypothesis tests Table of hypothesis tests

[R] table regression Table of regression results

All the concepts demonstrated in the entries above can be combined to create tables including combina-

tions of tabulations, summary statistics, hypothesis tests, and regression results.

In this entry, we provide additional information on specifying the table layout and which portions of

the layout table will automate for you. In addition, we provide resources for customizing the table and
exporting the results to your preferred format.

Specifying the table layout
A table’s layout is determined by our row, column, and table dimension specifications. For example,

we specify variable names to define the rows and place statistics in the columns, or vice versa. Because

we can include so many different statistics, we can specify keywords that we use to identify the results

we have collected from commands and the statistics that table has calculated.

The syntax for specifying the table layout is

table ([ rowspec ]) ([ colspec ]) ([ tabspec ])
We refer to rowspec, colspec, and tabspec collectively as the “layout”. For some tables, keywords are

required in the layout to uniquely identify the values that we want to include in our table. If you omit a

necessary keyword from the layout, table will fill one in for you.
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The rules determining whether a keyword is necessary to uniquely identify values in the table are as

follows:

1. If more than one statistic is specified, then result is needed in the layout.

2. If more than one variable is specified in option statistic() and option command() is not
specified, then var is needed in the layout.

3. If more than one across() specification is used for ratio statistics, then across is needed in
the layout.

4. If option command() is specified, then colname is needed in the layout. If, in addition, more
than one variable is specified in option statistic(), then colname is needed instead of var,
which was required in 2.

5. If multiple command() options are specified and option statistic() is not specified, then
command is needed in the layout.

6. If both options command() and statistic() are specified, then statcmd is needed in the

layout.

If we do not directly specify a necessary keyword in one of rowspec, colspec, or tabspec, the missing

keywords will be automatically added to the layout as follows:

1. If the row specification is empty, then put the missing keywords in rowspec.

2. If the row specification is not empty but the column specification is empty, then put the missing

keywords in colspec.

3. If the row and column specifications are not empty but the table specification is empty and if

result is the only missing keyword and there is only one statistic (result), then put result
in tabspec.

4. Otherwise, append the missing keywords to rowvars.

Below, we demonstrate how missing keywords are added to the layout.

Using auto.dta, we create a table with the minimum andmaximum mpg for each level of rep78. The
keyword result identifies the statistics we computed. By listing an empty set of parentheses followed
by rep78, we request that the levels of rep78 be placed on the columns.

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. table () rep78, statistic(min mpg) statistic(max mpg)

Repair record 1978
1 2 3 4 5 Total

Minimum value 18 14 12 14 17 12
Maximum value 24 24 29 30 41 41

Based on rule 1, if we request more than one statistic, resultmust be in the layout. Based on situation
1, if the row specification is empty, then the missing keyword will be placed in the row specification. We

could have created the same table by typing

. table (result) (rep78), statistic(min mpg) statistic(max mpg)
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Now, let’s include multiple variables in our statistic() option. We also type rep78 immediately
after table to specify that the levels of rep78 be placed on the rows.

. table rep78, statistic(mean mpg price)

Mileage (mpg) Price

Repair record 1978
1 21 4564.5
2 19.125 5967.625
3 19.43333 6429.233
4 21.66667 6071.5
5 27.36364 5913
Total 21.28986 6146.043

Because we have more than one variable in the statistic() option, then keyword var must be in
the layout (rule 2). If we include a row specification but leave the column specification empty, table
will treat var as the column identifier. We could have equivalently typed

. table (rep78) (var), statistic(mean mpg price)

Next, let’s include both a command() option and a statistic() option with multiple variables in
the same table. We want a table with coefficients and means of the independent variables. We use the

command() option to fit the regression and obtain the means with the statistic() option. Now, we
need both colname and statcmd to uniquely identify the values in the table. Let’s omit statcmd from
our command.

. table (colname) (result[_r_b mean]),
> command(regress mpg turn trunk) statistic(mean turn trunk)

Coefficient Mean

Turn circle (ft.)
regress mpg turn trunk -.7610113
Mean 39.64865

Trunk space (cu. ft.)
regress mpg turn trunk -.3161825
Mean 13.75676

Intercept
regress mpg turn trunk 55.82001

But based on situation 4, table will add statcmd to the row specification if we leave it out. So we

could have also typed the following to create the same table:

. table (colname statcmd) (result[_r_b mean]),
command(regress mpg turn trunk) statistic(mean turn trunk)

This table displays each of the statistics that we requested. If we simply wanted to compute some

statistics quickly, it has served its purpose. However, if we wish to share these results with others or

include a table in a report, we will want to make some modifications.
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Advanced table customization
table allows you to customize the results of your table using the stars(), nformat(), sformat(),

cidelimiter(), label(), and style() options. With these, you can add significance stars, change

the numeric format, and attach characters such as percent signs or parentheses to values in the table, use

a stored set of labels, or use a predefined style. See [TABLES] Predefined styles for more information

on selecting a style that adjusts elements of the table such as row header alignment, alignment of values

within the cells, and which labels are included in the headers.

Customization can also go beyond the predefined styles and options available to you in the table
command. table stores all of its results in a collection named Table. This means that you can use
the specialized tools available in the collect suite of commands to further customize your table. With

collect, you can modify specific labels, add borders, change the style of the headers, and the like. Once
you have a publication-ready table, you can use collect export to export your table to HTML, Word,

LATEX, PDF, Excel, or another format appropriate for your report.

Stored results
table stores the following in r():

Scalars

r(N) number of observations

Methods and formulas
Variables specified in rowspec, colspec, and tabspec identify groups of observationswithin the dataset.

These groups are represented in the table by cells and cell margins (totals). For a given cell or cell margin,

let 𝑛 denote the number of observations (frequency). Let 𝑥 denote the variable on which we want to

calculate summary statistics, and let 𝑥𝑖, 𝑖 = 1, . . . , 𝑛, denote an individual observation on 𝑥. count is
the number of nonmissing values of 𝑥. first is 𝑥1 and last is 𝑥𝑛. Let 𝑎 be the smallest 𝑖 such that 𝑥𝑖 is

not missing, and then firstnm is 𝑥𝑎. Let 𝑏 be the largest 𝑖 such that 𝑥𝑖 is not missing, and then lastnm
is 𝑥𝑏.

Let 𝑣𝑖 be the weight, and if no weight is specified, define 𝑣𝑖 = 1 for all 𝑖. Let 𝑣⋅ denote the sum of

the weights (sumw):

𝑣⋅ =
𝑛

∑
𝑖=1

𝑣𝑖

When aweights or pweights are specified, the normalized weights are given by 𝑤𝑖 = 𝑣𝑖(𝑛/𝑣⋅) with
𝑤⋅ = 𝑛; otherwise, 𝑤𝑖 = 𝑣𝑖 and 𝑤⋅ = 𝑣⋅.
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The remaining summary statistics are computed according to the following formulas:

total

𝑥⋅ =

⎧{{{
⎨{{{⎩

𝑛
∑
𝑖=1

𝑣𝑖𝑥𝑖 if pweights

𝑛
∑
𝑖=1

𝑤𝑖𝑥𝑖 otherwise

rawtotal

𝑛
∑
𝑖=1

𝑥𝑖

mean

𝑥 = 1
𝑤⋅

𝑛
∑
𝑖=1

𝑤𝑖𝑥𝑖

Define 𝑚𝑟 as the 𝑟th moment about the mean:

𝑚𝑟 = 1
𝑤⋅

𝑛
∑
𝑖=1

𝑤𝑖(𝑥𝑖 − 𝑥)𝑟

variance

𝑠2 = 𝑤⋅
𝑤⋅ − 1

𝑚2 = 1
𝑤⋅ − 1

𝑛
∑
𝑖=1

𝑤𝑖(𝑥𝑖 − 𝑥)2

sd (standard deviation)

𝑠 =
√

𝑠2

semean (standard error of the mean)

se(𝑥) = 𝑠
√𝑤⋅

sebinomial (standard error of the mean, binomial distribution)

√𝑥(1 − 𝑥)
𝑤⋅

sepoisson (standard error of the mean, Poisson distribution)

√ 𝑥
𝑤⋅



table — Table of frequencies, summaries, and command results 3070

When pweights are specified, semean, sebinomial, and sepoisson are all computed as

sepw(𝑥) = √ 𝑛
𝑛 − 1

𝑛
∑
𝑖=1

{𝑣𝑖
𝑣⋅

(𝑥𝑖 − 𝑥)}
2

skewness

𝑚3𝑚−3/2
2

kurtosis

𝑚4𝑚−2
2

cv (coefficient of variation)

𝑠
𝑥

svycv (coefficient of variation, survey literature)

100 se(𝑥)
|𝑥|

svycv with pweights

100
sepw(𝑥)

|𝑥|

geomean (geometric mean)

𝑥𝑔 = exp( 1
𝑤⋅

𝑛
∑
𝑖=1

𝑤𝑖 ln𝑥𝑖)

geosd (geometric standard deviation)

exp(√ 1
𝑤⋅ − 1

𝑛
∑
𝑖=1

𝑤𝑖( ln𝑥𝑖 − ln𝑥𝑔)2 )
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Let 𝑥(𝑖) refer to the 𝑥 in ascending order, and let 𝑤(𝑖) refer to the corresponding weights of 𝑥(𝑖).

minimum

𝑥(1)

maximum

𝑥(𝑛)

range

𝑥(𝑛) − 𝑥(1)

To obtain the 𝑝th percentile, which we will denote as 𝑥[𝑝], let 𝑃 = 𝑛𝑝/100 and

𝑊(𝑖) = 𝑛
𝑤⋅

𝑖
∑
𝑗=1

𝑤(𝑗)

Find the first index 𝑖 such that 𝑊(𝑖) > 𝑃. The 𝑝th percentile is then

𝑥[𝑝] =
⎧{
⎨{⎩

𝑥(𝑖−1) + 𝑥(𝑖)
2 if 𝑊(𝑖−1) = 𝑃

𝑥(𝑖) otherwise

q1 (first quartile)

𝑥[25]

q2 (second quartile)

𝑥[50]

q3 (third quartile)

𝑥[75]

iqr (interquartile range)

𝑥[75] − 𝑥[25]
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Let 𝑓 be an indicator for a specific level of a factor variable and 𝑓𝑖 denote an individual observation

on 𝑓.
fvfrequency (frequency of the factor variable’s level)

𝑛
∑
𝑖−1

𝑤𝑖𝑓𝑖

fvrawfrequency (unweighted frequency of the factor variable’s level)

𝑛
∑
𝑖−1

𝑓𝑖

fvproportion (proportion of the factor variable’s level)

1
𝑤⋅

𝑛
∑
𝑖−1

𝑤𝑖𝑓𝑖

fvrawproportion (unweighted proportion of the factor variable’s level)

1
𝑛

𝑛
∑
𝑖−1

𝑓𝑖

fvpercent (percentage of the factor variable’s level)

100
𝑤⋅

𝑛
∑
𝑖−1

𝑤𝑖𝑓𝑖

fvrawpercent (unweighted percentage of the factor variable’s level)

100
𝑛

𝑛
∑
𝑖−1

𝑓𝑖

proportion is computed from ratios of totals. The numerator is taken from the total for the given

cell or cell margin, and the denominator is taken from the total for a cell margin that contains the given

cell or cell margin. percent is proportion multiplied by 100.

rawproportion and rawpercent are similarly computed using unweighted totals.

Reference
Mitchell, M. N. 2025. Create and Export Tables Using Stata. College Station, TX: Stata Press.

https://www.stata-press.com/books/create-and-export-tables-using-stata/
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Also see
[R] table intro — Introduction to tables of frequencies, summaries, and command results

[R] table hypothesis tests — Table of hypothesis tests

[R] table multiway — Multiway tables

[R] table oneway — One-way tabulation

[R] table regression — Table of regression results

[R] table summary — Table of summary statistics

[R] table twoway — Two-way tabulation

[TABLES] Intro — Introduction



tabstat — Compact table of summary statistics

Description Quick start Menu Syntax
Options Remarks and examples Acknowledgments Reference
Also see

Description
tabstat displays summary statistics for a series of numeric variables in one table. It allows you to

specify the list of statistics to be displayed. Statistics can be calculated (conditioned on) another variable.

tabstat allows substantial flexibility in terms of the statistics presented and the format of the table.

Quick start
Mean of v1 displayed using v1’s display format

tabstat v1, format

Same as above, but use format with 2 significant digits and a comma

tabstat v1, format(%9.2fc)

Nonmissing observations, mean, standard error, and coefficient of variation for v1
tabstat v1, statistics(n mean semean cv)

Quartiles and interquartile range of v1 and v2
tabstat v1 v2, statistics(q iqr)

Same as above, but report statistics separately for each level of catvar
tabstat v1 v2, by(catvar) statistics(q iqr)

Same as above, but display a separate column for each statistic

tabstat v1 v2, by(catvar) statistics(q iqr) columns(statistics)

Menu
Statistics > Summaries, tables, and tests > Other tables > Compact table of summary statistics
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Syntax
tabstat varlist [ if ] [ in ] [weight ] [ , options ]

options Description

Main

by(varname) group statistics by variable

statistics(statname[. . .]) report specified statistics

Options

labelwidth(#) width for by() variable labels; default is labelwidth(16)
varwidth(#) variable width; default is varwidth(12)
columns(variables) display variables in table columns; the default

columns(statistics) display statistics in table columns

format[(% fmt)] display format for statistics; default format is %9.0g
casewise perform casewise deletion of observations

nototal do not report overall statistics; use with by()
missing report statistics for missing values of by() variable
noseparator do not use separator line between by() categories
longstub make left table stub wider

save store summary statistics in r()

by is allowed; see [D] by.
aweights and fweights are allowed; see [U] 11.1.6 weight.
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Options

� � �
Main �

by(varname) specifies that the statistics be displayed separately for each unique value of varname;

varname may be numeric or string. For instance, tabstat height would present the overall mean
of height. tabstat height, by(sex) would present the mean height of males, and of females, and
the overall mean height. Do not confuse the by() option with the by prefix (see [D] by); both may
be specified.

statistics(statname [. . .]) specifies the statistics to be displayed; the default is equivalent to speci-
fying statistics(mean). (stats() is a synonym for statistics().) Multiple statistics may be

specified and are separated by white space, such as statistics(mean sd). Available statistics are

statname Definition statname Definition

mean mean p1 1st percentile

count count of nonmissing observations p5 5th percentile

n same as count p10 10th percentile

sum sum p25 25th percentile

max maximum median median (same as p50)
min minimum p50 50th percentile (same as median)
range range = max − min p75 75th percentile

sd standard deviation p90 90th percentile

variance variance p95 95th percentile

cv coefficient of variation (sd/mean) p99 99th percentile

semean standard error of mean (sd/
√
n) iqr interquartile range = p75 − p25

skewness skewness q equivalent to specifying p25 p50 p75
kurtosis kurtosis

� � �
Options �

labelwidth(#) specifies the maximum width to be used within the stub to display the labels of the

by() variable. The default is labelwidth(16). 8 ≤ # ≤ 32.

varwidth(#) specifies the maximum width to be used within the stub to display the names of the vari-

ables. The default is varwidth(12). varwidth() is effective only with columns(statistics).
Setting varwidth() implies longstub. 8 ≤ # ≤ 32.

columns(variables | statistics) specifies whether to display variables or statistics in the columns
of the table. columns(variables) is the default when more than one variable is specified.

format and format(% fmt) specify how the statistics are to be formatted. The default is to use a %9.0g
format.

format specifies that each variable’s statistics be formatted with the variable’s display format; see
[D] format.

format(% fmt) specifies the format to be used for all statistics.

The columnwidth is themaximumwidth of these formats. Theminimum columnwidth is nine display

characters.



tabstat — Compact table of summary statistics 3077

casewise specifies casewise deletion of observations. Statistics are to be computed for the sample that
is not missing for any of the variables in varlist. The default is to use all the nonmissing values for

each variable.

nototal is for use with by(); it specifies that the overall statistics not be reported.

missing specifies that missing values of the by() variable be treated just like any other value and that
statistics should be displayed for them. The default is not to report the statistics for the by()== missing
group. If the by() variable is a string variable, by()==”” is considered to mean missing.

noseparator specifies that a separator line between the by() categories not be displayed.

longstub specifies that the left stub of the table be made wider so that it can include names of the

statistics or variables in addition to the categories of by(varname). The default is to describe the
statistics or variables in a header. longstub is ignored if by(varname) is not specified.

save specifies that the summary statistics be returned in r(). The overall (unconditional) statistics

are returned in matrix r(StatTotal) (rows are statistics, columns are variables). The conditional
statistics are returned in the matrices r(Stat1), r(Stat2), . . . , and the names of the corresponding
variables are returned in the macros r(name1), r(name2), . . . .

Remarks and examples
This command is probably most easily understood by going through a series of examples.

Example 1
We have data on the price, weight, mileage rating, and repair record of 22 foreign and 52 domestic

1978 automobiles. We want to summarize these variables for the different origins of the automobiles.

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. tabstat price weight mpg rep78, by(foreign)
Summary statistics: Mean
Group variable: foreign (Car origin)
foreign price weight mpg rep78

Domestic 6072.423 3317.115 19.82692 3.020833
Foreign 6384.682 2315.909 24.77273 4.285714

Total 6165.257 3019.459 21.2973 3.405797
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More summary statistics can be requested via the statistics() option. The group totals can be

suppressed with the nototal option.

. tabstat price weight mpg rep78, by(foreign) stat(mean sd min max) nototal
Summary statistics: Mean, SD, Min, Max
Group variable: foreign (Car origin)
foreign price weight mpg rep78

Domestic 6072.423 3317.115 19.82692 3.020833
3097.104 695.3637 4.743297 .837666

3291 1800 12 1
15906 4840 34 5

Foreign 6384.682 2315.909 24.77273 4.285714
2621.915 433.0035 6.611187 .7171372

3748 1760 14 3
12990 3420 41 5

Although the header of the table describes the statistics running vertically in the “cells”, the table may

become hard to read, especially with many variables or statistics. The longstub option specifies that a
column be added describing the contents of the cells. The format option can be issued to specify that
tabstat display the statistics by using the display format of the variables rather than the overall default
%9.0g.

. tabstat price weight mpg rep78, by(foreign) stat(mean sd min max) long format
foreign Stats price weight mpg rep78

Domestic Mean 6,072.4 3,317.1 19.8269 3.02083
SD 3,097.1 695.364 4.7433 .837666

Min 3,291 1,800 12 1
Max 15,906 4,840 34 5

Foreign Mean 6,384.7 2,315.9 24.7727 4.28571
SD 2,621.9 433.003 6.61119 .717137

Min 3,748 1,760 14 3
Max 12,990 3,420 41 5

Total Mean 6,165.3 3,019.5 21.2973 3.4058
SD 2,949.5 777.194 5.7855 .989932

Min 3,291 1,760 12 1
Max 15,906 4,840 41 5
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We can specify a layout of the table in which the statistics run horizontally and the variables run

vertically by specifying the col(statistics) option.

. tabstat price weight mpg rep78, by(foreign) stat(min mean max) col(stat) long
foreign Variable Min Mean Max

Domestic price 3291 6072.423 15906
weight 1800 3317.115 4840

mpg 12 19.82692 34
rep78 1 3.020833 5

Foreign price 3748 6384.682 12990
weight 1760 2315.909 3420

mpg 14 24.77273 41
rep78 3 4.285714 5

Total price 3291 6165.257 15906
weight 1760 3019.459 4840

mpg 12 21.2973 41
rep78 1 3.405797 5

Finally, tabstat can also be used to enhance summarize so we can specify the statistics to be dis-
played. For instance, we can display the number of observations, the mean, the coefficient of variation,

and the 25%, 50%, and 75% quantiles for a list of variables.

. tabstat price weight mpg rep78, stat(n mean cv q) col(stat)
variable N mean cv p25 p50 p75

price 74 6165.257 .478406 4195 5006.5 6342
weight 74 3019.459 .2573949 2240 3190 3600

mpg 74 21.2973 .2716543 18 20 25
rep78 69 3.405797 .290661 3 3 4

Because we did not specify the by() option, these statistics were not displayed for the subgroups of
the data formed by the categories of the by() variable.

Video example
Descriptive statistics in Stata

Acknowledgments
The tabstat command was written by Jeroen Weesie and Vincent Buskens both of the Department

of Sociology at Utrecht University, The Netherlands.

Reference
Donath, S. 2018. baselinetable: A command for creating one- and two-way tables of summary statistics. Stata Journal 18:

327–344.

https://www.youtube.com/watch?v=kKFbnEWwa2s
https://www.stata-journal.com/article.html?article=st0524
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Also see
[R] summarize — Summary statistics

[R] table — Table of frequencies, summaries, and command results

[R] table summary — Table of summary statistics

[R] tabulate, summarize() — One- and two-way tables of summary statistics

[D] collapse — Make dataset of summary statistics
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Description Quick start Menu Syntax
Options Remarks and examples Stored results References
Also see

Description
tabulate produces a one-way table of frequency counts.

For information on a two-way table of frequency counts along with measures of association, including

the common Pearson 𝜒2, the likelihood-ratio 𝜒2, Cramér’s 𝑉, Fisher’s exact test, Goodman and Kruskal’s
gamma, and Kendall’s 𝜏𝑏, see [R] tabulate twoway.

tab1 produces a one-way tabulation for each variable specified in varlist.

Also see [R] table and [R] tabstat if you want one-, two-, or 𝑛-way table of frequencies and a

wide variety of statistics. See [R] tabulate, summarize() for a description of tabulate with the

summarize() option; it produces a table (breakdowns) of means and standard deviations. table is

better than tabulate, summarize(), but tabulate, summarize() is faster. See [R] Epitab for a

2 × 2 table with statistics of interest to epidemiologists.

Quick start
One-way table of frequencies for v1

tabulate v1

Sort table in descending order of frequency

tabulate v1, sort

Generate indicator variables v1 1, v1 2, . . .representing the levels of v1
tabulate v1, generate(v1_)

Treat missing values like other values of v1
tabulate v1, missing

Display numeric values of v1 rather than value labels
tabulate v1, nolabel

Create one-way tables for v1, v2, and v3
tab1 v1 v2 v3

Menu
tabulate oneway
Statistics > Summaries, tables, and tests > Frequency tables > One-way table

tabulate ..., generate()
Data > Create or change data > Other variable-creation commands > Create indicator variables

tab1
Statistics > Summaries, tables, and tests > Frequency tables > Multiple one-way tables
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Syntax
One-way table

tabulate varname [ if ] [ in ] [weight ] [ , tabulate1 options ]

One-way table for each variable—a convenience tool

tab1 varlist [ if ] [ in ] [weight ] [ , tab1 options ]

tabulate1 options Description

Main

subpop(varname) exclude observations for which varname = 0

missing treat missing values like other values

nofreq do not display frequencies

nolabel display numeric codes rather than value labels

plot produce a bar chart of the relative frequencies

sort display the table in descending order of frequency

Advanced

generate(stubname) create indicator variables for stubname

matcell(matname) save frequencies in matname; programmer’s option

matrow(matname) save unique values of varname in matname; programmer’s option

tab1 options Description

Main

subpop(varname) exclude observations for which varname = 0

missing treat missing values like other values

nofreq do not display frequencies

nolabel display numeric codes rather than value labels

plot produce a bar chart of the relative frequencies

sort display the table in descending order of frequency

by is allowed with tabulate and tab1, and collect is allowed with tabulate; see [U] 11.1.10 Prefix commands.

fweights, aweights, and iweights are allowed; see [U] 11.1.6 weight.

Options

� � �
Main �

subpop(varname) excludes observations for which varname = 0 in tabulating frequencies. The mathe-

matical results of tabulate . . ., subpop(myvar) are the same as tabulate . . . if myvar !=0, but
the table may be presented differently. The identities of the rows and columns will be determined

from all the data, including the myvar = 0 group, so there may be entries in the table with frequency

0.

Consider tabulating answer, a variable that takes on values 1, 2, and 3, but consider tabulating it just
for the male==1 subpopulation. Assume that answer is never 2 in this group. tabulate answer if
male==1 produces a table with two rows: one for answer 1 and one for answer 3. There will be no row
for answer 2 because answer 2 was never observed. tabulate answer, subpop(male) produces a
table with three rows. The row for answer 2 will be shown as having 0 frequency.
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missing requests that missing values be treated like other values in calculations of counts, percentages,
and other statistics.

nofreq suppresses the printing of the frequencies.

nolabel causes the numeric codes to be displayed rather than the value labels.

plot produces a bar chart of the relative frequencies in a one-way table. (Also see [R] histogram.)

sort puts the table in descending order of frequency (and ascending order of the variable within equal
values of frequency).

� � �
Advanced �

generate(stubname) creates a set of indicator variables (stubname1, stubname2, . . .) reflecting the

observed values of the tabulated variable. The generate() option may not be used with the by
prefix.

matcell(matname) saves the reported frequencies in matname. This option is for use by programmers.

matrow(matname) saves the numeric values of the 𝑟 × 1 row stub in matname. This option is for use

by programmers. matrow() may not be specified if the row variable is a string.

Limits
A one-way table may have a maximum of 12,000 rows (Stata/MP and Stata/SE) or 3,000 rows

(Stata/BE).

Remarks and examples
Remarks are presented under the following headings:

tabulate
tab1
Video example

For each value of a specified variable, tabulate reports the number of observations with that value.
The number of times a value occurs is called its frequency.

tabulate

Example 1
We have data summarizing the speed limit and the accident rate per million vehicle miles along var-

ious Minnesota highways in 1973. The variable containing the speed limit is called spdlimit. If we
summarize the variable, we obtain its mean and standard deviation:

. use https://www.stata-press.com/data/r18/hiway
(Minnesota highway data, 1973)
. summarize spdlimit

Variable Obs Mean Std. dev. Min Max

spdlimit 39 55 5.848977 40 70
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The average speed limit is 55 miles per hour. We can learn more about this variable by tabulating it:

. tabulate spdlimit
Speed limit Freq. Percent Cum.

40 1 2.56 2.56
45 3 7.69 10.26
50 7 17.95 28.21
55 15 38.46 66.67
60 11 28.21 94.87
65 1 2.56 97.44
70 1 2.56 100.00

Total 39 100.00

We see that one highway has a speed limit of 40 miles per hour, three have speed limits of 45, 7 of 50,

and so on. The column labeled Percent shows the percentage of highways in the dataset that have the
indicated speed limit. For instance, 38.46% of highways in our dataset have a speed limit of 55 miles

per hour. The final column shows the cumulative percentage. We see that 66.67% of highways in our

dataset have a speed limit of 55 miles per hour or less.

Example 2
The plot option places a sideways histogram alongside the table:

. tabulate spdlimit, plot
Speed limit Freq.

40 1 *
45 3 ***
50 7 *******
55 15 ***************
60 11 ***********
65 1 *
70 1 *

Total 39

Of course, graph can produce better-looking histograms; see [R] histogram.

Example 3
tabulate labels tables using variable and value labels if they exist. To demonstrate how this works,

let’s add a new variable to our dataset that categorizes spdlimit into three categories. We will call this

new variable spdcat:

. generate spdcat=recode(spdlimit,50,60,70)

The recode() function divides spdlimit into 50 miles per hour or below, 51–60, and above 60; see
[FN] Programming functions. We specified the breakpoints in the arguments (spdlimit,50,60,70).
The first argument is the variable to be recoded. The second argument is the first breakpoint, the third

argument is the second breakpoint, and so on. We can specify as many breakpoints as we wish.

recode() used our arguments not only as the breakpoints but also to label the results. If spdlimit is
less than or equal to 50, spdcat is set to 50; if spdlimit is between 51 and 60, spdcat is 60; otherwise,
spdcat is arbitrarily set to 70. (See [U] 26 Working with categorical data and factor variables.)
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Because we just created the variable spdcat, it is not yet labeled. When we make a table using this

variable, tabulate uses the variable’s name to label it:

. tabulate spdcat
spdcat Freq. Percent Cum.

50 11 28.21 28.21
60 26 66.67 94.87
70 2 5.13 100.00

Total 39 100.00

Even through the table is not well labeled, recode()’s coding scheme provides us with clues as to the
table’s meaning. The first line of the table corresponds to 50 miles per hour and below, the next to 51

through 60 miles per hour, and the last to above 60 miles per hour.

We can improve this table by labeling the values and variables:

. label define scat 50 ”40 to 50” 60 ”55 to 60” 70 ”Above 60”

. label values spdcat scat

. label variable spdcat ”Speed Limit Category”

We define a value label called scat that attaches labels to the numbers 50, 60, and 70 using the label
define command; see [U] 12.6.3 Value labels. We label the value 50 as “40 to 50”, because we looked
back at our original tabulation in the first example and saw that the speed limit was never less than 40.

Similarly, we could have labeled the last category “65 to 70” because the speed limit is never greater
than 70 miles per hour.

Next, we requested that Stata label the values of the new variable spdcat using the value label scat.
Finally, we labeled our variable Speed Limit Category. We are now ready to tabulate the result:

. tabulate spdcat
Speed Limit

Category Freq. Percent Cum.

40 to 50 11 28.21 28.21
55 to 60 26 66.67 94.87
Above 60 2 5.13 100.00

Total 39 100.00
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Example 4
If we have missing values in our dataset, tabulate ignores them unless we explicitly indicate other-

wise. We have no missing data in our example, so let’s add some:

. replace spdcat=. in 39
(1 real change made, 1 to missing)

We changed the first observation on spdcat to missing. Let’s now tabulate the result:

. tabulate spdcat
Speed Limit

Category Freq. Percent Cum.

40 to 50 11 28.95 28.95
55 to 60 26 68.42 97.37
Above 60 1 2.63 100.00

Total 38 100.00

Comparing this output with that in the previous example, we see that the total frequency count is now

one less than it was—38 rather than 39. Also, the ‘Above 60’ category now has only one observation

where it used to have two, so we evidently changed a road with a high speed limit.

Wewant tabulate to treat missing values just as it treats numbers, so we specify the missing option:

. tabulate spdcat, missing
Speed Limit

Category Freq. Percent Cum.

40 to 50 11 28.21 28.21
55 to 60 26 66.67 94.87
Above 60 1 2.56 97.44

. 1 2.56 100.00

Total 39 100.00

We now see our missing value—the last category, labeled ‘.’, shows a frequency count of 1. The table
sum is once again 39.

Let’s put our dataset back as it was originally:

. replace spdcat=70 in 39
(1 real change made)
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Technical note
tabulate also can automatically create indicator variables from categorical variables. Wewill briefly

review that capability here, but see [U] 26 Working with categorical data and factor variables for a

complete description. Let’s begin by describing our highway dataset:

. describe
Contains data from https://www.stata-press.com/data/r18/hiway.dta
Observations: 39 Minnesota highway data, 1973

Variables: 3 16 Nov 2022 12:39

Variable Storage Display Value
name type format label Variable label

spdlimit byte %8.0g Speed limit
rate byte %9.0g rcat Accident rate per million vehicle

miles
spdcat float %9.0g scat Speed Limit Category

Sorted by:
Note: Dataset has changed since last saved.

Our dataset contains three variables. We will type tabulate spdcat, generate(spd), describe our
data, and then explain what happened.

. tabulate spdcat, generate(spd)
Speed Limit

Category Freq. Percent Cum.

40 to 50 11 28.21 28.21
55 to 60 26 66.67 94.87
Above 60 2 5.13 100.00

Total 39 100.00
. describe
Contains data from https://www.stata-press.com/data/r18/hiway.dta
Observations: 39 Minnesota highway data, 1973

Variables: 6 16 Nov 2022 12:39

Variable Storage Display Value
name type format label Variable label

spdlimit byte %8.0g Speed limit
rate byte %9.0g rcat Accident rate per million vehicle

miles
spdcat float %9.0g scat Speed Limit Category
spd1 byte %8.0g spdcat==40 to 50
spd2 byte %8.0g spdcat==55 to 60
spd3 byte %8.0g spdcat==Above 60

Sorted by:
Note: Dataset has changed since last saved.

When we typed tabulate with the generate() option, Stata responded by producing a one-way fre-
quency table, so it appeared that the option did nothing. Yet when we describe our dataset, we find that
we now have six variables instead of the original three. The new variables are named spd1, spd2, and
spd3.
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When we specify the generate() option, we are telling Stata to not only produce the table but also
create a set of indicator variables that correspond to that table. Stata adds a numeric suffix to the name

we specify in the parentheses. spd1 refers to the first line of the table, spd2 to the second line, and so on.
Also, Stata labels the variables so that we know what they mean. spd1 is an indicator variable that is true
(takes on the value 1) when spdcat is between 40 and 50; otherwise, it is zero. (There is an exception:
if spdcat is missing, so are the spd1, spd2, and spd3 variables. This did not happen in our dataset.)

We want to prove our claim. Because we have not yet introduced two-way tabulations, we will use

the summarize statement:

. summarize spdlimit if spd1==1
Variable Obs Mean Std. dev. Min Max

spdlimit 11 47.72727 3.437758 40 50
. summarize spdlimit if spd2==1

Variable Obs Mean Std. dev. Min Max

spdlimit 26 57.11538 2.519157 55 60
. summarize spdlimit if spd3==1

Variable Obs Mean Std. dev. Min Max

spdlimit 2 67.5 3.535534 65 70

Notice the indicated minimum and maximum in each of the tables above. When we restrict the sample

to spd1, spdlimit is between 40 and 50; when we restrict the sample to spd2, spdlimit is between 55
and 60; when we restrict the sample to spd3, spdlimit is between 65 and 70.

Thus tabulate provides an easy way to create indicator (sometimes called dummy) variables. For an
overview of indicator and categorical variables, see [U] 26 Working with categorical data and factor

variables.

tab1
tab1 is a convenience tool. Typing

. tab1 myvar thisvar thatvar, plot

is equivalent to typing

. tabulate myvar, plot

. tabulate thisvar, plot

. tabulate thatvar, plot

Video example
Tables and cross-tabulations in Stata

https://www.youtube.com/watch?v=3WpMRtTNZsw
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Stored results
tabulate and tab1 store the following in r():

Scalars

r(N) number of observations r(r) number of rows

References
Cox, N. J. 2009. Speaking Stata: I. J. Good and quasi-Bayes smoothing of categorical frequencies. Stata Journal 9:

306–314.

Donath, S. 2018. baselinetable: A command for creating one- and two-way tables of summary statistics. Stata Journal 18:

327–344.

Harrison, D. A. 2006. Stata tip 34: Tabulation by listing. Stata Journal 6: 425–427.

Also see
[R] Epitab — Tables for epidemiologists

[R] table — Table of frequencies, summaries, and command results

[R] table oneway — One-way tabulation

[R] tabstat — Compact table of summary statistics

[R] tabulate twoway — Two-way table of frequencies

[R] tabulate, summarize() — One- and two-way tables of summary statistics

[D] collapse — Make dataset of summary statistics

[SVY] svy: tabulate oneway — One-way tables for survey data

[SVY] svy: tabulate twoway — Two-way tables for survey data

[XT] xttab — Tabulate xt data

[U] 12.6.3 Value labels

[U] 26 Working with categorical data and factor variables

https://www.stata-journal.com/article.html?article=st0168
https://www.stata-journal.com/article.html?article=st0524
https://www.stata-journal.com/article.html?article=dm0023
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Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description
tabulate produces a two-way table of frequency counts, along with various measures of association,

including the common Pearson’s 𝜒2, the likelihood-ratio 𝜒2, Cramér’s 𝑉, Fisher’s exact test, Goodman
and Kruskal’s gamma, and Kendall’s 𝜏𝑏.

Line size is respected. That is, if you resize the Results window before running tabulate, the result-
ing two-way tabulation will take advantage of the available horizontal space. Stata for Unix(console)

users can instead use the set linesize command to take advantage of this feature.

tab2 produces all possible two-way tabulations of the variables specified in varlist.

tabi displays the 𝑟 × 𝑐 table, using the values specified; rows are separated by ‘\’. If no options
are specified, it is as if exact were specified for a 2 × 2 table and chi2 were specified otherwise.

See [U] 19 Immediate commands for a general description of immediate commands. See Tables with

immediate data below for examples using tabi.

See [R] tabulate oneway if you want a one-way table of frequencies. See [R] table and [R] tabstat

if you want one-, two-, or 𝑛-way table of frequencies and a wide variety of summary statistics. See

[R] tabulate, summarize() for a description of tabulate with the summarize() option; it produces a
table (breakdowns) of means and standard deviations. table is better than tabulate, summarize(),
but tabulate, summarize() is faster. See [R] Epitab for a 2 × 2 table with statistics of interest to

epidemiologists.

Quick start
Two-way table of frequencies for v1 and v2

tabulate v1 v2

Add row percentages

tabulate v1 v2, row

Frequencies only for observations where v3 = 1

tabulate v1 v2 if v3==1

Weighted cell counts using frequency weights defined by wvar
tabulate v1 v2 [fweight=wvar]

Pearson’s 𝜒2 test and each cell’s contribution

tabulate v1 v2, chi2 cchi2

All available measures of association

tabulate v1 v2, all

3090
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All possible two-way tables for v1, v2, and v3
tab2 v1 v2 v3

Input cell frequencies and perform 𝜒2 test

tabi 30 18 38 \ 13 7 22, chi2

Menu
tabulate
Statistics > Summaries, tables, and tests > Frequency tables > Two-way table with measures of association

tab2
Statistics > Summaries, tables, and tests > Frequency tables > All possible two-way tables

tabi
Statistics > Summaries, tables, and tests > Frequency tables > Table calculator
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Syntax
Two-way table

tabulate varname1 varname2 [ if ] [ in ] [weight ] [ , options ]

Two-way table for all possible combinations—a convenience tool

tab2 varlist [ if ] [ in ] [weight ] [ , options ]

Immediate form of two-way tabulations

tabi #11 #12 [ . . . ] \ #21 #22 [ . . . ] [ \ ... ] [ , options ]

options Description

Main

chi2 report Pearson’s 𝜒2

exact[(#)] report Fisher’s exact test

gamma report Goodman and Kruskal’s gamma

lrchi2 report likelihood-ratio 𝜒2

taub report Kendall’s 𝜏𝑏
V report Cramér’s 𝑉
cchi2 report Pearson’s 𝜒2 in each cell

column report relative frequency within its column of each cell

row report relative frequency within its row of each cell

clrchi2 report likelihood-ratio 𝜒2 in each cell

cell report the relative frequency of each cell

expected report expected frequency in each cell

nofreq do not display frequencies

rowsort list rows in order of observed frequency

colsort list columns in order of observed frequency

missing treat missing values like other values

wrap do not wrap wide tables

[no]key report/suppress cell contents key

nolabel display numeric codes rather than value labels

nolog do not display enumeration log for Fisher’s exact test
∗ firstonly show only tables that include the first variable in varlist

Advanced

matcell(matname) save frequencies in matname; programmer’s option

matrow(matname) save unique values of varname1 in matname; programmer’s option

matcol(matname) save unique values of varname2 in matname; programmer’s option
† replace replace current data with given cell frequencies

all equivalent to specifying chi2 lrchi2 V gamma taub
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∗firstonly is available only for tab2.
†replace is available only for tabi.
by is allowedwith tabulate and tab2, and collect is allowedwith tabulate and tabi; see [U] 11.1.10 Prefix commands.

fweights, aweights, and iweights are allowed by tabulate. fweights are allowed by tab2. See [U] 11.1.6 weight.
all does not appear in the dialog box.

Options

� � �
Main �

chi2 calculates and displays Pearson’s 𝜒2 for the hypothesis that the rows and columns in a two-way

table are independent. chi2 may not be specified if aweights or iweights are specified.

exact[(#)] displays the significance calculated by Fisher’s exact test and may be applied to 𝑟 × 𝑐 as
well as to 2 × 2 tables. For 2 × 2 tables, both one- and two-sided probabilities are displayed. For

𝑟 × 𝑐 tables, two-sided probabilities are displayed. The optional positive integer # is a multiplier on
the amount of memory that the command is permitted to consume. The default is 1. This option

should not be necessary for reasonable 𝑟 × 𝑐 tables. If the command terminates with error 910, try
exact(2). The maximum row or column dimension allowed when computing Fisher’s exact test is

the maximum row or column dimension for tabulate (see [R] Limits).

gamma displays Goodman and Kruskal’s gamma along with its asymptotic standard error. gamma is ap-
propriate only when both variables are ordinal. gammamay not be specified if aweights or iweights
are specified.

lrchi2 displays the likelihood-ratio 𝜒2 statistic. lrchi2may not be specified if aweights or iweights
are specified.

taub displays Kendall’s 𝜏𝑏 along with its asymptotic standard error. taub is appropriate only when both
variables are ordinal. taub may not be specified if aweights or iweights are specified.

V (note capitalization) displays Cramér’s 𝑉. V may not be specified if aweights or iweights are speci-
fied.

cchi2 displays each cell’s contribution to Pearson’s 𝜒2 in a two-way table.

column displays the relative frequency of each cell within its column in a two-way table.

row displays the relative frequency of each cell within its row in a two-way table.

clrchi2 displays each cell’s contribution to the likelihood-ratio 𝜒2 in a two-way table.

cell displays the relative frequency of each cell in a two-way table.

expected displays the expected frequency of each cell in a two-way table.

nofreq suppresses the printing of the frequencies.

rowsort and colsort specify that the rows and columns, respectively, be presented in order of observed
frequency.

By default, rows and columns are presented in ascending order of the row and column variable. For

instance, if you type tabulate a b and a takes on the values 2, 3, and 5, then the first row of the table

will correspond to a = 2; the second row will correspond to a = 3; and the third row will correspond

to a = 5.
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rowsort specifies that the rows instead be presented in descending order of observed frequency of
the values. If you type twoway a b, rowsort, the most frequently observed value of a will be listed
in the first row, the second most frequently observed value of a in the second row, and so on. If there
are rows with equal frequencies, they will be presented in ascending order of the values of a. If a = 5

occurs with frequency 1,000 and values a = 2 and a = 3 each occur with frequency 500, the rows

will be presented in the order a = 5, a = 2, and a = 3.

colsort does the same as rowsort, except with the columns and the column variable.

rowsort and colsort may be specified together.

missing requests that missing values be treated like other values in calculations of counts, percentages,
and other statistics.

wrap requests that Stata take no action on wide, two-way tables to make them readable. Unless wrap is
specified, wide tables are broken into pieces to enhance readability.

[no]key suppresses or forces the display of a key above two-way tables. The default is to display the key
if more than one cell statistic is requested, and otherwise to omit it. key forces the display of the key.
nokey suppresses its display.

nolabel causes the numeric codes to be displayed rather than the value labels.

nolog suppresses the display of the log for Fisher’s exact test. Using Fisher’s exact test requires counting
all tables that have a probability exceeding that of the observed table given the observed row and

column totals. The log counts down each stage of the network computations, starting from the number

of columns and counting down to 1, displaying the number of nodes in the network at each stage. A

log is not displayed for 2 × 2 tables.

firstonly, available only with tab2, restricts the output to only those tables that include the first vari-
able in varlist. Use this option to interact one variable with a set of others.

� � �
Advanced �

matcell(matname) saves the reported frequencies in matname. This option is for use by programmers.

matrow(matname) saves the numeric values of the 𝑟 × 1 row stub in matname. This option is for use

by programmers. matrow() may not be specified if the row variable is a string.

matcol(matname) saves the numeric values of the 1 × 𝑐 column stub in matname. This option is for
use by programmers. matcol() may not be specified if the column variable is a string.

replace indicates that the immediate data specified as arguments to the tabi command be left as the
current data in place of whatever data were there.

The following option is available with tabulate but is not shown in the dialog box:

all is equivalent to specifying chi2 lrchi2 V gamma taub. Note the omission of exact. When all
is specified, no may be placed in front of the other options. all noV requests all association mea-
sures except Cramér’s 𝑉 (and Fisher’s exact). all exact requests all association measures, including
Fisher’s exact test. all may not be specified if aweights or iweights are specified.

Limits
Two-way tables may have a maximum of 1,200 rows and 80 columns (Stata/MP and Stata/SE) or 300

rows and 20 columns (Stata/BE). If larger tables are needed, see [R] table.
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Remarks and examples
Remarks are presented under the following headings:

tabulate
Measures of association
N-way tables
Weighted data
Tables with immediate data
tab2
Video examples

For each value of a specified variable (or a set of values for a pair of variables), tabulate reports the
number of observations with that value. The number of times a value occurs is called its frequency.

tabulate

Example 1
tabulate will make two-way tables if we specify two variables following the word tabulate. In

our highway dataset, we have a variable called rate that divides the accident rate into three categories:
below 4, 4–7, and above 7 per million vehicle miles. Let’s make a table of the speed limit category and

the accident-rate category:

. use https://www.stata-press.com/data/r18/hiway2
(Minnesota highway data, 1973)
. tabulate spdcat rate

Speed Accident rate per million
limit vehicle miles

category Below 4 4--7 Above 7 Total

40 to 50 3 5 3 11
55 to 50 19 6 1 26
Above 60 2 0 0 2

Total 24 11 4 39

The table indicates that three stretches of highway have an accident rate below 4 and a speed limit of 40

to 50 miles per hour. The table also shows the row and column sums (called the marginals). The number

of highways with a speed limit of 40 to 50 miles per hour is 11, which is the same result we obtained in

our previous one-way tabulations.

Stata can present this basic table in several ways—16, to be precise—and we will show just a few

below. It might be easier to read the table if we included the row percentages. For instance, of 11

highways in the lowest speed limit category, three are also in the lowest accident-rate category. Three-

elevenths amounts to some 27.3%. We can ask Stata to fill in this information for us by using the row
option:
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. tabulate spdcat rate, row

Key

frequency
row percentage

Speed Accident rate per million
limit vehicle miles

category Below 4 4--7 Above 7 Total

40 to 50 3 5 3 11
27.27 45.45 27.27 100.00

55 to 50 19 6 1 26
73.08 23.08 3.85 100.00

Above 60 2 0 0 2
100.00 0.00 0.00 100.00

Total 24 11 4 39
61.54 28.21 10.26 100.00

The number listed below each frequency is the percentage of cases that each cell represents out of its

row. That is easy to remember because we see 100% listed in the “Total” column. The bottom row is

also informative. We see that 61.54% of all the highways in our dataset fall into the lowest accident-rate

category, that 28.21% are in the middle category, and that 10.26% are in the highest.
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tabulate can calculate column percentages and cell percentages, as well. It does so when we specify
the column or cell options, respectively. We can even specify them together. Below is a table that

includes everything:

. tabulate spdcat rate, row column cell

Key

frequency
row percentage
column percentage
cell percentage

Speed Accident rate per million
limit vehicle miles

category Below 4 4--7 Above 7 Total

40 to 50 3 5 3 11
27.27 45.45 27.27 100.00
12.50 45.45 75.00 28.21
7.69 12.82 7.69 28.21

55 to 50 19 6 1 26
73.08 23.08 3.85 100.00
79.17 54.55 25.00 66.67
48.72 15.38 2.56 66.67

Above 60 2 0 0 2
100.00 0.00 0.00 100.00

8.33 0.00 0.00 5.13
5.13 0.00 0.00 5.13

Total 24 11 4 39
61.54 28.21 10.26 100.00

100.00 100.00 100.00 100.00
61.54 28.21 10.26 100.00

The number at the top of each cell is the frequency count. The second number is the row percent-

age—they sum to 100% going across the table. The third number is the column percentage—they sum

to 100% going down the table. The bottom number is the cell percentage—they sum to 100% going

down all the columns and across all the rows. For instance, highways with a speed limit above 60 miles

per hour and in the lowest accident rate category account for 100% of highways with a speed limit above

60 miles per hour; 8.33% of highways in the lowest accident-rate category; and 5.13% of all our data.
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A fourth option, nofreq, tells Stata not to print the frequency counts. To construct a table consisting
of only row percentages, we type

. tabulate spdcat rate, row nofreq
Speed Accident rate per million
limit vehicle miles

category Below 4 4--7 Above 7 Total

40 to 50 27.27 45.45 27.27 100.00
55 to 50 73.08 23.08 3.85 100.00
Above 60 100.00 0.00 0.00 100.00

Total 61.54 28.21 10.26 100.00

Measures of association

Example 2
tabulate will calculate the Pearson 𝜒2 test for the independence of the rows and columns if we

specify the chi2 option. Suppose that we have 1980 census data on 956 cities in the United States and
wish to compare the age distribution across regions of the country. Assume that agecat is the median
age in each city and that region denotes the region of the country in which the city is located.

. use https://www.stata-press.com/data/r18/citytemp2
(City temperature data)
. tabulate region agecat, chi2

Census Age category
region 19--29 30--34 35+ Total

NE 46 83 37 166
N Cntrl 162 92 30 284

South 139 68 43 250
West 160 73 23 256

Total 507 316 133 956
Pearson chi2(6) = 61.2877 Pr = 0.000

We obtain the standard two-way table and, at the bottom, a summary of the 𝜒2 test. Stata informs us that

the 𝜒2 associated with this table has 6 degrees of freedom and is 61.29. The observed differences are

significant.
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The table is, perhaps, easier to understand if we suppress the frequencies and print just the row per-

centages:

. tabulate region agecat, row nofreq chi2
Census Age category
region 19--29 30--34 35+ Total

NE 27.71 50.00 22.29 100.00
N Cntrl 57.04 32.39 10.56 100.00

South 55.60 27.20 17.20 100.00
West 62.50 28.52 8.98 100.00

Total 53.03 33.05 13.91 100.00
Pearson chi2(6) = 61.2877 Pr = 0.000

Example 3
We have data on dose level and outcome for a set of patients and wish to evaluate the association

between the two variables. We can obtain all the association measures by specifying the all and exact
options:

. use https://www.stata-press.com/data/r18/dose

. tabulate dose function, all exact
Enumerating sample-space combinations:
stage 3: enumerations = 1
stage 2: enumerations = 9
stage 1: enumerations = 0

Function
Dosage < 1 hr 1 to 4 4+ Total

1/day 20 10 2 32
2/day 16 12 4 32
3/day 10 16 6 32

Total 46 38 12 96
Pearson chi2(4) = 6.7780 Pr = 0.148

Likelihood-ratio chi2(4) = 6.9844 Pr = 0.137
Cramér’s V = 0.1879

gamma = 0.3689 ASE = 0.129
Kendall’s tau-b = 0.2378 ASE = 0.086
Fisher’s exact = 0.145

We find evidence of association but not enough to be truly convincing.

If we had not also specified the exact option, we would not have obtained Fisher’s exact test. Stata
can calculate this statistic both for 2 × 2 tables and for 𝑟 × 𝑐. For 2 × 2 tables, the calculation is almost

instant. On more general tables, however, the calculation can take longer.

We carefully constructed our example so that all would be meaningful. Kendall’s 𝜏𝑏 and Goodman

and Kruskal’s gamma are relevant only when both dimensions of the table can be ordered, say, from low

to high or from worst to best. The other statistics, however, are always applicable.
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Technical note
Be careful when attempting to compute the 𝑝-value for Fisher’s exact test because the number of tables

that contribute to the 𝑝-value can be extremely large and a solutionmay not be feasible. The errors that are
indicative of this situation are errors 910, exceeded memory limitations, and 1401, integer overflow due

to large row-margin frequencies. If execution terminates because of memory limitations, use exact(2)
to permit the algorithm to consume twice the memory, exact(3) for three times the memory, etc. The
default memory usage should be sufficient for reasonable tables.

N-way tables
If you need more than two-way tables, your best alternative to is use table, not tabulate; see

[R] table.

The technical note below shows you how to use tabulate to create a sequence of two-way tables
that together form, in effect, a three-way table, but using table is easy and produces prettier results:

. use https://www.stata-press.com/data/r18/birthcat
(City data)
. table (agecat birthcat) (region), nototals

Census region
NE N Cntrl South West

Age category
19--29
Birth-rate category
29--136 11 23 11 11
137--195 31 97 65 46
196--529 4 38 59 91

30--34
Birth-rate category
29--136 34 27 10 8
137--195 48 58 45 42
196--529 1 3 12 21

35+
Birth-rate category
29--136 34 26 27 18
137--195 3 4 7 4
196--529 4
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Technical note
We can make 𝑛-way tables by combining the by varlist: prefix with tabulate. Continuing with the

dataset of 956 cities, say that we want to make a table of age category by birth-rate category by region of

the country. The birth-rate category variable is named birthcat in our dataset. To make separate tables
for each age category, we would type

. by agecat, sort: tabulate birthcat region

-> agecat = 19--29
Birth-rate Census region
category NE N Cntrl South West Total

29--136 11 23 11 11 56
137--195 31 97 65 46 239
196--529 4 38 59 91 192

Total 46 158 135 148 487

-> agecat = 30--34
Birth-rate Census region
category NE N Cntrl South West Total

29--136 34 27 10 8 79
137--195 48 58 45 42 193
196--529 1 3 12 21 37

Total 83 88 67 71 309

-> agecat = 35+
Birth-rate Census region
category NE N Cntrl South West Total

29--136 34 26 27 18 105
137--195 3 4 7 4 18
196--529 0 0 4 0 4

Total 37 30 38 22 127
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Weighted data

Example 4
tabulate can process weighted as well as unweighted data. As with all Stata commands, we indicate

the weight by specifying the [weight] modifier; see [U] 11.1.6 weight.

Continuing with our dataset of 956 cities, we also have a variable called pop, the population of each
city. We can make a table of region by age category, weighted by population, by typing

. tabulate region agecat [fweight=pop]
Census Age category
region 19--29 30--34 35+ Total

NE 4721387 10421387 5323610 20466384
N Cntrl 16901550 8964756 4015593 29881899

South 13894254 7686531 4141863 25722648
West 16698276 7755255 2375118 26828649

Total 52215467 34827929 15856184 102899580

If we specify the cell, column, or row options, they will also be appropriately weighted. Below, we
repeat the table, suppressing the counts and substituting row percentages:

. tabulate region agecat [fweight=pop], nofreq row
Census Age category
region 19--29 30--34 35+ Total

NE 23.07 50.92 26.01 100.00
N Cntrl 56.56 30.00 13.44 100.00

South 54.02 29.88 16.10 100.00
West 62.24 28.91 8.85 100.00

Total 50.74 33.85 15.41 100.00

Tables with immediate data

Example 5
tabi ignores the dataset in memory and uses as the table the values that we specify on the command

line:

. tabi 30 18 \ 38 14
col

row 1 2 Total

1 30 18 48
2 38 14 52

Total 68 32 100
Fisher’s exact = 0.289

1-sided Fisher’s exact = 0.179
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We may specify any of the options of tabulate and are not limited to 2 × 2 tables:

. tabi 30 18 38 \ 13 7 22, chi2 exact
Enumerating sample-space combinations:
stage 3: enumerations = 1
stage 2: enumerations = 3
stage 1: enumerations = 0

col
row 1 2 3 Total

1 30 18 38 86
2 13 7 22 42

Total 43 25 60 128
Pearson chi2(2) = 0.7967 Pr = 0.671
Fisher’s exact = 0.707

. tabi 30 13 \ 18 7 \ 38 22, all exact col

Key

frequency
column percentage

Enumerating sample-space combinations:
stage 3: enumerations = 1
stage 2: enumerations = 3
stage 1: enumerations = 0

col
row 1 2 Total

1 30 13 43
34.88 30.95 33.59

2 18 7 25
20.93 16.67 19.53

3 38 22 60
44.19 52.38 46.88

Total 86 42 128
100.00 100.00 100.00

Pearson chi2(2) = 0.7967 Pr = 0.671
Likelihood-ratio chi2(2) = 0.7985 Pr = 0.671

Cramér’s V = 0.0789
gamma = 0.1204 ASE = 0.160

Kendall’s tau-b = 0.0630 ASE = 0.084
Fisher’s exact = 0.707

For 2 × 2 tables, both one- and two-sided Fisher’s exact probabilities are displayed; this is true of both

tabulate and tabi. See Cumulative incidence data and Case–control data in [R] Epitab for more

discussion on the relationship between one- and two-sided probabilities.
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Technical note
tabi, as with all immediate commands, leaves any data in memory undisturbed. With the replace

option, however, the data in memory are replaced by the data from the table:

. tabi 30 18 \ 38 14, replace
col

row 1 2 Total

1 30 18 48
2 38 14 52

Total 68 32 100
Fisher’s exact = 0.289

1-sided Fisher’s exact = 0.179
. list

row col pop

1. 1 1 30
2. 1 2 18
3. 2 1 38
4. 2 2 14

With this dataset, you could re-create the above table by typing

. tabulate row col [fweight=pop], exact
col

row 1 2 Total

1 30 18 48
2 38 14 52

Total 68 32 100
Fisher’s exact = 0.289

1-sided Fisher’s exact = 0.179

tab2
tab2 is a convenience tool. Typing

. tab2 myvar thisvar thatvar, chi2

is equivalent to typing

. tabulate myvar thisvar, chi2

. tabulate myvar thatvar, chi2

. tabulate thisvar thatvar, chi2
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Video examples
Pearson’s chi-squared and Fisher’s exact test in Stata

Tables and cross-tabulations in Stata

Cross-tabulations and chi-squared tests calculator

Stored results
tabulate, tab2, and tabi store the following in r():
Scalars

r(N) number of observations r(p exact) Fisher’s exact 𝑝
r(r) number of rows r(chi2 lr) likelihood-ratio 𝜒2

r(c) number of columns r(p lr) 𝑝-value for likelihood-ratio test
r(chi2) Pearson’s 𝜒2 test r(CramersV) Cramér’s V

r(p) 𝑝-value for of Pearson’s 𝜒2 test r(ase gam) ASE of gamma

r(gamma) gamma r(ase taub) ASE of 𝜏b
r(p1 exact) one-sided Fisher’s exact 𝑝 r(taub) 𝜏b

r(p1 exact) is defined only for 2 × 2 tables. Also, the matrow(), matcol(), and matcell() options allow you to obtain
the row values, column values, and frequencies, respectively.

Methods and formulas
Let 𝑛𝑖𝑗, 𝑖 = 1, . . . , 𝐼 and 𝑗 = 1, . . . , 𝐽, be the number of observations in the 𝑖th row and 𝑗th column.

If the data are not weighted, 𝑛𝑖𝑗 is just a count. If the data are weighted, 𝑛𝑖𝑗 is the sum of the weights of

all data corresponding to the (𝑖, 𝑗) cell.
Define the row and column marginals as

𝑛𝑖⋅ =
𝐽

∑
𝑗=1

𝑛𝑖𝑗 𝑛⋅𝑗 =
𝐼

∑
𝑖=1

𝑛𝑖𝑗

and let 𝑛 = ∑𝑖 ∑𝑗 𝑛𝑖𝑗 be the overall sum. Also, define the concordance and discordance as

𝐴𝑖𝑗 = ∑
𝑘>𝑖

∑
𝑙>𝑗

𝑛𝑘𝑙 + ∑
𝑘<𝑖

∑
𝑙<𝑗

𝑛𝑘𝑙 𝐷𝑖𝑗 = ∑
𝑘>𝑖

∑
𝑙<𝑗

𝑛𝑘𝑙 + ∑
𝑘<𝑖

∑
𝑙>𝑗

𝑛𝑘𝑙

along with twice the number of concordances 𝑃 = ∑𝑖 ∑𝑗 𝑛𝑖𝑗𝐴𝑖𝑗 and twice the number of discordances

𝑄 = ∑𝑖 ∑𝑗 𝑛𝑖𝑗𝐷𝑖𝑗.

The Pearson 𝜒2 statistic with (𝐼 − 1)(𝐽 − 1) degrees of freedom (so called because it is based on

Pearson (1900); see Conover [1999, 240] and Fienberg [1980, 9]) is defined as

𝑋2 = ∑
𝑖

∑
𝑗

(𝑛𝑖𝑗 − 𝑚𝑖𝑗)2

𝑚𝑖𝑗

where 𝑚𝑖𝑗 = 𝑛𝑖⋅𝑛⋅𝑗/𝑛.

The likelihood-ratio 𝜒2 statistic with (𝐼 −1)(𝐽 −1) degrees of freedom (Fienberg 1980, 40) is defined

as

𝐺2 = 2 ∑
𝑖

∑
𝑗

𝑛𝑖𝑗ln(𝑛𝑖𝑗/𝑚𝑖𝑗)

https://www.youtube.com/watch?v=DBsMPZqJj-o
https://www.youtube.com/watch?v=3WpMRtTNZsw
https://www.youtube.com/watch?v=GZIi9zAlzIA
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Cramér’s 𝑉 (Cramér 1946) is a measure of association designed so that the attainable upper bound is

1. For 2 × 2 tables, −1 ≤ 𝑉 ≤ 1, and otherwise, 0 ≤ 𝑉 ≤ 1.

𝑉 = {
(𝑛11𝑛22 − 𝑛12𝑛21)/(𝑛1⋅𝑛2⋅𝑛⋅1𝑛⋅2)1/2 for 2 × 2

{(𝑋2/𝑛)/min(𝐼 − 1, 𝐽 − 1)}1/2
otherwise

Gamma (Goodman and Kruskal 1954, 1959, 1963, 1972; also see Agresti [2010,186–188]) ignores

tied pairs and is based only on the number of concordant and discordant pairs of observations, −1 ≤
𝛾 ≤ 1,

𝛾 = (𝑃 − 𝑄)/(𝑃 + 𝑄)

with asymptotic variance

16 ∑
𝑖

∑
𝑗

𝑛𝑖𝑗(𝑄𝐴𝑖𝑗 − 𝑃𝐷𝑖𝑗)2/(𝑃 + 𝑄)4

Kendall’s 𝜏𝑏 (Kendall 1945; also see Agresti 2010, 188–189), −1 ≤ 𝜏𝑏 ≤ 1, is similar to gamma,

except that it uses a correction for ties,

𝜏𝑏 = (𝑃 − 𝑄)/(𝑤𝑟𝑤𝑐)1/2

with asymptotic variance

∑𝑖 ∑𝑗 𝑛𝑖𝑗(2𝑤𝑟𝑤𝑐𝑑𝑖𝑗 + 𝜏𝑏𝑣𝑖𝑗)2 − 𝑛3𝜏2
𝑏 (𝑤𝑟 + 𝑤𝑐)2

(𝑤𝑟𝑤𝑐)4

where

𝑤𝑟 =𝑛2 − ∑
𝑖

𝑛2
𝑖⋅

𝑤𝑐 =𝑛2 − ∑
𝑗

𝑛2
⋅𝑗

𝑑𝑖𝑗 =𝐴𝑖𝑗 − 𝐷𝑖𝑗

𝑣𝑖𝑗 =𝑛𝑖⋅𝑤𝑐 + 𝑛⋅𝑗𝑤𝑟

Fisher’s exact test (Fisher 1935; Finney 1948; see Zelterman and Louis [1992, 293–301] for the 2×2

case) yields the probability of observing a table that gives at least as much evidence of association as the

one actually observed under the assumption of no association. Holding row and column marginals fixed,

the hypergeometric probability 𝑃 of every possible table 𝐴 is computed, and the

𝑃 = ∑
𝑇 ∈𝐴

Pr(𝑇 )

where 𝐴 is the set of all tables with the same marginals as the observed table, 𝑇 ∗, such that Pr(𝑇 ) ≤
Pr(𝑇 ∗). For 2 × 2 tables, the one-sided probability is calculated by further restricting 𝐴 to tables in the

same tail as 𝑇 ∗. The first algorithm extending this calculation to 𝑟 × 𝑐 tables was Pagano and Halvorsen
(1981); the one implemented here is the FEXACT algorithm by Mehta and Patel (1986). This is a search-

tree clipping method originally published by Mehta and Patel (1983) with further refinements by Joe

(1988) and Clarkson, Fan, and Joe (1993). Fisher’s exact test is a permutation test. For more information

on permutation tests, see Good (2005 and 2006) and Pesarin (2001).
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tabulate, summarize() — One- and two-way tables of summary statistics

Description Quick start Menu Syntax
Options Remarks and examples Also see

Description
tabulate, summarize() produces one- and two-way tables (breakdowns) of means and standard

deviations. See [R] tabulate oneway and [R] tabulate twoway for one- and two-way frequency tables.

See [R] table for a more flexible command that produces one-, two-, and 𝑛-way tables of frequencies
and a wide variety of summary statistics. table is better, but tabulate, summarize() is faster. Also
see [R] tabstat for yet another alternative.

Quick start
Tabulation of v1, reporting means and standard deviations of x and frequencies

tabulate v1, summarize(x)

Same as above, but report summary statistics for the two-way tabulation of v1 and v2
tabulate v1 v2, summarize(x)

Weighted summary statistics using frequency weight wvar
tabulate v1 v2 [fweight=wvar], summarize(x)

Report only the mean of x for each group
tabulate v1 v2, summarize(x) means

Do not report standard deviations

tabulate v1 v2, summarize(x) nostandard

Show numeric values of v1 and v2 rather than value labels
tabulate v1 v2, summarize(x) nolabel

Menu
Statistics > Summaries, tables, and tests > Other tables > Table of means, std. dev., and frequencies
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Syntax
tabulate varname1 [ varname2 ] [ if ] [ in ] [weight ] [ , options ]

options Description

Main

summarize(varname3) report summary statistics for varname3
[no]means include or suppress means

[no]standard include or suppress standard deviations

[no]freq include or suppress frequencies

[no]obs include or suppress number of observations

nolabel show numeric codes, not labels

wrap do not break wide tables

missing treat missing values of varname1 and varname2 as categories

by and collect are allowed; see [U] 11.1.10 Prefix commands.

aweights and fweights are allowed; see [U] 11.1.6 weight.

Options

� � �
Main �

summarize(varname3) identifies the name of the variable for which summary statistics are to be re-

ported. If you do not specify this option, a table of frequencies is produced; see [R] tabulate oneway

and [R] tabulate twoway. The description here concerns tabulate when this option is specified.

[no]means includes or suppresses only the means from the table.

The summarize() table normally includes the mean, standard deviation, frequency, and, if the data
are weighted, number of observations. Individual elements of the table may be included or suppressed

by the [no]means, [no]standard, [no]freq, and [no]obs options. For example, typing
. tabulate category, summarize(myvar) means standard

produces a summary table by category containing only the means and standard deviations of myvar.
You could also achieve the same result by typing

. tabulate category, summarize(myvar) nofreq

[no]standard includes or suppresses only the standard deviations from the table; see [no]means option
above.

[no]freq includes or suppresses only the frequencies from the table; see [no]means option above.
[no]obs includes or suppresses only the reported number of observations from the table. If the data

are not weighted, the number of observations is identical to the frequency, and by default only the

frequency is reported. If the data are weighted, the frequency refers to the sum of the weights. See

[no]means option above.
nolabel causes the numeric codes to be displayed rather than the label values.

wrap requests that no action be taken on wide tables to make them readable. Unless wrap is specified,
wide tables are broken into pieces to enhance readability.

missing requests that missing values of varname1 and varname2 be treated as categories rather than as

observations to be omitted from the analysis.
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Remarks and examples
tabulate with the summarize() option produces one- and two-way tables of summary statistics.

When combined with the by prefix, it can produce 𝑛-way tables as well.
Remarks are presented under the following headings:

One-way tables
Two-way tables

One-way tables

Example 1
We have data on 74 automobiles. Included in our dataset are the variables foreign, which marks

domestic and foreign cars, and mpg, the car’s mileage rating. Typing tabulate foreign displays a

breakdown of the number of observations we have by the values of the foreign variable.
. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. tabulate foreign
Car origin Freq. Percent Cum.

Domestic 52 70.27 70.27
Foreign 22 29.73 100.00

Total 74 100.00

We discover that we have 52 domestic cars and 22 foreign cars in our dataset. If we add the

summarize(varname) option, however, tabulate produces a table of summary statistics for varname:

. tabulate foreign, summarize(mpg)
Summary of Mileage (mpg)

Car origin Mean Std. dev. Freq.

Domestic 19.826923 4.7432972 52
Foreign 24.772727 6.6111869 22

Total 21.297297 5.7855032 74

We also discover that the average gas mileage for domestic cars is about 20 mpg and the average foreign

is almost 25 mpg. Overall, the average is 21 mpg in our dataset.
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Technical note
We might now wonder if the difference in gas mileage between foreign and domestic cars is statisti-

cally significant. We can use the oneway command to find out; see [R] oneway. To obtain an analysis-
of-variance table of mpg on foreign, we type

. oneway mpg foreign
Analysis of variance

Source SS df MS F Prob > F

Between groups 378.153515 1 378.153515 13.18 0.0005
Within groups 2065.30594 72 28.6848048

Total 2443.45946 73 33.4720474
Bartlett’s equal-variances test: chi2(1) = 3.4818 Prob>chi2 = 0.062

The 𝐹 statistic is 13.18, and the difference between foreign and domestic cars’ mileage ratings is signif-

icant at the 0.05% level.

There are several ways that we could have statistically compared mileage ratings—see, for instance,

[R] anova, [R] oneway, [R] regress, and [R] ttest—but oneway seemed the most convenient.

Two-way tables

Example 2
tabulate, summarize can be used to obtain two-way as well as one-way breakdowns. For in-

stance, we obtained summary statistics on mpg decomposed by foreign by typing tabulate foreign,
summarize(mpg). We can specify up to two variables before the comma:

. generate wgtcat = autocode(weight,4,1760,4840)

. tabulate wgtcat foreign, summarize(mpg)
Means, Standard Deviations and Frequencies of Mileage (mpg)

Car origin
wgtcat Domestic Foreign Total

2530 28.285714 27.0625 27.434783
3.0937725 5.9829619 5.2295149

7 16 23

3300 21.75 19.6 21.238095
2.4083189 3.4351128 2.7550819

16 5 21

4070 17.26087 14 17.125
1.8639497 0 1.9406969

23 1 24

4840 14.666667 . 14.666667
3.32666 . 3.32666

6 0 6

Total 19.826923 24.772727 21.297297
4.7432972 6.6111869 5.7855032

52 22 74
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In addition to themeans, standard deviations, and frequencies for each weight–mileage cell, also reported

are the summary statistics by weight, by mileage, and overall. For instance, the last row of the table

reveals that the average mileage of domestic cars is 19.83 and that of foreign cars is 24.77—domestic

cars yield poorer mileage than foreign cars. But we now see that domestic cars yield better gas mileage

within weight class—the reason domestic cars yield poorer gas mileage is because they are, on average,

heavier.

Example 3
If we do not specify the statistics to be included in a table, tabulate reports the mean, standard

deviation, and frequency. We can specify the statistics that we want to see using the means, standard,
and freq options:

. tabulate wgtcat foreign, summarize(mpg) means
Means of Mileage (mpg)

Car origin
wgtcat Domestic Foreign Total

2530 28.285714 27.0625 27.434783
3300 21.75 19.6 21.238095
4070 17.26087 14 17.125
4840 14.666667 . 14.666667

Total 19.826923 24.772727 21.297297

When we specify one or more of the means, standard, and freq options, only those statistics are

displayed. Thus, we could obtain a table containing just the means and standard deviations by typing

means standard after the summarize(mpg) option. We can also suppress selected statistics by placing

no in front of the option name. Another way of obtaining only the means and standard deviations is to
add the nofreq option:

. tabulate wgtcat foreign, summarize(mpg) nofreq
Means and Standard Deviations of Mileage (mpg)

Car origin
wgtcat Domestic Foreign Total

2530 28.285714 27.0625 27.434783
3.0937725 5.9829619 5.2295149

3300 21.75 19.6 21.238095
2.4083189 3.4351128 2.7550819

4070 17.26087 14 17.125
1.8639497 0 1.9406969

4840 14.666667 . 14.666667
3.32666 . 3.32666

Total 19.826923 24.772727 21.297297
4.7432972 6.6111869 5.7855032
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Also see
[R] table — Table of frequencies, summaries, and command results

[R] table summary — Table of summary statistics

[R] tabstat — Compact table of summary statistics

[R] tabulate oneway — One-way table of frequencies

[R] tabulate twoway — Two-way table of frequencies

[D] collapse — Make dataset of summary statistics

[SVY] svy: tabulate oneway — One-way tables for survey data

[SVY] svy: tabulate twoway — Two-way tables for survey data

[U] 12.6 Dataset, variable, and value labels

[U] 26 Working with categorical data and factor variables
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Description Quick start Menu Syntax
Options for testparm Options for test Remarks and examples Stored results
Methods and formulas Acknowledgment References Also see

Description
test performsWald tests of simple and composite linear hypotheses about the parameters of the most

recently fit model.

test supports svy estimators (see [SVY] svy estimation), carrying out an adjustedWald test by default

in such cases. test can be used with svy estimation results, see [SVY] svy postestimation.

testparm provides a useful alternative to test that permits varlist rather than a list of coefficients
(which is often nothing more than a list of variables), allowing the use of standard Stata notation, includ-

ing ‘-’ and ‘*’, which are given the expression interpretation by test.

test and testparm performWald tests. For likelihood-ratio tests, see [R] lrtest. ForWald-type tests

of nonlinear hypotheses, see [R] testnl. To display estimates for one-dimensional linear or nonlinear

expressions of coefficients, see [R] lincom and [R] nlcom.

See [R] anova postestimation for additional test syntax allowed after anova.

See [MV] manova postestimation for additional test syntax allowed after manova.

Quick start
Linear tests after single-equation models

Joint test that the coefficients on x1 and x2 are equal to 0
test x1 x2

Joint test that coefficients on factor indicators 2.a and 3.a are equal to 0
test 2.a 3.a

Test that coefficients on indicators 2.a and 3.a are equal
test 2.a = 3.a

Joint test that coefficients on indicators 1.a, 2.a, and 3.a are all equal
test (1.a=2.a) (1.a=3.a)

Same as above

test 1.a=2.a=3.a

Same as above, but add separate tests for each pairing

test 1.a=2.a=3.a, mtest

Same as above, but with 𝑝-values adjusted for multiple comparisons using Šidák’s method
test (1.a=2.a) (1.a=3.a), mtest(sidak)
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Test that the sum of the coefficients for x1 and x2 is equal to 4
test x1 + x2 = 4

Test the equality of two linear expressions involving coefficients on x1 and x2
test 2*x1 = 3*x2

Shorthand varlist notation

Joint test that all coefficients on the indicators for a are equal to 0
testparm i.a

Joint test that all coefficients on the indicators for a and b are equal to 0
testparm i.a i.b

Joint test that all coefficients associated with the interaction of factor variables a and b are equal to 0
testparm i.a#i.b

Joint test that the coefficients on all variables x* are equal to 0
testparm x*

Linear tests after multiple-equation models

Joint test that the coefficient on x1 is equal to 0 in all equations
test x1

Joint test that the coefficients for x1 and x2 are equal to 0 in equation y3
test [y3]x1 [y3]x2

Test that the coefficients for x1 are equal in equations y1 and y3
test [y1]x1=[y3]x1

Same as above

test [y1=y3]: x1

Joint test of the equality of coefficients for x1 and x2 across equations y1 and y3
test [y1=y3]: x1 x2

Add coefficients for x1 and x2 from equation y4 to test
test [y1=y3=y4]: x1 x2

Test that all coefficients in the equation for y1 are equal to those in the equation for y2
test [y1=y2]

Same as above, but only for coefficients on variables common to both equations

test [y1=y2], common
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Shorthand varlist notation

Joint test that all coefficients on the indicators for a are 0 in all equations
testparm i.a

Joint test that all coefficients on the indicators for a are equal to each other in the first equation
testparm i.a, equal

Same as above, but for the equation for y4
testparm i.a, equal equation(y4)

Joint test that the coefficients on the indicators for a and b are equal to 0 in all equations
testparm i.a i.b

Joint test that all coefficients associated with the interaction of factors a and b are 0
testparm i.a#i.b

Menu
Statistics > Postestimation
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Syntax
Basic syntax

test coeflist (Syntax 1)

test exp=exp[=...] (Syntax 2)

test [eqno] [: coeflist ] (Syntax 3)

test [eqno=eqno[=. . .]] [: coeflist ] (Syntax 4)

testparm varlist [ , testparm options ]

Full syntax

test (spec) [(spec) ...] [ , test options ]

testparm options Description

equal hypothesize that the coefficients are equal to each other

equation(eqno) specify equation name or number for which the hypothesis is tested

nosvyadjust compute unadjusted Wald tests for survey results

df(#) use 𝐹 distribution with # denominator degrees of freedom for the reference
distribution of the test statistic; for survey data, # specifies the design
degrees of freedom unless nosvyadjust is specified

df(#) does not appear in the dialog box.

test options Description

Options

mtest[(opt)] test each condition separately

coef report estimated constrained coefficients

accumulate test hypothesis jointly with previously tested hypotheses

notest suppress the output

common test only variables common to all the equations

constant include the constant in coefficients to be tested

nosvyadjust compute unadjusted Wald tests for survey results

minimum perform test with the constant, drop terms until the test
becomes nonsingular, and test without the constant on the
remaining terms; highly technical

matvlc(matname) save the variance–covariance matrix; programmer’s option

df(#) use 𝐹 distribution with # denominator degrees of freedom for the reference
distribution of the test statistic; for survey data, # specifies the design
degrees of freedom unless nosvyadjust is specified

matvlc(matname) and df(#) do not appear in the dialog box.

coeflist and varlist may contain factor variables and time-series operators; see [U] 11.4.3 Factor variables and
[U] 11.4.4 Time-series varlists.

collect is allowed with test; see [U] 11.1.10 Prefix commands.
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Syntax 1 tests that coefficients are 0.

Syntax 2 tests that linear expressions are equal.

Syntax 3 tests that coefficients in eqno are 0.

Syntax 4 tests equality of coefficients between equations.

spec is one of

coeflist

exp=exp[=exp ]
[eqno] [ : coeflist ]
[eqno1=eqno2 [ =... ]] [ : coeflist ]

coeflist is

coef [coef . . .]
[eqno]coef [ [eqno]coef ... ]
[eqno] b[coef ][ [eqno] b[coef ]... ]

exp is a linear expression containing

coef

b[coef ]
b[eqno:coef ]

[eqno]coef
[eqno] b[coef ]

eqno is

# #
name

coef identifies a coefficient in the model. coef is typically a variable name, a level indicator, an in-

teraction indicator, or an interaction involving continuous variables. Level indicators identify one level

of a factor variable and interaction indicators identify one combination of levels of an interaction; see

[U] 11.4.3 Factor variables. coef may contain time-series operators; see [U] 11.4.4 Time-series varlists.

Distinguish between [ ], which are to be typed, and [ ], which indicate optional arguments.
Although not shown in the syntax diagram, parentheses around spec are required only with multiple

specifications. Also, the diagram does not show that testmay be called without arguments to redisplay
the results from the last test.

anova and manova (see [R] anova and [MV] manova) allow the test syntax above plus more

(see [R] anova postestimation for test after anova; see [MV] manova postestimation for test af-

ter manova).
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Options for testparm
equal tests that the variables appearing in varlist, which also appear in the previously fit model, are

equal to each other rather than jointly equal to zero.

equation(eqno) is relevant only formultiple-equationmodels, such as mvreg, mlogit, and heckman. It
specifies the equation for which the all-zero or all-equal hypothesis is tested. equation(#1) specifies
that the test be conducted regarding the first equation #1. equation(price) specifies that the test
concern the equation named price.

nosvyadjust is for use with svy estimation commands; see [SVY] svy estimation. It specifies that the

Wald test be carried out without the default adjustment for the design degrees of freedom. That is, the

test is carried out as 𝑊/𝑘 ∼ 𝐹(𝑘, 𝑑) rather than as (𝑑 −𝑘 +1)𝑊/(𝑘𝑑) ∼ 𝐹(𝑘, 𝑑 −𝑘 +1), where 𝑘 =
the dimension of the test and 𝑑 = the total number of sampled PSUs minus the total number of strata.

When the df() option is used, it will override the default design degrees of freedom.

The following option is available with testparm but is not shown in the dialog box:

df(#) specifies that the 𝐹 distribution with # denominator degrees of freedom be used for the reference

distribution of the test statistic. The default is to use e(df r) degrees of freedom or the𝜒2 distribution

if e(df r) is missing. With survey data, # is the design degrees of freedom unless nosvyadjust is
specified.

Options for test

� � �
Options �

mtest[(opt)] specifies that tests be performed for each condition separately. opt specifies the method
for adjusting 𝑝-values for multiple testing. Valid values for opt are

bonferroni Bonferroni’s method

holm Holm’s method

sidak Šidák’s method

noadjust no adjustment is to be made

Specifying mtest without an argument is equivalent to mtest(noadjust).

coef specifies that the constrained coefficients be displayed.

accumulate allows a hypothesis to be tested jointly with the previously tested hypotheses.

notest suppresses the output. This option is useful when you are interested only in the joint test of

several hypotheses, specified in a subsequent call of test, accumulate.

common specifies that when you use the [eqno1=eqno2[=. . .]] form of spec, the variables common to

the equations eqno1, eqno2, etc., be tested. The default action is to complain if the equations have

variables not in common.

constant specifies that cons be included in the list of coefficients to be tested when using the

[eqno1=eqno2[=. . .]] or [eqno] forms of spec. The default is not to include cons.
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nosvyadjust is for use with svy estimation commands; see [SVY] svy estimation. It specifies that the

Wald test be carried out without the default adjustment for the design degrees of freedom. That is, the

test is carried out as 𝑊/𝑘 ∼ 𝐹(𝑘, 𝑑) rather than as (𝑑 −𝑘 +1)𝑊/(𝑘𝑑) ∼ 𝐹(𝑘, 𝑑 −𝑘 +1), where 𝑘 =
the dimension of the test and 𝑑 = the total number of sampled PSUs minus the total number of strata.

When the df() option is used, it will override the default design degrees of freedom.

minimum is a highly technical option. It first performs the test with the constant added. If this test

is singular, coefficients are dropped until the test becomes nonsingular. Then the test without the

constant is performed with the remaining terms.

The following options are available with test but are not shown in the dialog box:

matvlc(matname), a programmer’s option, saves the variance–covariance matrix of the linear combi-
nations involved in the suite of tests. For the test of the linear constraints 𝐿𝑏 = 𝑐, matname contains
𝐿V𝐿′, where V is the estimated variance–covariance matrix of 𝑏.

df(#) specifies that the 𝐹 distribution with # denominator degrees of freedom be used for the reference

distribution of the test statistic. The default is to use e(df r) degrees of freedom or the𝜒2 distribution

if e(df r) is missing. With survey data, # is the design degrees of freedom unless nosvyadjust is
specified.

Remarks and examples
Remarks are presented under the following headings:

Introductory examples
Special syntaxes after multiple-equation estimation
Constrained coefficients
Multiple testing

Introductory examples
test performs 𝐹 or 𝜒2 tests of linear restrictions applied to the most recently fit model (for example,

regress or svy: regress in the linear regression case; logit, stcox, svy: logit, . . . in the single-
equation maximum-likelihood case; and mlogit, mvreg, streg, . . . in the multiple-equation maximum-
likelihood case). test may be used after any estimation command, although for maximum likelihood

techniques, test produces a Wald test that depends only on the estimate of the covariance matrix—you

may prefer to use the more computationally expensive likelihood-ratio test; see [U] 20 Estimation and

postestimation commands and [R] lrtest.

There are several variations on the syntax for test. The second syntax,

test exp=exp[=...]

is allowed after any form of estimation. After fitting a model of depvar on x1, x2, and x3, typing test
x1+x2=x3 tests the restriction that the coefficients on x1 and x2 sum to the coefficient on x3. The

expressions can be arbitrarily complicated; for instance, typing test x1+2*(x2+x3)=x2+3*x3 is the

same as typing test x1+x2=x3.

As a convenient shorthand, test also allows you to specify equality for multiple expressions; for

example, test x1+x2 = x3+x4 = x5+x6 tests that the three specified pairwise sums of coefficients are
equal.
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test understands that when you type x1, you are referring to the coefficient on x1.
You could also more explicitly type test b[x1]+ b[x2]= b[x3]; or you could test
coef[x1]+ coef[x2]= coef[x3], or test [#1]x1+[#1]x2=[#1]x3, or many other things because
there is more than one way to refer to an estimated coefficient; see [U] 13.5 Accessing coefficients and

standard errors. The shorthand involves less typing. On the other hand, you must be more explicit after

estimation of multiple-equation models because there may be more than one coefficient associated with

an independent variable. You might type, for instance, test [#2]x1+[#2]x2=[#2]x3 to test the con-
straint in equation 2 or, more readably, test [ford]x1+[ford]x2=[ford]x3, meaning that Stata will
test the constraint on the equation corresponding to ford, which might be equation 2. ford would be
an equation name after, say, sureg, or, after mlogit, ford would be one of the outcomes. For mlogit,
you could also type test [2]x1+[2]x2=[2]x3—note the lack of the #—meaning not equation 2, but

the equation corresponding to the numeric outcome 2. You can even test constraints across equations:

test [ford]x1+[ford]x2=[buick]x3.

The syntax

test coeflist

is available after all estimation commands and is a convenient way to test that multiple coefficients are

zero following estimation. A coeflist can simply be a list of variable names,

test varname [ varname . . . ]

and it is most often specified that way. After you have fit a model of depvar on x1, x2, and x3, typing
test x1 x3 tests that the coefficients on x1 and x3 are jointly zero. After multiple-equation estimation,
this would test that the coefficients on x1 and x3 are zero in all equations that contain them. You can also
be more explicit and type, for instance, test [ford]x1 [ford]x3 to test that the coefficients on x1 and
x3 are zero in the equation for ford.

In the multiple-equation case, there are more alternatives. You could also test that the coefficients

on x1 and x3 are zero in the equation for ford by typing test [ford]: x1 x3. You could test that
all coefficients except the coefficient on the constant are zero in the equation for ford by typing test
[ford]. You could test that the coefficients on x1 and x3 in the equation for ford are equal to the

corresponding coefficients in the equation corresponding to buick by typing test[ford=buick]: x1
x3. You could test that all the corresponding coefficients except the constant in three equations are equal
by typing test [ford=buick=volvo].

testparm is much like the first syntax of test. Its usefulness will be demonstrated below.

The examples below use regress, but what is said applies equally after any single-equation estima-
tion command (such as logistic). It also applies after multiple-equation estimation commands as long
as references to coefficients are qualified with an equation name or number in square brackets placed

before them. The convenient syntaxes for dealing with tests of many coefficients in multiple-equation

models are demonstrated in Special syntaxes after multiple-equation estimation below.
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Example 1: Testing for a single coefficient against zero
We have 1980 census data on the 50 states recording the birth rate in each state (brate), the median

age (medage), and the region of the country in which each state is located.

The region variable is 1 if the state is in the Northeast, 2 if the state is in the North Central, 3 if the
state is in the South, and 4 if the state is in the West. We estimate the following regression:

. use https://www.stata-press.com/data/r18/census3
(1980 Census data by state)
. regress brate medage c.medage#c.medage i.region

Source SS df MS Number of obs = 50
F(5, 44) = 100.63

Model 38803.4208 5 7760.68416 Prob > F = 0.0000
Residual 3393.39921 44 77.1227094 R-squared = 0.9196

Adj R-squared = 0.9104
Total 42196.82 49 861.159592 Root MSE = 8.782

brate Coefficient Std. err. t P>|t| [95% conf. interval]

medage -109.0958 13.52452 -8.07 0.000 -136.3527 -81.83892

c.medage#
c.medage 1.635209 .2290536 7.14 0.000 1.173582 2.096836

region
NCentral 15.00283 4.252067 3.53 0.001 6.433353 23.57231

South 7.366445 3.953335 1.86 0.069 -.6009775 15.33387
West 21.39679 4.650601 4.60 0.000 12.02412 30.76946

_cons 1947.611 199.8405 9.75 0.000 1544.859 2350.363

test can now be used to perform a variety of statistical tests. Specify the coeflegend option with
your estimation command to see a legend of the coefficients and how to specify them; see [R]Estimation

options. We can test the hypothesis that the coefficient on 3.region is zero by typing

. test 3.region=0
( 1) 3.region = 0

F( 1, 44) = 3.47
Prob > F = 0.0691

The 𝐹 statistic with 1 numerator and 44 denominator degrees of freedom is 3.47. The significance level

of the test is 6.91%—we can reject the hypothesis at the 10% level but not at the 5% level.

This result from test is identical to one presented in the output from regress, which indicates

that the 𝑡 statistic on the 3.region coefficient is 1.863 and that its significance level is 0.069. The

𝑡 statistic presented in the output can be used to test the hypothesis that the corresponding coefficient is
zero, although it states the test in slightly different terms. The 𝐹 distribution with 1 numerator degree of

freedom is, however, identical to the 𝑡2 distribution. We note that 1.8632 ≈ 3.47 and that the significance

levels in each test agree, although one extra digit is presented by the test command.
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Technical note
After all estimation commands, including those that use the maximum likelihood method, the test that

one variable is zero is identical to that reported by the command’s output. The tests are performed in

the same way—using the estimated covariance matrix—and are known as Wald tests. If the estimation

command reports significance levels and confidence intervals using 𝑧 rather than 𝑡 statistics, test reports
results using the 𝜒2 rather than the 𝐹 statistic.

Example 2: Testing the value of a single coefficient
If that were all test could do, it would be useless. We can use test, however, to perform other tests.

For instance, we can test the hypothesis that the coefficient on 2.region is 21 by typing

. test 2.region=21
( 1) 2.region = 21

F( 1, 44) = 1.99
Prob > F = 0.1654

We find that we cannot reject that hypothesis, or at least we cannot reject it at any significance level

below 16.5%.

Example 3: Testing the equality of two coefficients
The previous test is useful, but we could almost as easily perform it by hand using the results presented

in the regression output if we were well read on our statistics. We could type

. display Ftail(1,44,((_coef[2.region]-21)/4.252068)^2)

.16544873

So, now let’s test something a bit more difficult: whether the coefficient on 2.region is the same as
the coefficient on 4.region:

. test 2.region=4.region
( 1) 2.region - 4.region = 0

F( 1, 44) = 2.84
Prob > F = 0.0989

We find that we cannot reject the equality hypothesis at the 5% level, but we can at the 10% level.
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Example 4
When we tested the equality of the 2.region and 4.region coefficients, Stata rearranged our alge-

bra. When Stata displayed its interpretation of the specified test, it indicated that we were testing whether

2.regionminus 4.region is zero. The rearrangement is innocuous and, in fact, allows Stata to perform
much more complicated algebra, for instance,

. test 2*(2.region-3*(3.region-4.region))=3.region+2.region+6*(4.region-3.region)
( 1) 2.region - 3.region = 0

F( 1, 44) = 5.06
Prob > F = 0.0295

Although we requested what appeared to be a lengthy hypothesis, once Stata simplified the algebra,

it realized that all we wanted to do was test whether the coefficient on 2.region is the same as the

coefficient on 3.region.

Technical note
Stata’s ability to simplify and test complex hypotheses is limited to linear hypotheses. If you attempt

to test a nonlinear hypothesis, you will be told that it is not possible:

. test 2.region/3.region=2.region+3.region
not possible with test
r(131);

To test a nonlinear hypothesis, see [R] testnl.

Example 5: Testing joint hypotheses
The real power of test is demonstrated when we test joint hypotheses. Perhaps we wish to test

whether the region variables, taken as a whole, are significant by testing whether the coefficients on

2.region, 3.region, and 4.region are simultaneously zero. test allows us to specify multiple con-
ditions to be tested, each embedded within parentheses.

. test (2.region=0) (3.region=0) (4.region=0)
( 1) 2.region = 0
( 2) 3.region = 0
( 3) 4.region = 0

F( 3, 44) = 8.85
Prob > F = 0.0001

test displays the set of conditions and reports an 𝐹 statistic of 8.85. test also reports the degrees of
freedom of the test to be 3, the “dimension” of the hypothesis, and the residual degrees of freedom, 44.

The significance level of the test is close to 0, so we can strongly reject the hypothesis of no difference

between the regions.
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An alternativemethod to specify simultaneous hypotheses uses the convenient shorthand of conditions

with multiple equality operators.

. test 2.region=3.region=4.region=0
( 1) 2.region - 3.region = 0
( 2) 2.region - 4.region = 0
( 3) 2.region = 0

F( 3, 44) = 8.85
Prob > F = 0.0001

Technical note
Another method to test simultaneous hypotheses is to specify a test for each constraint and

accumulate it with the previous constraints:

. test 2.region=0
( 1) 2.region = 0

F( 1, 44) = 12.45
Prob > F = 0.0010

. test 3.region=0, accumulate
( 1) 2.region = 0
( 2) 3.region = 0

F( 2, 44) = 6.42
Prob > F = 0.0036

. test 4.region=0, accumulate
( 1) 2.region = 0
( 2) 3.region = 0
( 3) 4.region = 0

F( 3, 44) = 8.85
Prob > F = 0.0001

We tested the hypothesis that the coefficient on 2.region was zero by typing test 2.region=0.
We then tested whether the coefficient on 3.region was also zero by typing test 3.region=0,
accumulate. The accumulate option told Stata that this was not the start of a new test but a con-

tinuation of a previous one. Stata responded by showing us the two equations and reporting an 𝐹 statistic

of 6.42. The significance level associated with those two coefficients being zero is 0.36%.

When we added the last constraint test 4.region=0, accumulate, we discovered that the three
region variables are significant. If all we wanted was the overall significance and we did not want to

bother seeing the interim results, we could have used the notest option:

. test 2.region=0, notest
( 1) 2.region = 0
. test 3.region=0, accumulate notest
( 1) 2.region = 0
( 2) 3.region = 0
. test 4.region=0, accumulate
( 1) 2.region = 0
( 2) 3.region = 0
( 3) 4.region = 0

F( 3, 44) = 8.85
Prob > F = 0.0001
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Example 6: Quickly testing coefficients against zero
Because tests that coefficients are zero are so common in applied statistics, the test command has a

more convenient syntax to accommodate this case:

. test 2.region 3.region 4.region
( 1) 2.region = 0
( 2) 3.region = 0
( 3) 4.region = 0

F( 3, 44) = 8.85
Prob > F = 0.0001

Example 7: Specifying varlists
We will now show how to use testparm. In its first syntax, test accepts a list of variable names but

not a varlist.

. test i(2/4).region
i not found
r(111);

In the varlist, i(2/4).region means all the level variables from 2.region through 4.region, yet we
received an error. test does not actually understand varlists, but testparm does. In fact, it understands
only varlists.

. testparm i(2/4).region
( 1) 2.region = 0
( 2) 3.region = 0
( 3) 4.region = 0

F( 3, 44) = 8.85
Prob > F = 0.0001

Another way to test all the region variables is to type testparm i.region.

That testparm accepts varlists has other advantages that do not involve factor variables. Suppose that
we have a dataset that has dummy variables reg2, reg3, and reg4, rather than the categorical variable
region.

. use https://www.stata-press.com/data/r18/census4
(Census data on birthrate, median age)
. regress brate medage c.medage#c.medage reg2 reg3 reg4
(output omitted )

. test reg2-reg4
- not found
r(111);

In a varlist, reg2-reg4 means variables reg2 and reg4 and all the variables between, yet we received
an error. test is confused because the - has two meanings: it means subtraction in an expression and
“through” in a varlist. Similarly, ‘*’ means “any set of characters” in a varlist and multiplication in an
expression. testparm avoids this confusion—it allows only a varlist.
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. testparm reg2-reg4
( 1) reg2 = 0
( 2) reg3 = 0
( 3) reg4 = 0

F( 3, 44) = 8.85
Prob > F = 0.0001

testparm has another advantage. We have five variables in our dataset that start with the characters

reg: region, reg1, reg2, reg3, and reg4. reg* thus means those five variables:

. describe reg*
Variable Storage Display Value

name type format label Variable label

region byte %8.0g region Census region
reg1 byte %9.0g Region: NE
reg2 byte %9.0g Region: N Cntrl
reg3 byte %9.0g Region: South
reg4 byte %9.0g Region: West

We cannot type test reg* because, in an expression, ‘*’ means multiplication, but here is what would
happen if we attempted to test all the variables that begin with reg:

. test region reg1 reg2 reg3 reg4
region not found
r(111);

The variable region was not included in our model, so it was not found. However, with testparm,

. testparm reg*
( 1) reg2 = 0
( 2) reg3 = 0
( 3) reg4 = 0

F( 3, 44) = 8.85
Prob > F = 0.0001

That is, testparm took reg* to mean all variables that start with reg that were in our model.

Technical note
Actually, reg* means what it always does—all variables in our dataset that begin with reg—in this

case, region reg1 reg2 reg3 reg4. testparm just ignores any variables you specify that are not in
the model.
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Example 8: Replaying the previous test
We just used test (testparm, actually, but it does not matter) to test the hypothesis that reg2, reg3,

and reg4 are jointly zero. We can review the results of our last test by typing test without arguments:

. test
( 1) reg2 = 0
( 2) reg3 = 0
( 3) reg4 = 0

F( 3, 44) = 8.85
Prob > F = 0.0001

Technical note
test does not care how we build joint hypotheses; we may freely mix different forms of syntax. (We

can even start with testparm, but we cannot use it thereafter because it does not have an accumulate
option.)

Say that we type test reg2 reg3 reg4 to test that the coefficients on our region dummies are jointly
zero. We could then add a fourth constraint, say, that medage = 100, by typing test medage=100,
accumulate. Or, if we had introduced the medage constraint first (our first test command had been
test medage=100), we could then add the region dummy test by typing test reg2 reg3 reg4,
accumulate or test (reg2=0) (reg3=0) (reg4=0), accumulate.

Remember that all previous tests are cleared when we do not specify the accumulate option. No

matter what tests we performed in the past, if we type test medage c.medage#c.medage, omitting the
accumulate option, we would test that medage and c.medage#c.medage are jointly zero.

Example 9: Testing the equality of multiple coefficients
Let’s return to our census3.dta dataset and test the hypothesis that all the included regions have the

same coefficient—that the Northeast is significantly different from the rest of the nation:

. use https://www.stata-press.com/data/r18/census3
(1980 Census data by state)
. regress brate medage c.medage#c.medage i.region
(output omitted )

. test 2.region=3.region=4.region
( 1) 2.region - 3.region = 0
( 2) 2.region - 4.region = 0

F( 2, 44) = 8.23
Prob > F = 0.0009

We find that they are not all the same. The syntax 2.region=3.region=4.region with multiple =
operators is just a convenient shorthand for typing that the first expression equals the second expression

and that the first expression equals the third expression,

. test (2.region=3.region) (2.region=4.region)
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We performed the test for equality of the three regions by imposing two constraints: region 2 has the

same coefficient as region 3, and region 2 has the same coefficient as region 4. Alternatively, we could

have tested that the coefficients on regions 2 and 3 are the same and that the coefficients on regions 3

and 4 are the same. We would obtain the same results in either case.

To test for equality of the three regions, we might, likely by mistake, type equality constraints for all

pairs of regions:

. test (2.region=3.region) (2.region=4.region) (3.region=4.region)
( 1) 2.region - 3.region = 0
( 2) 2.region - 4.region = 0
( 3) 3.region - 4.region = 0

Constraint 3 dropped
F( 2, 44) = 8.23

Prob > F = 0.0009

Equality of regions 2 and 3 and of regions 2 and 4, however, implies equality of regions 3 and 4. test
recognized that the last constraint is implied by the other constraints and hence dropped it.

Technical note
Generally, Stata uses = for assignment, as in gen newvar = exp, and == as the operator for testing

equality in expressions. For your convenience, test allows both = and == to be used.

Example 10
The test for the equality of the regions is also possible with the testparm command. Whenwe include

the equal option, testparm tests that the coefficients of all the variables specified are equal:

. testparm i(2/4).region, equal
( 1) - 2.region + 3.region = 0
( 2) - 2.region + 4.region = 0

F( 2, 44) = 8.23
Prob > F = 0.0009

We can also obtain the equality test by accumulating single equality tests.

. test 2.region=3.region, notest
( 1) 2.region - 3.region = 0
. test 2.region=4.region, accum
( 1) 2.region - 3.region = 0
( 2) 2.region - 4.region = 0

F( 2, 44) = 8.23
Prob > F = 0.0009
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Technical note
If we specify a set of inconsistent constraints, testwill tell us by dropping the constraint or constraints

that led to the inconsistency. For instance, let’s test that the coefficients on region 2 and region 4 are
the same, add the test that the coefficient on region 2 is 20, and finally add the test that the coefficient on

region 4 is 21:

. test (2.region=4.region) (2.region=20) (4.region=21)
( 1) 2.region - 4.region = 0
( 2) 2.region = 20
( 3) 4.region = 21

Constraint 2 dropped
F( 2, 44) = 1.82

Prob > F = 0.1737

test informed us that it was dropping constraint 2. All three equations cannot be simultaneously true,
so test drops whatever it takes to get back to something that makes sense.

Special syntaxes after multiple-equation estimation
Everything said above about tests after single-equation estimation applies to tests after multiple-

equation estimation, as long as you remember to specify the equation name. To demonstrate, let’s esti-

mate a seemingly unrelated regression by using sureg; see [R] sureg.
. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. sureg (price foreign mpg displ) (weight foreign length)
Seemingly unrelated regression

Equation Obs Params RMSE ”R-squared” chi2 P>chi2

price 74 3 2165.321 0.4537 49.64 0.0000
weight 74 2 245.2916 0.8990 661.84 0.0000

Coefficient Std. err. z P>|z| [95% conf. interval]

price
foreign 3058.25 685.7357 4.46 0.000 1714.233 4402.267

mpg -104.9591 58.47209 -1.80 0.073 -219.5623 9.644042
displacement 18.18098 4.286372 4.24 0.000 9.779842 26.58211

_cons 3904.336 1966.521 1.99 0.047 50.0263 7758.645

weight
foreign -147.3481 75.44314 -1.95 0.051 -295.2139 .517755
length 30.94905 1.539895 20.10 0.000 27.93091 33.96718
_cons -2753.064 303.9336 -9.06 0.000 -3348.763 -2157.365
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To test the significance of foreign in the price equation, we could type

. test [price]foreign
( 1) [price]foreign = 0

chi2( 1) = 19.89
Prob > chi2 = 0.0000

which is the same result reported by sureg: 4.4602 ≈ 19.89. To test foreign in both equations, we
could type

. test [price]foreign [weight]foreign
( 1) [price]foreign = 0
( 2) [weight]foreign = 0

chi2( 2) = 31.61
Prob > chi2 = 0.0000

or

. test foreign
( 1) [price]foreign = 0
( 2) [weight]foreign = 0

chi2( 2) = 31.61
Prob > chi2 = 0.0000

This last syntax—typing the variable name by itself—tests the coefficients in all equations in which

they appear. The variable length appears in only the weight equation, so typing

. test length
( 1) [weight]length = 0

chi2( 1) = 403.94
Prob > chi2 = 0.0000

yields the same result as typing test [weight]length. We may also specify a linear expression rather

than a list of coefficients:

. test mpg=displ
( 1) [price]mpg - [price]displacement = 0

chi2( 1) = 4.85
Prob > chi2 = 0.0277

or

. test [price]mpg = [price]displ
( 1) [price]mpg - [price]displacement = 0

chi2( 1) = 4.85
Prob > chi2 = 0.0277

A variation on this syntax can be used to test cross-equation constraints:

. test [price]foreign = [weight]foreign
( 1) [price]foreign - [weight]foreign = 0

chi2( 1) = 23.07
Prob > chi2 = 0.0000
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Typing an equation name in square brackets by itself tests all the coefficients except the intercept in

that equation:

. test [price]
( 1) [price]foreign = 0
( 2) [price]mpg = 0
( 3) [price]displacement = 0

chi2( 3) = 49.64
Prob > chi2 = 0.0000

Typing an equation name in square brackets, a colon, and a list of variable names tests those variables in

the specified equation:

. test [price]: foreign displ
( 1) [price]foreign = 0
( 2) [price]displacement = 0

chi2( 2) = 25.19
Prob > chi2 = 0.0000

test [eqname1=eqname2] tests that all the coefficients in the two equations are equal. We cannot

use that syntax here because there are different variables in the model:

. test [price=weight]
variables differ between equations
(to test equality of coefficients in common, specify option common)
r(111);

The common option specifies a test of the equality coefficients common to the equations price and
weight,

. test [price=weight], common
( 1) [price]foreign - [weight]foreign = 0

chi2( 1) = 23.07
Prob > chi2 = 0.0000

By default, test does not include the constant, the coefficient of the constant variable cons, in the
test. The cons option specifies that the constant be included.

. test [price=weight], common cons
( 1) [price]foreign - [weight]foreign = 0
( 2) [price]_cons - [weight]_cons = 0

chi2( 2) = 51.23
Prob > chi2 = 0.0000

We can also use a modification of this syntax with the model if we also type a colon and the names of

the variables we want to test:

. test [price=weight]: foreign
( 1) [price]foreign - [weight]foreign = 0

chi2( 1) = 23.07
Prob > chi2 = 0.0000

We have only one variable in common between the two equations, but if there had been more, we could

have listed them.
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Finally, a simultaneous test of multiple constraints may be specified just as after single-equation esti-

mation.

. test ([price]: foreign) ([weight]: foreign)
( 1) [price]foreign = 0
( 2) [weight]foreign = 0

chi2( 2) = 31.61
Prob > chi2 = 0.0000

test can also test for equality of coefficients across more than two equations. For instance, test
[eq1=eq2=eq3] specifies a test that the coefficients in the three equations eq1, eq2, and eq3 are equal.
This requires that the same variables be included in the three equations. If some variables are entered only

in some of the equations, you can type test [eq1=eq2=eq3], common to test that the coefficients of the
variables common to all three equations are equal. Alternatively, you can explicitly list the variables for

which equality of coefficients across the equations is to be tested. For instance, test [eq1=eq2=eq3]:
time money tests that the coefficients of the variables time and money do not differ between the equa-
tions.

Technical note
test [eq1=eq2=eq3], common tests the equality of the coefficients common to all equations, but it

does not test the equality of all common coefficients. Consider the case where

eq1 contains the variables var1 var2 var3
eq2 contains the variables var1 var2 var4
eq3 contains the variables var1 var3 var4

Obviously, only var1 is common to all three equations. Thus test [eq1=eq2=eq3], common
tests that the coefficients of var1 do not vary across the equations, so it is equivalent to test
[eq1=eq2=eq3]: var1. To perform a test of the coefficients of variables common to two equations,

you could explicitly list the constraints to be tested,

. test ([eq1=eq2=eq3]:var1) ([eq1=eq2]:var2) ([eq1=eq3]:var3) ([eq2=eq3]:var4)

or use testwith the accumulate option, andmaybe also with the notest option, to form the appropriate

joint hypothesis:

. test [eq1=eq2], common notest

. test [eq1=eq3], common accumulate notest

. test [eq2=eq3], common accumulate
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Constrained coefficients
If the test indicates that the data do not allow you to conclude that the constraints are not satisfied, you

may want to inspect the constrained coefficients. The coef option specified that the constrained results,
estimated by GLS, are shown.

. test [price=weight], common coef
( 1) [price]foreign - [weight]foreign = 0

chi2( 1) = 23.07
Prob > chi2 = 0.0000

Constrained coefficients

Coefficient Std. err. z P>|z| [95% conf. interval]

price
foreign -216.4015 74.06083 -2.92 0.003 -361.558 -71.2449

mpg -121.5717 58.36972 -2.08 0.037 -235.9742 -7.169116
displacement 7.632566 3.681114 2.07 0.038 .4177148 14.84742

_cons 7312.856 1834.034 3.99 0.000 3718.215 10907.5

weight
foreign -216.4015 74.06083 -2.92 0.003 -361.558 -71.2449
length 30.34875 1.534815 19.77 0.000 27.34057 33.35693
_cons -2619.719 302.6632 -8.66 0.000 -3212.928 -2026.51

The constrained coefficient of foreign is −216.40 with standard error 74.06 in equations price and
weight. The other coefficients and their standard errors are affected by imposing the equality constraint
of the two coefficients of foreign because the unconstrained estimates of these two coefficients were
correlated with the estimates of the other coefficients.

Technical note
The two-step constrained coefficients 𝑏𝑐 displayed by test, coef are asymptotically equivalent to

the one-stage constrained estimates that are computed by specifying the constraints during estimation

using the constraint() option of estimation commands (Gouriéroux and Monfort 1995, chap. 10).

Generally, one-step constrained estimates have better small-sample properties. For inspection and inter-

pretation, however, two-step constrained estimates are a convenient alternative. Moreover, some estima-

tion commands (for example, stcox, many xt estimators) do not have a constraint() option.
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Multiple testing
When performing the test of a joint hypothesis, you might want to inspect the underlying 1-degree-

of-freedom hypotheses. Which constraint “is to blame”? test displays the univariate as well as the

simultaneous test if the mtest option is specified. For example,
. test [price=weight], common cons mtest
( 1) [price]foreign - [weight]foreign = 0
( 2) [price]_cons - [weight]_cons = 0

chi2 df p > chi2

(1) 23.07 1 0.0000*
(2) 11.17 1 0.0008*

All 51.23 2 0.0000

* Unadjusted p-values

Both coefficients seem to contribute to the highly significant result. The 1-degree-of-freedom test

shown here is identical to those if test had been invoked to test just this simple hypotheses. There is, of
course, a real risk in inspecting these simple hypotheses. Especially in high-dimensional hypotheses, you

may easily find one hypothesis that happens to be significant. Multiple testing procedures are designed

to provide some safeguard against this risk. 𝑝-values of the univariate hypotheses are modified so that
the probability of falsely rejecting one of the null hypotheses is bounded. test provides the methods
based on Bonferroni, Šidák, and Holm.

. test [price=weight], common cons mtest(b)
( 1) [price]foreign - [weight]foreign = 0
( 2) [price]_cons - [weight]_cons = 0

chi2 df p > chi2

(1) 23.07 1 0.0000*
(2) 11.17 1 0.0017*

All 51.23 2 0.0000

* Bonferroni-adjusted p-values

Stored results
test and testparm store the following in r():
Scalars

r(p) two-sided 𝑝-value r(chi2) 𝜒2

r(F) 𝐹 statistic r(ss) sum of squares (test)

r(df) test constraints degrees of freedom r(rss) residual sum of squares

r(df r) residual degrees of freedom r(drop) 1 if constraints were dropped, 0

r(dropped i) index of 𝑖th constraint dropped otherwise

Macros

r(mtmethod) method of adjustment for multiple

testing

Matrices

r(mtest) multiple test results

r(ss) and r(rss) are defined only when test is used for testing effects after anova.
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Methods and formulas
test and testparm perform Wald tests. Let the estimated coefficient vector be b and the estimated

variance–covariance matrix be V. Let Rb = r denote the set of 𝑞 linear hypotheses to be tested jointly.
The Wald test statistic is (Judge et al. 1985, 20–28)

𝑊 = (Rb − r)′(RVR′)−1(Rb − r)

If the estimation command reports its significance levels using 𝑍 statistics, a 𝜒2 distribution with 𝑞
degrees of freedom,

𝑊 ∼ 𝜒2
𝑞

is used for computation of the significance level of the hypothesis test.

If the estimation command reports its significance levels using 𝑡 statistics with 𝑑 degrees of freedom,
an 𝐹 statistic,

𝐹 = 1
𝑞

𝑊

is computed, and an 𝐹 distribution with 𝑞 numerator degrees of freedom and 𝑑 denominator degrees of

freedom computes the significance level of the hypothesis test.

The two-step constrained estimates 𝑏𝑐 displayed by test with the coef option are the GLS estimates
of the unconstrained estimates 𝑏 subject to the specified constraints 𝑅𝑏 = 𝑐 (Gouriéroux and Monfort

1995, chap. 10),

bc = b − VR′(RVR′)−1(Rb − r)

with variance–covariance matrix

Vc = V − VR′(RVR′)−1RV

If test displays a Wald test for joint (simultaneous) hypotheses, it can also display all 1-degree-of-

freedom tests, with 𝑝-values adjusted for multiple testing. Let 𝑝1, 𝑝2, . . . , 𝑝𝑘 be the unadjusted 𝑝-values
of these 1-degree-of-freedom tests. The Bonferroni-adjusted 𝑝-values are defined as 𝑝𝑏

𝑖 = min(1, 𝑘𝑝𝑖).
The Šidák-adjusted 𝑝-values are 𝑝𝑠

𝑖 = 1 − (1 − 𝑝𝑖)𝑘. Let 𝑝(1), 𝑝(2), . . . , 𝑝(𝑘) be the ordered unadjusted

𝑝-values. The Holm’s method adjusted 𝑝-values are then defined by

𝑝ℎ
(𝑖) = max𝑗≤𝑖[min{1, (𝑘 − 𝑗 + 1)𝑝(𝑗)}]

If test is used after a svy command, it carries out an adjusted Wald test—this adjustment should

not be confused with the adjustment for multiple testing. Both adjustments may actually be combined.

Specifically, the survey adjustment uses an approximate 𝐹 statistic (𝑑 − 𝑘 + 1)𝑊/(𝑘𝑑), where 𝑊 is the

Wald test statistic, 𝑘 is the dimension of the hypothesis test, and 𝑑 = the total number of sampled PSUs

minus the total number of strata. Under the null hypothesis, (𝑑−𝑘+1)𝐹/(𝑘𝑑) ∼ 𝐹(𝑘, 𝑑−𝑘+1), where
𝐹(𝑘, 𝑑 − 𝑘 + 1) is an 𝐹 distribution with 𝑘 numerator degrees of freedom and 𝑑 − 𝑘 + 1 denominator

degrees of freedom. If nosvyadjust is specified, the 𝑝-value is computed using 𝑊/𝑘 ∼ 𝐹(𝑘, 𝑑).
See Korn and Graubard (1990) for a detailed description of the Bonferroni adjustment technique and

for a discussion of the relative merits of it and of the adjusted and unadjusted Wald tests.
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Description
testnl tests (linear or nonlinear) hypotheses about the estimated parameters from the most recently

fit model.

testnl produces Wald-type tests of smooth nonlinear (or linear) hypotheses about the estimated pa-

rameters from the most recently fit model. The 𝑝-values are based on the delta method, an approximation
appropriate in large samples.

testnl can be used with svy estimation results; see [SVY] svy postestimation.

The format (exp1=exp2=exp3. . .) for a simultaneous-equality hypothesis is just a convenient short-
hand for a list (exp1=exp2) (exp1=exp3), etc.

testnl may also be used to test linear hypotheses. test is faster if you want to test only linear

hypotheses; see [R] test. testnl is the only option for testing linear and nonlinear hypotheses simulta-
neously.

Quick start
After single-equation models

Test that the product of the coefficients for x1 and x2 is equal to 4
testnl _b[x1]*_b[x2] = 4

Test that the ratio of the indicators for the factor variable a = 2 and a = 3 is 1

testnl _b[2.a]/_b[3.a] = 1

Test that an expression involving continuous factor variable syntax is equal to 16

testnl -_b[x1]/(2*_b[c.x1#c.x1]) = 16

Test the equality of two expressions

testnl _b[x1]*_b[x2] = _b[x1]*_b[x3]

Joint test that two products are both equal to 2

testnl (_b[x1]*_b[x2] = 2) (_b[x1]*_b[x3] = 2)

Same as above

testnl _b[x1]*_b[x2] = _b[x1]*_b[x3] = 2

Same as above, but add separate tests for each expression

testnl _b[x1]*_b[x2] = _b[x1]*_b[x3] = 2, mtest

3139
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Same as above, but adjust 𝑝-values for multiple comparisons using Holm’s method
testnl _b[x1]*_b[x2] = _b[x1]*_b[x3] = 2, mtest(holm)

Test a linear hypothesis and a nonlinear hypothesis together

testnl (_b[x1] =_b[x2]) (_b[x2] ̂2 =_b[x3])

After multiple-equation models

Test that the product of the coefficients for x1 and x2 in the equation for y1 is equal to 1
testnl _b[y1:x1]*_b[y1:x2] = 1

Test that the product of the coefficients for x1 and x2 in the equation for y2 is equal to 1
testnl _b[y2:x1]*_b[y2:x2] = 1

Test the equality of expressions involving coefficients from the equations for y1 and y4
testnl _b[y1:x1]*_b[y1:x2] = _b[y4:x1]*_b[y4:x2]

Menu
Statistics > Postestimation
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Syntax
testnl exp = exp [ = exp ... ] [ , options ]

testnl (exp = exp [ = exp ... ]) [ (exp = exp [ = exp ... ]) ... ] [ , options ]

options Description

mtest[(opt)] test each condition separately

iterate(#) use maximum # of iterations to find the optimal step size

df(#) use 𝐹 distribution with # denominator degrees of freedom for the
reference distribution of the test statistic

nosvyadjust carry out the Wald test as 𝑊/𝑘 ∼ 𝐹(𝑘, 𝑑); for use with svy
estimation commands when the df() option is also specified

collect is allowed; see [U] 11.1.10 Prefix commands.

df(#) and nosvyadjust do not appear in the dialog box.

The second syntax means that if more than one expression is specified, each must be surrounded by

parentheses.

exp is a possibly nonlinear expression containing

b[coef ]
b[eqno:coef ]

[eqno]coef
[eqno] b[coef ]

eqno is

##
name

coef identifies a coefficient in the model. coef is typically a variable name, a level indicator, an inter-

action indicator, or an interaction involving continuous variables. Level indicators identify one level

of a factor variable and interaction indicators identify one combination of levels of an interaction; see

[U] 11.4.3 Factor variables. coefmay contain time-series operators; see [U] 11.4.4 Time-series varlists.

Distinguish between [ ], which are to be typed, and [ ], which indicate optional arguments.

Options
mtest[(opt)] specifies that tests be performed for each condition separately. opt specifies the method

for adjusting 𝑝-values for multiple testing. Valid values for opt are

bonferroni Bonferroni’s method

holm Holm’s method

sidak Šidák’s method

noadjust no adjustment is to be made

Specifying mtest without an argument is equivalent to specifying mtest(noadjust).
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iterate(#) specifies the maximum number of iterations used to find the optimal step size in the calcu-

lation of numerical derivatives of the test expressions. By default, the maximum number of iterations

is 100, but convergence is usually achieved after only a few iterations. You should rarely have to use

this option.

The following options are available with testnl but are not shown in the dialog box:

df(#) specifies that the 𝐹 distribution with # denominator degrees of freedom be used for the refer-

ence distribution of the test statistic. With survey data, # is the design degrees of freedom unless

nosvyadjust is specified.

nosvyadjust is for use with svy estimation commands when the df() option is also specified; see

[SVY] svy estimation. It specifies that the Wald test be carried out without the default adjustment

for the design degrees of freedom. That is, the test is carried out as 𝑊/𝑘 ∼ 𝐹(𝑘, 𝑑) rather than as
(𝑑 − 𝑘 + 1)𝑊/(𝑘𝑑) ∼ 𝐹(𝑘, 𝑑 − 𝑘 + 1), where 𝑘 = the dimension of the test and 𝑑 = the design

degrees of freedom specified in the df() option.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Using testnl to perform linear tests
Specifying constraints
Dropped constraints
Multiple constraints
Manipulability

Introduction

Example 1
We have just estimated the parameters of an earnings model on cross-sectional time-series data using

one of Stata’s more sophisticated estimators:

. use https://www.stata-press.com/data/r18/earnings
(NLS women 14-24 in 1968)
. xtgee ln_w grade age c.age#c.age, corr(exchangeable) nolog
GEE population-averaged model Number of obs = 1,326
Group variable: idcode Number of groups = 269
Family: Gaussian Obs per group:
Link: Identity min = 1
Correlation: exchangeable avg = 4.9

max = 9
Wald chi2(3) = 327.33

Scale parameter = .0976738 Prob > chi2 = 0.0000

ln_wage Coefficient Std. err. z P>|z| [95% conf. interval]

grade .0749686 .0066111 11.34 0.000 .062011 .0879261
age .1080806 .0235861 4.58 0.000 .0618526 .1543086

c.age#c.age -.0016253 .0004739 -3.43 0.001 -.0025541 -.0006966

_cons -.8788933 .2830899 -3.10 0.002 -1.433739 -.3240473
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An implication of this model is that peak earnings occur at age - b[age]/(2* b[c.age#c.age]),
which here is equal to 33.2. Say that we have a theory that peak earnings should occur at age 16 +
1/ b[grade].

. testnl -_b[age]/(2*_b[c.age#c.age]) = 16 + 1/_b[grade]
(1) -_b[age]/(2*_b[c.age#c.age]) = 16 + 1/_b[grade]

chi2(1) = 1.71
Prob > chi2 = 0.1914

These data do not reject our theory.

Using testnl to perform linear tests
testnl may be used to test linear constraints, but test is faster; see [R] test. You could type

. testnl _b[x4] = _b[x1]

but it would take less computer time if you typed

. test _b[x4] = _b[x1]

Specifying constraints
The constraints to be tested can be formulated in many different ways. You could type

. testnl _b[mpg]*_b[weight] = 1

or

. testnl _b[mpg] = 1/_b[weight]

or you could express the constraint any other way you wished. (To say that testnl allows constraints to
be specified in different ways does not mean that the test itself does not depend on the formulation. This

point is briefly discussed later.) In formulating the constraints, you must, however, exercise one caution:

users of test often refer to the coefficient on a variable by specifying the variable name. For example,

. test mpg = 0

More formally, they should type

. test _b[mpg] = 0

but test allows the b[] surrounding the variable name to be omitted. testnl does not allow this

shorthand. Typing

. testnl mpg=0

specifies the constraint that the value of variable mpg in the first observation is zero. If you make this
mistake, sometimes testnl will catch it:

. testnl mpg=0
equation (1) contains reference to X rather than _b[X]
r(198);
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In other cases, testnlmay not catch the mistake; then, the constraint will be dropped because it does
not make sense:

. testnl mpg=0
Constraint (1) dropped

(There are reasons other than this for constraints being dropped.) The worst case, however, is

. testnl _b[weight]*mpg = 1

when what you mean is not that b[weight] equals the reciprocal of the value of mpg in the first obser-
vation, but rather that

. testnl _b[weight]*_b[mpg] = 1

Sometimes, this mistake will be caught by the “contains reference to X rather than b[X]” error, and

sometimes it will not. Be careful.

testnl, like test, can be used after any Stata estimation command, including the survey estimators.
When you use it after amultiple-equation command, such as mlogit or heckman, you refer to coefficients
by using Stata’s standard syntax: [eqname] b[varname].

Stata’s single-equation estimation output looks like this:

Coef ...

weight 12.27 ... <- coefficient is _b[weight]
mpg 3.21 ...

Stata’s multiple-equation output looks like this:

Coef ...

cat1 ...
weight 12.27 ... <- coefficient is [cat1]_b[weight]

mpg 3.21 ...

8 ...
weight 5.83 ... <- coefficient is [8]_b[weight]

mpg 7.43 ...
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Dropped constraints
testnl automatically drops constraints when

• They are nonbinding, for example, b[mpg]= b[mpg]. More subtle cases include

b[mpg]* b[weight] = 4
b[weight] = 2
b[mpg] = 2

In this example, the third constraint is nonbinding because it is implied by the first two.

• They are contradictory, for example, b[mpg]=2 and b[mpg]=3. More subtle cases include

b[mpg]* b[weight] = 4
b[weight] = 2
b[mpg] = 3

The third constraint contradicts the first two.

Multiple constraints

Example 2
We illustrate the simultaneous test of a series of constraints using simulated data on labor-market

promotion in a given year. We fit a probit model with separate effects for education, experience, and

experience-squared for men and women.

. use https://www.stata-press.com/data/r18/promotion
(Simulated data on promotions)
. probit promo male male#c.(yedu yexp yexp2), nolog
Probit regression Number of obs = 775

LR chi2(7) = 424.42
Prob > chi2 = 0.0000

Log likelihood = -245.42768 Pseudo R2 = 0.4637

promo Coefficient Std. err. z P>|z| [95% conf. interval]

male .6489974 .203739 3.19 0.001 .2496763 1.048318

male#c.yedu
Female .9730237 .1056136 9.21 0.000 .7660248 1.180023
Male 1.390517 .1527288 9.10 0.000 1.091174 1.68986

male#c.yexp
Female .4559544 .0901169 5.06 0.000 .2793285 .6325803
Male 1.422539 .1544255 9.21 0.000 1.11987 1.725207

male#c.yexp2
Female -.1027149 .0573059 -1.79 0.073 -.2150325 .0096026
Male -.3749457 .1160113 -3.23 0.001 -.6023236 -.1475677

_cons .9872018 .1148215 8.60 0.000 .7621559 1.212248

Note: 1 failure and 2 successes completely determined.
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The effects of human capital seem to differ between men and women. A formal test confirms this.

. test (yedu#0.male = yedu#1.male) (yexp#0.male = yexp#1.male)
> (yexp2#0.male = yexp2#1.male)
( 1) [promo]0b.male#c.yedu - [promo]1.male#c.yedu = 0
( 2) [promo]0b.male#c.yexp - [promo]1.male#c.yexp = 0
( 3) [promo]0b.male#c.yexp2 - [promo]1.male#c.yexp2 = 0

chi2( 3) = 35.43
Prob > chi2 = 0.0000

How do we interpret this gender difference? It has repeatedly been stressed (see, for example, Long

[1997, 47–50]; Allison [1999]) that comparison of groups in binary response models, and similarly in

other latent-variable models, is hampered by an identification problem: with 𝛽 the regression coefficients
for the latent variable and 𝜎 the standard deviation of the latent residual, only the 𝛽/𝜎 are identified. In

fact, in terms of the latent regression, the probit coefficients should be interpreted as 𝛽/𝜎, not as the 𝛽.
If we cannot claim convincingly that the residual standard deviation 𝜎 does not vary between the sexes,

equality of the regression coefficients 𝛽 implies that the coefficients of the probit model for men and

women are proportional but not necessarily equal. This is a nonlinear hypothesis in terms of the probit

coefficients, not a linear one.

. testnl _b[yedu#1.male]/_b[yedu#0.male] = _b[yexp#1.male]/_b[yexp#0.male]
> = _b[yexp2#1.male]/_b[yexp2#0.male]
(1) _b[yedu#1.male]/_b[yedu#0.male] = _b[yexp#1.male]/_b[yexp#0.male]
(2) _b[yedu#1.male]/_b[yedu#0.male] = _b[yexp2#1.male]/_b[yexp2#0.male]

chi2(2) = 9.21
Prob > chi2 = 0.0100

We conclude that we find fairly strong evidence against the proportionality of the coefficients, and

hence we have to conclude that success in the labor market is produced in different ways by men and

women. (But remember, these were simulated data.)
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Example 3
The syntax for specifying the equality of multiple expressions is just a convenient shorthand for spec-

ifying a series of constraints, namely, that the first expression equals the second expression, the first

expression also equals the third expression, etc. The Wald test performed and the output of testnl are
the same whether we use the shorthand or we specify the series of constraints.

. testnl (_b[yedu#1.male]/_b[yedu#0.male] =
> _b[yexp#1.male]/_b[yexp#0.male])
> (_b[yedu#1.male]/_b[yedu#0.male] =
> _b[yexp2#1.male]/_b[yexp2#0.male])
(1) _b[yedu#1.male]/_b[yedu#0.male] = _b[yexp#1.male]/_b[yexp#0.male]
(2) _b[yedu#1.male]/_b[yedu#0.male] = _b[yexp2#1.male]/_b[yexp2#0.male]

chi2(2) = 9.21
Prob > chi2 = 0.0100

Having established differences betweenmen andwomen, wewould like to domultiple testing between

the ratios. Because we did not specify hypotheses in advance, we prefer to adjust the 𝑝-values of tests
using, here, Bonferroni’s method.

. testnl _b[yedu#1.male]/_b[yedu#0.male] =
> _b[yexp#1.male]/_b[yexp#0.male] =
> _b[yexp2#1.male]/_b[yexp2#0.male], mtest(b)
(1) _b[yedu#1.male]/_b[yedu#0.male] = _b[yexp#1.male]/_b[yexp#0.male]
(2) _b[yedu#1.male]/_b[yedu#0.male] = _b[yexp2#1.male]/_b[yexp2#0.male]

chi2 df p > chi2

(1) 6.89 1 0.0173*
(2) 0.93 1 0.6713*

All 9.21 2 0.0100

* Bonferroni-adjusted p-values

Manipulability
Although testnl allows you to specify constraints in different ways that are mathematically equiv-

alent, as noted above, this does not mean that the tests are the same. This difference is known as the

manipulability of the Wald test for nonlinear hypotheses; also see [R] boxcox. The test might even be

significant for one formulation but not significant for another formulation that is mathematically equiv-

alent. Trying out different specifications to find a formulation with the desired 𝑝-value is totally inap-
propriate, though it may actually be fun to try. There is no variance under representation because the

nonlinear Wald test is actually a standard Wald test for a linearization of the constraint, which depends

on the particular specification. We note that the likelihood-ratio test is not manipulable in this sense.
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From a statistical point of view, it is best to choose a specification of the constraints that is as linear

is possible. Doing so usually improves the accuracy of the approximation of the null-distribution of the

test by a 𝜒2 or an 𝐹 distribution. The example above used the nonlinear Wald test to test whether the

coefficients of human capital variables for men were proportional to those of women. A specification

of proportionality of coefficients in terms of ratios of coefficients is fairly nonlinear if the coefficients

in the denominator are close to 0. A more linear version of the test results from a bilinear formulation.

Thus, instead of

. testnl _b[yedu#1.male]/_b[yedu#0.male] = _b[yexp#1.male]/_b[yexp#0.male]
(1) _b[yedu#1.male]/_b[yedu#0.male] = _b[yexp#1.male]/_b[yexp#0.male]

chi2(1) = 6.89
Prob > chi2 = 0.0087

perhaps

. testnl _b[yedu#1.male]*_b[yexp#0.male] = _b[yedu#0.male]*_b[yexp#1.male]
(1) _b[yedu#1.male]*_b[yexp#0.male] = _b[yedu#0.male]*_b[yexp#1.male]

chi2(1) = 13.95
Prob > chi2 = 0.0002

is better, and in fact it has been suggested that the latter version of the test is more reliable. This assertion

is confirmed by performing simulations and is in line with theoretical results of Phillips and Park (1988).

There is strong evidence against the proportionality of human capital effects between men and women,

implying for this example that differences in the residual variances between the sexes can be ruled out

as the explanation of the sex differences in the analysis of labor market participation.

Stored results
testnl stores the following in r():

Scalars

r(df) degrees of freedom

r(df r) residual degrees of freedom

r(chi2) 𝜒2

r(p) 𝑝-value for Wald test

r(F) 𝐹 statistic

Macros

r(mtmethod) method specified in mtest()

Matrices

r(G) derivatives of 𝑅(b) with respect to b; see Methods and formulas below

r(R) 𝑅(b) − q; see Methods and formulas below

r(mtest) multiple test results
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Methods and formulas
After fitting a model, define b as the resulting 1 × 𝑘 parameter vector and V as the 𝑘 × 𝑘 covariance

matrix. The (linear or nonlinear) hypothesis is given by 𝑅(b) = q, where 𝑅 is a function returning a

𝑗 × 1 vector. The Wald test formula is (Greene 2018, 512–513)

𝑊 = {𝑅(b) − q}
′
(GVG′)

−1
{𝑅(b) − q}

where G is the derivative matrix of 𝑅(b) with respect to b. 𝑊 is distributed as 𝜒2 if V is an asymptotic

covariance matrix. 𝐹 = 𝑊/𝑗 is distributed as 𝐹 for linear regression.

The adjustment methods for multiple testing are described in [R] test. The adjustment for survey

design effects is described in [SVY] svy postestimation.
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[R] test — Test linear hypotheses after estimation
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Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description
tetrachoric computes estimates of the tetrachoric correlation coefficients of the binary variables in

varlist. All of these variables should be 0, 1, or missing values.

Tetrachoric correlations assume a latent bivariate normal distribution (𝑋1,𝑋2) for each pair of vari-

ables (𝑣1,𝑣2), with a threshold model for the manifest variables, 𝑣𝑖 = 1 if and only if 𝑋𝑖 > 0. The

means and variances of the latent variables are not identified, but the correlation, 𝑟, of 𝑋1 and 𝑋2 can

be estimated from the joint distribution of 𝑣1 and 𝑣2 and is called the tetrachoric correlation coefficient.

tetrachoric computes pairwise estimates of the tetrachoric correlations by the (iterative) maximum
likelihood estimator obtained from bivariate probit without explanatory variables (see [R] biprobit) by

using the Edwards and Edwards (1984) noniterative estimator as the initial value.

The pairwise correlation matrix is returned as r(Rho) and can be used to perform a factor analysis or

a principal component analysis of binary variables by using the factormat or pcamat commands; see
[MV] factor and [MV] pca.

Quick start
Tetrachoric correlation of v1 and v2 with standard error and test of independence

tetrachoric v1 v2

Matrix of pairwise tetrachoric correlations for v1, v2, and v3
tetrachoric v1 v2 v3

Add standard errors and 𝑝-values
tetrachoric v1 v2 v3, stats(rho se p)

Same as above, but adjust 𝑝-values for multiple comparisons using Bonferroni’s method
tetrachoric v1 v2 v3, stats(rho se p) bonferroni

Add star to correlations significant at the 5% level

tetrachoric v1 v2 v3, star(.05)

Use all available data for each pair of variables and report number of observations used

tetrachoric v1 v2 v3, pw stats(rho obs)

Adjust correlation matrix to be positive semidefinite

tetrachoric v1 v2 v3, posdef

Menu
Statistics > Summaries, tables, and tests > Summary and descriptive statistics > Tetrachoric correlations

3150
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Syntax
tetrachoric varlist [ if ] [ in ] [weight ] [ , options ]

options Description

Main

stats(statlist) list of statistics; select up to 4 statistics; default is stats(rho)
edwards use the noniterative Edwards and Edwards estimator; default is the

maximum likelihood estimator

print(#) significance level for displaying coefficients

star(#) significance level for displaying with a star

bonferroni use Bonferroni-adjusted significance level

sidak use Šidák-adjusted significance level

pw calculate all the pairwise correlation coefficients by using all available
data (pairwise deletion)

zeroadjust adjust frequencies when one cell has a zero count

matrix display output in matrix form

notable suppress display of correlations

posdef modify correlation matrix to be positive semidefinite

statlist Description

rho tetrachoric correlation coefficient

se standard error of rho

obs number of observations

p exact two-sided significance level

by and collect are allowed; see [U] 11.1.10 Prefix commands.

fweights are allowed; see [U] 11.1.6 weight.

Options

� � �
Main �

stats(statlist) specifies the statistics to be displayed in the matrix of output. stats(rho) is the de-
fault. Up to four statistics may be specified. stats(rho se p obs) would display the tetrachoric

correlation coefficient, its standard error, the significance level, and the number of observations. If

varlist contains only two variables, all statistics are shown in tabular form. stats(), print(), and
star() have no effect unless the matrix option is also specified.

edwards specifies that the noniterative Edwards and Edwards estimator be used. The default is the

maximum likelihood estimator. If you analyze many binary variables, you may want to use the fast

noniterative estimator proposed by Edwards and Edwards (1984). However, if you have skewed

variables, the approximation does not perform well.

print(#) specifies the maximum significance level of correlation coefficients to be printed. Correlation

coefficients with larger significance levels are left blank in the matrix. Typing tetrachoric . . .,
print(.10) would list only those correlation coefficients that are significant at the 10% level or

lower.
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star(#) specifies the maximum significance level of correlation coefficients to be marked with a star.

Typing tetrachoric . . ., star(.05) would “star” all correlation coefficients significant at the 5%
level or lower.

bonferroni makes the Bonferroni adjustment to calculated significance levels. This option af-

fects printed significance levels and the print() and star() options. Thus, tetrachoric . . .,
print(.05) bonferroni prints coefficients with Bonferroni-adjusted significance levels of 0.05 or
less.

sidak makes the Šidák adjustment to calculated significance levels. This option affects printed signif-
icance levels and the print() and star() options. Thus, tetrachoric . . ., print(.05) sidak
prints coefficients with Šidák-adjusted significance levels of 0.05 or less.

pw specifies that the tetrachoric correlation be calculated by using all available data. By default,

tetrachoric uses casewise deletion, where observations are ignored if any of the specified vari-

ables in varlist are missing.

zeroadjust specifies that when one of the cells has a zero count, a frequency adjustment be applied in
such a way as to increase the zero to one-half and maintain row and column totals.

matrix forces tetrachoric to display the statistics as a matrix, even if varlist contains only two vari-
ables. matrix is implied if more than two variables are specified.

notable suppresses the output.

posdef modifies the correlation matrix so that it is positive semidefinite, that is, a proper correlation

matrix. The modified result is the correlation matrix associated with the least-squares approximation

of the tetrachoric correlation matrix by a positive-semidefinite matrix. If the correlation matrix is

modified, the standard errors and significance levels are not displayed and are returned in r().

Remarks and examples
Remarks are presented under the following headings:

Association in 2-by-2 tables
Factor analysis of dichotomous variables
Tetrachoric correlations with simulated data

Association in 2-by-2 tables
Although a wide variety of measures of association in cross tabulations have been proposed, such

measures are essentially equivalent (monotonically related) in the special case of 2 × 2 tables—there is

only 1 degree of freedom for nonindependence. Still, some measures have more desirable properties than

others. Here we compare two measures: the standard Pearson correlation coefficient and the tetrachoric

correlation coefficient. Given asymmetric row or column margins, Pearson correlations are limited to a

range smaller than −1 to 1, although tetrachoric correlations can still span the range from −1 to 1. To

illustrate, consider the following set of tables for two binary variables, X and Z:

Z = 0 Z = 1

X = 0 20 − 𝑎 10 + 𝑎 30
X = 1 𝑎 10 − 𝑎 10

20 20 40
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For 𝑎 equal to 0, 1, 2, 5, 8, 9, and 10, the Pearson and tetrachoric correlations for the above table are

𝑎 0 1 2 5 8 9 10

Pearson 0.577 0.462 0.346 0 −0.346 −0.462 −0.577

Tetrachoric 1.000 0.792 0.607 0 −0.607 −0.792 −1.000

The restricted range for the Pearson correlation is especially unfortunate when you try to analyze

the association between binary variables by using models developed for continuous data, such as factor

analysis and principal component analysis.

The tetrachoric correlation of two variables (𝑌1, 𝑌2) can be thought of as the Pearson correla-

tion of two latent bivariate normal distributed variables (𝑌 ∗
1 , 𝑌 ∗

2 ) with threshold measurement models
𝑌𝑖 = (𝑌 ∗

𝑖 > 𝑐𝑖) for unknown cutpoints 𝑐𝑖. Or equivalently, 𝑌𝑖 = (𝑌 ∗∗
𝑖 > 0) where the latent bivari-

ate normal (𝑌 ∗∗
1 , 𝑌 ∗∗

2 ) are shifted versions of (𝑌 ∗
1 , 𝑌 ∗

2 ) so that the cutpoints are zero. Obviously, you
must judge whether assuming underlying latent variables is meaningful for the data. If this assumption

is justified, tetrachoric correlations have two advantages. First, you have an intuitive understanding of

the size of correlations that are substantively interesting in your field of research, and this intuition is

based on correlations that range from −1 to 1. Second, because the tetrachoric correlation for binary

variables estimates the Pearson correlation of the latent continuous variables (assumed multivariate nor-

mal distributed), you can use the tetrachoric correlations to analyze multivariate relationships between

the dichotomous variables. When doing so, remember that you must interpret the model in terms of the

underlying continuous variables.

Example 1
To illustrate tetrachoric correlations, we examine three binary variables from the familyvalues

dataset (described in example 2).

. use https://www.stata-press.com/data/r18/familyvalues
(Attitudes on gender, relationships and family)
. tabulate RS075 RS076
Fam att: Fam att: trad
women in division of labor

charge bad 0 1 Total

0 1,564 979 2,543
1 119 632 751

Total 1,683 1,611 3,294
. correlate RS074 RS075 RS076
(obs=3,291)

RS074 RS075 RS076

RS074 1.0000
RS075 0.0396 1.0000
RS076 0.1595 0.3830 1.0000
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. tetrachoric RS074 RS075 RS076
(obs=3,291)

RS074 RS075 RS076

RS074 1.0000
RS075 0.0689 1.0000
RS076 0.2480 0.6427 1.0000

As usual, the tetrachoric correlation coefficients are larger (in absolute value) and more dispersed than

the Pearson correlations.

Factor analysis of dichotomous variables

Example 2
Factor analysis is a popular model for measuring latent continuous traits. The standard estimators are

appropriate only for continuous unimodal data. Because of the skewness implied by Bernoulli-distributed

variables (especially when the probability is distributed unevenly), a factor analysis of a Pearson correla-

tion matrix can be rather misleading when used in this context. A factor analysis of a matrix of tetrachoric

correlations is more appropriate under these conditions (Uebersax 2000). We illustrate this with data on

gender, relationship, and family attitudes of spouses using the Households in The Netherlands survey

1995 (Weesie et al. 1995). For attitude variables, it seems reasonable to assume that agreement or dis-

agreement is just a coarse measurement of more nuanced underlying attitudes.

To demonstrate, we examine a few of the variables from the familyvalues dataset.
. use https://www.stata-press.com/data/r18/familyvalues
(Attitudes on gender, relationships and family)
. describe RS056-RS063
Variable Storage Display Value

name type format label Variable label

RS056 byte %9.0g Fam att: should be together
RS057 byte %9.0g Fam att: should fight for relat
RS058 byte %9.0g Fam att: should avoid conflict
RS059 byte %9.0g Fam att: woman better nurturer
RS060 byte %9.0g Fam att: both spouses money goo
RS061 byte %9.0g Fam att: woman techn school goo
RS062 byte %9.0g Fam att: man natural breadwinne
RS063 byte %9.0g Fam att: common leisure good
. summarize RS056-RS063

Variable Obs Mean Std. dev. Min Max

RS056 3,298 .5630685 .4960816 0 1
RS057 3,296 .5400485 .4984692 0 1
RS058 3,283 .6387451 .4804374 0 1
RS059 3,308 .654474 .4756114 0 1
RS060 3,302 .3906723 .487975 0 1

RS061 3,293 .7102946 .4536945 0 1
RS062 3,307 .5857272 .4926705 0 1
RS063 3,298 .5379018 .498637 0 1
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. correlate RS056-RS063
(obs=3,221)

RS056 RS057 RS058 RS059 RS060 RS061 RS062

RS056 1.0000
RS057 0.1350 1.0000
RS058 0.2377 0.0258 1.0000
RS059 0.1816 0.0097 0.2550 1.0000
RS060 -0.1020 -0.0538 -0.0424 0.0126 1.0000
RS061 -0.1137 0.0610 -0.1375 -0.2076 0.0706 1.0000
RS062 0.2014 0.0285 0.2273 0.4098 -0.0793 -0.2873 1.0000
RS063 0.2057 0.1460 0.1049 0.0911 0.0179 -0.0233 0.0975

RS063

RS063 1.0000

Skewness in these data is relatively modest. For comparison, here are the tetrachoric correlations:

. tetrachoric RS056-RS063
(obs=3,221)

RS056 RS057 RS058 RS059 RS060 RS061 RS062

RS056 1.0000
RS057 0.2114 1.0000
RS058 0.3716 0.0416 1.0000
RS059 0.2887 0.0158 0.4007 1.0000
RS060 -0.1620 -0.0856 -0.0688 0.0208 1.0000
RS061 -0.1905 0.1011 -0.2382 -0.3664 0.1200 1.0000
RS062 0.3135 0.0452 0.3563 0.6109 -0.1267 -0.4845 1.0000
RS063 0.3187 0.2278 0.1677 0.1467 0.0286 -0.0388 0.1538

RS063

RS063 1.0000

Again, we see that the tetrachoric correlations are generally larger in absolute value than the Pearson

correlations. The bivariate probit and Edwards and Edwards estimators (the edwards option) imple-

mented in tetrachoric may return a correlation matrix that is not positive semidefinite—a mathemat-

ical property of any real correlation matrix. Positive definiteness is required by commands for analyses

of correlation matrices, such as factormat and pcamat; see [MV] factor and [MV] pca. The posdef
option of tetrachoric tests for positive definiteness and projects the estimated correlation matrix to a
positive-semidefinite matrix if needed.

. tetrachoric RS056-RS063, notable posdef

. matrix C = r(Rho)

This time, we suppressed the display of the correlations with the notable option and requested that
the correlation matrix be positive semidefinite with the posdef option. Had the correlation matrix not
been positive definite, tetrachoric would have displayed a warning message and then adjusted the

matrix to be positive semidefinite. We placed the resulting tetrachoric correlation matrix into a matrix,

C, so that we can perform a factor analysis upon it.

tetrachoric with the posdef option asserted that C was positive definite because no warning mes-
sage was displayed. We can verify this by using a familiar characterization of symmetric positive-definite

matrices: all eigenvalues are real and positive.
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. matrix symeigen eigenvectors eigenvalues = C

. matrix list eigenvalues
eigenvalues[1,8]

e1 e2 e3 e4 e5 e6 e7
r1 2.5974789 1.3544664 1.0532476 .77980391 .73462018 .57984565 .54754512

e8
r1 .35299228

We can proceed with a factor analysis on the matrix C.We use factormat and select iterated principal
factors as the estimation method; see [MV] factor.

. factormat C, n(3221) ipf factor(2)
(obs=3,221)
Factor analysis/correlation Number of obs = 3,221

Method: iterated principal factors Retained factors = 2
Rotation: (unrotated) Number of params = 15

Factor Eigenvalue Difference Proportion Cumulative

Factor1 2.06855 1.40178 0.7562 0.7562
Factor2 0.66677 0.47180 0.2438 1.0000
Factor3 0.19497 0.06432 0.0713 1.0713
Factor4 0.13065 0.10967 0.0478 1.1191
Factor5 0.02098 0.10085 0.0077 1.1267
Factor6 -0.07987 0.01037 -0.0292 1.0975
Factor7 -0.09024 0.08626 -0.0330 1.0645
Factor8 -0.17650 . -0.0645 1.0000

LR test: independent vs. saturated: chi2(28) = 4620.01 Prob>chi2 = 0.0000
Factor loadings (pattern matrix) and unique variances

Variable Factor1 Factor2 Uniqueness

RS056 0.5528 0.4120 0.5247
RS057 0.1124 0.4214 0.8098
RS058 0.5333 0.0718 0.7105
RS059 0.6961 -0.1704 0.4865
RS060 -0.1339 -0.0596 0.9785
RS061 -0.5126 0.2851 0.6560
RS062 0.7855 -0.2165 0.3361
RS063 0.2895 0.3919 0.7626
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Example 3
We noted in example 2 that the matrix of estimates of the tetrachoric correlation coefficients need not

be positive definite. Here is an example:

. use https://www.stata-press.com/data/r18/familyvalues
(Attitudes on gender, relationships and family)
. tetrachoric RS056-RS063 in 1/20, posdef
(obs=18)
matrix with tetrachoric correlations is not positive semidefinite;
it has 2 negative eigenvalues
maxdiff(corr,adj-corr) = 0.2346
(adj-corr: tetrachoric correlations adjusted to be positive semidefinite)
adj-corr RS056 RS057 RS058 RS059 RS060 RS061 RS062

RS056 1.0000
RS057 0.5284 1.0000
RS058 0.3012 0.2548 1.0000
RS059 0.3251 0.2791 0.0550 1.0000
RS060 -0.5197 -0.4222 -0.7163 0.0552 1.0000
RS061 0.3448 0.4815 -0.0958 -0.1857 -0.0980 1.0000
RS062 0.1066 -0.0375 0.0072 0.3909 -0.2333 -0.7654 1.0000
RS063 0.3830 0.4939 0.4336 0.0075 -0.8937 -0.0337 0.4934

adj-corr RS063

RS063 1.0000
. mata:

mata (type end to exit)
: C2 = st_matrix(”r(Rho)”)
: eigenvecs = .
: eigenvals = .
: symeigensystem(C2, eigenvecs, eigenvals)
: eigenvals

1 2 3 4

1 3.156592567 2.065279398 1.324911199 .7554904485

5 6 7 8

1 .4845368741 .2131895139 -1.11022e-16 -2.27918e-16

: end

The estimated tetrachoric correlation matrix is rank-2 deficient. With this C2matrix, we can only use
models of correlation that allow for singular cases.
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Tetrachoric correlations with simulated data

Example 4
We use drawnorm (see [D] drawnorm) to generate a sample of 1,000 observations from a bivariate

normal distribution with means −1 and 1, unit variances, and correlation 0.4.

. clear

. set seed 11000

. matrix m = (1, -1)

. matrix V = (1, 0.4 \ 0.4, 1)

. drawnorm c1 c2, n(1000) means(m) cov(V)
(obs 1,000)

Now, consider the measurement model assumed by the tetrachoric correlations. We observe only

whether c1 and c2 are greater than zero,

. generate d1 = (c1 > 0)

. generate d2 = (c2 > 0)

. tabulate d1 d2
d2

d1 0 1 Total

0 141 6 147
1 706 147 853

Total 847 153 1,000

We want to estimate the correlation of c1 and c2 from the binary variables d1 and d2. Pearson’s
correlation of the binary variables d1 and d2 is 0.129—a seriously biased estimate of the underlying

correlation 𝜌 = 0.4.

. correlate d1 d2
(obs=1,000)

d1 d2

d1 1.0000
d2 0.1294 1.0000

The tetrachoric correlation coefficient of d1 and d2 estimates the Pearson correlation of the latent

continuous variables, c1 and c2.

. tetrachoric d1 d2
Number of obs = 1,000

Tetrachoric rho = 0.3875
Std error = 0.0787

Test of H0: d1 and d2 are independent
2-sided exact P = 0.0000

The estimate of the tetrachoric correlation of d1 and d2, 0.3875, is much closer to the underlying
correlation, 0.4, between c1 and c2.
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Stored results
tetrachoric stores the following in r():

Scalars

r(rho) tetrachoric correlation coefficient between variables 1 and 2

r(N) number of observations

r(nneg) number of negative eigenvalues (posdef only)
r(se rho) standard error of r(rho)
r(p) 𝑝-value for two-sided Fisher’s exact test (for the first two variables)

Macros

r(method) estimator used

Matrices

r(Rho) tetrachoric correlation matrix

r(Se Rho) standard errors of r(Rho)
r(Nobs) number of observations used in computing correlation

r(P) matrix of 𝑝-values for two-sided Fisher’s exact test

Methods and formulas
tetrachoric provides two estimators for the tetrachoric correlation 𝜌 of two binary variables with

the frequencies 𝑛𝑖𝑗, 𝑖, 𝑗 = 0, 1. tetrachoric defaults to the slower (iterative) maximum likelihood

estimator obtained from bivariate probit without explanatory variables (see [R] biprobit) by using the

Edwards and Edwards noniterative estimator as the initial value. A fast (noniterative) estimator is also

available by specifying the edwards option (Edwards and Edwards 1984; Digby 1983)

̂𝜌 = 𝛼 − 1
𝛼 + 1

where

𝛼 = (𝑛00𝑛11
𝑛01𝑛10

)
𝜋/4

(𝜋 = 3.14 . . . )

if all 𝑛𝑖𝑗 > 0. If 𝑛00 = 0 or 𝑛11 = 0, ̂𝜌 = −1; if 𝑛01 = 0 or 𝑛10 = 0, ̂𝜌 = 1.

The asymptotic variance of the Edwards and Edwards estimator of the tetrachoric correlation is easily

obtained by the delta method,

avar( ̂𝜌) = { 𝜋𝛼
2(1 + 𝛼)2 }

2

( 1
𝑛00

+ 1
𝑛01

+ 1
𝑛10

+ 1
𝑛11

)

provided all 𝑛𝑖𝑗 > 0, otherwise it is left undefined (missing). The Edwards and Edwards estimator is

fast, but may be inaccurate if the margins are very skewed.

tetrachoric reports exact 𝑝-values for statistical independence, computed by the exact option of
[R] tabulate twoway.
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Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Acknowledgment References Also see

Description
tnbreg estimates the parameters of a truncated negative binomial model bymaximum likelihood. The

dependent variable depvar is regressed on indepvars, where depvar is a positive count variable whose

values are all above the truncation point.

Quick start
Truncated negative binomial regression of y on x with truncation at 0

tnbreg y x

Report incidence-rate ratios

tnbreg y x, irr

Add categorical variable a using factor variable syntax
tnbreg y x i.a

Same as above, but specify a constant truncation point of 2

tnbreg y x i.a, ll(2)

With exposure variable exp
tnbreg y x i.a, exposure(exp)

Same as above, but specifying a variable truncation point stored in variable min
tnbreg y x i.a, exposure(exp) ll(min)

With cluster–robust standard errors clustering by the levels of cvar
tnbreg y x i.a, exposure(exp) ll(min) vce(cluster cvar)

Menu
Statistics > Count outcomes > Truncated negative binomial regression

3161
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Syntax
tnbreg depvar [ indepvars ] [ if ] [ in ] [weight ] [ , options ]

options Description

Model

noconstant suppress constant term

ll(# | varname) truncation point; default value is ll(0), zero truncation
dispersion(mean) parameterization of dispersion; the default

dispersion(constant) constant dispersion for all observations

exposure(varname𝑒) include ln(varname𝑒) in model with coefficient constrained to 1

offset(varname𝑜) include varname𝑜 in model with coefficient constrained to 1

constraints(constraints) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, opg, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)
nolrtest suppress likelihood-ratio test

irr report incidence-rate ratios

nocnsreport do not display constraints

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

collinear keep collinear variables

coeflegend display legend instead of statistics

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.

bayes, bootstrap, by, collect, fp, jackknife, rolling, statsby, and svy are allowed; see [U] 11.1.10 Prefix com-

mands. For more details, see [BAYES] bayes: tnbreg.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
collinear and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

noconstant; see [R] Estimation options.

ll(# | varname) specifies the truncation point, which is a nonnegative integer. The default is zero trun-
cation, ll(0).
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dispersion(mean | constant) specifies the parameterization of the model. dispersion(mean), the
default, yields a model with dispersion equal to 1 + 𝛼 exp(x𝑗β + offset𝑗); that is, the dispersion is a
function of the expected mean: exp(x𝑗β + offset𝑗). dispersion(constant) has dispersion equal
to 1 + 𝛿; that is, it is a constant for all observations.

exposure(varname𝑒), offset(varname𝑜), constraints(constraints); see [R] Estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), that al-
low for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods

(bootstrap, jackknife); see [R] vce option.

� � �
Reporting �

level(#); see [R] Estimation options.

nolrtest suppresses fitting the Poisson model. Without this option, a comparison Poisson model is fit,

and the likelihood is used in a likelihood-ratio test of the null hypothesis that the dispersion parameter

is zero.

irr reports estimated coefficients transformed to incidence-rate ratios, that is, 𝑒𝛽𝑖 rather than 𝛽𝑖. Stan-

dard errors and confidence intervals are similarly transformed. This option affects how results are

displayed, not how they are estimated or stored. irr may be specified at estimation or when replay-
ing previously estimated results.

nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. These options are

seldom used.

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

The following options are available with tnbreg but are not shown in the dialog box:

collinear, coeflegend; see [R] Estimation options.

Remarks and examples
Grogger and Carson (1991) showed that overdispersion causes inconsistent estimation of the mean in

the truncated Poisson model. To solve this problem, they proposed using the truncated negative binomial

model as an alternative. If data are truncated but do not exhibit overdispersion, the truncated Poisson

model is more appropriate; see [R] tpoisson. For an introduction to negative binomial regression, see

Cameron andTrivedi (2005, 2022) and Long and Freese (2014). For an introduction to truncated negative

binomial models, see Cameron and Trivedi (2013) and Long (1997, chap. 8).
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tnbreg fits the mean-dispersion and the constant-dispersion parameterizations of truncated negative
binomial models. These parameterizations extend those implemented in nbreg; see [R] nbreg.

Example 1
We illustrate the truncated negative binomial model using the 1997MedPar dataset (Hilbe 1999). The

data are from 1,495 patients inArizona who were assigned to a diagnostic-related group (DRG) of patients

having a ventilator. Length of stay (los), the dependent variable, is a positive integer; it cannot have
zero values. The data are truncated because there are no observations on individuals who stayed for zero

days.

The objective of this example is to determine whether the length of stay was related to the binary

variables: died, hmo, type1, type2, and type3.

The died variable was recorded as a 0 unless the patient died, in which case, it was recorded as a 1.
The other variables also adopted this encoding. The hmo variable was set to 1 if the patient belonged to
a health maintenance organization (HMO).

The type1–type3 variables indicated the type of admission used for the patient. The type1 variable
indicated an emergency admit. The type2 variable indicated an urgent admit—that is, the first avail-

able bed. The type3 variable indicated an elective admission. Because type1–type3 were mutually
exclusive, only two of the three could be used in the truncated negative binomial regression shown below.

. use https://www.stata-press.com/data/r18/medpar
(Arizona ventilator data)
. tnbreg los died hmo type2-type3, vce(cluster provnum) nolog
Truncated negative binomial regression Number of obs = 1,495
Truncation point = 0 Wald chi2(4) = 36.01
Dispersion: mean Prob > chi2 = 0.0000
Log pseudolikelihood = -4737.535 Pseudo R2 = 0.0139

(Std. err. adjusted for 54 clusters in provnum)

Robust
los Coefficient std. err. z P>|z| [95% conf. interval]

died -.2521884 .061533 -4.10 0.000 -.3727908 -.1315859
hmo -.0754173 .0533132 -1.41 0.157 -.1799091 .0290746

type2 .2685095 .0666474 4.03 0.000 .137883 .3991359
type3 .7668101 .2183505 3.51 0.000 .338851 1.194769
_cons 2.224028 .034727 64.04 0.000 2.155964 2.292091

/lnalpha -.630108 .0764019 -.779853 -.480363

alpha .5325343 .0406866 .4584734 .6185588

Because observations within the same hospital (provnum) are likely to be correlated, we specified the
vce(cluster provnum) option. The results show that whether the patient died in the hospital and the

type of admission have significant effects on the patient’s length of stay.
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Example 2
To illustrate truncated negative binomial regression with more complex data than the previous exam-

ple, similar data were created from 100 hospitals. Each hospital had its own way of tracking patient data.

In particular, hospitals only recorded data from patients with a minimum length of stay, denoted by the

variable minstay.

Definitions for minimum length of stay varied among hospitals, typically, from 5 to 18 days. The

objective of this example is the same as before: to determine whether the length of stay, recorded in los,
was related to the binary variables: died, hmo, type1, type2, and type3.

The binary variables encode the same information as in example 1 above. The minstay variable was
used to allow for varying truncation points.

. use https://www.stata-press.com/data/r18/medproviders

. tnbreg los died hmo type2-type3, ll(minstay) vce(cluster hospital) nolog
Truncated negative binomial regression Number of obs = 2,144
Truncation points: minstay Wald chi2(4) = 15.22
Dispersion: mean Prob > chi2 = 0.0043
Log pseudolikelihood = -7864.0928 Pseudo R2 = 0.0007

(Std. err. adjusted for 100 clusters in hospital)

Robust
los Coefficient std. err. z P>|z| [95% conf. interval]

died .078104 .0303598 2.57 0.010 .0185998 .1376081
hmo -.0731132 .0368897 -1.98 0.047 -.1454158 -.0008107

type2 .0294132 .0390166 0.75 0.451 -.047058 .1058845
type3 .0626348 .0540123 1.16 0.246 -.0432273 .168497
_cons 3.014964 .0290895 103.64 0.000 2.95795 3.071978

/lnalpha -.996512 .0828691 -1.158932 -.8340916

alpha .3691649 .0305923 .313821 .4342688

In this analysis, two variables have a statistically significant relationship with length of stay. On

average, patients who died in the hospital had longer lengths of stay (𝑝 = 0.01). Because the coefficient

for HMO is negative, that is, 𝑏HMO = −0.073, on average, patients who were insured by an HMO had

shorter lengths of stay (𝑝 = 0.047). The type of admission was not statistically significant (𝑝 > 0.05).
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Stored results
tnbreg stores the following in e():

Scalars

e(N) number of observations

e(k) number of parameters

e(k aux) number of auxiliary parameters

e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test

e(k dv) number of dependent variables

e(df m) model degrees of freedom

e(r2 p) pseudo-𝑅2

e(ll) log likelihood

e(ll 0) log likelihood, constant-only model

e(ll c) log likelihood, comparison model

e(alpha) value of alpha

e(delta) value of delta

e(N clust) number of clusters

e(chi2) 𝜒2

e(chi2 c) 𝜒2 for comparison test

e(p) 𝑝-value for model test
e(rank) rank of e(V)
e(rank0) rank of e(V) for constant-only model
e(ic) number of iterations

e(rc) return code

e(converged) 1 if converged, 0 otherwise
Macros

e(cmd) tnbreg
e(cmdline) command as typed

e(depvar) name of dependent variable

e(llopt) contents of ll(), or 0 if not specified
e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(clustvar) name of cluster variable

e(offset) linear offset variable

e(chi2type) Wald or LR; type of model 𝜒2 test

e(chi2 ct) Wald or LR; type of model 𝜒2 test corresponding to e(chi2 c)
e(dispers) mean or constant
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(opt) type of optimization

e(which) max or min; whether optimizer is to perform maximization or minimization

e(ml method) type of ml method
e(user) name of likelihood-evaluator program

e(technique) maximization technique

e(properties) b V
e(predict) program used to implement predict
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(ilog) iteration log (up to 20 iterations)

e(gradient) gradient vector

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance
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Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():
Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas
Methods and formulas are presented under the following headings:

Mean-dispersion model
Constant-dispersion model

Mean-dispersion model
A negative binomial distribution can be regarded as a gamma mixture of Poisson random variables.

The number of times an event occurs, 𝑦𝑗, is distributed as Poisson(𝜈𝑗𝜇𝑗). That is, its conditional likeli-
hood is

𝑓(𝑦𝑗 ∣ 𝜈𝑗) =
(𝜈𝑗𝜇𝑗)𝑦𝑗𝑒−𝜈𝑗𝜇𝑗

Γ(𝑦𝑗 + 1)
where 𝜇𝑗 = exp(x𝑗β + offset𝑗) and 𝜈𝑗 is an unobserved parameter with a Gamma(1/𝛼, 𝛼) density:

𝑔(𝜈) = 𝜈(1−𝛼)/𝛼𝑒−𝜈/𝛼

𝛼1/𝛼Γ(1/𝛼)
This gamma distribution has a mean of 1 and a variance of 𝛼, where 𝛼 is our ancillary parameter.

The unconditional likelihood for the 𝑗th observation is therefore

𝑓(𝑦𝑗) = ∫
∞

0
𝑓(𝑦𝑗 ∣ 𝜈)𝑔(𝜈) 𝑑𝜈 =

Γ(𝑚 + 𝑦𝑗)
Γ(𝑦𝑗 + 1)Γ(𝑚)

𝑝𝑚
𝑗 (1 − 𝑝𝑗)𝑦𝑗

where 𝑝𝑗 = 1/(1 + 𝛼𝜇𝑗) and 𝑚 = 1/𝛼. Solutions for 𝛼 are handled by searching for ln𝛼 because 𝛼
must be greater than zero. The conditional probability of observing 𝑦𝑗 events given that 𝑦𝑗 is greater than

the truncation point 𝜏𝑗 is

Pr(𝑌 = 𝑦𝑗 | 𝑦𝑗 > 𝜏𝑗, x𝑗) =
𝑓(𝑦𝑗)

Pr(𝑌 > 𝜏𝑗 | x𝑗)

The log likelihood (with weights 𝑤𝑗 and offsets) is given by

𝑚 = 1/𝛼 𝑝𝑗 = 1/(1 + 𝛼𝜇𝑗) 𝜇𝑗 = exp(x𝑗β + offset𝑗)

ln𝐿 =
𝑛

∑
𝑗=1

𝑤𝑗[ ln{Γ(𝑚 + 𝑦𝑗)} − ln{Γ(𝑦𝑗 + 1)}

− ln{Γ(𝑚)} + 𝑚 ln(𝑝𝑗) + 𝑦𝑗 ln(1 − 𝑝𝑗) − ln{Pr(𝑌 > 𝜏𝑗 | 𝑝𝑗, 𝑚)}]
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Constant-dispersion model
The constant-dispersion model assumes that 𝑦𝑗 is conditionally distributed as Poisson(𝜇∗

𝑗), where
𝜇∗

𝑗 ∼ Gamma(𝜇𝑗/𝛿, 𝛿) for some dispersion parameter 𝛿 [by contrast, themean-dispersionmodel assumes
that 𝜇∗

𝑗 ∼ Gamma(1/𝛼, 𝛼𝜇𝑗)]. The log likelihood is given by

𝑚𝑗 = 𝜇𝑗/𝛿 𝑝 = 1/(1 + 𝛿)

ln𝐿 =
𝑛

∑
𝑗=1

𝑤𝑗[ ln{Γ(𝑚𝑗 + 𝑦𝑗)} − ln{Γ(𝑦𝑗 + 1)}

− ln{Γ(𝑚𝑗)} + 𝑚𝑗 ln(𝑝) + 𝑦𝑗 ln(1 − 𝑝) − ln{Pr(𝑌 > 𝜏𝑗 | 𝑝, 𝑚𝑗)}]

with everything else defined as shown above in the calculations for the mean-dispersion model.

This command supports the Huber/White/sandwich estimator of the variance and its clustered version

using vce(robust) and vce(cluster clustvar), respectively. See [P] robust, particularly Maximum

likelihood estimators and Methods and formulas.

tnbreg also supports estimation with survey data. For details on VCEs with survey data, see

[SVY] Variance estimation.
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Also see
[R] tnbreg postestimation — Postestimation tools for tnbreg

[R] nbreg — Negative binomial regression

[R] poisson — Poisson regression

[R] tpoisson — Truncated Poisson regression

[R] zinb — Zero-inflated negative binomial regression

[R] zip — Zero-inflated Poisson regression

[BAYES] bayes: tnbreg — Bayesian truncated negative binomial regression

[SVY] svy estimation — Estimation commands for survey data

[XT] xtnbreg — Fixed-effects, random-effects, & population-averaged negative binomial models

[U] 20 Estimation and postestimation commands
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Postestimation commands predict margins Methods and formulas Also see

Postestimation commands
The following postestimation commands are available after tnbreg:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters

estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian infor-
mation criteria (AIC, CAIC, AICc, and BIC, respectively)

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estat (svy) postestimation statistics for survey data

estimates cataloging estimation results

etable table of estimation results
∗ forecast dynamic forecasts and simulations
∗ hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

∗ lrtest likelihood-ratio test

margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

predict number of events, incidence rates, probabilities, etc.

predictnl point estimates, standard errors, testing, and inference for generalized predictions

pwcompare pairwise comparisons of parameters

suest seemingly unrelated estimation

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

∗forecast, hausman, and lrtest are not appropriate with svy estimation results.
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predict

Description for predict
predict creates a new variable containing predictions such as numbers of events, incidence rates,

conditional means, probabilities, conditional probabilities, linear predictions, and standard errors.

Menu for predict
Statistics > Postestimation

Syntax for predict
predict [ type ] newvar [ if ] [ in ] [ , statistic nooffset ]

predict [ type ] stub* [ if ] [ in ], scores

statistic Description

Main

n number of events; the default

ir incidence rate

cm conditional mean, 𝐸(𝑦𝑗 | 𝑦𝑗 > 𝜏𝑗)
pr(n) probability Pr(𝑦𝑗 = n)
pr(a,b) probability Pr(a ≤ 𝑦𝑗 ≤ b)
cpr(n) conditional probability Pr(𝑦𝑗 = n | 𝑦𝑗 > 𝜏𝑗)
cpr(a,b) conditional probability Pr(a ≤ 𝑦𝑗 ≤ b | 𝑦𝑗 > 𝜏𝑗)
xb linear prediction

stdp standard error of the linear prediction

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only for the estimation
sample.

Options for predict

� � �
Main �

n, the default, calculates the predicted number of events, which is exp(x𝑗β) if neither offset() nor

exposure() was specified when the model was fit; exp(x𝑗β + offset𝑗) if offset() was specified;
or exp(x𝑗β) × exposure𝑗 if exposure() was specified.

ir calculates the incidence rate exp(x𝑗β), which is the predicted number of events when exposure is 1.
This is equivalent to specifying both the n and the nooffset options.

cm calculates the conditional mean,

𝐸(𝑦𝑗 | 𝑦𝑗 > 𝜏𝑗) =
𝐸(𝑦𝑗, 𝑦𝑗 > 𝜏𝑗)
Pr(𝑦𝑗 > 𝜏𝑗)

where 𝜏𝑗 is the truncation point found in e(llopt).
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pr(n) calculates the probability Pr(𝑦𝑗 = n), where n is a nonnegative integer that may be specified as
a number or a variable.

pr(a,b) calculates the probability Pr(a ≤ 𝑦𝑗 ≤ b), where a and b are nonnegative integers that may be
specified as numbers or variables;

b missing (b ≥ .) means +∞;

pr(20,.) calculates Pr(𝑦𝑗 ≥ 20);
pr(20,b) calculates Pr(𝑦𝑗 ≥ 20) in observations for which b ≥ . and calculates
Pr(20 ≤ 𝑦𝑗 ≤ b) elsewhere.
pr(.,b) produces a syntax error. Amissing value in an observation of the variable a causes a missing

value in that observation for pr(a,b).

cpr(n) calculates the conditional probability Pr(𝑦𝑗 = n | 𝑦𝑗 > 𝜏𝑗), where 𝜏𝑗 is the truncation point found

in e(llopt). n is an integer greater than the truncation point that may be specified as a number or a
variable.

cpr(a,b) calculates the conditional probability Pr(a ≤ 𝑦𝑗 ≤ b | 𝑦𝑗 > 𝜏𝑗), where 𝜏𝑗 is the truncation

point found in e(llopt). The syntax for this option is analogous to that used for pr(a,b) except
that a must be greater than the truncation point.

xb calculates the linear prediction, which is x𝑗β if neither offset() nor exposure()was specifiedwhen
the model was fit; x𝑗β + offset𝑗 if offset() was specified; or x𝑗β + ln(exposure𝑗) if exposure()
was specified; see nooffset below.

stdp calculates the standard error of the linear prediction.

nooffset is relevant only if you specified offset() or exposure() when you fit the model. It modi-
fies the calculations made by predict so that they ignore the offset or exposure variable; the linear
prediction is treated as x𝑗β rather than as x𝑗β+ offset𝑗 or x𝑗β+ ln(exposure𝑗). Specifying predict
..., nooffset is equivalent to specifying predict ..., ir.

scores calculates equation-level score variables.

The first new variable will contain 𝜕ln𝐿/𝜕(x𝑗β).
The second new variable will contain 𝜕ln𝐿/𝜕( ln𝛼) for dispersion(mean).
The second new variable will contain 𝜕ln𝐿/𝜕( ln𝛿) for dispersion(constant).
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margins

Description for margins
margins estimates margins of response for numbers of events, incidence rates, conditional means,

probabilities, conditional probabilities, and linear predictions.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist ] [ , options ]
margins [marginlist ] , predict(statistic ...) [ predict(statistic ...) ... ] [ options ]

statistic Description

n number of events; the default

ir incidence rate

cm conditional mean, 𝐸(𝑦𝑗 | 𝑦𝑗 > 𝜏𝑗)
pr(n) probability Pr(𝑦𝑗 = n)
pr(a,b) probability Pr(a ≤ 𝑦𝑗 ≤ b)
cpr(n) conditional probability Pr(𝑦𝑗 = n | 𝑦𝑗 > 𝜏𝑗)
cpr(a,b) conditional probability Pr(a ≤ 𝑦𝑗 ≤ b | 𝑦𝑗 > 𝜏𝑗)
xb linear prediction

stdp not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.

Methods and formulas
In the following formulas, we use the same notation as in [R] tnbreg.

Methods and formulas are presented under the following headings:

Mean-dispersion model
Constant-dispersion model
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Mean-dispersion model
The equation-level scores are given by

score(xβ)𝑗 = 𝑝𝑗(𝑦𝑗 − 𝜇𝑗) −
𝑝(𝑚+1)

𝑗 𝜇𝑗

Pr(𝑌 > 𝜏𝑗 | 𝑝𝑗, 𝑚)

score(𝜔)𝑗 = − 𝑚 {
𝛼(𝜇𝑗 − 𝑦𝑗)

1 + 𝛼𝜇𝑗
− ln(1 + 𝛼𝜇𝑗) + 𝜓(𝑦𝑗 + 𝑚) − 𝜓(𝑚)}

−
𝑝𝑚

𝑗

Pr(𝑌 > 𝜏𝑗 | 𝑝𝑗, 𝑚)
{𝑚 ln(𝑝𝑗) + 𝜇𝑗𝑝𝑗}

where 𝜔𝑗 = ln𝛼𝑗, 𝜓(𝑧) is the digamma function, and 𝜏𝑗 is the truncation point found in e(llopt).

Constant-dispersion model
The equation-level scores are given by

score(xβ)𝑗 = 𝑚𝑗 {𝜓(𝑦𝑗 + 𝑚𝑗) − 𝜓(𝑚𝑗) + ln(𝑝) + 𝑝𝑚𝑗 ln(𝑝)
Pr(𝑌 > 𝜏𝑗 | 𝑝, 𝑚𝑗)

}

score(𝜔)𝑗 = 𝑦𝑗 − (𝑦𝑗 + 𝑚𝑗)(1 − 𝑝) − score(xβ)𝑗 −
𝜇𝑗𝑝

Pr(𝑌 > 𝜏𝑗 | 𝑝, 𝑚𝑗)

where 𝜔𝑗 = ln𝛿𝑗 and 𝜏𝑗 is the truncation point found in e(llopt).

Also see
[R] tnbreg — Truncated negative binomial regression

[U] 20 Estimation and postestimation commands
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Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description
tobit fits models for continuous responses where the outcome variable is censored. Censoring limits

may be fixed for all observations or vary across observations.

Quick start
Tobit regression of y on x1 and x2, specifying that y is censored at the minimum of y

tobit y x1 x2, ll

Same as above, but where the lower-censoring limit is zero

tobit y x1 x2, ll(0)

Same as above, but specify the lower- and upper-censoring limits

tobit y x1 x2, ll(17) ul(34)

Same as above, but where lower and upper are variables containing the censoring limits
tobit y x1 x2, ll(lower) ul(upper)

Menu
Statistics > Linear models and related > Censored regression > Tobit regression
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Syntax
tobit depvar [ indepvars ] [ if ] [ in ] [weight ] [ , options ]

options Description

Model

noconstant suppress constant term

ll[ (varname | #) ] left-censoring variable or limit

ul[ (varname | #) ] right-censoring variable or limit

offset(varname) include varname in model with coefficient constrained to 1

constraints(constraints) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim, opg, robust, cluster clustvar, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)
nocnsreport do not display constraints

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

collinear keep collinear variables

coeflegend display legend instead of statistics

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.

bayes, bootstrap, by, collect, fmm, fp, jackknife, nestreg, rolling, statsby, stepwise, and svy are allowed; see
[U] 11.1.10 Prefix commands. For more details, see [BAYES] bayes: tobit and [FMM] fmm: tobit.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
aweights are not allowed with the jackknife prefix; see [R] jackknife.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
aweights, fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
collinear and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

noconstant; see [R] Estimation options.

ll[(varname | #)] and ul[(varname | #)] indicate the lower and upper limits for censoring, respec-

tively. Observations with depvar≤ ll() are left-censored; observations with depvar≥ ul() are

right-censored; and remaining observations are not censored. You do not have to specify the cen-

soring values. If you specify ll, the lower limit is the minimum of depvar. If you specify ul, the
upper limit is the maximum of depvar.

offset(varname), constraints(constraints); see [R] Estimation options.
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� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), that al-
low for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods

(bootstrap, jackknife); see [R] vce option.

� � �
Reporting �

level(#), nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. These options are

seldom used.

The following options are available with tobit but are not shown in the dialog box:

collinear, coeflegend; see [R] Estimation options.

Remarks and examples
tobit fits a linear regression model for a censored continuous outcome. Censoring occurs when the

dependent variable is observed only within a certain range of values. When it is not, we know only

that it is either above (right-censoring) or below (left-censoring) the censoring value. Censoring differs

from truncation. When the data are truncated, we do not observe either the dependent variable or the

covariates; see [R] truncreg.

Censoring may result from study design or may be a result of how the outcome is measured. Right-

censoring of data may occur, for example, in income surveys that top code the highest income category.

Any respondent that earns the censoring limit or more reports only the value at the limit, and we do not

know the respondent’s true income. Left-censoring arises naturally when measurements are obtained

from an instrument or a laboratory procedure that has a limit of detection. If we observe a value at the

measurement limit, we know the true value is at the limit or below it. tobit allows the censoring limits
to be the same for all observations or to vary from observation to observation.

Tobin (1958) originally conceived the tobit model as one of consumption of consumer durables where

purchases were left-censored at zero. Contemporary literature treats this and similar cases as a corner

solution model. See Wooldridge (2020, sec. 17.2), Long (1997, 196–210), and Maddala and Lahiri

(2006, 333–336) for an introduction to the tobit model. Wooldridge (2010, chap. 17 and 19) provides an

advanced treatment of censored regression models. Cameron and Trivedi (2022, chap. 19) discuss the

tobit model using Stata examples.
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The tobit model can be written as the latent regression model y = xβ+ 𝜖 with a continuous outcome
that is either observed or unobserved. Following Cong (2000), the observed outcome for observation 𝑖
is defined as

𝑦∗
𝑖 =

⎧{
⎨{⎩

𝑦𝑖 if 𝑎 < 𝑦𝑖 < 𝑏
𝑎 if 𝑦𝑖 ≤ 𝑎
𝑏 if 𝑦𝑖 ≥ 𝑏

where 𝑎 is the lower-censoring limit and 𝑏 is the upper-censoring limit. The tobit model assumes that the
error term is normally distributed; 𝜖 ∼ 𝑁(0, 𝜎2I). Depending on the problem at hand, the quantity of

interest in a tobit model may be the censored outcome, 𝑦∗
𝑖 , or the uncensored outcome, 𝑦𝑖. In the mea-

surement instrument scenario above, we may wish to predict the values that fall below the measurement

threshold. By contrast, in the consumption of consumer durables scenario above, the latent variable is

an artificial construct and the variable of interest is the observed consumer expenditure.

Example 1: Constant-censoring limit
University administrators want to know the relationship between high school grade point average

(GPA) and students’ performance in college. gpa.dta contains fictional data on a cohort of 4,000 college
students. College GPA (gpa2) and high school GPA (hsgpa) are measured on a continuous scale between
zero and four. The outcome of interest is the student’s college GPA. But, for reasons of confidentiality,

GPAs below 2.0 are reported as 2.0. In other words, the outcome is censored on the left.

We believe that GPA is also a function of the logarithm of income of the student’s parents (pincome)
and whether or not the student participated in a study-skills program while in college (program).

. use https://www.stata-press.com/data/r18/gpa
(High school GPA and performance in college)
. tobit gpa2 hsgpa pincome program, ll
Refining starting values:
Grid node 0: Log likelihood = -2551.3989
Fitting full model:
Iteration 0: Log likelihood = -2551.3989
Iteration 1: Log likelihood = -2065.4023
Iteration 2: Log likelihood = -2015.8135
Iteration 3: Log likelihood = -2015.1281
Iteration 4: Log likelihood = -2015.1258
Iteration 5: Log likelihood = -2015.1258
Tobit regression Number of obs = 4,000

Uncensored = 2,794
Limits: Lower = 2 Left-censored = 1,206

Upper = +inf Right-censored = 0
LR chi2(3) = 4712.61
Prob > chi2 = 0.0000

Log likelihood = -2015.1258 Pseudo R2 = 0.5390

gpa2 Coefficient Std. err. t P>|t| [95% conf. interval]

hsgpa .6586311 .0128699 51.18 0.000 .633399 .6838632
pincome .3159297 .0074568 42.37 0.000 .3013103 .3305491
program .5554416 .0147468 37.67 0.000 .5265297 .5843535
_cons -.8902578 .0478484 -18.61 0.000 -.9840673 -.7964482

var(e.gpa2) .161703 .0044004 .1533019 .1705645
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tobit reports the coefficients for the latent regression model. Thus, we can interpret the coefficients
just as we would the coefficients from OLS. For example, participation in a study-skills program increases

the expected uncensored GPA by 0.56 points.

Example 2: Tobit model for a corner solution
Suppose that we are interested in the number of hours married women spend working for wages,

and we treat observations recording zero hours as observed, per the corner-solution approach discussed

Wooldridge (2010, chap. 16). We use the labor supply data extracted by Mroz (1987) from the 1975 PSID

for 753 married women. The variable whrs75 records the annual number of hours worked. Forty-three
percent of the surveyed women worked zero hours, and the remaining women worked on average 1,303

hours a year.

We regress hours worked on household income excluding wife’s income (nwinc), years of schooling
(wedyrs), years of labor market experience (wexper) and its square, age (wifeage), an indicator for the
presence of children under 6 years of age at home (kl6), and an indicator for the presence of children
from 6 to 18 years old at home (k618).

. use https://www.stata-press.com/data/r18/mroz87
(1975 PSID data from Mroz, 1987)
. tobit whrs75 nwinc wedyrs wexper c.wexper#c.wexper wifeage kl6 k618, ll(0)
Refining starting values:
Grid node 0: Log likelihood = -3961.1577
Fitting full model:
Iteration 0: Log likelihood = -3961.1577
Iteration 1: Log likelihood = -3836.8928
Iteration 2: Log likelihood = -3819.2637
Iteration 3: Log likelihood = -3819.0948
Iteration 4: Log likelihood = -3819.0946
Tobit regression Number of obs = 753

Uncensored = 428
Limits: Lower = 0 Left-censored = 325

Upper = +inf Right-censored = 0
LR chi2(7) = 271.59
Prob > chi2 = 0.0000

Log likelihood = -3819.0946 Pseudo R2 = 0.0343

whrs75 Coefficient Std. err. t P>|t| [95% conf. interval]

nwinc -8.814227 4.459089 -1.98 0.048 -17.56808 -.0603708
wedyrs 80.64541 21.58318 3.74 0.000 38.27441 123.0164
wexper 131.564 17.27935 7.61 0.000 97.64211 165.486

c.wexper#
c.wexper -1.864153 .5376606 -3.47 0.001 -2.919661 -.8086455

wifeage -54.40491 7.418483 -7.33 0.000 -68.9685 -39.84133
kl6 -894.0202 111.8777 -7.99 0.000 -1113.653 -674.3875
k618 -16.21805 38.6413 -0.42 0.675 -92.07668 59.64057

_cons 965.3068 446.4351 2.16 0.031 88.88827 1841.725

var(e.whrs75) 1258927 93304.48 1088458 1456093
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Unlike in example 1, we are interested in the marginal effect of the covariates on the observed out-

come. We can use margins to estimate, for example, the average marginal effect of years of education
on the expected value of the actual hours worked.

. margins, dydx(wedyrs) predict(ystar(0,.))
Average marginal effects Number of obs = 753
Model VCE: OIM
Expression: E(whrs75*|whrs75>0), predict(ystar(0,.))
dy/dx wrt: wedyrs

Delta-method
dy/dx std. err. z P>|z| [95% conf. interval]

wedyrs 47.47306 12.6214 3.76 0.000 22.73558 72.21054

The average marginal effect of years of education on the actual hours worked is 47.47. See [R] tobit

postestimation for more examples using margins.

� �
James Tobin (1918–2002) was an American economist who after education and research at Har-

vard moved to Yale, where he was on the faculty from 1950 to 1988. He made many outstanding

contributions to economics and was awarded the Nobel Prize in 1981 “for his analysis of finan-

cial markets and their relations to expenditure decisions, employment, production and prices”. He

trained in the US Navy with the writer, Herman Wouk, who later fashioned a character after Tobin

in the novel The Caine Mutiny (1951): “A mandarin-like midshipman named Tobit, with a domed

forehead, measured quiet speech, and a mind like a sponge, was ahead of the field by a spacious

percentage.”� �
Stored results

tobit stores the following in e():

Scalars

e(N) number of observations

e(N unc) number of uncensored observations

e(N lc) number of left-censored observations

e(N rc) number of right-censored observations

e(k) number of parameters

e(k eq) number of equations in e(b)
e(k aux) number of auxiliary parameters

e(k dv) number of dependent variables

e(df m) model degrees of freedom

e(df r) residual degrees of freedom

e(r2 p) pseudo-𝑅2

e(ll) log likelihood

e(ll 0) log likelihood, constant-only model

e(N clust) number of clusters

e(chi2) 𝜒2

e(F) 𝐹 statistic

e(p) 𝑝-value for model test
e(rank) rank of e(V)
e(ic) number of iterations

https://www.stata.com/giftshop/bookmarks/series2/tobin/
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e(rc) return code

e(converged) 1 if converged, 0 otherwise
Macros

e(cmd) tobit
e(cmdline) command as typed

e(depvar) name of dependent variable

e(llopt) minimum of depvar or contents of ll()
e(ulopt) maximum of depvar or contents of ul()
e(wtype) weight type

e(wexp) weight expression

e(covariates) list of covariates

e(title) title in estimation output

e(clustvar) name of cluster variable

e(offset) linear offset variable

e(chi2type) type of model 𝜒2 test

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(opt) type of optimization

e(which) max or min; whether optimizer is to perform maximization or minimization

e(method) estimation method: ml
e(ml method) type of ml method
e(user) name of likelihood-evaluator program

e(technique) maximization technique

e(properties) b V
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(ilog) iteration log (up to 20 iterations)

e(gradient) gradient vector

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():
Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas
See Methods and formulas in [R] intreg.

This command supports the Huber/White/sandwich estimator of the variance and its clustered version

using vce(robust) and vce(cluster clustvar), respectively. See [P] robust, particularly Maximum

likelihood estimators and Methods and formulas.

tobit also supports estimationwith survey data. For details onVCEs with survey data, see [SVY]Vari-
ance estimation.



tobit — Tobit regression 3182

References
Amemiya, T. 1973. Regression analysis when the dependent variable is truncated normal. Econometrica 41: 997–1016.

https://doi.org/10.2307/1914031.

———. 1984. Tobit models:Asurvey. Journal of Econometrics 24: 3–61. https://doi.org/10.1016/0304-4076(84)90074-5.

Belotti, F., P. Deb, W. G. Manning, and E. C. Norton. 2015. twopm: Two-part models. Stata Journal 15: 3–20.

Bertanha, M., A. H. McCallum, A. Payne, and N. Seegert. 2022. Bunching estimation of elasticities using Stata. Stata

Journal 22: 597–624.

Burke, W. J. 2009. Fitting and interpreting Cragg’s tobit alternative using Stata. Stata Journal 9: 584–592.

Cameron, A. C., and P. K. Trivedi. 2022.Microeconometrics Using Stata. 2nd ed. College Station, TX: Stata Press.

Canette, I. 2016. Understanding truncation and censoring. The Stata Blog: Not Elsewhere Classified. https://blog.stata.

com/2016/12/13/understanding-truncation-and-censoring/.

Chernozhukov, V., I. Fernández-Val, S. Han, andA. Kowalski. 2019. Censored quantile instrumental-variable estimation

with Stata. Stata Journal 19: 768–781.

Cong, R. 2000. sg144:Marginal effects of the tobit model. Stata Technical Bulletin 56: 27–34. Reprinted in Stata Technical

Bulletin Reprints, vol. 10, pp. 189–197. College Station, TX: Stata Press.

Deb, P., E. C. Norton, and W. G. Manning. 2017. Health Econometrics Using Stata. College Station, TX: Stata Press.

Drukker, D. M. 2002. Bootstrapping a conditional moments test for normality after tobit estimation. Stata Journal 2:

125–139.

Goldberger, A. S. 1983. “Abnormal selection bias”. In Studies in Econometrics, Time Series, and Multivariate Statistics,

edited by S. Karlin, T. Amemiya, and L. A. Goodman, 67–84. New York: Academic Press. https://doi.org/10.1016/

B978-0-12-398750-1.50009-7.

Hurd, M. 1979. Estimation in truncated samples when there is heteroscedasticity. Journal of Econometrics 11: 247–258.

https://doi.org/10.1016/0304-4076(79)90039-3.

Long, J. S. 1997. Regression Models for Categorical and Limited Dependent Variables. Thousand Oaks, CA: Sage.

Maddala, G. S., and K. Lahiri. 2006. Introduction to Econometrics. 4th ed. New York: Wiley.

McDonald, J. F., and R. A. Moffitt. 1980. The use of tobit analysis. Review of Economics and Statistics 62: 318–321.

https://doi.org/10.2307/1924766.

Mroz, T. A. 1987. The sensitivity of an empirical model of married women’s hours of work to economic and statistical

assumptions. Econometrica 55: 765–799. https://doi.org/10.2307/1911029.

Sánchez-Peñalver, A. 2019. Estimation methods in the presence of corner solutions. Stata Journal 19: 87–111.

Shiller, R. J. 1999. The ET interview: Professor James Tobin. Econometric Theory 15: 867–900. https://doi.org/10.1017/

S0266466699156056.

Stewart, M. B. 1983. On least squares estimation when the dependent variable is grouped. Review of Economic Studies

50: 737–753. https://doi.org/10.2307/2297773.

Tobin, J. 1958. Estimation of relationships for limited dependent variables. Econometrica 26: 24–36. https://doi.org/10.

2307/1907382.

Wooldridge, J. M. 2010. Econometric Analysis of Cross Section and Panel Data. 2nd ed. Cambridge, MA: MIT Press.

———. 2020. Introductory Econometrics: AModern Approach. 7th ed. Boston: Cengage.

https://doi.org/10.2307/1914031
https://doi.org/10.1016/0304-4076(84)90074-5
https://www.stata-journal.com/article.html?article=st0368
https://doi.org/10.1177/1536867X221124534
https://www.stata-journal.com/article.html?article=st0179
https://www.stata-press.com/books/microeconometrics-stata
https://blog.stata.com/2016/12/13/understanding-truncation-and-censoring/
https://blog.stata.com/2016/12/13/understanding-truncation-and-censoring/
https://doi.org/10.1177/1536867X19893615
https://doi.org/10.1177/1536867X19893615
https://www.stata.com/products/stb/journals/stb56.pdf
https://www.stata-press.com/books/health-econometrics-using-stata/
https://www.stata-journal.com/article.html?article=st0011
https://doi.org/10.1016/B978-0-12-398750-1.50009-7
https://doi.org/10.1016/B978-0-12-398750-1.50009-7
https://doi.org/10.1016/0304-4076(79)90039-3
https://www.stata.com/bookstore/regmod.html
https://doi.org/10.2307/1924766
https://doi.org/10.2307/1911029
https://doi.org/10.1177/1536867X19830893
https://doi.org/10.1017/S0266466699156056
https://doi.org/10.1017/S0266466699156056
https://doi.org/10.2307/2297773
https://doi.org/10.2307/1907382
https://doi.org/10.2307/1907382
https://www.stata.com/bookstore/cspd.html
https://www.stata.com/bookstore/introductory-econometrics/


tobit — Tobit regression 3183

Also see
[R] tobit postestimation — Postestimation tools for tobit

[R] heckman — Heckman selection model

[R] intreg — Interval regression

[R] ivtobit — Tobit model with continuous endogenous covariates

[R] regress — Linear regression

[R] truncreg — Truncated regression

[BAYES] bayes: tobit — Bayesian tobit regression

[FMM] fmm: tobit — Finite mixtures of tobit regression models

[ERM] eintreg — Extended interval regression

[ME] metobit — Multilevel mixed-effects tobit regression

[SVY] svy estimation — Estimation commands for survey data

[XT] xtintreg — Random-effects interval-data regression models

[XT] xttobit — Random-effects tobit models

[U] 20 Estimation and postestimation commands
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Postestimation commands
The following postestimation commands are available after tobit:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters

estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian infor-
mation criteria (AIC, CAIC, AICc, and BIC, respectively)

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estat (svy) postestimation statistics for survey data

estimates cataloging estimation results

etable table of estimation results
∗ forecast dynamic forecasts and simulations
∗ hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

linktest link test for model specification
∗ lrtest likelihood-ratio test

margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

predict linear, censored, and truncated predictions

predictnl point estimates, standard errors, testing, and inference for generalized predictions

pwcompare pairwise comparisons of parameters

suest seemingly unrelated estimation

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

∗forecast, hausman, and lrtest are not appropriate with svy estimation results.
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predict

Description for predict
predict creates a new variable containing predictions such as linear predictions, standard errors,

probabilities, and expected values.

Menu for predict
Statistics > Postestimation

Syntax for predict
predict [ type ] newvar [ if ] [ in ] [ , statistic nooffset ]

predict [ type ] stub* [ if ] [ in ], scores

statistic Description

Main

xb linear prediction; the default

stdp standard error of the linear prediction

stdf standard error of the forecast

pr(a,b) Pr(a < 𝑦𝑗 < b)
e(a,b) 𝐸(𝑦𝑗| a < 𝑦𝑗 < b)
ystar(a,b) 𝐸(𝑦∗

𝑗), 𝑦∗
𝑗 = max{𝑎,min(𝑦𝑗, 𝑏)}

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for the estimation
sample.

stdf is not allowed with svy estimation results.

where a and b may be numbers or variables; a missing (a ≥ .) means −∞, and b missing (b ≥ .) means
+∞; see [U] 12.2.1 Missing values.

Options for predict

� � �
Main �

xb, the default, calculates the linear prediction.

stdp calculates the standard error of the prediction, which can be thought of as the standard error of the
predicted expected value or mean for the observation’s covariate pattern. The standard error of the

prediction is also referred to as the standard error of the fitted value.

stdf calculates the standard error of the forecast, which is the standard error of the point prediction for
1 observation. It is commonly referred to as the standard error of the future or forecast value. By

construction, the standard errors produced by stdf are always larger than those produced by stdp;
see Methods and formulas in [R] regress postestimation.
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pr(a,b) calculates Pr(a < x𝑗β + 𝜖𝑗 < b), the probability that 𝑦𝑗|x𝑗 would be observed in the interval

(a, b).
a and b may be specified as numbers or variable names; lb and ub are variable names;

pr(20,30) calculates Pr(20 < x𝑗β + 𝜖𝑗 < 30);
pr(lb,ub) calculates Pr(lb < x𝑗β + 𝜖𝑗 < ub); and
pr(20,ub) calculates Pr(20 < x𝑗β + 𝜖𝑗 < ub).
a missing (a ≥ .) means −∞; pr(.,30) calculates Pr(−∞ < x𝑗β + 𝜖𝑗 < 30);
pr(lb,30) calculates Pr(−∞ < x𝑗β + 𝜖𝑗 < 30) in observations for which lb ≥ .
and calculates Pr(𝑙𝑏 < x𝑗β + 𝜖𝑗 < 30) elsewhere.
b missing (b ≥ .) means +∞; pr(20,.) calculates Pr(+∞ > x𝑗β + 𝜖𝑗 > 20);
pr(20,ub) calculates Pr(+∞ > x𝑗β + 𝜖𝑗 > 20) in observations for which ub ≥ .
and calculates Pr(20 < x𝑗β + 𝜖𝑗 < ub) elsewhere.

e(a,b) calculates 𝐸(x𝑗β + 𝜖𝑗 | a < x𝑗β + 𝜖𝑗 < b), the expected value of 𝑦𝑗|x𝑗 conditional on 𝑦𝑗|x𝑗
being in the interval (a, b), meaning that 𝑦𝑗|x𝑗 is truncated.

a and b are specified as they are for pr().

ystar(a,b) calculates 𝐸(𝑦∗
𝑗), where 𝑦∗

𝑗 = 𝑎 if x𝑗β+𝜖𝑗 ≤ 𝑎, 𝑦∗
𝑗 = 𝑏 if x𝑗β+𝜖𝑗 ≥ 𝑏, and 𝑦∗

𝑗 = x𝑗β+𝜖𝑗
otherwise, meaning that 𝑦∗

𝑗 is censored. a and b are specified as they are for pr().

nooffset is relevant only if you specified offset(varname). It modifies the calculations made by

predict so that they ignore the offset variable; the linear prediction is treated as x𝑗β rather than as

x𝑗β + offset𝑗.

scores calculates equation-level score variables.

The first new variable will contain 𝜕ln𝐿/𝜕(x𝑗β).
The second new variable will contain 𝜕ln𝐿/𝜕𝜎.
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margins

Description for margins
margins estimates margins of response for linear predictions, probabilities, and expected values.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist ] [ , options ]
margins [marginlist ] , predict(statistic ...) [ predict(statistic ...) ... ] [ options ]

statistic Description

xb linear prediction; the default

pr(a,b) Pr(a < 𝑦𝑗 < b)
e(a,b) 𝐸(𝑦𝑗| a < 𝑦𝑗 < b)
ystar(a,b) 𝐸(𝑦∗

𝑗), 𝑦∗
𝑗 = max{𝑎,min(𝑦𝑗, 𝑏)}

stdp not allowed with margins
stdf not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.
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Remarks and examples

Example 1: Marginal predictions
In example 2 of [R] tobit, we fit a tobit model of annual number of hours that married women spend

working and then obtained estimated average marginal effect of 47.47 for years of education on observed

hours worked.

. use https://www.stata-press.com/data/r18/mroz87
(1975 PSID data from Mroz, 1987)
. tobit whrs75 nwinc wedyrs wexper c.wexper#c.wexper wifeage kl6 k618, ll(0)
(output omitted )

. margins, dydx(wedyrs) predict(ystar(0,.))
(output omitted )

However, we may not want this overall effect. To obtain marginal effects for specific alternative

scenarios, we use margins with the at() option. For example, continuing with example 2 of [R] tobit
to estimate the means of the marginal effects on the expected value of the censored outcome conditional

on education ranging from 8 years to 17 years, we type

. margins, dydx(wedyrs) predict(ystar(0,.)) at(wedyrs=(8(1)17))
Average marginal effects Number of obs = 753
Model VCE: OIM
Expression: E(whrs75*|whrs75>0), predict(ystar(0,.))
dy/dx wrt: wedyrs
1._at: wedyrs = 8
2._at: wedyrs = 9
3._at: wedyrs = 10
4._at: wedyrs = 11
5._at: wedyrs = 12
6._at: wedyrs = 13
7._at: wedyrs = 14
8._at: wedyrs = 15
9._at: wedyrs = 16
10._at: wedyrs = 17

Delta-method
dy/dx std. err. z P>|z| [95% conf. interval]

wedyrs
_at
1 39.58775 8.432006 4.69 0.000 23.06132 56.11418
2 41.4497 9.421414 4.40 0.000 22.98407 59.91533
3 43.30531 10.41233 4.16 0.000 22.89752 63.71309
4 45.14859 11.39804 3.96 0.000 22.80885 67.48833
5 46.97371 12.37208 3.80 0.000 22.72489 71.22254
6 48.77504 13.32825 3.66 0.000 22.65216 74.89793
7 50.54717 14.26071 3.54 0.000 22.5967 78.49765
8 52.28499 15.16403 3.45 0.001 22.56403 82.00594
9 53.98369 16.03324 3.37 0.001 22.55912 85.40827
10 55.63887 16.8639 3.30 0.001 22.58624 88.6915

The estimated mean of the marginal effects is about 39.59 hours for 8 years of schooling, about 41.45

hours for 9 years of schooling, and so on.
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Reference
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Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description
total produces estimates of totals, along with standard errors.

Quick start
Total of continuous variable v1

total v1

Same as above, but restrict estimation to observations where catvar = 1

total v1 if catvar==1

Same as above, but using svyset data
svy, subpop(if catvar==1): total v1

Total of v1 for each level of catvar
total v1, over(catvar)

With jackknife standard errors

total v1, vce(jackknife)

Menu
Statistics > Summaries, tables, and tests > Summary and descriptive statistics > Totals

3190
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Syntax
total varlist [ if ] [ in ] [weight ] [ , options ]

options Description

if/in/over

over(varlist𝑜) group over subpopulations defined by varlist𝑜

SE/Cluster

vce(vcetype) vcetype may be analytic, cluster clustvar, bootstrap, or
jackknife

Reporting

level(#) set confidence level; default is level(95)
noheader suppress table header

display options control column formats, line width, display of omitted variables
and base and empty cells, and factor-variable labeling

coeflegend display legend instead of statistics

varlist may contain factor variables; see [U] 11.4.3 Factor variables.

bootstrap, collect, jackknife, mi estimate, rolling, statsby, and svy are allowed; see [U] 11.1.10 Prefix com-
mands.

vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
if/in/over �

over(varlist𝑜) specifies that estimates be computed for multiple subpopulations, which are identified by
the different values of the variables in varlist𝑜. Only numeric, nonnegative, integer-valued variables

are allowed in over(varlist𝑜).

� � �
SE/Cluster �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (analytic), that allow for intragroup correlation (cluster clustvar), and that use
bootstrap or jackknife methods (bootstrap, jackknife); see [R] vce option.

vce(analytic), the default, uses the analytically derived variance estimator associated with the

sample total.
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� � �
Reporting �

level(#); see [R] Estimation options.

noheader prevents the table header from being displayed.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), and nolstretch; see [R] Estimation

options.

The following option is available with total but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

Remarks and examples

Example 1
Suppose that we collected data on incidence of heart attacks. The variable heartatk indicates

whether a person ever had a heart attack (1 means yes; 0 means no). We can then estimate the total

number of persons who have had heart attacks for each sex in the population represented by the data we
collected.

. use https://www.stata-press.com/data/r18/total
(Fictional incidence of heart-attack data)
. total heartatk [pw=swgt], over(sex)
Total estimation Number of obs = 4,946

Total Std. err. [95% conf. interval]

c.heartatk@sex
Male 944559 104372.3 739943 1149175

Female 581590 82855.59 419156.3 744023.7
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Stored results
total stores the following in e():

Scalars

e(N) number of observations

e(N over) number of subpopulations

e(N clust) number of clusters

e(k eq) number of equations in e(b)
e(df r) sample degrees of freedom

e(rank) rank of e(V)

Macros

e(cmd) total
e(cmdline) command as typed

e(varlist) varlist

e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(clustvar) name of cluster variable

e(over) varlist from over()
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(properties) b V
e(estat cmd) program used to implement estat
e(marginsnotok) predictions disallowed by margins

Matrices

e(b) vector of total estimates

e(V) (co)variance estimates

e( N) vector of numbers of nonmissing observations

e(error) error code corresponding to e(b)

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas
Methods and formulas are presented under the following headings:

The total estimator
Survey data
The survey total estimator
The poststratified total estimator
Subpopulation estimation
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The total estimator
Let 𝑦 denote the variable on which to calculate the total and 𝑦𝑗, 𝑗 = 1, . . . , 𝑛, denote an individual

observation on 𝑦. Let𝑤𝑗 be the frequency weight (or iweight or pweight), and if no weight is specified,
define 𝑤𝑗 = 1 for all 𝑗. The sum of the weights is an estimate of the population size:

𝑁 =
𝑛

∑
𝑗=1

𝑤𝑗

If the population values of 𝑦 are denoted by 𝑌𝑗, 𝑗 = 1, . . . , 𝑁, the associated population total is

𝑌 =
𝑁

∑
𝑗=1

𝑌𝑗 = 𝑁𝑦

where 𝑦 is the population mean. The total is estimated as

̂𝑌 = 𝑁𝑦

The variance estimator for the total is
̂𝑉 ( ̂𝑌 ) = 𝑁2 ̂𝑉 (𝑦)

where ̂𝑉 (𝑦) is the variance estimator for the mean; see [R] mean. The standard error of the total is the

square root of the variance.

If 𝑥, 𝑥𝑗, 𝑥, and 𝑋 are similarly defined for another variable (observed jointly with 𝑦), the covariance
estimator between 𝑋 and ̂𝑌 is

Ĉov(𝑋, ̂𝑌 ) = 𝑁2Ĉov(𝑥, 𝑦)

where Ĉov(𝑥, 𝑦) is the covariance estimator between two means; see [R] mean.

Survey data
See [SVY]Variance estimation and [SVY] Poststratification for discussions that provide background

information for the following formulas.

The survey total estimator
Let 𝑌𝑗 be a survey item for the 𝑗th individual in the population, where 𝑗 = 1, . . . , 𝑀 and 𝑀 is the

size of the population. The associated population total for the item of interest is

𝑌 =
𝑀

∑
𝑗=1

𝑌𝑗

Let 𝑦𝑗 be the survey item for the 𝑗th sampled individual from the population, where 𝑗 = 1, . . . , 𝑚 and

𝑚 is the number of observations in the sample.
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The estimator ̂𝑌 for the population total 𝑌 is

̂𝑌 =
𝑚

∑
𝑗=1

𝑤𝑗𝑦𝑗

where 𝑤𝑗 is a sampling weight. The estimator for the number of individuals in the population is

𝑀 =
𝑚

∑
𝑗=1

𝑤𝑗

The score variable for the total estimator is the variable itself,

𝑧𝑗( ̂𝑌 ) = 𝑦𝑗

The poststratified total estimator
Let 𝑃𝑘 denote the set of sampled observations that belong to poststratum 𝑘, and define 𝐼𝑃𝑘

(𝑗) to
indicate if the 𝑗th observation is a member of poststratum 𝑘, where 𝑘 = 1, . . . , 𝐿𝑃 and 𝐿𝑃 is the number

of poststrata. Also, let 𝑀𝑘 denote the population size for poststratum 𝑘. 𝑃𝑘 and 𝑀𝑘 are identified by

specifying the poststrata() and postweight() options on svyset; see [SVY] svyset.

The estimator for the poststratified total is

̂𝑌 𝑃 =
𝐿𝑃

∑
𝑘=1

𝑀𝑘

𝑀𝑘

̂𝑌𝑘 =
𝐿𝑃

∑
𝑘=1

𝑀𝑘

𝑀𝑘

𝑚
∑
𝑗=1

𝐼𝑃𝑘
(𝑗) 𝑤𝑗𝑦𝑗

where

𝑀𝑘 =
𝑚

∑
𝑗=1

𝐼𝑃𝑘
(𝑗)𝑤𝑗

The score variable for the poststratified total is

𝑧𝑗( ̂𝑌 𝑃) =
𝐿𝑃

∑
𝑘=1

𝐼𝑃𝑘
(𝑗)𝑀𝑘

𝑀𝑘
(𝑦𝑗 −

̂𝑌𝑘

𝑀𝑘
)

Subpopulation estimation
Let 𝑆 denote the set of sampled observations that belong to the subpopulation of interest, and define

𝐼𝑆(𝑗) to indicate if the 𝑗th observation falls within the subpopulation.
The estimator for the subpopulation total is

̂𝑌 𝑆 =
𝑚

∑
𝑗=1

𝐼𝑆(𝑗) 𝑤𝑗𝑦𝑗

and its score variable is

𝑧𝑗( ̂𝑌 𝑆) = 𝐼𝑆(𝑗) 𝑦𝑗
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The estimator for the poststratified subpopulation total is

̂𝑌 𝑃𝑆 =
𝐿𝑃

∑
𝑘=1

𝑀𝑘

𝑀𝑘

̂𝑌 𝑆
𝑘 =

𝐿𝑃

∑
𝑘=1

𝑀𝑘

𝑀𝑘

𝑚
∑
𝑗=1

𝐼𝑃𝑘
(𝑗)𝐼𝑆(𝑗) 𝑤𝑗𝑦𝑗

and its score variable is

𝑧𝑗( ̂𝑌 𝑃𝑆) =
𝐿𝑃

∑
𝑘=1

𝐼𝑃𝑘
(𝑗)𝑀𝑘

𝑀𝑘
{𝐼𝑆(𝑗) 𝑦𝑗 −

̂𝑌 𝑆
𝑘

𝑀𝑘
}
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Cochran, W. G. 1977. Sampling Techniques. 3rd ed. New York: Wiley.
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Also see
[R] total postestimation — Postestimation tools for total

[R] mean — Estimate means

[R] proportion — Estimate proportions

[R] ratio — Estimate ratios

[MI] Estimation — Estimation commands for use with mi estimate

[SVY] Direct standardization — Direct standardization of means, proportions, and ratios

[SVY] Poststratification — Poststratification for survey data

[SVY] Subpopulation estimation — Subpopulation estimation for survey data

[SVY] svy estimation — Estimation commands for survey data

[SVY] Variance estimation — Variance estimation for survey data

[U] 20 Estimation and postestimation commands
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Postestimation commands Remarks and examples Also see

Postestimation commands
The following postestimation commands are available after total:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters

estat vce variance–covariance matrix of the estimators (VCE)

estat (svy) postestimation statistics for survey data

estimates cataloging estimation results

etable table of estimation results

lincom point estimates, standard errors, testing, and inference for linear combinations of parameters

marginsplot graph the results from total

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations of parameters

pwcompare pairwise comparisons of parameters

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

Remarks and examples

Example 1
Continuing with our data on incidence of heart attacks from example 1 in [R] total, we want to test

whether there are twice as many heart attacks among men than women in the population.

. use https://www.stata-press.com/data/r18/total
(Fictional incidence of heart-attack data)
. total heartatk [pw=swgt], over(sex)
(output omitted )

. test heartatk@1.sex = 2 * heartatk@2.sex
( 1) c.heartatk@1bn.sex - 2*c.heartatk@2.sex = 0

F( 1, 4945) = 1.25
Prob > F = 0.2643

Thus we do not reject our hypothesis that the total number of heart attacks for men is twice that for

women in the population.

Also see
[R] total — Estimate totals

[U] 20 Estimation and postestimation commands
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Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Acknowledgment References Also see

Description
tpoisson fits a truncated Poisson regression model when the number of occurrences of an event is

restricted to be above a truncation point, below a truncation point, or between two truncation points.

Truncated Poisson models are appropriate when neither the dependent variable nor the covariates are

observed in the truncated part of the distribution. By default, tpoisson assumes left-truncation occurs
at zero, but truncation may be specified at other fixed points or at values that vary across observations.

Quick start
Truncated Poisson regression of y on x1 and x2 with left-truncation at 0

tpoisson y x1 x2

Add categorical variable a using factor-variable syntax
tpoisson y x1 x2 i.a

Same as above, but report incidence-rate ratios and use a constant truncation point of 4

tpoisson y x1 x2 i.a, irr ll(4)

With offset variable lnexp
tpoisson y x1 x2 i.a, offset(lnexp)

Same as above, but with a variable truncation point stored in variable min
tpoisson y x1 x2 i.a, offset(lnexp) ll(min)

With variable left- and right-truncation points

tpoisson y x1 x2, ll(min) ul(max)

With variable right-truncation points

tpoisson y x1 x2, ul(max)

Constrain the coefficients for 2.a and 3.a to equality
constraint define 1 2.a = 3.a
tpoisson y x1 x2 i.a, constraints(1)

Menu
Statistics > Count outcomes > Truncated Poisson regression
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Syntax
tpoisson depvar [ indepvars ] [ if ] [ in ] [weight ] [ , options ]

options Description

Model

noconstant suppress constant term

ll(# | varname) lower limit for truncation; default is ll(0) when neither
ll() nor ul() is specified

ul(# | varname) upper limit for truncation

exposure(varname𝑒) include ln(varname𝑒) in model with coefficient constrained to 1

offset(varname𝑜) include varname𝑜 in model with coefficient constrained to 1

constraints(constraints) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, opg, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)
irr report incidence-rate ratios

nocnsreport do not display constraints

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

collinear keep collinear variables

coeflegend display legend instead of statistics

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.

bayes, bootstrap, by, collect, fmm, fp, jackknife, rolling, statsby, and svy are allowed; see [U] 11.1.10 Prefix
commands. For more details, see [BAYES] bayes: tpoisson and [FMM] fmm: tpoisson.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
collinear and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Options

� � �
Model �

noconstant; see [R] Estimation options.

ll(# | varname) and ul(#| varname) specify the lower and upper limits for truncation, respectively.

You may specify nonnegative integer values for one or both.

When neither ll() nor ul() is specified, the default is zero truncation, ll(0), equivalent to left-
truncation at zero.

exposure(varname𝑒), offset(varname𝑜), constraints(constraints); see [R] Estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), that al-
low for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods

(bootstrap, jackknife); see [R] vce option.

� � �
Reporting �

level(#); see [R] Estimation options.

irr reports estimated coefficients transformed to incidence-rate ratios, that is, 𝑒𝛽𝑖 rather than 𝛽𝑖. Stan-

dard errors and confidence intervals are similarly transformed. This option affects how results are

displayed, not how they are estimated. irr may be specified at estimation or when replaying previ-
ously estimated results.

nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. These options are

seldom used.

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

The following options are available with tpoisson but are not shown in the dialog box:

collinear, coeflegend; see [R] Estimation options.

Remarks and examples
tpoisson fits a truncated Poisson regression model by maximum likelihood estimation when the

number of occurrences of an event is restricted to be above a truncation point, below a truncation point,

or between two truncation points. If the dependent variable is not truncated, standard Poisson regression

may be more appropriate; see [R] poisson.
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When the data are truncated, we do not observe either the dependent variable or the covariates. For

example, consider a study about the number of days that individuals with hyperglycemia are hospitalized

after presenting to the hospital. If we select our sample only from admission records, then the sample is

truncated at zero because we have data only on individuals who stayed at least one day. Now assume that

we are relying on billing data and that hospitals may submit either a final bill when a patient is discharged

or an interim bill every 30 days. In this case, we have no information about patients who are hospitalized

fewer than 1 day or more than 30 days. Our data are left-truncated at 0 and right-truncated at 30.

A related phenomenon is censoring. For censored observations, we observe complete covariate in-

formation but only a censored value of the dependent variable. Different research designs can give rise

to censored data or truncated data. See [R] cpoisson for information about censored Poisson regression.

Truncated Poisson regression was first proposed by Grogger and Carson (1991). For an introduc-

tion to Poisson regression, see Cameron and Trivedi (2005, 2022) and Long and Freese (2014). For an

introduction to truncated Poisson models, see Cameron and Trivedi (2013) and Long (1997, chap. 8).

Example 1: Left-truncation at zero
Consider the Simonoff (2003) dataset of running shoes for a sample of runners who registered an

online running log. A running-shoe marketing executive is interested in knowing how the number of

pairs of running shoes purchased relates to other factors such as gender, marital status, age, education,

income, typical number of runs per week, average miles run per week, and the preferred type of running.

These data are naturally truncated at zero. A truncated Poisson model is fit to the number of pairs of

shoes owned on runs per week, miles run per week, gender, age, and marital status.

No options are needed because zero truncation is the default for tpoisson.

. use https://www.stata-press.com/data/r18/runshoes
(Running shoes)
. tpoisson shoes rpweek mpweek male age married
Iteration 0: Log likelihood = -88.328151
Iteration 1: Log likelihood = -86.272639
Iteration 2: Log likelihood = -86.257999
Iteration 3: Log likelihood = -86.257994
Truncated Poisson regression Number of obs = 60
Limits: lower = 0 LR chi2(5) = 22.75

upper = +inf Prob > chi2 = 0.0004
Log likelihood = -86.257994 Pseudo R2 = 0.1165

shoes Coefficient Std. err. z P>|z| [95% conf. interval]

rpweek .1575811 .1097893 1.44 0.151 -.057602 .3727641
mpweek .0210673 .0091113 2.31 0.021 .0032094 .0389252
male .0446134 .2444626 0.18 0.855 -.4345246 .5237513
age .0185565 .0137786 1.35 0.178 -.008449 .045562

married -.1283912 .2785044 -0.46 0.645 -.6742498 .4174674
_cons -1.205844 .6619774 -1.82 0.069 -2.503296 .0916078

Using the zero-truncated Poisson regression with these data, only the coefficient on average miles per

week is statistically significant at the 5% level.
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Example 2: Left-truncation with a fixed-truncation point
Semiconductor manufacturing requires that silicon wafers be coated with a layer of metal oxide. The

depth of this layer is strictly controlled. In this example, a critical oxide layer is designed for 300 ±
20 angstroms (Å).

After the oxide layer is coated onto a wafer, the wafer enters a photolithography step in which the lines

representing the electrical connections are printed on the oxide and later etched and filled with metal.

The widths of these lines are measured. In this example, they are controlled to 90±5 micrometers (𝜇m).
After these and other steps, each wafer is electrically tested at probe. If too many failures are discov-

ered, the wafer is rejected and sent for engineering analysis. In this example, the maximum number of

probe failures tolerated for this product is 10.

A major failure at probe has been encountered—88 wafers had more than 10 failures each. The 88

wafers that failed were tested using 4 probe machines. The engineer suspects that the failures were a

result of faulty probe machines, poor depth control, or poor line widths. The line widths and depths

in these data are the actual measurement minus its specification target, 300 Å for the oxide depths and

90 𝜇m for the line widths.

The following table tabulates the average failure rate for each probe using Stata’s mean command;
see [R] mean.

. use https://www.stata-press.com/data/r18/probe
(Silicon wafers)
. mean failures, over(probe)
Mean estimation Number of obs = 88

Mean Std. err. [95% conf. interval]

c.failures@probe
1 15.875 1.186293 13.51711 18.23289
2 14.95833 .5912379 13.78318 16.13348
3 16.47059 .9279866 14.62611 18.31506
4 23.09677 .9451117 21.21826 24.97529

The 95% confidence intervals in this table suggest that there are about 5–11 additional failures per

wafer on probe 4. These are unadjusted for varying line widths and oxide depths. Possibly, probe 4

received the wafers with larger line widths or extreme oxide depths.

Truncated Poisson regression more clearly identifies the root causes for the increased failures by esti-

mating the differences between probes adjusted for the line widths and oxide depths. It also allows us to

determine whether the deviations from specifications in line widths or oxide depths might be contributing

to the problem.
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. tpoisson failures i.probe depth width, ll(10) nolog
Truncated Poisson regression Number of obs = 88
Limits: lower = 10 LR chi2(5) = 73.70

upper = +inf Prob > chi2 = 0.0000
Log likelihood = -239.35746 Pseudo R2 = 0.1334

failures Coefficient Std. err. z P>|z| [95% conf. interval]

probe
2 -.1113037 .1019786 -1.09 0.275 -.3111781 .0885707
3 .0114339 .1036032 0.11 0.912 -.1916245 .2144924
4 .4254115 .0841277 5.06 0.000 .2605242 .5902989

depth -.0005034 .0033375 -0.15 0.880 -.0070447 .006038
width .0330225 .015573 2.12 0.034 .0025001 .063545
_cons 2.714025 .0752617 36.06 0.000 2.566515 2.861536

The coefficients listed for the probes are testing the null hypothesis: 𝐻0 ∶ probe𝑖 = probe1, where 𝑖
equals 2, 3, and 4. Because the only coefficient that is statistically significant is the one for testing for

𝐻0 ∶ probe4 = probe1, 𝑝 < 0.001, and because the 𝑝-values for the other probes are not statistically
significant, that is, 𝑝 ≥ 0.275, the implication is that there is a difference between probe 4 and the other

machines. Because the coefficient for this test is positive, 0.425, the conclusion is that the average failure

rate for probe 4, after adjusting for line widths and oxide depths, is higher than the other probes. Possibly,

probe 4 needs calibration or the head used with this machine is defective.

Line-width control is statistically significant, 𝑝 = 0.034, but variation in oxide depths is not causing

the increased failure rate. The engineer concluded that the sudden increase in failures is the result of

two problems. First, probe 4 is malfunctioning, and second, there is a possible lithography or etching

problem.
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Stored results
tpoisson stores the following in e():

Scalars

e(N) number of observations

e(k) number of parameters

e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test

e(k dv) number of dependent variables

e(df m) model degrees of freedom

e(r2 p) pseudo-𝑅2

e(ll) log likelihood

e(ll 0) log likelihood, constant-only model

e(N clust) number of clusters

e(chi2) 𝜒2

e(p) 𝑝-value for model test
e(rank) rank of e(V)
e(ic) number of iterations

e(rc) return code

e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) tpoisson
e(cmdline) command as typed

e(depvar) name of dependent variable

e(llopt) contents of ll(), or 0 if neither ll() nor ul() is specified
e(ulopt) contents of ul(), if specified
e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(clustvar) name of cluster variable

e(offset) linear offset variable

e(chi2type) Wald or LR; type of model 𝜒2 test

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(opt) type of optimization

e(which) max or min; whether optimizer is to perform maximization or minimization

e(ml method) type of ml method
e(user) name of likelihood-evaluator program

e(technique) maximization technique

e(properties) b V
e(predict) program used to implement predict
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(ilog) iteration log (up to 20 iterations)

e(gradient) gradient vector

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

Functions

e(sample) marks estimation sample
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In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas
For a nonnegative count outcome 𝑌 with left-truncation point 𝑙𝑙𝑗 and right-truncation point 𝑢𝑙𝑗, we

can write the truncated Poisson model as

𝑓(𝑦𝑗) =
exp(−𝜆𝑗)𝜆

𝑦𝑗
𝑗

𝑦𝑗!Pr(𝑙𝑙𝑗 < 𝑌 < 𝑢𝑙𝑗 | 𝜉𝑗)

where

𝜉𝑗 = x𝑗β + offset𝑗

𝜆𝑗 = exp(𝜉𝑗)

and x𝑗 is a vector of observed covariates. The conditional probability of observing 𝑦𝑗 events, therefore

given by 𝑙𝑙𝑗 < 𝑦𝑗 < 𝑢𝑙𝑗, is

Pr(𝑌 = 𝑦𝑗 | 𝑙𝑙𝑗 < 𝑦𝑗 < 𝑢𝑙𝑗, x𝑗) =
exp(−𝜆𝑗)𝜆

𝑦𝑗
𝑗

𝑦𝑗!Pr(𝑙𝑙𝑗 < 𝑌 < 𝑢𝑙𝑗 | x𝑗)

The log likelihood is given by

ln𝐿 =
𝑛

∑
𝑗=1

𝑤𝑗 [−𝜆𝑗 + 𝜉𝑗𝑦𝑗 − ln(𝑦𝑗!) − ln{Pr(𝑙𝑙𝑗 < 𝑌 < 𝑢𝑙𝑗 | 𝜉𝑗)}]

If no weights are specified, 𝑤𝑗 = 1.

This command supports the Huber/White/sandwich estimator of the variance and its clustered version

using vce(robust) and vce(cluster clustvar), respectively. See [P] robust, particularly Maximum

likelihood estimators and Methods and formulas.

tpoisson also supports estimation with survey data. For details on VCEs with survey data, see

[SVY] Variance estimation.
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Postestimation commands predict margins Remarks and examples
Methods and formulas Also see

Postestimation commands
The following postestimation commands are available after tpoisson:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters

estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian infor-
mation criteria (AIC, CAIC, AICc, and BIC, respectively)

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estat (svy) postestimation statistics for survey data

estimates cataloging estimation results

etable table of estimation results
∗ forecast dynamic forecasts and simulations
∗ hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

∗ lrtest likelihood-ratio test

margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

predict number of events, incidence rates, probabilities, etc.

predictnl point estimates, standard errors, testing, and inference for generalized predictions

pwcompare pairwise comparisons of parameters

suest seemingly unrelated estimation

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

∗forecast, hausman, and lrtest are not appropriate with svy estimation results.
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predict

Description for predict
predict creates a new variable containing predictions such as numbers of events, incidence rates,

conditional means, probabilities, conditional probabilities, linear predictions, standard errors, and the

equation-level score.

Menu for predict
Statistics > Postestimation

Syntax for predict
predict [ type ] newvar [ if ] [ in ] [ , statistic nooffset ]

statistic Description

Main

n number of events; the default

ir incidence rate

cm conditional mean, 𝐸(𝑦𝑗 | 𝑙𝑙𝑗 < 𝑦𝑗 < 𝑢𝑙𝑗)
pr(n) probability Pr(𝑦𝑗 = n)
pr(a,b) probability Pr(a ≤ 𝑦𝑗 ≤ b)
cpr(n) conditional probability Pr(𝑦𝑗 = n | 𝑙𝑙𝑗 < 𝑦𝑗 < 𝑢𝑙𝑗)
cpr(a,b) conditional probability Pr(a ≤ 𝑦𝑗 ≤ b | 𝑙𝑙𝑗 < 𝑦𝑗 < 𝑢𝑙𝑗)
xb linear prediction

stdp standard error of the linear prediction

score first derivative of the log likelihood with respect to x𝑗β

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted
only for the estimation sample.

Options for predict

� � �
Main �

n, the default, calculates the predicted number of events, which is exp(x𝑗β) if neither offset() nor

exposure() was specified when the model was fit; exp(x𝑗β + offset𝑗) if offset() was specified;
or exp(x𝑗β) × exposure𝑗 if exposure() was specified.

ir calculates the incidence rate exp(x𝑗β), which is the predicted number of events when exposure is 1.
This is equivalent to specifying both the n and the nooffset options.

cm calculates the conditional mean,

𝐸(𝑦𝑗 | 𝑙𝑙𝑗 < 𝑦𝑗 < 𝑢𝑙𝑗) =
𝐸(𝑦𝑗, 𝑙𝑙𝑗 < 𝑦𝑗 < 𝑢𝑙𝑗)
Pr(𝑙𝑙𝑗 < 𝑦𝑗 < 𝑢𝑙𝑗)

where 𝑙𝑙𝑗 is the left-truncation point specified at estimation and 𝑢𝑙𝑗 is the right-truncation point spec-
ified at estimation.
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pr(n) calculates the probability Pr(𝑦𝑗 = n), where n is a nonnegative integer that may be specified as
a number or a variable.

pr(a,b) calculates the probability Pr(a ≤ 𝑦𝑗 ≤ b), where a and b are nonnegative integers that may be
specified as numbers or variables;

b missing (b ≥ .) means +∞;

pr(20,.) calculates Pr(𝑦𝑗 ≥ 20);
pr(20,b) calculates Pr(𝑦𝑗 ≥ 20) in observations for which b ≥ . and calculates
Pr(20 ≤ 𝑦𝑗 ≤ b) elsewhere.
pr(.,b) produces a syntax error. Amissing value in an observation of the variable a causes a missing

value in that observation for pr(a,b).

cpr(n) calculates the conditional probability Pr(𝑦𝑗 = n | 𝑙𝑙𝑗 < 𝑦𝑗 < 𝑢𝑙𝑗), where n is a nonnegative
integer that may be specified as a number or a variable. 𝑙𝑙𝑗 and 𝑢𝑙𝑗 are as defined in cm.

cpr(a,b) calculates the conditional probability Pr(a ≤ 𝑦𝑗 ≤ b | 𝑙𝑙𝑗 < 𝑦𝑗 < 𝑢𝑙𝑗), where a and b are as
defined in pr(a,b)with the additional restrictions that a > 𝑙𝑙𝑗 and b < 𝑢𝑙𝑗. 𝑙𝑙𝑗 and 𝑢𝑙𝑗 are as defined
in cm.

xb calculates the linear prediction, which is x𝑗β if neither offset() nor exposure()was specifiedwhen
the model was fit; x𝑗β + offset𝑗 if offset() was specified; or x𝑗β + ln(exposure𝑗) if exposure()
was specified; see nooffset below.

stdp calculates the standard error of the linear prediction.

score calculates the equation-level score, 𝜕ln𝐿/𝜕(x𝑗β).
nooffset is relevant only if you specified offset() or exposure() when you fit the model. It modi-

fies the calculations made by predict so that they ignore the offset or exposure variable; the linear
prediction is treated as x𝑗β rather than as x𝑗β+ offset𝑗 or x𝑗β+ ln(exposure𝑗). Specifying predict
..., nooffset is equivalent to specifying predict ..., ir.
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margins

Description for margins
margins estimates margins of response for numbers of events, incidence rates, conditional means,

probabilities, conditional probabilities, and linear predictions.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist ] [ , options ]
margins [marginlist ] , predict(statistic ...) [ predict(statistic ...) ... ] [ options ]

statistic Description

n number of events; the default

ir incidence rate

cm conditional mean, 𝐸(𝑦𝑗 | 𝑙𝑙𝑗 < 𝑦𝑗 < 𝑢𝑙𝑗)
pr(n) probability Pr(𝑦𝑗 = n)
pr(a,b) probability Pr(a ≤ 𝑦𝑗 ≤ b)
cpr(n) conditional probability Pr(𝑦𝑗 = n | 𝑙𝑙𝑗 < 𝑦𝑗 < 𝑢𝑙𝑗)
cpr(a,b) conditional probability Pr(a ≤ 𝑦𝑗 ≤ b | 𝑙𝑙𝑗 < 𝑦𝑗 < 𝑢𝑙𝑗)
xb linear prediction

stdp not allowed with margins
score not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.
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Remarks and examples

Example 1: Obtaining margins of the conditional mean
In example 1 of [R] tpoisson, a truncated Poisson model is fit to the number of pairs of shoes owned

on runs per week, miles run per week, gender, age, and marital status. We continue that example to

determine the effect of miles run per week on the average number of pairs of shoes owned.

After reading in the data, we use summarize to obtain the 25th, 50th, and 75th percentiles for miles
run per week.

. use https://www.stata-press.com/data/r18/runshoes
(Running shoes)
. summarize mpweek, detail

Miles per week

Percentiles Smallest
1% 5 5
5% 5 5
10% 5 5 Obs 60
25% 12.5 5 Sum of wgt. 60
50% 27.5 Mean 24.71167

Largest Std. dev. 14.34934
75% 32.5 47.5
90% 47.5 47.5 Variance 205.9034
95% 47.5 47.5 Skewness .1948568
99% 57.5 57.5 Kurtosis 2.065304

We fit themodel from example 1 of [R] tpoisson again. We next specify these values for the percentiles

to margins to estimate the conditional mean of the number of pairs of shoes at different quantiles of miles
run per week. To do this, we use the at() option of margins.

. quietly tpoisson shoes rpweek mpweek male age married

. margins, at(mpweek=(12.5 27.5 32.5)) predict(cm)
Predictive margins Number of obs = 60
Model VCE: OIM
Expression: Conditional mean of n > ll(0), predict(cm)
1._at: mpweek = 12.5
2._at: mpweek = 27.5
3._at: mpweek = 32.5

Delta-method
Margin std. err. z P>|z| [95% conf. interval]

_at
1 1.942149 .2111564 9.20 0.000 1.52829 2.356008
2 2.376253 .1714522 13.86 0.000 2.040213 2.712293
3 2.564339 .1948129 13.16 0.000 2.182513 2.946165

We see that people who run 12.5 miles per week are expected to own 1.94 pairs of shoes. The expected

number of pairs of shoes owned increases as the average miles per week increases. We expect people

who run 27.5 miles per week have 2.38 pairs of shoes and those who run 32.5 miles per week have 2.56

pairs of shoes.



tpoisson postestimation — Postestimation tools for tpoisson 3212

Methods and formulas
Continuing from Methods and formulas in [R] tpoisson, the equation-level score is given by

score(xβ)𝑗 = 𝑦𝑗 − 𝜆𝑗 −
{ exp(−𝜆𝑗)𝜆

𝑙𝑙𝑗
𝑗 /𝑙𝑙𝑗! − exp(−𝜆𝑗)𝜆

(𝑢𝑙𝑗−1)
𝑗 /(𝑢𝑙𝑗 − 1)!}𝜆𝑗

Pr(𝑙𝑙𝑗 < 𝑌 < 𝑢𝑙𝑗 | 𝜉𝑗)

Also see
[R] tpoisson — Truncated Poisson regression

[U] 20 Estimation and postestimation commands
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Description Quick start Syntax Options for print
Options for translate Remarks and examples Stored results Also see

Description
print prints log, SMCL, and text files. translate translates log and SMCL files from one format to

another, the other typically being suitable for printing. translate can also translate SMCL logs to plain

text.

Quick start
Translate SMCL-format log mylog.smcl to a text log file mylog.log

translate mylog.smcl mylog.log

Same as above, but translate mylog.smcl to PostScript file mylog.ps
translate mylog.smcl mylog.ps

Send output from the Results window to new mylog.txt when no log was started
translate @Results mylog.txt

3213



translate — Print and translate logs 3214

Syntax
Print log and SMCL files

print filename [ , like(ext) name(windowname) override options ]

Translate log files to SMCL files and vice versa

translate filenamein filenameout [ , translator(tname) name(windowname)

override options replace ]

View translator parameter settings

translator query [tname]

Change translator parameter settings

translator set [tname setopt setval]

Return translator parameter settings to default values

translator reset tname

List current mappings from one extension to another

transmap query [ .ext ]

Specify that files with one extension be treated the same as files with another extension

transmap define .extnew .extold

filename in print, in addition to being a filename to be printed, may be specified as @Results to mean
the Results window and @Viewer to mean the Viewer window.

filenamein in translate may be specified just as filename in print.

tname in translator specifies the name of a translator; see the translator() option under Options
for translate.
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Options for print
like(ext) specifies how the file should be translated to a form suitable for printing. The default is to

determine the translation method from the extension of filename. Thus, mylog.smcl is translated

according to the rule for translating smcl files, myfile.txt is translated according to the rule for

translating txt files, and so on. (These rules are, in fact, translate’s smcl2prn and txt2prn
translators, but put that aside for the moment.)

Rules for the following extensions are predefined:

.txt assume input file contains plain text

.log assume input file contains Stata log text

.smcl assume input file contains SMCL

To print a file that has an extension different from those listed above, you can define a new extension,

but you do not have to do that. Assume that you wish to print the file read.me, which you know
to contain plain text. If you were just to type print read.me, you would be told that Stata cannot
translate .me files. (You would actually be told that the translator for me2prn was not found.) You
could type print read.me, like(txt) to tell print to print read.me like a .txt file.

On the other hand, you could type

. transmap define .me .txt

to tell Stata that .me files are always to be treated like .txt files. If you did that, Stata would remember
the new rule, even in future sessions.

When you specify the like() option, you override the recorded rules. So, if you were to type print
mylog.smcl, like(txt), the file would be printed as plain text (meaning that all the SMCL com-

mands would show).

name(windowname) specifies which window to print when printing a Viewer. The default is for Stata to

print the topmost Viewer [Unix(GUI) users: See the third technical note in Printing files, Unix]. The

name() option is ignored when printing the Results window.

The window name is located inside the parentheses in the window title. For example, if the title for a

Viewer window is Viewer (#1) [help print], the name for the window is #1.

override options refer to translate’s options for overriding default values. print uses translate
to translate the file into a format suitable for sending to the printer, and thus translate’s over-
ride options may also be used with print. The settings available vary between each translator (for
example, smcl2ps will have different settings than smcl2txt) and may also differ across operating
systems (for example, Windows may have different printing options than macOS). To find out what

you can override when printing .smcl files, type

. translator query smcl2prn
(output omitted )

In the omitted output, you might learn that there is an rmargin # tunable value, which specifies the
right margin in inches. You could specify the override option rmargin(#) to temporarily override
the default value, or you could type translator set smcl2prn rmargin # beforehand to perma-
nently reset the value.

Alternatively, on some computers with some translators, you might discover that nothing can be set.
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Options for translate
translator(tname) specifies the name of the translator to be used to translate the file. The available

translators are
tname Input Output

smcl2ps SMCL PostScript
log2ps Stata text log PostScript
txt2ps generic text file PostScript
Viewer2ps Viewer window PostScript
Results2ps Results window PostScript

smcl2prn SMCL default printer format
log2prn Stata text log default printer format
txt2prn generic text log default printer format
Results2prn Results window default printer format
Viewer2prn Viewer window default printer format

smcl2txt SMCL generic text log
smcl2log SMCL Stata text log
Results2txt Results window generic text file
Viewer2txt Viewer window generic text file

smcl2pdf SMCL PDF
log2pdf Stata text log PDF
txt2pdf generic text log PDF
Results2pdf Results window PDF
Viewer2pdf Viewer window PDF

If translator() is not specified, translate determines which translator to use from extensions

of the filenames specified. Typing translate myfile.smcl myfile.ps would use the smcl2ps
translator. Typing translate myfile.smcl myfile.ps, translate(smcl2prn) would override
the default and use the smcl2prn translator.

Actually, when you type translate a.b c.d, translate looks up .b in the transmap extension-
synonym table. If .b is not found, the translator b2d is used. If .b is found in the table, the mapped
extension is used (call it b′), and then the translator b′2d is used. For example,

Command Translator used

. translate myfile.smcl myfile.ps smcl2ps

. translate myfile.odd myfile.ps odd2ps, which does not exist, so error

. transmap define .odd .txt

. translate myfile.odd myfile.ps txt2ps

You can list the mappings that translate uses by typing transmap query.

name(windowname) specifies which window to translate when translating a Viewer. The default is for

Stata to translate the topmost Viewer. The name() option is ignored when translating the Results

window.

The window name is located inside the parentheses in the window title. For example, if the title for a

Viewer window is Viewer (#1) [help print], the name for the window is #1.
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override options override any of the default options of the specified or implied translator. To find out

what you can override for, say, log2ps, type

. translator query log2ps

In the omitted output, you might learn that there is an rmargin # tunable value, which, for log2ps,
specifies the right margin in inches. You could specify the override option rmargin(#) to temporar-
ily override the default value or type translator set log2ps rmargin # beforehand to permanently
reset the value.

replace specifies that filenameout be replaced if it already exists.

Remarks and examples
Remarks are presented under the following headings:

Overview
Printing files
Printing files, Mac and Windows
Printing files, Unix
Translating files from one format to another

Overview
print prints log, SMCL, and text files. Although there is considerable flexibility in how print (and

translate, which print uses) can be set to work, they have already been set up and should just work:

. print mylog.smcl

. print mylog.log

Unix users may discover that they need to do a bit of setup before print works; see Printing files, Unix
below. International Unix users may also wish to modify the default paper size. All users can tailor

print and translate to their needs.

print may also be used to print the current contents of the Results window or the Viewer. For

instance, the current contents of the Results window could be printed by typing

. print @Results

translate translates log and SMCL files from one format to another, the other typically being suitable

for printing. translate can also translate SMCL logs (logs created by typing, say, log using mylog) to
plain text:

. translate mylog.smcl mylog.log

You can use translate to recover a log when you have forgotten to start one. You may type

. translate @Results mylog.txt

to capture as plain text what is currently shown in the Results window.

This entry provides a general overview of print and translate and covers in detail the printing and
translation of text (nongraphic) files.

translator query, translator set, and translator reset show, change, and restore the de-

fault values of the settings for each translator.

transmap define and transmap query create and show mappings from one file extension to an-

other for use with print and translate.
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For example, print myfile.txt knows to use a translator appropriate for printing text files because
of the .txt extension. However, it does not know what to do with .xyz files. If you have .xyz files
and always wish to treat them as .txt files, you can type transmap define .xyz .txt.

Printing files
Printing should be easy; just type

. print mylog.smcl

. print mylog.log

You can use print to print SMCL files, plain text files, and even the contents of the Results and Viewer

windows:

. print @Results

. print @Viewer

. print @Viewer, name(#2)

For information about printing and translating graph files, see [G-2] graph print and see [G-2] graph

export.

Printing files, Mac and Windows
When you type print, you are using the same facility that you would be using if you had selected

Print from the File menu. If you try to print a file that Stata does not know about, Stata will complain:

. print read.me
translator me2prn not found
r(111);

Then, you could type

. print read.me, like(txt)

to indicate that you wanted read.me sent to the printer in the same fashion as if the file were named

readme.txt, or you could type

. transmap define .me .txt

. print read.me

Here you are telling Stata once and for all that you want files ending in .me to be treated in the same
way as files ending in .txt. Stata will remember this mapping, even across sessions. To clear the .me
mapping, type

. transmap define .me

To see all the mappings, type

. transmap query

To print to a file, use the translate command, not print:

. translate mylog.smcl mylog.prn

translate prints to a file by using theWindows print driver when the new filename ends in .prn. Under
Mac, the prn translators are the same as the pdf translators. We suggest that you simply use the .pdf
file extension when printing to a file.
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Printing files, Unix
Stata assumes that you have a PostScript printer attached to your Unix computer and that the Unix

command lpr(1) can be used to send PostScript files to it, but you can change this. On your Unix

system, typing

mycomputer$ lpr < filename

may not be sufficient to print PostScript files. For instance, perhaps on your system you would need to

type

mycomputer$ lpr -Plexmark < filename

or

mycomputer$ lpr -Plexmark filename

or something else. To set the print command to be lpr -Plexmark filename and to state that the printer
expects to receive PostScript files, type

. printer define prn ps ”lpr -Plexmark @”

To set the print command to lpr -Plexmark < filename and to state that the printer expects to receive
plain text files, type

. printer define prn txt ”lpr -Plexmark < @”

That is, just type the command necessary to send files to your printer and include an @ sign where the
filename should be substituted. Two file formats are available: ps and txt. The default setting, as

shipped from the factory, is

. printer define prn ps ”lpr < @”

We will return to the printer command in the technical note that follows because it has some other

capabilities you should know about.

In any case, after you redefine the default printer, the following should just work:

. print mylog.smcl

. print mylog.log

If you try to print a file that Stata does not know about, it will complain:

. print read.me
translator me2prn not found
r(111);

Here you could type

. print read.me, like(txt)

to indicate that you wanted read.me sent to the printer in the same fashion as if the file were named

readme.txt, or you could type

. transmap define .me .txt

. print read.me

Here you are telling Stata once and for all that you want files ending in .me to be treated in the same way
as files ending in .txt. Stata will remember this setting for .me, even across sessions.
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If you want to clear the .me setting, type

. transmap define .me

If you want to see all your settings, type

. transmap query

Technical note
If the text you wish to print contains Unicode characters, those characters may not appear correctly in

PostScript files because the PostScript fonts do not support Unicode. Stata will map as many characters

as possible to characters supported by Unicode but will print a question mark (?) for any unsupported

character. We recommend that you export the text to a PDF file, which has fonts with better support for

Unicode characters.

Technical note
The syntax of the printer command is

printer define printername [ { ps | txt } ”Unix command with@” ]
printer query [ printername ]

You may define multiple printers. By default, print uses the printer named prn, but print has the

syntax

print filename [ , like(ext) printer(printername) override options ]
so, if you define multiple printers, you may route your output to them.

For instance, if you have a second printer on your system, you might type

. printer define lexmark ps ”lpr -Plexmark < @”

After doing that, you could type

. print myfile.smcl, printer(lexmark)

Any printers that you set will be remembered even across sessions. You can delete printers:

. printer define lexmark

You can list all the defined printers by typing printer query, and you can list the definition of a par-
ticular printer, say, prn, by typing printer query prn.

The default printer prn we have predefined for you is

. printer define prn ps ”lpr < @”

meaning that we assume that it is a PostScript printer and that the Unix command lpr(1), without
options, is sufficient to cause files to print. Feel free to change the default definition. If you change it,

the change will be remembered across sessions.
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Technical note
Unix(GUI) users should note that X-Windows does not have the concept of a window z-order, which

prevents Stata from determining which window is the topmost window. Instead, Stata determines which

window is topmost based on which window has the focus. However, some window managers will set the

focus to a window without bringing the window to the top. What Stata considers the topmost window

may not appear topmost visually. For this reason, you should always use the name() option to ensure
that the correct window is printed.

Technical note
When you select the Results window to print from the Print menu or toolbar button, the result is the

same as if you were to issue the print command. When you select a Viewer window to print from the

Print menu or toolbar button, the result is the same as if you were to issue the print command with a
name() option.

The translation to PostScript format is done by translate and, in particular, is performed by the

translators smcl2ps, log2ps, and txt2ps. There are many tunable parameters in each of these transla-
tors. You can display the current values of these tunable parameters for, say, smcl2ps by typing

. translator query smcl2ps
(output omitted )

and you can set any of the tunable parameters (for instance, setting smcl2ps’s rmargin value to 1) by
typing

. translator set smcl2ps rmargin 1
(output omitted )

Any settings you make will be remembered across sessions. You can reset smcl2ps to be as it was when
Stata was shipped by typing

. translator reset smcl2ps

Translating files from one format to another
If you have a SMCL log, which you might have created by previously typing log using mylog, you

can translate it to an text log by typing

. translate myfile.smcl myfile.log

and you can translate it to a PostScript file by typing

. translate myfile.smcl myfile.ps

translate translates files from one format to another, and, in fact, print uses translate to produce
a file suitable for sending to the printer.

When you type

. translate a.b c.d

translate looks for the predefined translator b2d and uses that to perform the translation. If there is a

transmap synonym for b, however, the mapped value b′ is used: b′2d.
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Only certain translators exist, and they are listed under the description of the translate() option in
Options for translate above, or you can type

. translator query

for a complete (and perhaps more up-to-date) list.

Anyway, translate forms the name b2d or b′2d, and if the translator does not exist, translate
issues an error message. With the translator() option, you can specify exactly which translator to
use, and then it does not matter how your files are named.

The only other thing to know is that some translators have tunable parameters that affect how they

perform their translation. You can type

. translator query translator_name

to find out what those parameters are. Some translators have no tunable parameters, and some have

many:

. translator query smcl2ps

header on
headertext

logo on
user

projecttext
cmdnumber on

fontsize 9 lmargin 1.00
pagesize letter rmargin 1.00
pagewidth 8.50 tmargin 1.00

pageheight 11.00 bmargin 1.00

scheme monochrome

cust1_result_color 0 0 0 cust2_result_color 0 0 0
cust1_standard_color 0 0 0 cust2_standard_color 0 0 0

cust1_error_color 0 0 0 cust2_error_color 255 0 0
cust1_input_color 0 0 0 cust2_input_color 0 0 0
cust1_link_color 0 0 0 cust2_link_color 0 0 255

cust1_hilite_color 0 0 0 cust2_hilite_color 0 0 0
cust1_result_bold on cust2_result_bold on

cust1_standard_bold off cust2_standard_bold off
cust1_error_bold on cust2_error_bold on
cust1_input_bold off cust2_input_bold off
cust1_link_bold off cust2_link_bold off

cust1_hilite_bold on cust2_hilite_bold on
cust1_link_underline on cust2_link_underline on

cust1_hilite_underline off cust2_hilite_underline off
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You can temporarily override any setting by specifying the setopt(setval) option on the translate (or
print) command. For instance, you can type

. translate ..., ... cmdnumber(off)

or you can reset the value permanently by typing

. translator set smcl2ps setopt setval

For instance,

. translator set smcl2ps cmdnumber off

If you reset a value, Stata will remember the change, even in future sessions.

Mac and Windows users: The smcl2ps (and the other *2ps translators) are not used by print, even
when you have a PostScript printer attached to your computer. Instead, the Mac or Windows print driver

is used. Resetting smcl2ps values will not affect printing; instead, you change the defaults in the Printers
Control Panel inWindows and by selecting Page Setup... from the Filemenu inMac. You can, however,

translate files yourself using the smcl2ps translator and the other *2ps translators.

Technical note: Using PDF translators (Windows and Unix)
When using translate to translate a log, SMCL, or text file or a Stata graph into a PDF file, some

characters may not display correctly in the resulting PDF file. This happens when translating content that

contains Unicode characters from different languages; one font may not be adequate to display every

character used. If an appropriate font is not available for a character, that character will not display

correctly in the resulting PDF file.

Specific fonts can be used to build a font chain. Those fonts are specified using fontname and are

separated by commas. The most preferred font should be listed first, followed by the less preferred fonts.

A maximum of 16 fonts can be specified. Stata will inspect each character in the original content, and

if a glyph for the corresponding character is not available in the default font, then each font in the font

chain will be checked until a font is found to display that character.

You can set fonts in the font chain by specifying addfonts for each PDF translator as follows:

. translator set tname addfonts fontname

Here tname is the name of a PDF translator, which can be smcl2pdf, log2pdf, txt2pdf, Results2pdf,
Viewer2pdf, or Graph2pdf. See the translator() option under Options for translate.

Stata has the ability to select a font automatically if the default font and the fonts in the font chain do

not contain a glyph for the character. Automatic font selection can be controlled using the following:

. translator set tname autofont on | off

By default, autofont is on. Unix (console) users will need to set the font directories so the fonts can be
found.
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PDF files accept Base 14 fonts, Type 1 fonts (.pfa or .pfb), TrueType fonts (.ttf or .ttc), and
OpenType fonts (.otf). If fontname refers to a TrueType font, an OpenType font, or a Type 1 font,

the corresponding TrueType, OpenType, or Type 1 font file will be searched for within the default font

directory. Unix (console) users can type

. translator set tname fontdir fontdirectory

to set the default font directory. fontdirectory can contain multiple font directories separated by semi-

colons. If the specified TrueType, OpenType, or Type 1 font cannot be found under the current font

directory, an error message will be issued.

Stored results
transmap query .ext stores in macro r(suffix) the mapped extension (without the leading period)

or stores ext if the ext is not mapped.

translator query translatorname stores setval in macro r(setopt) for every setopt, setval pair.

printer query printername (Unix only) stores in macro r(suffix) the “filetype” of the input that
the printer expects (currently “ps” or “txt”) and, in macro r(command), the command to send output
to the printer.

Also see
[R] log — Echo copy of session to file

[G-2] graph export — Export current graph

[G-2] graph print — Print a graph

[G-2] graph set — Set graphics options

[P] smcl — Stata Markup and Control Language

[U] 15 Saving and printing output—log files
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Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description
truncreg fits a regression model of depvar on indepvars from a sample drawn from a restricted

part of the population. Under the normality assumption for the whole population, the error terms in the

truncated regression model have a truncated normal distribution, which is a normal distribution that has

been scaled upward so that the distribution integrates to one over the restricted range.

Quick start
Truncated regression of y on x1 and x2 truncated below 16

truncreg y x1 x2, ll(16)

Specify that y is truncated above 35
truncreg y x1 x2, ul(35)

With y truncated below 17 and above 35

truncreg y x1 x2, ll(17) ul(35)

Specify a lower truncation point that varies across observations using the variable trunc
truncreg y x1 x2, ll(trunc)

Same as above, but with bootstrap standard errors using 200 replications

truncreg y x1 x2, ll(trunc) vce(bootstrap, reps(200))

See last estimates with legend of coefficient names instead of statistics

truncreg, coeflegend

Menu
Statistics > Linear models and related > Truncated regression

3225



truncreg — Truncated regression 3226

Syntax
truncreg depvar [ indepvars ] [ if ] [ in ] [weight ] [ , options ]

options Description

Model

noconstant suppress constant term

ll(varname | #) left-truncation variable or limit

ul(varname | #) right-truncation variable or limit

offset(varname) include varname in model with coefficient constrained to 1

constraints(constraints) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, opg, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)
lrmodel perform the likelihood-ratio model test instead of the default Wald test

nocnsreport do not display constraints

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

collinear keep collinear variables

coeflegend display legend instead of statistics

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.

bayes, bootstrap, by, collect, fmm, fp, jackknife, mi estimate, rolling, statsby, and svy are allowed; see
[U] 11.1.10 Prefix commands. For more details, see [BAYES] bayes: truncreg and [FMM] fmm: truncreg.

vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix; see [MI] mi estimate.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
aweights are not allowed with the jackknife prefix; see [R] jackknife.
vce(), lrmodel, and weights are not allowed with the svy prefix; see [SVY] svy.
aweights, fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
collinear and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Options

� � �
Model �

noconstant; see [R] Estimation options.

ll(varname | #) and ul(varname | #) indicate the lower and upper limits for truncation, respectively.
You may specify one or both. Observations with depvar≤ ll() are left-truncated, observations with
depvar≥ ul() are right-truncated, and the remaining observations are not truncated. See [R] tobit
for a more detailed description.

offset(varname), constraints(constraints); see [R] Estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), that al-
low for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods

(bootstrap, jackknife); see [R] vce option.

� � �
Reporting �

level(#), lrmodel, nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. These options are

seldom used, but you may use the ltol(#) option to relax the convergence criterion; the default is
1e-6 during specification searches.

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

The following options are available with truncreg but are not shown in the dialog box:

collinear, coeflegend; see [R] Estimation options.

Remarks and examples
Truncated regression fits a model of a dependent variable on independent variables from a restricted

part of a population. Truncation is essentially a characteristic of the distribution from which the sample

data are drawn. If 𝑥 has a normal distribution with mean 𝜇 and standard deviation 𝜎, the density of the
truncated normal distribution is

𝑓 (𝑥 | 𝑎 < 𝑥 < 𝑏) = 𝑓(𝑥)
Φ( 𝑏−𝜇

𝜎 ) − Φ( 𝑎−𝜇
𝜎 )

=
1
𝜎 𝜙 ( 𝑥−𝜇

𝜎 )
Φ( 𝑏−𝜇

𝜎 ) − Φ( 𝑎−𝜇
𝜎 )

where 𝜙 and Φ are the density and distribution functions of the standard normal distribution.
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Compared with the mean of the untruncated variable, the mean of the truncated variable is greater

if the truncation is from below, and the mean of the truncated variable is smaller if the truncation is

from above. Moreover, truncation reduces the variance compared with the variance in the untruncated

distribution.

Example 1
We will demonstrate truncreg with part of the Mroz dataset distributed with Berndt (1996). This

dataset contains 753 observations on women’s labor supply. Our subsample is of 250 observations, with

150 market laborers and 100 nonmarket laborers.

. use https://www.stata-press.com/data/r18/laborsub

. describe
Contains data from https://www.stata-press.com/data/r18/laborsub.dta
Observations: 250

Variables: 6 25 Sep 2022 18:36

Variable Storage Display Value
name type format label Variable label

lfp byte %9.0g 1 if woman worked in 1975
whrs int %9.0g Wife’s hours of work
kl6 byte %9.0g # of children younger than 6
k618 byte %9.0g # of children between 6 and 18
wa byte %9.0g Wife’s age
we byte %9.0g Wife’s educational attainment

Sorted by:
. summarize, sep(0)

Variable Obs Mean Std. dev. Min Max

lfp 250 .6 .4908807 0 1
whrs 250 799.84 915.6035 0 4950
kl6 250 .236 .5112234 0 3

k618 250 1.364 1.370774 0 8
wa 250 42.92 8.426483 30 60
we 250 12.352 2.164912 5 17

We first perform ordinary least-squares estimation on the market laborers.

. regress whrs kl6 k618 wa we if whrs > 0
Source SS df MS Number of obs = 150

F(4, 145) = 2.80
Model 7326995.15 4 1831748.79 Prob > F = 0.0281

Residual 94793104.2 145 653745.546 R-squared = 0.0717
Adj R-squared = 0.0461

Total 102120099 149 685369.794 Root MSE = 808.55

whrs Coefficient Std. err. t P>|t| [95% conf. interval]

kl6 -421.4822 167.9734 -2.51 0.013 -753.4748 -89.48953
k618 -104.4571 54.18616 -1.93 0.056 -211.5538 2.639668

wa -4.784917 9.690502 -0.49 0.622 -23.9378 14.36797
we 9.353195 31.23793 0.30 0.765 -52.38731 71.0937

_cons 1629.817 615.1301 2.65 0.009 414.0371 2845.597
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Now, we use truncreg to perform truncated regression with truncation from below zero.

. truncreg whrs kl6 k618 wa we, ll(0)
(100 obs truncated)
Fitting full model:
Iteration 0: Log likelihood = -1205.6992
Iteration 1: Log likelihood = -1200.9873
Iteration 2: Log likelihood = -1200.9159
Iteration 3: Log likelihood = -1200.9157
Iteration 4: Log likelihood = -1200.9157
Truncated regression
Limit: Lower = 0 Number of obs = 150

Upper = +inf Wald chi2(4) = 10.05
Log likelihood = -1200.9157 Prob > chi2 = 0.0395

whrs Coefficient Std. err. z P>|z| [95% conf. interval]

kl6 -803.0042 321.3614 -2.50 0.012 -1432.861 -173.1474
k618 -172.875 88.72898 -1.95 0.051 -346.7806 1.030579

wa -8.821123 14.36848 -0.61 0.539 -36.98283 19.34059
we 16.52873 46.50375 0.36 0.722 -74.61695 107.6744

_cons 1586.26 912.355 1.74 0.082 -201.9233 3374.442

/sigma 983.7262 94.44303 10.42 0.000 798.6213 1168.831

If we assume that our data were censored, the tobit model is

. tobit whrs kl6 k618 wa we, ll(0)
(output omitted )

Tobit regression Number of obs = 250
Uncensored = 150

Limits: Lower = 0 Left-censored = 100
Upper = +inf Right-censored = 0

LR chi2(4) = 23.03
Prob > chi2 = 0.0001

Log likelihood = -1367.0903 Pseudo R2 = 0.0084

whrs Coefficient Std. err. t P>|t| [95% conf. interval]

kl6 -827.7655 214.7521 -3.85 0.000 -1250.753 -404.7781
k618 -140.0191 74.22719 -1.89 0.060 -286.221 6.182766

wa -24.97918 13.25715 -1.88 0.061 -51.09118 1.13281
we 103.6896 41.82629 2.48 0.014 21.30625 186.0729

_cons 589.0002 841.5952 0.70 0.485 -1068.651 2246.652

var(e.whrs) 1715859 216775.7 1337864 2200650

Technical note
Whether truncated regression is more appropriate than the ordinary least-squares estimation depends

on the purpose of that estimation. If we are interested in the mean of wife’s working hours conditional on

the subsample of market laborers, least-squares estimation is appropriate. However if we are interested in

the mean of wife’s working hours regardless of market or nonmarket labor status, least-squares estimates

could be seriously misleading.
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Truncation and censoring are different concepts. A sample has been censored if no observations have

been systematically excluded but some of the information contained in them has been suppressed. In

a truncated distribution, only the part of the distribution above (or below, or between) the truncation

points is relevant to our computations. We need to scale it up by the probability that an observation falls

in the range that interests us to make the distribution integrate to one. The censored distribution used

by tobit, however, is a mixture of discrete and continuous distributions. Instead of rescaling over the

observable range, we simply assign the full probability from the censored regions to the censoring points.

The truncated regression model is sometimes less well behaved than the tobit model. Davidson and

MacKinnon (1993) provide an example where truncation results in more inconsistency than censoring.

Stored results
truncreg stores the following in e():

Scalars

e(N) number of observations

e(N bf) number of observations before truncation

e(chi2) model 𝜒2

e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test

e(k aux) number of auxiliary parameters

e(df m) model degrees of freedom

e(ll) log likelihood

e(ll 0) log likelihood, constant-only model

e(N clust) number of clusters

e(sigma) estimate of sigma

e(p) 𝑝-value for model test
e(rank) rank of e(V)
e(ic) number of iterations

e(rc) return code

e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) truncreg
e(cmdline) command as typed

e(llopt) contents of ll(), if specified
e(ulopt) contents of ul(), if specified
e(depvar) name of dependent variable

e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(clustvar) name of cluster variable

e(offset1) offset

e(chi2type) Wald or LR; type of model 𝜒2 test

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(opt) type of optimization

e(which) max or min; whether optimizer is to perform maximization or minimization

e(ml method) type of ml method
e(user) name of likelihood-evaluator program

e(technique) maximization technique

e(properties) b V
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved
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Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(ilog) iteration log (up to 20 iterations)

e(gradient) gradient vector

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

e(means) means of independent variables

e(dummy) indicator for dummy variables

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas
Greene (2018, 918–924) and Davidson and MacKinnon (1993, 534–537) provide introductions to the

truncated regression model.

Let y = Xβ + ε be the model. y represents continuous outcomes either observed or not observed.
Our model assumes that ε ∼ 𝑁(0, 𝜎2I).

Let 𝑎 be the lower limit and 𝑏 be the upper limit. The log likelihood is

ln𝐿 = −𝑛
2
log(2𝜋𝜎2) − 1

2𝜎2

𝑛
∑
𝑗=1

(𝑦𝑗 − x𝑗β)2 −
𝑛

∑
𝑗=1

log{Φ(
𝑏 − x𝑗β

𝜎
) − Φ(

𝑎 − x𝑗β

𝜎
)}

This command supports the Huber/White/sandwich estimator of the variance and its clustered version

using vce(robust) and vce(cluster clustvar), respectively. See [P] robust, particularly Maximum

likelihood estimators and Methods and formulas.

truncreg also supports estimation with survey data. For details on VCEs with survey data, see

[SVY] Variance estimation.
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Also see
[R] truncreg postestimation — Postestimation tools for truncreg

[R] regress — Linear regression

[R] tobit — Tobit regression

[BAYES] bayes: truncreg — Bayesian truncated regression

[FMM] fmm: truncreg — Finite mixtures of truncated linear regression models

[MI] Estimation — Estimation commands for use with mi estimate

[SVY] svy estimation — Estimation commands for survey data

[U] 20 Estimation and postestimation commands
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Postestimation commands predict margins Also see

Postestimation commands
The following postestimation commands are available after truncreg:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters

estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian infor-
mation criteria (AIC, CAIC, AICc, and BIC, respectively)

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estat (svy) postestimation statistics for survey data

estimates cataloging estimation results

etable table of estimation results
∗ forecast dynamic forecasts and simulations
∗ hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

∗ lrtest likelihood-ratio test

margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

predict linear, censored, and truncated predictions

predictnl point estimates, standard errors, testing, and inference for generalized predictions

pwcompare pairwise comparisons of parameters

suest seemingly unrelated estimation

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

∗forecast, hausman, and lrtest are not appropriate with svy estimation results. forecast is also not appropriate with mi
estimation results.
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predict

Description for predict
predict creates a new variable containing predictions such as linear predictions, standard errors,

probabilities, and expected values.

Menu for predict
Statistics > Postestimation

Syntax for predict
predict [ type ] newvar [ if ] [ in ] [ , statistic nooffset ]

predict [ type ] stub* [ if ] [ in ], scores

statistic Description

Main

xb linear prediction; the default

stdp standard error of the prediction

stdf standard error of the forecast

pr(a,b) Pr(a < 𝑦𝑗 < b)
e(a,b) 𝐸(𝑦𝑗| a < 𝑦𝑗 < b)
ystar(a,b) 𝐸(𝑦∗

𝑗), 𝑦∗
𝑗 = max{𝑎,min(𝑦𝑗, 𝑏)}

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for the estimation
sample.

stdf is not allowed with svy estimation results.

where a and b may be numbers or variables; a missing (a ≥ .) means −∞, and b missing (b ≥ .) means
+∞; see [U] 12.2.1 Missing values.



truncreg postestimation — Postestimation tools for truncreg 3235

Options for predict

� � �
Main �

xb, the default, calculates the linear prediction.

stdp calculates the standard error of the prediction, which can be thought of as the standard error of the
predicted expected value or mean for the observation’s covariate pattern. The standard error of the

prediction is also referred to as the standard error of the fitted value.

stdf calculates the standard error of the forecast, which is the standard error of the point prediction for
1 observation. It is commonly referred to as the standard error of the future or forecast value. By

construction, the standard errors produced by stdf are always larger than those produced by stdp;
see Methods and formulas in [R] regress postestimation.

pr(a,b) calculates Pr(a < x𝑗b + 𝑢𝑗 < b), the probability that 𝑦𝑗|x𝑗 would be observed in the interval

(a, b).
a and b may be specified as numbers or variable names; lb and ub are variable names;

pr(20,30) calculates Pr(20 < x𝑗b + 𝑢𝑗 < 30);
pr(lb,ub) calculates Pr(lb < x𝑗b + 𝑢𝑗 < ub); and
pr(20,ub) calculates Pr(20 < x𝑗b + 𝑢𝑗 < ub).
a missing (a ≥ .) means −∞; pr(.,30) calculates Pr(−∞ < x𝑗b + 𝑢𝑗 < 30);
pr(lb,30) calculates Pr(−∞ < x𝑗b + 𝑢𝑗 < 30) in observations for which lb ≥ .
and calculates Pr(𝑙𝑏 < x𝑗b + 𝑢𝑗 < 30) elsewhere.
b missing (b ≥ .) means +∞; pr(20,.) calculates Pr(+∞ > x𝑗b + 𝑢𝑗 > 20);
pr(20,ub) calculates Pr(+∞ > x𝑗b + 𝑢𝑗 > 20) in observations for which ub ≥ .
and calculates Pr(20 < x𝑗b + 𝑢𝑗 < ub) elsewhere.

e(a,b) calculates 𝐸(x𝑗b + 𝑢𝑗 | a < x𝑗b + 𝑢𝑗 < b), the expected value of 𝑦𝑗|x𝑗 conditional on 𝑦𝑗|x𝑗
being in the interval (a, b), meaning that 𝑦𝑗|x𝑗 is truncated.

a and b are specified as they are for pr().

ystar(a,b) calculates 𝐸(𝑦∗
𝑗), where 𝑦∗

𝑗 = 𝑎 if x𝑗b+𝑢𝑗 ≤ 𝑎, 𝑦∗
𝑗 = 𝑏 if x𝑗b+𝑢𝑗 ≥ 𝑏, and 𝑦∗

𝑗 = x𝑗b+𝑢𝑗
otherwise, meaning that 𝑦∗

𝑗 is censored. a and b are specified as they are for pr().

nooffset is relevant only if you specified offset(varname). It modifies the calculations made by

predict so that they ignore the offset variable; the linear prediction is treated as x𝑗b rather than as

x𝑗b + offset𝑗.

scores calculates equation-level score variables.

The first new variable will contain 𝜕ln𝐿/𝜕(x𝑗β).
The second new variable will contain 𝜕ln𝐿/𝜕𝜎.
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margins

Description for margins
margins estimates margins of response for linear predictions, probabilities, and expected values.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist ] [ , options ]
margins [marginlist ] , predict(statistic ...) [ predict(statistic ...) ... ] [ options ]

statistic Description

xb linear prediction; the default

pr(a,b) Pr(a < 𝑦𝑗 < b)
e(a,b) 𝐸(𝑦𝑗| a < 𝑦𝑗 < b)
ystar(a,b) 𝐸(𝑦∗

𝑗), 𝑦∗
𝑗 = max{𝑎,min(𝑦𝑗, 𝑏)}

stdp not allowed with margins
stdf not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.

Also see
[R] truncreg — Truncated regression

[U] 20 Estimation and postestimation commands
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Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description
ttest performs 𝑡 tests on the equality of means. The test can be performed for one sample against

a hypothesized population mean. Two-sample tests can be conducted for paired and unpaired data. The

assumption of equal variances can be optionally relaxed in the unpaired two-sample case.

ttesti is the immediate form of ttest; see [U] 19 Immediate commands.

Quick start
Test that the mean of v1 is equal between two groups defined by catvar

ttest v1, by(catvar)

Same as above, but assume unequal variances

ttest v1, by(catvar) unequal

Paired t test of v2 and v3
ttest v2 == v3

Same as above, but with unpaired data and conduct test separately for each level of catvar
by catvar: ttest v2 == v3, unpaired

Test that the mean of v4 is 3 at the 90% confidence level

ttest v4 == 3, level(90)

Test 𝜇1 = 𝜇2 if 𝑥1 = 3.2, 𝑠𝑑1 = 0.1, 𝑥2 = 3.4, and 𝑠𝑑2 = 0.15 with 𝑛1 = 𝑛2 = 12

ttesti 12 3.2 .1 12 3.4 .15

Menu
ttest
Statistics > Summaries, tables, and tests > Classical tests of hypotheses > t test (mean-comparison test)

ttesti
Statistics > Summaries, tables, and tests > Classical tests of hypotheses > t test calculator
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Syntax
One-sample t test

ttest varname == # [ if ] [ in ] [ , level(#) ]

Two-sample t test using groups

ttest varname [ if ] [ in ], by(groupvar) [ options1 ]

Two-sample t test using variables

ttest varname1 == varname2 [ if ] [ in ], unpaired [ unequal welch level(#) ]

Paired t test

ttest varname1 == varname2 [ if ] [ in ] [ , level(#) ]

Immediate form of one-sample t test

ttesti #obs #mean #sd #val [ , level(#) ]

Immediate form of two-sample t test

ttesti #obs1 #mean1 #sd1 #obs2 #mean2 #sd2 [ , options2 ]

options1 Description

Main
∗ by(groupvar) variable defining the groups

reverse reverse group order for mean difference computation

unequal unpaired data have unequal variances

welch use Welch’s approximation

level(#) set confidence level; default is level(95)
∗by(groupvar) is required.

options2 Description

Main

unequal unpaired data have unequal variances

welch use Welch’s approximation

level(#) set confidence level; default is level(95)

by and collect are allowed with ttest and ttesti; see [U] 11.1.10 Prefix commands.
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Options

� � �
Main �

by(groupvar) specifies the groupvar that defines the two groups that ttestwill use to test the hypothesis
that their means are equal. Specifying by(groupvar) implies an unpaired (two sample) 𝑡 test. Do not
confuse the by() option with the by prefix; you can specify both.

reverse reverses the order of the mean difference between groups defined in by(). By default, the
mean of the group corresponding to the largest value in the variable in by() is subtracted from the

mean of the group with the smallest value in by(). reverse reverses this behavior and the order in
which variables appear on the table.

unpaired specifies that the data be treated as unpaired. The unpaired option is used when the two sets
of values to be compared are in different variables.

unequal specifies that the unpaired data not be assumed to have equal variances.

welch specifies that the approximate degrees of freedom for the test be obtained from Welch’s formula

(1947) rather than from Satterthwaite’s approximation formula (1946), which is the default when

unequal is specified. Specifying welch implies unequal.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is

level(95) or as set by set level; see [U] 20.8 Specifying the width of confidence intervals.

Remarks and examples
Remarks are presented under the following headings:

One-sample t test
Two-sample t test
Paired t test
Two-sample t test compared with one-way ANOVA
Immediate form
Video examples

One-sample t test

Example 1
In the first form, ttest tests whether the mean of the sample is equal to a known constant under the

assumption of unknown variance. Assume that we have a sample of 74 automobiles. We know each

automobile’s average mileage rating and wish to test whether the overall average for the sample is 20

miles per gallon.
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. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. ttest mpg==20
One-sample t test

Variable Obs Mean Std. err. Std. dev. [95% conf. interval]

mpg 74 21.2973 .6725511 5.785503 19.9569 22.63769

mean = mean(mpg) t = 1.9289
H0: mean = 20 Degrees of freedom = 73

Ha: mean < 20 Ha: mean != 20 Ha: mean > 20
Pr(T < t) = 0.9712 Pr(|T| > |t|) = 0.0576 Pr(T > t) = 0.0288

The test indicates that the underlying mean is not 20 with a significance level of 5.8%.

Two-sample t test

Example 2: Two-sample 𝑡 test using groups
We are testing the effectiveness of a new fuel additive. We run an experiment in which 12 cars are

given the fuel treatment and 12 cars are not. The results of the experiment are as follows:

treated mpg

0 20
0 23
0 21
0 25
0 18
0 17
0 18
0 24
0 20
0 24
0 23
0 19
1 24
1 25
1 21
1 22
1 23
1 18
1 17
1 28
1 24
1 27
1 21
1 23

The treated variable is coded as 1 if the car received the fuel treatment and 0 otherwise.
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We can test the equality of means of the treated and untreated group by typing

. use https://www.stata-press.com/data/r18/fuel3

. ttest mpg, by(treated)
Two-sample t test with equal variances

Group Obs Mean Std. err. Std. dev. [95% conf. interval]

0 12 21 .7881701 2.730301 19.26525 22.73475
1 12 22.75 .9384465 3.250874 20.68449 24.81551

Combined 24 21.875 .6264476 3.068954 20.57909 23.17091

diff -1.75 1.225518 -4.291568 .7915684

diff = mean(0) - mean(1) t = -1.4280
H0: diff = 0 Degrees of freedom = 22

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
Pr(T < t) = 0.0837 Pr(|T| > |t|) = 0.1673 Pr(T > t) = 0.9163

We do not find a statistically significant difference in the means.

If we were not willing to assume that the variances were equal and wanted to use Welch’s formula,

we could type

. ttest mpg, by(treated) welch
Two-sample t test with unequal variances

Group Obs Mean Std. err. Std. dev. [95% conf. interval]

0 12 21 .7881701 2.730301 19.26525 22.73475
1 12 22.75 .9384465 3.250874 20.68449 24.81551

Combined 24 21.875 .6264476 3.068954 20.57909 23.17091

diff -1.75 1.225518 -4.28369 .7836902

diff = mean(0) - mean(1) t = -1.4280
H0: diff = 0 Welch’s degrees of freedom = 23.2465

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
Pr(T < t) = 0.0833 Pr(|T| > |t|) = 0.1666 Pr(T > t) = 0.9167

Technical note
In two-sample randomized designs, subjects will sometimes refuse the assigned treatment but still be

measured for an outcome. In this case, take care to specify the group properly. You might be tempted to

let varname contain missing where the subject refused and thus let ttest drop such observations from
the analysis. Zelen (1979) argues that it would be better to specify that the subject belongs to the group

in which he or she was randomized, even though such inclusion will dilute the measured effect.
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Example 3: Two-sample 𝑡 test using variables
There is a second, inferior way to organize the data in the preceding example. We ran a test on 24

cars, 12 without the additive and 12 with. We now create two new variables, mpg1 and mpg2.

mpg1 mpg2

20 24
23 25
21 21
25 22
18 23
17 18
18 17
24 28
20 24
24 27
23 21
19 23

This method is inferior because it suggests a connection that is not there. There is no link between

the car with 20 mpg and the car with 24 mpg in the first row of the data. Each column of data could be

arranged in any order. Nevertheless, if our data are organized like this, ttest can accommodate us.

. use https://www.stata-press.com/data/r18/fuel

. ttest mpg1==mpg2, unpaired
Two-sample t test with equal variances

Variable Obs Mean Std. err. Std. dev. [95% conf. interval]

mpg1 12 21 .7881701 2.730301 19.26525 22.73475
mpg2 12 22.75 .9384465 3.250874 20.68449 24.81551

Combined 24 21.875 .6264476 3.068954 20.57909 23.17091

diff -1.75 1.225518 -4.291568 .7915684

diff = mean(mpg1) - mean(mpg2) t = -1.4280
H0: diff = 0 Degrees of freedom = 22

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
Pr(T < t) = 0.0837 Pr(|T| > |t|) = 0.1673 Pr(T > t) = 0.9163
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Paired t test

Example 4
Suppose that the preceding data were actually collected by running a test on 12 cars. Each car was run

once with the fuel additive and once without. Our data are stored in the same manner as in example 3,

but this time, there is most certainly a connection between the mpg values that appear in the same row.

These come from the same car. The variables mpg1 and mpg2 represent mileage without and with the
treatment, respectively.

. use https://www.stata-press.com/data/r18/fuel

. ttest mpg1==mpg2
Paired t test

Variable Obs Mean Std. err. Std. dev. [95% conf. interval]

mpg1 12 21 .7881701 2.730301 19.26525 22.73475
mpg2 12 22.75 .9384465 3.250874 20.68449 24.81551

diff 12 -1.75 .7797144 2.70101 -3.46614 -.0338602

mean(diff) = mean(mpg1 - mpg2) t = -2.2444
H0: mean(diff) = 0 Degrees of freedom = 11
Ha: mean(diff) < 0 Ha: mean(diff) != 0 Ha: mean(diff) > 0
Pr(T < t) = 0.0232 Pr(|T| > |t|) = 0.0463 Pr(T > t) = 0.9768

We find that the means are statistically different from each other at any level greater than 4.6%.

Two-sample t test compared with one-way ANOVA

Example 5
In example 2, we saw that ttest can be used to test the equality of a pair of means; see [R] oneway

for an extension that allows testing the equality of more than two means.

Suppose that we have data on the 50 states. The dataset contains the median age of the population

(medage) and the region of the country (region) for each state. Region 1 refers to the Northeast, region
2 to the North Central, region 3 to the South, and region 4 to the West. Using oneway, we can test the
equality of all four means.

. use https://www.stata-press.com/data/r18/census
(1980 Census data by state)
. oneway medage region

Analysis of variance
Source SS df MS F Prob > F

Between groups 46.3961903 3 15.4653968 7.56 0.0003
Within groups 94.1237947 46 2.04616945

Total 140.519985 49 2.8677548
Bartlett’s equal-variances test: chi2(3) = 10.5757 Prob>chi2 = 0.014
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We find that the means are different, but we are interested only in testing whether the means for the

Northeast (region==1) and West (region==4) are different. We could use oneway:

. oneway medage region if region==1 | region==4
Analysis of variance

Source SS df MS F Prob > F

Between groups 46.241247 1 46.241247 20.02 0.0002
Within groups 46.1969169 20 2.30984584

Total 92.4381638 21 4.40181733
Bartlett’s equal-variances test: chi2(1) = 2.4679 Prob>chi2 = 0.116

We could also use ttest:

. ttest medage if region==1 | region==4, by(region)
Two-sample t test with equal variances

Group Obs Mean Std. err. Std. dev. [95% conf. interval]

NE 9 31.23333 .3411581 1.023474 30.44662 32.02005
West 13 28.28462 .4923577 1.775221 27.21186 29.35737

Combined 22 29.49091 .4473059 2.098051 28.56069 30.42113

diff 2.948718 .6590372 1.57399 4.323445

diff = mean(NE) - mean(West) t = 4.4743
H0: diff = 0 Degrees of freedom = 20

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
Pr(T < t) = 0.9999 Pr(|T| > |t|) = 0.0002 Pr(T > t) = 0.0001

The significance levels of both tests are the same.

Immediate form

Example 6
ttesti is like ttest, except that we specify summary statistics rather than variables as arguments.

For instance, we are reading an article that reports the mean number of sunspots per month as 62.6 with

a standard deviation of 15.8. There are 24 months of data. We wish to test whether the mean is 75:

. ttesti 24 62.6 15.8 75
One-sample t test

Obs Mean Std. err. Std. dev. [95% conf. interval]

x 24 62.6 3.225161 15.8 55.92825 69.27175

mean = mean(x) t = -3.8448
H0: mean = 75 Degrees of freedom = 23

Ha: mean < 75 Ha: mean != 75 Ha: mean > 75
Pr(T < t) = 0.0004 Pr(|T| > |t|) = 0.0008 Pr(T > t) = 0.9996
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Example 7
There is no immediate form of ttest with paired data because the test is also a function of the

covariance, a number unlikely to be reported in any published source. For unpaired data, however, we

might type

. ttesti 20 20 5 32 15 4
Two-sample t test with equal variances

Obs Mean Std. err. Std. dev. [95% conf. interval]

x 20 20 1.118034 5 17.65993 22.34007
y 32 15 .7071068 4 13.55785 16.44215

Combined 52 16.92308 .6943785 5.007235 15.52905 18.3171

diff 5 1.256135 2.476979 7.523021

diff = mean(x) - mean(y) t = 3.9805
H0: diff = 0 Degrees of freedom = 50

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
Pr(T < t) = 0.9999 Pr(|T| > |t|) = 0.0002 Pr(T > t) = 0.0001

If we had typed ttesti 20 20 5 32 15 4, unequal, the test would have assumed unequal variances.

Video examples
One-sample 𝑡 test in Stata
𝑡 test for two independent samples in Stata
𝑡 test for two paired samples in Stata
One-sample 𝑡-test calculator
Two-sample 𝑡-test calculator

Stored results
ttest and ttesti store the following in r():

Scalars

r(N 1) sample size 𝑛1 r(sd 1) standard deviation for first variable

r(N 2) sample size 𝑛2 r(sd 2) standard deviation for second variable

r(p l) lower one-sided 𝑝-value r(sd) combined standard deviation

r(p u) upper one-sided 𝑝-value r(mu 1) 𝑥1 mean for population 1

r(p) two-sided 𝑝-value r(mu 2) 𝑥2 mean for population 2

r(se) estimate of standard error r(df t) degrees of freedom

r(t) 𝑡 statistic r(level) confidence level

https://www.youtube.com/watch?v=HwzCyqW-0dc
https://www.youtube.com/watch?v=by4c3h3WXQc
https://www.youtube.com/watch?v=GiDSnufmZgI
https://www.youtube.com/watch?v=BfLw-AhXH-8
https://www.youtube.com/watch?v=6cQwbvvkFO8
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Methods and formulas
See, for instance, Hoel (1984, 140–161) or Dixon and Massey (1983, 121–130) for an introduction

and explanation of the calculation of these tests. Acock (2023, 165–179) and Hamilton (2013, 145–150)

describe 𝑡 tests using applications in Stata.
The test for 𝜇 = 𝜇0 for unknown 𝜎 is given by

𝑡 = (𝑥 − 𝜇0)
√

𝑛
𝑠

The statistic is distributed as Student’s 𝑡 with 𝑛 − 1 degrees of freedom (Gosset [Student, pseud.] 1908).

The test for 𝜇𝑥 = 𝜇𝑦 when 𝜎𝑥 and 𝜎𝑦 are unknown but 𝜎𝑥 = 𝜎𝑦 is given by

𝑡 = 𝑥 − 𝑦

{ (𝑛𝑥−1)𝑠2
𝑥+(𝑛𝑦−1)𝑠2

𝑦
𝑛𝑥+𝑛𝑦−2 }

1/2

( 1
𝑛𝑥

+ 1
𝑛𝑦

)
1/2

The result is distributed as Student’s 𝑡 with 𝑛𝑥 + 𝑛𝑦 − 2 degrees of freedom.

You could perform ttest (without the unequal option) in a regression setting given that regression
assumes a homoskedastic error model. To compare with the ttest command, denote the underlying

observations on 𝑥 and 𝑦 by 𝑥𝑗, 𝑗 = 1, . . . , 𝑛𝑥, and 𝑦𝑗, 𝑗 = 1, . . . , 𝑛𝑦. In a regression framework, typing

ttest without the unequal option is equivalent to

1. creating a new variable 𝑧𝑗 that represents the stacked observations on 𝑥 and 𝑦 (so that 𝑧𝑗 = 𝑥𝑗 for

𝑗 = 1, . . . , 𝑛𝑥 and 𝑧𝑛𝑥+𝑗 = 𝑦𝑗 for 𝑗 = 1, . . . , 𝑛𝑦)

2. and then estimating the equation 𝑧𝑗 = 𝛽0 +𝛽1𝑑𝑗 +𝜖𝑗, where 𝑑𝑗 = 0 for 𝑗 = 1, . . . , 𝑛𝑥 and 𝑑𝑗 = 1

for 𝑗 = 𝑛𝑥 + 1, . . . , 𝑛𝑥 + 𝑛𝑦 (that is, 𝑑𝑗 = 0 when the 𝑧 observations represent 𝑥, and 𝑑𝑗 = 1

when the 𝑧 observations represent 𝑦).

The estimated value of 𝛽1, 𝑏1, will equal 𝑦 − 𝑥, and the reported 𝑡 statistic will be the same 𝑡 statistic as
given by the formula above.

The test for 𝜇𝑥 = 𝜇𝑦 when 𝜎𝑥 and 𝜎𝑦 are unknown and 𝜎𝑥 ≠ 𝜎𝑦 is given by

𝑡 = 𝑥 − 𝑦

(𝑠2
𝑥/𝑛𝑥 + 𝑠2

𝑦/𝑛𝑦)
1/2

The result is distributed as Student’s 𝑡with 𝜈 degrees of freedom, where 𝜈 is given by (with Satterthwaite’s
[1946] formula)

(𝑠2
𝑥/𝑛𝑥 + 𝑠2

𝑦/𝑛𝑦)
2

(𝑠2
𝑥/𝑛𝑥)

2

𝑛𝑥−1 +
(𝑠2

𝑦/𝑛𝑦)
2

𝑛𝑦−1
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With Welch’s formula (1947), the number of degrees of freedom is given by

−2 +
(𝑠2

𝑥/𝑛𝑥 + 𝑠2
𝑦/𝑛𝑦)

2

(𝑠2
𝑥/𝑛𝑥)

2

𝑛𝑥+1 +
(𝑠2

𝑦/𝑛𝑦)
2

𝑛𝑦+1

The test for 𝜇𝑥 = 𝜇𝑦 for matched observations (also known as paired observations, correlated pairs,

or permanent components) is given by

𝑡 = 𝑑
√

𝑛
𝑠𝑑

where 𝑑 represents the mean of 𝑥𝑖 − 𝑦𝑖 and 𝑠𝑑 represents the standard deviation. The test statistic 𝑡 is
distributed as Student’s 𝑡 with 𝑛 − 1 degrees of freedom.

You can also use ttest without the unpaired option in a regression setting because a paired com-
parison includes the assumption of constant variance. The ttest with an unequal variance assump-

tion does not lend itself to an easy representation in regression settings and is not discussed here.

(𝑥𝑗 − 𝑦𝑗) = 𝛽0 + 𝜖𝑗.� �
William Sealy Gosset (1876–1937) was born in Canterbury, England. He studied chemistry and

mathematics at Oxford and worked as a chemist with the brewers Guinness in Dublin. Gosset

became interested in statistical problems, which he discussedwith Karl Pearson and later with Fisher

and Neyman. He published several important papers under the pseudonym “Student”, and he lent

that name to the 𝑡 test he invented.� �� �
Stella Cunliffe (1917–2012) was an advocate for increased understanding of the role of human

nature in experiments and methodological rigor in social statistics. She was born in Battersea,

England. She was the first person from her local public girls’ school to attend college, obtaining

a bachelor of science from the London School of Economics. Her first job was with the Danish

Bacon Company during World War II, where she was in charge of bacon rations for London. After

the war, she moved to Germany and again helped to ration food, this time for refugees.

She then spent a long career in quality control at the Guinness Brewing Company. Cunliffe observed

that the weights of rejected casks skewed lighter. Noting that workers had to roll casks that were too

light or too heavy uphill to be remade, she had the scales moved to the top of the hill. With workers

able to roll rejected casks downhill, the weight of these casks began to follow a normal distribution.

After 25 years at Guinness, Cunliffe joined the British Home Office, where she would go on to

become the first woman to serve as director of statistics. During her tenure at the Home Office, she

emphasized applying principles of experimental design she had learned at Guinness to the study of

such topics as birthrates, recidivism, and criminology. In 1975, she became the first woman to serve

as president of the Royal Statistical Society.� �

https://www.stata.com/giftshop/bookmarks/series1/gosset/
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[R] bitest — Binomial probability test

[R] ci — Confidence intervals for means, proportions, and variances

[R] esize — Effect size based on mean comparison

[R] mean — Estimate means

[R] oneway — One-way analysis of variance

[R] prtest — Tests of proportions

[R] sdtest — Variance-comparison tests

[R] ztest — 𝑧 tests (mean-comparison tests, known variance)
[MV] hotelling — Hotelling’s 𝑇 2 generalized means test
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Description Menu Syntax Options
Remarks and examples Stored results Also see

Description
The update command reports on the current update level and installs official updates. Official updates

are updates to Stata as it was originally shipped from StataCorp, not the additions to Stata published in,

for instance, the Stata Journal (SJ). Those additions are installed using the net command and updated
using the ado update command; see [R] net and [R] ado update.

update without arguments reports on the update level of the currently installed Stata.

update from sets an update source, which may be a directory name or URL. If you are on the Internet,
type update from https://www.stata.com.

update query compares the update level of the currently installed Stata with that available from the

update source and displays a report.

update all updates all necessary files. This is what you should type to check for and install updates.

set update query determines if update query is to be automatically performed when Stata is

launched. Only Mac and Windows platforms can be set for automatic updating.

set update interval # sets the number of days to elapse before performing the next automatic
update query. The default # is 7. The interval starts from the last time an update querywas performed
(automatically or manually). Only Mac and Windows platforms can be set for automatic updating.

set update prompt determines whether a dialog is to be displayed before performing an automatic
update query. The dialog allows you to perform an update query now, perform one the next time

Stata is launched, perform one after the next interval has passed, or disable automatic update query.
Only Mac and Windows platforms can be set for automatic updating.

Menu
Help > Check for updates

3249
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Syntax
Report on update level of currently installed Stata

update

Set update source

update from location

Compare update level of currently installed Stata with that of source

update query [ , from(location) ]

Perform update if necessary

update all [ , from(location) detail force exit ]

Set automatic updates (Mac and Windows only)

set update query { on | off }
set update interval #

set update prompt { on | off }

Options
from(location) specifies the location of the update source. You can specify the from() option on the

individual update commands or use the update from command. Which you do makes no difference.

You typically do not need to use this option.

detail specifies to display verbose output during the update process.

force specifies to force downloading of all files even if, based on the date comparison, Stata does not
think it is necessary. There is seldom a reason to specify this option.

exit instructs Stata to exit when the update has successfully completed. There is seldom a reason to

specify this option.

Remarks and examples
update updates the official components of Stata from the official source: https://www.stata.com. If

you are connected to the Internet, the easy thing to do is to type

. update all

and follow the instructions. If Stata is up to date, update all will do nothing. Otherwise, it will down-
load whatever is necessary and install the files. If you just want to know what updates are available,

type

. update query
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update query will check if any updates are available and report that information. If updates are

available, it will recommend that you type update all.

If you want to report the current update level, type

. update

update will report the update level of the Stata installation. update will also show you the date that

updates were last checked and if any updates were available at that time.

Stored results
update without a subcommand, update from, and update query store the following in r():

Scalars

r(inst exe) date of executable installed (*)

r(avbl exe) date of executable available over web (*) (**)

r(inst ado) date of ado-files installed (*)

r(avbl ado) date of ado-files available over web (*) (**)

r(inst utilities) date of utilities installed (*)

r(avbl utilities) date of utilities available over web (*) (**)

r(inst docs) date of documentation installed (*)

r(avbl docs) date of documentation available over web (*) (**)

Macros

r(name exe) name of the Stata executable

r(dir exe) directory in which executable is stored

r(dir ado) directory in which ado-files are stored

r(dir utilities) directory in which utilities are stored

r(dir docs) directory in which PDF documentation is stored

Notes:

* Dates are stored as integers counting the number of days since January 1, 1960; see [D] Datetime.

** These dates are not stored by update without a subcommand because update by itself reports information solely
about the local computer and does not check what is available on the web.

Also see
[R] ado update — Update community-contributed packages

[R] net — Install and manage community-contributed additions from the Internet

[R] ssc — Install and uninstall packages from SSC

[P] sysdir — Query and set system directories

[U] 29 Using the Internet to keep up to date

[GSM] 19 Updating and extending Stata—Internet functionality

[GSU] 19 Updating and extending Stata—Internet functionality

[GSW] 19 Updating and extending Stata—Internet functionality
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Description Syntax Options Remarks and examples
Methods and formulas Also see

Description
This entry describes the vce() option, which is common to most estimation commands. vce() spec-

ifies how to estimate the variance–covariance matrix (VCE) corresponding to the parameter estimates.

The standard errors reported in the table of parameter estimates are the square root of the variances

(diagonal elements) of the VCE.

Syntax
estimation cmd . . . [ , vce(vcetype) . . . ]

vcetype Description

Likelihood based

oim observed information matrix (OIM)

opg outer product of the gradient (OPG) vectors

Sandwich estimators

robust Huber/White/sandwich estimator

cluster clustvar clustered sandwich estimator

Replication based

bootstrap [ , bootstrap options ] bootstrap estimation

jackknife [ , jackknife options ] jackknife estimation

Options

� � �
SE/Robust �

vce(oim) is usually the default for models fit using maximum likelihood. vce(oim) uses the observed
information matrix (OIM); see [R] ml.

vce(opg) uses the sum of the outer product of the gradient (OPG) vectors; see [R]ml. This is the default

VCE when the technique(bhhh) option is specified; see [R]Maximize.

vce(robust) uses the robust or sandwich estimator of variance. This estimator is robust to some types
of misspecification so long as the observations are independent; see [U] 20.22 Obtaining robust

variance estimates.

If the command allows pweights and you specify them, vce(robust) is implied; see

[U] 20.24.3 Sampling weights.
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vce(cluster clustvar) specifies that the standard errors allow for intragroup correlation, relaxing the

usual requirement that the observations be independent. That is, the observations are independent

across groups (clusters) but not necessarily within groups. clustvar specifies to which group each

observation belongs, for example, vce(cluster personid) in data with repeated observations on
individuals. vce(cluster clustvar) affects the standard errors and variance–covariance matrix of
the estimators but not the estimated coefficients; see [U] 20.22 Obtaining robust variance estimates.

vce(bootstrap [ , bootstrap options ]) uses a bootstrap; see [R] bootstrap. After estimation with

vce(bootstrap), see [R] bootstrap postestimation to obtain percentile-based or bias-corrected confi-

dence intervals.

vce(jackknife [ , jackknife options ]) uses the delete-one jackknife; see [R] jackknife.

Remarks and examples
Remarks are presented under the following headings:

Prefix commands
Passing options in vce()

Prefix commands
Specifying vce(bootstrap) or vce(jackknife) is often equivalent to using the corresponding

prefix command. Here is an example using jackknife with regress.

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. regress mpg turn trunk, vce(jackknife)
(running regress on estimation sample)
Jackknife replications (74): .........10.........20.........30.........40.......
> ..50.........60.........70.... done
Linear regression Number of obs = 74

Replications = 74
F(2, 73) = 66.26
Prob > F = 0.0000
R-squared = 0.5521
Adj R-squared = 0.5395
Root MSE = 3.9260

Jackknife
mpg Coefficient std. err. t P>|t| [95% conf. interval]

turn -.7610113 .150726 -5.05 0.000 -1.061408 -.4606147
trunk -.3161825 .1282326 -2.47 0.016 -.5717498 -.0606152
_cons 55.82001 5.031107 11.09 0.000 45.79303 65.84699
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. jackknife: regress mpg turn trunk
(running regress on estimation sample)
Jackknife replications (74): .........10.........20.........30.........40.......
> ..50.........60.........70.... done
Linear regression Number of obs = 74

Replications = 74
F(2, 73) = 66.26
Prob > F = 0.0000
R-squared = 0.5521
Adj R-squared = 0.5395
Root MSE = 3.9260

Jackknife
mpg Coefficient std. err. t P>|t| [95% conf. interval]

turn -.7610113 .150726 -5.05 0.000 -1.061408 -.4606147
trunk -.3161825 .1282326 -2.47 0.016 -.5717498 -.0606152
_cons 55.82001 5.031107 11.09 0.000 45.79303 65.84699

Here it does not matter whether we specify the vce(jackknife) option or instead use the jackknife
prefix.

However, vce(jackknife) should be used in place of the jackknife prefix whenever available

because they are not always equivalent. For example, to use the jackknife prefix with clogit prop-
erly, you must tell jackknife to omit whole groups rather than individual observations. Specifying

vce(jackknife) does this automatically.

. use https://www.stata-press.com/data/r18/clogitid

. jackknife, cluster(id): clogit y x1 x2, group(id)
(output omitted )

This extra information is automatically communicated to jackknife by clogitwhen the vce() option
is specified.

. clogit y x1 x2, group(id) vce(jackknife)
(running clogit on estimation sample)
Jackknife replications (66): .........10.........20.........30.........40.......
> ..50.........60...... done
Conditional (fixed-effects) logistic regression Number of obs = 369

Replications = 66
F(2, 65) = 4.58
Prob > F = 0.0137

Log likelihood = -123.41386 Pseudo R2 = 0.0355
(Replications based on 66 clusters in id)

Jackknife
y Coefficient std. err. t P>|t| [95% conf. interval]

x1 .653363 .3010608 2.17 0.034 .052103 1.254623
x2 .0659169 .0487858 1.35 0.181 -.0315151 .1633489
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Passing options in vce()
If you wish to specify more options to the bootstrap or jackknife estimation, you can include them

within the vce() option. Below, we request 300 bootstrap replications and save the replications in

bsreg.dta:
. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. regress mpg turn trunk, vce(bootstrap, nodots seed(123) rep(300) saving(bsreg))
Linear regression Number of obs = 74

Replications = 300
Wald chi2(2) = 144.17
Prob > chi2 = 0.0000
R-squared = 0.5521
Adj R-squared = 0.5395
Root MSE = 3.9260

Observed Bootstrap Normal-based
mpg coefficient std. err. z P>|z| [95% conf. interval]

turn -.7610113 .1497877 -5.08 0.000 -1.05459 -.4674329
trunk -.3161825 .1286802 -2.46 0.014 -.5683909 -.063974
_cons 55.82001 4.9221 11.34 0.000 46.17287 65.46715

. bstat using bsreg
Bootstrap results Number of obs = 74

Replications = 300
Command: regress mpg turn trunk

Observed Bootstrap Normal-based
coefficient std. err. z P>|z| [95% conf. interval]

turn -.7610113 .1497877 -5.08 0.000 -1.05459 -.4674329
trunk -.3161825 .1286802 -2.46 0.014 -.5683909 -.063974
_cons 55.82001 4.9221 11.34 0.000 46.17287 65.46715

Methods and formulas
By default, Stata’smaximum likelihood estimators display standard errors based on variance estimates

given by the inverse of the negative Hessian (second derivative) matrix. If vce(robust), vce(cluster
clustvar), or pweights is specified, standard errors are based on the robust variance estimator (see

[U] 20.22 Obtaining robust variance estimates); likelihood-ratio tests are not appropriate here (see

[SVY] Survey), and the model 𝜒2 is from a Wald test. If vce(opg) is specified, the standard errors are
based on the outer product of the gradients; this option has no effect on likelihood-ratio tests, though it

does affect Wald tests.

If vce(bootstrap) or vce(jackknife) is specified, the standard errors are based on the chosen

replication method; here the model 𝜒2 or 𝐹 statistic is from a Wald test using the respective replication-

based covariance matrix. The 𝑡 distribution is used in the coefficient table when the vce(jackknife)
option is specified. vce(bootstrap) and vce(jackknife) are also available with some commands
that are not maximum likelihood estimators.
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Also see
[R] bootstrap — Bootstrap sampling and estimation

[R] jackknife — Jackknife estimation

[XT] vce options — Variance estimators

[U] 20 Estimation and postestimation commands



view — View files and logs

Description Menu Syntax Options
Remarks and examples Also see

Description
view displays file contents in the Viewer.

view file displays the specified file. file is optional, so if you had a SMCL session log created

by typing log using mylog, you could view it by typing view mylog.smcl. view file can properly
display .smcl files (logs and the like), .sthlp files, and text files. view file’s asis option specifies
that the file be displayed as plain text, regardless of the filename’s extension.

view browse opens your browser pointed to url. Typing
view browse https://www.stata.com would bring up your browser pointed to the website
https://www.stata.com.

[ view ] help displays the specified topic in the Viewer. For example, to review the help for Stata’s

print command, you could type help print. See [R] help for more details.

[ view ] search displays the results of the search command in the Viewer. For instance, to search
the system help for information on robust regression, you could type search robust regression. See
[R] search for more details.

view net does the same as the net command—see [R] net—but displays the result in the Viewer.

For instance, typing view net search hausman test would search the Internet for additions to Stata
related to the Hausman test. Typing view net from https://www.stata.com would go to the Stata
additions download site at https://www.stata.com.

view ado does the same as the ado command—see [R] net—but displays the result in the Viewer.

For instance, typing view ado dir would show a list of files you have installed.

view update does the same as the update command—see [R] update—but displays the result in

the Viewer. Typing view update would show the dates of what you have installed, and from there you

could click to compare those dates with the latest updates available. Typing view update query would
skip the first step and show the comparison.

Menu
File > View...
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Syntax
Display file in Viewer

view [ file ] [ ” ]filename[ ” ] [ , asis adopath ]

Bring up browser pointed to specified URL

view browse [ ” ]url[ ” ]

Display help results in Viewer

[ view ] help [ topic or command name ]

Display search results in Viewer

[ view ] search keywords

Display net results in Viewer

view net [ netcmd ]

Display ado-results in Viewer

view ado [ adocmd ]

Display update results in Viewer

view update [ updatecmd ]

Options
asis, allowed with view file, specifies that the file be displayed as text, regardless of the filename’s

extension. view file’s default action is to display files ending in .smcl and .sthlp as SMCL; see

[P] smcl.

adopath, allowed with view file, specifies that Stata search the S ADO path for filename and display
it, if found.
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Remarks and examples
Most users access the Viewer by selecting File > View... and proceeding from there. Some commands

allow you to skip that step. Some common interactive uses of commands that display their results in the

Viewer are the following:

. view mysession.smcl

. view mysession.log

. help print

. help regress

. search hausman test

. view net

. view ado

. view update query

Also see
[R] help — Display help in Stata

[R] net — Install and manage community-contributed additions from the Internet

[R] search — Search Stata documentation and other resources

[R] update — Check for official updates

[D] type — Display contents of a file

[GSM] 3 Using the Viewer

[GSU] 3 Using the Viewer

[GSW] 3 Using the Viewer
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Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description
vwls estimates a linear regression using variance-weighted least squares. It differs from ordinary

least-squares (OLS) regression in that it does not assume homogeneity of variance, but requires that the

conditional variance of depvar be estimated prior to the regression. The estimated variance need not be

constant across observations. vwls treats the estimated variance as if it were the true variance when it
computes standard errors of the coefficients.

You must supply an estimate of the conditional standard deviation of depvar to vwls by using the

sd(varname) option, or you must have grouped data with the groups defined by the indepvars variables.
In the latter case, vwls treats all indepvars as categorical variables, computes the mean and standard

deviation of depvar separately for each subgroup, and computes the regression of the subgroup means

on indepvars.

regress with analytic weights can be used to produce another kind of “variance-weighted least

squares”; see Remarks and examples for an explanation of the difference.

Quick start
Variance-weighted least-squares regression of y on x1 and x2, with the estimated conditional std. dev.

of y stored in sd
vwls y1 x1 x2, sd(sd)

Add categorical variable a using factor-variable syntax
vwls y1 x1 x2 i.a, sd(sd)

Same as above, but restrict the sample to cases where v is greater than 1
vwls y1 x1 x2 i.a if v>1, sd(sd)

Variance-weighted least-squares regression for grouped data with subgroups defined by a2 and a3
vwls y2 i.a2 i.a3

Menu
Statistics > Linear models and related > Other > Variance-weighted least squares
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Syntax
vwls depvar indepvars [ if ] [ in ] [weight ] [ , options ]

options Description

Model

noconstant suppress constant term

sd(varname) variable containing estimate of conditional standard deviation

Reporting

level(#) set confidence level; default is level(95)
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

coeflegend display legend instead of statistics

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

bootstrap, by, collect, jackknife, rolling, and statsby are allowed; see [U] 11.1.10 Prefix commands.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
fweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

noconstant; see [R] Estimation options.

sd(varname) is an estimate of the conditional standard deviation of depvar (that is, it can vary obser-
vation by observation). All values of varname must be > 0. If you specify sd(), you cannot use
fweights.

If sd() is not given, the data will be grouped by indepvars. Here indepvars are treated as categorical
variables, and the means and standard deviations of depvar for each subgroup are calculated and used

for the regression. Any subgroup for which the standard deviation is zero is dropped.

� � �
Reporting �

level(#); see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

The following option is available with vwls but is not shown in the dialog box:

coeflegend; see [R] Estimation options.
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Remarks and examples
The vwls command is intended for use with two special—and different—types of data. The first

contains data that consist of measurements from physical science experiments in which all error is due

solely to measurement errors and the sizes of the measurement errors are known.

You can also use variance-weighted least-squares linear regression for certain problems in categorical

data analysis, such as when all the independent variables are categorical and the outcome variable is either

continuous or a quantity that can sensibly be averaged. If each of the subgroups defined by the categorical

variables contains a reasonable number of subjects, then the variance of the outcome variable can be

estimated independentlywithin each subgroup. For the purposes of estimation, vwls treats each subgroup
as one observation, with the dependent variable being the subgroup mean of the outcome variable.

The vwls command fits the model
𝑦𝑖 = x𝑖β + 𝜀𝑖

where the errors 𝜀𝑖 are independent normal random variables with the distribution 𝜀𝑖 ∼ 𝑁(0, 𝜈𝑖). The
independent variables x𝑖 are assumed to be known without error.

As described above, vwls assumes that you already have estimates 𝑠2
𝑖 for the variances 𝜈𝑖. The error

variance is not estimated in the regression. The estimates 𝑠2
𝑖 are used to compute the standard errors of

the coefficients; see Methods and formulas below.

In contrast, weighted OLS regression assumes that the errors have the distribution 𝜀𝑖 ∼ 𝑁(0, 𝜎2/𝑤𝑖),
where the 𝑤𝑖 are known weights and 𝜎2 is an unknown parameter that is estimated in the regression.

This is the difference from variance-weighted least squares: in weighted OLS, the magnitude of the error

variance is estimated in the regression using all the data.

Example 1
An artificial, but informative, example illustrates the difference between variance-weighted least

squares and weighted OLS.

We measure the quantities 𝑥𝑖 and 𝑦𝑖 and estimate that the standard deviation of 𝑦𝑖 is 𝑠𝑖. We enter the

data into Stata:

. use https://www.stata-press.com/data/r18/vwlsxmpl

. list

x y s

1. 1 1.2 .5
2. 2 1.9 .5
3. 3 3.2 1
4. 4 4.3 1
5. 5 4.9 1

6. 6 6.0 2
7. 7 7.2 2
8. 8 7.9 2
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Because we want observations with smaller variance to carry larger weight in the regression, we compute

an OLS regression with analytic weights proportional to the inverse of the squared standard deviations:

. regress y x [aweight=s^(-2)]
(sum of wgt is 11.75)

Source SS df MS Number of obs = 8
F(1, 6) = 702.26

Model 22.6310183 1 22.6310183 Prob > F = 0.0000
Residual .193355117 6 .032225853 R-squared = 0.9915

Adj R-squared = 0.9901
Total 22.8243734 7 3.26062477 Root MSE = .17952

y Coefficient Std. err. t P>|t| [95% conf. interval]

x .9824683 .0370739 26.50 0.000 .8917517 1.073185
_cons .1138554 .1120078 1.02 0.349 -.1602179 .3879288

If we compute a variance-weighted least-squares regression by using vwls, we get the same results for
the coefficient estimates but very different standard errors:

. vwls y x, sd(s)
Variance-weighted least-squares regression Number of obs = 8
Goodness-of-fit chi2(6) = 0.28 Model chi2(1) = 33.24
Prob > chi2 = 0.9996 Prob > chi2 = 0.0000

y Coefficient Std. err. z P>|z| [95% conf. interval]

x .9824683 .170409 5.77 0.000 .6484728 1.316464
_cons .1138554 .51484 0.22 0.825 -.8952124 1.122923

Although the values of 𝑦𝑖 were nicely linear with 𝑥𝑖, the vwls regression used the large estimates for
the standard deviations to compute large standard errors for the coefficients. ForweightedOLS regression,

however, the scale of the analytic weights has no effect on the standard errors of the coefficients—only

the relative proportions of the analytic weights affect the regression.

If we are sure of the sizes of our error estimates for 𝑦𝑖, using vwls is valid. However, if we can

estimate only the relative proportions of error among the 𝑦𝑖, then vwls is not appropriate.

Example 2
Let’s now consider an example of the use of vwls with categorical data. Suppose that we have blood

pressure data for 𝑛 = 400 subjects, categorized by gender and race (black or white). Here is a description

of the data:
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. use https://www.stata-press.com/data/r18/bp

. table gender race, statistic(mean bp) statistic(sd bp) statistic(freq)
> nformat(%8.1f)

Race
White Black Total

Gender
Female
Mean 117.1 118.5 117.8
Standard deviation 10.3 11.6 10.9
Frequency 100.0 100.0 200.0

Male
Mean 122.1 125.8 124.0
Standard deviation 10.6 15.5 13.3
Frequency 100.0 100.0 200.0

Total
Mean 119.6 122.2 120.9
Standard deviation 10.7 14.1 12.6
Frequency 200.0 200.0 400.0

Performing a variance-weighted regression using vwls gives

. vwls bp gender race
Variance-weighted least-squares regression Number of obs = 400
Goodness-of-fit chi2(1) = 0.88 Model chi2(2) = 27.11
Prob > chi2 = 0.3486 Prob > chi2 = 0.0000

bp Coefficient Std. err. z P>|z| [95% conf. interval]

gender 5.876522 1.170241 5.02 0.000 3.582892 8.170151
race 2.372818 1.191683 1.99 0.046 .0371631 4.708473
_cons 116.6486 .9296297 125.48 0.000 114.8266 118.4707

By comparison, an OLS regression gives the following result:

. regress bp gender race
Source SS df MS Number of obs = 400

F(2, 397) = 15.24
Model 4485.66639 2 2242.83319 Prob > F = 0.0000

Residual 58442.7305 397 147.210908 R-squared = 0.0713
Adj R-squared = 0.0666

Total 62928.3969 399 157.71528 Root MSE = 12.133

bp Coefficient Std. err. t P>|t| [95% conf. interval]

gender 6.1775 1.213305 5.09 0.000 3.792194 8.562806
race 2.5875 1.213305 2.13 0.034 .2021938 4.972806
_cons 116.4862 1.050753 110.86 0.000 114.4205 118.552

Note the larger value for the race coefficient (and smaller 𝑝-value) in the OLS regression. The as-

sumption of homogeneity of variance in OLS means that the mean for black men pulls the regression

line higher than in the vwls regression, which takes into account the larger variance for black men and
reduces its effect on the regression.
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Stored results
vwls stores the following in e():
Scalars

e(N) number of observations

e(df m) model degrees of freedom

e(chi2) model 𝜒2

e(df gf) goodness-of-fit degrees of freedom

e(chi2 gf) goodness-of-fit 𝜒2

e(rank) rank of e(V)
Macros

e(cmd) vwls
e(cmdline) command as typed

e(depvar) name of dependent variable

e(properties) b V
e(predict) program used to implement predict
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of the estimators

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():
Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas
Let y = (𝑦1, 𝑦2, . . . , 𝑦𝑛)′ be the vector of observations of the dependent variable, where 𝑛 is the

number of observations. When sd() is specified, let 𝑠1, 𝑠2, . . . , 𝑠𝑛 be the standard deviations supplied

by sd(). For categorical data, when sd() is not given, the means and standard deviations of 𝑦 for each
subgroup are computed, and 𝑛 becomes the number of subgroups, y is the vector of subgroup means, and

𝑠𝑖 are the standard deviations for the subgroups.

Let V = diag(𝑠2
1, 𝑠2

2, . . . , 𝑠2
𝑛) denote the estimate of the variance of y. Then the estimated regression

coefficients are

b = (X′V−1X)−1X′V−1y

and their estimated covariance matrix is

Ĉov(b) = (X′V−1X)−1

A statistic for the goodness of fit of the model is

𝑄 = (y − Xb)′ V−1(y − Xb)

where 𝑄 has a 𝜒2 distribution with 𝑛 − 𝑘 degrees of freedom (𝑘 is the number of independent variables
plus the constant, if any).
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[R] vwls postestimation — Postestimation tools for vwls

[R] regress — Linear regression
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[U] 20 Estimation and postestimation commands
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Postestimation commands predict margins Also see

Postestimation commands
The following postestimation commands are available after vwls:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estimates cataloging estimation results

etable table of estimation results

forecast dynamic forecasts and simulations

hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

linktest link test for model specification

margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

predict linear, censored, and truncated predictions

predictnl point estimates, standard errors, testing, and inference for generalized predictions

pwcompare pairwise comparisons of parameters

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses
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predict

Description for predict
predict creates a new variable containing predictions such as linear predictions and standard errors.

Menu for predict
Statistics > Postestimation

Syntax for predict
predict [ type ] newvar [ if ] [ in ] [ , xb stdp ]
These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for the

estimation sample.

Options for predict

� � �
Main �

xb, the default, calculates the linear prediction.

stdp calculates the standard error of the linear prediction.
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margins

Description for margins
margins estimates margins of response for linear predictions.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist ] [ , options ]
margins [marginlist ] , predict(statistic ...) [ options ]

statistic Description

xb linear prediction; the default

stdp not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.

Also see
[R] vwls — Variance-weighted least squares

[U] 20 Estimation and postestimation commands
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Description Syntax Option Remarks and examples Also see

Description
which looks for file fname.ftype along the S ADO path. If Stata finds the file, which displays the

full path and filename, along with, if the file is text, all lines in the file that begin with “*!” in the first
column. If Stata cannot find the file, which issues the message “file not found along ado-path” and sets
the return code to 111. ftype must be a file type for which Stata usually looks along the ado-path to find.

Allowable ftypes are

.ado, .class, .dlg, .idlg, .sthlp, .ihlp, .hlp, .jar, .key, .maint, .mata, .mlib,

.mo, .mnu, .plugin, .png, .py, .scheme, .stbcal, and .style

If ftype is omitted, which assumes .ado. When searching for .ado files, if Stata cannot find the file,
Stata then checks to see if fname is a built-in Stata command, allowing for valid abbreviations. If it is,

the message “built-in command” is displayed; if not, the message “command not found as either built-in

or ado-file” is displayed and the return code is set to 111.

Syntax
which fname[.ftype] [ , all ]

Option
all forces which to report the location of all files matching the fname.ftype found along the search path.

The default is to report just the first one found.

Remarks and examples
If you write programs, you know that you make changes to the programs over time. If you are like us,

you also end upwithmultiple versions of the program stored on your disk, perhaps in different directories.

You may even have given copies of your programs to other Stata users, and you may not remember which

version of a program you or your friends are using. The which command helps you solve this problem.
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Example 1
The which command displays the path for filename.ado and any lines in the code that begin with

“*!”. For example, we might want information about the test command, described in [R] test, which
is an ado-file written by StataCorp. Here is what happens when we type which test:

. which test
C:\Program Files\Stata18\ado\base\t\test.ado
*! version 2.4.1 28jan2021

which displays the path for the test.ado file and also a line beginning with “*!” that indicates the

version of the file.

Do not confuse “version 2.4.1” above with the version command or the version of Stata. The “*!”
code indicates notes. In this case, the *! version 2.4.1 line is merely a note to the author to identify
the iteration (version) of the test program. It is an unfortunate coincidence that the word version is

overloaded in this manner.

We do not need to be so formal. which will display anything typed after lines that begin with ‘*!’.
For instance, we might write myprog.ado:

. which myprog

.\myprog.ado
*! first written 1/03/2023
*! bug fix on 1/05/2023 (no variance case)
*! updated 1/24/2023 to include noconstant option
*! still suspicious if variable takes on only two values

It does not matter where in the program the lines beginning with *! are—which will list them (in par-

ticular, our “still suspicious” comment was buried about 50 lines down in the code). All that is important

is that the *! marker appear in the first two columns of a line.

Example 2
If we type which command, where command is a built-in command rather than an ado-file, Stata

responds with

. which summarize
built-in command: summarize

If command was neither a built-in command nor an ado-file, Stata would respond with

. which junk
command junk not found as either built-in or ado-file
r(111);

Also see
[P] findfile — Find file in path

[U] 17 Ado-files



wildbootstrap — Wild cluster bootstrap inference

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Acknowledgments References Also see

Description
wildbootstrap performs wild cluster bootstrap (WCB) inference for linear hypotheses about param-

eters in linear regression models. These hypotheses can be simple or composite. When the assumptions

required for the consistency of the cluster–robust variance estimator (CRVE) do not hold, the WCB is a

good alternative.

Quick start
Estimate theWCB 𝑝-value and confidence interval (CI) for the coefficient on x1 in a linear regression of

y on x1 with clusters identified in cvar
wildbootstrap regress y x1, cluster(cvar)

Same as above, but test whether the coefficients on x1 and x2 are equal in a regression of y on x1 and
x2

wildbootstrap regress y x1 x2, cluster(cvar) test(x1 = x2)

Menu
Statistics > Resampling > Wild cluster bootstrap
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Syntax
wildbootstrap estimator depvar [ indepvars ] [ if ] [ in ] [weight ] [ , options ]

estimator Description

regress linear regression

areg linear regression with a large indicator-variable set

xtreg fixed-effects linear models

options Description

Main

noconstant suppress constant term; available only with estimator regress
hascons has user-supplied constant; available only with estimator regress
absorb(varname) categorical variable to be absorbed; required by and available only

with estimator areg

Statistics

coefficients(coeflist) perform inference for a subset of coefficients

test(testspec) specify linear test parameters

Bootstrap

cluster(clustvar) specify variable identifying clusters; required for estimators
regress and areg

ptype(ptype) specify the 𝑝-value type; may be equal (the default) or symmetric
errorweight(wcbwtype) specifyWCB weight; default is errorweight(rademacher)
reps(#) set number of bootstrap repetitions; default is reps(1000)
rseed(# | statecode) set random-number seed to # or statecode

blocksize(#) set bootstrap repetition block size; default is min(reps(#),1000)
cistop(largest | first) specify stopping rule for CI computation

Reporting

level(#) set confidence level; default is level(95)
display options control column formats and display of CIs

indepvars and coeflist may contain factor variables; see [U] 11.4.3 Factor variables.

depvar, indepvars, and coeflist may contain time-series operators; see [U] 11.4.4 Time-series varlists.

collect is allowed; see [U] 11.1.10 Prefix commands.

Any weight that is allowed by the estimator is allowed; see [U] 11.1.6 weight.

Options

� � �
Main �

noconstant and hascons; see [R] regress. These options may be specified only when estimator

regress is specified.

absorb(varname); see [R] areg. This option must be specified when estimator areg is specified.
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� � �
Statistics �

coefficients(coeflist) performs an inference for a subset of coefficients. It reports the bootstrap 𝑝-
value for a test of the subset of coefficients, coeflist, equal to 0 and the bootstrap CI. The default is

to perform inference for all variables specified in indepvars. coefficients() may not be specified
with test().

test(testspec) specifies a linear test. You may also specify multiple linear tests by using test((test-
spec1) (testspec2) . . .). The test specification must be consistent with specifying a linear constraint.
See [R] test and [R] constraint.

� � �
Bootstrap �

cluster(clustvar) specifies the variable identifying the cluster groups. cluster() is required with

estimators regress and areg. With estimator xtreg, clustvar defaults to the xtset panelvar.

ptype(ptype) specifies the 𝑝-value criterion: symmetric (symmetric) or equal tailed (equal). The

default is ptype(equal). See Methods and formulas for more details.

errorweight(wcbwtype) specifies the type of wild weight. wcbwtype may be one of the following:

wcbwtype Description

rademacher two-point distribution assigns values 1 and −1 with equal
probability; the default

mammen two-point distribution assigns value 1 − 𝜙 with probability
𝜙/

√
5 and value 𝜙 otherwise, where 𝜙 = (1 +

√
5)/2

webb six-point distribution assigns probability of 1/6 to the points
±√1/2, ±1, and ±√3/2

normal standard normal distribution

gamma gamma distribution with shape parameter 4 and scale parameter 1/2
centered on its mean of 2

reps(#) sets the number of repetitions for the bootstrap. The default is reps(1000). For the

ptype(equal) option, the values of level() and reps() should be chosen so that 𝛼/2× reps(#)
is an integer, where 𝛼 = (100 − level(#))/100. For the ptype(symmetric) option, such val-

ues should be chosen so that 𝛼 × reps(#) is an integer. When the product is not an integer, the

number of repetitions is increased so that it is. Integer values improve the search efficiency of the

wildbootstrap algorithm.

rseed(# | statecode) sets the random-number seed to # or statecode. See [R] set seed.
blocksize(#) sets the bootstrap block size. This is an integer less than or equal to reps(#) and

is used to reduce the amount of memory the bootstrap computation will consume. The default is

min(reps(#),1000).

cistop(largest | first) specifies the stopping rule for the CI computation. The bootstrap distribu-

tion is a step function, so for each bound, there is an interval of values that meet the CI level crite-

rion. cistop(largest), the default, specifies that the largest value within the interval be selected.
cistop(first) specifies that the first value the algorithm finds within the interval be selected; there-

fore, specifying cistop(first) will result in faster CI computation. The cistop() option may not
be combined with the noci option.
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� � �
Reporting �

level(#); see [R] Estimation options. The level() option will not work on replay because CIs are

based on estimator-specific enumerations. To change the confidence level, you must refit the model.

display options: noci, cformat(% fmt), pformat(% fmt), and sformat(% fmt); see [R] Estimation

options. The noci option may not be combined with the cistop() option.

Remarks and examples
wildbootstrap implements theWCB, which was proposed by Cameron, Gelbach, andMiller (2008).

It is an extension of the original wild bootstrap procedure proposed byWu (1986), which was designed to

work well for models with heteroskedasticity, to the case of cluster-level correlation. The wild bootstrap

has proven to work well in cases where cluster–robust standard errors do not perform well. A good dis-

cussion of the methodology can be found in Cameron andMiller (2015), MacKinnon (2019), MacKinnon

and Webb (2018), and MacKinnon, Nielsen, and Webb (2023), and the references therein. Specifically,

the WCB is a good inference tool when one or more of the CRVE 𝑡-statistic consistency assumptions are
violated. MacKinnon and Webb list the assumptions as follows:

1. The number of clusters goes to infinity.

2. The within-cluster error correlations are the same for all clusters.

3. Each cluster contains an equal number of observations.

Below, we illustrate how to use wildbootstrap; however, note that alternatives exist in the literature
to address the inference problems noted above. For example, the Bell and McCaffrey (2002) 𝑡-statistic
degrees-of-freedom correction is an alternative to wildbootstrap when at least one of the above as-
sumptions is violated. The degrees-of-freedom correction is computed with option vce(hc2 clustvar,
dfadjust) for regress, areg, and xtreg, fe.

Example 1: Simple regression
Say we are interested in the effect of tenure on wages for a panel of individuals sampled from 2013

to 2016. We would like to use wild bootstrap CIs clustering at the personid level. For reproducibility,
we set the seed by using option rseed().

. use https://www.stata-press.com/data/r18/wagework
(Wages for 20 to 77 year olds, 2013--2016)
. wildbootstrap regress wage tenure, cluster(personid) rseed(12345)
Performing 1,000 replications for p-value for tenure = 0 ...
Computing confidence interval for tenure
Lower bound: .........10.........20. done (21)
Upper bound: .........10....... done (17)

Wild cluster bootstrap Number of obs = 1,928
Linear regression Number of clusters = 589

Cluster size:
Cluster variable: personid min = 1
Error weight: Rademacher avg = 3.3

max = 4

wage Estimate t p-value [95% conf. interval]

constraint
tenure = 0 .7807403 27.19 0.000 .7209754 .8368386
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The iteration log indicates the number of iterations used to compute the lower and upper bound for

the CIs. In Methods and formulas below, we discuss how these bounds are computed. Notably, there is

a separate optimization procedure used to compute each one of these bounds.

The table header also tells us the error weights used for the sampling algorithm of the wild bootstrap,

which, by default, are Rademacher weights. See the errorweight() option for more details about error
weights.

The column header labeled p-value indicates that the 𝑡-statistic equal-tailed 𝑝-value has been com-
puted. The ptype(equal) option is the default. Alternatively, the symmetric 𝑝-value is computed when
the ptype(symmetric) option is specified and is identified with the column header of P>|t|.

. wildbootstrap regress wage tenure, cluster(personid) rseed(12345)
> ptype(symmetric)
Performing 1,000 replications for p-value for tenure = 0 ...
Computing confidence interval for tenure
Lower bound: .........10.........20.. done (22)
Upper bound: .........10..... done (15)

Wild cluster bootstrap Number of obs = 1,928
Linear regression Number of clusters = 589

Cluster size:
Cluster variable: personid min = 1
Error weight: Rademacher avg = 3.3

max = 4

wage Estimate t P>|t| [95% conf. interval]

constraint
tenure = 0 .7807403 27.19 0.000 .7240502 .8399896

We can always compare the CIs from the wild bootstrap with what we would have obtained using the

underlying command, in this case, regress.

. regress
Linear regression Number of obs = 1,928

F(1, 588) = 739.36
Prob > F = 0.0000
R-squared = 0.4212
Root MSE = 3.5097

(Std. err. adjusted for 589 clusters in personid)

Robust
wage Coefficient std. err. t P>|t| [95% conf. interval]

tenure .7807403 .028713 27.19 0.000 .7243477 .8371328
_cons 20.89884 .2135686 97.86 0.000 20.47939 21.31829

Note that typing this command will replace the return matrix r(table). Observe that the 𝑡 statistics are
the same in both tables because regress and wildbootstrap use the same CRVE, but the 𝑝-values and
CIs may vary between tables.

Similarly, you can redisplay the wildbootstrap table by typing wildbootstrap, which may be abbre-
viated as wildboot.
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Example 2: Small number of clusters with wildly varying cluster sizes
As in example 1, we would like to see the effect of tenure on wages; in this case, however, we would

like to cluster at the industry level. Here, for year 1988, we use a wage dataset with only 12 clusters, for

which cluster sizes vary wildly from 4 to 817, violating the CRVE 𝑡-statistic consistency assumptions 1
and 3 outlined previously.

. use https://www.stata-press.com/data/r18/nlsw88
(NLSW, 1988 extract)
. wildbootstrap regress wage tenure, cluster(industry) rseed(12345)
Performing 1,000 replications for p-value for tenure = 0 ...
Computing confidence interval for tenure
Lower bound: .........10.........20...... done (26)
Upper bound: .........10.........20.... done (24)

Wild cluster bootstrap Number of obs = 2,217
Linear regression Number of clusters = 12

Cluster size:
Cluster variable: industry min = 4
Error weight: Rademacher avg = 184.8

max = 817

wage Estimate t p-value [95% conf. interval]

constraint
tenure = 0 .1830716 6.95 0.000 .1274023 .3258156
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Example 3: Small number of clusters with more regressors
Continuing with example 2, we look at a more complex and perhaps more realistic example. We add

to the model explanatory variables for total work experience, ttl exp; a college graduate indicator,
collgrad; and an indicator for union membership, union.

. wildbootstrap regress wage c.tenure##c.ttl_exp ib0.collgrad ib0.union,
> cluster(industry) rseed(12345)
Performing 1,000 replications for p-value for tenure = 0 ...
Computing confidence interval for tenure
Lower bound: .........10.........20.........30.... done (34)
Upper bound: .........10.........20.... done (24)

Performing 1,000 replications for p-value for ttl_exp = 0 ...
Computing confidence interval for ttl_exp
Lower bound: .........10.........20..... done (25)
Upper bound: .........10......... done (19)

Performing 1,000 replications for p-value for c.tenure#c.ttl_exp = 0 ...
Computing confidence interval for c.tenure#c.ttl_exp
Lower bound: .........10.........20... done (23)
Upper bound: .........10.........20....... done (27)

note: upper-bound CI achieved 1-F(-3.65e-04) = 0.0240, but target is 1-F(x) =
.025.

note: the sorted bootstrap t statistics have at least two tied values
adjacent to the t statistic under the null; this prevents the CI bound
from converging to the target.

Performing 1,000 replications for p-value for 1.collgrad = 0 ...
Computing confidence interval for 1.collgrad
Lower bound: .........10.........20.........30.. done (32)

note: lower-bound CI achieved F(1.66) = 0.0240, but target is F(x) = .025.
note: at least one bootstrap t statistic matches the t statistic under the

null; this prevents the CI bound from converging to the target.
Upper bound: .........10.........20...... done (26)

Performing 1,000 replications for p-value for 1.union = 0 ...
Computing confidence interval for 1.union
Lower bound: .........10.........20.........30 done (30)
Upper bound: .........10.........20..... done (25)

Wild cluster bootstrap Number of obs = 1,855
Linear regression Number of clusters = 12

Cluster size:
Cluster variable: industry min = 2
Error weight: Rademacher avg = 154.6

max = 717

wage Estimate t p-value [95% conf. interval]

constraints
tenure = 0 .204166 2.81 0.026 .0729495 .4699121
ttl_exp = 0 .3025249 11.72 0.004 .2566267 .4110114

c.tenure#c.ttl_exp = 0 -.0097942 -2.76 0.046 -.022061 -.0003651
1.collgrad = 0 3.077377 7.59 0.034 1.662277 5.218396

1.union = 0 .9114564 2.31 0.040 .1060322 2.470924

We did not specify the coefficients() option, so wildbootstrap computes 𝑝-values and CIs for

all coefficients in the model, with the exception of the constant term, using the default ptype(equal)
option to compute the equal-tailed 𝑝-values.



wildbootstrap — Wild cluster bootstrap inference 3279

The iteration log states that the CI-target tail values were not achieved for two of the reported con-

straints. This is because the sorted vector of bootstrap 𝑡 statistics can have ties due to computer finite
numeric precision and the finite number of draws for the Rademacher, Mammen, andWebb distributions.

When ties occur with the 𝑡 statistic under the null, or those adjacent to it, and the desired CI tail area can-
not be achieved, wildbootstrap will choose a bound that results in a smaller tail area. This is the case
when wildbootstrap searches for the c.tenure#c.ttl exp CI upper bound and the 1.collgrad CI

lower bound.

Numerical computations will contain a roundoff error; wildbootstrap retains 13 digits on the man-
tissa of the 𝑡 statistics before making comparisons.

Example 4: Linear regression with an indicator-variable set
We would like to include an individual’s occupation code (occupation) as an additional control in

the regression to avoid potential omitted-variable bias. We keep the other control variables we introduced

in example 3. For this analysis, we use the estimator areg with the absorb(occupation) option. We

use the test() option to test linear combinations of regression estimates.

. wildbootstrap areg wage c.tenure##c.ttl_exp ib0.collgrad ib0.union,
> absorb(occupation) cluster(industry) rseed(12345)
> test((tenure=ttl_exp) (1.collgrad-1.union=1)) reps(1250)
note: for equal-tailed 95% CI, better performance is obtained when

.025*reps() is an integer.
note: setting repetitions to 1,280.
Performing 1,280 replications for p-value for constraint

tenure - ttl_exp = 0 ...
Computing confidence interval for tenure - ttl_exp
Lower bound: .........10.........20... done (23)
Upper bound: .........10.........20..... done (25)

note: upper-bound CI achieved 1-F(0.15) = 0.0242, but target is 1-F(x) =
.025.

note: the sorted bootstrap t statistics have at least two tied values
adjacent to the t statistic under the null; this prevents the CI bound
from converging to the target.

Performing 1,280 replications for p-value for constraint
1.collgrad - 1.union = 1 ...

Computing confidence interval for 1.collgrad - 1.union
Lower bound: .........10.........20...... done (26)
Upper bound: .........10.........20....... done (27)

note: upper-bound CI achieved 1-F(3.91) = 0.0242, but target is 1-F(x) =
.025.

note: the sorted bootstrap t statistics have at least two tied values
adjacent to the t statistic under the null; this prevents the CI bound
from converging to the target.

Wild cluster bootstrap Number of obs = 1,851
Linear regression, absorbing indicators Number of clusters = 12

Cluster size:
Cluster variable: industry min = 2
Error weight: Rademacher avg = 154.2

max = 717

wage Estimate t p-value [95% conf. interval]

constraints
tenure - ttl_exp = 0 -.0391243 -0.71 0.517 -.1915527 .1495055

1.collgrad - 1.union = 1 1.356332 0.77 0.395 -.1882941 3.913359
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The test() option allows us to specify a linear combination of the regression coefficients that we
would like to test. The syntax is the same as specifying linear constraints, constraint, or linear hy-
pothesis tests, test. In this example, we are inquiring how probable it would be for tenure = ttl exp
and 1.collgrad − 1.union = 1.

The reps() option allows us to set the number of bootstrap repetitions. The default is 1,000. Because
the Rademacher and Mammen distributions have two possible realizations, the maximum number of

possible bootstrap samples is 2𝐺, where 𝐺 is the number of clusters. TheWebb distribution, on the other

hand, has six outcomes and therefore 6𝐺 possible combinations.

In this example, we intentionally specify a number of bootstrap repetitions that results in a non-

integer product, reps() × 𝛼/2: reps() × (100 − level())/200 = 1250 × 0.025 = 31.25. In

this case, we lose efficiency in searching for the CI bounds, so wildbootstrap adjusts the num-

ber of repetitions to 1,280; when we specify reps(1250) with level(95), wildbootstrap chooses
reps() = ceil(1250 × 𝛼/2)/(𝛼/2) = 32/0.025 = 1280. If an integer alternative cannot be found, the

original reps() specification will be used. For details, see Methods and formulas below.

Because the WCB distribution is a step function, there is a range of values for each CI bound.

For example, the lower-bound interval of values for the linear combination tenure − ttl exp is

−0.191586 < 𝑎lb ≤ −0.191553. The reported bounds are the largest value of each interval. We obtain

−0.191586 by running wildbootstrap specifying level(#) with # = (0.95 + 2/1280) × 100. We

would likely report the CIs using three digits of precision, for instance, [−0.192, 0.150], so this interval is
negligible but significant in a numerical root search where a convergence tolerance for 𝑟𝑙 might be 10

−8.

The estimate of tenure− ttl exp is reported to be −0.0391 with a 95% CI of [−0.192, 0.150]. We

therefore fail to reject the hypothesis that tenure = ttl exp. Similarly, the estimate of 1.collgrad−
1.union is 1.36 with a CI of [−0.188, 3.91], and we conclude the difference of 1 is feasible.

Example 5: Fixed-effects linear regression with panels
Our final example demonstrates the use of wildbootstrap with estimator xtreg. Continuing with

the data in the previous example, we use industry as the variable defining the panels.

We specify normal error weights, errorweight(normal), thereby reducing the chance of identical
draws for the error weights. Draws from the Rademacher distribution for 12 clusters have 212 = 4096

combinations.

We compute 𝑝-values and CIs on a subset of the model estimates: work tenure, work experience, and

their interaction. If we replay the xtreg coefficient table, we will see that the fitted model includes

tenure, ttl exp, c.tenure#c.ttl exp, 1.collgrad, and 1.union.

Finally, we use the symmetric 𝑝-value, option ptype(symmetric), instead of the default equal-tailed,
ptype(equal). The table identifies the symmetric 𝑝-value with the header P>|t|.
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The command and the results are as follows:

. xtset industry
Panel variable: industry (unbalanced)
. wildbootstrap xtreg wage c.tenure##c.ttl_exp i.collgrad i.union,
> rseed(12345) coef(ten ttl ten#ttl) errorweight(normal)
> ptype(symmetric)
Panel variable: industry (unbalanced)
Performing 1,000 replications for p-value for constraint

tenure = 0 ...
Computing confidence interval for tenure
Lower bound: .........10.........20...... done (26)
Upper bound: .........10.........20. done (21)

Performing 1,000 replications for p-value for constraint
ttl_exp = 0 ...

Computing confidence interval for ttl_exp
Lower bound: .........10.........20...... done (26)
Upper bound: .........10........ done (18)

Performing 1,000 replications for p-value for constraint
c.tenure#c.ttl_exp = 0 ...

Computing confidence interval for c.tenure#c.ttl_exp
Lower bound: .........10.........20...... done (26)
Upper bound: .........10.........20... done (23)

Wild cluster bootstrap Number of obs = 1,855
Fixed-effects linear regression Number of clusters = 12

Cluster size:
Cluster variable: industry min = 2
Error weight: Normal avg = 154.6

max = 717

wage Estimate t P>|t| [95% conf. interval]

constraints
tenure = 0 .2026682 2.95 0.024 .0555676 .3753468
ttl_exp = 0 .2716375 11.59 0.000 .2227054 .3372929

c.tenure#c.ttl_exp = 0 -.0104125 -2.55 0.046 -.0201336 -.0003384

The fixed-effects model is the only xtregmodel allowed with wildbootstrap, so specifying the fe
option is not required.

Also note that the cluster() option is not specified. When the estimator xtreg is specified, the

default cluster variable is the panel variable that is xtset. If the specified cluster variable is different
from the panel variable, then the levels of the panel variable must be nested within the cluster variable

levels.
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Stored results
wildbootstrap stores the following in e():

Scalars

e(N clust) number of clusters

e(N wbreps) number of bootstrap repetitions

e(wb block) bootstrap block size

e(n wbcns) number of bootstrap constraint restrictions

e(min c) smallest cluster size

e(max c) largest cluster size

e(avg c) average cluster size

Macros

e(cmdline) command as typed

e(cmd0) wildbootstrap
e(wb stat) WCB statistic, t
e(wb weight) WCB weights

e(wb ptype) WCB 𝑝-value criterion
e(wb level) WCB CI level

e(wb cistop) WCB CI interval type

e(wb rseed) random-number state

e(wb cns𝑖) WCB constraint 𝑖, where 𝑖 = 1, . . . , e(n wbcns)
e(clustvar) name of cluster variable

Matrices

e(wboot) WCB table

e(wb pci) WCB CI coverage

e(wb Cns) WCB constraint matrix

wildbootstrap will also carry forward most of the results already in e() from command.

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas
Methods and formulas are presented under the following headings:

Introduction
CIs for linear combinations of coefficients
Constructing a CI inverting the hypothesis test
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Introduction
We will focus our discussion of theWCB on linear regression, which easily extends to the other fixed-

effects estimators. A linear regression model with clustered errors and 𝐺 clusters can be written as

y =
⎛⎜⎜⎜
⎝

y1
y2
⋮
y𝐺

⎞⎟⎟⎟
⎠

= X𝛽 + 𝜖 =
⎛⎜⎜⎜
⎝

X1
X2
⋮
X𝐺

⎞⎟⎟⎟
⎠

⎛⎜⎜⎜
⎝

𝛽1
𝛽2
⋮

𝛽𝑘

⎞⎟⎟⎟
⎠

+
⎛⎜⎜⎜
⎝

𝜖1
𝜖2
⋮

𝜖𝐺

⎞⎟⎟⎟
⎠

(1)

where for each cluster 𝑔, 𝑁𝑔 is the number of observations, 𝑦𝑔 is an 𝑁𝑔 × 1 vector of outcomes, 𝑋𝑔 is

an 𝑁𝑔 × 𝑘 matrix of covariates, and 𝜖𝑔 is an 𝑁𝑔 × 1 vector of errors. The parameter of interest is the

𝑘 × 1 vector of coefficients 𝛽. Error terms are assumed uncorrelated between observations of different
clusters but possibly correlated between observations within the same cluster.

Without loss of generality, we will first focus on testing the null hypothesis 𝐻0: 𝛽𝑘 = 0 using the

WCB algorithm. Let ̂𝛽 denote the ordinary least-squares estimator for 𝛽. We compute the 𝑡 statistic for
the 𝑘th coefficient as

𝑡𝑘 =
̂𝛽𝑘

√V̂𝑘,𝑘

where V̂𝑘,𝑘 is the CRVE for
̂𝛽𝑘. This is the 𝑘th diagonal element of the matrix

V̂ = 𝐺(𝑁 − 1)
(𝐺 − 1)(𝑁 − 𝑘)

(XX′)−1 (
𝐺

∑
𝑔=1

X′
𝑔 ̂𝜖𝑔 ̂𝜖′

𝑔X𝑔) (XX′)−1
(2)

where ̂𝜖𝑔 is the 𝑁𝑔 × 1 vector of ordinary least-squares residuals for cluster 𝑔 and 𝑁 = ∑𝐺
𝑔=1 𝑁𝑔 is the

total number of observations.

TheWCB algorithm proceeds as follows:

1. Refit model (1) subject to the restriction 𝛽𝑘 = 0. Let ̃𝛽 denote the restricted estimates and ̃𝜖 denote
the restricted residuals.

2. For each individual bootstrap replication 𝑏 (out of a total of 𝐵 replications):

(a) Generate random variable 𝜈𝑏
𝑔 for each cluster 𝑔 according to the distribution specified in the

errorweight() option.
(b) For each cluster 𝑔 and each observation in the cluster 𝑖 = 1, 2, . . . , 𝑁𝑔, generate a new

bootstrap-dependent variable 𝑦𝑏
𝑖𝑔 using the data-generating process:

𝑦𝑏
𝑖𝑔 = 𝑋𝑖𝑔

̃𝛽 + ̃𝜖𝑖𝑔𝜈𝑏
𝑔

(c) Fit model (1) using the bootstrap variable 𝑦𝑏
𝑖𝑔 as regressand. Calculate the 𝑡 statistic for

𝛽𝑘 = 0,

𝑡𝑏
𝑘 =

̂𝛽𝑏
𝑘

√V̂𝑏
𝑘,𝑘

where ̂𝛽𝑏
𝑘 and V̂

𝑏
𝑘,𝑘 are the ordinary least-squares coefficient and the CRVE for that coefficient

in the bootstrap replication, respectively. In this case, the CRVE is the 𝑘th diagonal element
of matrix (2) obtained when using the residuals from bootstrap replication 𝑏.
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3. The 𝑝-values for the one-sided alternative hypotheses 𝐻1: 𝛽𝑘 > 0 and 𝐻2: 𝛽𝑘 < 0 are given by

𝑝1 = 1
𝐵

𝐵
∑
𝑏=1

𝐼 (𝑡𝑏
𝑘 > 𝑡𝑘)

𝑝2 = 1
𝐵

𝐵
∑
𝑏=1

𝐼 (𝑡𝑏
𝑘 < 𝑡𝑘)

For the alternative hypothesis 𝐻3: 𝛽𝑘 ≠ 0, the 𝑝-value assuming that the distribution of the 𝑡
statistic is symmetric around 0 is given by

𝑝𝑆 = 1
𝐵

𝐵
∑
𝑏=1

𝐼 (∣𝑡𝑏
𝑘∣ > |𝑡𝑘|)

If the assumption of symmetry is not appropriate, then the 𝑝-value is given by the equal-tailed
𝑝-value 𝑝𝑒 = 2min(𝑝1, 𝑝2). See Djogbenou, MacKinnon, and Nielsen (2019).

To increase computational speed, at the expense of computer memory usage, the wildbootstrap
command uses the matrix algebra of Roodman et al. (2019). By doing this, the computational com-

plexity (run time) of the WCB algorithm is reduced from the order 𝑂(𝑁𝐵) to the order 𝑂(𝐺𝐵). The
WCB uses a 𝐺 × 𝐵 matrix of random variables. By organizing these variables in column-major order,

wildbootstrap reduces overall memory usage with minimal extra computation by breaking up the

number of bootstrap replicates into blocks (the blocksize(#) option).

CIs for linear combinations of coefficients
By inverting hypotheses tests, we can apply theWCB algorithm to find CIs for any linear combination

of coefficients. Suppose we wanted to compute a CI for the linear combination of parameters R𝛽, where
R is a 1 × 𝑘 vector. In this case, the associated null hypothesis is 𝐻0:R𝛽 = 𝑟, where 𝑟 is an arbitrary
scalar. We can test this null hypothesis with theWCB algorithm described in the previous section by using

the bootstrap 𝑡 statistics

𝑡𝑏(𝑟) = R ̂𝛽𝑏 − 𝑟
√RV̂𝑏R′

for 𝑏 = 1, . . . , 𝐵. For more on restricted regression with linear constraints on multiple coefficients, see
[P] makecns.

The associated one-sided alternative hypotheses are now 𝐻1:R𝛽 > 𝑟 and 𝐻2:R𝛽 < 𝑟. As before,
their respective bootstrap 𝑝-values are given by

𝑝1(𝑟) = 1
𝐵

𝐵
∑
𝑏=1

𝐼 {𝑡𝑏(𝑟) > 𝑡(𝑟)}

𝑝2(𝑟) = 1
𝐵

𝐵
∑
𝑏=1

𝐼 {𝑡𝑏(𝑟) < 𝑡(𝑟)}

where 𝑡(𝑟) is the 𝑡 statistic from the original sample:

𝑡(𝑟) = R ̂𝛽 − 𝑟
√RV̂R′



wildbootstrap — Wild cluster bootstrap inference 3285

The associated two-sided alternative hypothesis is 𝐻3:R𝛽 ≠ 𝑟, and its bootstrap 𝑝-value under the
assumption of symmetry is given by

𝑝𝑆(𝑟) = 1
𝐵

𝐵
∑
𝑏=1

𝐼 {∣𝑡𝑏(𝑟)∣ > |𝑡(𝑟)|}

When using the equal-tailed criterion (the ptype(equal) option), the 100(1−𝛼)% CI forR𝛽 is given
by [𝑟𝑙, 𝑟𝑢], where 𝑟𝑙 and 𝑟𝑢 satisfy 𝑝1(𝑟𝑙) = 𝑝2(𝑟𝑢) = 𝛼/2. On the other hand, when using the symmetric
criterion (the ptype(symmetric) option), 𝑟𝑙 and 𝑟𝑢 satisfy 𝑝𝑆(𝑟𝑙) = 𝑝𝑆(𝑟𝑢) = 𝛼. The parameter 𝛼 can

be specified with the level() option, that is, 𝛼 = (100 − level())/100.
The bootstrap 𝑝-values are step functions on 𝑟, and therefore a range of values for 𝑟𝑙 and for 𝑟𝑢 will

solve the 𝑝-value conditions above. Because distribution functions are right continuous, wildbootstrap
chooses the rightmost point in each range of solutions.

For the equal-tailed CIs, the starting values for the search of solutions to the 𝑝-value conditions are
chosen as follows. First, the bootstrap 𝑡 statistics are sorted 𝑡(1) ≤ 𝑡(2) ≤ ⋯ < 𝑡(𝐵). Second, we define

𝑏𝑙 = ceil{𝐵(1 − 𝛼/2)} so that 𝑡(𝑏𝑙) is smaller than 𝐵(𝛼/2) of the 𝑡 statistics. Similarly, we define

𝑏𝑢 = floor{𝐵(𝛼/2)} so that 𝑡(𝑏𝑢) is larger than 𝐵(𝛼/2) of the 𝑡 statistics. Third and finally, the initial
lower and upper bounds of the CI are given by

𝑟𝑙 = R ̂𝛽 − 𝑡(𝑏𝑙)√RV̂R′

𝑟𝑢 = R ̂𝛽 − 𝑡(𝑏𝑢)√RV̂R′

where ̂𝛽 and V̂ are the unrestricted estimator for 𝛽 and the unrestricted CRVE in the original sample.

Constructing a CI inverting the hypothesis test
For a linear combination of coefficients ∑ 𝑅𝑗𝛽𝑗, we can construct a CI by inverting the hypothesis

test 𝐻0:R𝛽 = 𝑟, where R is a row vector that includes the coefficients 𝑅𝑗 and 𝑟 is an arbitrary scalar. To
do this, wildbootstrap searches for the CI lower bound 𝑟𝑙 such that Pr(R𝛽 ≤ 𝑟𝑙) = 𝛼/2 (equal-tailed
criterion, the ptype(equal) option). The WCB distribution of R𝛽 is a step function with a step size of

1/reps(#). When reps(#) × 𝛼/2 is an integer, call it 𝑆, then we search for the 𝑟𝑙 that produces the

ordered bootstrapped 𝑡 statistics

𝑡(𝑏) = Rβ̂
(𝑏)

− 𝑟𝑙√
R′V(𝑏)R

with the property ∑reps()
𝑏=1 𝐼(𝑡(𝑏) > 𝑡) = 𝑆 and therefore Pr(R𝛽 ≤ 𝑟𝑙) = 𝑆/reps(#) = 𝛼/2.
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xi — Interaction expansion

Description Menu Syntax Options
Remarks and examples Stored results Also see

Description
xi expands terms containing categorical variables into indicator (also called dummy) variable sets

by creating new variables and, in the second syntax (xi: any stata command ), executes the specified

command with the expanded terms. The dummy variables created are

i.varname creates dummies for categorical variable varname

i.varname1*i.varname2 creates dummies for categorical variables varname1
and varname2:

all interactions and main effects

i.varname1*varname3 creates dummies for categorical variable varname1
and continuous variable varname3:

all interactions and main effects

i.varname1|varname3 creates dummies for categorical variable varname1
and continuous variable varname3:

all interactions and main effect of varname3,

but no main effect of varname1

Menu
Data > Create or change data > Other variable-creation commands > Interaction expansion� �
Most commands in Stata now allow factor variables; see [U] 11.4.3 Factor variables. To deter-

mine if a command allows factor variables, see the information printed below the options table for

the command. If the command allows factor variables, it will say something like “indepvars may

contain factor variables”.

We recommend that you use factor variables instead of xi if a command allows factor variables.

We include [R] xi in our documentation so that readers can consult it when using a Stata command

that does not allow factor variables.� �

3287
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Syntax
xi [ , prefix(string) noomit ] term(s)

xi [ , prefix(string) noomit ] : any stata command varlist with terms . . .

where a term has the form

i.varname or I.varname
i.varname1*i.varname2 I.varname1*I.varname2
i.varname1*varname3 I.varname1*varname3
i.varname1|varname3 I.varname1|varname3

varname, varname1, and varname2 denote numeric or string categorical variables. varname3 denotes a

continuous, numeric variable.

Options
prefix(string) allows you to choose a prefix other than I for the newly created interaction variables.

The prefix cannot be longer than four characters. By default, xi will create interaction variables

starting with I. When you use xi, it drops all previously created interaction variables starting with
the prefix specified in the prefix(string) option or with I by default. Therefore, if you want to
keep the variables with a certain prefix, specify a different prefix in the prefix(string) option.

noomit prevents xi from omitting groups. This option provides a way to generate an indicator variable

for every category having one ormore variables, which is useful when combinedwith the noconstant
option of an estimation command.

Remarks and examples
Remarks are presented under the following headings:

Background
Indicator variables for simple effects
Controlling the omitted dummy
Categorical variable interactions
Interactions with continuous variables
Using xi: Interpreting output
How xi names variables
xi as a command rather than a command prefix
Warnings

xi provides a convenient way to include dummy or indicator variables when fitting a model (say, with
regress or logistic). For instance, assume that the categorical variable agegrp contains 1 for ages
20–24, 2 for ages 25–39, 3 for ages 40–44, etc. Typing

. xi: logistic outcome weight i.agegrp bp

estimates a logistic regression of outcome on weight, dummies for each agegrp category, and bp. That
is, xi searches out and expands terms starting with “i.” or “I.” but ignores the other variables. xi will
expand both numeric and string categorical variables, so if you had a string variable race containing

“white”, “black”, and “other”, typing

. xi: logistic outcome weight bp i.agegrp i.race

would include indicator variables for the race group as well.
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The i. indicator variables xi expands may appear anywhere in the varlist, so

. xi: logistic outcome i.agegrp weight i.race bp

would fit the same model.

You can also create interactions of categorical variables; typing

xi: logistic outcome weight bp i.agegrp*i.race

fits a model with indicator variables for all agegrp and race combinations, including the agegrp and
race main-effect terms (that is, the terms that are created when you just type i.agegrp i.race).

You can interact dummy variables with continuous variables; typing

xi: logistic outcome bp i.agegrp*weight i.race

fits a model with indicator variables for all agegrp categories interacted with weight, plus the main-
effect terms weight and i.agegrp.

You can get the interaction terms without the agegrp main effect (but with the weight main effect)
by typing

xi: logistic outcome bp i.agegrp|weight i.race

You can also include multiple interactions:

xi: logistic outcome bp i.agegrp*weight i.agegrp*i.race

We will now back up and describe the construction of dummy variables in more detail.

Background
The terms continuous, categorical, and indicator or dummy variables are used below. Continuous

variables measure something—such as height or weight—and at least conceptually can take on any real

number over some range. Categorical variables, on the other hand, take on a finite number of values,

each denoting membership in a subclass—for example, excellent, good, and poor, which might be coded

0, 1, 2, or 1, 2, 3, or even “Excellent”, “Good”, and “Poor”. An indicator or dummy variable—the terms

are used interchangeably—is a special type of two-valued categorical variable that contains values 0,

denoting false, and 1, denoting true. The information contained in any 𝑘-valued categorical variable can
be equally well represented by 𝑘 indicator variables. Instead of one variable recording values representing
excellent, good, and poor, you can have three indicator variables, indicating the truth or falseness of

“result is excellent”, “result is good”, and “result is poor”.

xi provides a convenient way to convert categorical variables to dummy or indicator variables when
you fit a model (say, with regress or logistic).
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Example 1
For instance, assume that the categorical variable agegrp contains 1 for ages 20–24, 2 for ages

25–39, and 3 for ages 40–44. (There is no one over 44 in our data.) As it stands, agegrp would be a
poor candidate for inclusion in a model even if we thought age affected the outcome. The reason is that

the coding would restrict the effect of being in the second age group to be twice the effect of being in the

first, and, similarly, the effect of being in the third to be three times the first. That is, if we fit the model,

𝑦 = 𝛽0 + 𝛽1 agegrp + 𝑋𝛽2

the effect of being in the first age group is 𝛽1, the second 2𝛽1, and the third 3𝛽1. If the coding 1, 2, and

3 is arbitrary, we could just as well have coded the age groups 1, 4, and 9, making the effects 𝛽1, 4𝛽1,

and 9𝛽1.

The solution is to convert the categorical variable agegrp to a set of indicator variables, 𝑎1, 𝑎2, and

𝑎3, where 𝑎𝑖 is 1 if the individual is a member of the 𝑖th age group and 0 otherwise. We can then fit the

model

𝑦 = 𝛽0 + 𝛽11𝑎1 + 𝛽12𝑎2 + 𝛽13𝑎3 + 𝑋𝛽2

The effect of being in age group 1 is now 𝛽11; 2, 𝛽12; and 3, 𝛽13; and these results are independent of

our (arbitrary) coding. The only difficulty at this point is that the model is unidentified in the sense that

there are an infinite number of (𝛽0, 𝛽11, 𝛽12, 𝛽13) that fit the data equally well.
To see this, pretend that (𝛽0, 𝛽11, 𝛽12, 𝛽13) = (1, 1, 3, 4). The predicted values of 𝑦 for the various

age groups are

𝑦 =
⎧{
⎨{⎩

1 + 1 + 𝑋𝛽2 = 2 + 𝑋𝛽2 (age group 1)

1 + 3 + 𝑋𝛽2 = 4 + 𝑋𝛽2 (age group 2)

1 + 4 + 𝑋𝛽2 = 5 + 𝑋𝛽2 (age group 3)

Now, pretend that (𝛽0, 𝛽11, 𝛽12, 𝛽13) = (2, 0, 2, 3). The predicted values of 𝑦 are

𝑦 =
⎧{
⎨{⎩

2 + 0 + 𝑋𝛽2 = 2 + 𝑋𝛽2 (age group 1)

2 + 2 + 𝑋𝛽2 = 4 + 𝑋𝛽2 (age group 2)

2 + 3 + 𝑋𝛽2 = 5 + 𝑋𝛽2 (age group 3)

These two sets of predictions are indistinguishable: for age group 1, 𝑦 = 2 + 𝑋𝛽2 regardless of the

coefficient vector used, and similarly for age groups 2 and 3. This arises because we have three equations

and four unknowns. Any solution is as good as any other, and, for our purposes, wemerely need to choose

one of them. The popular selection method is to set the coefficient on the first indicator variable to 0 (as

we have done in our second coefficient vector). This is equivalent to fitting the model

𝑦 = 𝛽0 + 𝛽12𝑎2 + 𝛽13𝑎3 + 𝑋𝛽2

How we select a particular coefficient vector (identifies the model) does not matter. It does, however,

affect the interpretation of the coefficients.
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For instance, we could just as well choose to omit the second group. In our artificial example, this

would yield (𝛽0, 𝛽11, 𝛽12, 𝛽13) = (4, −2, 0, 1) instead of (2, 0, 2, 3). These coefficient vectors are the
same in the sense that

𝑦 =
⎧{
⎨{⎩

2 + 0 + 𝑋𝛽2 = 2 + 𝑋𝛽2 = 4 − 2 + 𝑋𝛽2 (age group 1)

2 + 2 + 𝑋𝛽2 = 4 + 𝑋𝛽2 = 4 + 0 + 𝑋𝛽2 (age group 2)

2 + 3 + 𝑋𝛽2 = 5 + 𝑋𝛽2 = 4 + 1 + 𝑋𝛽2 (age group 3)

But what does it mean that 𝛽13 can just as well be 3 or 1? We obtain 𝛽13 = 3 when we set 𝛽11 = 0, so

𝛽13 = 𝛽13 − 𝛽11 and 𝛽13 measures the difference between age groups 3 and 1.

In the second case, we obtain 𝛽13 = 1 when we set 𝛽12 = 0, so 𝛽13 − 𝛽12 = 1 and 𝛽13 measures

the difference between age groups 3 and 2. There is no inconsistency. According to our 𝛽12 = 0 model,

the difference between age groups 3 and 1 is 𝛽13 − 𝛽11 = 1 − (−2) = 3, the same result we got in the

𝛽11 = 0 model.

Example 2
The issue of interpretation is important because it can affect the way we discuss results. Imagine that

we are studying recovery after a coronary bypass operation. Assume that the age groups are children

under 13 (we have two of them), young adults under 25 (we have a handful of them), adults under 46

(of which we have even more), mature adults under 56, older adults under 65, and elderly adults. We

follow the prescription of omitting the first group, so all our results are reported relative to children

under 13. While there is nothing statistically wrong with this, readers will be suspicious when we make

statements like “compared with young children, older and elder adults . . .”. Moreover, we will probably

have to end each statement with “although results are not statistically significant” because we have only

two children in our comparison group. Of course, even with results reported in this way, we can do

reasonable comparisons (say, with mature adults), but we will have to do extra work to perform the

appropriate linear hypothesis test using Stata’s test command.

Here it would be better to force the omitted group to be more reasonable, such as mature adults. There

is, however, a generic rule for automatic comparison group selection that, although less popular, tends to

work better than the omit-the-first-group rule. That rule is to omit the most prevalent group. The most

prevalent is usually a reasonable baseline.

In any case, the prescription for categorical variables is

1. Convert each 𝑘-valued categorical variable to 𝑘 indicator variables.

2. Drop one of the 𝑘 indicator variables; any one will do, but dropping the first is popular, drop-

ping the most prevalent is probably better in terms of having the computer guess at a reasonable

interpretation, and dropping a specified one often eases interpretation the most.

3. Fit the model on the remaining 𝑘 − 1 indicator variables.

xi automates this procedure.

We will now consider each of xi’s features in detail.
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Indicator variables for simple effects
When you type i.varname, xi internally tabulates varname (which may be a string or a numeric

variable) and creates indicator (dummy) variables for each observed value, omitting the indicator for the

smallest value. For instance, say that agegrp takes on the values 1, 2, 3, and 4. Typing
xi: logistic outcome i.agegrp

creates indicator variables named Iagegrp 2, Iagegrp 3, and Iagegrp 4. (xi chooses the names
and tries to make them readable; xi guarantees that the names are unique.) The expanded logistic model
is

. logistic outcome _Iagegrp_2 _Iagegrp_3 _Iagegrp_4

Afterward, you can drop the new variables xi leaves behind by typing ‘drop I*’ (note the capitaliza-
tion).

xi provides the following features when you type i.varname:

• varname may be string or numeric.

• Dummy variables are created automatically.

• By default, the dummy-variable set is identified by dropping the dummy corresponding to the

smallest value of the variable (how to specify otherwise is discussed below).

• The new dummy variables are left in your dataset. By default, the names of the new dummy

variables start with I; therefore, you can drop them by typing ‘drop I*’. You do not have to do
this; each time you use xi, any automatically generated dummies with the same prefix as the one
specified in the prefix(string) option, or I by default, are dropped and new ones are created.

• The new dummy variables have variable labels so that you can determine what they correspond to

by typing ‘describe’.

• xi may be used with any Stata command (not just logistic).

Controlling the omitted dummy
By default, i.varname omits the dummy corresponding to the smallest value of varname; for a string

variable, this is interpreted as dropping the first in an alphabetical, case-sensitive sort. xi provides two
alternatives to dropping the first: xi will drop the dummy corresponding to the most prevalent value of
varname, or xi will let you choose the particular dummy to be dropped.

To change xi’s behavior to dropping the most prevalent dummy, type
. char _dta[omit] prevalent

although whether you type “prevalent” or “yes” or anything else does not matter. Setting this charac-

teristic affects the expansion of all categorical variables in the dataset. If you resave your dataset, the

prevalent preference will be remembered. If you want to change the behavior back to the default drop-

the-first rule, type

. char _dta[omit]

to clear the characteristic.
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Once you set dta[omit], i.varname omits the dummy corresponding to the most prevalent value
of varname. Thus, the coefficients on the dummies have the interpretation of change from the most

prevalent group. For example,

. char _dta[omit] prevalent

. xi: regress y i.agegrp

might create Iagegrp 1 through Iagegrp 4, resulting in Iagegrp 2 being omitted if agegrp = 2

is most common (as opposed to the default dropping of Iagegrp 1). The model is then

y = 𝑏0 + 𝑏1 Iagegrp 1 + 𝑏3 Iagegrp 3 + 𝑏4 Iagegrp 4 + 𝑢

Then,
Predicted y for agegrp 1 = 𝑏0 + 𝑏1 Predicted y for agegrp 3 = 𝑏0 + 𝑏3
Predicted y for agegrp 2 = 𝑏0 Predicted y for agegrp 4 = 𝑏0 + 𝑏4

Thus, the model’s reported 𝑡 or 𝑍 statistics are for a test of whether each group is different from the most

prevalent group.

Perhaps you wish to omit the dummy for agegrp 3 instead. You do this by setting the variable’s omit
characteristic:

. char agegrp[omit] 3

This overrides dta[omit] if you have set it. Now, when you type

. xi: regress y i.agegrp

Iagegrp 3 will be omitted, and you will fit the model

y = 𝑏′
0 + 𝑏′

1 Iagegrp 1 + 𝑏′
2 Iagegrp 2 + 𝑏′

4 Iagegrp 4 + 𝑢

Later, if you want to return to the default omission, type

. char agegrp[omit]

to clear the characteristic.

In summary, i.varname omits the first group by default, but if you define

. char _dta[omit] prevalent

the default behavior changes to dropping the most prevalent group. Either way, if you define a charac-

teristic of the form

. char varname[omit] #

or, if varname is a string,

. char varname[omit] string-literal

the specified value will be omitted.

Examples: . char agegrp[omit] 1
. char race[omit] White (for race, a string variable)
. char agegrp[omit] (to restore default for agegrp)
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Categorical variable interactions
i.varname1*i.varname2 creates the dummy variables associated with the interaction of the categor-

ical variables varname1 and varname2. The identification rules—which categories are omitted—are the

same as those for i.varname. For instance, assume that agegrp takes on four values and race takes on
three values. Typing

. xi: regress y i.agegrp*i.race

results in

model: dummies for:

𝑦 = 𝑎 +𝑏2 Iagegrp 2 + 𝑏3 Iagegrp 3 + 𝑏4 Iagegrp 4 (agegrp)
+𝑐2 Irace 2 + 𝑐3 Irace 3 (race)
+𝑑22 IageXrac 2 2 + 𝑑23 IageXrac 2 3
+𝑑32 IageXrac 3 2 + 𝑑33 IageXrac 3 3 (agegrp*race)
+𝑑42 IageXrac 4 2 + 𝑑43 IageXrac 4 3
+𝑢

That is, typing

. xi: regress y i.agegrp*i.race

is the same as typing

. xi: regress y i.agegrp i.race i.agegrp*i.race

Although there are many other ways the interaction could have been parameterized, this method has the

advantage that you can test the joint significance of the interactions by typing

. testparm _IageXrac*

When you perform the estimation step, whether you use i.agegrp*i.race or i.race*i.agegrp
makes no difference (other than in the names given to the interaction terms; in the first case, the names

will begin with IageXrac; in the second, IracXage). Thus,

. xi: regress y i.race*i.agegrp

fits the same model.
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You may also include multiple interactions simultaneously:

. xi: regress y i.agegrp*i.race i.agegrp*i.sex

The model fit is

model: dummies for:

𝑦 = 𝑎 +𝑏2 Iagegrp 2 + 𝑏3 Iagegrp 3 + 𝑏4 Iagegrp 4 (agegrp)
+𝑐2 Irace 2 + 𝑐3 Irace 3 (race)
+𝑑22 IageXrac 2 2 + 𝑑23 IageXrac 2 3
+𝑑32 IageXrac 3 2 + 𝑑33 IageXrac 3 3 (agegrp*race)
+𝑑42 IageXrac 4 2 + 𝑑43 IageXrac 4 3
+𝑒2 Isex 2 (sex)
+𝑓22 IageXsex 2 2 + 𝑓23 IageXsex 2 3 + 𝑓24 IageXsex 2 4 (agegrp*sex)
+𝑢

The agegrp dummies are (correctly) included only once.

Interactions with continuous variables
i.varname1*varname2 (as distinguished from i.varname1*i.varname2—note the second i.) spec-

ifies an interaction of a categorical variable with a continuous variable. For instance,

. xi: regress y i.agegr*wgt

results in the model

𝑦 = 𝑎 +𝑏2 Iagegrp 2 + 𝑏3 Iagegrp 3 + 𝑏4 Iagegrp 4 (agegrp dummies)
+𝑐 wgt (continuous wgt effect)
+𝑑2 IageXwgt 2 + 𝑑3 IageXwgt 3 + 𝑑4 IageXwgt 4 (agegrp*wgt interactions)
+𝑢

A variation on this notation, using | rather than *, omits the agegrp dummies. Typing

. xi: regress y i.agegrp|wgt

fits the model

𝑦 = 𝑎′ +𝑐′ wgt (continuous wgt effect)
+𝑑′

2 IageXwgt 2 + 𝑑′
3 IageXwgt 3 + 𝑑′

4 IageXwgt 4 (agegrp*wgt interactions)
+𝑢′
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The predicted values of y are

agegrp*wgt model agegrp|wgt model

𝑦 = 𝑎 + 𝑐 wgt 𝑎′ + 𝑐′ wgt if agegrp = 1

𝑎 + 𝑐 wgt + 𝑏2 + 𝑑2 wgt 𝑎′ + 𝑐′wgt + 𝑑′
2 wgt if agegrp = 2

𝑎 + 𝑐 wgt + 𝑏3 + 𝑑3 wgt 𝑎′ + 𝑐′wgt + 𝑑′
3 wgt if agegrp = 3

𝑎 + 𝑐 wgt + 𝑏4 + 𝑑4 wgt 𝑎′ + 𝑐′wgt + 𝑑′
4 wgt if agegrp = 4

That is, typing

. xi: regress y i.agegrp*wgt

is equivalent to typing

. xi: regress y i.agegrp i.agegrp|wgt

In either case, you do not need to specify separately the continuous variable wgt; it is included automat-
ically.

Using xi: Interpreting output
. xi: regress mpg i.rep78
i.rep78 _Irep78_1-5 (naturally coded; _Irep78_1 omitted)
(output from regress appears )

Interpretation: i.rep78 expanded to the dummies Irep78 1, Irep78 2, . . . , Irep78 5. The num-
bers on the end are “natural” in the sense that Irep78 1 corresponds to rep78 = 1, Irep78 2 to
rep78 = 2, and so on. Finally, the dummy for rep78 = 1 was omitted.

. xi: regress mpg i.make
i.make _Imake_1-74 (_Imake_1 for make==AMC Concord omitted)
(output from regress appears )

Interpretation: i.make expanded to Imake 1, Imake 2, . . . , Imake 74. The coding is not natural
because make is a string variable. Imake 1 corresponds to one make, Imake 2 to another, and so on.
You can find out the coding by typing describe. Imake 1 for the AMC Concord was omitted.
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How xi names variables
By default, xi assigns to the dummy variables it creates names having the form

Istub groupid

You may subsequently refer to the entire set of variables by typing ‘Istub*’. For example,

name = I + stub + + groupid Entire set

Iagegrp 1 I agegrp 1 Iagegrp*
Iagegrp 2 I agegrp 2 Iagegrp*
IageXwgt 1 I ageXwgt 1 IageXwgt*
IageXrac 1 2 I ageXrac 1 2 IageXrac*
IageXrac 2 1 I ageXrac 2 1 IageXrac*

If you specify a prefix in the prefix(string) option, say, S, then xi will name the variables starting
with the prefix

Sstub groupid

xi as a command rather than a command prefix
xi can be used as a command prefix or as a command by itself. In the latter form, xi merely creates

the indicator and interaction variables. Typing

. xi: regress y i.agegrp*wgt
i.agegrp _Iagegrp_1-4 (naturally coded; _Iagegrp_1 omitted)
i.agegrp*wgt _IageXwgt_1-4 (coded as above)
(output from regress appears )

is equivalent to typing

. xi i.agegrp*wgt
i.agegrp _Iagegrp_1-4 (naturally coded; _Iagegrp_1 omitted)
i.agegrp*wgt _IageXwgt_1-4 (coded as above)
. regress y _Iagegrp* _IageXwgt*
(output from regress appears )

Warnings
1. xi creates new variables in your dataset; most are bytes, but interactions with continuous variables

will have the storage type of the underlying continuous variable. You may get the error message

“no room to add more variables” or “insufficient memory”. You may need to adjust the maxvar
setting or reset max memory if it has been set too low; see [U] 6 Managing memory.

2. When using xi with an estimation command, you may get the error message “unable to allo-

cate matrix”. This usually occurs because you attempted to create a matrix that is too large; see

[R] Limits.
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Stored results
xi stores the following characteristics:

dta[ xi Vars Prefix ] prefix names

dta[ xi Vars To Drop ] variables created

Also see
[U] 11.1.10 Prefix commands

[U] 20 Estimation and postestimation commands
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Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description
zinb fits a zero-inflated negative binomial (ZINB) model to overdispersed count data with excess zero

counts. The ZINB model assumes that the excess zero counts come from a logit or probit model and the

remaining counts come from a negative binomial model.

Quick start
Zero-inflated negative binomial model of y on x1 and x2 with inflation modeled using x3

zinb y x1 x2, inflate(x3)

And conduct likelihood-ratio test against ZIPmodel

zinb y x1 x2, inflate(x3) zip

Use a probit model instead of a logit model to predict excess zeros

zinb y x1 x2, inflate(x3) probit

Menu
Statistics > Count outcomes > Zero-inflated negative binomial regression

3299
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Syntax
zinb depvar [ indepvars ] [ if ] [ in ] [weight ] ,

inflate(varlist[ , offset(varname) ] | cons) [ options ]

options Description

Model
∗ inflate( ) equation that determines whether the count is zero

noconstant suppress constant term

exposure(varname𝑒) include ln(varname𝑒) in model with coefficient constrained to 1

offset(varname𝑜) include varname𝑜 in model with coefficient constrained to 1

constraints(constraints) apply specified linear constraints

probit use probit model to characterize excess zeros; default is logit

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, opg, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)
irr report incidence-rate ratios

zip perform ZIP likelihood-ratio test

nocnsreport do not display constraints

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

collinear keep collinear variables

coeflegend display legend instead of statistics

∗inflate(varlist[ , offset(varname) ] | cons) is required.
indepvars and varlist may contain factor variables; see [U] 11.4.3 Factor variables.

bayes, bootstrap, by, collect, fp, jackknife, rolling, statsby, and svy are allowed; see [U] 11.1.10 Prefix com-

mands. For more details, see [BAYES] bayes: zinb.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
vce(), zip, and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
collinear and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Options

� � �
Model �

inflate(varlist[ , offset(varname)] | cons) specifies the equation that determines whether the ob-
served count is zero. Conceptually, omitting inflate() would be equivalent to fitting the model

with nbreg.

inflate(varlist[, offset(varname)]) specifies the variables in the equation. You may optionally
include an offset for this varlist.

inflate( cons) specifies that the equation determining whether the count is zero contains only an
intercept. To run a zero-inflated model of depvar with only an intercept in both equations, type zinb
depvar, inflate( cons).

noconstant, exposure(varname𝑒), offset(varname𝑜), constraints(constraints); see [R] Esti-
mation options.

probit requests that a probit, instead of logit, model be used to characterize the excess zeros in the data.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), that al-
low for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods

(bootstrap, jackknife); see [R] vce option.

� � �
Reporting �

level(#); see [R] Estimation options.

irr reports estimated coefficients transformed to incidence-rate ratios, that is, 𝑒𝛽𝑖 rather than 𝛽𝑖. Stan-

dard errors and confidence intervals are similarly transformed. This option affects how results are

displayed, not how they are estimated or stored. irr may be specified at estimation or when replay-
ing previously estimated results.

zip requests that a likelihood-ratio test comparing the ZINB model with the zero-inflated Poisson model
be included in the output.

nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. These options are

seldom used.

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

The following options are available with zinb but are not shown in the dialog box:

collinear, coeflegend; see [R] Estimation options.
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Remarks and examples
Zero-inflated negative binomial (ZINB) models are used tomodel count data that have a higher fraction

of zeros than is likely to be generated by a standard negative binomial model. To account for excess zeros,

ZINBmodels assume that these excess zeros come from a model other than the negative binomial model.

A zero that comes from this other model is known as a “degenerate zero”.

The negative binomial overdispersion parameter, 𝛼, differentiates the ZINB model from the zero-

inflated Poisson (ZIP) model (see [R] zip). Here overdispersion refers to the fact that the negative binomial

variance is greater than its mean, whereas the Poisson variance is equal to its mean. Thus, values of𝛼 > 1

indicate overdispersion. The larger the 𝛼, the greater the negative binomial variance. See Methods and

formulas in [R] nbreg for further discussion of negative binomial overdispersion.

The zinb command fits ZINB models and provides two choices for modeling the excess zeros: the

default logit function or, when the probit option is specified, the probit function. Both functions are
symmetric about zero, but the logistic function has more area under the tails.

See Long (1997, 242–247) and Cameron and Trivedi (2005, 680–681) for a discussion of zero-

modified count models.

Example 1: Fitting a ZINB model
In example 1 of [R] zip, we fit a zero-inflated Poisson model using the zip command to the fictional

data on the number of fish caught by visitors to a national park. Let’s fit a ZINB model to these data.

Just like with zip, we use the required option inflate() to model whether a visitor fishes as a func-
tion of the number of accompanying children (child) andwhether the visitor is camping (camper). Next,
we assume the response variable, count, depends on whether the visitor used a live bait (livebait) and
the number of persons in the party (persons), which includes the visitor plus other adults and children.



zinb — Zero-inflated negative binomial regression 3303

. use https://www.stata-press.com/data/r18/fish
(Fictional fishing data)
. zinb count persons livebait, inflate(child camper)
Fitting constant-only model:
Iteration 0: Log likelihood = -519.33992
Iteration 1: Log likelihood = -451.38662
Iteration 2: Log likelihood = -444.49118
Iteration 3: Log likelihood = -442.96272
Iteration 4: Log likelihood = -442.71065
Iteration 5: Log likelihood = -442.66718
Iteration 6: Log likelihood = -442.6631
Iteration 7: Log likelihood = -442.66299
Iteration 8: Log likelihood = -442.66299
Fitting full model:
Iteration 0: Log likelihood = -442.66299 (not concave)
Iteration 1: Log likelihood = -432.83107 (not concave)
Iteration 2: Log likelihood = -426.32934
Iteration 3: Log likelihood = -413.75019
Iteration 4: Log likelihood = -403.09586
Iteration 5: Log likelihood = -401.56013
Iteration 6: Log likelihood = -401.54781
Iteration 7: Log likelihood = -401.54776
Iteration 8: Log likelihood = -401.54776
Zero-inflated negative binomial regression Number of obs = 250
Inflation model: logit Nonzero obs = 108

Zero obs = 142
LR chi2(2) = 82.23

Log likelihood = -401.5478 Prob > chi2 = 0.0000

count Coefficient Std. err. z P>|z| [95% conf. interval]

count
persons .9742984 .1034938 9.41 0.000 .7714543 1.177142
livebait 1.557523 .4124424 3.78 0.000 .7491503 2.365895

_cons -2.730064 .476953 -5.72 0.000 -3.664874 -1.795253

inflate
child 3.185999 .7468551 4.27 0.000 1.72219 4.649808
camper -2.020951 .872054 -2.32 0.020 -3.730146 -.3117567
_cons -2.695385 .8929071 -3.02 0.003 -4.44545 -.9453189

/lnalpha .5110429 .1816816 2.81 0.005 .1549535 .8671323

alpha 1.667029 .3028685 1.167604 2.380076

The coefficients in the first equation of the coefficient table, labeled count, correspond to the negative
binomial model for individuals who fished. For instance, among visitors who fished, using a live bait

increases the expected number of caught fish by a factor of exp(1.5575) ≈ 4.7, holding other covariates

constant.

The confidence interval for alpha indicates that the ZINB model is more appropriate than the ZIP

model. To confirm this, you can run zinb and specify the zip option to obtain the ZIP likelihood-ratio
test.
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The inflate equationmodels whether the visitor does not fish. We can use margins to obtain a better
understanding of how the inflate equation affects the occurrence of the excess zero counts. We specify

margins’s options dydx(child camper) and predict(pr). pr is predict’s option for estimating the
probability of a degenerate zero or, in our example, the probability of not fishing; see the margins section

in [R] zinb postestimation.

. margins, dydx(child camper) predict(pr)
Average marginal effects Number of obs = 250
Model VCE: OIM
Expression: Pr(count=0), predict(pr)
dy/dx wrt: child camper

Delta-method
dy/dx std. err. z P>|z| [95% conf. interval]

child .257531 .029941 8.60 0.000 .1988477 .3162144
camper -.1633578 .0503938 -3.24 0.001 -.2621277 -.0645878

The margins output tells us that a visitor is less likely to be visiting the park to fish if accompanied by
children and more likely to fish if camping.

You also may want to evaluate whether a standard negative binomial model is adequate to fit the data.

This can be done using information criteria; see example 2 in [R] zip.

Stored results
zinb stores the following in e():

Scalars

e(N) number of observations

e(N zero) number of zero observations

e(k) number of parameters

e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test

e(k aux) number of auxiliary parameters

e(k dv) number of dependent variables

e(df m) model degrees of freedom

e(ll) log likelihood

e(ll 0) log likelihood, constant-only model

e(df c) degrees of freedom for comparison test

e(N clust) number of clusters

e(chi2) 𝜒2

e(p) 𝑝-value for model test
e(chi2 cp) 𝜒2 for test of 𝛼 = 0

e(rank) rank of e(V)
e(ic) number of iterations

e(rc) return code

e(converged) 1 if converged, 0 otherwise
Macros

e(cmd) zinb
e(cmdline) command as typed

e(depvar) name of dependent variable

e(inflate) logit or probit
e(wtype) weight type

e(wexp) weight expression
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e(title) title in estimation output

e(clustvar) name of cluster variable

e(offset1) offset

e(offset2) offset for inflate()
e(chi2type) Wald or LR; type of model 𝜒2 test

e(chi2 cpt) Wald or LR; type of model 𝜒2 test corresponding to e(chi2 cp)
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(opt) type of optimization

e(which) max or min; whether optimizer is to perform maximization or minimization

e(ml method) type of ml method
e(user) name of likelihood-evaluator program

e(technique) maximization technique

e(properties) b V
e(predict) program used to implement predict
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(ilog) iteration log (up to 20 iterations)

e(gradient) gradient vector

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas
The zinb command maximizes a likelihood function that is a mixture of the logistic (or probit) and

negative binomial distributions. The logistic distribution models the unobserved process that creates the

excess zeros, and the negative binomial distribution models the counts. Define

𝜉𝛽
𝑗 = x𝑗β + offset

𝛽
𝑗

𝜉𝛾
𝑗 = z𝑗𝛄 + offset

𝛾
𝑗

𝜇𝑗 = exp(𝜉𝛽
𝑗 )

𝑝𝑗 = 1/(1 + 𝛼𝜇𝑗)
𝑚 = 1/𝛼

Here the vector x𝑗 contains the covariates specified in indepvars for the 𝑗th observation, and z𝑗 con-

tains the covariates specified in the inflate() option. Similarly, estimates for β are found in the first

equation of the zinb coefficient table (labeled after depvar), and the estimates for 𝛄 are found in the

second equation of the coefficient table (labeled inflate). The parameter 𝛼 is the negative binomial
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overdispersion parameter, and its estimate is the ancillary parameter labeled alpha in the coefficient

table. Parameters 𝑝𝑗, 𝑚, and 𝜇𝑗 are parameters of a negative binomial distribution; see Methods and

formulas in [R] nbreg for details.

The log likelihood maximized by zinb is

ln𝐿 = ∑
𝑗∈𝑆

𝑤𝑗 ln{𝐹𝑗 + (1 − 𝐹𝑗)𝑝𝑚
𝑗 } +

∑
𝑗∉𝑆

𝑤𝑗{ ln(1 − 𝐹𝑗) + lnΓ(𝑚 + 𝑦𝑗) − lnΓ(𝑦𝑗 + 1)

− lnΓ(𝑚) + 𝑚 ln𝑝𝑗 + 𝑦𝑗 ln(1 − 𝑝𝑗)}

where 𝑤𝑗 are the weights, 𝑆 is the set of observations for which the observed outcome 𝑦𝑗 = 0, and 𝐹𝑗 is

the logistic distribution function

𝐹𝑗 = 𝐹(𝜉𝛾
𝑗 ) = exp(𝜉𝛾

𝑗 )/{1 + exp(𝜉𝛾
𝑗 )}

or, if the probit option is specified, the standard normal distribution function

𝐹𝑗 = 𝐹(𝜉𝛾
𝑗 ) = Φ(𝜉𝛾

𝑗 )

From Long (1997), the variance of the mixture distribution is

Var(𝑦𝑗|x𝑖, z𝑖) = 𝜇𝑗(1 − 𝐹𝑗){1 + 𝜇𝑗(𝐹𝑗 + 𝛼)}

When 𝐹𝑗 is zero, we have the variance of the negative binomial distribution; when 𝐹𝑗 > 0, the variance

can exceed that of the negative binomial distribution.

This command supports the Huber/White/sandwich estimator of the variance and its clustered version

using vce(robust) and vce(cluster clustvar), respectively. See [P] robust, particularly Maximum

likelihood estimators and Methods and formulas.

zinb also supports estimation with survey data. For details on VCEs with survey data, see [SVY]Vari-
ance estimation.
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Also see
[R] zinb postestimation — Postestimation tools for zinb

[R] zip — Zero-inflated Poisson regression

[R] nbreg — Negative binomial regression

[R] poisson — Poisson regression

[R] tnbreg — Truncated negative binomial regression

[R] tpoisson — Truncated Poisson regression

[BAYES] bayes: zinb — Bayesian zero-inflated negative binomial regression

[SVY] svy estimation — Estimation commands for survey data

[XT] xtnbreg — Fixed-effects, random-effects, & population-averaged negative binomial models

[U] 20 Estimation and postestimation commands
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Postestimation commands predict margins Methods and formulas
References Also see

Postestimation commands
The following postestimation commands are available after zinb:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters

estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian infor-
mation criteria (AIC, CAIC, AICc, and BIC, respectively)

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estat (svy) postestimation statistics for survey data

estimates cataloging estimation results

etable table of estimation results
∗ forecast dynamic forecasts and simulations
∗ hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

∗ lrtest likelihood-ratio test

margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

predict number of events, incidence rates, probabilities, etc.

predictnl point estimates, standard errors, testing, and inference for generalized predictions

pwcompare pairwise comparisons of parameters

suest seemingly unrelated estimation

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

∗forecast, hausman, and lrtest are not appropriate with svy estimation results.
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predict

Description for predict
predict creates a new variable containing predictions such as numbers of events, incidence rates,

probabilities, linear predictions, and standard errors.

Menu for predict
Statistics > Postestimation

Syntax for predict
predict [ type ] newvar [ if ] [ in ] [ , statistic nooffset ]

predict [ type ] stub* [ if ] [ in ], scores

statistic Description

Main

n number of events; the default

ir incidence rate

pr probability of a degenerate zero

pr(n) probability Pr(𝑦𝑗 = n)
pr(a,b) probability Pr(a ≤ 𝑦𝑗 ≤ b)
xb linear prediction

stdp standard error of the linear prediction

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only for the estimation
sample.

Options for predict

� � �
Main �

n, the default, calculates the predicted number of events, which is (1−𝐹𝑗) exp(x𝑗β) if neither offset()
nor exposure()was specified when the model was fit, where 𝐹𝑗 is the predicted probability of a zero

outcome; (1−𝐹𝑗) exp(x𝑗β+offset
𝛽
𝑗 ) if offset()was specified; or (1−𝐹𝑗){ exp(x𝑗β)×exposure𝑗}

if exposure() was specified.

ir calculates the incidence rate, which is the predicted number of events when exposure is 1. This is
equivalent to specifying both the n and the nooffset options.

pr calculates the probability of a degenerate zero, predicted from the fitted degenerate distribution 𝐹𝑗 =
𝐹(z𝑗𝛄). If offset() was specified within the inflate() option, then 𝐹𝑗 = 𝐹(z𝑗𝛄 + offset

𝛾
𝑗 ) is

calculated.

pr(n) calculates the probability Pr(𝑦𝑗 = n), where n is a nonnegative integer that may be specified as
a number or a variable. Note that pr is not equivalent to pr(0).
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pr(a,b) calculates the probability Pr(a ≤ 𝑦𝑗 ≤ b), where a and b are nonnegative integers that may be
specified as numbers or variables;

b missing (b ≥ .) means +∞;

pr(20,.) calculates Pr(𝑦𝑗 ≥ 20);
pr(20,b) calculates Pr(𝑦𝑗 ≥ 20) in observations for which b ≥ . and calculates
Pr(20 ≤ 𝑦𝑗 ≤ b) elsewhere.
pr(.,b) produces a syntax error. Amissing value in an observation of the variable a causes a missing

value in that observation for pr(a,b).

xb calculates the linear prediction, which is x𝑗β if neither offset() nor exposure() was specified;

x𝑗β + offset
𝛽
𝑗 if offset() was specified; or x𝑗β + ln(exposure𝑗) if exposure() was specified; see

nooffset below.

stdp calculates the standard error of the linear prediction.

nooffset is relevant only if you specified offset() or exposure() when you fit the model. It modi-
fies the calculations made by predict so that they ignore the offset or exposure variable; the linear
prediction is treated as x𝑗β rather than as x𝑗β+offset

𝛽
𝑗 or x𝑗β+ ln(exposure𝑗). Specifying predict

..., nooffset is equivalent to specifying predict ..., ir.

scores calculates equation-level score variables.

The first new variable will contain 𝜕ln𝐿/𝜕(x𝑗β).
The second new variable will contain 𝜕ln𝐿/𝜕(z𝑗𝛄).
The third new variable will contain 𝜕ln𝐿/𝜕 ln𝛼.
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margins

Description for margins
margins estimates margins of response for number of events, incidence rates, probabilities, and linear

predictions.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist ] [ , options ]
margins [marginlist ] , predict(statistic ...) [ predict(statistic ...) ... ] [ options ]

statistic Description

n number of events; the default

ir incidence rate

pr probability of a degenerate zero

pr(n) probability Pr(𝑦𝑗 = n)
pr(a,b) probability Pr(a ≤ 𝑦𝑗 ≤ b)
xb linear prediction

stdp not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.

Methods and formulas
See Methods and formulas in [R] zinb for the model definition and notation.

The probabilities calculated using the pr(n) option are the probability Pr(𝑦𝑗 = n). These are calcu-
lated using

Pr(𝑦𝑗 = 0|x𝑗, z𝑗) = 𝐹𝑗 + (1 − 𝐹𝑗) 𝑝2(0|x𝑗)

Pr(𝑦𝑗 = n|x𝑗, z𝑗) = (1 − 𝐹𝑗) 𝑝2(n|x𝑗) for n = 1, 2, . . .

where 𝐹𝑗 is the probability of obtaining an observation from the degenerate distribution whose mass is

concentrated at zero, and 𝑝2(n|x𝑗) is the probability of 𝑦𝑗 = n from the nondegenerate, negative binomial

distribution. 𝐹𝑗 can be obtained by using the pr option.

See Cameron and Trivedi (2013, sec. 4.6) for further details.
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Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description
ziologit fits a model for an ordinal outcome with excess zeros, a higher fraction of zeros than would

be expected from a standard ordered logit model, also known as zero inflation. This model is known as

a zero-inflated ordered logit (ZIOL) model. In the context of ZIOL models, zero is the lowest outcome

category. The ZIOLmodel accounts for the zero inflation by assuming that the zero-valued outcomes come

from both a logit model and an ordered logit model, allowing potentially different sets of covariates for

each model.

Quick start
Zero-inflated ordered logit model of y on x1 and categorical variable a with excess zeros modeled using

x2
ziologit y x1 i.a, inflate(x2)

Add offset x3 to the ordered logit model
ziologit y x1 i.a, inflate(x2) offset(x3)

Model excess zeros using only a constant

ziologit y x1 i.a, inflate(_cons)

Model excess zeros with x2, and offset x5 while suppressing the constant term
ziologit y x1 i.a, inflate(x2, offset(x5) noconstant)

Account for complex sampling design using svyset data
svy: ziologit y x1 i.a, inflate(x2)

Menu
Statistics > Ordinal outcomes > Zero-inflated ordered logit regression
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Syntax
ziologit depvar [ indepvars ] [ if ] [ in ] [weight ] ,

inflate(varlist[ , noconstant offset(varname)] | cons) [ options ]

options Description

Model
∗ inflate( ) inflation equation that determines excess zero values

offset(varname) include varname in model with coefficient constrained to 1

constraints(constraints) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, opg, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)
nocnsreport do not display constraints

or report odds ratios

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

collinear keep collinear variables

coeflegend display legend instead of statistics

∗inflate(varlist[ , noconstant offset(varname) ] | cons) is required.
indepvars and varlist may contain factor variables; see [U] 11.4.3 Factor variables.

bayes, bootstrap, by, collect, fp, jackknife, rolling, statsby, and svy are allowed; see [U] 11.1.10 Prefix com-

mands. For more details, see [BAYES] bayes: ziologit.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
collinear and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Options

� � �
Model �

inflate(varlist[ , noconstant offset(varname)] | cons) specifies the inflation equation for the

logit model that determines the excess zero values; this option is required. Conceptually, omitting

inflate() would be equivalent to fitting the model with ologit; see [R] ologit.

inflate(varlist[ , noconstant offset(varname)]) specifies the independent variables in the in-
flation equation. To suppress the constant in this equation, specify the noconstant suboption. You
may optionally include an offset for this varlist; see offset(varname) in [R] Estimation options.

inflate( cons) specifies that the inflation equation contains only an intercept. To run a

zero-inflated model of depvar with only an intercept in both equations, type ziologit depvar,
inflate( cons).

offset(varname), constraints(constraints); see [R] Estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), that al-
low for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods

(bootstrap, jackknife); see [R] vce option.

� � �
Reporting �

level(#), nocnsreport; see [R] Estimation options.

or reports the estimated coefficients transformed to odds ratios, that is, 𝑒𝑏 rather than 𝑏. Standard errors
and confidence intervals are similarly transformed. This option affects how results are displayed, not

how they are estimated. or may be specified at estimation or when replaying previously estimated
results.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. These options are

seldom used.

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

The following options are available with ziologit but are not shown in the dialog box:

collinear, coeflegend; see [R] Estimation options.



ziologit — Zero-inflated ordered logit regression 3316

Remarks and examples
ZIOLmodels (Kelley andAnderson 2008) are used when the outcome of interest is an ordinal response

with a higher fraction of observations in the lowest level than would be expected from a standard ordered

logit model. The observations in the lowest category are often referred to as zeros because they typically

correspond to the absence of a behavior or trait. Examples include measurements of symptoms, diet,

exercise, drug use, and other ordinal outcomes where the lowest level is “none” or “never”.

With ordinal outcomes, larger values of the response variable represent higher outcome levels, but

the precise numeric value is irrelevant. For consistency, we will refer to the lowest category as zero

regardless of whether that outcome takes the number 0 in the dataset.

The presence of a high fraction of zeros, also known as zero inflation, is driven by the fact that

the lowest-level observations represent two latent (unobservable) groups: subjects with excess zeros

and subjects with conditional zeros. Excess zeros are subjects who are not susceptible to the outcome,

whereas conditional zeros are susceptible to higher outcomes even though they currently demonstrate

zero response. For example, if the outcome is alcohol consumption, a teetotaler who completely abstains

from alcohol would be an excess zero, whereas a drinker who chose not to drink on the day of the survey

would be a conditional zero.

To determine susceptibility (that is, to identify excess zeros), ZIOL regression uses a logit model for the

inflation equation. For the main regression that determines the ordinal outcome of susceptible subjects,

ZIOL uses an ordered logit model. The equation for the main regression is sometimes referred to as

the intensity equation. These two equations can have different sets of covariates and different offsets.

Parameters can be reported as coefficients or odds ratios with option or. See Methods and formulas for

more details.

ZIOL models are similar in spirit to zero-inflated ordered probit (ZIOP) models (see [R] zioprobit),

which use a probit model for the inflation equation and an ordered probit model for the intensity equation.

Unlike ZIOPmodels, the results from ZIOLmodels can be presented as odds ratios. As such, ZIOLmodels

often appeal to epidemiologists and health researchers, whereas ZIOP models are traditionally used by

economists and social scientists. In general, the two types of models tend to produce similar predictions

and yield similar inference.

In the context of ZIOL models, the excess-zero or “always-zero” group is often called the nonsus-

ceptible group, and, likewise, the other group is called the susceptible group. In the context of ZIOP

models, the terms “nonparticipation” and “participation” are used to refer to the groups. We will use

both terminologies interchangeably depending on the context.

The ordered logit model is not nested within the ZIOL model, which means that a likelihood-ratio

test cannot be used to check whether a standard ordered logit model is adequate. Instead, one can use

information criteria; see example 2 in [R] zip.
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Example 1: Zero-inflated ordered logit model
We use the fictional data on cigarette consumption from example 1 in [R] zioprobit. In that example,

we fit a ZIOPmodel to these data; here we fit a ZIOLmodel. Both models are appropriate for analyzing this

zero-inflated ordinal outcome, but the ZIOP model is more likely to be used by an economist studying

consumer purchasing patterns, while the ZIOL model is more likely to be used by an epidemiologist

studying smoking behavior.

The outcome of interest, tobacco, represents daily cigarette consumption as an ordinal response with
four levels: 0 indicates “no cigarettes”, and responses 1 through 3 indicate increasing cigarette consump-

tion. More than half of the respondents reported no cigarette consumption, and we suspect that these re-

spondents belong to one of two latent groups. Individuals in the first group are excess zeros, which is to

say that they are genuine nonsmokers and thus are not susceptible to cigarette consumption. Individuals

in the second group are would-be smokers with no current smoking activity but who might smoke, say,

if the price of cigarettes falls or their income increases. These individuals are called conditional zeros

because they demonstrate zero cigarette consumption, conditional on being susceptible to smoking. We

suspect that these two types of zeros are driven by different patterns of behavior; hence, we choose the

ZIOLmodel over the traditional ordered logit model.

Here the inflation (logit) equation corresponds to the decision to smoke. The intensity (ordered logit)

equation corresponds to the level of cigarette consumption by a smoker or would-be smoker. The inten-

sity equation includes covariates for education in years (education), annual income in tens of thousands
of dollars (income), age in decades (age), and gender (female). The inflation equation includes all the
covariates from the intensity equation, plus indicators for whether either of the respondent’s parents

smoked (parent) and whether the respondent’s religion discourages smoking (religion). Covariates
for the intensity equation are specified in the ziologit command statement directly after the dependent
variable tobacco. Covariates for the inflation equation are specified in the required inflate() option.
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. use https://www.stata-press.com/data/r18/tobacco
(Fictional tobacco consumption data)
. ziologit tobacco education income age i.female,
> inflate(education income age i.female i.parent i.religion)
Iteration 0: Log likelihood = -15877.562 (not concave)
Iteration 1: Log likelihood = -13082.531 (not concave)
Iteration 2: Log likelihood = -12316.574 (not concave)
Iteration 3: Log likelihood = -11686.438 (not concave)
Iteration 4: Log likelihood = -11214.794
Iteration 5: Log likelihood = -9857.4914
Iteration 6: Log likelihood = -8355.1808
Iteration 7: Log likelihood = -7805.3902
Iteration 8: Log likelihood = -7658.2562
Iteration 9: Log likelihood = -7652.5121
Iteration 10: Log likelihood = -7652.4891
Iteration 11: Log likelihood = -7652.4891
Zero-inflated ordered logit regression Number of obs = 15,000

Wald chi2(4) = 2143.69
Log likelihood = -7652.4891 Prob > chi2 = 0.0000

tobacco Coefficient Std. err. z P>|z| [95% conf. interval]

tobacco
education .9239328 .0202141 45.71 0.000 .8843139 .9635516

income 1.289223 .0285828 45.10 0.000 1.233202 1.345244
age -1.393183 .0352799 -39.49 0.000 -1.462331 -1.324036

female
Female -.7190566 .0755389 -9.52 0.000 -.8671101 -.5710032

inflate
education -.1602718 .0046406 -34.54 0.000 -.1693671 -.1511765

income -.1922987 .007553 -25.46 0.000 -.2071024 -.177495
age .313469 .0152296 20.58 0.000 .2836196 .3433184

female
Female -.4400725 .0516756 -8.52 0.000 -.5413548 -.3387902

parent
Smoking 1.282534 .0527674 24.31 0.000 1.179112 1.385956

religion
Discourag.. -.5387562 .0832958 -6.47 0.000 -.7020129 -.3754995

_cons 2.088609 .0984716 21.21 0.000 1.895609 2.28161

/cut1 5.327041 .1431499 5.046472 5.607609
/cut2 14.6561 .3250778 14.01896 15.29324
/cut3 20.28054 .4446689 19.409 21.15207

The first section of the coefficient table, labeled tobacco, corresponds to the tobacco intensity equa-
tion and contains coefficients from the ordered logit model fit to susceptible subjects. The second section,

labeled inflate, corresponds to the inflation equation and contains coefficients from the logit model

for susceptibility. ZIOLmodels allow different sets of covariates in the inflation and intensity equations,

but when a variable is included in both equations, it is possible for the coefficients to have opposite

signs. The third section of the coefficient table contains the cutpoints from the ordered logit model. See

Remarks and examples in [R] ologit for an explanation of cutpoints.
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Compared with the ZIOP model from example 1 in [R] zioprobit, the coefficients here are larger in

absolute value, but the 𝑧 scores and 𝑝-values are similar. This is consistent with the fact that the logistic
distribution used by ZIOL has heavier tails than the normal distribution used by ZIOP. Perhaps the most

important difference between these two models is that the estimated coefficients from the ZIOP model

are difficult to interpret, but the coefficients from the ZIOL model can be exponentiated and reported as

odds ratios with the or option.

We replay our results specifying or:

. ziologit, or
Zero-inflated ordered logit regression Number of obs = 15,000

Wald chi2(4) = 2143.69
Log likelihood = -7652.4891 Prob > chi2 = 0.0000

tobacco Odds ratio Std. err. z P>|z| [95% conf. interval]

tobacco
education 2.519178 .0509228 45.71 0.000 2.421323 2.620989

income 3.629966 .1037545 45.10 0.000 3.432202 3.839125
age .2482837 .0087594 -39.49 0.000 .2316957 .2660593

female
Female .4872117 .0368034 -9.52 0.000 .420164 .5649584

inflate
education .8519122 .0039533 -34.54 0.000 .8441989 .8596959

income .8250604 .0062317 -25.46 0.000 .8129364 .8373652
age 1.368163 .0208365 20.58 0.000 1.327928 1.409618

female
Female .6439897 .0332785 -8.52 0.000 .5819593 .712632

parent
Smoking 3.605764 .1902668 24.31 0.000 3.251484 3.998647

religion
Discourag.. .5834735 .0486009 -6.47 0.000 .4955867 .6869461

_cons 8.07368 .7950279 21.21 0.000 6.656599 9.792435

/cut1 5.327041 .1431499 5.046472 5.607609
/cut2 14.6561 .3250778 14.01896 15.29324
/cut3 20.28054 .4446689 19.409 21.15207

Note: Estimates are transformed only in the first 2 equations to odds ratios.
Note: _cons estimates baseline odds.
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Examining the odds ratios from the tobacco intensity equation, we see that a one-unit increase in
income, which corresponds to an increase of $10,000 in annual income, raises a smoker’s odds of in-
creased cigarette consumption by a factor of 3.63. Looking at the inflation equation, we see that a one-unit

increase in income lowers the odds of being susceptible to smoking by a factor of 0.825. This suggests
that wealthier individuals are less likely to smoke (consistent with income acting as a proxy for health
consciousness), but if they do decide to smoke, they tend to smoke more cigarettes (perhaps because they

can afford them).

Stored results
ziologit stores the following in e():

Scalars

e(N) number of observations

e(N zero) number of zeros or lowest-category observations

e(k cat) number of categories

e(k) number of parameters

e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test

e(k aux) number of auxiliary parameters

e(k dv) number of dependent variables

e(df m) model degrees of freedom

e(ll) log likelihood

e(N clust) number of clusters

e(chi2) 𝜒2

e(p) 𝑝-value for model test
e(rank) rank of e(V)
e(ic) number of iterations

e(rc) return code

e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) ziologit
e(cmdline) command as typed

e(depvar) name of dependent variable

e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(clustvar) name of cluster variable

e(offset1) offset

e(offset2) offset for inflate()
e(chi2type) Wald or LR; type of model 𝜒2 test

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(opt) type of optimization

e(which) max or min; whether optimizer is to perform maximization or minimization

e(ml method) type of ml method
e(user) name of likelihood-evaluator program

e(technique) maximization technique

e(properties) b V
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(marginsdefault) default predict() specification for margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved
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Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(ilog) iteration log (up to 20 iterations)

e(gradient) gradient vector

e(cat) category values

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas
The modern class of zero-inflated models was originally developed by Lambert (1992) to address the

problem of excess zeros in count data (see [R] zip). This model framework has been extended to ordinal

outcomes with the ZIOLmodel by Kelley and Anderson (2008).

The precise numeric value of an ordinal outcome is irrelevant, so without loss of generality we con-

sider an ordinal response variable 𝑌 with levels coded as 0, 1, 2, . . . , 𝐻. The first step in the ZIOLmodel

is to determine susceptibility. Let 𝑠𝑗 = 1 if the 𝑗th individual is susceptible to exhibiting a nonzero
response, and let 𝑠𝑗 = 0 if the 𝑗th individual is an excess zero. (Similarly, using alternative terminol-
ogy, let individuals with 𝑠𝑗 = 1 belong to the participation group and those with 𝑠𝑗 = 0 belong to the

nonparticipation group.) The ZIOL inflation equation uses a logit model to determine the probability of

susceptibility (or participation) as

Pr (𝑠𝑗 = 1|z𝑗) = 𝐹 (z𝑗𝛄) (1)

z𝑗 is a vector of covariates that determines susceptibility, 𝛄 is a vector of coefficients that have to be

estimated, and 𝐹(⋅) is the logistic distribution function: 𝐹(𝑥) = 𝑒𝑥/(1 + 𝑒𝑥).
Next, conditioning on 𝑠𝑗 = 1, outcome intensity levels ̃𝑦𝑗 are modeled using an ordered logit model

whose levels may also include 0. The corresponding probabilities are given by

Pr ( ̃𝑦𝑗 = ℎ|𝑠𝑗 = 1, x𝑗) = 𝐹 (𝜅ℎ − x𝑗β) − 𝐹 (𝜅ℎ−1 − x𝑗β) ℎ = 0, 1, . . . , 𝐻 (2)

x𝑗 is a vector of covariates that determine intensity (which can be different from z𝑗), β is a vector of

coefficients to be estimated, and cutpoints 𝜅ℎ are boundary parameters to be estimated (subject to 𝜅−1 =
−∞, 𝜅𝐻 = +∞). These cutpoints take the place of an intercept.

The observed response variable is 𝑦𝑗 = 𝑠𝑗 ̃𝑦𝑗. Thus, a zero outcome occurswhen 𝑠𝑗 = 0 (the individual

is an excess zero) or when 𝑠𝑗 = 1 and ̃𝑦𝑗 = 0 (the individual is a conditional zero). To observe a positive

𝑦𝑗, there is a joint requirement that 𝑠𝑗 = 1 and ̃𝑦𝑗 > 0.
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The distribution of 𝑌 is given by

Pr(𝑌 ) = {Pr(𝑦𝑗 = 0|z𝑗, x𝑗)
Pr(𝑦𝑗 = ℎ|z𝑗, x𝑗) ℎ = 1, 2, . . . , 𝐻

= {Pr(𝑠𝑗 = 0|z𝑗) + Pr(𝑠𝑗 = 1|z𝑗)Pr( ̃𝑦𝑗 = 0|𝑠𝑗 = 1, x𝑗)
Pr(𝑠𝑗 = 1|z𝑗)Pr( ̃𝑦𝑗 = ℎ|𝑠𝑗 = 1, x𝑗) ℎ = 1, 2, . . . , 𝐻

(3)

The probability of zero outcome has been inflated because it is the sum of the probability of zero intensity

from the ordered logit model and the probability of nonsusceptibility from the logit model.

Substituting (1) and (2) in (3), we get

Pr(𝑌 ) =
⎧{
⎨{⎩

Pr(𝑦𝑗 = 0|z𝑗, x𝑗)
Pr(𝑦𝑗 = ℎ|z𝑗, x𝑗) ℎ = 1, 2, . . . , 𝐻 − 1
Pr(𝑦𝑗 = 𝐻|z𝑗, x𝑗)

=
⎧{
⎨{⎩

{1 − 𝐹 (z𝑗𝛄)} + 𝐹(z𝑗𝛄) 𝐹(𝜅0 − x𝑗β)
𝐹(z𝑗𝛄) {𝐹(𝜅ℎ − x𝑗β) − 𝐹(𝜅ℎ−1 − x𝑗β)} ℎ = 1, 2, . . . , 𝐻 − 1
𝐹(z𝑗𝛄) {1 − 𝐹(𝜅𝐻−1 − x𝑗β)}

(4)

If the offset() option is specified, x𝑗β in the intensity equation is replaced with x𝑗β + offset
𝛽
𝑗 . If the

offset() suboption is specified in option inflate(), z𝑗𝛄 in the inflation equation is replaced with

z𝑗𝛄 + offset
𝛾
𝑗 .

The log-likelihood function is

ln 𝐿 =
𝑁

∑
𝑗=1

𝑤𝑗

𝐻
∑
ℎ=0

𝐼 (𝑦𝑗 = ℎ) ln{Pr (𝑦𝑗 = ℎ|z𝑗, x𝑗)}

where 𝑤𝑗 is an optional weight for the 𝑗th observation and

𝐼 (𝑦𝑗 = ℎ) = {1 if 𝑦𝑗 = ℎ
0 otherwise

The choice between the ZIOL model and the ordered logit model cannot be made using a likelihood-

ratio test because the two hypotheses are not nested in the usual sense of parameter restrictions. The

inflation effect is removed, and all subjects are deemed susceptible when z𝑗𝛄 → ∞, a condition that

cannot be imposed. To compare the fits of nonnested models, you can use estat ic to display informa-
tion criteria (see [R] estat ic).

This command supports the Huber/White/sandwich estimator of the variance and its clustered version

with vce(robust) and vce(cluster clustvar), respectively. See [P] robust, particularly Maximum

likelihood estimators and Methods and formulas.

ziologit also supports estimation with survey data. For details on VCEs with survey data, see

[SVY] Variance estimation.
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Postestimation commands predict margins Remarks and examples
Methods and formulas Reference Also see

Postestimation commands
The following postestimation commands are available after ziologit:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters

estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian infor-
mation criteria (AIC, CAIC, AICc, and BIC, respectively)

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estat (svy) postestimation statistics for survey data

estimates cataloging estimation results

etable table of estimation results
∗ forecast dynamic forecasts and simulations
∗ hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

∗ lrtest likelihood-ratio test

margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

predict probabilities, linear predictions and their SEs, etc.

predictnl point estimates, standard errors, testing, and inference for generalized predictions

pwcompare pairwise comparisons of parameters

suest seemingly unrelated estimation

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

∗forecast, hausman, and lrtest are not appropriate with svy estimation results.

3324
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predict

Description for predict
predict creates a new variable containing predictions such as probabilities, linear predictions, and

standard errors.

Menu for predict
Statistics > Postestimation

Syntax for predict
predict [ type ] { stub* | newvar | newvarlist } [ if ] [ in ] [ , statistic
outcome(outcome) nooffset ]

predict [ type ] stub* [ if ] [ in ], scores

statistic Description

Main

pmargin marginal probabilities of levels, Pr(𝑦𝑗 = ℎ); the default
pjoint1 joint probabilities of levels and susceptibility, Pr(𝑦𝑗 = ℎ, 𝑠𝑗 = 1)
pcond1 probabilities of levels conditional on susceptibility, Pr(𝑦𝑗 = ℎ|𝑠𝑗 = 1)
ps probability of susceptibility, Pr(𝑠𝑗 = 1)
pns probability of nonsusceptibility, Pr(𝑠𝑗 = 0)
xb linear prediction

xbinfl linear prediction for inflation equation

stdp standard error of the linear prediction

stdpinfl standard error of the linear prediction for inflation equation

If you do not specify outcome(), pmargin, pjoint1, and pcond1 (with one new variable specified) assume outcome(#1).

You specify one or 𝑘 new variables with pmargin, pjoint1, and pcond1, where 𝑘 is the number of outcomes.

You specify one new variable with ps, pns, xb, xbinfl, stdp, and stdpinfl.

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for the estimation
sample.
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Options for predict

� � �
Main �

pmargin, the default, calculates the predicted marginal probabilities of outcome levels, Pr(𝑦𝑗 = ℎ).
pjoint1 calculates the predicted joint probabilities of outcome levels and susceptibility, Pr(𝑦𝑗 = ℎ, 𝑠𝑗 =

1).
pcond1 calculates the predicted probabilities of outcome levels conditional on susceptibility, Pr(𝑦𝑗 =

ℎ|𝑠𝑗 = 1).
With pmargin, pjoint1, and pcond1, you can compute predicted probabilities for one or for all

outcome levels. When you specify one new variable, predict computes probabilities for the first
outcome level. You can specify the outcome(#𝑖) option to obtain probabilities for the 𝑖th level.

When you specify multiple new variables or a stub, predict computes probabilities for all outcome
levels. The behavior of predict with one new variable is equivalent to specifying outcome(#1).

ps and pns calculate the predicted marginal probability of susceptibility [Pr(𝑠𝑗 = 1)] and of nonsuscep-
tibility [Pr(𝑠𝑗 = 0)], respectively.
In econometrics literature, probabilities of susceptibility and nonsusceptibility are known as proba-

bilities of participation and nonparticipation. Similarly to predict after zioprobit, you can use
options ppar and pnpar to compute these probabilities. Options ppar and pnpar produce identi-

cal results to the respective options ps and pns but label new variables as Pr(participation) and
Pr(nonparticipation) instead of Pr(susceptible) and Pr(nonsusceptible).

xb calculates the linear prediction for the ordered logit equation, which is x𝑗β if offset() was not

specified with ziologit and is x𝑗β + offset
𝛽
𝑗 if offset() was specified.

xbinfl calculates the linear prediction for the inflation equation, which is z𝑗𝛄 if offset() was not

specified in inflate() and is z𝑗𝛄 + offset
𝛾
𝑗 if offset() was specified in inflate().

stdp calculates the standard error of the linear prediction for the ordered logit equation.

stdpinfl calculates the standard error of the linear prediction for the inflation equation.

outcome(outcome) specifies the outcome for which predicted probabilities are to be calculated.

outcome() should contain either one value of the dependent variable or one of #1, #2, . . . , with #1
meaning the first category of the dependent variable, #2meaning the second category, etc. outcome()
is allowed only with pmargin, pjoint1, and pcond1.

nooffset is relevant only if you specified offset(varname) with ziologit or within the inflate()
option. It modifies the calculations made by predict so that they ignore the offset variable; that is,
the linear prediction for the main regression equation is treated as x𝑗β rather than as x𝑗β + offset

𝛽
𝑗

and the linear prediction for the inflation equation is treated as z𝑗𝛄 rather than as z𝑗𝛄 + offset
𝛾
𝑗 .

scores calculates equation-level score variables.

The first new variable will contain 𝜕 ln𝐿/𝜕(x𝑗β). In the absence of independent variables in the main
equation, this variable is not stored.

The second new variable will contain 𝜕 ln𝐿/𝜕(z𝑗𝛄).
When the dependent variable takes 𝑘 different values, the third new variable through new variable

𝑘 + 1 will contain 𝜕 ln𝐿/𝜕(𝜅ℎ) for ℎ = 0, 1, . . . , 𝑘 − 2.
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margins

Description for margins
margins estimates margins of response for probabilities and linear predictions.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist ] [ , options ]
margins [marginlist ] , predict(statistic ...) [ predict(statistic ...) ... ] [ options ]

statistic Description

default marginal probabilities for each outcome

pmargin marginal probabilities of levels, Pr(𝑦𝑗 = ℎ); the default
pjoint1 joint probabilities of levels and susceptibility, Pr(𝑦𝑗 = ℎ, 𝑠𝑗 = 1)
pcond1 probabilities of levels conditional on susceptibility, Pr(𝑦𝑗 = ℎ|𝑠𝑗 = 1)
ps probability of susceptibility, Pr(𝑠𝑗 = 1)
pns probability of nonsusceptibility, Pr(𝑠𝑗 = 0)
xb linear prediction

xbinfl linear prediction for inflation equation

stdp not allowed with margins
stdpinfl not allowed with margins

pmargin, pjoint1, and pcond1 default to the first outcome.

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.
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Remarks and examples
The ZIOL model allows all the predictions and marginal effects available with the standard ologit

model (see [R] ologit postestimation), along with additional predictions and marginal effects related to

the inflation equation for susceptibility. The probabilities of susceptibility and nonsusceptibility can be

calculated using options ps and pns, respectively. If you prefer an alternative terminology of probabilities
of participation and nonparticipation, you can instead use options ppar and pnpar, which will produce
identical numerical results but label variables as Pr(participation) and Pr(nonparticipation)
instead of Pr(susceptible) and Pr(nonsusceptible).

Example 1: Average marginal effect of gender on probability of nonsusceptibility
In example 1 of [R] ziologit, we fit a model for levels of cigarette consumption.

. use https://www.stata-press.com/data/r18/tobacco
(Fictional tobacco consumption data)
. ziologit tobacco education income age i.female,
> inflate(education income age i.female i.parent i.religion)
(output omitted )

This model parallels the zero-inflated ordered probit (ZIOP) model that was fit in example 1 of [R] zio-

probit.

To continue the comparison between the ZIOL and ZIOPmodels, we re-create example 1 from [R] zio-

probit postestimation by using margins to estimate the average marginal effect of gender on the prob-
ability of nonsusceptibility (being an excess zero) for individuals with a college degree (17 years of

education) and a smoking parent.

. margins, predict(pns) dydx(female) at(education = 17 parent = 1)
Average marginal effects Number of obs = 15,000
Model VCE: OIM
Expression: Pr(nonsusceptible), predict(pns)
dy/dx wrt: 1.female
At: education = 17

parent = 1

Delta-method
dy/dx std. err. z P>|z| [95% conf. interval]

female
Female .085421 .010096 8.46 0.000 .0656333 .1052087

Note: dy/dx for factor levels is the discrete change from the base level.

Despite the differences between the ZIOL and ZIOP models, the conclusion is the same: women with a

college degree and a smoking parent are expected to have an approximately 8.5% higher chance of being

genuine nonsmokers (excess zeros) than comparable men.

Example 2: Predicted probabilities of conditional zeros
Next, we consider the effect of income on the probability of zero tobacco consumption, conditional

on susceptibility. These would-be smokers are known as conditional zeros. In example 1 of [R] ziologit,

we saw that increasing income raises a smoker’s odds of increased tobacco consumption dramatically,

so we expect to see a larger fraction of conditional zeros at the lower end of the income scale.
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We examine conditional probabilities of zero consumption for incomes ranging from $10,000 to

$60,000, and we use the noatlegend option to suppress the default legend because we know the values

1 to 6 correspond to income in tens of thousands of dollars.

. margins, predict(pcond1 outcome(0)) at(income = (1/6)) noatlegend
Predictive margins Number of obs = 15,000
Model VCE: OIM
Expression: Pr(tobacco=0|susceptible=1), predict(pcond1 outcome(0))

Delta-method
Margin std. err. z P>|z| [95% conf. interval]

_at
1 .5923634 .0027586 214.73 0.000 .5869566 .5977702
2 .5393818 .0025948 207.87 0.000 .534296 .5444676
3 .4854668 .0024651 196.94 0.000 .4806354 .4902982
4 .4306299 .0023953 179.78 0.000 .4259352 .4353245
5 .3741538 .0024547 152.42 0.000 .3693427 .3789649
6 .3152985 .0026294 119.91 0.000 .3101449 .320452

The influence of income is dramatic: susceptible individuals (potential smokers) who earn $10,000 a

year are almost twice as likely to refrain from smoking as potential smokers who earn $60,000 per year

(59% versus 32%).

Methods and formulas
See Methods and formulas in [R] ziologit for the model definition and notation. Specifically, see

(1) for the formula for the probability of susceptibility, Pr(𝑠𝑗 = 1|z𝑗); see (2) for the formula for the
probabilities of outcome levels conditional on susceptibility, Pr(𝑦𝑗 = ℎ|𝑠𝑗 = 1, x𝑗); and see (4) for the
formula for the marginal probabilities of outcome levels, Pr(𝑦𝑗 = ℎ|z𝑗, x𝑗).

The joint probability of susceptibility and outcome 𝑦𝑗 = ℎ can be expressed as

Pr(𝑦𝑗 = ℎ, 𝑠𝑗 = 1|z𝑗, x𝑗) = Pr (𝑠𝑗 = 1|z𝑗)Pr(𝑦𝑗 = ℎ|𝑠𝑗 = 1, x𝑗)

for ℎ = 0, 1, . . . , 𝐻.

Reference
Kelley, M. E., and S. J. Anderson. 2008. Zero inflation in ordinal data: Incorporating susceptibility to response through

the use of a mixture model. Statistics in Medicine 27: 3674–3688. https://doi.org/10.1002/sim.3267.

Also see
[R] ziologit — Zero-inflated ordered logit regression

[U] 20 Estimation and postestimation commands
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Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description
zioprobit fits a model for an ordinal outcome with excess zeros, a higher fraction of zeros than

would be expected from a standard ordered probit model, also known as zero inflation. This model is

known as a zero-inflated ordered probit (ZIOP) model. In the context of ZIOP models, zero is an actual

0 value or the lowest outcome category. The ZIOP model accounts for the zero inflation by assuming

that the zero-valued outcomes come from both a probit model and an ordered probit model, allowing

potentially different sets of covariates for each model.

Quick start
Zero-inflated ordered probit model of y on x1 and categorical variable awith excess zeros modeled using

x2
zioprobit y x1 i.a, inflate(x2)

Add offset x3 to the ordered probit model
zioprobit y x1 i.a, inflate(x2) offset(x3)

Model excess zeros using only a constant

zioprobit y x1 i.a, inflate(_cons)

Model excess zeros with x2, and offset x5 while suppressing the constant term
zioprobit y x1 i.a, inflate(x2, offset(x5) noconstant)

Account for complex sampling design using svyset data
svy: zioprobit y x1 i.a, inflate(x2)

Menu
Statistics > Ordinal outcomes > Zero-inflated ordered probit regression
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Syntax
zioprobit depvar [ indepvars ] [ if ] [ in ] [weight ] ,

inflate(varlist[ , noconstant offset(varname)] | cons) [ options ]

options Description

Model
∗ inflate( ) inflation equation that determines excess zero values

offset(varname) include varname in model with coefficient constrained to 1

constraints(constraints) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, opg, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)
nocnsreport do not display constraints

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

collinear keep collinear variables

coeflegend display legend instead of statistics

∗inflate(varlist[ , noconstant offset(varname) ] | cons) is required.
indepvars and varlist may contain factor variables; see [U] 11.4.3 Factor variables.

bayes, bootstrap, by, collect, fp, jackknife, rolling, statsby, and svy are allowed; see [U] 11.1.10 Prefix com-

mands. For more details, see [BAYES] bayes: zioprobit.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
collinear and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.



zioprobit — Zero-inflated ordered probit regression 3332

Options

� � �
Model �

inflate(varlist[ , noconstant offset(varname)] | cons) specifies the inflation equation for the

probit model that determines the excess zero values; this option is required. Conceptually, omitting

inflate() would be equivalent to fitting the model with oprobit; see [R] oprobit.

inflate(varlist[ , noconstant offset(varname)]) specifies the independent variables in the in-
flation equation. To suppress the constant in this equation, specify the noconstant suboption. You
may optionally include an offset for this varlist; see offset(varname) in [R] Estimation options.

inflate( cons) specifies that the inflation equation contains only an intercept. To run a zero-

inflated model of depvar with only an intercept in both equations, type zioprobit depvar,
inflate( cons).

offset(varname), constraints(constraints); see [R] Estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), that al-
low for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods

(bootstrap, jackknife); see [R] vce option.

� � �
Reporting �

level(#), nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. These options are

seldom used.

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

The following options are available with zioprobit but are not shown in the dialog box:

collinear, coeflegend; see [R] Estimation options.

Remarks and examples
ZIOPmodels are used when the outcome of interest is an ordinal response variable and the data exhibit

a high fraction of observations in the lowest category or what we will refer to from now on as “zero” but

without quotes. Like the ordered probit model, the actual values taken by the ordinal response variable

are irrelevant. While the outcome is typically coded as 0, 1, 2, . . . , 𝐻, zioprobit interprets the lowest
value present in the dataset as 0 to be consistent with the original derivation of the model and subsequent

applications.
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Like all zero-inflated models, the ZIOPmodel is an alternative when the data exhibit a higher fraction

of zero-valued outcomes than is likely compatible with an ordered probit model. This concentration of

zeros is referred to as zero inflation. Inflation is assumed to occur in the lowest value to ensure that

shifting the levels of the ordinal response variable by a constant will not affect the estimated parameters

in the model. This is common in ordered probit models; see [R] oprobit.

Without loss of generality, we consider an ordinal response variable with levels 0, 1, 2, . . . , 𝐻. Tradi-

tional ordered probit models treat all observations with zero-valued outcomes as a homogeneous group.

By contrast, ZIOPmodels assume that zeros could occur in the data as members of two latent (unobserv-

able) groups. Individuals in the “always-zero” group have outcome 0 as the only possible value. This first

group is often called the nonparticipation group. The second group, in addition to 0, may also assume

any of the other values, 1, 2, . . . , 𝐻. This group is often called the participation group. Some disciplines,

such as public health and medicine, refer to the process that determines the zeros rather than the groups.

In this case, there is an incidence or occurrence process that determines whether an observation belongs

to the always-zero group and a severity or intensity process that determines the level in the second group.

The result of having two groups or processes is an inflation in the proportion of zero-valued observations

in the data.

The ZIOPmodel has been used in studies of international and domestic conflicts (Bagozzi et al. 2015),

sports participation (Downward, Lera-Lopez, and Rasciute 2011), and the adoption of new building

technologies (Ganguly, Koebel, and Cantrell 2010), to name a few. See Kelley and Anderson (2008) for

a discussion of zero-inflated ordinal models in the context of health.

The classic application of the ZIOPmodel is the study of tobacco use by Harris and Zhao (2007). Like

the zero-inflated Poisson models in the count-data literature (Lambert 1992), Harris and Zhao derived

the ZIOPmodel using a two-stage decision process. An individual must decide whether to participate in

an activity (for example, smoking or drug consumption) and, conditional on participating, must decide

on the level of participation, which also includes zero participation. The first decision is a binary choice

and is modeled using a probit model, while the second is an ordered choice and is modeled using an

ordered probit model. In other terms, to account for the excess of zeros, Harris and Zhao allowed for

zero observations to occur in two ways: as a realization of the probit model (nonparticipants) and as a

realization of the ordered probit model when the binary random variable in the probit model is 1 (partic-

ipant with zero activity). See Methods and formulas for more details. For a Bayesian derivation of the

ZIOPmodel, see Gurmu and Dagne (2012).

You may want to check whether a standard ordered probit model is adequate to fit the data. You can

do this, for instance, using information criteria; see example 2 in [R] zip.

Example 1: Zero-inflated ordered probit model
We have fictional data on cigarette consumption per day for 15,000 subjects between ages 14 and 84.

The outcome of interest, tobacco, is an ordinal response with four levels coded as 0 for “no cigarettes”,
1 for “up to 8 cigarettes/day”, 2 for “8 to 12 cigarettes/day”, and 3 for “more than 12 cigarettes/day”.

The exact number of daily consumed cigarettes is unknown.

About 63% of the respondents identified themselves as current nonsmokers. We suspect that these

self-identified current nonsmokers belong to one of two groups. Individuals in the first group are gen-

uine nonsmokers (always-zero group) who have never smoked and will never smoke. Individuals in the

second group are smokers with no smoking activity who could be the corner solution of a standard con-

sumer demand problem and who may smoke, say, if the price of tobacco falls or their income increases.

It is likely that these two types of zeros are driven by different patterns of consumer behavior and a ZIOP

model is a good candidate in this case.
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We model tobacco consumption levels for subjects who choose to smoke as a function of years of

education (education), annual income in tens of thousands of dollars (income), age in tens of years
(age), and whether the respondent is a female (female). In addition to education, income, age, and
female, the decision to smoke is modeled as a function of whether either of the respondent’s parents
smoked (parent) and whether the respondent’s religion discourages smoking (religion). We list all

the covariates in the required inflate() option.

. use https://www.stata-press.com/data/r18/tobacco
(Fictional tobacco consumption data)
. zioprobit tobacco education income i.female age,
> inflate(education income i.parent age i.female i.religion)
Iteration 0: Log likelihood = -14820.211 (not concave)
Iteration 1: Log likelihood = -12819.475 (not concave)
Iteration 2: Log likelihood = -12078.843 (not concave)
Iteration 3: Log likelihood = -10926.037
Iteration 4: Log likelihood = -9549.5112
Iteration 5: Log likelihood = -8662.3141
Iteration 6: Log likelihood = -7749.9803
Iteration 7: Log likelihood = -7647.1348
Iteration 8: Log likelihood = -7640.5027
Iteration 9: Log likelihood = -7640.4738
Iteration 10: Log likelihood = -7640.4738
Zero-inflated ordered probit regression Number of obs = 15,000

Wald chi2(4) = 2574.27
Log likelihood = -7640.4738 Prob > chi2 = 0.0000

tobacco Coefficient Std. err. z P>|z| [95% conf. interval]

tobacco
education .5112664 .0102407 49.92 0.000 .491195 .5313378

income .712975 .0144803 49.24 0.000 .6845942 .7413559

female
Female -.3975341 .0416675 -9.54 0.000 -.4792009 -.3158674

age -.7709896 .0182554 -42.23 0.000 -.8067695 -.7352097

inflate
education -.0966613 .0026422 -36.58 0.000 -.1018398 -.0914827

income -.1157545 .0043787 -26.44 0.000 -.1243365 -.1071725

parent
Smoking .7655798 .0307553 24.89 0.000 .7053006 .825859

age .1873904 .0088643 21.14 0.000 .1700168 .204764

female
Female -.2639665 .0307184 -8.59 0.000 -.3241735 -.2037595

religion
Discourag.. -.3223335 .0496827 -6.49 0.000 -.4197098 -.2249572

_cons 1.27051 .0584794 21.73 0.000 1.155892 1.385127

/cut1 2.959808 .0753035 2.812216 3.1074
/cut2 8.111228 .1648965 7.788037 8.43442
/cut3 11.20791 .2247711 10.76736 11.64845



zioprobit — Zero-inflated ordered probit regression 3335

In the output table, the first set of coefficients, labeled tobacco, corresponds to the participation

(smoking) levels. These coefficients are interpreted in the same way as coefficients from an ordered

probit model. The second set of coefficients, labeled inflate, corresponds to the equation for the par-
ticipation decision. These are interpreted in the same way as coefficients from a binary probit model.

ZIOPmodels do not require the variables to be the same in the participation level and decision equations.

However, the same variables can appear in both. If the same variables are included, it is not uncommon

for the coefficients to have opposite signs. For example, income and education in the model above
have positive signs in the level equation and negative signs in the decision equation.

The estimated coefficients are not particularly informative, and as with all discrete choice models,

marginal effects are better to interpret. We use margins to estimate the average marginal effect of hav-
ing a smoking parent on the probability of being a genuine nonsmoker. Specifying pnpar within the

predict() option means that we are requesting the predicted probability of nonparticipation, which in
our example is equivalent to being a genuine nonsmoker.

. margins, predict(pnpar) dydx(parent)
Average marginal effects Number of obs = 15,000
Model VCE: OIM
Expression: Pr(nonparticipation), predict(pnpar)
dy/dx wrt: 1.parent

Delta-method
dy/dx std. err. z P>|z| [95% conf. interval]

parent
Smoking -.1797895 .0071967 -24.98 0.000 -.1938948 -.1656843

Note: dy/dx for factor levels is the discrete change from the base level.

On average, individuals whose parents are smokers are about 18% less likely to be nonsmokers them-

selves than individuals whose parents did not use tobacco. See [R] zioprobit postestimation for more

information and examples.
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Stored results
zioprobit stores the following in e():

Scalars

e(N) number of observations

e(N zero) number of zeros or lowest-category observations

e(k cat) number of categories

e(k) number of parameters

e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test

e(k aux) number of auxiliary parameters

e(k dv) number of dependent variables

e(df m) model degrees of freedom

e(ll) log likelihood

e(N clust) number of clusters

e(chi2) 𝜒2

e(p) 𝑝-value for model test
e(rank) rank of e(V)
e(ic) number of iterations

e(rc) return code

e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) zioprobit
e(cmdline) command as typed

e(depvar) name of dependent variable

e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(clustvar) name of cluster variable

e(offset1) offset

e(offset2) offset for inflate()
e(chi2type) Wald or LR; type of model 𝜒2 test

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(opt) type of optimization

e(which) max or min; whether optimizer is to perform maximization or minimization

e(ml method) type of ml method
e(user) name of likelihood-evaluator program

e(technique) maximization technique

e(properties) b V
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(marginsdefault) default predict() specification for margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(ilog) iteration log (up to 20 iterations)

e(gradient) gradient vector

e(cat) category values

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

Functions

e(sample) marks estimation sample
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In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas
Consider an ordinal response variable 𝑌 with levels coded as 0, 1, 2, . . . , 𝐻. For notational simplicity,

we assume that the zeros are inflated, but the following derivation may be adapted to accommodate

inflation in the lowest outcome category. Harris and Zhao (2007) derived the ZIOP model in two steps.

First, the group membership (participants versus nonparticipants) can be modeled using a probit model.

Let 𝑠𝑗 = 1 if the 𝑗th individual belongs to the participation group or let 𝑠𝑗 = 0 otherwise. With the probit

model, the probability of participation is given by

Pr (𝑠𝑗 = 1|z𝑗) = Φ (z𝑗𝛄) (1)

z𝑗 is a vector of covariates that determines group membership, 𝛄 is a vector of coefficients that have

to be estimated, and Φ(⋅) is the standard normal distribution function. Next, conditioning on 𝑠𝑗 = 1,

participation levels ̃𝑦𝑗 are modeled using an ordered probit model; these levels may also include 0. The

corresponding probabilities are given by

Pr ( ̃𝑦𝑗 = ℎ|𝑠𝑗 = 1, x𝑗) = Φ (𝜅ℎ − x𝑗β) − Φ (𝜅ℎ−1 − x𝑗β) ℎ = 0, 1, . . . , 𝐻 (2)

where 𝜅−1 = −∞, 𝜅𝐻 = +∞, and x𝑗 is a vector of covariates that could be different from z𝑗. 𝜅ℎ are

boundary parameters that need to be estimated in addition to the coefficients vector β.

The intercept 𝛽0 is set equal to 0 in (2) for identification. Note that 𝑠𝑗 and ̃𝑦𝑗 are both unobservable

in terms of the zeros. The observed response variable is 𝑦𝑗 = 𝑠𝑗 ̃𝑦𝑗. Thus, the zero outcome occurs

when 𝑠𝑗 = 0 (the individual is not a participant) or occurs when 𝑠𝑗 = 1 and ̃𝑦𝑗 = 0 (the individual is a

participant with zero activity). To observe a positive 𝑦𝑗, it is a joint requirement that 𝑠𝑗 = 1 and ̃𝑦𝑗 > 0.

The distribution of 𝑌 is given by

Pr(𝑌 ) = {Pr(𝑦𝑗 = 0|z𝑗, x𝑗)
Pr(𝑦𝑗 = ℎ|z𝑗, x𝑗) ℎ = 1, 2, . . . , 𝐻

= {Pr(𝑠𝑗 = 0|z𝑗) + Pr(𝑠𝑗 = 1|z𝑗)Pr( ̃𝑦𝑗 = 0|𝑠𝑗 = 1, x𝑗)
Pr(𝑠𝑗 = 1|z𝑗)Pr( ̃𝑦𝑗 = ℎ|𝑠𝑗 = 1, x𝑗) ℎ = 1, 2, . . . , 𝐻

(3)

The probability of zero outcome has been inflated because it is the sum of the probability of zero activity

from the ordered probit model and the probability of nonparticipation from the probit model.
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Substituting (1) and (2) in (3), we get

Pr(𝑌 ) =
⎧{
⎨{⎩

Pr(𝑦𝑗 = 0|z𝑗, x𝑗)
Pr(𝑦𝑗 = ℎ|z𝑗, x𝑗) ℎ = 1, 2, . . . , 𝐻 − 1
Pr(𝑦𝑗 = 𝐻|z𝑗, x𝑗)

=
⎧{
⎨{⎩

{1 − Φ (z𝑗𝛄)} + Φ(z𝑗𝛄)Φ(𝜅0 − x𝑗β)
Φ(z𝑗𝛄) {Φ(𝜅ℎ − x𝑗β) − Φ(𝜅ℎ−1 − x𝑗β)} ℎ = 1, 2, . . . , 𝐻 − 1
Φ(z𝑗𝛄) {1 − Φ(𝜅𝐻−1 − x𝑗β)}

If the respective offset() option is specified, x𝑗β and z𝑗𝛄 are replaced with x𝑗β + offset
𝛽
𝑗 and z𝑗𝛄 +

offset
𝛾
𝑗 , respectively.

The log-likelihood function is

ln𝐿 =
𝑁

∑
𝑗=1

𝑤𝑗

𝐻
∑
ℎ=0

𝐼 (𝑦𝑗 = ℎ) ln{Pr (𝑦𝑗 = ℎ|z𝑗, x𝑗)}

where 𝑤𝑗 is an optional weight for the 𝑗th observation and

𝐼 (𝑦𝑗 = ℎ) = {1 if 𝑦𝑗 = ℎ
0 otherwise

The choice between the ZIOPmodel and the ordered probit model cannot be made using a likelihood-

ratio test because the two hypotheses are not nested in the usual sense of parameter restrictions. The

restriction 𝛄 = 0 does not eliminate the inflation effect; it makes the group membership probabilities

both equal to 0.5 [see (1)]. What is needed to remove the inflation effect is z𝑗𝛄 → ∞, which cannot be

imposed. Because ZIOP and ordered probit models are not nested, you can compare the fits of the two

models using information criteria.

This command supports the Huber/White/sandwich estimator of the variance and its clustered version

with vce(robust) and vce(cluster clustvar), respectively. See [P] robust, particularly Maximum

likelihood estimators and Methods and formulas.

zioprobit also supports estimation with survey data. For details on VCEs with survey data, see

[SVY] Variance estimation.
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Postestimation commands predict margins
Remarks and examples Methods and formulas Also see

Postestimation commands
The following postestimation commands are available after zioprobit:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters

estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian infor-
mation criteria (AIC, CAIC, AICc, and BIC, respectively)

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estat (svy) postestimation statistics for survey data

estimates cataloging estimation results

etable table of estimation results
∗ forecast dynamic forecasts and simulations
∗ hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

∗ lrtest likelihood-ratio test

margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

predict probabilities, linear predictions and their SEs, etc.

predictnl point estimates, standard errors, testing, and inference for generalized predictions

pwcompare pairwise comparisons of parameters

suest seemingly unrelated estimation

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

∗forecast, hausman, and lrtest are not appropriate with svy estimation results.

3340
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predict

Description for predict
predict creates a new variable containing predictions such as probabilities, linear predictions, and

standard errors.

Menu for predict
Statistics > Postestimation

Syntax for predict
predict [ type ] { stub* | newvar | newvarlist } [ if ] [ in ] [ , statistic
outcome(outcome) nooffset ]

predict [ type ] stub* [ if ] [ in ], scores

statistic Description

Main

pmargin marginal probabilities of levels, Pr(𝑦𝑗 = ℎ); the default
pjoint1 joint probabilities of levels and participation, Pr(𝑦𝑗 = ℎ, 𝑠𝑗 = 1)
pcond1 probabilities of levels conditional on participation, Pr(𝑦𝑗 = ℎ|𝑠𝑗 = 1)
ppar probability of participation, Pr(𝑠𝑗 = 1)
pnpar probability of nonparticipation, Pr(𝑠𝑗 = 0)
xb linear prediction

xbinfl linear prediction for inflation equation

stdp standard error of the linear prediction

stdpinfl standard error of the linear prediction for inflation equation

If you do not specify outcome(), pmargin, pjoint1, and pcond1 (with one new variable specified) assume outcome(#1).

You specify one or 𝑘 new variables with pmargin, pjoint1, and pcond1, where 𝑘 is the number of outcomes.

You specify one new variable with ppar, pnpar, xb, xbinfl, stdp, and stdpinfl.

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for the estimation
sample.
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Options for predict

� � �
Main �

pmargin, the default, calculates the predicted marginal probabilities of outcome levels, Pr(𝑦𝑗 = ℎ).
pjoint1 calculates the predicted joint probabilities of outcome levels and participation, Pr(𝑦𝑗 = ℎ, 𝑠𝑗 =

1).
pcond1 calculates the predicted probabilities of outcome levels conditional on participation, Pr(𝑦𝑗 =

ℎ|𝑠𝑗 = 1).
With pmargin, pjoint1, and pcond1, you can compute predicted probabilities for one or for all

outcome levels. When you specify one new variable, predict computes probabilities for the first
outcome level. You can specify the outcome(#𝑖) option to obtain probabilities for the 𝑖th level.

When you specify multiple new variables or a stub, predict computes probabilities for all outcome
levels. The behavior of predict with one new variable is equivalent to specifying outcome(#1).

ppar and pnpar calculate the predicted marginal probability of participation [Pr(𝑠𝑗 = 1)] and of non-
participation [Pr(𝑠𝑗 = 0)], respectively.
In health-related fields, probabilities of participation and nonparticipation are known as probabilities

of susceptibility and nonsusceptibility. Similarly to predict after ziologit, you can use options ps
and pns to compute these probabilities. Options ps and pns produce identical results to the respective
options ppar and pnpar but label new variables as Pr(susceptible) and Pr(nonsusceptible)
instead of Pr(participation) and Pr(nonparticipation).

xb calculates the linear prediction for the ordered probit equation, which is x𝑗β if offset() was not

specified with zioprobit and is x𝑗β + offset
𝛽
𝑗 if offset() was specified.

xbinfl calculates the linear prediction for the inflation equation, which is z𝑗𝛄 if offset() was not

specified in inflate() and is z𝑗𝛄 + offset
𝛾
𝑗 if offset() was specified in inflate().

stdp calculates the standard error of the linear prediction for the ordered probit equation.

stdpinfl calculates the standard error of the linear prediction for the inflation equation.

outcome(outcome) specifies the outcome for which predicted probabilities are to be calculated.

outcome() should contain either one value of the dependent variable or one of #1, #2, . . . , with #1
meaning the first category of the dependent variable, #2meaning the second category, etc. outcome()
is allowed only with pmargin, pjoint1, and pcond1.

nooffset is relevant only if you specified offset(varname)with zioprobit or within the inflate()
option. It modifies the calculations made by predict so that they ignore the offset variable; that is,
the linear prediction for the main regression equation is treated as x𝑗β rather than as x𝑗β + offset

𝛽
𝑗

and the linear prediction for the inflation equation is treated as z𝑗𝛄 rather than as z𝑗𝛄 + offset
𝛾
𝑗 .

scores calculates equation-level score variables.

The first new variable will contain 𝜕 ln𝐿/𝜕(x𝑗β). In the absence of independent variables in the main
equation, this variable is not stored.

The second new variable will contain 𝜕 ln𝐿/𝜕(z𝑗𝛄).
When the dependent variable takes 𝑘 different values, the third new variable through new variable

𝑘 + 1 will contain 𝜕 ln𝐿/𝜕(𝜅ℎ) for ℎ = 0, 1, . . . , 𝑘 − 2.
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margins

Description for margins
margins estimates margins of response for probabilities and linear predictions.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist ] [ , options ]
margins [marginlist ] , predict(statistic ...) [ predict(statistic ...) ... ] [ options ]

statistic Description

default marginal probabilities for each outcome

pmargin marginal probabilities of levels, Pr(𝑦𝑗 = ℎ); the default
pjoint1 joint probabilities of levels and participation, Pr(𝑦𝑗 = ℎ, 𝑠𝑗 = 1)
pcond1 probabilities of levels conditional on participation, Pr(𝑦𝑗 = ℎ|𝑠𝑗 = 1)
ppar probability of participation, Pr(𝑠𝑗 = 1)
pnpar probability of nonparticipation, Pr(𝑠𝑗 = 0)
xb linear prediction

xbinfl linear prediction for inflation equation

stdp not allowed with margins
stdpinfl not allowed with margins

pmargin, pjoint1, and pcond1 default to the first outcome.

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.
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Remarks and examples
Various sets of predictions and marginal effects may be of interest for the ZIOP model. For instance,

we may want to investigate the marginal effects of a covariate on the probability of participation, or on

the probabilities for levels of consumption conditional on participation, or on the overall probabilities

for different consumption levels. We explore these options in greater detail in the following examples.

Example 1: Average marginal effects on probability of nonparticipation
In example 1 of [R] zioprobit, we fit a model for level of cigarette consumption.

. use https://www.stata-press.com/data/r18/tobacco
(Fictional tobacco consumption data)
. zioprobit tobacco education income i.female age,
> inflate(education income i.parent age i.female i.religion)
(output omitted )

We can use margins to estimate the expected marginal effect of gender for individuals with a college
degree (17 years of education) and a smoking parent on the probability of nonparticipation (being a

genuine nonsmoker). To do this, we specify predict(pnpar) with margins as follows:

. margins, predict(pnpar) dydx(female) at(education = 17 parent = 1)
Average marginal effects Number of obs = 15,000
Model VCE: OIM
Expression: Pr(nonparticipation), predict(pnpar)
dy/dx wrt: 1.female
At: education = 17

parent = 1

Delta-method
dy/dx std. err. z P>|z| [95% conf. interval]

female
Female .0855995 .0100239 8.54 0.000 .0659531 .105246

Note: dy/dx for factor levels is the discrete change from the base level.

Women with a college degree and a smoking parent are expected to have about an 8.5% higher chance

of being genuine nonsmokers than do men.

Example 2: Predicted probabilities of zero-valued outcomes
In example 1 of [R] zioprobit, we found that the coefficient on income was positive in the level

equation but negative in the participation equation. In the case of our tobacco consumption example,

economic theory offers a reasonable interpretation for this. Higher income may act as an indicator for

health awareness, which accounts for its association with an increased probability of being a genuine

nonsmoker. However, if cigarettes are a normal good—that is, something for which demand increases

when income increases—then smokers with higher income should have a lower probability of having

zero consumption at the time of the survey.

We first consider the effect of income at six prespecified values ranging from $10,000 to $60,000 on

the probability of being a genuine nonsmoker (nonparticipation). Because we know the values 1 to 6

correspond to income in tens of thousands, we conserve space and suppress the default legend by using

the noatlegend option.
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. margins, predict(pnpar) at(income = (1/6)) noatlegend
Predictive margins Number of obs = 15,000
Model VCE: OIM
Expression: Pr(nonparticipation), predict(pnpar)

Delta-method
Margin std. err. z P>|z| [95% conf. interval]

_at
1 .1727928 .0056963 30.33 0.000 .1616283 .1839573
2 .1944564 .0055236 35.20 0.000 .1836304 .2052824
3 .2176787 .0052981 41.09 0.000 .2072945 .2280629
4 .2424141 .0050413 48.09 0.000 .2325333 .2522948
5 .2685948 .0047857 56.12 0.000 .259215 .2779745
6 .2961309 .0045767 64.70 0.000 .2871607 .3051011

The probability of being a genuine nonsmoker increases with income. For instance, for individuals
who earn $10,000 a year, the expected increase in the probability of being a genuine nonsmoker is about

(0.1945 − 0.1728) × 100% = 2.17% if they earn an additional $10,000.

We next investigate the effect of income on the joint probability of being a smoker (participation

equals 1) with zero consumption. We do this by specifying predict(pjoint1 outcome(0)) with

margins:

. margins, predict(pjoint1 outcome(0)) at(income = (1/6)) noatlegend
Predictive margins Number of obs = 15,000
Model VCE: OIM
Expression: Pr(tobacco=0, participation=1), predict(pjoint1 outcome(0))

Delta-method
Margin std. err. z P>|z| [95% conf. interval]

_at
1 .5595131 .0040167 139.30 0.000 .5516405 .5673856
2 .5080066 .0037793 134.42 0.000 .5005993 .5154139
3 .4558656 .0035553 128.22 0.000 .4488975 .4628338
4 .4029089 .0033683 119.62 0.000 .3963072 .4095106
5 .3485692 .0032481 107.32 0.000 .3422031 .3549352
6 .2929155 .00317 92.40 0.000 .2867023 .2991287

For individuals who are smokers, the probability of zero consumption decreases as income increases,

suggesting that tobacco is like a normal good for smokers. For example, for individuals who earn $10,000

a year, earning an additional $10,000 will decrease their probability of being a smoker with zero con-

sumption by about (0.5595 − 0.5080) × 100% = 5.15%.

If we wanted to compute the effect of income on the overall probability of zero consumption instead of

the probability of zero consumption among smokers, we would omit pjoint1 from within the predict
option.

. margins, predict(outcome(0)) at(income = (1/6)) noatlegend
(output omitted )

This version of the margins command gives the sum of the probability of nonparticipation and the joint

probability of participation with zero consumption.
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Methods and formulas
The participation equation is

𝑠𝑗 = 𝐼(z𝑗𝛄 + 𝑢1𝑗 > 0) 𝑗 = 1, 2, . . . , 𝑛

where 𝑠𝑗 is 1 if the 𝑗th subject belongs to the participation group (for example, smokers) and is 0 if
the subject belongs to the nonparticipation group (for example, genuine nonsmokers), z𝑗 are the covari-

ates used to model the group membership, 𝛄 is a vector of coefficients, and 𝑢1𝑗 is a random-error term

following a standard normal distribution.

The ordinal outcome equation is

̃𝑦𝑗 =
𝐻

∑
ℎ=0

ℎ𝐼 (𝜅ℎ−1 < x𝑗β + 𝑢2𝑗 ≤ 𝜅ℎ)

where ̃𝑦𝑗 is the ordinal outcome conditional on participation, x𝑗 are the outcome covariates, β are the

coefficients, and 𝑢2𝑗 is a random-error term following a standard normal distribution. The observed

outcome values are 0, 1, . . . , 𝐻. 𝜅0, 𝜅1, . . . , 𝜅𝐻−1 are real numbers such that 𝜅𝑖 < 𝜅𝑚 for 𝑖 < 𝑚. 𝜅−1
is taken as −∞ and 𝜅𝐻 is taken as +∞. We assume that the error terms 𝑢1𝑗 and 𝑢2𝑗 are independent.

We observe 𝑦𝑗 = 𝑠𝑗 ̃𝑦𝑗.

The probability of participation is

Pr (𝑠𝑗 = 1|z𝑗) = Φ (z𝑗𝛄) (1)

where Φ(⋅) is the standard normal distribution function.
The probability of nonparticipation is

Pr (𝑠𝑗 = 0|z𝑗) = 1 − Φ (z𝑗𝛄) (2)

The probability of outcome 𝑦𝑗 = ℎ given that the 𝑗th subject belongs to the participation group is

Pr(𝑦𝑗 = ℎ|𝑠𝑗 = 1, x𝑗) = Pr( ̃𝑦𝑗 = ℎ|x𝑗)
= Φ (𝜅ℎ − x𝑗β) − Φ (𝜅ℎ−1 − x𝑗β)

(3)

for ℎ = 0, 1, . . . , 𝐻, where Φ (𝜅−1 − x𝑗β) = 0 and Φ (𝜅𝐻 − x𝑗β) = 1.

The joint probability of outcome 𝑦𝑗 = ℎ and participation can be expressed as

Pr(𝑦𝑗 = ℎ, 𝑠𝑗 = 1|z𝑗, x𝑗) = Pr (𝑠𝑗 = 1|z𝑗)Pr(𝑦𝑗 = ℎ|𝑠𝑗 = 1, x𝑗)

for ℎ = 0, 1, . . . , 𝐻, and computed using (1) and (3).

The marginal probabilities of the outcome 𝑦𝑗 are

Pr(𝑦𝑗 = 0|z𝑗, x𝑗) = Pr (𝑠𝑗 = 0|z𝑗) + Pr (𝑠𝑗 = 1|z𝑗)Pr( ̃𝑦𝑗 = 0|x𝑗)
Pr(𝑦𝑗 = ℎ|z𝑗, x𝑗) = Pr (𝑠𝑗 = 1|z𝑗)Pr( ̃𝑦𝑗 = ℎ|x𝑗) ℎ = 1, 2, . . . , 𝐻 − 1
Pr(𝑦𝑗 = 𝐻|z𝑗, x𝑗) = Pr (𝑠𝑗 = 1|z𝑗)Pr( ̃𝑦𝑗 = 𝐻|x𝑗)

and can be computed using (1), (2), and (3).

If the offset() option is specified with zioprobit, x𝑗β is replaced with x𝑗β + offset
𝛽
𝑗 . If the

offset() option is specified within the inflate() option, z𝑗𝛄 is replaced with z𝑗𝛄 + offset
𝛾
𝑗 .
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Also see
[R] zioprobit — Zero-inflated ordered probit regression

[U] 20 Estimation and postestimation commands



zip — Zero-inflated Poisson regression

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description
zip fits a zero-inflated Poisson (ZIP) model to count data with excess zero counts. The ZIP model

assumes that the excess zero counts come from a logit or probit model and the remaining counts come

from a Poisson model.

Quick start
Zero-inflated Poisson model of y on x1 and x2 with inflation modeled using x3

zip y x1 x2, inflate(x3)

Use a probit model instead of a logit model to predict excess zeros

zip y x1 x2, inflate(x3) probit

Menu
Statistics > Count outcomes > Zero-inflated Poisson regression

3348



zip — Zero-inflated Poisson regression 3349

Syntax
zip depvar [ indepvars ] [ if ] [ in ] [weight ] ,

inflate(varlist[ , offset(varname) ] | cons) [ options ]

options Description

Model
∗ inflate( ) equation that determines whether the count is zero

noconstant suppress constant term

exposure(varname𝑒) include ln(varname𝑒) in model with coefficient constrained to 1

offset(varname𝑜) include varname𝑜 in model with coefficient constrained to 1

constraints(constraints) apply specified linear constraints

probit use probit model to characterize excess zeros; default is logit

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, opg, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)
irr report incidence-rate ratios

nocnsreport do not display constraints

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

collinear keep collinear variables

coeflegend display legend instead of statistics

∗inflate(varlist[ , offset(varname) ] | cons) is required.
indepvars and varlist may contain factor variables; see [U] 11.4.3 Factor variables.

bayes, bootstrap, by, collect, fp, jackknife, rolling, statsby, and svy are allowed; see [U] 11.1.10 Prefix com-

mands. For more details, see [BAYES] bayes: zip.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
collinear and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Options

� � �
Model �

inflate(varlist[ , offset(varname)] | cons) specifies the equation that determines whether the ob-
served count is zero. Conceptually, omitting inflate() would be equivalent to fitting the model

with poisson; see [R] poisson.

inflate(varlist[, offset(varname)]) specifies the variables in the equation. You may optionally
include an offset for this varlist.

inflate( cons) specifies that the equation determining whether the count is zero contains only an
intercept. To run a zero-inflated model of depvar with only an intercept in both equations, type zip
depvar, inflate( cons).

noconstant, exposure(varname𝑒), offset(varname𝑜), constraints(constraints); see [R] Esti-
mation options.

probit requests that a probit, instead of logit, model be used to characterize the excess zeros in the data.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), that al-
low for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods

(bootstrap, jackknife); see [R] vce option.

� � �
Reporting �

level(#); see [R] Estimation options.

irr reports estimated coefficients transformed to incidence-rate ratios, that is, 𝑒𝑏 rather than 𝑏. Standard
errors and confidence intervals are similarly transformed. This option affects how results are dis-

played, not how they are estimated or stored. irr may be specified at estimation or when replaying
previously estimated results.

nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. These options are

seldom used.

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

The following options are available with zip but are not shown in the dialog box:

collinear, coeflegend; see [R] Estimation options.
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Remarks and examples
Zero-inflated Poisson (ZIP) models address the case when the data contain a higher fraction of zeros

than is likely to be generated from a Poisson model. Having a large proportion of zero observations, in

itself, does not necessarily mean that we have the excess zeros problem. For instance, a Poisson model

with a mean value of 0.2 predicts that 𝑃(𝑌 = 0) = exp(−0.2) ≈ 0.82. However, the range of possible

outcomes is restricted because of the small variance, 0.2 (mean and variance are equal for a Poisson

model), as shown by 𝑃(𝑌 > 3) ≈ 0.00006. Unlike Poisson models, ZIPmodels allow us to have a large

fraction of zeros without restricting the range of outcomes.

ZIPmodels assume that an observation is 0 with a probability 𝑝 or is a realization of a Poisson random
variable, which can also be 0, with a probability 1 − 𝑝. For instance, you might count how many fish

each visitor to a park catches. Many visitors may catch zero, because they do not fish (as opposed to

being unsuccessful). Using a logit or probit model, you may model the probability 𝑝 of whether a person
does not fish depending on several covariates related to fishing. Using a Poisson distribution, you may

model how many fish a person catches depending on several covariates having to do with the success

of catching fish (type of lure or bait, time of day, temperature, season, etc.). This is the type of data for

which the zip command is useful.

See Long (1997, 242–247) and Cameron and Trivedi (2005, 680–681) for a discussion of the ZIP

model and other zero-modified count models.

Example 1: Fitting a ZIP model
We have fictional data on the number of fish caught (count) by visitors to a national park on a par-

ticular day. Some of the visitors do not fish, but we do not have the data on whether a person fished; we

merely have data on how many fish were caught together with several covariates.

Variable count exhibits an excess of zero observations (142 of 250 observations), beyond what would
be expected from a Poisson model. We suspect that the number of zeros may be inflated because many

visitors are not fishing. That is, a zero observation may be the result of a visitor who was unfortunate

and caught no fish but may also be because the visitor did not fish. A standard Poisson model (see

[R] poisson) treats these two types of zero observations as a homogeneous group, which typically leads

to biased statistical results. We would like to distinguish between the two types of zeros and possibly

draw inference for them separately (see example 1 in [R] zip postestimation).

The zip command allows us to model the two types of zeros. First, using the required option

inflate(), we model whether a visitor fishes as a function of the number of children accompanying
him or her (child) and whether he or she is camping (camper). Next, we assume the response variable,
count, depends on whether the visitor used a live bait (livebait) and the number of persons (persons),
which includes the visitor and any adults or children accompanying him. Note that persons is always
greater than child.
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. use https://www.stata-press.com/data/r18/fish
(Fictional fishing data)
. zip count persons livebait, inflate(child camper)
Fitting constant-only model:
Iteration 0: Log likelihood = -1347.807
Iteration 1: Log likelihood = -1305.3245
Iteration 2: Log likelihood = -1104.3005
Iteration 3: Log likelihood = -1103.9426
Iteration 4: Log likelihood = -1103.9425
Fitting full model:
Iteration 0: Log likelihood = -1103.9425
Iteration 1: Log likelihood = -896.2346
Iteration 2: Log likelihood = -851.61723
Iteration 3: Log likelihood = -850.70435
Iteration 4: Log likelihood = -850.70142
Iteration 5: Log likelihood = -850.70142
Zero-inflated Poisson regression Number of obs = 250
Inflation model: logit Nonzero obs = 108

Zero obs = 142
LR chi2(2) = 506.48

Log likelihood = -850.7014 Prob > chi2 = 0.0000

count Coefficient Std. err. z P>|z| [95% conf. interval]

count
persons .8068853 .0453288 17.80 0.000 .7180424 .8957281
livebait 1.757289 .2446082 7.18 0.000 1.277866 2.236713

_cons -2.178472 .2860289 -7.62 0.000 -2.739078 -1.617865

inflate
child 1.602571 .2797719 5.73 0.000 1.054228 2.150913
camper -1.015698 .365259 -2.78 0.005 -1.731593 -.2998038
_cons -.4922872 .3114562 -1.58 0.114 -1.10273 .1181558

Coefficients in the upper half of the table correspond to the Poisson model for individuals who fished.

For instance, among visitors who fished, using a live bait increases the expected number of caught fish

by a factor of exp(1.7572) ≈ 5.8, holding other covariates constant.

Example 2: Comparing model fit
When you have count data, you may want to test whether a conventional count data model or a zero-

inflated count data model is preferable. The classical likelihood-ratio test cannot be used here because

the models are not nested. But we can use information criteria such as the AIC and BIC to check whether

the standard or zero-inflated model is more appropriate.

Continuing with our fishing example, let’s check whether the standard Poisson or ZIPmodel is more

appropriate for our data. First, we store the estimation results from the previous ZIPmodel by typing

. estimates store zip
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Next, we fit the Poisson model corresponding to the main equation of the ZIP model and store its

results as pois:

. poisson count persons livebait
(output omitted )

. estimates store pois

We use estimates stats to display the AIC and BIC values for the two models.

. estimates stats pois zip
Akaike’s information criterion and Bayesian information criterion

Model N ll(null) ll(model) df AIC BIC

pois 250 -1647.716 -1312.178 3 2630.356 2640.92
zip 250 -1103.942 -850.7014 6 1713.403 1734.532

Note: BIC uses N = number of observations. See [R] IC note.

The ZIP model has smaller AIC and BIC values; we thus conclude that it fits our data better than the

standard Poisson model.

Stored results
zip stores the following in e():
Scalars

e(N) number of observations

e(N zero) number of zero observations

e(k) number of parameters

e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test

e(k dv) number of dependent variables

e(df m) model degrees of freedom

e(ll) log likelihood

e(ll 0) log likelihood, constant-only model

e(N clust) number of clusters

e(chi2) 𝜒2

e(p) 𝑝-value for model test
e(rank) rank of e(V)
e(ic) number of iterations

e(rc) return code

e(converged) 1 if converged, 0 otherwise
Macros

e(cmd) zip
e(cmdline) command as typed

e(depvar) name of dependent variable

e(inflate) logit or probit
e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(clustvar) name of cluster variable

e(offset1) offset

e(offset2) offset for inflate()
e(chi2type) Wald or LR; type of model 𝜒2 test

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.
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e(opt) type of optimization

e(which) max or min; whether optimizer is to perform maximization or minimization

e(ml method) type of ml method
e(user) name of likelihood-evaluator program

e(technique) maximization technique

e(properties) b V
e(predict) program used to implement predict
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(ilog) iteration log (up to 20 iterations)

e(gradient) gradient vector

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas
Consider the formulation of a zero-inflated model as presented in Lambert (1992). Define

𝜉𝛽
𝑗 = x𝑗β + offset

𝛽
𝑗

𝜉𝛾
𝑗 = z𝑗𝛄 + offset

𝛾
𝑗

𝜆𝑗 = exp (𝜉𝛽
𝑗 )

𝐹𝑗 = 𝐹 (𝜉𝛾
𝑗 )

where 𝐹(⋅) is the inverse of the logit function or, if the probit option was specified, the inverse of the
probit function (or the standard normal cumulative distribution function). All subjects are assumed to be

independent with the 𝑗th response determined as follows:

𝑌𝑗 = 0 with probability 𝐹𝑗

𝑌𝑗 ∼ Poisson (𝜆𝑗) with probability 1 − 𝐹𝑗

In other words,

Pr(𝑌𝑗 = 0|x𝑗, z𝑗) = 𝐹𝑗 + (1 − 𝐹𝑗) exp (−𝜆𝑗)

Pr(𝑌𝑗 = 𝑛|x𝑗, z𝑗) = (1 − 𝐹𝑗) exp (−𝜆𝑗)
𝜆𝑛

𝑗

𝑛!
for n = 1, 2, . . .
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The zip command maximizes the log-likelihood ln𝐿, defined by

ln𝐿 = ∑
𝑗∈𝑆

𝑤𝑗 ln{𝐹𝑗 + (1 − 𝐹𝑗) exp(−𝜆𝑗)}

+ ∑
𝑗∉𝑆

𝑤𝑗 { ln(1 − 𝐹𝑗) − 𝜆𝑗 + 𝜉𝑗𝑦𝑗 − ln(𝑦𝑗!)}

where 𝑤𝑗 are the weights and 𝑆 is the set of observations for which the observed outcome 𝑦𝑗 = 0.

This command supports the Huber/White/sandwich estimator of the variance and its clustered version

using vce(robust) and vce(cluster clustvar), respectively. See [P] robust, particularly Maximum

likelihood estimators and Methods and formulas.

zip also supports estimation with survey data. For details on VCEs with survey data, see [SVY] Vari-
ance estimation.
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[R] zip postestimation — Postestimation tools for zip

[R] zinb — Zero-inflated negative binomial regression

[R] nbreg — Negative binomial regression

[R] poisson — Poisson regression

[R] tnbreg — Truncated negative binomial regression

[R] tpoisson — Truncated Poisson regression

[BAYES] bayes: zip — Bayesian zero-inflated Poisson regression

[SVY] svy estimation — Estimation commands for survey data
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Postestimation commands predict margins Remarks and examples
Methods and formulas References Also see

Postestimation commands
The following postestimation commands are available after zip:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters

estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian infor-
mation criteria (AIC, CAIC, AICc, and BIC, respectively)

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estat (svy) postestimation statistics for survey data

estimates cataloging estimation results

etable table of estimation results
∗ forecast dynamic forecasts and simulations
∗ hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

∗ lrtest likelihood-ratio test

margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

predict number of events, incidence rates, probabilities, etc.

predictnl point estimates, standard errors, testing, and inference for generalized predictions

pwcompare pairwise comparisons of parameters

suest seemingly unrelated estimation

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

∗forecast, hausman, and lrtest are not appropriate with svy estimation results.
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predict

Description for predict
predict creates a new variable containing predictions such as numbers of events, incidence rates,

probabilities, linear predictions, and standard errors.

Menu for predict
Statistics > Postestimation

Syntax for predict
predict [ type ] newvar [ if ] [ in ] [ , statistic nooffset ]

predict [ type ] stub* [ if ] [ in ], scores

statistic Description

Main

n number of events; the default

ir incidence rate

pr probability of a degenerate zero

pr(n) probability Pr(𝑦𝑗 = n)
pr(a,b) probability Pr(a ≤ 𝑦𝑗 ≤ b)
xb linear prediction

stdp standard error of the linear prediction

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only for the estimation
sample.
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Options for predict

� � �
Main �

n, the default, calculates the predicted number of events, which is (1−𝐹𝑗) exp(x𝑗β) if neither offset()
nor exposure()was specified when the model was fit, where 𝐹𝑗 is the predicted probability of a zero

outcome; (1−𝐹𝑗) exp(x𝑗β+offset
𝛽
𝑗 ) if offset()was specified; or (1−𝐹𝑗){ exp(x𝑗β)×exposure𝑗}

if exposure() was specified.

ir calculates the incidence rate, which is the predicted number of events when exposure is 1. This is
equivalent to specifying both the n and the nooffset options.

pr calculates the probability of a degenerate zero, predicted from the fitted degenerate distribution 𝐹𝑗 =
𝐹(z𝑗𝛄). If offset() was specified within the inflate() option, then 𝐹𝑗 = 𝐹(z𝑗𝛄 + offset

𝛾
𝑗 ) is

calculated.

pr(n) calculates the probability Pr(𝑦𝑗 = n), where n is a nonnegative integer that may be specified as
a number or a variable. Note that pr is not equivalent to pr(0).

pr(a,b) calculates the probability Pr(a ≤ 𝑦𝑗 ≤ b), where a and b are nonnegative integers that may be
specified as numbers or variables;

b missing (b ≥ .) means +∞;

pr(20,.) calculates Pr(𝑦𝑗 ≥ 20);
pr(20,b) calculates Pr(𝑦𝑗 ≥ 20) in observations for which b ≥ . and calculates
Pr(20 ≤ 𝑦𝑗 ≤ b) elsewhere.
pr(.,b) produces a syntax error. Amissing value in an observation of the variable a causes a missing

value in that observation for pr(a,b).

xb calculates the linear prediction, which is x𝑗β if neither offset() nor exposure() was specified;

x𝑗β + offset
𝛽
𝑗 if offset() was specified; or x𝑗β + ln(exposure𝑗) if exposure() was specified; see

nooffset below.

stdp calculates the standard error of the linear prediction.

nooffset is relevant only if you specified offset() or exposure() when you fit the model. It modi-
fies the calculations made by predict so that they ignore the offset or exposure variable; the linear
prediction is treated as x𝑗β rather than as x𝑗β+offset

𝛽
𝑗 or x𝑗β+ ln(exposure𝑗). Specifying predict

..., nooffset is equivalent to specifying predict ..., ir.

scores calculates equation-level score variables.

The first new variable will contain 𝜕ln𝐿/𝜕(x𝑗β).
The second new variable will contain 𝜕ln𝐿/𝜕(z𝑗𝛄).
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margins

Description for margins
margins estimates margins of response for the numbers of events, incidence rates, probabilities, and

linear predictions.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist ] [ , options ]
margins [marginlist ] , predict(statistic ...) [ predict(statistic ...) ... ] [ options ]

statistic Description

n number of events; the default

ir incidence rate

pr probability of a degenerate zero

pr(n) probability Pr(𝑦𝑗 = n)
pr(a,b) probability Pr(a ≤ 𝑦𝑗 ≤ b)
xb linear prediction

stdp not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.
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Remarks and examples

Example 1: Obtaining predicted counts
Continuing with example 1 from [R] zip, we will use predict to compute the predicted number of

fish captured by each individual.

. use https://www.stata-press.com/data/r18/fish
(Fictional fishing data)
. zip count persons livebait, inflate(child camper)
(output omitted )

. predict numfish
(option n assumed; predicted number of events)
. summarize numfish

Variable Obs Mean Std. dev. Min Max

numfish 250 2.770999 3.269588 .079269 13.55015

The average predicted number of fish caught by all visitors, regardless of whether or not they fished,

is 2.77 fish.

Example 2: Obtaining predicted probabilities
predict with the pr option computes the probability that an individual does not fish.

. predict pr, pr

On the other hand, predict with the pr(n) option computes the probability of catching n fish; par-
ticularly, the probability of catching zero fish will be

. predict pr0, pr(0)

. list pr pr0 in 1

pr pr0

1. .3793549 .8609267

Notice that pr0 is always equal to or greater than pr. For example, for the first individual, the proba-
bility of not fishing is 0.38; on the other hand, the probability of catching zero fish (0.86) is equal to the

sum of the probability of not fishing and the probability of fishing but not catching any fish. pr0 can be
also computed as one minus the probability of catching at least one fish, that is:

. predict pr_catch, pr(1,.)

. gen pr0b = 1-pr_catch
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Methods and formulas
See Methods and formulas in [R] zip for the model definition and notation.

The probabilities calculated using the pr(n) option are the probability Pr(𝑦𝑗 = n). These are calcu-
lated using

Pr(𝑦𝑗 = 0|x𝑗, z𝑗) = 𝐹𝑗 + (1 − 𝐹𝑗) exp(−𝜆𝑗)

Pr(𝑦𝑗 = n|x𝑗, z𝑗) = (1 − 𝐹𝑗)
𝜆𝑛

𝑗 exp(−𝜆𝑗)
n!

for n = 1, 2, . . .

where 𝐹𝑗 is the probability of obtaining an observation from the degenerate distribution whose mass is

concentrated at zero. 𝐹𝑗 can be obtained by using the pr option.

See Cameron and Trivedi (2013, sec. 4.6) for further details.
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[U] 20 Estimation and postestimation commands
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Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description
ztest performs 𝑧 tests on the equality of means, assuming known variances. The test can be per-

formed for one sample against a hypothesized population value or for no difference in population means

estimated from two samples. Two-sample tests can be conducted for paired and unpaired data. Clustered

data are also supported.

ztesti is the immediate form of ztest; see [U] 19 Immediate commands.

For the comparison of means when variances are unknown, use ttest; see [R] ttest.

Quick start
One-sample test that the mean of v1 is 3 at the 90% confidence level

ztest v1 == 3, level(90)

Same as above, and adjust for clustering with clusters defined by cvar and an intraclass correlation of
0.5

ztest v1 == 3, level(90) cluster(cvar) rho(0.5)

Unpaired 𝑧 test that the mean of v1 is equal between two groups defined by catvar
ztest v1, by(catvar)

Same as above, and adjust for clustering with clusters defined by cvar and an intraclass correlation of
0.5 in the two groups

ztest v1, by(catvar) cluster(cvar) rho(0.5)

Unpaired test of equality of the means of v2 and v3
ztest v2 == v3, unpaired

Paired test of equality of the means of v2 and v3 with standard deviation of the differences between

paired observations of 2.4

ztest v2 == v3, sddiff(2.4)

Same as above, specified using a common standard deviation of 2 and correlation between observations

of 0.28

ztest v2 == v3, sd(2) corr(0.28)

Immediate form unpaired test of 𝜇1 = 𝜇2 if 𝑥1 = 3.2, sd1 = 0.1, 𝑥2 = 3.4, and sd2 = 0.15 with

𝑛1 = 𝑛2 = 120

ztesti 120 3.2 0.1 120 3.4 0.15
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Menu
ztest
Statistics > Summaries, tables, and tests > Classical tests of hypotheses > z test (mean-comparison test, known
variance)

ztesti

Statistics > Summaries, tables, and tests > Classical tests of hypotheses > z test calculator

Syntax
One-sample z test

ztest varname == # [ if ] [ in ] [ , onesampleopts ]

Two-sample z test using groups

ztest varname [ if ] [ in ], by(groupvar) [ twosamplegropts ]

Two-sample z test using variables

ztest varname1 == varname2 [ if ] [ in ], unpaired [ twosamplevaropts ]

Paired z test

ztest varname1 == varname2 [ if ] [ in ], sddiff(#) [ level(#) ]
ztest varname1 == varname2 [ if ] [ in ], corr(#) [ pairedopts ]

Immediate form of one-sample z test

ztesti #obs #mean #sd #val [ , level(#) ]

Immediate form of two-sample unpaired z test

ztesti #obs1 #mean1 #sd1 #obs2 #mean2 #sd2 [ , level(#) ]

onesampleopts Description

Main

sd(#) one-population standard deviation; default is sd(1)
level(#) confidence level; default is level(95)
cluster(varname) variable defining the clusters

rho(#) intraclass correlation
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twosamplegropts Description

Main
∗ by(groupvar) variable defining the groups

unpaired unpaired test; implied when by() is specified
sd(#) two-population common standard deviation; default is sd(1)
sd1(#) standard deviation of the first population; requires sd2() and may not be

combined with sd()
sd2(#) standard deviation of the second population; requires sd1() and may not

be combined with sd()
level(#) confidence level; default is level(95)
cluster(varname) variable defining the clusters

rho(#) common intraclass correlation

rho1(#) intraclass correlation for group 1

rho2(#) intraclass correlation for group 2

∗by(groupvar) is required.

twosamplevaropts Description

Main
∗ unpaired unpaired test

sd(#) two-population common standard deviation; default is sd(1)
sd1(#) standard deviation of the first population; requires sd2() and may not be

combined with sd()
sd2(#) standard deviation of the second population; requires sd1() and may not

be combined with sd()
level(#) confidence level; default is level(95)
∗unpaired is required.

pairedopts Description

Main
∗ corr(#) correlation between paired observations

sd(#) two-population common standard deviation; default is sd(1); may not be
combined with sd1(), sd2(), or sddiff()

sd1(#) standard deviation of the first population; requires corr() and sd2() and
may not be combined with sd() or sddiff()

sd2(#) standard deviation of the second population; requires corr() and sd1()
and may not be combined with sd() or sddiff()

level(#) confidence level; default is level(95)
∗corr(#) is required.

by and collect are allowed with ztest and ztesti; see [U] 11.1.10 Prefix commands.
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Options

� � �
Main �

by(groupvar) specifies the groupvar that defines the two groups that ztestwill use to test the hypothesis
that their means are equal. Specifying by(groupvar) implies an unpaired (two-sample) 𝑧 test. Do not
confuse the by() option with the by prefix; you can specify both.

unpaired specifies that the data be treated as unpaired. The unpaired option is used when the two sets
of values to be compared are in different variables.

sddiff(#) specifies the population standard deviation of the differences between paired observations
for a paired 𝑧 test. For this kind of test, either sddiff() or corr() must be specified.

corr(#) specifies the correlation between paired observations for a paired 𝑧 test. This option along with
sd1() and sd2() or with sd() is used to compute the standard deviation of the differences between
paired observations unless that standard deviation is supplied directly in the sddiff() option. For a
paired 𝑧 test, either sddiff() or corr() must be specified.

sd(#) specifies the population standard deviation for a one-sample 𝑧 test or the common population

standard deviation for a two-sample 𝑧 test. The default is sd(1). sd() may not be combined with
sd1(), sd2(), or sddiff().

sd1(#) specifies the standard deviation of the first population or group. When sd1() is specified with
by(groupvar), the first group is defined by the first category of the sorted groupvar. sd1() requires
sd2() and may not be combined with sd() or sddiff().

sd2(#) specifies the standard deviation of the second population or group. When sd2() is specified with
by(groupvar), the second group is defined by the second category of the sorted groupvar. sd2()
requires sd1() and may not be combined with sd() or sddiff().

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is

level(95) or as set by set level; see [U] 20.8 Specifying the width of confidence intervals.

cluster(varname) specifies the variable that identifies clusters. The cluster() option is required to
adjust the computation for clustering.

rho(#) specifies the intraclass correlation for a one-sample test or the common intraclass correlation

for a two-sample test. The rho() option is required to adjust the computation for clustering for a

one-sample test.

rho1(#) specifies the intraclass correlation of the first group for a two-sample test using groups. The
rho() option or both rho1() and rho2() options are required to adjust the computation for cluster-
ing.

rho2(#) specifies the intraclass correlation of the second group for a two-sample test using groups.

The rho() option or both rho1() and rho2() options are required to adjust the computation for

clustering.

When by() is used, sd1() and sd2() or sd() is used to specify the population standard deviations of
the two groups defined by groupvar for an unpaired two-sample 𝑧 test (using groups). By default, a

common standard deviation of one, sd(1), is assumed.

When unpaired is used, sd1() and sd2() or sd() is used to specify the population standard deviations
of varname1 and varname2 for an unpaired two-sample 𝑧 test (using variables). By default, a common
standard deviation of one, sd(1), is assumed.
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Options corr(), sd1(), and sd2() or corr() and sd() are used for a paired 𝑧 test to compute the stan-
dard deviation of the differences between paired observations. By default, a common standard deviation

of one, sd(1), is assumed for both populations. Alternatively, the standard deviation of the differences
between paired observations may be supplied directly with the sddiff() option.

Remarks and examples
Remarks are presented under the following headings:

One-sample z test
Two-sample z test
Paired z test
Adjust for clustering
Immediate form

For the purpose of illustration, we assume that variances are known in all the examples below.

One-sample z test

Example 1
In the first form, ztest tests whether the mean of the sample is equal to a known constant under

the assumption of known variance. Assume that we have a sample of 74 automobiles. We know each

automobile’s average mileage rating and wish to test whether the overall average for the sample is 20

miles per gallon. We also assume that the population standard deviation is 6.

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. ztest mpg==20, sd(6)
One-sample z test

Variable Obs Mean Std. err. Std. dev. [95% conf. interval]

mpg 74 21.2973 .6974858 6 19.93025 22.66434

mean = mean(mpg) z = 1.8600
H0: mean = 20

Ha: mean < 20 Ha: mean != 20 Ha: mean > 20
Pr(Z < z) = 0.9686 Pr(|Z| > |z|) = 0.0629 Pr(Z > z) = 0.0314

The 𝑝-value for the two-sided test is 0.0629, so we do not have statistical evidence to reject the null
hypothesis that the mean equals 20 at a 5% significance level, but we would reject the null hypothesis at

a 10% level.
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Two-sample z test

Example 2: Two-sample 𝑧 test using groups
We are testing the effectiveness of a new fuel additive. We run an experiment in which 12 cars are

given the fuel treatment and 12 cars are not. The results of the experiment are as follows:

treated mpg

0 20
0 23
0 21
0 25
0 18
0 17
0 18
0 24
0 20
0 24
0 23
0 19
1 24
1 25
1 21
1 22
1 23
1 18
1 17
1 28
1 24
1 27
1 21
1 23

The treated variable is coded as 1 if the car received the fuel treatment and 0 otherwise.

We can test the equality of means of the treated and untreated group by typing

. use https://www.stata-press.com/data/r18/fuel3

. ztest mpg, by(treated) sd(3)
Two-sample z test

Group Obs Mean Std. err. Std. dev. [95% conf. interval]

0 12 21 .8660254 3 19.30262 22.69738
1 12 22.75 .8660254 3 21.05262 24.44738

diff -1.75 1.224745 -4.150456 .6504558

diff = mean(0) - mean(1) z = -1.4289
H0: diff = 0

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
Pr(Z < z) = 0.0765 Pr(|Z| > |z|) = 0.1530 Pr(Z > z) = 0.9235

We do not have evidence to reject the null hypothesis that the means of the two groups are equal at a 5%

significance level.
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In the above, we assumed that the two groups have the same standard deviation of 3. If the standard

deviations for the two groups are different, we can specify group-specific standard deviations in options

sd1() and sd2():

. ztest mpg, by(treated) sd1(2.7) sd2(3.2)
Two-sample z test

Group Obs Mean Std. err. Std. dev. [95% conf. interval]

0 12 21 .7794229 2.7 19.47236 22.52764
1 12 22.75 .9237604 3.2 20.93946 24.56054

diff -1.75 1.208649 -4.118909 .6189093

diff = mean(0) - mean(1) z = -1.4479
H0: diff = 0

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
Pr(Z < z) = 0.0738 Pr(|Z| > |z|) = 0.1476 Pr(Z > z) = 0.9262

Technical note
In two-sample randomized designs, subjects will sometimes refuse the assigned treatment but still be

measured for an outcome. In this case, take care to specify the group properly. You might be tempted to

let varname contain missing where the subject refused and thus let ztest drop such observations from
the analysis. Zelen (1979) argues that it would be better to specify that the subject belongs to the group

in which he or she was randomized, even though such inclusion will dilute the measured effect.

Example 3: Two-sample 𝑧 test using variables
There is a second, inferior way to organize the data in the preceding example. We ran a test on 24

cars, 12 without the additive and 12 with. We now create two new variables, mpg1 and mpg2.

mpg1 mpg2

20 24
23 25
21 21
25 22
18 23
17 18
18 17
24 28
20 24
24 27
23 21
19 23

This method is inferior because it suggests a connection that is not there. There is no link between

the car with 20 mpg and the car with 24 mpg in the first row of the data. Each column of data could be

arranged in any order. Nevertheless, if our data are organized like this, ztest can accommodate us.
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. use https://www.stata-press.com/data/r18/fuel

. ztest mpg1==mpg2, unpaired sd(3)
Two-sample z test

Variable Obs Mean Std. err. Std. dev. [95% conf. interval]

mpg1 12 21 .8660254 3 19.30262 22.69738
mpg2 12 22.75 .8660254 3 21.05262 24.44738

diff -1.75 1.224745 -4.150456 .6504558

diff = mean(mpg1) - mean(mpg2) z = -1.4289
H0: diff = 0

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
Pr(Z < z) = 0.0765 Pr(|Z| > |z|) = 0.1530 Pr(Z > z) = 0.9235

Paired z test

Example 4
Suppose that the preceding data were actually collected by running a test on 12 cars. Each car was run

once with the fuel additive and once without. Our data are stored in the same manner as in example 3,

but this time, there is most certainly a connection between the mpg values that appear in the same row.

These come from the same car. The variables mpg1 and mpg2 represent mileage without and with the
treatment, respectively. Suppose that the two variables have a common standard deviation of 2 and the

correlation between them is 0.4.

. use https://www.stata-press.com/data/r18/fuel

. ztest mpg1==mpg2, sd(2) corr(0.4)
Paired z test

Variable Obs Mean Std. err. Std. dev. [95% conf. interval]

mpg1 12 21 .5773503 2 19.86841 22.13159
mpg2 12 22.75 .5773503 2 21.61841 23.88159

diff 12 -1.75 .6324555 2.19089 -2.98959 -.5104099

mean(diff) = mean(mpg1 - mpg2) z = -2.7670
H0: mean(diff) = 0
Ha: mean(diff) < 0 Ha: mean(diff) != 0 Ha: mean(diff) > 0
Pr(Z < z) = 0.0028 Pr(|Z| > |z|) = 0.0057 Pr(Z > z) = 0.9972

The 𝑝-value for the two-sided test is 0.0057, so we reject, for example, the null hypothesis that the two
means are equal at a 5% significance level.
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Equivalently, we could specify directly the standard deviation of the differences between paired ob-

servations with the sddiff() option:

. ztest mpg1==mpg2, sddiff(2.191)
Paired z test

Variable Obs Mean Std. err. Std. dev. [95% conf. interval]

diff 12 -1.75 .6324872 2.191 -2.989652 -.5103478

mean(diff) = mean(mpg1 - mpg2) z = -2.7669
H0: mean(diff) = 0
Ha: mean(diff) < 0 Ha: mean(diff) != 0 Ha: mean(diff) > 0
Pr(Z < z) = 0.0028 Pr(|Z| > |z|) = 0.0057 Pr(Z > z) = 0.9972

Adjust for clustering
When observations are not independent and can be grouped into clusters, we need to adjust for clus-

tering in a 𝑧 test. For example, in a cluster randomized design, groups of individuals are randomized

instead of individuals. To adjust for clustering, we need to specify the cluster identifier variable in the

cluster() option. In the case of a one-sample 𝑧 test, we need to also specify the intraclass correlation
in the rho() option. In the case of a two-sample 𝑧 test, we need to also specify the common popula-
tion intraclass correlation in the rho() option or group-specific population intraclass correlations in the
rho1() and rho2() options.

Example 5: One-sample 𝑧 test, adjusting for clusters
Consider data on the SAT score of 75 students from 15 classes, with 5 students in each class. We

want to test whether the mean verbal SAT score is different from 600. We assume a known standard

deviation of 132 and a known intraclass correlation of 0.7. To perform the test, we specify the options

cluster(class), rho(0.7), and sd(132):
. use https://www.stata-press.com/data/r18/sat
(Fictional SAT data)
. ztest score == 600, cluster(class) rho(0.7) sd(132)
One-sample z test Number of clusters = 15
Cluster variable: class Cluster size = 5

Intraclass corr. = 0.7000

Variable Obs Mean Std. err. Std. dev. [95% conf. interval]

score 75 504.8 29.71222 132 446.5651 563.0349

mean = mean(score) z = -3.2041
H0: mean = 600

Ha: mean < 600 Ha: mean != 600 Ha: mean > 600
Pr(Z < z) = 0.0007 Pr(|Z| > |z|) = 0.0014 Pr(Z > z) = 0.9993

We find statistical evidence to reject the null hypothesis of𝐻0∶ 𝜇SAT = 600 versus a two-sided alternative

𝐻𝑎∶ 𝜇SAT ≠ 600 at the 5% significance level; the 𝑝-value = 0.0014 < 0.05.
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Example 6: Two-sample 𝑧 test using groups, adjusting for clusters
Consider a cluster randomized control trial that studies the effect of additional training of nurses and

general practitioners in patient-centered care on the well-being and future disease risk of patients with

type 2 diabetes (Kinmonth et al. [1998] and Campbell and Walters [2014]). Practices (practice) are
randomly allocated to two groups—one trained to give patient-centered care (intervention group) and

another trained to give routine care (comparison or control group). In our analysis, we transform the

original bmi using the formula ln(bmi − 14.67355) to obtain a variable that is approximately normally
distributed, lbmi. We want to test the equality of the means of lbmi for the two groups. We assume a

known common standard deviation of 0.35 and a known common intraclass correlation of 0.028.

To perform the test, we need to specify the rho(0.028) and sd(0.35) options. We also need to

specify the cluster identifier practice in the cluster() option and the group identifier group in the
by() option.

. use https://www.stata-press.com/data/r18/dcfd_trial
(BMI data from Diabetes Care from Diagnosis trial (Kinmonth et al., 1998))
. ztest lbmi, by(group) cluster(practice) rho(0.028) sd(0.35)
Two-sample z test
Cluster variable: practice
Group: Control Group: Interv.
Number of clusters = 20 Number of clusters = 18
Avg. cluster size = 5.10 Avg. cluster size = 7.67
CV cluster size = 0.5330 CV cluster size = 0.5126
Intraclass corr. = 0.0280 Intraclass corr. = 0.0280

Group Obs Mean Std. err. Std. dev. [95% conf. interval]

Control 102 2.62954 .0372502 .35 2.556531 2.702549
Interv. 138 2.749023 .0332182 .35 2.683916 2.81413

diff -.1194831 .0499102 -.2173054 -.0216608

diff = mean(Control) - mean(Interv.) z = -2.3940
H0: diff = 0

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
Pr(Z < z) = 0.0083 Pr(|Z| > |z|) = 0.0167 Pr(Z > z) = 0.9917

We find statistical evidence to reject the null hypothesis of 𝐻0∶ 𝜇diff = 0 versus a two-sided alternative

𝐻𝑎∶ 𝜇diff ≠ 0 at the 5% significance level; the 𝑝-value = 0.0167 < 0.05.

Immediate form

Example 7: One-sample 𝑧 test
ztesti is like ztest, except that we specify summary statistics rather than variables as arguments.

For instance, we are reading an article that reports the mean number of sunspots per month as 62.6 with

a standard deviation of 15.8. We assume this standard deviation is the population standard deviation.

There are 24 months of data. We wish to test whether the mean is 75:
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. ztesti 24 62.6 15.8 75
One-sample z test

Obs Mean Std. err. Std. dev. [95% conf. interval]

x 24 62.6 3.225161 15.8 56.2788 68.9212

mean = mean(x) z = -3.8448
H0: mean = 75

Ha: mean < 75 Ha: mean != 75 Ha: mean > 75
Pr(Z < z) = 0.0001 Pr(|Z| > |z|) = 0.0001 Pr(Z > z) = 0.9999

Example 8: Two-sample 𝑧 test
There is no immediate form of ztest with paired data because the test is also a function of the

covariance, a number unlikely to be reported in any published source. For unpaired data, however, we

might type

. ztesti 20 20 5 32 15 4
Two-sample z test

Obs Mean Std. err. Std. dev. [95% conf. interval]

x 20 20 1.118034 5 17.80869 22.19131
y 32 15 .7071068 4 13.6141 16.3859

diff 5 1.322876 2.407211 7.592789

diff = mean(x) - mean(y) z = 3.7796
H0: diff = 0

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
Pr(Z < z) = 0.9999 Pr(|Z| > |z|) = 0.0002 Pr(Z > z) = 0.0001

Stored results
One-sample ztest and ztesti store the following in r():

Scalars

r(N) sample size

r(mu) sample mean

r(sd) standard deviation

r(se) standard error

r(lb) lower confidence bound of one-sample mean

r(ub) upper confidence bound of one-sample mean

r(z) 𝑧 statistic

r(p l) lower one-sided 𝑝-value
r(p) two-sided 𝑝-value
r(p u) upper one-sided 𝑝-value
r(level) confidence level
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Cluster-adjusted one-sample ztest also stores the following in r():

Scalars

r(K) number of clusters 𝐾
r(M) cluster size 𝑀
r(rho) intraclass correlation

r(CV cluster) coefficient of variation for cluster sizes

Two-sample ztest and ztesti store the following in r():

Scalars

r(N1) sample size of population one

r(N2) sample size of population two

r(mu1) sample mean for population one

r(mu2) sample mean for population two

r(mu diff) difference of means

r(corr) correlation between paired observations; if the corr() option is specified
r(sd) common standard deviation

r(sd1) standard deviation for population one

r(sd2) standard deviation for population two

r(sd diff) standard deviation of the differences between paired observations

r(se1) standard error of population-one sample mean

r(se2) standard error of population-two sample mean

r(se diff) standard error of the difference of means

r(lb1) lower confidence bound of population-one sample mean

r(ub1) upper confidence bound of population-one sample mean

r(lb2) lower confidence bound of population-two sample mean

r(ub2) upper confidence bound of population-two sample mean

r(lb diff) lower confidence bound of the difference of means

r(ub diff) upper confidence bound of the difference of means

r(z) 𝑧 statistic

r(p l) lower one-sided 𝑝-value
r(p) two-sided 𝑝-value
r(p u) upper one-sided 𝑝-value
r(level) confidence level

Cluster-adjusted two-sample ztest using the by() option also stores the following in r():

Scalars

r(K1) population-one number of clusters 𝐾1
r(K2) population-two number of clusters 𝐾2
r(M1) population-one cluster size 𝑀1
r(M2) population-two cluster size 𝑀2
r(rho) common intraclass correlation

r(rho1) population-one intraclass correlation

r(rho2) population-two intraclass correlation

r(CV cluster1) population-one coefficient of variation for cluster sizes

r(CV cluster2) population-two coefficient of variation for cluster sizes

Methods and formulas
Methods and formulas are presented under the following headings:

One-sample z test
Two-sample unpaired z test
Paired z test
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For all the tests below, the test statistic 𝑧 is distributed as standard normal, and the 𝑝-value is computed
as

𝑝 =
⎧{
⎨{⎩

1 − Φ (𝑧) for an upper one-sided test

Φ (𝑧) for a lower one-sided test

2 {1 − Φ (|𝑧|)} for a two-sided test

where Φ(⋅) is the cdf of a standard normal distribution and |𝑧| is an absolute value of 𝑧.
Also see, for instance, Hoel (1984, 140–161), Dixon and Massey (1983, 100–130), and Tamhane and

Dunlop (2000, 237–290) for more information about 𝑧 tests.

One-sample z test
Suppose that we observe a random sample 𝑥1, 𝑥2, . . . , 𝑥𝑛 of size 𝑛, which follows a normal distribu-

tion with mean 𝜇 and standard deviation 𝜎. We are interested in testing the null hypothesis 𝐻0∶ 𝜇 = 𝜇0
versus the two-sided alternative hypothesis 𝐻𝑎∶ 𝜇 ≠ 𝜇0, the upper one-sided alternative 𝐻𝑎∶ 𝜇 > 𝜇0,

or the lower one-sided alternative 𝐻𝑎 ∶ 𝜇 < 𝜇0. Assuming a known standard deviation 𝜎, we use the
following test statistic,

𝑧 = (𝑥 − 𝜇0)
𝑠

where 𝑥 = (∑𝑛
𝑖=1 𝑥𝑖)/𝑛 is the sample mean and 𝑠 = 𝜎/

√
𝑛 is the standard error of 𝑥.

The 100(1 − 𝛼)% confidence interval for 𝑥 is given by

𝑥 ± 𝑧1−𝛼/2𝑠

where 𝑧1−𝛼/2 is the (1 − 𝛼/2)th quantile of the standard normal distribution.
With clustered data, suppose that there are 𝐾 clusters. The 𝑖th cluster of size 𝑀𝑖 contains the obser-

vations 𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑀𝑖
, such that 𝑛 = ∑𝐾

𝑖=1 𝑀𝑖 and 𝑥 = 1
𝑛 ∑𝐾

𝑖=1 ∑𝑀𝑖
𝑗=1 𝑥𝑖𝑗. Let 𝜌 be the intraclass

correlation. Following Ahn, Heo, and Zhang (2015), we assume that the cluster sizes𝑀𝑖 are independent

and identically distributed. Let 𝐶adj be the adjustment to the standard error for clustered data,

𝐶adj = √
𝐾

∑
𝑖=1

𝑀𝑖{1 + 𝜌(𝑀𝑖 − 1)}/𝑛

such that 𝑠cl = 𝐶adj𝑠.
𝐶adj can be equivalently written as

𝐶adj = √1 + 𝜌(𝑀 − 1) + 𝜌𝑀CV2
cl

where 𝑀 = ∑𝐾
𝑖=1 𝑀𝑖/𝐾 is the average cluster size and CVcl is the coefficient of variation for cluster

sizes:

CVcl =
√∑𝐾

𝑖=1(𝑀𝑖 − 𝑀)2/𝐾

𝑀
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To adjust the test statistic 𝑧 and the confidence interval for clustering, replace 𝑠 with 𝑠cl in the corre-
sponding formulas. In the presence of clustering, the test statistic 𝑧 is asymptotically normally distributed
conditional on the empirical distribution of 𝑀𝑖’s.

Two-sample unpaired z test
Suppose that we observe a random sample 𝑥11, 𝑥12, . . . , 𝑥1𝑛1

of size 𝑛1, which follows a normal

distribution with mean 𝜇1 and standard deviation 𝜎1, and another random sample 𝑥21, 𝑥22, . . . , 𝑥2𝑛2
of

size 𝑛2, which follows a normal distribution with mean 𝜇2 and standard deviation 𝜎2. We are interested

in testing the null hypothesis 𝐻0∶ 𝜇2 = 𝜇1 versus the two-sided alternative hypothesis 𝐻𝑎∶ 𝜇2 ≠ 𝜇1, the

upper one-sided alternative 𝐻𝑎∶ 𝜇2 > 𝜇1, or the lower one-sided alternative 𝐻𝑎∶ 𝜇2 < 𝜇1. Assuming

known standard deviations 𝜎1 and 𝜎2, we use the following test statistic,

𝑧 = 𝑥2 − 𝑥1

√𝑠2
1 + 𝑠2

2

where 𝑥1 = (∑𝑛1
𝑖=1 𝑥1𝑖)/𝑛1 and 𝑥2 = (∑𝑛2

𝑖=1 𝑥2𝑖)/𝑛2 are the two sample means and 𝑠1 = 𝜎1/√𝑛1 and

𝑠2 = 𝜎2/√𝑛2 are the corresponding two standard errors.

The 100(1 − 𝛼)% confidence intervals for 𝑥1 and 𝑥2 are given by

𝑥1 ± 𝑧1−𝛼/2𝑠1

𝑥2 ± 𝑧1−𝛼/2𝑠2

where 𝑧1−𝛼/2 is the (1 − 𝛼/2)th quantile of the standard normal distribution.
The 100(1 − 𝛼)% confidence interval for 𝑥1 − 𝑥2 is given by

𝑥1 − 𝑥2 ± 𝑧1−𝛼/2√𝑠2
1 + 𝑠2

2

With clustered data, similar to the discussion for the one-sample test, suppose that population one has

𝐾1 clusters and population two has 𝐾2 clusters. Let 𝜌1 and 𝜌2 be the intraclass correlations, 𝑀1 and 𝑀2
be the average cluster sizes, 𝑥1 = (1/𝑛1) ∑𝐾1

𝑖=1 ∑𝑀1𝑖
𝑗=1 𝑥1𝑖𝑗 and 𝑥2 = (1/𝑛2) ∑𝐾2

𝑖=1 ∑𝑀2𝑖
𝑗=1 𝑥2𝑖𝑗 be the

sample means, and CVcl,1 and CVcl,2 be the coefficients of variation for cluster sizes for population one

and population two. Let 𝑠1,cl = 𝐶adj,1𝑠1 and 𝑠2,cl = 𝐶adj,2𝑠2 be the standard errors of the population-

specific sample means adjusted for clustered data, where the population-specific adjustment factors are

defined as described for the one-sample test. To adjust the two-sample test statistic and the confidence

intervals for clustering, replace 𝑠1 with 𝑠1,cl and 𝑠2 with 𝑠2,cl in the corresponding formulas.

Paired z test
Some experiments have paired observations (also known as matched observations, correlated pairs,

or permanent components). Consider a sequence of 𝑛 paired observations denoted by 𝑥𝑖𝑗 for subjects

𝑖 = 1, 2, . . . , 𝑛 and groups 𝑗 = 1, 2. An individual observation corresponds to the pair (𝑥𝑖1, 𝑥𝑖2), and

inference is made on the differences within the pairs. Let 𝜇𝑑 = 𝜇2 − 𝜇1 denote the mean difference,

where 𝜇𝑗 is the population mean of group 𝑗, and let 𝐷𝑖 = 𝑥𝑖2 − 𝑥𝑖1 denote the difference between

individual observations. 𝐷𝑖 follows a normal distribution with mean 𝜇2 − 𝜇1 and standard deviation 𝜎𝑑,

where 𝜎𝑑 = √𝜎1
2 + 𝜎2

2 − 2𝜌pair𝜎1𝜎2, 𝜎𝑗 is the population standard deviation of group 𝑗 and 𝜌pair is
the correlation between paired observations.
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We are interested in testing the null hypothesis 𝐻0 ∶ 𝜇2 = 𝜇1 versus the two-sided alternative hy-

pothesis 𝐻𝑎∶ 𝜇2 ≠ 𝜇1, the upper one-sided alternative 𝐻𝑎∶ 𝜇2 > 𝜇1, or the lower one-sided alternative

𝐻𝑎∶ 𝜇2 < 𝜇1. Assuming the standard deviation of the differences 𝜎𝑑 is known, we use the following test

statistic,

𝑧 = 𝑑
𝑠𝑑

where 𝑑 = (∑𝑛
𝑖=1 𝐷𝑖)/𝑛 is the sample mean of the differences between paired observations and 𝑠𝑑 =

𝜎𝑑/
√

𝑛 is the standard error of 𝑑.
The 100(1 − 𝛼)% confidence interval for 𝑑 is given by

𝑑 ± 𝑧1−𝛼/2𝑠𝑑

References
Ahn, C., M. Heo, and S. Zhang. 2015. Sample Size Calculations for Clustered and Longitudinal Outcomes in Clinical

Research. Boca Raton, FL: CRC Press. https://doi.org/10.1201/b17822.

Campbell, M. J., and S. J. Walters. 2014. How to Design, Analyse and Report Cluster Randomised Trials in Medicine and

Health Related Research. Chichester, UK: Wiley. https://doi.org/10.1002/9781118763452.

Dixon, W. J., and F. J. Massey, Jr. 1983. Introduction to Statistical Analysis. 4th ed. New York: McGraw–Hill.

Hoel, P. G. 1984. Introduction to Mathematical Statistics. 5th ed. New York: Wiley.

Kinmonth, A. L., A. Woodcock, S. Griffin, N. Spiegal, and M. J. Campbell. 1998. Randomised controlled trial of patient

centred care of diabetes in general practice: Impact on current wellbeing and future disease risk.BMJ 317: 1202–1208.

https://doi.org/10.1136/bmj.317.7167.1202.

Tamhane, A. C., and D. D. Dunlop. 2000. Statistics and Data Analysis: From Elementary to Intermediate. Upper Saddle

River, NJ: Prentice Hall.

Zelen, M. 1979. A new design for randomized clinical trials. New England Journal of Medicine 300: 1242–1245. https:

//doi.org/10.1056/NEJM197905313002203.

Also see
[R] ci — Confidence intervals for means, proportions, and variances

[R] esize — Effect size based on mean comparison

[R] mean — Estimate means

[R] oneway — One-way analysis of variance

[R] ttest — 𝑡 tests (mean-comparison tests)
[MV] hotelling — Hotelling’s 𝑇 2 generalized means test

[PSS-2] power onemean — Power analysis for a one-sample mean test

[PSS-2] power onemean, cluster — Power analysis for a one-sample mean test, CRD

[PSS-2] power pairedmeans — Power analysis for a two-sample paired-means test

[PSS-2] power twomeans — Power analysis for a two-sample means test

[PSS-2] power twomeans, cluster — Power analysis for a two-sample means test, CRD

https://doi.org/10.1201/b17822
https://doi.org/10.1002/9781118763452
https://doi.org/10.1136/bmj.317.7167.1202
https://doi.org/10.1056/NEJM197905313002203
https://doi.org/10.1056/NEJM197905313002203


Subject and author index

See the combined subject index and the combined author index in the Stata Index.
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