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Intro — Introduction to Bayesian analysis

Description Remarks and examples References Also see

Description
This entry provides a software-free introduction to Bayesian analysis. See [BAYES] Bayesian

commands for an overview of the software for performing Bayesian analysis and for an overview
example.

For Bayesian model averaging, which is Bayesian analysis that averages over multiple plausible
models, see [BMA] Intro.

Remarks and examples
Remarks are presented under the following headings:

What is Bayesian analysis?
Bayesian versus frequentist analysis, or why Bayesian analysis?
How to do Bayesian analysis
Advantages and disadvantages of Bayesian analysis
Brief background and literature review
Bayesian statistics

Posterior distribution
Selecting priors
Point and interval estimation
Comparing Bayesian models
Posterior prediction

Bayesian computation
Markov chain Monte Carlo methods

Metropolis–Hastings algorithm
Adaptive random-walk Metropolis–Hastings
Blocking of parameters
Metropolis–Hastings with Gibbs updates
Convergence diagnostics of MCMC

Summary
Video examples

The first five sections provide a general introduction to Bayesian analysis. The remaining sections
provide a more technical discussion of the concepts of Bayesian analysis.

What is Bayesian analysis?

Bayesian analysis is a statistical analysis that answers research questions about unknown parameters
of statistical models by using probability statements. Bayesian analysis rests on the assumption that all
model parameters are random quantities and thus can incorporate prior knowledge. This assumption
is in sharp contrast with the more traditional, also called frequentist, statistical inference where all
parameters are considered unknown but fixed quantities. Bayesian analysis follows a simple rule
of probability, the Bayes rule, which provides a formalism for combining prior information with
evidence from the data at hand. The Bayes rule is used to form the so called posterior distribution of
model parameters. The posterior distribution results from updating the prior knowledge about model
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2 Intro — Introduction to Bayesian analysis

parameters with evidence from the observed data. Bayesian analysis uses the posterior distribution to
form various summaries for the model parameters including point estimates such as posterior means,
medians, percentiles, and interval estimates such as credible intervals. Moreover, all statistical tests
about model parameters can be expressed as probability statements based on the estimated posterior
distribution.

As a quick introduction to Bayesian analysis, we use an example, described in Hoff (2009, 3),
of estimating the prevalence of a rare infectious disease in a small city. A small random sample of
20 subjects from the city will be checked for infection. The parameter of interest θ ∈ [0, 1] is the
fraction of infected individuals in the city. Outcome y records the number of infected individuals in
the sample. A reasonable sampling model for y is a binomial model: y|θ ∼ Binomial(20, θ). Based
on the studies from other comparable cities, the infection rate ranged between 0.05 and 0.20, with
an average prevalence of 0.10. To use this information, we must conduct Bayesian analysis. This
information can be incorporated into a Bayesian model with a prior distribution for θ, which assigns
a large probability between 0.05 and 0.20, with the expected value of θ close to 0.10. One potential
prior that satisfies this condition is a Beta(2, 20) prior with the expected value of 2/(2 + 20) = 0.09.
So, let’s assume this prior for the infection rate θ, that is, θ ∼ Beta(2, 20). We sample individuals
and observe none who have an infection, that is, y = 0. This value is not that uncommon for a small
sample and a rare disease. For example, for a true rate θ = 0.05, the probability of observing 0
infections in a sample of 20 individuals is about 36% according to the binomial distribution. So, our
Bayesian model can be defined as follows:

y|θ ∼ Binomial(20, θ)

θ ∼ Beta(2, 20)

For this Bayesian model, we can actually compute the posterior distribution of θ|y, which is
θ|y ∼ Beta(2 + 0, 20 + 20− 0) = Beta(2, 40). The prior and posterior distributions of θ are depicted
below.

0

5

10

15

0 .2 .4 .6 .8 1
Proportion infected in the population, θ

p(θ)
p(θ|y)

Prior and posterior distributions of θ

The posterior density (shown in red) is more peaked and shifted to the left compared with the prior
distribution (shown in blue). The posterior distribution combined the prior information about θ with
the information from the data, from which y = 0 provided evidence for a low value of θ and shifted
the prior density to the left to form the posterior density. Based on this posterior distribution, the
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posterior mean estimate of θ is 2/(2 + 40) = 0.048 and the posterior probability that, for example,
θ < 0.10 is about 93%.

If we compute a standard frequentist estimate of a population proportion θ as a fraction of the
infected subjects in the sample, y = y/n, we will obtain 0 with the corresponding 95% confidence
interval (y − 1.96

√
y (1− y)/n, y + 1.96

√
y (1− y)/n) reducing to 0 as well. It may be difficult

to convince a health policy maker that the prevalence of the disease in that city is indeed 0, given
the small sample size and the prior information available from comparable cities about a nonzero
prevalence of this disease.

We used a beta prior distribution in this example, but we could have chosen another prior distribution
that supports our prior knowledge. For the final analysis, it is important to consider a range of different
prior distributions and investigate the sensitivity of the results to the chosen priors.

For more details about this example, see Hoff (2009). Also see Beta-binomial model in
[BAYES] bayesmh for how to fit this model using bayesmh.

Rabe-Hesketh and Skrondal (2022, chap. 16) and Cameron and Trivedi (2022, chap. 28) provide
introductions to Bayesian analysis with Stata-specific examples.

Bayesian versus frequentist analysis, or why Bayesian analysis?

Why use Bayesian analysis? Perhaps a better question is when to use Bayesian analysis and when
to use frequentist analysis. The answer to this question mainly lies in your research problem. You
should choose an analysis that answers your specific research questions. For example, if you are
interested in estimating the probability that the parameter of interest belongs to some prespecified
interval, you will need the Bayesian framework, because this probability cannot be estimated within
the frequentist framework. If you are interested in a repeated-sampling inference about your parameter,
the frequentist framework provides that.

Bayesian and frequentist approaches have very different philosophies about what is considered fixed
and, therefore, have very different interpretations of the results. The Bayesian approach assumes that
the observed data sample is fixed and that model parameters are random. The posterior distribution
of parameters is estimated based on the observed data and the prior distribution of parameters and is
used for inference. The frequentist approach assumes that the observed data are a repeatable random
sample and that parameters are unknown but fixed and constant across the repeated samples. The
inference is based on the sampling distribution of the data or of the data characteristics (statistics). In
other words, Bayesian analysis answers questions based on the distribution of parameters conditional
on the observed sample, whereas frequentist analysis answers questions based on the distribution of
statistics obtained from repeated hypothetical samples, which would be generated by the same process
that produced the observed sample given that parameters are unknown but fixed. Frequentist analysis
consequently requires that the process that generated the observed data is repeatable. This assumption
may not always be feasible. For example, in meta-analysis, where the observed sample represents the
collected studies of interest, one may argue that the collection of studies is a one-time experiment.

Frequentist analysis is entirely data-driven and strongly depends on whether or not the data
assumptions required by the model are met. On the other hand, Bayesian analysis provides a more
robust estimation approach by using not only the data at hand but also some existing information or
knowledge about model parameters.

In frequentist statistics, estimators are used to approximate the true values of the unknown parameters,
whereas Bayesian statistics provides an entire distribution of the parameters. In our example of a
prevalence of an infectious disease from What is Bayesian analysis?, frequentist analysis produced one
point estimate for the prevalence, whereas Bayesian analysis estimated the entire posterior distribution
of the prevalence based on a given sample.
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Frequentist inference is based on the sampling distributions of estimators of parameters and provides
parameter point estimates and their standard errors as well as confidence intervals. The exact sampling
distributions are rarely known and are often approximated by a large-sample normal distribution.
Bayesian inference is based on the posterior distribution of the parameters and provides summaries of
this distribution including posterior means and their MCMC standard errors (MCSE) as well as credible
intervals. Although exact posterior distributions are known only in a number of cases, general posterior
distributions can be estimated via, for example, Markov chain Monte Carlo (MCMC) sampling without
any large-sample approximation.

Frequentist confidence intervals do not have straightforward probabilistic interpretations as do
Bayesian credible intervals. For example, the interpretation of a 95% confidence interval is that if
we repeat the same experiment many times and compute confidence intervals for each experiment,
then 95% of those intervals will contain the true value of the parameter. For any given confidence
interval, the probability that the true value is in that interval is either zero or one, and we do not
know which. We may only infer that any given confidence interval provides a plausible range for the
true value of the parameter. A 95% Bayesian credible interval, on the other hand, provides a range
for a parameter such that the probability that the parameter lies in that range is 95%.

Frequentist hypothesis testing is based on a deterministic decision using a prespecified significance
level of whether to accept or reject the null hypothesis based on the observed data, assuming that
the null hypothesis is actually true. The decision is based on a p-value computed from the observed
data. The interpretation of the p-value is that if we repeat the same experiment and use the same
testing procedure many times, then given our null hypothesis is true, we will observe the result (test
statistic) as extreme or more extreme than the one observed in the sample (100× p-value)% of the
times. The p-value cannot be interpreted as a probability of the null hypothesis, which is a common
misinterpretation. In fact, it answers the question of how likely are our data given that the null
hypothesis is true, and not how likely is the null hypothesis given our data. The latter question can
be answered by Bayesian hypothesis testing, where we can compute the probability of any hypothesis
of interest.

How to do Bayesian analysis

Bayesian analysis starts with the specification of a posterior model. The posterior model describes
the probability distribution of all model parameters conditional on the observed data and some prior
knowledge. The posterior distribution has two components: a likelihood, which includes information
about model parameters based on the observed data, and a prior, which includes prior information
(before observing the data) about model parameters. The likelihood and prior models are combined
using the Bayes rule to produce the posterior distribution:

Posterior ∝ Likelihood× Prior

If the posterior distribution can be derived in a closed form, we may proceed directly to the
inference stage of Bayesian analysis. Unfortunately, except for some special models, the posterior
distribution is rarely available explicitly and needs to be estimated via simulations. MCMC sampling
can be used to simulate potentially very complex posterior models with an arbitrary level of precision.
MCMC methods for simulating Bayesian models are often demanding in terms of specifying an efficient
sampling algorithm and verifying the convergence of the algorithm to the desired posterior distribution.
See [BAYES] Bayesian estimation.

Inference is the next step of Bayesian analysis. If MCMC sampling is used for approximating the
posterior distribution, the convergence of MCMC must be established before proceeding to inference
(see, for example, [BAYES] bayesgraph and [BAYES] bayesstats grubin). Point and interval estimators
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are either derived from the theoretical posterior distribution or estimated from a sample simulated
from the posterior distribution. Many Bayesian estimators, such as posterior mean and posterior
standard deviation, involve integration. If the integration cannot be performed analytically to obtain a
closed-form solution, sampling techniques such as Monte Carlo integration and MCMC and numerical
integration are commonly used. See [BAYES] Bayesian postestimation and [BAYES] bayesstats.

Another important step of Bayesian analysis is model checking, which is typically performed via
posterior predictive checking. The idea behind posterior predictive checking is the comparison of
various aspects of the distribution of the observed data with those of the replicated data. Replicated
data are simulated from the posterior predictive distribution of the fitted Bayesian model under the same
conditions that generated the observed data, such as the same values of covariates, etc. The discrepancy
between the distributions of the observed and replicated data is measured by test quantities (functions
of the data and model parameters) and is quantified by so-called posterior predictive p-values. See
[BAYES] bayesstats ppvalues and [BAYES] bayespredict.

Bayesian hypothesis testing can take two forms, which we refer to as interval-hypothesis testing
and model-hypothesis testing. In an interval-hypothesis testing, the probability that a parameter or
a set of parameters belongs to a particular interval or intervals is computed. In model hypothesis
testing, the probability of a Bayesian model of interest given the observed data is computed. See
[BAYES] bayestest.

Model comparison is another common step of Bayesian analysis. The Bayesian framework provides
a systematic and consistent approach to model comparison using the notion of posterior odds and
related to them Bayes factors. See [BAYES] bayesstats ic for details.

Finally, prediction of some future unobserved data may also be of interest in Bayesian analysis.
The prediction of a new data point is performed conditional on the observed data using the so-called
posterior predictive distribution, which involves integrating out all parameters from the model with
respect to their posterior distribution. Again, Monte Carlo integration is often the only feasible option
for obtaining predictions. Prediction can also be helpful in estimating the goodness of fit of a model.
See [BAYES] bayespredict.

Advantages and disadvantages of Bayesian analysis

Bayesian analysis is a powerful analytical tool for statistical modeling, interpretation of results,
and prediction of data. It can be used when there are no standard frequentist methods available or
the existing frequentist methods fail. However, one should be aware of both the advantages and
disadvantages of Bayesian analysis before applying it to a specific problem.

The universality of the Bayesian approach is probably its main methodological advantage to the
traditional frequentist approach. Bayesian inference is based on a single rule of probability, the Bayes
rule, which is applied to all parametric models. This makes the Bayesian approach universal and
greatly facilitates its application and interpretation. The frequentist approach, however, relies on a
variety of estimation methods designed for specific statistical problems and models. Often, inferential
methods designed for one class of problems cannot be applied to another class of models.

In Bayesian analysis, we can use previous information, either belief or experimental evidence, in
a data model to acquire more balanced results for a particular problem. For example, incorporating
prior information can mitigate the effect of a small sample size. Importantly, the use of the prior
evidence is achieved in a theoretically sound and principled way.

By using the knowledge of the entire posterior distribution of model parameters, Bayesian inference
is far more comprehensive and flexible than the traditional inference.

Bayesian inference is exact, in the sense that estimation and prediction are based on the posterior
distribution. The latter is either known analytically or can be estimated numerically with an arbitrary
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precision. In contrast, many frequentist estimation procedures such as maximum likelihood rely on
the assumption of asymptotic normality for inference.

Bayesian inference provides a straightforward and more intuitive interpretation of the results in
terms of probabilities. For example, credible intervals are interpreted as intervals to which parameters
belong with a certain probability, unlike the less straightforward repeated-sampling interpretation of
the confidence intervals.

Bayesian models satisfy the likelihood principle (Berger and Wolpert 1988) that the information in
a sample is fully represented by the likelihood function. This principle requires that if the likelihood
function of one model is proportional to the likelihood function of another model, then inferences
from the two models should give the same results. Some researchers argue that frequentist methods
that depend on the experimental design may violate the likelihood principle.

Finally, as we briefly mentioned earlier, the estimation precision in Bayesian analysis is not limited
by the sample size—Bayesian simulation methods may provide an arbitrary degree of precision.

Despite the conceptual and methodological advantages of the Bayesian approach, its application in
practice is still considered controversial sometimes. There are two main reasons for this—the presumed
subjectivity in specifying prior information and the computational challenges in implementing Bayesian
methods. Along with the objectivity that comes from the data, the Bayesian approach uses potentially
subjective prior distribution. That is, different individuals may specify different prior distributions.
Proponents of frequentist statistics argue that for this reason, Bayesian methods lack objectivity and
should be avoided. Indeed, there are settings such as clinical trial cases when the researchers want to
minimize a potential bias coming from preexisting beliefs and achieve more objective conclusions.
Even in such cases, however, a balanced and reliable Bayesian approach is possible. The trend in
using noninformative priors in Bayesian models is an attempt to address the issue of subjectivity. On
the other hand, some Bayesian proponents argue that the classical methods of statistical inference
have built-in subjectivity such as a choice for a sampling procedure, whereas the subjectivity is made
explicit in Bayesian analysis.

Building a reliable Bayesian model requires extensive experience from the researchers, which leads
to the second difficulty in Bayesian analysis—setting up a Bayesian model and performing analysis
is a demanding and involving task. This is true, however, to an extent for any statistical modeling
procedure.

Lastly, one of the main disadvantages of Bayesian analysis is the computational cost. As a rule,
Bayesian analysis involves intractable integrals that can only be computed using intensive numerical
methods. Most of these methods such as MCMC are stochastic by nature and do not comply with
the natural expectation from a user of obtaining deterministic results. Using simulation methods does
not compromise the discussed advantages of Bayesian approach, but unquestionably adds to the
complexity of its application in practice.

For more discussion about advantages and disadvantages of Bayesian analysis, see, for example,
Thompson (2012), Bernardo and Smith (2000), and Berger and Wolpert (1988).

Brief background and literature review

The principles of Bayesian analysis date back to the work of Thomas Bayes, who was a Presbyterian
minister in Tunbridge Wells and Pierre Laplace, a French mathematician, astronomer, and physicist in
the 18th century. Bayesian analysis started as a simple intuitive rule, named after Bayes, for updating
beliefs on account of some evidence. For the next 200 years, however, Bayes’s rule was just an
obscure idea. Along with the rapid development of the standard or frequentist statistics in 20th century,
Bayesian methodology was also developing, although with less attention and at a slower pace. One
of the obstacles for the progress of Bayesian ideas has been the lasting opinion among mainstream
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statisticians of it being subjective. Another more-tangible problem for adopting Bayesian models in
practice has been the lack of adequate computational resources. Nowadays, Bayesian statistics is
widely accepted by researchers and practitioners as a valuable and feasible alternative.

Bayesian analysis proliferates in diverse areas including industry and government, but its application
in sciences and engineering is particularly visible. Bayesian statistical inference is used in econometrics
(Poirier [1995]; Chernozhukov and Hong [2003]; Kim, Shephard, and Chib [1998], Zellner [1997]);
education (Johnson 1997); epidemiology (Greenland 1998); engineering (Godsill and Rayner 1998);
genetics (Iversen, Parmigiani, and Berry 1999); social sciences (Pollard 1986); hydrology (Parent
et al. 1998); quality management (Rios Insua 1990); atmospheric sciences (Berliner et al. 1999); and
law (DeGroot, Fienberg, and Kadane 1986), to name a few.

The subject of general statistics has been greatly influenced by the development of Bayesian
ideas. Bayesian methodologies are now present in biostatistics (Carlin and Louis [2009]; Berry and
Stangl [1996]); generalized linear models (Dey, Ghosh, and Mallick 2000); hierarchical modeling
(Hobert 2000); statistical design (Chaloner and Verdinelli 1995); classification and discrimination (Neal
[1996]; Neal [1999]); graphical models (Pearl 1998); nonparametric estimation (Müller and Vidakovic
[1999]; Dey, Müller, and Sinha [1998]); survival analysis (Barlow, Clarotti, and Spizzichino 1993);
sequential analysis (Carlin, Kadane, and Gelfand 1998); predictive inference (Aitchison and Dun-
smore 1975); spatial statistics (Wolpert and Ickstadt [1998]; Besag and Higdon [1999]); testing and
model selection (Kass and Raftery [1995]; Berger and Pericchi [1996]; Berger [2006]); and time
series (Pole, West, and Harrison [1994]; West and Harrison [1997]).

Recent advances in computing allowed practitioners to perform Bayesian analysis using simulations.
The simulation tools came from outside the statistics field—Metropolis et al. (1953) developed what is
now known as a random-walk Metropolis algorithm to solve problems in statistical physics. Another
landmark discovery was the Gibbs sampling algorithm (Geman and Geman 1984), initially used
in image processing, which showed that exact sampling from a complex and otherwise intractable
probability distribution is possible. These ideas were the seeds that led to the development of Markov
chain Monte Carlo (MCMC)—a class of iterative simulation methods proved to be indispensable
tools for Bayesian computations. Starting from the early 1990s, MCMC-based techniques slowly
emerged in the mainstream statistical practice. More powerful and specialized methods appeared,
such as perfect sampling (Propp and Wilson 1996), reversible-jump MCMC (Green 1995) for traversing
variable dimension state spaces, and particle systems (Gordon, Salmond, and Smith 1993). Consequent
widespread application of MCMC was imminent (Berger 2000) and influenced various specialized fields.
For example, Gelman and Rubin (1992) investigated MCMC for the purpose of exploring posterior
distributions; Geweke (1999) surveyed simulation methods for Bayesian inference in econometrics;
Kim, Shephard, and Chib (1998) used MCMC simulations to fit stochastic volatility models; Carlin,
Kadane, and Gelfand (1998) implemented Monte Carlo methods for identifying optimal strategies in
clinical trials; Chib and Greenberg (1995) provided Bayesian formulation of a number of important
econometrics models; and Chernozhukov and Hong (2003) reviewed some econometrics models
involving Laplace-type estimators from an MCMC perspective. For more comprehensive exposition of
MCMC, see, for example, Robert and Casella (2004); Tanner (1996); Gamerman and Lopes (2006);
Chen, Shao, and Ibrahim (2000); and Brooks et al. (2011).
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Bayesian statistics

Posterior distribution

To formulate the principles of Bayesian statistics, we start with a simple case when one is concerned
with the interaction of two random variables, A and B. Let p(·) denote either a probability mass
function or a density, depending on whether the variables are discrete or continuous. The rule of
conditional probability,

p(A|B) =
p(A,B)

p(B)

can be used to derive the so-called Bayes’s theorem:

p(B|A) =
p(A|B)p(B)

p(A)
(1)

This rule also holds in the more general case when A and B are random vectors.

In a typical statistical problem, we have a data vector y, which is assumed to be a sample from a
probability model with an unknown parameter vector θ. We represent this model using the likelihood
function L(θ; y) = f(y; θ) =

∏n
i=1 f(yi|θ), where f(yi|θ) denotes the probability density function

of yi given θ. We want to infer some properties of θ based on the data y. In Bayesian statistics,
model parameters θ is a random vector. We assume that θ has a probability distribution p(θ) = π(θ),
which is referred to as a prior distribution. Because both y and θ are random, we can apply Bayes’s
theorem (1) to derive the posterior distribution of θ given data y,

p(θ|y) =
p(y|θ)p(θ)

p(y)
=
f(y; θ)π(θ)

m(y)
(2)

where m(y) ≡ p(y), known as the marginal distribution of y, is defined by

m(y) =

∫
f(y; θ)π(θ)dθ (3)

The marginal distribution m(y) in (3) does not depend on the parameter of interest θ, and we
can, therefore, reduce (2) to

p(θ|y) ∝ L(θ; y)π(θ) (4)

Equation (4) is fundamental in Bayesian analysis and states that the posterior distribution of model
parameters is proportional to their likelihood and prior probability distributions. We will often use
(4) in the computationally more-convenient log-scale form

ln{p(θ|y)} = l(θ; y) + ln{π(θ)} − c (5)

where l(·; ·) denotes the log likelihood of the model. Depending on the analytical procedure involving
the log-posterior ln{p(θ|y)}, the actual value of the constant c = ln{m(y)} may or may not be
relevant. For valid statistical analysis, however, we will always assume that c is finite.



Intro — Introduction to Bayesian analysis 9

Selecting priors

In Bayesian analysis, we seek a balance between prior information in a form of expert knowledge
or belief and evidence from data at hand. Achieving the right balance is one of the difficulties in
Bayesian modeling and inference. In general, we should not allow the prior information to overwhelm
the evidence from the data, especially when we have a large data sample. A famous theoretical
result, the Bernstein–von Mises theorem, states that in large data samples, the posterior distribution is
independent of the prior distribution and, therefore, Bayesian and likelihood-based inferences should
yield essentially the same results. On the other hand, we need a strong enough prior to support weak
evidence that usually comes from insufficient data. It is always good practice to perform sensitivity
analysis to check the dependence of the results on the choice of a prior.

The flexibility of choosing the prior freely is one of the main controversial issues associated with
Bayesian analysis and the reason why some practitioners view the latter as subjective. It is also the
reason why the Bayesian practice, especially in the early days, was dominated by noninformative priors.
Noninformative priors, also called flat or vague priors, assign equal probabilities to all possible states
of the parameter space with the aim of rectifying the subjectivity problem. One of the disadvantages
of flat priors is that they are often improper; that is, they do not specify a legitimate probability
distribution. For example, a uniform prior for a continuous parameter over an unbounded domain does
not integrate to a finite number. However, this is not necessarily a problem because the corresponding
posterior distribution may still be proper. Although Bayesian inference based on improper priors is
possible, this is equivalent to discarding the terms logπ(θ) and c in (5), which nullifies the benefit
of Bayesian analysis because it reduces the latter to an inference based only on the likelihood.
This is why there is a strong objection to the practice of noninformative priors. In recent years, an
increasing number of researchers have advocated the use of sound informative priors, for example,
Thompson (2014). For example, using informative priors is mandatory in areas such as genetics,
where prior distributions have a physical basis and reflect scientific knowledge.

Another convenient preference for priors is to use conjugate priors. Their choice is desirable from
technical and computational standpoints but may not necessarily provide a realistic representation of
the model parameters. Because of the limited arsenal of conjugate priors, an inclination to overuse
them severely limits the flexibility of Bayesian modeling.

Point and interval estimation

In Bayesian statistics, inference about parameters θ is based on the posterior distribution p(θ|y) and
various ways of summarizing this distribution. Point and interval estimates can be used to summarize
this distribution.

Commonly used point estimators are the posterior mean,

E(θ|y) =

∫
θp(θ|y)dθ

and the posterior median, q0.5(θ), which is the 0.5 quantile of the posterior; that is,

P{θ ≤ q0.5(θ|y)} = 0.5

Another point estimator is the posterior mode, which is the value of θ that maximizes p(θ|y).

Interval estimation is performed by constructing so-called credible intervals (CrIs). CrIs are special
cases of credible regions. Let 1−α ∈ (0, 1) be some predefined credible level. Then, an {(1−α)×
100}% credible set R of θ is such that
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Pr(θ ∈ R|y) =

∫
R

p(θ|y)dθ = 1− α

We consider two types of CrIs. The first one is based on quantiles. The second one is the highest
posterior density (HPD) interval.

An {(1 − α) × 100}% quantile-based, or also known as an equal-tailed CrI, is defined as
(qα/2, q1−α/2), where qa denotes the ath quantile of the posterior distribution. A commonly reported
equal-tailed CrI is (q0.025, q0.975).

HPD interval is defined as an {(1− α)× 100}% CrI of the shortest width. As its name implies,
this interval corresponds to the region of the posterior density with the highest concentration. For a
unimodal posterior distribution, HPD is unique, but for a multimodal distribution it may not be unique.
Computational approaches for calculating HPD are described in Chen and Shao (1999) and Eberly
and Casella (2003).

Comparing Bayesian models

Model comparison is another important aspect of Bayesian statistics. We are often interested in
comparing two or more plausible models for our data.

Let’s assume that we have models Mj parameterized by vectors θj , j = 1, . . . , r. We may have
varying degree of belief in each of these models given by prior probabilities p(Mj), such that∑r
j=1 p(Mj) = 1. By applying Bayes’s theorem, we find the posterior model probabilities

p(Mj |y) =
p(y|Mj)p(Mj)

p(y)

where p(y|Mj) = mj(y) is the marginal likelihood of Mj with respect to y. Because of the difficulty
in calculating p(y), it is a common practice to compare two models, say, Mj and Mk, using the
posterior odds ratio

POjk =
p(Mj |y)

p(Mk|y)
=
p(y|Mj)p(Mj)

p(y|Mk)p(Mk)

If all models are equally plausible, that is, p(Mj) = 1/r, the posterior odds ratio reduces to the
so-called Bayes factors (BF) (Jeffreys 1935),

BFjk =
p(y|Mj)

p(y|Mk)
=
mj(y)

mk(y)

which are simply ratios of marginal likelihoods.

Jeffreys (1961) recommended an interpretation of BFjk based on half-units of the log scale. The
following table provides some rules of thumb:

log10(BFjk) BFjk Evidence against Mk

0 to 1/2 1 to 3.2 Bare mention
1/2 to 1 3.2 to 10 Substantial
1 to 2 10 to 100 Strong
>2 >100 Decisive
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The Schwarz criterion BIC (Schwarz 1978) is an approximation of BF in case of arbitrary but
proper priors. Kass and Raftery (1995) and Berger (2006) provide a detailed exposition of Bayes
factors, their calculation, and their role in model building and testing.

Posterior prediction

Prediction is another essential part of statistical analysis. In Bayesian statistics, prediction is
performed using the posterior predictive distribution. The probability of observing some future data
y∗ given the observed data y can be obtained by the marginalization of

p(y∗|y) =

∫
p(y∗|y, θ)p(θ|y)dθ

which, assuming that y∗ is independent of y given θ, can be simplified to

p(y∗|y) =

∫
p(y∗|θ)p(θ|y)dθ (6)

Equation (6) is called a posterior predictive distribution and is used for Bayesian prediction. See
[BAYES] bayespredict and [BAYES] bayesstats ppvalues.

Bayesian computation

An unavoidable difficulty in performing Bayesian analysis is the need to compute integrals such
as those expressing marginal distributions and posterior moments. The integrals involved in Bayesian
inference are of the form E{g(θ)} =

∫
g(θ)p(θ|y)dθ for some function g(·) of the random vector

θ. With the exception of a few cases for which analytical integration is possible, the integration is
performed via simulations.

Given a sample from the posterior distribution, we can use Monte Carlo integration to approximate
the integrals. Let θ1, θ2, . . . , θT be an independent sample from p(θ|y).

The original integral of interest E{g(θ)} can be approximated by

ĝ =
1

T

T∑
t=1

g(θt)

Moreover, if g is a scalar function, under some mild conditions, the central limit theorem holds

ĝ ≈ N
[
E{g(θ)}, σ2/T

]
where σ2 = Cov{g(θi)} can be approximated by the sample variance

∑T
t=1{g(θt)− ĝ}2/T . If the

sample is not independent, then ĝ still approximates E{g(θ)} but the variance σ2 is given by

σ2 = Var{g(θt)}+ 2

∞∑
k=1

Cov{g(θt), g(θt+k)} (7)

and needs to be approximated. Moreover, the conditions needed for the central limit theorem to hold
involve the convergence rate of the chain and can be difficult to check in practice (Tierney 1994).
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The Monte Carlo integration method solves the problem of Bayesian computation of computing a
posterior distribution by sampling from that posterior distribution. The latter has been an important
problem in computational statistics and a focus of intense research. Rejection sampling techniques
serve as basic tools for generating samples from a general probability distribution (von Neumann 1951).
They are based on the idea that samples from the target distribution can be obtained from another,
easy-to-sample distribution according to some acceptance–rejection rule for the samples from this
distribution. It was soon recognized, however, that the acceptance–rejection methods did not scale
well with the increase of dimensions, a problem known as the “curse of dimensionality”, essentially
reducing the acceptance probability to zero. An alternative solution was to use the Markov chains to
generate sequences of correlated sample points from the domain of the target distribution and keeping
a reasonable rate of acceptance. It was not long before Markov chain Monte Carlo methods were
accepted as effective tools for approximate sampling from general posterior distributions (Tanner and
Wong 1987).

Markov chain Monte Carlo methods
Every MCMC method is designed to generate values from a transition kernel such that the draws

from that kernel converge to a prespecified target distribution. It simulates a Markov chain with the
target distribution as the stationary or equilibrium distribution of the chain. By definition, a Markov
chain is any sequence of values or states from the domain of the target distribution, such that each
value depends on its immediate predecessor only. For a well-designed MCMC, the longer the chain, the
closer the samples to the stationary distribution. MCMC methods differ substantially in their simulation
efficiency and computational complexity.

The Metropolis algorithm proposed in Metropolis and Ulam (1949) and Metropolis et al. (1953)
appears to be the earliest version of MCMC. The algorithm generates a sequence of states, each
obtained from the previous one, according to a Gaussian proposal distribution centered at that state.
Hastings (1970) described a more-general version of the algorithm, now known as a Metropolis–
Hastings (MH) algorithm, which allows any distribution to be used as a proposal distribution. Below
we review the general MH algorithm and some of its special cases.

Metropolis–Hastings algorithm

Here we present the MH algorithm for sampling from a posterior distribution in a general formulation.
It requires the specification of a proposal probability distribution q(·) and a starting state θ0 within
the domain of the posterior, that is, p(θ0|y) > 0. The algorithm generates a Markov chain {θt}T−1

t=0
such that at each step t 1) a proposal state θ∗ is generated conditional on the current state, and 2) θ∗
is accepted or rejected according to the suitably defined acceptance probability.

For t = 1, . . . , T − 1:

1. Generate a proposal state: θ∗ ∼ q(·|θt−1).

2. Calculate the acceptance probability α(θ∗|θt−1) = min{r(θ∗|θt−1), 1}, where

r(θ∗|θt−1) =
p(θ∗|y)q(θt−1|θ∗)
p(θt−1|y)q(θ∗|θt−1)

3. Draw u ∼ Uniform(0, 1).

4. Set θt = θ∗ if u < α(θ∗|θt−1), and θt = θt−1 otherwise.

We refer to the iteration steps 1 through 4 as an MH update. By design, any Markov chain simulated
using this MH algorithm is guaranteed to have p(θ|y) as its stationary distribution.
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Two important criteria measuring the efficiency of MCMC are the acceptance rate of the chain and
the degree of autocorrelation in the generated sample. When the acceptance rate is close to 0, then
most of the proposals are rejected, which means that the chain failed to explore regions of appreciable
posterior probability. The other extreme is when the acceptance probability is close to 1, in which
case the chain stays in a small region and fails to explore the whole posterior domain. An efficient
MCMC has an acceptance rate that is neither too small nor too large and also has small autocorrelation.
Gelman, Gilks, and Roberts (1997) showed that in the case of a multivariate posterior and proposal
distributions, an acceptance rate of 0.234 is asymptotically optimal and, in the case of a univariate
posterior, the optimal value is 0.45.

A special case of MH employs a Metropolis update with q(·) being a symmetric distribution. Then,
the acceptance ratio reduces to a ratio of posterior probabilities,

r(θ∗|θt−1) =
p(θ∗|y)

p(θt−1|y)

The symmetric Gaussian distribution is a common choice for a proposal distribution q(·), and this is
the one used in the original Metropolis algorithm.

Another important MCMC method that can be viewed as a special case of MH is Gibbs sampling
(Gelfand et al. 1990), where the updates are the full conditional distributions of each parameter
given the rest of the parameters. Gibbs updates are always accepted. If θ = (θ1, . . . , θd) and, for
j = 1 . . . , d, qj is the conditional distribution of θj given the rest θ{−j}, then the Gibbs algorithm
is the following. For t = 1, . . . , T − 1 and for j = 1, . . . , d: θjt ∼ qj(·|θ

{−j}
t−1 ). This step is referred

to as a Gibbs update.

All MCMC methods share some limitations and potential problems. First, any simulated chain is
influenced by its starting values, especially for short MCMC runs. It is required that the starting point
has a positive posterior probability, but even when this condition is satisfied, if we start somewhere
in a remote tail of the target distribution, it may take many iterations to reach a region of appreciable
probability. Second, because there is no obvious stopping criterion, it is not easy to decide for how long
to run the MCMC algorithm to achieve convergence to the target distribution. Third, the observations
in MCMC samples are strongly dependent and this must be taken into account in any subsequent
statistical inference. For example, the errors associated with the Monte Carlo integration should be
calculated according to (7), which accounts for autocorrelation.

Adaptive random-walk Metropolis–Hastings

The choice of a proposal distribution q(·) in the MH algorithm is crucial for the mixing properties
of the resulting Markov chain. The problem of determining an optimal proposal for a particular target
posterior distribution is difficult and is still being researched actively. All proposed solutions are based
on some form of an adaptation of the proposal distribution as the Markov chain progresses, which is
carefully designed to preserve the ergodicity of the chain, that is, its tendency to converge to the target
distribution. These methods are known as adaptive MCMC methods (Haario, Saksman, and Tamminen
[2001]; Giordani and Kohn [2010]; and Roberts and Rosenthal [2009]).

The majority of adaptive MCMC methods are random-walk MH algorithms with updates of the
form: θ∗ = θt−1 + Zt, where Zt follows some symmetric distribution. Specifically, we consider a
Gaussian random-walk MH algorithm with Zt ∼ N(0, ρ2Σ), where ρ is a scalar controlling the scale
of random jumps for generating updates and Σ is a d-dimensional covariance matrix. One of the first
important results regarding adaptation is from Gelman, Gilks, and Roberts (1997), where the authors
derive the optimal scaling factor ρ = 2.38/

√
d and note that the optimal Σ is the true covariance

matrix of the target distribution.
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Haario, Saksman, and Tamminen (2001) proposes Σ to be estimated by the empirical covariance
matrix plus a small diagonal matrix ε× Id to prevent zero covariance matrices. Alternatively, Roberts
and Rosenthal (2009) proposed a mixture of the two covariance matrices,

Σt = βΣ̂ + (1− β)Σ0

for some fixed covariance matrix Σ0 and β ∈ [0, 1].

Because the proposal distribution of an adaptive MH algorithm changes at each step, the ergodicity
of the chain is not necessarily preserved. However, under certain assumptions about the adaptation
procedure, the ergodicity does hold; see Roberts and Rosenthal (2007), Andrieu and Moulines (2006),
Atchadé and Rosenthal (2005), and Giordani and Kohn (2010) for details.

Blocking of parameters

In the original MH algorithm, the update steps of generating proposals and applying the acceptance–
rejection rule are performed for all model parameters simultaneously. For high-dimensional models,
this may result in a poor mixing—the Markov chain may stay in the tails of the posterior distribution for
long periods of time and traverse the posterior domain very slowly. Suboptimal mixing is manifested
by either very high or very low acceptance rates. Adaptive MH algorithms are also prone to this
problem, especially when model parameters have very different scales. An effective solution to this
problem is called blocking—model parameters are separated into two or more subsets or blocks and
MH updates are applied to each block separately in the order that the blocks are specified.

Let’s separate a vector of parameters into B blocks: θ = {θ1, . . . , θB}. The version of the
Gaussian random-walk MH algorithm with blocking is as follows.

Let T0 be the number of burn-in iterations, T be the number of MCMC samples, and ρ2
bΣ

b,
b = 1, . . . , B, be block-specific proposal covariance matrices. Let θ0 be the starting point within the
domain of the posterior, that is, p(θ0|y) > 0.

1. At iteration t, let θt = θt−1.

2. For a block of parameters θbt :

2.1. Let θ∗ = θt. Generate a proposal for the bth block: θb∗ = θbt−1 + ε, where ε ∼ N(0, ρ2
bΣ

b).

2.2. Calculate the acceptance ratio,

r(θ∗|θt) =
p(θ∗|y)

p(θt|y)

where θ∗ = (θ1
t , θ

2
t , . . . , θ

b−1
t , θb∗, θ

b+1
t , . . . , θBt ).

2.3. Draw u ∼ Uniform(0, 1).

2.4. Let θbt = θb∗ if u < min{r(θ∗|θt), 1}.
3. Repeat step 2 for b = 1, . . . , B.

4. Repeat steps 1 through 3 for t = 1, . . . , T + T0 − 1.

5. The final sequence is {θt}T+T0−1
t=T0

.

Blocking may not always improve efficiency. For example, separating all parameters in individual
blocks (the so-called one-at-a-time update regime) can lead to slow mixing when some parameters are
highly correlated. A Markov chain may explore the posterior domain very slowly if highly correlated
parameters are updated independently. There are no theoretical results about optimal blocking, so
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you will need to use your judgment when determining the best set of blocks for your model. As
a rule, parameters that are expected to be highly correlated are specified in one block. This will
generally improve mixing of the chain unless the proposal correlation matrix does not capture the
actual correlation structure of the block. For example, if there are two parameters in the block that
have very different scales, adaptive MH algorithms that use the identity matrix for the initial proposal
covariance may take a long time to approximate the optimal proposal correlation matrix. The user
should, therefore, consider not only the probabilistic relationship between the parameters in the model,
but also their scales to determine an optimal set of blocks.

Metropolis–Hastings with Gibbs updates

The original Gibbs sampler updates each model parameter one at a time according to its full
conditional distribution. We have already noted that Gibbs is a special case of the MH algorithm.
Some of the advantages of Gibbs sampling include its high efficiency, because all proposals are
automatically accepted, and that it does not require any additional tuning for proposal distributions
in MH algorithms. Unfortunately, for most posterior distributions in practice, the full conditionals are
either not available or are very difficult to sample from. It may be the case, however, that for some
model parameters or groups of parameters, the full conditionals are available and are easy to generate
samples from. This is done in a hybrid MH algorithm, which implements Gibbs updates for only
some blocks of parameters. A hybrid MH algorithm combines Gaussian random-walk updates with
Gibbs updates to improve the mixing of the chain.

The MH algorithm with blocking allows different samplers to be used for updating different blocks.
If there is a group of model parameters with a conjugate prior (or semiconjugate prior), we can place
this group of parameters in a separate block and use Gibbs sampling for it. This can greatly improve
the overall sampling efficiency of the algorithm.

For example, suppose that the data are normally distributed with a known mean µ and that we
specify an inverse-gamma prior for σ2 with shape α and scale β, which are some fixed constants.

y ∼ N(µ, σ2), σ2 ∼ InvGamma(α, β)

The full conditional distribution for σ2 in this case is also an inverse-gamma distribution, but with
different shape and scale parameters,

σ2 ∼ InvGamma

{
α̃ = α+

n

2
, β̃ = β +

1

2

n∑
i=1

(yi − µ)2

}

where n is the data sample size. So, an inverse-gamma prior for the variance is a conjugate prior in
this model. We can thus place σ2 in a separate block and set up a Gibbs sampling for it using the
above full conditional distribution.

See Methods and formulas in [BAYES] bayesmh for details.

Convergence diagnostics of MCMC

Checking convergence of MCMC is an essential step in any MCMC simulation. Bayesian inference
based on an MCMC sample is valid only if the Markov chain has converged and the sample is
drawn from the desired posterior distribution. It is important that we verify the convergence for all
model parameters and not only for a subset of parameters of interest. One difficulty with assessing
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convergence of MCMC is that there is no single conclusive convergence criterion. The diagnostic usually
involves checking for several necessary (but not necessarily sufficient) conditions for convergence. In
general, the more aspects of the MCMC sample you inspect, the more reliable your results are.

The most extensive review of the methods for assessing convergence is Cowles and Carlin (1996).
Other discussions about monitoring convergence can be found in Gelman et al. (2014) and Brooks
et al. (2011).

There are at least two general approaches for detecting convergence issues. The first one is to
inspect the mixing and time trends within the chains of individual parameters. The second one is to
examine the mixing and time trends of multiple chains for each parameter. The lack of convergence
in a Markov chain can be especially difficult to detect in a case of pseudoconvergence, which often
occurs with multimodal posterior distributions. Pseudoconvergence occurs when the chain appears to
have converged but it actually explored only a portion of the domain of a posterior distribution. To
check for pseudoconvergence, Gelman and Rubin (1992) recommend running multiple chains from
different starting states and comparing them; see [BAYES] bayesstats grubin.

Trace plots are the most accessible convergence diagnostics and are easy to inspect visually. The
trace plot of a parameter plots the simulated values for this parameter versus the iteration number.
The trace plot of a well-mixing parameter should traverse the posterior domain rapidly and should
have nearly constant mean and variance. See [BAYES] bayesgraph for details.

In the next figure, we show examples of trace plots for four parameters: var1, var2, var3,
and var4. The first two parameters, var1 and var2, have well-mixing chains, and the other two
have poorly mixing chains. The chain for the parameter var1 has a moderate acceptance rate, about
35%, and efficiency between 10% and 20%. This is a typical result for a Gaussian random-walk MH
algorithm that has achieved convergence. The trace plot of var2 in the top right panel shows almost
perfect mixing—this is a typical example of Gibbs sampling with an acceptance rate close to 1 and
efficiency above 95%. Although both chains traverse their marginal posterior domains, the right one
does it more rapidly. On the downside, more efficient MCMC algorithms such as Gibbs sampling are
usually associated with a higher computational cost.
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The bottom two trace plots illustrate cases of bad mixing and a lack of convergence. On the left, the
chain for var3 exhibits high acceptance rate but poor coverage of the posterior domain manifested
by random drifting in isolated regions. This chain was produced by a Gaussian random-walk MH
algorithm with a proposal distribution with a very small variance. On the right, the chain for the
parameter var4 has a very low acceptance rate, below 3%, because the used proposal distribution
had a very large variance. In both cases, the chains do not converge; the simulation results do not
represent the posterior distribution and should thus be discarded.

As we stated before, samples simulated using MCMC methods are correlated. The smaller the
correlation, the more efficient the sampling process. Most of the MH algorithms typically generate
highly correlated draws, whereas the Gibbs algorithm typically generates less-correlated draws.
Below we show autocorrelation plots for the same four parameters using the same MCMC samples.
The autocorrelation of var1, the one that comes from a well-mixing MH chain, becomes negligible
fairly quickly, after about 10 lags. On the other hand, the autocorrelation of var2 simulated using
Gibbs sampling is essentially negligible for all positive lags. In the case of a poor mixing because
of a small proposal variance (parameter var3), we observe very high positive correlation for at least
100 lags. The autocorrelation of var4 is high but is lower than that of var3.
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Yu and Mykland (1998) proposed a graphical procedure for assessing the convergence of individual
parameters based on cumulative sums, also known as a cusum plot. By definition, any cusum plot
starts at 0 and ends at 0. Cusum plots are useful for detecting drifts in the chain. For a chain without
trend, the cusum plot should cross the x axis. For example, early drifts may indicate dependence on
starting values. If we detect an early drift, we should discard an initial part of the chain and run
it longer. Below, we show the trace plot of a poorly mixing parameter tau and its corresponding
cusum plot on the right. There is an apparent positive drift for approximately the first half of the
chain followed by the drift in the negative direction. As a result, the cusum plot has a distinctive
mountain-like shape and never crosses the x axis.
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Cusum plots can be also used for assessing how fast the chain is mixing. The slower the mixing
of the chain, the smoother the cusum plots. Conversely, the faster the mixing of the chain, the more
jagged the cusum plots. Below, we demonstrate the cusum plots for the four variables considered
previously. We can clearly see the contrast between the jagged lines of the fast mixing parameters
var1 and var2 and the very smooth cusum line of the poorly mixing parameter var3.
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Besides graphical convergence diagnostics, there are some formal convergence tests (Geweke
[1992]; Gelman and Rubin [1992]; Heidelberger and Welch [1983]; Raftery and Lewis [1992];
Zellner and Min [1995]). See Convergence diagnostics using multiple chains in [BAYES] bayesmh
and see [BAYES] bayesstats grubin for more details.
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Summary

Bayesian analysis is a statistical procedure that answers research questions by expressing uncertainty
about unknown parameters using probabilities. Bayesian inference is based on the posterior distribution
of model parameters conditional on the observed data. The posterior distribution is composed of a
likelihood distribution of the data and the prior distribution of the model parameters. The likelihood
model is specified in the same way it is specified with any standard likelihood-based analysis. The
prior distribution is constructed based on the prior (before observing the data) scientific knowledge
and results from previous studies. Sensitivity analysis is typically performed to evaluate the influence
of different competing priors on the results.

Many posterior distributions do not have a closed form and must be simulated using MCMC methods
such as MH methods or the Gibbs method or sometimes their combination. The convergence of MCMC
must be verified before any inference can be made.

Marginal posterior distributions of the parameters are used for inference. These are summarized
using point estimators such as posterior mean and median and interval estimators such as equal-
tailed credible intervals and highest posterior density intervals. Credible intervals have an intuitive
interpretation as fixed ranges to which a parameter is known to belong with a prespecified probability.
Hypothesis testing provides a way to assign an actual probability to any hypothesis of interest. A
number of criteria are available for comparing models of interest. Predictions and model checking
are also available based on the posterior predictive distribution.

Bayesian analysis provides many advantages over the standard frequentist analysis, such as an ability
to incorporate prior information in the analysis, higher robustness to sparse data, more-comprehensive
inference based on the knowledge of the entire posterior distribution, and more intuitive and direct
interpretations of results by using probability statements about parameters.

Video examples

Introduction to Bayesian statistics, part 1: The basic concepts

Introduction to Bayesian statistics, part 2: MCMC and the Metropolis–Hastings algorithm

� �
Thomas Bayes (1701(?)–1761) was a Presbyterian minister with an interest in calculus, geometry,
and probability theory. He was born in Hertfordshire, England. The son of a Nonconformist
minister, Bayes was banned from English universities and so studied at Edinburgh University
before becoming a clergyman himself. Only two works are attributed to Bayes during his lifetime,
both published anonymously. He was admitted to the Royal Society in 1742 and never published
thereafter.

The paper that gives us “Bayes’s Theorem” was published posthumously by Richard Price.
The theorem has become an important concept for frequentist and Bayesian statisticians alike.
However, the paper indicates that Bayes considered the theorem as relatively unimportant. His
main interest appears to have been that probabilities were not fixed but instead followed some
distribution. The notion, now foundational to Bayesian statistics, was largely ignored at the time.

Whether Bayes’s theorem is appropriately named is the subject of much debate. Price acknowl-
edged that he had written the paper based on information he found in Bayes’s notebook, yet
he never said how much he added beyond the introduction. Some scholars have also questioned
whether Bayes’s notes represent original work or are the result of correspondence with other
mathematicians of the time.� �

https://youtu.be/0F0QoMCSKJ4
https://youtu.be/OTO1DygELpY
https://www.stata.com/giftshop/bookmarks/series8/bayes/
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Andrey Markov (1856–1922) was a Russian mathematician who made many contributions to
mathematics and statistics. He was born in Ryazan, Russia. In primary school, he was known
as a poor student in all areas except mathematics. Markov attended St. Petersburg University,
where he studied under Pafnuty Chebyshev and later joined the physicomathematical faculty. He
was a member of the Russian Academy of the Sciences.

Markov’s first interest was in calculus. He did not start his work in probability theory until
1883 when Chebyshev left the university and Markov took over his teaching duties. A large and
influential body of work followed, including applications of the weak law of large numbers and
what are now known as Markov processes and Markov chains. His work on processes and chains
would later influence the development of a variety of disciplines such as biology, chemistry,
economics, physics, and statistics.

Known in the Russian press as the “militant academician” for his frequent written protests about
the czarist government’s interference in academic affairs, Markov spent much of his adult life
at odds with Russian authorities. In 1908, he resigned from his teaching position in response
to a government requirement that professors report on students’ efforts to organize protests in
the wake of the student riots earlier that year. He did not resume his university teaching duties
until 1917, after the Russian Revolution. His trouble with Russian authorities also extended to
the Russian Orthodox Church. In 1912, he was excommunicated at his own request in protest
over the Church’s excommunication of Leo Tolstoy.� �

� �
Bruno de Finetti (1906–1985) was born in Innsbruck, Austria. He received a degree in applied
mathematics from the Polytechnic University of Milan. One of his first publications was in
the field of genetics, in which he introduced what is now called the de Finetti diagram. Upon
graduation, he began working for the Italian Central Statistical Institute and later moved to
Trieste to work as an actuary. He became a professor at the University of Trieste in 1947 and
later became a professor of the theory of probability at the University of Rome ”La Sapienza”,
a post he held for 15 years.

De Finetti made many contributions to the fields of probability and statistics. His text Theory of
Probability helped lay the foundation for Bayesian theory. He also wrote papers on sequences of
exchangeable random variables and processes with independent increments. In a paper published
in 1955, de Finetti used an extension of the Lorenz–Gini concentration function to prove the
Radon–Nikodym theorem. This extension has been employed in Bayesian statistics as a measure
of robustness. His publications also include work on nonparametric estimation of a cumulative
distribution function and group decision making, among other topics. For his many contributions,
he was named a fellow of the Royal Statistical Society and the Institute of Mathematical Statistics.� �

https://www.stata.com/giftshop/bookmarks/series8/markov/
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David Harold Blackwell (1919–2010) was a world-renowned statistician and mathematician. At
age 16, he began attending the University of Illinois, where he obtained a master’s degree in
mathematics and then a PhD in statistics at age 22. Shortly after, he joined Princeton University
as a visiting fellow, becoming the university’s first African-American faculty member and paving
the way for future generations.

Blackwell is best known for developing the Rao–Blackwell theorem, used in statistics, and the
Blackwell renewal theorem, used in engineering. In regard to Markov decision processes, he
introduced the concepts of Blackwell optimality and positive and negative dynamic programs.
His contributions also include pioneering texts, such as Basic Statistics, one of the first texts on
Bayesian statistics, and Theory of Games and Statistical Decisions, which he coauthored with
M. A. Girschick. Additionally, in 1949, he coauthored a paper that helped lay the groundwork
for Bayesian sequential analysis. He published over 80 papers in many fields, including game
theory, probability theory, and mathematical statistics.

Blackwell’s contributions are also reflected in the honors bestowed upon him and in his leadership
roles in prominent organizations. In 1976, he was elected an honorary fellow of the Royal Statistical
Society, and in 1979, he won the John von Neumann Theory Prize. He also held 12 honorary
degrees and was the first African-American man elected to the National Academy of Sciences.
Additionally, he served as vice president of the American Statistical Association, American
Mathematical Society, and the International Statistical Institute.� �
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Description

This entry describes commands to perform Bayesian analysis. Bayesian analysis is a statistical
procedure that answers research questions by expressing uncertainty about unknown parameters using
probabilities. It is based on the fundamental assumption that not only the outcome of interest but
also all the unknown parameters in a statistical model are essentially random and are subject to prior
beliefs.

Estimation
Bayesian estimation Bayesian estimation commands
bayes Bayesian regression models using the bayes prefix
bayesmh Bayesian models using MH
bayesmh evaluators User-defined Bayesian models using MH

Convergence tests and graphical summaries
bayesgraph Graphical summaries
bayesstats grubin Gelman–Rubin convergence diagnostics

Postestimation statistics
bayesstats ess Effective sample sizes and related statistics
bayesstats summary Bayesian summary statistics
bayesstats ic Bayesian information criteria and Bayes factors
bayesirf Bayesian IRFs and more after VAR and DSGE models

Predictions
bayespredict Bayesian predictions
bayesstats ppvalues Bayesian predictive p-values
bayesfcast Bayesian forecasts after VAR models

Hypothesis testing
bayestest model Hypothesis testing using model posterior probabilities
bayestest interval Interval hypothesis testing

Remarks and examples
This entry describes commands to perform Bayesian analysis. See [BAYES] Intro for an introduction

to the topic of Bayesian analysis.

Bayesian estimation in Stata can be as easy as prefixing your estimation command with the bayes
prefix ([BAYES] bayes). For example, if your estimation command is a linear regression of y on x

. regress y x

26
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then Bayesian estimates for this model can be obtained by typing

. bayes: regress y x

See [BAYES] Bayesian estimation for a list of estimation commands that work with the bayes
prefix.

In addition to the bayes prefix, there is a general-purpose Bayesian estimation command—
the bayesmh command ([BAYES] bayesmh). bayesmh fits a variety of Bayesian models including
multiple-equation linear and nonlinear models and, like the bayes prefix, estimates parameters using
an adaptive MH Markov chain Monte Carlo (MCMC) method. You can choose from a variety of
supported Bayesian models by specifying the likelihood() and prior() options. Or you can
program your own Bayesian models by supplying a program evaluator for the posterior distributions
of model parameters in the evaluator() option; see [BAYES] bayesmh evaluators for details.

After estimation, you can use bayesgraph to check convergence of MCMC visually. If you
simulated multiple chains, you can use bayesstats grubin to compute Gelman–Rubin convergence
diagnostics. You can also use bayesstats ess to compute effective sample sizes and related statistics
for model parameters and functions of model parameters to assess the efficiency of the sampling
algorithm and autocorrelation in the obtained MCMC sample. Once convergence is established, you
can use bayesstats summary to obtain Bayesian summaries such as posterior means and standard
deviations of model parameters and functions of model parameters and bayesstats ic to compute
Bayesian information criteria and Bayes factors for models. You can use bayestest model to test
hypotheses by comparing posterior probabilities of models. You can also use bayestest interval
to test interval hypotheses about parameters and functions of parameters. You can use bayespredict
and bayesstats ppvalues for model diagnostics using posterior predictive checking. You can also
use bayespredict to predict future observations.

Below we provide an overview example demonstrating the Bayesian suite of commands. In this
entry, we mainly concentrate on the general command, bayesmh. For examples of using the simpler
bayes prefix, see example 11 and Remarks and examples in [BAYES] bayes. Also, for more examples
of bayesmh, see Remarks and examples in [BAYES] bayesmh.

Overview example

Consider an example from Kuehl (2000, 551) about the effects of exercise on oxygen uptake. The
research objective is to compare the impact of the two exercise programs—12 weeks of step aerobic
training and 12 weeks of outdoor running on flat terrain—on maximal oxygen uptake. Twelve healthy
men were randomly assigned to one of the two groups, the “aerobic” group or the “running” group.
Their changes in maximal ventilation (liters/minute) of oxygen for the 12-week period were recorded.

oxygen.dta contains 12 observations of changes in maximal ventilation of oxygen, recorded
in variable change, from two groups, recorded in variable group. Additionally, ages of subjects
are recorded in variable age, and an interaction between age and group is stored in variable
interaction.
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. use https://www.stata-press.com/data/r18/oxygen
(Oxygen uptake data)

. describe

Contains data from https://www.stata-press.com/data/r18/oxygen.dta
Observations: 12 Oxygen uptake data

Variables: 4 20 Jan 2022 15:56
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

change float %9.0g Change in maximal oxygen uptake
(liters/minute)

group byte %8.0g grouplab Exercise group
age byte %8.0g Age (years)
ageXgr byte %9.0g Interaction between age and group

Sorted by:

Kuehl (2000) uses analysis of covariance to analyze these data. We use linear regression instead,

change = β0 + βgroupgroup + βageage + ε

where ε is a random error with zero mean and variance σ2. Also see Hoff (2009) for Bayesian
analysis of these data.

Examples are presented under the following headings:

Example 1: OLS
Example 2: Bayesian normal linear regression with noninformative prior
Example 3: Bayesian linear regression with informative prior
Example 4: Bayesian normal linear regression with multivariate prior
Example 5: Checking convergence
Example 6: Postestimation summaries
Example 7: Bayesian predictions
Example 8: Model comparison
Example 9: Hypothesis testing
Example 10: Erasing simulation datasets
Example 11: Bayesian linear regression using the bayes prefix

Example 1: OLS

Let’s fit OLS regression to our data first.

. regress change group age

Source SS df MS Number of obs = 12
F(2, 9) = 41.42

Model 647.874893 2 323.937446 Prob > F = 0.0000
Residual 70.388768 9 7.82097423 R-squared = 0.9020

Adj R-squared = 0.8802
Total 718.263661 11 65.2966964 Root MSE = 2.7966

change Coefficient Std. err. t P>|t| [95% conf. interval]

group 5.442621 1.796453 3.03 0.014 1.378763 9.506479
age 1.885892 .295335 6.39 0.000 1.217798 2.553986

_cons -46.4565 6.936531 -6.70 0.000 -62.14803 -30.76498

From the table, both group and age are significant predictors of the outcome in this model.
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For example, we reject the hypothesis of H0: βgroup = 0 at a 5% level based on the p-value of
0.014. The actual interpretation of the reported p-value is that if we repeat the same experiment and
use the same testing procedure many times, then given our null hypothesis of no effect of group, we
will observe the result (test statistic) as extreme or more extreme than the one observed in this sample
(t = 3.03) only 1.4% of the times. The p-value cannot be interpreted as a probability of the null
hypothesis, which is a common misinterpretation. In fact, it answers the question of how likely our
data are, given that the null hypothesis is true, and not how likely the null hypothesis is, given our
data. The latter question can be answered using Bayesian hypothesis testing, which we demonstrate
in example 9.

Confidence intervals are popular alternatives to p-values that eliminate some of the p-value
shortcomings. For example, the 95% confidence interval for the coefficient for group is [1.38, 9.51]
and does not contain the value of 0, so we consider group to be a significant predictor of change.
The interpretation of a 95% confidence interval is that if we repeat the same experiment many times
and compute confidence intervals for each experiment, then 95% of those intervals will contain the
true value of the parameter. Thus we cannot conclude that the true coefficient for group lies between
1.38 and 9.51 with a probability of 0.95—a common misinterpretation of a confidence interval. This
probability is either 0 or 1, and we do not know which for any particular confidence interval. All we
know is that [1.38, 9.51] is a plausible range for the true value of the coefficient for group. Intervals
that can actually be interpreted as probabilistic ranges for a parameter of interest may be constructed
within the Bayesian paradigm; see example 9.

Example 2: Bayesian normal linear regression with noninformative prior

In example 1, we stated that frequentist methods cannot provide probabilistic summaries for the
parameters of interest. This is because in frequentist statistics, parameters are viewed as unknown but
fixed quantities. The only random quantity in a frequentist model is an outcome of interest. Bayesian
statistics, on the other hand, in addition to the outcome of interest, also treats all model parameters as
random quantities. This is what sets Bayesian statistics apart from frequentist statistics and enables
one to make probability statements about the likely values of parameters and to assign probabilities
to hypotheses of interest.

Bayesian statistics focuses on the estimation of various aspects of the posterior distribution of a
parameter of interest, an initial or a prior distribution that has been updated with information about
a parameter contained in the observed data. A posterior distribution is thus described by the prior
distribution of a parameter and the likelihood function of the data given the parameter.

Let’s now fit a Bayesian linear regression to oxygen.dta. To fit a Bayesian parametric model,
we need to specify the likelihood function or the distribution of the data and prior distributions for all
model parameters. Our Bayesian linear model has four parameters: three regression coefficients and
the variance of the data. We assume a normal distribution for our outcome, change, and start with a
noninformative Jeffreys prior for the parameters. Under the Jeffreys prior, the joint prior distribution
of the coefficients and the variance is proportional to the inverse of the variance.

We can write our model as follows,

change ∼ N(Xβ, σ2)

(β, σ2) ∼ 1

σ2

where X is our design matrix, and β = (β0, βgroup, βage)′, which is a vector of coefficients.
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We use the bayesmh command to fit our Bayesian model. Let’s consider the specification of the
model first.

bayesmh change group age, likelihood(normal({var})) ///
prior({change:}, flat) prior({var}, jeffreys)

The specification of the regression function in bayesmh is the same as in any other Stata regression
command—the name of the dependent variable follows the command, and the covariates of interest
are specified next. Likelihood or outcome distribution is specified in the likelihood() option, and
prior distributions are specified in the prior() options, which are repeated options.

All model parameters must be specified in curly braces, {}. bayesmh automatically creates
parameters associated with the regression function—regression coefficients—but it is your responsibility
to define the remaining model parameters. In our example, the only parameter we need to define is the
variance parameter, which we define as {var}. The three regression coefficients {change:group},
{change:age}, and {change: cons} are automatically created by bayesmh.

The last step is to specify the likelihood and the prior distributions. bayesmh provides several
different built-in distributions for the likelihood and priors. If a certain distribution is not available or
you have a particularly complicated Bayesian model, you may consider writing your own evaluator
for the posterior distribution; see [BAYES] bayesmh evaluators for details. In our example, we specify
distribution normal({var}) in option likelihood() to request the likelihood function of the normal
model with the variance parameter {var}. This specification together with the regression specification
defines the likelihood model for our outcome change. We assign the flat prior, a prior with a
density of 1, to all regression coefficients with prior({change:}, flat), where {change:} is
a shortcut for referring to all parameters with equation name change, our regression coefficients.
Finally, we specify prior jeffreys for the variance parameter {var} to request the density 1/σ2.

Let’s now run our command. bayesmh uses MCMC sampling, specifically, an adaptive random-walk
MH MCMC method, to estimate marginal posterior distributions of parameters. Because bayesmh is
using an MCMC method, which is stochastic, we must specify a random-number seed for reproducibility
of our results. For consistency and simplicity, we use the same random seed of 14 in all of our
examples throughout the manual.
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. set seed 14

. bayesmh change group age, likelihood(normal({var}))
> prior({change:}, flat) prior({var}, jeffreys)
Burn-in ...
Simulation ...

Model summary

Likelihood:
change ~ normal(xb_change,{var})

Priors:
{change:group age _cons} ~ 1 (flat) (1)

{var} ~ jeffreys

(1) Parameters are elements of the linear form xb_change.

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 12
Acceptance rate = .1371
Efficiency: min = .02687

avg = .03765
Log marginal-likelihood = -24.703776 max = .05724

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

change
group 5.429677 2.007889 .083928 5.533821 1.157584 9.249262

age 1.8873 .3514983 .019534 1.887856 1.184714 2.567883
_cons -46.49866 8.32077 .450432 -46.8483 -62.48236 -30.22105

var 10.27946 5.541467 .338079 9.023905 3.980325 25.43771

First, bayesmh provides a summary for the specified model. It is particularly useful for complicated
models with many parameters and hyperparameters. In fact, we recommend that you first specify
the dryrun option, which provides only the summary of the model without estimation, to verify the
specification of your model and then proceed with estimation. You can then use the nomodelsummary
option during estimation to suppress the model summary, which may be rather long.

Next, bayesmh provides a header with various model summaries on the right-hand side. It reports
the total number of MCMC iterations, 12,500, including the default 2,500 burn-in iterations, which
are discarded from the analysis MCMC sample, and the number of iterations retained in the MCMC
sample, or MCMC sample size, which is 10,000 by default. These default values should be viewed
as initial estimates and further adjusted for the problem at hand to ensure convergence of the MCMC;
see example 5.

An acceptance rate and a summary of the parameter-specific efficiencies are also part of the output
header. An acceptance rate specifies the proportion of proposed parameter values that was accepted
by the algorithm. An acceptance rate of 0.14 in our example means that 14% out of 10,000 proposal
parameter values were accepted by the algorithm. For the MH algorithm, this number rarely exceeds
50% and is typically below 30%. A low acceptance rate (for example, below 10%) may indicate
convergence problems. In our example, the acceptance rate is a bit low, so we may need to investigate
this further. In general, MH tends to have lower efficiencies compared with other MCMC methods.
For example, efficiencies of 10% and higher are considered good. Efficiencies below 1% may be a
source of concern. The efficiencies are somewhat low in our example, so we may consider tuning
our MCMC sampler; see Improving efficiency of the MH algorithm—blocking of parameters.
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Finally, bayesmh reports a table with a summary of the results. The Mean column reports the
estimates of posterior means, which are means of the marginal posterior distributions of the parameters.
The posterior mean estimates are pretty close to the OLS estimates obtained in example 1. This is
expected, provided MCMC converged, because we used a noninformative prior. That is, we did not
provide any additional information about parameters beyond that contained in the data.

The next column reports estimates of posterior standard deviations, which are standard deviations
of the marginal posterior distribution. These values describe the variability in the posterior distribution
of the parameter and are comparable to our OLS standard errors.

The precision of the posterior mean estimates is described by their Monte Carlo standard errors.
These numbers should be small, relative to the scales of the parameters. Increasing the MCMC sample
size should decrease these numbers.

The Median column provides estimates of the median of the posterior distribution and can be used
to assess the symmetries of the posterior distribution. At a quick glance, the estimates of posterior
means and medians are pretty close for the regression coefficients, so we suspect that their posterior
distributions may be symmetric.

The last two columns provide credible intervals for the parameters. Unlike confidence intervals,
as discussed in example 1, these intervals have a straightforward probabilistic interpretation. For
example, the probability that the coefficient for group is between 1.16 and 9.25 is about 0.95. The
lower bound of the interval is greater than 0, so we conclude that there is an effect of the exercise
program on the change in oxygen uptake. We can also use Bayesian hypothesis testing to test effects
of parameters; see example 9.

Before any interpretation of the results, however, it is important to verify the convergence of
MCMC; see example 5.

See example 11 for how to fit Bayesian linear regression more easily using the bayes prefix.

Example 3: Bayesian linear regression with informative prior

In example 2, we considered a noninformative prior for the model parameters. The strength (as
well as the weakness) of Bayesian modeling is specifying an informative prior distribution, which
may improve results. The strength is that if we have reliable prior knowledge about the distribution
of a parameter, incorporating this in our model will improve results and potentially make certain
analysis that would not be possible to perform in the frequentist domain feasible. The weakness is
that a strong incorrect prior may lead to results that are not supported by the observed data. As with
any modeling task, Bayesian or frequentist, a substantive research of the process generating the data
and its parameters will be necessary for you to find appropriate models.

Let’s consider an informative conjugate prior distribution for our normal regression model.

(β|σ2) ∼ i.i.d. N(0, σ2)

σ2 ∼ InvGamma(2.5, 2.5)

Here, for simplicity, all coefficients are assumed to be independently and identically distributed as
normal with zero mean and variance σ2, and the variance parameter is distributed according to the
above inverse gamma distribution. In practice, a better prior would be to allow each parameter to
have a different variance, at least for parameters with different scales.

Let’s fit this model using bayesmh. Following the model above, we specify the normal(0,{var})
prior for the coefficients and the igamma(2.5,2.5) prior for the variance.
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. set seed 14

. bayesmh change group age, likelihood(normal({var}))
> prior({change:}, normal(0, {var}))
> prior({var}, igamma(2.5, 2.5))
Burn-in ...
Simulation ...

Model summary

Likelihood:
change ~ normal(xb_change,{var})

Priors:
{change:group age _cons} ~ normal(0,{var}) (1)

{var} ~ igamma(2.5,2.5)

(1) Parameters are elements of the linear form xb_change.

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 12
Acceptance rate = .1984
Efficiency: min = .03732

avg = .04997
Log marginal-likelihood = -49.744054 max = .06264

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

change
group 6.510807 2.812828 .129931 6.50829 .9605561 12.23164

age .2710499 .2167863 .009413 .2657002 -.1556194 .7173697
_cons -6.838302 4.780343 .191005 -6.683556 -16.53356 2.495631

var 28.83438 10.53573 .545382 26.81462 14.75695 54.1965

The results from this model are substantially different from the results we obtained in example 2.
Considering that we used this simple prior for demonstration purposes only and did not use any
external information about model parameters based on prior studies, we would be reluctant to trust
the results from this model.

Example 4: Bayesian normal linear regression with multivariate prior

Continuing with informative priors, we will consider Zellner’s g-prior (Zellner 1986), which is
one of the more commonly used priors for the regression coefficients in a normal linear regression.
Hoff (2009) provides more details about this example, and he includes the interaction between age and
group as in example 8. Here we concentrate on demonstrating how to fit our model using bayesmh.

The mathematical formulation of the priors is the following,

(β|σ2) ∼ MVN(0, gσ2(X ′X)−1)

σ2 ∼ InvGamma(ν0/2, ν0σ
2
0/2)

where g reflects prior sample size, ν0 is the prior degrees of freedom for the inverse gamma distribution,
and σ2

0 is the prior variance for the inverse gamma distribution. This prior incorporates dependencies
between coefficients. We use values of the parameters similar to those in Hoff (2009): g = 12, ν0 = 1,
and σ2

0 = 8.
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bayesmh provides the zellnersg0() prior to accommodate the above prior. The first argument is
the dimension of the distribution, which is 3 in our example, the second argument is the prior degrees
of freedom, which is 12 in our example, and the last argument is the variance parameter, which is
{var} in our example. The mean is assumed to be a zero vector of the corresponding dimension.
(You can use zellnersg() if you want to specify a nonzero mean vector; see [BAYES] bayesmh.)

. set seed 14

. bayesmh change group age, likelihood(normal({var}))
> prior({change:}, zellnersg0(3,12,{var}))
> prior({var}, igamma(0.5, 4))
Burn-in ...
Simulation ...

Model summary

Likelihood:
change ~ normal(xb_change,{var})

Priors:
{change:group age _cons} ~ zellnersg(3,12,0,{var}) (1)

{var} ~ igamma(0.5,4)

(1) Parameters are elements of the linear form xb_change.

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 12
Acceptance rate = .06169
Efficiency: min = .0165

avg = .02018
Log marginal-likelihood = -35.356501 max = .02159

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

change
group 4.988881 2.260571 .153837 4.919351 .7793098 9.775568

age 1.713159 .3545698 .024216 1.695671 1.053206 2.458556
_cons -42.31891 8.239571 .565879 -41.45385 -59.30145 -27.83421

var 12.29575 6.570879 .511475 10.3609 5.636195 30.93576

These results are more in agreement with results from example 2 than with results of example 3, but
our acceptance rate and efficiencies are low and require further investigation.

Technical note
We can reproduce what zellnersg0() does above manually. First, we must compute (X ′X)−1.

We can use Stata’s matrix functions to do that.
. matrix accum xTx = group age
(obs=12)

. matrix S = invsym(xTx)

We now specify the desired multivariate normal prior for the coefficients, mvnor-
mal0(3,12*{var}*S). The first argument of mvnormal0() specifies the dimension of the distribution,
and the second argument specifies the variance–covariance matrix. A mean of zero is assumed for
all dimensions. One interesting feature of this specification is that the variance–covariance matrix is
specified as a function of {var}.
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. set seed 14

. bayesmh change group age, likelihood(normal({var}))
> prior({change:}, mvnormal0(3,12*{var}*S))
> prior({var}, igamma(0.5, 4))
Burn-in ...
Simulation ...

Model summary

Likelihood:
change ~ normal(xb_change,{var})

Priors:
{change:group age _cons} ~ mvnormal(3,0,0,0,12*{var}*S) (1)

{var} ~ igamma(0.5,4)

(1) Parameters are elements of the linear form xb_change.

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 12
Acceptance rate = .06169
Efficiency: min = .0165

avg = .02018
Log marginal-likelihood = -35.356501 max = .02159

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

change
group 4.988881 2.260571 .153837 4.919351 .7793098 9.775568

age 1.713159 .3545698 .024216 1.695671 1.053206 2.458556
_cons -42.31891 8.239571 .565879 -41.45385 -59.30145 -27.83421

var 12.29575 6.570879 .511475 10.3609 5.636195 30.93576

Example 5: Checking convergence

We can use the bayesgraph command to visually check convergence of MCMC of parameter
estimates. bayesgraph provides a variety of graphs. For several commonly used visual diagnostics
displayed in a compact form, use bayesgraph diagnostics.
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For example, we can look at graphical diagnostics for the coefficient for group.

. bayesgraph diagnostics {change:group}
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The displayed diagnostics include a trace plot, an autocorrelation plot, a histogram, and a kernel
density estimate overlaid with densities estimated using the first and the second halves of the MCMC
sample. Both the trace plot and the autocorrelation plot demonstrate high autocorrelation. The shape
of the histogram is not unimodal. We definitely have some convergence issues in this example.

Similarly, we can look at diagnostics for other model parameters. To see all graphs at once, type

bayesgraph diagnostics _all

Other useful summaries are effective sample sizes and statistics related to them. These can be
obtained by using the bayesstats ess command.
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. bayesstats ess

Efficiency summaries MCMC sample size = 10,000
Efficiency: min = .0165

avg = .02018
max = .02159

ESS Corr. time Efficiency

change
group 215.93 46.31 0.0216

age 214.39 46.64 0.0214
_cons 212.01 47.17 0.0212

var 165.04 60.59 0.0165

The closer ESS estimates are to the MCMC sample size, the less correlated the MCMC sample is, and
the more precise our estimates of parameters are. Do not expect to see values close to the MCMC
sample size with the MH algorithm, but values below 1% of the MCMC sample size are certainly red
flags. In our example, ESS for {var} is somewhat low, so we may need to look into improving its
sampling efficiency. For example, blocking on {var} should improve the efficiency for the variance;
see Improving efficiency of the MH algorithm—blocking of parameters. It is usually a good idea to
sample regression coefficients and the variance in two separate blocks.

Correlation times may be viewed as estimates of autocorrelation lags in the MCMC samples. For
example, correlation times of the coefficients range between 46 and 47, and the correlation time for
the variance parameter is higher, 61. Consequently, the efficiency for the variance is lower than for
the regression coefficients. More investigation of the MCMC for {var} is needed.
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Indeed, the MCMC for the variance has very poor mixing and very high autocorrelation.

. bayesgraph diagnostics {var}
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One remedy is to update the variance parameter separately from the regression coefficients by
putting the variance parameter in a separate block; see Improving efficiency of the MH algorithm—
blocking of parameters for details about this procedure. In bayesmh, this can be done by specifying
the block() option.
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. set seed 14

. bayesmh change group age, likelihood(normal({var}))
> prior({change:}, zellnersg0(3,12,{var}))
> prior({var}, igamma(0.5, 4)) block({var})
> saving(agegroup_simdata)
Burn-in ...
Simulation ...

Model summary

Likelihood:
change ~ normal(xb_change,{var})

Priors:
{change:group age _cons} ~ zellnersg(3,12,0,{var}) (1)

{var} ~ igamma(0.5,4)

(1) Parameters are elements of the linear form xb_change.

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 12
Acceptance rate = .3232
Efficiency: min = .06694

avg = .1056
Log marginal-likelihood = -35.460606 max = .1443

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

change
group 5.080653 2.110911 .080507 5.039834 .8564619 9.399672

age 1.748516 .3347172 .008875 1.753897 1.128348 2.400989
_cons -43.12425 7.865979 .207051 -43.2883 -58.64107 -27.79122

var 12.09916 5.971454 .230798 10.67555 5.375774 27.32451

file agegroup_simdata.dta saved.

. estimates store agegroup

Our acceptance rate and efficiencies are now higher.

In this example, we also used estimates store agegroup to store current estimation results as
agegroup for future use. To use estimates store after bayesmh, we had to specify the saving()
option with bayesmh to save the bayesmh simulation results to a permanent Stata dataset; see Storing
estimation results after Bayesian estimation.
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The MCMC chains are now mixing much better. We may consider increasing the default MCMC
sample size to achieve even lower autocorrelation.

. bayesgraph diagnostics {change:group} {var}
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Multiple chains are often used to diagnose the convergence of MCMC; see Convergence diagnostics
using multiple chains in [BAYES] bayesmh and [BAYES] bayesstats grubin. Also see Convergence of
MCMC in [BAYES] bayesmh for more information.

Example 6: Postestimation summaries

We can use the bayesstats summary command to compute postestimation summaries for model
parameters and functions of model parameters. For example, we can compute an estimate of the
standardized coefficient for change, which is β̂group×σx/σy , where σx and σy are sample standard
deviations of group and change, respectively.

We use summarize (see [R] summarize) to compute sample standard deviations and store them
in respective scalars.

. summarize group

Variable Obs Mean Std. dev. Min Max

group 12 .5 .522233 0 1

. scalar sd_x = r(sd)

. summarize change

Variable Obs Mean Std. dev. Min Max

change 12 2.469167 8.080637 -10.74 17.05

. scalar sd_y = r(sd)

The standardized coefficient is an expression of the model parameter {change:group}, so we
specify it in parentheses.

. bayesstats summary (group_std:{change:group}*sd_x/sd_y)

Posterior summary statistics MCMC sample size = 10,000

group_std : {change:group}*sd_x/sd_y

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

group_std .3283509 .1364233 .005203 .3257128 .0553512 .6074792

The posterior mean estimate of the standardized group coefficient is 0.33 with a 95% credible interval
of [0.055, 0.61].

Example 7: Bayesian predictions

Bayesian predictions are useful for checking model fit and for predicting future observations.

We can use the bayespredict command to generate replication samples for the outcome variable
change and save them in a new dataset, change pred.dta. Samples are drawn from the posterior
predictive distribution of change. We specify { ysim} with bayespredict to simulate the outcome
values and use a random-number seed for reproducibility.

. bayespredict {_ysim}, saving(change_pred) rseed(16)

Computing predictions ...

file change_pred.dta saved.
file change_pred.ster saved.
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change pred.dta contains an MCMC sample of predicted values for each of the 12 observations.
We can use bayesstats summary to calculate posterior summaries for the predicted observations
by specifying using with the prediction dataset.

. bayesstats summary {_ysim} using change_pred

Posterior summary statistics MCMC sample size = 10,000

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

_ysim1_1 -2.954378 3.763301 .060963 -2.930854 -10.39297 4.528522
_ysim1_2 -4.610688 3.771203 .059014 -4.660554 -11.9289 2.948378
_ysim1_3 -4.620784 3.758543 .057517 -4.645584 -12.03851 2.917013
_ysim1_4 .6417156 3.756645 .063162 .6019013 -6.83463 8.330498
_ysim1_5 4.069868 3.972042 .072874 4.065139 -3.780329 12.06363
_ysim1_6 -8.120147 3.832453 .061674 -8.096888 -15.54334 -.3579446
_ysim1_7 16.18539 4.076738 .072385 16.2033 8.105208 24.23569
_ysim1_8 2.156433 3.921 .072344 2.135557 -5.528265 10.00732
_ysim1_9 9.14268 3.780417 .071241 9.154486 1.571643 16.59816

_ysim1_10 10.91948 3.776916 .068083 10.92263 3.445305 18.59981
_ysim1_11 .3919052 3.969695 .079798 .344616 -7.389234 8.386358
_ysim1_12 3.902787 3.809399 .077872 3.884087 -3.530938 11.49579

The first column contains posterior means, MCMC estimates of the expected outcome observations
with respect to the posterior predictive distribution. Both posterior means and medians can be used
as Bayesian predictors.

One way to assess goodness of fit of the model is by comparing replicated outcome samples
with the observed outcome sample. The discrepancy between these two can be measured using the
so-called posterior predictive p-values. We can use the bayesstats ppvalues command to compute
these p-values. The posterior predictive p-values are typically computed for functions of the data or
test statistics. Here, as a quick demonstration, we will compute them for each individual observation.
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. bayesstats ppvalues {_ysim} using change_pred

Posterior predictive summary MCMC sample size = 10,000

T Mean Std. dev. E(T_obs) P(T>=T_obs)

_ysim1_1 -2.954378 3.763301 -.87 .2786
_ysim1_2 -4.610688 3.771203 -10.74 .9512
_ysim1_3 -4.620784 3.758543 -3.27 .3479
_ysim1_4 .6417156 3.756645 -1.97 .773
_ysim1_5 4.069868 3.972042 7.5 .1819
_ysim1_6 -8.120147 3.832453 -7.25 .4034
_ysim1_7 16.18539 4.076738 17.05 .4124
_ysim1_8 2.156433 3.921 4.96 .2198
_ysim1_9 9.14268 3.780417 10.4 .3644

_ysim1_10 10.91948 3.776916 11.05 .4858
_ysim1_11 .3919052 3.969695 .26 .5106
_ysim1_12 3.902787 3.809399 2.51 .6498

Note: P(T>=T_obs) close to 0 or 1 indicates lack of fit.

All estimated posterior predictive p-values are between 0.05 and 0.95 (except for ysim1 2) and thus
indicate adequate fit for the individual observations. However, more stringent model checking typically
requires that various test quantities be computed using the entire replicated sample to inspect the
distribution of replicated outcome values to assess the overall fit of the model. See [BAYES] bayesstats
ppvalues for examples.

We can also use bayespredict to generate out-of-sample predictions. For illustration, let’s add
two new observations to the dataset: one for age 26 and group Aerobic (group=1) and another for
age 26 and group Running (group=0).

. set obs 14
Number of observations (_N) was 12, now 14.

. replace group = 1 in 13
(1 real change made)

. replace group = 0 in 14
(1 real change made)

. replace age = 26 in 13/14
(2 real changes made)

We want to predict the outcome change for the new observations. Possible Bayesian predictors
are the posterior means of the simulated outcome observations. These can be calculated using the
mean option and saved in a new variable, say, pname.
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. bayespredict pmean, mean rseed(16)

Computing predictions ...

. list change age group pmean

change age group pmean

1. -.87 23 Running -2.914124
2. -10.74 22 Running -4.613421
3. -3.27 22 Running -4.701283
4. -1.97 25 Running .545417
5. 7.5 27 Running 4.060798

6. -7.25 20 Running -8.111091
7. 17.05 31 Aerobic 16.15393
8. 4.96 23 Aerobic 2.183771
9. 10.4 27 Aerobic 9.155602

10. 11.05 28 Aerobic 10.87576

11. .26 22 Aerobic .4234267
12. 2.51 24 Aerobic 3.937901
13. . 26 Aerobic 7.380203
14. . 26 Running 2.405744

The predicted estimates for the out-of-sample observations 13 and 14 are 7.4 and 2.4 for the change
in maximal oxygen uptake (liters/minute) for a 26-year old in the aerobic and running groups,
respectively.

See [BAYES] bayespredict for more examples.

Finally, we drop the two new observations we added and erase the prediction dataset and the
auxiliary estimation file created by bayespredict.

. drop in 13/14
(2 observations deleted)

. erase change_pred.dta

. erase change_pred.ster

Example 8: Model comparison

As we can with frequentist analysis, we can use various information criteria to compare different
models. There is great flexibility in which model can be compared: you can compare models with
different distributions for the outcome, you can compare models with different priors, you can
compare models with different forms for the regression function, and more. The only requirement is
that the same data are used to fit the models. Comparisons using Bayes factors additionally require
that parameters be sampled from the complete posterior distribution, which includes the normalizing
constant.

Let’s compare our reduced model with the full model including an interaction term. We again use
a multivariate Zellner’s g-prior for the coefficients and an inverse gamma prior for the variance. We
use the same values as in example 4 for prior parameters. (We use the interaction variable in this
example for notational simplicity. We could have used the factor-variable notation c.age#i.group
to include this interaction directly in our model; see [U] 11.4.3 Factor variables.)
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. set seed 14

. bayesmh change group age ageXgr, likelihood(normal({var}))
> prior({change:}, zellnersg0(4,12,{var}))
> prior({var}, igamma(0.5, 4)) block({var})
> saving(full_simdata)
Burn-in ...
Simulation ...

Model summary

Likelihood:
change ~ normal(xb_change,{var})

Priors:
{change:group age ageXgr _cons} ~ zellnersg(4,12,0,{var}) (1)

{var} ~ igamma(0.5,4)

(1) Parameters are elements of the linear form xb_change.

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 12
Acceptance rate = .3113
Efficiency: min = .0562

avg = .06425
Log marginal-likelihood = -36.738363 max = .08478

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

change
group 11.94079 16.74992 .706542 12.13983 -22.31056 45.11963

age 1.939266 .5802772 .023359 1.938756 .7998007 3.091072
ageXgr -.2838718 .6985226 .028732 -.285647 -1.671354 1.159183
_cons -47.57742 13.4779 .55275 -47.44761 -74.64672 -20.78989

var 11.72886 5.08428 .174612 10.68098 5.302265 24.89543

file full_simdata.dta saved.

. estimates store full

We can use the bayesstats ic command to compare the models. We list the names of the
corresponding estimation results following the command name.

. bayesstats ic full agegroup

Bayesian information criteria

DIC log(ML) log(BF)

full 65.03326 -36.73836 .
agegroup 63.5884 -35.46061 1.277756

Note: Marginal likelihood (ML) is computed
using Laplace--Metropolis approximation.

The smaller that DIC is and the larger that log(ML) is, the better. The model without interaction,
agegroup, is preferred according to these statistics. The log Bayes-factor for the agegroup model
relative to the full model is 1.28. Kass and Raftery (1995) provide a table of values for Bayes
factors; see, for example, Bayes factors in [BAYES] bayesstats ic. According to their scale, because
2 × 1.28 = 2.56 is greater than 2 (slightly), there is some mild evidence that model agegroup is
better than model full.
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Example 9: Hypothesis testing

Continuing with example 8, we can compute the actual probability associated with each of the
models. We can use the bayestest model command to do this.

Similar to bayesstats ic, this command requires the names of estimation results corresponding
to the models of interest.

. bayestest model full agegroup

Bayesian model tests

log(ML) P(M) P(M|y)

full -36.7384 0.5000 0.2179
agegroup -35.4606 0.5000 0.7821

Note: Marginal likelihood (ML) is computed using
Laplace--Metropolis approximation.

Under the assumption that both models are equally probable a priori, the model without interaction,
agegroup, has the probability of 0.78, whereas the full model has the probability of only 0.22.
Despite the drastic disparity in the probabilities, according to the results from example 8, model
agegroup is only slightly preferable to model full. To have stronger evidence against full, we
would expect to see higher probabilities (above 0.9) for agegroup.

We may be interested in testing an interval hypothesis about the parameter of interest. For example,
for a model without interaction, let’s compute the probability that the coefficient for group is between
4 and 8. We use estimates restore (see [R] estimates store) to load the results of the agegroup
model back into memory.

. estimates restore agegroup
(results agegroup are active now)

. bayestest interval {change:group}, lower(4) upper(8)

Interval tests MCMC sample size = 10,000

prob1 : 4 < {change:group} < 8

Mean Std. dev. MCSE

prob1 .6159 0.48641 .0155788

The estimated probability or, technically, its posterior mean estimate is 0.62 with a standard deviation
of 0.49 and Monte Carlo standard errors of 0.016.

Example 10: Erasing simulation datasets

After you are done with your analysis, remember to erase any simulation datasets that you created
using bayesmh and no longer need. If you want to save your estimation results to disk for future
reference, use estimates save; see [R] estimates save.

We are done with our analysis, and we do not need the datasets for future reference, so we remove
both simulation files we created using bayesmh.

. erase agegroup_simdata.dta

. erase full_simdata.dta
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Example 11: Bayesian linear regression using the bayes prefix

Recall our OLS regression from example 1. There is a more convenient way to obtain Bayesian
estimates for this regression than using the bayesmh command as in previous examples. Because
regress is one of the estimation commands that supports the bayes prefix ([BAYES] Bayesian
estimation), we can simply type

. set seed 14

. bayes: regress change group age
Burn-in ...
Simulation ...

Model summary

Likelihood:
change ~ regress(xb_change,{sigma2})

Priors:
{change:group age _cons} ~ normal(0,10000) (1)

{sigma2} ~ igamma(.01,.01)

(1) Parameters are elements of the linear form xb_change.

Bayesian linear regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 12
Acceptance rate = .283
Efficiency: min = .02715

avg = .05779
Log marginal-likelihood = -45.562124 max = .0692

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

change
group 5.425311 2.111038 .080252 5.368975 1.104434 9.425197

age 1.885651 .3255098 .012472 1.887263 1.244666 2.517292
_cons -46.47537 7.632058 .295505 -46.73244 -60.39245 -30.5054

sigma2 10.28431 7.614468 .462105 8.412747 3.595971 31.47161

Note: Default priors are used for model parameters.

With the bayes prefix command, the likelihood is determined automatically by the specified estimation
command—regress in our example. The bayes prefix also provides the default prior specifications
for model parameters, displaying this information as a note at the bottom of the output table; see
Default priors in [BAYES] bayes. Model summary provides details about the used default priors. For
linear regression, the regression coefficients are assigned independent normal priors with zero mean
and variance of 10,000, and the variance is assigned an inverse-gamma prior with the same shape
and scale parameters of 0.01.

The default priors are provided for convenience and are chosen to be fairly uninformative for
models with moderately scaled parameters. However, they are not guaranteed to be uninformative for
all models and datasets; see Linear regression: A case of informative default priors in [BAYES] bayes.
You should choose priors carefully based on your research and model of interest.
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As with bayesmh, the default MCMC method is an adaptive MH, but we can specify the gibbs
option to request Gibbs sampling.

. set seed 14

. bayes, gibbs: regress change group age
Burn-in ...
Simulation ...

Model summary

Likelihood:
change ~ normal(xb_change,{sigma2})

Priors:
{change:group age _cons} ~ normal(0,10000) (1)

{sigma2} ~ igamma(.01,.01)

(1) Parameters are elements of the linear form xb_change.

Bayesian linear regression MCMC iterations = 12,500
Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 12
Acceptance rate = 1
Efficiency: min = .556

avg = .889
Log marginal-likelihood = -45.83666 max = 1

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

change
group 5.452439 2.062795 .020628 5.460372 1.360104 9.512987

age 1.875606 .330127 .003301 1.877129 1.228647 2.543129
_cons -46.21334 7.746862 .077469 -46.18291 -61.82541 -31.09702

sigma2 9.929756 5.899176 .079113 8.426173 3.731261 24.76194

Note: Default priors are used for model parameters.

As expected, we obtain higher efficiency when using the Gibbs sampling. However, the gibbs option
is available only with bayes: regress and bayes: mvreg and only for certain prior distributions.
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We can easily change the default priors by specifying the prior() option, as with bayesmh. For
example, we can reproduce bayesmh’s results from example 4 but with the bayes prefix.

. set seed 14

. bayes, prior({change:}, zellnersg0(3,12,{sigma2}))
> prior({sigma2}, igamma(0.5, 4)): regress change group age
Burn-in ...
Simulation ...

Model summary

Likelihood:
change ~ regress(xb_change,{sigma2})

Priors:
{change:group age _cons} ~ zellnersg(3,12,0,{sigma2}) (1)

{sigma2} ~ igamma(0.5,4)

(1) Parameters are elements of the linear form xb_change.

Bayesian linear regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 12
Acceptance rate = .2838
Efficiency: min = .06423

avg = .07951
Log marginal-likelihood = -35.448029 max = .09277

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

change
group 4.944955 2.184113 .086181 5.052278 .7065487 9.35098

age 1.747984 .3390581 .011132 1.747477 1.045677 2.416091
_cons -43.09605 7.904334 .263186 -43.01961 -58.57942 -27.11278

sigma2 12.17932 5.87997 .220888 10.72651 5.511202 28.1211

The results are similar to those from example 4 using bayesmh but not identical. By default,
bayes: regress automatically splits the regression coefficients and the variance into two separate
blocks, whereas bayesmh treats all parameters as one block; see Improving efficiency of the MH
algorithm—blocking of parameters in [BAYES] bayesmh for details about blocking.
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To match the results exactly, you can either specify the block({var}) option with bayesmh in
example 4 or specify the noblocking option to request no default blocking with the bayes prefix.

. set seed 14

. bayes, prior({change:}, zellnersg0(3,12,{sigma2}))
> prior({sigma2}, igamma(0.5, 4)) noblocking: regress change group age
Burn-in ...
Simulation ...

Model summary

Likelihood:
change ~ regress(xb_change,{sigma2})

Priors:
{change:group age _cons} ~ zellnersg(3,12,0,{sigma2}) (1)

{sigma2} ~ igamma(0.5,4)

(1) Parameters are elements of the linear form xb_change.

Bayesian linear regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 12
Acceptance rate = .06169
Efficiency: min = .0165

avg = .02018
Log marginal-likelihood = -35.356501 max = .02159

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

change
group 4.988881 2.260571 .153837 4.919351 .7793098 9.775568

age 1.713159 .3545698 .024216 1.695671 1.053206 2.458556
_cons -42.31891 8.239571 .565879 -41.45385 -59.30145 -27.83421

sigma2 12.29575 6.570879 .511475 10.3609 5.636195 30.93576

See [BAYES] bayes for more details.
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Title

Bayesian estimation — Bayesian estimation commands

Description Video examples Also see

Description
Bayesian estimation in Stata is similar to standard estimation—simply prefix the estimation com-

mands with bayes: (see [BAYES] bayes). You can also refer to [BAYES] bayesmh and [BAYES] bayesmh
evaluators for fitting more general Bayesian models.

The following estimation commands support the bayes prefix.

Command Entry Description

Linear regression models

regress [BAYES] bayes: regress Linear regression
hetregress [BAYES] bayes: hetregress Heteroskedastic linear regression
tobit [BAYES] bayes: tobit Tobit regression
intreg [BAYES] bayes: intreg Interval regression
truncreg [BAYES] bayes: truncreg Truncated regression
mvreg [BAYES] bayes: mvreg Multivariate regression

Binary-response regression models

logistic [BAYES] bayes: logistic Logistic regression, reporting odds ratios
logit [BAYES] bayes: logit Logistic regression, reporting coefficients
probit [BAYES] bayes: probit Probit regression
cloglog [BAYES] bayes: cloglog Complementary log–log regression
hetprobit [BAYES] bayes: hetprobit Heteroskedastic probit regression
binreg [BAYES] bayes: binreg GLM for the binomial family
biprobit [BAYES] bayes: biprobit Bivariate probit regression

Ordinal-response regression models

ologit [BAYES] bayes: ologit Ordered logistic regression
oprobit [BAYES] bayes: oprobit Ordered probit regression
hetoprobit [BAYES] bayes: hetoprobit Heteroskedastic ordered probit regression
ziologit [BAYES] bayes: ziologit Zero-inflated ordered logit regression
zioprobit [BAYES] bayes: zioprobit Zero-inflated ordered probit regression

Categorical-response regression models

mlogit [BAYES] bayes: mlogit Multinomial (polytomous) logistic regression
mprobit [BAYES] bayes: mprobit Multinomial probit regression
clogit [BAYES] bayes: clogit Conditional logistic regression
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Count-response regression models

poisson [BAYES] bayes: poisson Poisson regression
nbreg [BAYES] bayes: nbreg Negative binomial regression
gnbreg [BAYES] bayes: gnbreg Generalized negative binomial regression
tpoisson [BAYES] bayes: tpoisson Truncated Poisson regression
tnbreg [BAYES] bayes: tnbreg Truncated negative binomial regression
zip [BAYES] bayes: zip Zero-inflated Poisson regression
zinb [BAYES] bayes: zinb Zero-inflated negative binomial regression

Generalized linear models

glm [BAYES] bayes: glm Generalized linear models

Fractional-response regression models

fracreg [BAYES] bayes: fracreg Fractional response regression
betareg [BAYES] bayes: betareg Beta regression

Survival regression models

streg [BAYES] bayes: streg Parametric survival models

Sample-selection regression models

heckman [BAYES] bayes: heckman Heckman selection model
heckprobit [BAYES] bayes: heckprobit Probit regression with sample selection
heckoprobit [BAYES] bayes: heckoprobit Ordered probit model with sample selection

Longitudinal/panel-data regression models

xtreg [BAYES] bayes: xtreg Random-effects linear regression
xtlogit [BAYES] bayes: xtlogit Random-effects logit regression
xtprobit [BAYES] bayes: xtprobit Random-effects probit regression
xtologit [BAYES] bayes: xtologit Random-effects ordered logit regression
xtoprobit [BAYES] bayes: xtoprobit Random-effects ordered probit regression
xtmlogit [BAYES] bayes: xtmlogit Random-effects multinomial logit regression
xtpoisson [BAYES] bayes: xtpoisson Random-effects Poisson regression
xtnbreg [BAYES] bayes: xtnbreg Random-effects negative binomial regression

Multilevel regression models

mixed [BAYES] bayes: mixed Multilevel linear regression
metobit [BAYES] bayes: metobit Multilevel tobit regression
meintreg [BAYES] bayes: meintreg Multilevel interval regression
melogit [BAYES] bayes: melogit Multilevel logistic regression
meprobit [BAYES] bayes: meprobit Multilevel probit regression
mecloglog [BAYES] bayes: mecloglog Multilevel complementary log–log regression
meologit [BAYES] bayes: meologit Multilevel ordered logistic regression
meoprobit [BAYES] bayes: meoprobit Multilevel ordered probit regression
mepoisson [BAYES] bayes: mepoisson Multilevel Poisson regression
menbreg [BAYES] bayes: menbreg Multilevel negative binomial regression
meglm [BAYES] bayes: meglm Multilevel generalized linear model
mestreg [BAYES] bayes: mestreg Multilevel parametric survival regression
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Time-series models

var [BAYES] bayes: var Vector autoregression

DSGE models

dsge [BAYES] bayes: dsge Linear DSGE model
dsgenl [BAYES] bayes: dsgenl Nonlinear DSGE model

Video examples

Introduction to Bayesian statistics, part 1: The basic concepts

Introduction to Bayesian statistics, part 2: MCMC and the Metropolis–Hastings algorithm

Also see
[BAYES] bayes — Bayesian regression models using the bayes prefix

[BAYES] bayesmh — Bayesian models using Metropolis–Hastings algorithm

[BAYES] bayesmh evaluators — User-defined evaluators with bayesmh

[BAYES] Bayesian postestimation — Postestimation tools for bayesmh and the bayes prefix

[BAYES] Intro — Introduction to Bayesian analysis

[BAYES] Glossary

https://youtu.be/0F0QoMCSKJ4
https://youtu.be/OTO1DygELpY


Title

bayes — Bayesian regression models using the bayes prefix

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

The bayes prefix fits Bayesian regression models. It provides Bayesian support for many likelihood-
based estimation commands. The bayes prefix uses default or user-supplied priors for model parameters
and estimates parameters using MCMC by drawing simulation samples from the corresponding posterior
model. Also see [BAYES] bayesmh and [BAYES] bayesmh evaluators for fitting more general Bayesian
models.

Quick start
Bayesian linear regression of y on x, using default normal priors for the regression coefficients and

an inverse-gamma prior for the variance
bayes: regress y x

Same as above, but use a standard deviation of 10 instead of 100 for the default normal priors and
shape of 2 and scale of 1 instead of values of 0.01 for the default inverse-gamma prior

bayes, normalprior(10) igammaprior(2 1): regress y x

Same as above, but simulate four chains
bayes, normalprior(10) igammaprior(2 1) nchains(4): regress y x

Bayesian logistic regression of y on x1 and x2, showing model summary without performing estimation
bayes, dryrun: logit y x1 x2

Same as above, but estimate model parameters and use uniform priors for all regression coefficients
bayes, prior({y: x1 x2 _cons}, uniform(-10,10)): logit y x1 x2

Same as above, but use a shortcut notation to refer to all regression coefficients
bayes, prior({y:}, uniform(-10,10)): logit y x1 x2

Same as above, but report odds ratios and use uniform priors for the slopes and a normal prior for
the intercept

bayes, prior({y: x1 x2}, uniform(-10,10)) ///
prior({y: cons}, normal(0,10)) or: logit y x1 x2

Report odds ratios for the logit model on replay
bayes, or

Bayesian ordered logit regression of y on x1 and x2, saving simulation results to simdata.dta and
using a random-number seed for reproducibility

bayes, saving(simdata) rseed(123): ologit y x1 x2 x3
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Bayesian multinomial regression of y on x1 and x2, specifying 20,000 MCMC samples, setting length
of the burn-in period to 5,000, and requesting that a dot be displayed every 500 simulations

bayes, mcmcsize(20000) burnin(5000) dots(500): mlogit y x1 x2

Bayesian Poisson regression of y on x1 and x2, putting regression slopes in separate blocks and
showing block summary

bayes, block({y:x1}) block({y:x2}) blocksummary: poisson y x1 x2

Bayesian multivariate regression of y1 and y2 on x1, x2, and x3, using Gibbs sampling and requesting
90% HPD credible interval instead of the default 95% equal-tailed credible interval

bayes, gibbs clevel(90) hpd: mvreg y1 y2 = x1 x2 x3

Same as above, but use mvreg’s option level() instead of bayes’s option clevel()

bayes, gibbs hpd: mvreg y1 y2 = x1 x2 x3, level(90)

Suppress estimates of the covariance matrix from the output
bayes, noshow(Sigma, matrix)

Bayesian Weibull regression of stset survival-time outcome on x1 and x2, specifying starting values
of 1 for {y:x1} and of 2 for {y:x2}

bayes, initial({y:x1} 1 {y:x2} 2): streg x1 x2, distribution(weibull)

Bayesian panel-data regression of y on x1 and x2 with random intercepts by id, after xtseting id
as the panel variable

xtset id
bayes: xtreg y x1 x2

Bayesian two-level linear regression of y on x1 and x2 with random intercepts by id

bayes: mixed y x1 x2 || id:

Menu
Statistics > Bayesian analysis > Regression models > estimation command
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Syntax

bayes
[
, bayesopts

]
: estimation command

[
, estopts

]

estimation command is a likelihood-based estimation command, and estopts are command-specific
estimation options; see [BAYES] Bayesian estimation for a list of supported commands, and see
the command-specific entries for the supported estimation options, estopts.

bayesopts Description

Priors
∗gibbs specify Gibbs sampling; available only with regress, xtreg, or

mvreg for certain prior combinations
∗normalprior(#) specify standard deviation of default normal priors for regression

coefficients and other real scalar parameters;
default is normalprior(100)

∗igammaprior(# #) specify shape and scale of default inverse-gamma prior for
variances; default is igammaprior(0.01 0.01)

∗iwishartprior(#
[
. . .
]
) specify degrees of freedom and, optionally, scale matrix of default

inverse-Wishart prior for unstructured random-effects covariance
prior(priorspec) prior for model parameters; this option may be repeated
dryrun show model summary without estimation

Simulation

nchains(#) number of chains; default is to simulate one chain
mcmcsize(#) MCMC sample size; default is mcmcsize(10000)

burnin(#) burn-in period; default is burnin(2500)

thinning(#) thinning interval; default is thinning(1)

rseed(#) random-number seed
exclude(paramref) specify model parameters to be excluded from the simulation results
restubs(restub1 restub2 . . .) specify stubs for random-effects parameters for all levels; allowed

only with multilevel models

Blocking
∗blocksize(#) maximum block size; default is blocksize(50)

block(paramref
[
, blockopts

]
) specify a block of model parameters; this option may be repeated

blocksummary display block summary
∗noblocking do not block parameters by default

Initialization

initial(initspec) specify initial values for model parameters with a single chain
init#(initspec) specify initial values for #th chain; requires nchains()

initall(initspec) specify initial values for all chains; requires nchains()

nomleinitial suppress the use of maximum likelihood estimates as starting values
initrandom specify random initial values
initsummary display initial values used for simulation
∗noisily display output from the estimation command during initialization
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Adaptation

adaptation(adaptopts) control the adaptive MCMC procedure
scale(#) initial multiplier for scale factor; default is scale(2.38)

covariance(cov) initial proposal covariance; default is the identity matrix

Reporting

clevel(#) set credible interval level; default is clevel(95)

hpd display HPD credible intervals instead of the default equal-tailed
credible intervals

eform option display coefficient table in exponentiated form
remargl compute log marginal-likelihood for random-effects models
batch(#) specify length of block for batch-means calculations;

default is batch(0)

saving(filename
[
, replace

]
) save simulation results to filename.dta

nomodelsummary suppress model summary
nomesummary suppress multilevel-structure summary; allowed only with

multilevel models
chainsdetail display detailed simulation summary for each chain[
no
]
dots suppress dots or display dots every 100 iterations and iteration

numbers every 1,000 iterations; default is command-specific
dots(#

[
, every(#)

]
) display dots as simulation is performed[

no
]
show(paramref) specify model parameters to be excluded from or included in

the output
showreffects

[
(reref)

]
specify that all or a subset of random-effects parameters be included

in the output; allowed only with panel-data and multilevel
commands

melabel display estimation table using the same row labels as
estimation command; allowed only with multilevel commands

nogroup suppress table summarizing groups; allowed only with multilevel
models

notable suppress estimation table
noheader suppress output header
title(string) display string as title above the table of parameter estimates
display options control spacing, line width, and base and empty cells

Advanced

search(search options) control the search for feasible initial values
corrlag(#) specify maximum autocorrelation lag; default varies
corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)

∗Starred options are specific to the bayes prefix; other options are common between bayes and bayesmh.

The full specification of iwishartprior() is iwishartprior(#
[

matname
] [

, relevel(levelvar)
]
).

Options prior() and block() may be repeated.
priorspec and paramref are defined in [BAYES] bayesmh.
paramref may contain factor variables; see [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Options

� � �
Priors �

gibbs specifies that Gibbs sampling be used to simulate model parameters instead of the default
adaptive Metropolis–Hastings sampling. This option is allowed only with the regress, xtreg,
and mvreg estimation commands. It is available only with certain prior combinations such as
normal prior for regression coefficients and an inverse-gamma prior for the variance. Specifying
the gibbs option is equivalent to specifying block()’s gibbs suboption for all default blocks of
parameters. If you use the block() option to define your own blocks of parameters, the gibbs
option will have no effect on those blocks, and an MH algorithm will be used to update parameters
in those blocks unless you also specify block()’s gibbs suboption.

With panel-data and multilevel linear models, Gibbs sampling is used by default for regression
coefficients and variance components, and Metropolis–Hastings sampling is used for random effects.
For panel-data linear models, you can specify option gibbs to use Gibbs sampling also for random
effects.

normalprior(#) specifies the standard deviation of the default normal priors. The default is nor-
malprior(100). The normal priors are used for scalar parameters defined on the whole real line;
see Default priors for details.

igammaprior(# #) specifies the shape and scale parameters of the default inverse-gamma priors.
The default is igammaprior(0.01 0.01). The inverse-gamma priors are used for positive scalar
parameters such as a variance; see Default priors for details. Instead of a number #, you can
specify a missing value (.) to refer to the default value of 0.01.

iwishartprior(#
[

matname
] [

, relevel(levelvar)
]
) specifies the degrees of freedom and,

optionally, the scale matrix matname of the default inverse-Wishart priors used for unstructured
covariances of random effects with multilevel models. The degrees of freedom # is a positive real
scalar with the default value of d+1, where d is the number of random-effects terms at the level of
hierarchy levelvar. Instead of a number #, you can specify a missing value (.) to refer to the default
value. Matrix name matname is the name of a positive-definite Stata matrix with the default of
I(d), the identity matrix of dimension d. If relevel(levelvar) is omitted, the specified parameters
are used for inverse-Wishart priors for all levels with unstructured random-effects covariances.
Otherwise, they are used only for the prior for the specified level levelvar. See Default priors for
details.

prior(priorspec) specifies a prior distribution for model parameters. This option may be repeated.
A prior may be specified for any of the model parameters, except the random-effects parameters
in multilevel models. Model parameters with the same prior specifications are placed in a separate
block. Model parameters that are not included in prior specifications are assigned default priors;
see Default priors for details. Model parameters may be scalars or matrices, but both types may not
be combined in one prior statement. If multiple scalar parameters are assigned a single univariate
prior, they are considered independent, and the specified prior is used for each parameter. You
may assign a multivariate prior of dimension d to d scalar parameters. Also see Referring to model
parameters in [BAYES] bayesmh.

All prior() distributions are allowed, but they are not guaranteed to correspond to proper posterior
distributions for all likelihood models. You need to think carefully about the model you are building
and evaluate its convergence thoroughly; see Convergence of MCMC in [BAYES] bayesmh.

dryrun specifies to show the summary of the model that would be fit without actually fitting the
model. This option is recommended for checking specifications of the model before fitting the
model. The model summary reports the information about the likelihood model and about priors
for all model parameters.
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� � �
Simulation �

nchains(#) specifies the number of Markov chains to simulate. You must specify at least two
chains. By default, only one chain is produced. Simulating multiple chains is useful for convergence
diagnostics and to improve precision of parameter estimates. Four chains are often recommended in
the literature, but you can specify more or less depending on your objective. The reported estimation
results are based on all chains. You can use bayesstats summary with option sepchains to see
the results for each chain. The reported acceptance rate, efficiencies, and log marginal-likelihood
are averaged over all chains. You can use option chainsdetail to see these simulation summaries
for each chain. Also see Convergence diagnostics using multiple chains in [BAYES] bayesmh and
Gelman–Rubin convergence diagnostic in [BAYES] bayesstats grubin.

mcmcsize(#) specifies the target MCMC sample size. The default MCMC sample size is mcmc-
size(10000). The total number of iterations for the MH algorithm equals the sum of the burn-in
iterations and the MCMC sample size in the absence of thinning. If thinning is present, the total
number of MCMC iterations is computed as burnin() + (mcmcsize()− 1)× thinning() + 1.
Computation time of the MH algorithm is proportional to the total number of iterations. The
MCMC sample size determines the precision of posterior summaries, which may be different for
different model parameters and will depend on the efficiency of the Markov chain. With multiple
chains, mcmcsize() applies to each chain. Also see Burn-in period and MCMC sample size in
[BAYES] bayesmh.

burnin(#) specifies the number of iterations for the burn-in period of MCMC. The values of parameters
simulated during burn-in are used for adaptation purposes only and are not used for estimation.
The default is burnin(2500). Typically, burn-in is chosen to be as long as or longer than the
adaptation period. The burn-in period may need to be larger for multilevel models because these
models introduce high-dimensional random-effects parameters and thus require longer adaptation
periods. With multiple chains, burnin() applies to each chain. Also see Burn-in period and
MCMC sample size in [BAYES] bayesmh and Convergence of MCMC in [BAYES] bayesmh.

thinning(#) specifies the thinning interval. Only simulated values from every (1+k×#)th iteration
for k = 0, 1, 2, . . . are saved in the final MCMC sample; all other simulated values are discarded.
The default is thinning(1); that is, all simulation values are saved. Thinning greater than one
is typically used for decreasing the autocorrelation of the simulated MCMC sample. With multiple
chains, thinning() applies to each chain.

rseed(#) sets the random-number seed. This option can be used to reproduce results. With one
chain, rseed(#) is equivalent to typing set seed # prior to calling the bayes prefix; see [R] set
seed. With multiple chains, you should use rseed() for reproducibility; see Reproducing results
in [BAYES] bayesmh.

exclude(paramref) specifies which model parameters should be excluded from the final MCMC
sample. These model parameters will not appear in the estimation table, and postestimation
features for these parameters and log marginal-likelihood will not be available. This option is
useful for suppressing nuisance model parameters. For example, if you have a factor predictor
variable with many levels but you are only interested in the variability of the coefficients associated
with its levels, not their actual values, then you may wish to exclude this factor variable from the
simulation results. If you simply want to omit some model parameters from the output, see the
noshow() option. paramref can include individual random-effects parameters.

restubs(restub1 restub2 . . .) specifies the stubs for the names of random-effects parameters. You
must specify stubs for all levels—one stub per level. This option overrides the default random-effects
stubs. See Likelihood model for details about the default names of random-effects parameters.
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� � �
Blocking �

blocksize(#) specifies the maximum block size for the model parameters; default is blocksize(50).
This option does not apply to random-effects parameters. Each group of random-effects parameters
is placed in one block, regardless of the number of random-effects parameters in that group.

block( paramref
[
, blockopts

]
) specifies a group of model parameters for the blocked MH algorithm.

By default, model parameters, except the random-effects parameters, are sampled as independent
blocks of 50 parameters or of the size specified in option blocksize(). Regression coefficients
from different equations are placed in separate blocks. Auxiliary parameters such as variances
and correlations are sampled as individual separate blocks, whereas the cutpoint parameters of
the ordinal-outcome regressions are sampled as one separate block. With multilevel models, each
group of random-effects parameters is placed in a separate block, and the block() option is not
allowed with random-effects parameters. The block() option may be repeated to define multiple
blocks. Different types of model parameters, such as scalars and matrices, may not be specified
in one block(). Parameters within one block are updated simultaneously, and each block of
parameters is updated in the order it is specified; the first specified block is updated first, the
second is updated second, and so on. See Improving efficiency of the MH algorithm—blocking
of parameters in [BAYES] bayesmh.

blockopts include gibbs, split, scale(), covariance(), and adaptation().

gibbs specifies to use Gibbs sampling to update parameters in the block. This option is al-
lowed only for hyperparameters and only for specific combinations of prior and hyperprior
distributions; see Gibbs sampling for some likelihood-prior and prior-hyperprior configura-
tions in [BAYES] bayesmh. For more information, see Gibbs and hybrid MH sampling in
[BAYES] bayesmh. gibbs may not be combined with scale(), covariance(), or adapta-
tion().

split specifies that all parameters in a block are treated as separate blocks. This may be useful
for levels of factor variables.

scale(#) specifies an initial multiplier for the scale factor corresponding to the specified block.
The initial scale factor is computed as #/

√
np for continuous parameters and as #/np for discrete

parameters, where np is the number of parameters in the block. The default is scale(2.38).
If specified, this option overrides the respective setting from the scale() option specified with
the command. scale() may not be combined with gibbs.

covariance(matname) specifies a scale matrix matname to be used to compute an initial
proposal covariance matrix corresponding to the specified block. The initial proposal covariance
is computed as rho×Sigma, where rho is a scale factor and Sigma = matname. By default,
Sigma is the identity matrix. If specified, this option overrides the respective setting from the
covariance() option specified with the command. covariance() may not be combined with
gibbs.

adaptation(tarate()) and adaptation(tolerance()) specify block-specific TAR and ac-
ceptance tolerance. If specified, they override the respective settings from the adaptation()
option specified with the command. adaptation() may not be combined with gibbs.

blocksummary displays the summary of the specified blocks. This option is useful when block()
is specified.

noblocking requests that no default blocking is applied to model parameters. By default, model
parameters are sampled as independent blocks of 50 parameters or of the size specified in option
blocksize(). For multilevel models, this option has no effect on random-effects parameters;
blocking is always applied to them.
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� � �
Initialization �

initial(initspec) specifies initial values for the model parameters to be used in the simulation.
With multiple chains, this option is equivalent to specifying option init1(). You can specify a
parameter name, its initial value, another parameter name, its initial value, and so on. For example,
to initialize a scalar parameter alpha to 0.5 and a 2x2 matrix Sigma to the identity matrix I(2),
you can type

bayes, initial({alpha} 0.5 {Sigma,m} I(2)) : . . .

You can also specify a list of parameters using any of the specifications described in Referring to
model parameters in [BAYES] bayesmh. For example, to initialize all regression coefficients from
equations y1 and y2 to zero, you can type

bayes, initial({y1:} {y2:} 0) : . . .

The general specification of initspec is

paramref initval
[

paramref initval
[
. . .
] ]

where initval is a number, a Stata expression that evaluates to a number, or a Stata matrix for
initialization of matrix parameters.

Curly braces may be omitted for scalar parameters but must be specified for matrix parameters.
Initial values declared using this option override the default initial values or any initial values
declared during parameter specification in the likelihood() option. See Initial values for details.

init#(initspec) specifies initial values for the model parameters for the #th chain. This option requires
option nchains(). init1() overrides the default initial values for the first chain, init2() for
the second chain, and so on. You specify initial values in init#() just like you do in option
initial(). See Initial values for details.

initall(initspec) specifies initial values for the model parameters for all chains. This option requires
option nchains(). You specify initial values in initall() just like you do in option initial().
You should avoid specifying fixed initial values in initall() because then all chains will use the
same initial values. initall() is useful to specify random initial values when you define your
own priors within prior()’s density() and logdensity() suboptions. See Initial values for
details.

nomleinitial suppresses using maximum likelihood estimates (MLEs) as starting values for model
parameters. With multiple chains, this option and discussion below apply only to the first chain. By
default, when no initial values are specified, MLE values from estimation command are used as initial
values. For multilevel commands, MLE estimates are used only for regression coefficients. Random
effects are assigned zero values, and random-effects variances and covariances are initialized with
ones and zeros, respectively. If nomleinitial is specified and no initial values are provided, the
command uses ones for positive scalar parameters, zeros for other scalar parameters, and identity
matrices for matrix parameters. nomleinitial may be useful for providing an alternative starting
state when checking convergence of MCMC. This option cannot be combined with initrandom.

initrandom specifies that the model parameters be initialized randomly. Random initial values are
generated from the prior distributions of the model parameters. If you want to use fixed initial
values for some of the parameters, you can specify them in the initial() option or during
parameter declarations in the likelihood() option. Random initial values are not available for
parameters with flat, jeffreys, density(), logdensity(), and jeffreys() priors; you
must provide your own initial values for such parameters. This option cannot be combined with
nomleinitial. See Specifying initial values in [BAYES] bayesmh for details.

initsummary specifies that the initial values used for simulation be displayed.
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noisily specifies that the output from the estimation command be shown during initialization. The
estimation command is executed once to set up the model and calculate initial values for model
parameters.

� � �
Adaptation �

adaptation(adaptopts) controls adaptation of the MCMC procedure. Adaptation takes place every
prespecified number of MCMC iterations and consists of tuning the proposal scale factor and proposal
covariance for each block of model parameters. Adaptation is used to improve sampling efficiency.
Provided defaults are based on theoretical results and may not be sufficient for all applications.
See Adaptation of the MH algorithm in [BAYES] bayesmh for details about adaptation and its
parameters.

adaptopts are any of the following options:

every(#) specifies that adaptation be attempted every #th iteration. The default is every(100).
To determine the adaptation interval, you need to consider the maximum block size specified
in your model. The update of a block with k model parameters requires the estimation
of a k × k covariance matrix. If the adaptation interval is not sufficient for estimating the
k(k + 1)/2 elements of this matrix, the adaptation may be insufficient.

maxiter(#) specifies the maximum number of adaptive iterations. Adaptation includes tuning
of the proposal covariance and of the scale factor for each block of model parameters.
Once the TAR is achieved within the specified tolerance, the adaptation stops. However, no
more than # adaptation steps will be performed. The default is variable and is computed as
max{25, floor(burnin()/adaptation(every()))}.
maxiter() is usually chosen to be no greater than (mcmcsize() + burnin())/
adaptation(every()).

miniter(#) specifies the minimum number of adaptive iterations to be performed regardless of
whether the TAR has been achieved. The default is miniter(5). If the specified miniter()
is greater than maxiter(), then miniter() is reset to maxiter(). Thus, if you specify
maxiter(0), then no adaptation will be performed.

alpha(#) specifies a parameter controlling the adaptation of the AR. alpha() should be in
[0, 1]. The default is alpha(0.75).

beta(#) specifies a parameter controlling the adaptation of the proposal covariance matrix.
beta() must be in [0,1]. The closer beta() is to zero, the less adaptive the proposal
covariance. When beta() is zero, the same proposal covariance will be used in all MCMC
iterations. The default is beta(0.8).

gamma(#) specifies a parameter controlling the adaptation rate of the proposal covariance
matrix. gamma() must be in [0,1]. The larger the value of gamma(), the less adaptive the
proposal covariance. The default is gamma(0).

tarate(#) specifies the TAR for all blocks of model parameters; this is rarely used. tarate()
must be in (0,1). The default AR is 0.234 for blocks containing continuous multiple parameters,
0.44 for blocks with one continuous parameter, and 1/n maxlev for blocks with discrete
parameters, where n maxlev is the maximum number of levels for a discrete parameter in
the block.

tolerance(#) specifies the tolerance criterion for adaptation based on the TAR. tolerance()
should be in (0,1). Adaptation stops whenever the absolute difference between the current
AR and TAR is less than tolerance(). The default is tolerance(0.01).
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scale(#) specifies an initial multiplier for the scale factor for all blocks. The initial scale factor is
computed as #/

√
np for continuous parameters and #/np for discrete parameters, where np is the

number of parameters in the block. The default is scale(2.38).

covariance(cov) specifies a scale matrix cov to be used to compute an initial proposal covariance
matrix. The initial proposal covariance is computed as ρ × Σ, where ρ is a scale factor and
Σ = matname. By default, Σ is the identity matrix. Partial specification of Σ is also allowed.
The rows and columns of cov should be named after some or all model parameters. According
to some theoretical results, the optimal proposal covariance is the posterior covariance matrix of
model parameters, which is usually unknown. This option does not apply to the blocks containing
random-effects parameters.

� � �
Reporting �

clevel(#) specifies the credible level, as a percentage, for equal-tailed and HPD credible intervals.
The default is clevel(95) or as set by [BAYES] set clevel.

hpd displays the HPD credible intervals instead of the default equal-tailed credible intervals.

eform option causes the coefficient table to be displayed in exponentiated form; see [R] eform option.
The estimation command determines which eform option is allowed (eform(string) and eform
are always allowed).

remargl specifies to compute the log marginal-likelihood for panel-data and multilevel models. It
is not reported by default for these models. Bayesian panel-data and multilevel models contain
many parameters because, in addition to regression coefficients and variance components, they also
estimate individual random effects. The computation of the log marginal-likelihood involves the
inverse of the determinant of the sample covariance matrix of all parameters and loses its accuracy
as the number of parameters grows. For high-dimensional models such as multilevel models, the
computation of the log marginal-likelihood can be time consuming, and its accuracy may become
unacceptably low. Because it is difficult to access the levels of accuracy of the computation for
all panel-data and multilevel models, the log marginal-likelihood is not reported by default. For
models containing a small number of random effects, you can use the remargl option to compute
and display the log marginal-likelihood.

batch(#) specifies the length of the block for calculating batch means and an MCSE using batch
means. The default is batch(0), which means no batch calculations. When batch() is not
specified, the MCSE is computed using effective sample sizes instead of batch means. batch()
may not be combined with corrlag() or corrtol().

saving(filename
[
, replace

]
) saves simulation results in filename.dta. The replace option

specifies to overwrite filename.dta if it exists. If the saving() option is not specified, the bayes
prefix saves simulation results in a temporary file for later access by postestimation commands.
This temporary file will be overridden every time the bayes prefix is run and will also be erased
if the current estimation results are cleared. saving() may be specified during estimation or on
replay.

The saved dataset has the following structure. Variable chain records chain identifiers. Variable
index records iteration numbers. The bayes prefix saves only states (sets of parameter values) that

are different from one iteration to another and the frequency of each state in variable frequency.
(Some states may be repeated for discrete parameters.) As such, index may not necessarily
contain consecutive integers. Remember to use frequency as a frequency weight if you need to
obtain any summaries of this dataset. Values for each parameter are saved in a separate variable
in the dataset. Variables containing values of parameters without equation names are named as
eq0 p#, following the order in which parameters are declared in the bayes prefix. Variables
containing values of parameters with equation names are named as eq# p#, again following the
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order in which parameters are defined. Parameters with the same equation names will have the
same variable prefix eq#. For example,

. bayes, saving(mcmc): . . .

will create a dataset, mcmc.dta, with variable names eq1 p1 for {y:x1}, eq1 p2 for {y: cons},
and eq0 p1 for {var}. Also see macros e(parnames) and e(varnames) for the correspondence
between parameter names and variable names.

In addition, the bayes prefix saves variable loglikelihood to contain values of the log likelihood
from each iteration and variable logposterior to contain values of the log posterior from each
iteration.

nomodelsummary suppresses the detailed summary of the specified model. The model summary is
reported by default.

nomesummary suppresses the summary about the multilevel structure of the model. This summary is
reported by default for multilevel commands.

chainsdetail specifies that acceptance rates, efficiencies, and log marginal-likelihoods be reported
separately for each chain. By default, the header reports these statistics averaged over all chains.
This option requires option nchains().

nodots, dots, and dots(#) specify to suppress or display dots during simulation. With multiple
chains, these options affect all chains. dots(#) displays a dot every # iterations. During the
adaptation period, a symbol a is displayed instead of a dot. If dots(. . ., every(#)) is specified,
then an iteration number is displayed every #th iteration instead of a dot or a. dots(, every(#)) is
equivalent to dots(1, every(#)). dots displays dots every 100 iterations and iteration numbers
every 1,000 iterations; it is a synonym for dots(100, every(1000)). dots is the default with
multilevel commands, and nodots is the default with other commands.

show(paramref) or noshow(paramref) specifies a list of model parameters to be included in the output
or excluded from the output, respectively. By default, all model parameters (except random-effects
parameters with multilevel models) are displayed. Do not confuse noshow() with exclude(),
which excludes the specified parameters from the MCMC sample. When the noshow() option
is specified, for computational efficiency, MCMC summaries of the specified parameters are not
computed or stored in e(). paramref can include individual random-effects parameters.

showreffects and showreffects(reref) are used with panel-data and multilevel commands and
specify that all or a list reref of random-effects parameters be included in the output in addition to
other model parameters. By default, all random-effects parameters are excluded from the output
as if you have specified the noshow() option. This option computes, displays, and stores in e()
MCMC summaries for the random-effects parameters.

melabel specifies that the bayes prefix use the same row labels as estimation command in the
estimation table. This option is allowed only with multilevel commands. It is useful to match the
estimation table output of bayes: mecmd with that of mecmd. This option implies nomesummary
and nomodelsummary.

nogroup suppresses the display of group summary information (number of groups, average group
size, minimum, and maximum) from the output header. This option is for use with multilevel
commands.

notable suppresses the estimation table from the output. By default, a summary table is displayed
containing all model parameters except those listed in the exclude() and noshow() options.
Regression model parameters are grouped by equation names. The table includes six columns
and reports the following statistics using the MCMC simulation results: posterior mean, posterior
standard deviation, MCMC standard error or MCSE, posterior median, and credible intervals.
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noheader suppresses the output header either at estimation or upon replay.

title(string) specifies an optional title for the command that is displayed above the table of the
parameter estimates. The default title is specific to the specified likelihood model.

display options: vsquish, noemptycells, baselevels, allbaselevels, nofvlabel,
fvwrap(#), fvwrapon(style), and nolstretch; see [R] Estimation options.

� � �
Advanced �

search(search options) searches for feasible initial values. search options are on, repeat(#),
and off.

search(on) is equivalent to search(repeat(500)). This is the default.

search(repeat(k)), k > 0, specifies the number of random attempts to be made to find
a feasible initial-value vector, or initial state. The default is repeat(500). An initial-value
vector is feasible if it corresponds to a state with positive posterior probability. If feasible initial
values are not found after k attempts, an error will be issued. repeat(0) (rarely used) specifies
that no random attempts be made to find a feasible starting point. In this case, if the specified
initial vector does not correspond to a feasible state, an error will be issued.

search(off) prevents the command from searching for feasible initial values. We do not recom-
mend specifying this option.

corrlag(#) specifies the maximum autocorrelation lag used for calculating effective sample sizes. The
default is min{500, mcmcsize()/2}. The total autocorrelation is computed as the sum of all lag-k
autocorrelation values for k from 0 to either corrlag() or the index at which the autocorrelation
becomes less than corrtol() if the latter is less than corrlag(). Options corrlag() and
batch() may not be combined.

corrtol(#) specifies the autocorrelation tolerance used for calculating effective sample sizes. The
default is corrtol(0.01). For a given model parameter, if the absolute value of the lag-k
autocorrelation is less than corrtol(), then all autocorrelation lags beyond the kth lag are
discarded. Options corrtol() and batch() may not be combined.
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Remarks and examples
Remarks and examples are presented under the following headings:

Using the bayes prefix
Likelihood model
Default priors
Initial values
Command-specific options

Introductory example
Linear regression: A case of informative default priors
Logistic regression with perfect predictors
Multinomial logistic regression
Generalized linear model
Truncated Poisson regression
Zero-inflated negative binomial model
Parametric survival model
Heckman selection model
Multilevel models

Two-level models
Crossed-effects model
Blocked-diagonal covariance structures

Panel-data models
Time-series and DSGE models
Video examples

For a general introduction to Bayesian analysis, see [BAYES] Intro. For a general introduc-
tion to Bayesian estimation using adaptive MH and Gibbs algorithms, see [BAYES] bayesmh. See
[BAYES] Bayesian estimation for a list of supported estimation commands. For a quick overview
example of all Bayesian commands, see Overview example in [BAYES] Bayesian commands.

Using the bayes prefix

The bayes prefix provides Bayesian estimation for many likelihood-based regression models.
Simply prefix your estimation command with bayes to get Bayesian estimates—bayes: esti-
mation command; see [BAYES] Bayesian estimation for a list of supported commands. Also see
[BAYES] bayesmh for other Bayesian models.

Similarly to the bayesmh command, the bayes prefix sets up a Bayesian posterior model, uses MCMC
to simulate parameters of this model, and summarizes and reports results. The process of specifying
a Bayesian model is similar to that described in Setting up a posterior model in [BAYES] bayesmh,
except the likelihood model is now determined by the specified estimation command and default
priors are used for model parameters. The bayes prefix and the bayesmh command share the same
methodology of MCMC simulation and the same summarization and reporting of simulation results;
see [BAYES] bayesmh for details. In the following sections, we provide information specific to the
bayes prefix.

Likelihood model

With the bayes prefix, the likelihood component of the Bayesian model is determined by the
prefixed estimation command, and all posterior model parameters are defined by the likelihood model.
For example, the parameters of the model

. bayes: streg age smoking, distribution(lognormal)

are the regression coefficients and auxiliary parameters you see when you fit

. streg age smoking, distribution(lognormal)
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All estimation commands have regression coefficients as their model parameters. Some commands
have additional parameters such as variances and correlation coefficients.

The bayes prefix typically uses the likelihood parameterization and the naming convention of the
estimation command to define model parameters, but there are exceptions. For example, the truncreg
command uses the standard deviation parameter {sigma} to parameterize the likelihood, whereas
bayes: truncreg uses the variance parameter {sigma2}.

Most model parameters are scalar parameters supported on the whole real line such as regression
coefficients, log-transformed positive parameters, and atanh-transformed correlation coefficients. For
example, positive scalar parameters are the variance parameters in bayes: regress, bayes: tobit,
and bayes: truncreg, and matrix parameters are the covariance matrix {Sigma, matrix} in
bayes: mvreg and covariances of random effects in multilevel commands such as bayes: meglm.

The names of model parameters are provided in the model summary displayed by the bayes prefix.
Knowing these names is useful when specifying the prior distributions, although the bayes prefix does
provide default priors; see Default priors. You can use the dryrun option with the bayes prefix to see
the names of model parameters prior to the estimation. In general, the names of regression coefficients
are formed as {depvar:indepvar}, where depvar is the name of the specified dependent variable and
indepvar is the name of an independent variable. There are exceptions such as bayes: streg, for
which depvar is replaced with t. Variance parameters are named {sigma2}, log-standard-deviation
parameters are named {lnsigma}, atanh-transformed correlation parameters are named {athrho},
and the covariance matrix of bayes: mvreg is named {Sigma, matrix} (or {Sigma, m} for short).

For panel-data and multilevel models such as bayes: xtreg and bayes: meglm, in addition
to regression coefficients and variance components, the bayes prefix also estimates random-effects
parameters. This is different from the corresponding frequentist commands, such as xtreg and meglm,
in which random effects are integrated out and thus are not among the final model parameters. (They
can be predicted after estimation.) As such, the bayes prefix has its own naming convention for model
parameters of multilevel commands. Before moving on to Bayesian analysis of multilevel models,
you should be familiar with the syntax of the multilevel commands; see, for example, Syntax in
[ME] meglm.

For panel-data models, the regression coefficients are labeled as usual, {depvar:indepvar}. Random-
effects parameters are labeled as {U[panelvar]} (or simply {U}), where panelvar is the panel variable.
For multinomial logistic models, each outcome can have its own random effect, so the random effects
are labeled as {U1[panelvar]}, {U2[panelvar]}, etc. (or simply {U1}, {U2}, etc.), for each outcome
level except the baseline outcome. See command-specific entries for the naming convention of
additional parameters such as cutpoints with ordinal models. Also see Different ways of specifying
model parameters for how to refer to individual random effects during postestimation. For examples,
see Panel-data models.

For multilevel models, the regression coefficients are labeled as usual, {depvar:indepvar}. Random-
effects parameters are labeled as outlined in tables 1 and 2. You can change the default names by
specifying the restubs() option. The common syntax of {rename} is {restub#}, where restub is
a capital letter, U for the level specified first, or a sequence of capital letters that is unique to each
random-effects level, and # refers to the group of random effects at that level: 0 for random intercepts,
1 for random coefficients associated with the variable specified first in the random-effects equation,
2 for random coefficients associated with the variable specified second, and so on. The full syntax of
{rename}, {fullrename}, is {restub#[levelvar]}, where levelvar is the variable identifying the level
of hierarchy and is often omitted from the specification for brevity. Random effects at the observation
level or crossed effects, specified as all: R.varname with multilevel commands, are labeled as
{U0}, {V0}, {W0}, and so on. Random effects at nesting levels, or nested effects, are labeled using
a sequence of capital letters starting with the letter corresponding to the top level. For example, the
multilevel model
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. bayes: melogit y x1 x2 || id1: x1 x2 || id2: x1 || id3:

will have random-effects parameters {U0}, {U1}, and {U2} to represent, respectively, random
intercepts, random coefficients for x1, and random coefficients for x2 at the id1 level; parameters
{UU0} and {UU1} for random intercepts and random coefficients for x1 at the id2 level; and random
intercepts {UUU0} at the id3 level. See Multilevel models for more examples. Also see Different ways
of specifying model parameters for how to refer to individual random effects during postestimation.

Table 1. Random effects at nesting levels of hierarchy (nested effects)

Hierarchy Random effects {rename}

lev1 Random intercepts {U0}
Random coefficients {U1}, {U2}, etc.

lev1>lev2 Random intercepts {UU0}
Random coefficients {UU1}, {UU2}, etc.

lev1>lev2>lev3 Random intercepts {UUU0}
Random coefficients {UUU1}, {UUU2}, etc.

. . .

Table 2. Random effects at the observation level, all (crossed effects)

Hierarchy Random effects {rename}

lev1 Random intercepts {U0}
lev2 Random intercepts {V0}
lev3 Random intercepts {W0}
. . .

Variance components for independent random effects are labeled as {rename:sigma2}. In the
above example, there are six variance components: {U0:sigma2}, {U1:sigma2}, {U2:sigma2},
{UU0:sigma2}, {UU1:sigma2}, and {UUU0:sigma2}.

Covariance matrices of correlated random effects are labeled as {restub:Sigma,matrix} (or
{restub:Sigma,m} for short), where restub is the letter stub corresponding to the level at which
random effects are defined. For example, if we specify an unstructured covariance for the random
effects at the id1 and id2 levels (with cov(un) short for covariance(unstructured))

. bayes: melogit y x1 x2 || id1: x1 x2, cov(un) || id2: x1, cov(un) || id3:

we will have two covariance matrix parameters, a 3 × 3 covariance {U:Sigma,m} at the id1 level
and a 2×2 covariance {UU:Sigma,m} at the id2 level, and the variance component {UUU0:sigma2}
at the id3 level.

For Gaussian multilevel models such as bayes: mixed, the error variance component is labeled
as {e.depvar:sigma2}.

Also see command-specific entries for the naming convention of additional parameters such as
cutpoints with ordinal models or overdispersion parameters with negative binomial models.
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Default priors

For convenience, the bayes prefix provides default priors for model parameters. The priors are
chosen to be general across models and are fairly uninformative for a typical combination of a
likelihood model and dataset. However, the default priors may not always be appropriate. You should
always inspect their soundness and, if needed, override the prior specification for some or all model
parameters using the prior() option.

All scalar parameters supported on the whole real line, such as regression coefficients and log-
transformed positive parameters, are assigned a normal distribution with zero mean and variance
σ2

prior, N(0, σ2
prior), where σprior is given by the normalprior() option. The default value for

σprior is 100, and thus the default priors for these parameters are N(0, 10000). These priors are fairly
uninformative for parameters of moderate size but may become informative for large-scale parameters.
See the Linear regression: A case of informative default priors example below.

All positive scalar parameters, such as the variance parameters in bayes: regress and
bayes: tobit, are assigned an inverse-gamma prior with shape parameter α and scale parame-
ter β, InvGamma(α, β). The default values for α and β are 0.01, and thus the default prior for these
parameters is InvGamma(0.01, 0.01).

All cutpoint parameters of ordinal-outcome models, such as bayes: ologit and bayes: oprobit
are assigned flat priors, improper uniform priors with a constant density of 1, equivalent to specifying
the flat prior option. The reason for this choice is that the cutpoint parameters are sensitive to the
range of the outcome variables, which is usually unknown a priori.

For panel-data models except bayes: xtpoisson and bayes: xtnbreg, the random effects
are assigned normal priors with zero mean and variance {var U}, and {var U} is assigned an
inverse-gamma prior InvGamma(0.01, 0.01). For a Poisson model, the random effects are assigned
an exponential gamma prior with a hyperprior parameter {alpha} having an inverse-gamma prior
InvGamma(0.01, 0.01). For a negative binomial model, the random effects are assigned a beta prior
with hyperparameters {r} and {s}, which are assigned a Pareto-type prior as described in Methods
and formulas of [BAYES] bayes: xtnbreg.

For multilevel models with independent and identity random-effects covariance structures,
variances of random effects are assigned inverse-gamma priors, InvGamma(0.01, 0.01). For unstruc-
tured random-effects covariances, covariance matrix parameters are assigned fairly uninformative
inverse-Wishart priors, InvWishart(d + 1, I(d)), where d is the dimension of the random-effects
covariance matrix and I(d) is the identity matrix of dimension d. Setting the degrees-of-freedom
parameter of the inverse-Wishart prior to d + 1 is equivalent to specifying uniform on (−1, 1)
distributions for the individual correlation parameters.

The model summary displayed by the bayes prefix describes the chosen default priors, which you
can see prior to estimation if you specify bayes’s dryrun option. You can use the prior() option
repeatedly to override the default prior specifications for some or all model parameters.

Initial values

By default, the bayes prefix uses the ML estimates from the prefixed estimation command as
initial values for all scalar model parameters.

For example, the specification
. bayes: logit y x

will use the ML estimates from
. logit y x

as default initial values for the regression coefficients.
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You can override the default initial values by using the initial() option; see Specifying initial
values in [BAYES] bayesmh.

If the nomleinitial option is specified, instead of using the estimates from the prefixed command,
all scalar model parameters are initialized with zeros, except for the variance parameters, which are
initialized with ones.

The covariance matrix parameter {Sigma, matrix} of bayes: mvreg is always initialized with
the identity matrix.

For panel-data and multilevel models, regression coefficients are initialized using the ML estimates
from the corresponding model without random effects, variances of random effects are initialized
with ones, covariances of random effects are initialized with zeros, and random effects themselves
are initialized with zeros.

With multiple chains, the following default initialization takes place. The first chain is initialized
as described above. The subsequent chains use random initial values. In general, random initial values
are generated from the prior distributions. For some improper priors such as flat and jeffreys, to
avoid extremely large values, random initial values are sampled from a normal distribution with the
mean centered at the initial values of the first chain and with standard deviations proportional to the
magnitudes of the respective initial estimates.

See Specifying initial values in [BAYES] bayesmh for more information about default initial values
and for how to specify your own.

Command-specific options

Not all command-specific options, that is, options specified with the estimation command, are
applicable within the Bayesian framework. One example is the group of maximum-likelihood opti-
mization options such as technique() and gradient. For a list of supported options, refer to the
entry specific to each command; see [BAYES] Bayesian estimation for a list of commands.

Some of the command-specific reporting options, such as eform option and display options, can be
specified either with estimation command or with the bayes prefix. For example, to obtain estimates
of odds ratios instead of coefficients after the logit model, you can specify the or option with the
command

. bayes: logit y x, or

or with the bayes prefix

. bayes, or: logit y x

You can also specify this option on replay with the bayes prefix

. bayes: logit y x

. bayes, or

Introductory example

We start with a simple linear regression model applied to womenwage.dta, which contains income
data for a sample of working women.

. use https://www.stata-press.com/data/r18/womenwage
(Wages of women)
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Suppose we want to regress women’s yearly income, represented by the wage variable, on their age,
represented by the age variable. We can fit this model using the regress command.

. regress wage age

Source SS df MS Number of obs = 488
F(1, 486) = 43.53

Model 3939.49247 1 3939.49247 Prob > F = 0.0000
Residual 43984.4891 486 90.503064 R-squared = 0.0822

Adj R-squared = 0.0803
Total 47923.9816 487 98.406533 Root MSE = 9.5133

wage Coefficient Std. err. t P>|t| [95% conf. interval]

age .399348 .0605289 6.60 0.000 .2804173 .5182787
_cons 6.033077 1.791497 3.37 0.001 2.513041 9.553112

Example 1: Bayesian simple linear regression

We can fit a corresponding Bayesian regression model by simply adding bayes: in front of the
regress command. Because the bayes prefix is simulation based, we set a random-number seed to
get reproducible results.

. set seed 15

. bayes: regress wage age
Burn-in ...
Simulation ...

Model summary

Likelihood:
wage ~ regress(xb_wage,{sigma2})

Priors:
{wage:age _cons} ~ normal(0,10000) (1)

{sigma2} ~ igamma(.01,.01)

(1) Parameters are elements of the linear form xb_wage.

Bayesian linear regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 488
Acceptance rate = .3739
Efficiency: min = .1411

avg = .1766
Log marginal-likelihood = -1810.1432 max = .2271

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

wage
age .4008591 .0595579 .001586 .4005088 .2798807 .5183574

_cons 5.969069 1.737247 .043218 5.997571 2.60753 9.396475

sigma2 90.76252 5.891887 .123626 90.43802 79.71145 102.8558

Note: Default priors are used for model parameters.

The Bayesian model has two regression coefficient parameters, {wage:age} and {wage: cons},
and a positive scalar parameter, {sigma2}, representing the variance of the error term. The model
summary shows the default priors used for the model parameters: normal(0, 10000) for the
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regression coefficients and igamma(0.01, 0.01) for the variance parameter. The default priors are
provided for convenience and should be used with caution. These priors are fairly uninformative in
this example, but this may not always be the case; see the example in Linear regression: A case of
informative default priors.

The first two columns of the bayes prefix’s estimation table report the posterior means and standard
deviations of the model parameters. We observe that for the regression coefficients {wage:age} and
{wage: cons}, the posterior means and standard deviations are very similar to the least-square
estimates and their standard errors as reported by the regress command. The posterior mean
estimate for {sigma2}, 90.76, is close to the residual mean squared estimate, 90.50, listed in the
ANOVA table of the regress command. The estimation table of the bayes prefix also reports Monte
Carlo standard errors (MCSEs), medians, and equal-tailed credible intervals.

The Bayesian estimates are stochastic in nature and, by default, are based on an MCMC sample of size
10,000. It is important to verify that the MCMC simulation has converged; otherwise, the Bayesian
estimates cannot be trusted. The simulation efficiencies reported in the header of the estimation
table can serve as useful initial indicators of convergence problems. The minimum efficiency in our
example is about 0.14, and the average efficiency is about 0.17. These numbers are typical for the
MH sampling algorithm used by bayes and do not indicate convergence problems; see example 1 in
[BAYES] bayesstats grubin for convergence diagnostics using multiple chains for this example. Also
see Convergence of MCMC in [BAYES] bayesmh for details about convergence diagnostics.

Example 2: Predictions

There are several postestimation commands available after the bayes prefix; see [BAYES] Bayesian
postestimation. Among them is the bayesstats summary command, which we can use to compute
simple predictions. Suppose that we want to predict the expected wage of a 40-year-old woman
conditional on the above fitted posterior model. Based on our model, this expected wage corresponds
to the linear combination {wage : cons}+ {wage : age} × 40. We name this expression wage40
and supply it to the bayesstats summary command.

. bayesstats summary (wage40: {wage:_cons} + {wage:age}*40)

Posterior summary statistics MCMC sample size = 10,000

wage40 : {wage:_cons} + {wage:age}*40

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

wage40 22.00343 .81679 .024045 21.99231 20.39435 23.6718

The posterior mean estimate for the expected wage is about 22 with a 95% credible interval
between 20.39 and 23.67.

Example 3: Gibbs sampling

The bayes prefix uses adaptive MH as its default sampling algorithm. However, in the special case
of linear regression, a more efficient Gibbs sampling is available. We can request Gibbs sampling by
specifying the gibbs option.
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. set seed 15

. bayes, gibbs: regress wage age
Burn-in ...
Simulation ...

Model summary

Likelihood:
wage ~ normal(xb_wage,{sigma2})

Priors:
{wage:age _cons} ~ normal(0,10000) (1)

{sigma2} ~ igamma(.01,.01)

(1) Parameters are elements of the linear form xb_wage.

Bayesian linear regression MCMC iterations = 12,500
Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 488
Acceptance rate = 1
Efficiency: min = 1

avg = 1
Log marginal-likelihood = -1810.087 max = 1

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

wage
age .3999669 .0611328 .000611 .4005838 .2787908 .518693

_cons 6.012074 1.804246 .018042 6.000808 2.488816 9.549921

sigma2 90.84221 5.939535 .059395 90.54834 79.8132 103.0164

Note: Default priors are used for model parameters.

The posterior summary results obtained by Gibbs sampling and MH sampling are very close except
for the MCSEs. The Gibbs sampler reports substantially lower MCSEs than the default sampler because
of its higher efficiency. In fact, in this example, the Gibbs sampler achieves the highest possible
efficiency of 1.

Linear regression: A case of informative default priors

Our example in Introductory example used the default priors, which were fairly uninformative for
those data and that model. This may not always be true. Consider a linear regression model using the
familiar auto.dta. Let us regress the response variable price on the covariate length and factor
variable foreign.
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. use https://www.stata-press.com/data/r18/auto, clear
(1978 automobile data)

. regress price length i.foreign

Source SS df MS Number of obs = 74
F(2, 71) = 16.35

Model 200288930 2 100144465 Prob > F = 0.0000
Residual 434776467 71 6123612.21 R-squared = 0.3154

Adj R-squared = 0.2961
Total 635065396 73 8699525.97 Root MSE = 2474.6

price Coefficient Std. err. t P>|t| [95% conf. interval]

length 90.21239 15.83368 5.70 0.000 58.64092 121.7839

foreign
Foreign 2801.143 766.117 3.66 0.000 1273.549 4328.737

_cons -11621.35 3124.436 -3.72 0.000 -17851.3 -5391.401

Example 4: Default priors

We first fit a Bayesian regression model using the bayes prefix with default priors. Because the
range of the outcome variable price is at least an order of magnitude larger than the range of
the predictor variables length and foreign, we anticipate that some of the model parameters may
have large scale, and longer adaptation may be necessary for the MCMC algorithm to reach optimal
sampling for these parameters. We allow for longer adaptation by increasing the burn-in period from
the default value of 2,500 to 5,000.

. set seed 15

. bayes, burnin(5000): regress price length i.foreign
Burn-in ...
Simulation ...

Model summary

Likelihood:
price ~ regress(xb_price,{sigma2})

Priors:
{price:length 1.foreign _cons} ~ normal(0,10000) (1)

{sigma2} ~ igamma(.01,.01)

(1) Parameters are elements of the linear form xb_price.
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Bayesian linear regression MCMC iterations = 15,000
Random-walk Metropolis--Hastings sampling Burn-in = 5,000

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .3272
Efficiency: min = .05887

avg = .1093
Log marginal-likelihood = -699.23257 max = .1958

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

price
length 33.03301 1.80186 .060848 33.07952 29.36325 36.41022

foreign
Foreign 32.77011 98.97104 4.07922 34.3237 -164.1978 222.0855

_cons -8.063175 102.9479 3.34161 -9.110308 -205.9497 196.9341

sigma2 7538628 1297955 29334.9 7414320 5379756 1.04e+07

Note: Default priors are used for model parameters.

The posterior mean estimates of the regression coefficients are smaller (in absolute value) than the
corresponding estimates from the regress command, because the default prior for the coefficients,
normal(0, 10000), is informative and has a strong shrinkage effect. For example, the least-square
estimate of the constant term from regress is about −11,621, and its scale is much larger than
the default prior standard deviation of 100. As a result, the default prior shrinks the estimate of the
constant toward 0 and, specifically, to −8.06.

You should be aware that the default priors are provided for convenience and are not guaranteed
to be uninformative in all cases. They are designed to have little effect on model parameters, the
maximum likelihood estimates of which are of moderate size, say, less than 100 in absolute value.
For large-scale parameters, as in this example, the default priors can become informative.

Example 5: Flat priors

Continuing with example 4, we can override the default priors using the prior() option. We can,
for example, apply the completely uninformative flat prior, a prior with the density of 1, for the
coefficient parameters.

. set seed 15

. bayes, prior({price:}, flat) burnin(5000): regress price length i.foreign
Burn-in ...
Simulation ...

Model summary

Likelihood:
price ~ regress(xb_price,{sigma2})

Priors:
{price:length 1.foreign _cons} ~ 1 (flat) (1)

{sigma2} ~ igamma(.01,.01)

(1) Parameters are elements of the linear form xb_price.
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Bayesian linear regression MCMC iterations = 15,000
Random-walk Metropolis--Hastings sampling Burn-in = 5,000

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .3404
Efficiency: min = .07704

avg = .1086
Log marginal-likelihood = -669.62603 max = .1898

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

price
length 89.51576 16.27187 .586237 89.60969 57.96996 122.7961

foreign
Foreign 2795.683 770.6359 26.0589 2787.139 1305.773 4298.785

_cons -11478.83 3202.027 113.271 -11504.65 -17845.87 -5244.189

sigma2 6270294 1089331 25002.1 6147758 4504695 8803268

Note: Default priors are used for some model parameters.

The posterior mean estimates for the coefficient parameters are now close to the least-square
estimates from regress. For example, the posterior mean estimate for {price: cons} is about
−11,479, whereas the least-square estimate is −11,621.

However, the flat priors should be used with caution. Flat priors are improper and may result in
improper posterior distributions for which Bayesian inference cannot be carried out. You should thus
choose the priors carefully, accounting for the properties of the likelihood model.

Example 6: Zellner’s g-prior

A type of prior specific to the normal linear regression model is Zellner’s g-prior. We can apply it
to our example using the zellnersg0() prior. For this prior, we need to specify the dimension of the
prior, which is the number of regression coefficients (3), a degree of freedom (50) and the variance
parameter of the error term in the regression model, {sigma2}; the mean parameter is assumed to be
0 by zellnersg0(). See example 9 in [BAYES] bayesmh for more details about Zellner’s g-prior.

. set seed 15

. bayes, prior({price:}, zellnersg0(3, 50, {sigma2})) burnin(5000):
> regress price length i.foreign
Burn-in ...
Simulation ...

Model summary

Likelihood:
price ~ regress(xb_price,{sigma2})

Priors:
{price:length 1.foreign _cons} ~ zellnersg(3,50,0,{sigma2}) (1)

{sigma2} ~ igamma(.01,.01)

(1) Parameters are elements of the linear form xb_price.
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Bayesian linear regression MCMC iterations = 15,000
Random-walk Metropolis--Hastings sampling Burn-in = 5,000

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .3019
Efficiency: min = .06402

avg = .105
Log marginal-likelihood = -697.84862 max = .1944

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

price
length 87.53039 16.24762 .569888 87.72965 55.5177 119.9915

foreign
Foreign 2759.267 794.043 31.3829 2793.241 1096.567 4202.283

_cons -11223.95 3211.553 113.34 -11308.39 -17534.25 -4898.139

sigma2 6845242 1159035 26286.9 6716739 4978729 9521252

Note: Default priors are used for some model parameters.

We see that using this Zellner’s g-prior has little effect on the coefficient parameters, and the
simulated posterior mean estimates are close to the least-square estimates from regress.

Logistic regression with perfect predictors

Let’s revisit the example in Logistic regression model: A case of nonidentifiable parameters of
[BAYES] bayesmh. The example uses heartswitz.dta to model the binary outcome disease, the
presence of a heart disease, using the predictor variables restecg, isfbs, age, and male. The
dataset is a sample from Switzerland.

. use https://www.stata-press.com/data/r18/heartswitz, clear
(Subset of Switzerland heart disease data from UCI Machine Learning Repository)

Example 7: Perfect prediction

The logistic regression model for these data is

. logit disease restecg isfbs age male
(output omitted )

To fit a Bayesian logistic regression, we prefix the logit command with bayes. We also specify
the noisily option to show the estimation output of the logit command, which is run by the bayes
prefix to set up the model and compute starting values for the parameters.
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. set seed 15

. bayes, noisily: logit disease restecg isfbs age male

note: restecg != 0 predicts success perfectly;
restecg omitted and 17 obs not used.

note: isfbs != 0 predicts success perfectly;
isfbs omitted and 3 obs not used.

note: male != 1 predicts success perfectly;
male omitted and 2 obs not used.

Iteration 0: Log likelihood = -4.2386144
Iteration 1: Log likelihood = -4.2358116
Iteration 2: Log likelihood = -4.2358076
Iteration 3: Log likelihood = -4.2358076

Logistic regression Number of obs = 26
LR chi2(1) = 0.01
Prob > chi2 = 0.9403

Log likelihood = -4.2358076 Pseudo R2 = 0.0007

disease Coefficient Std. err. z P>|z| [95% conf. interval]

restecg 0 (omitted)
isfbs 0 (omitted)

age -.0097846 .1313502 -0.07 0.941 -.2672263 .2476572
male 0 (omitted)

_cons 3.763893 7.423076 0.51 0.612 -10.78507 18.31285

Burn-in ...
Simulation ...

Model summary

Likelihood:
disease ~ logit(xb_disease)

Prior:
{disease:age _cons} ~ normal(0,10000) (1)

(1) Parameters are elements of the linear form xb_disease.

Bayesian logistic regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 26
Acceptance rate = .2337
Efficiency: min = .1076

avg = .1113
Log marginal-likelihood = -14.795726 max = .115

Equal-tailed
disease Mean Std. dev. MCSE Median [95% cred. interval]

restecg (omitted)
isfbs (omitted)

age -.0405907 .1650514 .004868 -.0328198 -.4005246 .2592641
male (omitted)

_cons 6.616447 9.516872 .290075 5.491008 -8.852858 28.99392

Note: Default priors are used for model parameters.

As evident from the output of the logit command, the covariates restecg, isfbs, and male
are omitted because of perfect prediction. Although these predictors cannot be identified using the
likelihood alone, they can be identified, potentially, in a posterior model with an informative prior.
The default prior normal(0, 10000), used by the bayes prefix for the regression coefficients, is not
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informative enough to resolve the perfect prediction, and we must override it with a more informative
prior.

Example 8: Informative prior

In the example in Logistic regression model: A case of nonidentifiable parameters of
[BAYES] bayesmh, we use information from another similar dataset, hearthungary.dta, to come up
with informative priors for the regression coefficients. We use the same priors with the bayes prefix.
We specify the asis option with the logit command to prevent dropping the perfect predictors from
the model. We also specify the nomleinitial option to prevent the bayes prefix from trying to
obtain ML estimates to use as starting values; reliable ML estimates cannot be provided by the logit
command when the perfect predictors are retained.

. set seed 15

. bayes, prior({disease:restecg age}, normal(0,10))
> prior({disease:isfbs male}, normal(1,10))
> prior({disease:_cons}, normal(-4,10)) nomleinitial:
> logit disease restecg isfbs age male, asis
Burn-in ...
Simulation ...

Model summary

Likelihood:
disease ~ logit(xb_disease)

Priors:
{disease:restecg age} ~ normal(0,10) (1)
{disease:isfbs male} ~ normal(1,10) (1)

{disease:_cons} ~ normal(-4,10) (1)

(1) Parameters are elements of the linear form xb_disease.

Bayesian logistic regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 48
Acceptance rate = .2121
Efficiency: min = .01885

avg = .04328
Log marginal-likelihood = -11.006071 max = .06184

Equal-tailed
disease Mean Std. dev. MCSE Median [95% cred. interval]

restecg 1.965122 2.315475 .115615 1.655961 -2.029873 6.789415
isfbs 1.708631 2.726071 .113734 1.607439 -3.306837 7.334592

age .1258811 .0707431 .003621 .1245266 -.0016807 .2719748
male .2671381 2.237349 .162967 .3318061 -4.106425 4.609955

_cons -2.441911 2.750613 .110611 -2.538183 -7.596747 3.185172

For this posterior model with informative priors, we successfully estimate all regression parameters
in the logistic regression model.

The informative prior in this example is based on information from an independent dataset,
hearthungary.dta, which is a sample of observations on the same heart condition and predictor
attributes as heartswitz.dta but sampled from Hungary’s population. Borrowing information from
independent datasets to construct informative priors is justified only when the datasets are compatible
with the currently analyzed data.
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Multinomial logistic regression

Consider the health insurance dataset, sysdsn1.dta, to model the insurance outcome, insure,
which takes the values Indemnity, Prepaid, and Uninsure, using the predictor variables age,
male, nonwhite, and site. This model is considered in more detail in example 4 in [R] mlogit.

. use https://www.stata-press.com/data/r18/sysdsn1, clear
(Health insurance data)

First, we use the mlogit command to fit the model

. mlogit insure age male nonwhite i.site, nolog

Multinomial logistic regression Number of obs = 615
LR chi2(10) = 42.99
Prob > chi2 = 0.0000

Log likelihood = -534.36165 Pseudo R2 = 0.0387

insure Coefficient Std. err. z P>|z| [95% conf. interval]

Indemnity (base outcome)

Prepaid
age -.011745 .0061946 -1.90 0.058 -.0238862 .0003962

male .5616934 .2027465 2.77 0.006 .1643175 .9590693
nonwhite .9747768 .2363213 4.12 0.000 .5115955 1.437958

site
2 .1130359 .2101903 0.54 0.591 -.2989296 .5250013
3 -.5879879 .2279351 -2.58 0.010 -1.034733 -.1412433

_cons .2697127 .3284422 0.82 0.412 -.3740222 .9134476

Uninsure
age -.0077961 .0114418 -0.68 0.496 -.0302217 .0146294

male .4518496 .3674867 1.23 0.219 -.268411 1.17211
nonwhite .2170589 .4256361 0.51 0.610 -.6171725 1.05129

site
2 -1.211563 .4705127 -2.57 0.010 -2.133751 -.2893747
3 -.2078123 .3662926 -0.57 0.570 -.9257327 .510108

_cons -1.286943 .5923219 -2.17 0.030 -2.447872 -.1260134

Next, we use the bayes prefix to perform Bayesian estimation of the same multinomial logistic
regression model.

. set seed 15

. bayes: mlogit insure age male nonwhite i.site
Burn-in ...
Simulation ...

Model summary

Likelihood:
Prepaid Uninsure ~ mlogit(xb_Prepaid,xb_Uninsure)

Priors:
{Prepaid:age male nonwhite i.site _cons} ~ normal(0,10000) (1)

{Uninsure:age male nonwhite i.site _cons} ~ normal(0,10000) (2)

(1) Parameters are elements of the linear form xb_Prepaid.
(2) Parameters are elements of the linear form xb_Uninsure.
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Bayesian multinomial logistic regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Base outcome: Indemnity Number of obs = 615

Acceptance rate = .2442
Efficiency: min = .01992

avg = .03086
Log marginal-likelihood = -614.49286 max = .05659

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

Prepaid
age -.0125521 .006247 .000396 -.0125871 -.024602 -.0005809

male .5462718 .2086422 .012818 .5573004 .1263754 .9271802
nonwhite .9796293 .2275709 .015746 .9737777 .53642 1.401076

site
2 .098451 .214039 .012887 .0994476 -.3172914 .5260208
3 -.6043961 .2348319 .011596 -.6072807 -1.045069 -.1323191

_cons .3183984 .3309283 .021325 .3219128 -.3423583 .956505

Uninsure
age -.008377 .0118479 .000581 -.0082922 -.0323571 .0140366

male .4687524 .3537416 .02376 .4748359 -.2495656 1.147333
nonwhite .1755361 .42708 .022566 .198253 -.7214481 .938098

site
2 -1.298562 .4746333 .033628 -1.27997 -2.258622 -.4149035
3 -.2057122 .3533365 .020695 -.2009649 -.904768 .4924401

_cons -1.305083 .5830491 .02451 -1.296332 -2.463954 -.1758435

Note: Default priors are used for model parameters.

For this model and these data, the default prior specification of the bayes prefix is fairly uninformative
and, as a result, the posterior mean estimates for the parameters are close to the ML estimates obtained
with mlogit.

We can report posterior summaries for the relative-risk ratios instead of the regression coefficients.
This is equivalent to applying an exponential transformation, exp(b), to the simulated values of
each of the regression coefficients, b, and then summarizing them. We can obtain relative-risk ratio
summaries by replaying the bayes command with the rrr option specified. We use the already
available simulation results from the last estimation and do not refit the model. We could have also
specified the rrr option during the estimation.

. bayes, rrr

Model summary

Likelihood:
Prepaid Uninsure ~ mlogit(xb_Prepaid,xb_Uninsure)

Priors:
{Prepaid:age male nonwhite i.site _cons} ~ normal(0,10000) (1)

{Uninsure:age male nonwhite i.site _cons} ~ normal(0,10000) (2)

(1) Parameters are elements of the linear form xb_Prepaid.
(2) Parameters are elements of the linear form xb_Uninsure.
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Bayesian multinomial logistic regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Base outcome: Indemnity Number of obs = 615

Acceptance rate = .2442
Efficiency: min = .02149

avg = .03181
Log marginal-likelihood = -614.49286 max = .06007

Equal-tailed
RRR Std. dev. MCSE Median [95% cred. interval]

Prepaid
age .9875456 .0061686 .000391 .9874918 .9756982 .9994192

male 1.764212 .3634348 .022268 1.745953 1.134708 2.527372
nonwhite 2.732931 .6240495 .042568 2.647929 1.709875 4.059566

site
2 1.129077 .2450092 .015242 1.104561 .7281185 1.692189
3 .5617084 .1338774 .00665 .5448304 .3516675 .8760614

_cons 1.451983 .4904589 .029972 1.379764 .7100938 2.60259

Uninsure
age .9917276 .0117452 .000575 .991742 .9681608 1.014136

male 1.699605 .6045513 .040763 1.60775 .7791391 3.149782
nonwhite 1.301138 .5448086 .027742 1.219271 .4860479 2.555117

site
2 .3045686 .1461615 .009698 .2780457 .1044944 .6604046
3 .8663719 .3155926 .01806 .8179411 .4046357 1.636304

_cons .3203309 .1976203 .008063 .2735332 .0850978 .8387492

Note: _cons estimates baseline relative risk for each outcome.
Note: Default priors are used for model parameters.

Generalized linear model

Consider the insecticide experiment dataset, beetle.dta, to model the number of beetles killed,
r, on the number of subjected beetles, n; the type of beetles, beetle; and the log-dose of insecticide,
ldose. More details can be found in example 2 of [R] glm.

. use https://www.stata-press.com/data/r18/beetle, clear
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Consider a generalized linear model with a binomial family and a complementary log–log link
function for these data.

. glm r i.beetle ldose, family(binomial n) link(cloglog) nolog

Generalized linear models Number of obs = 24
Optimization : ML Residual df = 20

Scale parameter = 1
Deviance = 73.76505595 (1/df) Deviance = 3.688253
Pearson = 71.8901173 (1/df) Pearson = 3.594506

Variance function: V(u) = u*(1-u/n) [Binomial]
Link function : g(u) = ln(-ln(1-u/n)) [Complementary log--log]

AIC = 6.74547
Log likelihood = -76.94564525 BIC = 10.20398

OIM
r Coefficient std. err. z P>|z| [95% conf. interval]

beetle
Red flour -.0910396 .1076132 -0.85 0.398 -.3019576 .1198783
Mealworm -1.836058 .1307125 -14.05 0.000 -2.09225 -1.579867

ldose 19.41558 .9954265 19.50 0.000 17.46458 21.36658
_cons -34.84602 1.79333 -19.43 0.000 -38.36089 -31.33116

To fit a Bayesian generalized linear model with default priors, we type

. set seed 15

. bayes: glm r i.beetle ldose, family(binomial n) link(cloglog)
Burn-in ...
Simulation ...

Model summary

Likelihood:
r ~ glm(xb_r)

Prior:
{r:i.beetle ldose _cons} ~ normal(0,10000) (1)

(1) Parameters are elements of the linear form xb_r.

Bayesian generalized linear models MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Family: binomial n Number of obs = 24
Link: complementary log--log Scale parameter = 1

Acceptance rate = .2003
Efficiency: min = .03414

avg = .05094
Log marginal-likelihood = -102.9776 max = .08012

Equal-tailed
r Mean Std. dev. MCSE Median [95% cred. interval]

beetle
Red flour -.0903569 .106067 .004527 -.093614 -.2964984 .112506
Mealworm -1.843952 .130297 .004603 -1.848374 -2.091816 -1.594582

ldose 19.52814 .9997765 .054106 19.52709 17.6146 21.6217
_cons -35.04832 1.800461 .096777 -35.0574 -38.81427 -31.61378

Note: Default priors are used for model parameters.
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The posterior mean estimates of the regression parameters are not that different from the ML estimates
obtained with glm.

If desired, we can request highest posterior density intervals be reported instead of default equal-
tailed credible intervals by specifying the hpd option. We can also change the credible-interval level;
for example, to request 90% credible intervals, we specify the clevel(90) option. We also could
specify these options during estimation.

. bayes, clevel(90) hpd

Model summary

Likelihood:
r ~ glm(xb_r)

Prior:
{r:i.beetle ldose _cons} ~ normal(0,10000) (1)

(1) Parameters are elements of the linear form xb_r.

Bayesian generalized linear models MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Family: binomial n Number of obs = 24
Link: complementary log--log Scale parameter = 1

Acceptance rate = .2003
Efficiency: min = .03414

avg = .05094
Log marginal-likelihood = -102.9776 max = .08012

HPD
r Mean Std. dev. MCSE Median [90% cred. interval]

beetle
Red flour -.0903569 .106067 .004527 -.093614 -.2444412 .1020305
Mealworm -1.843952 .130297 .004603 -1.848374 -2.03979 -1.620806

ldose 19.52814 .9997765 .054106 19.52709 17.86148 21.16389
_cons -35.04832 1.800461 .096777 -35.0574 -37.96057 -32.00411

Note: Default priors are used for model parameters.

Truncated Poisson regression

The semiconductor manufacturing dataset, probe.dta, contains observational data of failure rates,
failure, of silicon wafers with width, width, and depth, depth, tested at four different probes,
probe. A wafer is rejected if more than 10 failures are detected. See example 2 in [R] tpoisson.

. use https://www.stata-press.com/data/r18/probe, clear
(Silicon wafers)

We fit a truncated Poisson regression model with a truncation point of 10. We suppress the constant
regression term from the likelihood equation using the noconstant option to retain all four probe
levels by including ibn.probe in the list of covariates, which declares probe to be a factor variable
with no base level.
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. tpoisson failures ibn.probe depth width, noconstant ll(10) nolog

Truncated Poisson regression
Limits: lower = 10 Number of obs = 88

upper = +inf Wald chi2(6) = 11340.50
Log likelihood = -239.35746 Prob > chi2 = 0.0000

failures Coefficient Std. err. z P>|z| [95% conf. interval]

probe
1 2.714025 .0752617 36.06 0.000 2.566515 2.861536
2 2.602722 .0692732 37.57 0.000 2.466949 2.738495
3 2.725459 .0721299 37.79 0.000 2.584087 2.866831
4 3.139437 .0377137 83.24 0.000 3.065519 3.213354

depth -.0005034 .0033375 -0.15 0.880 -.0070447 .006038
width .0330225 .015573 2.12 0.034 .0025001 .063545

Example 9: Default priors

We first apply the bayes prefix with default priors to perform Bayesian estimation of the model.
The estimation takes a little longer, so we specify the dots option to see the progress.

. set seed 15

. bayes, dots: tpoisson failures ibn.probe depth width, noconstant ll(10)
Burn-in 2500 aaaaaaaaa1000.........2000..... done
Simulation 10000 .........1000.........2000.........3000.........4000.........
> 5000.........6000.........7000.........8000.........9000.........10000 done

Model summary

Likelihood:
failures ~ tpoisson(xb_failures)

Prior:
{failures:i.probe depth width} ~ normal(0,10000) (1)

(1) Parameters are elements of the linear form xb_failures.

Bayesian truncated Poisson regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Limits: Lower = 10 Number of obs = 88

Upper = +inf Acceptance rate = .1383
Efficiency: min = .004447

avg = .01322
Log marginal-likelihood = -288.22663 max = .04082

Equal-tailed
failures Mean Std. dev. MCSE Median [95% cred. interval]

probe
1 2.689072 .0696122 .008596 2.688881 2.557394 2.833737
2 2.581567 .0644141 .00966 2.588534 2.436973 2.701187
3 2.712054 .0695932 .006415 2.717959 2.55837 2.844429
4 3.13308 .0397521 .004592 3.133433 3.055979 3.208954

depth -.000404 .0033313 .000165 -.000504 -.0067928 .0061168
width .036127 .0165308 .001821 .0360637 .001239 .067552

Note: Default priors are used for model parameters.
Note: There is a high autocorrelation after 500 lags.
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With the default prior specification, the posterior mean estimates for the regression parameters are
similar to the ML estimates obtained with the tpoisson command. However, the bayes prefix issues
a high autocorrelation warning note and reports a minimum efficiency of only 0.004. The posterior
model with default priors seems to be somewhat challenging for the MH sampler. We could allow for
longer burn-in and increase the MCMC sample size to improve the MCMC convergence and increase
the estimation precision. Instead, we will provide an alternative prior specification that will increase
the model flexibility and improve its fit to the data.

Example 10: Hyperpriors

We now assume that the four probe coefficients, {failures:ibn.probe}, have a normal prior
distribution with mean parameter {probe mean} and a variance of 10,000. It is reasonable to assume
that all four probes have positive failure rates and that {probe mean} is a positive hyperparameter.
We decide to assign {probe mean} a gamma(2, 1) hyperprior, which is a distribution with a
positive domain and a mean of 2. We use this prior for the purpose of illustration; this prior is not
informative for this model and these data. We initialize {probe mean} with 1 to give it a starting
value compatible with its hyperprior.

. set seed 15

. bayes, prior({failures:ibn.probe}, normal({probe_mean}, 10000))
> prior({probe_mean}, gamma(2, 1)) initial({probe_mean} 1) dots:
> tpoisson failures ibn.probe depth width, noconstant ll(10)
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 10000 .........1000.........2000.........3000.........4000.........
> 5000.........6000.........7000.........8000.........9000.........10000 done

Model summary

Likelihood:
failures ~ tpoisson(xb_failures)

Priors:
{failures:i.probe} ~ normal({probe_mean},10000) (1)

{failures:depth width} ~ normal(0,10000) (1)

Hyperprior:
{probe_mean} ~ gamma(2,1)

(1) Parameters are elements of the linear form xb_failures.
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Bayesian truncated Poisson regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Limits: Lower = 10 Number of obs = 88

Upper = +inf Acceptance rate = .304
Efficiency: min = .04208

avg = .0775
Log marginal-likelihood = -287.91504 max = .127

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

failures
probe

1 2.703599 .0770656 .003757 2.704613 2.551404 2.848774
2 2.592738 .0711972 .002796 2.594628 2.446274 2.728821
3 2.716223 .0755001 .003549 2.719622 2.568376 2.863064
4 3.137069 .0388127 .001317 3.136773 3.062074 3.211616

depth -.000461 .0033562 .000109 -.0004457 -.0067607 .0062698
width .0337508 .0152654 .000532 .0337798 .003008 .0622191

probe_mean 2.051072 1.462867 .041051 1.71286 .2211973 5.809428

Note: Default priors are used for some model parameters.

The MCMC simulation achieves an average efficiency of about 8% with no indication of convergence
problems. The posterior mean estimates for the regression parameters are similar to the ML estimates;
moreover, the MCMC standard errors are much lower than those achieved by the previous model with
default priors. By introducing the hyperparameter {probe mean}, we have improved the goodness
of fit of the model.

Zero-inflated negative binomial model

In this example, we consider a Bayesian model using zero-inflated negative binomial likelihood.
We revisit example 1 in [R] zinb, which models the number of fish caught by visitors to a national
park. The probability that a particular visitor fished is assumed to depend on the variables child and
camper, which are supplied as covariates to the inflate() option of zinb.
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. use https://www.stata-press.com/data/r18/fish, clear
(Fictional fishing data)

. zinb count persons livebait, inflate(child camper) nolog

Zero-inflated negative binomial regression Number of obs = 250
Inflation model: logit Nonzero obs = 108

Zero obs = 142
LR chi2(2) = 82.23

Log likelihood = -401.5478 Prob > chi2 = 0.0000

count Coefficient Std. err. z P>|z| [95% conf. interval]

count
persons .9742984 .1034938 9.41 0.000 .7714543 1.177142

livebait 1.557523 .4124424 3.78 0.000 .7491503 2.365895
_cons -2.730064 .476953 -5.72 0.000 -3.664874 -1.795253

inflate
child 3.185999 .7468551 4.27 0.000 1.72219 4.649808

camper -2.020951 .872054 -2.32 0.020 -3.730146 -.3117567
_cons -2.695385 .8929071 -3.02 0.003 -4.44545 -.9453189

/lnalpha .5110429 .1816816 2.81 0.005 .1549535 .8671323

alpha 1.667029 .3028685 1.167604 2.380076

Let’s fit a Bayesian model with default normal prior distributions.

. set seed 15

. bayes, dots: zinb count persons livebait, inflate(child camper)
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 10000 .........1000.........2000.........3000.........4000.........
> 5000.........6000.........7000.........8000.........9000.........10000 done

Model summary

Likelihood:
count ~ zinb(xb_count,xb_inflate,{lnalpha})

Priors:
{count:persons livebait _cons} ~ normal(0,10000) (1)

{inflate:child camper _cons} ~ normal(0,10000) (2)
{lnalpha} ~ normal(0,10000)

(1) Parameters are elements of the linear form xb_count.
(2) Parameters are elements of the linear form xb_inflate.



90 bayes — Bayesian regression models using the bayes prefix

Bayesian zero-inflated negative binomial model MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Inflation model: logit Number of obs = 250

Acceptance rate = .3084
Efficiency: min = .03716

avg = .0791
Log marginal-likelihood = -438.47876 max = .1613

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

count
persons .9851217 .1084239 .003601 .985452 .7641609 1.203561

livebait 1.536074 .4083865 .013509 1.515838 .753823 2.3539
_cons -2.805915 .4700702 .014974 -2.795244 -3.73847 -1.89491

inflate
child 46.95902 36.33974 1.87977 38.77997 3.612863 138.3652

camper -46.123 36.34857 1.88567 -37.66796 -137.4568 -2.544566
_cons -46.62439 36.36232 1.88355 -38.5171 -137.5522 -3.272469

lnalpha .7055935 .1591234 .003962 .7048862 .3959316 1.025356

Note: Default priors are used for model parameters.

The posterior mean estimates for the main regression coefficients {count:persons},
{count:livebait}, and {count: cons} are relatively close to the ML estimates from the
zinb command, but the inflation coefficients, {inflate:child}, {inflate:camper}, and
{inflate: cons}, are quite different. For example, zinb estimates {inflate: cons} are about
−2.7, whereas the corresponding posterior mean estimate is about −46.6. To explain this large
discrepancy, we draw the diagnostic plot of {inflate: cons}.
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. bayesgraph diagnostic {inflate:_cons}
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The marginal posterior distribution of {inflate: cons} is highly skewed to the left, and it is
apparent that its posterior mean is much smaller than its posterior mode. In large samples, under
proper noninformative priors, the posterior mode estimator and the ML estimator are equivalent.
Therefore, it is not surprising that the posterior mean of {inflate: cons} is much smaller than its
ML estimate. We can obtain a rough estimate of the posterior mode in this example.

First, we need to save the simulation results in a dataset, say, sim zinb.dta. You can do this
during estimation or on replay by specifying the saving() option with the bayes prefix.

. bayes, saving(sim_zinb)
note: file sim_zinb.dta saved.
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Next, we load the dataset and identify the variable that represents the parameter {inflate: cons}.

. use sim_zinb, clear

. describe

Contains data from sim_zinb.dta
Observations: 6,874

Variables: 12 23 Mar 2023 14:48

Variable Storage Display Value
name type format label Variable label

_chain int %8.0g Chain identifier
_index int %8.0g Iteration number
_loglikelihood double %10.0g Log likelihood
_logposterior double %10.0g Log posterior
eq1_p1 double %10.0g {count:persons}
eq1_p2 double %10.0g {count:livebait}
eq1_p3 double %10.0g {count:_cons}
eq2_p1 double %10.0g {inflate:child}
eq2_p2 double %10.0g {inflate:camper}
eq2_p3 double %10.0g {inflate:_cons}
eq0_p1 double %10.0g {lnalpha}
_frequency int %8.0g Frequency weight

Sorted by:

Variable eq2 p3 with the variable label {inflate: cons} contains MCMC estimates for the
{inflate: cons} parameter.

We use the egen’s mode() function to generate a constant variable, mode, which contains the
mode estimate for {inflate: cons}.

. egen mode = mode(eq2_p3)

. display mode[1]
-3.417458

The mode estimate for {inflate: cons} is about −3.42, and it is indeed much closer to the ML
estimate of −2.70 than its posterior mean estimate.

The inflation parameter α in the likelihood of the zero-inflated negative binomial model is log-
transformed, and it is represented by {lnalpha} in our posterior model. To summarize the simulation
result for α directly, we can use the bayesstats summary command to exponentiate {lnalpha}.

. bayesstats summary (alpha: exp({lnalpha}))

Posterior summary statistics MCMC sample size = 10,000

alpha : exp({lnalpha})

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

alpha 2.050889 .3292052 .008191 2.023616 1.485768 2.788087

Parametric survival model

Consider example 7 in [ST] streg, which analyzes the effect of a hip-protection device, age, and
sex on the risk of hip fractures in patients. The survival dataset is hip3.dta with time to event
variable time1 and failure variable fracture. The data are already stset.
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. use https://www.stata-press.com/data/r18/hip3, clear
(Hip-fracture study)

. stset
-> stset time1, id(id) failure(fracture) time0(time0)

Survival-time data settings

ID variable: id
Failure event: fracture!=0 & fracture<.

Observed time interval: (time0, time1]
Exit on or before: failure

206 total observations
0 exclusions

206 observations remaining, representing
148 subjects
37 failures in single-failure-per-subject data

1,703 total analysis time at risk and under observation
At risk from t = 0

Earliest observed entry t = 0
Last observed exit t = 39

It is assumed that the hazard curves for men and women have different shapes. We use the streg
command to fit a model with Weibull survival distribution and the ancillary variable male to account
for the difference between men and women.

. streg protect age, distribution(weibull) ancillary(male) nolog

Failure _d: fracture
Analysis time _t: time1

ID variable: id

Weibull PH regression

No. of subjects = 148 Number of obs = 206
No. of failures = 37
Time at risk = 1,703

LR chi2(2) = 39.80
Log likelihood = -69.323532 Prob > chi2 = 0.0000

_t Coefficient Std. err. z P>|z| [95% conf. interval]

_t
protect -2.130058 .3567005 -5.97 0.000 -2.829178 -1.430938

age .0939131 .0341107 2.75 0.006 .0270573 .1607689
_cons -10.17575 2.551821 -3.99 0.000 -15.17722 -5.174269

ln_p
male -.4887189 .185608 -2.63 0.008 -.8525039 -.1249339

_cons .4540139 .1157915 3.92 0.000 .2270667 .6809611

We then perform Bayesian analysis of the same model using the bayes prefix. We apply more
conservative normal priors, normal(0, 100), by specifying the normalprior(10) option. To allow
for longer adaptation of the MCMC sampler, we increase the burn-in period to 5,000, burnin(5000).
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. set seed 15

. bayes, normalprior(10) burnin(5000) dots:
> streg protect age, distribution(weibull) ancillary(male)

Failure _d: fracture
Analysis time _t: time1

ID variable: id
Burn-in 5000 aaaaaaaaa1000aaaaaaaaa2000aaaaaaaaa3000aaaaaaaaa4000aaaaaaaaa5000
> done
Simulation 10000 .........1000.........2000.........3000.........4000.........
> 5000.........6000.........7000.........8000.........9000.........10000 done

Model summary

Likelihood:
_t ~ streg_weibull(xb__t,xb_ln_p)

Priors:
{_t:protect age _cons} ~ normal(0,100) (1)

{ln_p:male _cons} ~ normal(0,100) (2)

(1) Parameters are elements of the linear form xb__t.
(2) Parameters are elements of the linear form xb_ln_p.

Bayesian Weibull PH regression MCMC iterations = 15,000
Random-walk Metropolis--Hastings sampling Burn-in = 5,000

MCMC sample size = 10,000
No. of subjects = 148 Number of obs = 206
No. of failures = 37
Time at risk = 1703

Acceptance rate = .3418
Efficiency: min = .01

avg = .03421
Log marginal-likelihood = -91.348814 max = .05481

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

_t
protect -2.114715 .3486032 .017409 -2.105721 -2.818483 -1.46224

age .0859305 .0328396 .001403 .0862394 .0210016 .1518009
_cons -9.57056 2.457818 .117851 -9.551418 -14.49808 -4.78585

ln_p
male -.5753907 .2139477 .014224 -.5468488 -1.07102 -.2317242

_cons .4290642 .11786 .011786 .4242712 .203933 .6548229

The posterior mean estimates for the regression parameters { t:protect}, { t:age}, and
{ t: cons} are close to the estimates reported by the streg command. However, the estimate
for {ln p:male} is somewhat different. If we inspect the diagnostic plot for {ln p:male}, we will
see that the reason for this is the asymmetrical shape of its marginal posterior distribution.
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. bayesgraph diagnostic {ln_p:male}

-1.5

-1

-.5

0

0 2000 4000 6000 8000 10000

Iteration number

Trace

0

.5

1

1.5

2

2.5

-1.5 -1 -.5 0

Histogram

0.00

0.20

0.40

0.60

0.80

1.00

0 10 20 30 40
Lag

Autocorrelation

0

.5

1

1.5

2

-1.5 -1 -.5 0

All

1-half

2-half

Density

ln_p:male

As evident from the density plot, the posterior distribution of {ln p:male} is skewed to the left,
so the posterior mean estimate, −0.58, is expected to be smaller than the ML estimate, −0.49, given
that we used fairly uninformative priors; see Zero-inflated negative binomial model for the comparison
of posterior mean, posterior mode, and ML estimates for highly skewed posterior distributions.

Heckman selection model

Example 11

A representative example of a Heckman selection model is provided by wagenwk.dta, which
contains observations on the income of women who choose to work. See example 1 in [R] heckman.

. use https://www.stata-press.com/data/r18/womenwk, clear

The women’s income (wage) is assumed to depend on their education (educ) and their age (age).
In addition, the selection decision, or the choice of a woman to work, is assumed to depend on their
marital status (married), number of children (children), education, and age. We fit this selection
model using the heckman command.
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. heckman wage educ age, select(married children educ age) nolog

Heckman selection model Number of obs = 2,000
(regression model with sample selection) Selected = 1,343

Nonselected = 657

Wald chi2(2) = 508.44
Log likelihood = -5178.304 Prob > chi2 = 0.0000

wage Coefficient Std. err. z P>|z| [95% conf. interval]

wage
education .9899537 .0532565 18.59 0.000 .8855729 1.094334

age .2131294 .0206031 10.34 0.000 .1727481 .2535108
_cons .4857752 1.077037 0.45 0.652 -1.625179 2.59673

select
married .4451721 .0673954 6.61 0.000 .3130794 .5772647

children .4387068 .0277828 15.79 0.000 .3842534 .4931601
education .0557318 .0107349 5.19 0.000 .0346917 .0767718

age .0365098 .0041533 8.79 0.000 .0283694 .0446502
_cons -2.491015 .1893402 -13.16 0.000 -2.862115 -2.119915

/athrho .8742086 .1014225 8.62 0.000 .6754241 1.072993
/lnsigma 1.792559 .027598 64.95 0.000 1.738468 1.84665

rho .7035061 .0512264 .5885365 .7905862
sigma 6.004797 .1657202 5.68862 6.338548

lambda 4.224412 .3992265 3.441942 5.006881

LR test of indep. eqns. (rho = 0): chi2(1) = 61.20 Prob > chi2 = 0.0000

We then apply the bayes prefix to perform Bayesian estimation of the Heckman selection model.

. set seed 15

. bayes, dots: heckman wage educ age, select(married children educ age)
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 10000 .........1000.........2000.........3000.........4000.........
> 5000.........6000.........7000.........8000.........9000.........10000 done

Model summary

Likelihood:
wage ~ heckman(xb_wage,xb_select,{athrho} {lnsigma})

Priors:
{wage:education age _cons} ~ normal(0,10000) (1)

{select:married children education age _cons} ~ normal(0,10000) (2)
{athrho lnsigma} ~ normal(0,10000)

(1) Parameters are elements of the linear form xb_wage.
(2) Parameters are elements of the linear form xb_select.
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Bayesian Heckman selection model MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 2,000

Selected = 1,343
Nonselected = 657

Acceptance rate = .3484
Efficiency: min = .02314

avg = .03657
Log marginal-likelihood = -5260.2024 max = .05013

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

wage
education .9919131 .051865 .002609 .9931531 .8884407 1.090137

age .2131372 .0209631 .001071 .2132548 .1720535 .2550835
_cons .4696264 1.089225 .0716 .4406188 -1.612032 2.65116

select
married .4461775 .0681721 .003045 .4456493 .3178532 .5785857

children .4401305 .0255465 .001156 .4402145 .3911135 .4903804
education .0559983 .0104231 .000484 .0556755 .0360289 .076662

age .0364752 .0042497 .000248 .0362858 .0280584 .0449843
_cons -2.494424 .18976 .011327 -2.498414 -2.861266 -2.114334

athrho .868392 .099374 .005961 .8699977 .6785641 1.062718
lnsigma 1.793428 .0269513 .001457 1.793226 1.740569 1.846779

Note: Default priors are used for model parameters.

The posterior mean estimates for the Bayesian model with default normal priors are similar to the
ML estimates obtained with the heckman command.

We can calculate posterior summaries for the correlation parameter, ρ, and the standard error, σ,
in their natural scale by inverse-transforming the model parameters {athrho} and {lnsigma} using
the bayesstats summary command. We also include posterior summaries for the selectivity effect
λ = ρσ.

. bayesstats summary (rho:1-2/(exp(2*{athrho})+1))
> (sigma:exp({lnsigma}))
> (lambda:exp({lnsigma})*(1-2/(exp(2*{athrho})+1)))

Posterior summary statistics MCMC sample size = 10,000

rho : 1-2/(exp(2*{athrho})+1)
sigma : exp({lnsigma})

lambda : exp({lnsigma})*(1-2/(exp(2*{athrho})+1))

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

rho .6970522 .0510145 .003071 .701373 .5905851 .7867018
sigma 6.012205 .1621422 .008761 6.008807 5.700587 6.339366

lambda 4.196646 .3937209 .024351 4.212609 3.411479 4.946325

Again, the posterior mean estimates of ρ, σ, and λ agree with the ML estimates reported by heckman.
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Multilevel models

The bayes prefix supports several multilevel commands such as mixed and meglm; see
[BAYES] Bayesian estimation. Multilevel models introduce effects at different levels of hierarchy
such as hospital effects and doctor-nested-within-hospital effects, which are often high-dimensional.
These effects are commonly referred to as random effects in frequentist models. Bayesian multi-
level models estimate random effects together with other model parameters. In contrast, frequentist
multilevel models integrate random effects out, but provide ways to predict them after estimation,
conditional on other estimated model parameters. Thus, in addition to regression coefficients and
variance components (variances and covariances of random effects), Bayesian multilevel models
include random effects themselves as model parameters. With a slight abuse of the terminology, we
will sometimes refer to regression coefficients as fixed effects, keeping in mind that they are still
random quantities from a Bayesian perspective.

Multilevel models are more difficult to simulate from because of the existence of high-dimensional
random-effects parameters. They typically require longer burn-in periods to achieve convergence and
larger MCMC sample sizes to obtain precise estimates of random effects and variance components.

Prior specification is particularly important for multilevel models. Using noninformative priors
for all model parameters will likely result in nonconvergence or high autocorrelation of the MCMC
sample, especially with small datasets. The default priors provided by the bayes prefix are chosen
to be fairly uninformative, which may often lead to low simulation efficiencies for model parameters
and, especially, for variance components; see Default priors. So, do not be surprised to see high
autocorrelation with default priors, and be prepared to investigate various prior specifications during
your analysis. For example, you may need to use the iwishartprior() option to increase the
degrees of freedom and to specify a different scale matrix of the inverse-Wishart prior distribution
used for the covariance matrices of random effects.

To change the default priors, you will need to know the names of the model parameters. See
Likelihood model to learn how the bayes prefix labels the parameters. You can specify your own name
stubs for the groups of random-effects parameters using the restubs() option. After simulation,
see Different ways of specifying model parameters for how to refer to individual random effects to
evaluate MCMC convergence or to obtain their MCMC summaries.

By default, the bayes prefix does not compute or display MCMC summaries of individual random
effects to conserve computation time and space. You can specify the showreffects() or show()
option to compute and display them for chosen groups of random effects.

Also, the bayes prefix does not compute the log marginal-likelihood by default for multilevel
models. The computation involves the inverse of the determinant of the sample covariance matrix of
all parameters and loses accuracy as the number of parameters grows. For high-dimensional models
such as multilevel models, the computation can be time consuming, and its accuracy may become
unacceptably low. Because it is difficult to access the levels of accuracy of the computation for all
multilevel models, the log marginal-likelihood is not computed by default. For multilevel models
containing a small number of random effects, you can use the remargl option to compute and display
it.

Assessing convergence of MCMC for multilevel models is challenging because of the high dimen-
sionality. Technically, the convergence of all parameters, including the random-effects parameters,
must be explored. In practice, this may not always be feasible. Many applications focus on the
regression coefficients and variance components and treat random-effects parameters as nuisance. In
this case, it may be sufficient to check convergence only for the parameters of interest, especially
because their convergence is adversely affected whenever there are convergence problems for many of
the random-effects parameters. If the random-effects parameters are of primary interest in your study,
you should evaluate their convergence. For models with a small to moderate number of random-effects
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parameters, it may be beneficial to always check the convergence of the random-effects parameters.
Also see Convergence of MCMC in [BAYES] bayesmh.

Two-level models

Consider example 1 from [ME] mixed that analyzed the weight gain of 48 pigs over 9 successive
weeks. Detailed Bayesian analysis of these data using bayesmh are presented in Panel-data and
multilevel models in [BAYES] bayesmh. Here, we use bayes: mixed to fit Bayesian two-level
random-intercept and random-coefficient models to these data.

. use https://www.stata-press.com/data/r18/pig
(Longitudinal analysis of pig weights)

Example 12: Random-intercept model, using option melabel

We first consider a simple random-intercept model of dependent variable weight on covariate
week with variable id identifying pigs. The random-intercept model assumes that all pigs share a
common growth rate but have different initial weight.

For comparison purposes, we first use the mixed command to fit this model by maximum likelihood.

. mixed weight week || id:

Performing EM optimization ...

Performing gradient-based optimization:
Iteration 0: Log likelihood = -1014.9268
Iteration 1: Log likelihood = -1014.9268

Computing standard errors ...

Mixed-effects ML regression Number of obs = 432
Group variable: id Number of groups = 48

Obs per group:
min = 9
avg = 9.0
max = 9

Wald chi2(1) = 25337.49
Log likelihood = -1014.9268 Prob > chi2 = 0.0000

weight Coefficient Std. err. z P>|z| [95% conf. interval]

week 6.209896 .0390124 159.18 0.000 6.133433 6.286359
_cons 19.35561 .5974059 32.40 0.000 18.18472 20.52651

Random-effects parameters Estimate Std. err. [95% conf. interval]

id: Identity
var(_cons) 14.81751 3.124225 9.801716 22.40002

var(Residual) 4.383264 .3163348 3.805112 5.04926

LR test vs. linear model: chibar2(01) = 472.65 Prob >= chibar2 = 0.0000
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To fit a Bayesian analog of this model, we simply prefix the mixed command with bayes. We
also specify the melabel option with bayes to label model parameters in the output table as mixed
does.

. set seed 15

. bayes, melabel: mixed weight week || id:
note: Gibbs sampling is used for regression coefficients and variance

components.
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 10000 .........1000.........2000.........3000.........4000.........
> 5000.........6000.........7000.........8000.........9000.........10000 done

Bayesian multilevel regression MCMC iterations = 12,500
Metropolis--Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Group variable: id Number of groups = 48

Obs per group:
min = 9
avg = 9.0
max = 9

Number of obs = 432
Acceptance rate = .8112
Efficiency: min = .007005

avg = .5064
Log marginal-likelihood max = 1

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

weight
week 6.209734 .0390718 .000391 6.209354 6.133233 6.285611

_cons 19.46511 .6239712 .07455 19.48275 18.2534 20.67396

id
var(_cons) 15.7247 3.436893 .049048 15.26104 10.31182 23.60471

var(Residual) 4.411155 .3193582 .004397 4.396044 3.834341 5.080979

Note: Default priors are used for model parameters.

The estimates of posterior means and posterior standard deviations are similar to the ML estimates
and standard errors from mixed. The results are also close to those from bayesmh in example 23 in
[BAYES] bayesmh.

The average efficiency of the simulation is about 51% and there is no indication of any im-
mediate convergence problems, but we should investigate convergence more thoroughly; see, for
example, example 5 in [BAYES] Bayesian commands and, more generally, Convergence of MCMC
in [BAYES] bayesmh.

Because Bayesian multilevel models are generally slower than other commands, the bayes prefix
displays dots by default with multilevel commands. You can specify the nodots option to suppress
them.

Also, as we described in Multilevel models, the log marginal-likelihood is not computed for
multilevel models by default because of the high dimensionality of the models. This is also described
in the help file that appears when you click on Log marginal-likelihood in the output header in
the Results window. For models with a small number of random effects, you can specify the remargl
option to compute the log marginal-likelihood.
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An important note about bayes: mixed is the default simulation method. Most bayes prefix
commands use an adaptive MH algorithm to sample model parameters. The high-dimensional nature of
multilevel models greatly decreases the simulation efficiency of this algorithm. For Gaussian multilevel
models, such as bayes: mixed, model parameters can be sampled using a more efficient, albeit slower,
Gibbs algorithm under certain prior distributions. The default priors used for regression coefficients
and variance components allow the bayes prefix to use Gibbs sampling for these parameters with
the mixed command. If you change the prior distributions or the default blocking structure for some
parameters, Gibbs sampling may not be available for those parameters and an adaptive MH sampling
will be used instead.

Example 13: Random-intercept model, default output

When we specified the melabel option with bayes in example 12, we intentionally suppressed
some of the essential output from bayes: mixed. Here is what we would have seen had we not
specified melabel.

. bayes

Multilevel structure

id
{U0}: random intercepts

Model summary

Likelihood:
weight ~ normal(xb_weight,{e.weight:sigma2})

Priors:
{weight:week _cons} ~ normal(0,10000) (1)

{U0} ~ normal(0,{U0:sigma2}) (1)
{e.weight:sigma2} ~ igamma(.01,.01)

Hyperprior:
{U0:sigma2} ~ igamma(.01,.01)

(1) Parameters are elements of the linear form xb_weight.
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Bayesian multilevel regression MCMC iterations = 12,500
Metropolis--Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Group variable: id Number of groups = 48

Obs per group:
min = 9
avg = 9.0
max = 9

Number of obs = 432
Acceptance rate = .8112
Efficiency: min = .007005

avg = .5064
Log marginal-likelihood max = 1

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

weight
week 6.209734 .0390718 .000391 6.209354 6.133233 6.285611

_cons 19.46511 .6239712 .07455 19.48275 18.2534 20.67396

id
U0:sigma2 15.7247 3.436893 .049048 15.26104 10.31182 23.60471

e.weight
sigma2 4.411155 .3193582 .004397 4.396044 3.834341 5.080979

Note: Default priors are used for model parameters.

Let’s go over the default output in detail, starting with the model summary. For multilevel models,
in addition to the model summary, which describes the likelihood model and prior distributions, the
bayes prefix displays information about the multilevel structure of the model.

Multilevel structure

id
{U0}: random intercepts

Our multilevel model has one set of random effects, labeled as U0, which represent random intercepts
at the id level. Recall that in Bayesian models, random effects are not integrated out but estimated
together with other model parameters. So, {U0}, or using its full name {U0[id]}, represent random-
effects parameters in our model. See Likelihood model to learn about the default naming convention
for random-effects parameters.
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According to the model summary below, the likelihood of the model is a normal linear regression
with the linear predictor containing regression parameters {weight:week} and {weight: cons}
and random-effects parameters {U0}, and with the error variance labeled as {e.weight:sigma2}.
Regression coefficients {weight:week} and {weight: cons} have default normal priors with zero
means and variances of 10,000. The random intercepts {U0} are normally distributed with mean zero
and variance {U0:sigma2}. The variance components, error variance {e.weight:sigma2}, and
random-intercept variance {U0:sigma2} have default inverse-gamma priors, InvGamma(0.01, 0.01).
The random-intercept variance is a hyperparameter in our model.

Model summary

Likelihood:
weight ~ normal(xb_weight,{e.weight:sigma2})

Priors:
{weight:week _cons} ~ normal(0,10000) (1)

{U0} ~ normal(0,{U0:sigma2}) (1)
{e.weight:sigma2} ~ igamma(.01,.01)

Hyperprior:
{U0:sigma2} ~ igamma(.01,.01)

(1) Parameters are elements of the linear form xb_weight.

The default output table of bayes: mixed uses the names of model parameters as they are defined
by the bayes prefix.

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

weight
week 6.209734 .0390718 .000391 6.209354 6.133233 6.285611

_cons 19.46511 .6239712 .07455 19.48275 18.2534 20.67396

id
U0:sigma2 15.7247 3.436893 .049048 15.26104 10.31182 23.60471

e.weight
sigma2 4.411155 .3193582 .004397 4.396044 3.834341 5.080979

Note: Default priors are used for model parameters.

Becoming familiar with the native parameter names of the bayes prefix is important for prior
specification and for later postestimation. The melabel option is provided for easier comparison of
the results between the bayes prefix and the corresponding frequentist multilevel command.

Example 14: Displaying random effects

By default, the bayes prefix does not compute or display MCMC summaries for the random-effects
parameters to conserve space and computational time. You can specify the showreffects option
to display all random effects or the showreffects() or show() option to display specific random
effects. For example, continuing example 13, we can display the random-effects estimates for the
first five pigs as follows.
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. bayes, show({U0[1/5]}) noheader

Equal-tailed
U0[id] Mean Std. dev. MCSE Median [95% cred. interval]

1 -1.778442 .8873077 .074832 -1.761984 -3.542545 .0062218
2 .7831408 .8775376 .071421 .7961802 -.9547035 2.491798
3 -2.052634 .9038672 .072325 -2.061559 -3.822966 -.3246834
4 -1.891103 .878177 .075611 -1.858056 -3.642227 -.1028766
5 -3.316584 .8894319 .074946 -3.320502 -5.0469 -1.568927

These posterior mean estimates of random-effects parameters should be comparable with those predicted
by predict, reffects after mixed. Posterior standard deviations, however, will generally be larger
than the corresponding standard errors of random effects predicted after mixed, because the latter do
not incorporate the uncertainty about the estimated model parameters.

You can also use [BAYES] bayesstats summary to obtain MCMC summaries of random-effects
parameters after estimation:

. bayesstats summary {U0[1/5]}
(output omitted )

If you decide to use the showreffects option to display all random-effects parameters, beware
of the increased computation time for models with many random effects. Then, the bayes prefix will
compute and display the MCMC summaries for only the first M random-effects parameters, where
M is the maximum matrix dimension (c(max matdim). The number of parameters displayed and
stored in e(b) cannot exceed c(max matdim). You can specify the show() option with bayes or
use bayesstats summary to obtain results for other random-effects parameters.

Example 15: Random-coefficient model

Continuing example 13, let’s consider a random-coefficient model that allows the growth rate to
vary among pigs.

Following mixed’s specification, we include the random slope for week at the id level by specifying
the week variable in the random-effects equation.
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. set seed 15

. bayes: mixed weight week || id: week
note: Gibbs sampling is used for regression coefficients and variance

components.
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 10000 .........1000.........2000.........3000.........4000.........
> 5000.........6000.........7000.........8000.........9000.........10000 done

Multilevel structure

id
{U0}: random intercepts
{U1}: random coefficients for week

Model summary

Likelihood:
weight ~ normal(xb_weight,{e.weight:sigma2})

Priors:
{weight:week _cons} ~ normal(0,10000) (1)

{U0} ~ normal(0,{U0:sigma2}) (1)
{U1} ~ normal(0,{U1:sigma2}) (1)

{e.weight:sigma2} ~ igamma(.01,.01)

Hyperpriors:
{U0:sigma2} ~ igamma(.01,.01)
{U1:sigma2} ~ igamma(.01,.01)

(1) Parameters are elements of the linear form xb_weight.

Bayesian multilevel regression MCMC iterations = 12,500
Metropolis--Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Group variable: id Number of groups = 48

Obs per group:
min = 9
avg = 9.0
max = 9

Number of obs = 432
Acceptance rate = .7473
Efficiency: min = .003057

avg = .07487
Log marginal-likelihood max = .1503

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

weight
week 6.233977 .0801192 .01449 6.237648 6.05268 6.387741

_cons 19.44135 .3426786 .044377 19.44532 18.76211 20.11843

id
U0:sigma2 7.055525 1.649394 .050935 6.844225 4.466329 10.91587
U1:sigma2 .3941786 .0901945 .002717 .3825387 .2526756 .6044887

e.weight
sigma2 1.613775 .1261213 .003254 1.609296 1.386427 1.880891

Note: Default priors are used for model parameters.
Note: There is a high autocorrelation after 500 lags.
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In addition to random intercepts {U0}, we now have random coefficients for week, labeled as
{U1}, with the corresponding variance parameter {U1:sigma2}. Compared with the random-intercept
model, by capturing the variability of slopes on week, we reduced the estimates of the error variance
and the random-intercept variance.

The average simulation efficiency decreased to only 7%, and we now see a note about a high
autocorrelation after 500 lags. We can use, for example, bayesgraph diagnostics to verify that
the high autocorrelation in this example is not an indication of nonconvergence but rather of a slow
mixing of our MCMC sample. If we use bayesstats ess, we will see that the coefficient on weight
and the constant term have the lowest efficiency, which suggests that these parameters are likely to be
correlated with some of the random-effects estimates. If we want to reduce the autocorrelation and
improve precision of the estimates for these parameters, we can increase the MCMC sample size by
specifying the mcmcsize() option or thin the MCMC chain by specifying the thinning() option.

Example 16: Random-coefficient model, unstructured covariance

In example 15, we assumed independence between random intercepts {U0} and random slopes on
week, {U1}. We relax this assumption here by specifying an unstructured covariance matrix.

Before we proceed with estimation, let’s review our model summary first by specifying the dryrun
option.

. bayes, dryrun: mixed weight week || id: week, covariance(unstructured)

Multilevel structure

id
{U0}: random intercepts
{U1}: random coefficients for week

Model summary

Likelihood:
weight ~ normal(xb_weight,{e.weight:sigma2})

Priors:
{weight:week _cons} ~ normal(0,10000) (1)

{U0 U1} ~ mvnormal(2,{U:Sigma,m}) (1)
{e.weight:sigma2} ~ igamma(.01,.01)

Hyperprior:
{U:Sigma,m} ~ iwishart(2,3,I(2))

(1) Parameters are elements of the linear form xb_weight.

The prior distributions for random effects {U0} and {U1} are no longer independent. Instead, they
have a joint prior—a bivariate normal distribution with covariance matrix parameter {U:Sigma,m},
which is short for {U:Sigma,matrix}. The random-effects stub U is used to label the covariance
matrix. The covariance matrix {U:Sigma,m} is assigned a fairly uninformative inverse-Wishart prior
with three degrees of freedom and an identity scale matrix; see Default priors for details.
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Let’s now fit the model but suppress the model summary for brevity.

. set seed 15

. bayes, nomodelsummary: mixed weight week || id: week, covariance(unstructured)
note: Gibbs sampling is used for regression coefficients and variance

components.
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 10000 .........1000.........2000.........3000.........4000.........
> 5000.........6000.........7000.........8000.........9000.........10000 done

Multilevel structure

id
{U0}: random intercepts
{U1}: random coefficients for week

Bayesian multilevel regression MCMC iterations = 12,500
Metropolis--Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Group variable: id Number of groups = 48

Obs per group:
min = 9
avg = 9.0
max = 9

Number of obs = 432
Acceptance rate = .7009
Efficiency: min = .003683

avg = .07461
Log marginal-likelihood max = .1602

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

weight
week 6.207086 .0878022 .014469 6.204974 6.041093 6.384891

_cons 19.39551 .4077822 .050353 19.40187 18.53869 20.1993

id
U:Sigma_1_1 6.872161 1.627769 .061568 6.673481 4.282284 10.62194
U:Sigma_2_1 -.0866373 .2702822 .009861 -.0796118 -.645439 .4341423
U:Sigma_2_2 .399525 .0904532 .002488 .3885861 .2575883 .6104775

e.weight
sigma2 1.611889 .1263131 .003155 1.605368 1.381651 1.872563

Note: Default priors are used for model parameters.
Note: There is a high autocorrelation after 500 lags.

The 95% credible interval for the covariance between {U0} and {U1}, labeled as {U:Sigma 2 1}
in the output, is [−.65, 0.43], which suggests independence between {U0} and {U1}.
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The high autocorrelation note is due to the lower sampling efficiency of some of the regression
coefficients as can be seen from the output of bayesstats ess:

. bayesstats ess

Efficiency summaries MCMC sample size = 10,000
Efficiency: min = .003683

avg = .07461
max = .1602

ESS Corr. time Efficiency

weight
week 36.83 271.55 0.0037

_cons 65.58 152.48 0.0066

id
U:Sigma_1_1 698.99 14.31 0.0699
U:Sigma_2_1 751.20 13.31 0.0751
U:Sigma_2_2 1321.67 7.57 0.1322

e.weight
sigma2 1602.39 6.24 0.1602

We explore the impact of this high autocorrelation on MCMC convergence in example 17.

Example 17: Random-coefficient model, multiple chains

We continue with the random-coefficient model with unstructured covariance from example 16.
Some of the parameters such as the coefficients {weight:week} and {weight: cons} have low
sampling efficiency, which raises convergence and precision concerns. Simulating multiple Markov
chains of the model may help address these concerns.

We will simulate three chains by specifying the nchains(3) option. We will use the rseed(15)
option to ensure reproducibility with multiple chains; see Reproducing results in [BAYES] bayesmh. We
will also suppress various model summaries by specifying the nomodelsummary and nomesummary
options.

When using multiple chains to assess convergence, it is important to apply overdispersed initial
values for different chains. It is difficult to quantify overdispersion because it is specific to the data
and model. The default initialization provided by the bayes: mixed command may or may not be
sufficient. To be certain, we recommend that you provide initial values explicitly, at least for the
main parameters of interest. In the following specification, we provide initial values for the two
regression coefficients referred to as {weight:}, the variance parameter {e.weight:sigma2}, and
the covariance matrix {U:Sigma, matrix}. We try to generate initial values that are sufficiently
separated. For example, we use rnormal(-10, 100) for the regression coefficients in the second chain
and rnormal(10, 100) in the third chain. Specifying initial values for the random effects {U0} and
{U1} would be more tedious, so we let them be sampled from their corresponding prior distributions.
Because the hyperparameters of these priors have overdispersed initial values, we indirectly provide
some overdispersion for the initial random effects as well.
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. bayes, nchains(3) rseed(15) nomodelsummary nomesummary
> init2({weight:} rnormal(-10,100) {e.weight:sigma2} 0.1 {U:Sigma,m} 100*I(2))
> init3({weight:} rnormal(10,100) {e.weight:sigma2} 100 {U:Sigma,m} (10,-5\-5,10)):
> mixed weight week || id: week, covariance(unstructured)
note: Gibbs sampling is used for regression coefficients and variance

components.
Chain 1

Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 10000 .........1000.........2000.........3000.........4000.........

> 5000.........6000.........7000.........8000.........9000.........10000 done
Chain 2

Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 10000 .........1000.........2000.........3000.........4000.........

> 5000.........6000.........7000.........8000.........9000.........10000 done
Chain 3

Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 10000 .........1000.........2000.........3000.........4000.........

> 5000.........6000.........7000.........8000.........9000.........10000 done

Bayesian multilevel regression Number of chains = 3
Metropolis--Hastings and Gibbs sampling Per MCMC chain:

Iterations = 12,500
Burn-in = 2,500
Sample size = 10,000

Group variable: id Number of groups = 48
Obs per group:

min = 9
avg = 9.0
max = 9

Number of obs = 432
Avg acceptance rate = .6981
Avg efficiency: min = .003059

avg = .07659
max = .1663

Log marginal-likelihood Max Gelman--Rubin Rc = 1.055

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

weight
week 6.201475 .0874855 .009133 6.200176 6.032975 6.374917

_cons 19.3941 .4344171 .035266 19.38919 18.52954 20.2323

id
U:Sigma_1_1 6.863804 1.6219 .035988 6.653249 4.329726 10.62575
U:Sigma_2_1 -.0799526 .2684949 .005546 -.0723027 -.6351419 .4354943
U:Sigma_2_2 .3983365 .0890525 .001378 .3869276 .258562 .6048894

e.weight
sigma2 1.612452 .1254983 .001777 1.605632 1.383175 1.874105

Note: Default priors are used for model parameters.
Note: Default initial values are used for multiple chains.
Note: There is a high autocorrelation after 500 lags in at least one of the

chains.

While the sampling efficiency of the chains is about the same as in example 16, having three MCMC
samples instead of one improves the precision of the estimation results, as evident from the lower
MCMC errors for all model parameters.
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Let’s compute Gelman–Rubin diagnostics as a convergence check. We can already see in the
header of bayes: mixed that the maximum Gelman–Rubin statistic Rc of 1.055 is close to 1.

. bayesstats grubin

Gelman--Rubin convergence diagnostic

Number of chains = 3
MCMC size, per chain = 10,000
Max Gelman--Rubin Rc = 1.055383

Rc

weight
week 1.006404

_cons 1.055383

id
U:Sigma_1_1 1.000567
U:Sigma_2_1 1.001168
U:Sigma_2_2 1.002119

e.weight
sigma2 .9999899

Convergence rule: Rc < 1.1

The convergence diagnostic estimates Rc for all reported parameters are lower than 1.1, suggesting the
convergence of the chains. We can also explore MCMC convergence visually; see [BAYES] bayesgraph.

Crossed-effects model

Let’s revisit example 4 from [ME] meglm, which analyzes salamander cross-breeding data. Two
populations of salamanders are considered: whiteside males and females (variables wsm and wsf) and
roughbutt males and females (variables rbm and rbf). Male and female identifiers are recorded in
the male and female variables. The outcome binary variable y indicates breeding success or failure.
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In example 4 of [ME] meglm, we fit a crossed-effects logistic regression for successful mating,
in which the effects of male and female were crossed. For the purpose of illustration, we will fit a
crossed-effects probit regression here using meglm with the probit link.

. use https://www.stata-press.com/data/r18/salamander

. meglm y wsm##wsf || _all: R.male || female:, family(bernoulli) link(probit)
note: crossed random-effects model specified; option intmethod(laplace)

implied.

Fitting fixed-effects model:

Iteration 0: Log likelihood = -223.01026
Iteration 1: Log likelihood = -222.78736
Iteration 2: Log likelihood = -222.78735

Refining starting values:

Grid node 0: Log likelihood = -216.49485

Fitting full model:

Iteration 0: Log likelihood = -216.49485 (not concave)
Iteration 1: Log likelihood = -214.34477
Iteration 2: Log likelihood = -209.96986
Iteration 3: Log likelihood = -208.2673
Iteration 4: Log likelihood = -208.11936
Iteration 5: Log likelihood = -208.119 (not concave)
Iteration 6: Log likelihood = -208.11897
Iteration 7: Log likelihood = -208.11722
Iteration 8: Log likelihood = -208.11342
Iteration 9: Log likelihood = -208.11183
Iteration 10: Log likelihood = -208.11182

Mixed-effects GLM Number of obs = 360
Family: Bernoulli
Link: Probit

Grouping information

No. of Observations per group
Group variable groups Minimum Average Maximum

_all 1 360 360.0 360
female 60 6 6.0 6
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Integration method: laplace

Wald chi2(3) = 45.09
Log likelihood = -208.11182 Prob > chi2 = 0.0000

y Coefficient Std. err. z P>|z| [95% conf. interval]

1.wsm -.4122695 .2658063 -1.55 0.121 -.9332403 .1087014
1.wsf -1.720396 .3039435 -5.66 0.000 -2.316114 -1.124677

wsm#wsf
1 1 2.121205 .3484936 6.09 0.000 1.43817 2.80424

_cons .5951487 .2217643 2.68 0.007 .1604986 1.029799

_all>male
var(_cons) .3867562 .1779527 .1569589 .9529908

female
var(_cons) .4464295 .1952624 .1894299 1.0521

LR test vs. probit model: chi2(2) = 29.35 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

To fit the corresponding Bayesian model, we prefix the above command with bayes:.

. set seed 15

. bayes: meglm y wsm##wsf || _all: R.male || female:, family(bernoulli)
> link(probit)
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 10000 .........1000.........2000.........3000.........4000.........
> 5000.........6000.........7000.........8000.........9000.........10000 done

Multilevel structure

male
{U0}: random intercepts

female
{V0}: random intercepts

Model summary

Likelihood:
y ~ meglm(xb_y)

Priors:
{y:1.wsm 1.wsf 1.wsm#1.wsf _cons} ~ normal(0,10000) (1)

{U0} ~ normal(0,{U0:sigma2}) (1)
{V0} ~ normal(0,{V0:sigma2}) (1)

Hyperpriors:
{U0:sigma2} ~ igamma(.01,.01)
{V0:sigma2} ~ igamma(.01,.01)

(1) Parameters are elements of the linear form xb_y.
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Bayesian multilevel GLM MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000

No. of Observations per group
Group variable groups Minimum Average Maximum

_all 1 360 360.0 360
female 60 6 6.0 6

Family: Bernoulli Number of obs = 360
Link: probit Acceptance rate = .3223

Efficiency: min = .008356
avg = .02043

Log marginal-likelihood max = .02773

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

y
1.wsm -.411886 .28122 .016889 -.4158334 -.9645049 .156521
1.wsf -1.722195 .3329918 .023312 -1.713574 -2.381169 -1.094443

wsm#wsf
1 1 2.110366 .3671998 .022643 2.09234 1.443113 2.831923

_cons .5858733 .2512646 .015407 .5906893 .0812177 1.077352

male
U0:sigma2 .4291858 .2195246 .024015 .3876708 .1347684 .9648611

female
V0:sigma2 .4928416 .2189307 .019043 .4576824 .1648551 1.003193

Note: Default priors are used for model parameters.

The variance components for male and female, {U0:sigma2} and {V0:sigma2}, are slightly higher
than the corresponding ML estimates, but the regression coefficients are similar.

For an example of Bayesian estimation of a crossed-effects logistic regression model, see Rabe-
Hesketh and Skrondal (2022, chap. 16).

Blocked-diagonal covariance structures

The 1989 fertility survey considered in example 5 of [ME] me analyzes the use of contraception
among Bangladeshi women. The survey contains data from 60 districts, identified by the district
variable, and includes demographic factors such as whether the woman is from an urban area (urban),
mean-centered age (age), and number of children (children). Here children is a factor variable
coded as children = 0 (no children), children = 1 (one child), children = 2 (two children),
and children = 3 (three or more children). The outcome variable c use is a binary indicator for
the use of contraception.

We consider a two-level logit model for c use with a random intercept and random coefficients
for indicators of having one, two, or three or more children. As “fixed” predictor variables, we use
urban, age, and children.

It seems reasonable to expect positive correlation between the three random coefficients. Following
example 5 in [ME] me, we will use the covariance(exchangeable) option and repeat district:
to specify a blocked-diagonal covariance structure for the random effects.
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Let’s first run bayes: melogit with the dryrun option to see the model parameters.

. use https://www.stata-press.com/data/r18/bangladesh
(Bangladesh Fertility Survey, 1989)

. bayes, dryrun: melogit c_use i.urban age i.children ||
> district: i.children, covariance(exchangeable) ||
> district:

Multilevel structure

district
{U0}: random intercepts
{U1}: random coefficients for 1.children
{U2}: random coefficients for 2.children
{U3}: random coefficients for 3.children

Model summary

Likelihood:
c_use ~ melogit(xb_c_use)

Priors:
{c_use:1.urban age i.children _cons} ~ normal(0,10000) (1)

{U0} ~ normal(0,{U0:sigma2}) (1)
{U1 U2 U3} ~ mvn0exchangeable(3,{U:sigma2},{U:rho})

(1)

Hyperpriors:
{U:rho} ~ uniform(-1,1)

{U0:sigma2} ~ igamma(.01,.01)
{U:sigma2} ~ igamma(.01,.01)

(1) Parameters are elements of the linear form xb_c_use.

The random coefficients {U1}, {U2}, and {U3} are assigned a multivariate normal prior with an
exchangeable covariance structure, mvn0exchangeable(). This prior introduces two hyperparameters:
{U:sigma2}, for the diagonal variance term of the covariance matrix, and {U:rho}, for the off-
diagonal correlation term such that the covariance is equal to {U:sigma2}×{U:rho}. The random
intercept {U0} is assigned a normal prior with hyperparameter {U0:sigma2} for its variance. It is
recommended to assign informative priors to {U0:sigma2}, {U:sigma2}, and {U:rho}. For example,
we believe the correlation parameter to be between 0 and 0.5 and thus assign the uniform(0, 0.5)
prior to {U:rho}. In addition, let’s say that, from historical data, the mean variability for children
random coefficients was found to be about 0.2 and the mean variability for the random intercepts
was found to be about 0.25. We may then assign the igamma(11,2) prior to {U:sigma2} and the
igamma(9,2) prior to {U0:sigma2} to incorporate this prior knowledge. We will also add the or
option to obtain estimates of the odds ratios.

. bayes, prior({U:rho}, uniform(0,0.5)) prior({U:sigma2}, igamma(11,2))
> prior({U0:sigma2}, igamma(9,2)) rseed(17):
> melogit c_use i.urban age i.children ||
> district: i.children, covariance(exchangeable) ||
> district:, or
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 10000 .........1000.........2000.........3000.........4000.........5
> 000.........6000.........7000.........8000.........9000.........10000 done

Multilevel structure

district
{U0}: random intercepts
{U1}: random coefficients for 1.children
{U2}: random coefficients for 2.children
{U3}: random coefficients for 3.children
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Model summary

Likelihood:
c_use ~ melogit(xb_c_use)

Priors:
{c_use:1.urban age i.children _cons} ~ normal(0,10000) (1)

{U0} ~ normal(0,{U0:sigma2}) (1)
{U1 U2 U3} ~ mvn0exchangeable(3,{U:sigma2},{U:rho})

(1)

Hyperpriors:
{U:rho} ~ uniform(0,0.5)

{U:sigma2} ~ igamma(11,2)
{U0:sigma2} ~ igamma(9,2)

(1) Parameters are elements of the linear form xb_c_use.

Bayesian multilevel logistic regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Group variable: district Number of groups = 60

Obs per group:
min = 2
avg = 32.2
max = 118

Family: Bernoulli Number of obs = 1,934
Link: logit Acceptance rate = .2401

Efficiency: min = .009968
avg = .02371

Log marginal-likelihood max = .04605

Equal-tailed
Odds ratio Std. dev. MCSE Median [95% cred. interval]

c_use
1.urban 2.153732 .2632265 .023028 2.135123 1.710943 2.728066

age .9734474 .0076718 .000478 .9736178 .9585345 .9887891

children
1 3.043873 .5490154 .03425 3.00129 2.119798 4.241168
2 4.030936 .7761135 .040228 3.949568 2.77722 5.714252
3 3.85945 .724596 .047131 3.778789 2.644804 5.448504

_cons .1850523 .0271077 .002155 .1827656 .1395885 .242633

district
U:rho .3236901 .1286163 .010136 .3422138 .0326351 .4943052

U0:sigma2 .2147372 .0541223 .002522 .2069007 .1315863 .3416939
U:sigma2 .1736623 .0435398 .004361 .1676818 .1039366 .2793393

Note: Estimates are transformed only in the first equation to odds ratios.
Note: _cons estimates baseline odds (conditional on zero random effects).
Note: Default priors are used for some model parameters.

The posterior odds-ratio estimates for the fixed-effects parameters are close to the estimates reported
by the melogit command in example 5. Our model reports an estimate of 0.32 for the correlation
between random coefficients, a variance of 0.17 for the random coefficients, and a variance of 0.21
for the random intercepts.
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Panel-data models

The bayes prefix supports several panel-data commands such as xtreg and xtlogit; see
[BAYES] Bayesian estimation.

Panel-data models, also known as longitudinal-data models, are used for analyzing cross-sectional
time series when there is an explicit time component. Panel-data models require that the panel variable
be specified using the xtset command. See [XT] xt for details.

Panel-data models can also be viewed as two-level random-intercept models, so many comments
from Multilevel models apply to these models too.

All Bayesian panel-data models include random intercepts, referred to as {U[panelvar]} or simply
{U}, with the panel variable panelvar used as the grouping variable. These intercepts are commonly
referred to as random effects in frequentist models.

Random intercepts are assigned default prior distributions specific to the likelihood family of
the model. For linear and generalized linear models, the default prior is normal with zero mean
and unknown variance {var U}. Other models have special random-effects priors, and these are
described in Methods and formulas of the command-specific bayes entries. Positive hyperparameters
such as {var U} are assigned default inverse-gamma priors. Categorical outcome models such as
[BAYES] bayes: xtmlogit have multiple random effects. In cases when these random effects are
correlated, the model includes a matrix hyperparameter {U:Sigma,m} that is assigned a default
inverse-Wishart prior.

You can specify your own priors for regression coefficients, random effects, and auxiliary model
parameters. To change the default priors, you will need to know the names of the model parameters.
See Likelihood model to learn how the bayes prefix labels the parameters. You can also use the
dryrun option to see the names of model parameters specific to each bayes model before estimation.
After estimation, see Different ways of specifying model parameters for how to refer to individual
random effects to evaluate MCMC convergence or to obtain their MCMC summaries.

Bayesian panel-data models estimate random effects together with regression coefficients and other
model parameters. By default, the bayes prefix does not compute or display MCMC summaries of indi-
vidual random effects to conserve computation time and space. You can specify the showreffects()
or show() option to compute and display them for chosen subsets of random effects.

By default, all panel-data models use Gibbs sampling for variance components. Linear panel-
data models, bayes: xtreg, additionally use Gibbs sampling for regression coefficients. With
bayes: xtreg, we can specify Gibbs sampling also for random effects by using the gibbs option.

Unlike other bayes commands, panel-data models support the [BAYES] bayespredict postesti-
mation command to compute Bayesian predictions; see examples in [BAYES] bayes: xtpoisson and
[BAYES] bayes: xtmlogit.

Example 18: Random-effects linear model

In example 12, we considered a random-intercept model analyzing the weight gain of pigs. In that
example, the dependent variable, weight, is regressed on variable week, and random intercepts are
introduced with respect to the group variable id. Let’s fit the same random-intercept model but now
using bayes: xtreg. First, we should declare our data as panel data.

. use https://www.stata-press.com/data/r18/pig
(Longitudinal analysis of pig weights)

. xtset id

Panel variable: id (balanced)
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We can use bayes: xtreg to fit the same model that we previously fit using bayes: mixed.
Both commands use the same default priors and the same default sampling method.

. bayes, rseed(17): xtreg weight week
note: Gibbs sampling is used for regression coefficients and variance

components.
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 10000 .........1000.........2000.........3000.........4000.........
> 5000.........6000.........7000.........8000.........9000.........10000 done

Model summary

Likelihood:
weight ~ normal(xb_weight,{sigma2})

Priors:
{weight:week _cons} ~ normal(0,10000) (1)

{U[id]} ~ normal(0,{var_U}) (1)
{sigma2} ~ igamma(0.01,0.01)

Hyperprior:
{var_U} ~ igamma(0.01,0.01)

(1) Parameters are elements of the linear form xb_weight.

Bayesian RE normal regression MCMC iterations = 12,500
Metropolis--Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Group variable: id Number of groups = 48

Obs per group:
min = 9
avg = 9.0
max = 9

Number of obs = 432
Acceptance rate = .8089
Efficiency: min = .008983

avg = .5507
Log marginal-likelihood max = 1

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

weight
week 6.209598 .0391057 .000391 6.209511 6.134362 6.28693

_cons 19.2624 .5480876 .057828 19.23869 18.18444 20.36098

var_U 15.75035 3.489106 .042737 15.31299 10.28186 23.8984
sigma2 4.417614 .3188951 .004392 4.401373 3.837572 5.07726

Note: Default priors are used for model parameters.

The results are similar to those from example 12, up to MCMC sampling variation.

To improve efficiency, all panel-data models by default use Gibbs sampling for variance components.
Panel-data linear models (bayes: xtreg) use Gibbs sampling also for regression coefficients. With
bayes: xtreg, we can improve sampling efficiency further by specifying the gibbs option to use
Gibbs sampling also for random effects. Beware that, depending on the number of random effects,
this may increase the computation time substantially.
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. bayes, gibbs rseed(17): xtreg weight week
note: Gibbs sampling is used for all parameters, including random effects.
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 10000 .........1000.........2000.........3000.........4000.........
> 5000.........6000.........7000.........8000...... ...9000.........10000 done

Model summary

Likelihood:
weight ~ normal(xb_weight,{sigma2})

Priors:
{weight:week _cons} ~ normal(0,10000) (1)

{U[id]} ~ normal(0,{var_U}) (1)
{sigma2} ~ igamma(0.01,0.01)

Hyperprior:
{var_U} ~ igamma(0.01,0.01)

(1) Parameters are elements of the linear form xb_weight.

Bayesian RE normal regression MCMC iterations = 12,500
Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Group variable: id Number of groups = 48

Obs per group:
min = 9
avg = 9.0
max = 9

Number of obs = 432
Acceptance rate = 1
Efficiency: min = .01606

avg = .6605
Log marginal-likelihood max = 1

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

weight
week 6.209921 .0390177 .00039 6.209939 6.132542 6.285744

_cons 19.26382 .6209709 .048995 19.27342 18.0418 20.5063

var_U 15.80222 3.488439 .038688 15.33375 10.3458 24.03719
sigma2 4.412905 .3236225 .00359 4.395282 3.821423 5.095022

Note: Default priors are used for model parameters.

Using full Gibbs sampling, we see that our estimates of regression coefficients and variance components
are similar but that the minimum efficiency is increased to 0.016 from 0.009.

Example 19: Random-effects ordered logit model

Consider example 1 from [XT] xtologit, which analyzes data from a smoking prevention project
in schools. The dependent variable, tobacco and health knowledge score thk, has four categories.
Predictor variables include preintervention score, prethk, classroom curriculum, cc, and television
intervention, tv, as well as the interaction of the last two. The school identifier variable school is
set as the panel variable.

. use https://www.stata-press.com/data/r18/tvsfpors
(Television, School, and Family Project)

. xtset school

Panel variable: school (unbalanced)
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The bayes: xtologit command is used to fit a Bayesian model. The default prior distribution for
regression coefficients is normal with zero mean and variances of 10,000. The default prior distribution
for random effects is normal with mean zero and variance {var U}. The hyperparameter {var U} is
assigned an inverse-gamma hyperprior. The three cutpoints for the ordered logit likelihood, { cut1},
{ cut2}, and { cut3}, are assigned a flat prior.

. bayes, rseed(17): xtologit thk prethk cc##tv
note: Gibbs sampling is used for variance components.
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000..... done
Simulation 10000 .........1000.........2000.........3000.........4000.........
> 5000.........6000.........7000.........8000.........9000.........10000 done

Model summary

Likelihood:
thk ~ ologit(xb_thk,{_cut1 ... _cut3})

Priors:
{thk:prethk 1.cc 1.tv 1.cc#1.tv} ~ normal(0,10000) (1)

{U[school]} ~ normal(0,{var_U}) (1)
{_cut1 _cut2 _cut3} ~ 1 (flat)

Hyperprior:
{var_U} ~ igamma(0.01,0.01)

(1) Parameters are elements of the linear form xb_thk.

Bayesian RE ordered logistic regression MCMC iterations = 12,500
Metropolis--Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Group variable: school Number of groups = 28

Obs per group:
min = 18
avg = 57.1
max = 137

Number of obs = 1,600
Acceptance rate = .506
Efficiency: min = .00404

avg = .01548
Log marginal-likelihood max = .03692

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

thk
prethk .4024205 .03817 .001987 .4016996 .3289603 .480875

1.cc .9329812 .2127196 .019923 .9304351 .5156044 1.367753
1.tv .3037174 .2089864 .03288 .2919775 -.0874367 .7099491

cc#tv
1 1 -.4663504 .2985113 .02669 -.4502481 -1.057705 .0993408

_cut1 -.0960417 .1673066 .016383 -.0987278 -.4235516 .2458889
_cut2 1.151299 .1739417 .020155 1.148734 .8009236 1.49998
_cut3 2.340316 .1798423 .020381 2.338304 1.994793 2.696972
var_U .1089538 .0529856 .002903 .0988449 .0351552 .2362116

Note: Default priors are used for model parameters.
Note: There is a high autocorrelation after 500 lags.

The command issues a high autocorrelation warning because of slower convergence for some of the
parameters. You can use bayesstats ess to find that {thk:1.tv} is the parameter that has the
lowest ESS. Slower convergence of panel-data models is often caused by the presence of many random
effects, which indirectly influences the convergence of regression coefficients as well.
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Sometimes, the sampling efficiency can be improved by simply increasing the burn-in period, thus
prolonging the adaptation phase of the sampling algorithm. In the next run, we double the default
burn-in period.

. bayes, burnin(5000) rseed(17): xtologit thk prethk cc##tv
note: Gibbs sampling is used for variance components.
Burn-in 5000 aaaaaaaaa1000aaaaaaaaa2000.........3000.........4000.........5000
> done
Simulation 10000 .........1000.........2000.........3000.........4000.........
> 5000.........6000.........7000.........8000.........9000.........10000 done

Model summary

Likelihood:
thk ~ ologit(xb_thk,{_cut1 ... _cut3})

Priors:
{thk:prethk 1.cc 1.tv 1.cc#1.tv} ~ normal(0,10000) (1)

{U[school]} ~ normal(0,{var_U}) (1)
{_cut1 _cut2 _cut3} ~ 1 (flat)

Hyperprior:
{var_U} ~ igamma(0.01,0.01)

(1) Parameters are elements of the linear form xb_thk.

Bayesian RE ordered logistic regression MCMC iterations = 15,000
Metropolis--Hastings and Gibbs sampling Burn-in = 5,000

MCMC sample size = 10,000
Group variable: school Number of groups = 28

Obs per group:
min = 18
avg = 57.1
max = 137

Number of obs = 1,600
Acceptance rate = .5038
Efficiency: min = .003954

avg = .015
Log marginal-likelihood max = .0366

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

thk
prethk .4043504 .0380502 .001989 .4033533 .3325402 .4827048

1.cc .9352501 .2010255 .018787 .9288417 .5673248 1.348453
1.tv .3041591 .2085135 .033158 .3009742 -.117611 .7077558

cc#tv
1 1 -.4635365 .2798612 .027015 -.4525074 -1.028432 .0712566

_cut1 -.095777 .1627607 .016387 -.0969997 -.426459 .2438933
_cut2 1.15389 .1684856 .019615 1.154469 .8296157 1.499366
_cut3 2.344848 .1762402 .021575 2.34904 1.993787 2.685564
var_U .1064932 .0524515 .002873 .0964727 .034738 .2305971

Note: Default priors are used for model parameters.

Compared with the frequentist estimates from example 1, the posterior mean estimates of the regression
coefficients and cutpoints are not that different. The most noticeable difference is for the random-effects
variance {var U}, which has a posterior mean of about 0.11, slightly higher than the frequentist
estimate of 0.07.
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We can use bayesstats summary to display posterior estimates for the first five random effects
{U[school]} or simply {U}.

. bayesstats summary {U[1/5]}

Posterior summary statistics MCMC sample size = 10,000

Equal-tailed
U[school] Mean Std. dev. MCSE Median [95% cred. interval]

193 .0983182 .2360735 .008371 .0949512 -.3319545 .5649471
194 .0910507 .2044525 .013411 .0850659 -.3085782 .5080763
196 .1609138 .2372827 .010454 .159283 -.3000192 .6540844
197 -.0351616 .2304207 .009844 -.036144 -.5106465 .4080927
198 -.1724522 .2164482 .019579 -.1666214 -.6123599 .2548694

We could also replace the default priors with more informative ones. There are two ways to do
this. First, we can simply modify the parameters of the default prior without changing the family of
the distribution. For example, we can use the normalprior(1) option to change the prior standard
deviation for regression coefficients from 100 to 1.

. bayes, normalprior(1) rseed(17): xtologit thk prethk cc##tv
note: Gibbs sampling is used for variance components.
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 10000 .........1000.........2000.........3000.........4000.........
> 5000.........6000.........7000.........8000.........9000.........10000 done

Model summary

Likelihood:
thk ~ ologit(xb_thk,{_cut1 ... _cut3})

Priors:
{thk:prethk 1.cc 1.tv 1.cc#1.tv} ~ normal(0,1) (1)

{U[school]} ~ normal(0,{var_U}) (1)
{_cut1 _cut2 _cut3} ~ 1 (flat)

Hyperprior:
{var_U} ~ igamma(0.01,0.01)

(1) Parameters are elements of the linear form xb_thk.
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Bayesian RE ordered logistic regression MCMC iterations = 12,500
Metropolis--Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Group variable: school Number of groups = 28

Obs per group:
min = 18
avg = 57.1
max = 137

Number of obs = 1,600
Acceptance rate = .5083
Efficiency: min = .005659

avg = .01438
Log marginal-likelihood max = .0411

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

thk
prethk .3972503 .0386982 .003252 .3967045 .3240223 .4752994

1.cc .8628827 .2182787 .029018 .8597381 .4505967 1.275168
1.tv .2691059 .1952139 .020681 .2561737 -.064717 .6803609

cc#tv
1 1 -.3874974 .2808 .030905 -.3749463 -.954762 .1415334

_cut1 -.1274545 .1812604 .017455 -.1252054 -.4761576 .2116238
_cut2 1.117835 .1811456 .017375 1.120978 .7740603 1.467072
_cut3 2.30662 .1859104 .015007 2.312644 1.958648 2.666062
var_U .1104883 .0550946 .002718 .100217 .0357647 .239713

Note: Default priors are used for some model parameters.

The magnitudes of the regression coefficient estimates shrink slightly toward 0. Similarly, we can use
the igammaprior() option to manipulate the shape and scale of the default inverse-gamma prior for
{var U}.

Another way of changing the default priors is to specify the prior() options for the selected
groups of model parameters. For example, we can change the prior for cutpoints from the default flat
to normal with mean 1 and variance 1.



bayes — Bayesian regression models using the bayes prefix 123

. bayes, prior({_cut1 _cut2 _cut3}, normal(1, 1))
> normalprior(1) rseed(17): xtologit thk prethk cc##tv
note: Gibbs sampling is used for variance components.
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 10000 .........1000.........2000.........3000.........4000.........
> 5000.........6000.........7000.........8000.........9000.........10000 done

Model summary

Likelihood:
thk ~ ologit(xb_thk,{_cut1 ... _cut3})

Priors:
{thk:prethk 1.cc 1.tv 1.cc#1.tv} ~ normal(0,1) (1)

{U[school]} ~ normal(0,{var_U}) (1)
{_cut1 _cut2 _cut3} ~ normal(1,1)

Hyperprior:
{var_U} ~ igamma(0.01,0.01)

(1) Parameters are elements of the linear form xb_thk.

Bayesian RE ordered logistic regression MCMC iterations = 12,500
Metropolis--Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Group variable: school Number of groups = 28

Obs per group:
min = 18
avg = 57.1
max = 137

Number of obs = 1,600
Acceptance rate = .4909
Efficiency: min = .005571

avg = .01344
Log marginal-likelihood max = .04221

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

thk
prethk .3914625 .0344846 .00462 .3902991 .3256868 .4578337

1.cc .832213 .2079096 .024539 .8433861 .4080022 1.20791
1.tv .1969988 .2044468 .016094 .2080927 -.2166963 .5690862

cc#tv
1 1 -.3620582 .2739768 .032021 -.377875 -.9000601 .2192883

_cut1 -.1775701 .1673107 .016436 -.1657233 -.5312352 .1188874
_cut2 1.063019 .1684814 .018284 1.074538 .7075167 1.37078
_cut3 2.240986 .1739471 .017195 2.251752 1.881608 2.556478
var_U .1058796 .0550203 .002678 .0952031 .0334108 .2404828

Note: Default priors are used for some model parameters.
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Time-series and DSGE models

The bayes prefix also supports vector autoregression ([BAYES] bayes: var), linear DSGE models
([BAYES] bayes: dsge), and nonlinear DSGE models ([BAYES] bayes: dsgenl). See the corresponding
entries for examples of these commands.

Video examples

Introduction to Bayesian statistics, part 1: The basic concepts

Introduction to Bayesian statistics, part 2: MCMC and the Metropolis–Hastings algorithm

A prefix for Bayesian regression in Stata

Bayesian linear regression using the bayes prefix

Bayesian linear regression using the bayes prefix: How to specify custom priors

Bayesian linear regression using the bayes prefix: Checking convergence of the MCMC chain

Bayesian linear regression using the bayes prefix: How to customize the MCMC chain

Stored results
In addition to the results stored by bayesmh, the bayes prefix stores the following in e():

Scalars
e(priorsigma) standard deviation of default normal priors
e(priorshape) shape of default inverse-gamma priors
e(priorscale) scale of default inverse-gamma priors
e(blocksize) maximum size for blocks of model parameters

Macros
e(prefix) bayes
e(cmdname) command name from estimation command
e(cmd) same as e(cmdname)
e(command) estimation command line

Methods and formulas
See Methods and formulas in [BAYES] bayesmh.
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Also see
[BAYES] Bayesian estimation — Bayesian estimation commands

[BAYES] bayesmh — Bayesian models using Metropolis–Hastings algorithm
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bayesmh — Bayesian models using Metropolis–Hastings algorithm
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Description

bayesmh fits a variety of Bayesian models using an adaptive Metropolis–Hastings (MH) algorithm.
It provides various likelihood models and prior distributions for you to choose from. Likelihood models
include univariate normal linear and nonlinear regressions, multivariate normal linear and nonlinear
regressions, generalized linear models such as logit and Poisson regressions, multiple-equations linear
and nonlinear models, multilevel models, and more. Prior distributions include continuous distributions
such as uniform, Jeffreys, normal, gamma, multivariate normal, and Wishart and discrete distributions
such as Bernoulli and Poisson. You can also program your own Bayesian models; see [BAYES] bayesmh
evaluators.

Also see [BAYES] Bayesian estimation for a list of Bayesian regression models that can be fit
more conveniently with the bayes prefix ([BAYES] bayes).

Quick start
Bayesian normal linear regression of y1 on x1 with flat priors for coefficient on x1 and the intercept

and with a Jeffreys prior on the variance parameter {var}
bayesmh y1 x1, likelihood(normal({var})) ///

prior({y1: x1 _cons}, flat) prior({var}, jeffreys)

Add binary variable a using factor-variable notation
bayesmh y1 x1 i.a, likelihood(normal({var})) ///

prior({y1: x1 i.a _cons}, flat) prior({var}, jeffreys)

Same as above
bayesmh y1 x1 i.a, likelihood(normal({var})) ///

prior({y1:}, flat) prior({var}, jeffreys)

Specify a different prior for a = 1
bayesmh y1 x1 i.a, likelihood(normal({var})) ///

prior({y1:x1 _cons}, flat) prior({y1: 1.a}, normal(0,100)) ///
prior({var}, jeffreys)

Specify a starting value of 1 for parameter {var}
bayesmh y1 x1 i.a, likelihood(normal({var})) ///

prior({y1:}, flat) prior({var}, jeffreys) initial({var} 1)

Same as above
bayesmh y1 x1 i.a, likelihood(normal({var=1})) ///

prior({y1:}, flat) prior({var}, jeffreys)

126
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A normal prior with µ = 2 and σ2 = 0.5 for the coefficient on x1, a normal prior with µ = −40 and
σ2 = 100 for the intercept, and an inverse-gamma prior with shape parameter of 0.1 and scale
parameter of 1 for {var}

bayesmh y1 x1, likelihood(normal({var})) ///
prior({y1:x1}, normal(2,.5)) ///
prior({y1:_cons}, normal(-40,100)) ///
prior({var}, igamma(0.1,1))

Place {var} into a separate block
bayesmh y1 x1, likelihood(normal({var})) ///

prior({y1:x1}, normal(2,.5)) ///
prior({y1:_cons}, normal(-40,100)) ///
prior({var}, igamma(0.1,1)) block({var})

Same as above, but simulate four chains
bayesmh y1 x1, likelihood(normal({var})) ///

prior({y1:x1}, normal(2,.5)) ///
prior({y1:_cons}, normal(-40,100)) ///
prior({var}, igamma(0.1,1)) block({var}) ///
nchains(4)

Zellner’s g prior to allow {y1:x1} and {y1: cons} to be correlated, specifying 2 dimensions,
df = 30, µ = 2 for {y1:x1}, µ = −40 for {y1: cons}, and variance parameter {var}

bayesmh y1 x1, likelihood(normal({var})) ///
prior({var}, igamma(0.1,1)) ///
prior({y1:}, zellnersg(2,30,2,-40,{var}))

Model for dichotomous dependent variable y2 regressed on x1 with a logit likelihood
bayesmh y2 x1, likelihood(logit) prior({y2:}, normal(0,100))

Same as above, and save model results to simdata.dta, and store estimates in memory as m1

bayesmh y2 x1, likelihood(logit) prior({y2:}, ///
normal(0,100)) saving(simdata.dta)

estimates store m1

Same as above, but save the results on replay
bayesmh y2 x1, likelihood(logit) prior({y2:}, normal(0,100))
bayesmh, saving(simdata.dta)
estimates store m1

Show model summary without performing estimation
bayesmh y2 x1, likelihood(logit) prior({y2:}, normal(0,100)) dryrun

Fit model without showing model summary
bayesmh y2 x1, likelihood(logit) prior({y2:}, normal(0,100)) ///

nomodelsummary

Same as above, and specify the random-number seed for reproducibility
bayesmh y2 x1, likelihood(logit) prior({y2:}, normal(0,100)) ///

rseed(1234)

Same as above (set seed method useful only for a single chain)
set seed 1234
bayesmh y2 x1, likelihood(logit) prior({y2:}, normal(0,100))
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Specify 20,000 MCMC samples, and set length of the burn-in period to 5,000
bayesmh y2 x1, likelihood(logit) prior({y2:}, normal(0,100)) ///

mcmcsize(20000) burnin(5000)

Specify that only observations 1 + 5k, for k = 0, 1, . . . , be saved to the MCMC sample
bayesmh y2 x1, likelihood(logit) prior({y2:}, normal(0,100)) ///

thinning(5)

Set the maximum number of adaptive iterations of the MCMC procedure to 30, and specify that
adaptation of the MCMC procedure be attempted every 25 iterations

bayesmh y2 x1, likelihood(logit) prior({y2:}, normal(0,100)) ///
adaptation(maxiter(30) every(25))

Request that a dot be displayed every 100 simulations
bayesmh y2 x1, likelihood(logit) prior({y2:}, normal(0,100)) ///

dots(100)

Also request that an iteration number be displayed every 1,000 iterations
bayesmh y2 x1, likelihood(logit) prior({y2:}, normal(0,100)) ///

dots(100, every(1000))

Same as above
bayesmh y2 x1, likelihood(logit) prior({y2:}, normal(0,100)) ///

dots

Request that the 90% equal-tailed credible interval be displayed
bayesmh y2 x1, likelihood(logit) prior({y2:}, normal(0,100)) ///

clevel(90)

Request that the default 95% highest posterior density credible interval be displayed
bayesmh y2 x1, likelihood(logit) prior({y2:}, normal(0,100)) hpd

Use the batch-means estimator of MCSE with the length of the block of 5
bayesmh y2 x1, likelihood(logit) prior({y2:}, normal(0,100)) ///

batch(5)

Multivariate normal regression of y1 and y3 on x1 and x2, using normal priors with µ = 0 and
σ2 = 100 for the regression coefficients and intercepts, an inverse-Wishart prior for the covariance
matrix parameter {S, matrix} of dimension 2, df = 100, and an identity scale matrix

bayesmh y1 y3 = x1 x2, likelihood(mvnormal({S, matrix})) ///
prior({y1:} {y3:}, normal(0,100)) ///
prior({S, matrix}, iwishart(2,100,I(2)))

Same as above, but use abbreviated declaration for the covariance matrix
bayesmh y1 y3 = x1 x2, likelihood(mvnormal({S,m})) ///

prior({y1:} {y3:}, normal(0,100)) ///
prior({S,m}, iwishart(2,100,I(2)))

Same as above, and specify starting values for matrix {S,m} using previously defined matrix W

bayesmh y1 y3 = x1 x2, likelihood(mvnormal({S,m})) ///
prior({y1:} {y3:}, normal(0,100)) ///
prior({S,m}, iwishart(2,100,I(2))) initial({S,m} W)
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Multivariate normal regression with outcome-specific regressors
bayesmh (y1 x1 x2) (y3 x1 x3), likelihood(mvnormal({S,m})) ///

prior({y1:} {y3:}, normal(0,100)) ///
prior({S,m}, iwishart(2,100,I(2)))

Linear multiple-equations model of y1 on x1 and of y3 on y1, x1, and x2 with separate variance
parameters for each equation

bayesmh (y1 x1, likelihood(normal({var1}))) ///
(y3 y1 x1 x2, likelihood(normal({var2}))), ///
prior({y1:} {y3:}, flat) ///
prior({var1}, jeffreys) prior({var2}, jeffreys)

Nonlinear model with parameters {a}, {b}, {c}, and {var} specified using a substitutable expression
bayesmh y1 = ({a}+{b}*x1^{c}), likelihood(normal({var})) ///

prior({a b}, normal(0,100)) prior({c}, normal(0,2)) ///
prior({var}, igamma(0.1,1))

Multivariate nonlinear model with distinct parameters in each equation
bayesmh (y1 = ({a1} + {b1}*x1^{c1})) ///

(y3 = ({a2} + {b2}*x1^{c2})), likelihood(mvnormal({S,m})) ///
prior({a1 a2 b1 b2}, normal(0,100)) ///
prior({c1 c2}, normal(0,2)) prior({S,m}, iwishart(2,100,I(2)))

Random-intercept logistic regression of y1 on x1 with random intercepts U by level variable gr,
with default zero-mean normal prior with variance parameter {var U} for the random-intercept
parameters {U[gr]}, and with Jeffreys prior for {var U}

bayesmh y1 x1 U[gr], likelihood(logit) ///
prior({y1: x1 _cons}, flat) prior({var_U}, jeffreys)

Menu
Statistics > Bayesian analysis > General estimation and regression



130 bayesmh — Bayesian models using Metropolis–Hastings algorithm

Syntax
Linear models

Univariate linear regression

bayesmh depvar
[

indepvarspec
] [

if
] [

in
] [

weight
]
,

likelihood(modelspec) prior(priorspec)
[

options
]

Multivariate normal linear regression with common regressors

bayesmh depvars =
[

indepvarspec
] [

if
] [

in
] [

weight
]
,

likelihood(mvnormal(. . .)) prior(priorspec)
[

options
]

Multivariate normal regression with outcome-specific regressors

bayesmh (
[

eqname1:
]
depvar1

[
indepvarspec1

]
)

(
[

eqname2:
]
depvar2

[
indepvarspec2

]
)
[
. . .
] [

if
] [

in
] [

weight
]
,

likelihood(mvnormal(. . .)) prior(priorspec)
[

options
]

Nonlinear models

Univariate nonlinear regression

bayesmh nleqspec
[

if
] [

in
] [

weight
]
,

likelihood(modelspec) prior(priorspec)
[

options
]

Multivariate normal nonlinear regression

bayesmh (nleqspec1) (nleqspec2)
[
. . .
] [

if
] [

in
] [

weight
]
,

likelihood(mvnormal(. . .)) prior(priorspec)
[

options
]

Multilevel models

Any model can be fit as a multilevel model by including at least one random-effects term respec,
such as random intercepts U[id] at the level variable id, in indepvarspec, indepvarspec#, nlspec, or
nlspec#; see Random effects .

Multiple-equation models

bayesmh (eqspec)
[
(eqspec)

] [
. . .
] [

if
] [

in
] [

weight
]
, prior(priorspec)

[
options

]
Probability distributions

Univariate distributions

bayesmh depvar
[

if
] [

in
] [

weight
]
,

likelihood(distribution) prior(priorspec)
[

options
]

Multiple-equation distribution specifications

bayesmh (deqspec)
[
(deqspec)

] [
. . .
] [

if
] [

in
] [

weight
]
,

prior(priorspec)
[

options
]
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indepvarspec is either indepvars or respec.

respec includes an optional list of independent variables indepvars and at least one of random-effects
terms such as random intercepts U[id] at the level variable id. For instance, respec can be x1 x2
U[id]; see Random effects .

The syntax of nleqspec is depvar = (subexprspec), where subexprspec is either subexpr or resubexpr.

subexpr is a substitutable expression; see Substitutable expressions for details.

resubexpr is a substitutable expression that contains model parameters and random effects specified
in braces, {}, as in exp({b}+{U[id]}); see Random effects for details.

The syntax of eqspec is one of the following:

for linear models

varspec
[

if
] [

in
] [

weight
]
, likelihood(modelspec)

[
noconstant

]
for nonlinear models

nlspec
[

if
] [

in
] [

weight
]
, likelihood(modelspec)

The syntax of varspec is one of the following:

for single outcome[
eqname:

]
depvar

[
indepvarspec

]
for multiple outcomes with common regressors

depvars =
[

indepvarspec
]

for multiple outcomes with outcome-specific regressors

(
[

eqname1:
]
depvar1

[
indepvarspec1

]
)

(
[

eqname2:
]
depvar2

[
indepvarspec2

]
)
[
. . .
]

The syntax of nlspec is nleqspec for a single outcome or (nleqspec1) (nleqspec2)
[
. . .
]

for multiple outcomes.

The syntax of deqspec is[
eqname:

]
depvar

[
if
] [

in
] [

weight
]
, likelihood(distribution)

The syntax of modelspec is

model
[
, modelopts

]



132 bayesmh — Bayesian models using Metropolis–Hastings algorithm

model Description

Model

normal(var) normal regression with variance var
t(sigma2, df) t regression with squared scale sigma2 and degrees of freedom df
lognormal(var) lognormal regression with variance var
lnormal(var) synonym for lognormal()
exponential exponential regression
mvnormal(Sigma) multivariate normal regression with covariance matrix Sigma

probit probit regression
logit logistic regression
logistic logistic regression; synonym for logit
binomial(n) binomial regression with logit link and number of trials n
binlogit(n) synonym for binomial()
oprobit ordered probit regression
ologit ordered logistic regression
poisson Poisson regression

stexponential exponential survival regression
stgamma(lns) gamma survival regression with log-scale parameter lns
stloglogistic(lns) loglogistic survival regression with log-scale parameter lns
stlognormal(lnstd) lognormal survival regression with log-standard-deviation

parameter lnstd
stweibull(lnp) Weibull survival regression with log-shape parameter lnp

llf(subexpr) substitutable expression for observation-level log-likelihood
function

A distribution argument is a number for scalar arguments such as var; a variable name, varname (except for matrix
arguments); a matrix for matrix arguments such as Sigma; a model parameter, paramspec; an expression, expr;
or a substitutable expression, subexpr or resubexpr. See Specifying arguments of likelihood models and prior
distributions. For survival models, stmodel, a distribution argument can be only a scalar argument.

modelopts Description

Model

offset(varnameo) include varnameo in model with coefficient constrained to 1;
not allowed with normal() and mvnormal()

exposure(varnamee) include ln(varnamee) in model with coefficient constrained to 1;
allowed only with poisson

survivalopts options for survival models

survivalopts are allowed only with survival models stexponential, stgamma(), stloglogistic(), stlognormal(),
and stweibull().
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survivalopts Description

Model[
no
]
logparam fit survival model using a scale, variance, or shape parameter

in a log (the default) or original metric
ph proportional hazards parameterization; default with survival

models stexponential and stweibull()

aft accelerated failure-time parameterization; default with survival
models other than stexponential and stweibull()

time synonym for aft
failure(varname) indicator for failure event
ltruncated(varname | #) lower limit for left-truncation

ph is allowed only with survival models stexponential and stweibull().

distribution Description

Model

dexponential(beta) exponential distribution with scale parameter beta
dbernoulli(p) Bernoulli distribution with success probability p
dbinomial(p,n) binomial distribution with success probability p and

number of trials n
dpoisson(mu) Poisson distribution with mean mu

A distribution argument is a model parameter, paramspec, or a substitutable expression, subexpr or resubexpr, containing
model parameters. An n argument may be a number; an expression, expr; or a variable name, varname. See
Specifying arguments of likelihood models and prior distributions.

The syntax of priorspec is

paramref, priordist
[
split

]
where the simplest specification of paramref is

paramspec
[

paramspec
[
...

] ]
Also see Referring to model parameters for other specifications. When paramref includes multiple
model parameters, the prior suboption split is a convenience option for specifying the same prior
distribution for multiple parameters but sampling them in separate blocks. Using the split option is
equivalent to specifying a separate prior statement for each parameter.

The syntax of paramspec is

{
[
eqname:

]
param

[
, matrix

]
}

where the parameter label eqname and parameter name param are valid Stata names. Model parameters
are either scalars such as {var}, {mean}, and {shape:alpha} or matrices such as {Sigma,
matrix} and {Scale:V, matrix}. For scalar parameters, you can use {param=#} to specify
an initial value. For example, you can specify {var=1}, {mean=1.267}, or {shape:alpha=3}.
param can also be a random-effects name; see Random effects for details.
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priordist Description

Model

normal(mu,var) normal with mean mu and variance var
t(mu,sigma2,df) location–scale t with mean mu, squared scale sigma2, and

degrees of freedom df
lognormal(mu,var) lognormal with mean mu and variance var
lnormal(mu,var) synonym for lognormal()
uniform(a,b) uniform on (a, b)
gamma(alpha,beta) gamma with shape alpha and scale beta
igamma(alpha,beta) inverse gamma with shape alpha and scale beta
exponential(beta) exponential with scale beta
beta(a,b) beta with shape parameters a and b
laplace(mu,beta) Laplace with mean mu and scale beta
cauchy(loc,beta) Cauchy with location loc and scale beta
chi2(df) central χ2 with degrees of freedom df
pareto(alpha,beta) Pareto with shape alpha and scale beta
jeffreys Jeffreys prior for variance of a normal distribution

mvnormal(d,mean,Sigma) multivariate normal of dimension d with mean vector mean and
covariance matrix Sigma; mean can be a matrix name or a list
of d means separated by comma: mu1, mu2, . . ., mud

mvnormal0(d,Sigma) multivariate normal of dimension d with zero mean vector and
covariance matrix Sigma

mvn0(d,Sigma) synonym for mvnormal0()
mvnexchangeable(d,mean,var,rho)

multivariate normal of dimension d with means mean and
exchangeable covariance matrix with diagonal var and
off-diagonal var×rho

mvn0exchangeable(d,var,rho) as mvnexchangeable() but with zero mean vector
mvnindependent(d,mean,vars)multivariate normal of dimension d with means mean and

diagonal covariance matrix; vars can be a Stata vector of
dimension d with fixed variances or a list of d variances
(parameters or fixed values) separated by comma:
var1, var2, . . ., vard

mvn0independent(d,vars) as mvnindependent() but with zero mean vector
mvnidentity(d,mean,var) multivariate normal of dimension d with means mean and

identity covariance matrix with equal variances var
mvn0identity(d,var) as mvnidentity() but with zero mean vector
mvnscaled(d,mean,A,{var}) multivariate normal of dimension d with mean vector mean and

covariance matrix ({var}A); mean can be a matrix name or a list
of d means separated by a comma: mu1, mu2, . . ., mud;
A is a positive-definite scale matrix; {var} is a variance
parameter

mvn0scaled(d,A,{var}) as mvnscaled() but with zero mean vector
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zellnersg(d,g,mean,{var}) Zellner’s g-prior of dimension d with g degrees of freedom,
mean vector mean, and variance parameter {var}; mean can
be a matrix name or a list of d means separated by comma:
mu1, mu2, . . ., mud

zellnersg0(d,g,{var}) Zellner’s g-prior of dimension d with g degrees of freedom,
zero mean vector, and variance parameter {var}

dirichlet(a1,a2,. . . ,ad) Dirichlet (multivariate beta) of dimension d with shape
parameters a1, a2, . . . , ad

wishart(d,df,V) Wishart of dimension d with degrees of freedom df and scale
matrix V

iwishart(d,df,V) inverse Wishart of dimension d with degrees of freedom df and
scale matrix V

jeffreys(d) Jeffreys prior for covariance of a multivariate normal distribution
of dimension d

bernoulli(p) Bernoulli with success probability p
geometric(p) geometric for the number of failures before the first success with

success probability on one trial p
index(p1,. . .,pk) discrete indices 1, 2, . . . , k with probabilities p1, p2, . . . , pk
poisson(mu) Poisson with mean mu

flat flat prior; equivalent to density(1) or logdensity(0)
density(f) generic density f
logdensity(logf) generic log density logf

Dimension d is a positive number #.
A distribution argument is a number for scalar arguments such as var, alpha, beta; a Stata matrix for matrix arguments

such as Sigma and V; a model parameter, paramspec; an expression, expr; or a substitutable expression, subexpr
or resubexpr. See Specifying arguments of likelihood models and prior distributions.

f is a nonnegative number, #; an expression, expr; or a substitutable expression, subexpr or resubexpr.
logf is a number, #; an expression, expr; or a substitutable expression, subexpr or resubexpr.

When mvnormal() or mvnormal0() of dimension d is applied to paramref with n parameters (n6=d), paramref
is reshaped into a matrix with d columns, and its rows are treated as independent samples from the specified
mvnormal() distribution. If such reshaping is not possible, an error is issued. See example 25 for application of
this feature.
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options Description

Model

noconstant suppress constant term; not allowed with ordered models,
nonlinear models, and probability distributions

∗likelihood(lspec) distribution for the likelihood model
∗prior(priorspec) prior for model parameters; this option may be repeated
dryrun show model summary without estimation

Model 2

define(label:resubexpr) defines a function of model parameters; this option may be repeated

Simulation

nchains(#) number of chains; default is to simulate one chain
mcmcsize(#) MCMC sample size; default is mcmcsize(10000)

burnin(#) burn-in period; default is burnin(2500)

thinning(#) thinning interval; default is thinning(1)

rseed(#) random-number seed
exclude(paramref) specify model parameters to be excluded from the simulation results

Blocking

block(paramref
[
, blockopts

]
) specify a block of model parameters; this option may be repeated

blocksummary display block summary

Initialization

initial(initspec) specify initial values for model parameters with a single chain
init#(initspec) specify initial values for #th chain; requires nchains()

initall(initspec) specify initial values for all chains; requires nchains()

nomleinitial suppress the use of maximum likelihood estimates as starting values
initrandom specify random initial values
initsummary display initial values used for simulation
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Adaptation

adaptation(adaptopts) control the adaptive MCMC procedure
scale(#) initial multiplier for scale factor; default is scale(2.38)

covariance(cov) initial proposal covariance; default is the identity matrix

Reporting

clevel(#) set credible interval level; default is clevel(95)

hpd display HPD credible intervals instead of the default equal-tailed
credible intervals

eform
[
(string)

]
report exponentiated coefficients and, optionally, label as string

remargl compute log marginal-likelihood for multilevel models
batch(#) specify length of block for batch-means calculations;

default is batch(0)

saving(filename
[
, replace

]
) save simulation results to filename.dta

nomodelsummary suppress model summary
noexpression suppress output of expressions from model summary
chainsdetail display detailed simulation summary for each chain[
no
]
dots suppress dots or display dots every 100 iterations and iteration

numbers every 1,000 iterations; default is nodots

dots(#
[
, every(#)

]
) display dots as simulation is performed[

no
]
show(paramref) specify model parameters to be excluded from or included in

the output
showreffects

[
(reref)

]
specify that all or a subset of random-effects parameters be included

in the output
notable suppress estimation table
noheader suppress output header
title(string) display string as title above the table of parameter estimates
display options control spacing, line width, and base and empty cells

Advanced

search(search options) control the search for feasible initial values
corrlag(#) specify maximum autocorrelation lag; default varies
corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)

∗Options likelihood() and prior() are required. prior() must be specified for all model parameters.
Options prior() and block() may be repeated.
indepvars and paramref may contain factor variables; see [U] 11.4.3 Factor variables.
indepvars and paramref may contain time-series operators; see [U] 11.4.4 Time-series varlists.
With multiple-equations specifications, a local if specified within an equation is applied together with the global if

specified with the command.
collect is allowed; see [U] 11.1.10 Prefix commands.
Only fweights are allowed; see [U] 11.1.6 weight.
With multiple-equations specifications, local weights (weights specified within an equation) override global weights

(weights specified with the command).
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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blockopts Description

gibbs requests Gibbs sampling; available for selected models only and
not allowed with scale(), covariance(), or adaptation()

split requests that all parameters in a block be treated as separate blocks
reffects requests that all parameters in a block be treated as random-effects

parameters
scale(#) initial multiplier for scale factor for current block; default is

scale(2.38); not allowed
with gibbs

covariance(cov) initial proposal covariance for the current block; default is the
identity matrix; not allowed with gibbs

adaptation(adaptopts) control the adaptive MCMC procedure of the current block;
not allowed with gibbs

Only tarate() and tolerance() may be specified in the adaptation() option.

adaptopts Description

every(#) adaptation interval; default is every(100)

maxiter(#) maximum number of adaptation loops; default is maxiter(25) or
max{25, floor(burnin()/every())} whenever default values
of these options are modified

miniter(#) minimum number of adaptation loops; default is miniter(5)

alpha(#) parameter controlling acceptance rate (AR); default is alpha(0.75)

beta(#) parameter controlling proposal covariance; default is beta(0.8)

gamma(#) parameter controlling adaptation rate; default is gamma(0)
∗tarate(#) target acceptance rate (TAR); default is parameter specific
∗tolerance(#) tolerance for AR; default is tolerance(0.01)

∗Only starred options may be specified in the adaptation() option specified within block().

Options� � �
Model �

noconstant suppresses the constant term (intercept) from the regression model. By default, bayesmh
automatically includes a model parameter {depname: cons} in all regression models except ordered
and nonlinear models. Excluding the constant term may be desirable when there is a factor variable,
the base level of which absorbs the constant term in the linear combination.

likelihood(lspec) specifies the distribution of the data. This option specifies the likelihood portion
of the Bayesian model. This option is required. lspec is one of modelspec or distribution.

modelspec specifies one of the supported likelihood distributions for regression models. A location
parameter of these distributions is automatically parameterized as a linear combination of the
specified independent variables and needs not be specified. Other parameters may be specified as
arguments to the distribution separated by commas. Each argument may be a real number (#), a
variable name (except for matrix parameters), a predefined matrix, a model parameter specified in
{}, a Stata expression, or a substitutable expression containing model parameters and, optionally,
random effects; see Declaring model parameters and Specifying arguments of likelihood models
and prior distributions. For survival models, a distribution argument may be only a real number
or a model parameter.
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distribution specifies one of the supported distributions for modeling the dependent variable. A
distribution argument must be a model parameter specified in {} or a substitutable expression
containing model parameters and, optionally, random effects; see Declaring model parameters and
Specifying arguments of likelihood models and prior distributions. A number of trials, n, of the
binomial distribution may be a real number (#), a Stata expression, or a variable name. For an
example of modeling outcome distributions directly, see Beta-binomial model.

For some regression models, option likelihood() provides suboptions subopts in
likelihood(. . . , subopts). subopts are offset(), exposure(), and, for survival models,
survivalopts.

offset(varnameo) specifies that varnameo be included in the regression model with the coefficient
constrained to be 1. This option is available with probit, logit, binomial(), binlogit(),
oprobit, ologit, and poisson.

exposure(varnamee) specifies a variable that reflects the amount of exposure over which the
depvar events were observed for each observation; ln(varnamee) with coefficient constrained
to be 1 is entered into the log-link function. This option is available with poisson.

survivalopts are logparam, nologparam, ph, aft, time (synonym for aft), failure(varname),
and ltruncated(varname | #).

logparam and nologparam specify the estimation metric for the auxiliary model parameter.
logparam specifies that the survival model be fit using the log of the parameter controlling the
shape of the distribution—scale for stgamma() and stloglogistic(), standard deviation
for stlognormal(), and shape for stweibull(). This is the default. nologparam specifies
that the model be fit using the parameter in the original metric. Which metric to use may
depend on the desired prior distribution for the auxiliary parameter.

ph, aft, failure(), ltruncated(); see survival options in [SEM] gsem family-and-link
options.

prior(priorspec) specifies a prior distribution for model parameters. This option is required and
may be repeated. A prior must be specified for each model parameter. Model parameters may
be scalars or matrices, but both types may not be combined in one prior statement. If multiple
scalar parameters are assigned a single univariate prior, they are considered independent, and the
specified prior is used for each parameter. You may assign a multivariate prior of dimension d to d
scalar parameters. Also see Referring to model parameters and Specifying arguments of likelihood
models and prior distributions.

All likelihood() and prior() combinations are allowed, but they are not guaranteed to correspond
to proper posterior distributions. You need to think carefully about the model you are building and
evaluate its convergence thoroughly; see Convergence of MCMC.

dryrun specifies to show the summary of the model that would be fit without actually fitting the
model. This option is recommended for checking specifications of the model before fitting the
model. The model summary reports the information about the likelihood model and about priors
for all model parameters.

� � �
Model 2 �

define(name:resubexpr) is for use with nonlinear models. It defines a function of model parameters,
resubexpr, and labels it as name. This option can be repeated to define multiple functions. The
define() option is useful for expressions that appear multiple times in the main nonlinear
specification: you define the expression once and then simply refer to it by using {name:} in
the nonlinear specification. This option can also be used for notational convenience. See Random
effects for how to specify resubexpr.
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� � �
Simulation �

nchains(#) specifies the number of Markov chains to simulate. You must specify at least two chains.
By default, only one chain is produced. Simulating multiple chains is useful for convergence
diagnostics and to improve precision of parameter estimates. Four chains are often recommended
in the literature, but you can specify more or less depending on your objective. The reported
estimation results are based on all chains. You can use bayesstats summary with option
sepchains to see the results for each chain. The reported acceptance rate, efficiencies, and log
marginal-likelihood are averaged over all chains. You can use option chainsdetail to see these
simulation summaries for each chain. Also see Convergence diagnostics using multiple chains and
Gelman–Rubin convergence diagnostic in [BAYES] bayesstats grubin.

mcmcsize(#) specifies the target MCMC sample size. The default MCMC sample size is mcmc-
size(10000). The total number of iterations for the MH algorithm equals the sum of the burn-in
iterations and the MCMC sample size in the absence of thinning. If thinning is present, the total
number of MCMC iterations is computed as burnin() + (mcmcsize()− 1)× thinning() + 1.
Computation time of the MH algorithm is proportional to the total number of iterations. The MCMC
sample size determines the precision of posterior summaries, which may be different for different
model parameters and will depend on the efficiency of the Markov chain. With multiple chains,
mcmcsize() applies to each chain. Also see Burn-in period and MCMC sample size.

burnin(#) specifies the number of iterations for the burn-in period of MCMC. The values of parameters
simulated during burn-in are used for adaptation purposes only and are not used for estimation.
The default is burnin(2500). Typically, burn-in is chosen to be as long as or longer than the
adaptation period. With multiple chains, burnin() applies to each chain. Also see Burn-in period
and MCMC sample size and Convergence of MCMC.

thinning(#) specifies the thinning interval. Only simulated values from every (1+k×#)th iteration
for k = 0, 1, 2, . . . are saved in the final MCMC sample; all other simulated values are discarded.
The default is thinning(1); that is, all simulation values are saved. Thinning greater than one
is typically used for decreasing the autocorrelation of the simulated MCMC sample. With multiple
chains, thinning() applies to each chain.

rseed(#) sets the random-number seed. This option can be used to reproduce results. With one
chain, rseed(#) is equivalent to typing set seed # prior to calling bayesmh; see [R] set seed.
With multiple chains, you should use rseed() for reproducibility; see Reproducing results.

exclude(paramref) specifies which model parameters should be excluded from the final MCMC
sample. These model parameters will not appear in the estimation table, and postestimation
features for these parameters and log marginal-likelihood will not be available. This option is
useful for suppressing nuisance model parameters. For example, if you have a factor predictor
variable with many levels but you are only interested in the variability of the coefficients associated
with its levels, not their actual values, then you may wish to exclude this factor variable from the
simulation results. If you simply want to omit some model parameters from the output, see the
noshow() option. paramref can include individual random-effects parameters.
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� � �
Blocking �

block( paramref
[
, blockopts

]
) specifies a group of model parameters for the blocked MH algorithm.

By default, all parameters except matrices are treated as one block, and each matrix parameter
is viewed as a separate block. You can use the block() option to separate scalar parameters in
multiple blocks. Technically, you can also use block() to combine matrix parameters in one block,
but this is not recommended. The block() option may be repeated to define multiple blocks.
Different types of model parameters, such as scalars and matrices, may not be specified in one
block(). Parameters within one block are updated simultaneously, and each block of parameters
is updated in the order it is specified; the first specified block is updated first, the second is updated
second, and so on. See Improving efficiency of the MH algorithm—blocking of parameters.

blockopts include gibbs, split, reffects, scale(), covariance(), and adaptation().

gibbs specifies to use Gibbs sampling to update parameters in the block. This option is allowed
only for specific combinations of likelihood models and prior distributions; see Gibbs sampling
for some likelihood-prior and prior-hyperprior configurations. For more information, see Gibbs
and hybrid MH sampling. In the presence of multiple random effects, you may combine
options gibbs and split to perform Gibbs sampling separately for each set of random-
effects parameters. gibbs may not be combined with reffects, scale(), covariance(),
or adaptation().

split specifies that all parameters in a block are treated as separate blocks. This may be useful for
levels of factor variables. Option split is convenient in combination with option gibbs with
multiple random effects to perform Gibbs sampling separately for each set of random-effects
parameters.

reffects specifies that the parameters associated with the levels of a factor variable included in
the likelihood specification be treated as random-effects parameters. Random-effects parameters
must be included in one prior statement and are assumed to be conditionally independent
across levels of a grouping variable given all other model parameters. reffects requires that
parameters be specified as {depvar:i.varname}, where i.varname is the corresponding factor
variable in the likelihood specification, and may not be combined with block()’s suboptions
gibbs and split. This option was useful for fitting hierarchical or multilevel models in
previous versions and is now provided for historical reasons. See Random effects for how to
fit multilevel models.

scale(#) specifies an initial multiplier for the scale factor corresponding to the specified block.
The initial scale factor is computed as #/

√
np for continuous parameters and as #/np for discrete

parameters, where np is the number of parameters in the block. The default is scale(2.38).
If specified, this option overrides the respective setting from the scale() option specified with
the command. scale() may not be combined with gibbs.

covariance(matname) specifies a scale matrix matname to be used to compute an initial
proposal covariance matrix corresponding to the specified block. The initial proposal covariance
is computed as rho×Sigma, where rho is a scale factor and Sigma = matname. By default,
Sigma is the identity matrix. If specified, this option overrides the respective setting from the
covariance() option specified with the command. covariance() may not be combined with
gibbs.

adaptation(tarate()) and adaptation(tolerance()) specify block-specific TAR and ac-
ceptance tolerance. If specified, they override the respective settings from the adaptation()
option specified with the command. adaptation() may not be combined with gibbs.

blocksummary displays the summary of the specified blocks. This option is useful when block()
is specified.
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� � �
Initialization �

initial(initspec) specifies initial values for the model parameters to be used in the simulation.
With multiple chains, this option is equivalent to specifying option init1(). You can specify a
parameter name, its initial value, another parameter name, its initial value, and so on. For example,
to initialize a scalar parameter alpha to 0.5 and a 2x2 matrix Sigma to the identity matrix I(2),
you can type

bayesmh . . . , initial({alpha} 0.5 {Sigma,m} I(2)) . . .

You can also specify a list of parameters using any of the specifications described in Referring to
model parameters. For example, to initialize all regression coefficients from equations y1 and y2
to zero, you can type

bayesmh . . . , initial({y1:} {y2:} 0) . . .

The general specification of initspec is

paramref initval
[

paramref initval
[
. . .
] ]

where initval is a number, a Stata expression that evaluates to a number, or a Stata matrix for
initialization of matrix parameters.

Curly braces may be omitted for scalar parameters but must be specified for matrix parameters.
Initial values declared using this option override the default initial values or any initial values
declared during parameter specification in the likelihood() option. See Specifying initial values
for details.

init#(initspec) specifies initial values for the model parameters for the #th chain. This option requires
option nchains(). init1() overrides the default initial values for the first chain, init2() for
the second chain, and so on. You specify initial values in init#() just like you do in option
initial(). See Specifying initial values for details.

initall(initspec) specifies initial values for the model parameters for all chains. This option requires
option nchains(). You specify initial values in initall() just like you do in option initial().
You should avoid specifying fixed initial values in initall() because then all chains will use the
same initial values. initall() is useful to specify random initial values when you define your
own priors within prior()’s density() and logdensity() suboptions. See Specifying initial
values for details.

nomleinitial suppresses using maximum likelihood estimates (MLEs) as starting values for model
parameters. With multiple chains, this option and discussion below apply only to the first chain.
By default, when no initial values are specified, MLE values (when available) are used as initial
values. If nomleinitial is specified and no initial values are provided, the command uses ones
for positive scalar parameters, zeros for other scalar parameters, and identity matrices for matrix
parameters. nomleinitial may be useful for providing an alternative starting state when checking
convergence of MCMC. This option cannot be combined with initrandom.

initrandom specifies that the model parameters be initialized randomly. Random initial values are
generated from the prior distributions of the model parameters. If you want to use fixed initial
values for some of the parameters, you can specify them in the initial() option or during
parameter declarations in the likelihood() option. Random initial values are not available for
parameters with flat, jeffreys, density(), logdensity(), and jeffreys() priors; you
must provide your own initial values for such parameters. This option cannot be combined with
nomleinitial. See Specifying initial values for details.

initsummary specifies that the initial values used for simulation be displayed.
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� � �
Adaptation �

adaptation(adaptopts) controls adaptation of the MCMC procedure. Adaptation takes place every
prespecified number of MCMC iterations and consists of tuning the proposal scale factor and
proposal covariance for each block of model parameters. Adaptation is used to improve sampling
efficiency. Provided defaults are based on theoretical results and may not be sufficient for all
applications. See Adaptation of the MH algorithm for details about adaptation and its parameters.

adaptopts are any of the following options:

every(#) specifies that adaptation be attempted every #th iteration. The default is every(100).
To determine the adaptation interval, you need to consider the maximum block size specified
in your model. The update of a block with k model parameters requires the estimation
of a k × k covariance matrix. If the adaptation interval is not sufficient for estimating the
k(k + 1)/2 elements of this matrix, the adaptation may be insufficient.

maxiter(#) specifies the maximum number of adaptive iterations. Adaptation includes tuning
of the proposal covariance and of the scale factor for each block of model parameters.
Once the TAR is achieved within the specified tolerance, the adaptation stops. However, no
more than # adaptation steps will be performed. The default is variable and is computed as
max{25, floor(burnin()/adaptation(every()))}.
maxiter() is usually chosen to be no greater than (mcmcsize() + burnin())/
adaptation(every()).

miniter(#) specifies the minimum number of adaptive iterations to be performed regardless of
whether the TAR has been achieved. The default is miniter(5). If the specified miniter()
is greater than maxiter(), then miniter() is reset to maxiter(). Thus, if you specify
maxiter(0), then no adaptation will be performed.

alpha(#) specifies a parameter controlling the adaptation of the AR. alpha() should be in
[0, 1]. The default is alpha(0.75).

beta(#) specifies a parameter controlling the adaptation of the proposal covariance matrix.
beta() must be in [0,1]. The closer beta() is to zero, the less adaptive the proposal
covariance. When beta() is zero, the same proposal covariance will be used in all MCMC
iterations. The default is beta(0.8).

gamma(#) specifies a parameter controlling the adaptation rate of the proposal covariance
matrix. gamma() must be in [0,1]. The larger the value of gamma(), the less adaptive the
proposal covariance. The default is gamma(0).

tarate(#) specifies the TAR for all blocks of model parameters; this is rarely used. tarate()
must be in (0,1). The default AR is 0.234 for blocks containing continuous multiple parameters,
0.44 for blocks with one continuous parameter, and 1/n maxlev for blocks with discrete
parameters, where n maxlev is the maximum number of levels for a discrete parameter in
the block.

tolerance(#) specifies the tolerance criterion for adaptation based on the TAR. tolerance()
should be in (0,1). Adaptation stops whenever the absolute difference between the current
AR and TAR is less than tolerance(). The default is tolerance(0.01).

scale(#) specifies an initial multiplier for the scale factor for all blocks. The initial scale factor is
computed as #/

√
np for continuous parameters and #/np for discrete parameters, where np is the

number of parameters in the block. The default is scale(2.38).

covariance(cov) specifies a scale matrix cov to be used to compute an initial proposal covariance
matrix. The initial proposal covariance is computed as ρ × Σ, where ρ is a scale factor and
Σ = matname. By default, Σ is the identity matrix. Partial specification of Σ is also allowed.
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The rows and columns of cov should be named after some or all model parameters. According
to some theoretical results, the optimal proposal covariance is the posterior covariance matrix of
model parameters, which is usually unknown. This option does not apply to the blocks containing
random-effects parameters.

� � �
Reporting �

clevel(#) specifies the credible level, as a percentage, for equal-tailed and HPD credible intervals.
The default is clevel(95) or as set by [BAYES] set clevel.

hpd displays the HPD credible intervals instead of the default equal-tailed credible intervals.

eform and eform(string) specify that the coefficient table be displayed in exponentiated form and
that exp(b) and string, respectively, be used to label the exponentiated coefficients in the table.

remargl specifies to compute the log marginal-likelihood for panel-data and multilevel models. It
is not reported by default for these models. Bayesian panel-data and multilevel models contain
many parameters because, in addition to regression coefficients and variance components, they also
estimate individual random effects. The computation of the log marginal-likelihood involves the
inverse of the determinant of the sample covariance matrix of all parameters and loses its accuracy
as the number of parameters grows. For high-dimensional models such as multilevel models, the
computation of the log marginal-likelihood can be time consuming, and its accuracy may become
unacceptably low. Because it is difficult to access the levels of accuracy of the computation for
all panel-data and multilevel models, the log marginal-likelihood is not reported by default. For
models containing a small number of random effects, you can use the remargl option to compute
and display the log marginal-likelihood.

batch(#) specifies the length of the block for calculating batch means and an MCSE using batch
means. The default is batch(0), which means no batch calculations. When batch() is not
specified, the MCSE is computed using effective sample sizes instead of batch means. batch()
may not be combined with corrlag() or corrtol().

saving(filename
[
, replace

]
) saves simulation results in filename.dta. The replace option

specifies to overwrite filename.dta if it exists. If the saving() option is not specified, bayesmh
saves simulation results in a temporary file for later access by postestimation commands. This
temporary file will be overridden every time bayesmh is run and will also be erased if the current
estimation results are cleared. saving() may be specified during estimation or on replay.

The saved dataset has the following structure. Variable chain records chain identifiers. Variable
index records iteration numbers. bayesmh saves only states (sets of parameter values) that are

different from one iteration to another and the frequency of each state in variable frequency.
(Some states may be repeated for discrete parameters.) As such, index may not necessarily
contain consecutive integers. Remember to use frequency as a frequency weight if you need to
obtain any summaries of this dataset. Values for each parameter are saved in a separate variable
in the dataset. Variables containing values of parameters without equation names are named as
eq0 p#, following the order in which parameters are declared in bayesmh. Variables containing
values of parameters with equation names are named as eq# p#, again following the order in which
parameters are defined. Parameters with the same equation names will have the same variable
prefix eq#. For example,

. bayesmh y x1, likelihood(normal({var})) saving(mcmc) . . .

will create a dataset, mcmc.dta, with variable names eq1 p1 for {y:x1}, eq1 p2 for {y: cons},
and eq0 p1 for {var}. Also see macros e(parnames) and e(varnames) for the correspondence
between parameter names and variable names.
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In addition, bayesmh saves variable loglikelihood to contain values of the log likelihood
from each iteration and variable logposterior to contain values of the log posterior from each
iteration.

nomodelsummary suppresses the detailed summary of the specified model. The model summary is
reported by default.

noexpression suppresses the output of expressions from the model summary. Expressions (when
specified) are reported by default.

chainsdetail specifies that acceptance rates, efficiencies, and log marginal-likelihoods be reported
separately for each chain. By default, the header reports these statistics averaged over all chains.
This option requires option nchains().

nodots, dots, and dots(#) specify to suppress or display dots during simulation. With multiple
chains, these options affect all chains. dots(#) displays a dot every # iterations. During the
adaptation period, a symbol a is displayed instead of a dot. If dots(. . ., every(#)) is specified,
then an iteration number is displayed every #th iteration instead of a dot or a. dots(, every(#)) is
equivalent to dots(1, every(#)). dots displays dots every 100 iterations and iteration numbers
every 1,000 iterations; it is a synonym for dots(100, every(1000)). By default, no dots are
displayed (nodots or dots(0)).

show(paramref) or noshow(paramref) specifies a list of model parameters to be included in the
output or excluded from the output, respectively. By default, all model parameters (except random-
effects parameters) are displayed. Do not confuse noshow() with exclude(), which excludes
the specified parameters from the MCMC sample. When the noshow() option is specified, for
computational efficiency, MCMC summaries of the specified parameters are not computed or stored
in e(). paramref can include individual random-effects parameters.

showreffects and showreffects(reref) are used with multilevel models and specify that all or
a list reref of random-effects parameters be included in the output in addition to other model
parameters. By default, all random-effects parameters are excluded from the output as if you
have specified the noshow() option. This option computes, displays, and stores in e() MCMC
summaries for the random-effects parameters.

notable suppresses the estimation table from the output. By default, a summary table is displayed
containing all model parameters except those listed in the exclude() and noshow() options.
Regression model parameters are grouped by equation names. The table includes six columns
and reports the following statistics using the MCMC simulation results: posterior mean, posterior
standard deviation, MCMC standard error or MCSE, posterior median, and credible intervals.

noheader suppresses the output header either at estimation or upon replay.

title(string) specifies an optional title for the command that is displayed above the table of the
parameter estimates. The default title is specific to the specified likelihood model.

display options: vsquish, noemptycells, baselevels, allbaselevels, nofvlabel,
fvwrap(#), fvwrapon(style), and nolstretch; see [R] Estimation options.

� � �
Advanced �

search(search options) searches for feasible initial values. search options are on, repeat(#),
and off.

search(on) is equivalent to search(repeat(500)). This is the default.

search(repeat(k)), k > 0, specifies the number of random attempts to be made to find
a feasible initial-value vector, or initial state. The default is repeat(500). An initial-value
vector is feasible if it corresponds to a state with positive posterior probability. If feasible initial
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values are not found after k attempts, an error will be issued. repeat(0) (rarely used) specifies
that no random attempts be made to find a feasible starting point. In this case, if the specified
initial vector does not correspond to a feasible state, an error will be issued.

search(off) prevents the command from searching for feasible initial values. We do not recom-
mend specifying this option.

corrlag(#) specifies the maximum autocorrelation lag used for calculating effective sample sizes. The
default is min{500, mcmcsize()/2}. The total autocorrelation is computed as the sum of all lag-k
autocorrelation values for k from 0 to either corrlag() or the index at which the autocorrelation
becomes less than corrtol() if the latter is less than corrlag(). Options corrlag() and
batch() may not be combined.

corrtol(#) specifies the autocorrelation tolerance used for calculating effective sample sizes. The
default is corrtol(0.01). For a given model parameter, if the absolute value of the lag-k
autocorrelation is less than corrtol(), then all autocorrelation lags beyond the kth lag are
discarded. Options corrtol() and batch() may not be combined.

Remarks and examples
Remarks are presented under the following headings:

Using bayesmh
Setting up a posterior model

Likelihood model
Prior distributions
Declaring model parameters
Referring to model parameters
Specifying arguments of likelihood models and prior distributions
Substitutable expressions
Constraints on coefficients in linear combinations
Random effects
Checking model specification

Specifying MCMC sampling procedure
Reproducing results
Burn-in period and MCMC sample size
Improving efficiency of the MH algorithm—blocking of parameters
Gibbs and hybrid MH sampling
Adaptation of the MH algorithm
Specifying initial values

Summarizing and reporting results
Posterior summaries and credible intervals
Saving MCMC results

Convergence of MCMC

Examples are presented under the following headings:

Getting started examples
Mean of a normal distribution with a known variance
Mean of a normal distribution with an unknown variance
Simple linear regression
Multiple linear regression
Improving efficiency of the MH sampling

Convergence diagnostics using multiple chains
Multiple chains using default initial values
Multiple chains using overdispersed initial values

Bayesian predictions
Simulating replicated outcomes
Posterior predictive checks

Logistic regression model: A case of nonidentifiable parameters
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Ordered probit regression
Beta-binomial model
Multivariate regression
Panel-data and multilevel models

Two-level random-intercept model or panel-data model
Linear growth curve model—a random-coefficient model
Multilevel logistic regression
Three-level nonlinear model

Survival models
Bayesian analysis of change-point problem
Bioequivalence in a crossover trial
Random-effects meta-analysis of clinical trials
Item response theory
Latent growth model
Video examples

For a quick overview example of all Bayesian commands, see Overview example in [BAYES] Bayesian
commands.

Using bayesmh

The bayesmh command for Bayesian analysis includes three functional components: setting up
a posterior model, performing MCMC simulation, and summarizing and reporting results. The first
component, the model-building step, requires some experience in the practice of Bayesian statistics
and, as any modeling task, is probably the most demanding. You should specify a posterior model
that is statistically correct and that represents the observed data. Another important aspect is the
computational feasibility of the model in the context of the MH MCMC procedure implemented in
bayesmh. The provided MH algorithm is adaptive and, to a degree, can accommodate various statistical
models and data structures. However, careful model parameterization and well-specified initial values
and MCMC sampling scheme are crucial for achieving a fast-converging Markov chain and consequently
good results. Simulation of MCMC must be followed by a thorough investigation of the convergence
of the MCMC algorithm. Once you are satisfied with the convergence of the simulated chains, you
may proceed with posterior summaries of the results and their interpretation. Below we discuss the
three major steps of using bayesmh and provide recommendations.

Setting up a posterior model

Any posterior model includes a likelihood model that specifies the conditional distribution of the
data given model parameters and prior distributions for all model parameters. The prior distribution of
a parameter can itself be specified conditional on other parameters, also referred to as hyperparameters.
We will refer to their prior distributions as hyperpriors.

Likelihood model

The likelihood model describes the data. You build your likelihood model the same way you do
this in frequentist likelihood-based analysis.

The bayesmh command provides various likelihood models, which are specified in the like-
lihood() option. For a univariate response, there are normal models, generalized linear models
for binary and count response, and more. For a multivariate model, you may choose between a
multivariate normal model with covariates common to all variables and with covariates specific to
each variable. You can also build likelihood models for multiple variables by specifying a distribution
and a regression function for each variable by using bayesmh’s multiple-equations specification.
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bayesmh is primarily designed for fitting regression models. As we said above, you specify the
likelihood or outcome distribution in the likelihood() option. The regression specification of the
model is the same as for other regression commands. For a univariate response, you specify the
dependent and all independent variables following the command name. (Here we also include the
prior() option that specifies prior distributions to emphasize that it is required in addition to
likelihood(). See the next subsection for details about this option.)

. bayesmh y x1 x2, likelihood() prior() . . .

For a multivariate response, you separate the dependent variables from the independent variables
with the equal sign.

. bayesmh y1 y2 = x1 x2, likelihood(mvnormal(. . .)) prior() . . .

With multiple-equations specification, you follow the syntax for the univariate response, but you
specify each equation in parentheses and you specify the likelihood() option within each equation.

. bayesmh (y1 x1, likelihood()) (y2 x2, likelihood()), prior() . . .

In the above models, the regression function is modeled using a linear combination of the specified
independent variables and regression coefficients. The constant is included by default, but you can
specify the noconstant option to omit it from the linear predictor.

bayesmh also allows you to model the regression function as a nonlinear function of independent
variables and regression parameters. In this case, you must use the equal sign to separate the dependent
variable from the expression and specify the expression in parentheses:

. bayesmh y = ({a}+{b}*x^{c}), likelihood(normal()) prior() . . .

. bayesmh (y1 = ({a1}+{b1}*x^{c1}) ///
(y2 = ({a2}+{b2}*x^{c2}), likelihood(mvnormal()) prior() . . .

You can fit linear and nonlinear multilevel models by including random-effects terms in your
regression specifications.

. bayesmh y x1 x2 U[id], likelihood() prior() . . .

. bayesmh y = ({a}+{b}*x^{c}+{U[id]}), likelihood() prior() . . .

Finally, you can model an outcome distribution directly by specifying one of the supported
probability distributions.

For a not-supported or nonstandard likelihood, you can use the llf() option within likeli-
hood() to specify a generic expression for the observation-level likelihood function; see Substitutable
expressions. When you use the llf() option, it is your responsibility to ensure that the provided
expression corresponds to a valid density. For more complicated Bayesian models, you may consider
writing your own likelihood or posterior function evaluators; see [BAYES] bayesmh evaluators.

Prior distributions

In addition to the likelihood, you must also specify prior distributions for all model parameters in a
Bayesian model (except random effects). Prior distributions or priors are key components in a Bayesian
model specification and should be chosen carefully. They are used to quantify some expert knowledge
or existing information about model parameters. For example, priors can be used for constraining
the domain of some parameters to localize values that we think are more probable for reasons that
are not considered in the likelihood specification. Improper priors (priors with densities that do not
integrate to finite numbers) are also allowed, as long as they yield valid posterior distributions. Priors
are often categorized as informative (subjective) or noninformative (objective). Noninformative priors
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are also known as vague priors. Uniform distributions are often used as noninformative priors and
can even be applied to parameters with unbounded domains, in which case they become improper
priors. Normal and gamma distributions with very large variances relative to the expected values
of the parameters are also used as noninformative priors. Another family of noninformative priors,
often chosen for their invariance under reparameterization, are so-called Jeffreys priors, named after
Harold Jeffreys (Jeffreys 1946). For example, the bayesmh command provides built-in Jeffreys priors
for the normal family of distributions. Jeffreys priors are usually improper. As discussed by many
researchers, however, the overuse of noninformative priors contradicts the principles of Bayesian
approach—analysis of a posterior model with noninformative priors would be close to one based on
the likelihood only. Noninformative priors may also negatively influence the MCMC convergence. It
is thus important to find good priors based on earlier studies and use them in the model as well as
perform sensitivity analysis for competing priors. A good choice of prior should minimize the MCMC
standard errors of the parameter estimates.

As for likelihoods, the bayesmh command provides several priors you can choose from by
specifying the prior() options. For example, continuous univariate priors include normal, lognormal,
uniform, inverse gamma, and exponential; discrete priors include Bernoulli and Poisson; multivariate
priors include multivariate normal and inverse Wishart. There are also special priors: jeffreys and
jeffreys(#), which specify Jeffreys priors for the variance of the normal and multivariate normal
distributions, and zellnersg() and zellnersg0(), which specify multivariate priors for regression
coefficients (Zellner and Revankar 1969).

The prior() option is required and may be repeated. You can use the prior() option for each
parameter or you can combine multiple parameters in one prior() specification.

For example, we can specify different priors for parameters {y:x} and {y: cons} by

. bayesmh y x, . . . prior({y:x}, normal(10,100)) prior({y: cons}, normal(20,200)) . . .

or the same univariate prior using one prior() statement, using

. bayesmh y x, . . . prior({y:x _cons}, normal(10,100)) . . .

or a multivariate prior with zero mean and fixed variance–covariance S, as follows:

. bayesmh y x, . . . prior({y:x _cons}, mvnormal0(2,S)) . . .

In the prior() option, we list model parameters following any of the specifications described in
Referring to model parameters and then, following the comma, we specify one of the prior distributions
priordist.

If you want to specify a nonstandard prior or if the prior you need is not supported, you can use
the density() or logdensity() option within the prior() option to specify an expression for
a generic density or log density of the prior distribution; see Substitutable expressions. When you
use the density() or logdensity() option, it is your responsibility to ensure that the provided
expression corresponds to a valid density. For a complicated Bayesian model, you may consider
writing your own posterior function evaluator; see [BAYES] bayesmh evaluators.

Sometimes, you may need to specify a flat prior (a prior with the density equal to one) for some
of the parameters. This is often needed when specifying a noninformative prior. You can specify the
flat option instead of the prior distribution in the prior() option to request the flat prior. This
option is equivalent to specifying density(1) or logdensity(0) in prior().

With multilevel models, random-effects parameters, such as random intercepts {U[id]} at the id
levels, are assigned default normal priors with zero mean and an unknown variance, that is, {var U}.
You must, however, specify the priors for the unknown variance components. For instance, if we
include random intercepts {U[id]} in our model, we will need to specify the prior for {var U}.
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You can use the prior() option to change the default priors for random effects, prior({U}, . . .).
See Random effects .

The specified likelihood model for the data and prior distributions for the parameters are not
guaranteed to result in proper posterior distributions of the parameters. Therefore, unless you are
using one of the standard Bayesian models, you should always check the validity of the posterior
model you specified.

Declaring model parameters

Model parameters are typically declared, meaning first introduced, in the arguments of distributions
specified in options likelihood() and prior(). We will refer to model parameters that are declared
in the prior distributions (and not the likelihood distributions) as hyperparameters. Model parameters
may also be declared within the parameter specification of the prior() option, but this is more rare.

bayesmh distinguishes between two types of model parameters: scalar and matrix. There are also
random-effects parameters, but we describe them in detail in Random effects . All parameters must
be specified in curly braces, {}. There are two ways for declaring a scalar parameter: {param} and
{eqname:param}, where param and eqname are valid Stata names.

The specification of a matrix parameter is similar, but you must use the matrix suboptions:
{param, matrix} and {eqname:param, matrix}. The most common application of matrix model
parameters is for specifying the variance–covariance matrix of a multivariate normal distribution.

All matrices are assumed to be symmetric and only the elements in the lower diagonal are reported in
the output. Only a few multivariate prior distributions are available for matrix parameters: wishart(),
iwishart(), and jeffreys(). In addition to being symmetric, these distributions require that the
matrices be positive definite.

It is your responsibility to declare all parameters of your model, except regression coefficients in
linear models. For a linear model, bayesmh automatically creates a regression coefficient with the
name {depvar:indepvar} for each independent variable indepvar in the model and, if noconstant is
not specified, an intercept parameter {depvar: cons}. In the presence of factor variables, bayesmh
will create a parameter {depvar:level} for each level indicator level and a parameter {depvar:inter}
for each interaction indicator inter; see [U] 11.4.3 Factor variables. (It is still your responsibility,
however, to specify prior distributions for the regression parameters.)

For example,
. bayesmh y x, . . .

will automatically have two regression parameters: {y:x} and {y: cons}, whereas
. bayesmh y x, noconstant . . .

will have only one: {y:x}.

For a univariate normal linear regression, we may want to additionally declare the scalar variance
parameter by

. bayesmh y x, likelihood(normal({sig2})) . . .

We can label the variance parameter, as follows:
. bayesmh y x, likelihood(normal({var:sig2})) . . .

We can declare a hyperparameter for {sig2} using
. bayesmh y x, likelihood(normal({sig2})) prior({sig2}, igamma({df},2)) . . .

where the hyperparameter {df} is declared in the inverse-gamma prior distribution for {sig2}.
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For a multivariate normal linear regression, in addition to four regression parameters declared
automatically by bayesmh: {y1:x}, {y1: cons}, {y2:x}, and {y2: cons}, we may also declare
a parameter for the variance–covariance matrix:

. bayesmh y1 y2 = x, likelihood(mvnormal({Sigma, matrix})) . . .

or abbreviate matrix to m for short:

. bayesmh y1 y2 = x, likelihood(mvnormal({Sigma, m})) . . .

For a two-level random-intercept model,

. bayesmh y x U[id], . . .

in addition to regression coefficients {y:x} and {y: cons}, bayesmh creates a variance component
{var U} associated with the included random effects {U[id]}. See Random effects for details.

Referring to model parameters

After a model parameter is declared, we may need to refer to it in our further model specification.
We will definitely need to refer to it when we specify its prior distribution. We may also need to use
it as an argument in the prior distributions of other parameters or need to specify it in the block()
option for blocking of model parameters; see Improving efficiency of the MH algorithm—blocking
of parameters.

To refer to one parameter, we simply use its definition: {param}, {eqname:param}, {param,
matrix}, or {eqname:param, matrix}. There are several ways in which you can refer to multiple
parameters. You can refer to multiple model parameters in the parameter specification paramref of the
prior(paramref, . . .) option, of the block(paramref, . . .) option, or of the initial(paramref
#) option.

The most straightforward way to refer to multiple scalar model parameters is to simply list them
individually, as follows:

{param1} {param2} . . .

but there are shortcuts.

For example, the alternative to the above is

{param1 param2} . . .

where we simply list the names of all parameters inside one set of curly braces.

If parameters have the same equation name, you can refer to all the parameters with that equation
name as follows. Suppose that we have three parameters with the same equation name eqname, then
the specification

{eqname:param1} {eqname:param2} {eqname:param3}

is the same as the specification

{eqname:}

or the specification

{eqname:param1 param2 param3}

The above specification is useful if we want to refer to a subset of parameters with the same
equation name. For example, in the above, if we wanted to refer to only param1 and param2, we
could type

{eqname:param1 param2}
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If a factor variable is used in the specification of the regression function, you can use the same
factor-variable specification within paramref to refer to the coefficients associated with the levels of
that factor variable; see [U] 11.4.3 Factor variables.

You can mix and match all the specifications above in one parameter specification, paramref.

To refer to multiple matrix model parameters, you can use {paramlist, matrix} to refer to matrix
parameters with names paramlist and {eqname:paramlist, matrix} to refer to matrix parameters
with names in paramlist and with equation name eqname.

For example, the specification
{eqname:Sigma1,m} {eqname:Sigma2,m} {Sigma3,m} {Sigma4,m}

is the same as the specification
{eqname:Sigma1 Sigma2,m} {Sigma3 Sigma4,m}

See Random effects for how to refer to random-effects parameters.

You cannot refer to different types of parameters such as scalar and matrix parameters in one
paramref specification.

For referring to model parameters in postestimation commands, see Different ways of specifying
model parameters in [BAYES] Bayesian postestimation.

Specifying arguments of likelihood models and prior distributions

As previously mentioned, likelihood distributions (or more precisely, likelihood models), modelspec,
are specified in the likelihood(modelspec) option and prior distributions priordist are specified
following the comma in the prior(paramref, priordist) option. For a list of supported models and
distributions, see the corresponding tables in the syntax diagram.

In a likelihood model, mean and location parameters are determined by the specified regression
function and thus need not be specified in the likelihood distributions. For example, for a normal linear
regression, we use likelihood(normal(var)), where we specify only the variance parameter—the
mean is already parameterized as a linear combination of the specified independent variables. In the
prior distributions, we must specify all parameters of the distribution. For example, for a normal prior
specification, we use prior(paramref, normal(mu, var)), where we must specify both mean mu
and variance var. In addition, all multivariate prior distributions require that you specify the dimension
d as the first argument.

Scalar arguments of the distributions may be specified as a number or as a scalar expression
expr. Matrix arguments of the distributions may be specified as a matrix or as a matrix expression
expr. Both types of arguments may be specified as a parameter (see Declaring model parameters) or
as a substitutable expression, subexpr or resubexpr (see Substitutable expressions). All distribution
arguments, except the parameters of survival models and the dimension d of multivariate prior
distributions, support the above specifications. For likelihood models, arguments of the distributions
may also contain variable names.

For example, in a normal linear regression, we can specify the variance as a known value of 25,
. bayesmh y x, likelihood(normal(25)) . . .

or as a squared standard deviation of 5 (scalar expression),
. bayesmh y x, likelihood(normal(5^2)) . . .

or as an unknown variance parameter {var},
. bayesmh y x, likelihood(normal({var})) . . .
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or as a function of an unknown standard-deviation parameter {sd} (substitutable expression),

. bayesmh y x, likelihood(normal({sd}^2)) . . .

In a multivariate normal linear regression, we can specify the variance–covariance matrix as a
known matrix S,

. bayesmh y1 y2 = x, likelihood(mvnormal(S)) . . .

or as a matrix function S = R*R’ using its Cholesky decomposition,

. bayesmh y1 y2 = x, likelihood(mvnormal(R*R’)) . . .

or as an unknown matrix parameter {Sigma,m},

. bayesmh y1 y2 = x, likelihood(mvnormal({Sigma,m})) . . .

or as a function of an unknown variance parameter {var} (substitutable expression),

. bayesmh y1 y2 = x, likelihood(mvnormal({var}*S)) . . .

Substitutable expressions

You may use substitutable expressions in bayesmh to define nonlinear expressions subexpr,
arguments of outcome distributions in option likelihood(), observation-level log likelihood in
option llf(), arguments of prior distributions in option prior(), and generic prior distributions in
prior()’s suboptions density() and logdensity(). Substitutable expressions are just like any
other mathematical expression in Stata, except that they may include model parameters. Substitutable
expressions may contain factor variables and time-series operators; see [U] 11.4.3 Factor variables
and [U] 11.4.4 Time-series varlists.

To specify a substitutable expression in your bayesmh model, you must comply with the following
rules:

1. Model parameters are bound in braces: {mu}, {var:sigma2}, {Sigma, matrix}, and
{Cov:Sigma, matrix}.

2. Linear combinations can be specified using the notation

{ eqname: varlist
[
, xb noconstant

]
}

For example, {lc:mpg price weight} is equivalent to

{lc:mpg}*mpg + {lc:price}*price + {lc:weight}*weight + {mpg: cons}

The xb option is used to distinguish between the linear combination that contains one variable
and a free parameter that has the same name as the variable and the same group name
as the linear combination. For example, {lc:weight, xb} is equivalent to {lc: cons}
+ {lc:weight}*weight, whereas {lc:weight} refers to either a free parameter weight
with a group name lc or the coefficient of the weight variable, if {lc:} has been previously
defined in the expression as a linear combination that involves variable weight. Thus the xb
option indicates that the specification is a linear combination rather than a single parameter
to be estimated.

When you define a linear combination, a constant term is included by default. The nocon-
stant option suppresses the constant.

See Linear combinations in [ME] menl for details about specifying linear combinations.
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3. Initial values are given by including an equal sign and the initial value inside the braces,
for example, {b1=1.267}, {gamma=3}, etc. If you do not specify an initial value, that
parameter is initialized to one for positive scalar parameters and to zero for other scalar
parameters, or it is initialized to its MLE, if available. The initial() option overrides initial
values provided in substitutable expressions. Initial values for matrices must be specified in
the initial() option. By default, matrix parameters are initialized with identity matrices.

Specifying linear combinations. We can use substitutable expressions to specify linear combinations.

For example, a normal linear regression,

. bayesmh y x1 x2, likelihood(normal(1)) prior({y:}, normal(0,100))

may be equivalently (but less efficiently) fit using a nonlinear regression,

. bayesmh y = ({y:x1 x2}), likelihood(normal(1)) prior({y:}, normal(0,100))

The above nonlinear specification is essentially,

. bayesmh y = ({y:x1}*x1+{y:x2}*x2+{y: cons}), likelihood(normal(1))
> prior({y:}, normal(0,100))

Specifying nonstandard densities. We can use substitutable expressions to define nonstandard or
not-supported probability distributions.

For example, suppose we want to specify a Cauchy distribution with location a and scale b. We
can specify the expression for the observation-level likelihood function in the llf() option within
likelihood().

. bayesmh y, likelihood(llf(ln({b})-ln({b}^2+(y-{a})^2)-ln(_pi))) noconstant . . .

You can also use substitutable expressions to define nonstandard or not-supported prior distributions.
For example, as suggested by Gelman et al. (2014), we can specify a Cauchy prior with location a = 0
and scale b = 2.5 for logistic regression coefficients, where continuous covariate x is standardized
to have mean 0 and standard deviation 0.5. If bayesmh did not support the Cauchy prior (option
prior(, cauchy())), we could have specified this prior using the substitutable expressions as
follows:

. bayesmh y x, likelihood(logit)
> prior({y:x}, logdensity(ln(2.5)-ln(2.5^2+{y:x}^2)-ln(_pi)))
> prior({y:_cons}, logdensity(ln(10)-ln(10^2+{y:_cons}^2)-ln(_pi)))

Including random effects. Substitutable expressions may also contain random effects; see Random
effects .

Constraints on coefficients in linear combinations

If you wish to constrain a coefficient to a specific value, you can specify the @ symbol immediately
after the variable whose coefficient is being constrained and then type the value. For instance,

. bayesmh y x1 x2@1, . . .

will constrain the coefficient parameter {y:x2} to 1, which means that this parameter is a constant
and will not be sampled.

You can also constrain a coefficient to a symbol, which is equivalent to renaming the corresponding
parameter. For instance,

. bayesmh y x1 x2@a, . . .
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will replace {y:x2} with the free parameter {a}. This feature may be useful with multiple-equations
models when we want the variable used in several linear combinations to have the same coefficient.
For instance,

. bayesmh (y1 x1 x2@a, . . .) (y2 x1 x2@a, . . .)

will replace the parameters {y1:x2} and {y2:x2} with {a}, thus constraining the two original
coefficients to be the same.

Random effects

You can include random effects in your bayesmh’s specifications to fit multilevel models. Examples
of random effects specified within the bayesmh syntax are U1[id], U2[id1>id2], U3[id1#id3],
c.x1#U4[id], and 2.f1#U5[id], to name a few. These represent a random intercept at the id level,
a random intercept at the id2-within-id1 level, a random interaction between the crossed levels id1
and id3, a random slope for the continuous variable x1, and a random slope associated with the
second level of the factor variable f1, respectively. See the general syntax for the random-effects
terms below.

To fit linear multilevel models, you include random-effects terms just as you include covariates—you
simply list them following the dependent variable. For instance,

. bayesmh y x1 x2 U[id], . . .

. bayesmh y x1 x2 U0[id] c.x1#U1[id], . . .

In multiple-equations models, there are equation-specific coefficients associated with each random-
effect term. The coefficient of the random effect in the first equation in which it appears is constrained
to 1. For example,

. bayesmh (y1 x1 U[id1], . . .) (y2 x1 U[id1] V[id2], . . .)

constrains {y1:U} and {y2:V} to 1 because their associated random effects, {U[id1]} and {V[id2]},
appear for the first time in equations {y1:} and {y2:}, respectively. {y2:U} will be sampled because
the associated random effect, {U[id1]}, had already appeared in the first equation.

The coefficients are constrained to 1 for the purpose of identifiability because you cannot identify
both the coefficients and the variance component, which is introduced automatically by bayesmh, for
each random effect. (Technically, you could identify both parameters with Bayesian models if you
specify strong informative priors for them.)

You can override the coefficient constraints by using @value immediately following the random-
effects term. For example,

. bayesmh (y1 x1 U[id1], . . .) (y2 x1 U[id1]@1 V[id2], . . .)

constrains {y2:U} to 1 and lets {y1:U} be sampled. You may also constrain a random effect to a
symbol as follows:

. bayesmh (y1 x1 U[id1]@y1_U, . . .) (y2 x1 U[id1] V[id2], . . .)

Here both equations will contain coefficient parameters for U[id]: {y1 U} will be the coefficient
in the first equation, and {y2:U} will continue to be the coefficient in the second equation. Notice that
{y1 U} will be treated by bayesmh as a free parameter rather than its native regression coefficient.
The above specification is useful when you want to constrain a variance component instead of one
of the coefficients.
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You can also include random effects in nonlinear models. You do this by creating a so-called
random-effects substitutable expression—a substitutable expression that contains random effects.
When you include random effects in substitutable expressions, you must enclose them in {}, just as
you do this with other model parameters. For instance,

. bayesmh y = (({b1}+{U[id]})/(1+exp(-(x-{b2})/{b3}))), . . .

. bayesmh y = (1/({b0}+{b1}*x1+{b2}*x2+{U0[id]}+{c.x1#U1[id]})), . . .

The previous bayesmh model can be specified more elegantly by using a linear-combination
specification within a substitutable expression:

. bayesmh y = (1/({xb:x1 x2 U0[id] c.x1#U1[id]})), . . .

When random effects are specified within a linear-combination specification, as in the above exam-
ple, the curly braces around each random effect are not needed. See Random-effects substitutable
expressions in [ME] menl for examples of substitutable expressions containing random effects.

The general syntax for specifying random-effects terms, reterm, is provided below.

reterm Description

{rename[levelspec]} Random intercepts rename at hierarchy levelspec
{c.varname#rename[levelspec]} Random coefficients rename for continuous variable varname
{#.fvvarname#rename[levelspec]} Random coefficients rename for the #th level of

factor variable fvvarname

rename is a random-effects name. It is a Stata name that starts with a capital letter. levelspec defines
the level of hierarchy and is described below.

levelspec Description

levelvar variable identifying the group structure for the random effect at that level
lv2 > lv1 two-level nesting: levels of variable lv1 are nested within lv2
lv3 > lv2 > lv1 three-level nesting: levels of variable lv1 are nested within lv2,

which is nested within lv3
. . . > lv3 > lv2 > lv1 higher-level nesting
lv1#lv2 two-way interaction between crossed levels lv1 and lv2
lv1#lv2#lv3 three-way interaction between crossed levels lv1, lv2, and lv3
lv1#lv2#lv3#. . . higher-order interactions between crossed levels
all treat entire dataset as one big group
n treat each observation as its own group; defines a latent variable

You can equivalently specify levels in the opposite order, from the lowest level to the highest; for example, lv1 < lv2
< lv3, but they will be displayed in the canonical order, from the highest level to the lowest.

After you define a random-effects term once using its full specification rename[levelspec], you
can refer to it further simply by name rename, or you can continue using the full name.

When you include a random effect in your regression model, bayesmh creates a parameter for each
level of the grouping variable. For example, if you include U[id]—the random intercepts by level
variable id that contains levels 1 through 10—bayesmh will create a separate scalar parameter for
each level of id: {U[1.id]}, {U[2.id]}, . . . , {U[10.id]}. These scalar parameters are sampled
in one block using the sampling algorithm described in Adaptive MH algorithm for random effects
in Methods and formulas.

When you use random effects with user-specified log-likelihood and log-posterior evaluators, they
are sampled by default in one block as regular scalar parameters.
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When you refer to random-effects parameters in bayesmh’s specifications, you typically refer to
them as a group. For example, suppose that you included random intercepts by level variable id in
your model as U[id]. To specify a prior distribution for these random intercepts, you can refer to
them by using the full definition {U[id]} or simply by name {U}. In postestimation commands or,
for instance, in the showreffects() option, you may want to refer to individual random-effects
parameters such as {U[1.id]} and {U[1]} or to the subsets of them such as {U[(1/5).id]} and
{U[1/5]}. See Different ways of specifying model parameters in [BAYES] Bayesian postestimation
for other ways of referring to individual random-effects parameters.

For each random effect {rename[levelspec]} you include in the model, bayesmh automatically
assigns it a normal prior with zero mean and variance component {var rename}. But it is your
responsibility to specify a prior for each variance component {var rename}. You can also use the
prior() option to change the default prior for random effects. This is particularly useful for specifying
a multivariate normal prior with an unstructured covariance matrix for correlated random effects; see
example 25.

With multiple-equations models, you must specify a prior for each equation-specific coefficient
associated with a random effect as long as the coefficient is not constrained. For example, if we write

. bayesmh (y1 x1 U[id1], . . .) (y2 x1 U[id1] V[id2], . . .)

then a prior must be specified for coefficient {y2:U} but not for coefficients {y1:U} and {y2:V}
because these are constrained to 1.

Checking model specification

Specifying a Bayesian model may be a tedious task when there are many model parameters and
possibly hyperparameters. It is thus essential to verify model specification before starting a potentially
time-consuming estimation.

bayesmh displays the summary of the specified model as a part of its standard output. You can
use the dryrun option to obtain the model summary without estimation or simulation. Once you are
satisfied with the specified model, you can use the nomodelsummary option to suppress a potentially
long model summary during estimation. Even if you specify nomodelsummary during estimation,
you will still be able to see the model summary, if desired, by simply replaying the results:

. bayesmh

Specifying MCMC sampling procedure

Once you specify a correct posterior model, bayesmh uses an adaptive random-walk MH algorithm
to obtain MCMC samples of model parameters from their posterior distribution.

Reproducing results

Because bayesmh uses MCMC simulation—a stochastic procedure for sampling from a complicated
and possibly nontractable distribution—it will produce different results each time you run the command.
If the MCMC algorithm converged, the results should not change drastically. To obtain reproducible
results, you must specify the random-number seed.

To specify a random-number seed, you can use bayesmh’s rseed() option. With a single chain,
you can instead use set seed # prior to calling bayesmh; see [R] set seed. With multiple chains,
you should use rseed() for reproducibility because, as we explain later, using set seed is no longer
sufficient.
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With a single chain, if you forgot to specify the random-number seed before calling bayesmh, you
can retrieve the random-number state used by the command from e(rngstate) and use it later with
set rngstate. With multiple chains, reproducing results after the simulation without specifying the
seed is more difficult. We strongly recommend that you specify the rseed() option with bayesmh
when simulating multiple chains.

When you specify the nchains() option to simulate multiple chains, each chain uses its own
stream of random numbers; see [R] set rngstream. This is important to ensure that the chains are
independent. To reproduce the simulation results, a random-number seed must be used for each stream.
This is why using set seed prior to calling bayesmh will not be sufficient to reproduce results from
multiple chains—set seed will affect only the first random-number stream. bayesmh’s rseed()
option, however, will use the specified random-number seed with each stream. If you forgot to specify
the seed with multiple chains, you can retrieve chain-specific random-number states from stored scalars
e(rngstate1), e(rngstate2), etc. and use them with chain-specific random-number streams; see
[R] set rngstream and set rngstate in [R] set seed. For example, suppose you simulated two
chains and forgot to specify the random-number seed:

. bayesmh . . ., nchains(2) . . .

You can type the following directly after the simulation to reproduce the results:

. set rng mt64s

. set rngstate ‘e(rngstate2)’

. set rngstate ‘e(rngstate1)’

. bayesmh . . ., nchains(2) . . .

Stata’s default random-number generator is mt64; see [R] set rng. To simulate multiple chains, the
nchains() option temporarily switches to the stream random-number generator mt64s. To manually
reproduce the results from multiple chains, you need to use mt64s, but we recommend that you switch
back to mt64 for the rest of your analysis. The set rngstate command sets the corresponding
stream automatically; you do not need to use set rngstream to do this yourself. It is important,
however, that you set the state of the first chain last, just before the next call to bayesmh, so that
the stream used by the first chain is the current stream. Although you can reproduce results after
estimation, we strongly recommend that you use the rseed() option during estimation if you want
reproducibility.

Burn-in period and MCMC sample size

bayesmh has the default burn-in period of 2,500 iterations and the default MCMC sample size of
10,000 iterations. That is, the first 2,500 iterations of the MCMC sampler are discarded and the next
10,000 iterations are used to form the MCMC samples of values of model parameters. You can change
these numbers by specifying options burnin() and mcmcsize().

The burn-in period must be long enough for the algorithm to reach convergence or, in other words,
for the Markov chain to reach its stationary distribution or the desired posterior distribution of model
parameters. The sample size for the MCMC sample is typically determined based on the autocorrelation
present in the MCMC sample. The higher the autocorrelation, the larger the MCMC sample should be
to achieve the same precision of the parameter estimates as obtained from the chain with low or
negligible autocorrelation. Because of the nature of the sampling algorithm, all MCMC exhibit some
autocorrelation and thus MCMC samples tend to have large sizes.

The defaults provided by bayesmh may not be sufficient for all Bayesian models and data types.
You will need to explore the convergence of the MCMC algorithm for your particular data problem
and modify the settings, if needed.
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After the burn-in period, bayesmh includes every iteration in the MCMC sample. You can specify
the thinning(#) option to store results from a subset of iterations. This option is useful if you want
to subsample the chain to decrease autocorrelation in the final MCMC sample. If you use this option,
bayesmh will perform a total of thinning()× (mcmcsize()− 1) + 1 iterations, excluding burn-in
iterations, to obtain MCMC sample of size mcmcsize().

When you specify the nchains() option to produce multiple chains, the mcmcsize(), burnin(),
and thinning() options apply to each chain.

Improving efficiency of the MH algorithm—blocking of parameters

Although the MH algorithm is very general and can be applied to any Bayesian model, it is not
the most optimal sampler and may require tuning to achieve higher efficiency.

Efficiency describes mixing properties of the Markov chain. High efficiency means good mixing (low
autocorrelation) in the MCMC sample, and low efficiency means bad mixing (high autocorrelation) in
the MCMC sample. High autocorrelation is often present when fitting multilevel models; see Multilevel
models in [BAYES] bayes.

An AR is the number of accepted proposals of model parameters relative to the total number of
proposals. It should not be confused with sampling efficiency. High AR does not mean high efficiency.

An efficient MH sampler has an AR between 15% and 50% (Roberts and Rosenthal 2001) and low
autocorrelation and thus relatively large effective sample size (ESS) for all model parameters.

One way to improve efficiency of the MH algorithm is by blocking of model parameters. Blocking
of model parameters is an important functional aspect of the MH sampler. By default, all parameters
are used as one block and their covariance matrix is used to adapt the proposal distribution. With
many parameters, estimation of this covariance matrix becomes difficult and imprecise and may lead
to the loss of efficiency of the MH algorithm. In many cases, this matrix has a block diagonal structure
because of independence of some blocks or sets of model parameters and its estimation may be
replaced with estimation of the corresponding blocks, which are typically of smaller dimension. This
may improve the efficiency of the sampler. To achieve optimal blocking, you need to identify the sets
of approximately independent (a posteriori) model parameters and specify them in separate blocks.

To achieve an optimal blocking, you need to know or have some idea about the dependence between
the parameters as determined by the posterior distribution. To improve efficiency, follow this principle:
correlated parameters should be specified together, while independent groups of parameters should
be specified in separate blocks. Because the posterior is usually defined indirectly, the relationship
between the parameters is generally unknown. Often, however, we have some knowledge, either
deduced from the model specification or based on prior experience with the model, about which
parameters are highly correlated. In the worst case, you may need to run some preliminary simulations
and determine an optimal blocking by using trial and error.

An ideal case for the MH algorithm is when all model parameters are independent with respect
to the posterior distribution and are thus placed in separate blocks and sampled independently. In
practice, this is not a realistic or interesting case, but it gives us an idea that we should always try to
parameterize the model in such a way that the correlation between model parameters is minimized.

With bayesmh, you can use options block() to perform blocking. You specify one block()
option for each set of independent model parameters. Model parameters that are dependent with each
other are specified in the same block() option.

To illustrate a typical case, consider the following simple linear regression model:

y = {a} + {b}× x + ε, ε ∼ N(0, {var})
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Even when {a} and {b} have independent prior specifications, the location parameters {a} and {b}
are expected to be correlated a posteriori because of their common dependence on y. Alternatively, if
the variance parameter {var} is independent of {a} and {b} a priori, it is generally less correlated
with the location parameters a posteriori. A good blocking scheme is to use options block({a} {b})
and block({var}) with bayesmh. We can also reparameterize our model to reduce the correlation
between {a} and {b} by recentering. To center the slope parameter, we replace {b} with {b}− #,
where # is a constant close to the mean of {b}. Now {a} and {b}− # can also be placed in separate
blocks. See, for example, Thompson (2014) for more discussion related to model parameterization.

Other options that control MCMC sampling efficiency are scale(), covariance(), and adap-
tation(); see Adaptation of the MH algorithm for details.

With multiple chains, the block() option and other options that control MCMC sampling efficiency
apply to all chains.

Gibbs and hybrid MH sampling

In Improving efficiency of the MH algorithm—blocking of parameters, we discussed blocking of
model parameters as a way of improving efficiency of the MH algorithm. For certain Bayesian models,
further improvement is possible by using Gibbs sampling for certain blocks of parameters. This leads
to what we call a hybrid MH sampling with Gibbs updates.

Gibbs sampling is the most effective sampling procedure with the maximum possible AR of one and
with often very high efficiency. Using Gibbs sampling for some blocks of parameters will typically
lead to higher efficiency of the hybrid MH sampling compared with the simple MH sampling.

To apply Gibbs sampling to a set of parameters, we need to know the full conditional distribution
for each parameter and be able to generate random samples from it. Usually, the full conditionals are
known in various special cases but are not available for general posterior distributions. Thus, Gibbs
sampling is not available for all likelihood and prior combinations. bayesmh provides Gibbs sampling
for Bayesian models with conjugate, or more specifically, semiconjugate prior distributions. See Gibbs
sampling for some likelihood-prior and prior-hyperprior configurations for a list of supported models.

For a supported semiconjugate model, you can request Gibbs sampling for a block of parameters
by specifying the gibbs suboption within option block(). In some cases, the gibbs suboption may
be used in all parameter blocks, in which case we will have full Gibbs sampling.

To use Gibbs sampling for a set of parameters, you must first place them in separate prior()
statements and specify semiconjugate prior distributions and then place them in a separate block and
include the gibbs suboption, block(. . ., gibbs).

Here is a standard application of a full Gibbs sampling to a normal mean-only model. Under the
normal–inverse-gamma prior, the conditional posterior distributions of the mean parameter is normal
and of the variance parameter is inverse gamma.

. bayesmh y, likelihood(normal({var}))
> prior({y: cons}, normal(1,10))
> prior({var}, igamma(10,1))
> block({y: cons}, gibbs)
> block({var}, gibbs)

Because {y: cons} and {var} are approximately independent a posteriori, we specified them in
separate blocks.

Gibbs sampling can be applied to hyperparameters, which are not directly involved in the likelihood
specification of the model. For example, we can use Gibbs sampling for the covariance matrix of
regression coefficients.
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. bayesmh y x, likelihood(normal(var))
> prior(var, igamma(10,1))
> prior({y:_cons x}, mvnormal(2,1,0,{Sigma,m}))
> prior({Sigma,m}, iwishart(2,10,V))
> block({Sigma,m}, gibbs)

In the next example, the matrix parameter {Sigma,m} specifies the covariance matrix in the
multivariate normal prior for a pair of model parameters, {y:1.cat} and {y:2.cat}. {Sigma,m} is
a hyperparameter—it is not a model parameter of the likelihood but a parameter of a prior distribution,
and it has an inverse-Wishart hyperprior distribution, which is a semiconjugate prior with respect to
the multivariate normal prior distribution. Therefore, we can request a Gibbs sampler for {Sigma,m}.

bayesmh y x i.cat, likelihood(probit)
> prior(y:x _cons, normal(0, 1000))
> prior(y:1.cat 2.cat, mvnormal0(2,{Sigma,m}))
> prior({Sigma,m}, iwishart(2,10,V))
> block({Sigma,m}, gibbs)

In general, Gibbs sampling, when available, is useful for covariance matrices because MH sam-
pling has low efficiency for sampling positive-definite symmetric matrices. In a multivariate normal
regression, the inverse Wishart distribution is a conjugate prior for the covariance matrix and thus
inverse Wishart is the most common prior specification for a covariance matrix parameter. If an
inverse-Wishart prior (iwishart()) is used for a covariance matrix, you can specify Gibbs sampling
for the covariance matrix. You can do so by placing the matrix in a separate block and specifying
the gibbs suboption in that block, as we showed above. Using Gibbs sampling for the covariance
matrix usually greatly improves the sampling efficiency.

Adaptation of the MH algorithm

The MH algorithm simulates Markov chains by generating small moves or jumps from the current
parameter values (or current state) according to the proposal distribution. At each iteration of the
algorithm, the proposed new state is accepted with a probability that is calculated based on the
newly proposed state and the current state. The choice of a proposal distribution is crucial for the
mixing properties of the Markov chain, that is, the rate at which the chain explores its stationary
distribution. (In a Bayesian context, a Markov chain state is a vector of model parameters, and a
stationary distribution is the target posterior distribution.) If the jumps are too small, almost all moves
will be accepted. If the jumps are too large, almost all moves will be rejected. Either case will cause
the chain to explore the entire posterior domain slowly and will thus lead to poor mixing. Adaptive
MH algorithms try to tune the proposal distribution so that some optimal AR is achieved (Haario,
Saksman, and Tamminen [2001]; Roberts and Rosenthal [2009]; Andrieu and Thoms [2008]).

In the random-walk MH algorithm, the proposal distribution is a Gaussian distribution with a zero
mean and is completely determined by its covariance matrix. It is useful to represent the proposal
covariance matrix as a product of a (scalar) scale factor and a positive-definite scale matrix. Gelman,
Gilks, and Roberts (1997) show that the optimal scale matrix is the true covariance matrix of the
target distribution, and the optimal scale factor is inversely proportional to the number of parameters.
Therefore, in the ideal case when the true covariance matrix is available, it can be used as a proposal
covariance and an MCMC adaptation can be avoided altogether. In practice, the true covariance is
rarely known and the adaptation is thus unavoidable.

In the bayesmh command, the scale factor and the scale matrix that form the proposal covariance
are constantly tuned during the adaptation phase of an MCMC so that the current AR approaches some
predefined value.

You can use scale(), covariance(), and adaptation() options to control adaptation of the MH
algorithm. The TAR is controlled by option adaptation(tarate()). The initial scale factor and scale



162 bayesmh — Bayesian models using Metropolis–Hastings algorithm

matrix can be modified using the scale() and covariance() options. In the presence of blocks of
parameters, these options can be specified separately for each block within the block() option. At each
adaptation step, a new scale matrix is formed as a mixture (a linear combination) of the previous scale
matrix and the current empirical covariance matrix of model parameters. The mixture of the two matrices
is controlled by option adaptation(beta()). A positive adaptation(beta()) is recommended to
have a more stable scale matrix between adaptation periods. The adaptation lasts until the maximum
number adaptation(every())×adaptation(maxiter()) of adaptive iterations is reached or
until adaptation(tarate()) is reached within the adaptation(tolerance()) limit. The default
for maxiter() depends on the specified burn-in and adaptation(every()) and is computed as
max{25, floor(burnin()/adaptation(every()))}. The default for adaptation(every()) is
100. If you change the default values of these parameters, you may want to increase the burnin()
to be as long as the specified adaptation period so that adaptation is finished before the final
simulated sample is obtained. (There are adaptation regimes in which adaptation is performed during
the simulation phase as well, such as continuous adaptation.) Two additional adaptation options,
adaptation(alpha()) and adaptation(gamma()) control the AR and the adaptation rate. For
a detailed description of the adaptation process, see Adaptive random-walk Metropolis–Hastings in
[BAYES] Intro and Adaptive MH algorithm in Methods and formulas.

With multiple chains, adaptation options apply to all chains.

Specifying initial values

When exploring convergence of MCMC, it may be useful to try different initial values to verify
that the convergence is unaffected by starting values. Using different initial values is also essential
for multiple chains. We first describe how to specify initial values for a single chain and later for
multiple chains.

Single chain. There are two different ways to specify initial values of model parameters in bayesmh
for a single chain. First is by specifying an initial value when declaring a model parameter. Second
is by specifying an initial value in the initial() option. Initial values for matrix model parameters
may be specified only in the initial() option.

For example, below we initialize variance parameter {var} with a value of 1 using two equivalent
ways, as follows:

. bayesmh y x, likelihood(normal({var=1})) . . .

or

. bayesmh y x, likelihood(normal({var})) initial({var} 1) . . .

If both initial-value specifications are used, initial values specified in the initial() option override
any initial values specified during parameter declaration for the corresponding parameters.

You can initialize multiple parameters with the same value by supplying a list of parameters
by using any of the specifications described in Referring to model parameters to initial(). For
example, to initialize all regression coefficients from equations y1 and y2 to zero, you can type

. bayesmh . . ., initial({y1:} {y2:} 0) . . .

Stata expressions that evaluate to a number can also be used to specify initial values for scalar
parameters. One particularly useful application of this is specifying random initial values using Stata’s
random-number functions; see [FN] Random-number functions. For example, we can generate
random initial values for parameters {y1:} from a normal distribution with mean 0 and standard
deviation 10 and for parameters {y2:} from a uniform on (0, 1) distribution as follows:

. bayesmh . . ., initial({y1:} rnormal(0,10) {y2:} runiform(0,1)) . . .
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You may also specify the initrandom option to request random initial values for all model
parameters. In that case, initial values are generated from the prior distributions of the parameters,
except for parameters that are assigned flat, jeffreys, density(), logdensity(), or jeffreys()
prior distributions. For such parameters, you must specify your own initial values, or bayesmh will
issue an error message.

Multiple chains. In the presence of multiple chains, you can use the init#() options to specify
initial values for each chain: the init1() option specifies initial values for the first chain, init2()
for the second chain, and so on. You specify initial values within the init#() options just like you
do this within initial() for a single chain. (With multiple chains, initial() is synonymous to
init1().)

For example,

. bayesmh y x, likelihood(normal({var})) nchains(2) init1({var} 1) init2({var} 10) . . .

You can use the initall() option to specify initial values for all chains. This is useful, for
instance, when you want to generate random initial values from the same distribution for all chains.
You should avoid specifying fixed initial values within initall() because then all chains will use
the same starting values.

Default initial values. By default, if no initial value is specified and option nomleinitial is
not used, bayesmh uses MLEs, whenever available, as starting values for model parameters for a
single chain. For random-effects parameters, bayesmh uses zeros as initial values and ones for their
respective variance components. You can specify the initsummary option to see the default initial
values used by bayesmh.

For example, for the previous regression model, bayesmh uses regression coefficients and mean
squared error from linear regression regress y x as the respective starting values for the regression
model parameters and variance parameter {var}.

If MLE is not available and an initial value is not provided, then a scalar model parameter is
initialized with 1 for positive parameters and 0 for other parameters, and a matrix model parameter is
initialized with an identity matrix. Note, however, that this default initialization is not guaranteed to
correspond to the feasible state for the specified posterior model; that is, posterior probability of the
initial state can be 0. When initial values are not feasible, bayesmh makes 500 random attempts to
find a feasible initial-value vector. An initial-value vector is feasible if it corresponds to a state with
positive posterior probability. If feasible initial values are not found after 500 attempts, bayesmh will
issue the following error:

could not find feasible initial state
r(498);

You may use the search() option to modify the default settings for finding feasible initial values.

In the presence of multiple chains, each chain uses a different set of initial values for model
parameters. The above description of default initial values applies to the first chain only. The subsequent
chains use random initial values, which generally are generated from the prior distributions.

For improper priors flat, jeffreys, and jeffreys(#), bayesmh cannot draw random initial
values directly from these priors. Doing so would typically produce extreme values for model
parameters for which log likelihood would be missing. Instead, the command generates initial values
from a normal distribution centered at the initial values of the first chain with standard deviations
proportional to the magnitudes of the respective initial estimates. This approach is also used to generate
default initial values with user-defined priors density() and logdensity().

Random initial values may not always be feasible. Extreme values may be produced for model
parameters for some prior distributions, which may lead to missing log-likelihood values. bayesmh
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will attempt to generate several different sets of initial values before terminating the simulation of
a particular chain and issuing a warning message. In this case, you must specify your own initial
values for that chain.

Default initial values are provided for convenience! To detect nonconvergence, overdispersed
initial values should be used with multiple chains. Randomly generated default initial values are not
guaranteed to produce overdispersed initial values for all chains. To fully explore convergence, we
recommend that you specify your own initial values with multiple chains, especially with improper
or noninformative priors.

See Convergence diagnostics using multiple chains for an example of specifying initial values with
multiple chains.

You can use the initsummary option to see the initial values used for simulation. The initial
values are also stored in the e(init) matrix after estimation.

Summarizing and reporting results

As we discussed in Checking model specification, it is useful to verify the details about your
model specification before estimation. The dryrun model will display the model summary without
estimation. Once you are satisfied with the model specification, you can use the nomodelsummary
option during estimation to suppress a potentially long model summary from the final output.

In the presence of blocking, you may also display the information about specified blocks by using
the blocksummary option.

Simulation may be time consuming for large datasets and for models with many parameters. You
can specify one of dots or dots(#) option to display a dot every # iterations to see the simulation
progress.

You can also use the initsummary option to see the initial values used in the simulation, which
may be useful with multiple chains.

Posterior summaries and credible intervals

After simulation, bayesmh reports various summaries about the model parameters in the output
table. The summaries include posterior mean and median estimates, estimates of posterior standard
deviation and MCSE, and credible intervals. By default, 95% equal-tailed credible intervals are reported.
You can use the hpd option to request HPD intervals instead. You can also use the clevel() option
to change the default credible level.

bayesmh provides two estimators for MCSE: one using ESS and one using batch means. The ESS-
based estimator is the default. You can request the batch-means estimator by specifying the batch()
option. Options corrlag() and corrtol() affect how ESS is estimated when computing MCSE; see
Methods and formulas in [BAYES] bayesstats summary for details.

For multilevel models, bayesmh does not report MCMC summaries for random-effects parameters
by default, but you can use the showreffects or showreffects() option to display the summaries,
respectively, for all of them or for a subset of them during either estimation or replay.

In the presence of multiple chains, all chains are used to produce posterior summaries. You can
use bayesstats summary’s sepchains option to see the results for each chain separately. Also, the
reported acceptance rate, efficiencies, and log marginal-likelihood are averaged over all chains. You
can use the chainsdetail option to see these simulation summaries for each chain.
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Saving MCMC results

In addition to postestimation summaries, bayesmh saves simulation results containing MCMC
samples for all model parameters to a temporary Stata dataset. You can use the saving() option to
save simulation results to a permanent dataset. In fact, if you want to store your estimation results in
memory or save them to a disk, you must specify the saving() option with bayesmh; see Storing
estimation results after Bayesian estimation in [BAYES] Bayesian postestimation. You can also specify
the saving() option on replay.

. bayesmh, saving(. . .)

By default, all model parameters are saved in the dataset. If desired, you can exclude some of the
parameters from the dataset by specifying the exclude() option. Beware that you will not be able
to obtain posterior summaries for these parameters or use them in any way in your analysis, because
no simulation results will be available for them. Also, the Laplace–Metropolis approximation for the
log marginal-likelihood will not be available because its computation requires simulation results for
all model parameters.

When fitting multilevel models containing many random effects, if you are interested only in the
estimates of regression coefficients and variance components, you may consider using the exclude()
option to exclude saving MCMC estimates of random-effects parameters to save time. If you do this,
beware that some of the Bayesian postestimation features may not be available.

Convergence of MCMC

As we discuss in Convergence diagnostics of MCMC in [BAYES] Intro, checking convergence is
an essential step of any MCMC simulation. Bayesian inference based on an MCMC sample is only valid
if the Markov chain has converged and the sample is drawn from the desired posterior distribution.
It is important to emphasize that we need to verify the convergence for all model parameters and
not only for a subset of parameters of interest. Another difficulty in accessing convergence of MCMC
is the lack of a single conclusive convergence criterion. The diagnostic usually involves checking
for several necessary (but not necessarily sufficient) conditions for convergence. In general, the more
aspects of the MCMC sample you inspect, the more reliable your results are.

An MCMC is said to have converged if it reached its stationary distribution. In the Bayesian context,
the stationary distribution is the true posterior distribution of model parameters. Provided that the
considered Bayesian model is well specified (that is, it defines a proper posterior distribution of model
parameters), the convergence of MCMC is determined by the properties of its sampling algorithm.

The main component of the MH algorithm, or any MCMC algorithm, is the number of iterations
it takes for the chain to approach its stationary distribution or for the MCMC sample to become
representative of a sample from the true posterior distribution of model parameters. The period during
which the chain is converging to its stationary distribution from its initial state is called the burn-in
period. The iterations of the burn-in period are discarded from the MCMC sample used for analysis.
Another complication is that adjacent observations from the MCMC sample tend to be positively
correlated; that is, autocorrelation is typically present in MCMC samples. In theory, this should not be
a problem provided that the MCMC sample size is sufficiently large. In practice, the autocorrelation in
the MCMC sample may be so high that obtaining a sample of the necessary size becomes infeasible
and finding ways to reduce autocorrelation becomes important.

Two aspects of the MH algorithm that affect the length of the burn-in (and convergence) are the
starting values of model parameters or, in other words, a starting state and a proposal distribution.
bayesmh has the default burn-in of 2,500 iterations, but you can change it by specifying the burnin()
option. bayesmh uses a Gaussian normal distribution with a zero mean and a covariance matrix that
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is updated with current sample values during the adaptation period. You can control the proposal
distribution by changing the initial scale factor in option scale() and an initial scale matrix in option
covariance(); see Adaptation of the MH algorithm.

For the starting values of a single chain, bayesmh uses MLEs whenever available, but you can
specify your own initial values in option initial(); see Specifying initial values. Good initial values
help to achieve fast convergence of MCMC and bad initial values may slow convergence down. A
common approach for eliminating the dependence of the chain on the initial values is to discard an
initial part of the simulated sample: a burn-in period. The burn-in period must be sufficiently large
for a chain to “forget” its initial state and approach its stationary distribution or the desired posterior
distribution.

There are some researchers (for example, Geyer [2011]) who advocate that any starting point in
the posterior domain is equally good and there should be no burn-in. While this is a sensible approach
for a fixed, nonadaptive MH algorithm, it may not be as sensible for an adaptive MH algorithm because
the proposal distribution is changing (possibly drastically) during the adaptation period. Therefore,
adaptive iterations are better discarded from the analysis MCMC sample and thus it is recommended
that the burn-in period is at least as long as the adaptation period. (There are adaptive regimes such
as continuous adaptation in which adaptation continues after the burn-in period as well.)

In addition to fast convergence, an “ideal” MCMC chain will also have good mixing (or low
autocorrelation). A good mixing can be viewed as a rapid movement of the chain around the parameter
space. High autocorrelation in MCMC and consequently low efficiencies are usually indications of bad
mixing. To improve the mixing of the chain, you may need to improve the efficiency of the algorithm
(see Improving efficiency of the MH algorithm—blocking of parameters) or sometimes reparameterize
your model. In the presence of high autocorrelation, you may also consider subsampling or thinning
the chain, option thinning(), to reduce autocorrelation, but this may not always be the best approach.

Even when the chain appears to have converged and has good mixing, you may still have a case
of pseudoconvergence, which is common for multimodal posterior distributions. Specifying different
sets of initial values may help detect pseudoconvergence.

Multiple chains are often used to assess the convergence of MCMC; see Convergence diagnostics
using multiple chains and Balov (2016c). For more information about convergence of MCMC and
its diagnostics, see Convergence diagnostics of MCMC in [BAYES] Intro, [BAYES] bayesgraph,
[BAYES] bayesstats ess, and [BAYES] bayesstats grubin.

In what follows, we concentrate on demonstrating various specifications of bayesmh, which may
not always correspond to the optimal Bayesian analysis for the considered problem. In addition,
although we skip checking convergence for some of our models to keep the exposition short, it is
important that you always check the convergence of all parameters in your model in your analysis
before you make any inferential conclusions. If you are also interested in any functions of model
parameters, you must check convergence of those functions as well.

Video examples

Introduction to Bayesian statistics, part 1: The basic concepts

Introduction to Bayesian statistics, part 2: MCMC and the Metropolis–Hastings algorithm

https://youtu.be/0F0QoMCSKJ4
https://youtu.be/OTO1DygELpY
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Getting started examples

We will use the familiar auto.dta for our introductory examples. This dataset contains information
about 74 automobiles, including their make and model, price, and mileage (variable mpg). In our
examples, we are interested in estimating the average fuel efficiency as measured by the mpg variable
and its relationship with other automobile characteristics such as weight.

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)

. describe mpg weight length

Variable Storage Display Value
name type format label Variable label

mpg int %8.0g Mileage (mpg)
weight int %8.0gc Weight (lbs.)
length int %8.0g Length (in.)

Mean of a normal distribution with a known variance

We start with an example of estimating the mean of a normal distribution with known variance.
This corresponds to a constant-only normal linear regression with an unknown constant (or intercept)
and a known error variance.

Suppose we are interested in estimating the average fuel efficiency as measured by the mpg variable.
For illustration purposes, let’s assume that mpg is normally distributed. We are interested in estimating
its mean. Let’s also assume that we know the variance of mpg and it is 36.

Example 1: Noninformative prior for the mean when variance is known

To fit a Bayesian model, we must specify the likelihood model and priors for all model parameters.
We have only one parameter in this model—the constant (or the mean) of mpg. We first consider a
noninformative prior for the constant: the prior distribution with a density equal to one.

To specify this model in bayesmh, we use the likelihood specification mpg, likeli-
hood(normal(36)) and the prior specification prior({mpg: cons}, flat), where suboption
flat requests a flat prior distribution with the density equal to one. This prior is an improper prior
for the constant—the prior distribution does not integrate to one. {mpg: cons}, the constant or the
mean of mpg, is the only model parameter and is declared automatically by bayesmh as a part of
the regression function. (For this reason, we also did not need to specify the mean of the normal()
distribution in the likelihood specification.) All other simulation and reporting options are left at
default.

Because bayesmh uses MCMC sampling, a stochastic procedure, to obtain results, we specify a
random-number seed (for example, 14) for reproducibility of results.

. set seed 14

. bayesmh mpg, likelihood(normal(36)) prior({mpg:_cons}, flat)
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal({mpg:_cons},36)

Prior:
{mpg:_cons} ~ 1 (flat)
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Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .4161

Log marginal-likelihood = -233.96144 Efficiency = .2292

Equal-tailed
mpg Mean Std. dev. MCSE Median [95% cred. interval]

_cons 21.29812 .703431 .014693 21.28049 19.93155 22.69867

bayesmh first reports the summary of the model. The likelihood model specified for mpg is normal
with mean {mpg: cons} and fixed variance of 36. The prior for {mpg: cons} is flat or completely
noninformative.

Our model is very simple, so its summary is very short. For other models, the model summary
may get very long. You can use the nomodelsummary option to suppress it from the output.
It is useful, however, to review the model summary before estimation for models with many
parameters and complicated specifications. You can use the dryrun option to see the model summary
without estimation. Once you verified the correctness of your model specification, you can specify
nomodelsummary during estimation.

Next, bayesmh reports the header including the title for the fitted model, the used MCMC
algorithm, and various numerical summaries of the sampling procedure. bayesmh performed 12,500
MCMC iterations, of which 2,500 were discarded as burn-in iterations and the next 10,000 iterations
were kept in the final MCMC sample. An overall AR is 0.42, meaning that 42% out of 10,000 proposal
parameter values were excepted by the algorithm. This is a good AR for the MH algorithm. Values
below 10% may be a cause for concern and may indicate problems with convergence of MCMC. Very
low ARs may also mean high autocorrelation. The efficiency is 0.23 and is also considered good for
the MH algorithm. Efficiencies below 1% should be investigated further and would require further
tuning of the algorithm and possibly revisiting the considered model.

Finally, bayesmh reports an estimation table that includes the posterior mean, posterior standard
deviation, MCMC standard error (MCSE), posterior median, and the 95% credible interval.

The estimated posterior mean for {mpg: cons} is 21.298 with a posterior standard deviation of
0.70. The efficiency of the estimator of the posterior mean is about 23%, which is relatively high
for the random-walk MH sampling. In general, you should expect to see lower efficiencies from this
algorithm for models with more parameters. The MCSE, which is an approximation of the error in
estimating the true posterior mean, is about 0.015. Therefore, provided that the MCMC simulation has
converged, the posterior mean of the constant is accurate to 1 decimal position, 21.3. If you want an
estimation precision of, say, 2 decimal positions, you may need to increase the MCMC sample size
101 times; that is, use mcmcsize(100000).

The estimated posterior mean and medians are very close, suggesting that the posterior distribution
of {mpg: cons} may be symmetric. In fact, the posterior distribution of a mean in this model is
known to be a normal distribution.

According to the reported 95% credible interval, the probability that the mean of mpg is between
19.9 and 22.7 is about 0.95. You can use the clevel() option to change the default credible level;
also see [BAYES] set clevel.

Because we used a completely noninformative prior, our results should be the same as frequentist
results. In this Bayesian model, the posterior distribution of the constant parameter is known to be
normal with a mean equal to the sample average. In the frequentist domain, the MLE of the constant
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is also the sample average, so the posterior mean estimate and the MLE should be the same in this
model.

The sample average of mpg is 21.2973. Our posterior mean estimate is 21.298, which is very close.
The reason it is not exactly the same is because we estimated the posterior mean of the constant based
on an MCMC sample simulated from its posterior distribution instead of using the known formula.
Closed-form expressions for posterior mean estimators are available only for some Bayesian models.
In general, posterior distributions of parameters are unknown and posterior summaries may only be
estimated from the MCMC samples of parameters.

In practice, we must verify the convergence of MCMC before making any inferential conclusions
about the obtained results.

We start by looking at various graphical diagnostics as produced by bayesgraph diagnostics.

. bayesgraph diagnostics {mpg:_cons}
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The trace plot represents a “perfect” trace plot. It does not exhibit any trends, and it traverses the
distribution quickly. The chain is centered around 21.3, but also explores the portions of the distribution
where the density is low, which is indicative of good mixing of the chain. The autocorrelation dies
off very quickly. The posterior distribution looks normal. The kernel density estimates based on the
first and second halves of the sample are very similar to each other and are close to the overall
density estimate. We can see that MCMC converged and mixes well. See [BAYES] bayesgraph for
details about this command.
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See Convergence diagnostics using multiple chains for an example of using multiple chains to assess
convergence. Also see Convergence diagnostics of MCMC for more discussion about convergence of
MCMC.

Example 2: Informative prior for the mean when variance is known

In example 1, we used a noninformative prior for {mpg: cons}. Here, we consider a conjugate
normal prior for {mpg: cons}. A parameter is said to have a conjugate prior when the corresponding
posterior belongs to the same family as the prior. In our example, if we assume a normal prior for
the constant, its posterior is known to be normal too.

Suppose that based on previous studies, the distribution of the mean mileage was found to be
normal with mean of 25 and variance of 10. We change the flat prior in bayesmh’s prior() option
from example 1 with normal(25,10).

. set seed 14

. bayesmh mpg, likelihood(normal(36)) prior({mpg:_cons}, normal(25,10))
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal({mpg:_cons},36)

Prior:
{mpg:_cons} ~ normal(25,10)

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .4169

Log marginal-likelihood = -236.71627 Efficiency = .2293

Equal-tailed
mpg Mean Std. dev. MCSE Median [95% cred. interval]

_cons 21.47952 .6820238 .014243 21.47745 20.13141 22.82153

Compared with example 1, our results change only slightly: the estimated posterior mean is 21.48
with a posterior standard deviation of 0.68. The 95% credible interval is [20.1, 22.82].

The reason we obtained such similar results is that our specified prior is in close agreement with
what we observed in this sample. The prior mean of 25 with a standard deviation of

√
10 = 3.16

overlaps greatly with what we observe for {mpg: cons} in the data.
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If we place a very strong prior on the value for the mean by, for example, substantially decreasing
the variance of the normal prior distribution,

. set seed 14

. bayesmh mpg, likelihood(normal(36)) prior({mpg:_cons}, normal(25,0.1))
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal({mpg:_cons},36)

Prior:
{mpg:_cons} ~ normal(25,0.1)

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .4194

Log marginal-likelihood = -246.2939 Efficiency = .2352

Equal-tailed
mpg Mean Std. dev. MCSE Median [95% cred. interval]

_cons 24.37211 .292777 .006037 24.36588 23.79701 24.94403

we obtain very different results. Now the posterior mean and standard deviation estimates are very
close to their prior values, as one would expect with such strong prior information.

Which results are correct? The answer depends on how confident we are in our prior knowledge.
If we previously observed many samples in which the average mileage for the considered population
of cars was essentially 25, our last results are consistent with this and the information about the
mean of {mpg: cons} contained in the observed sample was not enough to counteract our belief.
If, on the other hand, we had no prior information about the mean mileage, then we would use a
noninformative or mildly informative prior in our Bayesian analysis. Also, if we believe that our
observed data should have more weight in our analysis, we would not specify a very strong prior.

Example 3: Noninformative normal prior for the mean when variance is known

In example 1, we used a completely noninformative, flat prior for {mpg: cons}. In example 2,
we considered a conjugate normal prior for {mpg: cons}. We also saw that by varying the variance
of the normal prior distribution, we could control the “informativeness” of our prior. The larger the
variance, the less informative the prior. In fact, if we let the variance approach infinity, we will arrive
at the same posterior distribution of the constant as with the flat prior.
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For example, if we specify a very large variance in the normal prior,

. set seed 14

. bayesmh mpg, likelihood(normal(36)) prior({mpg:_cons}, normal(0,1000000))
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal({mpg:_cons},36)

Prior:
{mpg:_cons} ~ normal(0,1000000)

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .4161

Log marginal-likelihood = -241.78836 Efficiency = .2292

Equal-tailed
mpg Mean Std. dev. MCSE Median [95% cred. interval]

_cons 21.29812 .7034313 .014693 21.28049 19.93155 22.69868

we will obtain results that are very similar to the results from example 1 with the flat prior.

We do not need to use such an extreme value of the variance for the results to become less sensitive
to the prior specification. As we saw in example 2, using the variance of 10 in that example resulted
in very little impact of the prior on the results.

Mean of a normal distribution with an unknown variance

Let’s now consider the case where both mean and variance of the normal distribution are unknown.

Example 4: Noninformative Jeffreys prior when mean and variance are unknown

A noninformative prior commonly used for the normal model with unknown mean and variance
is the Jeffreys prior, under which the prior for the mean is flat and the prior for the variance is
the reciprocal of the variance. We use the same flat prior for {mpg: cons} as in example 1 and
specify the jeffreys prior for {var} using a separate prior() statement.
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. set seed 14

. bayesmh mpg, likelihood(normal({var}))
> prior({mpg:_cons}, flat) prior({var}, jeffreys)
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal({mpg:_cons},{var})

Priors:
{mpg:_cons} ~ 1 (flat)

{var} ~ jeffreys

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .2668
Efficiency: min = .09718

avg = .1021
Log marginal-likelihood = -234.645 max = .1071

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mpg
_cons 21.29222 .6828864 .021906 21.27898 19.99152 22.61904

var 34.76572 5.91534 .180754 34.18391 24.9129 47.61286

Because we used a noninformative prior, our results should be similar to the frequentist results apart
from simulation uncertainty. Compared with example 1, the average efficiency of the MH algorithm
decreased to 10%, as is expected with more parameters, but is still considered a good efficiency for
the MH algorithm.

The posterior mean estimate of {mpg: cons} is close to the OLS estimate of 21.297, and the
posterior standard deviation is close to the standard error of the OLS estimate 0.673. MCSE is slightly
larger than in example 1 because we have lower efficiency. If we wanted to make MCSE smaller, we
could increase our MCMC sample size. The posterior mean estimate of {var} agrees with the MLE
of the variance 33.02, but we would not expect the two to be necessarily the same. We estimated the
posterior mean of {var}, not the posterior mode, and because posterior distribution of {var} is not
symmetric, the two estimates may not be the same.
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Again, as with any MCMC analysis, we must verify the convergence of our MCMC sample before
we can trust our results.

. bayesgraph diagnostics _all
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Graphical diagnostic plots do not show any signs of nonconvergence for either of the parameters. We
can also check convergence more formally using multiple chains; see [BAYES] bayesstats grubin and
Convergence diagnostics using multiple chains.
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Recall that to access convergence of MCMC, we must explore convergence for all model parameters.

Example 5: Informative conjugate prior when mean and variance are unknown

For a normal distribution with unknown mean and variance, the informative conjugate prior is a
normal prior for the mean and an inverse-gamma prior for the variance. Specifically, if y ∼ N(µ, σ2),
then the informative conjugate prior for the parameters is

µ|σ2 ∼ N(µ0, σ
2)

σ2 ∼ InvGamma(ν0/2, ν0σ
2
0/2)

where µ0 is the prior mean of the normal distribution and ν0 and σ2
0 are the prior degrees of freedom

and prior variance for the inverse-gamma distribution. Let’s assume µ0 = 25, ν0 = 10, and σ2
0 = 30.
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Notice that in the specification of the prior for {mpg: cons}, we specify the parameter {var}
as the variance of the normal distribution. We use igamma(5,150) as the prior for the variance
parameter {var}.

. set seed 14

. bayesmh mpg, likelihood(normal({var}))
> prior({mpg:_cons}, normal(25,{var}))
> prior({var}, igamma(5,150))
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal({mpg:_cons},{var})

Priors:
{mpg:_cons} ~ normal(25,{var})

{var} ~ igamma(5,150)

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .1971
Efficiency: min = .09822

avg = .09923
Log marginal-likelihood = -237.77006 max = .1002

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mpg
_cons 21.314 .6639278 .02097 21.29516 20.08292 22.63049

var 33.54699 5.382861 .171756 32.77635 24.88107 46.0248

Compared with example 4, the variance is slightly smaller, but the results are still very similar.

Example 6: Noninformative inverse-gamma prior when mean and variance are unknown

The Jeffreys prior for the variance from example 4 can be viewed as a limiting case of an
inverse-gamma distribution with the degrees of freedom approaching zero.
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Indeed, if we replace the jeffreys prior in example 4 with an inverse-gamma distribution with
very small degrees of freedom,

. set seed 14

. bayesmh mpg, likelihood(normal({var}))
> prior({mpg:_cons}, flat)
> prior({var}, igamma(0.0001,0.0001))
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal({mpg:_cons},{var})

Priors:
{mpg:_cons} ~ 1 (flat)

{var} ~ igamma(0.0001,0.0001)

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .2668
Efficiency: min = .09718

avg = .1021
Log marginal-likelihood = -243.85656 max = .1071

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mpg
_cons 21.29223 .6828811 .021905 21.27899 19.99154 22.61903

var 34.76569 5.915305 .180753 34.18389 24.91294 47.61275

we obtain results that are very close to the results from example 4.

Simple linear regression

In this example, we consider a simple linear regression with one independent variable. We continue
with auto.dta, but this time we regress mpg on a rescaled covariate weight.

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)

. replace weight = weight/100
variable weight was int now float
(74 real changes made)

We will have three model parameters: the slope and the intercept for the linear predictor and the
variance parameter for the error term. Regression parameters, {mpg:weight} and {mpg: cons},
will be declared implicitly by bayesmh, but we will need to explicitly specify the variance parameter
{var}. We will also need to assign appropriate priors for all parameters.
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Example 7: Noninformative prior for regression coefficients and variance

As in our earlier examples, we start with a noninformative prior. For this model, a common
noninformative prior for the parameters includes flat priors for {mpg:weight} and {mpg: cons}
and a Jeffreys prior for {var}.

. set seed 14

. bayesmh mpg weight, likelihood(normal({var}))
> prior({mpg:}, flat) prior({var}, jeffreys)
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal(xb_mpg,{var})

Priors:
{mpg:weight _cons} ~ 1 (flat) (1)

{var} ~ jeffreys

(1) Parameters are elements of the linear form xb_mpg.

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .1768
Efficiency: min = .04557

avg = .06624
Log marginal-likelihood = -198.14389 max = .07961

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mpg
weight -.6019838 .0512557 .001817 -.6018433 -.7015638 -.5021532
_cons 39.47227 1.589082 .058601 39.49735 36.26465 42.43594

var 12.22248 2.214665 .10374 11.92058 8.899955 17.47372

Our model summary shows the likelihood model for mpg, flat priors for the two regression coefficients,
and a Jeffreys prior for the variance parameter. Now that we have a covariate in the model, the mean
of the normal distribution is labeled as xb mpg to emphasize that it is now a linear combination of
independent variables. Regression coefficients involved in the linear predictor are marked with (1)
on the right.

The results are again very similar to the frequentist results. Posterior mean estimates of the
coefficients are very similar to the OLS estimates obtained by using regress below. Posterior
standard deviations are similar to the standard errors from regress.
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. regress mpg weight

Source SS df MS Number of obs = 74
F(1, 72) = 134.62

Model 1591.99021 1 1591.99021 Prob > F = 0.0000
Residual 851.469254 72 11.8259619 R-squared = 0.6515

Adj R-squared = 0.6467
Total 2443.45946 73 33.4720474 Root MSE = 3.4389

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

weight -.6008687 .0517878 -11.60 0.000 -.7041058 -.4976315
_cons 39.44028 1.614003 24.44 0.000 36.22283 42.65774

Example 8: Conjugate prior for regression coefficients and variance

In this example, we use a conjugate prior for the parameters, which corresponds to normal priors
for {mpg:weight} and {mpg: cons} and an inverse-gamma prior for {var},

βweight|σ2 ∼ N(µweight, σ
2)

βcons|σ2 ∼ N(µcons, σ
2)

σ2 ∼ InvGamma(ν0/2, ν0σ
2
0/2)

where regression coefficients have different means but equal variances. µweight and µcons are the
prior means of the normal distributions, and ν0 and σ2

0 are the prior degrees of freedom and prior
variance for the inverse-gamma distribution. Let’s assume µweight = −0.5, µcons = 40, ν0 = 10,
and σ2

0 = 10.
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. set seed 14

. bayesmh mpg weight, likelihood(normal({var}))
> prior({mpg:weight}, normal(-0.5,{var}))
> prior({mpg:_cons}, normal(40,{var}))
> prior({var}, igamma(5,50))
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal(xb_mpg,{var})

Priors:
{mpg:weight} ~ normal(-0.5,{var}) (1)
{mpg:_cons} ~ normal(40,{var}) (1)

{var} ~ igamma(5,50)

(1) Parameters are elements of the linear form xb_mpg.

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .1953
Efficiency: min = .05953

avg = .06394
Log marginal-likelihood = -202.74075 max = .06932

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mpg
weight -.6074375 .0480685 .001916 -.6078379 -.6991818 -.5119767
_cons 39.65274 1.499741 .05696 39.63501 36.59486 42.47547

var 11.696 1.929562 .079083 11.52554 8.570938 16.26954

For this mildly informative prior, our regression coefficients are still very similar to the results obtained
using the noninformative prior in example 7, but the variance estimate is slightly smaller.

Example 9: Zellner’s g prior for regression coefficients

In example 8, we assumed that {mpg:weight} and {mpg: cons} are independent a priori. We
can specify Zellner’s g prior (Zellner 1986), often used for regression coefficients in a multiple
regression, which allows correlation between the regression coefficients.

The prior for the coefficients can be written as

β|σ2 ∼ MVN(µ0, gσ
2(X ′X)−1)

where β is a vector of coefficients, µ0 is the vector of prior means, g is the prior degrees of freedom,
and X is the design matrix. Let’s, for example, use g = 30 and µ0 = (µweight, µcons) = (−0.5, 40).
Zellner’s g prior is not strictly a conventional Bayesian prior because it depends on the data.

In bayesmh, we can use prior zellnersg() to specify this prior. The first argument for this prior
is the dimension (2), the second argument is the degrees of freedom (30), the next parameters are
prior means (−0.5 and 40), and the last parameter is the name of the parameter corresponding to the
variance term ({var}).



bayesmh — Bayesian models using Metropolis–Hastings algorithm 181

. set seed 14

. bayesmh mpg weight, likelihood(normal({var}))
> prior({mpg:}, zellnersg(2,30,-0.5,40,{var}))
> prior({var}, igamma(5,50))
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal(xb_mpg,{var})

Priors:
{mpg:weight _cons} ~ zellnersg(2,30,-0.5,40,{var}) (1)

{var} ~ igamma(5,50)

(1) Parameters are elements of the linear form xb_mpg.

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .2576
Efficiency: min = .05636

avg = .08661
Log marginal-likelihood = -201.1662 max = .1025

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mpg
weight -.6004123 .0510882 .001595 -.5998094 -.7040552 -.5058665
_cons 39.55017 1.590016 .050051 39.49377 36.56418 42.79701

var 12.18757 2.038488 .085865 11.90835 8.913695 16.88978

The results are now closer to the results using noninformative prior obtained in example 7, because
we are introducing some information from the observed data by using (X ′X)−1.

Example 10: Specifying expressions as distributional arguments

We can actually reproduce what prior zellnersg() does in example 9 manually.

First, we need to create a matrix that contains (X ′X)−1, S.

. matrix accum xTx = weight
(obs=74)

. matrix S = invsym(xTx)
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Then, we can use the multivariate normal prior mvnormal() with the variance specified as an
expression 30*var*S.

. set seed 14

. bayesmh mpg weight, likelihood(normal({var}))
> prior({mpg:}, mvnormal(2,-0.5,40,30*{var}*S))
> prior({var}, igamma(5,50))
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal(xb_mpg,{var})

Priors:
{mpg:weight _cons} ~ mvnormal(2,-0.5,40,30*{var}*S) (1)

{var} ~ igamma(5,50)

(1) Parameters are elements of the linear form xb_mpg.

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .2576
Efficiency: min = .05636

avg = .08661
Log marginal-likelihood = -201.1662 max = .1025

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mpg
weight -.6004123 .0510882 .001595 -.5998094 -.7040552 -.5058665
_cons 39.55017 1.590016 .050051 39.49377 36.56418 42.79701

var 12.18757 2.038488 .085865 11.90835 8.913695 16.88978

We obtain results identical to those from example 9.

An alternative way to specify the same model is by using the mvnscaled() prior distribution.

First, we create a Stata matrix A for the expression 30× (X ′X)−1 using the S matrix we created
above.

. matrix A = 30*S
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Then, we use the mvnscaled() prior with mean values −0.5 and 40, scale matrix A, and variance
parameter {var}.

. set seed 14

. bayesmh mpg weight, likelihood(normal({var}))
> prior({mpg:}, mvnscaled(2,-0.5,40,A,{var}))
> prior({var}, igamma(5,50))
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal(xb_mpg,{var})

Priors:
{mpg:weight _cons} ~ mvnscaled(2,-0.5,40,A,{var}) (1)

{var} ~ igamma(5,50)

(1) Parameters are elements of the linear form xb_mpg.

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .2576
Efficiency: min = .05636

avg = .08661
Log marginal-likelihood = -201.1662 max = .1025

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mpg
weight -.6004123 .0510882 .001595 -.5998094 -.7040552 -.5058665
_cons 39.55017 1.590016 .050051 39.49377 36.56418 42.79701

var 12.18757 2.038488 .085865 11.90835 8.913695 16.88978

Again, we obtain results identical to those from example 9.

The zellnersg() prior is a special case of the mvnscaled() prior where the scaled matrix is
proportional to (X ′X)−1. For a linear model with the mvnscaled() prior for regression coefficients
and inverse Gamma prior for the error variance, bayesmh provides full Gibbs sampling for the
parameters. In our example, Gibbs sampling can be requested by including the options block({var},
gibbs) and block({mpg:}, gibbs).

Multiple linear regression

For a detailed example of a multiple linear regression, see Overview example in [BAYES] Bayesian
commands.
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Improving efficiency of the MH sampling

In this section, we demonstrate how one can improve efficiency of the MH algorithm by using
blocking of parameters and Gibbs sampling, whenever available. We continue with our simple linear
regression of mpg on rescaled weight from Simple linear regression, but we use different values for
the parameters of prior distributions. We also assume that regression coefficients and the variance
parameter are independent a priori. We use the blocksummary option to include a summary about
each block.

Example 11: First simulation run

Our first simulation is performed using the default settings for the algorithm. Specifically, all three
model parameters are placed in one simulation block and are updated simultaneously, as our block
summary indicates.

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)

. replace weight = weight/100
variable weight was int now float
(74 real changes made)

. set seed 14

. bayesmh mpg weight, likelihood(normal({var}))
> prior({mpg:}, normal(0,100))
> prior({var}, igamma(10,10)) blocksummary
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal(xb_mpg,{var})

Priors:
{mpg:weight _cons} ~ normal(0,100) (1)

{var} ~ igamma(10,10)

(1) Parameters are elements of the linear form xb_mpg.

Block summary

1: {mpg:weight _cons} {var}

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .2432
Efficiency: min = .06871

avg = .08318
Log marginal-likelihood = -226.63723 max = .09063

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mpg
weight -.5759855 .0471288 .001569 -.5750919 -.6676517 -.4868595
_cons 38.65481 1.468605 .048784 38.70029 35.88062 41.49839

var 9.758003 1.514112 .057762 9.601339 7.302504 13.13189
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The mean estimates based on the simulated sample are {mpg:weight} = −0.58, {mpg: cons}
= 38.65, and {var} = 9.8. The MH algorithm achieves an overall AR of 24% and an average
efficiency of about 8%.

Our next step is to perform a visual inspection of the convergence of the chain.

. bayesgraph diagnostics {var}
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A graphical summary for the {var} parameter does not show any obvious problems. The trace plot
reveals a good coverage of the domain of the marginal distribution, while the histogram and kernel
density plots resemble the shape of an expected inverse-gamma distribution. The autocorrelation dies
off after about lag 20.
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Example 12: Second simulation run—blocking of variance

Next, we show how to improve the mixing of the MCMC chain by using more careful blocking
of model parameters. We can use the bayesgraph matrix command to view the scatterplots of the
simulated values for {mpg:weight}, {mpg: cons}, and {var}.

. bayesgraph matrix _all
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The scatterplots reveal high correlation between {mpg:weight} and {mpg: cons}. On the other
hand, there is no significant correlation between {var} and the other two parameters.

In cases like this, we can expect higher sampling efficiency if we place {var} in a separate block.
We can do this by including the option block({var}). The other two parameters, {mpg:weight}
and {mpg: cons}, will be automatically considered as a second block.
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. set seed 14

. bayesmh mpg weight, likelihood(normal({var}))
> prior({mpg:}, normal(0,100))
> prior({var}, igamma(10,10))
> block({var}) blocksummary
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal(xb_mpg,{var})

Priors:
{mpg:weight _cons} ~ normal(0,100) (1)

{var} ~ igamma(10,10)

(1) Parameters are elements of the linear form xb_mpg.

Block summary

1: {var}
2: {mpg:weight _cons}

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .3309
Efficiency: min = .09023

avg = .1202
Log marginal-likelihood = -226.73992 max = .1784

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mpg
weight -.5744536 .0450094 .001484 -.576579 -.663291 -.4853636
_cons 38.59206 1.397983 .04654 38.63252 35.80229 41.32773

var 9.721684 1.454193 .034432 9.570546 7.303129 12.95105

In this second run, we achieve higher simulation efficiency, about 12% on average. The MCSE for
{var} is 0.034 and is about half the value of 0.058 from example 11, which leads to twice as much
accuracy in the estimation of the posterior mean of {var}.
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Again, we can verify the convergence of the MCMC run for {var} by inspecting the bayesgraph
diagnostics plot.

. bayesgraph diagnostics {var}
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The improved sampling efficiency for {var} is evident by observing that the autocorrelation becomes
negligible after about lag 10. The trace plot reveals more rapid traversing of the marginal posterior
domain as well.

Example 13: Third simulation run—Gibbs update of variance

Further improvement of the mixing can be achieved by requesting a Gibbs sampling for the variance
parameter. This is possible because {var} has an inverse-gamma prior, which is independent of the
mean and is a semiconjugate prior in this model.
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To request Gibbs sampling, we specify suboption gibbs within option block().

. set seed 14

. bayesmh mpg weight, likelihood(normal({var}))
> prior({mpg:}, normal(0,100))
> prior({var}, igamma(10,10))
> block({var}, gibbs) blocksummary
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal(xb_mpg,{var})

Priors:
{mpg:weight _cons} ~ normal(0,100) (1)

{var} ~ igamma(10,10)

(1) Parameters are elements of the linear form xb_mpg.

Block summary

1: {var} (Gibbs)
2: {mpg:weight _cons}

Bayesian normal regression MCMC iterations = 12,500
Metropolis--Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .6285
Efficiency: min = .1141

avg = .3259
Log marginal-likelihood = -226.72192 max = .7441

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mpg
weight -.5764752 .0457856 .001324 -.5764938 -.6654439 -.486788
_cons 38.64148 1.438705 .04259 38.6177 35.82136 41.38734

var 9.711499 1.454721 .016865 9.585728 7.236344 12.95503

The average efficiency is now 0.33 with the maximum of 0.74 corresponding to the variance parameter.
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The diagnostics plot for {var} is an example of almost perfect mixing.

. bayesgraph diagnostics {var}
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Example 14: Fourth simulation run—full Gibbs sampling

Continuing example 13, there is still room for improvement in our model in terms of sampling
efficiency. The efficiency of the regression coefficients is now low relative to the variance efficiency.

. bayesstats ess

Efficiency summaries MCMC sample size = 10,000
Efficiency: min = .1141

avg = .3259
max = .7441

ESS Corr. time Efficiency

mpg
weight 1195.57 8.36 0.1196
_cons 1141.12 8.76 0.1141

var 7440.67 1.34 0.7441
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For example, diagnostic plots for {weight: cons} do not look as good as diagnostic plots for
the variance parameter in example 13.

. bayesgraph diagnostics {mpg:weight}
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Further improvement of the mixing can be achieved by requesting Gibbs sampling for the two
blocks of parameters: regression coefficients and variance. Again, this is possible only because
{mpg:weight}, {mpg: cons}, and {var} have normal and an inverse-gamma priors, which are
independent and are semiconjugate in this model.
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To request Gibbs sampling for the regression coefficients, we must place them in a separate block.

. set seed 14

. bayesmh mpg weight, likelihood(normal({var}))
> prior({mpg:}, normal(0,100))
> prior({var}, igamma(10,10))
> block({var}, gibbs)
> block({mpg:}, gibbs) blocksummary
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal(xb_mpg,{var})

Priors:
{mpg:weight _cons} ~ normal(0,100) (1)

{var} ~ igamma(10,10)

(1) Parameters are elements of the linear form xb_mpg.

Block summary

1: {var} (Gibbs)
2: {mpg:weight _cons} (Gibbs)

Bayesian normal regression MCMC iterations = 12,500
Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = 1
Efficiency: min = .9423

avg = .9808
Log marginal-likelihood = -226.67227 max = 1

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mpg
weight -.5751071 .0467837 .000468 -.5757037 -.6659412 -.4823263
_cons 38.61033 1.459511 .014595 38.61058 35.79156 41.45336

var 9.703432 1.460435 .015045 9.564502 7.216982 12.96369

Now we have perfect sampling efficiency (with an average of 0.98) with essentially no autocorrelation.
The estimators of posterior means have the lowest MCSEs among the four simulations.
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For example, diagnostic plots for {mpg:weight} now look noticeably better.

. bayesgraph diagnostics {mpg:weight}
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You can verify that the diagnostic plots of all parameters demonstrate almost perfect mixing as
well.

. bayesgraph diagnostics _all
(output omitted )

Convergence diagnostics using multiple chains

To assess the convergence of MCMC simulations of a Bayesian model, the literature often recommends
comparing the results of multiple simulation sequences or multiple chains; see, for example, Gelman
et al. (2014, chap. 11.4). In this section, we show how one can simulate multiple chains using
bayesmh, visually compare the results using trace and density plots, and perform formal tests for
convergence.

To simulate multiple Markov chains, you can use the nchains() option with bayesmh. When
running multiple chains, it is essential for the chains to have different initial values dispersed over
the range of values of model parameters. bayesmh, nchains() provides default initial values that
are different for each chain, but these values are not guaranteed to be overdispersed and are provided
strictly for your convenience. Often, you may want to specify your own initial values, which you can
do using the init#() options; see Specifying initial values and Multiple chains using overdispersed
initial values.
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Multiple chains using default initial values

Let’s continue with the Bayesian multiple linear regression model from example 11. We specify
the nchains(4) option to simulate four Markov chains of default size 10,000. We use the rseed()
option to ensure reproducibility when running multiple chains. Specifying set seed is not sufficient
in this case; see Reproducing results. We also use nomodelsummary to suppress the output of the
model summary.

. bayesmh mpg weight, likelihood(normal({var}))
> prior({mpg:}, normal(0,100)) prior({var}, igamma(10,10))
> nomodelsummary nchains(4) rseed(16)
Chain 1

Burn-in ...
Simulation ...

Chain 2
Burn-in ...
Simulation ...

Chain 3
Burn-in ...
Simulation ...

Chain 4
Burn-in ...
Simulation ...

Bayesian normal regression Number of chains = 4
Random-walk Metropolis--Hastings sampling Per MCMC chain:

Iterations = 12,500
Burn-in = 2,500
Sample size = 10,000

Number of obs = 74
Avg acceptance rate = .2275
Avg efficiency: min = .07897

avg = .08265
max = .08827

Avg log marginal-likelihood = -226.73271 Max Gelman--Rubin Rc = 1.002

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mpg
weight -.5749136 .0463642 .000816 -.5760212 -.6649088 -.4847602
_cons 38.59661 1.447703 .025758 38.62636 35.7311 41.40999

var 9.713168 1.431891 .024098 9.605324 7.332055 12.84306

Note: Default initial values are used for multiple chains.

The important change in the output header of bayesmh with multiple chains is the presence of
the maximum Gelman–Rubin convergence statistic, Max Gelman--Rubin Rc. This is the maximum
value of the statistics across all model parameters. A convergence rule often used in practice is to
declare convergence when convergence statistics of all model parameters are less than 1.1. In our
example, the maximum statistic of 1.002 is less than 1.1, so the convergence rule is satisfied. See
[BAYES] bayesstats grubin for details. Of course, it is important to also inspect convergence visually,
as we demonstrate later in this example.

Because there are multiple simulation chains, bayesmh reports the simulation summaries averaged
over the chains such as the average acceptance rate, average efficiencies, and the average log
marginal-likelihood. You can use the chainsdetail option to see those summaries separately for
each chain.
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The average simulation efficiency for all chains is above 8% and seems adequate. The Gelman–Rubin
convergence rule is met. There is no indication of convergence problems. Nevertheless, inspecting the
simulation chains visually can provide additional reassurance. For instance, by comparing the trace
plots of different simulation sequences for a model parameter, we can detect convergence irregularities
and assess the overlap of the simulated marginal distributions for this parameter. If Markov chains
have converged, we should not observe substantial differences between the trace plots or between the
sampled marginal distributions.

For a single chain, we used bayesgraph diagnostics to explore the convergence of MCMC
visually. We can use this command with multiple chains as well. Let’s plot graphical summaries for
the variance parameter {var}.

. bayesgraph diagnostics {var}
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Graphical diagnostics look somewhat messy for multiple chains, but the main takeaway from this
graph is that the results of the chains do not look drastically different. The trace plots overlap, the
autocorrelations die off, and the histograms and density plots are similar for all chains. If desired, you
can produce separate plots or graphs for each chain using bayesgraph’s bychain() or sepchains
option; see [BAYES] bayesgraph.
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You can also focus separately on each type of plot. For instance, let’s look more closely at the
trace and density plots.

. bayesgraph trace {var}

5

10

15

20

0 2000 4000 6000 8000 10000
Iteration number

Chains: 1/4

Trace of var

The bayesgraph trace command overlays the traces of the simulated chains for convenient visual
comparison of the chains. The trace plots are similar in terms of coverage and variation.

The overlaid density plots shown by bayesgraph kdensity provide another aspect of comparing
multiple simulation sequences.

. bayesgraph kdensity {var}
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The density plots of {var} from all chains mostly overlap with some variations about the marginal
mode.
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Similarly, we can explore the MCMC convergence visually for other parameters. For example, we
can draw the trace plots for the coefficient parameters {mpg: cons} and {mpg:weight} and use
bayesgraph’s byparm option to place plots of both parameters on one graph.

. bayesgraph trace {mpg:}, byparm
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Again, the overlaid trace plots of {mpg: cons} and {mpg:weight} do not show any substantial
differences and indicate good mixing of the chains.

We can use the bayesstats grubin command to compute Gelman–Rubin convergence diagnostics
using multiple chains.

. bayesstats grubin

Gelman--Rubin convergence diagnostic

Number of chains = 4
MCMC size, per chain = 10,000
Max Gelman--Rubin Rc = 1.002068

Rc

mpg
weight 1.000783
_cons 1.000557

var 1.002068

Convergence rule: Rc < 1.1

Estimates of convergence statistics, Rc, larger than 1.2 indicate possible nonconvergence. In our case,
the Rc estimates for all parameters are very close to 1 and do not raise any convergence concerns.
Note that the largest estimate, 1.002, as reported by bayesmh, corresponds to parameter {var}.
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Once MCMC convergence is established, we can proceed with our estimation results. We replay
them here for your convenience (without the table header information).

. bayesmh, noheader

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mpg
weight -.5749136 .0463642 .000816 -.5760212 -.6649088 -.4847602
_cons 38.59661 1.447703 .025758 38.62636 35.7311 41.40999

var 9.713168 1.431891 .024098 9.605324 7.332055 12.84306

The summary results in the estimation table are based on all chains. Because we used more chains,
our results are now more precise (have smaller MCSEs) compared with example 11.

To inspect posterior summaries of each chain, we can use the bayesstats summary command
with the sepchains option.

. bayesstats summary, sepchains

Posterior summary statistics

Chain 1 MCMC sample size = 10,000

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mpg
weight -.5736929 .0458934 .001611 -.5745238 -.6629738 -.4877666
_cons 38.5649 1.425768 .052564 38.60731 35.75694 41.37725

var 9.64884 1.386373 .044099 9.513188 7.251423 12.70699

Chain 2 MCMC sample size = 10,000

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mpg
weight -.5747026 .0456178 .001699 -.5759074 -.6618918 -.4851731
_cons 38.59502 1.441276 .053339 38.57138 35.72466 41.40902

var 9.683921 1.39533 .043302 9.60479 7.420058 12.73925

Chain 3 MCMC sample size = 10,000

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mpg
weight -.5740745 .0468218 .00169 -.576532 -.6631272 -.4817094
_cons 38.57018 1.469792 .053026 38.62822 35.68724 41.37469

var 9.802202 1.508294 .059519 9.68037 7.339275 13.32406
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Chain 4 MCMC sample size = 10,000

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mpg
weight -.5771844 .0470114 .001543 -.5773599 -.6678485 -.4862513
_cons 38.65634 1.451485 .047729 38.69004 35.82901 41.49365

var 9.717709 1.428596 .048662 9.614184 7.33145 12.89246

The results from all chains are similar. The differences between posterior means, for instance, are
within the ranges of the MCMC standard errors of the estimates.

In the presence of multiple chains, bayesmh displays a note beneath the estimation table about
default initial values being used for the chains. The default initial values are provided for convenience,
and often you may want to specify your own; see Specifying initial values for details. Also see Multiple
chains using overdispersed initial values next.

Multiple chains using overdispersed initial values

We continue with our multiple-chains example from Multiple chains using default initial values,
but here we simulate Markov chains using overdispersed initial values. We specify random initial
values manually using the init#() options.

For simplicity, we use only two chains. We generate initial values that are highly overdispersed
and are far away from the maximum-likelihood estimates of model parameters. For the first chain, we
generate initial values for the regression coefficients from the normal distribution with mean 10 and
standard deviation 10 and for the variance from the gamma distribution with shape 1 and scale 50.
For the second chain, we use the same distributions but different parameters, except for the standard
deviation: we use the mean of −10, the standard deviation of 10, the shape of 50, and the scale of 1.
We use the init1() and init2() options, respectively, to specify these initial values. To see the
initial values used, we also specify the initsummary option.
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. bayesmh mpg weight, likelihood(normal({var}))
> prior({mpg:}, normal(0,100)) prior({var}, igamma(10,10))
> init1({mpg:} rnormal( 10, 10) {var} rgamma(50, 1))
> init2({mpg:} rnormal(-10, 10) {var} rgamma(1, 50))
> nomodelsummary nchains(2) rseed(16) initsummary
Chain 1

Burn-in ...
Simulation ...

Chain 2
Burn-in ...
Simulation ...

Initial values:
Chain 1: {mpg:weight} .168372 {mpg:_cons} 10.2646 {var} 46.3212
Chain 2: {mpg:weight} -9.07515 {mpg:_cons} -22.1665 {var} 39.3092

Bayesian normal regression Number of chains = 2
Random-walk Metropolis--Hastings sampling Per MCMC chain:

Iterations = 12,500
Burn-in = 2,500
Sample size = 10,000

Number of obs = 74
Avg acceptance rate = .2256
Avg efficiency: min = .04544

avg = .07662
max = .09876

Avg log marginal-likelihood = -245.37212 Max Gelman--Rubin Rc = 42.57

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mpg
weight -.5334204 .0939955 .002271 -.5468147 -.6670521 -.3335525
_cons 37.27179 2.977634 .067 37.70683 30.95118 41.41418

var 27.45511 25.17659 .835183 30.3807 7.549151 45.8256

Note: There is a high autocorrelation after 500 lags in at least one of the
chains.

The reported maximum Gelman–Rubin convergence statistic, 42.57, is very high and is much larger
than 1. A note beneath the table reports high autocorrelation in one of the chains. Clearly, we have
a problem.
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We check the sampling efficiency of the parameters for each chain separately:

. bayesstats ess, sepchains

Efficiency summaries

Chain 1 MCMC sample size = 10,000
Efficiency: min = .07407

avg = .07956
max = .08962

ESS Corr. time Efficiency

mpg
weight 749.91 13.33 0.0750
_cons 740.66 13.50 0.0741

var 896.19 11.16 0.0896

Chain 2 MCMC sample size = 10,000
Efficiency: min = .001253

avg = .07369
max = .1234

ESS Corr. time Efficiency

mpg
weight 963.73 10.38 0.0964
_cons 1234.44 8.10 0.1234

var 12.53 798.09 0.0013

The {var} parameter in the second chain has the lowest ESS of 12.53.

Let’s check the Gelman–Rubin convergence statistics for all parameters.

. bayesstats grubin

Gelman--Rubin convergence diagnostic

Number of chains = 2
MCMC size, per chain = 10,000
Max Gelman--Rubin Rc = 42.57122

Rc

mpg
weight 1.622996
_cons 1.665635

var 42.57122

Convergence rule: Rc < 1.1

The Rc estimates for all three parameters exceed 1, confirming nonconvergence, but {var} has a
particularly large value of the convergence statistic of 42.57.
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To investigate the convergence problem further visually, we inspect the trace plots of the {var}
parameter from each chain.

. bayesgraph trace {var}
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The two trace plots are completely separated and show that the chains explore different domains of
the posterior distribution. The trace plot of the second chain, shown in red, has a mean value of about
45. Given a large initial value for {var} and the stochastic nature of the algorithm, the second chain
did not converge by the default number of 2,500 burn-in iterations.
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If we look at graphical diagnostics of {var} for the second chain,

. bayesgraph diagnostics {var}, chains(2)
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we notice that the autocorrelation stays close to 1 and the trace plot exhibits a slow random walk
behavior, failing to stabilize in a particular region.
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When you specify overdispersed initial values, you should give the chains enough time to converge.
This second chain simply has not run long enough to converge to the domain with a high posterior
density. To fix this, we can use a longer burn-in of 10,000, burnin(10000), and longer adaptation
by lowering the adaptation tolerance to 0.002, adaptation(tolerance(0.002)).

. bayesmh mpg weight, likelihood(normal({var}))
> prior({mpg:}, normal(0,100)) prior({var}, igamma(10,10))
> nomodelsummary nchains(2) rseed(16)
> init1({mpg:} rnormal( 10, 10) {var} rgamma(50, 1))
> init2({mpg:} rnormal(-10, 10) {var} rgamma(1, 50))
> burnin(10000) adapt(tolerance(0.002))
Chain 1

Burn-in ...
Simulation ...

Chain 2
Burn-in ...
Simulation ...

Bayesian normal regression Number of chains = 2
Random-walk Metropolis--Hastings sampling Per MCMC chain:

Iterations = 20,000
Burn-in = 10,000
Sample size = 10,000

Number of obs = 74
Avg acceptance rate = .296
Avg efficiency: min = .08096

avg = .09193
max = .1002

Avg log marginal-likelihood = -226.70215 Max Gelman--Rubin Rc = 1.001

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mpg
weight -.5759702 .0461691 .001061 -.5772111 -.665917 -.4826217
_cons 38.64229 1.440565 .032185 38.66686 35.73169 41.42428

var 9.691232 1.472907 .036603 9.530698 7.264868 13.0381

The maximum Gelman–Rubin statistic is now only 1.001. We use bayesstats grubin for details.

. bayesstats grubin

Gelman--Rubin convergence diagnostic

Number of chains = 2
MCMC size, per chain = 10,000
Max Gelman--Rubin Rc = 1.001315

Rc

mpg
weight 1.001315
_cons 1.00095

var 1.000061

Convergence rule: Rc < 1.1

All Rc estimates satisfy the convergence rule, Rc < 1.1.
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Bayesian predictions

Bayesian predictions provide a powerful set of tools for model evaluation and assessing good-
ness of fit, in addition to predicting future observations; see Overview of Bayesian predictions in
[BAYES] bayespredict for details. You can use bayespredict, bayesreps, and bayesstats pp-
values to obtain Bayesian predictions and perform model checks. Here we illustrate some of the
features of Bayesian predictions, which are available after fitting a model using bayesmh. We continue
with the Bayesian multiple linear regression model from example 11.

Simulating replicated outcomes

As a quick model check, we can explore the distribution of the replicated outcomes and compare
them with the observed outcome distribution. Replicated outcomes are new outcome values simulated
from the posterior predictive distribution conditional on the observed set of covariates. Generally,
replicated outcomes compose a sample of T observations, MCMC replicates, and n variables, one
for each observation in the original data. The entire prediction sample is rarely needed in most
applications. Often, it is sufficient to explore a small random subset from all T MCMC replicates. We
can use bayesreps to generate such a subset and save the generated replicates as new variables in
our dataset.

To use bayesreps and bayespredict, we must first save the simulation results from bayesmh.
Let’s refit the linear regression model and save the simulation results in linregsim.dta. We suppress
the output with quietly.

. quietly bayesmh mpg weight, likelihood(normal({var}))
> prior({mpg:}, normal(0,100)) prior({var}, igamma(10,10))
> saving(linregsim) rseed(16)

We can now use bayesreps to generate the replicated outcomes for variable mpg. These will
be samples from the posterior predictive distribution of mpg conditioned on the observed set of
explanatory variables, weight. Each replication sample will be of the same size, 74, as the original
outcome mpg. Let’s generate 5 replication samples and save them in the original dataset as new
variables, mpgrep1 through mpgrep5, specified as the stub mpgrep*.

. bayesreps mpgrep*, nreps(5) rseed(16)

Computing predictions ...
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We can visually inspect the histograms of the replicated samples and compare them with the
histogram for the observed mpg.

. quietly histogram mpg, name(hist0) nodraw

. local histlist hist0

. forvalues i = 1/5 {
2. quietly histogram mpgrep‘i’, name(hist‘i’) nodraw
3. local histlist ‘histlist’ hist‘i’
4. }

. graph combine ‘histlist’
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The histogram of mpg (top, left) looks different from those of the replications. All of them cover the
range of (10, 30), but the observed mpg is skewed to the right and has heavier tails. The normal model
does not appear to capture the observed distribution well. After these initial checks, we proceed with
a more quantitative assessment of model fit.

Posterior predictive checks

A posterior predictive check is one of the main applications of Bayesian predictions. It starts with
defining test statistics that represent different aspects of the outcome distribution. Then, these test
statistics are computed using the observed and replicated outcomes, and their values are compared.
For example, the mean, minimum, and maximum statistics can be used for assessing how well the
model represents the outcome distribution with respect to its center and extremes.

We can simulate the mean, minimum, and maximum statistics using bayespredict, which
supports the use of Mata functions to compute functions of simulated outcomes. Thus, we can use
Mata functions mean(), min(), and max() to compute the desired statistics. We specify the argument
{ ysim} with the functions to request statistics of the simulated outcomes (we can also use { resid}
for residuals). We save the prediction results in mpgsim.dta. See [BAYES] bayespredict for details
about the specification.
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. bayespredict (prmean:@mean({_ysim})) (prmin:@min({_ysim}))
> (prmax:@max({_ysim})), saving(mpgsim) rseed(16)

Computing predictions ...

file mpgsim.dta saved.
file mpgsim.ster saved.

We can now access the prediction results within other Bayesian postestimation commands such as
bayesstats summary and bayesstats ppvalues.

Let’s compare the agreement for the mean, minimum, and maximum between the replicated data
and observed data. The bayesstats ppvalues command makes such comparisons easy. It reports
the proportion of cases when the simulated statistics are greater than or equal to the observed values
of statistics, which is an estimate of the so-called posterior predictive p-value.

. bayesstats ppvalues {prmean} {prmin} {prmax} using mpgsim

Posterior predictive summary MCMC sample size = 10,000

T Mean Std. dev. E(T_obs) P(T>=T_obs)

prmean 21.24042 .5016505 21.2973 .4511
prmin 8.372033 2.159442 12 .027
prmax 32.92524 1.802402 41 .0004

Note: P(T>=T_obs) close to 0 or 1 indicates lack of fit.

The posterior predictive p-value is 0.45 for the mean statistic, 0.03 for the minimum, and less than
0.001 for the maximum. Our normal model captures the center of the distribution of mpg well but
fails to capture the extreme values. The posterior predictive p-value for the maximum statistic is
particularly small, which agrees with our earlier conclusion based on the histograms that the maximum
values are not well represented by the model. If we believe that the extremely large observations
of mpg are not aberrant outliers, we may need to look for a better-fitting likelihood model than the
normal model.

As the final step, we remove the files generated by bayesmh and bayespredict because we no
longer need them.

. erase linregsim.dta

. erase mpgsim.dta

. erase mpgsim.ster

See [BAYES] bayespredict and [BAYES] bayesstats ppvalues for more examples.

Logistic regression model: A case of nonidentifiable parameters

We use the heart disease dataset from the UCI Machine Learning Repository (Lichman 2013) and,
in particular, we consider a subset of the Switzerland data created by William Steinbrunn, M.D. of
University Hospital in Zurich, Switzerland, and by Matthias Pfisterer, M.D. of University Hospital in
Basel, Switzerland. The dataset is named heartswitz.dta and contains 6 variables, of which num
is the predicted attribute that takes values from 0 (no heart disease) to 4. We dichotomized num to
create a new binary variable disease as an indicator for the presence of a heart disease.
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. use https://www.stata-press.com/data/r18/heartswitz, clear
(Subset of Switzerland heart disease data from UCI Machine Learning Repository)

. describe

Contains data from https://www.stata-press.com/data/r18/heartswitz.dta
Observations: 123 Subset of Switzerland heart

disease data from UCI Machine
Learning Repository

Variables: 6 5 Feb 2022 16:55
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

age byte %9.0g Age (in years)
male byte %9.0g malelab 1 = male, 0 = female
isfbs byte %9.0g fbslab Indicator for fasting blood sugar

> 120 mg/dl: 0 = no, 1 = yes
restecg byte %28.0g ecglab Resting electrocardiographic

results (3 categories)
num byte %9.0g Presence of heart disease: 0 =

absent and 1,2,3,4 = present
disease byte %9.0g dislab Indicator for heart disease: 0 =

absent, 1 = present (num>0)

Sorted by:

Our goal is to investigate the relationship between the presence of a heart disease and covariates
restecg, isfbs, age, and male.

First, we fit a standard logistic regression model using the logit command.

. logit disease restecg isfbs age male

note: restecg != 0 predicts success perfectly;
restecg omitted and 17 obs not used.

note: isfbs != 0 predicts success perfectly;
isfbs omitted and 3 obs not used.

note: male != 1 predicts success perfectly;
male omitted and 2 obs not used.

Iteration 0: Log likelihood = -4.2386144
Iteration 1: Log likelihood = -4.2358116
Iteration 2: Log likelihood = -4.2358076
Iteration 3: Log likelihood = -4.2358076

Logistic regression Number of obs = 26
LR chi2(1) = 0.01
Prob > chi2 = 0.9403

Log likelihood = -4.2358076 Pseudo R2 = 0.0007

disease Coefficient Std. err. z P>|z| [95% conf. interval]

restecg 0 (omitted)
isfbs 0 (omitted)

age -.0097846 .1313502 -0.07 0.941 -.2672263 .2476572
male 0 (omitted)

_cons 3.763893 7.423076 0.51 0.612 -10.78507 18.31285

We encounter collinearity and dropping of observations because of perfect prediction. As a result, the
regression coefficients corresponding to restecg, isfbs, and male are essentially excluded from
the model. The standard logistic analysis is limited because of the small size of the dataset.
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Next we consider Bayesian analysis of the same data. We fit the same logistic regression model
using bayesmh and apply fairly noninformative normal priors N(0, 1e4) for all regression parameters.

. set seed 14

. bayesmh disease restecg isfbs age male, likelihood(logit)
> prior({disease:}, normal(0,10000))
Burn-in ...
Simulation ...

Model summary

Likelihood:
disease ~ logit(xb_disease)

Prior:
{disease:restecg isfbs age male _cons} ~ normal(0,10000) (1)

(1) Parameters are elements of the linear form xb_disease.

Bayesian logistic regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 48
Acceptance rate = .2661
Efficiency: min = .01685

avg = .02389
Log marginal-likelihood = -16.709588 max = .02966

Equal-tailed
disease Mean Std. dev. MCSE Median [95% cred. interval]

restecg 81.22007 63.87998 4.29587 68.31417 2.518447 237.8033
isfbs 81.65967 60.07603 4.03945 70.37466 2.035696 229.4291

age -.0191681 .1777758 .013695 -.0154955 -.3833187 .3242438
male -53.69173 42.4866 2.50654 -44.93144 -154.439 .7090207

_cons 59.39037 43.5938 2.53139 51.31836 .1225503 161.2943

The estimated posterior means of {disease:restecg}, {disease:isfbs}, {disease:male}, and
{disease: cons} are fairly large, roughly on the same scale as the prior standard deviation of 100.
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Indeed, if we decrease the standard deviation of the priors to 10, we observe that the scale of the
estimates decreases by the same order of magnitude.

. set seed 14

. bayesmh disease restecg isfbs age male, likelihood(logit)
> prior({disease:}, normal(0,100))
Burn-in ...
Simulation ...

Model summary

Likelihood:
disease ~ logit(xb_disease)

Prior:
{disease:restecg isfbs age male _cons} ~ normal(0,100) (1)

(1) Parameters are elements of the linear form xb_disease.

Bayesian logistic regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 48
Acceptance rate = .3161
Efficiency: min = .02287

avg = .0331
Log marginal-likelihood = -12.418273 max = .05204

Equal-tailed
disease Mean Std. dev. MCSE Median [95% cred. interval]

restecg 8.559131 6.71 .443681 7.447336 -.889714 23.93564
isfbs 6.322615 6.411998 .281084 5.504684 -3.85021 20.56641

age .0526448 .1226056 .00718 .0468937 -.1734675 .3050607
male -3.831954 5.31727 .279435 -3.048654 -15.77187 4.451594

_cons 5.624899 6.641158 .417961 5.181183 -6.408041 20.1234

We can, therefore, conclude that the regression parameters are highly sensitive to the choice of
priors and their scale cannot be determined by the data alone; that is, it cannot be determined by
the likelihood of the model. In other words, these model parameters are not identifiable from the
likelihood alone. This conclusion is in agreement with the results of the logit command.

We may consider applying an informative prior. We can use information from other heart disease
studies from Lichman (2013). For example, we use a subset of the Hungarian data created by Andras
Janosi, M.D. of Hungarian Institute of Cardiology in Budapest, Hungary. hearthungary.dta contains
the same attributes as in heartswitz.dta but from a Hungarian population.
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We fit bayesmh with noninformative priors to hearthungary.dta and obtain the following
posterior mean estimates for the regression parameters:

. use https://www.stata-press.com/data/r18/hearthungary
(Subset of Hungarian heart disease data from UCI Machine Learning Repository)

. set seed 14

. bayesmh disease restecg isfbs age male, likelihood(logit)
> prior({disease:}, normal(0,1000))
Burn-in ...
Simulation ...

Model summary

Likelihood:
disease ~ logit(xb_disease)

Prior:
{disease:restecg isfbs age male _cons} ~ normal(0,1000) (1)

(1) Parameters are elements of the linear form xb_disease.

Bayesian logistic regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 285
Acceptance rate = .2341
Efficiency: min = .03088

avg = .04524
Log marginal-likelihood = -195.7454 max = .06362

Equal-tailed
disease Mean Std. dev. MCSE Median [95% cred. interval]

restecg -.1076298 .2931371 .013664 -.1036111 -.6753464 .4471483
isfbs 1.182073 .541182 .030797 1.169921 .2267485 2.268314

age .042955 .0170492 .000676 .0432923 .0103757 .0763747
male 1.488844 .3612114 .018399 1.484816 .7847398 2.244648

_cons -3.866674 .8904101 .041022 -3.869567 -5.658726 -2.112237

With this additional information, we can form more informative priors for the 5 parameters of
interest—we center {restecg} and {age} at 0, {disease:isfbs} and {disease:male} at 1, and
{disease: cons} at −4, and we use a prior variance of 10 for all coefficients.
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. use https://www.stata-press.com/data/r18/heartswitz
(Subset of Switzerland heart disease data from UCI Machine Learning Repository)

. set seed 14

. bayesmh disease restecg isfbs age male, likelihood(logit)
> prior({disease:restecg age}, normal( 0,10))
> prior({disease:isfbs male}, normal( 1,10))
> prior({disease:_cons}, normal(-4,10))
Burn-in ...
Simulation ...

Model summary

Likelihood:
disease ~ logit(xb_disease)

Priors:
{disease:restecg age} ~ normal(0,10) (1)
{disease:isfbs male} ~ normal(1,10) (1)

{disease:_cons} ~ normal(-4,10) (1)

(1) Parameters are elements of the linear form xb_disease.

Bayesian logistic regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 48
Acceptance rate = .247
Efficiency: min = .03691

avg = .05447
Log marginal-likelihood = -11.021903 max = .06737

Equal-tailed
disease Mean Std. dev. MCSE Median [95% cred. interval]

restecg 1.74292 2.21888 .097001 1.385537 -2.065912 6.584702
isfbs 1.885653 2.792842 .145375 1.595679 -2.976167 7.976913

age .1221246 .0698409 .002691 .1174274 -.0078114 .2706446
male .2631 2.201574 .089281 .2667496 -4.125275 4.646742

_cons -2.304595 2.706482 .115472 -2.256248 -7.785531 3.098357

We now obtain more reasonable results that also agree with the Hungarian results. For the final
analysis, we may consider other heart disease datasets to verify the reasonableness of our prior
specifications and to check the sensitivity of the parameters to other prior specifications.

Ordered probit regression

Ordered probit and ordered logit regressions are appropriate for modeling ordinal response variables.
You can perform Bayesian analysis of an ordinal outcome by specifying the oprobit or ologit
likelihood function. In addition to regression coefficients in ordered models, bayesmh automatically
introduces parameters representing the cutpoints for the linear predictor. The cutpoint parameters are
declared as {depname: cut1}, {depname: cut2}, and so on, where depname is the name of the
response variable.

In the next example, we consider the full auto dataset and model the ordinal variable rep77, the
repair record, as a function of independent variables foreign, length, and mpg. The variable rep77
has 5 levels, so the cutpoint parameters are {rep77: cut1}, {rep77: cut2}, {rep77: cut3}, and
{rep77: cut4}. The independent variables are all positive, so it seems reasonable to use exponential
prior for the cutpoint parameters. The exponential prior is controlled by a hyperparameter {lambda}.
Based on the range of the independent predictors, we assign {lambda} a prior that is uniform in
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the 10 to 40 range. We assign N(0, 1) prior for regression coefficients. To monitor the progress, we
specify dots to request that bayesmh displays dots every 100 iterations and iteration numbers every
1,000 iterations.

. use https://www.stata-press.com/data/r18/fullauto
(Automobile models)

. replace length = length/10
variable length was int now float
(74 real changes made)

. set seed 14

. bayesmh rep77 foreign length mpg, likelihood(oprobit)
> prior({rep77: foreign length mpg}, normal(0,1))
> prior({rep77:_cut1 _cut2 _cut3 _cut4}, exponential({lambda=30}))
> prior({lambda}, uniform(10,40)) block(lambda) dots
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 10000 .........1000.........2000.........3000.........4000.........
> 5000.........6000.........7000.........8000.........9000.........10000 done

Model summary

Likelihood:
rep77 ~ oprobit(xb_rep77,{rep77:_cut1 ... _cut4})

Priors:
{rep77:foreign length mpg} ~ normal(0,1) (1)

{rep77:_cut1 ... _cut4} ~ exponential({lambda})

Hyperprior:
{lambda} ~ uniform(10,40)

(1) Parameters are elements of the linear form xb_rep77.

Bayesian ordered probit regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 66
Acceptance rate = .3422
Efficiency: min = .02171

avg = .0355
Log marginal-likelihood = -102.82883 max = .1136

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

rep77
foreign 1.338071 .3750768 .022296 1.343838 .6331308 2.086062
length .3479392 .1193329 .00787 .3447806 .1277292 .5844067

mpg .1048089 .0356498 .002114 .1022382 .0373581 .1761636
_cut1 7.204502 2.910222 .197522 7.223413 1.90771 13.07034
_cut2 8.290923 2.926149 .197229 8.258871 2.983281 14.16535
_cut3 9.584845 2.956191 .197144 9.497836 4.23589 15.52108
_cut4 10.97314 3.003014 .192244 10.89227 5.544563 17.06189

lambda 18.52477 7.252342 .215137 16.40147 10.21155 36.44309

When we specify dots or dots(), bayesmh displays dots as simulation is performed. The burn-in and
simulation iterations are displayed separately. During the adaptation period, iterations are displayed
with a symbol a instead of a dot. This indicates the period during which the proposal distribution is
still changing and thus may not be suitable for sampling from yet. Typically, adaptation is performed
during the burn-in period, the iterations of which are discarded from the MCMC sample. You should
pay closer attention to your results if you see adaptive iterations during the simulation period. This
may happen, for example, if you increase adaptation(maxiter()) without increasing burnin()
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correspondingly. In this case, you may need to perform additional checks to verify that the part of
the MCMC sample corresponding to the adaptation period is similar to the rest of the sample.

Posterior credible intervals suggest that foreign, length, and mpg are among the explanatory
factors for rep77. Based on MCSEs, their posterior mean estimates are fairly precise. The posterior
mean estimates of cutpoints, as expected, are not as precise. The estimated posterior mean for
{lambda} is 18.52.

We placed the hyperparameter {lambda} in a separate block because we wanted to sample this
nuisance parameter independently from the other model parameters. Based on the bivariate scatterplots,
this parameter does appear to be independent of other model parameters a posteriori.

. bayesgraph matrix {rep77:foreign} {rep77:length} {rep77:mpg} {lambda}

rep77:foreign

rep77:length

rep77:mpg

lambda

0

1

2

3

0 1 2 3

0

.5

1

0 .5 1

0

.1

.2

0 .1 .2
10

20

30

40

10 20 30 40



bayesmh — Bayesian models using Metropolis–Hastings algorithm 215

As with any MCMC analysis, we should verify convergence of all of our parameters. Here we show
diagnostic plots only for {lambda}.

. bayesgraph diagnostics {lambda}
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The diagnostic plots for {lambda} do not cause any concern.

Beta-binomial model
bayesmh is a regression command, which models the mean of the outcome distribution as a

function of predictors. There are cases when we do not have any predictors and want to model the
outcome distribution directly. For example, we may want to fit a Poisson distribution or a binomial
distribution to our outcome. We can do this by specifying one of the four distributions supported
by bayesmh in the likelihood() option: dexponential(), dbernoulli(), dbinomial(), or
dpoisson().

Let’s revisit the example from What is Bayesian analysis? in [BAYES] Intro, originally from Hoff
(2009, 3), of estimating the prevalence of a rare infectious disease in a small city. The outcome
variable y is the number of infected subjects in a city of 20 subjects, and our data consist of only
one observation, y = 0. We assume a binomial distribution for the outcome y, Binom(20,θ), where
the infection probability θ is a parameter of interest. Based on some previous studies, the model
parameter θ is assigned a Beta(2, 20) prior. For this model, the posterior distribution of θ is known
to be Beta(2, 40).
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To fit a binomial distribution to y using bayesmh, we specify the option
likelihood(dbinomial({theta},20)). The infection probability θ is represented by {theta}.

. set obs 1
Number of observations (_N) was 0, now 1.

. generate y = 0

. set seed 14

. bayesmh y, likelihood(dbinomial({theta},20))
> prior({theta}, beta(2,20)) initial({theta} 0.01)
Burn-in ...
Simulation ...

Model summary

Likelihood:
y ~ binomial({theta},20)

Prior:
{theta} ~ beta(2,20)

Bayesian binomial model MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 1
Acceptance rate = .4527

Log marginal-likelihood = -1.1658052 Efficiency = .1549

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

theta .0467973 .0317862 .000808 .039931 .0051255 .1277823

The estimated posterior mean for {theta} is 0.0468, which is close to the theoretical value of
2/(2 + 40) = 0.0476 and is within the range of the MCSE of 0.0008.

Multivariate regression

We consider a simple multivariate normal regression model without covariates. We use auto.dta,
and we fit a multivariate normal distribution to variables mpg, weight, and length.

We rescale these variables to have approximately equal ranges. Equalizing the range of model
variables is always recommended, because this makes the model computationally more stable.

. use https://www.stata-press.com/data/r18/auto, clear
(1978 automobile data)

. quietly replace weight = weight/1000

. quietly replace length = length/100

. quietly replace mpg = mpg/10

Example 15: Default MH sampling with inverse-Wishart prior for the covariance

For a multivariate normal distribution, an inverse-Wishart prior is commonly used as a prior for
the covariance matrix. Let’s fit our multivariate model using bayesmh.

We specify the multivariate normal likelihood likelihood(mvnormal({Sigma,m})) for the three
variables mpg, weight, and length, where {Sigma,m} is a matrix parameter for the covariance
matrix. We use vague normal priors normal(0,100) for all three means of the variables. For a
covariance matrix {Sigma,m}, which is of dimension three, we specify an inverse-Wishart prior with
the identity scale matrix. We also specify the mean parameters and the covariance parameter in two
separate blocks. To monitor the simulation process, we specify dots.
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. set seed 14

. bayesmh (mpg) (weight) (length), likelihood(mvnormal({Sigma,m}))
> prior({mpg:_cons} {weight:_cons} {length:_cons}, normal(0,100))
> prior({Sigma,m}, iwishart(3,100,I(3)))
> block({mpg:_cons} {weight:_cons} {length:_cons})
> block({Sigma,m}) dots
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 10000 .........1000.........2000.........3000.........4000.........
> 5000.........6000.........7000.........8000.........9000.........10000 done

Model summary

Likelihood:
mpg weight length ~ mvnormal(3,{mpg:},{weight:},{length:},{Sigma,m})

Priors:
{mpg:_cons} ~ normal(0,100)

{weight:_cons} ~ normal(0,100)
{length:_cons} ~ normal(0,100)

{Sigma,m} ~ iwishart(3,100,I(3))

Bayesian multivariate normal regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .3255
Efficiency: min = .001396

avg = .04166
Log marginal-likelihood = -254.88899 max = .1111

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mpg
_cons 2.13089 .0455363 .001763 2.129007 2.04435 2.223358

weight
_cons 3.018691 .0671399 .00212 3.020777 2.880051 3.149828

length
_cons 1.879233 .0210167 .00063 1.879951 1.837007 1.920619

Sigma_1_1 .1571554 .0038157 .000183 .1570586 .1499028 .1648159
Sigma_2_1 -.1864936 .0024051 .000343 -.1864259 -.1912537 -.18194
Sigma_3_1 -.0533863 .0033667 .000199 -.053342 -.0601722 -.0468986
Sigma_2_2 .3293518 .0044948 .001203 .329703 .3193904 .3366703
Sigma_3_2 .0894404 .0040487 .000471 .0894156 .0816045 .0976702
Sigma_3_3 .0329253 .002521 .00024 .0328027 .0285211 .0383005

Note: There is a high autocorrelation after 500 lags.

In this first run, we do not achieve good mixing of the MCMC chain. bayesmh issues a note about
significant autocorrelation of the simulated parameters.

A closer inspection of the ESS table reveals very low sampling efficiencies for the elements of the
covariance matrix {Sigma}.
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. bayesstats ess

Efficiency summaries MCMC sample size = 10,000
Efficiency: min = .001396

avg = .04166
max = .1111

ESS Corr. time Efficiency

mpg
_cons 667.48 14.98 0.0667

weight
_cons 1002.92 9.97 0.1003

length
_cons 1111.14 9.00 0.1111

Sigma_1_1 433.25 23.08 0.0433
Sigma_2_1 49.03 203.96 0.0049
Sigma_3_1 287.03 34.84 0.0287
Sigma_2_2 13.96 716.45 0.0014
Sigma_3_2 73.76 135.57 0.0074
Sigma_3_3 110.41 90.58 0.0110

For example, the diagnostic plots for {Sigma 2 2} provide visual confirmation of the convergence
issues—very poorly mixing trace plot, high autocorrelation, and a bimodal posterior distribution.

. bayesgraph diagnostics Sigma_2_2

.315

.32

.325

.33

.335

.34

0 2000 4000 6000 8000 10000

Iteration number

Trace

0

20

40

60

80

100

.315 .32 .325 .33 .335 .34

Histogram

-0.50

0.00

0.50

1.00

0 10 20 30 40
Lag

Autocorrelation

0

50

100

150

200

.315 .32 .325 .33 .335 .34

All

1-half

2-half

Density

Sigma_2_2

Here, we see a general problem associated with the simulation of covariance matrices. Random-
walk MH algorithm is not well suited for sampling positive-definite matrices. This is why even an
adaptive version of the MH algorithm, as implemented in bayesmh, may not achieve good mixing.
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Example 16: Adaptation of MH sampling with inverse-Wishart prior for the covariance

Continuing example 15, we can specify longer adaptation and burn-in periods to improve conver-
gence.

. set seed 14

. bayesmh (mpg) (weight) (length), likelihood(mvnormal({Sigma,m}))
> prior({mpg:_cons} {weight:_cons} {length:_cons}, normal(0,100))
> prior({Sigma,m}, iwishart(3,100,I(3)))
> block({mpg:_cons} {weight:_cons} {length:_cons})
> block({Sigma,m}) dots burnin(5000) adaptation(maxiter(50))
Burn-in 5000 aaaaaaaaa1000aaaaaaaaa2000aaaaaaaaa3000aaaa.....4000.........5000
> done
Simulation 10000 .........1000.........2000.........3000.........4000.........
> 5000.........6000.........7000.........8000.........9000.........10000 done

Model summary

Likelihood:
mpg weight length ~ mvnormal(3,{mpg:},{weight:},{length:},{Sigma,m})

Priors:
{mpg:_cons} ~ normal(0,100)

{weight:_cons} ~ normal(0,100)
{length:_cons} ~ normal(0,100)

{Sigma,m} ~ iwishart(3,100,I(3))

Bayesian multivariate normal regression MCMC iterations = 15,000
Random-walk Metropolis--Hastings sampling Burn-in = 5,000

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .2382
Efficiency: min = .02927

avg = .05053
Log marginal-likelihood = -245.83844 max = .07178

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mpg
_cons 2.13051 .0475691 .001809 2.13263 2.038676 2.220953

weight
_cons 3.017943 .0626848 .00234 3.016794 2.898445 3.143252

length
_cons 1.878912 .019905 .000769 1.878518 1.840311 1.918476

Sigma_1_1 .1711394 .0089943 .000419 .1706437 .1548036 .1898535
Sigma_2_1 -.1852432 .002432 .000126 -.1852973 -.1898398 -.1803992
Sigma_3_1 -.0517404 .0035831 .000201 -.051688 -.058747 -.0449874
Sigma_2_2 .3054418 .0144859 .000551 .3055426 .2783409 .3340654
Sigma_3_2 .0809091 .0057474 .000314 .080709 .0698331 .0924053
Sigma_3_3 .030056 .002622 .000153 .0299169 .0251627 .0355171

There is no note about high autocorrelation, and the average efficiency increases slightly from 4% to
5%.



220 bayesmh — Bayesian models using Metropolis–Hastings algorithm

Sampling efficiencies of the elements of the covariance matrix improved substantially.

. bayesstats ess

Efficiency summaries MCMC sample size = 10,000
Efficiency: min = .02927

avg = .05053
max = .07178

ESS Corr. time Efficiency

mpg
_cons 691.54 14.46 0.0692

weight
_cons 717.82 13.93 0.0718

length
_cons 670.63 14.91 0.0671

Sigma_1_1 459.78 21.75 0.0460
Sigma_2_1 370.45 26.99 0.0370
Sigma_3_1 318.91 31.36 0.0319
Sigma_2_2 692.06 14.45 0.0692
Sigma_3_2 334.08 29.93 0.0334
Sigma_3_3 292.70 34.16 0.0293

The diagnostic plots for {Sigma 2 2} look much better.

. bayesgraph diagnostics Sigma_2_2
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Example 17: Gibbs sampling of a covariance matrix

Continuing example 15, the convergence of the chain can be greatly improved if we use Gibbs
sampling for the covariance matrix parameter. For a multivariate normal model, inverse Wishart is
a conjugate prior, or more precisely semiconjugate prior, for the covariance matrix and thus Gibbs
sampling is available. To request Gibbs sampling, we only need to add the gibbs suboption to the
block specification of {Sigma,m}. The mean parameters are still updated by the random-walk MH
algorithm.

. set seed 14

. bayesmh (mpg) (weight) (length), likelihood(mvnormal({Sigma,m}))
> prior({mpg:_cons} {weight:_cons} {length:_cons}, normal(0,100))
> prior({Sigma,m}, iwishart(3,100,I(3)))
> block({mpg:_cons} {weight:_cons} {length:_cons})
> block({Sigma,m}, gibbs) dots
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaa.. done
Simulation 10000 .........1000.........2000.........3000.........4000.........
> 5000.........6000.........7000.........8000.........9000.........10000 done

Model summary

Likelihood:
mpg weight length ~ mvnormal(3,{mpg:},{weight:},{length:},{Sigma,m})

Priors:
{mpg:_cons} ~ normal(0,100)

{weight:_cons} ~ normal(0,100)
{length:_cons} ~ normal(0,100)

{Sigma,m} ~ iwishart(3,100,I(3))

Bayesian multivariate normal regression MCMC iterations = 12,500
Metropolis--Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .5942
Efficiency: min = .06842

avg = .6659
Log marginal-likelihood = -240.48717 max = .9781

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mpg
_cons 2.128801 .0457224 .00164 2.128105 2.041016 2.215

weight
_cons 3.020533 .0609036 .002328 3.021561 2.908383 3.143715

length
_cons 1.880409 .0197061 .000725 1.881133 1.843106 1.918875

Sigma_1_1 .150733 .0164464 .000166 .1495231 .1219304 .1869429
Sigma_2_1 -.1571622 .0196803 .000201 -.156005 -.1995812 -.1224243
Sigma_3_1 -.0443725 .0060229 .000061 -.0439466 -.0571876 -.0338685
Sigma_2_2 .2673525 .029205 .0003 .2654589 .2163041 .3305366
Sigma_3_2 .0708095 .0085435 .000087 .0702492 .0557448 .0893794
Sigma_3_3 .0273506 .0029932 .000031 .0271362 .0220723 .0337994

Compared with example 15, the results improved substantially. Compared with example 16, the
minimum efficiency increases from about 3% to 7% and the average efficiency from 5% to 67%.
MCSEs of posterior mean estimates, particularly for elements of {Sigma}, are lower.
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The diagnostic plots, for example, for Sigma 2 2 also indicate a very good convergence.

. bayesgraph diagnostics Sigma_2_2
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Example 18: Gibbs sampling of a covariance matrix with the Jeffreys prior

In this example, we perform a sensitivity analysis of the model by replacing the inverse-Wishart
prior for the covariance matrix with a Jeffreys prior.

. set seed 14

. bayesmh (mpg) (weight) (length), likelihood(mvnormal({Sigma,m}))
> prior({mpg:} {weight:} {length:}, normal(0,100))
> prior({Sigma,m}, jeffreys(3))
> block({mpg:} {weight:} {length:})
> block({Sigma,m}, gibbs) dots
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 10000 .........1000.........2000.........3000.........4000.........
> 5000.........6000.........7000.........8000.........9000.........10000 done

Model summary

Likelihood:
mpg weight length ~ mvnormal(3,{mpg:},{weight:},{length:},{Sigma,m})

Priors:
{mpg:_cons} ~ normal(0,100)

{weight:_cons} ~ normal(0,100)
{length:_cons} ~ normal(0,100)

{Sigma,m} ~ jeffreys(3)

Bayesian multivariate normal regression MCMC iterations = 12,500
Metropolis--Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .6223
Efficiency: min = .08573

avg = .6886
Log marginal-likelihood = -42.728723 max = 1

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mpg
_cons 2.130704 .0709095 .002185 2.129449 1.989191 2.267987

weight
_cons 3.019323 .0950116 .003245 3.019384 2.834254 3.208017

length
_cons 1.879658 .0271562 .000892 1.879859 1.827791 1.933834

Sigma_1_1 .3596673 .0628489 .000628 .3526325 .2575809 .5028854
Sigma_2_1 -.3905511 .0772356 .000772 -.3824458 -.5668251 -.2654059
Sigma_3_1 -.1103824 .0220164 .000223 -.1077659 -.1611913 -.0751177
Sigma_2_2 .6503219 .1141333 .001141 .6378476 .466738 .9140429
Sigma_3_2 .1763159 .0318394 .000323 .1725042 .1248434 .2507866
Sigma_3_3 .0533981 .0093631 .000095 .0522228 .0382405 .0748096

Note: Adaptation tolerance is not met in at least one of the blocks.

Compared with example 17, the estimates of the means of the multivariate distribution do not change
much, but the estimates of the elements of the covariance matrix do change. The estimates for
{Sigma,m} obtained using the Jeffreys prior are approximately twice as big as the estimates obtained
using the inverse-Wishart prior. If we compute correlation matrices corresponding to {Sigma,m} from
the two models, they will be similar. This can be explained by the fact that both the Jeffreys prior and
the inverse-Wishart prior with identity scale matrix are not informative for the correlation structure
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because they only depend on the determinant and the trace of {Sigma,m} whereas the correlation
structure is determined by the data alone.

Technical note: Adaptation tolerance is not met

At the bottom of the table in the previous output, the note about the adaptation tolerance not being
met in one of the blocks is displayed. Adaptation is part of MH sampling, so the note refers to the block
of regression coefficients. This note does not necessarily indicate a problem. It simply notifies you that
the default target acceptance rate as specified in adaptation(tarate()) has not been reached within
the tolerance specified in adaptation(tolerance()). The used default for the target acceptance
rate corresponds to the theoretical asymptotically optimal acceptance rate of 0.44 for a block with
one parameter and 0.234 for a block with multiple parameters. The rate is derived for a specific
class of models and does not necessarily represent the optimal rate for all models. If your MCMC
converged, you can safely ignore this note. Otherwise, you need to investigate your model further.
One remedy is to increase the burn-in period, which automatically increases the adaptation period, or
more specifically, the number of adaptive iterations as controlled by adaptation(maxiter()). For
example, if we increase burn-in to 3,000 by specifying option burnin(3000) in the above example,
we will meet the adaptation tolerance.

The diagnostic plots of Sigma 2 2 demonstrate excellent mixing properties.

. bayesgraph diagnostics Sigma_2_2
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Panel-data and multilevel models
Let’s fit two-level random-intercept and random-coefficients models. A two-level random-intercept

model is also known as a panel-data model. Also see [BAYES] Bayesian estimation for fitting panel-data
and multilevel models more conveniently by using the bayes prefix.

Two-level random-intercept model or panel-data model

Ruppert, Wand, and Carroll (2003) and Diggle et al. (2002) analyzed a longitudinal dataset
consisting of weight measurements of 48 pigs on 9 successive weeks. Pigs were identified by the
group variable id.

The following two-level model was considered:

weightij = β0 + β1weekij + uj + εij

where uj is the random effect for pig j, j = 1, . . . , 48, and the counter i = 1, . . . , 9 identifies the
weeks.

We first use mixed to fit this model by using maximum likelihood for comparison purposes; see
[ME] mixed.

. use https://www.stata-press.com/data/r18/pig, clear
(Longitudinal analysis of pig weights)

. mixed weight week || id:

Performing EM optimization ...

Performing gradient-based optimization:
Iteration 0: Log likelihood = -1014.9268
Iteration 1: Log likelihood = -1014.9268

Computing standard errors ...

Mixed-effects ML regression Number of obs = 432
Group variable: id Number of groups = 48

Obs per group:
min = 9
avg = 9.0
max = 9

Wald chi2(1) = 25337.49
Log likelihood = -1014.9268 Prob > chi2 = 0.0000

weight Coefficient Std. err. z P>|z| [95% conf. interval]

week 6.209896 .0390124 159.18 0.000 6.133433 6.286359
_cons 19.35561 .5974059 32.40 0.000 18.18472 20.52651

Random-effects parameters Estimate Std. err. [95% conf. interval]

id: Identity
var(_cons) 14.81751 3.124225 9.801716 22.40002

var(Residual) 4.383264 .3163348 3.805112 5.04926

LR test vs. linear model: chibar2(01) = 472.65 Prob >= chibar2 = 0.0000
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Consider the following Bayesian model for these data:

weightij = β0 + β1weekij + uj + εij

εij ∼ i.i.d. N(0, σ2
0)

uj ∼ i.i.d. N(0, σ2
u)

β0 ∼ N(0, 100)

β1 ∼ N(0, 100)

σ2
0 ∼ InvGamma(0.001, 0.001)

σ2
u ∼ InvGamma(0.001, 0.001)

The model has four main parameters of interest: regression coefficients β0 and β1 and variance
components σ2

0 and σ2
u. The pig random effects uj’s are considered nuisance parameters. We use

normal priors for the regression coefficients and random effects and inverse-gamma priors for the
variance parameters. The chosen priors are fairly noninformative, so we would expect results to be
similar to the frequentist results.

To fit this model using bayesmh, we need to include random effects for pig in our regression
model. This can be done simply by adding the random-effects term U[id] to the list of variables.

In addition to two regression coefficients and two variance components, we have 48 random-effects
parameters. As for other models, bayesmh will automatically create parameters of the regression
function: {weight:week} for the regression coefficient of week and {weight: cons} for the
constant term. It will also create random-effects parameters {U:1.id}, {U:2.id}, . . ., {U:48.id}
and the corresponding variance component {var U}. So, we only need to create one remaining
parameter for the error variance. We will use {var 0} to match our math notation.

We will perform five simulations for the specified Bayesian model to illustrate some common
difficulties in applying MH MCMC to multilevel models.

Example 19: First simulation—default MH settings

In the first simulation, we use default simulation settings of the MH algorithm. We have many
parameters in our model, so the simulation will take a few moments. For exploration purposes and
to expedite results, here we use a smaller MCMC size of 5,000 instead of the default of 10,000. To
monitor the progress of the simulation, we also specify dots. And we use the rseed() option to
specify the random-number seed instead of set seed.



bayesmh — Bayesian models using Metropolis–Hastings algorithm 227

. bayesmh weight week U[id], likelihood(normal({var_0}))
> prior({weight:_cons}, normal(0, 100))
> prior({weight:week}, normal(0, 100))
> prior({var_0}, igamma(0.001, 0.001))
> prior({var_U}, igamma(0.001, 0.001))
> mcmcsize(5000) dots rseed(14)
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aa... done
Simulation 5000 .........1000.........2000.........3000.........4000.........
> 5000 done

Model summary

Likelihood:
weight ~ normal(xb_weight,{var_0})

Priors:
{weight:_cons week} ~ normal(0,100) (1)

{U[id]} ~ normal(0,{var_U}) (1)
{var_0} ~ igamma(0.001,0.001)

Hyperprior:
{var_U} ~ igamma(0.001,0.001)

(1) Parameters are elements of the linear form xb_weight.

Bayesian normal regression MCMC iterations = 7,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 5,000
Number of obs = 432
Acceptance rate = .2689
Efficiency: min = .004996

avg = .03269
Log marginal-likelihood max = .05366

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

weight
week 6.214207 .038642 .002359 6.213394 6.139342 6.289956

_cons 19.32073 .4780961 .095658 19.33685 18.36352 20.16849

var_0 4.422389 .3193947 .020177 4.397903 3.847674 5.129631
var_U 15.14296 3.299171 .314644 14.65057 10.17046 23.11491

bayesmh reports results that are similar to those from mixed, but the low minimum efficiency of
0.005 may indicate problems with MCMC convergence for some of the parameters. bayesmh does
not report the estimates of random effects by default, but you can use the showreffects option to
display them.
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We use bayesstats ess to identify the main model parameter that has the lowest efficiency.

. bayesstats ess

Efficiency summaries MCMC sample size = 5,000
Efficiency: min = .004996

avg = .03269
max = .05366

ESS Corr. time Efficiency

weight
week 268.29 18.64 0.0537

_cons 24.98 200.16 0.0050

var_0 250.58 19.95 0.0501
var_U 109.94 45.48 0.0220

The {weight: cons} parameter has the lowest efficiency of 0.005.

If we look at diagnostic plots for {weight: cons},

. bayesgraph diagnostics {weight:_cons}
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we see that the trace plot exhibits some trend and does not show good mixing and that the autocorrelation
is high. Our MCMC does not seem to converge and thus we should be cautious about the obtained
results.
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We can also look at the trace and autocorrelation plots of all main parameters.

. bayesgraph trace _all, byparm(cols(2))
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The trace plots of all parameters other than the constant do not appear to have any trend.

. bayesgraph ac _all, byparm
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The autocorrelation for the constant {weight: cons} and variance component {var U} is high.
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Example 20: Second simulation—blocking of parameters

Continuing example 19, we can improve efficiency of the MH algorithm by separating model
parameters into blocks to be sampled independently. We consider a separate block for each model
parameter; random-effects parameters automatically share the same separate block. We also specify
nomodelsummary to suppress the model summary of bayesmh. To block parameters, we can either
specify a separate block() option for each parameter or group all parameters in one block() option
and use block()’s suboption split. We use the second approach.

. bayesmh weight week U[id], likelihood(normal({var_0}))
> prior({weight:_cons}, normal(0, 100))
> prior({weight:week}, normal(0, 100))
> prior({var_0}, igamma(0.001, 0.001))
> prior({var_U}, igamma(0.001, 0.001))
> block({weight:} {var_0 var_U}, split)
> mcmcsize(5000) dots rseed(14) nomodelsummary
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 5000 .........1000.........2000.........3000.........4000.........
> 5000 done

Bayesian normal regression MCMC iterations = 7,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 5,000
Number of obs = 432
Acceptance rate = .4046
Efficiency: min = .004964

avg = .08105
Log marginal-likelihood max = .1597

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

weight
week 6.215408 .0381479 .002808 6.214654 6.140876 6.293443

_cons 19.41979 .5741026 .11524 19.46862 18.24166 20.44603

var_0 4.425198 .3318405 .0134 4.408941 3.84317 5.117833
var_U 15.8305 3.499092 .123841 15.28998 10.28572 23.73757

Blocking certainly improved efficiencies: the average efficiency is now 0.08, but the minimum efficiency
is still low.



232 bayesmh — Bayesian models using Metropolis–Hastings algorithm

The trace and autocorrelation plots below have improved for variance components but not for
regression coefficients.

. bayesgraph trace _all, byparm(cols(2))
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. bayesgraph ac _all, byparm
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Example 21: Third simulation—Gibbs sampling

The most efficient MCMC procedure for our Bayesian model is Gibbs sampling, which can be set
up as follows. To request a Gibbs sampling for a block of model parameters, we must first define
them in a separate prior() statement and then put them in a separate block() with the gibbs
suboption.

. bayesmh weight week U[id], likelihood(normal({var_0}))
> prior({weight:_cons}, normal(0, 100))
> prior({weight:week}, normal(0, 100))
> prior({var_0}, igamma(0.001, 0.001))
> prior({var_U}, igamma(0.001, 0.001))
> block({weight:} {var_0 var_U}, split gibbs)
> mcmcsize(5000) dots rseed(14) nomodelsummary
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 5000 .........1000.........2000.........3000.........4000.........
> 5000 done

Bayesian normal regression MCMC iterations = 7,500
Metropolis--Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 5,000
Number of obs = 432
Acceptance rate = .8455
Efficiency: min = .007933

avg = .3116
Log marginal-likelihood max = .6695

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

weight
week 6.211245 .0394854 .001513 6.211084 6.136556 6.290471

_cons 19.10077 .5413931 .085962 19.0496 18.20506 20.29911

var_0 4.405236 .320582 .00689 4.391879 3.81231 5.076974
var_U 15.76448 3.44687 .059575 15.34651 10.16291 23.5736

The average efficiency increased dramatically to 0.31 but the minimum efficiency is still low.
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If we again inspect the diagnostic plots for main model parameters,

. bayesgraph trace _all, byparm(cols(2))
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. bayesgraph ac _all, byparm
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we will see that all but the constant term show nearly perfect mixing.
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For linear multilevel models, we can further improve mixing by specifying Gibbs sampling also
for random effects.

. bayesmh weight week U[id], likelihood(normal({var_0}))
> prior({weight:_cons}, normal(0, 100))
> prior({weight:week}, normal(0, 100))
> prior({var_0}, igamma(0.001, 0.001))
> prior({var_U}, igamma(0.001, 0.001))
> block({weight:} {var_0 var_U}, split gibbs)
> block({U}, gibbs)
> mcmcsize(5000) dots rseed(14) nomodelsummary
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 5000 .........1000.........2000.........3000.........4000.........
> 5000 done

Bayesian normal regression MCMC iterations = 7,500
Gibbs sampling Burn-in = 2,500

MCMC sample size = 5,000
Number of obs = 432
Acceptance rate = 1
Efficiency: min = .02462

avg = .4626
Log marginal-likelihood max = .8788

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

weight
week 6.212522 .0391656 .001618 6.212953 6.135002 6.287983

_cons 19.17706 .527013 .047497 19.19138 18.0913 20.1664

var_0 4.412689 .3197871 .004965 4.395271 3.827182 5.094548
var_U 15.76501 3.421817 .051622 15.30836 10.33911 23.6702
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The minimum efficiency is now increased to 0.025, and the diagnostics plots for the constant term
look much better:

. bayesgraph trace _all, byparm(cols(2))
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. bayesgraph ac _all, byparm
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Example 22: Fourth simulation—splitting random-effects parameters

Gibbs sampling typically provides the most efficient sampling of parameters. Full Gibbs sampling
is not always available; see, for example, Multilevel logistic regression below.

In the absence of Gibbs sampling for random effects, block()’s suboption split provides the
next most efficient albeit much slower way of sampling the random-effects parameters in bayesmh.
Taking into account conditional independence of individual random effects, random-effects parameters
associated with levels of the grouping variable can be sampled sequentially (as separate blocks) instead
of being sampled jointly from a high-dimensional proposal distribution (as in example 20).
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For example, instead of using Gibbs sampling for the random effects (as in example 21), we use
block()’s suboption split for the random-effects parameters {U[id]}.

. bayesmh weight week U[id], likelihood(normal({var_0}))
> prior({weight:_cons}, normal(0, 100))
> prior({weight:week}, normal(0, 100))
> prior({var_0}, igamma(0.001, 0.001))
> prior({var_U}, igamma(0.001, 0.001))
> block({weight:} {var_0 var_U}, split gibbs)
> block({U}, split)
> mcmcsize(5000) dots rseed(14) nomodelsummary
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 5000 .........1000.........2000.........3000.........4000.........
> 5000 done

Bayesian normal regression MCMC iterations = 7,500
Metropolis--Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 5,000
Number of obs = 432
Acceptance rate = .8455
Efficiency: min = .007933

avg = .3116
Log marginal-likelihood max = .6695

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

weight
week 6.211245 .0394854 .001513 6.211084 6.136556 6.290471

_cons 19.10077 .5413931 .085962 19.0496 18.20506 20.29911

var_0 4.405236 .320582 .00689 4.391879 3.81231 5.076974
var_U 15.76448 3.44687 .059575 15.34651 10.16291 23.5736

The average sampling efficiency, 39%, is lower than with the full Gibbs sampling in example 21 but
is higher compared with the model that did not use Gibbs sampling for random effects. For models
that do not support Gibbs sampling, splitting on random effects may be a good alternative.
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Example 23: Fifth simulation—alternative parameterization

In our pig-data example, the difficulty of sampling the constant term efficiently may be explained
by the presence of a high correlation between the constant and one or more random effects. In such
cases, an alternative parameterization of a multilevel model may be useful.

Consider the following formulation of an earlier random-intercept model:

weightij = β0 + β1weekij + uj + εij = β1weekij + τj + εij ,

εij ∼ i.i.d. N(0, σ2
0)

τj ∼ i.i.d. N(β0, σ
2
u)

β0 ∼ N(0, 100)

β1 ∼ N(0, 100)

σ2
0 ∼ InvGamma(0.001, 0.001)

σ2
u ∼ InvGamma(0.001, 0.001)

Here, the constant term is absorbed into the prior for the random effects τj’s, which have a mean
of β0 instead of a zero, as for random effects uj’s.

To specify the above model with bayesmh, we need to use the noconstant option, and we need
to specify the prior for random effects manually.
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Continuing with example 21, we now fit a reparameterized model:

. bayesmh weight week U[id], likelihood(normal({var_0})) noconstant
> prior({U[id]}, normal({weight:_cons},{var_U}))
> prior({weight:_cons}, normal(0, 100))
> prior({weight:week}, normal(0, 100))
> prior({var_0}, igamma(0.001, 0.001))
> prior({var_U}, igamma(0.001, 0.001))
> block({weight:} {var_0 var_U}, split gibbs)
> block({U}, gibbs)
> mcmcsize(5000) dots rseed(14)
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 5000 .........1000.........2000.........3000.........4000.........
> 5000 done

Model summary

Likelihood:
weight ~ normal(xb_weight,{var_0})

Priors:
{weight:week} ~ normal(0,100) (1)

{U[id]} ~ normal({weight:_cons},{var_U}) (1)
{var_0} ~ igamma(0.001,0.001)

{weight:_cons} ~ normal(0,100)

Hyperprior:
{var_U} ~ igamma(0.001,0.001)

(1) Parameters are elements of the linear form xb_weight.

Bayesian normal regression MCMC iterations = 7,500
Gibbs sampling Burn-in = 2,500

MCMC sample size = 5,000
Number of obs = 432
Acceptance rate = 1
Efficiency: min = .1139

avg = .6008
Log marginal-likelihood max = .9366

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

weight
week 6.210628 .0389494 .001632 6.21117 6.133097 6.286066

_cons 19.28477 .607197 .012616 19.28279 18.10872 20.50361

var_0 4.412291 .3191009 .004663 4.398022 3.827661 5.090693
var_U 15.82342 3.484342 .052251 15.38458 10.29349 23.88555

The average efficiency increased dramatically to 60% with the minimum efficiency of 11% now.
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The diagnostic plots now show perfect mixing for all main model parameters:

. bayesgraph trace _all, byparm(cols(2))
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. bayesgraph ac _all, byparm
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All estimates are very close to the MLEs obtained earlier with the mixed command.

Linear growth curve model—a random-coefficient model

Continuing our pig data example from Two-level random-intercept model or panel-data model, we
extend the random-intercept model to include random coefficients for week by using

weightij = β0 + β1weekij + u0j + u1jweekij + εij

where u0j is the random effect for pig and u1j is the pig-specific random coefficient on week for
j = 1, . . . , 48 and i = 1, . . . , 9.
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Example 24: Independent covariance structure for the random effects

Let us first assume that the random effects u0j’s and u1j’s are independent. We can use mixed
to fit this model by using maximum likelihood.

. use https://www.stata-press.com/data/r18/pig
(Longitudinal analysis of pig weights)

. mixed weight week || id: week

Performing EM optimization ...

Performing gradient-based optimization:
Iteration 0: Log likelihood = -869.03825
Iteration 1: Log likelihood = -869.03825

Computing standard errors ...

Mixed-effects ML regression Number of obs = 432
Group variable: id Number of groups = 48

Obs per group:
min = 9
avg = 9.0
max = 9

Wald chi2(1) = 4689.51
Log likelihood = -869.03825 Prob > chi2 = 0.0000

weight Coefficient Std. err. z P>|z| [95% conf. interval]

week 6.209896 .0906819 68.48 0.000 6.032163 6.387629
_cons 19.35561 .3979159 48.64 0.000 18.57571 20.13551

Random-effects parameters Estimate Std. err. [95% conf. interval]

id: Independent
var(week) .3680668 .0801181 .2402389 .5639103

var(_cons) 6.756364 1.543503 4.317721 10.57235

var(Residual) 1.598811 .1233988 1.374359 1.85992

LR test vs. linear model: chi2(2) = 764.42 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

Consider the following Bayesian model for these data:

weightij = β0 + β1weekij + u0j + u1jweekij + εij = τ0j + τ1jweekij + εij ,

εij ∼ i.i.d. N(0, σ2
0)

τ0j ∼ i.i.d. N(β0, σ
2
τ0)

τ1j ∼ i.i.d. N(β1, σ
2
τ1)

β0 ∼ N(0, 100)

β1 ∼ N(0, 100)

σ2
0 ∼ InvGamma(0.001, 0.001)

σ2
τ0 ∼ InvGamma(0.001, 0.001)

σ2
τ1 ∼ InvGamma(0.001, 0.001)
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The model has five main parameters of interest: regression coefficients β0 and β1 and variance
components σ2

0 , σ2
τ0 , and σ2

τ1 . β0 and β1 are technically hyperparameters because they are specified
as mean parameters of the prior distributions for random effects τ0j’s and τ1j’s, respectively. Random
effects τ0j and τ1j are considered nuisance parameters. We again use normal priors for the regression
coefficients and random effects and inverse-gamma priors for the variance parameters. We specify
fairly noninformative priors.

To fit this model using bayesmh, we include random effects for pig and their interaction with week
in our regression model. Following Random effects , we add random intercepts for the id variable as
T0[id], and we include random coefficients on week as c.week#T1[id], where T0 and T1 stand
for τ0 and τ1.

We fit our model using bayesmh. Following example 21, we perform blocking of parameters and
use Gibbs sampling for the blocks. For brevity, we also combine the same prior specifications in one
statement but use prior()’s split suboption to continue treating the parameters from the same
prior() statement as separate blocks during simulation.

. bayesmh weight T0[id] c.week#T1[id], likelihood(normal({var_0})) noconstant
> prior({T0[id]}, normal({weight:_cons}, {var_T0}))
> prior({T1[id]}, normal({weight:week}, {var_T1}))
> prior({weight:week _cons}, normal(0, 1e2) split)
> prior({var_0 var_T0 var_T1}, igamma(0.001, 0.001) split)
> block({var_0 var_T0 var_T1}, gibbs split)
> block({weight:}, gibbs split)
> block({T0}, gibbs) block({T1}, gibbs)
> mcmcsize(5000) rseed(17) dots notable
Burn-in 2500 .........1000.........2000..... done
Simulation 5000 .........1000.........2000.........3000.........4000.........
> 5000 done

Model summary

Likelihood:
weight ~ normal(xb_weight,{var_0})

Priors:
{T0[id]} ~ normal({weight:_cons},{var_T0}) (1)
{T1[id]} ~ normal({weight:week},{var_T1}) (1)
{var_0} ~ igamma(0.001,0.001)

{weight:week _cons} ~ normal(0,1e2)

Hyperprior:
{var_T0 var_T1} ~ igamma(0.001,0.001)

(1) Parameter is an element of the linear form xb_weight.

Bayesian normal regression MCMC iterations = 7,500
Gibbs sampling Burn-in = 2,500

MCMC sample size = 5,000
Number of obs = 432
Acceptance rate = 1
Efficiency: min = .4104

avg = .5277
Log marginal-likelihood max = .6875

Our AR is good and efficiencies are high. We do not have a reason to suspect nonconvergence.
Nevertheless, it is important to perform graphical convergence diagnostics to confirm this. We used
the notable option to suppress the estimation summary to focus on checking the MCMC convergence
first and to redisplay the coefficients in the same order as in mixed.

Let’s look at diagnostic plots. We show only diagnostic plots for the mean of random intercepts,
but convergence should be established for all parameters before any inference can be made. We leave
it to you to verify convergence of the remaining parameters.
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. bayesgraph diagnostics {weight:_cons}
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The diagnostic plots look good.

Our posterior mean estimates of the main model parameters are in agreement with maximum
likelihood results from mixed, as is expected with noninformative priors.

. bayesstats summary {weight:week _cons} {var_T1 var_T0 var_0}

Posterior summary statistics MCMC sample size = 5,000

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

weight
week 6.213062 .0950649 .001621 6.213753 6.029047 6.401924

_cons 19.31661 .4041825 .007445 19.32041 18.54005 20.13218

var_T1 .3940673 .0927395 .001937 .3815496 .2522003 .6080756
var_T0 7.176892 1.719979 .037968 6.956708 4.424175 11.31125
var_0 1.604662 .1229856 .002478 1.600799 1.377464 1.857627
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Example 25: Unstructured covariance structure for the random effects

In this example, we assume that the random effects τ0j’s and τ1j’s are correlated. Again we can
use the mixed command to fit this model by using maximum likelihood.

. mixed weight week || id: week, cov(unstructured)

Performing EM optimization ...

Performing gradient-based optimization:
Iteration 0: Log likelihood = -868.96185
Iteration 1: Log likelihood = -868.96185

Computing standard errors ...

Mixed-effects ML regression Number of obs = 432
Group variable: id Number of groups = 48

Obs per group:
min = 9
avg = 9.0
max = 9

Wald chi2(1) = 4649.17
Log likelihood = -868.96185 Prob > chi2 = 0.0000

weight Coefficient Std. err. z P>|z| [95% conf. interval]

week 6.209896 .0910745 68.18 0.000 6.031393 6.388399
_cons 19.35561 .3996387 48.43 0.000 18.57234 20.13889

Random-effects parameters Estimate Std. err. [95% conf. interval]

id: Unstructured
var(week) .3715251 .0812958 .2419532 .570486

var(_cons) 6.823363 1.566194 4.351297 10.69986
cov(week,_cons) -.0984378 .2545767 -.5973991 .4005234

var(Residual) 1.596829 .123198 1.372735 1.857505

LR test vs. linear model: chi2(3) = 764.58 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

We modify the previous Bayesian model to account for the correlation between the random effects:

(τ0j , τ1j) ∼ i.i.d. MVN(β0, β1,Σ)

Σ ∼ InvWishart{3, I(2)}

Σ =

[
σ2
τ0 σ2

12

σ2
21 σ2

τ1

]
The elements σ2

τ0 and σ2
τ1 of Σ represent the variances of τ0j’s and τ1j’s, respectively, while σ21

is the covariance between them. We apply a weakly informative inverse-Wishart prior with degree of
freedom 3 and identity scale matrix.



bayesmh — Bayesian models using Metropolis–Hastings algorithm 249

Gibbs sampling is not available in bayesmh for the mean parameters ({weight: cons} and
{weight:week}) of the multivariate normal distribution with an unstructured covariance. We thus
remove gibbs from the corresponding block() option.

. bayesmh weight T0[id] c.week#T1[id], likelihood(normal({var_0})) noconstant
> prior({T0 T1}, mvnormal(2, {weight:_cons}, {weight:week}, {Sigma,m}))
> prior({weight:week _cons}, normal(0, 1e2) split)
> prior({var_0}, igamma(0.001,0.001))
> prior({Sigma,m}, iwishart(2,3,I(2)))
> block({var_0} {Sigma,m}, gibbs split)
> block({weight:}, split)
> block({T0}, gibbs) block({T1}, gibbs)
> mcmcsize(5000) rseed(17) dots
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 5000 .........1000.........2000.........3000.........4000.........
> 5000 done

Model summary

Likelihood:
weight ~ normal(xb_weight,{var_0})

Priors:
{var_0} ~ igamma(0.001,0.001)

{T0[id] T1[id]} ~ mvnormal(2,{weight:_cons},{weight:week},{Sigma,m}) (1)
{weight:week _cons} ~ normal(0,1e2)

Hyperprior:
{Sigma,m} ~ iwishart(2,3,I(2))

(1) Parameter is an element of the linear form xb_weight.

Bayesian normal regression MCMC iterations = 7,500
Metropolis--Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 5,000
Number of obs = 432
Acceptance rate = .8146
Efficiency: min = .177

avg = .3942
Log marginal-likelihood max = .5378

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

weight
_cons 19.32651 .3922638 .013186 19.32816 18.54339 20.11928
week 6.207807 .0986948 .003086 6.20779 6.009859 6.402211

var_0 1.608075 .1253061 .002416 1.60557 1.377569 1.859606
Sigma_1_1 6.845693 1.643541 .034744 6.637035 4.250556 10.62172
Sigma_2_1 -.0947838 .2706155 .005435 -.0897511 -.654002 .4270949
Sigma_2_2 .4021311 .09014 .001798 .3894671 .2606943 .6142174

The average sampling efficiency is about 40% with no indications for convergence problems. The
posterior mean estimates of the main model parameters are close to the maximum likelihood results
from mixed. For example, the estimates of variance components σ2

τ0 , σ21, and σ2
τ1 are 6.85, −0.095,

and 0.40, respectively, from bayesmh and 6.82, −0.098, and 0.37, respectively, from mixed.
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Multilevel logistic regression
Here we revisit example 1 [ME] melogit. The example analyzes data from the 1989 Bangladesh

fertility survey (Huq and Cleland 1990). A logistic regression model applied to the response variable
c use uses fixed-effects variables urban, age, and i.children and a random-effects variable,
district, to account for the between-district variability.

A Bayesian analog of this two-level, random-intercept model using bayesmh is as follows.
We include U[district] in the list of covariates to specify the random intercepts for the
group variable district. The corresponding random-effects parameters {U[district]} are as-
signed a zero-mean normal prior distribution with variance {var U}. A relatively weak nor-
mal(0,100) prior is applied to the fixed-effects parameters {c use:urban}, {c use:age},
{c use:i.children}, and {c use: cons}. The variance parameter {var U} is assigned a non-
informative igamma(0.01,0.01) prior, and a Gibbs sampler is used for it.

. use https://www.stata-press.com/data/r18/bangladesh
(Bangladesh Fertility Survey, 1989)

. bayesmh c_use urban age i.children U[district], likelihood(logit)
> prior({c_use:urban age i.children _cons}, normal(0, 100))
> prior({var_U}, igamma(0.01,0.01))
> block({var_U}, gibbs) dots rseed(17)
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 10000 .........1000.........2000.........3000.........4000.........
> 5000.........6000.........7000.........8000.........9000.........10000 done

Model summary

Likelihood:
c_use ~ logit(xb_c_use)

Priors:
{c_use:urban age i.children _cons} ~ normal(0,100) (1)

{U[district]} ~ normal(0,{var_U}) (1)

Hyperprior:
{var_U} ~ igamma(0.01,0.01)

(1) Parameters are elements of the linear form xb_c_use.

Bayesian logistic regression MCMC iterations = 12,500
Metropolis--Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 1,934
Acceptance rate = .4517
Efficiency: min = .01859

avg = .02813
Log marginal-likelihood max = .04373

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

c_use
urban .7364239 .1120843 .007943 .7393282 .4993958 .9511179

age -.0262663 .0076378 .00056 -.02666 -.0418213 -.0116904

children
1 child 1.129249 .1530869 .010718 1.127919 .8263055 1.432189

2 children 1.368097 .1678695 .01045 1.361876 1.040911 1.690345
3 or more.. 1.340399 .1773981 .009683 1.337075 .9809634 1.692562

_cons -1.688619 .1480851 .007926 -1.692551 -1.966011 -1.388868

var_U .2295154 .0797827 .003815 .2180827 .1098954 .4199566
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Although the average efficiency of 0.03 is not that high, there are no indications for convergence
problems. (We can verify this by looking at convergence diagnostics using bayesgraph diagnostics.)

Our estimates of the main regression parameters are close to those obtained with the melogit
command. The posterior mean estimate of variance parameter {var U}, 0.23, is slightly larger than
the corresponding estimate of 0.22 from melogit.

Three-level nonlinear model

We revisit example 20 from [ME] menl analyzing the affect of dietary additive guar on blood
glucose level after alcohol consumption. A total of seven subjects participated in the study, identified
by the subject variable. Their blood glucose was measured at time points given by the variable
time. The binary variable guar identifies experiments with and without the dietary additive.

. use https://www.stata-press.com/data/r18/glucose
(Glucose levels following alcohol ingestion (Hand and Crowder, 1996))

. describe

Contains data from https://www.stata-press.com/data/r18/glucose.dta
Observations: 196 Glucose levels following

alcohol ingestion (Hand and
Crowder, 1996)

Variables: 4 16 Feb 2023 14:16

Variable Storage Display Value
name type format label Variable label

subject byte %9.0g Subject ID
time byte %9.0g Time since alcohol ingestion

(min/10)
glucose double %9.0g Blood glucose level (mg/dl)
guar byte %12.0g guarlbl Experiment with and without guar

Sorted by:

The expected glucose level is analyzed according to a model proposed in Hand and
Crowder (1996). It is a three-level nonlinear model that includes subject-level random effects
U1[subject] and U2[subject] and guar-within-subject level random effects UU1[subject>guar]
and UU2[subject>guar]. See example 20 for a full description of the model. We consider the model
from that example in which the pairs U1 and U2, and UU1 and UU2, are assumed to be independent.

We fit a Bayesian version of the model using bayesmh. The likelihood specification is similar to the
one used by the menl command, but with bayesmh, we also specify the prior distributions for the model
parameters. Random effects are assigned normal priors by default with the corresponding variance
components {var U1}, {var U2}, {var UU1}, and {var UU2}. The parameters {phi1: cons},
{phi2: cons}, and {phi3} are assigned normal(0, 100) priors, and all variance components
are assigned igamma(0.01, 0.01) priors. Gibbs sampling is used for variance components, and
{phi1: cons}, {phi2: cons}, and {phi3} are sampled in separate blocks. We use the define()
option to define parameters {phi1:} and {phi2:} as a linear combination of the corresponding
random effects, including the constant term.
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We suppress the estimation table and redisplay results later by using bayesstats summary to
match the output from menl more closely. The model contains many parameters, so it takes about a
minute to run.

. bayesmh glucose = ({phi1:} + {phi2:}*c.time#c.time#c.time*exp(-{phi3}*time)),
> likelihood(normal({var}))
> define(phi1: U1[subject] UU1[subject>guar])
> define(phi2: U2[subject] UU2[subject>guar])
> prior({phi1:_cons} {phi2:_cons} {phi3}, normal(0, 100) split)
> prior({var var_U1 var_UU1 var_U2 var_UU2}, igamma(0.01, 0.01) split)
> block({phi1:_cons} {phi2:_cons}, split)
> block({var var_U1 var_UU1 var_U2 var_UU2}, gibbs split)
> mcmcsize(5000) rseed(17) notable
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 5000 .........1000.........2000.........3000.........4000.........
> 5000 done

Model summary

Likelihood:
glucose ~ normal(xb_phi1 + xb_phi2*c.time#c.time#c.time*exp(-{phi3}*time),{v

ar})

Priors:
{var} ~ igamma(0.01,0.01)

{phi3} ~ normal(0,100)
{phi1:_cons} ~ normal(0,100)
{phi2:_cons} ~ normal(0,100)

Hyperpriors:
{var_U1 var_UU1 var_U2 var_UU2} ~ igamma(0.01,0.01)

{U1[subject]} ~ normal(0,{var_U1})
{UU1[subject>guar]} ~ normal(0,{var_UU1})

{U2[subject]} ~ normal(0,{var_U2})
{UU2[subject>guar]} ~ normal(0,{var_UU2})

Bayesian normal regression MCMC iterations = 7,500
Metropolis--Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 5,000
Number of obs = 196
Acceptance rate = .6232
Efficiency: min = .006257

avg = .1226
Log marginal-likelihood max = .7002

The bayesmh command reports a reasonable average sampling efficiency of about 12% but the minimum
efficiency is below 1%, so we may look into improving sampling efficiency for some parameters.
There is no obvious indication of nonconvergence, but it is important to assess MCMC convergence
visually by using, for instance, bayesgraph diagnostics or more formally by running multiple
chains and evaluating the Gelman–Rubin statistics; see Convergence diagnostics using multiple chains.
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Let’s look at the results and compare them with the results reported by the menl command. We
report variance components as standard deviations to more easily match the results from menl

. bayesstats summary {phi1:_cons} {phi2:_cons} {phi3}
> (sd_U1:sqrt({var_U1})) (sd_U2:sqrt({var_U2}))
> (sd_UU1:sqrt({var_UU1})) (sd_UU2:sqrt({var_UU2}))
> (sd:sqrt({var}))

Posterior summary statistics MCMC sample size = 5,000

sd_U1 : sqrt({var_U1})
sd_U2 : sqrt({var_U2})

sd_UU1 : sqrt({var_UU1})
sd_UU2 : sqrt({var_UU2})

sd : sqrt({var})

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

phi1
_cons 3.675754 .1233928 .013441 3.675342 3.426524 3.933746

phi2
_cons .4454892 .075955 .01358 .443041 .2921755 .6014314

phi3 .5990691 .0131787 .001021 .5991885 .5745415 .6255063
sd_U1 .2937574 .1372631 .007882 .2697849 .1069155 .6306559
sd_U2 .1445083 .0633264 .005947 .1322361 .0626003 .2953982

sd_UU1 .1754194 .0793246 .0065 .1606835 .0717868 .3715494
sd_UU2 .1453472 .0411391 .002454 .1393845 .0828334 .2437548

sd .5847464 .033378 .000565 .583425 .5251977 .6544421

The posterior mean estimates for the coefficients {phi1: cons}, {phi2: cons}, and {phi3} and
the residual standard deviation are close to the estimates from menl. The Bayesian estimates of
variance components are higher. In particular, the posterior means for the standard deviations of {U2}
and {UU1} are not only higher but also more concentrated with 95% credible intervals of [0.06, 0.30]
and [0.07, 0.37]. In comparison, the corresponding 95% confidence intervals from menl are rather
wide, [0.0003, 6.3] and [0.0007, 6], which indicates less reliable estimates.

To improve sampling efficiency in this example, we can reparameterize the model by recentering
the random effects U1 and U2 around constants {phi1: cons} and {phi2: cons} so that these
constants become the prior means for the random effects U1 and U2. This will allow us to use Gibbs
sampling for {phi1: cons} and {phi2: cons}.

We fit the reparameterized model using bayesmh with the Gibbs sampling for the prior means.

. bayesmh glucose = ({phi1:} + {phi2:}*c.time#c.time#c.time*exp(-{phi3}*time)),
> likelihood(normal({var}))
> define(phi1: U1[subject] UU1[subject>guar], noconstant)
> define(phi2: U2[subject] UU2[subject>guar], noconstant)
> prior({U1[subject]}, normal({phi1:_cons}, {var_U1}))
> prior({U2[subject]}, normal({phi2:_cons}, {var_U2}))
> prior({phi1:_cons} {phi2:_cons} {phi3}, normal(0, 100) split)
> prior({var var_U1 var_UU1 var_U2 var_UU2}, igamma(0.01, 0.01) split)
> block({phi1:_cons} {phi2:_cons}, gibbs split)
> block({var var_U1 var_UU1 var_U2 var_UU2}, gibbs split)
> mcmcsize(5000) rseed(17) notable
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 5000 .........1000.........2000.........3000.........4000.........
> 5000 done
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Model summary

Likelihood:
glucose ~ normal(xb_phi1 + xb_phi2*c.time#c.time#c.time*exp(-{phi3}*time),{v

ar})

Priors:
{var} ~ igamma(0.01,0.01)

{phi3} ~ normal(0,100)
{phi1:_cons} ~ normal(0,100)
{phi2:_cons} ~ normal(0,100)

Hyperpriors:
{U1[subject]} ~ normal({phi1:_cons},{var_U1})
{U2[subject]} ~ normal({phi2:_cons},{var_U2})

{var_U1 var_UU1 var_U2 var_UU2} ~ igamma(0.01,0.01)
{UU1[subject>guar]} ~ normal(0,{var_UU1})
{UU2[subject>guar]} ~ normal(0,{var_UU2})

Bayesian normal regression MCMC iterations = 7,500
Metropolis--Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 5,000
Number of obs = 196
Acceptance rate = .7143
Efficiency: min = .02353

avg = .1242
Log marginal-likelihood max = .5715

The minimum efficiency is now increased to about 2%, but the maximum efficiency is decreased. On
average, we are still at 12%.

. bayesstats summary {phi1:_cons} {phi2:_cons} {phi3}
> (sd_U1:sqrt({var_U1})) (sd_U2:sqrt({var_U2}))
> (sd_UU1:sqrt({var_UU1})) (sd_UU2:sqrt({var_UU2}))
> (sd:sqrt({var}))

Posterior summary statistics MCMC sample size = 5,000

sd_U1 : sqrt({var_U1})
sd_U2 : sqrt({var_U2})

sd_UU1 : sqrt({var_UU1})
sd_UU2 : sqrt({var_UU2})

sd : sqrt({var})

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

phi1
_cons 3.668967 .1514235 .00922 3.671296 3.361262 3.968073

phi2
_cons .4433111 .0754776 .005946 .4447485 .2940002 .5930835

phi3 .6000894 .0115797 .001068 .5994865 .5779582 .6232038
sd_U1 .3106145 .1466302 .008729 .2839151 .1113562 .6797507
sd_U2 .1422476 .0632357 .003645 .1288667 .06242 .30695

sd_UU1 .1805265 .0826131 .007787 .1635459 .0715432 .3957199
sd_UU2 .1508045 .0443954 .003536 .1445271 .0815014 .2546343

sd .5753598 .0314809 .000588 .5737936 .5181599 .6412948

We obtain very similar results to the above.
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Survival models
bayesmh provides several likelihood models (stexponential, stgamma(), stloglogistic(),

stlognormal(), and stweibull()) in the likelihood() option to analyze survival-time or
failure-time data. Also see [BAYES] bayes: streg and [BAYES] bayes: mestreg.

You can use these models to analyze failures-only data as well as to account for right-censoring
when you specify the failure() suboption within likelihood() and for left-truncation when you
specify the ltruncated() suboption. You can also choose between the proportional hazards (PH)
and accelerated failure-time (AFT) parameterizations with stexponential and stweibull() via
suboptions ph (the default) and aft.

When fitting survival models, you have two options for the metric of the ancillary parameters of the
survival distributions. For instance, for the Weibull distribution, you can model the shape parameter p
in the log metric by using likelihood(stweibull(lnp)) or likelihood(stweibull(lnp), log-
param) (the default) or in the original metric by using likelihood(stweibull(p), nologparam).
Similarly, for the lognormal distribution, you can model the log-standard deviation by using likeli-
hood(stlognormal(lnstd)) (the default) or the variance by using likelihood(stlognormal(var),
nologparam), and so on. Which parameterization to use for the ancillary parameters often depends
on the chosen priors. For example, in a Weibull model, we may use a normal prior for the log-shape
parameter lnp and a uniform prior for the shape parameter p.

Let’s look at a couple of examples below.

Consider cancer.dta, which records patient survival in a cancer drug trial. Of the 48 participants,
20 receive a placebo (drug = 1), 14 receive one type of treatment (drug = 2), and 14 receive another
type of treatment (drug = 3). We want to analyze time until death, measured in months (variable
studytime), as a function of treatment adjusted for age. The died variable records the failure status
for each subject, where died = 1 means a subject died and died = 0 means a subject is still alive
and is thus considered right-censored.

Initially, let’s ignore the failure status died and assume that studytime records failure times for
all subjects.
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For a reference, let’s fit a classical Weibull regression model first by using streg.

. use https://www.stata-press.com/data/r18/cancer
(Patient survival in drug trial)

. stset studytime

Survival-time data settings

Failure event: (assumed to fail at time=studytime)
Observed time interval: (0, studytime]

Exit on or before: failure

48 total observations
0 exclusions

48 observations remaining, representing
48 failures in single-record/single-failure data

744 total analysis time at risk and under observation
At risk from t = 0

Earliest observed entry t = 0
Last observed exit t = 39

. streg i.drug age, distribution(weibull) nolog

Failure _d: 1 (meaning all fail)
Analysis time _t: studytime

Weibull PH regression

No. of subjects = 48 Number of obs = 48
No. of failures = 48
Time at risk = 744

LR chi2(3) = 27.52
Log likelihood = -42.840673 Prob > chi2 = 0.0000

_t Haz. ratio Std. err. z P>|z| [95% conf. interval]

drug
Other .3979255 .1428204 -2.57 0.010 .1969223 .8040971

NA .1526351 .0595183 -4.82 0.000 .0710785 .3277712

age 1.078185 .0309445 2.62 0.009 1.019209 1.140573
_cons .0001469 .0002668 -4.86 0.000 4.18e-06 .0051652

/ln_p .6848375 .1139204 6.01 0.000 .4615576 .9081174

p 1.983449 .2259554 1.586543 2.47965
1/p .5041722 .0574355 .4032827 .6303011

Note: _cons estimates baseline hazard.

We now fit a Bayesian Weibull model by using bayesmh. To compare results with streg, we
use vague priors for model parameters and specify the eform() option to report hazard ratios
(exponentiated coefficients) instead of the coefficients reported by default by bayesmh. We also
sample the shape parameter separately from the coefficients to improve efficiency.
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. bayesmh studytime i.drug age, likelihood(stweibull({lnp}))
> prior({studytime:} {lnp}, normal(0,10000))
> rseed(17) eform(Haz. ratio) block({lnp})
Burn-in ...
Simulation ...

Model summary

Likelihood:
studytime ~ stweibull(xb_studytime,{lnp})

Priors:
{studytime:i.drug age _cons} ~ normal(0,10000) (1)

{lnp} ~ normal(0,10000)

(1) Parameters are elements of the linear form xb_studytime.

Bayesian Weibull PH regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
No. of subjects = 48 Number of obs = 48
No. of failures = 48
Time at risk = 744

Acceptance rate = .3523
Efficiency: min = .00462

avg = .02827
Log marginal-likelihood = -200.03961 max = .04609

Equal-tailed
Haz. ratio Std. dev. MCSE Median [95% cred. interval]

studytime
drug

Other .4093515 .1455973 .008398 .3880567 .1930648 .7578985
NA .1586529 .0625765 .004121 .1507637 .0661176 .305668

age 1.07599 .0314129 .001621 1.076738 1.014651 1.138556
_cons .0008647 .0027453 .000128 .000166 4.69e-06 .0064232

lnp .6707761 .1215257 .01788 .6717002 .4291893 .8990958

Note: _cons estimates baseline hazard.

The results between bayesmh and streg are similar, as expected with weak priors.

By default, bayesmh fits a Weibull model by using the log of the shape parameter. We can use
bayesstats summary to display this parameter in the original metric and also to report its reciprocal.

. bayesstats summary (p:exp({lnp})) (reciprocal: 1/exp({lnp}))

Posterior summary statistics MCMC sample size = 10,000

p : exp({lnp})
reciprocal : 1/exp({lnp})

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

p 1.970195 .2388086 .034966 1.957563 1.536012 2.45738
reciprocal .5151116 .0630406 .009313 .5108393 .4069374 .6510367

Depending on the data and desired prior, we may want to parameterize the model to use the shape
parameter in the original metric. We can do this by specifying the nologparam suboption within
likelihood().
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Let’s refit the above model by using the direct parameterization of the shape parameter and specify
a uniform prior for it.

. bayesmh studytime i.drug age, likelihood(stweibull({p}), nologparam)
> prior({studytime:}, normal(0,10000)) prior({p}, uniform(0,10))
> rseed(17) eform(Haz. ratio) block({p}) initial({p} 1)
Burn-in ...
Simulation ...

Model summary

Likelihood:
studytime ~ stweibull_nolog(xb_studytime,{p})

Priors:
{studytime:i.drug age _cons} ~ normal(0,10000) (1)

{p} ~ uniform(0,10)

(1) Parameters are elements of the linear form xb_studytime.

Bayesian Weibull PH regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
No. of subjects = 48 Number of obs = 48
No. of failures = 48
Time at risk = 744

Acceptance rate = .3121
Efficiency: min = .003827

avg = .01719
Log marginal-likelihood = -197.19456 max = .0247

Equal-tailed
Haz. ratio Std. dev. MCSE Median [95% cred. interval]

studytime
drug

Other .4254684 .1642118 .011746 .4001081 .1856402 .7999705
NA .1571577 .0637717 .005037 .1477305 .0634229 .3087045

age 1.081398 .0315245 .002132 1.080576 1.023548 1.148237
_cons .0003976 .0009806 .000062 .0000991 2.99e-06 .0029425

p 2.058852 .2210333 .03573 2.06263 1.635212 2.464803

Note: _cons estimates baseline hazard.

We obtain similar results.

Continuing with the cancer dataset, let’s now account for right-censoring, when died = 0.
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As before, let’s fit a classical Weibull model first for comparison.

. stset studytime, failure(died)

Survival-time data settings

Failure event: died!=0 & died<.
Observed time interval: (0, studytime]

Exit on or before: failure

48 total observations
0 exclusions

48 observations remaining, representing
31 failures in single-record/single-failure data

744 total analysis time at risk and under observation
At risk from t = 0

Earliest observed entry t = 0
Last observed exit t = 39

. streg i.drug age, distribution(weibull) nolog

Failure _d: died
Analysis time _t: studytime

Weibull PH regression

No. of subjects = 48 Number of obs = 48
No. of failures = 31
Time at risk = 744

LR chi2(3) = 37.07
Log likelihood = -42.090672 Prob > chi2 = 0.0000

_t Haz. ratio Std. err. z P>|z| [95% conf. interval]

drug
Other .1705633 .0831449 -3.63 0.000 .0656067 .4434277

NA .0782594 .0402588 -4.95 0.000 .0285532 .2144953

age 1.124439 .0410087 3.22 0.001 1.046869 1.207757
_cons .0000254 .0000583 -4.60 0.000 2.80e-07 .0022994

/ln_p .5573333 .1402154 3.97 0.000 .2825163 .8321504

p 1.74601 .2448175 1.326463 2.298256
1/p .5727343 .0803062 .4351126 .7538844

Note: _cons estimates baseline hazard.
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With bayesmh, we specify the failure indicator in the failure() suboption within likelihood().

. bayesmh studytime i.drug age, likelihood(stweibull({lnp}), failure(died))
> prior({studytime:} {lnp}, normal(0,1000))
> rseed(17) eform(Haz. ratio)
Burn-in ...
Simulation ...

Model summary

Likelihood:
studytime ~ stweibull(xb_studytime,{lnp})

Priors:
{studytime:i.drug age _cons} ~ normal(0,1000) (1)

{lnp} ~ normal(0,1000)

(1) Parameters are elements of the linear form xb_studytime.

Bayesian Weibull PH regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
No. of subjects = 48 Number of obs = 48
No. of failures = 31
Time at risk = 744

Acceptance rate = .2097
Efficiency: min = .02624

avg = .05735
Log marginal-likelihood = -144.93174 max = .1121

Equal-tailed
Haz. ratio Std. dev. MCSE Median [95% cred. interval]

studytime
drug

Other .1812423 .0873363 .004128 .1646181 .0552102 .3888732
NA .0862965 .0467029 .001991 .0761287 .023666 .2074524

age 1.12242 .0409687 .001859 1.122171 1.048103 1.207311
_cons .0003249 .0017001 .000051 .0000297 2.47e-07 .0023124

lnp .5360872 .1458155 .009001 .5467961 .2352398 .8087516

Note: _cons estimates baseline hazard.

The results are again similar to those from streg after accounting for right-censoring.

As with right-censoring, we can account for left-truncation by specifying the ltruncated()
option. We can also specify the aft option to fit a Weibull (or exponential) model using the AFT
parameterization instead of the default PH parameterization.

Bayesian analysis of change-point problem

Change-point problems deal with stochastic data, usually time-series data, that undergo some abrupt
change at some time point. It is of interest to localize the point of change and estimate the properties
of the stochastic process before and after the change.

Here we analyze the British coal mining disaster data for the years 1851 to 1962 as given in
table 5 in Carlin, Gelfand, and Smith (1992). The data are originally from Maguire, Pearson, and
Wynn (1952) with updates from Jarrett (1979).
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coal.dta contains 112 observations, and it includes the variables id, which records observation
identifiers; count, which records the number of coal mining disasters involving 10 or more deaths;
and year, which records the years corresponding to the disasters.

. use https://www.stata-press.com/data/r18/coal
(British coal-mining disaster data, 1851-1962)

. describe

Contains data from https://www.stata-press.com/data/r18/coal.dta
Observations: 112 British coal-mining disaster

data, 1851-1962
Variables: 3 5 Feb 2022 18:03

(_dta has notes)

Variable Storage Display Value
name type format label Variable label

id int %9.0g Observation identifier
year int %9.0g Year of disasters
count byte %9.0g Number of disasters per year

Sorted by:

The figures below suggest a fairly abrupt decrease in the rate of disasters around the 1887–1895
period, possibly because of the decline in labor productivity in coal mining (Raftery and Akman 1986).
The line plot of count versus year is shown in the left pane and its smoothed version in the right
pane.
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To find the change-point parameter (cp) in the rate of disasters, we apply the following Bayesian
model with noninformative priors for the parameters (accounting for the restricted range of cp):

countsi ∼ Poisson(µ1), if yeari < cp

countsi ∼ Poisson(µ2), if yeari ≥ cp

µ1 ∼ 1

µ2 ∼ 1

cp ∼ Uniform(1851, 1962)

The model has three parameters: µ1, µ2, and cp, which we will declare as {mu1}, {mu2}, and
{cp} with bayesmh. One interesting feature of this model is the specification of a mixture distribution
for count. To accommodate this, we specify the substitutable expression

({mu1}*sign(year<{cp})+{mu2}*sign(year>={cp}))

as the mean of a Poisson distribution dpoisson(). To ensure the feasibility of the initial state,
we specify the desired initial values in option initial(). Because of high autocorrelation in the
MCMC chain, we increase the MCMC size to achieve higher precision of our estimates. We change
the default title to the title specific to our analysis. To monitor the progress of simulation, we request
that bayesmh display a dot every 500 iterations and an iteration number every 5,000 iterations.

. set seed 14

. bayesmh count,
> likelihood(dpoisson({mu1}*sign(year<{cp})+{mu2}*sign(year>={cp})))
> prior({mu1} {mu2}, flat)
> prior({cp}, uniform(1851,1962))
> initial({mu1} 1 {mu2} 1 {cp} 1906)
> mcmcsize(40000) title(Change-point analysis) dots(500, every(5000))
Burn-in 2500 a.... done
Simulation 40000 .........5000.........10000.........15000.........20000.......
> ..25000.........30000.........35000.........40000 done

Model summary

Likelihood:
count ~ poisson({mu1}*sign(year<{cp})+{mu2}*sign(year>={cp}))

Priors:
{mu1 mu2} ~ 1 (flat)

{cp} ~ uniform(1851,1962)

Change-point analysis MCMC iterations = 42,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 40,000
Number of obs = 112
Acceptance rate = .215
Efficiency: min = .04909

avg = .07177
Log marginal-likelihood = -173.39572 max = .09142

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

cp 1890.309 2.43097 .05486 1890.523 1886.126 1896.411
mu1 3.151979 .2894379 .005291 3.137662 2.620379 3.741032
mu2 .934086 .1162233 .001922 .9286517 .7184804 1.175782
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According to our results, the change occurred in the first half of 1890. The drop of the disaster rate
was significant, from an estimated average of 3.2 to 0.9.

The diagnostic plots, for example, for {cp} do not indicate any convergence problems. (This is
also true for other parameters.)

. bayesgraph diagnostics {cp}
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The simulated marginal density of {cp} shown in the right bottom corner provides more details. Apart
from the main peak, there are 2 smaller bumps around the years 1886 and 1896, which correspond
to local peaks in the number of disasters at these years: 4 in 1886 and 3 in 1896.

We may be interested in estimating the ratio between the two means. We can use bayesstats
summary to estimate this ratio.

. bayesstats summary (ratio:{mu1}/{mu2})

Posterior summary statistics MCMC sample size = 40,000

ratio : {mu1}/{mu2}

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

ratio 3.424565 .5169099 .008259 3.381721 2.541948 4.554931

The posterior mean estimate of the ratio and its 95% credible intervals confirm the change between
the two means. After 1890, the mean number of disasters decreased by a factor of about 3.4 with a
95% credible range of [2.5, 4.6].
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Remember that convergence must be verified not only for all model parameters but also for the
functions of interest. The diagnostic plots for ratio look good.

. bayesgraph diagnostics (ratio:{mu1}/{mu2})
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Bioequivalence in a crossover trial

Balanced crossover designs are widely used in the pharmaceutical industry for testing the efficacy
of new drugs. Gelfand et al. (1990) analyzed a two-treatment, two-period crossover trial comparing
two Carbamazepine tablets. The data consist of log-concentration measurements and are originally
described in Maas et al. (1987).

A random-effect two-treatment, two-period crossover design is given by

yi(jk) = µ+ (−1)j−1φ

2
+ (−1)k−1π

2
+ di + εi(jk) = µi(jk) + εi(jk)

εi(jk) ∼ i.i.d. N(0, σ2)

di ∼ i.i.d. N(0, τ2)

where i = 1, . . . , n is the subject index, j = 1, 2 is the treatment group, and k = 1, 2 is the period.
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bioequiv.dta has four main variables: subject identifier id from 1 to 10, treatment identifier
treat containing values 1 or 2, period identifier period containing values 1 or 2, and outcome y
measuring log concentration for the two tablets.

. use https://www.stata-press.com/data/r18/bioequiv
(Bioequivalent study of Carbamazepine tablets)

. describe

Contains data from https://www.stata-press.com/data/r18/bioequiv.dta
Observations: 20 Bioequivalent study of

Carbamazepine tablets
Variables: 5 5 Feb 2022 23:45

(_dta has notes)

Variable Storage Display Value
name type format label Variable label

obsid byte %9.0g Observation identifier
id byte %9.0g Subject identifier
treat byte %9.0g Assigned treatment
period byte %9.0g Period identifier
y float %9.0g Log-concentration measurement

Sorted by: id period

The outcome is assumed to be normally distributed with mean µi(jk) and variance σ2. To
accommodate the specific structure of the regression function, we use a nonlinear specification of
bayesmh. We specify the expression for the mean function µi(jk) as a nonlinear expression following
the outcome y. We include subject-specific random effects di as {D[id]} in the nonlinear expression.
We specify noninformative priors for parameters and use Gibbs sampling for variance components
{tau} and {var}. To improve convergence, we increase the burn-in period to 5,000. We also specify
the showreffects option to display the estimates of subject-specific effects {D[id]}.

. bayesmh y = ({mu}+(-1)^(treat-1)*{phi}/2+(-1)^(period-1)*{pi}/2+{D[id]}),
> likelihood(normal({var}))
> prior({D[id]}, normal(0,{tau}))
> prior({tau}, igamma(0.001,0.001))
> prior({var}, igamma(0.001,0.001))
> prior({mu} {phi} {pi}, normal(0,1e6))
> block({tau}, gibbs)
> block({var}, gibbs)
> burnin(5000) rseed(17) showreffects
Burn-in 5000 aaaaaaaaa1000aaaaaaaaa2000aaaaaaaaa3000aaaaaaaaa4000aaaaaaaaa5000
> done
Simulation 10000 .........1000.........2000.........3000.........4000.........
> 5000.........6000.........7000.........8000.........9000.........10000 done

Model summary

Likelihood:
y ~ normal({mu}+(-1)^(treat-1)*{phi}/2+(-1)^(period-1)*{pi}/2+{D[id]},{var})

Priors:
{var} ~ igamma(0.001,0.001)

{D[id]} ~ normal(0,{tau})
{mu phi pi} ~ normal(0,1e6)

Hyperprior:
{tau} ~ igamma(0.001,0.001)
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Bayesian normal regression MCMC iterations = 15,000
Metropolis--Hastings and Gibbs sampling Burn-in = 5,000

MCMC sample size = 10,000
Number of obs = 20
Acceptance rate = .641
Efficiency: min = .01171

avg = .03912
Log marginal-likelihood max = .1168

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mu 1.425404 .056644 .005234 1.427506 1.294818 1.527516
phi -.0083643 .0495315 .00145 -.0091141 -.1069416 .0918596
pi -.1800847 .0491643 .00164 -.1808839 -.2760931 -.0797408

var .0124764 .00785 .000371 .0101862 .0041796 .0331787
tau .0242893 .0211577 .000873 .0191958 .0027104 .0766

D[id]
1 .0744192 .0831627 .004779 .074302 -.0849912 .2504312
2 .1364082 .0882816 .00521 .1365127 -.0359345 .3141966
3 .0640035 .0843961 .005008 .0596878 -.0939025 .2507555
4 .0708824 .0797542 .004431 .067086 -.0787817 .2440256
5 .1828674 .0937784 .005368 .184261 .0040691 .3700767
6 -.1694658 .0876467 .006416 -.1729349 -.3306482 .0033349
7 -.1212957 .0836953 .005709 -.1226434 -.2772058 .0448479
8 -.0603565 .0796002 .005112 -.0613437 -.218101 .1017121
9 -.0769446 .0800835 .00564 -.0762672 -.2324788 .088155

10 -.0076075 .0778637 .004483 -.0097928 -.1540721 .1496486

Sampling efficiencies look reasonable considering the number of model parameters. The diagnostic
plots of the main model parameters (not shown here) look reasonable, except there is a high
autocorrelation in the MCMC for {mu}, so you may consider increasing the MCMC size or using
thinning.

Parameter θ = exp(φ) is commonly used as a measure of bioequivalence. Bioequivalence is
declared whenever θ lies in the interval [0.8, 1.2] with a high posterior probability.

We use bayesstats summary to calculate this probability and to also display other main parameters.

. bayesstats summary {mu} {phi} {pi} {tau} {var}
> (theta:exp({phi})) (equiv:exp({phi})>0.8 & exp({phi})<1.2)

Posterior summary statistics MCMC sample size = 10,000

theta : exp({phi})
equiv : exp({phi})>0.8 & exp({phi})<1.2

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mu 1.425404 .056644 .005234 1.427506 1.294818 1.527516
phi -.0083643 .0495315 .00145 -.0091141 -.1069416 .0918596
pi -.1800847 .0491643 .00164 -.1808839 -.2760931 -.0797408

tau .0242893 .0211577 .000873 .0191958 .0027104 .0766
var .0124764 .00785 .000371 .0101862 .0041796 .0331787

theta .9928879 .0492324 .001441 .9909273 .8985782 1.096211
equiv .9999 .01 .0001 1 1 1

We obtain an estimate of 0.9999 for the posterior probability of bioequivalence specified as an
expression equiv. So we would conclude bioequivalence between the two tablets.
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Random-effects meta-analysis of clinical trials

In meta-analysis of clinical trials, one considers several distinct studies estimating an effect of
interest. It is convenient to consider the true effect as varying randomly between the studies. A
detailed description of the random-effects meta-analysis can be found in, for example, Carlin (1992).
For traditional meta-analysis, see [META] meta.

We illustrate Bayesian random-effects meta-analysis of 2× 2 tables for the beta-blockers dataset
analyzed in Carlin (1992). These data are also analyzed in Yusuf, Simon, and Ellenberg (1987). The
data summarize the results of 22 clinical trials of beta-blockers used as postmyocardial infarction
treatment.

Example 26: Normal–normal analysis

Here we follow the approach of Carlin (1992) for the normal–normal analysis of the beta-blockers
data.

For our normal–normal analysis, we consider data in wide form and concentrate on modeling
estimates of log odds-ratios from 22 studies.

. use https://www.stata-press.com/data/r18/betablockers_wide
(Beta-blockers data in wide form)

. describe

Contains data from https://www.stata-press.com/data/r18/betablockers_wide.dta
Observations: 22 Beta-blockers data in wide form

Variables: 7 5 Feb 2022 19:02
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

study byte %9.0g Study identifier
deaths0 int %9.0g Number of deaths in the control

group
total0 int %9.0g Number of subjects in the control

group
deaths1 int %9.0g Number of deaths in the treatment

group
total1 int %9.0g Number of subjects in the

treatment group
D double %10.0g Log odds-ratio (based on

empirical logits)
var double %10.0g Squared standard error of log

odds-ratio

Sorted by:

The estimates of log odds-ratios and their squared standard errors are recorded in variables D and var,
respectively. They are computed from variables deaths0, total0, deaths1, and total1 based on
empirical logits; see Carlin [1992, eq. (3) and (4)]. The study variable records study identifiers.

In a normal–normal model, we assume a random-effects model for estimates of log odds-ratios
with normally distributed errors and normally distributed random effects. Specifically,

Di = d+ ui + εi = di + εi

where εi ∼ N(0, vari) and di ∼ N(d, σ2). Errors εi’s represent uncertainty about estimates of log
odds-ratios in each study i and are assumed to have known study-specific variances, vari’s. Random
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effects di’s represent differences in estimates of log odds-ratios from study to study. The estimates of
their mean and variance are of interest in meta-analysis: d estimates a true effect, and σ2 estimates
variation in estimating this effect across studies. Small values of σ2 imply that the estimates of a true
effect agree among studies.

In Bayesian analysis, we additionally specify prior distributions for d and σ2. Following Car-
lin (1992), we use noninformative priors for these parameters: normal with large variance for d and
inverse gamma with very small degrees of freedom for σ2.

d ∼ N(0, 1000)

σ2 ∼ InvGamma(0.001, 0.001)

We specify normal() likelihood with bayesmh and request observation-specific variances by
specifying variable var as normal()’s variance argument. We include D[study] in the list of
covariates to specify the random effects di. We follow the above model formulation for specifying
prior distributions. To improve efficiency, we request that all parameters be placed in separate blocks
and use Gibbs sampling for the mean parameter {d} and the variance parameter {sig2}.

. bayesmh D D[study], likelihood(normal(var)) noconstant
> prior({D[study]}, normal({d},{sig2}))
> prior({d}, normal(0,1000))
> prior({sig2}, igamma(0.001,0.001))
> block({sig2}, gibbs)
> block({d}, gibbs)
> rseed(17)
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 10000 .........1000.........2000.........3000.........4000.........
> 5000.........6000.........7000.........8000.........9000.........10000 done

Model summary

Likelihood:
D ~ normal(xb_D,var)

Prior:
{D[study]} ~ normal({d},{sig2}) (1)

Hyperpriors:
{d} ~ normal(0,1000)

{sig2} ~ igamma(0.001,0.001)

(1) Parameters are elements of the linear form xb_D.

Bayesian normal regression MCMC iterations = 12,500
Metropolis--Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 22
Acceptance rate = .7623
Efficiency: min = .02206

avg = .02348
Log marginal-likelihood max = .02491

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

d -.2537001 .0648291 .004107 -.2574083 -.371893 -.1213832
sig2 .0191485 .0212749 .001433 .0115096 .0013426 .078143

Our posterior mean estimates d and sig2 of mean d and variance σ2 are −0.25 and 0.019, respectively,
with posterior standard deviations of 0.06 and 0.02. The estimates are close to those reported by
Carlin (1992). Considering the number of parameters, the AR and efficiency summaries look good.
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We can obtain the efficiencies for the main parameters by using bayesstats ess.

. bayesstats ess {d} {sig2}

Efficiency summaries MCMC sample size = 10,000
Efficiency: min = .02206

avg = .02348
max = .02491

ESS Corr. time Efficiency

d 249.13 40.14 0.0249
sig2 220.55 45.34 0.0221

The efficiencies are acceptable, but based on the correlation times, the autocorrelation becomes small
only after lag 40 or so. The precision of the mean and variance estimates is comparable with those
based on 249 independent observations for the mean and 220 independent observations for the variance.

We explore convergence visually.

. bayesgraph diagnostics {d} {sig2}
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The diagnostic plots look reasonable for both parameters, but autocorrelation is high. You may consider
increasing the default MCMC size to obtain more precise estimates of posterior means.

Example 27: Binomial-normal model

There is an alternative but equivalent way of formulating the meta-analysis model from example 26
as a binomial-normal model. Instead of modeling estimates of log odds-ratios directly, one can model
probabilities of success (an event of interest) in each group.

Let pTi and pCi be the probabilities of success for the treatment and control groups in the ith trial.
The random-effects meta-analysis model can be given as

logit(pCi ) = µi

logit(pTi ) = µi + di

where µi is log odds of success in the control group in study i and µi + di is log odds of success in
the treatment group. di’s are viewed as random effects and are assumed to be normally distributed as

di ∼ i.i.d. N(d, σ2)

where d is the population effect and σ2 is its variability across trials.
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Suppose that we observe yCi successes out of nCi events in the control group and yTi successes
out of nTi events in the treatment group from the ith trial. Then,

yCi ∼ Binomial(pCi , n
C
i )

yTi ∼ Binomial(pTi , n
T
i )

The random effects are usually assumed to be normally distributed as

di ∼ i.i.d. N(d, σ2)

where d is the population effect and is the main parameter of interest in the model and σ2 is its
variability across trials.

We can rewrite the model above assuming the data are in long form as

logit(pi) = µi + (Ti == 1)di

yi ∼ Binomial(pi, ni)

di ∼ i.i.d. N(d, σ2)

where Ti is a binary treatment with Ti = 0 for the control group and Ti = 1 for the treatment group.

In Bayesian analysis, we additionally specify prior distributions for µi, d, and σ2. We use
noninformative priors.

µi ∼ 1

d ∼ N(0, 1000)

σ2 ∼ InvGamma(0.001, 0.001)

We continue our analysis of beta-blockers data. The analysis of these data using a binomial-normal
model is also provided as an example in OpenBUGS (Thomas et al. 2006).

For this analysis, we use the beta-blockers data in long form.

. use https://www.stata-press.com/data/r18/betablockers_long
(Beta-blockers data in long form)

. describe

Contains data from https://www.stata-press.com/data/r18/betablockers_long.dta
Observations: 44 Beta-blockers data in long form

Variables: 4 5 Feb 2022 19:02
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

study byte %9.0g Study identifier
treat byte %9.0g treatlab Treatment group: 0 - control, 1 -

treatment
deaths int %9.0g Number of deaths in each group
total int %9.0g Number of subjects in each group

Sorted by: study treat

Variable treat records the binary treatment: treat==0 identifies the control group, and treat==1
identifies the treatment group.
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We include M[study] to specify the random effects µi’s and 1.treat#D[study] for the random
effects (Ti == 1)di’s. We use a binomial() likelihood model for the number of deaths. We split
the hyperparameters and random effects {D[study]} into separate blocks and request Gibbs sampling
for sig2 to improve efficiency of the algorithm.

. bayesmh deaths M[study] 1.treat#D[study], likelihood(binomial(total))
> noconstant
> prior({M[study]}, flat)
> prior({D[study]}, normal({d},{sig2}))
> prior({d}, normal(0,1000))
> prior({sig2}, igamma(0.001,0.001))
> block({D[study]}, split)
> block({d sig2}, gibbs split)
> rseed(17)
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 10000 .........1000.........2000.........3000.........4000.........
> 5000.........6000.........7000.........8000.........9000.........10000 done

Model summary

Likelihood:
deaths ~ binlogit(xb_deaths,total)

Priors:
{M[study]} ~ 1 (flat) (1)
{D[study]} ~ normal({d},{sig2}) (1)

Hyperpriors:
{d} ~ normal(0,1000)

{sig2} ~ igamma(0.001,0.001)

(1) Parameter is an element of the linear form xb_deaths.

Bayesian binomial regression MCMC iterations = 12,500
Metropolis--Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 44
Acceptance rate = .4846
Efficiency: min = .01025

avg = .01398
Log marginal-likelihood max = .01771

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

d -.2497927 .0655042 .004923 -.2496163 -.3739794 -.1159871
sig2 .0188492 .0225658 .002229 .0117471 .0005956 .079379

Note: Adaptation tolerance is not met in at least one of the blocks.

This model has 22 more parameters than the model in example 26. The posterior mean estimates
d and sig2 of mean d and variance σ2 are −0.25 and 0.019, respectively, with posterior standard
deviations of 0.07 and 0.02. The estimates of the mean and variance are again close to the ones
reported by Carlin (1992).
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Compared with example 26, the efficiencies and other statistics for the main parameters are similar.

. bayesstats ess {d} {sig2}

Efficiency summaries MCMC sample size = 10,000
Efficiency: min = .01025

avg = .01398
max = .01771

ESS Corr. time Efficiency

d 177.07 56.47 0.0177
sig2 102.47 97.59 0.0102

The diagnostic plots look similar to those shown in example 26.

. bayesgraph diagnostics {d} {sig2}
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Item response theory

Example 28: 1PL IRT model—Rasch model

If you are not familiar with IRT, see [IRT] irt for an introduction to IRT concepts and terminology.
Here we revisit example 1 of [IRT] irt 1pl. The example analyzes student responses to nine test
questions and uses an abridged version of the mathematics and science data from De Boeck and
Wilson (2004). The goal of the analysis is to estimate the common discrimination of the questions
(items) and their individual difficulties.

An alternative formulation of the one-parameter IRT model is the Rasch (1960) model with logit
link; see, for example, Methods and formulas of [IRT] irt 1pl. A typical IRT dataset consists of
binary outcomes (success or failure) of J subjects, where each subject is tested on I items. Let the
observation yij represent the binary outcome for item i, where i = 1, . . . , I , and subject j, where
j = 1, . . . , J . Each item i is characterized by a level of difficulty bi. The difficulties are not observed
and must be estimated. Associated with each subject j is a latent trait level, θj , that characterizes
the ability of the subject. The model likelihood has a generalized linear regression form

logit{Pr(yij = 1|bi, θj)} = a(θj − bi)
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where a is a discrimination parameter. According to this likelihood model, the probability of success
increases with the subject ability and decreases with item difficulty. The discrimination parameter
a represents the slope of the item characteristic curves. The subject abilities are assumed to be
standardized so that

θj ∼ i.i.d. N(0, 1)

The discrimination parameter a can be absorbed into θj and bi so that the model is reparameterized
as

logit{Pr(yij = 1|̃bi, θ̃j)} = θ̃j + b̃i (1)

θ̃j ∼ i.i.d. N(0, σ2)

where σ = a and b̃i = −abi. In addition to the above, a Bayesian formulation of the model requires
prior specifications for parameters σ2 and b̃i. In the following example, we use

σ2 ∼ InvGamma(0.01, 0.01)

b̃i ∼ N(0, 10)

To fit this model using bayesmh, we first need to reshape the data from example 1 of [IRT] irt
1pl in long format so that the answers to the nine questions are represented by the response variable
y, while the item and id variables encode the questions and students, respectively.

. use https://www.stata-press.com/data/r18/masc1, clear
(Data from De Boeck & Wilson (2004))

. generate id = _n

. quietly reshape long q, i(id) j(item)

. rename q y

The Rasch likelihood model can be specified with bayesmh using y as a dependent variable and
U[item] and V[id] as crossed random effects. We use the noconstant option in the likelihood
specification to include all levels of U[item] and V[id]. The random-effects parameters {V[id]}
are assigned a zero-mean normal prior with variance {var} [σ2 in model specification (1)]. The
parameter {var} is assigned a noninformative inverse-gamma prior with shape 0.01 and scale 0.01,
whereas the parameters {U[item]} [̃bi’s in model (1)] are applied ad hoc informative normal(0,10)
priors.

. bayesmh y U[item] V[id], noconstant likelihood(logit)
> prior({U[item]}, normal(0, 10))
> prior({V[id]}, normal(0, {var}))
> prior({var}, igamma(0.01,0.01))
> block({var}) rseed(17) showreffects(U[item])
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaa.. done
Simulation 10000 .........1000.........2000.........3000.........4000.........
> 5000.........6000.........7000.........8000.........9000.........10000 done

Model summary

Likelihood:
y ~ logit(xb_y)

Priors:
{U[item]} ~ normal(0,10) (1)

{V[id]} ~ normal(0,{var}) (1)

Hyperprior:
{var} ~ igamma(0.01,0.01)
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(1) Parameter is an element of the linear form xb_y.

Bayesian logistic regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 7,200
Acceptance rate = .3078
Efficiency: min = .01974

avg = .1056
Log marginal-likelihood max = .1371

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

var .7292225 .0742153 .005282 .7267709 .5849949 .8788834

U[item]
1 .6027924 .0848417 .002727 .6033436 .4383438 .7676613
2 .1047865 .0817006 .002411 .1017675 -.0494946 .2691851
3 1.551305 .0953048 .002574 1.549129 1.362338 1.745973
4 -.2759237 .0791898 .002193 -.2752539 -.4319626 -.121707
5 -1.408907 .0940374 .002999 -1.40848 -1.590385 -1.224282
6 -.5913131 .0837824 .002701 -.5902511 -.7540854 -.431315
7 -1.128982 .0921381 .002597 -1.129163 -1.311912 -.9454393
8 2.054062 .1130098 .003294 2.052132 1.842889 2.278157
9 1.018282 .091037 .002634 1.015498 .8454456 1.195609

In the simulation summary, bayesmh reports a modest average efficiency of about 11% with no
indication of any convergence problems. We could have omitted the prior specification for {V[id]},
in which case bayesmh would have labeled the variance component as {var V}.

To match the discrimination and question difficulty parameters of the irt 1pl command, we can
apply the following transformation to the bayesmh model parameters. The common discrimination
parameter equals the square-root of {var}, and the individual question difficulties equal the negative
{U[item]}’s parameters, normalized by their common discrimination. We can obtain estimates of
these parameters using the bayesstats summary command.
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. bayesstats summary (discr:sqrt({var}))
> (diff1:-{U[item]:1}/sqrt({var}))
> (diff2:-{U[item]:2}/sqrt({var}))
> (diff3:-{U[item]:3}/sqrt({var}))
> (diff4:-{U[item]:4}/sqrt({var}))
> (diff5:-{U[item]:5}/sqrt({var}))
> (diff6:-{U[item]:6}/sqrt({var}))
> (diff7:-{U[item]:7}/sqrt({var}))
> (diff8:-{U[item]:8}/sqrt({var}))
> (diff9:-{U[item]:9}/sqrt({var})), nolegend

Posterior summary statistics MCMC sample size = 10,000

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

discr .8528361 .043511 .003121 .8525086 .7648496 .9374878
diff1 -.708256 .1030494 .003739 -.7075444 -.9076266 -.5087035
diff2 -.1229125 .0957599 .0028 -.1200833 -.3128214 .0586056
diff3 -1.823084 .1372403 .00629 -1.822315 -2.111938 -1.567898
diff4 .3244352 .0946774 .002831 .3225444 .140814 .5142564
diff5 1.655759 .1318078 .005645 1.655727 1.397132 1.91738
diff6 .6948282 .1024367 .003553 .6955096 .500485 .9021124
diff7 1.326701 .1219158 .005173 1.324991 1.092751 1.569114
diff8 -2.413647 .165384 .006845 -2.408337 -2.762421 -2.10808
diff9 -1.196676 .1190397 .004515 -1.194314 -1.438426 -.9766857

We observe that the reported posterior means for the common discrimination and question difficulties
are close to those obtained with irt 1pl, within the limits of the MCMC standard errors.

In this example, we fit the Rasch model and use transformation to estimate parameters of the
corresponding 1PL IRT model. To avoid reparameterization, we could have fit the 1PL model directly
using a nonlinear specification of bayesmh, as we demonstrate in example 29 for the 2PL IRT model.
The shortcoming of the nonlinear specification is slower execution.

Example 29: 2PL IRT model

A more comprehensive IRT model is the 2PL model introduced by Birnbaum (1968), which allows
the discrimination and difficulty parameters to vary between items. For a detailed description and
examples of the model, see [IRT] irt 2pl.

A Bayesian formulation of the 2PL model allows the item-specific discrimination and difficulty
parameters as well as the subject abilities to be modeled, either individually or as groups, using prior
distributions.

The 2PL model likelihood has the following form,

Pr(Yij = 1) =
exp{ai(θj − bi)}

1 + exp{ai(θj − bi)}

where ai’s and bi’s are discrimination and difficulty parameters and θj’s are subject abilities. This
is a logistic regression model with probability of success modeled using the linear form ai(θj − bi).
We assume that the probability of success increases with subject ability, which implies ai > 0.
Subject ability parameters are assumed independent and distributed according to the standard normal
distribution

θj ∼ N(0, 1)
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For Bayesian modeling, we additionally assume the following prior specifications:

ln(ai) ∼ N(µa, σ
2
a)

bi ∼ N(µb, σ
2
b )

µa, µb ∼ N(0, 1)

σ2
a, σ

2
b ∼ Gamma(1, 1)

In the absence of prior knowledge about parameters ai’s and bi’s, we want to specify proper priors
that are not subjective. Because ai’s must be positive, a common choice is to assume that ln(ai)’s
are normally distributed with mean µa and variance σ2

a. We assume that bi’s are normally distributed
with mean µb and variance σ2

b . Our prior assumption is that the questions in the study are fairly
balanced in terms of discrimination and difficulty, and we express this expectation by specifying
N(0, 1) hyperpriors for µa and µb; that is, we assume that µa and µb are not that different from zero.
We also put a slight prior constraint on the variability of the discrimination and difficulty parameters
by assigning a gamma distribution with shape 1 and scale 1 as hyperprior distributions for σ2

a and
σ2
b . To demonstrate a Bayesian 2PL model, we use again the mathematics and science dataset masc1,

reshaped in long format as in example 28.

. bayesmh y = ({Discr[item]}*({V[id]}-{Diff[item]})), likelihood(logit)
> prior({V[id]}, normal(0, 1))
> prior({Discr[item]}, lognormal({mua}, {vara}))
> prior({D[iffitem]}, normal({mub}, {varb}))
> prior({vara varb}, gamma(1, 1))
> prior({mua mub}, normal(0, 1))
> . . .

To specify the 2PL model likelihood in bayesmh, we need to use a nonlinear specifica-
tion to accommodate the varying coefficients ai’s. For masc1.dta, we have 9 items, where
i = 1, . . . , 9, and 800 subjects, where j = 1, . . . , 800. A straightforward nonlinear specification is
({Discr[item]}*({V[id]}-{Diff[item]})), where random effects Discr[item], Diff[item],
and V[id] represent discrimination, item difficulty, and student ability, respectively.

To achieve better sampling efficiency, we place the hyperparameters {mua}, {mub}, {vara},
and {varb} into separate blocks using the block()’s suboption split. We also initialize the
discrimination and difficulty random effects with 1 because the default 0s result in an invalid initial
state. Because the random effects are not shown by default, we use the showreffects() option to
display the discrimination and difficulty parameters.
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. bayesmh y = ({Discr[item]}*({V[id]}-{Diff[item]})), likelihood(logit)
> prior({V[id]}, normal(0, 1))
> prior({Discr}, lognormal({mua}, {vara}))
> prior({Diff}, normal({mub}, {varb}))
> prior({vara varb},gamma(1, 1)) prior({mua mub}, normal(0, 1))
> block({vara varb mua mub}, split) init({Discr} 1 {Diff} 1)
> showreffects({Discr} {Diff}) rseed(17)
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 10000 .........1000.........2000.........3000.........4000.........
> 5000.........6000.........7000.........8000.........9000.........10000 done

Model summary

Likelihood:
y ~ logit({Discr[item]}*({V[id]}-{Diff[item]}))

Priors:
{V[id]} ~ normal(0,1)

{Discr[item]} ~ lognormal({mua},{vara})
{Diff[item]} ~ normal({mub},{varb})

Hyperpriors:
{vara varb} ~ gamma(1,1)

{mua mub} ~ normal(0,1)

Bayesian logistic regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 7,200
Acceptance rate = .3681
Efficiency: min = .008642

avg = .04421
Log marginal-likelihood max = .2174

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mua -.1532513 .172939 .006185 -.1512495 -.5066464 .1898917
vara .2459257 .1732519 .009683 .1981045 .0580936 .7308169
mub -.067519 .4272602 .009163 -.068848 -.905363 .7854128

varb 1.954127 .8517321 .030869 1.810081 .8276775 4.021905

Discr[item]
1 1.474051 .226756 .016747 1.461149 1.085353 1.977109
2 .6710171 .1110106 .004925 .6675754 .4590724 .8893063
3 .9238635 .1454797 .011848 .9209288 .6422116 1.217656
4 .8076416 .1221467 .006042 .8019258 .5810136 1.057661
5 .8825339 .1445803 .011687 .8722941 .6319481 1.197729
6 .9497897 .1401296 .007687 .944759 .6944811 1.236898
7 .4846824 .0881389 .006968 .4791858 .3258165 .6695858
8 1.353603 .219108 .023569 1.362743 .9303272 1.772465
9 .6649918 .1198973 .01178 .6650413 .444871 .90068

Diff[item]
1 -.5069895 .0818094 .004323 -.5031544 -.6849757 -.3521039
2 -.1502343 .121276 .003424 -.1455632 -.407207 .0784043
3 -1.742259 .2430085 .019752 -1.706428 -2.331342 -1.357637
4 .3328318 .1101783 .003805 .3282234 .1280959 .555568
5 1.638084 .2356449 .018557 1.616757 1.247654 2.160822
6 .6465024 .116495 .005363 .6380789 .4409175 .8947524
7 2.158884 .4045901 .031847 2.101079 1.528233 3.101399
8 -1.779656 .2166062 .022939 -1.742365 -2.300026 -1.453126
9 -1.490028 .2781509 .025778 -1.451536 -2.13252 -1.065914
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bayesmh reports an acceptable average efficiency of about 4%. A close inspection of the estimation
table shows that the posterior mean estimates for item discrimination and difficulty are similar to the
MLE estimates obtained with the irt 2pl command; see example 1 in [IRT] irt 2pl.

Latent growth model

We revisit [SEM] Example 18, which analyzes crime rate in four quarters of 1995. The crime-rate
variables lncrime0 through lncrime3 record measurements of crime rate on the log scale. The
observed crime rates are assumed to follow a linear growth model with random intercept I and random
slope S,

lncrimei = I + iS + ε,

where I and S are latent variables and ε is a vector of error terms that are normally distributed
with mean zero and variance σ2. The coefficients for the random intercepts are fixed to 1, and the
coefficients for the slopes are fixed to 0, 1, 2, and 3, corresponding to the 4 quarters. I and S are
assumed to be correlated.

. use https://www.stata-press.com/data/r18/sem_lcm

. describe

Contains data from https://www.stata-press.com/data/r18/sem_lcm.dta
Observations: 359

Variables: 4 25 May 2022 11:08
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

lncrime0 float %9.0g ln(crime rate) in Jan & Feb
lncrime1 float %9.0g ln(crime rate) in Mar & Apr
lncrime2 float %9.0g ln(crime rate) in May & Jun
lncrime3 float %9.0g ln(crime rate) in Jul & Aug

Sorted by:

To fit the model using bayesmh, we need to specify four normal likelihood equations, one for each
crime-rate variable, that include latent variables {I[ n]} and {S[ n]} (see Random effects). The
error variance σ2 is given by the parameter {var}. As in a classical SEM model, the latent variables are
assumed to have a bivariate normal distribution, which we will model using the mvnormal() prior with
means {meani} and {means} and variance–covariance matrix {Sigma,m}. In a Bayesian model, we
additionally specify prior distributions for all other model parameters. Specifically, the error variance
is assigned the inverse-gamma prior, igamma(1, 1). The hyperparameters {meani} and {means} are
assigned normal(0, 100) priors. And the covariance {Sigma,m} matrix hyperparameter is assigned
an inverse-Wishart prior, iwishart(2,3,I(2)).

We place parameters in separate blocks and use Gibbs sampling for the covariance {Sigma,m}.
To do this, we must specify each parameter in separate prior() and block() options. More
conveniently, we can use prior()’s and block()’s split suboptions to combine similar parameters
in one prior() and one block() specifications.
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. bayesmh (lncrime0 I[_n]@1 S[_n]@0, likelihood(normal({var})) noconstant)
> (lncrime1 I[_n]@1 S[_n]@1, likelihood(normal({var})) noconstant)
> (lncrime2 I[_n]@1 S[_n]@2, likelihood(normal({var})) noconstant)
> (lncrime3 I[_n]@1 S[_n]@3, likelihood(normal({var})) noconstant),
> prior({I} {S}, mvnormal(2, {meani}, {means}, {Sigma,m}))
> prior({var}, igamma(1, 1)) prior({meani} {means}, normal(0, 100) split)
> prior({Sigma,m}, iwishart(2, 3, I(2)))
> block({meani means var}, split) block({Sigma,m}, gibbs) rseed(17) dots
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 10000 .........1000.........2000.........3000.........4000.........
> 5000.........6000.........7000.........8000.........9000.........10000 done

Model summary

Likelihood:
lncrime0 ~ normal(xb_lncrime0,{var})
lncrime1 ~ normal(xb_lncrime1,{var})
lncrime2 ~ normal(xb_lncrime2,{var})
lncrime3 ~ normal(xb_lncrime3,{var})

Priors:
{var} ~ igamma(1,1)

{I[_n] S[_n]} ~ mvnormal(2,{meani},{means},{Sigma,m}) (1)

Hyperpriors:
{meani means} ~ normal(0,100)

{Sigma,m} ~ iwishart(2,3,I(2))

(1) Parameter is an element of the linear form xb_lncrime0.

Bayesian normal regression MCMC iterations = 12,500
Metropolis--Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 359
Acceptance rate = .4568
Efficiency: min = .02935

avg = .06287
Log marginal-likelihood max = .112

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

lncrime0
I 1 0 0 1 1 1
S 0 0 0 0 0 0

lncrime1
I 1 0 0 1 1 1
S 1 0 0 1 1 1

lncrime2
I 1 0 0 1 1 1
S 2 0 0 2 2 2

lncrime3
I 1 0 0 1 1 1
S 3 0 0 3 3 3

var .0980241 .0052328 .000288 .0977252 .0883533 .1092536
meani 5.337768 .0414444 .001238 5.338614 5.255186 5.415398
means .1429141 .0113074 .000523 .1430148 .1208266 .1648296

Sigma_1_1 .5346687 .0447749 .001346 .5324011 .4528704 .6270454
Sigma_2_1 -.0389518 .0094347 .000443 -.0388106 -.0580931 -.0212465
Sigma_2_2 .027595 .0032268 .000188 .0274319 .0216741 .0342223
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The average sampling efficiency is about 6% with no signs of convergence problems. The posterior
mean estimates are similar to the maximum likelihood estimates reported by the sem command.

As expected, there is a negative correlation between the latent variables I and S of about −0.32.

. bayesstats summary (corr:{Sigma_1_2}/sqrt({Sigma_1_1}*{Sigma_2_2}))

Posterior summary statistics MCMC sample size = 10,000

corr : { Sigma_1_2 } /sqrt( { Sigma_1_1 } * { Sigma_2_2 } )

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

corr -.3193145 .064091 .002767 -.3212176 -.4389513 -.1889672

Because the linear growth model assumes that the slope coefficients are constrained to 0, 1, 2, and
3, it may be interesting to check how well the observed average quarterly crime rates are explained
by the model. We can formally address this question by simulating the posterior predictive crime-
rate means from the model and comparing them with the observed quarterly averages. We use the
bayespredict command to simulate the expected outcomes from the posterior predictive distribution.
For example, in the specification below, the first expected outcome is obtained by applying the mean
function to { ysim1}, pmean0:@mean({ ysim1} ), and saving it as {pmean0} in a new prediction
dataset predmeans.dta. Once {pmean0}, {pmean1}, {pmean2}, and {pmean3} are simulated, we
use the bayesstats ppvalues command to compute the corresponding posterior predictive p-values
to check model fit. Before using bayespredict, however, we must save our simulation results in a
permanent Stata dataset.

. bayesmh, saving(semex18sim)
note: file semex18sim.dta saved.

. bayespredict (pmean0:@mean({_ysim1})) (pmean1:@mean({_ysim2}))
> (pmean2:@mean({_ysim3})) (pmean3:@mean({_ysim4})),
> saving(predmeans) rseed(17) dots

Computing predictions 10000 .........1000.........2000.........3000.........
> 4000.........5000.........6000.........7000.........8000.........9000.........
> 10000 done

file predmeans.dta saved.
file predmeans.ster saved.

. bayesstats ppvalues {pmean0} {pmean1} {pmean2} {pmean3} using predmeans

Posterior predictive summary MCMC sample size = 10,000

T Mean Std. dev. E(T_obs) P(T>=T_obs)

pmean0 5.338168 .0211914 5.318657 .8196
pmean1 5.481137 .0188344 5.515685 .0341
pmean2 5.623649 .0187776 5.610934 .7465
pmean3 5.766436 .0211988 5.762558 .5764

Note: P(T>=T_obs) close to 0 or 1 indicates lack of fit.

All expected quarterly crime rates except the second one are consistent with the observed data. For
the second-quarter crime rate, we have a low posterior p-value of 3%. We could relax the assumption
of a linear growth for the second quarter and check whether this improves model fit.
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Stored results
bayesmh stores the following in e():
Scalars

e(N) number of observations
e(N sub) number of subjects (only with survival models)
e(N fail) number of failures (only with survival models)
e(risk) total time at risk (only with survival models)
e(k) number of parameters
e(k sc) number of scalar parameters
e(k mat) number of matrix parameters
e(n eq) number of equations
e(nchains) number of MCMC chains
e(mcmcsize) MCMC sample size
e(burnin) number of burn-in iterations
e(mcmciter) total number of MCMC iterations
e(thinning) thinning interval
e(arate) overall AR
e(eff min) minimum efficiency
e(eff avg) average efficiency
e(eff max) maximum efficiency
e(Rc max) maximum Gelman–Rubin convergence statistic (only with nchains())
e(clevel) credible interval level
e(hpd) 1 if hpd is specified; 0 otherwise
e(batch) batch length for batch-means calculations
e(corrlag) maximum autocorrelation lag
e(corrtol) autocorrelation tolerance
e(dic) deviance information criterion
e(lml lm) log marginal-likelihood using Laplace–Metropolis method
e(scale) initial multiplier for scale factor; scale()
e(block# gibbs) 1 if Gibbs sampling is used in #th block, 0 otherwise
e(block# reffects) 1 if the parameters in #th block are random effects, 0 otherwise
e(block# scale) #th block initial multiplier for scale factor
e(block# tarate) #th block target adaptation rate
e(block# tolerance) #th block adaptation tolerance
e(adapt every) adaptation iterations adaptation(every())
e(adapt maxiter) maximum number of adaptive iterations adaptation(maxiter())
e(adapt miniter) minimum number of adaptive iterations adaptation(miniter())
e(adapt alpha) adaptation parameter adaptation(alpha())
e(adapt beta) adaptation parameter adaptation(beta())
e(adapt gamma) adaptation parameter adaptation(gamma())
e(adapt tolerance) adaptation tolerance adaptation(tolerance())
e(repeat) number of attempts used to find feasible initial values

Macros
e(cmd) bayesmh
e(cmdline) command as typed
e(method) sampling method
e(depvars) names of dependent variables
e(eqnames) names of equations
e(likelihood) likelihood distribution (one equation)
e(likelihood#) likelihood distribution for #th equation
e(prior) prior distribution
e(prior#) prior distribution, if more than one prior() is specified
e(priorparams) parameter specification in prior()
e(priorparams#) parameter specification from #th prior(), if more than one prior() is specified
e(parnames) names of model parameters except exclude()
e(postvars) variable names corresponding to model parameters in e(parnames)
e(subexpr) substitutable expression
e(subexpr#) substitutable expression, if more than one
e(wtype) weight type (one equation)
e(wtype#) weight type for #th equation
e(wexp) weight expression (one equation)
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e(wexp#) weight expression for #th equation
e(block# names) parameter names from #th block
e(exclude) names of excluded parameters
e(filename) name of the file with simulation results
e(scparams) scalar model parameters
e(matparams) matrix model parameters
e(pareqmap) model parameters in display order
e(title) title in estimation output
e(rngstate) random-number state at the time of simulation (only with single chain)
e(rngstate#) random-number state for #th chain (only with nchains())
e(search) on, repeat(), or off

Matrices
e(mean) posterior means
e(sd) posterior standard deviations
e(mcse) MCSE
e(median) posterior medians
e(cri) credible intervals
e(Cov) variance–covariance matrix of parameters
e(ess) effective sample sizes
e(init) initial values vector
e(dic chains) deviance information criterion for each chain (only with nchains())
e(arate chains) acceptance rate for each chain (only with nchains())
e(eff min chains) minimum efficiency for each chain (only with nchains())
e(eff avg chains) average efficiency for each chain (only with nchains())
e(eff max chains) maximum efficiency for each chain (only with nchains())
e(lml lm chains) log marginal-likelihood for each chain (only with nchains())

Functions
e(sample) mark estimation sample

Methods and formulas
Methods and formulas are presented under the following headings:

Adaptive MH algorithm
Adaptive MH algorithm for random effects
Gibbs sampling for some likelihood-prior and prior-hyperprior configurations

Likelihood-prior configurations
Prior-hyperprior configurations

Marginal likelihood

Adaptive MH algorithm

The bayesmh command implements an adaptive random-walk Metropolis–Hastings algorithm with
optional blocking of parameters. Providing an efficient MH procedure for simulating from a general
posterior distribution is a difficult task, and various adaptive methods have been proposed (Haario,
Saksman, and Tamminen 2001; Giordani and Kohn 2010; Roberts and Rosenthal 2009; Andrieu and
Thoms 2008). The essence of the problem is in choosing an optimal proposal covariance matrix and
a scale for parameter updates. Below we describe the implemented adaptation algorithm, assuming
one block of parameters. In the presence of multiple blocks, the adaptation is applied to each block
independently. The adaptation() option of bayesmh controls all the tuning parameters for the
adaptation algorithm.
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Let θ be a vector of d scalar model parameters. Let T0 be the length of a burn-in period
(iterations that are discarded) as specified in burnin() and T be the size of the MCMC sample
(iterations that are retained) as specified in mcmcsize(). The total number of MCMC iterations is
then Ttotal = T0 + (T − 1) × thinning() + 1. Also, let ALEN be the length of the adaptation
interval (option adaptation(every())) and AMAX be the maximum number of adaptations (option
adaptation(maxiter())).

The steps of the adaptive MH algorithm are the following. At t = 0, we initialize θt = θ
f
0 , where

θ
f
0 is the initial feasible state, and we set adaptation counter k = 1 and initialize ρ0 = 2.38/

√
d,

where d is the number of considered parameters. Σ0 is the identity matrix. For t = 1, . . . , Ttotal, do
the following:

1. Generate proposal parameters: θ∗ = θt−1 + e, e ∼ N(0, ρ2
kΣk), where ρk and Σk are current

values of the proposal scale and covariance for adaptation iteration k.

2. Calculate the acceptance probability using

α(θ∗|θt−1) = min
{

p(θ∗|y)

p(θt−1|y)
, 1

}
where p(θ|y) = f(y|θ)p(θ) is the posterior distribution of θ corresponding to the likelihood
function f(y|θ) and prior p(θ).

3. Draw u ∼ Uniform(0, 1) and set θt = θ∗ if u < α(θ∗|θt−1) or θt = θt−1, otherwise.

4. Perform adaptive iteration k. This step is performed only if k ≤ AMAX and t mod ALEN = 0.
Update ρk according to (2), update Σk according to (3), and set k = k + 1.

5. Repeat steps 1–4. Note that the adaptation in step 4 is not performed at every MCMC iteration.

The output is the MCMC sequence {θt}Ttotal

t=T0+1 or θ1, θ1+l, θ1+2l, . . . , where l is the thinning
interval as specified in the thinning() option.

If the parameter vector θ is split into B blocks θ1, θ2, . . . , θB , then steps 1 through 3 are repeated
for each θb, b = 1, . . . , B sequentially. The adaptation in step 4 is then applied sequentially to each
block b = 1, 2, . . . , B. See Blocking of parameters in [BAYES] Intro for details about blocking.

Initialization. We recommend that you carefully choose starting values for model parameters, θ0,
to be within the domain of the posterior distribution; see Specifying initial values. By default, for a
single chain, MLEs are used as initial values, whenever available. If MLEs are not available, parameters
with positive support are initialized with 1, probabilities are initialized with 0.5, and the remaining
parameters are initialized with 0. Matrix parameters are initialized as identity matrices. If specified
initial values θ0 are within the domain of the posterior, then θ

f
0 = θ0. Otherwise, bayesmh performs

500 attempts (or as specified in search(repeat())) to find a feasible state θ
f
0 , which is used as

the initial state in the algorithm. If the command cannot find feasible values, it exits with an error.

You can specify the initrandom option to request random initial values for all model parameters.
In this case, bayesmh generates random initial values from the corresponding prior distributions of
the parameters, except for those that are assigned improper priors such as flat and jeffreys() or
user-defined priors using the density() and logdensity() prior options. You must specify your
own initial values for all model parameters for which random initial values cannot be generated.

With multiple chains, the initial values for the first chain are generated as described above and
random initial values are generally generated from prior distributions for subsequent chains.

See Specifying initial values for details.
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Adaptation. The adaptation step is performed as follows. At each adaptive iteration k of the
tth MCMC iteration, the proposal covariance Σk and scale ρk are tuned to achieve an optimal AR.
Some asymptotic results (for example, Gelman, Gilks, and Roberts [1997]) show that the optimal
AR, hereafter referred to as a TAR, for a single model parameter is 0.44 and is 0.234 for a block of
multiple parameters.

Adaptation is performed periodically after a constant number of iterations as specified by the adap-
tation(every()) option. At least adaptation(miniter()) adaptive iterations are performed not
to exceed adaptation(maxiter()). bayesmh does not perform adaptation if the absolute difference
between the current AR and TAR is within the tolerance given by adaptation(tolerance()).

The bayesmh command allows you to control the calculation of AR through the adapta-
tion(alpha()) option with the default of 0.75, as follows,

ARk = (1− α)ARk−1 + αÂRk

where ÂRk is the expected acceptance probability, which is computed as the average of the acceptance
probabilities, α(θ∗|θt−1), since the last adaptive iteration (for example, Andrieu and Thoms [2008]),
and AR0 is defined as described in the adaptation(tarate()) option. Choosing α ∈ (0, 1) allows
for smoother change in the current AR between adaptive iterations.

The tuning of the proposal scale ρ is based on results in Gelman, Gilks, and Roberts (1997),
Roberts and Rosenthal (2001), and Andrieu and Thoms (2008). The initial ρ0 is set to 2.38/

√
d,

where d is the number of parameters in the considered block. Then, ρk is updated according to

ρk = ρk−1e
βk{Φ−1(ARk/2)−Φ−1(TAR/2)} (2)

where Φ(·) is the standard normal cumulative distribution function and βk is defined below.

The adaptation of the covariance matrix is performed when multiple parameters are in the block
and is based on Andrieu and Thoms (2008). You may specify an initial proposal covariance matrix Σ0

in covariance() or use the identity matrix by default. Then, at time of adaptation k, the proposal
covariance Σk is recomputed according to the formula

Σk = (1− βk)Σk−1 + βkΣ̂k, βk =
β0

kγ
(3)

where Σ̂k = (Θtk − µk−1)(Θtk − µk−1)′/(tk − tk−1) is the empirical covariance of the recent
MCMC sample Θtk = {θs}tks=tk−1

and tk−1 is the MCMC iteration corresponding to the adaptive
iteration k − 1 or 0 if adaptation did not take place. µk is defined as

µk = µk−1 + βk(Θtk − µk−1), k > 1

and µ1 = Θtk , where Θtk is the sample mean of Θtk .

The constants β0 ∈ [0, 1] and γ ∈ [0, 1] in (3) are specified in the options adaptation(beta())
and adaptation(gamma()), respectively. The default values are 0.8 and 0, respectively. When
γ > 0, we have a diminishing adaptation regime, which means that Σk is not changing much from
one adaptive iteration to another. Random-walk Metropolis–Hastings algorithms with diminishing
adaptation are shown to preserve the ergodicity of the Markov chain (Roberts and Rosenthal 2007;
Andrieu and Moulines 2006; Atchadé and Rosenthal 2005).

The above algorithm is also used for discrete parameters, but discretization is used to obtain
samples of discrete values. The default initial scale factor ρ0 is set to 2.38/d for a block of d
discrete parameters. The default TAR for discrete parameters with priors bernoulli() and index()
is max{0.1353, 1/nmaxbins}, where nmaxbins is the maximum number of discrete values a parameter
can take among all the parameters specified in the same block. Blocks containing a mixture of
continuous and discrete parameters are not allowed.
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Adaptive MH algorithm for random effects

Suppose that u is a random-effects variable that takes discrete values 1, . . . ,m. For an independent
sample Y = {yij}, where j = 1, . . . ,m and where i = 1, . . . , nj , we assume that u takes value j
for all yij , where i = 1, . . . , nj . Consider a two-level Bayesian model that includes random-effect
parameters ηj , where j = 1, . . . ,m, one for each level of u, and additional parameter vector θ. We
assume that, with respect to the posterior distribution of the model, the random-effects parameters
ηj are conditionally independent given θ and the data sample Y . The latter can be ensured the prior
distribution of ηj’s satisfies the conditional independence condition

π(η1, . . . , ηm|θ) =

m∏
j=1

π(ηj |θ)

In this case, the posterior distribution admits the following factorization,

Pr(η1, . . . , ηm, θ|Y ) = π(θ)

{ m∏
j=1

π(ηj |θ)

nj∏
i=1

Pr(yij |ηj , θ)

}

where π(θ) is the prior distribution of θ. This form of the posterior allows the parameters ηj’s to be
placed in one block and steps 1, 2, and 3 of the adaptive MH algorithm to be performed for all of
them simultaneously in a vector form, as if they were a single scalar parameter.

To request the random-effects MH algorithm in bayesmh, use block’s suboption reffects. The
same algorithm is used if one includes the random effects in the model. A random-effects block of
parameters has a default acceptance rate of 0.44, performs adaptation of the scale ρk according to
(2), but uses a fixed identity matrix for the proposal covariance Σk.

Gibbs sampling for some likelihood-prior and prior-hyperprior configurations

In some cases, when a block of parameters θb has a conjugate prior, or more appropriately,
a semiconjugate prior, with respect to the respective likelihood distribution for this block, you can
request Gibbs sampling instead of random-walk MH sampling. Then, steps 1 through 4 of the algorithm
described in Adaptive MH algorithm are replaced with just one step of Gibbs sampling as follows:

1’. Simulate proposal parameters: θb∗ ∼ Fb(θb|θ1
∗, . . . , θ

b−1
∗ , θb+1

∗ , . . . , θB∗ ,y)

Here Fb(·|·) is the full conditional distribution of θb with respect to the rest of the parameters.

Below we list the full conditional distributions for the likelihood-prior specifications for which
bayesmh provides Gibbs sampling. All priors except Jeffreys priors are semiconjugate, meaning that
full conditional distributions belong to the same family as the specified prior distributions for the
chosen data model. This contrasts with a concept of conjugacy under which the posterior distribution
of all parameters belongs to the same family as the joint prior distribution. All the combinations
below assume prior independence; that is, all parameters are independent a priori. Thus their joint
prior distribution is simply the product of the individual prior distributions.
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Likelihood-prior configurations

Let y = (y1, y2, . . . , yn)′ be a data sample of size n. For multivariate data, Y =

(y1,y2, . . . ,yn)′ = {yij}n,di,j=1 is an n× d data matrix.

1. Normal–normal model: θb is a mean of a normal distribution of yi’s with a variance σ2; mean
and variance are independent a priori,

yi|θb, σ2 ∼ N(θb, σ2), i = 1, 2, . . . , n

θb ∼ N(µ0, τ
2
0 )

θb|σ2,y ∼ Fb = N(µn, τ
2
n)

where µ0 and τ2
0 are hyperparameters (prior mean and prior variance) of a normal prior distribution

for θb and
µn =

(
µ0τ

−2
0 +

∑
yiσ
−2
)
τ2
n

τ2
n = (τ−2

0 + nσ−2)−1

2. Normal–normal regression: θb is a p1×1 subvector of a p×1 vector of regression coefficients β
from a normal linear regression model for y with an n× p design matrix X = (x′1,x

′
2, . . . ,x

′
n)′

and with a variance σ2; regression coefficients and variance are independent a priori,

yi|θb, σ2 ∼ N(x′iβ, σ
2), i = 1, 2, . . . , n

θbk ∼ i.i.d. N(β0, τ
2
0 ), k = 1, 2, . . . , p1

θb|σ2,y ∼ Fb = MVN(µn,Λn)

where β0 and τ2
0 are hyperparameters (prior regression coefficient and prior variance) of normal

prior distributions for θbk and

µn = (β0τ
−2
0 +X ′byσ

−2)Λn

Λn = (τ−2
0 Ip1 + σ−2X ′bXb)

−1

In the above, Ip1 is a p1 × p1 identity matrix, and Xb = (x′1b,x
′
2b, . . . ,x

′
nb)
′ is an n × p1

submatrix of X corresponding to the regression coefficients θb.

3. Normal–inverse-gamma model: θb is a variance of a normal distribution of yi’s with a mean µ;
mean and variance are independent a priori,

yi|µ, θb ∼ N(µ, θb), i = 1, 2, . . . , n

θb ∼ InvGamma(α, β)

θb|µ,y ∼ Fb = InvGamma(α+ n/2, β +

n∑
i=1

(yi − µ)2/2)

where α and β are hyperparameters (prior shape and prior scale) of an inverse-gamma prior
distribution for θb.
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4. Multivariate-normal–multivariate-normal model: θb is a mean vector of a multivariate normal
distribution of y’s with a d × d covariance matrix Σ; mean and covariance are independent a
priori,

yi|θb,Σ ∼ MVN(θb,Σ), i = 1, 2, . . . , n

θb ∼ MVN(µ0,Λ0)

θb|Σ, Y ∼ Fb = MVN(µn,Λn)

where µ0 and Λ0 are hyperparameters (prior mean vector and prior covariance) of a multivariate
normal prior distribution for θb and

µn = ΛnΛ−1
0 µ0 + ΛnΣ−1

(
n∑
i=1

yi

)
Λn = (Λ−1

0 + nΣ−1)−1

5. Multivariate-normal–inverse-Wishart model: Θb is a d× d covariance matrix of a multivariate
normal distribution of y’s with a mean vector µ; mean and covariance are independent a priori,

yi|µ,Θb ∼ MVN(µ,Θb), i = 1, 2, . . . , n

Θb ∼ InvWishart(ν,Ψ)

Θb|µ, Y ∼ Fb = InvWishart(n+ ν,Ψ +

n∑
i=1

(yi − µ)(yi − µ)′)

where ν and Ψ are hyperparameters (prior degrees of freedom and prior scale matrix) of an
inverse-Wishart prior distribution for Θb.

6. Multivariate-normal–Jeffreys model: Θb is a d× d covariance matrix of a multivariate normal
distribution of y’s with a mean vector µ; mean and covariance are independent a priori,

yi|µ,Θb ∼ MVN(µ,Θb), i = 1, 2, . . . , n

Θb ∼ |Θb|−
d+1
2 (multivariate Jeffreys)

Θb|µ, Y ∼ Fb = InvWishart(n− 1,

n∑
i=1

(yi − µ)(yi − µ)′)

where | · | denotes the determinant of a matrix.

7. Normal–scaled-multivariate-normal regression: θb is the vector of regression coefficients β from
a normal linear regression model for y with an n× p design matrix X = (x′1,x

′
2, . . . ,x

′
n)′ and

variance σ2,
yi|θb, σ2 ∼ N(x′iβ, σ

2), i = 1, 2, . . . , n

The prior for θb conditional on σ2 is multivariate normal with covariance Λ0 proportional to σ2

with a scale matrix A (mvnscaled() prior distribution),

θb|σ2 ∼ MVN(µ0,Λ0 = σ2A)

The posterior for θb conditional on σ2 is also multivariate normal,

θb|σ2,y ∼ Fb = MVN(µn,Λn = σ2B)
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where
µn = B(X ′y +A−1µ0)

Λn = σ2B = σ2(X ′X +A−1)−1

8. Probit–multivariate-normal model: θb is the vector of regression coefficients β from a probit
regression model for y,

P (yi = 1|θb) = Φ(x′iβ), i = 1, 2, . . . , n

θb ∼ MVN(µ0,Λ0)

θb|y ∼ Fb = MVN(µn,Λn)

where
µn = Λn(X ′y∗ + Λ−1

0 µ0)

Λn = (X ′X + Λ−1
0 )−1

and y∗ = (y∗1 , y
∗
2 , . . . , y

∗
n)′ is an auxiliary vector such that

y∗i ∼ TruncatedNormal(−∞,0)(x
′
iβ, 1), yi = 0

y∗i ∼ TruncatedNormal(0,∞)(x
′
iβ, 1), yi = 1

Prior-hyperprior configurations

Suppose that a prior distribution of a parameter of interest θ has hyperparameters θh for which a
prior distribution is specified. We refer to the former prior distribution as a hyperprior. You can also
request Gibbs sampling for the following prior-hyperprior combinations.

We use θbh and θbh to refer to the hyperparameters from the block b.

1. Normal–normal model: θbh is a mean of a normal prior distribution of θ with a variance σ2
h;

mean and variance are independent a priori,

θ|θbh, σ2
h ∼ N(θbh, σ

2
h)

θbh ∼ N(µ0, τ
2
0 )

θbh|σ2
h, θ ∼ Fb = N(µ1, τ

2
1 )

where µ0 and τ2
0 are the prior mean and prior variance of a normal hyperprior distribution for θbh

and
µ1 =

(
µ0τ

−2
0 + θσ−2

h

)
τ2
1

τ2
1 = (τ−2

0 + σ−2
h )−1

2. Normal–inverse-gamma model: θbh is a variance of a normal prior distribution of θ with a mean
µh; mean and variance are independent a priori,

θ|µh, θbh ∼ N(µh, θ
b
h)

θbh ∼ InvGamma(α, β)

θbh|µh, θ ∼ Fb = InvGamma(α+ 0.5, β + (θ − µ)2/2)

where α and β are the prior shape and prior scale, respectively, of an inverse-gamma hyperprior
distribution for θbh.
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3. Bernoulli–beta model: θbh is a probability of success of a Bernoulli prior distribution of θ,

θ|θbh ∼ Bernoulli(θbh)

θbh ∼ Beta(α, β)

θbh|θ ∼ Fb = Beta(α+ θ, β + 1− θ)

where α and β are the prior shape and prior scale, respectively, of a beta hyperprior distribution
for θbh.

4. Poisson–gamma model: θbh is a mean of a Poisson prior distribution of θ,

θ|θbh ∼ Poisson(θbh)

θbh ∼ Gamma(α, β)

θbh|θ ∼ Fb = Gamma(α+ θ, β/(β + 1))

where α and β are the prior shape and prior scale, respectively, of a gamma hyperprior distribution
for θbh.

5. Multivariate-normal–multivariate-normal model: θbh is a mean vector of a multivariate normal
prior distribution of θ with a d× d covariance matrix Σh; mean and covariance are independent
a priori,

θ|θbh,Σh ∼ MVN(θbh,Σh)

θbh ∼ MVN(µ0,Λ0)

θbh|Σh, θ ∼ Fb = MVN(µ1,Λ1)

where µ0 and Λ0 are the prior mean vector and prior covariance of a multivariate normal hyperprior
distribution for θbh and

µ1 = Λ1Λ−1
0 µ0 + Λ1Σ−1

h θ

Λ1 = (Λ−1
0 + Σ−1

h )−1

6. Multivariate-normal–inverse-Wishart model: Θb
h is a d× d covariance matrix of a multivariate

normal prior distribution of θ with a mean vector µh; mean and covariance are independent a
priori,

θ|µh,Θb
h ∼ MVN(µh,Θ

b
h)

Θb
h ∼ InvWishart(ν,Ψ)

Θb
h|µh, θ ∼ Fb = InvWishart(ν + 1,Ψ + (θ− µh)(θ− µh)′)

where ν and Ψ are the prior degrees of freedom and prior scale matrix of an inverse-Wishart
hyperprior distribution for Θb

h.

Marginal likelihood

The marginal likelihood is defined as

m(y) =

∫
p(y|θ)π(θ)dθ
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where p(y|θ) is the probability density of data y given θ and π(θ) is the density of the prior
distribution for θ.

Marginal likelihood m(y), being the denominator term in the posterior distribution, has a major
role in Bayesian analysis. It is sometimes referred to as “model evidence”, and it is used as a
goodness-of-fit criterion. For example, marginal likelihoods are used in calculating Bayes factors for
the purpose of model comparison; see Methods and formulas in [BAYES] bayesstats ic.

The simplest approximation to m(y) is provided by the Monte Carlo integration,

m̂p =
1

M

M∑
s=1

p(y|θs)

where {θs}Ms=1 is an independent sample from the prior distribution π(θ). This estimation is very
inefficient, however, because of the high variance of the likelihood function. MCMC samples are not
independent and cannot be used directly for calculating m̂p.

An improved estimation of the marginal likelihood can be obtained by using importance sampling.
For a sample {θt}Tt=1, not necessarily independent, from the posterior distribution, the harmonic
mean of the likelihood values,

m̂h =

{
1

T

T∑
t=1

p(y|θt)−1

}−1

approximates m(y) (Geweke 1989).

Another method for estimating m(y) uses the Laplace approximation,

m̂l = (2π)p/2| − H̃|−1/2p(y|θ̃)π(θ̃)

where p is the number of parameters (or dimension of θ), θ̃ is the posterior mode, and H̃ is the
Hessian matrix of l(θ) = p(y|θ)π(θ) calculated at the mode θ̃.

Using the fact that the posterior sample covariance matrix, which we denote as Σ̂, is asymptot-
ically equal to (−H̃)−1, Raftery (1996) proposed what he called the Laplace–Metropolis estimator
(implemented by bayesmh):

m̂lm = (2π)p/2|Σ̂|1/2p(y|θ̃)π(θ̃)

Raftery (1996) recommends that a robust and consistent estimator be used for the posterior covariance
matrix.

Estimation of the log marginal-likelihood becomes unstable for high-dimensional models such as
multilevel models and may result in a missing value.

With multiple chains, an average of the log-marginal-likelihood values over the chains is reported.
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Nicholas Constantine Metropolis (1915–1999) was born in Chicago. He completed his PhD in
experimental physics at the University of Chicago in 1941. In 1943, Metropolis moved to Los
Alamos, where he spent much of his time working on computers and computational algorithms.
He first worked with analog and then IBM punch card machines. Beginning in 1948, he helped
design the MANIAC I computer, one of the first digital computers. He later oversaw the construction
of the MANIAC II and MANIAC III. He collaborated with Stanislaw Ulam to develop the Monte
Carlo method, and he coauthored a paper in 1953 introducing the Monte Carlo algorithm. The
algorithm would later be extended to general cases by W. K. Hastings and would be known as
the Metropolis–Hastings algorithm. In 1957, Metropolis returned to the University of Chicago,
where he taught physics and helped found the Institute for Computer Research.

The American Physical Society elected Metropolis as a fellow in 1953 and created an award in his
honor that recognizes extraordinary work in computational physics. Also, in 1984, the Institute
of Electrical and Electronics Engineers (IEEE) awarded him the Computer Pioneer Award. In his
late 70s, Metropolis appeared in a Woody Allen film, portraying a scientist.� �

� �
Wilfred Keith Hastings (1930–2016) was born in Toronto, Ontario, Canada. He studied applied
mathematics at the University of Toronto, obtaining his bachelors in 1953 and later working
as a computer applications consultant. In this position, he was exposed to statistics and gained
experience with simulations. In 1962, he obtained his PhD, also from the University of Toronto.
His dissertation was on fiducial distributions, but after attending a statistics conference, he learned
that people were abandoning the study of fiducial probability. Shortly after graduation, he joined
the faculty at the University of Canterbury for two years and then worked at the research company
Bell Labs for two years as well. In 1966, he became an associate professor at his alma mater,
and three years later he published his work on the Markov chain Monte Carlo (MCMC) method.
His publication on Monte Carlo sampling methods was an extension of the algorithm introduced
in the 1953 publication by Nicholas Metropolis et al. The idea originated from his interactions
and consultations with the chemistry department’s application of the Metropolis algorithm to
estimating the energy of particles. Hastings’s publication was cited over 2,000 times and gave
rise to the Metropolis–Hastings algorithm. After this publication, Hastings served as a professor
at the University of Victoria for 21 years and conducted research with multiple grants from the
Natural Sciences and Engineering Research Council of Canada (NSERC).� �

� �
Harold Jeffreys (1891–1989) was born near Durham, England, and spent more than 75 years
studying and working at the University of Cambridge, principally on theoretical and observational
problems in geophysics, astronomy, mathematics, and statistics. He developed a systematic
Bayesian approach to inference in his monograph Theory of Probability.� �
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bayesmh evaluators — User-defined evaluators with bayesmh

Description Syntax Options Remarks and examples
Stored results Reference Also see

Description

bayesmh provides two options, evaluator() and llevaluator(), that facilitate user-defined
evaluators for fitting general Bayesian regression models. bayesmh, evaluator() accommodates
log-posterior evaluators. bayesmh, llevaluator() accommodates log-likelihood evaluators, which
are combined with built-in prior distributions to form the desired posterior density. For a catalog of
built-in likelihood models and prior distributions, see [BAYES] bayesmh.

Syntax

Single-equation models

User-defined log-posterior evaluator

bayesmh depvar
[

indepvars
] [

if
] [

in
] [

weight
]
, evaluator(evalspec)

[
options

]
User-defined log-likelihood evaluator

bayesmh depvar
[

indepvars
] [

if
] [

in
] [

weight
]
, llevaluator(evalspec)

prior(priorspec)
[

options
]

Multiple-equations models

User-defined log-posterior evaluator

bayesmh (eqspecp)
[
(eqspecp)

[
. . .
] ] [

if
] [

in
] [

weight
]
, evaluator(evalspec)[

options
]

User-defined log-likelihood evaluator

bayesmh (eqspecll)
[
(eqspecll)

[
. . .
] ] [

if
] [

in
] [

weight
]
, prior(priorspec)[

options
]

296
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The syntax of eqspecp is

varspec
[
, noconstant

]
The syntax of eqspecll for built-in likelihood models is

varspec, likelihood(modelspec)
[
noconstant

]
The syntax of eqspecll for user-defined log-likelihood evaluators is

varspec, llevaluator(evalspec)
[
noconstant

]
The syntax of varspec is one of the following:

for single outcome[
eqname:

]
depvar

[
indepvars

]
for multiple outcomes with common regressors

depvars =
[

indepvars
]

for multiple outcomes with outcome-specific regressors

(
[

eqname1:
]
depvar1

[
indepvars1

]
) (

[
eqname2:

]
depvar2

[
indepvars2

]
)
[
. . .
]

The syntax of evalspec is

progname, parameters(paramlist)
[
extravars(varlist) passthruopts(string)

]
where progname is the name of a Stata program that you write to evaluate the log-posterior density
or the log-likelihood function (see Program evaluators), and paramlist is a list of model parameters:

paramdef
[

paramdef
[
. . .
] ]

The syntax of paramdef is

{
[

eqname:
]
param

[
param

[
. . .
] ] [

, matrix
]
}

where the parameter label eqname and parameter names param are valid Stata names. Model
parameters are either scalars such as {var}, {mean}, and {shape:alpha} or matrices such as
{Sigma, matrix} and {Scale:V, matrix}. For scalar parameters, you can use {param=#} in
the above to specify an initial value. For example, you can specify {var=1}, {mean=1.267}, or
{shape:alpha=3}. You can specify the multiple parameters with same equation as {eq:p1 p2
p3} or {eq: S1 S2, matrix}. Also see Declaring model parameters in [BAYES] bayesmh.
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options Description

∗evaluator(evalspec) specify log-posterior evaluator; may not be combined with
llevaluator() and prior()

∗llevaluator(evalspec) specify log-likelihood evaluator; requires prior() and may not
be combined with evaluator()

∗prior(priorspec) prior for model parameters; required with log-likelihood evaluator
and may be repeated

likelihood(modelspec) distribution for the likelihood model; allowed within
an equation of a multiple-equations model only

noconstant suppress constant term; not allowed with ordered models
specified in likelihood() with multiple-equations models

bayesmhopts any options of [BAYES] bayesmh except likelihood() and
prior()

∗Option evaluator() is required for log-posterior evaluators, and options llevaluator() and prior() are required
for log-likelihood evaluators. With log-likelihood evaluators, prior() must be specified for all model parameters
and may be repeated.

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
Only fweights are allowed; see [U] 11.1.6 weight.

Options
evaluator(evalspec) specifies the name and the attributes of the log-posterior evaluator; see Program

evaluators for details. This option may not be combined with llevaluator() or likelihood().

llevaluator(evalspec) specifies the name and the attributes of the log-likelihood evaluator; see Pro-
gram evaluators for details. This option may not be combined with evaluator() or likelihood()
and requires the prior() option.

prior(priorspec); see [BAYES] bayesmh.

likelihood(modelspec); see [BAYES] bayesmh. This option is allowed within an equation of a
multiple-equations model only.

noconstant; see [BAYES] bayesmh.

bayesmhopts specify any options of [BAYES] bayesmh, except likelihood() and prior().

Remarks and examples
Remarks are presented under the following headings:

Program evaluators
Simple linear regression model
Logistic regression model
Multivariate normal regression model
Cox proportional hazards regression
Global macros
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Program evaluators

If your likelihood model or prior distributions are particularly complex and cannot be represented
by one of the predefined sets of distributions or by substitutable expressions provided with bayesmh,
you can program these functions by writing your own evaluator program.

Evaluator programs can be used for programming the full posterior density by specifying the
evaluator() option or only the likelihood portion of your Bayesian model by specifying the
llevaluator() option. For likelihood evaluators, prior() option(s) must be specified for all model
parameters. Your program is expected to calculate and return an overall log-posterior or a log-likelihood
density value.

It is allowed for the return values to match the log density up to an additive constant, in which
case, however, some of the reported statistics such as DIC and log marginal-likelihood may not be
applicable.

Your program evaluator progname must be a Stata program; see [U] 18 Programming Stata. The
program must follow the style below.

program progname
args lnden xb1 [xb2 . . .] [ modelparams]
. . . computations . . .
scalar ‘lnden’ = . . .

end

Here lnden contains the name of a temporary scalar to be filled in with an overall log-posterior or
log-likelihood value;

xb# contains the name of a temporary variable containing the linear predictor from the #th equation;
and

modelparams is a list of names of scalars or matrices to contain the values of model parameters
specified in suboption parameters() of evaluator() or llevaluator(). For matrix pa-
rameters, the specified names will contain the names of temporary matrices containing current
values. For scalar parameters, these are the names of temporary scalars containing current
values. The order in which names are listed should correspond to the order in which model
parameters are specified in parameters().

Also see Global macros for a list of global macros available to the program evaluator.

After you write a program evaluator, you specify its name in the option evaluator() for
log-posterior evaluators,

. bayesmh . . ., evaluator( progname, evalopts)

or option llevaluator() for log-likelihood evaluators,
. bayesmh . . ., llevaluator( progname, evalopts)

Evaluator options evalopts include parameters(), extravars(), and passthruopts().

parameters(paramlist) specifies model parameters. Model parameters can be scalars or matrices.
Each parameter must be specified in curly braces {}. Multiple parameters with the same equation
names may be specified within one set of {}.

For example,
parameters({mu} {var:sig2} {S,matrix} {cov:Sigma, matrix} {prob:p1 p2})

specifies a scalar parameter with name mu without an equation label, a scalar parameter with
name sig2 and label var, a matrix parameter with name S, a matrix parameter with name
Sigma and label cov, and two scalar parameters {prob:p1} and {prob:p2}.
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extravars(varlist) specifies any variables in addition to dependent and independent variables
that you may need in your program evaluator. Examples of such variables are offset variables,
exposure variables for count-data models, and failure or censoring indicators for survival-time
models. See Cox proportional hazards regression for an example.

passthruopts(string) specifies a list of options you may want to pass to your program evaluator.
For example, these options may contain fixed values of model parameters and hyperparameters.
See Multivariate normal regression model for an example.

bayesmh automatically creates parameters for regression coefficients: {depname:varname} for
every varname in indepvars, and a constant parameter {depname: cons} unless noconstant is
specified. These parameters are used to form linear predictors used by the program evaluator. If you
need to access values of the parameters in the evaluator, you can use $MH b; see the log-posterior
evaluator in Cox proportional hazards regression for an example. With multiple dependent variables,
regression coefficients are defined for each dependent variable.

Simple linear regression model

Suppose that we want to fit a Bayesian normal regression where we program the posterior distribution
ourselves. The normaljeffreys program below computes the log-posterior density for the normal
linear regression with flat priors for the coefficients and the Jeffreys prior for the variance parameter.

. program normaljeffreys
1. version 18.0
2. args lnp xb var
3. /* compute log likelihood */

. tempname sd
4. scalar ‘sd’ = sqrt(‘var’)
5. tempvar lnfj
6. quietly generate double ‘lnfj’=lnnormalden($MH_y,‘xb’,‘sd’)

> if $MH_touse
7. quietly summarize ‘lnfj’, meanonly
8. if r(N) < $MH_n {
9. scalar ‘lnp’ = .

10. exit
11. }
12. tempname lnf
13. scalar ‘lnf’ = r(sum)
14. /* compute log prior */

. tempname lnprior
15. scalar ‘lnprior’ = -2*ln(‘sd’)
16. /* compute log posterior */

. scalar ‘lnp’ = ‘lnf’ + ‘lnprior’
17. end

The program accepts three parameters: a temporary name ‘lnp’ of a scalar to contain the log-posterior
value, a temporary name ‘xb’ of the variable that contains the linear predictor, and a temporary
name ‘var’ of a scalar that contains the values of the variance parameter.

The first part of the program calculates the overall log likelihood of the normal regression. The
second part of the program calculates the log of prior distributions of the parameters. Because the
coefficients have flat prior distributions with densities of 1, their log is 0 and does not contribute
to the overall prior. The only contribution is from the Jeffreys prior ln(1/σ2) = −2 ln(σ) for the
variance σ2. The third and final part of the program computes the values of the posterior density as
the sum of the overall log likelihood and the log of the prior.

The substantial portion of this program is the computation of the overall log likelihood. The global
macro $MH y contains the name of the dependent variable, $MH touse contains a temporary marker
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variable identifying observations to be used in computations, and $MH n contains the total number
of observations in the sample identified by the $MH touse variable.

We used the built-in function lnnormalden() to compute observation-specific log likelihood and
used summarize to obtain the overall value. Whenever a temporary variable is needed for calculations,
such as ‘lnfj’ in our program, it is important to create it of type double to ensure the highest
precision of the results. It is also important to perform computations using only the relevant subset
of observations as identified by the marker variable stored in $MH touse. This variable contains the
value of 1 for observations to be used in the computations and 0 for the remaining observations.
Missing values in used variables, if, and in affect this variable. After we compute the log-likelihood
value, we should verify that the number of nonmissing observation-specific contributions to the
log likelihood equals $MH n. If it does not, the log-posterior value (or log-likelihood value in a
log-likelihood evaluator) must be set to missing.

We can now specify the normaljeffreys evaluator in the evaluator() option of bayesmh.
In addition to the regression coefficients, we have one extra parameter, the variance of the normal
distribution, which we must specify in the parameters() suboption of evaluator().

We use auto.dta to illustrate the command. We specify a simple regression of mpg on rescaled
weight.

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)

. quietly replace weight = weight/100

. set seed 14

. bayesmh mpg weight, evaluator(normaljeffreys, parameters({var}))
Burn-in ...
note: invalid initial state.
Simulation ...

Model summary

Posterior:
mpg ~ normaljeffreys(xb_mpg,{var})

Bayesian regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .1433
Efficiency: min = .06246

avg = .06669
Log marginal-likelihood = -198.247 max = .07091

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mpg
weight -.6052218 .053604 .002075 -.6062666 -.7121237 -.4992178
_cons 39.56782 1.658124 .066344 39.54211 36.35645 42.89876

var 12.19046 2.008871 .075442 12.03002 8.831172 17.07787

The output of bayesmh with user-defined evaluators is the same as the output of bayesmh with built-in
distributions, except the title and the model summary. The generic title Bayesian regression is
used for all evaluators, but you can change it by specifying the title() option. The model summary
provides the name of the posterior evaluator.
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Following the command line, there is a note about invalid initial state. For program evaluators,
bayesmh initializes all parameters with zeros, except for positive parameters used in prior specifications,
which are initialized with ones. This may not be sensible for all parameters, such as the variance
parameter in our example. We may consider using, for example, OLS estimates as initial values of
the parameters.

. regress mpg weight

Source SS df MS Number of obs = 74
F(1, 72) = 134.62

Model 1591.99021 1 1591.99021 Prob > F = 0.0000
Residual 851.469254 72 11.8259619 R-squared = 0.6515

Adj R-squared = 0.6467
Total 2443.45946 73 33.4720474 Root MSE = 3.4389

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

weight -.6008687 .0517878 -11.60 0.000 -.7041058 -.4976315
_cons 39.44028 1.614003 24.44 0.000 36.22283 42.65774

. display e(rmse)^2
11.825962

We specify initial values in the initial() option.

. set seed 14

. bayesmh mpg weight, evaluator(normaljeffreys, parameters({var}))
> initial({mpg:weight} -0.6 {mpg:_cons} 39 {var} 11.83)
Burn-in ...
Simulation ...

Model summary

Posterior:
mpg ~ normaljeffreys(xb_mpg,{var})

Bayesian regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .1668
Efficiency: min = .04114

avg = .04811
Log marginal-likelihood = -198.14302 max = .05938

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mpg
weight -.6025616 .0540995 .002667 -.6038729 -.7115221 -.5005915
_cons 39.50491 1.677906 .080156 39.45537 36.2433 43.14319

var 12.26586 2.117858 .086915 12.05298 8.827655 17.10703

We can compare our results with bayesmh that uses a built-in normal likelihood and flat and
Jeffreys priors. To match the results, we must use the same initial values, because bayesmh has a
different initialization logic for built-in distributions.
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. set seed 14

. bayesmh mpg weight, likelihood(normal({var}))
> prior({mpg:}, flat) prior({var}, jeffreys)
> initial({mpg:weight} -0.6 {mpg:_cons} 39 {var} 11.83)
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal(xb_mpg,{var})

Priors:
{mpg:weight _cons} ~ 1 (flat) (1)

{var} ~ jeffreys

(1) Parameters are elements of the linear form xb_mpg.

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .1668
Efficiency: min = .04114

avg = .04811
Log marginal-likelihood = -198.14302 max = .05938

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mpg
weight -.6025616 .0540995 .002667 -.6038729 -.7115221 -.5005915
_cons 39.50491 1.677906 .080156 39.45537 36.2433 43.14319

var 12.26586 2.117858 .086915 12.05298 8.827655 17.10703

If your Bayesian model uses prior distributions that are supported by bayesmh but the likelihood
model is not supported, you can write only the likelihood evaluator and use built-in prior distributions.

For example, we extract the portion of the normaljeffreys program computing the overall log
likelihood into a separate program and call it normalreg.

. program normalreg
1. version 18.0
2. args lnf xb var
3. /* compute log likelihood */

. tempname sd
4. scalar ‘sd’ = sqrt(‘var’)
5. tempvar lnfj
6. quietly generate double ‘lnfj’ = lnnormalden($MH_y,‘xb’,‘sd’)

> if $MH_touse
7. quietly summarize ‘lnfj’, meanonly
8. if r(N) < $MH_n {
9. scalar ‘lnf’ = .

10. exit
11. }
12. scalar ‘lnf’ = r(sum)
13. end

We can now specify this program in the llevaluator() option and use prior() options to
specify built-in flat priors for the coefficients and the Jeffreys prior for the variance.
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. set seed 14

. bayesmh mpg weight, llevaluator(normalreg, parameters({var}))
> prior({mpg:}, flat) prior({var}, jeffreys)
> initial({mpg:weight} -0.6 {mpg:_cons} 39 {var} 11.83)
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normalreg(xb_mpg,{var})

Priors:
{mpg:weight _cons} ~ 1 (flat) (1)

{var} ~ jeffreys

(1) Parameters are elements of the linear form xb_mpg.

Bayesian regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .1668
Efficiency: min = .04114

avg = .04811
Log marginal-likelihood = -198.14302 max = .05938

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mpg
weight -.6025616 .0540995 .002667 -.6038729 -.7115221 -.5005915
_cons 39.50491 1.677906 .080156 39.45537 36.2433 43.14319

var 12.26586 2.117858 .086915 12.05298 8.827655 17.10703

We obtain the same results as earlier.

Logistic regression model

Some models, such as logistic regression, do not have any additional parameters except regression
coefficients. Here we show how to use a program evaluator for fitting a Bayesian logistic regression
model.

We start by creating a program for computing the log likelihood.

. program logitll
1. version 18.0
2. args lnf xb
3. tempvar lnfj
4. quietly generate ‘lnfj’ = ln(invlogit( ‘xb’))

> if $MH_y == 1 & $MH_touse
5. quietly replace ‘lnfj’ = ln(invlogit(-‘xb’))

> if $MH_y == 0 & $MH_touse
6. quietly summarize ‘lnfj’, meanonly
7. if r(N) < $MH_n {
8. scalar ‘lnf’ = .
9. exit

10. }
11. scalar ‘lnf’ = r(sum)
12. end
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The structure of our log-likelihood evaluator is similar to the one described in Simple linear regression
model, except we have no extra parameters.

We continue with auto.dta and regress foreign on mpg. For simplicity, we assume a flat prior
for the coefficients and use bayesmh, llevaluator() to fit this model.

. use https://www.stata-press.com/data/r18/auto, clear
(1978 automobile data)

. set seed 14

. bayesmh foreign mpg, llevaluator(logitll) prior({foreign:}, flat)
Burn-in ...
Simulation ...

Model summary

Likelihood:
foreign ~ logitll(xb_foreign)

Prior:
{foreign:mpg _cons} ~ 1 (flat) (1)

(1) Parameters are elements of the linear form xb_foreign.

Bayesian regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .2216
Efficiency: min = .09293

avg = .09989
Log marginal-likelihood = -41.626028 max = .1068

Equal-tailed
foreign Mean Std. dev. MCSE Median [95% cred. interval]

mpg .16716 .0545771 .00167 .1644019 .0669937 .2790017
_cons -4.560637 1.261675 .041387 -4.503921 -7.107851 -2.207665
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The results from the program-evaluator version match the results from bayesmh with a built-in
logistic model.

. set seed 14

. bayesmh foreign mpg, likelihood(logit) prior({foreign:}, flat)
> initial({foreign:} 0)
Burn-in ...
Simulation ...

Model summary

Likelihood:
foreign ~ logit(xb_foreign)

Prior:
{foreign:mpg _cons} ~ 1 (flat) (1)

(1) Parameters are elements of the linear form xb_foreign.

Bayesian logistic regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .2216
Efficiency: min = .09293

avg = .09989
Log marginal-likelihood = -41.626029 max = .1068

Equal-tailed
foreign Mean Std. dev. MCSE Median [95% cred. interval]

mpg .16716 .0545771 .00167 .1644019 .0669937 .2790017
_cons -4.560636 1.261675 .041387 -4.503921 -7.10785 -2.207665

Because we assumed a flat prior with the density of 1, the log prior is 0, so the log-posterior
evaluator for this model is the same as the log-likelihood evaluator.

. set seed 14

. bayesmh foreign mpg, evaluator(logitll)
Burn-in ...
Simulation ...

Model summary

Posterior:
foreign ~ logitll(xb_foreign)

Bayesian regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .2216
Efficiency: min = .09293

avg = .09989
Log marginal-likelihood = -41.626028 max = .1068

Equal-tailed
foreign Mean Std. dev. MCSE Median [95% cred. interval]

mpg .16716 .0545771 .00167 .1644019 .0669937 .2790017
_cons -4.560637 1.261675 .041387 -4.503921 -7.107851 -2.207665
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Multivariate normal regression model

Here we demonstrate how to write a program evaluator for a multivariate response. We consider
a bivariate normal regression, and we again start with a log-likelihood evaluator. In this example, we
also use Mata to speed up our computations.

. program mvnregll
1. version 18.0
2. args lnf xb1 xb2
3. tempvar diff1 diff2
4. quietly generate double ‘diff1’ = $MH_y1 - ‘xb1’ if $MH_touse
5. quietly generate double ‘diff2’ = $MH_y2 - ‘xb2’ if $MH_touse
6. local d $MH_yn
7. local n $MH_n
8. mata: st_numscalar("‘lnf’", mvnll_mata(‘d’,‘n’,"‘diff1’","‘diff2’"))
9. end

.

. mata:
mata (type end to exit)

: real scalar mvnll_mata(real scalar d, n, string scalar sdiff1, sdiff2)
> {
> real matrix Diff
> real scalar trace, lnf
> real matrix Sigma
>
> Sigma = st_matrix(st_global("MH_m1"))
> st_view(Diff=.,.,(sdiff1,sdiff2),st_global("MH_touse"))
>
> /* compute log likelihood */
> trace = trace(cross(cross(Diff’,invsym(Sigma))’,Diff’))
> lnf = -0.5*n*(d*ln(2*pi())+ln(det(Sigma)))-0.5*trace
>
> return(lnf)
> }

: end

The mvnregll program has three arguments: a scalar to store the log-likelihood values and two
temporary variables containing linear predictors corresponding to each of the two dependent variables.
It creates deviations ‘diff1’ and ‘diff2’ and passes them, along with other parameters, to the
Mata function mvnll mata() to compute the bivariate normal log-likelihood value.

The extra parameter in this model is a covariance matrix of a bivariate response. In Simple linear
regression model, we specified an extra parameter, variance, which was a scalar, as an additional
argument of the evaluator. This is not allowed with matrix parameters. They should be accessed via
globals $MH m1, $MH m2, and so on for each matrix model parameters in the order they are specified
in option parameters(). In our example, we have only one matrix and we access it via $MH m1.
$MH m1 contains the temporary name of a matrix containing the current value of the covariance matrix
parameter.
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To demonstrate, we again use auto.dta. We rescale the variables to be used in our example to
stabilize the results.

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)

. replace weight = weight/100
variable weight was int now float
(74 real changes made)

. replace length = length/10
variable length was int now float
(74 real changes made)

We fit a bivariate normal regression of mpg and weight on length. We specify the extra covariance
parameter as a matrix model parameter {Sigma,m} in suboption parameters() of llevaluator().
We specify flat priors for the coefficients and an inverse-Wishart prior for the covariance matrix.

. set seed 14

. bayesmh mpg weight = length, llevaluator(mvnregll, parameters({Sigma,m}))
> prior({mpg:} {weight:}, flat)
> prior({Sigma,m}, iwishart(2,12,I(2))) mcmcsize(1000)
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg weight ~ mvnregll(xb_mpg,xb_weight,{Sigma,m})

Priors:
{mpg:length _cons} ~ 1 (flat) (1)

{weight:length _cons} ~ 1 (flat) (2)
{Sigma,m} ~ iwishart(2,12,I(2))

(1) Parameters are elements of the linear form xb_mpg.
(2) Parameters are elements of the linear form xb_weight.

Bayesian regression MCMC iterations = 3,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 1,000
Number of obs = 74
Acceptance rate = .1728
Efficiency: min = .02882

avg = .05012
Log marginal-likelihood = -415.01504 max = .1275

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mpg
length -2.040162 .2009062 .037423 -2.045437 -2.369287 -1.676332
_cons 59.6706 3.816341 .705609 59.63619 52.54652 65.84583

weight
length 3.31773 .1461644 .026319 3.316183 3.008416 3.598753
_cons -32.19877 2.79005 .484962 -32.4154 -37.72904 -26.09976

Sigma_1_1 11.49666 1.682975 .149035 11.3523 8.691888 14.92026
Sigma_2_1 -2.33596 1.046729 .153957 -2.238129 -4.414118 -.6414916
Sigma_2_2 5.830413 .9051206 .121931 5.630011 4.383648 8.000739

To reduce computation time, we used a smaller MCMC sample size of 1,000 in our example. In your
analysis, you should always verify whether a smaller MCMC sample size results in precise enough
estimates before using it for final results.
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We can check our results against bayesmh using the built-in multivariate normal regression after
adjusting the initial values.

. set seed 14

. bayesmh mpg weight = length, likelihood(mvnormal({Sigma,m}))
> prior({mpg:} {weight:}, flat)
> prior({Sigma,m}, iwishart(2,12,I(2)))
> mcmcsize(1000) initial({mpg:} {weight:} 0)
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg weight ~ mvnormal(2,xb_mpg,xb_weight,{Sigma,m})

Priors:
{mpg:length _cons} ~ 1 (flat) (1)

{weight:length _cons} ~ 1 (flat) (2)
{Sigma,m} ~ iwishart(2,12,I(2))

(1) Parameters are elements of the linear form xb_mpg.
(2) Parameters are elements of the linear form xb_weight.

Bayesian multivariate normal regression MCMC iterations = 3,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 1,000
Number of obs = 74
Acceptance rate = .1728
Efficiency: min = .02882

avg = .05012
Log marginal-likelihood = -415.01504 max = .1275

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mpg
length -2.040162 .2009062 .037423 -2.045437 -2.369287 -1.676332
_cons 59.6706 3.816341 .705609 59.63619 52.54652 65.84583

weight
length 3.31773 .1461644 .026319 3.316183 3.008416 3.598753
_cons -32.19877 2.79005 .484962 -32.4154 -37.72904 -26.09976

Sigma_1_1 11.49666 1.682975 .149035 11.3523 8.691888 14.92026
Sigma_2_1 -2.33596 1.046729 .153957 -2.238129 -4.414118 -.6414916
Sigma_2_2 5.830413 .9051206 .121931 5.630011 4.383648 8.000739

We obtain the same results.

Similarly, we can define the log-posterior evaluator. We already have the log-likelihood evaluator,
which we can reuse in our log-posterior evaluator. The only additional portion is to compute the log
of the inverse-Wishart prior density for the covariance parameter.
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. program mvniWishart
1. version 18.0
2. args lnp xb1 xb2
3. tempvar diff1 diff2
4. quietly generate double ‘diff1’ = $MH_y1 - ‘xb1’ if $MH_touse
5. quietly generate double ‘diff2’ = $MH_y2 - ‘xb2’ if $MH_touse
6. local d $MH_yn
7. local n $MH_n
8. mata:

> st_numscalar("‘lnp’", mvniWish_mata(‘d’,‘n’,"‘diff1’","‘diff2’"))
9. end

.

. mata:
mata (type end to exit)

: real scalar mvniWish_mata(real scalar d, n, string scalar sdiff1, sdiff2)
> {
> real scalar lnf, lnprior
> real matrix Sigma
>
> /* compute log likelihood */
> lnf = mvnll_mata(d,n,sdiff1,sdiff2)
> /* compute log of inverse-Wishart prior for Sigma */
> Sigma = st_matrix(st_global("MH_m1"))
> lnprior = lniwishartden(12,I(2),Sigma)
> return(lnf + lnprior)
> }

: end
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The results of the log-posterior evaluator match our earlier results.

. set seed 14

. bayesmh mpg weight = length, evaluator(mvniWishart, parameters({Sigma,m}))
> mcmcsize(1000)
Burn-in ...
Simulation ...

Model summary

Posterior:
mpg weight ~ mvniWishart(xb_mpg,xb_weight,{Sigma,m})

Bayesian regression MCMC iterations = 3,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 1,000
Number of obs = 74
Acceptance rate = .1728
Efficiency: min = .02882

avg = .05012
Log marginal-likelihood = -415.01504 max = .1275

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mpg
length -2.040162 .2009062 .037423 -2.045437 -2.369287 -1.676332
_cons 59.6706 3.816341 .705609 59.63619 52.54652 65.84583

weight
length 3.31773 .1461644 .026319 3.316183 3.008416 3.598753
_cons -32.19877 2.79005 .484962 -32.4154 -37.72904 -26.09976

Sigma_1_1 11.49666 1.682975 .149035 11.3523 8.691888 14.92026
Sigma_2_1 -2.33596 1.046729 .153957 -2.238129 -4.414118 -.6414916
Sigma_2_2 5.830413 .9051206 .121931 5.630011 4.383648 8.000739

Sometimes, it may be useful to be able to pass options to our evaluators. For example, we used
the identity I(2) matrix as a scale matrix of the inverse Wishart distribution. Suppose that we want
to check the sensitivity of our results to other choices of the scale matrix. We can pass the name
of a matrix we want to use in an option. In our example, we use the vmatrix() option to pass
the name of the scale matrix. We later specify this option within suboption passthruopts() of
the evaluator() option. The options passed this way are stored in the $MH passthruopts global
macro.

. program mvniWishartV
1. version 18.0
2. args lnp xb1 xb2
3. tempvar diff1 diff2
4. quietly generate double ‘diff1’ = $MH_y1 - ‘xb1’ if $MH_touse
5. quietly generate double ‘diff2’ = $MH_y2 - ‘xb2’ if $MH_touse
6. local d $MH_yn
7. local n $MH_n
8. local 0 , $MH_passthruopts
9. syntax, vmatrix(string)

10. mata: st_numscalar("‘lnp’",
> mvniWishV_mata(‘d’,‘n’,"‘diff1’","‘diff2’","‘vmatrix’"))
11. end
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. mata:
mata (type end to exit)

: real scalar mvniWishV_mata(real scalar d, n, string scalar sdiff1, sdiff2,
> vmat)
> {
> real scalar lnf, lnprior
> real matrix Sigma
>
> /* compute log likelihood */
> lnf = mvnll_mata(d,n,sdiff1,sdiff2)
> /* compute log of inverse-Wishart prior for Sigma */
> Sigma = st_matrix(st_global("MH_m1"))
> lnprior = lniwishartden(12,st_matrix(vmat),Sigma)
> return(lnf + lnprior)
> }

: end

We now define the scale matrix V (as the identity matrix to match our previous results) and specify
vmatrix(V) in suboption passthruopts() of evaluator().

. set seed 14

. matrix V = I(2)

. bayesmh mpg weight = length,
> evaluator(mvniWishartV, parameters({Sigma,m}) passthruopts(vmatrix(V)))
> mcmcsize(1000)
Burn-in ...
Simulation ...

Model summary

Posterior:
mpg weight ~ mvniWishartV(xb_mpg,xb_weight,{Sigma,m})

Bayesian regression MCMC iterations = 3,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 1,000
Number of obs = 74
Acceptance rate = .1728
Efficiency: min = .02882

avg = .05012
Log marginal-likelihood = -415.01504 max = .1275

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mpg
length -2.040162 .2009062 .037423 -2.045437 -2.369287 -1.676332
_cons 59.6706 3.816341 .705609 59.63619 52.54652 65.84583

weight
length 3.31773 .1461644 .026319 3.316183 3.008416 3.598753
_cons -32.19877 2.79005 .484962 -32.4154 -37.72904 -26.09976

Sigma_1_1 11.49666 1.682975 .149035 11.3523 8.691888 14.92026
Sigma_2_1 -2.33596 1.046729 .153957 -2.238129 -4.414118 -.6414916
Sigma_2_2 5.830413 .9051206 .121931 5.630011 4.383648 8.000739

The results are the same as before.
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Cox proportional hazards regression

Some evaluators may require additional variables, apart from the dependent and independent
variables, for computation. For example, in a Cox proportional hazards model such variable is a
failure or censoring indicator. The coxphll program below computes partial log likelihood for the
Cox proportional hazards regression. The failure indicator will be passed to the evaluator as an extra
variable in suboption extravars() of option llevaluator() or option evaluator() and can be
accessed from the global macro $MH extravars.

. program coxphll
1. version 18.0
2. args lnf xb
3. tempvar negt
4. quietly generate double ‘negt’ = -$MH_y1
5. local d "$MH_extravars"
6. sort $MH_touse ‘negt’ ‘d’
7. tempvar B A sumd last L
8. local byby "by $MH_touse ‘negt’ ‘d’"
9. quietly {

10. gen double ‘B’ = sum(exp(‘xb’)) if $MH_touse
11. ‘byby’: gen double ‘A’ = cond(_n==_N, sum(‘xb’), .)

> if ‘d’==1 & $MH_touse
12. ‘byby’: gen ‘sumd’ = cond(_n==_N, sum(‘d’), .) if $MH_touse
13. ‘byby’: gen byte ‘last’ = (_n==_N & ‘d’ == 1) if $MH_touse
14. gen double ‘L’ = ‘A’ - ‘sumd’*ln(‘B’) if ‘last’ & $MH_touse
15. quietly count if $MH_touse & ‘last’
16. local n = r(N)
17. summarize ‘L’ if ‘last’ & $MH_touse, meanonly
18. }
19. if r(N) < ‘n’ {
20. scalar ‘lnf’ = .
21. exit
22. }
23. scalar ‘lnf’ = r(sum)
24. end

We demonstrate the command using the survival-time cancer dataset. The survival-time variable
is studytime and the failure indicator is died. The regressor of interest in this model is age. We
use a fairly noninformative normal prior with a zero mean and a variance of 100 for the regression
coefficient of age. (The constant in the Cox proportional hazards model is not likelihood-identifiable,
so we omit it from this model with a noninformative prior.)

. use https://www.stata-press.com/data/r18/cancer, clear
(Patient survival in drug trial)

. gsort -studytime died

. set seed 14

. bayesmh studytime age, llevaluator(coxphll, extravars(died))
> prior({studytime:}, normal(0,100)) noconstant mcmcsize(1000)
Burn-in ...
Simulation ...

Model summary

Likelihood:
studytime ~ coxphll(xb_studytime)

Prior:
{studytime:age} ~ normal(0,100) (1)

(1) Parameter is an element of the linear form xb_studytime.
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Bayesian regression MCMC iterations = 3,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 1,000
Number of obs = 48
Acceptance rate = .4066

Log marginal-likelihood = -103.04797 Efficiency = .3568

Equal-tailed
studytime Mean Std. dev. MCSE Median [95% cred. interval]

age .076705 .0330669 .001751 .077936 .0099328 .1454275

We specified the failure indicator died in suboption extravars() of llevaluator(). We again
used a smaller value for the MCMC sample size only to reduce computation time.

For the log-posterior evaluator, we add the log of the normal prior of the age coefficient to the
log-likelihood value to obtain the final log-posterior value. We did not need to specify the loop in the
log-prior computation in this example, but we did this to be general, in case more than one regressor
is included in the model.

. program coxphnormal
1. version 18.0
2. args lnp xb

. /* compute log likelihood */

. tempname lnf
3. scalar ‘lnf’ = .
4. quietly coxphll ‘lnf’ ‘xb’

. /* compute log priors of regression coefficients */

. tempname lnprior
5. scalar ‘lnprior’ = 0
6. forvalues i = 1/$MH_bn {
7. scalar ‘lnprior’ = ‘lnprior’ + lnnormalden($MH_b[1,‘i’], 10)
8. }
9. /* compute log posterior */

. scalar ‘lnp’ = ‘lnf’ + ‘lnprior’
10. end

As expected, we obtain the same results as previously.
. set seed 14

. bayesmh studytime age, evaluator(coxphnormal, extravars(died))
> noconstant mcmcsize(1000)
Burn-in ...
Simulation ...

Model summary

Posterior:
studytime ~ coxphnormal(xb_studytime)

Bayesian regression MCMC iterations = 3,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 1,000
Number of obs = 48
Acceptance rate = .4066

Log marginal-likelihood = -103.04797 Efficiency = .3568

Equal-tailed
studytime Mean Std. dev. MCSE Median [95% cred. interval]

age .076705 .0330669 .001751 .077936 .0099328 .1454275
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Global macros

Global macros Description

$MH n number of observations
$MH yn number of dependent variables
$MH touse variable containing 1 for the observations to be used; 0 otherwise
$MH w variable containing weight associated with the observations
$MH extravars varlist specified in extravars()

$MH passthruopts options specified in passthruopts()

One outcome
$MH y1 name of the dependent variable
$MH x1 name of the first independent variable
$MH x2 name of the second independent variable
. . .
$MH xn number of independent variables
$MH xb name of a temporary variable containing the linear combination

Multiple outcomes
$MH y1 name of the first dependent variable
$MH y2 name of the second dependent variable
. . .
$MH y1x1 name of the first independent variable modeling y1

$MH y1x2 name of the second independent variable modeling y1

. . .
$MH y1xn number of independent variables modeling y1

$MH y1xb name of a temporary variable containing the linear combination modeling y1

$MH y2x1 name of the first independent variable modeling y2

$MH y2x2 name of the second independent variable modeling y2

. . .
$MH y2xn number of independent variables modeling y2

$MH y2xb name of a temporary variable containing the linear combination modeling y2

. . .

Scalar and matrix parameters
$MH b name of a temporary vector of coefficients;

stripes are properly named after the name of the coefficients
$MH bn number of coefficients
$MH p name of a temporary vector of additional scalar model parameters, if any;

stripes are properly named
$MH pn number of additional scalar model parameters
$MH m1 name of a temporary matrix of the first matrix parameter, if any
$MH m2 name of a temporary matrix of the second matrix parameter, if any
. . .
$MH mn number of matrix model parameters
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Stored results
In addition to the results stored by bayesmh, bayesmh, evaluator() and bayesmh, lleval-

uator() store the following in e():

Macros
e(evaluator) program evaluator (one equation)
e(evaluator#) program evaluator for the #th equation
e(evalparams) evaluator parameters (one equation)
e(evalparams#) evaluator parameters for the #th equation
e(extravars) extra variables (one equation)
e(extravars#) extra variables for the #th equation
e(passthruopts) pass-through options (one equation)
e(passthruopts#) pass-through options for the #th equation

Reference
Marchenko, Y. V. 2015. Bayesian modeling: Beyond Stata’s built-in models. The Stata Blog: Not Elsewhere Classified.

http://blog.stata.com/2015/05/26/bayesian-modeling-beyond-statas-built-in-models/.

Also see
[BAYES] bayesmh — Bayesian models using Metropolis–Hastings algorithm

[BAYES] Bayesian postestimation — Postestimation tools for bayesmh and the bayes prefix

[BAYES] Intro — Introduction to Bayesian analysis

[BAYES] Glossary

http://blog.stata.com/2015/05/26/bayesian-modeling-beyond-statas-built-in-models/
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Postestimation commands Remarks and examples Also see

Postestimation commands
The following Bayesian postestimation commands are available after the bayesmh command

([BAYES] bayesmh) and the bayes prefix ([BAYES] bayes):

Command Description

bayesgraph graphical summaries and convergence diagnostics
bayesstats grubin Gelman–Rubin convergence diagnostics
bayesstats ess effective sample sizes and related statistics
†bayesstats ppvalues Bayesian predictive p-values
bayesstats summary Bayesian summary statistics for model parameters and their functions
bayesstats ic Bayesian information criteria and Bayes factors
bayestest model hypothesis testing using model posterior probabilities
bayestest interval interval hypothesis testing
†bayespredict Bayesian predictions
∗estimates cataloging estimation results

† bayesstats ppvalues and bayespredict are available only after bayesmh, bayes: var,
bayes: xtreg, bayes: xtlogit, bayes: xtprobit, bayes: xtologit, bayes: xtoprobit,
bayes: xtpoisson, bayes: xtnbreg, or bayes: xtmlogit.

∗ estimates table and estimates stats are not appropriate with bayesmh and bayes: estimation results.

The following postestimation commands are available after bayes: var:

Command Description

bayesfcast Bayesian dynamic forecasts
bayesirf Bayesian impulse–response functions, dynamic-multiplier functions,

and FEVDs
bayesvarstable check stability condition of estimates

See [BAYES] bayes: var postestimation.

The following postestimation command is available after bayes: dsge and bayes: dsgenl:

Command Description

bayesirf Bayesian impulse–response functions

See [BAYES] bayes: dsge postestimation.
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Remarks and examples
Remarks are presented under the following headings:

Different ways of specifying model parameters
Specifying functions of model parameters
Storing estimation results after Bayesian estimation
Different ways of specifying predictions and their functions

After estimation, you can use bayesgraph to check convergence of MCMC visually. If you simulated
multiple chains, you can use bayesstats grubin to compute Gelman–Rubin convergence diagnostics.
Once convergence is established, you can use bayespredict and bayesstats ppvalues to perform
model checking after bayesmh. Once you are satisfied with the model, you can use bayesstats
summary to obtain Bayesian summaries such as posterior means and standard deviations of model
parameters and functions of model parameters; bayesstats ess to compute effective sample sizes
and related statistics for model parameters and functions of model parameters; and bayesstats ic
to compute Bayesian information criteria and Bayes factors for model parameters and their functions.
You can use bayestest model to test hypotheses by comparing posterior probabilities of models.
You can also use bayestest interval to test interval hypotheses about parameters and functions
of parameters. After bayesmh, you can also use bayespredict to predict future outcome values.

For an overview example of postestimation commands, see Overview example in [BAYES] Bayesian
commands.

Different ways of specifying model parameters

Many Bayesian postestimation commands such as bayesstats summary and bayesgraph allow
you to specify model parameters for which you want to see the results. To see results for all parameters,
simply type a postestimation command without arguments after estimation using bayesmh or the
bayes prefix, for example,

. bayesstats summary

or you could type
. bayesstats summary _all

To manually list all model parameters, type
. bayesstats summary {param1} {param2} . . .

or
. bayesstats summary {param1 param2} . . .

The only exception is the bayesgraph command when there is more than one model parameter.
In that case, bayesgraph requires that you either specify all to request all model parameters or
specify the model parameters of interest.

You can refer to a single model parameter in the same way you define parameters in, say, the
bayesmh command. For example, for a parameter with name param and no equation name, you can
use {param}. For a parameter with name param and equation name eqname, you can use its full
name {eqname:name}, where the equation name and the parameter name are separated with a colon.
With postestimation commands, you can also omit the equation name when referring to the parameter
with an equation name.

In the presence of more than one model parameter, you have several ways for referring to multiple
parameters at once. If parameters have the same equation name, you can refer to all the parameters
with that equation name as follows.
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Suppose that you have three parameters with the same equation name eqname. Then the specification

. bayesstats summary {eqname:param1} {eqname:param2} {eqname:param3}

is the same as the specification

. bayesstats summary {eqname:}

or the specification

. bayesstats summary {eqname:param1 param2 param3}

The above specification is useful if we want to refer to a subset of parameters with the same equation
name. For example, in the above, if we wanted to use only param1 and param2, we could type

. bayesstats summary {eqname:param1 param2}

There is also a convenient way to refer to the parameters with the same name but different equation
names. For example, typing

. bayesstats summary {eqname1:param} {eqname2:param}

is the same as simply typing

. bayesstats summary {param}

You can mix and match all the specifications above in one call to a postestimation command. You
can also specify expressions of model parameters; see Specifying functions of model parameters for
details.

Note that if param refers to a matrix model parameter, then the results will be provided for all
elements of the matrix. For example, if param is the name of a 2× 2 matrix, then typing

. bayesstats summary {param}

implies the following:

. bayesstats summary {param_1_1} {param_1_2} {param_2_1} {param_2_2}

For multilevel models, there are various ways, reref, in which you can refer to individual random-
effects parameters. Suppose that your model has random intercepts at the id level, which are labeled
as {U0[id]} or {U0} for short. To refer to all random intercepts, you can use {U0}, {U0[.]}, and
{U0[id]}. To refer to specific random intercepts, you can use {U0[#]}, where # refers to the #th
element of the random-effects vector, or use {U0[#.id]}, where # refers to the #th level of the
id variable. You can also refer to a subset numlist of random intercepts by using {U0[numlist]} or
{U0[(numlist).id]}. For nested random effects, for example, {UU0[id1>id2]}, you can refer to all
random effects as {UU0} or {UU0[.,.]} and to subsets of random effects as {UU0[numlist,numlist]}
or {UU0[(numlist).id1,(numlist).id2]}.

Specifying functions of model parameters

You can use Bayesian postestimation commands to obtain results for functions or expressions of
model parameters. Each expression must be specified in parentheses. An expression can be any Stata
expression, but it may not include matrix model parameters. However, you may include individual
elements of matrix model parameters. You may provide labels for your expressions.

For example, we can obtain results for the exponentiated parameter {param} as follows:

. bayesstats summary (exp({param}))

Note that we specified the expression in parentheses.
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We can include a label, say, myexp, in the above by typing
. bayesstats summary (myexp: exp({param}))

We can specify multiple expressions by typing
. bayesstats summary (myexp: exp({param}) (sd: sqrt({var})))

If param is a matrix, we can specify expressions, including its elements, but not the matrix itself
in the following:

. bayesstats summary (exp({param_1_1})) (exp({param_1_2})) . . .

Storing estimation results after Bayesian estimation

The bayesmh command and the bayes prefix store various e() results such as scalars, macros,
and matrices in memory like any other estimation command. Unlike other estimation commands,
these commands also save the resulting simulation dataset containing MCMC samples of parameters
to disk. Many Bayesian postestimation commands such as bayesstats summary and bayesstats
ess require access to this file. If you do not specify the saving() option with bayesmh or the
bayes prefix, the commands save simulation results in a temporary Stata dataset. This file is being
replaced with the new simulation results each time bayesmh or the bayes prefix is run. To save
your simulation results, you must specify the saving() option with bayesmh or the bayes prefix,
in which case your simulation results are saved to the specified file in the specified location and will
not be overridden by the next call to these commands.

You can specify the saving() option during estimation by typing
. bayesmh . . . , likelihood() prior() . . . saving()

or
. bayes, saving(): . . .

or on replay by typing
. bayesmh, saving()

or
. bayes, saving()

As you can with other estimation commands, you can use estimates store to store Bayesian
estimation results in memory and estimates save to save them to disk, but you must first use the
saving() option with bayesmh or the bayes prefix to save simulation data in a permanent dataset.
For example, type

. bayesmh . . . , likelihood() prior() . . . saving(bmh_simdata)

. estimates store model1

or, after bayesmh estimation, type
. bayesmh, saving(bmh_simdata)
. estimates store model1

Once you create a permanent dataset, it is your responsibility to erase it after it is no longer
needed. estimates drop and estimates clear will drop estimation results only from memory;
they will not erase the simulation files you saved.

. estimates drop model1

. erase bmh_simdata.dta

See [R] estimates for more information about commands managing estimation results. estimates
table and estimates stats are not appropriate after bayesmh and the bayes prefix.
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Different ways of specifying predictions and their functions

After bayesmh (except for survival models), you can use the bayespredict command to simulate
outcome variables, residuals, and other test quantities; see [BAYES] bayespredict. Bayesian postesti-
mation commands bayesgraph, bayesstats summary, bayesstats ppvalues, bayesstats ess,
and bayestest interval can then be used to obtain graphs, posterior summaries, and so on for
these prediction quantities.

In this section, we describe various specifications of prediction results with Bayesian postesti-
mation commands mentioned above. We use bayesstats summary in our examples, but the same
specifications may be used with other postestimation commands, except that bayestest interval
allows only specifications containing individual observations.

Suppose that we use the bayesmh command to fit a model with two outcome variables.

. bayesmh y1 y2 = x1 x2, . . . saving(mcmcfile)

We then use bayespredict to simulate samples for these two outcome variables and save them
in a prediction dataset, predfile.dta.

. bayespredict {_ysim1} {_ysim2}, saving(predfile)

To access prediction results, all postestimation commands must specify the prediction dataset in
the using specification. In fact, this is all postestimation commands need to produce results for
the prediction quantities. (Technically, the auxiliary estimation file generated by bayespredict, for
example, predfile.ster, must also exist.) That is, they do not rely on the estimation results or the
simulation data from bayesmh.

When the prediction dataset contains simulated outcomes, in addition to accessing these outcomes
(for instance, { ysim1} and { ysim2} in our example), postestimation commands may also access
the residuals ({ resid1} and { resid2}), expected values ({ mu1} and { mu2}), and Stata
expressions of simulated outcomes, residuals, and expected values. You can also call Mata functions
within command specifications to compute functions of simulated outcomes, residuals, and expected
values.

Let’s calculate posterior summaries for all observations of the first outcome and for all residuals
of the second outcome.

. bayesstats summary {_ysim1} {_resid2} using predfile

You can refer to a subset of predicted observations, say, from 1 to 10 for the observations and
from 1 to 5 for the residuals.

. bayesstats summary {_ysim1[1/10]} {_resid2[1/5]} using predfile

You can compute expressions of individual simulated outcome observations and their residuals.

. bayesstats summary (exp({_ysim1[1]})) ({_resid2[1]}^2) using predfile

You can test whether the residual for the first observation of the second outcome variable is greater
than zero by using bayestest interval to calculate the corresponding posterior probability.

. bayestest interval {_resid2[1]} using predfile, lower(0)

As we mentioned earlier, you can use Mata functions of predicted outcomes and residuals. These
functions operate across observations. For example, to summarize the mean of the first simulated
outcome and the variance of the second simulated outcome, type

. bayesstats summary (@mean({_ysim1})) (@variance({_ysim2})) using predfile
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Instead of using the default labels for the computed quantities, you can specify your own. Below,
we use mean and var to label the corresponding predictions.

. bayesstats summary (mean:@mean({_ysim1})) (var:@variance({_ysim2})) using predfile

You cannot specify Mata functions with bayestest interval, and, unlike bayespredict, you
cannot specify Stata programs within the postestimation commands.

If you need to access individual values of the predicted quantity computed using a Mata function or
specify an expression of this quantity, you need to compute and save this quantity with bayespredict.

Suppose that you wish to compute the sum of the two outcome variances. You simulate these
variances by using bayespredict first.

. bayespredict (prvar1:@variance({_ysim1})) (prvar2:@variance({_ysim2})), ///
saving(predfile)

In the above, we labeled the computed variances as prvar1 and prvar2.

Then, you can call bayesstats summary to compute the sum of the predicted quantities.

. bayesstats summary ({prvar1} + {prvar2}) using predfile

Or you can obtain summaries of each predicted quantity.

. bayesstats summary {prvar1} {prvar2} using predfile

You can combine various specifications in one call to the postestimation command. For example,
let’s save the following prediction quantities with bayespredict.

. bayespredict {_ysim1} {_ysim2} (mean1:@mean({_ysim1})) ///
(var2:@variance({_ysim2})), saving(predfile)

You can specify multiple prediction quantities in one call to bayesstats summary or other
postestimation commands.

. bayesstats summary ({_ysim1}) ({_resid[1/5]}) ({mean1}) ///
({var2}) (mean2:@mean({_ysim2})) using predfile

Also see
[BAYES] bayes — Bayesian regression models using the bayes prefix

[BAYES] bayesmh — Bayesian models using Metropolis–Hastings algorithm

[BAYES] bayesmh evaluators — User-defined evaluators with bayesmh

[BAYES] Bayesian commands — Introduction to commands for Bayesian analysis

[BAYES] Intro — Introduction to Bayesian analysis

[BAYES] Glossary
[U] 20 Estimation and postestimation commands
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bayesgraph — Graphical summaries and convergence diagnostics

Description Quick start Menu Syntax
Options Remarks and examples Methods and formulas References
Also see

Description

bayesgraph provides graphical summaries and convergence diagnostics for simulated posterior
distributions (MCMC samples) of model parameters and functions of model parameters obtained
after Bayesian estimation. Graphical summaries include trace plots, autocorrelation plots, and various
distributional plots.

Quick start
Trace plot, histogram, autocorrelation plot, and density plot for parameter {p}

bayesgraph diagnostics {p}

Add plots for parameter {y:x1}
bayesgraph diagnostics {p} {y:x1}

Same as above, but for all model parameters
bayesgraph diagnostics all

Same as above, but for a function of model parameters {y:x1} and {p}

bayesgraph diagnostics ({y:x1}/{p})

Specify a blue trace plot line for all plots
bayesgraph diagnostics {p} {y:x1} {y:x2}, traceopts(lcolor(blue))

Specify a blue trace plot line only for the second trace plot
bayesgraph diagnostics {p} {y:x1} {y:x2}, trace2opts(lcolor(blue))

Trace plots for all parameters in a single graph
bayesgraph trace all, byparm

Cumulative sum plot for parameter {p}
bayesgraph cusum {p}

Scatterplot matrix for parameters {p} and {y:x1}

bayesgraph matrix {p} {y:x1}

Autocorrelation plots for elements 1,1 and 2,1 of matrix parameter {S}
bayesgraph ac {S 1 1} {S 2 1}

Diagnostic plots for all parameters in the model and pause at least 3 seconds before displaying the
next graph

bayesgraph diagnostics _all, sleep(3)

323
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Same as above, but pause until the user presses any key
bayesgraph diagnostics _all, wait

Same as above, but close the current Graph window when the next graph is displayed
bayesgraph diagnostics _all, close

Histogram of the first 10 observations of the first simulated outcome plotted on one graph
bayespredict {_ysim}, saving(predres)
bayesgraph histogram {_ysim[1/10]} using predres, byparm

Density plot of the mean across observations of the simulated outcome labeled as mymean

bayesgraph kdensity (mymean: @mean({_ysim})) using predres

Menu
Statistics > Bayesian analysis > Graphical summaries

Syntax
Syntax is presented under the following headings:

Graphical summaries for model parameters
Graphical summaries for predictions

Graphical summaries for model parameters

Graphical summaries and convergence diagnostics for a single parameter

bayesgraph graph scalar param
[
, singleopts

]
Graphical summaries and convergence diagnostics for multiple parameters

bayesgraph graph spec
[

spec . . .
] [

, multiopts
]

bayesgraph matrix spec spec
[

spec . . .
] [

, singleopts
]

Graphical summaries and convergence diagnostics for all parameters

bayesgraph graph all
[
, multiopts showreffects

[
(reref)

] ]
scalar param is a scalar model parameter specified as {param} or {eqname:param} or an expression

exprspec of scalar model parameters. Matrix model parameters are not allowed, but you may refer
to their individual elements.

exprspec is an optionally labeled expression of model parameters specified in parentheses:

(
[

exprlabel:
]
expr)

exprlabel is a valid Stata name, and expr is a scalar expression that may not contain matrix model
parameters. See Specifying functions of model parameters in [BAYES] Bayesian postestimation
for examples.

spec is either scalar param or exprspec.
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Graphical summaries for predictions

Graphical summaries for an individual prediction

bayesgraph graph predspecsc using predfile
[
, singleopts

]

Graphical summaries for multiple predictions

bayesgraph graph predspec
[

predspec . . .
]
using predfile

[
, multiopts

]
bayesgraph matrix predspec predspec

[
predspec . . .

]
using predfile

[
, singleopts

]
predfile is the name of the dataset created by bayespredict that contains prediction results.

predspecsc may contain individual observations of simulated outcomes, { ysim#[#]}; individual
expected outcome values, { mu#[#]}; individual simulated residuals, { resid#[#]}; and other
scalar predictions, {label}.

predspec is one of yspec, (yexprspec), or (funcspec). See Different ways of specifying predictions
and their functions in [BAYES] Bayesian postestimation.

yspec is {ysimspec | residspec |muspec | label}.

ysimspec is { ysim#} or { ysim#[numlist]}, where { ysim#} refers to all observations of the #th
simulated outcome and { ysim#[numlist]} refers to the selected observations, numlist, of the #th
simulated outcome. { ysim} is a synonym for { ysim1}.

residspec is { resid#} or { resid#[numlist]}, where { resid#} refers to all residuals of the
#th simulated outcome and { resid#[numlist]} refers to the selected residuals, numlist, of the
#th simulated outcome. { resid} is a synonym for { resid1}.

muspec is { mu#} or { mu#[numlist]}, where { mu#} refers to all expected values of the #th
outcome and { mu#[numlist]} refers to the selected expected values, numlist, of the #th outcome.
{ mu} is a synonym for { mu1}.

label is the name of the function simulated using bayespredict.

With large datasets, specifications { ysim#}, { resid#}, and { mu#} may use a lot of time and
memory and should be avoided. See Generating and saving simulated outcomes in [BAYES] bayespre-
dict.

yexprspec is
[

exprlabel:
]
yexpr, where exprlabel is a valid Stata name and yexpr is a scalar expression

that may contain individual observations of simulated outcomes, { ysim#[#]}; individual expected
outcome values, { mu#[#]}; individual simulated residuals, { resid#[#]}; and other scalar
predictions, {label}.

funcspec is
[

label:
]
@func(arg1

[
, arg2

]
), where label is a valid Stata name; func is an official or user-

defined Mata function that operates on column vectors and returns a real scalar; and arg1 and arg2
are one of { ysim

[
#
]
}, { resid

[
#
]
}, or { mu

[
#
]
}. arg2 is primarily for use with user-defined

Mata functions; see Defining test statistics using Mata functions in [BAYES] bayespredict.
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graph Description

diagnostics multiple diagnostics in compact form
trace trace plots
ac autocorrelation plots
histogram histograms
kdensity density plots
cusum cumulative sum plots
matrix scatterplot matrix

bayesgraph matrix requires at least two parameters. diagnostics, trace, ac, and cusum are not relevant for
predictions.

singleopts Description

Chains

chainopts options controlling multiple chains
Options

skip(#) skip every # observations from the MCMC sample; default is skip(0)

name(name, . . .) specify name of graph
saving(filename, . . .) save graph in file
graphopts graph-specific options

multiopts Description

Chains

chainopts options controlling multiple chains
Options

byparm
[
(grbyparmopts)

]
specify the display of plots on one graph; default is separate graph

for each plot; not allowed with graphs diagnostics and matrix
or with options combine() and bychain()

combine
[
(grcombineopts)

]
specify the display of plots on one graph; recommended when

the number of parameters is large; not allowed with graphs
diagnostics and matrix or with options byparm() and
bychain()

sleep(#) pause for # seconds between multiple graphs; default is sleep(0)

wait pause until the more condition is cleared[
no
]
close (do not) close Graph windows when the next graph is displayed with

multiple graphs; default is noclose

skip(#) skip every # observations from the MCMC sample; default is skip(0)

name(namespec, . . .) specify names of graphs
saving(filespec, . . .) save graphs in files
graphopts(graphopts) control the look of all graphs; not allowed with byparm()

graph#opts(graphopts) control the look of #th graph; not allowed with byparm()

graphopts equivalent to graphopts(graphopts); only one may be specified
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chainopts Description

chains( all | numlist) specify which chains to plot; default is to plot the first 10 chains
sepchains draw a separate graph for each chain; default is to overlay chains
chainslegend show legend keys corresponding to chain numbers; not allowed with

graphs diagnostics and matrix or with options combine()
and byparm()

bychain
[
(grbychainopts)

]
plot each chain as a subgraph on one graph; default is all chains

overlayed on one graph; not allowed with graphs diagnostics
and matrix or with options combine() and byparm()

chainopts(graphopts) control the look of all chains
chain#opts(graphopts) control the look of #th chain

Options chainopts are relevant only when option nchains() is used with bayesmh or the bayes prefix.

graphopts Description

diagnosticsopts options for bayesgraph diagnostics

tslineopts options for bayesgraph trace and bayesgraph cusum

acopts options for bayesgraph ac

histopts options for bayesgraph histogram

kdensityopts options for bayesgraph kdensity

grmatrixopts options for bayesgraph matrix

diagnosticsopts Description

traceopts(tslineopts) affect rendition of all trace plots
trace#opts(tslineopts) affect rendition of #th trace plot
acopts(acopts) affect rendition of all autocorrelation plots
ac#opts(acopts) affect rendition of #th autocorrelation plot
histopts(histopts) affect rendition of all histogram plots
hist#opts(histopts) affect rendition of #th histogram plot
kdensopts(kdensityopts) affect rendition of all density plots
kdens#opts(kdensityopts) affect rendition of #th density plot
grcombineopts any option documented in [G-2] graph combine

acopts Description

ci plot autocorrelations with confidence intervals; not allowed with
byparm()

acopts any options other than generate() documented for the ac
command in [TS] corrgram
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kdensityopts Description

kdensopts options for the overall kernel density plot
show(showspec) show first-half density (first), second-half density (second),

both, or none; default varies
kdensfirst(kdens1opts) affect rendition of the first-half density plot
kdenssecond(kdens2opts) affect rendition of the second-half density plot

Options

� � �
Chains �

chains( all | numlist) specifies which chains from the MCMC sample to plot. The default is to plot
the first 10 chains. You can use chains( all) to plot all chains.

sepchains specifies that a separate graph be drawn for each chain. This option is implied for
bayesgraph matrix and may not be combined with bychain().

chainslegend specifies that the graph be plotted with a legend showing keys corresponding to
chain numbers. This option is not allowed with graphs diagnostics and matrix or with options
combine() and byparm().

bychain
[
(grbychainopts)

]
specifies that each chain be plotted as a subgraph on one graph. By

default, all chains are displayed overlayed on one graph. This option is not allowed with graphs
diagnostics and matrix or with options combine(), byparm(), and sepchains.

grbychainopts is any of the suboptions of by() documented in [G-3] by option.

chainopts(graphopts) and chain#opts(graphopts) control the look of chains. chainopts()
controls the look of all chains but may be overridden for specific chains by using the chain#opts()
option.

Chain-specific options are ignored if option nchains() is not specified with bayesmh or the bayes
prefix.

� � �
Options �

byparm
[
(grbyparmopts)

]
specifies the display of all plots of parameters as subgraphs on one graph.

By default, a separate graph is produced for each plot when multiple parameters are specified. This
option is not allowed with bayesgraph diagnostics or bayesgraph matrix and may not be
combined with options combine() and bychain(). When many parameters or expressions are
specified, this option may fail because of memory constraints. In that case, you may use option
combine() instead.

grbyparmopts is any of the suboptions of by() documented in [G-3] by option.

byparm() allows y scales to differ for all graph types and forces x scales to be the same only
for bayesgraph trace and bayesgraph cusum. Use noyrescale within byparm() to specify
a common y axis, and use xrescale or noxrescale to change the default behavior for the x
axis.

byparm() with bayesgraph trace and bayesgraph cusum defaults to displaying multiple
plots in one column to accommodate the x axis with many iterations. Use norowcoldefault
within byparm() to switch back to the default behavior of options rows() and cols() of the
[G-3] by option.
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combine
[
(grcombineopts)

]
specifies the display of all plots of parameters as subgraphs on one

graph and is an alternative to byparm() with a large number of parameters. By default, a separate
graph is produced for each plot when multiple parameters are specified. This option is not allowed
with bayesgraph diagnostics or bayesgraph matrix and may not be combined with option
byparm(). It can be used in cases where a large number of parameters or expressions are specified
and the byparm() option would cause an error because of memory constraints.

grcombineopts is any of the options documented in [G-2] graph combine.

sleep(#) specifies pausing for # seconds before producing the next graph. This option is allowed only
when multiple parameters are specified. This option may not be combined with wait, combine(),
or byparm().

wait causes bayesgraph to display more and pause until any key is pressed before producing
the next graph. This option is allowed when multiple parameters are specified. This option may
not be combined with sleep(), combine(), or byparm(). wait temporarily ignores the global
setting that is specified using set more off.[

no
]
close specifies that, for multiple graphs, the Graph window be closed when the next graph is

displayed. The default is noclose or to not close any Graph windows.

skip(#) specifies that every # observations from the MCMC sample not be used for computation.
The default is skip(0) or to use all observations in the MCMC sample. Option skip() can be
used to subsample or thin the chain. skip(#) is equivalent to a thinning interval of #+1. For
example, if you specify skip(1), corresponding to the thinning interval of 2, the command will
skip every other observation in the sample and will use only observations 1, 3, 5, and so on in the
computation. If you specify skip(2), corresponding to the thinning interval of 3, the command
will skip every 2 observations in the sample and will use only observations 1, 4, 7, and so on in
the computation. skip() does not thin the chain in the sense of physically removing observations
from the sample, as is done by, for example, bayesmh’s thinning() option. It only discards
selected observations from the computation and leaves the original sample unmodified.

name(namespec
[
, replace

]
) specifies the name of the graph or multiple graphs. See

[G-3] name option for a single graph. If multiple graphs are produced, then the argument of
name() is either a list of names or a stub, in which case graphs are named stub1, stub2, and so
on. With multiple graphs, if name() is not specified and neither sleep() nor wait is specified,
name(Graph #, replace) is assumed, and thus the produced graphs may be replaced by
subsequent bayesgraph commands.

The replace suboption causes existing graphs with the specified name or names to be replaced.

saving(filespec
[
, replace

]
) specifies the filename or filenames to use to save the graph or multiple

graphs to disk. See [G-3] saving option for a single graph. If multiple graphs are produced, then
the argument of saving() is either a list of filenames or a stub, in which case graphs are saved
with filenames stub1, stub2, and so on.

The replace suboption specifies that the file (or files) may be replaced if it already exists.

showreffects and showreffects(reref) are for use after multilevel models, and they specify that
the results for all or a list reref of random-effects parameters be provided in addition to other model
parameters. By default, all random-effects parameters are excluded from the results to conserve
computation time.

graphopts(graphopts) and graph#opts(graphopts) affect the rendition of graphs. graphopts()
affects the rendition of all graphs but may be overridden for specific graphs by using the
graph#opts() option. The options specified within graph#opts() are specific for each type of
graph.
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The two specifications

bayesgraph . . ., graphopts(graphopts)

and

bayesgraph . . ., graphopts

are equivalent, but you may specify one or the other.

These options are not allowed with byparm() and when only one parameter is specified.

graphopts specifies options specific to each graph type.

diagnosticsopts specifies options for use with bayesgraph diagnostics. See the corresponding
table in the syntax diagram for a list of options.

tslineopts specifies options for use with bayesgraph trace and bayesgraph cusum. See the
options of [TS] tsline except by().

acopts specifies options for use with bayesgraph ac.

ci requests that the graph of autocorrelations with confidence intervals be plotted. By default,
confidence intervals are not plotted. This option is not allowed with byparm().

acopts specifies any options except generate() of the ac command in [TS] corrgram.

histopts specifies options for use with bayesgraph histogram. See options of [R] histogram
except by().

kdensityopts specifies options for use with bayesgraph kdensity.

kdensopts specifies options for the overall kernel density plot. See the options documented in
[R] kdensity except generate() and at().

show(showspec) specifies which kernel density curves to plot. showspec is one of first,
second, both, or none. If show(first) is specified, only the first-half density curve,
obtained from the first half of an MCMC sample, is plotted. If show(second) is specified,
only the second-half density curve, obtained from the second half of an MCMC sample,
is plotted. show(both), the default with graph diagnostics, overlays both the first-half
density curve and the second-half density curve with the overall kernel density curve.
show(none), the default with graph kdensity, shows only the overall kernel density curve.

kdensfirst(kdens1opts) specifies options of [G-2] graph twoway kdensity except by() to
affect rendition of the first-half kernel density plot.

kdenssecond(kdens2opts) specifies options of [G-2] graph twoway kdensity except by() to
affect rendition of the second-half kernel density plot.

grmatrixopts specifies options for use with bayesgraph matrix. See the options of [G-2] graph
matrix except by().
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Remarks and examples
Remarks are presented under the following headings:

Using bayesgraph
Examples

Trace plots
Autocorrelation plots
Histogram plots
Kernel density plots
Cumulative sum plots
Bivariate scatterplots
Diagnostic plots
Functions of model parameters

Using bayesgraph

bayesgraph requires specifying at least one parameter with all graph types except matrix, which
requires at least two parameters. To request graphs for all parameters, use all.

When multiple graphs are produced, they are automatically stored in memory with names Graph #
and will all appear on the screen. After you are done reviewing the graphs, you can type

. graph close Graph__*

to close these graphs or type

. graph drop Graph__*

to close the graphs and drop them from memory.

If you would like to see only one graph at a time, you can specify option close to close the
Graph window when the next graph is displayed. You can also use option sleep() or option wait
to pause between the subsequent graphs. The sleep(#) option causes each graph to pause for #
seconds. The wait option causes bayesgraph to wait until a key is pressed before producing the
next graph.

You can combine separate graphs into one by specifying one of byparm() or combine(). These
options are not allowed with diagnostics or matrix graphs. The byparm() option produces more
compact graphs, but it may not be feasible with many parameters or expressions and large sizes of
MCMC samples.

With multiple graphs, you can control the look of each individual graph with graph#opts().
Options common to all graphs may be specified in graphopts() or passed directly to the command
as with single graphs.

With multiple chains, bayesgraph plots only the first 10 chains by default. If you have more than
10 chains, although only four chains are commonly used in practice, you can use the chains( all)
option to plot all the chains. You can also use the chains() option to handpick the chains you want
to be plotted. For example, chains(1/3 5) will plot chains 1, 2, 3, and 5. If desired, you can see
which plot corresponds to which chain by using the chainslegend option.

By default, the chains will be plotted overlaid on one graph. You can specify the sepchains
option to plot each chain on a separate graph, in which case the graphs will be automatically stored
in memory with names Graph # and will all appear on the screen. Or, you can use the bychain
option to plot each chain separately but one graph.

To control the look of an individual chain, you can use the chain#opts() options. For example,
to change the line color to red for chain 2, you would specify the chain2opts(lcolor(red))
option. To control the look of all chains, you can use the chainopts() option.
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You can use bayesgraph to plot predicted quantities when you supply the prediction dataset
generated by bayespredict in the using specification. Also see Different ways of specifying
predictions and their functions in [BAYES] Bayesian postestimation.

Examples

We demonstrate the bayesgraph command using an example of Bayesian normal linear regression
applied to auto.dta. We model the mpg variable using a normal distribution with unknown mean
and variance. Our Bayesian model thus has two parameters, {mpg: cons} and {var}, for which
we need to specify prior distributions. We consider fairly noninformative prior distributions for these
parameters: N(0, 1000) for the constant and inverse gamma with shape and scale of 0.1 for the
variance. Because the specified prior distributions are independent and semiconjugate relative to the
normal data distribution, we can use Gibbs sampling for both parameters instead of the default MH
sampling. To illustrate, we will use Gibbs sampling for the variance and MH sampling (default) for
the mean.

We use bayesmh to fit our model.
. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)

. bayesmh mpg, likelihood(normal({var}))
> prior({mpg:_cons}, normal(0,1000))
> prior({var}, igamma(0.1,0.1)) block({var}, gibbs) rseed(14)
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal({mpg:_cons},{var})

Priors:
{mpg:_cons} ~ normal(0,1000)

{var} ~ igamma(0.1,0.1)

Bayesian normal regression MCMC iterations = 12,500
Metropolis--Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .7133
Efficiency: min = .2331

avg = .6166
Log marginal-likelihood = -242.1155 max = 1

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mpg
_cons 21.29231 .6648867 .013771 21.29419 19.94367 22.56746

var 34.2805 5.844213 .058442 33.6464 24.65882 47.5822

The MCMC simulation has a fairly high efficiency for the MH algorithm of 23% for the mean and an
efficiency of 1 for the variance because of the Gibbs sampling. The output suggests no convergence
problems. However, it is important to verify this and to also inspect various other graphical summaries
of the parameters. This example demonstrates graphical summaries for a well-mixing MCMC chain that
has converged and that generates samples from the posterior distribution of the model. For examples
of poor-mixing MCMC chains, see Convergence diagnostics in MCMC in [BAYES] Intro.
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Trace plots

We start with trace plots, which plot the values of the simulated parameters against the iteration
number and connect consecutive values with a line. For a well-mixing parameter, the range of the
parameter is traversed rapidly by the MCMC chain, which makes the drawn lines look almost vertical
and dense. Sparseness and trends in the trace plot of a parameter suggest convergence problems.

Let’s use bayesgraph trace to obtain trace plots for {mpg: cons} and {var}. We specify
all to request both plots at once.

. bayesgraph trace _all
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The mean parameter mixes very well and the variance parameter mixes perfectly.
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Alternatively, we can use the byparm() option to plot results on one graph.

. bayesgraph trace _all, byparm
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Trace plots

bayesgraph trace (as well as bayesgraph cusum) with option byparm() displays multi-
ple plots in one column to accommodate an x axis with many iterations. You can specify by-
parm(norowcoldefault) to switch to the default behavior of options rows() and cols() docu-
mented in [G-3] by option.

Also see Convergence diagnostics using multiple chains in [BAYES] bayesmh for an example of
trace plots with multiple chains.

Autocorrelation plots

The second graphical summary we demonstrate is an autocorrelation plot. This plot shows the
degree of autocorrelation in an MCMC sample for a range of lags, starting from lag 0. At lag 0, the
plotted value corresponds to the sample variance of MCMC.

Autocorrelation is usually present in any MCMC sample. Typically, autocorrelation starts from some
positive value for lag 0 and decreases toward 0 as the lag index increases. For a well-mixing MCMC
chain, autocorrelation dies off fairly rapidly.
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For example, autocorrelation for {mpg: cons} becomes negligible after about lag 8 and is basically
nonexistent for {var}.

. bayesgraph ac _all, byparm
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Autocorrelations

Autocorrelation lags are approximated by correlation times of parameters as reported by the
bayesstats ess command; see [BAYES] bayesstats ess for details. Autocorrelation lags are also
used to determine the batch size for the batch-means estimator of the MCMC standard errors; see
[BAYES] bayesstats summary.

Histogram plots

Graphical posterior summaries such as histograms and kernel density estimates provide useful
additions to the various numerical statistics (see [BAYES] bayesstats summary) for summarizing
MCMC output. It is always a good practice to inspect the histogram and kernel density estimates of
the marginal posterior distributions of parameters to ensure that these empirical distributions behave
as expected. These plots can be used to compare the empirical posterior and the specified prior
distributions to visualize the impact of the data.

A histogram depicts the general shape of the marginal posterior distribution of a model parameter.
Let’s look at histograms of our parameters.
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. bayesgraph histogram {mpg:_cons}, normal
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Histogram of mpg:_cons

The distribution of {mpg: cons} is in good agreement with the normal distribution. This is
not surprising, because the specified conjugate normal prior implies that the marginal posterior for
{mpg: cons} is a normal distribution. The unimodal histogram is also another confirmation that we
have obtained a good simulation of the marginal posterior distribution of {mpg: cons}.

. bayesgraph histogram {var}
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The histogram for {var} is also unimodal but is slightly skewed to the right. This is also in
agreement with the specified prior because the marginal posterior for the variance is inverse gamma
for the specified model.

For examples of histograms for prediction quantities, see example 4 and example 7 in
[BAYES] bayespredict and example 1 and example 3 in [BAYES] bayesstats ppvalues.

Kernel density plots

Kernel density plots provide alternative visualizations of the simulated marginal posterior dis-
tributions. They may be viewed as smoothed histograms. By default, the bayesgraph kdensity
command shows an overall density of the entire MCMC sample. To explore convergence, the command
provides the show(both) option, which additionally plots two density curves: the first-half density
obtained using the first half of the MCMC sample and the second-half density obtained using the
second half of the MCMC sample. If the chain has converged and mixes well, we expect the three
density curves to be close to each other. Large discrepancies between the first-half curve and the
second-half curve suggest convergence problems.

Let’s look at the three kernel density curves for our two parameters.

. bayesgraph kdensity {mpg:_cons}, show(both)
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. bayesgraph kdensity {var}, show(both)
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Kernel density plots for {mpg: cons} and {var} are similar in shape to the histograms’ plots
from the previous section. All three density curves are close to each other for both parameters.

Also see Convergence diagnostics using multiple chains in [BAYES] bayesmh for an example of
kernel density plots with multiple chains.

Cumulative sum plots

Cumulative sum (cusum) plots are useful graphical summaries for detecting persistent trends in
MCMC chains. All cusum plots start and end at 0 and may or may not cross the x axis. There is great
variability in the looks of cusum plots, which make them difficult to interpret sometimes. Typically, if
the cusum line never crosses the x axis, this may indicate a problem. See, for example, Convergence
diagnostics of MCMC in [BAYES] Intro for a cusum plot demonstrating convergence problems.

By inspecting a cusum plot, we may detect an early drift in the simulated sample because of an
insufficient burn-in period. In cases of pronounced persistent trends, the cusum curve may stay either
in the positive or in the negative y plane. For a well-mixing parameter, the cusum curve typically
crosses the x axis several times. This is the case for the cusum plots of {mpg: cons} and {var}.
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. bayesgraph cusum _all, byparm
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Cusum plots

Bivariate scatterplots

The bayesgraph matrix command draws bivariate scatterplots of model parameters based on MCMC
samples. A bivariate scatterplot represents a joint sample posterior distribution for pairs of parameters.
It may reveal correlation between parameters and characterize a general shape of a multivariate
posterior distribution. For example, bivariate scatterplots are useful for detecting multimodal posterior
distributions.

Typically, scatterplots depict clouds of points. Sparseness and irregularities in the scatterplots can
be strong indications of nonconvergence of an MCMC. For a well-mixing chain, the scatterplots have
an ellipsoidal form with an increasing concentration around the posterior mode.
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This scatterplot of {mpg: cons} and {var} is an example of a well-behaved scatterplot.

. bayesgraph matrix {mpg:_cons} {var}
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Diagnostic plots

Finally, we demonstrate the bayesgraph diagnostics command, which combines the trace,
histogram, autocorrelation, and kernel density plots compactly on one graph. We already discussed
the individual plots in the previous sections. Diagnostic plots are convenient for inspecting the overall
behavior of a particular model parameter. We recommend that diagnostic plots for all parameters be
inspected routinely as a part of the convergence-checking process.
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Let’s obtain the diagnostic plot for {mpg: cons}.
. bayesgraph diagnostics {mpg:_cons}
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In the diagnostics plot for {var}, let’s also demonstrate the use of several options of the depicted
plots.

. bayesgraph diagnostics {var}, traceopts(lwidth(0.2) lcolor(teal))
> acopts(lag(100)) histopts(bins(100)) kdensopts(show(none))
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In the above, we changed the width and color of the trace line, the maximum lag for calculating
the autocorrelation, the number of bins for the histogram, and requested that the two subsample kernel
densities not be shown on the kernel density plot.

Also see Convergence diagnostics using multiple chains in [BAYES] bayesmh for an example of
diagnostics plots with multiple chains.

Functions of model parameters

All bayesgraph subcommands can provide graphical summaries of functions of model parameters.
Below we apply bayesgraph diagnostics to the expression {mpg: cons}/sqrt({var}), which
we label as scaled mean.

. bayesgraph diagnostics (scaled_mean: {mpg:_cons}/sqrt({var}))
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scaled_mean:  {mpg:_cons}/sqrt({var})

scaled_mean

If you detect convergence problems in a function of parameters, you must inspect every parameter
used in the expression individually. In fact, we recommend that you inspect all model parameters
before you proceed with any postestimation analysis.

Methods and formulas
Let θ be a scalar model parameter and {θt}Tt=1 be an MCMC sample of size T drawn from the

marginal posterior distribution of θ.

The trace plot of θ plots θt against t with connecting lines for t = 1, . . . , T .

The autocorrelation plot of θ shows the autocorrelation in the {θt}Tt=1 sample for lags from 0 to
the lag(#) option of the ac command.

The histogram and kernel density plots of θ are drawn using the histogram and kdensity
commands.
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Yu and Mykland (1998) proposed a graphical procedure for assessing the convergence of individual
parameters based on cumulative sums, also known as a cusum plot. The cusum plot for θ plots St
against t for t = 1, . . . , T and connects the successive points. St is the cumulative sum at time t:

St =

t∑
k=1

(θk − θ̂), θ̂ =
1

T

T∑
k=1

θk

and S0 = 0.

The scatterplot of two model parameters θ1 and θ2 plots points (θ1
t , θ

2
t ) for t = 1, . . . , T .

With multiple chains, the plots are produced separately for each chain.
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Title

bayesstats — Bayesian statistics after Bayesian estimation

Description Also see

Description
The following subcommands are available with bayesstats after bayesmh and the bayes prefix:

Command Description

bayesstats ess effective sample sizes and related statistics
bayesstats summary Bayesian summary statistics for model parameters and their functions
bayesstats ic Bayesian information criteria and Bayes factors
bayesstats grubin Gelman–Rubin convergence diagnostics
bayesstats ppvalues Bayesian predictive p-values (available only after bayesmh)

Also see
[BAYES] Bayesian estimation — Bayesian estimation commands

[BAYES] Bayesian postestimation — Postestimation tools for bayesmh and the bayes prefix
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Title

bayesstats ess — Effective sample sizes and related statistics

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Also see

Description

bayesstats ess calculates effective sample sizes (ESS), correlation times, and efficiencies for
model parameters and functions of model parameters using current Bayesian estimation results.

Quick start
Effective sample sizes for all model parameters after a Bayesian regression model

bayesstats ess

Same as above, but only for model parameters {y:x1} and {var}

bayesstats ess {y:x1} {var}

Same as above, but skip every 5 observations from the full MCMC sample
bayesstats ess {y:x1} {var}, skip(5)

Effective sample sizes for functions of scalar model parameters
bayesstats ess ({y:x1}-{y: cons}) (sd:sqrt({var}))

Same as above, and include {y:x1} and {var}

bayesstats ess {y:x1} {var} ({y:x1}-{y: cons}) (sd:sqrt({var}))

Menu
Statistics > Bayesian analysis > Effective sample sizes
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Syntax
Syntax is presented under the following headings:

Statistics for model parameters
Statistics for predictions

Statistics for model parameters

Statistics for all model parameters

bayesstats ess
[
, options showreffects

[
(reref)

] ]
bayesstats ess all

[
, options showreffects

[
(reref)

] ]
Statistics for selected model parameters

bayesstats ess paramspec
[
, options

]
Statistics for expressions of model parameters

bayesstats ess exprspec
[
, options

]
Full syntax

bayesstats ess spec
[

spec . . .
] [

, options
]

paramspec can be one of the following:

{eqname:param} refers to a parameter param with equation name eqname;

{eqname:} refers to all model parameters with equation name eqname;

{eqname:paramlist} refers to parameters with names in paramlist and with equation name eqname;
or

{param} refers to all parameters named param from all equations.

In the above, param can refer to a matrix name, in which case it will imply all elements of this
matrix. See Different ways of specifying model parameters in [BAYES] Bayesian postestimation
for examples.

exprspec is an optionally labeled expression of model parameters specified in parentheses:

(
[

exprlabel:
]
expr)

exprlabel is a valid Stata name, and expr is a scalar expression that may not contain matrix model
parameters. See Specifying functions of model parameters in [BAYES] Bayesian postestimation
for examples.

spec is one of paramspec or exprspec.
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Statistics for predictions

Statistics for simulated outcomes, residuals, and more

bayesstats ess yspec
[

yspec . . .
]
using predfile

[
, options

]
Statistics for expressions of simulated outcomes, residuals, and more

bayesstats ess (yexprspec)
[
(yexprspec) . . .

]
using predfile

[
, options

]
Statistics for Mata functions of simulated outcomes, residuals, and more

bayesstats ess (funcspec)
[
(funcspec) . . .

]
using predfile

[
, options

]
Full syntax

bayesstats ess predspec
[

predspec . . .
]
using predfile

[
, options

]
predfile is the name of the dataset created by bayespredict that contains prediction results.

yspec is {ysimspec | residspec |muspec | label}.
ysimspec is { ysim#} or { ysim#[numlist]}, where { ysim#} refers to all observations of the #th

simulated outcome and { ysim#[numlist]} refers to the selected observations, numlist, of the #th
simulated outcome. { ysim} is a synonym for { ysim1}.

residspec is { resid#} or { resid#[numlist]}, where { resid#} refers to all residuals of the
#th simulated outcome and { resid#[numlist]} refers to the selected residuals, numlist, of the
#th simulated outcome. { resid} is a synonym for { resid1}.

muspec is { mu#} or { mu#[numlist]}, where { mu#} refers to all expected values of the #th
outcome and { mu#[numlist]} refers to the selected expected values, numlist, of the #th outcome.
{ mu} is a synonym for { mu1}.

label is the name of the function simulated using bayespredict.

With large datasets, specifications { ysim#}, { resid#}, and { mu#} may use a lot of time and
memory and should be avoided. See Generating and saving simulated outcomes in [BAYES] bayespre-
dict.

yexprspec is
[

exprlabel:
]
yexpr, where exprlabel is a valid Stata name and yexpr is a scalar expression

that may contain individual observations of simulated outcomes, { ysim#[#]}; individual expected
outcome values, { mu#[#]}; individual simulated residuals, { resid#[#]}; and other scalar
predictions, {label}.

funcspec is
[

label:
]
@func(arg1

[
, arg2

]
), where label is a valid Stata name; func is an official or user-

defined Mata function that operates on column vectors and returns a real scalar; and arg1 and arg2
are one of { ysim

[
#
]
}, { resid

[
#
]
}, or { mu

[
#
]
}. arg2 is primarily for use with user-defined

Mata functions; see Defining test statistics using Mata functions in [BAYES] bayespredict.

predspec is one of yspec, (yexprspec), or (funcspec). See Different ways of specifying predictions
and their functions in [BAYES] Bayesian postestimation.
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options Description

Main
∗chains( all | numlist) specify which chains to use for computation; default is chains( all)
∗sepchains compute results separately for each chain
skip(#) skip every # observations from the MCMC sample; default is skip(0)

nolegend suppress table legend
display options control spacing, line width, and base and empty cells

Advanced

corrlag(#) specify maximum autocorrelation lag; default varies
corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)

∗Options chains() and sepchains are relevant only when option nchains() is used with bayesmh or the bayes
prefix.

collect is allowed; see [U] 11.1.10 Prefix commands.

Options

� � �
Main �

chains( all | numlist) specifies which chains from the MCMC sample to use for computation. The
default is chains( all) or to use all simulated chains. Using multiple chains, provided the chains
have converged, generally improves MCMC summary statistics. Option chains() is relevant only
when option nchains() is specified with bayesmh or the bayes prefix.

sepchains specifies that the results be computed separately for each chain. The default is to compute
results using all chains as determined by option chains(). Option sepchains is relevant only
when option nchains() is specified with bayesmh or the bayes prefix.

showreffects and showreffects(reref) are for use after multilevel models, and they specify that
the results for all or a list reref of random-effects parameters be provided in addition to other model
parameters. By default, all random-effects parameters are excluded from the results to conserve
computation time.

skip(#) specifies that every # observations from the MCMC sample not be used for computation.
The default is skip(0) or to use all observations in the MCMC sample. Option skip() can be
used to subsample or thin the chain. skip(#) is equivalent to a thinning interval of #+1. For
example, if you specify skip(1), corresponding to the thinning interval of 2, the command will
skip every other observation in the sample and will use only observations 1, 3, 5, and so on in the
computation. If you specify skip(2), corresponding to the thinning interval of 3, the command
will skip every 2 observations in the sample and will use only observations 1, 4, 7, and so on in
the computation. skip() does not thin the chain in the sense of physically removing observations
from the sample, as is done by, for example, bayesmh’s thinning() option. It only discards
selected observations from the computation and leaves the original sample unmodified.

nolegend suppresses the display of the table legend, which identifies the rows of the table with the
expressions they represent.

display options: vsquish, noemptycells, baselevels, allbaselevels, nofvlabel,
fvwrap(#), fvwrapon(style), and nolstretch; see [R] Estimation options.

� � �
Advanced �

corrlag(#) specifies the maximum autocorrelation lag used for calculating effective sample sizes.
The default is min{500, mcmcsize()/2}. The total autocorrelation is computed as the sum of
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all lag-k autocorrelation values for k from 0 to either corrlag() or the index at which the
autocorrelation becomes less than corrtol() if the latter is less than corrlag().

corrtol(#) specifies the autocorrelation tolerance used for calculating effective sample sizes. The
default is corrtol(0.01). For a given model parameter, if the absolute value of the lag-k
autocorrelation is less than corrtol(), then all autocorrelation lags beyond the kth lag are
discarded.

Remarks and examples

Remarks are presented under the following headings:
Effective sample size and MCMC sampling efficiency
Using bayesstats ess

Effective sample size and MCMC sampling efficiency

It is well known that for a random sample of T independent subjects, the standard error of the
sample mean estimator is proportional to 1/

√
T . In Bayesian inference, it is of interest to estimate

the standard error of the posterior mean estimator. The posterior mean of a parameter of interest is
typically estimated as a sample mean from an MCMC sample obtained from the marginal posterior
distribution of the parameter of interest. Observations from an MCMC sample are not independent
and are usually positively correlated, which must be taken into account when computing the standard
error. Thus the standard error of the posterior mean estimator is proportional to 1/

√
ESS, where ESS is

the effective sample size for the parameter of interest. Typically, ESS is less than T , the total number
of observations in the MCMC sample. We can thus interpret the posterior mean estimate as a sample
mean estimate from an independent sample of size ESS. In other words, the effective sample size is
an estimate of the number of independent observations that the MCMC chain represents. We say that
MCMC samples with higher ESS are more efficient.

Effective sample size is directly related to the convergence properties of an MCMC sample—very
low ESS relative to T suggests nonconvergence. In the extreme case of a perfectly correlated MCMC
observation, ESS is 1. It is thus a standard practice to assess the quality of an MCMC sample by
inspecting ESS values for all involved model parameters. Note, however, that high ESS values are
not generally sufficient for declaring convergence of MCMC because pseudoconvergence, which may
occur when MCMC does not explore the entire distribution, may also lead to high ESS values.

Using bayesstats ess

bayesstats ess reports effective sample sizes, correlation times, and efficiencies for model
parameters and their functions using the current Bayesian estimation results. When typed without
arguments, the command displays results for all model parameters. Alternatively, you can specify a
subset of model parameters following the command name; see Different ways of specifying model
parameters in [BAYES] Bayesian postestimation. You can also obtain results for scalar functions of
model parameters; see Specifying functions of model parameters in [BAYES] Bayesian postestimation.
You can obtain the summaries for prediction quantities when you specify the prediction dataset
in the using specification; see Different ways of specifying predictions and their functions in
[BAYES] Bayesian postestimation for how to specify prediction quantities within bayesstats ess.



350 bayesstats ess — Effective sample sizes and related statistics

Consider our analysis of auto.dta from example 4 in [BAYES] bayesmh using the mean-only
normal model for mpg with a noninformative prior.

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)

. set seed 14

. bayesmh mpg, likelihood(normal({var}))
> prior({mpg:_cons}, flat) prior({var}, jeffreys)
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal({mpg:_cons},{var})

Priors:
{mpg:_cons} ~ 1 (flat)

{var} ~ jeffreys

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .2668
Efficiency: min = .09718

avg = .1021
Log marginal-likelihood = -234.645 max = .1071

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mpg
_cons 21.29222 .6828864 .021906 21.27898 19.99152 22.61904

var 34.76572 5.91534 .180754 34.18391 24.9129 47.61286
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Example 1: Effective sample sizes for all parameters

To compute effective sample sizes and other related statistics for all model parameters, we type
bayesstats ess without arguments after the bayesmh command.

. bayesstats ess

Efficiency summaries MCMC sample size = 10,000
Efficiency: min = .09718

avg = .1021
max = .1071

ESS Corr. time Efficiency

mpg
_cons 971.82 10.29 0.0972

var 1070.99 9.34 0.1071

The closer the ESS estimates are to the MCMC sample size, the better. Also, the lower the correlation
times are and the higher the efficiencies are, the better. ESS estimates can be interpreted as follows. In
a sample of 10,000 MCMC observations, we have only about 972 independent observations to obtain
estimates for {mpg: cons} and only about 1,071 independent observations to obtain estimates for
{var}. Correlation times are the reciprocal of efficiencies. You can interpret them as an estimated
lag after which autocorrelation in an MCMC sample is small. In our example, the estimated lag is
roughly 10 for both parameters. In general, efficiencies above 10% are considered good for the MH
algorithm. In our example, they are about 10% for both parameters.

Alternatively, we could have listed all parameters manually:

. bayesstats ess {mpg:_cons} {var}
(output omitted )

Example 2: Effective sample sizes for functions of model parameters

Similarly to other Bayesian postestimation commands, bayesstats ess accepts expressions
to compute results for functions of model parameters. For example, we can use expression
(sd:sqrt({var})) with a label, sd, to compute effective sample sizes for the standard devia-
tion of mpg in addition to the variance.

. bayesstats ess (sd:sqrt({var})) {var}

Efficiency summaries MCMC sample size = 10,000
Efficiency: min = .1071

avg = .1082
max = .1094

sd : sqrt({var})

ESS Corr. time Efficiency

sd 1093.85 9.14 0.1094
var 1070.99 9.34 0.1071

ESS and efficiency are higher for the standard deviation than for the variance, which means that we
need slightly more iterations to estimate {var} with the same precision as sd.
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If we wanted, we could have suppressed the sd legend in the output above by specifying the
nolegend option.

Stored results
bayesstats ess stores the following in r():
Scalars

r(mcmcsize) MCMC sample size used in the computation
r(skip) number of MCMC observations to skip in the computation; every r(skip) observations

are skipped
r(corrlag) maximum autocorrelation lag
r(corrtol) autocorrelation tolerance
r(nchains) number of chains used in the computation

Macros
r(names) names of model parameters and expressions
r(expr #) #th expression
r(exprnames) expression labels
r(chains) chains used in the computation, if chains() is specified

Matrices
r(ess) matrix with effective sample sizes, correlation times, and efficiencies for parameters

in r(names)
r(ess chain#) matrix ess for chain #, if sepchains is specified

Methods and formulas
Let θ be a scalar model parameter and {θt}Tt=1 be an MCMC sample of size T drawn from the

marginal posterior distribution of θ. The effective sample size of the MCMC sample of θ is given by

ESS = T/(1 + 2

max lags∑
k=1

ρk)

where ρk is the lag-k autocorrelation of the MCMC sample, and max lags is the maximum number
less than or equal to ρlag such that for all k = 1, . . . ,max lags, |ρk| > ρtol, where ρlag and ρtol

are specified in options corrlag() and corrtol() with the respective default values of 500 and
0.01.

The lag-k autocorrelation is ρk = γk/γ0, where

γk =
1

T

T−k∑
t=1

(θt − θ̂)(θt+k − θ̂)

is the empirical autocovariance of lag k, and γ0 simplifies to the sample variance. θ̂ is the posterior
mean estimator.

Correlation time is defined as T/ESS, and efficiency is defined as the reciprocal of the correlation
time, ESS/T . Because ESS is between 0 and T , inclusively, the efficiency is always between 0 and 1.

In the presence of multiple chains, the overall ESS is computed as the sum of the individual
ESS statistics calculated using each chain independently. Correlation times and efficiencies are then
computed using the overall ESS and the total MCMC sample size, M × T , where M is the number
of chains.
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Also see
[BAYES] bayes — Bayesian regression models using the bayes prefix

[BAYES] bayesmh — Bayesian models using Metropolis–Hastings algorithm

[BAYES] Bayesian estimation — Bayesian estimation commands

[BAYES] Bayesian postestimation — Postestimation tools for bayesmh and the bayes prefix

[BAYES] bayesstats summary — Bayesian summary statistics



Title

bayesstats grubin — Gelman–Rubin convergence diagnostics

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

bayesstats grubin calculates Gelman–Rubin convergence diagnostics for model parameters
and functions of model parameters using current Bayesian estimation results containing at least two
Markov chains.

Quick start
Gelman–Rubin convergence diagnostics for all model parameters after a Bayesian regression model

using four chains
bayes, nchains(4): regress y x1

bayesstats grubin

Same as above, but only for model parameters {y:x1} and {sigma2}

bayesstats grubin {y:x1} {sigma2}

Gelman–Rubin convergence diagnostics for functions of scalar model parameters
bayesstats grubin ({y:x1}-{y: cons}) (sd:sqrt({sigma2}))

Menu
Statistics > Bayesian analysis > Gelman–Rubin convergence diagnostics

354
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Syntax
Convergence statistics for all model parameters

bayesstats grubin
[
, options showreffects

[
(reref)

] ]
bayesstats grubin all

[
, options showreffects

[
(reref)

] ]
Convergence statistics for selected model parameters

bayesstats grubin paramspec
[
, options

]
Convergence statistics for functions of model parameters

bayesstats grubin exprspec
[
, options

]
Full syntax

bayesstats grubin spec
[

spec . . .
] [

, options
]

paramspec can be one of the following:

{eqname:param} refers to a parameter param with equation name eqname;

{eqname:} refers to all model parameters with equation name eqname;

{eqname:paramlist} refers to parameters with names in paramlist and with equation name eqname;
or

{param} refers to all parameters named param from all equations.

In the above, param can refer to a matrix name, in which case it will imply all elements of this
matrix. See Different ways of specifying model parameters in [BAYES] Bayesian postestimation
for examples.

exprspec is an optionally labeled expression of model parameters specified in parentheses:

(
[

exprlabel:
]
expr)

exprlabel is a valid Stata name, and expr is a scalar expression that may not contain matrix model
parameters. See Specifying functions of model parameters in [BAYES] Bayesian postestimation
for examples.

spec is one of paramspec or exprspec.

options Description

sort list parameters in descending order of their convergence statistics
skip(#) skip every # observations from the MCMC sample; default is skip(0)

nolegend suppress table legend
display options control spacing, line width, and base and empty cells

collect is allowed; see [U] 11.1.10 Prefix commands.
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Options

sort specifies that model parameters be listed in descending order of their Gelman–Rubin convergence
statistics. This option is useful for models with many parameters, such as multilevel models, to
more easily identify the set of parameters with large values of convergence statistics.

showreffects and showreffects(reref) are for use after multilevel models, and they specify that
the results for all or a list reref of random-effects parameters be provided in addition to other model
parameters. By default, all random-effects parameters are excluded from the results to conserve
computation time. If random-effects parameters are of interest in your study, you should use option
showreffects to check their convergence diagnostics.

skip(#) specifies that every # observations from the MCMC sample not be used for computation.
The default is skip(0) or to use all observations in the MCMC sample. Option skip() can be
used to subsample or thin the chain. skip(#) is equivalent to a thinning interval of #+1. For
example, if you specify skip(1), corresponding to the thinning interval of 2, the command will
skip every other observation in the sample and will use only observations 1, 3, 5, and so on in the
computation. If you specify skip(2), corresponding to the thinning interval of 3, the command
will skip every 2 observations in the sample and will use only observations 1, 4, 7, and so on in
the computation. skip() does not thin the chain in the sense of physically removing observations
from the sample, as is done by, for example, bayesmh’s thinning() option. It only discards
selected observations from the computation and leaves the original sample unmodified.

nolegend suppresses the display of the table legend, which identifies the rows of the table with the
expressions they represent.

display options: vsquish, noemptycells, baselevels, allbaselevels, nofvlabel,
fvwrap(#), fvwrapon(style), and nolstretch; see [R] Estimation options.

Remarks and examples
Remarks are presented under the following headings:

Gelman–Rubin convergence diagnostic
Using bayesstats grubin

Gelman–Rubin convergence diagnostic

The Gelman–Rubin convergence diagnostic, Rc, assesses MCMC convergence by analyzing dif-
ferences between multiple Markov chains. The convergence is assessed by comparing the estimated
between-chains and within-chain variances for each model parameter. Large differences between these
variances indicate nonconvergence. See Gelman and Rubin (1992) and Brooks and Gelman (1998)
for details.

Large values of Rc indicate nonconvergence of MCMC. Literature suggests that the values of this
diagnostic should be less than 1.2 for all model parameters to declare MCMC convergence. In practice,
a more stringent convergence rule, Rc < 1.1, is often used.

Gelman–Rubin diagnostic relies on a Student’s t approximation of the marginal posterior distribution
of a model parameter. When this assumption is suspect, it is recommended to transform the parameter
such that its marginal posterior distribution is better approximated by a Student’s t distribution before
obtaining the diagnostic. For example, for the variance parameter, it is better to compute the diagnostic
for the log variance.
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Using bayesstats grubin

The bayesstats grubin command computes the Gelman–Rubin convergence diagnostic for each
model parameter using multiple MCMC samples or chains from a common posterior model. This
command requires at least two chains. Multiple chains can be obtained by using the nchains()
option with the bayesmh command ([BAYES] bayesmh) or with the bayes prefix ([BAYES] bayes).
When you simulate multiple chains to assess convergence, it is important to use overdispersed
initial values (Gelman and Rubin 1992, Brooks and Gelman 1998). See Specifying initial values in
[BAYES] bayesmh and Initial values in [BAYES] bayes for details.

When typed without arguments, the command displays results for all model parameters. Alterna-
tively, you can specify a subset of model parameters following the command name; see Different
ways of specifying model parameters in [BAYES] Bayesian postestimation. You can also obtain
results for scalar functions of model parameters; see Specifying functions of model parameters in
[BAYES] Bayesian postestimation. Also see example 2.

For multilevel models, similarly to other Bayesian postestimation commands, bayesstats grubin
does not report convergence statistics for the random-effects parameters by default. You can use the
showreffects option to see them for all random-effects parameters or the showreffects(reref) op-
tion for a subset reref of random-effects parameters of interest. See Multilevel models in [BAYES] bayes
for more information about MCMC convergence in multilevel models.

For models with many parameters such as multilevel models, you can use the sort option to list
model parameters in descending order of their convergence statistics Rc. The parameters with the
largest values of Rc will be listed first, making it easier to verify their convergence.

Example 1: Convergence diagnostics for all parameters

Recall our analysis of womenwage.dta using the bayes: regress command from example 1 in
[BAYES] bayes. We fit a linear regression model to the response variable wage with predictor age.
Here we use option nchains(3) to simulate three Markov chains to formally check convergence
of model parameters. To ensure reproducibility of multiple chains, we also specify the rseed(15)
option. Specifying set seed is not sufficient for reproducibility with multiple chains; see Reproducing
results in [BAYES] bayesmh for details.
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. use https://www.stata-press.com/data/r18/womenwage
(Wages of women)

. bayes, nchains(3) rseed(15): regress wage age
Chain 1

Burn-in ...
Simulation ...

Chain 2
Burn-in ...
Simulation ...

Chain 3
Burn-in ...
Simulation ...

Model summary

Likelihood:
wage ~ regress(xb_wage,{sigma2})

Priors:
{wage:age _cons} ~ normal(0,10000) (1)

{sigma2} ~ igamma(.01,.01)

(1) Parameters are elements of the linear form xb_wage.

Bayesian linear regression Number of chains = 3
Random-walk Metropolis--Hastings sampling Per MCMC chain:

Iterations = 12,500
Burn-in = 2,500
Sample size = 10,000

Number of obs = 488
Avg acceptance rate = .3673
Avg efficiency: min = .1409

avg = .1735
max = .2294

Avg log marginal-likelihood = -1810.1557 Max Gelman--Rubin Rc = 1

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

wage
age .4003528 .0599411 .000922 .4002037 .2804134 .5188627

_cons 5.999502 1.769855 .026358 6.025288 2.571305 9.517341

sigma2 90.80977 5.822896 .070195 90.49567 79.92114 102.7621

Note: Default priors are used for model parameters.
Note: Default initial values are used for multiple chains.

Compared with example 1 in [BAYES] bayes, the precision of the posterior means almost doubled with
more chains, judging by the MCMC standard errors. For example, the MCSE estimate for {sigma2}
drops from 0.12 to 0.07.

In the presence of multiple chains, the bayes prefix automatically reports in the header the
maximum value of the Gelman–Rubin convergence statistics across all parameters. In practice, we
want to see this value be close to 1; if it is less than 1.1, the chains are considered to have converged.
This convergence rule is satisfied in our example.
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To compute the Gelman–Rubin statistics for all model parameters, we type bayesstats grubin
without arguments after the bayes prefix.

. bayesstats grubin

Gelman--Rubin convergence diagnostic

Number of chains = 3
MCMC size, per chain = 10,000
Max Gelman--Rubin Rc = 1.000323

Rc

wage
age 1.000062

_cons 1.000323

sigma2 1.000253

Convergence rule: Rc < 1.1

Just like the bayes prefix, the bayesstats grubin command reports in the header the maximum
value of Rc across all parameters. This is particularly useful as a quick convergence check for models
with many parameters: if the maximum Rc is less than 1.2 or 1.1, then this convergence rule is
satisfied by all parameters. In our example, the maximum Rc is 1.0003 and is less than 1.1, so the
convergence criterion is met for all parameters.

The table reports the Rc estimates for each model parameter. As we already determined based
on the maximum Rc, the convergence diagnostics for all model parameters are less than 1.1. This
suggests that all chains have converged.

Example 2: Convergence diagnostics for functions of parameters

Continuing with example 1, we can compute the Gelman–Rubin statistics for functions of parameters.
Let’s compute the convergence diagnostic for the log-transformed variance parameter {sigma2}.

. bayesstats grubin (lnsigma2: ln({sigma2}))

Gelman--Rubin convergence diagnostic

Number of chains = 3
MCMC size, per chain = 10,000
Max Gelman--Rubin Rc = 1.000268

lnsigma2 : ln({sigma2})

Rc

lnsigma2 1.000268

Convergence rule: Rc < 1.1

Again, the convergence diagnostic for the log-transformed variance is less than 1.1 indicating no
convergence problems with the transformed parameter. This also suggests that {sigma2} does not
have convergence problems.

In our examples, we used the default initial values provided by bayes: with multiple chains; see
Initial values in [BAYES] bayes. To fully explore MCMC convergence, particularly when a posterior
distribution is suspected to have multiple modes, you should use overdispersed initial values. See
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Multiple chains using overdispersed initial values in [BAYES] bayesmh for an example of how to
specify overdispersed initial values.

Of course, it is important to explore convergence visually as well; see Convergence diagnostics
using multiple chains in [BAYES] bayesmh.

Stored results
bayesstats grubin stores the following in r():
Scalars

r(mcmcsize) MCMC sample size of each chain
r(nchains) number of MCMC chains
r(Rc max) maximum convergence diagnostic

Matrices
r(Rc) convergence diagnostics Rc
r(t df) degrees of freedom of a t distribution
r(B) between-chains variances
r(W) within-chain variances
r(V) total variances

Methods and formulas
Suppose we have M chains of length T . For a model parameter θ, let {θjt}Tt=1 be the jth

simulated chain drawn from the marginal posterior distribution of θ, j = 1, . . . ,M . Let θ̂j and ŝ2
j

be the respective sample posterior mean and variance of the mth chain, and let the overall sample
posterior mean be θ̂ = (1/M)

∑M
j=1 θ̂j . The between-chains and within-chain variances are given by

B =
T

M − 1

M∑
j=1

(θ̂j − θ̂)2

W =
1

M

M∑
j=1

ŝ2
j

When the chains are strongly stationary, that is, all chains draw samples from the target posterior
distribution, the weighted average of W and B

σ̂2 =
T − 1

T
W +

1

T
B

is an unbiased estimator of the marginal posterior variance of θ.

Gelman and Rubin (1992) approximate the target distribution of θ by a Student’s t distribution

with mean θ̂ and scale
√
V̂ , where

V̂ =
T − 1

T
W +

M + 1

MT
B

They define the so-called “scale” reduction factor as the ratio of V̂ and σ2 = Var(θ). They further
estimate σ2 by W and use the ratio of V̂ and W as an estimator of the scale reduction factor,
known as the potential scale reduction factor. If the M chains have converged to the target posterior
distribution, then the potential scale reduction factor should be close to 1.
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Brooks and Gelman (1998) propose the corrected estimator of the potential scale reduction factor,
Rc, that accounts for sampling variability:

Rc =

√
d̂+ 3

d̂+ 1

V̂

W

where d̂ is the estimated degrees of freedom of the approximating Student’s t distribution for θ

d̂ =
2V̂ 2

V̂ar(V̂ )

and

V̂ar(V̂ ) =

(
T − 1

T

)2
1

M
V̂ar(ŝ2

j ) +

(
M + 1

MT

)2
2

M − 1
B2

+ 2
(M + 1)(T − 1)

M2T

{
Ĉov(ŝ2

j , θ̂
2
j )− 2θ̂ Ĉov(ŝ2

j , θ̂j)

}
V̂ar(ŝ2

j ) is the sample variance of ŝ2
j ’s, j = 1, . . . ,M . Ĉov(ŝ2

j , θ̂
2
j ) and Ĉov(ŝ2

j , θ̂j) are the sample

covariances of ŝ2
j ’s and θ̂2

j ’s and ŝ2
j ’s and θ̂j’s, respectively.

Brooks and Gelman (1998) suggested to use the criterion Rc < 1.2 for all model parameters
to declare MCMC convergence. In practice, a more stringent convergence criterion, Rc < 1.1, is
often used. If a convergence criterion is not met, longer chains or other means for improving the
convergence are needed.
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bayesstats ic — Bayesian information criteria and Bayes factors

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

bayesstats ic calculates and reports model-selection statistics, including the deviance information
criterion (DIC), log marginal-likelihood, and Bayes factors (BFs), using current Bayesian estimation
results. BFs can be displayed in the original metric or in the log metric. The command also provides
two different methods to approximate marginal likelihood.

Quick start
Information criteria for previously saved estimation results A and B with A used as the base model

by default
bayesstats ic A B

Same as above, but use B as the base model instead of A
bayesstats ic A B, basemodel(B)

Report BFs instead of the default log BFs
bayesstats ic A B, bayesfactor

Menu
Statistics > Bayesian analysis > Information criteria

362
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Syntax
bayesstats ic

[
namelist

] [
, options

]
namelist is a name, a list of names, all, or *. A name may be ., meaning the current (active)

estimates. all and * mean the same thing.

options Description

Main

basemodel(name) specify a base or reference model; default is the first-listed model
bayesfactor report BFs instead of the default log BFs
diconly report only DIC
∗chains( all | numlist) specify which chains to use for computation; default is chains( all)
∗sepchains compute results separately for each chain

Advanced

marglmethod(method) specify marginal-likelihood approximation method; default is to use
Laplace–Metropolis approximation, lmetropolis; rarely used

∗Options chains() and sepchains are relevant only when option nchains() is used with bayesmh or the bayes
prefix.

collect is allowed; see [U] 11.1.10 Prefix commands.

method Description

lmetropolis Laplace–Metropolis approximation; the default
hmean harmonic-mean approximation

Options

� � �
Main �

basemodel(name) specifies the name of the model to be used as a base or reference model when
computing BFs. By default, the first-listed model is used as a base model.

bayesfactor specifies that BFs be reported instead of the default log BFs.

diconly specifies that only DIC be reported in the table and that the log marginal-likelihood and Bayes
factors be omitted from the table. Options basemodel(), basefactor, and marglmethod() have
no effect when the diconly option is specified.

chains( all | numlist) specifies which chains from the MCMC sample to use for computation. The
default is chains( all) or to use all simulated chains. Using multiple chains, provided the chains
have converged, generally improves MCMC summary statistics. Option chains() is relevant only
when option nchains() is specified with bayesmh or the bayes prefix.

sepchains specifies that the results be computed separately for each chain. The default is to compute
results using all chains as determined by option chains(). Option sepchains is relevant only
when option nchains() is specified with bayesmh or the bayes prefix.
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� � �
Advanced �

marglmethod(method) specifies a method for approximating the marginal likelihood. method is either
lmetropolis, the default, for Laplace–Metropolis approximation or hmean for harmonic-mean
approximation. This option is rarely used.

Remarks and examples
Remarks are presented under the following headings:

Bayesian information criteria
Bayes factors
Using bayesstats ic

Bayesian information criteria

Bayesian information criteria are used for selecting a model among a set of candidate models that
best fits the data. Likelihood-based inference is known to be prone to overfitting the data. Indeed, it
is often possible to increase the likelihood by simply including more parameters in a model. Bayesian
information criteria address this problem by applying a penalty proportional to the complexity of the
models to the likelihood.

Consider a finite set of Bayesian models M1, . . . , Mr, which we want to compare with a base
model Mb. All models Mjs are fit to the same dataset but may differ in their likelihood or prior
specification.

Three commonly used information criteria are Akaike information criterion (AIC), Bayesian infor-
mation criterion (BIC), and DIC. All three criteria are likelihood based and include a goodness-of-fit
term proportional to the negative likelihood of the model and a penalty term proportional to the
number of parameters in the model. Models with smaller values of these criteria are preferable.

The BIC, originally derived for the exponential family of distributions, is based on the assumption
that the model has a flat, noninformative prior. In frequentist statistics, BIC is widely used as a
variable-selection criterion, particularly in linear regression. In BIC, the penalty term is a product
of the number of parameters in the model and the log of the sample size. The penalty of BIC thus
increases not only with the number of parameters but also with the sample size. In the AIC, the penalty
term is two times the number of parameters and does not depend on the sample size. As a result, BIC
is more conservative than AIC and prefers simpler models. DIC is similar to AIC, but its penalty term
is based on a complexity term that measures the difference between the expected log likelihood and
the log likelihood at the posterior mean point. DIC is designed specifically for Bayesian estimation
that involves MCMC simulations.

The limitation of all three criteria is that they either ignore prior distributions or assume that prior
distributions are noninformative. They are thus not well suited for Bayesian sensitivity analysis, when
models with the same parameters but different priors are being compared.

The bayesstats ic command reports DIC. See [R] estat ic after the corresponding maximum
likelihood estimation command for values of AIC and BIC.
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Bayes factors

In Bayesian inference, BFs are preferred to model-selection criteria because, unlike BIC, AIC, and
DIC, they incorporate the information about model priors. Taking into account prior information is
essential for Bayesian sensitivity analysis, when models with the same parameters but different priors
are being compared.

The BF of two models is just the ratio of their marginal likelihoods calculated using the same
dataset. Unlike BIC, AIC, and DIC, BFs include all information about the specified Bayesian model.
Thus BFs are not applicable to models with improper priors, whereas BIC, AIC, and DIC are still
applicable because they ignore prior information. BFs, however, are often difficult to compute reliably
because of the difficulty in computing marginal likelihoods.

BFs also require that posterior distributions be completely specified, including the normalizing
constants. The latter is especially important in Bayesian estimation using MCMC simulations, when
the normalizing constants are often omitted from the specification of a posterior distribution. The
Bayesian estimation commands always simulate from a complete posterior distribution when you
select one of the supported Bayesian models, but you need to make sure to include all normalizing
constants with your posterior distribution when you are programming your own Bayesian model (see
[BAYES] bayesmh evaluators) and would like to use BFs during postestimation.

Let BFjb, j = 1, . . . , r, be the BF of model Mj with respect to the base model Mb. All models Mj

are fit to the same dataset; otherwise, BFs are meaningless. The bayesstats ic command calculates
BFjb’s and reports them in log metric or in absolute metric when the bayesfactor option is specified.

Jeffreys (1961) proposes the following interpretation of the values of BFjb based on half-units of
the log metric:

log10(BFjb) BFjb Evidence against Mb

0 to 1/2 1 to 3.2 Bare mention
1/2 to 1 3.2 to 10 Substantial
1 to 2 10 to 100 Strong
>2 >100 Decisive

Kass and Raftery (1995) suggest using twice the natural logarithm of the BF to make it have the
same scale as the DIC and likelihood-ratio test statistic. They suggest the following interpretation
table:

2 loge(BFjb) BFjb Evidence against Mb

0 to 2 1 to 3 Bare mention
2 to 6 3 to 20 Positive
6 to 10 20 to 150 Strong
>10 >150 Very strong

Typically, the worst-fitting model is chosen as a base model. If the base model happens to be
better than the comparison model, the corresponding BF will be negative. In this case, you can apply
results above to the absolute value of the BF.

BFs compute relative probabilities of how well each model fits the data compared with the base
model. Being relative quantities, BFs cannot be used to measure goodness of fit of a particular model
unless one assumes that the base model fits the data well. Some researchers view this as a limitation
of BFs (Gelman et al. 2014). Kass and Raftery (1995), on the other hand, show that BFs can be
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viewed as differences between predictive scores and thus can be used to measure success of different
models at predicting the data.

BFs have several advantages over the more traditional, frequentist testing methods. For example,
they do not have the limitation of the p-value approach to systematically reject the null hypothesis
in large samples. BFs are also suitable for comparing both nonnested and nested models. Also see
Comparing Bayesian models in [BAYES] Intro for more information about Bayesian model comparison.

A key element in computing BFs is calculating the marginal likelihood. Except for some rare
cases, marginal likelihood does not have a closed form and needs to be approximated. A detailed
review of different approximation methods is given by Kass and Raftery (1995). The default method
implemented in bayesstats ic (and bayesmh) is the Laplace–Metropolis approximation (Lewis
and Raftery 1997). The harmonic-mean approximation of the marginal likelihood is also available via
the marglmethod(hmean) option, but we recommend that you use the default method. See Methods
and formulas in [BAYES] bayesmh for technical details.

Using bayesstats ic

Example 1

The bayesstats ic command provides several model-selection statistics that can be used to
compare models. To illustrate the use of bayesstats ic, we consider auto.dta. We model the
fuel-efficiency variable mpg using a normal distribution with fixed variance but unknown, random
mean. There is only one random parameter in this model—{mpg: cons}. We compare the models
with three different prior distributions to find the best one among them. We fit the three models using
bayesmh and save the corresponding estimation results as uniform1, uniform2, and normal.

First, for comparison purposes, let’s obtain the maximum likelihood estimate (MLE) of the mean
of mpg, which is simply the sample mean in our example:

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)

. summarize mpg

Variable Obs Mean Std. dev. Min Max

mpg 74 21.2973 5.785503 12 41

The sample mean of mpg is roughly 21.3.
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Next, we use bayesmh to fit our first model of interest. We fix the variance of the normal distribution
to 30, which is close to the estimated variance of mpg of 5.792 = 33.52.

. set seed 14

. bayesmh mpg, likelihood(normal(30))
> prior({mpg:_cons}, uniform(-10, 10))
> initial({mpg:_cons} 2) saving(uniform1_simdata)
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal({mpg:_cons},30)

Prior:
{mpg:_cons} ~ uniform(-10,10)

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .4102

Log marginal-likelihood = -397.42978 Efficiency = .08018

Equal-tailed
mpg Mean Std. dev. MCSE Median [95% cred. interval]

_cons 9.965511 .0342812 .001211 9.975729 9.871825 9.998796

file uniform1_simdata.dta saved.

. estimates store uniform1

In the first model, we deliberately chose a prior for {mpg: cons}, uniform(-10,10), that
does not include the value of the sample mean. We thus expect this model to fit poorly. Because of
the restricted domain of the specified uniform prior, we also needed to specify an initial value for
{mpg: cons} for MCMC to start from a point of positive posterior probability.

We also specified the saving() option to save the MCMC simulation dataset so that we could use
estimates store to store our estimation results for future use. See Storing estimation results after
Bayesian estimation in [BAYES] Bayesian postestimation for details.
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. set seed 14

. bayesmh mpg, likelihood(normal(30))
> prior({mpg:_cons}, uniform(10, 30))
> initial({mpg:_cons} 20) saving(uniform2_simdata)
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal({mpg:_cons},30)

Prior:
{mpg:_cons} ~ uniform(10,30)

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .4272

Log marginal-likelihood = -237.08583 Efficiency = .2414

Equal-tailed
mpg Mean Std. dev. MCSE Median [95% cred. interval]

_cons 21.31085 .6447073 .013123 21.31485 20.06381 22.57936

file uniform2_simdata.dta saved.

. estimates store uniform2

In the second model, we used a uniform prior that included the value of the sample mean in its
domain.
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. set seed 14

. bayesmh mpg, likelihood(normal(30))
> prior({mpg:_cons}, normal(30)) saving(normal_simdata)
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal({mpg:_cons},30)

Prior:
{mpg:_cons} ~ normal(0,30)

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .4295

Log marginal-likelihood = -244.16624 Efficiency = .2319

Equal-tailed
mpg Mean Std. dev. MCSE Median [95% cred. interval]

_cons 21.01901 .6461194 .013417 21.01596 19.76637 22.3019

file normal_simdata.dta saved.

. estimates store normal

In the third model, we used a normal prior with a variance fixed at 30. Note that we did not
need to specify an initial value for {mpg: cons} in this model, because the domain of the normal
distribution is the whole real line.

Both the uniform2 and normal models yield estimates close to the MLE of 21.3. According to
their credible intervals, the domain of the posterior distribution of {mpg: cons} is concentrated
around MLE. For example, the 95% credible interval for the uniform2 model is [20.06, 22.58].

Now, let’s use bayesstats ic to compare the three models. We list all the models following the
command name and use the normal model as a reference model.

. bayesstats ic uniform1 uniform2 normal, basemodel(normal)

Bayesian information criteria

DIC log(ML) log(BF)

uniform1 785.8891 -397.4298 -153.2635
uniform2 471.1909 -237.0858 7.080404

normal 471.3905 -244.1662 .

Note: Marginal likelihood (ML) is computed
using Laplace--Metropolis approximation.

The uniform1 model performs worse than the other two models according to the log marginal-
likelihood, log(ML), and DIC—the DIC value is much larger, and the log(ML) value is much smaller
for the uniform1 model. The other two models have only slightly different values for DIC and
log(ML), according to which the uniform2 model is preferable.

Although the uniform2 and normal models have different prior distributions, they have almost
identical posterior domain, that is, the range of values of {mpg: cons} where the posterior is strictly
positive. As such, they will have the same values for AIC and BIC, and we will not be able to
discriminate between the two models based on these information criteria.
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The most decisive factor between the uniform2 and normal models is the BF. The value of log
BF, log(BF), is 7.08, which provides very strong evidence in favor of the uniform2 model.

We thus conclude that uniform2 is the best model among the three considered models. This may
be explained by the fact that the specified uniform(10,30) prior is in more agreement with the
likelihood of the data than the specified normal(0,30) prior.

After your analysis, remember to erase the saved simulation datasets you no longer need. For
example, we erase all of them by typing

. erase uniform1_simdata.dta

. erase uniform2_simdata.dta

. erase normal_simdata.dta

Stored results
bayesstats ic stores the following in r():

Scalars
r(bayesfactor) 1 if bayesfactor is specified, 0 otherwise
r(nchains) number of chains used in the computation

Macros
r(names) names of estimation results used
r(basemodel) name of the base or reference model
r(marglmethod) method for approximating marginal likelihood: lmetropolis or hmean
r(chains) chains used in the computation, if chains() is specified

Matrices
r(ic) matrix reporting DIC, log(ML), and log(BF) or BF, if bayesfactor is specified
r(ic chain#) matrix ic for chain #, if sepchains is specified

Methods and formulas
DIC was introduced by Spiegelhalter et al. (2002) for Bayesian model selection using MCMC

simulations. DIC is based on the deviance statistics

D(θ) = −2 { logf(y; θ)− logf∗(y; θ∗)}

where f(· ; ·) is the likelihood function of the model and f∗(y; θ∗) is the likelihood of the full
model that fits data perfectly. Because f∗(y; θ∗) is constant across models fit to the same data, it
is ignored in the actual calculation of DIC. Given an MCMC sample {θt}Tt=1, the expected deviance
can be estimated by the sample average D(θ) = 1/T

∑T
t=1D(θt). Similarly to AIC and BIC, DIC

is a sum of two components: the goodness-of-fit term D(θ) and the model complexity term pD:
DIC = D(θ) + pD. The complexity is defined as the difference between the expected deviance and
the deviance at the sample posterior mean: pD = D(θ)−D(θ). We thus have

DIC = D(θ) + 2pD

Models with smaller values of DIC are preferred to models with larger values of DIC.

With multiple chains, the bayesstats ic command reports the average DIC and the average log
marginal-likelihood computed over the chains. If the sepchains option is specified, these statistics
are reported separately for each chain.



bayesstats ic — Bayesian information criteria and Bayes factors 371

BFs were introduced by Jeffreys (1961). The BF of two models, M1 and M2, is given by

BF12 =
P (y|M1)

P (y|M2)
=
m1(y)

m2(y)

where m1(·) and m2(·) are the corresponding marginal likelihoods associated with models M1 and
M2. (See Methods and formulas in [BAYES] bayesmh for details about computing marginal likelihood.)
BFs are defined only for proper marginal densities. Comparing models with improper priors is allowed
as long as the resulting marginal densities are proper. The methodological importance of BFs comes
from the fact that the so-called posterior odds is a product of prior odds and BF:

P (M1|y)

P (M2|y)
=
P (M1)

P (M2)
× BF12

Therefore, if we assume that M1 and M2 are equally probable a priori, the posterior odds will be
equal to the BF. We thus prefer model M1 if BF12 > 1 and model M2 otherwise. In practice, because
of the higher numerical stability, we often calculate BFs in the (natural) log metric and compare its
value against 0.

logBF12 = logm1(y)− logm2(y)

With multiple chains, BFs are computed using the average log marginal-likelihoods. If the
sepchains option is specified, BFs are calculated and reported separately for each chain.
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Description

bayesstats ppvalues performs posterior predictive checking of the goodness of fit of a Bayesian
model. It computes posterior predictive p-values (PPPs) for functions of replicated outcomes produced
by bayespredict. PPPs measure the agreement between replicated and observed data. PPPs close
to 0 or 1 indicate lack of model fit. The command also reports other summary statistics related to
posterior predictive checking.

Quick start
Posterior predictive summaries of replicated outcomes

Bayesian predictions for all outcome variables after fitting a two-equation Bayesian model using
bayesmh

bayespredict {_ysim1} {_ysim2}, saving(prdata)

Posterior predictive summaries for the first replicated outcome
bayesstats ppvalues {_ysim} using prdata

Posterior predictive summaries for the simulated residuals of the first outcome
bayesstats ppvalues {_resid} using prdata

Posterior predictive summaries for both replicated outcomes
bayesstats ppvalues {_ysim1} {_ysim2} using prdata

Posterior predictive summaries for the first observation of the second replicated outcome squared
bayesstats ppvalues ({_ysim2[1]}^2) using prdata

Posterior predictive summaries for test statistics of replicated outcomes

Posterior predictive summaries for the maximum and minimum across observations of the second
replicated outcome

bayesstats ppvalues (y2max:@max({_ysim2})) (y2min:@min({_ysim2})) ///
using prdata

Posterior predictive summaries for the maximum and minimum across observations of the residuals
for the first outcome variable

bayesstats ppvalues (rmax:@max({_resid1})) (rmin:@min({_resid1})) ///
using prdata

372
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Menu
Statistics > Bayesian analysis > Posterior predictive p-values

Syntax

Posterior predictive summaries for replicated outcomes, residuals, and more

bayesstats ppvalues yspec
[

yspec . . .
]
using predfile

[
, options

]
Posterior predictive summaries for expressions of replicated outcomes, residuals, and more

bayesstats ppvalues (yexprspec)
[
(yexprspec) . . .

]
using predfile

[
, options

]
Posterior predictive summaries for Mata functions of replicated outcomes, residuals, and more

bayesstats ppvalues (funcspec)
[
(funcspec) . . .

]
using predfile

[
, options

]
Full syntax

bayesstats ppvalues predspec
[

predspec . . .
]
using predfile

[
, options

]
predfile is the name of the dataset created by bayespredict that contains prediction results.

yspec is {ysimspec | residspec | label}.
ysimspec is { ysim#} or { ysim#[numlist]}, where { ysim#} refers to all observations of the #th

replicated outcome and { ysim#[numlist]} refers to the selected observations, numlist, of the #th
replicated outcome. { ysim} is a synonym for { ysim1}.

residspec is { resid#} or { resid#[numlist]}, where { resid#} refers to all residuals of the
#th replicated outcome and { resid#[numlist]} refers to the selected residuals, numlist, of the
#th replicated outcome. { resid} is a synonym for { resid1}.

label is the name of the function simulated using bayespredict.

With large datasets, specifications { ysim#} and { resid#} may use a lot of time and memory and
should be avoided. See Generating and saving simulated outcomes in [BAYES] bayespredict.

yexprspec is
[

exprlabel:
]
yexpr, where exprlabel is a valid Stata name and yexpr is a scalar expression

that may contain individual observations of simulated outcomes, { ysim#[#]}; individual expected
outcome values, { mu#[#]}; individual simulated residuals, { resid#[#]}; and other scalar
predictions, {label}.

funcspec is
[

label:
]
@func(arg1

[
, arg2

]
), where label is a valid Stata name; func is an official or user-

defined Mata function that operates on column vectors and returns a real scalar; and arg1 and arg2
are one of { ysim

[
#
]
}, { resid

[
#
]
}, or { mu

[
#
]
}. arg2 is primarily for use with user-defined

Mata functions; see Defining test statistics using Mata functions in [BAYES] bayespredict.

predspec is one of yspec, (yexprspec), or (funcspec). See Different ways of specifying predictions
and their functions in [BAYES] Bayesian postestimation.
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options Description

∗chains( all | numlist) specify which chains to use for computation; default is chains( all)
∗sepchains compute results separately for each chain
nolegend suppress table legend

∗Options chains() and sepchains are relevant only when option nchains() is used with bayesmh.
collect is allowed; see [U] 11.1.10 Prefix commands.

Options

chains( all | numlist) specifies which chains from the MCMC sample to use for computation. The
default is chains( all) or to use all simulated chains. Using multiple chains, provided the chains
have converged, generally improves MCMC summary statistics. Option chains() is relevant only
when option nchains() is specified with bayesmh.

sepchains specifies that the results be computed separately for each chain. The default is to compute
results using all chains as determined by option chains(). Option sepchains is relevant only
when option nchains() is specified with bayesmh.

nolegend suppresses the display of the table legend, which identifies the rows of the table with the
expressions they represent.

Remarks and examples
Remarks are presented under the following headings:

Posterior predictive checks
PPPs
Nonlinear effect of labor and capital on companies’ output

Posterior predictive checks

Posterior predictive checks, or model checks, are graphical and quantitative methods for comparing
observed and replicated outcomes to assess goodness of fit of a Bayesian model. See Box (1980),
Zellner (1975), West (1986), Gelman, Meng, and Stern (1996), and Gelman and Rubin (1992) for
historical remarks and more in-depth discussions.

Replicated outcomes are outcome values that are simulated from the posterior predictive distribution
using the observed covariate data; see Overview of Bayesian predictions and Methods and formulas in
[BAYES] bayespredict. The distribution of replicated outcomes or its various summaries are compared
with those of the observed outcomes. If they are similar, the Bayesian model is considered to fit the
observed data well.

One of the graphical model checks uses quantile–quantile plots to compare observed and replicated
residuals. These plots reveal misspecifications of the error distribution of a model. Histograms are
commonly used to compare the distributions of the observed and replicated outcomes. More formally,
the so-called PPPs, which we describe in the next section, are used to quantify the discrepancy between
the summaries of the observed and replicated data.
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PPPs
The notion of a PPP was introduced by Rubin (1984) as a Bayesian version of the classical

p-value. The role of p-values in classical hypothesis testing is to quantify the discrepancy between
the observed sample and population quantities. Test statistics, which are scalar functions of a sample,
are commonly used as discrepancy measures. The p-value is defined as the probability to obtain a
value of the test statistic as or more extreme than its observed value if the null hypothesis is true.
This probability is computed with respect to the sampling distribution of the test statistic.

In a Bayesian setting, the discrepancy between the model and the observed data is measured by test
quantities, which are scalar functions of a sample and model parameters. A test statistic is a special
case of a test quantity that depends only on the sample. The distribution of a test quantity is defined
with respect to the posterior predictive distribution of the replicated data and posterior distribution of
model parameters. A PPP (or a Bayesian p-value or a Bayesian predictive p-value) is then defined as
the probability that a test quantity for the replicated data could be as or more extreme than for the
observed data. You can think of a PPP as a classical p-value averaged over the posterior distribution
(Meng 1994). For more information about PPPs, see Tsui and Weerahandi (1989), Gelman, Meng,
and Stern (1996), and Gelman et al. (2014), among others.

One of the advantages of PPPs over their classical counterparts is that they automatically handle
nuisance parameters by averaging over the posterior distribution of all model parameters. In contrast,
classical p-values are conditional on fixed model parameters, typically MLEs. Also, PPPs are not
defined conditional on the null hypothesis being true and can be viewed simply as probabilities of
model misfit. Values of PPPs close to zero or one indicate lack of fit. For a well-fitting model, the
PPP should, ideally, be close to 0.5, although values between 0.05 and 0.95 are often considered
acceptable in the literature (Gelman et al. 2014, 150; Congdon 2010, sec. 2.5.2).

One criticism of PPPs is that their distribution under the correct model specification is generally
not uniform (for example, Bayarri and Berger [2000] and Robins, van der Vaart, and Ventura [2000]).
The distribution tends to be more concentrated around 0.5 when the model is correct. Gelman (2013)
argues that this property may be desirable in some cases and discusses the cases when it is not
desirable. The author concludes that although it is difficult to provide general recommendations for
how best to interpret PPPs, he suggests that they are still useful in practice to discover systematic
discrepancies between the observed data and the fitted model.

When you check model fit, it is important to consider different test quantities that describe various
aspects of the distribution of the replicated data. Certain distinctive aspects of the assumed model
distribution such as symmetry and weight of the tails are commonly used as test quantities. For
example, for assumed normal errors, it is appropriate to test the skewness and kurtosis of replicated
residuals and compare them with the skewness and kurtosis of a normal distribution. When you use
test quantities, Gelman (2013) suggests to use “caution in interpreting diagnostics that strongly depend
on parameters or latent data”. In addition to test quantities, you can use PPPs to compare individual
observations, that is, compare the sample of replicated outcomes for a particular observation with the
corresponding observed outcome value.

Nonlinear effect of labor and capital on companies’ output

In this example, we show an application of PPPs to assess goodness of fit of a Bayesian model.
We adapt an example described in Koop (2003, sec. 5.9) about the effect of labor and capital on
companies’ production. The dataset, coutput.dta, includes data for 123 companies with variables
output, labor, and capital. The variables are scaled.
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. use https://www.stata-press.com/data/r18/coutput
(Company output data)

. describe

Contains data from https://www.stata-press.com/data/r18/coutput.dta
Observations: 123 Company output data

Variables: 3 22 Feb 2023 13:24
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

output float %9.0g Output
labor float %9.0g Labor
capital float %9.0g Capital

Sorted by:

Koop (2003) proposes the following nonlinear model for describing companies’ output:

outputi = α+ (β1labor
λ
i + β2capital

λ
i )1/λ + εi, εi ∼i.i.d. N(0, σ2)

A nonlinear model (λ > 1) is expected to provide a better fit for the data than the linear model
(λ = 1). We explore this by using posterior predictive checks.

Without concrete prior knowledge about the parameters α, β1, β2, and λ, we specify weakly
informative priors for them. We use the N(0, 100) prior for the coefficients, which is noninformative
because the variables are scaled to be in the (0, 2) range. We apply exponential prior, exp(1), for
λ because λ is a positive parameter with 1 being a highly probable value for it. Below is the full
model specification using bayesmh:

. bayesmh output =
> ({alpha}+({beta1}*labor^{lambda}+{beta2}*capital^{lambda})^(1/{lambda})),
> likelihood(normal({sig2}))
> prior({alpha beta1 beta2}, normal(0,100))
> prior({lambda}, exp(1)) prior({sig2}, igamma(0.1,0.1))
> init({alpha beta1 beta2 lambda} 1)
> saving(coutput_mcmc) mcmcsize(5000) rseed(16)
Burn-in ...
Simulation ...

Model summary

Likelihood:
output ~ normal(<expr1>,{sig2})

Priors:
{sig2} ~ igamma(0.1,0.1)

{alpha beta1 beta2} ~ normal(0,100)
{lambda} ~ exponential(1)

Expression:
expr1 : {alpha}+({beta1}*labor^{lambda}+{beta2}*capital^{lambda})^
> (1/{lambda})
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Bayesian normal regression MCMC iterations = 7,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 5,000
Number of obs = 123
Acceptance rate = .2176
Efficiency: min = .02226

avg = .03045
Log marginal-likelihood = 6.9478788 max = .03524

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

alpha 1.028072 .0549225 .004364 1.028156 .9300813 1.137604
beta1 .6838483 .0990207 .007467 .6736414 .5037749 .8903975
beta2 .9578192 .140161 .013285 .9413369 .7197326 1.25467

lambda 1.270644 .2435384 .020624 1.255252 .8222015 1.78508
sig2 .0390367 .0052749 .000397 .038495 .0301147 .0503593

file coutput_mcmc.dta saved.

We generated an MCMC sample of size 5,000 with an average efficiency of about 3%. bayesmh
estimated the posterior mean of λ, 1.3, to be larger than 1, which implies that labor and capital do
have a nonlinear effect on companies’ output.

Model assumptions can be assessed through residual analysis. We follow Koop (2003) and use
PPPs to compare various aspects of the distribution of residuals simulated from the fitted model and
observed residuals. By construction, the distribution of the simulated residuals is N(0, σ2).

Example 1: PPPs for simple test statistics

One simple check is to compare the means and variances of the simulated residuals, rsim, with
those of the observed residuals, robs. Let

T1(y) = y =
1

n

n∑
i=1

yi and T2(y) =
1

n− 1

n∑
i=1

(yi − y)2

denote the mean and variance test statistics. We want to compare T1(rsim) with T1(robs) and T2(rsim)
with T2(robs).

We first use bayespredict to generate MCMC samples of means and variances of simulated and
observed residuals.

. bayespredict (mean:@mean({_resid})) (var:@variance({_resid})),
> saving(coutput_pred) rseed(16)

Computing predictions ...

file coutput_pred.dta saved.
file coutput_pred.ster saved.

We used built-in Mata functions mean() and variance() to compute the means and variances; the
Mata function specification is designated with @. We specified { resid} as the argument to these
functions to compute the means and variances of the simulated residuals. We labeled the resulting
means as mean and variances as var; we can use these labels later within bayesstats ppvalues
to refer to these prediction results. And we saved the simulated results in the prediction dataset,
coutput pred.dta. As we discussed in Prediction dataset of [BAYES] bayespredict, the generated
prediction dataset includes, among other variables, the mean variable containing 5,000 means of
simulated residuals,

{
T1(rsim,1), T1(rsim,2), . . . , T1(rsim,5000)

}
, where rsim,t is the column vector
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containing 123 residuals simulated from the fitted model using the tth set of MCMC estimates of
model parameters. (We saved our MCMC estimates of model parameters in couput mcmc.dta with
bayesmh.) Additionally, bayespredict generated 5,000 means of the observed residuals,{
T1(robs,1), T1(robs,2), . . . , T1(robs,5000)

}
, and stored them in the obs mean variable in the

prediction dataset. Similarly, bayespredict generated variances of simulated and observed residuals
and saved them in variables var and obs var in the prediction dataset. See [BAYES] bayespredict
for details.

We can now access the simulated means and variances within bayesstats ppvalues. For example,
we specify {mean} to compute PPPs for the mean test statistic. We also specify the prediction dataset,
coutput pred.dta, containing the simulated means in the required using specification.

. bayesstats ppvalues {mean} using coutput_pred

Posterior predictive summary MCMC sample size = 5,000

T Mean Std. dev. E(T_obs) P(T>=T_obs)

mean -.00007 .0177143 .0000147 .4978

Note: P(T>=T_obs) close to 0 or 1 indicates lack of fit.

T and T obs denote the test statistics computed using the replicated data and observed data, respectively.
In our example, T is T1(rsim) and T obs is T1(robs). The posterior mean estimate, Mean, of T1(rsim)
from the MCMC sample of means of simulated residuals is −0.00007. The posterior mean estimate,
E(T obs), of T1(robs) from the MCMC sample of means of observed residuals is 0.0000147. Both
are close to zero. The estimated PPP is about 0.5, which indicates a perfect agreement between the two
means. This p-value represents the proportion of times the mean of simulated residuals was greater
than or equal to the mean of the observed residuals in the MCMC sample.

The PPP can be also visualized using a histogram with the reference line at the observed mean,
which is essentially 0 in our example.

. bayesgraph histogram {mean} using coutput_pred, color(%50) xline(0)
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The PPP is the area of the histogram to the right of the observed value, which is about 50% in our
example.
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As with the mean, we can compare the variances.

. bayesstats ppvalues {var} using coutput_pred

Posterior predictive summary MCMC sample size = 5,000

T Mean Std. dev. E(T_obs) P(T>=T_obs)

var .038952 .0073444 .03694 .5762

Note: P(T>=T_obs) close to 0 or 1 indicates lack of fit.

Posterior mean estimates of the variances of the simulated and observed residuals are similar and are
close to the error variance {sig2} of 0.39, as estimated by bayesmh. The estimated PPP is 0.58 and
again indicates very good agreement between the variances.

It is not surprising that the means and variances of simulated and observed residuals are in such
good agreement. This tends to be true for many models in which the parameters directly model means
and variances. In example 3, we explore other discrepancy measures such as skewness and kurtosis.

Example 2: Specifying Mata functions directly with bayesstats ppvalues

In example 1, we computed the mean and variance test statistics with bayespredict. Such
specification is preferable with large datasets because it does not save a typically large sample of
replicated outcomes. With moderate-sized datasets, you may save the replicated outcomes first and
compute the functions within bayesstats ppvalues.

For example, here we simulate replicated outcomes using bayespredict. We replace the earlier
coutput pred.dta with new results.

. bayespredict {_ysim}, saving(coutput_pred, replace) rseed(16)

Computing predictions ...

file coutput_pred.dta saved.
file coutput_pred.ster saved.

In this case, the generated prediction dataset contains 5,000 MCMC replicates for each observation
of our outcome output. That is, the dataset has 123 variables and 5,000 observations (and other
auxiliary variables). We can now compute PPPs for any function of the replicated outcomes or their
residuals.

We use the same specification of Mata functions with bayesstats ppvalues as we did with
bayespredict in example 1.

. bayesstats ppvalues (mean:@mean({_resid})) (var:@variance({_resid}))
> using coutput_pred

Posterior predictive summary MCMC sample size = 5,000

T Mean Std. dev. E(T_obs) P(T>=T_obs)

mean -.00007 .0177143 .0000147 .4978
var .038952 .0073444 .03694 .5762

Note: P(T>=T_obs) close to 0 or 1 indicates lack of fit.

We obtain identical results to example 1. Notice that we can combine various specifications in one
call to bayesstats ppvalues.
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bayesstats ppvalues used the replicated outcomes from coutput pred.dta to compute the
simulated residuals, which resulted in an intermediate sample of 5,000 MCMC residuals for each of the
123 observations. It then produced yet another intermediate sample of 5,000 means of the residuals
over 123 observations. Finally, it used the sample of 5,000 means to compute the posterior predictive
summaries as displayed in the output table. The command performed the same computations for the
variances, var.

Using bayespredict to save the entire sample of replicated outcomes, whenever feasible, is
convenient because you can explore various discrepancy measures without having to predefine them.
However, there are two other advantages of the earlier specification, in addition to speed and storage
efficiency. When you compute functions using bayespredict, you can specify expressions of these
functions with bayesstats ppvalues (or other Bayesian postestimation commands). Also, you can
compute your own functions within Stata programs and specify them with bayespredict, whereas the
use of Stata programs is not allowed within bayesstats ppvalues and other Bayesian postestimation
commands. But you can define your own Mata functions and use them with bayesstats ppvalues,
as we demonstrate in the next example.

Example 3: PPPs for user-defined test statistics

Continuing with example 2, we explore other discrepancy measures for the simulated and observed
residuals. Given that we expect our residuals to be normally distributed when the model fits the data,
we can explore their skewness and kurtosis.

Skewness and kurtosis are related to the third and fourth moments of a distribution. The skewness
statistic measures the symmetry of a distribution about its mean. The kurtosis statistic measures the
weight of the tails of a distribution. A normal distribution has skewness of 0 and kurtosis of 3.

There are no built-in Mata functions to compute these measures, so we need to define our own.

. mata:
mata (type end to exit)

: real scalar skew(real colvector vresid) {
> return (sqrt(length(vresid))*sum(vresid:^3)/(sum(vresid:^2)^1.5))
> }

: real scalar kurtosis(real colvector vresid) {
> return (length(vresid)*sum(vresid:^4)/(sum(vresid:^2)^2) - 3)
> }

: end

Mata function skew() computes sample skewness, and kurtosis() computes sample kurtosis, but it
subtracts 3 from the formula so that the kurtosis of a normally distributed sample is 0. Both functions
accept a column vector of residuals as an argument and calculate and return the overall test statistic
as a scalar.
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We can now use these two functions to compute PPPs for skewness and kurtosis of residuals.

. bayesstats ppvalues (sy:@skew({_resid})) (ky:@kurtosis({_resid}))
> using coutput_pred

Posterior predictive summary MCMC sample size = 5,000

T Mean Std. dev. E(T_obs) P(T>=T_obs)

sy .0014651 .3420932 .1763123 .3464
ky -.0368386 .423227 -.3171961 .7304

Note: P(T>=T_obs) close to 0 or 1 indicates lack of fit.

The posterior mean estimates for the skewness and kurtosis of the observed residuals are not as
close to zero as their counterparts simulated from the model. Nevertheless, according to the estimated
PPPs of 0.35 for skewness and of 0.73 for kurtosis, the observed discrepancies can be explained
by sampling variation. For instance, 35% of simulated skewnesses are greater than or equal to the
observed skewnesses.

A PPP close to 0 or 1 indicates model misfit. Although there are no definitive recommendations,
some literature suggests that PPPs less than 0.05 or larger than 0.95 be considered indicative of lack
of fit (Gelman et al. 2014). However, it is important to consider PPPs in the context of your research
question, such as whether the observed discrepancy is practically meaningful.

To visualize once again the PPP, we can plot the histogram of the simulated skewness with the
reference line at the expected observed value of 0.18.

. bayesgraph histogram (sy:@skew({_resid})) using coutput_pred, xline(0.18)
> color(%50)
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Histogram of sy

About 35% of the histogram area is on the right of the mean observed skewness of 0.18.

In conclusion, our residual analysis revealed good agreement between the simulated and observed
residuals with respect to several test statistics. Therefore, there do not appear to be any violations of
the normality assumption for the error terms in the model.
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We want to emphasize the importance of the choice of test statistics when assessing model fit.
You should avoid using sufficient statistics such as sample mean and variance, which are usually well
behaved because they are often directly modeled by parameters. Instead, you should focus on statistics
that measure more specific distribution properties such as quantiles, skewness, kurtosis, maximum
and minimum, and more.

Stored results
bayesstats ppvalues stores the following in r():

Scalars
r(mcmcsize) MCMC sample size used in the computation
r(nchains) number of chains used in the computation

Macros
r(names) names of model parameters and expressions
r(expr #) #th expression
r(exprnames) expression labels
r(chains) chains used in the computation, if chains() is specified

Matrices
r(summary) matrix with predictive statistics for parameters in r(names)
r(summary chain#) matrix summary for chain #, if sepchains is specified

Methods and formulas
See Methods and formulas of [BAYES] bayespredict for general definitions and for formulas related

to replicated outcomes, yrep.

Let Tq(y, θ) be a test quantity. The PPP, q(Tq), is defined as the probability that Tq(yrep, θ) is
greater than or equal to the observed T (yobs, θ) (Rubin 1984, Gelman et al. 2014). Specifically,

q(Tq) = Pr
{
Tq(y

rep, θ) ≥ Tq(yobs, θ)|yobs, Xobs)
}

=

∫ ∫
1Tq(yrep,θ)≥Tq(yobs,θ)p(y

rep, θ|yobs, Xobs)dyrepdθ

=

∫ ∫
1Tq(yrep,θ)≥Tq(yobs,θ)p(y

rep|θ, Xobs)p(θ|yobs, Xobs)dyrepdθ

and 1(A) is an indicator function of A being true.

In practice, the joint posterior distribution p(yrep, θ|yobs, Xobs) is not available. Instead, we have
a simulated sample

{
(yrep,1, θ1), (yrep,2, θ2), . . . , (yrep,T, θT )

}
, where T is the MCMC sample size.

Then q(Tq) is estimated as

q̂(Tq) =
1

T

T∑
t=1

1
Tq(yrep,t,θt)≥Tq(yobs,θt)
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bayesstats ppvalues reports q̂(Tq) in the output table and labels it P(T>=T obs). bayesstats
ppvalues also reports the average observed test quantity, E(T obs),

Ê
{
Tq(y

obs, θ)
}

=
1

T

T∑
t=1

Tq(y
obs, θt)

and the sample mean and standard deviation of the sample of replicated test quantities,{
Tq(y

rep,1, θ1), Tq(y
rep,2, θ2), . . . , Tq(y

rep,T, θT )
}

.

For a special case of test statistics, Tq(y, θ) = Ts(y), the above formulas simplify correspondingly.

� �
M. J. Bayarri (1956–2014) was born in Valencia, Spain. She received a bachelor’s, master’s, and
doctorate degree in mathematics, all from the University of Valencia. She began as an assistant
professor and then became a full professor at her alma mater.

Bayarri won a Fulbright fellowship to attend Carnegie Mellon University in 1984, which marked
the beginning of routine visits to the United States. She became a visiting professor at Purdue
University, an adjunct professor at Duke University, and leader of the research program at
the Statistical and Applied Mathematical Sciences Institute (SAMSI). She coauthored books
on Bayesian statistics and biostatistics, and coauthored numerous research articles, including
some award-winning papers. Her main areas of research included selection models, weighted
distributions, and Bayesian analysis of queuing systems.

Aside from her published contributions, she held multiple leadership roles. For example, Bayarri
served as President of the International Society for Bayesian Analysis (ISBA) and as the principal
investigator of Biostatnet, a network of biostatistical researchers. Her critical skills shined as
Coordinating Editor of the Journal of Statistical Planning and Inference and as an award-winning
food critic. In 1997, she was elected as a fellow of the American Statistical Association, and in
2008, she was elected as a fellow of the Institute of Mathematical Statistics.� �
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bayesstats summary — Bayesian summary statistics

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

bayesstats summary calculates and reports posterior summary statistics for model parameters and
functions of model parameters using current Bayesian estimation results. Posterior summary statistics
include posterior means, posterior standard deviations, MCMC standard errors (MCSE), posterior
medians, and equal-tailed credible intervals or highest posterior density (HPD) credible intervals.

Quick start
Posterior summaries for all model parameters after a Bayesian regression model

bayesstats summary

Same as above, but only for parameters {y:x1} and {y:x2}

bayesstats summary {y:x1} {y:x2}

Same as above
bayesstats summary {y:x1 x2}

Posterior summaries for elements 1,1 and 2,1 of matrix parameter {S}
bayesstats summary {S_1_1 S_2_1}

Posterior summaries for all elements of matrix parameter {S}
bayesstats summary {S}

Posterior summaries with HPD instead of equal-tailed credible intervals and with credible level of
90%

bayesstats summary, hpd clevel(90)

Posterior summaries with MCSE calculated using batch means
bayesstats summary, batch(100)

Posterior summaries for functions of scalar model parameters
bayesstats summary ({y:x1}-{y:_cons}) (sd:sqrt({var}))

Posterior summaries for the log-likelihood and log-posterior functions
bayesstats summary _loglikelihood _logposterior

Posterior summaries for selected model parameters and functions of model parameters and for
log-likelihood and log-posterior functions using abbreviated syntax

bayesstats summary {var} ({y:x1}-{y:_cons}) _ll _lp

Posterior summaries of the simulated outcome
bayespredict {_ysim}, saving(predres)
bayesstats summary {_ysim} using predres

385
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Posterior summaries of the mean across observations of the simulated outcome labeled as mymean

bayesstats summary (mymean: @mean({_ysim})) using predres

Menu
Statistics > Bayesian analysis > Summary statistics

Syntax
Syntax is presented under the following headings:

Summary statistics for model parameters
Summary statistics for predictions

Summary statistics for model parameters

Summary statistics for all model parameters

bayesstats summary
[
, options showreffects

[
(reref)

] ]
bayesstats summary all

[
, options showreffects

[
(reref)

] ]
Summary statistics for selected model parameters

bayesstats summary paramspec
[
, options

]
Summary statistics for expressions of model parameters

bayesstats summary exprspec
[
, options

]
Summary statistics of log-likelihood or log-posterior functions

bayesstats summary loglikelihood | logposterior
[
, options

]
Full syntax

bayesstats summary spec
[

spec . . .
] [

, options
]

paramspec can be one of the following:

{eqname:param} refers to a parameter param with equation name eqname;

{eqname:} refers to all model parameters with equation name eqname;

{eqname:paramlist} refers to parameters with names in paramlist and with equation name eqname;
or

{param} refers to all parameters named param from all equations.

In the above, param can refer to a matrix name, in which case it will imply all elements of this
matrix. See Different ways of specifying model parameters in [BAYES] Bayesian postestimation
for examples.
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exprspec is an optionally labeled expression of model parameters specified in parentheses:

(
[

exprlabel:
]
expr)

exprlabel is a valid Stata name, and expr is a scalar expression that may not contain matrix model
parameters. See Specifying functions of model parameters in [BAYES] Bayesian postestimation
for examples.

loglikelihood and logposterior also have respective synonyms ll and lp.

spec is one of paramspec, exprspec, loglikelihood (or ll), or logposterior (or lp).

Summary statistics for predictions

Summary statistics for simulated outcomes, residuals, and more

bayesstats summary yspec
[

yspec . . .
]
using predfile

[
, options

]
Summary statistics for expressions of simulated outcomes, residuals, and more

bayesstats summary (yexprspec)
[
(yexprspec) . . .

]
using predfile

[
, options

]
Summary statistics for Mata functions of simulated outcomes, residuals, and more

bayesstats summary (funcspec)
[
(funcspec) . . .

]
using predfile

[
, options

]
Full syntax

bayesstats summary predspec
[

predspec . . .
]
using predfile

[
, options

]
predfile is the name of the dataset created by bayespredict that contains prediction results.

yspec is {ysimspec | residspec |muspec | label}.
ysimspec is { ysim#} or { ysim#[numlist]}, where { ysim#} refers to all observations of the #th

simulated outcome and { ysim#[numlist]} refers to the selected observations, numlist, of the #th
simulated outcome. { ysim} is a synonym for { ysim1}.

residspec is { resid#} or { resid#[numlist]}, where { resid#} refers to all residuals of the
#th simulated outcome and { resid#[numlist]} refers to the selected residuals, numlist, of the
#th simulated outcome. { resid} is a synonym for { resid1}.

muspec is { mu#} or { mu#[numlist]}, where { mu#} refers to all expected values of the #th
outcome and { mu#[numlist]} refers to the selected expected values, numlist, of the #th outcome.
{ mu} is a synonym for { mu1}.

label is the name of the function simulated using bayespredict.

With large datasets, specifications { ysim#}, { resid#}, and { mu#} may use a lot of time and
memory and should be avoided. See Generating and saving simulated outcomes in [BAYES] bayespre-
dict.

yexprspec is
[

exprlabel:
]
yexpr, where exprlabel is a valid Stata name and yexpr is a scalar expression

that may contain individual observations of simulated outcomes, { ysim#[#]}; individual expected
outcome values, { mu#[#]}; individual simulated residuals, { resid#[#]}; and other scalar
predictions, {label}.
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funcspec is
[

label:
]
@func(arg1

[
, arg2

]
), where label is a valid Stata name; func is an official or user-

defined Mata function that operates on column vectors and returns a real scalar; and arg1 and arg2
are one of { ysim

[
#
]
}, { resid

[
#
]
}, or { mu

[
#
]
}. arg2 is primarily for use with user-defined

Mata functions; see Defining test statistics using Mata functions in [BAYES] bayespredict.
predspec is one of yspec, (yexprspec), or (funcspec). See Different ways of specifying predictions

and their functions in [BAYES] Bayesian postestimation.

options Description

Main

clevel(#) set credible interval level; default is clevel(95)

hpd display HPD credible intervals instead of the default equal-tailed credible
intervals

batch(#) specify length of block for batch-means calculations; default is batch(0)
∗chains( all | numlist) specify which chains to use for computation; default is chains( all)
∗sepchains compute results separately for each chain
skip(#) skip every # observations from the MCMC sample; default is skip(0)

nolegend suppress table legend
display options control spacing, line width, and base and empty cells

Advanced

corrlag(#) specify maximum autocorrelation lag; default varies
corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)

∗Options chains() and sepchains are relevant only when option nchains() is used with bayesmh or the bayes
prefix.

collect is allowed; see [U] 11.1.10 Prefix commands.

Options� � �
Main �

clevel(#) specifies the credible level, as a percentage, for equal-tailed and HPD credible intervals.
The default is clevel(95) or as set by [BAYES] set clevel.

hpd displays the HPD credible intervals instead of the default equal-tailed credible intervals.

batch(#) specifies the length of the block for calculating batch means and an MCSE using batch
means. The default is batch(0), which means no batch calculations. When batch() is not
specified, the MCSE is computed using effective sample sizes instead of batch means. batch()
may not be combined with corrlag() or corrtol().

chains( all | numlist) specifies which chains from the MCMC sample to use for computation. The
default is chains( all) or to use all simulated chains. Using multiple chains, provided the chains
have converged, generally improves MCMC summary statistics. Option chains() is relevant only
when option nchains() is specified with bayesmh or the bayes prefix.

sepchains specifies that the results be computed separately for each chain. The default is to compute
results using all chains as determined by option chains(). Option sepchains is relevant only
when option nchains() is specified with bayesmh or the bayes prefix.

showreffects and showreffects(reref) are for use after multilevel models, and they specify that
the results for all or a list reref of random-effects parameters be provided in addition to other model
parameters. By default, all random-effects parameters are excluded from the results to conserve
computation time.
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skip(#) specifies that every # observations from the MCMC sample not be used for computation.
The default is skip(0) or to use all observations in the MCMC sample. Option skip() can be
used to subsample or thin the chain. skip(#) is equivalent to a thinning interval of #+1. For
example, if you specify skip(1), corresponding to the thinning interval of 2, the command will
skip every other observation in the sample and will use only observations 1, 3, 5, and so on in the
computation. If you specify skip(2), corresponding to the thinning interval of 3, the command
will skip every 2 observations in the sample and will use only observations 1, 4, 7, and so on in
the computation. skip() does not thin the chain in the sense of physically removing observations
from the sample, as is done by, for example, bayesmh’s thinning() option. It only discards
selected observations from the computation and leaves the original sample unmodified.

nolegend suppresses the display of the table legend, which identifies the rows of the table with the
expressions they represent.

display options: vsquish, noemptycells, baselevels, allbaselevels, nofvlabel,
fvwrap(#), fvwrapon(style), and nolstretch; see [R] Estimation options.

� � �
Advanced �

corrlag(#) specifies the maximum autocorrelation lag used for calculating effective sample sizes. The
default is min{500, mcmcsize()/2}. The total autocorrelation is computed as the sum of all lag-k
autocorrelation values for k from 0 to either corrlag() or the index at which the autocorrelation
becomes less than corrtol() if the latter is less than corrlag(). Options corrlag() and
batch() may not be combined.

corrtol(#) specifies the autocorrelation tolerance used for calculating effective sample sizes. The
default is corrtol(0.01). For a given model parameter, if the absolute value of the lag-k
autocorrelation is less than corrtol(), then all autocorrelation lags beyond the kth lag are
discarded. Options corrtol() and batch() may not be combined.

Remarks and examples

Remarks are presented under the following headings:
Introduction
Bayesian summaries for an auto data example

Introduction

bayesstats summary reports posterior summary statistics for model parameters and their functions
using the current Bayesian estimation results. When typed without arguments, the command displays
results for all model parameters. Alternatively, you can specify a subset of model parameters following
the command name; see Different ways of specifying model parameters in [BAYES] Bayesian
postestimation. You can also obtain results for scalar functions of model parameters; see Specifying
functions of model parameters in [BAYES] Bayesian postestimation.

Sometimes, it may be useful to obtain posterior summaries of log-likelihood and log-posterior
functions. This can be done by specifying loglikelihood and logposterior (or the respective
synonyms ll and lp) following the command name.

You can also obtain the posterior summaries for prediction quantities when you specify the prediction
dataset in the using specification; see Different ways of specifying predictions and their functions in
[BAYES] Bayesian postestimation for how to specify prediction quantities with bayesstats summary.
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bayesstats summary reports the following posterior summary statistics: posterior mean, posterior
standard deviation, MCMC standard error, posterior median, and equal-tailed credible intervals or, if
the hpd option is specified, HPD credible intervals. The default credible level is set to 95%, but you
can change this by specifying the clevel() option. Equal-tailed and HPD intervals may produce very
different results for asymmetric or highly skewed marginal posterior distributions. The HPD intervals
are preferable in this situation.

You should not confuse the term “HPD interval” with the term “HPD region”. A {100×(1−α)}% HPD
interval is defined such that it contains {100×(1−α)}% of the posterior density. A {100×(1−α)}%
HPD region also satisfies the condition that the density inside the region is never lower than that outside
the region. For multimodal univariate marginal posterior distributions, the HPD regions may include
unions of nonintersecting HPD intervals. For unimodal univariate marginal posterior distributions, HPD
regions are indeed simply HPD intervals. The bayesstats summary command thus calculates HPD
intervals assuming unimodal marginal posterior distributions (Chen and Shao 1999).

Some authors use the term “posterior intervals” instead of “credible intervals” and the term “central
posterior intervals” instead of “equal-tailed credible intervals” (for example, Gelman et al. [2014]).

Bayesian summaries for an auto data example

Recall our analysis of auto.dta from example 4 in [BAYES] bayesmh using the mean-only normal
model for mpg with a noninformative prior.

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)

. set seed 14

. bayesmh mpg, likelihood(normal({var}))
> prior({mpg:_cons}, flat) prior({var}, jeffreys)
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal({mpg:_cons},{var})

Priors:
{mpg:_cons} ~ 1 (flat)

{var} ~ jeffreys

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .2668
Efficiency: min = .09718

avg = .1021
Log marginal-likelihood = -234.645 max = .1071

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mpg
_cons 21.29222 .6828864 .021906 21.27898 19.99152 22.61904

var 34.76572 5.91534 .180754 34.18391 24.9129 47.61286
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Example 1: Summaries for all parameters

If we type bayesstats summary without arguments after the bayesmh command, we will obtain
the same summary table as reported by bayesmh.

. bayesstats summary

Posterior summary statistics MCMC sample size = 10,000

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mpg
_cons 21.29222 .6828864 .021906 21.27898 19.99152 22.61904

var 34.76572 5.91534 .180754 34.18391 24.9129 47.61286

The posterior mean of {mpg: cons} is 21.29 and of {var} is 34.8. They are close to their respective
frequentist analogs (the sample mean of mpg is 21.297, and the sample variance is 33.47), because
we used a noninformative prior. Posterior standard deviations are 0.68 for {mpg: cons} and 5.92
for {var}, and they are comparable to frequentist standard errors under this noninformative prior.
The standard error estimates of the posterior means, MCSEs, are low. For example, MCSE is 0.022
for {mpg: cons}. This means that the precision of our estimate is, up to one decimal point, 21.3
provided that MCMC converged. The posterior means and medians of {mpg: cons} are close, which
suggests that the posterior distribution for {mpg: cons} may be symmetric. According to the credible
intervals, we are 95% certain that the posterior mean of {mpg: cons} is roughly between 20 and
23 and that the posterior mean of {var} is roughly between 25 and 48. We can infer from this that
{mpg: cons} is greater than, say, 15, and that {var} is greater than, say, 20, with a very high
probability. (We can use [BAYES] bayestest interval to compute the actual probabilities.)

The above is also equivalent to typing

. bayesstats summary {mpg:_cons} {var}
(output omitted )

Example 2: Credible intervals

By default, bayesstats summary reports 95% equal-tailed credible intervals. We can change the
default credible level by specifying the clevel() option.

. bayesstats summary, clevel(90)

Posterior summary statistics MCMC sample size = 10,000

Equal-tailed
Mean Std. dev. MCSE Median [90% cred. interval]

mpg
_cons 21.29222 .6828864 .021906 21.27898 20.18807 22.44172

var 34.76572 5.91534 .180754 34.18391 26.28517 44.81732

As expected, 90% credible intervals are more narrow.



392 bayesstats summary — Bayesian summary statistics

To calculate and report HPD intervals, we specify the hpd option.

. bayesstats summary, hpd

Posterior summary statistics MCMC sample size = 10,000

HPD
Mean Std. dev. MCSE Median [95% cred. interval]

mpg
_cons 21.29222 .6828864 .021906 21.27898 19.94985 22.54917

var 34.76572 5.91534 .180754 34.18391 24.34876 46.12339

The posterior distribution of {mpg: cons} is symmetric about the posterior mean; thus there is
little difference between the 95% equal-tailed credible interval from example 1 and this 95% HPD
credible interval for {mpg: cons}. The 95% HPD interval for {var} has a smaller width than the
corresponding equal-tailed interval in example 1.

Example 3: Batch-means estimator

bayesstats summary provides two estimators for MCSE: effective-sample-size and batch-means.
Estimation using effective sample sizes is the default. You can use the batch(#) option to request the
batch-means estimator, where # is the batch size. The optimal batch size depends on the autocorrelation
in the MCMC sample. For example, if we observe that the autocorrelation for the parameters of interest
is negligible after lag 100, we can specify batch(100) to estimate MCSE.

In our example, autocorrelation dies out after about lag 10 (see, for example, Autocorrelation plots
in [BAYES] bayesgraph and example 1 in [BAYES] bayesstats ess), so we use 10 as our batch size:

. bayesstats summary, batch(10)

Posterior summary statistics MCMC sample size = 10,000
Batch size = 10

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mpg
_cons 21.29222 .6828864 .015315 21.27898 19.99152 22.61904

var 34.76572 5.91534 .135295 34.18391 24.9129 47.61286

Note: Mean and MCSE are estimated using batch means.

The batch-means MCSE estimates are somewhat smaller than those obtained by default using effective
sample sizes.

Use caution when choosing the batch size for the batch-means method. For example, if you use
the batch size of 1, you will obtain MCSE estimates under the assumption that the draws in the MCMC
sample are independent, which is not true.
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Example 4: Subsampling or thinning the chain

You can reduce correlation between MCMC draws by thinning or subsampling the MCMC chain.
You can use the skip(#) option to skip every # observations from the MCMC sample, which is
equivalent to a thinning interval of # + 1. For example, if you specify skip(1), corresponding to the
thinning interval of 2, bayesstats summary will skip every other observation in the sample and will
use only observations 1, 3, 5, and so on in the computation. If you specify skip(2), corresponding
to the thinning interval of 3, bayesstats summary will skip every two observations in the sample
and will use only observations 1, 4, 7, and so on in the computation. By default, no observations are
skipped—skip(0). Note that skip() does not thin the chain in the sense of physically removing
observations from the sample, as is done by bayesmh’s thinning() option. It discards only selected
observations from the computation and leaves the original sample unmodified.

. bayesstats summary, skip(9)
note: skipping every 9 sample observations; using observations 1,11,21,....

Posterior summary statistics MCMC sample size = 1,000

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mpg
_cons 21.29554 .6813796 .029517 21.27907 19.98813 22.58582

var 34.7396 5.897313 .206269 33.91782 24.9554 48.11452

We selected to skip every 9 observations, which led to a significant reduction of the MCMC sample
size and thus increased our standard deviations. In some cases, with larger MCMC sample sizes,
subsampling may decrease standard deviations because of the decreased autocorrelation in the reduced
MCMC sample.

Example 5: Summaries for expressions of model parameters

bayesstats summary accepts expressions to provide summaries of functions of model parameters.
For example, we can use expression (sd:sqrt({var})) with a label, sd, to summarize the standard
deviation of mpg in addition to the variance.

. bayesstats summary (sd:sqrt({var})) {var}

Posterior summary statistics MCMC sample size = 10,000

sd : sqrt({var})

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

sd 5.87542 .4951654 .014972 5.846701 4.991282 6.900207
var 34.76572 5.91534 .180754 34.18391 24.9129 47.61286
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Expressions can also be used for calculating posterior probabilities, although this can be more
easily done using bayestest interval (see [BAYES] bayestest interval). For illustration, let’s verify
the probability that {var} is within the endpoints of the reported credible interval, indeed 0.95.

. bayesstats summary (prob:{var}>24.913 & {var}<47.613)

Posterior summary statistics MCMC sample size = 10,000

prob : {var}>24.913 & {var}<47.613

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

prob .9502 .2175424 .005301 1 0 1

Example 6: Summaries for log likelihood and log posterior

We can use reserved names loglikelihood (or the synonym ll) and logposterior (or the
synonym lp) to obtain summaries of the log likelihood and log posterior for the simulated MCMC
sample.

. bayesstats summary _ll _lp

Posterior summary statistics MCMC sample size = 10,000

_ll : _loglikelihood
_lp : _logposterior

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

_ll -235.4162 .990654 .032232 -235.1379 -238.1236 -234.4345
_lp -238.9507 1.037785 .034535 -238.6508 -241.7889 -237.9187

Example 7: Summaries for predicted outcomes

We continue our series of examples by computing summaries for Bayesian predictions. Let’s
generate Bayesian predictions of mpg and summarize them.

We use bayespredict to simulate outcome values for mpg for the first 10 observations from
the fitted bayesmh model. To use bayespredict, we must first save the simulation results from
bayesmh in a Stata dataset, autosim.dta. We then use bayespredict to save the prediction results
in the dataset mpgreps.dta.

. bayesmh, saving(autosim)
note: file autosim.dta saved.

. bayespredict {_ysim[1/10]}, saving(mpgreps) rseed(16)

Computing predictions ...

file mpgreps.dta saved.
file mpgreps.ster saved.

We can now summarize the prediction results by using bayesstats summary. We specify the
prediction quantity we wish to summarize, the simulated outcome { ysim} in our example, and the
prediction dataset, mpgreps.dta, which contains the prediction quantity, in the using specification.
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. bayesstats summary {_ysim} using mpgreps

Posterior summary statistics MCMC sample size = 10,000

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

_ysim1_1 21.24878 6.018783 .062648 21.23939 9.444973 33.07051
_ysim1_2 21.2539 5.944206 .060415 21.21638 9.421932 32.90605
_ysim1_3 21.3256 5.910363 .061595 21.31499 9.801655 33.02746
_ysim1_4 21.40651 5.963456 .059479 21.45933 9.794156 33.39388
_ysim1_5 21.19781 5.926335 .061197 21.26437 9.759916 32.80291
_ysim1_6 21.34776 5.94413 .059441 21.32314 9.771529 33.30251
_ysim1_7 21.34043 5.898474 .058985 21.34119 9.821613 33.07709
_ysim1_8 21.25329 5.957051 .05886 21.26176 9.476474 32.96236
_ysim1_9 21.25284 5.866096 .05962 21.3052 9.714165 32.82636

_ysim1_10 21.3464 5.931401 .060853 21.30528 9.670334 33.10769

bayesstats summary reports posterior summaries for all simulated outcomes in the prediction dataset,
mpgreps.dta. Estimated posterior means and standard deviations are similar to the corresponding
observed values for mpg, 21.30 and 5.79, respectively.

We can specifically examine the first observation of the replicated sample, { ysim 1}, and
compare it with the observed value, mpg[1], of 22.

. bayesstats summary ({_ysim_1}>=‘=mpg[1]’) using mpgreps

Posterior summary statistics MCMC sample size = 10,000

expr1 : _ysim1_1>=22

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

expr1 .4479 .497303 .004973 0 0 1

We find that 45% of the replicates of mpg[1] are greater than 22. The reported probability of
0.45 is known as the posterior predictive p-value and is used for goodness-of-fit checking; see
[BAYES] bayesstats ppvalues.

Stored results
bayesstats summary stores the following in r():

Scalars
r(mcmcsize) MCMC sample size used in the computation
r(clevel) credible interval level
r(hpd) 1 if hpd is specified, 0 otherwise
r(batch) batch length for batch-means calculations
r(skip) number of MCMC observations to skip in the computation; every r(skip) observations

are skipped
r(corrlag) maximum autocorrelation lag
r(corrtol) autocorrelation tolerance
r(nchains) number of chains used in the computation

Macros
r(names) names of model parameters and expressions
r(expr #) #th expression
r(exprnames) expression labels
r(chains) chains used in the computation, if chains() is specified
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Matrices
r(summary) matrix with posterior summaries statistics for parameters in r(names)
r(summary chain#) matrix summary for chain #, if sepchains is specified

Methods and formulas
Methods and formulas are presented under the following headings:

Point estimates
Credible intervals

Most of the summary statistics employed in Bayesian analysis are based on the marginal posterior
distributions of individual model parameters or functions of model parameters.

Let θ be a scalar model parameter and {θt}Tt=1 be an MCMC chain of size T drawn from the
marginal posterior distribution of θ. For a function g(θ), substitute {θt}Tt=1 with {g(θt)}Tt=1 in the
formulas below. If θ is a covariance matrix model parameter, the formulas below are applied to each
element of the lower-diagonal portion of θ.

Point estimates

Marginal posterior moments are approximated using the Monte Carlo integration applied to the
simulated samples {θt}Tt=1.

Sample posterior mean and sample posterior standard deviation are defined as follows,

θ̂ =
1

T

T∑
t=1

θt, ŝ
2 =

1

T − 1

T∑
t=1

(θt − θ̂)2

where θ̂ and ŝ2 are sample estimators of the population posterior mean E(θt) and posterior variance
Var(θt).

With multiple chains, the posterior mean and standard deviation are estimated using the combined
sample of all chains or of those that are requested in the chains() option as follows. Let {θjt}Tt=1

be the jth Markov chain, j = 1, . . . ,M , with sample mean θ̂j and variance ŝ2
j . The overall sample

posterior mean is

θ̂ =
1

MT

M∑
j=1

T∑
t=1

θjt

and equals the average of the sample means of individual chains. Let B and W be the respective
between-chains and within-chain variances

B =
T

M − 1

M∑
j=1

(θ̂j − θ̂)2, W =
1

M

M∑
j=1

ŝ2
j

The estimator of the posterior variance is

ŝ2 =
T − 1

T
W +

1

T
B (1)
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When the chains are strongly stationary, ŝ2 is an unbiased estimator of the marginal posterior variance
of θ (Gelman et al. 2014, sec. 11.4).

The precision of the sample posterior mean is evaluated by its standard error, also known as the
Monte Carlo standard error (MCSE). Note that MCSE cannot be estimated using the classical formula
for the standard error, ŝ/

√
T , because of the dependence between θt’s.

Let

σ2 = Var(θt) + 2
∞∑
k=1

Cov(θt, θt+k)

Then,
√
T×MCSE approaches σ asymptotically in T .

bayesstats summary provides two different approaches for estimating MCSE. Both approaches
try to adjust for the existing autocorrelation in the MCMC sample. The first one uses the so-called
effective sample size (ESS), and the second one uses batch means (Roberts 1996; Jones et al. 2006).

The ESS-based estimator for MCSE, the default in bayesstats summary, is given by

MCSE(θ̂) = ŝ/
√

ESS

ESS is defined as

ESS = T/(1 + 2

max lags∑
k=1

ρk)

where ρk is the lag-k autocorrelation, and max lags is the maximum number less than or equal to
ρlag such that for all k = 1, . . . ,max lags, |ρk| > ρtol, where ρlag and ρtol are specified in options
corrlag() and corrtol() with the respective default values of 500 and 0.01. ρk is estimated as
γk/γ0, where

γk =
1

T

T−k∑
t=1

(θt − θ̂)(θt+k − θ̂)

is the lag-k empirical autocovariance.

With multiple chains, the overall ESS is given by the sum of the effective sample sizes of individual
chains. The MCSE is then calculated using the formula

MCSE(θ̂) = ŝ/

√√√√ M∑
j=1

ESSj

where ŝ is computed using (1) and ESSj is the effective sample size of the jth chain.

The batch-means estimator of MCSE is obtained as follows. For a given batch of length b, the
initial MCMC chain is split into m batches of size b,

{θj′+1, . . . , θj′+b} {θj′+b+1, . . . , θj′+2b} . . . {θT−b+1, . . . , θT }
where j′ = T −m × b and m batch means µ̂1, . . . , µ̂m are calculated as sample means of each
batch. m is chosen as the maximum number such that m × b ≤ T . If m is not a divisor of T ,
the first T −m × b observations of the sample are not used in the batch-means computation. The
batch-means estimator of the posterior variance, ŝ2

batch, is based on the assumption that µ̂js are much
less correlated than the original sample draws.

The batch-means estimator of the posterior mean is

θ̂batch =
1

m

m∑
j=1

µ̂j
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We have θ̂batch = θ̂, whenever m × b = T . Under the assumption that the batch means are
uncorrelated, ŝ2

batch = {1/(m− 1)}
∑m
j=1(µ̂j − θ̂batch)2 can be used as an estimator of σ2/b. This

fact justifies the batch-means estimator of MCSE given by

MCSEbatch(θ̂) =
ŝbatch√
m

The accuracy of the batch-means estimator depends on the choice of the batch length b. The higher
the autocorrelation in the original MCMC sample, the larger the batch length b should be, provided
that the number of batches m does not become too small;

√
T is typically used as the maximum

value for b. The batch length is commonly determined by inspecting the autocorrelation plot for θ.
Under certain assumptions, Flegal and Jones (2010) establish that an asymptotically optimal batch
size is of order T 1/3.

With multiple chains, the batch-means estimator is calculated using the combined sample of all
chains or of those that are requested in the chains() option.

Credible intervals
Let θ(1), . . . , θ(T ) be an MCMC sample ordered from smallest to largest. Let (1−α) be a credible

level. Then, a {100× (1− α)}% equal-tailed credible interval is

(θ([Tα/2]), θ([T (1−α/2)]))

where [ ] in the above imply an integer number.

A {100× (1−α)}% HPD interval is defined as the shortest interval among the {100× (1−α)}%
credible intervals (θ(j), θ(j+[T (1−α)])), j = 1, . . . , T − [T (1− α)].

With multiple chains, credible intervals are computed using the combined sample of all chains or
of those requested with the chains() option; see Brooks and Gelman (1998, sec. 1.1).
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Also see
[BAYES] bayes — Bayesian regression models using the bayes prefix

[BAYES] bayesmh — Bayesian models using Metropolis–Hastings algorithm

[BAYES] Bayesian estimation — Bayesian estimation commands

[BAYES] Bayesian postestimation — Postestimation tools for bayesmh and the bayes prefix

[BAYES] bayesgraph — Graphical summaries and convergence diagnostics

[BAYES] bayespredict — Bayesian predictions

[BAYES] bayesstats ess — Effective sample sizes and related statistics

[BAYES] bayesstats ppvalues — Bayesian predictive p-values and other predictive summaries

[BAYES] bayestest interval — Interval hypothesis testing



Title

bayestest — Bayesian hypothesis testing

Description Remarks and examples Also see

Description
bayestest provides two types of Bayesian hypothesis testing, interval hypothesis testing and

model hypothesis testing, using current Bayesian estimation results.

bayestest interval performs interval hypothesis tests for model parameters and functions of
model parameters; see [BAYES] bayestest interval.

bayestest model tests hypotheses about models by computing posterior probabilities of the
models; see [BAYES] bayestest model.

Remarks and examples
Bayesian hypothesis testing is fundamentally different from the conventional frequentist hypothesis

testing using p-values. Frequentist hypothesis testing is based on the deterministic decision of whether
to reject a null hypothesis against an alternative hypothesis based on the obtained p-value. Bayesian
hypothesis testing is built upon a probabilistic formulation for a parameter of interest. For example,
it can provide a probabilistic summary of how likely that parameter of interest belongs to some
prespecified set of values. Also, Bayesian testing can assign a probability to a hypothesis of interest or
model of interest given the observed data. This cannot be done in the frequentist testing. The ability
to assign a probability to a hypothesis often provides a more natural interpretation of the results. For
example, Bayesian hypothesis testing provides a direct answer to the following questions. How likely
is it that the mean height of males is larger than six feet? What is the probability that a person is
guilty versus being innocent? How likely is one model over the other model? Frequentist hypothesis
testing cannot be used to answer these questions.

We consider two forms of Bayesian hypothesis testing: interval hypothesis testing and what we
call model hypothesis testing.

The goal of interval hypothesis testing is to estimate the probability that a model parameter lies
in a certain interval; see [BAYES] bayestest interval for details.

The goal of model hypothesis testing is to test hypotheses about models by computing probabilities
of the specified models given the observed data; see [BAYES] bayestest model for details.

Also see
[BAYES] Bayesian postestimation — Postestimation tools for bayesmh and the bayes prefix

[BAYES] bayestest interval — Interval hypothesis testing

[BAYES] bayestest model — Hypothesis testing using model posterior probabilities

400



Title

bayestest interval — Interval hypothesis testing

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Reference Also see

Description

bayestest interval performs interval hypothesis tests for model parameters and functions of
model parameters using current Bayesian estimation results. bayestest interval reports mean
estimates, standard deviations, and MCMC standard errors of posterior probabilities associated with
an interval hypothesis.

Quick start
Posterior probability of the hypothesis that 45 < {y: cons} < 50

bayestest interval {y: cons}, lower(45) upper(50)

Same as above, but skip every 5 observations from the full MCMC sample
bayestest interval {y: cons}, lower(45) upper(50) skip(5)

Posterior probability of a hypothesis about a function of model parameter {y:x1}
bayestest interval (OR:exp({y:x1})), lower(1.1) upper(1.5)

Posterior probability of hypotheses 45 < {y: cons} < 50 and 0 < {var} < 10 tested independently
bayestest interval ({y: cons}, lower(45) upper(50)) ///

({var}, lower(0) upper(10))

Same as above, but tested jointly
bayestest interval (({y: cons}, lower(45) upper(50)) ///

({var}, lower(0) upper(10)), joint)

Posterior probability of the hypothesis {mean} = 2 for discrete parameter {mean}
bayestest interval ({mean}==2)

Posterior probability of the interval hypothesis 0 ≤ {mean} ≤ 4
bayestest interval {mean}, lower(0, inclusive) upper(4, inclusive)

Posterior probability that the first observation of the first simulated outcome is positive (after bayesmh)
bayespredict {_ysim}, saving(predres)
bayestest interval {_ysim[1]} using predres, lower(0)

Posterior probability that the predicted test statistic chi2stat is less than 1
bayespredict (chi2stat: @chi2stat({_ysim})), saving(predres)
bayestest interval {chi2stat} using predres, upper(1)

401
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Menu
Statistics > Bayesian analysis > Interval hypothesis testing

Syntax

Test one interval hypothesis about continuous or discrete parameter

bayestest interval exspec
[
using predfile

] [
, luspec options

]
Test one point hypothesis about discrete parameter

bayestest interval exspec==#
[
using predfile

] [
, options

]
Test multiple hypotheses separately

bayestest interval (testspec)
[
(testspec) . . .

] [
using predfile

] [
, options

]
Test multiple hypotheses jointly

bayestest interval (jointspec)
[
using predfile

] [
, options

]
Full syntax

bayestest interval (spec)
[
(spec) . . .

] [
using predfile

] [
, options

]
exspec is optionally labeled expression of model parameters,

[
prlabel:

]
expr, where prlabel is a

valid Stata name (or prob# by default), and expr is a scalar model parameter or scalar expression
(parentheses are optional) containing scalar model parameters. The expression expr may not contain
variable names.

predfile is the name of the dataset created by bayespredict that contains prediction results. When
you specify using predfile, expr may contain individual observations of simulated outcomes
{ ysim#[#]}, expected outcome values { mu#[#]}, simulated residuals { resid#[#]}, and
their expressions as described in Functions of simulated outcomes, expected values, and residuals
in Syntax of [BAYES] bayespredict. expr may also contain {label}, which is the name of the
function simulated using [BAYES] bayespredict. See Different ways of specifying predictions and
their functions in [BAYES] Bayesian postestimation. expr may not contain model parameters when
using predfile is specified.

testspec is exspec
[
, luspec

]
or exspec==# for discrete parameters only.

jointspec is
[

prlabel:
]
(testspec) (testspec) . . . , joint. The labels (if any) of testspec are ignored.

spec is one of testspec or jointspec. spec may not contain model parameters when using predfile is
specified.



bayestest interval — Interval hypothesis testing 403

luspec Null hypothesis

lower(#)
[
upper(.)

]
θ > #

lower(#, inclusive)
[
upper(.)

]
θ ≥ #[

lower(.)
]
upper(#) θ < #[

lower(.)
]
upper(#, inclusive) θ ≤ #

lower(#l) upper(#u) #l < θ <#u
lower(#l) upper(#u, inclusive) #l < θ ≤ #u
lower(#l, inclusive) upper(#u) #l ≤ θ < #u
lower(#l, inclusive) upper(#u, inclusive) #l ≤ θ ≤ #u

lower(intspec) and upper(intspec) specify the lower- and upper-interval values, respectively.

intspec is #
[
, inclusive

]
where # is the interval value, and suboption inclusive specifies that this value should be included
in the interval, meaning a closed interval. Closed intervals make sense only for discrete parameters.

intspec may also contain a dot (.), meaning negative infinity for lower() and positive infinity
for upper(). Either option lower(.) or option upper(.) must be specified.

options Description

Main
∗chains( all | numlist) specify which chains to use for computation; default is chains( all)
∗sepchains compute results separately for each chain
skip(#) skip every # observations from the MCMC sample; default is skip(0)

nolegend suppress table legend

Advanced

corrlag(#) specify maximum autocorrelation lag; default varies
corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)

∗Options chains() and sepchains are relevant only when option nchains() is used with bayesmh or the bayes
prefix.

collect is allowed; see [U] 11.1.10 Prefix commands.

Options

� � �
Main �

chains( all | numlist) specifies which chains from the MCMC sample to use for computation. The
default is chains( all) or to use all simulated chains. Using multiple chains, provided the chains
have converged, generally improves MCMC summary statistics. Option chains() is relevant only
when option nchains() is specified with bayesmh or the bayes prefix.

sepchains specifies that the results be computed separately for each chain. The default is to compute
results using all chains as determined by option chains(). Option sepchains is relevant only
when option nchains() is specified with bayesmh or the bayes prefix.

skip(#) specifies that every # observations from the MCMC sample not be used for computation.
The default is skip(0) or to use all observations in the MCMC sample. Option skip() can be
used to subsample or thin the chain. skip(#) is equivalent to a thinning interval of #+1. For
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example, if you specify skip(1), corresponding to the thinning interval of 2, the command will
skip every other observation in the sample and will use only observations 1, 3, 5, and so on in the
computation. If you specify skip(2), corresponding to the thinning interval of 3, the command
will skip every 2 observations in the sample and will use only observations 1, 4, 7, and so on in
the computation. skip() does not thin the chain in the sense of physically removing observations
from the sample, as is done by, for example, bayesmh’s thinning() option. It only discards
selected observations from the computation and leaves the original sample unmodified.

nolegend suppresses the display of the table legend, which identifies the rows of the table with the
expressions they represent.

� � �
Advanced �

corrlag(#) specifies the maximum autocorrelation lag used for calculating effective sample sizes.
The default is min{500, mcmcsize()/2}. The total autocorrelation is computed as the sum of
all lag-k autocorrelation values for k from 0 to either corrlag() or the index at which the
autocorrelation becomes less than corrtol() if the latter is less than corrlag().

corrtol(#) specifies the autocorrelation tolerance used for calculating effective sample sizes. The
default is corrtol(0.01). For a given model parameter, if the absolute value of the lag-k
autocorrelation is less than corrtol(), then all autocorrelation lags beyond the kth lag are
discarded.

Remarks and examples

Remarks are presented under the following headings:
Introduction
Interval tests for continuous parameters
Interval tests for discrete parameters

Introduction

In this entry, we describe interval hypothesis testing, the goal of which is to estimate the probability
that a model parameter lies in a certain interval. Interval hypothesis testing is inversely related to
credible intervals. For example, if we have a 95% credible interval for θ with endpoints U and L, then
the probability of a hypothesis H0: θ ∈ [U,L] is 0.95. For hypothesis testing using model posterior
probabilities, see [BAYES] bayestest model.

In frequentist hypothesis testing, we often consider a point hypothesis such as H0: θ = θ0 versus
Ha : θ 6= θ0. In Bayesian hypothesis testing, the probability P (θ = θ0) is 0 whenever θ has a
continuous posterior distribution. A point hypothesis is relevant only to parameters with discrete
posterior distributions. For continuous parameters, all hypotheses should be formulated as intervals.
One possibility is to consider an interval hypothesis H0: θ ∈ (θ0 − ε, θ0 + ε), where ε is some small
value.

Note that Bayesian hypothesis testing does not really need a distinction between the null and
alternative hypotheses, in the sense that they are defined in a frequentist statistic. There is no need to
“protect” the null hypothesis: if P{H0: θ ∈ (a, b)} = p, then P{Ha: θ /∈ (a, b)} = 1− p. In what
follows, when we refer to H0, we imply a hypothesis of interest H0: θ ∈ Θ, and when we refer to
Ha, we imply the complement hypothesis Ha: θ ∈ Θc, where Θ is a set of points from the domain
of θ and Θc is its complement.
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The bayestest interval command estimates the posterior probability of a null interval hypothesis
H0 using the simulated posterior distributions of model parameters produced by Bayesian estimation.
Essentially, bayestest interval reports posterior summaries for a dichotomous expression that
represents H0.

For example, suppose we would like to test the following hypothesis: H0: θ ∈ (a, b). Then,

bayestest interval ({theta}, lower(a) upper(b))

is equivalent to

bayesstats summary ({theta} > a & {theta} < b)

bayestest interval reports the estimated posterior mean probability for H0, which is not a
p-value—as reported by classical frequentist tests—used to decide whether to reject H0 in favor
of the alternative Ha. The p-value interpretation is based on the dichotomous problem formulation
of H0 versus Ha, assuming that one of these two alternatives is actually true. The answer in the
Bayesian context is a probability statement about θ that is free of any deterministic presumptions.
For example, if you estimate P (H0) to be 0.15, you cannot ask whether this value is significant
or whether you can reject the null hypothesis. Bayesian interpretation of this probability is that if
you draw θ from the specified prior distribution and update your knowledge about θ based on the
observed data, then there is a 15% chance that θ will belong to the interval (a, b). So the conclusion
of Bayesian hypothesis testing is not an acceptance or rejection of the null hypothesis but an explicit
probability statement about the tested hypothesis.

Interval tests for continuous parameters

Let’s continue our analysis of auto.dta from example 4 in [BAYES] bayesmh using the mean-only
normal model for mpg with a noninformative prior.

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)

. set seed 14

. bayesmh mpg, likelihood(normal({var}))
> prior({mpg:_cons}, flat) prior({var}, jeffreys)
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal({mpg:_cons},{var})

Priors:
{mpg:_cons} ~ 1 (flat)

{var} ~ jeffreys



406 bayestest interval — Interval hypothesis testing

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .2668
Efficiency: min = .09718

avg = .1021
Log marginal-likelihood = -234.645 max = .1071

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mpg
_cons 21.29222 .6828864 .021906 21.27898 19.99152 22.61904

var 34.76572 5.91534 .180754 34.18391 24.9129 47.61286

Example 1: Interval hypothesis and credible intervals

In the introduction, we commented on the inverse relationship that exists between interval hypothesis
tests and credible intervals. Let’s verify this using bayestest interval. We are interested in a
hypothesis H0: {mpg: cons} ∈ (19.992, 22.619), where the specified numbers are the endpoints of
the credible interval for {mpg: cons} from the bayesmh output. To compute the posterior probability
for this hypothesis, we specify the parameter following the command line and specify interval endpoints
in lower() and upper().

. bayestest interval {mpg:_cons}, lower(19.992) upper(22.619)

Interval tests MCMC sample size = 10,000

prob1 : 19.992 < {mpg:_cons} < 22.619

Mean Std. dev. MCSE

prob1 .9496 0.21878 .0053652

The estimated posterior probability is close to 0.95, as we expected, because we used the endpoints
of the 95% credible intervals for {mpg: cons}.

By default, bayestest interval labels probabilities as prob# (prob1 in our example). You can
specify your own label as long as you enclose the parameter in parentheses:

. bayestest interval (mean:{mpg:_cons}), lower(19.992) upper(22.619)

Interval tests MCMC sample size = 10,000

mean : 19.992 < {mpg:_cons} < 22.619

Mean Std. dev. MCSE

mean .9496 0.21878 .0053652
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Example 2: Testing multiple hypotheses separately

Continuing example 1, we can verify that the probability associated with the credible interval for
{var} is also close to 0.95.

We can specify multiple hypotheses with bayestest interval, but we must enclose them in
parentheses.

. bayestest interval ({mpg:_cons}, lower(19.992) upper(22.619))
> ({var}, lower(24.913) upper(47.613))

Interval tests MCMC sample size = 10,000

prob1 : 19.992 < {mpg:_cons} < 22.619
prob2 : 24.913 < {var} < 47.613

Mean Std. dev. MCSE

prob1 .9496 0.21878 .0053652
prob2 .9502 0.21754 .0053011

The estimated posterior probability prob2 is also close to 0.95.

Example 3: Testing multiple hypotheses jointly

We can perform joint tests of multiple hypotheses by enclosing hypothesis to be tested jointly in
parentheses and by specifying suboption joint. Notice that each individual hypothesis must also be
enclosed in parentheses.

. bayestest interval (({mpg:_cons}, lower(19.992) upper(22.619))
> ({var}, lower(24.913) upper(47.613)), joint)

Interval tests MCMC sample size = 10,000

prob1 : 19.992 < {mpg:_cons} < 22.619,
24.913 < {var} < 47.613

Mean Std. dev. MCSE

prob1 .9034 0.29543 .0076789

The joint posterior probability of both {mpg: cons} and {var} belonging to their respective intervals
is 0.9 with a posterior variance of 0.3 and MCSE of 0.008.
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Example 4: Full syntax

We can specify multiple separate hypotheses and hypotheses tested jointly in one call to bayestest
interval.

. bayestest interval (({mpg:_cons}, lower(19.992) upper(22.619))
> ({var}, lower(24.913) upper(47.613)), joint)
> ({mpg:_cons}, lower(21))
> ({var}, upper(40))

Interval tests MCMC sample size = 10,000

prob1 : 19.992 < {mpg:_cons} < 22.619,
24.913 < {var} < 47.613

prob2 : {mpg:_cons} > 21
prob3 : {var} < 40

Mean Std. dev. MCSE

prob1 .9034 0.29543 .0076789
prob2 .6505 0.47684 .015786
prob3 .8136 0.38945 .0110613

In addition to the joint hypothesis from the previous example, we specified two new separate
interval hypotheses for testing {mpg: cons} > 21 and for testing {var} < 40. The estimated
posterior probabilities for these hypotheses are 0.65 and 0.81, respectively.

Example 5: Point hypothesis for continuous parameters

As we discussed in Introduction above, point hypothesis for continuous parameters do not make
sense, because the corresponding probability is 0:

. bayestest interval ({mpg:_cons}==21)

Interval tests MCMC sample size = 10,000

prob1 : {mpg:_cons}==21

Mean Std. dev. MCSE

prob1 0 0.00000 0

We can consider a small window around the value of interest and test an interval hypothesis
instead:

. bayestest interval ({mpg:_cons}, lower(20.5) upper(21.5))

Interval tests MCMC sample size = 10,000

prob1 : 20.5 < {mpg:_cons} < 21.5

Mean Std. dev. MCSE

prob1 .4932 0.49998 .0138391

The probability that {mpg: cons} is between 20.5 and 21.5 is about 50%.

Note that the probability of a continuous parameter belonging to a closed interval or semiclosed
interval is the same as that for the open interval. Below we use suboption inclusive within lower()
and upper() to request the closed interval.
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. bayestest interval ({mpg:_cons}, lower(20.5,inclusive) upper(21.5,inclusive))

Interval tests MCMC sample size = 10,000

prob1 : 20.5 <= {mpg:_cons} <= 21.5

Mean Std. dev. MCSE

prob1 .4932 0.49998 .0138391

We obtain the same results as above for the corresponding open interval.

Example 6: Functions of parameters

We can test functions of model parameters. For example, let’s compute the probability that the
posterior standard deviation is greater than 6.

. bayestest interval (sd: sqrt({var}), lower(6))

Interval tests MCMC sample size = 10,000

sd : sqrt({var}) > 6

Mean Std. dev. MCSE

sd .3793 0.48524 .0143883

The estimated probability is 0.38.

Interval tests for discrete parameters

In this section, we demonstrate how to perform hypothesis testing for a discrete parameter.

First, we simulate data from the Poisson distribution with a mean of 2.

. clear

. set seed 12345

. set obs 20
Number of observations (_N) was 0, now 20.

. generate double y = rpoisson(2)
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We fit a Bayesian Poisson model to the data and specify a discrete prior for the mean
P (µ = k) = 0.25 for k = 1, 2, 3, 4.

. set seed 14

. bayesmh y, likelihood(dpoisson({mu}))
> prior({mu}, index(0.25,0.25,0.25,0.25)) initial({mu} 2)
Burn-in ...
Simulation ...

Model summary

Likelihood:
y ~ poisson({mu})

Prior:
{mu} ~ index(0.25,0.25,0.25,0.25)

Bayesian Poisson model MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 20
Acceptance rate = .2552

Log marginal-likelihood = -31.58903 Efficiency = .4428

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mu 2.0014 .1039188 .001562 2 2 2

Example 7: Point hypotheses for discrete parameters

We can compute probabilities for each of the four discrete values of {mu}.

. bayestest interval ({mu}==1) ({mu}==2) ({mu}==3) ({mu}==4)

Interval tests MCMC sample size = 10,000

prob1 : {mu}==1
prob2 : {mu}==2
prob3 : {mu}==3
prob4 : {mu}==4

Mean Std. dev. MCSE

prob1 .0047 0.06840 .0013918
prob2 .9892 0.10337 .0027909
prob3 .0061 0.07787 .0017691
prob4 0 0.00000 0

The posterior probability that {mu} equals 2 is 0.99.
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Example 8: Interval hypotheses for discrete parameters

As we can with continuous parameters, we can test interval hypotheses for discrete parameters.
For example, we can compute the probability of whether {mu} is between 2 and 4.

. bayestest interval {mu}, lower(2) upper(4)

Interval tests MCMC sample size = 10,000

prob1 : 2 < {mu} < 4

Mean Std. dev. MCSE

prob1 .0061 0.07787 .0017691

The estimated probability is very small.

Note that unlike hypotheses for continuous parameters, hypotheses including open intervals and
closed or semiclosed intervals for discrete parameters may have different probabilities.

. bayestest interval {mu}, lower(2, inclusive) upper(4, inclusive)

Interval tests MCMC sample size = 10,000

prob1 : 2 <= {mu} <= 4

Mean Std. dev. MCSE

prob1 .9953 0.06840 .0013918

The estimated posterior probability that {mu} is between 2 and 4, inclusively, is drastically different
compared with the results for the corresponding open interval.

Stored results
bayestest interval stores the following in r():
Scalars

r(mcmcsize) MCMC sample size used in the computation
r(skip) number of MCMC observations to skip in the computation; every r(skip) observations

are skipped
r(corrlag) maximum autocorrelation lag
r(corrtol) autocorrelation tolerance
r(nchains) number of chains used in the computation

Macros
r(names) names of probability expressions
r(expr #) #th probability expression
r(chains) chains used in the computation, if chains() is specified

Matrices
r(summary) test results for parameters in r(names)
r(summary chain#) matrix summary for chain #, if sepchains is specified

Methods and formulas
Let θ be a model parameter and {θt}Tt=1 be an MCMC sample of size T drawn from the marginal

posterior distribution of θ. It is often of interest to test how likely it is that θ belongs to a particular
range of values. Note that testing a point null hypothesis such as H0: θ = θ0 is usually of no interest
for parameters with continuous posterior distributions, because the posterior probability P (H0) is 0.
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To perform an open-interval test of the form

H0: θ ∈ (a, b) versus Ha: θ /∈ (a, b)

we estimate the posterior probability of H0 from the given MCMC sample. The bayestest interval
command calculates the probability P (H0) based on the simulated marginal posterior distribution of
θ. The estimate is given by the frequency of inclusion of θts in the test interval

P̂ (H0) =
1

T

T∑
t=1

1{θt∈(a,b)} (1)

where 1{A} is an indicator function and equals 1 if A is true and 0 otherwise.

When a model parameter θ is discrete, the following closed- and semiclosed-interval tests may be
of interest in addition to open-interval tests:

H0: θ = a versus Ha: θ 6= a

H0: θ ∈ [a, b] versus Ha: θ /∈ [a, b]

H0: θ ∈ [a, b) versus Ha: θ /∈ [a, b)

H0: θ ∈ (a, b] versus Ha: θ /∈ (a, b]

The corresponding probabilities are calculated as follows:

P̂ (H0) =
1

T

T∑
t=1

1{θt=a}

P̂ (H0) =
1

T

T∑
t=1

1{θt∈[a,b]}

P̂ (H0) =
1

T

T∑
t=1

1{θt∈[a,b)}

P̂ (H0) =
1

T

T∑
t=1

1{θt∈(a,b]}

The probability of an alternative hypothesis is always given by P (Ha) = 1− P (H0).

The formulas above can be modified to accommodate joint hypotheses tests by multiplying the
indicator functions of the individual hypothesis statements. For example, for a joint hypothesis
H0: θ1 > a, θ2 < b, we would replace the indicator function with 1{θ1t>a} × 1{θ2t<b} in (1), where
{θ1t}Tt=1 and {θ2t}Tt=1 are the corresponding MCMC samples for θ1 and θ2.

With multiple chains, the bayestest interval command performs computation using all simulated
chains or those specified in the chains() option. The calculations are the same as for bayesstats
summary in the presence of multiple chains; see Methods and formulas in [BAYES] bayesstats
summary.
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Title

bayestest model — Hypothesis testing using model posterior probabilities

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Also see

Description

bayestest model computes posterior probabilities of Bayesian models fit using the bayesmh
command or the bayes prefix. These posterior probabilities can be used to test hypotheses about model
parameters. The command reports marginal likelihoods, prior probabilities, and posterior probabilities
for all tested models.

Quick start
Compute posterior probabilities of models corresponding to previously saved estimation results M1

and M2

bayestest model M1 M2

Same as above, but specify prior probabilities for models
bayestest model M1 M2, prior(0.3 0.7)

Menu
Statistics > Bayesian analysis > Hypothesis testing using model posterior probabilities

414
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Syntax
bayestest model

[
namelist

] [
, options

]
where namelist is a name, a list of names, all, or *. A name may be ., meaning the current (active)

estimates. all and * mean the same thing.

options Description

Main

prior(numlist) specify prior probabilities for tested models; default is all models
are equally likely

∗chains( all | numlist) specify which chains to use for computation; default is chains( all)
∗sepchains compute results separately for each chain

Advanced

marglmethod(method) specify marginal-likelihood approximation method; default is to use
Laplace–Metropolis approximation, lmetropolis; rarely used

∗Options chains() and sepchains are relevant only when option nchains() is used with bayesmh or the bayes
prefix.

collect is allowed; see [U] 11.1.10 Prefix commands.

method Description

lmetropolis Laplace–Metropolis approximation; default
hmean harmonic-mean approximation

Options

� � �
Main �

prior(numlist) specifies prior probabilities for models. By default, all models are assumed to be
equally likely. You may specify probabilities for all tested models, in which case the probabilities
must sum to one. Alternatively, you may specify probabilities for all but the last model, in which
case the sum of the specified probabilities must be less than one, and the probability for the last
model is computed as one minus this sum.

chains( all | numlist) specifies which chains from the MCMC sample to use for computation. The
default is chains( all) or to use all simulated chains. Using multiple chains, provided the chains
have converged, generally improves MCMC summary statistics. Option chains() is relevant only
when option nchains() is specified with bayesmh or the bayes prefix.

sepchains specifies that the results be computed separately for each chain. The default is to compute
results using all chains as determined by option chains(). Option sepchains is relevant only
when option nchains() is specified with bayesmh or the bayes prefix.

� � �
Advanced �

marglmethod(method) specifies a method for approximating the marginal likelihood. method is either
lmetropolis, the default, for Laplace–Metropolis approximation or hmean for harmonic-mean
approximation. This option is rarely used.
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Remarks and examples
Remarks are presented under the following headings:

Introduction
Testing nested hypotheses
Comparing models with different priors

Introduction

In this entry, we describe hypothesis testing by computing model posterior probabilities, probabilities
of Bayesian models given observed data. For interval hypothesis testing, see [BAYES] bayestest interval.

The bayestest model command computes posterior probabilities for specified models. The
computed probabilities can be used to compare which model is more likely among considered models
given observed data. You can compare models that differ only in several covariates or models with
completely different regression functions, such as linear and nonlinear models. You can compare
models with different outcome distributions or with different prior distributions or both. The only
requirements are that the considered models have proper posterior distributions and that the same
data are used to fit the models. If MCMC is used to approximate posterior distributions, convergence
of MCMC should also be verified before model comparison.

The results reported by bayestest model are related to Bayes factors; see [BAYES] bayesstats
ic to compute Bayes factors.

To use bayestest model, you must store estimation results after each Bayesian model of interest.
You can use estimates store (see [R] estimates store) to store estimation results after bayesmh
or the bayes prefix, as you can with other estimation commands, provided you also saved simulation
results from bayesmh or the bayes prefix using the saving() option. See Storing estimation results
after Bayesian estimation in [BAYES] Bayesian postestimation for details.

Testing nested hypotheses

Consider the following Bayesian regression model for auto.dta,

mpg = β0 + β1weight1 + β2length1 + ε

where weight1 and length1 are the original weight and length variables rescaled to have similar
scale as mpg.

We assume that errors are normally distributed: ε ∼ normal(0, σ2). We also assume a noninfor-
mative Jeffreys prior for the parameters: (β, σ2) ∼ 1/σ2. Suppose that we are interested in testing
whether there is a relationship between mileage and weight and length of cars. We will consider four
models: the mean-only model, the model with weight only, the model with length only, and the full
model with both covariates.

In a frequentist setting, the four models correspond to the following hypotheses: H0 : β1 = 0,
β2 = 0, H0: β1 = 0, and H0: β2 = 0. In a Bayesian setting, we cannot formulate point hypotheses
for parameters with continuous distributions; see [BAYES] bayestest interval for examples. However,
we can compute probabilities of how likely each of the four models is given the observed data.
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Let’s load auto.dta and generate rescaled versions of weight and length.

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)

. generate weight1 = weight/100

. generate length1 = length/10

Next, we fit the four models using bayesmh. We use the saving() option to save the simulation
datasets so that we can store estimation results of each model for later use with bayestest model.

The first model we fit is the mean-only model. We store its estimation results as meanonly.

. set seed 14

. bayesmh mpg, likelihood(normal({var}))
> prior({mpg:}, flat) prior({var}, jeffreys)
> saving(meanonly_simdata) burnin(3500)
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal({mpg:_cons},{var})

Priors:
{mpg:_cons} ~ 1 (flat)

{var} ~ jeffreys

Bayesian normal regression MCMC iterations = 13,500
Random-walk Metropolis--Hastings sampling Burn-in = 3,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .2627
Efficiency: min = .105

avg = .1064
Log marginal-likelihood = -234.64617 max = .1078

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mpg
_cons 21.29355 .6768607 .020887 21.28059 20.00132 22.61904

var 34.80707 5.963995 .181615 34.23247 24.9129 47.6883

file meanonly_simdata.dta saved.

. estimates store meanonly

To accommodate the Jeffreys prior for the parameters, we specify suboption flat within the
prior() option for coefficients to request the flat prior with the density of 1 and suboption jeffreys
within prior() for the variance parameter to request a Jeffreys prior. We also specify a longer burn-in
period to improve convergence of MCMC samples for all examples. (Remember to use bayesgraph
to check convergence of MCMC.)
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We fit the second model containing only covariate length1 and store its results as length:

. set seed 14

. bayesmh mpg length1, likelihood(normal({var}))
> prior({mpg:}, flat) prior({var}, jeffreys)
> saving(length_simdata) burnin(3500)
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal(xb_mpg,{var})

Priors:
{mpg:length1 _cons} ~ 1 (flat) (1)

{var} ~ jeffreys

(1) Parameters are elements of the linear form xb_mpg.

Bayesian normal regression MCMC iterations = 13,500
Random-walk Metropolis--Hastings sampling Burn-in = 3,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .2865
Efficiency: min = .0771

avg = .07938
Log marginal-likelihood = -198.7678 max = .08286

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mpg
length1 -2.069861 .1882345 .006539 -2.068094 -2.44718 -1.706264

_cons 60.20346 3.562119 .127411 60.20927 53.34306 67.22423

var 12.88852 2.273808 .081887 12.62042 9.169482 18.16685

file length_simdata.dta saved.

. estimates store length
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We fit the third model containing only covariate weight1 and store its results as weight:

. set seed 14

. bayesmh mpg weight1, likelihood(normal({var}))
> prior({mpg:}, flat) prior({var}, jeffreys)
> saving(weight_simdata) burnin(3500)
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal(xb_mpg,{var})

Priors:
{mpg:weight1 _cons} ~ 1 (flat) (1)

{var} ~ jeffreys

(1) Parameters are elements of the linear form xb_mpg.

Bayesian normal regression MCMC iterations = 13,500
Random-walk Metropolis--Hastings sampling Burn-in = 3,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .1735
Efficiency: min = .0463

avg = .06694
Log marginal-likelihood = -198.20751 max = .07989

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mpg
weight1 -.6014409 .0506121 .001791 -.6013071 -.6996976 -.50121

_cons 39.45934 1.574673 .057646 39.49735 36.31386 42.33547

var 12.13997 2.141741 .099534 11.87332 8.883221 17.14041

file weight_simdata.dta saved.

. estimates store weight
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Finally, we fit the last model containing both covariates and store its results as full:
. set seed 14

. bayesmh mpg weight1 length1, likelihood(normal({var}))
> prior({mpg:}, flat) prior({var}, jeffreys)
> saving(full_simdata) burnin(3500)
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal(xb_mpg,{var})

Priors:
{mpg:weight1 length1 _cons} ~ 1 (flat) (1)

{var} ~ jeffreys

(1) Parameters are elements of the linear form xb_mpg.

Bayesian normal regression MCMC iterations = 13,500
Random-walk Metropolis--Hastings sampling Burn-in = 3,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .2323
Efficiency: min = .05455

avg = .06647
Log marginal-likelihood = -196.86195 max = .08085

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mpg
weight1 -.3977027 .1580411 .005558 -.401646 -.6965175 -.0721332
length1 -.7599159 .5546754 .021944 -.7502182 -1.907818 .3106868

_cons 47.5913 6.132597 .262563 47.5656 35.89593 60.18002

var 11.81753 1.96315 .07608 11.59273 8.729182 16.14065

file full_simdata.dta saved.

. estimates store full

Example 1: Computing posterior probabilities of models

We now use bayestest model to compute posterior probabilities of the four models.
. bayestest model meanonly length weight full

Bayesian model tests

log(ML) P(M) P(M|y)

meanonly -234.6462 0.2500 0.0000
length -198.7678 0.2500 0.1055
weight -198.2075 0.2500 0.1848

full -196.8619 0.2500 0.7097

Note: Marginal likelihood (ML) is computed using
Laplace--Metropolis approximation.

The mean-only model is very unlikely compared with other models. The length and weight models
are somewhat likely with the respective posterior probabilities of 0.11 and 0.18, and the full model
has the highest posterior probability of 0.71.
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Example 2: Specifying prior probabilities of models

If we have some prior knowledge about each of the models, we can use the prior() option to
specify prior probabilities for each model. For example, suppose that we have prior knowledge that
the weight model is much more likely than the full model so that the prior probabilities are 0.1 for
the mean-only model and the length model, 0.6 for the weight model, and only 0.2 for the full model.

. bayestest model meanonly length weight full, prior(0.1 0.1 0.6 0.2)

Bayesian model tests

log(ML) P(M) P(M|y)

meanonly -234.6462 0.1000 0.0000
length -198.7678 0.1000 0.0401
weight -198.2075 0.6000 0.4210

full -196.8619 0.2000 0.5389

Note: Marginal likelihood (ML) is computed using
Laplace--Metropolis approximation.

Under the specified prior, posterior probabilities of the weight and full models are now more similar:
0.42 and 0.54, respectively, but the full model is still preferable.

The above is equivalent to the following prior specification:

. bayestest model meanonly length weight full, prior(0.1 0.1 0.6)
(output omitted )

Using our results, we conclude that mpg is related to both weight and length and would proceed
with the full model.

After your analysis, remember to erase the saved simulation datasets you no longer need. For
example, we erase all of them by typing

. erase meanonly_simdata.dta

. erase weight_simdata.dta

. erase length_simdata.dta

. erase full_simdata.dta

Comparing models with different priors

In the previous section, we used bayestest model to compare nested hypotheses about which
covariates to include in the regression function. We can use bayestest model to compare models
with not only different covariates but also different outcome distributions and priors for parameters.

We continue our analysis of auto.dta, but for simplicity, we now consider the mean-only model
for mpg. Let’s compare models with two slightly different informative priors. We use an informative
normal–inverse-gamma prior for both models,

(β0|σ2) ∼ N(µ0, σ
2/n0)

σ2 ∼ InvGamma(ν0/2, ν0σ
2
0/2)

with µ0 = 25, n0 = 10, and σ2
0 = 30, but we consider two different values for the degrees of

freedom: ν0 = 5 and ν0 = 1.
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We use bayesmh to fit our models. Following the formulas, we specify a normal() prior for the
constant {mpg: cons} (mean parameter) and an inverse-gamma prior igamma() for the variance
parameter {var}. We specify an expression for the variance of the normal prior distribution in
parentheses.

We fit the first model with ν0 = 5 and store its estimation results as informative1.

. set seed 14

. bayesmh mpg, likelihood(normal({var}))
> prior({mpg:}, normal(25,{var}/10))
> prior({var}, igamma(2.5,75)) saving(inf1_simdata)
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal({mpg:_cons},{var})

Priors:
{mpg:_cons} ~ normal(25,{var}/10)

{var} ~ igamma(2.5,75)

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .2548
Efficiency: min = .09065

avg = .1049
Log marginal-likelihood = -238.55856 max = .1192

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mpg
_cons 21.71853 .6592655 .019091 21.69554 20.44644 23.04896

var 35.47405 5.823372 .193417 34.72454 25.84419 48.228

file inf1_simdata.dta saved.

. estimates store informative1
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We fit the second model with ν0 = 1 and store its estimation results as informative2.

. set seed 14

. bayesmh mpg, likelihood(normal({var}))
> prior({mpg:}, normal(25,{var}/10))
> prior({var}, igamma(0.5,15)) saving(inf2_simdata)
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal({mpg:_cons},{var})

Priors:
{mpg:_cons} ~ normal(25,{var}/10)

{var} ~ igamma(0.5,15)

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .2261
Efficiency: min = .0941

avg = .109
Log marginal-likelihood = -239.4049 max = .1239

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mpg
_cons 21.7175 .6539814 .021319 21.7295 20.47311 23.02638

var 35.89504 6.288571 .178665 35.17056 25.86084 50.21624

file inf2_simdata.dta saved.

. estimates store informative2

Example 3: Comparing models with informative priors

We now use bayestest model to compare our models with two different informative priors.

. bayestest model informative1 informative2

Bayesian model tests

log(ML) P(M) P(M|y)

informative1 -238.5586 0.5000 0.6998
informative2 -239.4049 0.5000 0.3002

Note: Marginal likelihood (ML) is computed using
Laplace--Metropolis approximation.

Assuming that both models are equally likely a priori, the posterior probability of the informative1
stored results, 0.70, is much higher than the probability of the informative2 stored results, 0.3.
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Example 4: Comparing a model with noninformative prior

A note of caution regarding comparing models with informative and noninformative priors—models
with noninformative priors will often win because they are typically in most agreement with the
observed data. For models with noninformative priors, most of the information about parameters
is contained in a likelihood. As such, any model with an informative prior that is not in perfect
agreement with the data will not fit data as well as a model with a noninformative prior.

For example, let’s fit our constant-only model using a noninformative Jeffreys prior for the
parameters.

. set seed 14

. bayesmh mpg, likelihood(normal({var}))
> prior({mpg:}, flat) prior({var}, jeffreys)
> saving(jeffreys_simdata)
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal({mpg:_cons},{var})

Priors:
{mpg:_cons} ~ 1 (flat)

{var} ~ jeffreys

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .2668
Efficiency: min = .09718

avg = .1021
Log marginal-likelihood = -234.645 max = .1071

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

mpg
_cons 21.29222 .6828864 .021906 21.27898 19.99152 22.61904

var 34.76572 5.91534 .180754 34.18391 24.9129 47.61286

file jeffreys_simdata.dta saved.

. estimates store jeffreys

Let’s now compare this model with our two informative models.
. bayestest model informative1 informative2 jeffreys

Bayesian model tests

log(ML) P(M) P(M|y)

informative1 -238.5586 0.3333 0.0194
informative2 -239.4049 0.3333 0.0083

jeffreys -234.6450 0.3333 0.9723

Note: Marginal likelihood (ML) is computed using
Laplace--Metropolis approximation.

The posterior probability of the Jeffreys model is 0.97.
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Finally, at the end of our analysis, we erase all the simulation datasets we no longer need. We
erase all of them by typing

. erase inf1_simdata.dta

. erase inf2_simdata.dta

. erase jeffreys_simdata.dta

Stored results
bayestest model stores the following in r():

Macros
r(names) names of estimation results used
r(marglmethod) method for approximating marginal likelihood: lmetropolis or hmean
r(chains) chains used in the computation, if chains() is specified

Matrices
r(test) test results for models in r(names)
r(test chain#) matrix test for chain #, if sepchains is specified

Methods and formulas
Suppose we have r models Mj for j = 1, . . . , r with prior probabilities P (Mj) such that∑r
j=1 p(Mj) = 1. Then, posterior probability for model J is

P (Mj |y) =
P (y|Mj)P (Mj)

P (y)

where P (y|Mj) = mj(y) is the marginal likelihood of Mj with respect to y, and P (y) =∑r
j=1 P (y|Mj)P (Mj). See Methods and formulas in [BAYES] bayesmh for details about computing

marginal likelihood.

With multiple chains, the bayestest model command uses the averaged across chains log
marginal-likelihood for calculations. If the sepchains option is specified, the results are calculated
and reported separately for each chain.

Also see
[BAYES] bayes — Bayesian regression models using the bayes prefix

[BAYES] bayesmh — Bayesian models using Metropolis–Hastings algorithm

[BAYES] Bayesian estimation — Bayesian estimation commands

[BAYES] Bayesian postestimation — Postestimation tools for bayesmh and the bayes prefix

[BAYES] bayesstats ic — Bayesian information criteria and Bayes factors

[BAYES] bayesstats summary — Bayesian summary statistics

[BAYES] bayestest interval — Interval hypothesis testing
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Description

bayespredict computes Bayesian predictions using current estimation results produced by
bayesmh with built-in likelihood models or by bayes: var, bayes: xtreg, bayes: xtlogit,
bayes: xtprobit, bayes: xtologit, bayes: xtoprobit, bayes: xtpoisson, bayes: xtnbreg,
or bayes: xtmlogit. The Bayesian predictions are saved in a separate Stata dataset. Bayesian pre-
dictions include simulated outcomes, which are samples from the posterior predictive distribution of
the fitted Bayesian model, and their functions. You can also compute posterior summaries of simulated
outcomes and store them as new variables in the current dataset.

bayesreps generates a random subset of MCMC replicates of simulated outcomes from the entire
MCMC sample and stores them as new variables in the current dataset. This command is useful for
checking model fit.

bayespredict and bayesreps require that you first save MCMC results by using the saving()
option with the bayesmh command or the bayes prefix.

Quick start
Simulated outcomes

Predictions for the first outcome variable after fitting a two-equation Bayesian model using bayesmh

bayespredict {_ysim}, saving(prdata)

Same as above, but for the second outcome variable, replacing prdata.dta with new prediction
results

bayespredict {_ysim2}, saving(prdata, replace)

Predictions for the first outcome variable and observations 2 through 5
bayespredict {_ysim1[2/5]}, saving(prdata, replace)

Test statistics for simulated outcomes

Maximums and minimums of simulated outcomes computed over observations for the first outcome
variable

bayespredict (rmax:@max({_ysim1})) (rmin:@min({_ysim1})), ///
saving(prdata, replace)

Maximums and minimums of residuals for the second outcome variable
bayespredict (rmax:@max({_resid2})) (rmin:@min({_resid2})), ///

saving(prdata, replace)

426
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Posterior summaries of simulated outcomes

Posterior means for the two outcomes stored in new variables pmean1 and pmean2 in the current
dataset

bayespredict pmean1 pmean2, mean

Same as above, but calculating posterior medians and storing them in new variables pmedian1 and
pmedian2 specified as a variable stub pmedian*

bayespredict pmedian*, median

95% credible intervals for the second outcome variable y2; the lower and upper bounds are stored
in cril2 and criu2, respectively

bayespredict cril2 criu2, cri outcome(y2)

Simulate and save MCMC replicates of simulated outcomes

Generate 10 MCMC replicates for the first outcome in the model, and store them as new variables
y1rep1, . . . , y1rep10 in the current dataset

bayesreps y1rep*, nreps(10)

Same as above, but for the second outcome y2 and storing the results in new variables y2rep1, . . . ,
y2rep10

bayesreps y2rep*, nreps(10) outcome(y2)

Menu
Statistics > Bayesian analysis > Predictions
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Syntax
Syntax is presented under the following headings:

Compute predictions
Compute posterior summaries of simulated outcomes
Generate a subset of MCMC replicates of simulated outcomes

Compute predictions

Prediction of selected outcome variables and observations

bayespredict ysimspec
[

ysimspec . . .
] [

if
] [

in
]
, saving(filespec)

[
simopts

]
Functions of simulated outcomes, expected values, and residuals

bayespredict (funcspec)
[
(funcspec) . . .

] [
if
] [

in
]
, saving(filespec)

[
simopts

]
ysimspec is { ysim#} or { ysim#[numlist]}, where { ysim#} refers to all observations of the #th

simulated outcome and { ysim#[numlist]} refers to the selected observations, numlist, of the
#th simulated outcome. { ysim} is a synonym for { ysim1}. With large datasets, specification
{ ysim#} may use a lot of time and memory and should be avoided. See Generating and saving
simulated outcomes.

funcspec is one of the following,[
label:

]
@func(arg1

[
, arg2

]
)[

label:
]
@userprog arg1

[
arg2

] [
, extravars(varlist) passthruopts(string)

]
where label is a valid Stata name; func is an official or user-defined Mata function that operates on
column vectors and returns a real scalar; userprog is a user-defined Stata program; and arg1 and
arg2 are one of { ysim

[
#
]
}, { resid

[
#
]
}, or { mu

[
#
]
}. { mu#} refers to expected values,

and { resid#} refers to residuals for the #th outcome, where the latter is defined as the difference
between { ysim#} and { mu#}. arg2 is primarily for use with user-defined Mata functions; see
Defining test statistics using Mata functions.

Compute posterior summaries of simulated outcomes

Posterior mean of simulated outcomes

bayespredict
[

type
]

newvarspec
[

if
] [

in
]
, mean[

outcome(depvar) meanopts simopts
]

Posterior median or posterior standard deviation of simulated outcomes

bayespredict
[

type
]

newvarspec
[

if
] [

in
]
, median | std[

outcome(depvar) simopts
]

Credible intervals for simulated outcomes

bayespredict
[

type
]

newvarl newvaru
[

if
] [

in
]
, cri[

outcome(depvar) criopts simopts
]

newvarspec is newvar for single-outcome models and newvarlist or stub* for multiple-outcome
models.
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Generate a subset of MCMC replicates of simulated outcomes

bayesreps
[

type
]

newrepspec
[

if
] [

in
]
, nreps(#)

[
outcome(depvar) simopts

]
newrepspec is newvar with nreps(1) for a single replicate and stub* with nreps(#), where # is

greater than 1, for multiple replicates.

meanopts Description

Main

mcse(newvar) create newvar containing MCSEs

Advanced

batch(#) specify length of block for batch-means calculations; default is batch(0)

corrlag(#) specify maximum autocorrelation lag; default varies
corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)

simopts Description

Simulation

rseed(#) random-number seed
∗chains( all | numlist) specify which chains to use for computation; default is chains( all)

dots display dots every 100 iterations and iteration numbers every
1,000 iterations

dots(#
[
, every(#)

]
) display dots as simulation is performed

∗Option chains() is relevant only when option nchains() is used with bayesmh.

criopts Description

Main

clevel(#) set credible interval level; default is clevel(95)

hpd calculate HPD credible intervals instead of the default equal-tailed credible
intervals

Options

Options are presented under the following headings:
Options for predictions
Options for posterior summaries
Options for bayesreps
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Options for predictions

� � �
Main �

saving(filename
[
, replace

]
) saves the requested predictions such as simulated outcomes and

residuals in filename.dta. It also saves auxiliary estimation results in filename.ster, which is
accessible by specifying estimates use filename. The replace option specifies to overwrite
filename.dta and filename.ster if they exist. saving() is required when computing predictions.
The results are saved only for the outcome variables, observations, and functions that are specified
with bayespredict. See Prediction dataset for details.

extravars(varlist) is for use with user-defined Stata programs. It specifies any variables in addition
to dependent and independent variables that you may need to calculate predictions. For example,
such variables are offset variables and exposure variables for count-data models.

passthruopts(string) is for use with user-defined Stata programs. It specifies a list of options you
may want to pass to your program when calculating predictions. For example, these options may
contain fixed values of model parameters and hyperparameters.

� � �
Simulation �

rseed(#) sets the random-number seed. This option can be used to reproduce results. With one
chain, rseed(#) is equivalent to typing set seed # prior to calling bayespredict; see [R] set
seed. With multiple chains, you should use rseed() for reproducibility; see Reproducing results
in [BAYES] bayesmh.

chains( all | numlist) specifies which chains from the MCMC sample to use for computation. The
default is chains( all) or to use all simulated chains. Using multiple chains, provided the chains
have converged, generally improves MCMC summary statistics. Option chains() is relevant only
when option nchains() is specified with bayesmh.

dots and dots(#) specify to display dots during simulation. With multiple chains, these options
affect all chains. dots(#) displays a dot every # iterations. If dots(. . ., every(#)) is specified,
then an iteration number is displayed every #th iteration instead of a dot. dots(, every(#)) is
equivalent to dots(1, every(#)). dots displays dots every 100 iterations and iteration numbers
every 1,000 iterations; it is a synonym for dots(100, every(1000)).

Options for posterior summaries

� � �
Main �

mean calculates posterior means of a simulated outcome variable and stores them as a new variable
in the current dataset.

median calculates posterior medians of a simulated outcome variable and stores them as a new
variable in the current dataset.

std calculates posterior standard deviations of a simulated outcome variable and stores them as a
new variable in the current dataset.

mean, median, and std can compute results for all simulated outcome variables or for a specific one.
To compute results for all simulated outcome variables, you specify p new variables, where p is the
number of dependent variables. Alternatively, you can specify stub*, in which case these options will
store the results in variables stub1, stub2, . . ., stubp. To compute the results for a specific simulated
outcome variable, you specify one new variable and, optionally, the outcome variable name in option
outcome(); if you omit outcome(), the first outcome variable is assumed.
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cri calculates credible intervals for a simulated outcome variable and stores the corresponding lower
and upper bounds in two new variables in the current dataset. For multiple-outcome models, it
computes the results for the outcome variable as specified in option outcome() or, by default, for
the first outcome variable.

outcome(depvar) is for use with multiple-outcome models when computing posterior summaries
of simulated outcomes. It specifies for which simulated outcome posterior summaries are to be
calculated. outcome() should contain a name of the outcome (dependent) variable. The default
is the first outcome variable. outcome() may not be combined with the newvarlist or stub*
specification.

mcse(newvar) is for use in a combination with option mean. It adds newvar of storage type type
containing MCSEs for the posterior means of a simulated outcome variable. If multiple variables
are specified with bayespredict, newvar is used as a stub newvar*.

clevel(#) specifies the credible level, as a percentage, for equal-tailed and HPD credible intervals.
The default is clevel(95) or as set by [BAYES] set clevel. This option requires that cri also be
specified.

hpd calculates the HPD credible intervals instead of the default equal-tailed credible intervals. This
option requires that cri also be specified.

� � �
Simulation �

rseed(#) sets the random-number seed. This option can be used to reproduce results. With one
chain, rseed(#) is equivalent to typing set seed # prior to calling bayespredict; see [R] set
seed. With multiple chains, you should use rseed() for reproducibility; see Reproducing results
in [BAYES] bayesmh.

chains( all | numlist) specifies which chains from the MCMC sample to use for computation. The
default is chains( all) or to use all simulated chains. Using multiple chains, provided the chains
have converged, generally improves MCMC summary statistics. Option chains() is relevant only
when option nchains() is specified with bayesmh.

dots and dots(#) specify to display dots during simulation. With multiple chains, these options
affect all chains. dots(#) displays a dot every # iterations. If dots(. . ., every(#)) is specified,
then an iteration number is displayed every #th iteration instead of a dot. dots(, every(#)) is
equivalent to dots(1, every(#)). dots displays dots every 100 iterations and iteration numbers
every 1,000 iterations; it is a synonym for dots(100, every(1000)).

� � �
Advanced �

The advanced options are available only in a combination with option mean.

batch(#) specifies the length of the block for calculating batch means and an MCSE using batch
means. The default is batch(0), which means no batch calculations. When batch() is not
specified, the MCSE is computed using effective sample sizes instead of batch means. batch()
may not be combined with corrlag() or corrtol().

corrlag(#) specifies the maximum autocorrelation lag used for calculating effective sample sizes. The
default is min{500, mcmcsize()/2}. The total autocorrelation is computed as the sum of all lag-k
autocorrelation values for k from 0 to either corrlag() or the index at which the autocorrelation
becomes less than corrtol() if the latter is less than corrlag(). Options corrlag() and
batch() may not be combined.

corrtol(#) specifies the autocorrelation tolerance used for calculating effective sample sizes. The
default is corrtol(0.01). For a given model parameter, if the absolute value of the lag-k
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autocorrelation is less than corrtol(), then all autocorrelation lags beyond the kth lag are
discarded. Options corrtol() and batch() may not be combined.

Options for bayesreps� � �
Main �

nreps(#) specifies the number of MCMC replicates of simulated outcomes to be drawn at random
from the entire sample of MCMC replicates. # must be an integer between 1 and the MCMC sample
size, inclusively. The generated replicates are stored as new variables in the current dataset. For
a single replicate, nreps(1), you specify one new variable name. For multiple replicates, you
specify a stub*, in which case the replicates will be stored in variables stub1, stub2, . . ., stubR,
where R is the number of replicates specified in nreps().

outcome(depvar) is for use with multiple-outcomes models when generating MCMC replicates of
simulated outcomes using bayesreps. It specifies for which simulated outcome MCMC replicates
are to be generated. The default is to use the first outcome variable. You can specify other outcome
(dependent) variable names in outcome().

� � �
Simulation �

rseed(#) sets the random-number seed. This option can be used to reproduce results. With one
chain, rseed(#) is equivalent to typing set seed # prior to calling bayespredict; see [R] set
seed. With multiple chains, you should use rseed() for reproducibility; see Reproducing results
in [BAYES] bayesmh.

chains( all | numlist) specifies which chains from the MCMC sample to use for computation. The
default is chains( all) or to use all simulated chains. Using multiple chains, provided the chains
have converged, generally improves MCMC summary statistics. Option chains() is relevant only
when option nchains() is specified with bayesmh.

dots and dots(#) specify to display dots during simulation. With multiple chains, these options
affect all chains. dots(#) displays a dot every # iterations. If dots(. . ., every(#)) is specified,
then an iteration number is displayed every #th iteration instead of a dot. dots(, every(#)) is
equivalent to dots(1, every(#)). dots displays dots every 100 iterations and iteration numbers
every 1,000 iterations; it is a synonym for dots(100, every(1000)).

Remarks and examples
Remarks are presented under the following headings:

Overview of Bayesian predictions
Prior and posterior predictive distributions
Simulated outcomes
Posterior predictive checking and replicated outcomes

Using bayespredict and bayesreps
Generating and saving simulated outcomes
Defining test statistics using Mata functions
User-defined Stata programs
Posterior summaries of simulated outcomes
Prediction dataset

Examples are presented under the following headings:
Bayesian predictions
Posterior predictive inference
Out-of-sample prediction
One-step-ahead Bayesian forecast after Bayesian VAR
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Overview of Bayesian predictions

Bayesian analysis rests on the assumptions that model parameters are random quantities distributed
according to some prior beliefs and that the data, once observed, are fixed. The main goal of Bayesian
inference is to estimate the posterior distribution of model parameters, which combines the prior
beliefs with evidence from the observed data, and form inferences about these parameters. But what
if we want to estimate a future outcome value? This is one of the goals of Bayesian prediction.

Bayesian predictions are useful in a wide range of applications. They can be used as optimal
predictors in forecasting, optimal classifiers in classification problems, imputations for missing data,
and more. They are also important for checking model goodness of fit.

Bayesian prediction differs from frequentist prediction. Prediction, in a frequentist sense, is a
deterministic function of estimated model parameters. For example, in a linear regression, the linear
predictor, which is a linear combination of estimated regression coefficients and observed covariates, is
used to predict values of continuous outcomes. Bayesian predictions, on the other hand, are functions
of simulated outcomes and are thus stochastic quantities. Simulated outcomes are new outcome values
generated from the so-called posterior predictive distribution, which we describe next.

Prior and posterior predictive distributions

Before the data y are observed, the distribution of y is

p(y) =

∫
p(y, θ)dθ =

∫
p(y|θ)p(θ)dθ (1)

where p(y|θ) is the likelihood of y given model parameters θ and p(θ) is the prior distribution for
θ. p(y) is the so-called prior predictive distribution, which is more commonly known as the marginal
distribution of y.

Suppose that yobs are observed data and y = ynew are new, unobserved (future) data. The posterior
predictive distribution of ynew is

p(ynew|yobs) =

∫
p(ynew|θ)p(θ|yobs)dθ (2)

where p(θ|yobs) is the posterior distribution of θ. You can think of a posterior predictive distribution
(2) as a prior predictive distribution (1) updated after observing the data yobs.

Simulated outcomes

Like the posterior distribution of model parameters, the predictive distribution p(ynew|yobs) usually
does not have a closed form and must be approximated. The goal of Bayesian prediction is to simulate
data from p(ynew|yobs). We will refer to these data as simulated outcomes, ysim.

Formula (2) provides a way of simulating new outcome values by using a two-step procedure.
First, model parameters θ? are simulated from their posterior distribution p(θ|yobs). Then, the new
outcome values ysim are simulated from the likelihood model p(ysim|θ?) using the simulated model
parameters from step 1. These two steps are repeated for a prespecified number of MCMC iterations,
T . The result is an MCMC sample of simulated outcomes, (ysim,1,ysim,2, . . . ,ysim,T). This sample
is used to estimate the posterior predictive distribution.
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Thus, unlike classical prediction, which produces a single value for each observation, Bayesian
prediction produces a sample of T simulated values for each observation. If you have n observations
in the dataset, the result of a Bayesian prediction will be a T × n matrix (for each outcome or
dependent variable). Therefore, Bayesian predictions are often computed for a subset of observations
or for various summaries over observations such as means, quantiles, minimum and maximum values,
and so on. Sometimes, a smaller sample of R << T MCMC replicates of simulated outcomes is used
to explore the posterior distribution of simulated outcomes. In other cases, posterior summaries over
the MCMC replicates such as posterior means and medians of simulated outcomes may be of interest.

Posterior predictive checking and replicated outcomes

In addition to predicting future observations, Bayesian prediction is useful for model checking.
Model checking is accomplished by performing the so-called posterior predictive checks, which
compare various characteristics of the posterior predictive distribution with those observed in the data.

The concept of replicated data or replicated outcomes arises in the context of posterior predictive
checking for regression-type models. In a regression setting, the posterior predictive distribution
also depends on the covariate-data matrix X , p(ynew|yobs) = p(ynew|yobs, X). The data matrix
X may contain the observed values that were used to fit the Bayesian model, Xobs, or the new
values, Xnew. Replicated outcomes are outcomes simulated from the posterior predictive distribution,
p(ynew|yobs, Xobs), using the observed covariate data. In other words, the replicated outcomes are
the outcomes we would observe if we repeated our experiment again. We will denote replicated
outcomes as yrep.

Replicated outcomes are also known as in-sample predictions, whereas outcomes simulated using
new covariate data, Xnew, are known as out-of-sample predictions. In-sample predictions are useful
for diagnostic checks. Out-of-sample predictions can be used for forecasting and model validation.
In the latter case, the data are split into training and test subsamples: the training subsample is used
to fit a Bayesian model, and the test subsample is used to assess prediction accuracy of the fitted
model.

Posterior predictive checking is performed by comparing the distribution (or certain aspects of it)
of the replicated data to that of the observed data. This can be done visually by examining histograms
and quantile plots. More formally, discrepancy measures such as a mean, minimum, and maximum
statistics computed for the replicated data and for the observed data can be compared using posterior
predictive p-values; see [BAYES] bayesstats ppvalues for details.

It is important to realize the difference between MCMC diagnostic checks (Convergence of MCMC
in [BAYES] bayesmh) and posterior predictive checks. The former examines the properties of MCMC
sampling, whereas the latter inspects how well the specified Bayesian model describes the observed
data. But these two types of checks are related—an ill-fitting model lowers the MCMC sampling
efficiency and may even lead to nonconvergence of the MCMC algorithm.

For in-depth coverage of Bayesian predictions and posterior predictive inference, see Meng (1994),
West (1986), Tsui and Weerahandi (1989), Gelman, Meng, and Stern (1996), Gelman and Rubin (1992),
and Gelman et al. (2014), to name a few.

Using bayespredict and bayesreps

bayespredict computes Bayesian predictions using current estimation results produced by the
bayesmh command with built-in likelihood models and saves them in a separate Stata dataset. Bayesian
predictions include simulated outcomes, which are samples from the posterior predictive distribution
of the fitted Bayesian model, and their functions. You can also compute posterior summaries of
simulated outcomes and store them as new variables in the current dataset.
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To compute Bayesian predictions, you must specify the saving() option with bayespredict
to save the prediction results; see Generating and saving simulated outcomes. To compute posterior
summaries, you must specify one or more new variable names and the corresponding option such
as mean for posterior mean and std for posterior standard deviation; see Posterior summaries of
simulated outcomes.

bayesreps generates a random subset of MCMC replicates of simulated outcomes from the entire
MCMC sample and stores them as new variables in the current dataset. This command is useful for
checking model fit. The number of replicates is specified in the nreps(#reps) option. With multiple
replicates, you must specify a variable stub* with bayesreps, and the command will generate
new variables stub1, stub2, . . ., stub#reps in the current dataset. For multiple-outcome models, the
replicates are produced for one outcome at a time. The first outcome is the default, but you can
specify a different outcome variable in the outcome() option.

Both bayespredict and bayesreps require that bayesmh’s MCMC simulation dataset be saved
prior to their execution. You can save MCMC simulation results by specifying the saving() option
with bayesmh during or after estimation; see Storing estimation results after Bayesian estimation in
[BAYES] Bayesian postestimation.

Both commands produce stochastic results. Use the rseed() option for reproducibility. Depending
on the number of observations, the specified MCMC sample size, and model complexity, the computations
may be time consuming. Options dots and dots() may be useful in this case to monitor the progress.
They display a dot for each simulation performed.

bayespredict and bayesreps can be used to make in-sample or out-of-sample predictions; see
Description in [R] predict for how to specify such predictions.

Generating and saving simulated outcomes

Generating and saving simulated outcomes is the main usage of bayespredict, which requires
the saving() option when generating simulated outcomes. The simplest specification is

. bayespredict {_ysim1}, saving( filename)

which generates the simulated values for the first outcome variable and saves them in filename.dta.
You can also use { ysim} as a synonym for { ysim1}.

The above specification produces the prediction dataset filename.dta, which contains T observations
and n variables, where T is the MCMC sample size used by bayesmh and n is the number of observations
in the original dataset. That is, an MCMC sample of size T is generated for each observation of the
outcome variable.

For example, if our dataset has 100 observations and we use an MCMC sample of size 10,000
during simulation, bayespredict will produce the prediction dataset filename.dta with 10,000
observations and 100 variables. This specification may not always be feasible, especially for large
datasets, or even necessary.

You would rarely need to simulate and store all observations for all outcome variables. More
likely, if you are performing model diagnostics, you may be interested only in several test statistics,
which you can simulate without storing the simulated outcomes; see Defining test statistics using
Mata functions. Or you may be interested only in posterior summaries of simulated outcomes; see
Posterior summaries of simulated outcomes. Or you may need to explore only a small random subset
of MCMC replicates of simulated outcomes, which you can obtain by using the bayesreps command.
Or if you are interested in forecasting, you may need to simulate values for only a few new data
points.



436 bayespredict — Bayesian predictions

For example, suppose we want to simulate outcome values for 10 new observations only, which
are stored in observations 101 through 110 in our original dataset. We can do this using

. bayespredict {_ysim1[101/110]}, saving(filename)

or, equivalently, using

. bayespredict {_ysim1} in 101/110, saving(filename)

The two specifications above are more efficient with respect to execution time and storage.

The full syntax of bayespredict for simulating all variables and all observations is

. bayespredict {_ysim1} {_ysim2} . . ., saving(filename)

where you specify { ysim#} for the #th outcome variable. The order of variables is determined by
the order in which they were specified with bayesmh.

If you need to predict multiple outcomes, it may be more efficient with regard to storage to simulate
them separately. Remember that the total number of variables in the prediction dataset may not exceed
the current c(maxvar) setting. Because bayespredict stores additional variables, the number of
specified outcome observations may not exceed floor((c(maxvar)-3)/2); see Prediction dataset.

By default, bayespredict computes out-of-sample predictions. This may sometimes lead to
missing predicted observations, for instance, when some of the covariates contain missing values. In
the context of bayespredict when simulating outcomes, residuals, and expected values, this implies
that the prediction dataset may contain variables containing all missing observations. Recall that the
variables in the prediction dataset correspond to the observations in the original dataset. In such cases,
to reduce the size of the prediction dataset, you may consider restricting the prediction sample to the
estimation sample, if e(sample); or specifying a subset of observations using numlist, for example,
ysim[numlist]; or specifying the subset of interest by using if and in.

Defining test statistics using Mata functions

Instead of simulating all observations for your outcomes of interest, you may be interested
in obtaining only some summary statistics such as sample means, medians, smallest and largest
observations, and standard deviations calculated over these observations. This is commonly used
when performing posterior predictive checks; see Posterior predictive inference.

Test statistics are scalar functions of observed (or simulated) outcome values. Let y be an outcome
variable in a dataset of size n and let ysim = (ysim

1 , ysim
2 , . . . , ysim

n )T denote one simulated outcome
sample given as a column vector. A test statistic T (ysim) summarizes the column vector ysim by a
single number. For example, the mean statistic is defined as

T (ysim) =
1

n
(ysim

1 + · · ·+ ysim
n ) = ysim

In bayespredict, test statistics can be defined using Mata functions or Stata programs. Here we
focus on the specifications using Mata functions; see User-defined Stata programs for Stata programs.
Note that if you need to compute a test quantity, T (y, θ), that directly uses model parameters θ, you
must use Stata programs.

bayespredict supports Mata functions that return a scalar and accept one or two column vectors as
arguments. You can specify the following as the arguments to the Mata functions: simulated outcomes,
{ ysim#}; simulated residuals, { resid#}; and expected outcome values, { mu#}. { resid#} is
defined as the difference between { ysim#} and { mu#}. (Specifications { resid#} and { mu#}
are not available for ordinal models.) You can also use { ysim}, { resid}, and { mu} as synonyms
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for { ysim1}, { resid1}, and { mu1}, respectively. If you used if or in with bayespredict to
restrict the prediction sample or specified only a subset of observations, that is, { ysim[1/10]}, the
column vectors passed to Mata functions as arguments will contain only the available observations.

Suppose we want to produce an MCMC sample of means of the first simulated outcome. We can
specify

. bayespredict (@mean({_ysim1}), saving(. . .)

Similarly, we can produce an MCMC sample of means for the residuals of the first simulated
outcome

. bayespredict (resmean: @mean({_resid1}), saving(. . .)

In the above, we also labeled our prediction as resmean. We can use this label to refer to this prediction
in other Bayesian postestimation commands such as bayesstats ppvalues and bayesstats
summary. If we do not specify our own labels, the default labels will be used for each prediction.
The default label is arg1 func, where arg1 is the first function argument and func is the name of the
function. For instance, in our first example, the default label ysim1 mean will be used.

You will typically specify only one argument with most official Mata functions. The support of
two arguments is provided primarily for calculating more complicated test statistics using user-defined
Mata functions. For example, let’s define a new Mata function that calculates the sum of squared
Pearson residuals assuming a Poisson model.

We define a Mata function, sumpresid(), that calculates the squared Pearson residuals as the
squared difference between the simulated outcome vector, ysim, and expected values, mu, divided by
the variance, which is also mu for a Poisson model. The result is the sum of these squared standardized
differences.

mata:
real scalar sumpresid(real colvector ysim, real colvector mu) {

return (sum((ysim-mu):^2:/mu))
}

end

Then, we can call bayespredict with the following specification to compute the sum of squared
Pearson residuals for the first outcome in the model:

. bayespredict (@sumpresid({_ysim1}, {_mu1})), saving(. . .)

Mata functions can be used only with one outcome at a time. That is, specifications that refer
to two outcomes such as @myprog({ ysim1}, { ysim2}), @myprog({ ysim1}, { mu2}), or
@myprog({ ysim1}, { resid2}) are not allowed.

Mata functions are preferable to Stata programs because of speed, but Stata programs provide
more flexibility to compute complicated functions; see User-defined Stata programs below.

User-defined Stata programs

Mata functions (see Defining test statistics using Mata functions) are more efficient and faster in
computing simple test statistics and test quantities, but they have limitations. For example, you cannot
access model parameters within Mata functions. You can within Stata programs. Although executing
Stata programs may be much slower, they provide more flexibility for computing test quantities.
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A Stata program must have the following format in order to be used by bayespredict:

program userprog
version 18.0
args res simvar1 [simvar2]
. . . computation . . .
scalar ‘res’ = . . .

end

The first argument, res, contains the name of a temporary scalar to store the final result. The second
argument, simvar1, and the third (optional) argument, simvar2, contain the names of temporary
variables, which store the simulation results for the quantities specified as program arguments arg1
and arg2 with bayespredict:

. bayespredict (
[

label
]
: @userprog arg1

[
arg2

]
), saving(. . .) . . .

arg1 and arg2 may be one of { ysim#}, { mu#}, or { resid#}, but they should refer to the same
outcome variable; that is, they must use the same #. label is the label for the computed prediction
result that can be used later to refer to this result within other Bayesian postestimation commands
such as bayesstats summary. If we do not specify our own label, the default label will be used for
each prediction. The default label is arg1 userprog, where arg1 is the first program argument and
userprog is the name of the program.

Recall the sumpresid() Mata function defined in the previous section. Below, we replicate the
same computation but now using the Stata program.

program sumpresidprog
version 18.0
args sum ysim mu
tempvar presid
generate double ‘presid’ = (‘ysim’-‘mu’)^2/‘mu’
summarize ‘presid’, meanonly
scalar ‘sum’ = r(sum)

end

We can then call bayespredict with the following specification,

. bayespredict (@sumpresidprog {_ysim1} {_mu1}), saving(. . .)

to compute this statistic for the first outcome. Because we did not specify our own label in the above,
the default label ysim1 sumpresidprog will be used.

Generally, our Stata program should use a proper “touse” variable, which marks the prediction
sample of bayespredict. Unlike Mata functions, the prediction results passed to Stata programs
as arguments will contain all observations. However, the observations outside the prediction sample
will contain missing values. Nevertheless, it is good practice to always use the touse variable in the
calculations.

program sumpresidprog
version 18.0
args sum ysim mu
local touse $BAYESPR_touse
tempvar presid
generate double ‘presid’ = (‘ysim’-‘mu’)^2/‘mu’ if ‘touse’
summarize ‘presid’ if ‘touse’, meanonly
scalar ‘sum’ = r(sum)

end

The global macro $BAYESPR touse contains a temporary name of a binary variable that marks the
prediction sample, which we now use in our calculations.
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One flexibility of Stata programs is that we can access model parameters within them. In the
above programs, we used precomputed expected values, mu. We can compute these values manually
by using the simulated model parameters and observed variables.

program sumpresidprogmu
version 18.0
args sum ysim
local touse $BAYESPR_touse
local theta $BAYESPR_theta //<--New line
tempvar xb mu //<--New line
matrix score double ‘xb’ = ‘theta’ if ‘touse’ //<--New line
qui generate double ‘mu’ = invlogit(‘xb’) if ‘touse’ //<--New line
tempvar presid
generate double ‘presid’ = (‘ysim’-‘mu’)^2/‘mu’ if ‘touse’
summarize ‘presid’ if ‘touse’, meanonly
scalar ‘sum’ = r(sum)

end

To compute expected values, we need to compute the linear predictor. To compute the linear predictor,
we need coefficient estimates. The coefficient estimates are provided in a temporary matrix (row vector)
with the name stored in the global macro $BAYESPR theta. The columns of this temporary matrix
are labeled properly with the names of the corresponding predictors, so we can use matrix score
(see [P] matrix score) to easily compute the linear predictor. We then use the inverse-logit function
to compute expected values (probabilities) from the linear predictions. The rest of the program is the
same as earlier.

We call the above program using the following bayespredict specification:

. bayespredict (@sumpresidprogmu {_ysim1}), saving(. . .)

See example 8.

For some programs, you may need to pass additional variables or contents of command options.
You can use extravars() and passthruopts() for that; see Options for predictions.

You can access the following global macros from the Stata programs used with bayespredict.

Global macros Description

$BAYESPR theta name of a temporary matrix (row vector) of scalar parameters;
stripes are properly named after the names of model parameters

$BAYESPR matrix mname name of a temporary matrix containing simulated matrix parameter
mname

$BAYESPR touse variable containing 1 for the observations to be used; 0 otherwise
$BAYESPR extravars varlist specified in extravars()

$BAYESPR passthruopts options specified in passthruopts()

Posterior summaries of simulated outcomes

In some applications, we may not need the actual simulated outcomes but rather their posterior
summaries such as posterior means, medians, and standard deviations. For this purpose, bayespredict
offers the mean, median, std, and cri options to compute posterior means, medians, standard
deviations, and credible intervals. When you specify these options, the prediction results are stored
in the specified new variables in the current dataset. You do not need to specify the saving() option
in this case because the high-dimensional simulation outcomes are not saved, only their posterior
summaries.
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With mean, median, and std, you can compute results for one outcome variable at a time or
for all outcome variables. In the first case, you specify a new variable name and the name of the
outcome (dependent) variable in the outcome() option. If you omit outcome(), the first outcome
variable will be used. To compute results for all outcome variables, you specify a new variable name
for each outcome or stub*, in which case the new variables will be named stub1, stub2, and so on.

When you compute posterior means, you can also specify the mcse(newvar) option to compute
their corresponding MCSEs. If posterior means are computed for multiple outcome variables, newvar
is used as stub* to store MCSEs for each outcome in newvar1, newvar2, and so on.

With cri, you specify two new variable names to contain the lower and upper credible bounds.
You can compute results only for one outcome variable at a time, which you specify in the outcome()
option. If you omit this option, the first outcome variable is assumed. You can specify the clevel()
option to change the default 95% credible level and the hpd option to calculate HPD credible intervals
instead of the default equal-tailed intervals.

All computed results are stochastic. You should specify the rseed() option for reproducibility.
Also see Syntax for other available simulation options, simopts.

Prediction dataset

bayespredict saves prediction results in a dataset filename.dta as specified in the sav-
ing(filename) option. In addition, bayespredict stores auxiliary estimation results, described
in Stored results, in filename.ster. This file is used by other postestimation commands such as
bayesstats summary when summarizing the simulated prediction quantities.

The format of the filename.dta file is similar to the simulation dataset created by the bayesmh
command. The first two variables are chain and index, which store the respective chain and
MCMC iteration identifiers. Following are the variables containing simulated values for the #1th
outcome variable and the #2th observation, ysim#1 #2, if any, and the corresponding expected
outcome values, mu#1 #2. For any function of simulated outcomes or residuals specified with
bayespredict, there are two variables in the dataset named label and obs label, where label is
the specified function or program label. Variable label contains the MCMC sample of values of the
function. Variable obs label contains the observed values of the function, which are computed by
substituting the simulated outcome for the observed outcome variable in the function specification.
This variable is consumed by [BAYES] bayesstats ppvalues. Finally, the frequency variable is the
last variable in the prediction dataset. It always contains one in the prediction dataset and is provided
purely for the consistency with the simulation dataset, where it records the frequency of duplicate
sets of model parameters.

If bayespredict is specified with p simulated outcomes, each with n observations, and with k
functions or programs, then the prediction dataset will contain 2pn+ 2k+ 3 variables. The number of
observations in the prediction dataset is determined by the MCMC sample size, T , used by bayesmh.

After your analysis, if you no longer need the prediction dataset, remember to remove both
filename.dta and filename.ster.

Bayesian predictions

Consider the rare infectious disease example from Hoff (2009) that we analyzed in Beta-binomial
model of [BAYES] bayesmh. A small random sample of 20 subjects from a city is checked for infection,
and none is observed to be infected. The parameter of interest θ, θ ∈ [0, 1], is the proportion of
infected individuals in the city. The outcome y is the number of infected subjects in the sample of 20.
The sampling distribution for the outcome y is thus assumed to be binomial, y|θ ∼ binomial(20, θ).
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Our observed data contain one observation that is zero because we did not observe any infected
subjects in our sample. We can easily generate these data as follows:

. set obs 1
Number of observations (_N) was 0, now 1.

. generate byte y = 0

Following the examples in Beta-binomial model (except we are using a different random-number
seed here), we assume a beta(2, 20) prior for θ and use bayesmh to fit the resulting beta-binomial
model.

. bayesmh y, likelihood(dbinomial({theta}, 20))
> prior({theta}, beta(2, 20)) saving(betabin_mcmc) rseed(16)
Burn-in ...
Simulation ...

Model summary

Likelihood:
y ~ binomial({theta},20)

Prior:
{theta} ~ beta(2,20)

Bayesian binomial model MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 1
Acceptance rate = .4627

Log marginal-likelihood = -1.1575104 Efficiency = .1446

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

theta .0476128 .0320509 .000843 .0406464 .0057875 .1251631

file betabin_mcmc.dta saved.

The posterior mean for {theta}, which is also the probability that a subject from a sample of 20
will be infected, is estimated to be 0.0476. Thus, we would expect 20 × 0.0476 = 0.952 infected
subjects in a sample of 20.

Let’s explore various Bayesian predictions for this beta-binomial model. The relevant examples
are presented under the following headings:

Example 1: Predicting the number of infected subjects
Example 2: Summarizing prediction results
Example 3: Expressions of individual prediction results
Example 4: Visualizing prediction results
Example 5: Posterior summaries of simulated outcomes

Example 1: Predicting the number of infected subjects

Let’s predict the number of infected subjects, our outcome, assuming the fitted beta-binomial
model. To do this in a Bayesian framework, we need to simulate the outcome from its posterior
predictive distribution. We can use bayespredict to do this.

To use bayespredict, we must first save our MCMC simulation results from bayesmh in a dataset,
which we already did by specifying the saving(betabin mcmc) option with bayesmh. If you forget
to specify this option during estimation, you can always do it after by typing

. bayesmh, saving(betabin_mcmc)
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We simulate the outcome by specifying { ysim} with bayespredict and save the simulated
data in betabin pred.dta; the saving() option is required with bayespredict when simulating
Bayesian predictions. Because the command uses simulation, we also specify the rseed() option
for reproducibility.

. bayespredict {_ysim}, saving(betabin_pred) rseed(16)

Computing predictions ...

file betabin_pred.dta saved.
file betabin_pred.ster saved.

The computation may be time consuming, so the command displays Computing predictions ...
to inform you that the computation is in progress. You may also specify the dots or dots() option
to see the dots as simulations are performed.

In addition to saving prediction results in a Stata dataset, bayespredict also saves auxiliary
estimation results in the betabin pred.ster file. This file is used by other postestimation commands
such as bayesstats summary when summarizing the simulated prediction quantities. Remember to
remove this file in addition to your prediction dataset when you no longer need them.

The bayespredict command simulates T outcome values for each specified outcome and for each
specified observation. T is the MCMC sample size used by bayesmh. The outcome values are simulated
for each set of T MCMC estimates of model parameters generated by bayesmh. Our bayespredict
specification { ysim} is equivalent to { ysim1} and refers to all observations of the first outcome.
In our example, we have only one observation and one outcome, and the default MCMC sample
size is 10,000. Thus, betabin pred.dta contains one simulated variable, ysim1 1, and 10,000
observations, in addition to other auxiliary variables such as chain and iteration number identifiers;
see Prediction dataset.

. describe using betabin_pred

Contains data
Observations: 10,000 23 Mar 2023 15:27

Variables: 5

Variable Storage Display Value
name type format label Variable label

_chain int %8.0g Chain identifier
_index int %8.0g Iteration number
_ysim1_1 double %10.0g Simulated y, obs #1
_mu1_1 double %10.0g Expected values for y, obs #1
_frequency byte %8.0g Frequency weight

Sorted by:

In this dataset, ysim1 1 represents an MCMC sample of size 10,000 from the posterior predictive
distribution of y for the first observation. If we had more observations, say, 100, the dataset would
have contained 100 variables, ysim1 1, ysim1 2, . . . , ysim1 100, one for each observation.
In the prediction dataset, the observations are MCMC replicates, and the variables are outcome values
for each observation and each outcome from the data that were used to fit the model.
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Example 2: Summarizing prediction results

We can summarize our prediction results like any other Bayesian model parameter. For example,
we can calculate standard posterior summaries for { ysim} by using bayesstats summary.

. bayesstats summary {_ysim} using betabin_pred

Posterior summary statistics MCMC sample size = 10,000

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

_ysim1_1 .9526 1.145899 .020218 1 0 4

The calculated posterior predictive mean is 0.95, which agrees with our earlier computation of
20× 0.0476 = 0.952 using the posterior mean estimate of θ, 0.0476. Under our Bayesian model, we
should expect to observe roughly 1 infected individual in a sample of 20, which is comparable with
our observed data with no infected subjects.

Generally, we should be careful when using { ysim} with Bayesian postestimation commands
because it refers to all observations of the outcome variable. A better approach is to use a subset
of observations, { ysim[numlist]}, such as { ysim[1/10]}. In our example, we have only one
observation, so this specification is equivalent to specifying only the first observation, { ysim[1]}.

Example 3: Expressions of individual prediction results

We can compute posterior summaries for the expressions involving the individual values,
{ ysim[#]}, where # refers to an observation. For instance, let’s calculate the probability of
observing 0 infected subjects in our sample of 20. Recall that our only observation records the
number of observed infected subjects. We can estimate the probability that the outcome value is 0 as
a proportion of 0 values of our simulated outcome in a sample of 10,000 MCMC replicates. We can
do this by specifying the expression { ysim[1]}==0 in bayesstats summary.

. bayesstats summary (prob0:{_ysim[1]}==0) using betabin_pred

Posterior summary statistics MCMC sample size = 10,000

prob0 : _ysim1_1==0

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

prob0 .4479 .497303 .00708 0 0 1

The posterior predictive mean (probability) for observing 0 infected subjects in the sample of 20 is
0.45, with a posterior predictive standard deviation of 0.5.
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Example 4: Visualizing prediction results

We can use graphical tools such as the histogram to summarize the posterior predictive distribution.

. bayesgraph histogram {_ysim[1]} using betabin_pred, discrete addlabels
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The mass of the posterior predictive distribution for the number of infected subjects is concentrated
on small numbers such as 0, 1, and 2 and thus agrees with what we observed in our sample.

Example 5: Posterior summaries of simulated outcomes

We can compute the posterior mean of the simulated outcome and save it in the current dataset
as a new variable.

. bayespredict pmean, mean rseed(16)

Computing predictions ...

. summarize pmean

Variable Obs Mean Std. dev. Min Max

pmean 1 .9526 . .9526 .9526

The sample mean of pmean is an estimate of the posterior predictive mean of the outcome y and is the
same as the one we obtained earlier by using bayesstats summary. Notice that we obtained the exact
same values only because we used the same random-number seed, rseed(16), with bayespredict
when simulating the outcome { ysim} and the posterior mean pmean.

If you need only posterior summaries of simulated outcomes, the above approach is preferable
because it does not create a potentially large prediction dataset containing all MCMC replicates.

As the final step, we remove all the datasets created by bayesmh and bayespredict because we
no longer need them, but you may choose to keep yours.

. erase betabin_mcmc.dta

. erase betabin_pred.dta

. erase betabin_pred.ster
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Posterior predictive inference

To illustrate posterior predictive checking, we adapt an example described in Gelman et al. (2014,
sec. 6.3). The example analyzes the speed of light measurements from the experiment performed by
Newcomb (1891). Newcomb measured the time (in nanoseconds) it takes for light to travel 7,442
meters. splight.dta contains 66 independent measurements of the deviance of the travel time from
24,800 nanoseconds in variable timedev.

. use https://www.stata-press.com/data/r18/splight
(Newcomb’s speed of light measurements)

. describe

Contains data from https://www.stata-press.com/data/r18/splight.dta
Observations: 66 Newcomb’s speed of light

measurements
Variables: 1 22 Feb 2023 13:24

(_dta has notes)

Variable Storage Display Value
name type format label Variable label

timedev byte %9.0g Deviation of travel time (ns)

Sorted by:

Let’s look at the distribution of the data.

. histogram timedev
(bin=8, start=-44, width=10.5)
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The data have several extreme observations in the left tail—the smallest observed timedev is −44,
which is more than 6 standard deviations smaller than the sample mean.

To demonstrate posterior predictive checking, Gelman et al. (2014) intentionally used a simplified
model for timedev, a normal model with unknown mean µ and variance σ2, which may not be a
good fit given the presence of extreme observations. The authors chose a noninformative prior for
the model parameters, (µ, σ2) ∼ 1/σ2, to achieve more objective analysis.
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We fit the described model using bayesmh as follows:

. bayesmh timedev, likelihood(normal({sig2}))
> prior({timedev:_cons}, flat) prior({sig2}, jeffreys)
> mcmcsize(1000) rseed(16) saving(splight_mcmc)
Burn-in ...
Simulation ...

Model summary

Likelihood:
timedev ~ normal({timedev:_cons},{sig2})

Priors:
{timedev:_cons} ~ 1 (flat)

{sig2} ~ jeffreys

Bayesian normal regression MCMC iterations = 3,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 1,000
Number of obs = 66
Acceptance rate = .2128
Efficiency: min = .104

avg = .1123
Log marginal-likelihood = -249.39408 max = .1207

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

timedev
_cons 26.40191 1.306144 .128102 26.42451 23.57925 28.71792

sig2 118.8588 21.83563 1.98746 115.8515 81.03243 163.9617

file splight_mcmc.dta saved.

The described prior is modeled in bayesmh by specifying the flat prior for {timedev: cons}, the
mean parameter of the normal model, and the Jeffreys prior for variance {sig2}. We requested a
small MCMC sample of only 1,000. We also specified the saving() option to save MCMC estimates
of model parameters, which is required to use bayespredict or bayesreps.

bayesmh reports a 95% equal-tailed credible interval of [23.6, 28.7] for {timedev: cons}. The
true deviance of the travel time of light is known to be 33.0 nanoseconds and is outside the reported
credible interval. Clearly, our model does not produce an accurate estimate for the speed of light.
The question is, Can we detect the misfit without the knowledge of the true value? We explore the
answers to this question in the following examples:

Example 6: Goodness of fit using MCMC replicates of simulated outcomes
Example 7: Test statistics as scalar functions of simulated outcomes
Example 8: Test quantities via user-defined Stata programs
Example 9: Working with a prediction dataset

Example 6: Goodness of fit using MCMC replicates of simulated outcomes

One way of checking goodness of fit is to compare the observed sample with the replication samples
drawn from the posterior predictive distribution. Any systematic discrepancy between replicated and
observed data will indicate misfit.

Let’s start with visual inspection of the replicated data. We can use the bayesreps command to
generate 20 MCMC replicates for the outcome timedev. Each replicate has 66 observations and is
saved as a new variable in the dataset. We specify tdrep* as a variable stub for the replicate names.
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. bayesreps tdrep*, nreps(20) rseed(16)

Computing predictions ...

. summarize

Variable Obs Mean Std. dev. Min Max

timedev 66 26.21212 10.74532 -44 40
tdrep1 66 26.10487 11.25766 -3.237112 56.03574
tdrep2 66 23.29179 11.30281 -12.58518 47.92589
tdrep3 66 26.21224 14.93573 -4.078057 61.37516
tdrep4 66 27.28245 11.60644 -2.502777 59.27184

tdrep5 66 27.74366 8.093924 5.70912 44.75622
tdrep6 66 26.15271 13.0279 -1.115488 53.42055
tdrep7 66 26.57665 10.11741 5.395408 46.71115
tdrep8 66 27.9395 12.06432 -4.903924 48.62425
tdrep9 66 25.54143 11.15095 1.560754 51.17381

tdrep10 66 28.11942 11.39326 1.364191 57.17214
tdrep11 66 24.18664 9.37403 7.49153 52.94038
tdrep12 66 25.87535 8.766691 10.5051 44.38683
tdrep13 66 27.49002 9.937486 4.89093 52.40338
tdrep14 66 26.17611 12.34034 -4.824428 51.16258

tdrep15 66 28.35187 10.58047 1.968471 50.73883
tdrep16 66 27.00237 11.44632 .7238956 52.77098
tdrep17 66 28.38859 11.1474 6.04494 63.34375
tdrep18 66 24.16652 9.289006 -.0226819 44.17939
tdrep19 66 24.9675 9.931602 6.675714 45.19432

tdrep20 66 27.69125 10.94969 1.289953 57.45961

The summary table shows that, compared with the observed data, the replicates have similar means
and standard deviations but not the minimum and maximum values.

We can explore the entire distribution of a replicate. For example, we can produce the histogram
for the first replicate and compare it with the earlier histogram of the observed data.

. histogram tdrep1
(bin=8, start=-3.237112, width=7.4091061)
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The histograms look quite different. The replicate sample does not have the extreme negative values
observed in the data.

With a few lines of code, we can produce histograms for all replicates and combine them on one
graph.

. local histlist

. forvalues i = 1/20 {
2. quietly hist tdrep‘i’, name(hist‘i’) nodraw
3. local histlist ‘histlist’ hist‘i’
4. }

. graph combine ‘histlist’

0

.01

.02

.03

.04

.05

D
en

si
ty

0 10 20 30 40 50
Replicate 1 for timedev

0

.01

.02

.03

.04

D
en

si
ty

-10 0 10 20 30 40
Replicate 2 for timedev

0

.01

.02

.03

D
en

si
ty

0 20 40 60
Replicate 3 for timedev

0

.01

.02

.03

.04

D
en

si
ty

0 20 40 60
Replicate 4 for timedev

0

.01

.02

.03

.04

.05

D
en

si
ty

0 10 20 30 40
Replicate 5 for timedev

0

.01

.02

.03

D
en

si
ty

0 10 20 30 40 50
Replicate 6 for timedev

0

.01

.02

.03

.04

D
en

si
ty

0 10 20 30 40
Replicate 7 for timedev

0

.01

.02

.03

.04

D
en

si
ty

0 20 40
Replicate 8 for timedev

0

.01

.02

.03

.04

.05

D
en

si
ty

0 10 20 30 40 50
Replicate 9 for timedev

0

.01

.02

.03

.04

D
en

si
ty

0 20 40 60
Replicate 10 for timedev

0

.01

.02

.03

.04

.05

D
en

si
ty

10 20 30 40 50
Replicate 11 for timedev

0

.02

.04

.06

D
en

si
ty

10 20 30 40
Replicate 12 for timedev

0

.01

.02

.03

.04

D
en

si
ty

0 10 20 30 40 50
Replicate 13 for timedev

0

.01

.02

.03

.04

D
en

si
ty

0 20 40 60
Replicate 14 for timedev

0

.01

.02

.03

.04

.05

D
en

si
ty

0 10 20 30 40 50
Replicate 15 for timedev

0

.01

.02

.03

.04

D
en

si
ty

0 10 20 30 40 50
Replicate 16 for timedev

0

.01

.02

.03

D
en

si
ty

0 20 40 60
Replicate 17 for timedev

0

.02

.04

.06

D
en

si
ty

0 10 20 30 40
Replicate 18 for timedev

0

.01

.02

.03

.04

D
en

si
ty

10 20 30 40 50
Replicate 19 for timedev

0

.01

.02

.03

.04

D
en

si
ty

0 20 40 60
Replicate 20 for timedev

The histograms of all replicates look different from the observed data. The range for the replicated
samples is about 0 to 50 with only a few negative values, which are smaller in magnitude than the
negative values observed in the original data.

Example 7: Test statistics as scalar functions of simulated outcomes

Gelman et al. (2014) suggest to use the smallest observation to measure the discrepancy between
the observed and replicated data. That is, to compare the smallest values in the replicated samples
with Newcomb’s smallest observation of −44.

In addition to simulating outcome values, as we demonstrated in example 1, we can use bayespre-
dict to compute functions of simulated values that summarize the observations in a single statistic
such as the minimum statistic. A function can be any Mata function that takes a column vector as
an argument and returns a scalar. The result from bayespredict in this case is an MCMC sample
of function values stored in the prediction dataset as a new variable.

Let’s use bayespredict to produce an MCMC sample of the smallest observations (minimums) of
the replicated data. Because we are not interested in individual observations, we can request that only
the smallest observation be simulated and stored by using the function specification @min({ ysim})
with bayespredict.

. bayespredict (minsl:@min({_ysim})), saving(splight_pred) rseed(16)

Computing predictions ...

file splight_pred.dta saved.
file splight_pred.ster saved.
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Per our specification, the command creates a new dataset, splight pred.dta, that stores minimum
statistics of the replicated data in the variable minsl. The prediction dataset has 1,000 observations,
because 1,000 is the size of the MCMC sample simulated by bayesmh.

We can now use {minsl} within other Bayesian postestimation commands such as bayesgraph
and bayesstats summary provided we supply the prediction dataset with the using specification.
For example, let’s draw the histogram of {minsl} using bayesgraph histogram.

. bayesgraph histogram {minsl} using splight_pred
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The histogram provides the estimate of the posterior predictive distribution for the minimum statistic.
The range of the histogram does not cover the observed minimum value of −44.

We can compare the posterior predictive distribution of the minimum statistic with the observed
minimum value more formally by computing the posterior predictive p-value by using bayesstats
ppvalues.

. bayesstats ppvalues {minsl} using splight_pred

Posterior predictive summary MCMC sample size = 1,000

T Mean Std. dev. E(T_obs) P(T>=T_obs)

minsl .8017725 5.590955 -44 1

Note: P(T>=T_obs) close to 0 or 1 indicates lack of fit.

The output table shows the posterior mean and standard deviation of {minsl}, the observed minimum
value, −44, and the estimated posterior predictive p-value. The last is the probability that the replicated
smallest value be greater or equal to the observed one. For a well-fitting model, the posterior predictive
p-value should, ideally, be close to 0.5, although values between 0.05 and 0.95 are often considered
acceptable in the literature (Gelman et al. 2014, 150). In our example, its estimate is essentially 1,
which indicates a strong misfit of the specified normal model. Therefore, if modeling of the tails of
the outcome distribution is important, we should reconsider the normal likelihood model and find a
better alternative.
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Example 8: Test quantities via user-defined Stata programs

It is not sufficient to assess goodness of fit by examining just one test statistic. Different test
statistics capture different aspects of the data. Which statistic to use depends on the research problem
and the data characteristics you wish to account for. Generally, as pointed out by Gelman et al.
(2014), for noninformative priors, sufficient statistics such as a sample mean and variance may not be
good choices for checking model fit because they are typically modeled directly by the parameters
of the likelihood function.

We demonstrated that our model does not model the minimum statistic well. Let’s consider another
aspect of timedev: symmetry with respect to the mean µ.

Following Gelman et al. (2014), we define the following test quantity to measure asymmetry,

T (timedev, µ) = |timedev(61) − µ| − |timedev(6) − µ|

where timedev(a) defines the ath ordered value of timedev and (timedev(6), timedev(61))
represents about 90% of the distribution of timedev.

There is no predefined computation for the above statistic, so we need to write our own. For
statistics that depend only on simulated outcome values, expected values, and residuals, we can write
our own Mata functions or Stata programs. Mata functions are generally faster. For statistics that
directly use model parameters, writing a Stata program is our only choice. Because the calculation
of T (timedev, µ) involves a model parameter, µ, we must write a Stata program to calculate this
statistic. Let’s call our program symstatprog.

program symstatprog
version 18.0
args symout ysim
tempname mu
scalar ‘mu’ = $BAYESPR_theta[1,1]
sort ‘ysim’
scalar ‘symout’ = abs(‘ysim’[61]-‘mu’)-abs(‘ysim’[6]-‘mu’)

end

The program has two input arguments, symout and ysim. The local macro symout contains the
name of a temporary scalar for storing the final result. The local macro ysim contains the name
of a temporary variable that stores the simulated outcome values of timedev. The global macro
$BAYESPR theta contains the name of a temporary matrix (row vector) that stores the current values
of simulated model parameters, which are µ and σ2 in our example. The parameters are stored in
the same order they are displayed by bayesmh. Thus, in our example, the first element of this matrix
corresponds to the mean, µ. We use the earlier definition to compute the asymmetry test quantity and
store it in the scalar ‘symout’.

We now call bayespredict to use the symstatprog program to compute the asymmetry test
quantity for each set of simulated model parameters and label the prediction results as symstat. We
replace our previously generated prediction dataset, splight pred.dta, with these new prediction
results.
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. bayespredict (symstat:@symstatprog {_ysim}), saving(splight_pred, replace)
> rseed(16)

Computing predictions ...

file splight_pred.dta saved.
file splight_pred.ster saved.

We can use bayesstats ppvalues to test the goodness of fit for T (timedev, µ).

. bayesstats ppvalues {symstat} using splight_pred

Posterior predictive summary MCMC sample size = 1,000

T Mean Std. dev. E(T_obs) P(T>=T_obs)

symstat .0953002 3.476211 3.196186 .235

Note: P(T>=T_obs) close to 0 or 1 indicates lack of fit.

The posterior predictive p-value is estimated to be 0.235 and does not suggest model misfit with
respect to T (timedev, µ).

Example 9: Working with a prediction dataset

Sometimes, we may need to access the prediction results. For example, Gelman et al. (2014)
provide a visual representation of the posterior predictive p-value by plotting the observed values
of the asymmetry test quantity, T (timedev, µ), versus the replicated values, T (timedevrep, µ). We
can reproduce this graph as follows.

We start by loading the prediction dataset that contains our prediction results.

. use splight_pred, clear

. describe

Contains data from splight_pred.dta
Observations: 1,000

Variables: 5 23 Mar 2023 15:28

Variable Storage Display Value
name type format label Variable label

_chain int %8.0g Chain identifier
_index int %8.0g Iteration number
symstat double %10.0g symstatprog {_ysim1}
_obs_symstat double %10.0g Observed symstatprog {_ysim1}
_frequency byte %8.0g Frequency weight

Sorted by:

Similarly to the MCMC simulation dataset, variables chain and index record chain and index
identifiers. Variable symstat contains the values for T (timedevrep, µ), and variable obs symstat
contains the values for T (timedev, µ). For consistency with the simulation dataset, the prediction
dataset also contains the frequency variable, but it is always one in the prediction dataset.
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To visualize the posterior predictive p-value, we draw the scatterplot of symstat versus
obs symstat overlaid with the diagonal line for obs symstat as the reference line.

. scatter symstat _obs_symstat || line _obs_symstat _obs_symstat,
> xtitle("timedev") ytitle("timedev-rep") legend(off)
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The estimated posterior predictive p-value is the proportion of points above the diagonal line.

In conclusion, although the normal model describes well the symmetry of the observed mea-
surements, it fails to capture some of the smaller observations. It is possible that the experimental
procedure was susceptible to aberrant measurements and a different model is needed to reflect this.

Out-of-sample prediction

This section illustrates how bayespredict can be used as a classifier for binary outcomes.

Example 10: Out-of-sample classification using predictive posterior means

We consider titanic800.dta, which contains the information of 800 passengers, who were on
board the ocean liner Titanic when it sank. The dataset is a subset from a larger dataset published
by Dawson (1995).
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. use https://www.stata-press.com/data/r18/titanic800, clear
(Titanic passenger survival (Extract))

. describe

Contains data from https://www.stata-press.com/data/r18/titanic800.dta
Observations: 800 Titanic passenger survival

(Extract)
Variables: 4 22 Feb 2023 13:24

(_dta has notes)

Variable Storage Display Value
name type format label Variable label

class byte %9.0g class Class
adult byte %9.0g age Adult
male byte %9.0g sex Male
survived byte %9.0g survived Survived

Sorted by:

The binary variable survived records whether a passenger survived (survived = 1) or not
(survived = 0). Passenger characteristics include the cabin type and class membership, class (first,
second, third, or crew); the sex, male; and whether the passenger was an adult or a child, adult.

For illustration, we consider a simple logistic regression of survived on the categorical predictor
class and binary predictors male and adult.

First, we randomly split the data into training and test subsamples. We use splitsample ([D] split-
sample) to generate a variable, sample, that assigns 50% of the data to the training subsample
(sample = 1) and the other 50% to the test subsample (sample = 2).

. splitsample, generate(sample) rseed(12345)

Second, we fit a Bayesian logistic regression using the training subsample of 400 passengers. We
apply a Cauchy(0, 1) prior distribution for the coefficients. As a prerequisite for computing Bayesian
predictions, we save the MCMC sample in titanic mcmc.dta.
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. bayesmh survived i.male i.adult ib1.class if sample==1, likelihood(logit)
> prior({survived:}, cauchy(0, 1)) saving(titanic_mcmc) rseed(16)
Burn-in ...
Simulation ...

Model summary

Likelihood:
survived ~ logit(xb_survived)

Prior:
{survived:1.male 1.adult i.class _cons} ~ cauchy(0,1) (1)

(1) Parameters are elements of the linear form xb_survived.

Bayesian logistic regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 400
Acceptance rate = .2054
Efficiency: min = .02887

avg = .04189
Log marginal-likelihood = -211.35694 max = .05692

Equal-tailed
survived Mean Std. dev. MCSE Median [95% cred. interval]

male
male -2.490095 .3330118 .019599 -2.498318 -3.13982 -1.844389

adult
adult -.5916052 .4910491 .024348 -.5666577 -1.551435 .3630116

class
crew -.6376593 .389797 .01675 -.6224151 -1.435266 .118966

second -.5605325 .4214846 .017667 -.5507987 -1.423903 .2334895
third -1.103689 .4064315 .021184 -1.106785 -1.923915 -.3518597

_cons 2.386679 .6342651 .034439 2.384843 1.188944 3.692627

file titanic_mcmc.dta saved.

All coefficients are negative, which means they are associated with lower survival probabilities
compared with their respective baselines. For instance, adults were less likely to survive than children,
and crew members and second- and third-class passengers were less likely to survive than the first-class
passengers. The male passengers on board Titanic were especially unfortunate—the posterior mean
estimate for the coefficient on male is −2.5 with a 95% credible interval of [−3.1,−1.8].

Let’s now compute out-of-sample predictions for the test subsample of the other 400 passengers.
We use bayespredict with the mean option to calculate the posterior means of the simulated
outcome for these passengers and store them as a new variable, pmean, in the current dataset.

. bayespredict pmean if sample==2, mean dots(100, every(1000)) rseed(16)

Computing predictions 10000 .........1000.........2000.........3000.........
> 4000.........5000.........6000.........7000.........8000.........9000.........
> 10000 done

The posterior means estimate the survival probabilities of the passengers and are, in fact, the
optimal predictors with respect to the mean squared error (MSE). Let’s compute MSE for pmean to
assess prediction accuracy of the model.
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. generate err2 = (survived-pmean)^2
(400 missing values generated)

. summarize err2 if sample==2

Variable Obs Mean Std. dev. Min Max

err2 400 .1740713 .2328064 .0187416 .741321

Our model achieves an MSE of 0.17, but this number is difficult to interpret on its own, without any
reference models.

Let’s compute the prediction accuracy of our model or how well our model predicted the outcome
in the test subsample. We generate a new variable, survived logit, to contain the binary outcome
predicted from our Bayesian logistic model. We assign the predicted outcome to be 1 if pmean is
greater than 0.5, and 0 otherwise. We then estimate the prediction accuracy as the proportion of
matches between the observed survived and the predicted survived logit in the test subsample.

. generate survived_logit = (pmean>0.5)

. generate pacc = (survived==survived_logit)

. summarize pacc if sample==2

Variable Obs Mean Std. dev. Min Max

pacc 400 .76 .427618 0 1

The prediction accuracy of our simple logistic model is about 0.76, which is not that high. Thus, a
better prediction model should be considered for these data.

One-step-ahead Bayesian forecast after Bayesian VAR

After fitting Bayesian VAR models using the bayes: var command, you can use bayespredict
to compute Bayesian forecasts; see example 10 in [BAYES] bayes: var.

Stored results
bayespredict stores the following in an estimation file, filename.ster, where filename is specified

in the saving(filename) option.

Scalars
e(N) number of observations
e(nchains) number of MCMC chains
e(mcmcsize) MCMC sample size

Macros
e(cmd) bayespredict
e(est cmd) bayesmh
e(cmdline) command as typed
e(est cmdline) estimation command as typed
e(predfile) file containing prediction results
e(mcmcfile) file containing simulation results
e(predynames) names of simulated outcome observations, ysim# #
e(predfnames) names of specified functions and programs
e(predrngstate#) random-number state for #th chain for prediction
e(rngstate) random-number state for simulation (only with single chain)
e(rngstate#) random-number state for #th chain for simulation (only with nchains())
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Methods and formulas
Methods and formulas are presented under the following headings:

Posterior predictive distribution
MCMC sampling from posterior predictive distribution
Residuals and expected values

Posterior predictive distribution

Recall from Overview of Bayesian predictions that the posterior predictive distribution of new data
ynew given observed data yobs is

p(ynew|yobs) =

∫
p(ynew, θ|yobs)dθ

=

∫
p(ynew|yobs, θ)p(θ|yobs)dθ

=

∫
p(ynew|θ)p(θ|yobs)dθ

(3)

where we used the assumption of independence between ynew and yobs given θ to arrive at the final
expression.

Simulated outcomes, ysim, are the outcome values simulated from the posterior predictive distri-
bution (3).

In a regression setting, posterior predictive distribution (3) also depends on the covariate data,

p(ynew|yobs, Xnew) =

∫
p(ynew|θ, Xnew)p(θ|yobs, Xobs)dθ (4)

where Xnew is the data matrix containing new covariate values and Xobs is the data matrix containing
observed covariate values used to fit the model.

The concept of replicated outcomes or replicated data, yrep, arises in a regression setting when
the data matrix used to generate new outcome values is the same as the observed data matrix used
to fit the Bayesian model. That is,

p(yrep|yobs, Xobs) =

∫
p(yrep|θ, Xobs)p(θ|yobs, Xobs)dθ (5)

In a regression setting, we use a general definition for the simulated outcome, ysim, as one
generated either from (4) or (5).

Test quantities and test statistics are commonly used to check goodness of fit of a Bayesian model.
A test quantity, Tq(yrep, θ), is a scalar function of replicated data yrep and model parameters θ.
A test statistic, Ts(yrep), is a scalar function that depends only on the replicated data yrep. If the
model fits the data well, Tq(yrep, θ) should be close to Tq(yobs, θ), and, similarly, Ts(yrep) should
be close to Ts(yobs).
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MCMC sampling from posterior predictive distribution

Like the posterior distribution of model parameters, posterior predictive distributions (3), (4), and
(5) usually do not have closed forms and must be approximated. In what follows, we will concentrate
on the more general posterior predictive distribution p(ynew|yobs, Xnew), but the same principles
apply to the other distributions by removing conditioning on covariate data in case of (3) and by
replacing Xnew with Xobs in case of (5).

The goal of Bayesian prediction is to simulate data from p(ynew|yobs, Xnew). Formula (4) underlies
the following two-step iterative process for obtaining simulated outcomes from p(ynew|yobs, Xnew).

1. Draw a realization of model parameters, θ?, from their posterior distribution, p(θ|yobs, Xobs).

2. Generate ysim from p(ynew|θ?, Xnew), the data distribution (likelihood) conditional on the
parameters obtained in step 1.

Steps 1 and 2 are repeated to produce an MCMC sample of simulated outcomes, (ysim,1,ysim,2, . . . ,
ysim,T), where T is the MCMC sample size. We can use this sample to estimate the posterior predictive
distribution.

For step 1, bayespredict uses the MCMC sample of model parameters as produced by the bayesmh
command. The main computation of bayespredict is the simulation of the outcome values from the
respective likelihood model for each set of simulated model parameters from the MCMC sample. For
an outcome variable with n observations, the result of a Bayesian prediction is a dataset containing
T observations and n columns.

A function of simulated values is computed as follows:
{
f(ysim,1), f(ysim,2), . . . , f(ysim,T)

}
,

where f(·) is a function that operates on a column vector and returns a scalar. The resulting prediction
dataset will contain a variable with T observations.

For a test statistic Ts(yrep), the following simulated sample is produced:{
Ts(y

rep,1), Ts(y
rep,2), . . . , Ts(y

rep,T)
}

. For a well-fitting model, the distribution of this sample
should be concentrated around Ts(yobs).

For a test quantity Tq(yrep, θ), the following simulated sample is produced:{
Tq(y

rep,1, θ1), Tq(y
rep,2, θ2), . . . , Tq(y

rep,T, θT )
}

. For a well-fitting model, the distribution of
this sample should be close to the distribution of

{
Tq(y

obs, θ1), Tq(y
obs, θ2), . . . , Tq(y

obs, θT )
}

.

Residuals and expected values

Consider simulated outcome values ysim
i for an observation i = 1, 2, . . . , n, where ysim

i =

(ysim,1
i , ysim,2

i , . . . , ysim,T
i )T . Let µ̂i = (µ̂1

i , µ̂
2
i , . . . , µ̂

T
i )T , where µ̂ti = E(yi|xi, θt) is the estimated

expected value of yi given covariate vector xi and simulated parameters θt, t = 1, 2, . . . , T . Let
rsim
i = (rsim,1

i , rsim,2
i , . . . , rsim,T

i )T be simulated residuals for an observation i.

Simulated residuals are then defined as

rsim
i = ysim

i − µ̂i

Within bayespredict, you refer to ysim
i as { ysim i}, rsim

i as { resid i}, and µ̂i as
{ mu i}. You can also use { ysim}, { resid}, and { mu} to refer to all observations at once.
With multiple outcomes, the above specifications correspond to the first outcome variable. For the #th
outcome variable, use { ysim# i}, { resid# i}, { mu# i}, { ysim#}, { resid#}, and { mu#},
respectively.
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Below are the definitions of µ̂ti for the likelihood models supported by bayesmh.

1. Normal regression: µ̂ti = xiβ
t.

2. t-regression: µ̂ti = xiβ
t.

3. Lognormal regression: µ̂ti = exp(xiβ
t).

4. Exponential regression: µ̂ti = exp(xiβ
t).

5. Probit regression: µ̂ti = Φ(xiβ
t).

6. Logistic regression: µ̂ti = invlogit(xiβt).

7. Binomial regression: µ̂ti = ntrials × invlogit(xiβt), where ntrials is the number of trials in
binomial regression.

8. Ordered probit regression: { resid} and { mu} not supported.

9. Ordered logistic regression: { resid} and { mu} not supported.

10. Poisson regression: µ̂ti = exp(xiβ
t).

Next are the definitions of µ̂ti for the distribution models dexponential(beta), dbernoulli(p),
dbinomial(ntrials,p), and dpoisson(mu).

11. Exponential distribution: µ̂ti = βt.

12. Bernoulli distribution: µ̂ti = pt.

13. Binomial distribution: µ̂ti = ntrialsp
t.

14. Poisson distribution: µ̂ti = µt.

Typically, the expected values for the distribution models will be constant over observations unless
the distribution parameters vary over the observations.

Raw residuals, rsim
i , may not always be the most appropriate for diagnostic purposes. For example,

Pearson residuals are better suited for discrete outcome models such as binomial and Poisson regressions.
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Also see
[BAYES] bayesmh — Bayesian models using Metropolis–Hastings algorithm

[BAYES] bayesgraph — Graphical summaries and convergence diagnostics

[BAYES] Bayesian postestimation — Postestimation tools for bayesmh and the bayes prefix

[BAYES] bayesstats ess — Effective sample sizes and related statistics

[BAYES] bayesstats ppvalues — Bayesian predictive p-values and other predictive summaries

[BAYES] bayesstats summary — Bayesian summary statistics

[BAYES] bayestest interval — Interval hypothesis testing



Title

set clevel — Set default credible level

Description Syntax Option Remarks and examples Also see

Description
set clevel specifies the default credible level for credible intervals for all Bayesian commands

(see [BAYES] Bayesian commands) that report credible intervals. The initial value is 95, meaning
95% credible intervals.

Syntax

set clevel #
[
, permanently

]
# is any number between 10.00 and 99.99 and may be specified with at most two digits after the

decimal point.

Option
permanently specifies that in addition to making the change right now, the clevel setting be

remembered and become the default setting when you invoke Stata.

Remarks and examples
To change the level of credible intervals reported by a particular command, you need not reset the

default credible level. All commands that report credible intervals have a clevel(#) option. When
you do not specify the option, the credible intervals are calculated for the default level set by set
clevel or for 95% if you have not reset set clevel.

460
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Example 1

We use the bayesmh command to obtain the credible interval for the mean of mpg:

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)

. set seed 14

. bayesmh mpg, likelihood(normal(30)) prior({mpg:_cons}, flat)
Burn-in ...
Simulation ...

Model summary

Likelihood:
mpg ~ normal({mpg:_cons},30)

Prior:
{mpg:_cons} ~ 1 (flat)

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .4195

Log marginal-likelihood = -234.09275 Efficiency = .2378

Equal-tailed
mpg Mean Std. dev. MCSE Median [95% cred. interval]

_cons 21.30364 .6429995 .013186 21.30381 20.03481 22.5555

To obtain 90% credible intervals, we would type

. bayesmh, clevel(90)

Model summary

Likelihood:
mpg ~ normal({mpg:_cons},30)

Prior:
{mpg:_cons} ~ 1 (flat)

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .4195

Log marginal-likelihood = -234.09275 Efficiency = .2378

Equal-tailed
mpg Mean Std. dev. MCSE Median [90% cred. interval]

_cons 21.30364 .6429995 .013186 21.30381 20.24172 22.35158
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or we could type

. set clevel 90

. bayesmh

Model summary

Likelihood:
mpg ~ normal({mpg:_cons},30)

Prior:
{mpg:_cons} ~ 1 (flat)

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 74
Acceptance rate = .4195

Log marginal-likelihood = -234.09275 Efficiency = .2378

Equal-tailed
mpg Mean Std. dev. MCSE Median [90% cred. interval]

_cons 21.30364 .6429995 .013186 21.30381 20.24172 22.35158

If we opt for the second alternative, the next time that we fit a model, 90% credible intervals will
be reported. If we wanted 95% credible intervals, we could specify clevel(95) on the estimation
command, or we could reset the default by typing set clevel 95.

The current setting of clevel() is stored as the c-class value c(clevel); see [P] creturn.

Also see
[BAYES] bayes — Bayesian regression models using the bayes prefix

[BAYES] bayesmh — Bayesian models using Metropolis–Hastings algorithm

[BAYES] Bayesian estimation — Bayesian estimation commands

[R] query — Display system parameters

[P] creturn — Return c-class values



Title

bayes: betareg — Bayesian beta regression

Description Quick start Menu Syntax
Remarks and examples Stored results Methods and formulas Also see

Description
bayes: betareg fits a Bayesian beta regression to a fractional outcome whose values are greater

than 0 and less than 1; see [BAYES] bayes and [R] betareg for details.

Quick start
Bayesian beta regression of y on x1 and x2, using default normal priors for regression coefficients

bayes: betareg y x1 x2

Use a standard deviation of 10 instead of 100 for the default normal priors
bayes, normalprior(10): betareg y x1 x2

Use uniform priors for the slopes and a normal prior for the intercept
bayes, prior({y: x1 x2}, uniform(-10,10)) ///
prior({y: cons}, normal(0,10)): betareg y x1 x2

Save simulation results to simdata.dta, and use a random-number seed for reproducibility
bayes, saving(simdata) rseed(123): betareg y x1 x2

Specify 20,000 Markov chain Monte Carlo (MCMC) samples, set length of the burn-in period to 5,000,
and request that a dot be displayed every 500 simulations

bayes, mcmcsize(20000) burnin(5000) dots(500): betareg y x1 x2

In the above, request that the 90% highest posterior density (HPD) credible interval be displayed
instead of the default 95% equal-tailed credible interval

bayes, clevel(90) hpd

Also see Quick start in [BAYES] bayes and Quick start in [R] betareg.

Menu
Statistics > Fractional outcomes > Bayesian beta regression

463



464 bayes: betareg — Bayesian beta regression

Syntax
bayes

[
, bayesopts

]
: betareg depvar indepvars

[
if
] [

in
] [

weight
] [

, options
]

options Description

Model

noconstant suppress constant term
scale(varlist

[
, noconstant

]
) specify independent variables for scale

link(linkname) specify link function for the conditional mean; default is
link(logit)

slink(slinkname) specify link function for the conditional scale; default is
slink(log)

Reporting

display options control spacing, line width, and base and empty cells

level(#) set credible level; default is level(95)

indepvars and varlist may contain factor variables; see [U] 11.4.3 Factor variables.
fweights are allowed; see [U] 11.1.6 weight.
bayes: betareg, level() is equivalent to bayes, clevel(): betareg.
For a detailed description of options, see Options in [R] betareg.

bayesopts Description

Priors
∗normalprior(#) specify standard deviation of default normal priors for regression

coefficients; default is normalprior(100)

prior(priorspec) prior for model parameters; this option may be repeated
dryrun show model summary without estimation

Simulation

nchains(#) number of chains; default is to simulate one chain
mcmcsize(#) MCMC sample size; default is mcmcsize(10000)

burnin(#) burn-in period; default is burnin(2500)

thinning(#) thinning interval; default is thinning(1)

rseed(#) random-number seed
exclude(paramref) specify model parameters to be excluded from the simulation results

Blocking
∗blocksize(#) maximum block size; default is blocksize(50)

block(paramref
[
, blockopts

]
) specify a block of model parameters; this option may be repeated

blocksummary display block summary
∗noblocking do not block parameters by default
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Initialization

initial(initspec) specify initial values for model parameters with a single chain
init#(initspec) specify initial values for #th chain; requires nchains()

initall(initspec) specify initial values for all chains; requires nchains()

nomleinitial suppress the use of maximum likelihood estimates as starting values
initrandom specify random initial values
initsummary display initial values used for simulation
∗noisily display output from the estimation command during initialization

Adaptation

adaptation(adaptopts) control the adaptive MCMC procedure
scale(#) initial multiplier for scale factor; default is scale(2.38)

covariance(cov) initial proposal covariance; default is the identity matrix

Reporting

clevel(#) set credible interval level; default is clevel(95)

hpd display HPD credible intervals instead of the default equal-tailed
credible intervals

eform
[
(string)

]
report exponentiated coefficients and, optionally, label as string

batch(#) specify length of block for batch-means calculations;
default is batch(0)

saving(filename
[
, replace

]
) save simulation results to filename.dta

nomodelsummary suppress model summary
chainsdetail display detailed simulation summary for each chain[
no
]
dots suppress dots or display dots every 100 iterations and iteration

numbers every 1,000 iterations; default is nodots

dots(#
[
, every(#)

]
) display dots as simulation is performed[

no
]
show(paramref) specify model parameters to be excluded from or included in

the output
notable suppress estimation table
noheader suppress output header
title(string) display string as title above the table of parameter estimates
display options control spacing, line width, and base and empty cells

Advanced

search(search options) control the search for feasible initial values
corrlag(#) specify maximum autocorrelation lag; default varies
corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)

∗Starred options are specific to the bayes prefix; other options are common between bayes and bayesmh.
Options prior() and block() may be repeated.
priorspec and paramref are defined in [BAYES] bayesmh.
paramref may contain factor variables; see [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Model parameters are regression coefficients {depvar:indepvars} for the main regression and {scale:varlist} for the
scale equation. Use the dryrun option to see the definitions of model parameters prior to estimation.

For a detailed description of bayesopts, see Options in [BAYES] bayes.



466 bayes: betareg — Bayesian beta regression

Remarks and examples
For a general introduction to Bayesian analysis, see [BAYES] Intro. For a general introduction

to Bayesian estimation using an adaptive Metropolis–Hastings algorithm, see [BAYES] bayesmh. For
remarks and examples specific to the bayes prefix, see [BAYES] bayes. For details about the estimation
command, see [R] betareg.

For a simple example of the bayes prefix, see Introductory example in [BAYES] bayes.

Stored results
See Stored results in [BAYES] bayes.

Methods and formulas
See Methods and formulas in [BAYES] bayesmh.

Also see
[BAYES] bayes — Bayesian regression models using the bayes prefix

[R] betareg — Beta regression

[BAYES] Bayesian postestimation — Postestimation tools for bayesmh and the bayes prefix

[BAYES] Bayesian estimation — Bayesian estimation commands

[BAYES] Bayesian commands — Introduction to commands for Bayesian analysis

[BAYES] Intro — Introduction to Bayesian analysis

[BAYES] Glossary



Title

bayes: binreg — Bayesian generalized linear models: Extensions to the binomial family

Description Quick start Menu Syntax
Remarks and examples Stored results Methods and formulas Also see

Description
bayes: binreg fits a Bayesian binomial regression to a binary outcome, assuming different link

functions; see [BAYES] bayes and [R] binreg for details.

Quick start
Bayesian binomial regression of y on x1 and x2, using the default logit link and using default normal

priors for regression coefficients
bayes: binreg y x1 x2

Use a standard deviation of 10 instead of 100 for the default normal priors
bayes, normalprior(10): binreg y x1 x2

Use uniform priors for the slopes and a normal prior for the intercept
bayes, prior({y: x1 x2}, uniform(-10,10)) ///
prior({y: cons}, normal(0,10)): binreg y x1 x2

Save simulation results to simdata.dta, and use a random-number seed for reproducibility
bayes, saving(simdata) rseed(123): binreg y x1 x2

Specify 20,000 Markov chain Monte Carlo (MCMC) samples, set length of the burn-in period to 5,000,
and request that a dot be displayed every 500 simulations

bayes, mcmcsize(20000) burnin(5000) dots(500): binreg y x1 x2

In the above, request that the 90% highest posterior density (HPD) credible interval be displayed
instead of the default 95% equal-tailed credible interval

bayes, clevel(90) hpd

Display odds ratios instead of coefficients
bayes: binreg y x1 x2, or

Use the log link and report risk ratios
bayes: binreg y x1 x2, rr

Display coefficients instead of risk ratios
bayes, coefficients

Also see Quick start in [BAYES] bayes and Quick start in [R] binreg.

Menu
Statistics > Generalized linear models > Bayesian GLM for the binomial family
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Syntax
bayes

[
, bayesopts

]
: binreg depvar

[
indepvars

] [
if
] [

in
] [

weight
] [

, options
]

options Description

Model

noconstant suppress constant term
or use logit link and report odds ratios
rr use log link and report risk ratios
hr use log-complement link and report health ratios
rd use identity link and report risk differences
n(# | varname) use # or varname for number of trials
exposure(varname) include ln(varname) in model with coefficient constrained to 1
offset(varname) include varname in model with coefficient constrained to 1
mu(varname) use varname as the initial estimate for the mean of depvar
init(varname) synonym for mu(varname)

Reporting

coefficients report nonexponentiated coefficients
display options control spacing, line width, and base and empty cells

level(#) set credible level; default is level(95)

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.
fweights are allowed; see [U] 11.1.6 weight.
bayes: binreg, level() is equivalent to bayes, clevel(): binreg.
For a detailed description of options, see Options in [R] binreg. binreg’s option ml is implied with bayes: binreg.

bayesopts Description

Priors
∗normalprior(#) specify standard deviation of default normal priors for regression

coefficients; default is normalprior(100)

prior(priorspec) prior for model parameters; this option may be repeated
dryrun show model summary without estimation

Simulation

nchains(#) number of chains; default is to simulate one chain
mcmcsize(#) MCMC sample size; default is mcmcsize(10000)

burnin(#) burn-in period; default is burnin(2500)

thinning(#) thinning interval; default is thinning(1)

rseed(#) random-number seed
exclude(paramref) specify model parameters to be excluded from the simulation results

Blocking
∗blocksize(#) maximum block size; default is blocksize(50)

block(paramref
[
, blockopts

]
) specify a block of model parameters; this option may be repeated

blocksummary display block summary
∗noblocking do not block parameters by default
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Initialization

initial(initspec) specify initial values for model parameters with a single chain
init#(initspec) specify initial values for #th chain; requires nchains()

initall(initspec) specify initial values for all chains; requires nchains()

nomleinitial suppress the use of maximum likelihood estimates as starting values
initrandom specify random initial values
initsummary display initial values used for simulation
∗noisily display output from the estimation command during initialization

Adaptation

adaptation(adaptopts) control the adaptive MCMC procedure
scale(#) initial multiplier for scale factor; default is scale(2.38)

covariance(cov) initial proposal covariance; default is the identity matrix

Reporting

clevel(#) set credible interval level; default is clevel(95)

hpd display HPD credible intervals instead of the default equal-tailed
credible intervals

coefficients report nonexponentiated coefficients
eform

[
(string)

]
report exponentiated coefficients and, optionally, label as string

batch(#) specify length of block for batch-means calculations;
default is batch(0)

saving(filename
[
, replace

]
) save simulation results to filename.dta

nomodelsummary suppress model summary
chainsdetail display detailed simulation summary for each chain[
no
]
dots suppress dots or display dots every 100 iterations and iteration

numbers every 1,000 iterations; default is nodots

dots(#
[
, every(#)

]
) display dots as simulation is performed[

no
]
show(paramref) specify model parameters to be excluded from or included in

the output
notable suppress estimation table
noheader suppress output header
title(string) display string as title above the table of parameter estimates
display options control spacing, line width, and base and empty cells

Advanced

search(search options) control the search for feasible initial values
corrlag(#) specify maximum autocorrelation lag; default varies
corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)

∗Starred options are specific to the bayes prefix; other options are common between bayes and bayesmh.
Options prior() and block() may be repeated.
priorspec and paramref are defined in [BAYES] bayesmh.
paramref may contain factor variables; see [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Model parameters are regression coefficients {depvar:indepvars}. Use the dryrun option to see the definitions of
model parameters prior to estimation.

For a detailed description of bayesopts, see Options in [BAYES] bayes.
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Remarks and examples
For a general introduction to Bayesian analysis, see [BAYES] Intro. For a general introduction

to Bayesian estimation using an adaptive Metropolis–Hastings algorithm, see [BAYES] bayesmh. For
remarks and examples specific to the bayes prefix, see [BAYES] bayes. For details about the estimation
command, see [R] binreg.

For a simple example of the bayes prefix, see Introductory example in [BAYES] bayes. Also see
Logistic regression with perfect predictors in [BAYES] bayes.

Stored results
See Stored results in [BAYES] bayes.

Methods and formulas
See Methods and formulas in [BAYES] bayesmh.

Also see
[BAYES] bayes — Bayesian regression models using the bayes prefix

[R] binreg — Generalized linear models: Extensions to the binomial family

[BAYES] Bayesian postestimation — Postestimation tools for bayesmh and the bayes prefix

[BAYES] Bayesian estimation — Bayesian estimation commands

[BAYES] Bayesian commands — Introduction to commands for Bayesian analysis

[BAYES] Intro — Introduction to Bayesian analysis

[BAYES] Glossary



Title

bayes: biprobit — Bayesian bivariate probit regression

Description Quick start Menu Syntax
Remarks and examples Stored results Methods and formulas Also see

Description
bayes: biprobit fits a Bayesian bivariate probit regression to two binary outcomes; see

[BAYES] bayes and [R] biprobit for details.

Quick start
Bayesian bivariate probit regression of y1 and y2 on x1 and x2, using default normal priors for

regression coefficients and atanh-transformed correlation
bayes: biprobit y1 y2 x1 x2

Use a standard deviation of 10 instead of 100 for the default normal priors
bayes, normalprior(10): biprobit y1 y2 x1 x2

Use uniform priors for the slopes and a normal prior for the intercept of the dependent variable y2

bayes, prior({y2: x1 x2}, uniform(-10,10)) ///
prior({y2: cons}, normal(0,10)): biprobit y1 y2 x1 x2

Save simulation results to simdata.dta, and use a random-number seed for reproducibility
bayes, saving(simdata) rseed(123): biprobit y1 y2 x1 x2

Specify 20,000 Markov chain Monte Carlo (MCMC) samples, set length of the burn-in period to 5,000,
and request that a dot be displayed every 500 simulations

bayes, mcmcsize(20000) burnin(5000) dots(500): biprobit y1 y2 x1 x2

In the above, request that the 90% highest posterior density (HPD) credible interval be displayed
instead of the default 95% equal-tailed credible interval

bayes, clevel(90) hpd

Bayesian seemingly unrelated bivariate probit regression using default priors
bayes: biprobit (y1 = x1 x2 x3) (y2 = x1 x2)

Also see Quick start in [BAYES] bayes and Quick start in [R] biprobit.

Menu
Statistics > Binary outcomes > Bayesian regression > Bivariate probit regression

Statistics > Binary outcomes > Bayesian regression > Seemingly unrelated bivariate probit
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Syntax

Bayesian bivariate probit regression

bayes
[
, bayesopts

]
: biprobit depvar1 depvar2

[
indepvars

] [
if
] [

in
] [

weight
][

, options
]

Bayesian seemingly unrelated bivariate probit regression

bayes
[
, bayesopts

]
: biprobit equation1 equation2

[
if
] [

in
] [

weight
] [

, options
]

where equation1 and equation2 are specified as

(
[

eqname:
]

depvar
[
=
] [

indepvars
] [

, noconstant offset(varname)
]
)

options Description

Model

noconstant suppress constant term
offset1(varname) offset variable for first equation
offset2(varname) offset variable for second equation

Reporting

display options control spacing, line width, and base and empty cells

level(#) set credible level; default is level(95)

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar1, depvar2, depvar, and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.
fweights are allowed; see [U] 11.1.6 weight.
bayes: biprobit, level() is equivalent to bayes, clevel(): biprobit.
For a detailed description of options, see Options in [R] biprobit. Options noconstant, offset1(), and offset2()

are not allowed with seemingly unrelated bivariate probit regression.

bayesopts Description

Priors
∗normalprior(#) specify standard deviation of default normal priors for regression

coefficients and atanh-transformed correlation;
default is normalprior(100)

prior(priorspec) prior for model parameters; this option may be repeated
dryrun show model summary without estimation

Simulation

nchains(#) number of chains; default is to simulate one chain
mcmcsize(#) MCMC sample size; default is mcmcsize(10000)

burnin(#) burn-in period; default is burnin(2500)

thinning(#) thinning interval; default is thinning(1)

rseed(#) random-number seed
exclude(paramref) specify model parameters to be excluded from the simulation results



bayes: biprobit — Bayesian bivariate probit regression 473

Blocking
∗blocksize(#) maximum block size; default is blocksize(50)

block(paramref
[
, blockopts

]
) specify a block of model parameters; this option may be repeated

blocksummary display block summary
∗noblocking do not block parameters by default

Initialization

initial(initspec) specify initial values for model parameters with a single chain
init#(initspec) specify initial values for #th chain; requires nchains()

initall(initspec) specify initial values for all chains; requires nchains()

nomleinitial suppress the use of maximum likelihood estimates as starting values
initrandom specify random initial values
initsummary display initial values used for simulation
∗noisily display output from the estimation command during initialization

Adaptation

adaptation(adaptopts) control the adaptive MCMC procedure
scale(#) initial multiplier for scale factor; default is scale(2.38)

covariance(cov) initial proposal covariance; default is the identity matrix

Reporting

clevel(#) set credible interval level; default is clevel(95)

hpd display HPD credible intervals instead of the default equal-tailed
credible intervals

eform
[
(string)

]
report exponentiated coefficients and, optionally, label as string

batch(#) specify length of block for batch-means calculations;
default is batch(0)

saving(filename
[
, replace

]
) save simulation results to filename.dta

nomodelsummary suppress model summary
chainsdetail display detailed simulation summary for each chain[
no
]
dots suppress dots or display dots every 100 iterations and iteration

numbers every 1,000 iterations; default is nodots

dots(#
[
, every(#)

]
) display dots as simulation is performed[

no
]
show(paramref) specify model parameters to be excluded from or included in

the output
notable suppress estimation table
noheader suppress output header
title(string) display string as title above the table of parameter estimates
display options control spacing, line width, and base and empty cells

Advanced

search(search options) control the search for feasible initial values
corrlag(#) specify maximum autocorrelation lag; default varies
corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)
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∗Starred options are specific to the bayes prefix; other options are common between bayes and bayesmh.
Options prior() and block() may be repeated.
priorspec and paramref are defined in [BAYES] bayesmh.
paramref may contain factor variables; see [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Model parameters are regression coefficients {depvar1:indepvars} and {depvar2:indepvars} and atanh-transformed
correlation {athrho}. Use the dryrun option to see the definitions of model parameters prior to estimation.

For a detailed description of bayesopts, see Options in [BAYES] bayes.

Remarks and examples
For a general introduction to Bayesian analysis, see [BAYES] Intro. For a general introduction

to Bayesian estimation using an adaptive Metropolis–Hastings algorithm, see [BAYES] bayesmh. For
remarks and examples specific to the bayes prefix, see [BAYES] bayes. For details about the estimation
command, see [R] biprobit.

For a simple example of the bayes prefix, see Introductory example in [BAYES] bayes.

Stored results
See Stored results in [BAYES] bayes.

Methods and formulas
See Methods and formulas in [BAYES] bayesmh.

Also see
[BAYES] bayes — Bayesian regression models using the bayes prefix

[R] biprobit — Bivariate probit regression

[BAYES] Bayesian postestimation — Postestimation tools for bayesmh and the bayes prefix

[BAYES] Bayesian estimation — Bayesian estimation commands

[BAYES] Bayesian commands — Introduction to commands for Bayesian analysis

[BAYES] Intro — Introduction to Bayesian analysis

[BAYES] Glossary



Title

bayes: clogit — Bayesian conditional logistic regression

Description Quick start Menu Syntax
Remarks and examples Stored results Methods and formulas Also see

Description
bayes: clogit fits a Bayesian conditional logistic regression to matched case–control data; see

[BAYES] bayes and [R] clogit for details.

Quick start
Bayesian conditional logistic regression of y on x1 and x2, using default normal priors for regression

coefficients
bayes: clogit y x1 x2, group(id)

Use a standard deviation of 10 instead of 100 for the default normal priors
bayes, normalprior(10): clogit y x1 x2, group(id)

Use uniform priors for the slopes and a normal prior for the intercept
bayes, prior({y: x1 x2}, uniform(-10,10)) ///
prior({y: cons}, normal(0,10)): clogit y x1 x2, group(id)

Save simulation results to simdata.dta, and use a random-number seed for reproducibility
bayes, saving(simdata) rseed(123): clogit y x1 x2, group(id)

Specify 20,000 Markov chain Monte Carlo (MCMC) samples, set length of the burn-in period to 5,000,
and request that a dot be displayed every 500 simulations

bayes, mcmcsize(20000) burnin(5000) dots(500): clogit y x1 x2, group(id)

In the above, request that the 90% highest posterior density (HPD) credible interval be displayed
instead of the default 95% equal-tailed credible interval

bayes, clevel(90) hpd

Display odds ratios instead of coefficients
bayes: clogit y x1 x2, group(id) or

Display odds ratios on replay
bayes, or

Also see Quick start in [BAYES] bayes and Quick start in [R] clogit.

Menu
Statistics > Binary outcomes > Bayesian regression > Conditional logistic regression
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Syntax
bayes

[
, bayesopts

]
: clogit depvar

[
indepvars

] [
if
] [

in
] [

weight
]
,

group(varname)
[

options
]

options Description

Model
∗group(varname) matched group variable
offset(varname) include varname in model with coefficient constrained to 1

Reporting

or report odds ratios
display options control spacing, line width, and base and empty cells

level(#) set credible level; default is level(95)

∗group(varname) is required.
indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
fweights are allowed; see [U] 11.1.6 weight. fweights are interpreted to apply to groups as a whole, not to individual

observations. See Use of weights in [R] clogit.
bayes: clogit, level() is equivalent to bayes, clevel(): clogit.
For a detailed description of options, see Options in [R] clogit.

bayesopts Description

Priors
∗normalprior(#) specify standard deviation of default normal priors for regression

coefficients; default is normalprior(100)

prior(priorspec) prior for model parameters; this option may be repeated
dryrun show model summary without estimation

Simulation

nchains(#) number of chains; default is to simulate one chain
mcmcsize(#) MCMC sample size; default is mcmcsize(10000)

burnin(#) burn-in period; default is burnin(2500)

thinning(#) thinning interval; default is thinning(1)

rseed(#) random-number seed
exclude(paramref) specify model parameters to be excluded from the simulation results

Blocking
∗blocksize(#) maximum block size; default is blocksize(50)

block(paramref
[
, blockopts

]
) specify a block of model parameters; this option may be repeated

blocksummary display block summary
∗noblocking do not block parameters by default
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Initialization

initial(initspec) specify initial values for model parameters with a single chain
init#(initspec) specify initial values for #th chain; requires nchains()

initall(initspec) specify initial values for all chains; requires nchains()

nomleinitial suppress the use of maximum likelihood estimates as starting values
initrandom specify random initial values
initsummary display initial values used for simulation
∗noisily display output from the estimation command during initialization

Adaptation

adaptation(adaptopts) control the adaptive MCMC procedure
scale(#) initial multiplier for scale factor; default is scale(2.38)

covariance(cov) initial proposal covariance; default is the identity matrix

Reporting

clevel(#) set credible interval level; default is clevel(95)

hpd display HPD credible intervals instead of the default equal-tailed
credible intervals

∗or report odds ratios
eform

[
(string)

]
report exponentiated coefficients and, optionally, label as string

batch(#) specify length of block for batch-means calculations;
default is batch(0)

saving(filename
[
, replace

]
) save simulation results to filename.dta

nomodelsummary suppress model summary
chainsdetail display detailed simulation summary for each chain[
no
]
dots suppress dots or display dots every 100 iterations and iteration

numbers every 1,000 iterations; default is nodots

dots(#
[
, every(#)

]
) display dots as simulation is performed[

no
]
show(paramref) specify model parameters to be excluded from or included in

the output
notable suppress estimation table
noheader suppress output header
title(string) display string as title above the table of parameter estimates
display options control spacing, line width, and base and empty cells

Advanced

search(search options) control the search for feasible initial values
corrlag(#) specify maximum autocorrelation lag; default varies
corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)

∗Starred options are specific to the bayes prefix; other options are common between bayes and bayesmh.
Options prior() and block() may be repeated.
priorspec and paramref are defined in [BAYES] bayesmh.
paramref may contain factor variables; see [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Model parameters are regression coefficients {depvar:indepvars}. Use the dryrun option to see the definitions of
model parameters prior to estimation.

For a detailed description of bayesopts, see Options in [BAYES] bayes.
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Remarks and examples
For a general introduction to Bayesian analysis, see [BAYES] Intro. For a general introduction

to Bayesian estimation using an adaptive Metropolis–Hastings algorithm, see [BAYES] bayesmh. For
remarks and examples specific to the bayes prefix, see [BAYES] bayes. For details about the estimation
command, see [R] clogit.

For a simple example of the bayes prefix, see Introductory example in [BAYES] bayes.

Stored results
See Stored results in [BAYES] bayes.

Methods and formulas
See Methods and formulas in [BAYES] bayesmh.

Also see
[BAYES] bayes — Bayesian regression models using the bayes prefix

[R] clogit — Conditional (fixed-effects) logistic regression

[BAYES] Bayesian postestimation — Postestimation tools for bayesmh and the bayes prefix

[BAYES] Bayesian estimation — Bayesian estimation commands

[BAYES] Bayesian commands — Introduction to commands for Bayesian analysis

[BAYES] Intro — Introduction to Bayesian analysis

[BAYES] Glossary



Title

bayes: cloglog — Bayesian complementary log–log regression

Description Quick start Menu Syntax
Remarks and examples Stored results Methods and formulas Also see

Description
bayes: cloglog fits a Bayesian complementary log–log regression to a binary outcome; see

[BAYES] bayes and [R] cloglog for details.

Quick start
Bayesian complementary log–log regression of y on x1 and x2, using default normal priors for

regression coefficients
bayes: cloglog y x1 x2

Use a standard deviation of 10 instead of 100 for the default normal priors
bayes, normalprior(10): cloglog y x1 x2

Use uniform priors for the slopes and a normal prior for the intercept
bayes, prior({y: x1 x2}, uniform(-10,10)) ///
prior({y: cons}, normal(0,10)): cloglog y x1 x2

Save simulation results to simdata.dta, and use a random-number seed for reproducibility
bayes, saving(simdata) rseed(123): cloglog y x1 x2

Specify 20,000 Markov chain Monte Carlo (MCMC) samples, set length of the burn-in period to 5,000,
and request that a dot be displayed every 500 simulations

bayes, mcmcsize(20000) burnin(5000) dots(500): cloglog y x1 x2

In the above, request that the 90% highest posterior density (HPD) credible interval be displayed
instead of the default 95% equal-tailed credible interval

bayes, clevel(90) hpd

Display results as exponentiated coefficients
bayes: cloglog y x1 x2, eform

Display exponentiated coefficients on replay
bayes, eform

Also see Quick start in [BAYES] bayes and Quick start in [R] cloglog.

Menu
Statistics > Binary outcomes > Bayesian regression > Complementary log–log regression
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Syntax
bayes

[
, bayesopts

]
: cloglog depvar

[
indepvars

] [
if
] [

in
] [

weight
] [

, options
]

options Description

Model

noconstant suppress constant term
offset(varname) include varname in model with coefficient constrained to 1
asis retain perfect predictor variables

Reporting

eform report exponentiated coefficients
display options control spacing, line width, and base and empty cells

level(#) set credible level; default is level(95)

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.
fweights are allowed; see [U] 11.1.6 weight.
bayes: cloglog, level() is equivalent to bayes, clevel(): cloglog.
For a detailed description of options, see Options in [R] cloglog.

bayesopts Description

Priors
∗normalprior(#) specify standard deviation of default normal priors for regression

coefficients; default is normalprior(100)

prior(priorspec) prior for model parameters; this option may be repeated
dryrun show model summary without estimation

Simulation

nchains(#) number of chains; default is to simulate one chain
mcmcsize(#) MCMC sample size; default is mcmcsize(10000)

burnin(#) burn-in period; default is burnin(2500)

thinning(#) thinning interval; default is thinning(1)

rseed(#) random-number seed
exclude(paramref) specify model parameters to be excluded from the simulation results

Blocking
∗blocksize(#) maximum block size; default is blocksize(50)

block(paramref
[
, blockopts

]
) specify a block of model parameters; this option may be repeated

blocksummary display block summary
∗noblocking do not block parameters by default
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Initialization

initial(initspec) specify initial values for model parameters with a single chain
init#(initspec) specify initial values for #th chain; requires nchains()

initall(initspec) specify initial values for all chains; requires nchains()

nomleinitial suppress the use of maximum likelihood estimates as starting values
initrandom specify random initial values
initsummary display initial values used for simulation
∗noisily display output from the estimation command during initialization

Adaptation

adaptation(adaptopts) control the adaptive MCMC procedure
scale(#) initial multiplier for scale factor; default is scale(2.38)

covariance(cov) initial proposal covariance; default is the identity matrix

Reporting

clevel(#) set credible interval level; default is clevel(95)

hpd display HPD credible intervals instead of the default equal-tailed
credible intervals

eform
[
(string)

]
report exponentiated coefficients and, optionally, label as string

batch(#) specify length of block for batch-means calculations;
default is batch(0)

saving(filename
[
, replace

]
) save simulation results to filename.dta

nomodelsummary suppress model summary
chainsdetail display detailed simulation summary for each chain[
no
]
dots suppress dots or display dots every 100 iterations and iteration

numbers every 1,000 iterations; default is nodots

dots(#
[
, every(#)

]
) display dots as simulation is performed[

no
]
show(paramref) specify model parameters to be excluded from or included in

the output
notable suppress estimation table
noheader suppress output header
title(string) display string as title above the table of parameter estimates
display options control spacing, line width, and base and empty cells

Advanced

search(search options) control the search for feasible initial values
corrlag(#) specify maximum autocorrelation lag; default varies
corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)

∗Starred options are specific to the bayes prefix; other options are common between bayes and bayesmh.
Options prior() and block() may be repeated.
priorspec and paramref are defined in [BAYES] bayesmh.
paramref may contain factor variables; see [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Model parameters are regression coefficients {depvar:indepvars}. Use the dryrun option to see the definitions of
model parameters prior to estimation.

For a detailed description of bayesopts, see Options in [BAYES] bayes.
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Remarks and examples
For a general introduction to Bayesian analysis, see [BAYES] Intro. For a general introduction

to Bayesian estimation using an adaptive Metropolis–Hastings algorithm, see [BAYES] bayesmh. For
remarks and examples specific to the bayes prefix, see [BAYES] bayes. For details about the estimation
command, see [R] cloglog.

For a simple example of the bayes prefix, see Introductory example in [BAYES] bayes. Also see
Logistic regression with perfect predictors in [BAYES] bayes.

Stored results
See Stored results in [BAYES] bayes.

Methods and formulas
See Methods and formulas in [BAYES] bayesmh.

Also see
[BAYES] bayes — Bayesian regression models using the bayes prefix

[R] cloglog — Complementary log–log regression

[BAYES] Bayesian postestimation — Postestimation tools for bayesmh and the bayes prefix

[BAYES] Bayesian estimation — Bayesian estimation commands

[BAYES] Bayesian commands — Introduction to commands for Bayesian analysis

[BAYES] Intro — Introduction to Bayesian analysis

[BAYES] Glossary



Title

bayes: dsge — Bayesian linear dynamic stochastic general equilibrium models

Description Quick start Menu Syntax
Remarks and examples Stored results Methods and formulas Also see

Description
bayes: dsge fits a Bayesian linear dynamic stochastic general equilibrium model to continuous

multivariate time series; see [BAYES] bayes and [DSGE] dsge for details.

Quick start
Autoregressive model of order 1 with uniform prior for the autoregressive coefficient {rho}

bayes, prior({rho}, uniform(0,1)): dsge (y = z) (F.z = {rho}*z, state)

Save simulation results to bdsgesim.dta, and use a random-number seed for reproducibility
bayes, prior({rho}, uniform(0,1)) rseed(17) saving(bdsgesim): ///

dsge (y = z) (F.z = {rho}*z, state)

Specify 20,000 Markov chain Monte Carlo (MCMC) samples, and set length of burn-in period to 5,000
bayes, prior({rho}, uniform(0,1)) mcmcsize(20000) burnin(5000): ///

dsge (y = z) (F.z = {rho}*z, state)

Estimate an Euler equation for variable y

bayes, prior({rho}, uniform(0,1)) prior({sigma}, beta(5, 5)): ///
dsge (y = f.y - {sigma}*r) (F.r = {rho}*r, state)

In the above, request that a 90% highest posterior density (HPD) credible interval be displayed instead
of the default 95% equal-tailed credible interval.

bayes, clevel(90) hpd

Also see Quick start in [BAYES] bayes.

Menu
Statistics > Multivariate time series > Bayesian models > Linear DSGE models
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Syntax
bayes, prior(userparams,. . .)

[
bayesopts

]
: dsge eqlist

[
if
] [

in
] [

, options
]

options Description

Advanced

lintolerance(#) set tolerance used for linearity check; seldom used

level(#) set credible level; default is level(95)

noidencheck do not check for parameter identification; implied
solve return model solution at initial values; implied

bayes: dsge, level() is equivalent to bayes, clevel(): dsge.
For a detailed description of options, see Options in [DSGE] dsge.
Options level(), noidencheck, and stable do not appear on the dialog box.

bayesopts Description

Priors
∗igammaprior(# #) specify shape and scale of default inverse-gamma prior for standard

deviations of shocks; default is igammaprior(0.01 0.01)

prior(priorspec) prior for model parameters; this option may be repeated and is
required for all user-defined parameters userparams

dryrun show model summary without estimation

Simulation

nchains(#) number of chains; default is to simulate one chain
mcmcsize(#) MCMC sample size; default is mcmcsize(10000)

burnin(#) burn-in period; default is burnin(2500)

thinning(#) thinning interval; default is thinning(1)

rseed(#) random-number seed
exclude(paramref) specify model parameters to be excluded from the simulation results

Blocking

block(paramref
[
, blockopts

]
) specify a block of model parameters; this option may be repeated

blocksummary display block summary
Initialization

initial(initspec) specify initial values for model parameters with a single chain
init#(initspec) specify initial values for #th chain; requires nchains()

initall(initspec) specify initial values for all chains; requires nchains()

nomleinitial suppress the use of maximum likelihood estimates as starting values
initrandom specify random initial values
initsummary display initial values used for simulation
∗noisily display output from the estimation command during initialization
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Reporting

clevel(#) set credible interval level; default is clevel(95)

hpd display HPD credible intervals instead of the default equal-tailed
credible intervals

batch(#) specify length of block for batch-means calculations;
default is batch(0)

saving(filename
[
, replace

]
) save simulation results to filename.dta

nomodelsummary suppress model summary
chainsdetail display detailed simulation summary for each chain[
no
]
dots suppress dots or display dots every 100 iterations and iteration

numbers every 1,000 iterations; default is nodots

dots(#
[
, every(#)

]
) display dots as simulation is performed[

no
]
show(paramref) specify model parameters to be excluded from or included in

the output
notable suppress estimation table
noheader suppress output header
title(string) display string as title above the table of parameter estimates
display options control spacing, line width, and base and empty cells

Advanced

search(search options) control the search for feasible initial values
corrlag(#) specify maximum autocorrelation lag; default varies
corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)

∗Starred options are specific to the bayes prefix; other options are common between bayes and bayesmh.
priorspec and paramref are defined in [BAYES] bayesmh.
paramref may contain factor variables; see [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Model parameters are user-defined parameters userparams and standard deviations of shocks {sd(e.exogstate)}. Use
the dryrun option to see the definitions of model parameters prior to estimation.

For a detailed description of bayesopts, see Options in [BAYES] bayes.
nomleinitial is assumed. Default parameter values are set to means of priors.

Remarks and examples
For a general introduction to Bayesian analysis, see [BAYES] Intro. For a general introduction

to Bayesian estimation using an adaptive Metropolis–Hastings algorithm, see [BAYES] bayesmh. For
remarks and examples specific to the bayes prefix, see [BAYES] bayes. For details about the estimation
command, see [DSGE] dsge.

For a simple example of the bayes prefix, see Introductory example in [BAYES] bayes. For an
introduction to and examples of Bayesian DSGEs, see [DSGE] Intro 9 and [DSGE] Intro 9a.

Stored results
See Stored results in [BAYES] bayes. Also see Stored results in [DSGE] dsge.
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Methods and formulas
See Methods and formulas in [DSGE] dsge and [DSGE] Intro 9. See Methods and formulas in

[BAYES] bayesmh.

Also see
[BAYES] bayes: dsge postestimation — Postestimation tools for bayes: dsge and bayes: dsgenl

[BAYES] bayes — Bayesian regression models using the bayes prefix

[DSGE] dsge — Linear dynamic stochastic general equilibrium models

[BAYES] Bayesian postestimation — Postestimation tools for bayesmh and the bayes prefix

[BAYES] Bayesian estimation — Bayesian estimation commands

[BAYES] Bayesian commands — Introduction to commands for Bayesian analysis

[BAYES] Intro — Introduction to Bayesian analysis

[BAYES] Glossary



Title

bayes: dsgenl — Bayesian nonlinear dynamic stochastic general equilibrium models

Description Quick start Menu Syntax
Remarks and examples Stored results Methods and formulas Also see

Description
bayes: dsgenl fits a Bayesian nonlinear dynamic stochastic general equilibrium (DSGE) model

to continuous multivariate time series; see [BAYES] bayes and [DSGE] dsgenl for details.

Quick start
Nonlinear DSGE model in which observed variable y depends on unobserved state z

bayes, prior({rho}, uniform(0,1)) prior({alpha}, beta(5,5)): ///
dsgenl (y = z^({alpha})) (ln(F.z) = {rho}*ln(z)), ///
exostate(z) observed(y)

Save simulation results to bdsgenlsim.dta, and use a random-number seed for reproducibility
bayes, prior({rho}, uniform(0,1)) prior({alpha}, beta(5,5)): ///

rseed(17) saving(bdsgenlsim): ///
dsgenl (y = z^({alpha})) (ln(F.z) = {rho}*ln(z)), ///
exostate(z) observed(y)

Specify 20,000 Markov chain Monte Carlo (MCMC) samples, and set length of burn-in period to 5,000
bayes, prior({rho}, uniform(0,1)) prior({alpha}, beta(5,5)): ///

mcmcsize(20000) burnin(5000): ///
dsgenl (y = z^({alpha})) (ln(F.z) = {rho}*ln(z)), ///
exostate(z) observed(y)

Estimate parameters of a four-equation production model. Priors for {alpha}, {beta}, and {rho}
are given by beta distributions with means 0.3, 0.9, and 0.5, respectively

bayes, prior({alpha}, beta(3,7)) ///
prior({beta}, beta(9,1)) ///
prior({rho}, beta(7,7)) : ///
dsgenl (1/c = {alpha}*{beta}*(1/F.c)*(F.y/F.k)) ///

(y = z*k^({alpha})) (F.k = y - c) ///
(ln(F.z) = {rho}*ln(z)) , ///
exostate(z) endostate(k) observed(y) unobserved(c)

In the above, request that a 90% highest posterior density (HPD) credible interval be displayed instead
of the default 95% equal-tailed credible interval.

bayes, clevel(90) hpd

Also see Quick start in [BAYES] bayes.

Menu
Statistics > Multivariate time series > Bayesian models > Nonlinear DSGE models
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Syntax

bayes, prior(userparams, . . .)
[

bayesopts
]
: dsgenl (eqn list)

[
if
] [

in
] [

, options
]

options Description

Model
∗observed(string) list observed control variables
unobserved(string) list unobserved control variables
∗exostate(string) list exogenous state variables
endostate(string) list endogenous state variables
linearapprox take a linear, rather than log-linear, approximation

level(#) set credible level; default is level(95)

noidencheck do not check for parameter identification; implied
solve return model solution at initial values; implied

∗observed() and exostate() are required.
bayes: dsgenl, level() is equivalent to bayes, clevel(): dsgenl.
For a detailed description of options, see Options in [DSGE] dsgenl.
Options level(), noidencheck, and stable do not appear on the dialog box.

bayesopts Description

Priors
∗igammaprior(# #) specify shape and scale of default inverse-gamma prior for standard

deviations of shocks; default is igammaprior(0.01 0.01)

prior(priorspec) prior for model parameters; this option may be repeated and is
required for all user-defined parameters userparams

dryrun show model summary without estimation

Simulation

nchains(#) number of chains; default is to simulate one chain
mcmcsize(#) MCMC sample size; default is mcmcsize(10000)

burnin(#) burn-in period; default is burnin(2500)

thinning(#) thinning interval; default is thinning(1)

rseed(#) random-number seed
exclude(paramref) specify model parameters to be excluded from the simulation results

Blocking

block(paramref
[
, blockopts

]
) specify a block of model parameters; this option may be repeated

blocksummary display block summary
Initialization

initial(initspec) specify initial values for model parameters with a single chain
init#(initspec) specify initial values for #th chain; requires nchains()

initall(initspec) specify initial values for all chains; requires nchains()

nomleinitial suppress the use of maximum likelihood estimates as starting values
initrandom specify random initial values
initsummary display initial values used for simulation
∗noisily display output from the estimation command during initialization
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Reporting

clevel(#) set credible interval level; default is clevel(95)

hpd display HPD credible intervals instead of the default equal-tailed
credible intervals

batch(#) specify length of block for batch-means calculations;
default is batch(0)

saving(filename
[
, replace

]
) save simulation results to filename.dta

nomodelsummary suppress model summary
chainsdetail display detailed simulation summary for each chain[
no
]
dots suppress dots or display dots every 100 iterations and iteration

numbers every 1,000 iterations; default is nodots

dots(#
[
, every(#)

]
) display dots as simulation is performed[

no
]
show(paramref) specify model parameters to be excluded from or included in

the output
notable suppress estimation table
noheader suppress output header
title(string) display string as title above the table of parameter estimates
display options control spacing, line width, and base and empty cells

Advanced

search(search options) control the search for feasible initial values
corrlag(#) specify maximum autocorrelation lag; default varies
corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)

∗Starred options are specific to the bayes prefix; other options are common between bayes and bayesmh.
priorspec and paramref are defined in [BAYES] bayesmh.
paramref may contain factor variables; see [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Model parameters are user-defined parameters userparams and standard deviations of shocks {sd(e.exogstate)}. Use
the dryrun option to see the definitions of model parameters prior to estimation.

For a detailed description of bayesopts, see Options in [BAYES] bayes.
nomleinitial is assumed. Default parameter values are set to means of priors.

Remarks and examples
For a general introduction to Bayesian analysis, see [BAYES] Intro. For a general introduction

to Bayesian estimation using an adaptive Metropolis–Hastings algorithm, see [BAYES] bayesmh. For
remarks and examples specific to the bayes prefix, see [BAYES] bayes. For details about the estimation
command, see [DSGE] dsgenl.

For a simple example of the bayes prefix, see Introductory example in [BAYES] bayes. For an
introduction to and examples of Bayesian DSGEs, see [DSGE] Intro 9 and [DSGE] Intro 9b.

Stored results
See Stored results in [BAYES] bayes. Also see Stored results in [DSGE] dsgenl.
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Methods and formulas
See Methods and formulas in [DSGE] dsge and [DSGE] Intro 9. See Methods and formulas in

[BAYES] bayesmh.

Also see
[BAYES] bayes: dsge postestimation — Postestimation tools for bayes: dsge and bayes: dsgenl

[BAYES] bayes — Bayesian regression models using the bayes prefix

[DSGE] dsgenl — Nonlinear dynamic stochastic general equilibrium models

[BAYES] Bayesian postestimation — Postestimation tools for bayesmh and the bayes prefix

[BAYES] Bayesian estimation — Bayesian estimation commands

[BAYES] Bayesian commands — Introduction to commands for Bayesian analysis

[BAYES] Intro — Introduction to Bayesian analysis

[BAYES] Glossary



Title

bayes: dsge postestimation — Postestimation tools for bayes: dsge and bayes: dsgenl

Postestimation commands Remarks and examples Also see

Postestimation commands
The following Bayesian postestimation commands are of special interest after bayes: dsge and

bayes: dsgenl:

Command Description

bayesirf Bayesian impulse–response functions

The following standard Bayesian postestimation commands are also available:

Command Description

bayesgraph graphical summaries and convergence diagnostics
bayesstats grubin Gelman–Rubin convergence diagnostics
bayesstats ess effective sample sizes and related statistics
bayesstats summary Bayesian summary statistics for model parameters and their functions
bayesstats ic Bayesian information criteria and Bayes factors
bayestest model hypothesis testing using model posterior probabilities
bayestest interval interval hypothesis testing
∗estimates cataloging estimation results

∗ estimates table and estimates stats are not appropriate with bayes: var estimation results.

Remarks and examples
See [DSGE] Intro 9a and [DSGE] Intro 9b for examples of bayesirf after bayes: dsge and

bayes: dsgenl. Also see [BAYES] Bayesian postestimation for generic Bayesian postestimation
tools.

Also see
[BAYES] bayes: dsge — Bayesian linear dynamic stochastic general equilibrium models

[BAYES] bayes: dsgenl — Bayesian nonlinear dynamic stochastic general equilibrium models

[BAYES] Bayesian postestimation — Postestimation tools for bayesmh and the bayes prefix

[BAYES] Intro — Introduction to Bayesian analysis

[BAYES] Glossary
[U] 20 Estimation and postestimation commands
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Title

bayes: fracreg — Bayesian fractional response regression

Description Quick start Menu Syntax
Remarks and examples Stored results Methods and formulas Also see

Description
bayes: fracreg fits a Bayesian fractional response regression to a fractional outcome whose

values are greater than or equal to 0 and less than or equal to 1; see [BAYES] bayes and [R] fracreg
for details.

Quick start
Bayesian fractional probit regression of y on x1 and x2, using default normal priors for regression

coefficients
bayes: fracreg probit y x1 x2

Use a standard deviation of 10 instead of 100 for the default normal priors
bayes, normalprior(10): fracreg probit y x1 x2

Use uniform priors for the slopes and a normal prior for the intercept
bayes, prior({y: x1 x2}, uniform(-10,10)) ///
prior({y: cons}, normal(0,10)): fracreg probit y x1 x2

Save simulation results to simdata.dta, and use a random-number seed for reproducibility
bayes, saving(simdata) rseed(123): fracreg probit y x1 x2

Specify 20,000 Markov chain Monte Carlo (MCMC) samples, set length of the burn-in period to 5,000,
and request that a dot be displayed every 500 simulations

bayes, mcmcsize(20000) burnin(5000) dots(500): fracreg probit y x1 x2

In the above, request that the 90% highest posterior density (HPD) credible interval be displayed
instead of the default 95% equal-tailed credible interval

bayes, clevel(90) hpd

Fit a fractional logistic regression and display results as odds ratios
bayes: fracreg logit y x1 x2, or

Display odds ratios on replay
bayes, or

Also see Quick start in [BAYES] bayes and Quick start in [R] fracreg.

Menu
Statistics > Fractional outcomes > Bayesian fractional regression
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Syntax

Syntax for fractional probit regression

bayes
[
, bayesopts

]
: fracreg probit depvar

[
indepvars

] [
if
] [

in
] [

weight
]

[
, options

]
Syntax for fractional logistic regression

bayes
[
, bayesopts

]
: fracreg logit depvar

[
indepvars

] [
if
] [

in
] [

weight
]

[
, options

]
Syntax for fractional heteroskedastic probit regression

bayes
[
, bayesopts

]
: fracreg probit depvar

[
indepvars

] [
if
] [

in
] [

weight
]
,

het(varlist
[
, offset(varnameo)

]
)
[

options
]

options Description

Model

noconstant suppress constant term
offset(varname) include varname in model with coefficient constrained to 1
∗het(varlist

[
, offset(varnameo)

]
independent variables to model the variance and possible

offset variable with fracreg probit

Reporting

or report odds ratios; only valid with fracreg logit

display options control spacing, line width, and base and empty cells

level(#) set credible level; default is level(95)

∗ het() may be used only with fracreg probit to compute fractional heteroskedastic probit regression.
indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.
fweights are allowed; see [U] 11.1.6 weight.
bayes: fracreg, level() is equivalent to bayes, clevel(): fracreg.
For a detailed description of options, see Options in [R] fracreg.

bayesopts Description

Priors
∗normalprior(#) specify standard deviation of default normal priors for regression

coefficients; default is normalprior(100)

prior(priorspec) prior for model parameters; this option may be repeated
dryrun show model summary without estimation
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Simulation

nchains(#) number of chains; default is to simulate one chain
mcmcsize(#) MCMC sample size; default is mcmcsize(10000)

burnin(#) burn-in period; default is burnin(2500)

thinning(#) thinning interval; default is thinning(1)

rseed(#) random-number seed
exclude(paramref) specify model parameters to be excluded from the simulation results

Blocking
∗blocksize(#) maximum block size; default is blocksize(50)

block(paramref
[
, blockopts

]
) specify a block of model parameters; this option may be repeated

blocksummary display block summary
∗noblocking do not block parameters by default

Initialization

initial(initspec) specify initial values for model parameters with a single chain
init#(initspec) specify initial values for #th chain; requires nchains()

initall(initspec) specify initial values for all chains; requires nchains()

nomleinitial suppress the use of maximum likelihood estimates as starting values
initrandom specify random initial values
initsummary display initial values used for simulation
∗noisily display output from the estimation command during initialization

Adaptation

adaptation(adaptopts) control the adaptive MCMC procedure
scale(#) initial multiplier for scale factor; default is scale(2.38)

covariance(cov) initial proposal covariance; default is the identity matrix

Reporting

clevel(#) set credible interval level; default is clevel(95)

hpd display HPD credible intervals instead of the default equal-tailed
credible intervals

∗or report odds ratio; only valid with fracreg logit

eform
[
(string)

]
report exponentiated coefficients and, optionally, label as string

batch(#) specify length of block for batch-means calculations;
default is batch(0)

saving(filename
[
, replace

]
) save simulation results to filename.dta

nomodelsummary suppress model summary
chainsdetail display detailed simulation summary for each chain[
no
]
dots suppress dots or display dots every 100 iterations and iteration

numbers every 1,000 iterations; default is nodots

dots(#
[
, every(#)

]
) display dots as simulation is performed[

no
]
show(paramref) specify model parameters to be excluded from or included in

the output
notable suppress estimation table
noheader suppress output header
title(string) display string as title above the table of parameter estimates
display options control spacing, line width, and base and empty cells
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Advanced

search(search options) control the search for feasible initial values
corrlag(#) specify maximum autocorrelation lag; default varies
corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)

∗Starred options are specific to the bayes prefix; other options are common between bayes and bayesmh.
Options prior() and block() may be repeated.
priorspec and paramref are defined in [BAYES] bayesmh.
paramref may contain factor variables; see [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Model parameters are regression coefficients {depvar:indepvars} and, if option het() is specified, regression coefficients
{lnsigma:varlist} for the log-standard deviation equation. Use the dryrun option to see the definitions of model
parameters prior to estimation.

For a detailed description of bayesopts, see Options in [BAYES] bayes.

Remarks and examples
For a general introduction to Bayesian analysis, see [BAYES] Intro. For a general introduction

to Bayesian estimation using an adaptive Metropolis–Hastings algorithm, see [BAYES] bayesmh. For
remarks and examples specific to the bayes prefix, see [BAYES] bayes. For details about the estimation
command, see [R] fracreg.

For a simple example of the bayes prefix, see Introductory example in [BAYES] bayes.

Stored results
See Stored results in [BAYES] bayes.

Methods and formulas
See Methods and formulas in [BAYES] bayesmh.

Also see
[BAYES] bayes — Bayesian regression models using the bayes prefix

[R] fracreg — Fractional response regression

[BAYES] Bayesian postestimation — Postestimation tools for bayesmh and the bayes prefix

[BAYES] Bayesian estimation — Bayesian estimation commands

[BAYES] Bayesian commands — Introduction to commands for Bayesian analysis

[BAYES] Intro — Introduction to Bayesian analysis

[BAYES] Glossary



Title

bayes: glm — Bayesian generalized linear models

Description Quick start Menu Syntax
Remarks and examples Stored results Methods and formulas Also see

Description
bayes: glm fits a Bayesian generalized linear model to outcomes of different types such as

continuous, binary, count, and so on; see [BAYES] bayes and [R] glm for details.

Quick start
Bayesian generalized linear model of y on x1 and x2, using the Gaussian family and log link and

using default normal priors for regression coefficients
bayes: glm y x1 x2, family(gaussian) link(log)

Use a standard deviation of 10 instead of 100 for the default normal priors
bayes, normalprior(10): glm y x1 x2, family(gaussian) link(log)

Use uniform priors for the slopes and a normal prior for the intercept
bayes, prior({y: x1 x2}, uniform(-10,10)) ///
prior({y: cons}, normal(0,10)): ///
glm y x1 x2, family(gaussian) link(log)

Save simulation results to simdata.dta, and use a random-number seed for reproducibility
bayes, saving(simdata) rseed(123): ///
glm y x1 x2, family(gaussian) link(log)

Specify 20,000 Markov chain Monte Carlo (MCMC) samples, set length of the burn-in period to 5,000,
and request that a dot be displayed every 500 simulations

bayes, mcmcsize(20000) burnin(5000) dots(500): ///
glm y x1 x2, family(gaussian) link(log)

In the above, request that the 90% highest posterior density (HPD) credible interval be displayed
instead of the default 95% equal-tailed credible interval

bayes, clevel(90) hpd

Fit a logit model and display results as odds ratios
bayes: glm z x1 x2, family(binomial) eform

Display odds ratios on replay
bayes, eform

Also see Quick start in [BAYES] bayes and Quick start in [R] glm.

Menu
Statistics > Generalized linear models > Bayesian generalized linear models (GLM)

496



bayes: glm — Bayesian generalized linear models 497

Syntax

bayes
[
, bayesopts

]
: glm depvar

[
indepvars

] [
if
] [

in
] [

weight
] [

, options
]

options Description

Model

family(familyname) distribution of depvar; default is family(gaussian)

link(linkname) link function; default is canonical link for family() specified

Model 2

noconstant suppress constant term
exposure(varname) include ln(varname) in model with coefficient constrained to 1
offset(varname) include varname in model with coefficient constrained to 1
asis retain perfect predictor variables
mu(varname) use varname as the initial estimate for the mean of depvar
init(varname) synonym for mu(varname)

Reporting

eform report exponentiated coefficients
display options control spacing, line width, and base and empty cells

level(#) set credible level; default is level(95)

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.
fweights are allowed; see [U] 11.1.6 weight.
bayes: glm, level() is equivalent to bayes, clevel(): glm.
For a detailed description of options, see Options in [R] glm.

bayesopts Description

Priors
∗normalprior(#) specify standard deviation of default normal priors for regression

coefficients; default is normalprior(100)

prior(priorspec) prior for model parameters; this option may be repeated
dryrun show model summary without estimation

Simulation

nchains(#) number of chains; default is to simulate one chain
mcmcsize(#) MCMC sample size; default is mcmcsize(10000)

burnin(#) burn-in period; default is burnin(2500)

thinning(#) thinning interval; default is thinning(1)

rseed(#) random-number seed
exclude(paramref) specify model parameters to be excluded from the simulation results

Blocking
∗blocksize(#) maximum block size; default is blocksize(50)

block(paramref
[
, blockopts

]
) specify a block of model parameters; this option may be repeated

blocksummary display block summary
∗noblocking do not block parameters by default
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Initialization

initial(initspec) specify initial values for model parameters with a single chain
init#(initspec) specify initial values for #th chain; requires nchains()

initall(initspec) specify initial values for all chains; requires nchains()

nomleinitial suppress the use of maximum likelihood estimates as starting values
initrandom specify random initial values
initsummary display initial values used for simulation
∗noisily display output from the estimation command during initialization

Adaptation

adaptation(adaptopts) control the adaptive MCMC procedure
scale(#) initial multiplier for scale factor; default is scale(2.38)

covariance(cov) initial proposal covariance; default is the identity matrix

Reporting

clevel(#) set credible interval level; default is clevel(95)

hpd display HPD credible intervals instead of the default equal-tailed
credible intervals

eform
[
(string)

]
report exponentiated coefficients and, optionally, label as string

batch(#) specify length of block for batch-means calculations;
default is batch(0)

saving(filename
[
, replace

]
) save simulation results to filename.dta

nomodelsummary suppress model summary
chainsdetail display detailed simulation summary for each chain[
no
]
dots suppress dots or display dots every 100 iterations and iteration

numbers every 1,000 iterations; default is nodots

dots(#
[
, every(#)

]
) display dots as simulation is performed[

no
]
show(paramref) specify model parameters to be excluded from or included in

the output
notable suppress estimation table
noheader suppress output header
title(string) display string as title above the table of parameter estimates
display options control spacing, line width, and base and empty cells

Advanced

search(search options) control the search for feasible initial values
corrlag(#) specify maximum autocorrelation lag; default varies
corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)

∗Starred options are specific to the bayes prefix; other options are common between bayes and bayesmh.
Options prior() and block() may be repeated.
priorspec and paramref are defined in [BAYES] bayesmh.
paramref may contain factor variables; see [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Model parameters are regression coefficients {depvar:indepvars}. Use the dryrun option to see the definitions of
model parameters prior to estimation.

For a detailed description of bayesopts, see Options in [BAYES] bayes.
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Remarks and examples
For a general introduction to Bayesian analysis, see [BAYES] Intro. For a general introduction

to Bayesian estimation using an adaptive Metropolis–Hastings algorithm, see [BAYES] bayesmh. For
remarks and examples specific to the bayes prefix, see [BAYES] bayes. For details about the estimation
command, see [R] glm.

For a simple example of the bayes prefix, see Introductory example in [BAYES] bayes. Also see
Generalized linear model in [BAYES] bayes.

bayes: glm does not estimate the scale parameter but uses a fixed value as provided by the glm
command. If you want to fit a GLM and estimate the scale parameter, use bayes: meglm without
specifying random effects.

Stored results
See Stored results in [BAYES] bayes.

Methods and formulas
See Methods and formulas in [BAYES] bayesmh.

Also see
[BAYES] bayes — Bayesian regression models using the bayes prefix

[R] glm — Generalized linear models

[BAYES] Bayesian postestimation — Postestimation tools for bayesmh and the bayes prefix

[BAYES] Bayesian estimation — Bayesian estimation commands

[BAYES] Bayesian commands — Introduction to commands for Bayesian analysis

[BAYES] Intro — Introduction to Bayesian analysis

[BAYES] Glossary



Title

bayes: gnbreg — Bayesian generalized negative binomial regression

Description Quick start Menu Syntax
Remarks and examples Stored results Methods and formulas Also see

Description
bayes: gnbreg fits a Bayesian generalized negative binomial regression to a nonnegative count

outcome; see [BAYES] bayes and [R] nbreg for details.

Quick start
Bayesian generalized negative binomial regression of y on x1 and x2, using z to model the log-

overdispersion and using default normal priors for regression coefficients and log-overdispersion
parameter

bayes: gnbreg y x1 x2, lnalpha(z)

Use a standard deviation of 10 instead of 100 for the default normal priors
bayes, normalprior(10): gnbreg y x1 x2, lnalpha(z)

Use uniform priors for the slopes and a normal prior for the intercept
bayes, prior({y: x1 x2}, uniform(-10,10)) ///
prior({y: cons}, normal(0,10)): gnbreg y x1 x2, lnalpha(z)

Save simulation results to simdata.dta, and use a random-number seed for reproducibility
bayes, saving(simdata) rseed(123): gnbreg y x1 x2, lnalpha(z)

Specify 20,000 Markov chain Monte Carlo (MCMC) samples, set length of the burn-in period to 5,000,
and request that a dot be displayed every 500 simulations

bayes, mcmcsize(20000) burnin(5000) dots(500): gnbreg y x1 x2, lnalpha(z)

In the above, request that the 90% highest posterior density (HPD) credible interval be displayed
instead of the default 95% equal-tailed credible interval

bayes, clevel(90) hpd

Display incidence-rate ratios instead of coefficients
bayes: gnbreg y x1 x2, lnalpha(z) irr

Display incidence-rate ratios on replay
bayes, irr

Also see Quick start in [BAYES] bayes and Quick start in [R] nbreg.

Menu
Statistics > Count outcomes > Bayesian regression > Generalized negative binomial regression
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Syntax
bayes

[
, bayesopts

]
: gnbreg depvar

[
indepvars

] [
if
] [

in
] [

weight
] [

, options
]

options Description

Model

noconstant suppress constant term
lnalpha(varlist) dispersion model variables
exposure(varnamee) include ln(varnamee) in model with coefficient constrained to 1
offset(varnameo) include varnameo in model with coefficient constrained to 1

Reporting

irr report incidence-rate ratios
display options control spacing, line width, and base and empty cells

level(#) set credible level; default is level(95)

indepvars and varlist may contain factor variables; see [U] 11.4.3 Factor variables.
fweights are allowed; see [U] 11.1.6 weight.
bayes: gnbreg, level() is equivalent to bayes, clevel(): gnbreg.
For a detailed description of options, see Options for gnbreg in [R] nbreg.

bayesopts Description

Priors
∗normalprior(#) specify standard deviation of default normal priors for regression

coefficients and log-overdispersion parameter;
default is normalprior(100)

prior(priorspec) prior for model parameters; this option may be repeated
dryrun show model summary without estimation

Simulation

nchains(#) number of chains; default is to simulate one chain
mcmcsize(#) MCMC sample size; default is mcmcsize(10000)

burnin(#) burn-in period; default is burnin(2500)

thinning(#) thinning interval; default is thinning(1)

rseed(#) random-number seed
exclude(paramref) specify model parameters to be excluded from the simulation results

Blocking
∗blocksize(#) maximum block size; default is blocksize(50)

block(paramref
[
, blockopts

]
) specify a block of model parameters; this option may be repeated

blocksummary display block summary
∗noblocking do not block parameters by default
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Initialization

initial(initspec) specify initial values for model parameters with a single chain
init#(initspec) specify initial values for #th chain; requires nchains()

initall(initspec) specify initial values for all chains; requires nchains()

nomleinitial suppress the use of maximum likelihood estimates as starting values
initrandom specify random initial values
initsummary display initial values used for simulation
∗noisily display output from the estimation command during initialization

Adaptation

adaptation(adaptopts) control the adaptive MCMC procedure
scale(#) initial multiplier for scale factor; default is scale(2.38)

covariance(cov) initial proposal covariance; default is the identity matrix

Reporting

clevel(#) set credible interval level; default is clevel(95)

hpd display HPD credible intervals instead of the default equal-tailed
credible intervals

∗irr report incidence-rate ratios
eform

[
(string)

]
report exponentiated coefficients and, optionally, label as string

batch(#) specify length of block for batch-means calculations;
default is batch(0)

saving(filename
[
, replace

]
) save simulation results to filename.dta

nomodelsummary suppress model summary
chainsdetail display detailed simulation summary for each chain[
no
]
dots suppress dots or display dots every 100 iterations and iteration

numbers every 1,000 iterations; default is nodots

dots(#
[
, every(#)

]
) display dots as simulation is performed[

no
]
show(paramref) specify model parameters to be excluded from or included in

the output
notable suppress estimation table
noheader suppress output header
title(string) display string as title above the table of parameter estimates
display options control spacing, line width, and base and empty cells

Advanced

search(search options) control the search for feasible initial values
corrlag(#) specify maximum autocorrelation lag; default varies
corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)

∗Starred options are specific to the bayes prefix; other options are common between bayes and bayesmh.
Options prior() and block() may be repeated.
priorspec and paramref are defined in [BAYES] bayesmh.
paramref may contain factor variables; see [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Model parameters are regression coefficients {depvar:indepvars} for the main regression and {lnalpha:varlist} for
the log-dispersion equation. Use the dryrun option to see the definitions of model parameters prior to estimation.

For a detailed description of bayesopts, see Options in [BAYES] bayes.
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Remarks and examples
For a general introduction to Bayesian analysis, see [BAYES] Intro. For a general introduction

to Bayesian estimation using an adaptive Metropolis–Hastings algorithm, see [BAYES] bayesmh. For
remarks and examples specific to the bayes prefix, see [BAYES] bayes. For details about the estimation
command, see [R] nbreg.

For a simple example of the bayes prefix, see Introductory example in [BAYES] bayes.

Stored results
See Stored results in [BAYES] bayes.

Methods and formulas
See Methods and formulas in [BAYES] bayesmh.

Also see
[BAYES] bayes — Bayesian regression models using the bayes prefix

[R] nbreg — Negative binomial regression

[BAYES] Bayesian postestimation — Postestimation tools for bayesmh and the bayes prefix

[BAYES] Bayesian estimation — Bayesian estimation commands

[BAYES] Bayesian commands — Introduction to commands for Bayesian analysis

[BAYES] Intro — Introduction to Bayesian analysis

[BAYES] Glossary



Title

bayes: heckman — Bayesian Heckman selection model

Description Quick start Menu Syntax
Remarks and examples Stored results Methods and formulas Also see

Description
bayes: heckman fits a Bayesian sample-selection linear regression to a partially observed continuous

outcome; see [BAYES] bayes and [R] heckman for details.

Quick start
Bayesian Heckman model of y on x1 and x2, using z1 and z2 to model selection and using default

normal priors for regression coefficients, log-standard-deviation, and atanh-correlation
bayes: heckman y x1 x2, select(z1 z2)

Use a standard deviation of 10 instead of 100 for the default normal priors
bayes, normalprior(10): heckman y x1 x2, select(z1 z2)

Use uniform priors for the slopes and a normal prior for the intercept of the main regression
bayes, prior({y: x1 x2}, uniform(-10,10)) ///
prior({y: cons}, normal(0,10)): heckman y x1 x2, select(z1 z2)

Save simulation results to simdata.dta, and use a random-number seed for reproducibility
bayes, saving(simdata) rseed(123):, ///
heckman y x1 x2, select(z1 z2)

Specify 20,000 Markov chain Monte Carlo (MCMC) samples, set length of the burn-in period to 5,000,
and request that a dot be displayed every 500 simulations

bayes, mcmcsize(20000) burnin(5000) dots(500):, ///
heckman y x1 x2, select(z1 z2)

In the above, request that the 90% highest posterior density (HPD) credible interval be displayed
instead of the default 95% equal-tailed credible interval

bayes, clevel(90) hpd

Also see Quick start in [BAYES] bayes and Quick start in [R] heckman.

Menu
Statistics > Linear models and related > Bayesian regression > Heckman selection model
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Syntax

bayes
[
, bayesopts

]
: heckman depvar

[
indepvars

] [
if
] [

in
] [

weight
]
,

select(
[

depvars =
]

varlists
[
, noconstant offset(varnameo)

]
)
[

options
]

options Description

Model
∗select() specify selection equation: dependent and independent

variables; whether to have constant term and offset variable
noconstant suppress constant term
offset(varname) include varname in model with coefficient constrained to 1

Reporting

display options control spacing, line width, and base and empty cells

level(#) set credible level; default is level(95)

∗select( ) is required.
The full specification is select(

[
depvars =

]
varlists

[
, noconstant offset(varnameo)

]
).

indepvars and varlists may contain factor variables; see [U] 11.4.3 Factor variables.
depvar, indepvars, varlists, and depvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.
fweights are allowed; see [U] 11.1.6 weight.
bayes: heckman, level() is equivalent to bayes, clevel(): heckman.
For a detailed description of options, see Options for Heckman selection model (ML) and Options for Heckman

selection model (two-step) in [R] heckman.

bayesopts Description

Priors
∗normalprior(#) specify standard deviation of default normal priors for regression

coefficients, log-standard-deviation, and atanh-correlation;
default is normalprior(100)

prior(priorspec) prior for model parameters; this option may be repeated
dryrun show model summary without estimation

Simulation

nchains(#) number of chains; default is to simulate one chain
mcmcsize(#) MCMC sample size; default is mcmcsize(10000)

burnin(#) burn-in period; default is burnin(2500)

thinning(#) thinning interval; default is thinning(1)

rseed(#) random-number seed
exclude(paramref) specify model parameters to be excluded from the simulation results

Blocking
∗blocksize(#) maximum block size; default is blocksize(50)

block(paramref
[
, blockopts

]
) specify a block of model parameters; this option may be repeated

blocksummary display block summary
∗noblocking do not block parameters by default



506 bayes: heckman — Bayesian Heckman selection model

Initialization

initial(initspec) specify initial values for model parameters with a single chain
init#(initspec) specify initial values for #th chain; requires nchains()

initall(initspec) specify initial values for all chains; requires nchains()

nomleinitial suppress the use of maximum likelihood estimates as starting values
initrandom specify random initial values
initsummary display initial values used for simulation
∗noisily display output from the estimation command during initialization

Adaptation

adaptation(adaptopts) control the adaptive MCMC procedure
scale(#) initial multiplier for scale factor; default is scale(2.38)

covariance(cov) initial proposal covariance; default is the identity matrix

Reporting

clevel(#) set credible interval level; default is clevel(95)

hpd display HPD credible intervals instead of the default equal-tailed
credible intervals

eform
[
(string)

]
report exponentiated coefficients and, optionally, label as string

batch(#) specify length of block for batch-means calculations;
default is batch(0)

saving(filename
[
, replace

]
) save simulation results to filename.dta

nomodelsummary suppress model summary
chainsdetail display detailed simulation summary for each chain[
no
]
dots suppress dots or display dots every 100 iterations and iteration

numbers every 1,000 iterations; default is nodots

dots(#
[
, every(#)

]
) display dots as simulation is performed[

no
]
show(paramref) specify model parameters to be excluded from or included in

the output
notable suppress estimation table
noheader suppress output header
title(string) display string as title above the table of parameter estimates
display options control spacing, line width, and base and empty cells

Advanced

search(search options) control the search for feasible initial values
corrlag(#) specify maximum autocorrelation lag; default varies
corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)

∗Starred options are specific to the bayes prefix; other options are common between bayes and bayesmh.
Options prior() and block() may be repeated.
priorspec and paramref are defined in [BAYES] bayesmh.
paramref may contain factor variables; see [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Model parameters are regression coefficients {depvar:indepvars} for the main regression and {select:varlist s} for
the selection equation, atanh-transformed correlation {athrho}, and log-standard deviation {lnsigma}. Use the
dryrun option to see the definitions of model parameters prior to estimation.

For a detailed description of bayesopts, see Options in [BAYES] bayes.
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Remarks and examples
For a general introduction to Bayesian analysis, see [BAYES] Intro. For a general introduction

to Bayesian estimation using an adaptive Metropolis–Hastings algorithm, see [BAYES] bayesmh. For
remarks and examples specific to the bayes prefix, see [BAYES] bayes. For details about the estimation
command, see [R] heckman.

For a simple example of the bayes prefix, see Introductory example in [BAYES] bayes. Also see
Heckman selection model in [BAYES] bayes.

Stored results
See Stored results in [BAYES] bayes.

Methods and formulas
See Methods and formulas in [BAYES] bayesmh.

Also see
[BAYES] bayes — Bayesian regression models using the bayes prefix

[R] heckman — Heckman selection model

[BAYES] Bayesian postestimation — Postestimation tools for bayesmh and the bayes prefix

[BAYES] Bayesian estimation — Bayesian estimation commands

[BAYES] Bayesian commands — Introduction to commands for Bayesian analysis

[BAYES] Intro — Introduction to Bayesian analysis

[BAYES] Glossary



Title

bayes: heckoprobit — Bayesian ordered probit model with sample selection

Description Quick start Menu Syntax
Remarks and examples Stored results Methods and formulas Also see

Description
bayes: heckoprobit fits a Bayesian sample-selection ordered probit regression to a partially

observed ordinal outcome; see [BAYES] bayes and [R] heckoprobit for details.

Quick start
Bayesian sample-selection ordered probit regression of y on x1 and x2, using z1 and z2 to model

selection, and using default normal priors for regression coefficients and atanh-correlation and flat
priors for cutpoints

bayes: heckoprobit y x1 x2, select(z1 z2)

Use a standard deviation of 10 instead of 100 for the default normal priors
bayes, normalprior(10): heckoprobit y x1 x2, select(z1 z2)

Use uniform priors for the slopes and a normal prior for the intercept of the main regression
bayes, prior({y: x1 x2}, uniform(-10,10)) ///
prior({y: cons}, normal(0,10)): heckoprobit y x1 x2, select(z1 z2)

Save simulation results to simdata.dta, and use a random-number seed for reproducibility
bayes, saving(simdata) rseed(123):, ///
heckoprobit y x1 x2, select(z1 z2)

Specify 20,000 Markov chain Monte Carlo (MCMC) samples, set length of the burn-in period to 5,000,
and request that a dot be displayed every 500 simulations

bayes, mcmcsize(20000) burnin(5000) dots(500):, ///
heckoprobit y x1 x2, select(z1 z2)

In the above, request that the 90% highest posterior density (HPD) credible interval be displayed
instead of the default 95% equal-tailed credible interval

bayes, clevel(90) hpd

Also see Quick start in [BAYES] bayes and Quick start in [R] heckoprobit.

Menu
Statistics > Ordinal outcomes > Bayesian regression > Ordered probit regression with sample selection
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Syntax
bayes

[
, bayesopts

]
: heckoprobit depvar indepvars

[
if
] [

in
] [

weight
]
,

select(
[

depvars =
]

varlists
[
, noconstant offset(varnameo)

]
)
[

options
]

options Description

Model
∗select() specify selection equation: dependent and independent

variables; whether to have constant term and offset variable
offset(varname) include varname in model with coefficient constrained to 1

Reporting

display options control spacing, line width, and base and empty cells

level(#) set credible level; default is level(95)

∗select() is required.
The full specification is select(

[
depvars =

]
varlists

[
, noconstant offset(varnameo)

]
).

indepvars and varlists may contain factor variables; see [U] 11.4.3 Factor variables.
depvar, indepvars, varlists, and depvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.
fweights are allowed; see [U] 11.1.6 weight.
bayes: heckoprobit, level() is equivalent to bayes, clevel(): heckoprobit.
For a detailed description of options, see Options in [R] heckoprobit.

bayesopts Description

Priors
∗normalprior(#) specify standard deviation of default normal priors for regression

coefficients and atanh-correlation; default is normalprior(100)

prior(priorspec) prior for model parameters; this option may be repeated
dryrun show model summary without estimation

Simulation

nchains(#) number of chains; default is to simulate one chain
mcmcsize(#) MCMC sample size; default is mcmcsize(10000)

burnin(#) burn-in period; default is burnin(2500)

thinning(#) thinning interval; default is thinning(1)

rseed(#) random-number seed
exclude(paramref) specify model parameters to be excluded from the simulation results

Blocking
∗blocksize(#) maximum block size; default is blocksize(50)

block(paramref
[
, blockopts

]
) specify a block of model parameters; this option may be repeated

blocksummary display block summary
∗noblocking do not block parameters by default
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Initialization

initial(initspec) specify initial values for model parameters with a single chain
init#(initspec) specify initial values for #th chain; requires nchains()

initall(initspec) specify initial values for all chains; requires nchains()

nomleinitial suppress the use of maximum likelihood estimates as starting values
initrandom specify random initial values
initsummary display initial values used for simulation
∗noisily display output from the estimation command during initialization

Adaptation

adaptation(adaptopts) control the adaptive MCMC procedure
scale(#) initial multiplier for scale factor; default is scale(2.38)

covariance(cov) initial proposal covariance; default is the identity matrix

Reporting

clevel(#) set credible interval level; default is clevel(95)

hpd display HPD credible intervals instead of the default equal-tailed
credible intervals

eform
[
(string)

]
report exponentiated coefficients and, optionally, label as string

batch(#) specify length of block for batch-means calculations;
default is batch(0)

saving(filename
[
, replace

]
) save simulation results to filename.dta

nomodelsummary suppress model summary
chainsdetail display detailed simulation summary for each chain[
no
]
dots suppress dots or display dots every 100 iterations and iteration

numbers every 1,000 iterations; default is nodots

dots(#
[
, every(#)

]
) display dots as simulation is performed[

no
]
show(paramref) specify model parameters to be excluded from or included in

the output
notable suppress estimation table
noheader suppress output header
title(string) display string as title above the table of parameter estimates
display options control spacing, line width, and base and empty cells

Advanced

search(search options) control the search for feasible initial values
corrlag(#) specify maximum autocorrelation lag; default varies
corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)

∗Starred options are specific to the bayes prefix; other options are common between bayes and bayesmh.
Options prior() and block() may be repeated.
priorspec and paramref are defined in [BAYES] bayesmh.
paramref may contain factor variables; see [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Model parameters are regression coefficients {depvar:indepvars} for the main regression and {select:varlist s} for
the selection equation, atanh-transformed correlation {athrho}, and cutpoints {cut1}, {cut2}, and so on. Use
the dryrun option to see the definitions of model parameters prior to estimation.

Flat priors, flat, are used by default for cutpoints.
For a detailed description of bayesopts, see Options in [BAYES] bayes.
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Remarks and examples
For a general introduction to Bayesian analysis, see [BAYES] Intro. For a general introduction

to Bayesian estimation using an adaptive Metropolis–Hastings algorithm, see [BAYES] bayesmh. For
remarks and examples specific to the bayes prefix, see [BAYES] bayes. For details about the estimation
command, see [R] heckoprobit.

For a simple example of the bayes prefix, see Introductory example in [BAYES] bayes. Also see
Heckman selection model in [BAYES] bayes.

Stored results
See Stored results in [BAYES] bayes.

Methods and formulas
See Methods and formulas in [BAYES] bayesmh.

Also see
[BAYES] bayes — Bayesian regression models using the bayes prefix

[R] heckoprobit — Ordered probit model with sample selection

[BAYES] Bayesian postestimation — Postestimation tools for bayesmh and the bayes prefix

[BAYES] Bayesian estimation — Bayesian estimation commands

[BAYES] Bayesian commands — Introduction to commands for Bayesian analysis

[BAYES] Intro — Introduction to Bayesian analysis

[BAYES] Glossary



Title

bayes: heckprobit — Bayesian probit model with sample selection

Description Quick start Menu Syntax
Remarks and examples Stored results Methods and formulas Also see

Description
bayes: heckprobit fits a Bayesian sample-selection probit regression to a partially observed

binary outcome; see [BAYES] bayes and [R] heckprobit for details.

Quick start
Bayesian sample-selection probit regression of y on x1 and x2, using z1 and z2 to model selection

and using default normal priors for regression coefficients and atanh-correlation
bayes: heckprobit y x1 x2, select(z1 z2)

Use a standard deviation of 10 instead of 100 for the default normal priors
bayes, normalprior(10): heckprobit y x1 x2, select(z1 z2)

Use uniform priors for the slopes and a normal prior for the intercept of the main regression
bayes, prior({y: x1 x2}, uniform(-10,10)) ///
prior({y: cons}, normal(0,10)): heckprobit y x1 x2, select(z1 z2)

Save simulation results to simdata.dta, and use a random-number seed for reproducibility
bayes, saving(simdata) rseed(123):, ///
heckprobit y x1 x2, select(z1 z2)

Specify 20,000 Markov chain Monte Carlo (MCMC) samples, set length of the burn-in period to 5,000,
and request that a dot be displayed every 500 simulations

bayes, mcmcsize(20000) burnin(5000) dots(500):, ///
heckprobit y x1 x2, select(z1 z2)

In the above, request that the 90% highest posterior density (HPD) credible interval be displayed
instead of the default 95% equal-tailed credible interval

bayes, clevel(90) hpd

Also see Quick start in [BAYES] bayes and Quick start in [R] heckprobit.

Menu
Statistics > Binary outcomes > Bayesian regression > Probit model with sample selection

512



bayes: heckprobit — Bayesian probit model with sample selection 513

Syntax
bayes

[
, bayesopts

]
: heckprobit depvar indepvars

[
if
] [

in
] [

weight
]
,

select(
[

depvars =
]

varlists
[
, noconstant offset(varnameo)

]
)
[

options
]

options Description

Model
∗select() specify selection equation: dependent and independent

variables; whether to have constant term and offset variable
noconstant suppress constant term
offset(varname) include varname in model with coefficient constrained to 1

Reporting

display options control spacing, line width, and base and empty cells

level(#) set credible level; default is level(95)

∗select( ) is required.
The full specification is select(

[
depvars =

]
varlists

[
, noconstant offset(varnameo)

]
).

indepvars and varlists may contain factor variables; see [U] 11.4.3 Factor variables.
depvar, indepvars, varlists, and depvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.
fweights are allowed; see [U] 11.1.6 weight.
bayes: heckprobit, level() is equivalent to bayes, clevel(): heckprobit.
For a detailed description of options, see Options in [R] heckprobit.

bayesopts Description

Priors
∗normalprior(#) specify standard deviation of default normal priors for regression

coefficients and atanh-correlation; default is normalprior(100)

prior(priorspec) prior for model parameters; this option may be repeated
dryrun show model summary without estimation

Simulation

nchains(#) number of chains; default is to simulate one chain
mcmcsize(#) MCMC sample size; default is mcmcsize(10000)

burnin(#) burn-in period; default is burnin(2500)

thinning(#) thinning interval; default is thinning(1)

rseed(#) random-number seed
exclude(paramref) specify model parameters to be excluded from the simulation results

Blocking
∗blocksize(#) maximum block size; default is blocksize(50)

block(paramref
[
, blockopts

]
) specify a block of model parameters; this option may be repeated

blocksummary display block summary
∗noblocking do not block parameters by default
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Initialization

initial(initspec) specify initial values for model parameters with a single chain
init#(initspec) specify initial values for #th chain; requires nchains()

initall(initspec) specify initial values for all chains; requires nchains()

nomleinitial suppress the use of maximum likelihood estimates as starting values
initrandom specify random initial values
initsummary display initial values used for simulation
∗noisily display output from the estimation command during initialization

Adaptation

adaptation(adaptopts) control the adaptive MCMC procedure
scale(#) initial multiplier for scale factor; default is scale(2.38)

covariance(cov) initial proposal covariance; default is the identity matrix

Reporting

clevel(#) set credible interval level; default is clevel(95)

hpd display HPD credible intervals instead of the default equal-tailed
credible intervals

eform
[
(string)

]
report exponentiated coefficients and, optionally, label as string

batch(#) specify length of block for batch-means calculations;
default is batch(0)

saving(filename
[
, replace

]
) save simulation results to filename.dta

nomodelsummary suppress model summary
chainsdetail display detailed simulation summary for each chain[
no
]
dots suppress dots or display dots every 100 iterations and iteration

numbers every 1,000 iterations; default is nodots

dots(#
[
, every(#)

]
) display dots as simulation is performed[

no
]
show(paramref) specify model parameters to be excluded from or included in

the output
notable suppress estimation table
noheader suppress output header
title(string) display string as title above the table of parameter estimates
display options control spacing, line width, and base and empty cells

Advanced

search(search options) control the search for feasible initial values
corrlag(#) specify maximum autocorrelation lag; default varies
corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)

∗Starred options are specific to the bayes prefix; other options are common between bayes and bayesmh.
Options prior() and block() may be repeated.
priorspec and paramref are defined in [BAYES] bayesmh.
paramref may contain factor variables; see [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Model parameters are regression coefficients {depvar:indepvars} for the main regression and {select:varlist s} for
the selection equation, and atanh-transformed correlation {athrho}. Use the dryrun option to see the definitions
of model parameters prior to estimation.

For a detailed description of bayesopts, see Options in [BAYES] bayes.
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Remarks and examples
For a general introduction to Bayesian analysis, see [BAYES] Intro. For a general introduction

to Bayesian estimation using an adaptive Metropolis–Hastings algorithm, see [BAYES] bayesmh. For
remarks and examples specific to the bayes prefix, see [BAYES] bayes. For details about the estimation
command, see [R] heckprobit.

For a simple example of the bayes prefix, see Introductory example in [BAYES] bayes. Also see
Heckman selection model in [BAYES] bayes.

Stored results
See Stored results in [BAYES] bayes.

Methods and formulas
See Methods and formulas in [BAYES] bayesmh.

Also see
[BAYES] bayes — Bayesian regression models using the bayes prefix

[R] heckprobit — Probit model with sample selection

[BAYES] Bayesian postestimation — Postestimation tools for bayesmh and the bayes prefix

[BAYES] Bayesian estimation — Bayesian estimation commands

[BAYES] Bayesian commands — Introduction to commands for Bayesian analysis

[BAYES] Intro — Introduction to Bayesian analysis

[BAYES] Glossary



Title

bayes: hetoprobit — Bayesian heteroskedastic ordered probit regression

Description Quick start Menu Syntax
Remarks and examples Stored results Methods and formulas Also see

Description
bayes: hetoprobit fits a Bayesian heteroskedastic ordered probit regression to an ordinal

outcome; see [BAYES] bayes and [R] hetoprobit for details.

Quick start
Bayesian heteroskedastic ordered probit regression of y on x1 and x2, using z1 to model the variance,

and using default normal priors for regression coefficients and log-standard-deviation coefficients
and flat priors for cutpoints

bayes: hetoprobit y x1 x2, het(z1)

Use a standard deviation of 10 instead of 100 for the default normal priors
bayes, normalprior(10): hetoprobit y x1 x2, het(z1)

Use uniform priors for the slopes and a normal prior for the intercept of the main regression
bayes, prior({y: x1 x2}, uniform(-10,10)) ///
prior({y: cons}, normal(0,10)): hetoprobit y x1 x2, het(z1)

Save simulation results to simdata.dta, and use a random-number seed for reproducibility
bayes, saving(simdata) rseed(123): ///
hetoprobit y x1 x2, het(z1)

Specify 20,000 Markov chain Monte Carlo (MCMC) samples, set length of the burn-in period to 5,000,
and request that a dot be displayed every 500 simulations

bayes, mcmcsize(20000) burnin(5000) dots(500): ///
hetoprobit y x1 x2, het(z1)

In the above, request that the 90% highest posterior density (HPD) credible interval be displayed
instead of the default 95% equal-tailed credible interval

bayes, clevel(90) hpd

Also see Quick start in [BAYES] bayes and Quick start in [R] hetoprobit.

Menu
Statistics > Ordinal outcomes > Bayesian regression > Heteroskedastic ordered probit regression
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Syntax
bayes

[
, bayesopts

]
: hetoprobit depvar

[
indepvars

] [
if
] [

in
] [

weight
]
,

het(varlist
[
, offset(varnameo)

]
)
[

options
]

options Description

Model
∗het(varlist

[
. . .
]
) independent variables to model the variance and possible

offset variable
offset(varname) include varname in model with coefficient constrained to 1

Reporting

display options control spacing, line width, and base and empty cells

level(#) set credible level; default is level(95)

∗het() is required. The full specification is het(varlist
[
, offset(varnameo)

]
).

indepvars and varlist may contain factor variables; see [U] 11.4.3 Factor variables.
depvar, indepvars, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.
fweights are allowed; see [U] 11.1.6 weight.
bayes: hetoprobit, level() is equivalent to bayes, clevel(): hetoprobit.
For a detailed description of options, see Options in [R] hetoprobit.

bayesopts Description

Priors
∗normalprior(#) specify standard deviation of default normal priors for regression

coefficients and log-standard-deviation coefficients;
default is normalprior(100)

prior(priorspec) prior for model parameters; this option may be repeated
dryrun show model summary without estimation

Simulation

nchains(#) number of chains; default is to simulate one chain
mcmcsize(#) MCMC sample size; default is mcmcsize(10000)

burnin(#) burn-in period; default is burnin(2500)

thinning(#) thinning interval; default is thinning(1)

rseed(#) random-number seed
exclude(paramref) specify model parameters to be excluded from the simulation results

Blocking
∗blocksize(#) maximum block size; default is blocksize(50)

block(paramref
[
, blockopts

]
) specify a block of model parameters; this option may be repeated

blocksummary display block summary
∗noblocking do not block parameters by default
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Initialization

initial(initspec) specify initial values for model parameters with a single chain
init#(initspec) specify initial values for #th chain; requires nchains()

initall(initspec) specify initial values for all chains; requires nchains()

nomleinitial suppress the use of maximum likelihood estimates as starting values
initrandom specify random initial values
initsummary display initial values used for simulation
∗noisily display output from the estimation command during initialization

Adaptation

adaptation(adaptopts) control the adaptive MCMC procedure
scale(#) initial multiplier for scale factor; default is scale(2.38)

covariance(cov) initial proposal covariance; default is the identity matrix

Reporting

clevel(#) set credible interval level; default is clevel(95)

hpd display HPD credible intervals instead of the default equal-tailed
credible intervals

eform
[
(string)

]
report exponentiated coefficients and, optionally, label as string

batch(#) specify length of block for batch-means calculations;
default is batch(0)

saving(filename
[
, replace

]
) save simulation results to filename.dta

nomodelsummary suppress model summary
chainsdetail display detailed simulation summary for each chain[
no
]
dots suppress dots or display dots every 100 iterations and iteration

numbers every 1,000 iterations; default is nodots

dots(#
[
, every(#)

]
) display dots as simulation is performed[

no
]
show(paramref) specify model parameters to be excluded from or included in

the output
notable suppress estimation table
noheader suppress output header
title(string) display string as title above the table of parameter estimates
display options control spacing, line width, and base and empty cells

Advanced

search(search options) control the search for feasible initial values
corrlag(#) specify maximum autocorrelation lag; default varies
corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)

∗Starred options are specific to the bayes prefix; other options are common between bayes and bayesmh.
Options prior() and block() may be repeated.
priorspec and paramref are defined in [BAYES] bayesmh.
paramref may contain factor variables; see [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Model parameters are regression coefficients {depvar:indepvars} for the main regression and {lnsigma:varlist} for
the log-standard-deviation equation and cutpoints {cut1}, {cut2}, and so on. Use the dryrun option to see the
definitions of model parameters prior to estimation.

Flat priors, flat, are used by default for cutpoints.
For a detailed description of bayesopts, see Options in [BAYES] bayes.
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Remarks and examples
For a general introduction to Bayesian analysis, see [BAYES] Intro. For a general introduction

to Bayesian estimation using an adaptive Metropolis–Hastings algorithm, see [BAYES] bayesmh. For
remarks and examples specific to the bayes prefix, see [BAYES] bayes. For details about the estimation
command, see [R] hetoprobit.

For a simple example of the bayes prefix, see Introductory example in [BAYES] bayes.

Stored results
See Stored results in [BAYES] bayes.

Methods and formulas
See Methods and formulas in [BAYES] bayesmh.

Also see
[BAYES] bayes — Bayesian regression models using the bayes prefix

[R] hetoprobit — Heteroskedastic ordered probit regression

[BAYES] Bayesian postestimation — Postestimation tools for bayesmh and the bayes prefix

[BAYES] Bayesian estimation — Bayesian estimation commands

[BAYES] Bayesian commands — Introduction to commands for Bayesian analysis

[BAYES] Intro — Introduction to Bayesian analysis

[BAYES] Glossary



Title

bayes: hetprobit — Bayesian heteroskedastic probit regression

Description Quick start Menu Syntax
Remarks and examples Stored results Methods and formulas Also see

Description
bayes: hetprobit fits a Bayesian heteroskedastic probit regression to a binary outcome; see

[BAYES] bayes and [R] hetprobit for details.

Quick start
Bayesian heteroskedastic probit regression of y on x1 and x2, using z1 to model the variance and

using default normal priors for regression coefficients and log-variance coefficients
bayes: hetprobit y x1 x2, het(z1)

Use a standard deviation of 10 instead of 100 for the default normal priors
bayes, normalprior(10): hetprobit y x1 x2, het(z1)

Use uniform priors for the slopes and a normal prior for the intercept of the main regression
bayes, prior({y: x1 x2}, uniform(-10,10)) ///
prior({y: cons}, normal(0,10)): hetprobit y x1 x2, het(z1)

Save simulation results to simdata.dta, and use a random-number seed for reproducibility
bayes, saving(simdata) rseed(123): hetprobit y x1 x2, het(z1)

Specify 20,000 Markov chain Monte Carlo (MCMC) samples, set length of the burn-in period to 5,000,
and request that a dot be displayed every 500 simulations

bayes, mcmcsize(20000) burnin(5000) dots(500): hetprobit y x1 x2, het(z1)

In the above, request that the 90% highest posterior density (HPD) credible interval be displayed
instead of the default 95% equal-tailed credible interval

bayes, clevel(90) hpd

Also see Quick start in [BAYES] bayes and Quick start in [R] hetprobit.

Menu
Statistics > Binary outcomes > Bayesian regression > Heteroskedastic probit regression
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Syntax
bayes

[
, bayesopts

]
: hetprobit depvar

[
indepvars

] [
if
] [

in
] [

weight
]
,

het(varlist
[
, offset(varnameo)

]
)
[

options
]

options Description

Model
∗het(varlist

[
. . .
]
) independent variables to model the variance and possible

offset variable
noconstant suppress constant term
offset(varname) include varname in model with coefficient constrained to 1
asis retain perfect predictor variables

Reporting

display options control spacing, line width, and base and empty cells

level(#) set credible level; default is level(95)

∗het() is required. The full specification is het(varlist
[
, offset(varnameo)

]
).

indepvars and varlist may contain factor variables; see [U] 11.4.3 Factor variables.
depvar, indepvars, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.
fweights are allowed; see [U] 11.1.6 weight.
bayes: hetprobit, level() is equivalent to bayes, clevel(): hetprobit.
For a detailed description of options, see Options in [R] hetprobit.

bayesopts Description

Priors
∗normalprior(#) specify standard deviation of default normal priors for regression

coefficients and log-variance coefficients;
default is normalprior(100)

prior(priorspec) prior for model parameters; this option may be repeated
dryrun show model summary without estimation

Simulation

nchains(#) number of chains; default is to simulate one chain
mcmcsize(#) MCMC sample size; default is mcmcsize(10000)

burnin(#) burn-in period; default is burnin(2500)

thinning(#) thinning interval; default is thinning(1)

rseed(#) random-number seed
exclude(paramref) specify model parameters to be excluded from the simulation results

Blocking
∗blocksize(#) maximum block size; default is blocksize(50)

block(paramref
[
, blockopts

]
) specify a block of model parameters; this option may be repeated

blocksummary display block summary
∗noblocking do not block parameters by default
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Initialization

initial(initspec) specify initial values for model parameters with a single chain
init#(initspec) specify initial values for #th chain; requires nchains()

initall(initspec) specify initial values for all chains; requires nchains()

nomleinitial suppress the use of maximum likelihood estimates as starting values
initrandom specify random initial values
initsummary display initial values used for simulation
∗noisily display output from the estimation command during initialization

Adaptation

adaptation(adaptopts) control the adaptive MCMC procedure
scale(#) initial multiplier for scale factor; default is scale(2.38)

covariance(cov) initial proposal covariance; default is the identity matrix

Reporting

clevel(#) set credible interval level; default is clevel(95)

hpd display HPD credible intervals instead of the default equal-tailed
credible intervals

eform
[
(string)

]
report exponentiated coefficients and, optionally, label as string

batch(#) specify length of block for batch-means calculations;
default is batch(0)

saving(filename
[
, replace

]
) save simulation results to filename.dta

nomodelsummary suppress model summary
chainsdetail display detailed simulation summary for each chain[
no
]
dots suppress dots or display dots every 100 iterations and iteration

numbers every 1,000 iterations; default is nodots

dots(#
[
, every(#)

]
) display dots as simulation is performed[

no
]
show(paramref) specify model parameters to be excluded from or included in

the output
notable suppress estimation table
noheader suppress output header
title(string) display string as title above the table of parameter estimates
display options control spacing, line width, and base and empty cells

Advanced

search(search options) control the search for feasible initial values
corrlag(#) specify maximum autocorrelation lag; default varies
corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)

∗Starred options are specific to the bayes prefix; other options are common between bayes and bayesmh.
Options prior() and block() may be repeated.
priorspec and paramref are defined in [BAYES] bayesmh.
paramref may contain factor variables; see [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Model parameters are regression coefficients {depvar:indepvars} for the main regression and {lnsigma:varlist} for
the log-variance equation. Use the dryrun option to see the definitions of model parameters prior to estimation.

For a detailed description of bayesopts, see Options in [BAYES] bayes.
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Remarks and examples
For a general introduction to Bayesian analysis, see [BAYES] Intro. For a general introduction

to Bayesian estimation using an adaptive Metropolis–Hastings algorithm, see [BAYES] bayesmh. For
remarks and examples specific to the bayes prefix, see [BAYES] bayes. For details about the estimation
command, see [R] hetprobit.

For a simple example of the bayes prefix, see Introductory example in [BAYES] bayes.

Stored results
See Stored results in [BAYES] bayes.

Methods and formulas
See Methods and formulas in [BAYES] bayesmh.

Also see
[BAYES] bayes — Bayesian regression models using the bayes prefix

[R] hetprobit — Heteroskedastic probit model

[BAYES] Bayesian postestimation — Postestimation tools for bayesmh and the bayes prefix

[BAYES] Bayesian estimation — Bayesian estimation commands

[BAYES] Bayesian commands — Introduction to commands for Bayesian analysis

[BAYES] Intro — Introduction to Bayesian analysis

[BAYES] Glossary



Title

bayes: hetregress — Bayesian heteroskedastic linear regression

Description Quick start Menu Syntax
Remarks and examples Stored results Methods and formulas Also see

Description
bayes: hetregress fits a Bayesian heteroskedastic linear regression to a continuous outcome;

see [BAYES] bayes and [R] hetregress for details.

Quick start
Bayesian heteroskedastic linear regression of y on x1 and x2, using z1 to model the variance and

using default normal priors for regression coefficients and log-variance coefficients
bayes: hetregress y x1 x2, het(z1)

Use a standard deviation of 10 instead of 100 for the default normal priors
bayes, normalprior(10): hetregress y x1 x2, het(z1)

Use uniform priors for the slopes and a normal prior for the intercept of the main regression
bayes, prior({y: x1 x2}, uniform(-10,10)) ///
prior({y: cons}, normal(0,10)): hetregress y x1 x2, het(z1)

Save simulation results to simdata.dta, and use a random-number seed for reproducibility
bayes, saving(simdata) rseed(123): ///
hetregress y x1 x2, het(z1)

Specify 20,000 Markov chain Monte Carlo (MCMC) samples, set length of the burn-in period to 5,000,
and request that a dot be displayed every 500 simulations

bayes, mcmcsize(20000) burnin(5000) dots(500): ///
hetregress y x1 x2, het(z1)

In the above, request that the 90% highest posterior density (HPD) credible interval be displayed
instead of the default 95% equal-tailed credible interval

bayes, clevel(90) hpd

Also see Quick start in [BAYES] bayes and Quick start in [R] hetregress.

Menu
Statistics > Linear models and related > Bayesian regression > Heteroskedastic linear regression
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Syntax
bayes

[
, bayesopts

]
: hetregress depvar

[
indepvars

] [
if
] [

in
] [

weight
][

, options
]

options Description

Model

het(varlist) independent variables to model the variance
noconstant suppress constant term

Reporting

display options control spacing, line width, and base and empty cells

level(#) set credible level; default is level(95)

indepvars and varlist may contain factor variables; see [U] 11.4.3 Factor variables.
depvar, indepvars, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.
fweights are allowed; see [U] 11.1.6 weight.
bayes: hetregress, level() is equivalent to bayes, clevel(): hetregress.
For a detailed description of options, see Options for maximum likelihood estimation and Options for two-step GLS

estimation in [R] hetregress.

bayesopts Description

Priors
∗normalprior(#) specify standard deviation of default normal priors for regression

coefficients and log-variance coefficients;
default is normalprior(100)

prior(priorspec) prior for model parameters; this option may be repeated
dryrun show model summary without estimation

Simulation

nchains(#) number of chains; default is to simulate one chain
mcmcsize(#) MCMC sample size; default is mcmcsize(10000)

burnin(#) burn-in period; default is burnin(2500)

thinning(#) thinning interval; default is thinning(1)

rseed(#) random-number seed
exclude(paramref) specify model parameters to be excluded from the simulation results

Blocking
∗blocksize(#) maximum block size; default is blocksize(50)

block(paramref
[
, blockopts

]
) specify a block of model parameters; this option may be repeated

blocksummary display block summary
∗noblocking do not block parameters by default
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Initialization

initial(initspec) specify initial values for model parameters with a single chain
init#(initspec) specify initial values for #th chain; requires nchains()

initall(initspec) specify initial values for all chains; requires nchains()

nomleinitial suppress the use of maximum likelihood estimates as starting values
initrandom specify random initial values
initsummary display initial values used for simulation
∗noisily display output from the estimation command during initialization

Adaptation

adaptation(adaptopts) control the adaptive MCMC procedure
scale(#) initial multiplier for scale factor; default is scale(2.38)

covariance(cov) initial proposal covariance; default is the identity matrix

Reporting

clevel(#) set credible interval level; default is clevel(95)

hpd display HPD credible intervals instead of the default equal-tailed
credible intervals

eform
[
(string)

]
report exponentiated coefficients and, optionally, label as string

batch(#) specify length of block for batch-means calculations;
default is batch(0)

saving(filename
[
, replace

]
) save simulation results to filename.dta

nomodelsummary suppress model summary
chainsdetail display detailed simulation summary for each chain[
no
]
dots suppress dots or display dots every 100 iterations and iteration

numbers every 1,000 iterations; default is nodots

dots(#
[
, every(#)

]
) display dots as simulation is performed[

no
]
show(paramref) specify model parameters to be excluded from or included in

the output
notable suppress estimation table
noheader suppress output header
title(string) display string as title above the table of parameter estimates
display options control spacing, line width, and base and empty cells

Advanced

search(search options) control the search for feasible initial values
corrlag(#) specify maximum autocorrelation lag; default varies
corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)

∗Starred options are specific to the bayes prefix; other options are common between bayes and bayesmh.
Options prior() and block() may be repeated.
priorspec and paramref are defined in [BAYES] bayesmh.
paramref may contain factor variables; see [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Model parameters are regression coefficients {depvar:indepvars} for the main regression and {lnsigma2:varlist} for
the log-variance equation. Use the dryrun option to see the definitions of model parameters prior to estimation.

For a detailed description of bayesopts, see Options in [BAYES] bayes.
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Remarks and examples
For a general introduction to Bayesian analysis, see [BAYES] Intro. For a general introduction

to Bayesian estimation using an adaptive Metropolis–Hastings algorithm, see [BAYES] bayesmh. For
remarks and examples specific to the bayes prefix, see [BAYES] bayes. For details about the estimation
command, see [R] hetregress.

For a simple example of the bayes prefix, see Introductory example in [BAYES] bayes.

Stored results
See Stored results in [BAYES] bayes.

Methods and formulas
See Methods and formulas in [BAYES] bayesmh.

Also see
[BAYES] bayes — Bayesian regression models using the bayes prefix

[R] hetregress — Heteroskedastic linear regression

[BAYES] Bayesian postestimation — Postestimation tools for bayesmh and the bayes prefix

[BAYES] Bayesian estimation — Bayesian estimation commands

[BAYES] Bayesian commands — Introduction to commands for Bayesian analysis

[BAYES] Intro — Introduction to Bayesian analysis

[BAYES] Glossary



Title

bayes: intreg — Bayesian interval regression

Description Quick start Menu Syntax
Remarks and examples Stored results Methods and formulas Also see

Description
bayes: intreg fits a Bayesian interval regression to a continuous, interval-measured outcome;

see [BAYES] bayes and [R] intreg for details.

Quick start
Bayesian interval regression of y lower and y upper on x1 and x2, using default normal priors

for regression coefficients and log-variance
bayes: intreg y lower y upper x1 x2

Use a standard deviation of 10 instead of 100 for the default normal priors
bayes, normalprior(10): intreg y lower y upper x1 x2

Use uniform priors for the slopes and a normal prior for the intercept
bayes, prior({y lower: x1 x2}, uniform(-10,10)) ///
prior({y lower: cons}, normal(0,10)): intreg y lower y upper x1 x2

Save simulation results to simdata.dta, and use a random-number seed for reproducibility
bayes, saving(simdata) rseed(123): ///
intreg y lower y upper x1 x2

Specify 20,000 Markov chain Monte Carlo (MCMC) samples, set length of the burn-in period to 5,000,
and request that a dot be displayed every 500 simulations

bayes, mcmcsize(20000) burnin(5000) dots(500): ///
intreg y lower y upper x1 x2

In the above, request that the 90% highest posterior density (HPD) credible interval be displayed
instead of the default 95% equal-tailed credible interval

bayes, clevel(90) hpd

Also see Quick start in [BAYES] bayes and Quick start in [R] intreg.

Menu
Statistics > Linear models and related > Bayesian regression > Interval regression
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Syntax
bayes

[
, bayesopts

]
: intreg depvar1 depvar2

[
indepvars

] [
if
] [

in
] [

weight
][

, options
]

options Description

Model

noconstant suppress constant term
het(varlist

[
, noconstant

]
) independent variables to model the variance; use noconstant

to suppress constant term
offset(varname) include varname in model with coefficient constrained to 1

Reporting

display options control spacing, line width, and base and empty cells

level(#) set credible level; default is level(95)

indepvars and varlist may contain factor variables; see [U] 11.4.3 Factor variables.
depvar1, depvar2, indepvars, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.
fweights are allowed; see [U] 11.1.6 weight.
bayes: intreg, level() is equivalent to bayes, clevel(): intreg.
For a detailed description of options, see Options in [R] intreg.

bayesopts Description

Priors
∗normalprior(#) specify standard deviation of default normal priors for regression

coefficients and log-variance; default is normalprior(100)

prior(priorspec) prior for model parameters; this option may be repeated
dryrun show model summary without estimation

Simulation

nchains(#) number of chains; default is to simulate one chain
mcmcsize(#) MCMC sample size; default is mcmcsize(10000)

burnin(#) burn-in period; default is burnin(2500)

thinning(#) thinning interval; default is thinning(1)

rseed(#) random-number seed
exclude(paramref) specify model parameters to be excluded from the simulation results

Blocking
∗blocksize(#) maximum block size; default is blocksize(50)

block(paramref
[
, blockopts

]
) specify a block of model parameters; this option may be repeated

blocksummary display block summary
∗noblocking do not block parameters by default
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Initialization

initial(initspec) specify initial values for model parameters with a single chain
init#(initspec) specify initial values for #th chain; requires nchains()

initall(initspec) specify initial values for all chains; requires nchains()

nomleinitial suppress the use of maximum likelihood estimates as starting values
initrandom specify random initial values
initsummary display initial values used for simulation
∗noisily display output from the estimation command during initialization

Adaptation

adaptation(adaptopts) control the adaptive MCMC procedure
scale(#) initial multiplier for scale factor; default is scale(2.38)

covariance(cov) initial proposal covariance; default is the identity matrix

Reporting

clevel(#) set credible interval level; default is clevel(95)

hpd display HPD credible intervals instead of the default equal-tailed
credible intervals

eform
[
(string)

]
report exponentiated coefficients and, optionally, label as string

batch(#) specify length of block for batch-means calculations;
default is batch(0)

saving(filename
[
, replace

]
) save simulation results to filename.dta

nomodelsummary suppress model summary
chainsdetail display detailed simulation summary for each chain[
no
]
dots suppress dots or display dots every 100 iterations and iteration

numbers every 1,000 iterations; default is nodots

dots(#
[
, every(#)

]
) display dots as simulation is performed[

no
]
show(paramref) specify model parameters to be excluded from or included in

the output
notable suppress estimation table
noheader suppress output header
title(string) display string as title above the table of parameter estimates
display options control spacing, line width, and base and empty cells

Advanced

search(search options) control the search for feasible initial values
corrlag(#) specify maximum autocorrelation lag; default varies
corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)

∗Starred options are specific to the bayes prefix; other options are common between bayes and bayesmh.
Options prior() and block() may be repeated.
priorspec and paramref are defined in [BAYES] bayesmh.
paramref may contain factor variables; see [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Model parameters are regression coefficients {depvar1:indepvars} and log-standard deviation {lnsigma} or, if option
het(varlist) is specified, coefficients {lnsigma:varlist} of the log-standard-deviation equation. Use the dryrun
option to see the definitions of model parameters prior to estimation.

For a detailed description of bayesopts, see Options in [BAYES] bayes.
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Remarks and examples
For a general introduction to Bayesian analysis, see [BAYES] Intro. For a general introduction

to Bayesian estimation using an adaptive Metropolis–Hastings algorithm, see [BAYES] bayesmh. For
remarks and examples specific to the bayes prefix, see [BAYES] bayes. For details about the estimation
command, see [R] intreg.

For a simple example of the bayes prefix, see Introductory example in [BAYES] bayes.

Stored results
See Stored results in [BAYES] bayes.

Methods and formulas
See Methods and formulas in [BAYES] bayesmh.

Also see
[BAYES] bayes — Bayesian regression models using the bayes prefix

[R] intreg — Interval regression

[BAYES] Bayesian postestimation — Postestimation tools for bayesmh and the bayes prefix

[BAYES] Bayesian estimation — Bayesian estimation commands

[BAYES] Bayesian commands — Introduction to commands for Bayesian analysis

[BAYES] Intro — Introduction to Bayesian analysis

[BAYES] Glossary



Title

bayes: logistic — Bayesian logistic regression, reporting odds ratios

Description Quick start Menu Syntax
Remarks and examples Stored results Methods and formulas Reference
Also see

Description

bayes: logistic fits a Bayesian logistic regression to a binary outcome; see [BAYES] bayes and
[R] logistic for details.

Quick start
Bayesian logistic regression of y on x1 and x2, using default normal priors for regression coefficients

bayes: logistic y x1 x2

Use a standard deviation of 10 instead of 100 for the default normal priors
bayes, normalprior(10): logistic y x1 x2

Use uniform priors for the slopes and a normal prior for the intercept
bayes, prior({y: x1 x2}, uniform(-10,10)) ///
prior({y: cons}, normal(0,10)): logistic y x1 x2

Save simulation results to simdata.dta, and use a random-number seed for reproducibility
bayes, saving(simdata) rseed(123): logistic y x1 x2

Specify 20,000 Markov chain Monte Carlo (MCMC) samples, set length of the burn-in period to 5,000,
and request that a dot be displayed every 500 simulations

bayes, mcmcsize(20000) burnin(5000) dots(500): logistic y x1 x2

In the above, request that the 90% highest posterior density (HPD) credible interval be displayed
instead of the default 95% equal-tailed credible interval

bayes, clevel(90) hpd

Display coefficients instead of odds ratios
bayes: logistic y x1 x2, coef

Display coefficients on replay
bayes, coef

Also see Quick start in [BAYES] bayes and Quick start in [R] logistic.

Menu
Statistics > Binary outcomes > Bayesian regression > Logistic regression
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Syntax
bayes

[
, bayesopts

]
: logistic depvar indepvars

[
if
] [

in
] [

weight
] [

, options
]

options Description

Model

noconstant suppress constant term
offset(varname) include varname in model with coefficient constrained to 1
asis retain perfect predictor variables

Reporting

coef report estimated coefficients
display options control spacing, line width, and base and empty cells

level(#) set credible level; default is level(95)

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.
fweights are allowed; see [U] 11.1.6 weight.
bayes: logistic, level() is equivalent to bayes, clevel(): logistic.
For a detailed description of options, see Options in [R] logistic.

bayesopts Description

Priors
∗normalprior(#) specify standard deviation of default normal priors for regression

coefficients; default is normalprior(100)

prior(priorspec) prior for model parameters; this option may be repeated
dryrun show model summary without estimation

Simulation

nchains(#) number of chains; default is to simulate one chain
mcmcsize(#) MCMC sample size; default is mcmcsize(10000)

burnin(#) burn-in period; default is burnin(2500)

thinning(#) thinning interval; default is thinning(1)

rseed(#) random-number seed
exclude(paramref) specify model parameters to be excluded from the simulation results

Blocking
∗blocksize(#) maximum block size; default is blocksize(50)

block(paramref
[
, blockopts

]
) specify a block of model parameters; this option may be repeated

blocksummary display block summary
∗noblocking do not block parameters by default



534 bayes: logistic — Bayesian logistic regression, reporting odds ratios

Initialization

initial(initspec) specify initial values for model parameters with a single chain
init#(initspec) specify initial values for #th chain; requires nchains()

initall(initspec) specify initial values for all chains; requires nchains()

nomleinitial suppress the use of maximum likelihood estimates as starting values
initrandom specify random initial values
initsummary display initial values used for simulation
∗noisily display output from the estimation command during initialization

Adaptation

adaptation(adaptopts) control the adaptive MCMC procedure
scale(#) initial multiplier for scale factor; default is scale(2.38)

covariance(cov) initial proposal covariance; default is the identity matrix

Reporting

clevel(#) set credible interval level; default is clevel(95)

hpd display HPD credible intervals instead of the default equal-tailed
credible intervals

∗coef report estimated coefficients
eform

[
(string)

]
report exponentiated coefficients and, optionally, label as string

batch(#) specify length of block for batch-means calculations;
default is batch(0)

saving(filename
[
, replace

]
) save simulation results to filename.dta

nomodelsummary suppress model summary
chainsdetail display detailed simulation summary for each chain[
no
]
dots suppress dots or display dots every 100 iterations and iteration

numbers every 1,000 iterations; default is nodots

dots(#
[
, every(#)

]
) display dots as simulation is performed[

no
]
show(paramref) specify model parameters to be excluded from or included in

the output
notable suppress estimation table
noheader suppress output header
title(string) display string as title above the table of parameter estimates
display options control spacing, line width, and base and empty cells

Advanced

search(search options) control the search for feasible initial values
corrlag(#) specify maximum autocorrelation lag; default varies
corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)

∗Starred options are specific to the bayes prefix; other options are common between bayes and bayesmh.
Options prior() and block() may be repeated.
priorspec and paramref are defined in [BAYES] bayesmh.
paramref may contain factor variables; see [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Model parameters are regression coefficients {depvar:indepvars}. Use the dryrun option to see the definitions of
model parameters prior to estimation.

For a detailed description of bayesopts, see Options in [BAYES] bayes.
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Remarks and examples
For a general introduction to Bayesian analysis, see [BAYES] Intro. For a general introduction

to Bayesian estimation using an adaptive Metropolis–Hastings algorithm, see [BAYES] bayesmh. For
remarks and examples specific to the bayes prefix, see [BAYES] bayes. For details about the estimation
command, see [R] logistic.

For a simple example of the bayes prefix, see Introductory example in [BAYES] bayes. Also see
Logistic regression with perfect predictors in [BAYES] bayes.

Stored results
See Stored results in [BAYES] bayes.

Methods and formulas
See Methods and formulas in [BAYES] bayesmh.

Reference
Balov, N. 2017. Bayesian logistic regression with Cauchy priors using the bayes prefix. The Stata Blog: Not Elsewhere

Classified. https://blog.stata.com/2017/09/08/bayesian-logistic-regression-with-cauchy-priors-using-the-bayes-prefix/.

Also see
[BAYES] bayes — Bayesian regression models using the bayes prefix

[R] logistic — Logistic regression, reporting odds ratios

[BAYES] Bayesian postestimation — Postestimation tools for bayesmh and the bayes prefix

[BAYES] Bayesian estimation — Bayesian estimation commands

[BAYES] Bayesian commands — Introduction to commands for Bayesian analysis

[BAYES] Intro — Introduction to Bayesian analysis

[BAYES] Glossary

https://blog.stata.com/2017/09/08/bayesian-logistic-regression-with-cauchy-priors-using-the-bayes-prefix/


Title

bayes: logit — Bayesian logistic regression, reporting coefficients

Description Quick start Menu Syntax
Remarks and examples Stored results Methods and formulas Reference
Also see

Description

bayes: logit fits a Bayesian logistic regression to a binary outcome; see [BAYES] bayes and
[R] logit for details.

Quick start
Bayesian logistic regression of y on x1 and x2, using default normal priors for regression coefficients

bayes: logit y x1 x2

Use a standard deviation of 10 instead of 100 for the default normal priors
bayes, normalprior(10): logit y x1 x2

Use uniform priors for the slopes and a normal prior for the intercept
bayes, prior({y: x1 x2}, uniform(-10,10)) ///
prior({y: cons}, normal(0,10)): logit y x1 x2

Save simulation results to simdata.dta, and use a random-number seed for reproducibility
bayes, saving(simdata) rseed(123): logit y x1 x2

Specify 20,000 Markov chain Monte Carlo (MCMC) samples, set length of the burn-in period to 5,000,
and request that a dot be displayed every 500 simulations

bayes, mcmcsize(20000) burnin(5000) dots(500): logit y x1 x2

In the above, request that the 90% highest posterior density (HPD) credible interval be displayed
instead of the default 95% equal-tailed credible interval

bayes, clevel(90) hpd

Display odds ratios instead of coefficients
bayes: logit y x1 x2, or

Display odds ratios on replay
bayes, or

Also see Quick start in [BAYES] bayes and Quick start in [R] logit.

Menu
Statistics > Binary outcomes > Bayesian regression > Logistic regression
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Syntax
bayes

[
, bayesopts

]
: logit depvar

[
indepvars

] [
if
] [

in
] [

weight
] [

, options
]

options Description

Model

noconstant suppress constant term
offset(varname) include varname in model with coefficient constrained to 1
asis retain perfect predictor variables

Reporting

or report odds ratios
display options control spacing, line width, and base and empty cells

level(#) set credible level; default is level(95)

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.
fweights are allowed; see [U] 11.1.6 weight.
bayes: logit, level() is equivalent to bayes, clevel(): logit.
For a detailed description of options, see Options in [R] logit.

bayesopts Description

Priors
∗normalprior(#) specify standard deviation of default normal priors for regression

coefficients; default is normalprior(100)

prior(priorspec) prior for model parameters; this option may be repeated
dryrun show model summary without estimation

Simulation

nchains(#) number of chains; default is to simulate one chain
mcmcsize(#) MCMC sample size; default is mcmcsize(10000)

burnin(#) burn-in period; default is burnin(2500)

thinning(#) thinning interval; default is thinning(1)

rseed(#) random-number seed
exclude(paramref) specify model parameters to be excluded from the simulation results

Blocking
∗blocksize(#) maximum block size; default is blocksize(50)

block(paramref
[
, blockopts

]
) specify a block of model parameters; this option may be repeated

blocksummary display block summary
∗noblocking do not block parameters by default
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Initialization

initial(initspec) specify initial values for model parameters with a single chain
init#(initspec) specify initial values for #th chain; requires nchains()

initall(initspec) specify initial values for all chains; requires nchains()

nomleinitial suppress the use of maximum likelihood estimates as starting values
initrandom specify random initial values
initsummary display initial values used for simulation
∗noisily display output from the estimation command during initialization

Adaptation

adaptation(adaptopts) control the adaptive MCMC procedure
scale(#) initial multiplier for scale factor; default is scale(2.38)

covariance(cov) initial proposal covariance; default is the identity matrix

Reporting

clevel(#) set credible interval level; default is clevel(95)

hpd display HPD credible intervals instead of the default equal-tailed
credible intervals

∗or report odds ratios
eform

[
(string)

]
report exponentiated coefficients and, optionally, label as string

batch(#) specify length of block for batch-means calculations;
default is batch(0)

saving(filename
[
, replace

]
) save simulation results to filename.dta

nomodelsummary suppress model summary
chainsdetail display detailed simulation summary for each chain[
no
]
dots suppress dots or display dots every 100 iterations and iteration

numbers every 1,000 iterations; default is nodots

dots(#
[
, every(#)

]
) display dots as simulation is performed[

no
]
show(paramref) specify model parameters to be excluded from or included in

the output
notable suppress estimation table
noheader suppress output header
title(string) display string as title above the table of parameter estimates
display options control spacing, line width, and base and empty cells

Advanced

search(search options) control the search for feasible initial values
corrlag(#) specify maximum autocorrelation lag; default varies
corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)

∗Starred options are specific to the bayes prefix; other options are common between bayes and bayesmh.
Options prior() and block() may be repeated.
priorspec and paramref are defined in [BAYES] bayesmh.
paramref may contain factor variables; see [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Model parameters are regression coefficients {depvar:indepvars}. Use the dryrun option to see the definitions of
model parameters prior to estimation.

For a detailed description of bayesopts, see Options in [BAYES] bayes.
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Remarks and examples
For a general introduction to Bayesian analysis, see [BAYES] Intro. For a general introduction

to Bayesian estimation using an adaptive Metropolis–Hastings algorithm, see [BAYES] bayesmh. For
remarks and examples specific to the bayes prefix, see [BAYES] bayes. For details about the estimation
command, see [R] logit.

For a simple example of the bayes prefix, see Introductory example in [BAYES] bayes. Also see
Logistic regression with perfect predictors in [BAYES] bayes.

Stored results
See Stored results in [BAYES] bayes.

Methods and formulas
See Methods and formulas in [BAYES] bayesmh.

Reference
Balov, N. 2017. Bayesian logistic regression with Cauchy priors using the bayes prefix. The Stata Blog: Not Elsewhere

Classified. https://blog.stata.com/2017/09/08/bayesian-logistic-regression-with-cauchy-priors-using-the-bayes-prefix/.

Also see
[BAYES] bayes — Bayesian regression models using the bayes prefix

[R] logit — Logistic regression, reporting coefficients

[BAYES] Bayesian postestimation — Postestimation tools for bayesmh and the bayes prefix

[BAYES] Bayesian estimation — Bayesian estimation commands

[BAYES] Bayesian commands — Introduction to commands for Bayesian analysis

[BAYES] Intro — Introduction to Bayesian analysis

[BAYES] Glossary

https://blog.stata.com/2017/09/08/bayesian-logistic-regression-with-cauchy-priors-using-the-bayes-prefix/


Title

bayes: mecloglog — Bayesian multilevel complementary log–log regression

Description Quick start Menu Syntax
Remarks and examples Stored results Methods and formulas Also see

Description
bayes: mecloglog fits a Bayesian multilevel complementary log–log regression to a binary

outcome; see [BAYES] bayes and [ME] mecloglog for details.

Quick start
Bayesian two-level complementary log–log regression of y on x1 and x2 with random intercepts by

id , using default normal priors for regression coefficients and default inverse-gamma prior for
the variance of random intercepts

bayes: mecloglog y x1 x2 || id:

Use a standard deviation of 10 instead of 100 for the default normal priors
bayes, normalprior(10): mecloglog y x1 x2 || id:

Use uniform priors for the slopes and a normal prior for the intercept
bayes, prior({y: x1 x2}, uniform(-10,10)) ///
prior({y: cons}, normal(0,10)): mecloglog y x1 x2 || id:

Save simulation results to simdata.dta, and use a random-number seed for reproducibility
bayes, saving(simdata) rseed(123): mecloglog y x1 x2 || id:

Specify 20,000 Markov chain Monte Carlo (MCMC) samples, set length of the burn-in period to 5,000,
and request that a dot be displayed every 500 simulations

bayes, mcmcsize(20000) burnin(5000) dots(500): mecloglog y x1 x2 || id:

In the above, request that the 90% highest posterior density (HPD) credible interval be displayed
instead of the default 95% equal-tailed credible interval

bayes, clevel(90) hpd

Display results as exponentiated coefficients
bayes: mecloglog y x1 x2 || id: , eform

Display exponentiated coefficients on replay
bayes, eform

Also see Quick start in [BAYES] bayes and Quick start in [ME] mecloglog.

Menu
Statistics > Multilevel mixed-effects models > Bayesian regression > Complementary log–log regression
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Syntax

bayes
[
, bayesopts

]
: mecloglog depvar fe equation[

|| re equation
] [

|| re equation . . .
] [

, options
]

where the syntax of fe equation is[
indepvars

] [
if
] [

in
] [

weight
] [

, fe options
]

and the syntax of re equation is one of the following:

for random coefficients and intercepts

levelvar:
[

varlist
] [

, re options
]

for random effects among the values of a factor variable

levelvar: R.varname

levelvar either is a variable identifying the group structure for the random effects at that level or is
all, representing one group comprising all observations.

fe options Description

Model

noconstant suppress constant term from the fixed-effects equation
offset(varname) include varname in model with coefficient constrained to 1
asis retain perfect predictor variables

re options Description

Model

covariance(vartype) variance–covariance structure of the random effects; only structures
independent, exchangeable, identity, and unstructured
are supported

noconstant suppress constant term from the random-effects equation

options Description

Model

binomial(varname | #) set binomial trials if data are in binomial form

Reporting

eform report exponentiated coefficients
notable suppress coefficient table
noheader suppress output header
nogroup suppress table summarizing groups
display options control spacing, line width, and base and empty cells

level(#) set credible level; default is level(95)
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indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar, indepvars, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.
fweights are allowed; see [U] 11.1.6 weight.
bayes: mecloglog, level() is equivalent to bayes, clevel(): mecloglog.
For a detailed description of options, see Options in [ME] mecloglog.

bayesopts Description

Priors
∗normalprior(#) specify standard deviation of default normal priors for regression

coefficients; default is normalprior(100)
∗igammaprior(# #) specify shape and scale of default inverse-gamma prior for

variance components; default is igammaprior(0.01 0.01)
∗iwishartprior(#

[
. . .
]
) specify degrees of freedom and, optionally, scale matrix of default

inverse-Wishart prior for unstructured random-effects covariance
prior(priorspec) prior for model parameters; this option may be repeated
dryrun show model summary without estimation

Simulation

nchains(#) number of chains; default is to simulate one chain
mcmcsize(#) MCMC sample size; default is mcmcsize(10000)

burnin(#) burn-in period; default is burnin(2500)

thinning(#) thinning interval; default is thinning(1)

rseed(#) random-number seed
exclude(paramref) specify model parameters to be excluded from the simulation results
restubs(restub1 restub2 . . .) specify stubs for random-effects parameters for all levels

Blocking
∗blocksize(#) maximum block size; default is blocksize(50)

block(paramref
[
, blockopts

]
) specify a block of model parameters; this option may be repeated

blocksummary display block summary
∗noblocking do not block parameters by default

Initialization

initial(initspec) specify initial values for model parameters with a single chain
init#(initspec) specify initial values for #th chain; requires nchains()

initall(initspec) specify initial values for all chains; requires nchains()

nomleinitial suppress the use of maximum likelihood estimates as starting values
initrandom specify random initial values
initsummary display initial values used for simulation
∗noisily display output from the estimation command during initialization

Adaptation

adaptation(adaptopts) control the adaptive MCMC procedure
scale(#) initial multiplier for scale factor; default is scale(2.38)

covariance(cov) initial proposal covariance; default is the identity matrix
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Reporting

clevel(#) set credible interval level; default is clevel(95)

hpd display HPD credible intervals instead of the default equal-tailed
credible intervals

eform
[
(string)

]
report exponentiated coefficients and, optionally, label as string

remargl compute log marginal-likelihood
batch(#) specify length of block for batch-means calculations;

default is batch(0)

saving(filename
[
, replace

]
) save simulation results to filename.dta

nomodelsummary suppress model summary
nomesummary suppress multilevel-structure summary
chainsdetail display detailed simulation summary for each chain[
no
]
dots suppress dots or display dots every 100 iterations and iteration

numbers every 1,000 iterations; default is dots

dots(#
[
, every(#)

]
) display dots as simulation is performed[

no
]
show(paramref) specify model parameters to be excluded from or included in

the output
showreffects

[
(reref)

]
specify that all or a subset of random-effects parameters be included

in the output
melabel display estimation table using the same row labels as mecloglog

nogroup suppress table summarizing groups
notable suppress estimation table
noheader suppress output header
title(string) display string as title above the table of parameter estimates
display options control spacing, line width, and base and empty cells

Advanced

search(search options) control the search for feasible initial values
corrlag(#) specify maximum autocorrelation lag; default varies
corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)

∗Starred options are specific to the bayes prefix; other options are common between bayes and bayesmh.
Options prior() and block() may be repeated.
priorspec and paramref are defined in [BAYES] bayesmh.
paramref may contain factor variables; see [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Model parameters are regression coefficients {depvar:indepvars}, random effects {rename}, and either vari-
ance components {rename:sigma2} or, if option covariance(unstructured) is specified, matrix parameter
{restub:Sigma,matrix}; see Likelihood model in [BAYES] bayes for how renames and restub are defined. Use
the dryrun option to see the definitions of model parameters prior to estimation.

For a detailed description of bayesopts, see Options in [BAYES] bayes.
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Remarks and examples
For a general introduction to Bayesian analysis, see [BAYES] Intro. For a general introduction

to Bayesian estimation using an adaptive Metropolis–Hastings algorithm, see [BAYES] bayesmh. For
remarks and examples specific to the bayes prefix, see [BAYES] bayes. For details about the estimation
command, see [ME] mecloglog.

For a simple example of the bayes prefix, see Introductory example in [BAYES] bayes. For
multilevel examples, see Multilevel models in [BAYES] bayes. Also see Crossed-effects model in
[BAYES] bayes.

Stored results
See Stored results in [BAYES] bayes.

Methods and formulas
See Methods and formulas in [BAYES] bayesmh.

Also see
[BAYES] bayes — Bayesian regression models using the bayes prefix

[ME] mecloglog — Multilevel mixed-effects complementary log–log regression

[BAYES] Bayesian postestimation — Postestimation tools for bayesmh and the bayes prefix

[BAYES] Bayesian estimation — Bayesian estimation commands

[BAYES] Bayesian commands — Introduction to commands for Bayesian analysis

[BAYES] Intro — Introduction to Bayesian analysis

[BAYES] Glossary



Title

bayes: meglm — Bayesian multilevel generalized linear model

Description Quick start Menu Syntax
Remarks and examples Stored results Methods and formulas Also see

Description
bayes: meglm fits a Bayesian multilevel generalized linear model to outcomes of different types

such as continuous, binary, count, and so on; see [BAYES] bayes and [ME] meglm for details.

Quick start
Bayesian two-level generalized linear model of y on x1 and x2 with random intercepts by id , using

the Gaussian family and log link, and using default normal priors for regression coefficients and
default inverse-gamma prior for the variance of random intercepts

bayes: meglm y x1 x2 || id:, family(gaussian) link(log)

Use a standard deviation of 10 instead of 100 for the default normal priors
bayes, normalprior(10): meglm y x1 x2 || id:, family(gaussian) link(log)

Use uniform priors for the slopes and a normal prior for the intercept
bayes, prior({y: x1 x2}, uniform(-10,10)) ///
prior({y: cons}, normal(0,10)): ///
meglm y x1 x2 || id:, family(gaussian) link(log)

Save simulation results to simdata.dta, and use a random-number seed for reproducibility
bayes, saving(simdata) rseed(123): ///
meglm y x1 x2 || id:, family(gaussian) link(log)

Specify 20,000 Markov chain Monte Carlo (MCMC) samples, set length of the burn-in period to 5,000,
and request that a dot be displayed every 500 simulations

bayes, mcmcsize(20000) burnin(5000) dots(500): ///
meglm y x1 x2 || id:, family(gaussian) link(log)

In the above, request that the 90% highest posterior density (HPD) credible interval be displayed
instead of the default 95% equal-tailed credible interval

bayes, clevel(90) hpd

Fit a logit model and display results as odds ratios
bayes: meglm z x1 x2 || id:, family(binomial) eform

Display odds ratios on replay
bayes, eform

Also see Quick start in [BAYES] bayes and Quick start in [ME] meglm.

Menu
Statistics > Multilevel mixed-effects models > Bayesian regression > Generalized linear model (GLM)
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Syntax
bayes

[
, bayesopts

]
: meglm depvar fe equation[

|| re equation
] [

|| re equation . . .
] [

, options
]

where the syntax of fe equation is[
indepvars

] [
if
] [

in
] [

weight
] [

, fe options
]

and the syntax of re equation is one of the following:

for random coefficients and intercepts

levelvar:
[

varlist
] [

, re options
]

for random effects among the values of a factor variable

levelvar: R.varname

levelvar either is a variable identifying the group structure for the random effects at that level or is
all, representing one group comprising all observations.

fe options Description

Model

noconstant suppress constant term from the fixed-effects equation
exposure(varnamee) include ln(varnamee) in model with coefficient constrained to 1
offset(varnameo) include varnameo in model with coefficient constrained to 1
asis retain perfect predictor variables

re options Description

Model

covariance(vartype) variance–covariance structure of the random effects; only structures
independent, exchangeable, identity, and unstructured
are supported

noconstant suppress constant term from the random-effects equation
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options Description

Model

family(family) distribution of depvar; default is family(gaussian)

link(link) link function; default varies per family

Reporting

eform report exponentiated coefficients
irr report incidence-rate ratios
or report odds ratios
notable suppress coefficient table
noheader suppress output header
nogroup suppress table summarizing groups
display options control spacing, line width, and base and empty cells

level(#) set credible level; default is level(95)

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar, indepvars, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.
fweights are allowed; see [U] 11.1.6 weight.
bayes: meglm, level() is equivalent to bayes, clevel(): meglm.
For a detailed description of options, see Options in [ME] meglm.

bayesopts Description

Priors
∗normalprior(#) specify standard deviation of default normal priors for regression

coefficients; default is normalprior(100)
∗igammaprior(# #) specify shape and scale of default inverse-gamma prior for

variance components; default is igammaprior(0.01 0.01)
∗iwishartprior(#

[
. . .
]
) specify degrees of freedom and, optionally, scale matrix of default

inverse-Wishart prior for unstructured random-effects covariance
prior(priorspec) prior for model parameters; this option may be repeated
dryrun show model summary without estimation

Simulation

nchains(#) number of chains; default is to simulate one chain
mcmcsize(#) MCMC sample size; default is mcmcsize(10000)

burnin(#) burn-in period; default is burnin(2500)

thinning(#) thinning interval; default is thinning(1)

rseed(#) random-number seed
exclude(paramref) specify model parameters to be excluded from the simulation results
restubs(restub1 restub2 . . .) specify stubs for random-effects parameters for all levels

Blocking
∗blocksize(#) maximum block size; default is blocksize(50)

block(paramref
[
, blockopts

]
) specify a block of model parameters; this option may be repeated

blocksummary display block summary
∗noblocking do not block parameters by default
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Initialization

initial(initspec) specify initial values for model parameters with a single chain
init#(initspec) specify initial values for #th chain; requires nchains()

initall(initspec) specify initial values for all chains; requires nchains()

nomleinitial suppress the use of maximum likelihood estimates as starting values
initrandom specify random initial values
initsummary display initial values used for simulation
∗noisily display output from the estimation command during initialization

Adaptation

adaptation(adaptopts) control the adaptive MCMC procedure
scale(#) initial multiplier for scale factor; default is scale(2.38)

covariance(cov) initial proposal covariance; default is the identity matrix

Reporting

clevel(#) set credible interval level; default is clevel(95)

hpd display HPD credible intervals instead of the default equal-tailed
credible intervals

∗irr report incidence-rate ratios
∗or report odds ratios
eform

[
(string)

]
report exponentiated coefficients and, optionally, label as string

remargl compute log marginal-likelihood
batch(#) specify length of block for batch-means calculations;

default is batch(0)

saving(filename
[
, replace

]
) save simulation results to filename.dta

nomodelsummary suppress model summary
nomesummary suppress multilevel-structure summary
chainsdetail display detailed simulation summary for each chain[
no
]
dots suppress dots or display dots every 100 iterations and iteration

numbers every 1,000 iterations; default is dots

dots(#
[
, every(#)

]
) display dots as simulation is performed[

no
]
show(paramref) specify model parameters to be excluded from or included in

the output
showreffects

[
(reref)

]
specify that all or a subset of random-effects parameters be included

in the output
melabel display estimation table using the same row labels as meglm

nogroup suppress table summarizing groups
notable suppress estimation table
noheader suppress output header
title(string) display string as title above the table of parameter estimates
display options control spacing, line width, and base and empty cells

Advanced

search(search options) control the search for feasible initial values
corrlag(#) specify maximum autocorrelation lag; default varies
corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)
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∗Starred options are specific to the bayes prefix; other options are common between bayes and bayesmh.
Options prior() and block() may be repeated.
priorspec and paramref are defined in [BAYES] bayesmh.
paramref may contain factor variables; see [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Model parameters are regression coefficients {depvar:indepvars}, parameters as described in Additional model
parameters, random effects {rename}, and either variance components {rename:sigma2} or, if option co-
variance(unstructured) is specified, matrix parameter {restub:Sigma,matrix}; see Likelihood model in
[BAYES] bayes for how renames and restub are defined. Use the dryrun option to see the definitions of model
parameters prior to estimation.

For a detailed description of bayesopts, see Options in [BAYES] bayes.

Remarks and examples
For a general introduction to Bayesian analysis, see [BAYES] Intro. For a general introduction

to Bayesian estimation using an adaptive Metropolis–Hastings algorithm, see [BAYES] bayesmh. For
remarks and examples specific to the bayes prefix, see [BAYES] bayes. For details about the estimation
command, see [ME] meglm.

For a simple example of the bayes prefix, see Introductory example in [BAYES] bayes. For
multilevel examples, see Multilevel models in [BAYES] bayes. Also see Crossed-effects model in
[BAYES] bayes.

Additional model parameters

In addition to regression coefficients {depvar:indepvars}, bayes: meglm defines extra parameters
that depend on the chosen family; see table 1 below.

Table 1. Additional model parameters defined by bayes: meglm

Family Parameter Model parameter Default prior

Gaussian Error variance {e.depvar:sigma2} InvGamma(0.01, 0.01)
Bernoulli/Binomial None None None
Ordinal Cutpoints {cut1}, {cut2}, . . . Flat
Poisson None None None
Negative binomial Log-overdispersion {lnalpha} (mean disp.) N(0, 10000)

{lndelta} (constant disp.) N(0, 10000)
Gamma Log-scale {lnscale} N(0, 10000)

Use the dryrun option with the bayes prefix to see the definitions of model parameters prior to
estimation.

Stored results
See Stored results in [BAYES] bayes.
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Methods and formulas
See Methods and formulas in [BAYES] bayesmh.

Also see
[BAYES] bayes — Bayesian regression models using the bayes prefix

[ME] meglm — Multilevel mixed-effects generalized linear models

[BAYES] Bayesian postestimation — Postestimation tools for bayesmh and the bayes prefix

[BAYES] Bayesian estimation — Bayesian estimation commands

[BAYES] Bayesian commands — Introduction to commands for Bayesian analysis

[BAYES] Intro — Introduction to Bayesian analysis

[BAYES] Glossary
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bayes: meintreg — Bayesian multilevel interval regression

Description Quick start Menu Syntax
Remarks and examples Stored results Methods and formulas Also see

Description
bayes: meintreg fits a Bayesian multilevel interval regression to a continuous, interval-measured

outcome; see [BAYES] bayes and [ME] meintreg for details.

Quick start
Bayesian two-level interval regression of y lower and y upper on x1 and x2 with random intercepts

by id , using default normal priors for regression coefficients and default inverse-gamma priors
for the error variance and for the variance of random intercepts

bayes: meintreg y lower y upper x1 x2 || id:

Use a standard deviation of 10 instead of 100 for the default normal priors
bayes, normalprior(10): meintreg y lower y upper x1 x2 || id:

Use uniform priors for the slopes and a normal prior for the intercept
bayes, prior({y lower: x1 x2}, uniform(-10,10)) ///
prior({y lower: cons}, normal(0,10)): ///
meintreg y lower y upper x1 x2 || id:

Save simulation results to simdata.dta, and use a random-number seed for reproducibility
bayes, saving(simdata) rseed(123): ///
meintreg y lower y upper x1 x2 || id:

Specify 20,000 Markov chain Monte Carlo (MCMC) samples, set length of the burn-in period to 5,000,
and request that a dot be displayed every 500 simulations

bayes, mcmcsize(20000) burnin(5000) dots(500): ///
meintreg y lower y upper x1 x2 || id:

In the above, request that the 90% highest posterior density (HPD) credible interval be displayed
instead of the default 95% equal-tailed credible interval

bayes, clevel(90) hpd

Also see Quick start in [BAYES] bayes and Quick start in [ME] meintreg.

Menu
Statistics > Multilevel mixed-effects models > Bayesian regression > Interval regression
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Syntax
bayes

[
, bayesopts

]
: meintreg depvarlower depvarupper fe equation[

|| re equation
] [

|| re equation . . .
] [

, options
]

where the syntax of fe equation is[
indepvars

] [
if
] [

in
] [

weight
] [

, fe options
]

and the syntax of re equation is one of the following:

for random coefficients and intercepts

levelvar:
[

varlist
] [

, re options
]

for random effects among the values of a factor variable

levelvar: R.varname

levelvar either is a variable identifying the group structure for the random effects at that level or is
all, representing one group comprising all observations.

fe options Description

Model

noconstant suppress constant term from the fixed-effects equation
offset(varname) include varname in model with coefficient constrained to 1

re options Description

Model

covariance(vartype) variance–covariance structure of the random effects; only structures
independent, exchangeable, identity, and unstructured
are supported

noconstant suppress constant term from the random-effects equation

options Description

Reporting

notable suppress coefficient table
noheader suppress output header
nogroup suppress table summarizing groups
display options control spacing, line width, and base and empty cells

level(#) set credible level; default is level(95)

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvarlower, depvarupper, indepvars, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.
fweights are allowed; see [U] 11.1.6 weight.
bayes: meintreg, level() is equivalent to bayes, clevel(): meintreg.
For a detailed description of options, see Options in [ME] meintreg.
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bayesopts Description

Priors
∗normalprior(#) specify standard deviation of default normal priors for regression

coefficients; default is normalprior(100)
∗igammaprior(# #) specify shape and scale of default inverse-gamma prior for

variance components; default is igammaprior(0.01 0.01)
∗iwishartprior(#

[
. . .
]
) specify degrees of freedom and, optionally, scale matrix of default

inverse-Wishart prior for unstructured random-effects covariance
prior(priorspec) prior for model parameters; this option may be repeated
dryrun show model summary without estimation

Simulation

nchains(#) number of chains; default is to simulate one chain
mcmcsize(#) MCMC sample size; default is mcmcsize(10000)

burnin(#) burn-in period; default is burnin(2500)

thinning(#) thinning interval; default is thinning(1)

rseed(#) random-number seed
exclude(paramref) specify model parameters to be excluded from the simulation results
restubs(restub1 restub2 . . .) specify stubs for random-effects parameters for all levels

Blocking
∗blocksize(#) maximum block size; default is blocksize(50)

block(paramref
[
, blockopts

]
) specify a block of model parameters; this option may be repeated

blocksummary display block summary
∗noblocking do not block parameters by default

Initialization

initial(initspec) specify initial values for model parameters with a single chain
init#(initspec) specify initial values for #th chain; requires nchains()

initall(initspec) specify initial values for all chains; requires nchains()

nomleinitial suppress the use of maximum likelihood estimates as starting values
initrandom specify random initial values
initsummary display initial values used for simulation
∗noisily display output from the estimation command during initialization

Adaptation

adaptation(adaptopts) control the adaptive MCMC procedure
scale(#) initial multiplier for scale factor; default is scale(2.38)

covariance(cov) initial proposal covariance; default is the identity matrix
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Reporting

clevel(#) set credible interval level; default is clevel(95)

hpd display HPD credible intervals instead of the default equal-tailed
credible intervals

eform
[
(string)

]
report exponentiated coefficients and, optionally, label as string

remargl compute log marginal-likelihood
batch(#) specify length of block for batch-means calculations;

default is batch(0)

saving(filename
[
, replace

]
) save simulation results to filename.dta

nomodelsummary suppress model summary
nomesummary suppress multilevel-structure summary
chainsdetail display detailed simulation summary for each chain[
no
]
dots suppress dots or display dots every 100 iterations and iteration

numbers every 1,000 iterations; default is dots

dots(#
[
, every(#)

]
) display dots as simulation is performed[

no
]
show(paramref) specify model parameters to be excluded from or included in

the output
showreffects

[
(reref)

]
specify that all or a subset of random-effects parameters be included

in the output
melabel display estimation table using the same row labels as meintreg

nogroup suppress table summarizing groups
notable suppress estimation table
noheader suppress output header
title(string) display string as title above the table of parameter estimates
display options control spacing, line width, and base and empty cells

Advanced

search(search options) control the search for feasible initial values
corrlag(#) specify maximum autocorrelation lag; default varies
corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)

∗Starred options are specific to the bayes prefix; other options are common between bayes and bayesmh.
Options prior() and block() may be repeated.
priorspec and paramref are defined in [BAYES] bayesmh.
paramref may contain factor variables; see [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Model parameters are regression coefficients {depvarlower:indepvars}, error variance {e.depvarlower:sigma2}, random
effects {rename}, and either variance components {rename:sigma2} or, if option covariance(unstructured)
is specified, matrix parameter {restub:Sigma,matrix}; see Likelihood model in [BAYES] bayes for how renames
and restub are defined. Use the dryrun option to see the definitions of model parameters prior to estimation.

For a detailed description of bayesopts, see Options in [BAYES] bayes.

Remarks and examples

For a general introduction to Bayesian analysis, see [BAYES] Intro. For a general introduction
to Bayesian estimation using an adaptive Metropolis–Hastings algorithm, see [BAYES] bayesmh. For
remarks and examples specific to the bayes prefix, see [BAYES] bayes. For details about the estimation
command, see [ME] meintreg.
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For a simple example of the bayes prefix, see Introductory example in [BAYES] bayes. For
multilevel examples, see Multilevel models in [BAYES] bayes.

Stored results
See Stored results in [BAYES] bayes.

Methods and formulas
See Methods and formulas in [BAYES] bayesmh.

Also see
[BAYES] bayes — Bayesian regression models using the bayes prefix

[ME] meintreg — Multilevel mixed-effects interval regression

[BAYES] Bayesian postestimation — Postestimation tools for bayesmh and the bayes prefix

[BAYES] Bayesian estimation — Bayesian estimation commands

[BAYES] Bayesian commands — Introduction to commands for Bayesian analysis

[BAYES] Intro — Introduction to Bayesian analysis

[BAYES] Glossary



Title

bayes: melogit — Bayesian multilevel logistic regression

Description Quick start Menu Syntax
Remarks and examples Stored results Methods and formulas Also see

Description
bayes: melogit fits a Bayesian multilevel logistic regression to a binary outcome; see

[BAYES] bayes and [ME] melogit for details.

Quick start
Bayesian two-level logistic regression of y on x1 and x2 with random intercepts by id , using

default normal priors for regression coefficients and default inverse-gamma prior for the variance
of random intercepts

bayes: melogit y x1 x2 || id:

Use a standard deviation of 10 instead of 100 for the default normal priors
bayes, normalprior(10): melogit y x1 x2 || id:

Use uniform priors for the slopes and a normal prior for the intercept
bayes, prior({y: x1 x2}, uniform(-10,10)) ///
prior({y: cons}, normal(0,10)): melogit y x1 x2 || id:

Save simulation results to simdata.dta, and use a random-number seed for reproducibility
bayes, saving(simdata) rseed(123): melogit y x1 x2 || id:

Specify 20,000 Markov chain Monte Carlo (MCMC) samples, set length of the burn-in period to 5,000,
and request that a dot be displayed every 500 simulations

bayes, mcmcsize(20000) burnin(5000) dots(500): melogit y x1 x2 || id:

In the above, request that the 90% highest posterior density (HPD) credible interval be displayed
instead of the default 95% equal-tailed credible interval

bayes, clevel(90) hpd

Display odds ratios instead of coefficients
bayes: melogit y x1 x2 || id: , or

Display odds ratios on replay
bayes, or

Also see Quick start in [BAYES] bayes and Quick start in [ME] melogit.

Menu
Statistics > Multilevel mixed-effects models > Bayesian regression > Logistic regression
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Syntax

bayes
[
, bayesopts

]
: melogit depvar fe equation[

|| re equation
] [

|| re equation . . .
] [

, options
]

where the syntax of fe equation is[
indepvars

] [
if
] [

in
] [

weight
] [

, fe options
]

and the syntax of re equation is one of the following:

for random coefficients and intercepts

levelvar:
[

varlist
] [

, re options
]

for random effects among the values of a factor variable

levelvar: R.varname

levelvar either is a variable identifying the group structure for the random effects at that level or is
all, representing one group comprising all observations.

fe options Description

Model

noconstant suppress constant term from the fixed-effects equation
offset(varname) include varname in model with coefficient constrained to 1
asis retain perfect predictor variables

re options Description

Model

covariance(vartype) variance–covariance structure of the random effects; only structures
independent, exchangeable, identity, and unstructured
are supported

noconstant suppress constant term from the random-effects equation

options Description

Model

binomial(varname | #) set binomial trials if data are in binomial form

Reporting

or report odds ratios
notable suppress coefficient table
noheader suppress output header
nogroup suppress table summarizing groups
display options control spacing, line width, and base and empty cells

level(#) set credible level; default is level(95)
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indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar, indepvars, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.
fweights are allowed; see [U] 11.1.6 weight.
bayes: melogit, level() is equivalent to bayes, clevel(): melogit.
For a detailed description of options, see Options in [ME] melogit.

bayesopts Description

Priors
∗normalprior(#) specify standard deviation of default normal priors for regression

coefficients; default is normalprior(100)
∗igammaprior(# #) specify shape and scale of default inverse-gamma prior for

variance components; default is igammaprior(0.01 0.01)
∗iwishartprior(#

[
. . .
]
) specify degrees of freedom and, optionally, scale matrix of default

inverse-Wishart prior for unstructured random-effects covariance
prior(priorspec) prior for model parameters; this option may be repeated
dryrun show model summary without estimation

Simulation

nchains(#) number of chains; default is to simulate one chain
mcmcsize(#) MCMC sample size; default is mcmcsize(10000)

burnin(#) burn-in period; default is burnin(2500)

thinning(#) thinning interval; default is thinning(1)

rseed(#) random-number seed
exclude(paramref) specify model parameters to be excluded from the simulation results
restubs(restub1 restub2 . . .) specify stubs for random-effects parameters for all levels

Blocking
∗blocksize(#) maximum block size; default is blocksize(50)

block(paramref
[
, blockopts

]
) specify a block of model parameters; this option may be repeated

blocksummary display block summary
∗noblocking do not block parameters by default

Initialization

initial(initspec) specify initial values for model parameters with a single chain
init#(initspec) specify initial values for #th chain; requires nchains()

initall(initspec) specify initial values for all chains; requires nchains()

nomleinitial suppress the use of maximum likelihood estimates as starting values
initrandom specify random initial values
initsummary display initial values used for simulation
∗noisily display output from the estimation command during initialization

Adaptation

adaptation(adaptopts) control the adaptive MCMC procedure
scale(#) initial multiplier for scale factor; default is scale(2.38)

covariance(cov) initial proposal covariance; default is the identity matrix
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Reporting

clevel(#) set credible interval level; default is clevel(95)

hpd display HPD credible intervals instead of the default equal-tailed
credible intervals

∗or report odds ratios
eform

[
(string)

]
report exponentiated coefficients and, optionally, label as string

remargl compute log marginal-likelihood
batch(#) specify length of block for batch-means calculations;

default is batch(0)

saving(filename
[
, replace

]
) save simulation results to filename.dta

nomodelsummary suppress model summary
nomesummary suppress multilevel-structure summary
chainsdetail display detailed simulation summary for each chain[
no
]
dots suppress dots or display dots every 100 iterations and iteration

numbers every 1,000 iterations; default is dots

dots(#
[
, every(#)

]
) display dots as simulation is performed[

no
]
show(paramref) specify model parameters to be excluded from or included in

the output
showreffects

[
(reref)

]
specify that all or a subset of random-effects parameters be included

in the output
melabel display estimation table using the same row labels as melogit

nogroup suppress table summarizing groups
notable suppress estimation table
noheader suppress output header
title(string) display string as title above the table of parameter estimates
display options control spacing, line width, and base and empty cells

Advanced

search(search options) control the search for feasible initial values
corrlag(#) specify maximum autocorrelation lag; default varies
corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)

∗Starred options are specific to the bayes prefix; other options are common between bayes and bayesmh.
Options prior() and block() may be repeated.
priorspec and paramref are defined in [BAYES] bayesmh.
paramref may contain factor variables; see [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Model parameters are regression coefficients {depvar:indepvars}, random effects {rename}, and either vari-
ance components {rename:sigma2} or, if option covariance(unstructured) is specified, matrix parameter
{restub:Sigma,matrix}; see Likelihood model in [BAYES] bayes for how renames and restub are defined. Use
the dryrun option to see the definitions of model parameters prior to estimation.

For a detailed description of bayesopts, see Options in [BAYES] bayes.

Remarks and examples
For a general introduction to Bayesian analysis, see [BAYES] Intro. For a general introduction

to Bayesian estimation using an adaptive Metropolis–Hastings algorithm, see [BAYES] bayesmh. For
remarks and examples specific to the bayes prefix, see [BAYES] bayes. For details about the estimation
command, see [ME] melogit.



560 bayes: melogit — Bayesian multilevel logistic regression

For a simple example of the bayes prefix, see Introductory example in [BAYES] bayes. For
multilevel examples, see Multilevel models in [BAYES] bayes.

Stored results
See Stored results in [BAYES] bayes.

Methods and formulas
See Methods and formulas in [BAYES] bayesmh.

Also see
[BAYES] bayes — Bayesian regression models using the bayes prefix

[ME] melogit — Multilevel mixed-effects logistic regression

[BAYES] Bayesian postestimation — Postestimation tools for bayesmh and the bayes prefix

[BAYES] Bayesian estimation — Bayesian estimation commands

[BAYES] Bayesian commands — Introduction to commands for Bayesian analysis

[BAYES] Intro — Introduction to Bayesian analysis

[BAYES] Glossary



Title

bayes: menbreg — Bayesian multilevel negative binomial regression

Description Quick start Menu Syntax
Remarks and examples Stored results Methods and formulas Also see

Description
bayes: menbreg fits a Bayesian multilevel negative binomial regression to a nonnegative count

outcome; see [BAYES] bayes and [ME] menbreg for details.

Quick start
Bayesian two-level negative binomial regression of y on x1 and x2 with random intercepts by id ,

using default normal priors for regression coefficients and log-overdispersion parameter and default
inverse-gamma prior for the variance of random intercepts

bayes: menbreg y x1 x2 || id:

Use a standard deviation of 10 instead of 100 for the default normal priors
bayes, normalprior(10): menbreg y x1 x2 || id:

Use uniform priors for the slopes and a normal prior for the intercept
bayes, prior({y: x1 x2}, uniform(-10,10)) ///
prior({y: cons}, normal(0,10)): menbreg y x1 x2 || id:

Save simulation results to simdata.dta, and use a random-number seed for reproducibility
bayes, saving(simdata) rseed(123): menbreg y x1 x2 || id:

Specify 20,000 Markov chain Monte Carlo (MCMC) samples, set length of the burn-in period to 5,000,
and request that a dot be displayed every 500 simulations

bayes, mcmcsize(20000) burnin(5000) dots(500): menbreg y x1 x2 || id:

In the above, request that the 90% highest posterior density (HPD) credible interval be displayed
instead of the default 95% equal-tailed credible interval

bayes, clevel(90) hpd

Display incidence-rate ratios instead of coefficients
bayes: menbreg y x1 x2 || id: , irr

Display incidence-rate ratios on replay
bayes, irr

Also see Quick start in [BAYES] bayes and Quick start in [ME] menbreg.

Menu
Statistics > Multilevel mixed-effects models > Bayesian regression > Negative binomial regression
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Syntax
bayes

[
, bayesopts

]
: menbreg depvar fe equation[

|| re equation
] [

|| re equation . . .
] [

, options
]

where the syntax of fe equation is[
indepvars

] [
if
] [

in
] [

weight
] [

, fe options
]

and the syntax of re equation is one of the following:

for random coefficients and intercepts

levelvar:
[

varlist
] [

, re options
]

for random effects among the values of a factor variable

levelvar: R.varname

levelvar either is a variable identifying the group structure for the random effects at that level or is
all, representing one group comprising all observations.

fe options Description

Model

noconstant suppress constant term from the fixed-effects equation
exposure(varnamee) include ln(varnamee) in model with coefficient constrained to 1
offset(varnameo) include varnameo in model with coefficient constrained to 1

re options Description

Model

covariance(vartype) variance–covariance structure of the random effects; only structures
independent, exchangeable, identity, and unstructured
are supported

noconstant suppress constant term from the random-effects equation

options Description

Model

dispersion(dispersion) parameterization of the conditional overdispersion;
dispersion may be mean (default) or constant

Reporting

irr report incidence-rate ratios
notable suppress coefficient table
noheader suppress output header
nogroup suppress table summarizing groups
display options control spacing, line width, and base and empty cells

level(#) set credible level; default is level(95)
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indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar, indepvars, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.
fweights are allowed; see [U] 11.1.6 weight.
bayes: menbreg, level() is equivalent to bayes, clevel(): menbreg.
For a detailed description of options, see Options in [ME] menbreg.

bayesopts Description

Priors
∗normalprior(#) specify standard deviation of default normal priors for regression

coefficients and log-overdispersion parameter;
default is normalprior(100)

∗igammaprior(# #) specify shape and scale of default inverse-gamma prior for
variance components; default is igammaprior(0.01 0.01)

∗iwishartprior(#
[
. . .
]
) specify degrees of freedom and, optionally, scale matrix of default

inverse-Wishart prior for unstructured random-effects covariance
prior(priorspec) prior for model parameters; this option may be repeated
dryrun show model summary without estimation

Simulation

nchains(#) number of chains; default is to simulate one chain
mcmcsize(#) MCMC sample size; default is mcmcsize(10000)

burnin(#) burn-in period; default is burnin(2500)

thinning(#) thinning interval; default is thinning(1)

rseed(#) random-number seed
exclude(paramref) specify model parameters to be excluded from the simulation results
restubs(restub1 restub2 . . .) specify stubs for random-effects parameters for all levels

Blocking
∗blocksize(#) maximum block size; default is blocksize(50)

block(paramref
[
, blockopts

]
) specify a block of model parameters; this option may be repeated

blocksummary display block summary
∗noblocking do not block parameters by default

Initialization

initial(initspec) specify initial values for model parameters with a single chain
init#(initspec) specify initial values for #th chain; requires nchains()

initall(initspec) specify initial values for all chains; requires nchains()

nomleinitial suppress the use of maximum likelihood estimates as starting values
initrandom specify random initial values
initsummary display initial values used for simulation
∗noisily display output from the estimation command during initialization

Adaptation

adaptation(adaptopts) control the adaptive MCMC procedure
scale(#) initial multiplier for scale factor; default is scale(2.38)

covariance(cov) initial proposal covariance; default is the identity matrix
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Reporting

clevel(#) set credible interval level; default is clevel(95)

hpd display HPD credible intervals instead of the default equal-tailed
credible intervals

∗irr report incidence-rate ratios
eform

[
(string)

]
report exponentiated coefficients and, optionally, label as string

remargl compute log marginal-likelihood
batch(#) specify length of block for batch-means calculations;

default is batch(0)

saving(filename
[
, replace

]
) save simulation results to filename.dta

nomodelsummary suppress model summary
nomesummary suppress multilevel-structure summary
chainsdetail display detailed simulation summary for each chain[
no
]
dots suppress dots or display dots every 100 iterations and iteration

numbers every 1,000 iterations; default is dots

dots(#
[
, every(#)

]
) display dots as simulation is performed[

no
]
show(paramref) specify model parameters to be excluded from or included in

the output
showreffects

[
(reref)

]
specify that all or a subset of random-effects parameters be included

in the output
melabel display estimation table using the same row labels as menbreg

nogroup suppress table summarizing groups
notable suppress estimation table
noheader suppress output header
title(string) display string as title above the table of parameter estimates
display options control spacing, line width, and base and empty cells

Advanced

search(search options) control the search for feasible initial values
corrlag(#) specify maximum autocorrelation lag; default varies
corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)

∗Starred options are specific to the bayes prefix; other options are common between bayes and bayesmh.
Options prior() and block() may be repeated.
priorspec and paramref are defined in [BAYES] bayesmh.
paramref may contain factor variables; see [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Model parameters are regression coefficients {depvar:indepvars}, log-overdispersion parameter {lnalpha} with
mean dispersion or {lndelta} with constant dispersion, random effects {rename}, and either variance
components {rename:sigma2} or, if option covariance(unstructured) is specified, matrix parameter
{restub:Sigma,matrix}; see Likelihood model in [BAYES] bayes for how renames and restub are defined.
Use the dryrun option to see the definitions of model parameters prior to estimation.

For a detailed description of bayesopts, see Options in [BAYES] bayes.

Remarks and examples

For a general introduction to Bayesian analysis, see [BAYES] Intro. For a general introduction
to Bayesian estimation using an adaptive Metropolis–Hastings algorithm, see [BAYES] bayesmh. For
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remarks and examples specific to the bayes prefix, see [BAYES] bayes. For details about the estimation
command, see [ME] menbreg.

For a simple example of the bayes prefix, see Introductory example in [BAYES] bayes. For
multilevel examples, see Multilevel models in [BAYES] bayes.

Stored results
See Stored results in [BAYES] bayes.

Methods and formulas
See Methods and formulas in [BAYES] bayesmh.

Also see
[BAYES] bayes — Bayesian regression models using the bayes prefix

[ME] menbreg — Multilevel mixed-effects negative binomial regression

[BAYES] Bayesian postestimation — Postestimation tools for bayesmh and the bayes prefix

[BAYES] Bayesian estimation — Bayesian estimation commands

[BAYES] Bayesian commands — Introduction to commands for Bayesian analysis

[BAYES] Intro — Introduction to Bayesian analysis

[BAYES] Glossary



Title

bayes: meologit — Bayesian multilevel ordered logistic regression

Description Quick start Menu Syntax
Remarks and examples Stored results Methods and formulas Also see

Description
bayes: meologit fits a Bayesian multilevel ordered logistic regression to an ordinal outcome;

see [BAYES] bayes and [ME] meologit for details.

Quick start
Bayesian two-level ordered logistic regression of y on x1 and x2 with random intercepts by id , using

default normal priors for regression coefficients, flat priors for cutpoints, and default inverse-gamma
prior for the variance of random intercepts

bayes: meologit y x1 x2 || id:

Use a standard deviation of 10 instead of 100 for the default normal priors
bayes, normalprior(10): meologit y x1 x2 || id:

Use uniform priors for the slopes and a normal prior for the intercept
bayes, prior({y: x1 x2}, uniform(-10,10)) ///
prior({y: cons}, normal(0,10)): meologit y x1 x2 || id:

Save simulation results to simdata.dta, and use a random-number seed for reproducibility
bayes, saving(simdata) rseed(123): meologit y x1 x2 || id:

Specify 20,000 Markov chain Monte Carlo (MCMC) samples, set length of the burn-in period to 5,000,
and request that a dot be displayed every 500 simulations

bayes, mcmcsize(20000) burnin(5000) dots(500): meologit y x1 x2 || id:

In the above, request that the 90% highest posterior density (HPD) credible interval be displayed
instead of the default 95% equal-tailed credible interval

bayes, clevel(90) hpd

Display odds ratios instead of coefficients
bayes: meologit y x1 x2 || id: , or

Display odds ratios on replay
bayes, or

Also see Quick start in [BAYES] bayes and Quick start in [ME] meologit.

Menu
Statistics > Multilevel mixed-effects models > Bayesian regression > Ordered logistic regression
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Syntax
bayes

[
, bayesopts

]
: meologit depvar fe equation[

|| re equation
] [

|| re equation . . .
] [

, options
]

where the syntax of fe equation is[
indepvars

] [
if
] [

in
] [

weight
] [

, fe options
]

and the syntax of re equation is one of the following:

for random coefficients and intercepts

levelvar:
[

varlist
] [

, re options
]

for random effects among the values of a factor variable

levelvar: R.varname

levelvar either is a variable identifying the group structure for the random effects at that level or is
all, representing one group comprising all observations.

fe options Description

Model

offset(varname) include varname in model with coefficient constrained to 1

re options Description

Model

covariance(vartype) variance–covariance structure of the random effects; only structures
independent, exchangeable, identity, and unstructured
are supported

noconstant suppress constant term from the random-effects equation

options Description

Reporting

or report odds ratios
notable suppress coefficient table
noheader suppress output header
nogroup suppress table summarizing groups
display options control spacing, line width, and base and empty cells

level(#) set credible level; default is level(95)

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar, indepvars, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.
fweights are allowed; see [U] 11.1.6 weight.
bayes: meologit, level() is equivalent to bayes, clevel(): meologit.
For a detailed description of options, see Options in [ME] meologit.
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bayesopts Description

Priors
∗normalprior(#) specify standard deviation of default normal priors for regression

coefficients; default is normalprior(100)
∗igammaprior(# #) specify shape and scale of default inverse-gamma prior for

variance components; default is igammaprior(0.01 0.01)
∗iwishartprior(#

[
. . .
]
) specify degrees of freedom and, optionally, scale matrix of default

inverse-Wishart prior for unstructured random-effects covariance
prior(priorspec) prior for model parameters; this option may be repeated
dryrun show model summary without estimation

Simulation

nchains(#) number of chains; default is to simulate one chain
mcmcsize(#) MCMC sample size; default is mcmcsize(10000)

burnin(#) burn-in period; default is burnin(2500)

thinning(#) thinning interval; default is thinning(1)

rseed(#) random-number seed
exclude(paramref) specify model parameters to be excluded from the simulation results
restubs(restub1 restub2 . . .) specify stubs for random-effects parameters for all levels

Blocking
∗blocksize(#) maximum block size; default is blocksize(50)

block(paramref
[
, blockopts

]
) specify a block of model parameters; this option may be repeated

blocksummary display block summary
∗noblocking do not block parameters by default

Initialization

initial(initspec) specify initial values for model parameters with a single chain
init#(initspec) specify initial values for #th chain; requires nchains()

initall(initspec) specify initial values for all chains; requires nchains()

nomleinitial suppress the use of maximum likelihood estimates as starting values
initrandom specify random initial values
initsummary display initial values used for simulation
∗noisily display output from the estimation command during initialization

Adaptation

adaptation(adaptopts) control the adaptive MCMC procedure
scale(#) initial multiplier for scale factor; default is scale(2.38)

covariance(cov) initial proposal covariance; default is the identity matrix
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Reporting

clevel(#) set credible interval level; default is clevel(95)

hpd display HPD credible intervals instead of the default equal-tailed
credible intervals

∗or report coefficients as odds ratios
eform

[
(string)

]
report exponentiated coefficients and, optionally, label as string

remargl compute log marginal-likelihood
batch(#) specify length of block for batch-means calculations;

default is batch(0)

saving(filename
[
, replace

]
) save simulation results to filename.dta

nomodelsummary suppress model summary
nomesummary suppress multilevel-structure summary
chainsdetail display detailed simulation summary for each chain[
no
]
dots suppress dots or display dots every 100 iterations and iteration

numbers every 1,000 iterations; default is dots

dots(#
[
, every(#)

]
) display dots as simulation is performed[

no
]
show(paramref) specify model parameters to be excluded from or included in

the output
showreffects

[
(reref)

]
specify that all or a subset of random-effects parameters be included

in the output
melabel display estimation table using the same row labels as meologit

nogroup suppress table summarizing groups
notable suppress estimation table
noheader suppress output header
title(string) display string as title above the table of parameter estimates
display options control spacing, line width, and base and empty cells

Advanced

search(search options) control the search for feasible initial values
corrlag(#) specify maximum autocorrelation lag; default varies
corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)

∗Starred options are specific to the bayes prefix; other options are common between bayes and bayesmh.
Options prior() and block() may be repeated.
priorspec and paramref are defined in [BAYES] bayesmh.
paramref may contain factor variables; see [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Model parameters are regression coefficients {depvar:indepvars}, cutpoints {cut1}, {cut2}, and so on, random
effects {rename}, and either variance components {rename:sigma2} or, if option covariance(unstructured)
is specified, matrix parameter {restub:Sigma,matrix}; see Likelihood model in [BAYES] bayes for how renames
and restub are defined. Use the dryrun option to see the definitions of model parameters prior to estimation.

Flat priors, flat, are used by default for cutpoints.
For a detailed description of bayesopts, see Options in [BAYES] bayes.

Remarks and examples

For a general introduction to Bayesian analysis, see [BAYES] Intro. For a general introduction
to Bayesian estimation using an adaptive Metropolis–Hastings algorithm, see [BAYES] bayesmh. For
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remarks and examples specific to the bayes prefix, see [BAYES] bayes. For details about the estimation
command, see [ME] meologit.

For a simple example of the bayes prefix, see Introductory example in [BAYES] bayes. For
multilevel examples, see Multilevel models in [BAYES] bayes.

Stored results
See Stored results in [BAYES] bayes.

Methods and formulas
See Methods and formulas in [BAYES] bayesmh.

Also see
[BAYES] bayes — Bayesian regression models using the bayes prefix

[ME] meologit — Multilevel mixed-effects ordered logistic regression

[BAYES] Bayesian postestimation — Postestimation tools for bayesmh and the bayes prefix

[BAYES] Bayesian estimation — Bayesian estimation commands

[BAYES] Bayesian commands — Introduction to commands for Bayesian analysis

[BAYES] Intro — Introduction to Bayesian analysis

[BAYES] Glossary



Title

bayes: meoprobit — Bayesian multilevel ordered probit regression

Description Quick start Menu Syntax
Remarks and examples Stored results Methods and formulas Also see

Description
bayes: meoprobit fits a Bayesian multilevel ordered probit regression to an ordinal outcome;

see [BAYES] bayes and [ME] meoprobit for details.

Quick start
Bayesian two-level ordered probit regression of y on x1 and x2 with random intercepts by id , using

default normal priors for regression coefficients, flat priors for cutpoints, and default inverse-gamma
prior for the variance of random intercepts

bayes: meoprobit y x1 x2 || id:

Use a standard deviation of 10 instead of 100 for the default normal priors
bayes, normalprior(10): meoprobit y x1 x2 || id:

Use uniform priors for the slopes and a normal prior for the intercept
bayes, prior({y: x1 x2}, uniform(-10,10)) ///
prior({y: cons}, normal(0,10)): meoprobit y x1 x2 || id:

Save simulation results to simdata.dta, and use a random-number seed for reproducibility
bayes, saving(simdata) rseed(123): meoprobit y x1 x2 || id:

Specify 20,000 Markov chain Monte Carlo (MCMC) samples, set length of the burn-in period to 5,000,
and request that a dot be displayed every 500 simulations

bayes, mcmcsize(20000) burnin(5000) dots(500): meoprobit y x1 x2 || id:

In the above, request that the 90% highest posterior density (HPD) credible interval be displayed
instead of the default 95% equal-tailed credible interval

bayes, clevel(90) hpd

Also see Quick start in [BAYES] bayes and Quick start in [ME] meoprobit.

Menu
Statistics > Multilevel mixed-effects models > Bayesian regression > Ordered probit regression
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Syntax
bayes

[
, bayesopts

]
: meoprobit depvar fe equation[

|| re equation
] [

|| re equation . . .
] [

, options
]

where the syntax of fe equation is[
indepvars

] [
if
] [

in
] [

weight
] [

, fe options
]

and the syntax of re equation is one of the following:

for random coefficients and intercepts

levelvar:
[

varlist
] [

, re options
]

for random effects among the values of a factor variable

levelvar: R.varname

levelvar either is a variable identifying the group structure for the random effects at that level or is
all, representing one group comprising all observations.

fe options Description

Model

offset(varname) include varname in model with coefficient constrained to 1

re options Description

Model

covariance(vartype) variance–covariance structure of the random effects; only structures
independent, exchangeable, identity, and unstructured
are supported

noconstant suppress constant term from the random-effects equation

options Description

Reporting

notable suppress coefficient table
noheader suppress output header
nogroup suppress table summarizing groups
display options control spacing, line width, and base and empty cells

level(#) set credible level; default is level(95)

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar, indepvars, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.
fweights are allowed; see [U] 11.1.6 weight.
bayes: meoprobit, level() is equivalent to bayes, clevel(): meoprobit.
For a detailed description of options, see Options in [ME] meoprobit.
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bayesopts Description

Priors
∗normalprior(#) specify standard deviation of default normal priors for regression

coefficients; default is normalprior(100)
∗igammaprior(# #) specify shape and scale of default inverse-gamma prior for

variance components; default is igammaprior(0.01 0.01)
∗iwishartprior(#

[
. . .
]
) specify degrees of freedom and, optionally, scale matrix of default

inverse-Wishart prior for unstructured random-effects covariance
prior(priorspec) prior for model parameters; this option may be repeated
dryrun show model summary without estimation

Simulation

nchains(#) number of chains; default is to simulate one chain
mcmcsize(#) MCMC sample size; default is mcmcsize(10000)

burnin(#) burn-in period; default is burnin(2500)

thinning(#) thinning interval; default is thinning(1)

rseed(#) random-number seed
exclude(paramref) specify model parameters to be excluded from the simulation results
restubs(restub1 restub2 . . .) specify stubs for random-effects parameters for all levels

Blocking
∗blocksize(#) maximum block size; default is blocksize(50)

block(paramref
[
, blockopts

]
) specify a block of model parameters; this option may be repeated

blocksummary display block summary
∗noblocking do not block parameters by default

Initialization

initial(initspec) specify initial values for model parameters with a single chain
init#(initspec) specify initial values for #th chain; requires nchains()

initall(initspec) specify initial values for all chains; requires nchains()

nomleinitial suppress the use of maximum likelihood estimates as starting values
initrandom specify random initial values
initsummary display initial values used for simulation
∗noisily display output from the estimation command during initialization

Adaptation

adaptation(adaptopts) control the adaptive MCMC procedure
scale(#) initial multiplier for scale factor; default is scale(2.38)

covariance(cov) initial proposal covariance; default is the identity matrix
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Reporting

clevel(#) set credible interval level; default is clevel(95)

hpd display HPD credible intervals instead of the default equal-tailed
credible intervals

eform
[
(string)

]
report exponentiated coefficients and, optionally, label as string

remargl compute log marginal-likelihood
batch(#) specify length of block for batch-means calculations;

default is batch(0)

saving(filename
[
, replace

]
) save simulation results to filename.dta

nomodelsummary suppress model summary
nomesummary suppress multilevel-structure summary
chainsdetail display detailed simulation summary for each chain[
no
]
dots suppress dots or display dots every 100 iterations and iteration

numbers every 1,000 iterations; default is dots

dots(#
[
, every(#)

]
) display dots as simulation is performed[

no
]
show(paramref) specify model parameters to be excluded from or included in

the output
showreffects

[
(reref)

]
specify that all or a subset of random-effects parameters be included

in the output
melabel display estimation table using the same row labels as meoprobit

nogroup suppress table summarizing groups
notable suppress estimation table
noheader suppress output header
title(string) display string as title above the table of parameter estimates
display options control spacing, line width, and base and empty cells

Advanced

search(search options) control the search for feasible initial values
corrlag(#) specify maximum autocorrelation lag; default varies
corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)

∗Starred options are specific to the bayes prefix; other options are common between bayes and bayesmh.
Options prior() and block() may be repeated.
priorspec and paramref are defined in [BAYES] bayesmh.
paramref may contain factor variables; see [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Model parameters are regression coefficients {depvar:indepvars}, cutpoints {cut1}, {cut2}, and so on, random
effects {rename}, and either variance components {rename:sigma2} or, if option covariance(unstructured)
is specified, matrix parameter {restub:Sigma,matrix}; see Likelihood model in [BAYES] bayes for how renames
and restub are defined. Use the dryrun option to see the definitions of model parameters prior to estimation.

Flat priors, flat, are used by default for cutpoints.
For a detailed description of bayesopts, see Options in [BAYES] bayes.

Remarks and examples
For a general introduction to Bayesian analysis, see [BAYES] Intro. For a general introduction

to Bayesian estimation using an adaptive Metropolis–Hastings algorithm, see [BAYES] bayesmh. For
remarks and examples specific to the bayes prefix, see [BAYES] bayes. For details about the estimation
command, see [ME] meoprobit.
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For a simple example of the bayes prefix, see Introductory example in [BAYES] bayes. For
multilevel examples, see Multilevel models in [BAYES] bayes.

Stored results
See Stored results in [BAYES] bayes.

Methods and formulas
See Methods and formulas in [BAYES] bayesmh.

Also see
[BAYES] bayes — Bayesian regression models using the bayes prefix

[ME] meoprobit — Multilevel mixed-effects ordered probit regression

[BAYES] Bayesian postestimation — Postestimation tools for bayesmh and the bayes prefix

[BAYES] Bayesian estimation — Bayesian estimation commands

[BAYES] Bayesian commands — Introduction to commands for Bayesian analysis

[BAYES] Intro — Introduction to Bayesian analysis

[BAYES] Glossary



Title

bayes: mepoisson — Bayesian multilevel Poisson regression

Description Quick start Menu Syntax
Remarks and examples Stored results Methods and formulas Also see

Description
bayes: mepoisson fits a Bayesian multilevel Poisson regression to a nonnegative count outcome;

see [BAYES] bayes and [ME] mepoisson for details.

Quick start
Bayesian two-level Poisson regression of y on x1 and x2 with random intercepts by id , using

default normal priors for regression coefficients and default inverse-gamma prior for the variance
of random intercepts

bayes: mepoisson y x1 x2 || id:

Use a standard deviation of 10 instead of 100 for the default normal priors
bayes, normalprior(10): mepoisson y x1 x2 || id:

Use uniform priors for the slopes and a normal prior for the intercept
bayes, prior({y: x1 x2}, uniform(-10,10)) ///
prior({y: cons}, normal(0,10)): mepoisson y x1 x2 || id:

Save simulation results to simdata.dta, and use a random-number seed for reproducibility
bayes, saving(simdata) rseed(123): mepoisson y x1 x2 || id:

Specify 20,000 Markov chain Monte Carlo (MCMC) samples, set length of the burn-in period to 5,000,
and request that a dot be displayed every 500 simulations

bayes, mcmcsize(20000) burnin(5000) dots(500): mepoisson y x1 x2 || id:

In the above, request that the 90% highest posterior density (HPD) credible interval be displayed
instead of the default 95% equal-tailed credible interval

bayes, clevel(90) hpd

Display incidence-rate ratios instead of coefficients
bayes: mepoisson y x1 x2 || id: , irr

Display incidence-rate ratios on replay
bayes, irr

Also see Quick start in [BAYES] bayes and Quick start in [ME] mepoisson.

Menu
Statistics > Multilevel mixed-effects models > Bayesian regression > Poisson regression
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Syntax
bayes

[
, bayesopts

]
: mepoisson depvar fe equation[

|| re equation
] [

|| re equation . . .
] [

, options
]

where the syntax of fe equation is[
indepvars

] [
if
] [

in
] [

weight
] [

, fe options
]

and the syntax of re equation is one of the following:

for random coefficients and intercepts

levelvar:
[

varlist
] [

, re options
]

for random effects among the values of a factor variable

levelvar: R.varname

levelvar either is a variable identifying the group structure for the random effects at that level or is
all, representing one group comprising all observations.

fe options Description

Model

noconstant suppress constant term from the fixed-effects equation
exposure(varnamee) include ln(varnamee) in model with coefficient constrained to 1
offset(varnameo) include varnameo in model with coefficient constrained to 1

re options Description

Model

covariance(vartype) variance–covariance structure of the random effects; only structures
independent, exchangeable, identity, and unstructured
are supported

noconstant suppress constant term from the random-effects equation

options Description

Reporting

irr report incidence-rate ratios
notable suppress coefficient table
noheader suppress output header
nogroup suppress table summarizing groups
display options control spacing, line width, and base and empty cells

level(#) set credible level; default is level(95)

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar, indepvars, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.
fweights are allowed; see [U] 11.1.6 weight.
bayes: mepoisson, level() is equivalent to bayes, clevel(): mepoisson.
For a detailed description of options, see Options in [ME] mepoisson.
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bayesopts Description

Priors
∗normalprior(#) specify standard deviation of default normal priors for regression

coefficients; default is normalprior(100)
∗igammaprior(# #) specify shape and scale of default inverse-gamma prior for

variance components; default is igammaprior(0.01 0.01)
∗iwishartprior(#

[
. . .
]
) specify degrees of freedom and, optionally, scale matrix of default

inverse-Wishart prior for unstructured random-effects covariance
prior(priorspec) prior for model parameters; this option may be repeated
dryrun show model summary without estimation

Simulation

nchains(#) number of chains; default is to simulate one chain
mcmcsize(#) MCMC sample size; default is mcmcsize(10000)

burnin(#) burn-in period; default is burnin(2500)

thinning(#) thinning interval; default is thinning(1)

rseed(#) random-number seed
exclude(paramref) specify model parameters to be excluded from the simulation results
restubs(restub1 restub2 . . .) specify stubs for random-effects parameters for all levels

Blocking
∗blocksize(#) maximum block size; default is blocksize(50)

block(paramref
[
, blockopts

]
) specify a block of model parameters; this option may be repeated

blocksummary display block summary
∗noblocking do not block parameters by default

Initialization

initial(initspec) specify initial values for model parameters with a single chain
init#(initspec) specify initial values for #th chain; requires nchains()

initall(initspec) specify initial values for all chains; requires nchains()

nomleinitial suppress the use of maximum likelihood estimates as starting values
initrandom specify random initial values
initsummary display initial values used for simulation
∗noisily display output from the estimation command during initialization

Adaptation

adaptation(adaptopts) control the adaptive MCMC procedure
scale(#) initial multiplier for scale factor; default is scale(2.38)

covariance(cov) initial proposal covariance; default is the identity matrix
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Reporting

clevel(#) set credible interval level; default is clevel(95)

hpd display HPD credible intervals instead of the default equal-tailed
credible intervals

∗irr report incidence-rate ratios
eform

[
(string)

]
report exponentiated coefficients and, optionally, label as string

remargl compute log marginal-likelihood
batch(#) specify length of block for batch-means calculations;

default is batch(0)

saving(filename
[
, replace

]
) save simulation results to filename.dta

nomodelsummary suppress model summary
nomesummary suppress multilevel-structure summary
chainsdetail display detailed simulation summary for each chain[
no
]
dots suppress dots or display dots every 100 iterations and iteration

numbers every 1,000 iterations; default is dots

dots(#
[
, every(#)

]
) display dots as simulation is performed[

no
]
show(paramref) specify model parameters to be excluded from or included in

the output
showreffects

[
(reref)

]
specify that all or a subset of random-effects parameters be included

in the output
melabel display estimation table using the same row labels as mepoisson

nogroup suppress table summarizing groups
notable suppress estimation table
noheader suppress output header
title(string) display string as title above the table of parameter estimates
display options control spacing, line width, and base and empty cells

Advanced

search(search options) control the search for feasible initial values
corrlag(#) specify maximum autocorrelation lag; default varies
corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)

∗Starred options are specific to the bayes prefix; other options are common between bayes and bayesmh.
Options prior() and block() may be repeated.
priorspec and paramref are defined in [BAYES] bayesmh.
paramref may contain factor variables; see [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Model parameters are regression coefficients {depvar:indepvars}, random effects {rename}, and either vari-
ance components {rename:sigma2} or, if option covariance(unstructured) is specified, matrix parameter
{restub:Sigma,matrix}; see Likelihood model in [BAYES] bayes for how renames and restub are defined. Use
the dryrun option to see the definitions of model parameters prior to estimation.

For a detailed description of bayesopts, see Options in [BAYES] bayes.

Remarks and examples
For a general introduction to Bayesian analysis, see [BAYES] Intro. For a general introduction

to Bayesian estimation using an adaptive Metropolis–Hastings algorithm, see [BAYES] bayesmh. For
remarks and examples specific to the bayes prefix, see [BAYES] bayes. For details about the estimation
command, see [ME] mepoisson.
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For a simple example of the bayes prefix, see Introductory example in [BAYES] bayes. For
multilevel examples, see Multilevel models in [BAYES] bayes.

Stored results
See Stored results in [BAYES] bayes.

Methods and formulas
See Methods and formulas in [BAYES] bayesmh.

Also see
[BAYES] bayes — Bayesian regression models using the bayes prefix

[ME] mepoisson — Multilevel mixed-effects Poisson regression

[BAYES] Bayesian postestimation — Postestimation tools for bayesmh and the bayes prefix

[BAYES] Bayesian estimation — Bayesian estimation commands

[BAYES] Bayesian commands — Introduction to commands for Bayesian analysis

[BAYES] Intro — Introduction to Bayesian analysis

[BAYES] Glossary



Title

bayes: meprobit — Bayesian multilevel probit regression

Description Quick start Menu Syntax
Remarks and examples Stored results Methods and formulas Also see

Description
bayes: meprobit fits a Bayesian multilevel probit regression to a binary outcome; see

[BAYES] bayes and [ME] meprobit for details.

Quick start
Bayesian two-level probit regression of y on x1 and x2 with random intercepts by id , using default

normal priors for regression coefficients and default inverse-gamma prior for the variance of random
intercepts

bayes: meprobit y x1 x2 || id:

Use a standard deviation of 10 instead of 100 for the default normal priors
bayes, normalprior(10): meprobit y x1 x2 || id:

Use uniform priors for the slopes and a normal prior for the intercept
bayes, prior({y: x1 x2}, uniform(-10,10)) ///
prior({y: cons}, normal(0,10)): meprobit y x1 x2 || id:

Save simulation results to simdata.dta, and use a random-number seed for reproducibility
bayes, saving(simdata) rseed(123): meprobit y x1 x2 || id:

Specify 20,000 Markov chain Monte Carlo (MCMC) samples, set length of the burn-in period to 5,000,
and request that a dot be displayed every 500 simulations

bayes, mcmcsize(20000) burnin(5000) dots(500): meprobit y x1 x2 || id:

In the above, request that the 90% highest posterior density (HPD) credible interval be displayed
instead of the default 95% equal-tailed credible interval

bayes, clevel(90) hpd

Also see Quick start in [BAYES] bayes and Quick start in [ME] meprobit.

Menu
Statistics > Multilevel mixed-effects models > Bayesian regression > Probit regression

581



582 bayes: meprobit — Bayesian multilevel probit regression

Syntax

bayes
[
, bayesopts

]
: meprobit depvar fe equation[

|| re equation
] [

|| re equation . . .
] [

, options
]

where the syntax of fe equation is[
indepvars

] [
if
] [

in
] [

weight
] [

, fe options
]

and the syntax of re equation is one of the following:

for random coefficients and intercepts

levelvar:
[

varlist
] [

, re options
]

for random effects among the values of a factor variable

levelvar: R.varname

levelvar either is a variable identifying the group structure for the random effects at that level or is
all, representing one group comprising all observations.

fe options Description

Model

noconstant suppress constant term from the fixed-effects equation
offset(varname) include varname in model with coefficient constrained to 1
asis retain perfect predictor variables

re options Description

Model

covariance(vartype) variance–covariance structure of the random effects; only structures
independent, exchangeable, identity, and unstructured
are supported

noconstant suppress constant term from the random-effects equation

options Description

Model

binomial(varname | #) set binomial trials if data are in binomial form

Reporting

notable suppress coefficient table
noheader suppress output header
nogroup suppress table summarizing groups
display options control spacing, line width, and base and empty cells

level(#) set credible level; default is level(95)
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indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar, indepvars, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.
fweights are allowed; see [U] 11.1.6 weight.
bayes: meprobit, level() is equivalent to bayes, clevel(): meprobit.
For a detailed description of options, see Options in [ME] meprobit.

bayesopts Description

Priors
∗normalprior(#) specify standard deviation of default normal priors for regression

coefficients; default is normalprior(100)
∗igammaprior(# #) specify shape and scale of default inverse-gamma prior for

variance components; default is igammaprior(0.01 0.01)
∗iwishartprior(#

[
. . .
]
) specify degrees of freedom and, optionally, scale matrix of default

inverse-Wishart prior for unstructured random-effects covariance
prior(priorspec) prior for model parameters; this option may be repeated
dryrun show model summary without estimation

Simulation

nchains(#) number of chains; default is to simulate one chain
mcmcsize(#) MCMC sample size; default is mcmcsize(10000)

burnin(#) burn-in period; default is burnin(2500)

thinning(#) thinning interval; default is thinning(1)

rseed(#) random-number seed
exclude(paramref) specify model parameters to be excluded from the simulation results
restubs(restub1 restub2 . . .) specify stubs for random-effects parameters for all levels

Blocking
∗blocksize(#) maximum block size; default is blocksize(50)

block(paramref
[
, blockopts

]
) specify a block of model parameters; this option may be repeated

blocksummary display block summary
∗noblocking do not block parameters by default

Initialization

initial(initspec) specify initial values for model parameters with a single chain
init#(initspec) specify initial values for #th chain; requires nchains()

initall(initspec) specify initial values for all chains; requires nchains()

nomleinitial suppress the use of maximum likelihood estimates as starting values
initrandom specify random initial values
initsummary display initial values used for simulation
∗noisily display output from the estimation command during initialization

Adaptation

adaptation(adaptopts) control the adaptive MCMC procedure
scale(#) initial multiplier for scale factor; default is scale(2.38)

covariance(cov) initial proposal covariance; default is the identity matrix
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Reporting

clevel(#) set credible interval level; default is clevel(95)

hpd display HPD credible intervals instead of the default equal-tailed
credible intervals

eform
[
(string)

]
report exponentiated coefficients and, optionally, label as string

remargl compute log marginal-likelihood
batch(#) specify length of block for batch-means calculations;

default is batch(0)

saving(filename
[
, replace

]
) save simulation results to filename.dta

nomodelsummary suppress model summary
nomesummary suppress multilevel-structure summary
chainsdetail display detailed simulation summary for each chain[
no
]
dots suppress dots or display dots every 100 iterations and iteration

numbers every 1,000 iterations; default is dots

dots(#
[
, every(#)

]
) display dots as simulation is performed[

no
]
show(paramref) specify model parameters to be excluded from or included in

the output
showreffects

[
(reref)

]
specify that all or a subset of random-effects parameters be included

in the output
melabel display estimation table using the same row labels as meprobit

nogroup suppress table summarizing groups
notable suppress estimation table
noheader suppress output header
title(string) display string as title above the table of parameter estimates
display options control spacing, line width, and base and empty cells

Advanced

search(search options) control the search for feasible initial values
corrlag(#) specify maximum autocorrelation lag; default varies
corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)

∗Starred options are specific to the bayes prefix; other options are common between bayes and bayesmh.
Options prior() and block() may be repeated.
priorspec and paramref are defined in [BAYES] bayesmh.
paramref may contain factor variables; see [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Model parameters are regression coefficients {depvar:indepvars}, random effects {rename}, and either vari-
ance components {rename:sigma2} or, if option covariance(unstructured) is specified, matrix parameter
{restub:Sigma,matrix}; see Likelihood model in [BAYES] bayes for how renames and restub are defined. Use
the dryrun option to see the definitions of model parameters prior to estimation.

For a detailed description of bayesopts, see Options in [BAYES] bayes.

Remarks and examples

For a general introduction to Bayesian analysis, see [BAYES] Intro. For a general introduction
to Bayesian estimation using an adaptive Metropolis–Hastings algorithm, see [BAYES] bayesmh. For
remarks and examples specific to the bayes prefix, see [BAYES] bayes. For details about the estimation
command, see [ME] meprobit.
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For a simple example of the bayes prefix, see Introductory example in [BAYES] bayes. For
multilevel examples, see Multilevel models in [BAYES] bayes.

Stored results
See Stored results in [BAYES] bayes.

Methods and formulas
See Methods and formulas in [BAYES] bayesmh.

Also see
[BAYES] bayes — Bayesian regression models using the bayes prefix

[ME] meprobit — Multilevel mixed-effects probit regression

[BAYES] Bayesian postestimation — Postestimation tools for bayesmh and the bayes prefix

[BAYES] Bayesian estimation — Bayesian estimation commands

[BAYES] Bayesian commands — Introduction to commands for Bayesian analysis

[BAYES] Intro — Introduction to Bayesian analysis

[BAYES] Glossary



Title

bayes: mestreg — Bayesian multilevel parametric survival models

Description Quick start Menu Syntax
Remarks and examples Stored results Methods and formulas Also see

Description
bayes: mestreg fits a Bayesian multilevel parametric survival model to a survival-time outcome;

see [BAYES] bayes and [ME] mestreg for details.

Quick start
Bayesian two-level Weibull survival model of stset survival-time outcome on x1 and x2 with

random intercepts by id , using default normal priors for regression coefficients and log-ancillary
parameters and default inverse-gamma prior for the variance of random intercepts

bayes: mestreg x1 x2 || id:, distribution(weibull)

Use a standard deviation of 10 instead of 100 for the default normal priors
bayes, normalprior(10): mestreg x1 x2 || id:, distribution(weibull)

Use uniform priors for the slopes and a normal prior for the intercept
bayes, prior({ t: x1 x2}, uniform(-10,10)) ///
prior({ t: cons}, normal(0,10)): ///
mestreg x1 x2 || id:, distribution(weibull)

Save simulation results to simdata.dta, and use a random-number seed for reproducibility
bayes, saving(simdata) rseed(123): ///
mestreg x1 x2 || id:, distribution(weibull)

Specify 20,000 Markov chain Monte Carlo (MCMC) samples, set length of the burn-in period to 5,000,
and request that a dot be displayed every 500 simulations

bayes, mcmcsize(20000) burnin(5000) dots(500): ///
mestreg x1 x2 || id:, distribution(weibull)

In the above, request that the 90% highest posterior density (HPD) credible interval be displayed
instead of the default 95% equal-tailed credible interval

bayes, clevel(90) hpd

Use accelerated failure-time metric instead of proportional-hazards parameterization, and display time
ratios instead of coefficients

bayes, tratio: mestreg x1 x2 || id:, distribution(weibull) time

Display time ratios on replay
bayes, tratio

Also see Quick start in [BAYES] bayes and Quick start in [ME] mestreg.

Menu
Statistics > Multilevel mixed-effects models > Bayesian regression > Parametric survival regression
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Syntax
bayes

[
, bayesopts

]
: mestreg fe equation[

|| re equation
] [

|| re equation . . .
]
, distribution(distname)

[
options

]
where the syntax of fe equation is[

indepvars
] [

if
] [

in
] [

weight
] [

, fe options
]

and the syntax of re equation is one of the following:

for random coefficients and intercepts

levelvar:
[

varlist
] [

, re options
]

for random effects among the values of a factor variable

levelvar: R.varname

levelvar either is a variable identifying the group structure for the random effects at that level or is
all, representing one group comprising all observations.

fe options Description

Model

noconstant suppress constant term from the fixed-effects equation
offset(varname) include varname in model with coefficient constrained to 1

re options Description

Model

covariance(vartype) variance–covariance structure of the random effects; only structures
independent, exchangeable, identity, and unstructured
are supported

noconstant suppress constant term from the random-effects equation

options Description

Model
∗distribution(distname) specify survival distribution
time use accelerated failure-time metric

Reporting

nohr do not report hazard ratios
tratio report time ratios
noshow do not show st setting information
notable suppress coefficient table
noheader suppress output header
nogroup suppress table summarizing groups
display options control spacing, line width, and base and empty cells

level(#) set credible level; default is level(95)
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∗distribution(distname) is required.
You must stset your data before using bayes: mestreg; see [ST] stset.
indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
fweights are allowed; see [U] 11.1.6 weight.
bayes: mestreg, level() is equivalent to bayes, clevel(): mestreg.
For a detailed description of options, see Options in [ME] mestreg.

bayesopts Description

Priors
∗normalprior(#) specify standard deviation of default normal priors for regression

coefficients and log-ancillary parameters;
default is normalprior(100)

∗igammaprior(# #) specify shape and scale of default inverse-gamma prior for
variance components; default is igammaprior(0.01 0.01)

∗iwishartprior(#
[
. . .
]
) specify degrees of freedom and, optionally, scale matrix of default

inverse-Wishart prior for unstructured random-effects covariance
prior(priorspec) prior for model parameters; this option may be repeated
dryrun show model summary without estimation

Simulation

nchains(#) number of chains; default is to simulate one chain
mcmcsize(#) MCMC sample size; default is mcmcsize(10000)

burnin(#) burn-in period; default is burnin(2500)

thinning(#) thinning interval; default is thinning(1)

rseed(#) random-number seed
exclude(paramref) specify model parameters to be excluded from the simulation results
restubs(restub1 restub2 . . .) specify stubs for random-effects parameters for all levels

Blocking
∗blocksize(#) maximum block size; default is blocksize(50)

block(paramref
[
, blockopts

]
) specify a block of model parameters; this option may be repeated

blocksummary display block summary
∗noblocking do not block parameters by default

Initialization

initial(initspec) specify initial values for model parameters with a single chain
init#(initspec) specify initial values for #th chain; requires nchains()

initall(initspec) specify initial values for all chains; requires nchains()

nomleinitial suppress the use of maximum likelihood estimates as starting values
initrandom specify random initial values
initsummary display initial values used for simulation
∗noisily display output from the estimation command during initialization

Adaptation

adaptation(adaptopts) control the adaptive MCMC procedure
scale(#) initial multiplier for scale factor; default is scale(2.38)

covariance(cov) initial proposal covariance; default is the identity matrix
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Reporting

clevel(#) set credible interval level; default is clevel(95)

hpd display HPD credible intervals instead of the default equal-tailed
credible intervals

∗nohr do not report hazard ratios
∗tratio report time ratios; requires option time with mestreg

eform
[
(string)

]
report exponentiated coefficients and, optionally, label as string

remargl compute log marginal-likelihood
batch(#) specify length of block for batch-means calculations;

default is batch(0)

saving(filename
[
, replace

]
) save simulation results to filename.dta

nomodelsummary suppress model summary
nomesummary suppress multilevel-structure summary
chainsdetail display detailed simulation summary for each chain[
no
]
dots suppress dots or display dots every 100 iterations and iteration

numbers every 1,000 iterations; default is dots

dots(#
[
, every(#)

]
) display dots as simulation is performed[

no
]
show(paramref) specify model parameters to be excluded from or included in

the output
showreffects

[
(reref)

]
specify that all or a subset of random-effects parameters be included

in the output
melabel display estimation table using the same row labels as mestreg

nogroup suppress table summarizing groups
notable suppress estimation table
noheader suppress output header
title(string) display string as title above the table of parameter estimates
display options control spacing, line width, and base and empty cells

Advanced

search(search options) control the search for feasible initial values
corrlag(#) specify maximum autocorrelation lag; default varies
corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)

∗Starred options are specific to the bayes prefix; other options are common between bayes and bayesmh.
Options prior() and block() may be repeated.
priorspec and paramref are defined in [BAYES] bayesmh.
paramref may contain factor variables; see [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Model parameters are regression coefficients {depvar:indepvars}, ancillary parameters as described in Ancillary
model parameters, random effects {rename}, and either variance components {rename:sigma2} or, if option
covariance(unstructured) is specified, matrix parameter {restub:Sigma,matrix}; see Likelihood model in
[BAYES] bayes for how renames and restub are defined. Use the dryrun option to see the definitions of model
parameters prior to estimation.

For a detailed description of bayesopts, see Options in [BAYES] bayes.

Remarks and examples
For a general introduction to Bayesian analysis, see [BAYES] Intro. For a general introduction

to Bayesian estimation using an adaptive Metropolis–Hastings algorithm, see [BAYES] bayesmh. For
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remarks and examples specific to the bayes prefix, see [BAYES] bayes. For details about the estimation
command, see [ME] mestreg.

For a simple example of the bayes prefix, see Introductory example in [BAYES] bayes. For
multilevel examples, see Multilevel models in [BAYES] bayes.

Ancillary model parameters

In addition to regression coefficients { t:varlist}, bayes: mestreg defines ancillary parameters
that depend on the chosen survival model; see table 1 below. Positive ancillary parameters are
transformed to be defined on the whole real line. All ancillary parameters are assigned default normal
priors with zero mean and variance of 10,000.

Table 1. Ancillary model parameters defined by bayes: mestreg

Ancillary Transformed
Distribution parameters model parameters

Exponential None None
Weibull p {ln p}

Lognormal σ {lnsigma}

Loglogistic γ {lngamma}

Gamma s {lnscale}

Use the dryrun option with the bayes prefix to see the definitions of model parameters prior to
estimation.

Stored results
See Stored results in [BAYES] bayes.

Methods and formulas
See Methods and formulas in [BAYES] bayesmh.

Also see
[BAYES] bayes — Bayesian regression models using the bayes prefix

[ME] mestreg — Multilevel mixed-effects parametric survival models

[BAYES] Bayesian postestimation — Postestimation tools for bayesmh and the bayes prefix

[BAYES] Bayesian estimation — Bayesian estimation commands

[BAYES] Bayesian commands — Introduction to commands for Bayesian analysis

[BAYES] Intro — Introduction to Bayesian analysis

[BAYES] Glossary



Title

bayes: metobit — Bayesian multilevel tobit regression

Description Quick start Menu Syntax
Remarks and examples Stored results Methods and formulas Also see

Description
bayes: metobit fits a Bayesian multilevel tobit regression to a censored continuous outcome;

see [BAYES] bayes and [ME] metobit for details.

Quick start
Bayesian two-level tobit regression of y on x1 and x2 with random intercepts by id , using a

lower censoring limit of 17, and using default normal priors for regression coefficients and default
inverse-gamma priors for the error variance and for the variance of random intercepts

bayes: metobit y x1 x2 || id:, ll(17)

Use a standard deviation of 10 instead of 100 for the default normal priors
bayes, normalprior(10): metobit y x1 x2 || id:, ll(17)

Use uniform priors for the slopes and a normal prior for the intercept
bayes, prior({y: x1 x2}, uniform(-10,10)) ///
prior({y: cons}, normal(0,10)): metobit y x1 x2 || id:, ll(17)

Save simulation results to simdata.dta, and use a random-number seed for reproducibility
bayes, saving(simdata) rseed(123): ///
metobit y x1 x2 || id:, ll(17)

Specify 20,000 Markov chain Monte Carlo (MCMC) samples, set length of the burn-in period to 5,000,
and request that a dot be displayed every 500 simulations

bayes, mcmcsize(20000) burnin(5000) dots(500): ///
metobit y x1 x2 || id:, ll(17)

In the above, request that the 90% highest posterior density (HPD) credible interval be displayed
instead of the default 95% equal-tailed credible interval

bayes, clevel(90) hpd

Also see Quick start in [BAYES] bayes and Quick start in [ME] metobit.

Menu
Statistics > Multilevel mixed-effects models > Bayesian regression > Tobit regression
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Syntax

bayes
[
, bayesopts

]
: metobit depvar fe equation[

|| re equation
] [

|| re equation . . .
] [

, options
]

where the syntax of fe equation is[
indepvars

] [
if
] [

in
] [

weight
] [

, fe options
]

and the syntax of re equation is one of the following:

for random coefficients and intercepts

levelvar:
[

varlist
] [

, re options
]

for random effects among the values of a factor variable

levelvar: R.varname

levelvar either is a variable identifying the group structure for the random effects at that level or is
all, representing one group comprising all observations.

fe options Description

Model

noconstant suppress constant term from the fixed-effects equation
offset(varname) include varname in model with coefficient constrained to 1

re options Description

Model

covariance(vartype) variance–covariance structure of the random effects; only structures
independent, exchangeable, identity, and unstructured
are supported

noconstant suppress constant term from the random-effects equation

options Description

Model

ll(varname | #) left-censoring variable or limit
ul(varname | #) right-censoring variable or limit

Reporting

notable suppress coefficient table
noheader suppress output header
nogroup suppress table summarizing groups
display options control spacing, line width, and base and empty cells

level(#) set credible level; default is level(95)
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indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar, indepvars, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.
fweights are allowed; see [U] 11.1.6 weight.
bayes: metobit, level() is equivalent to bayes, clevel(): metobit.
For a detailed description of options, see Options in [ME] metobit.

bayesopts Description

Priors
∗normalprior(#) specify standard deviation of default normal priors for regression

coefficients; default is normalprior(100)
∗igammaprior(# #) specify shape and scale of default inverse-gamma prior for

variance components; default is igammaprior(0.01 0.01)
∗iwishartprior(#

[
. . .
]
) specify degrees of freedom and, optionally, scale matrix of default

inverse-Wishart prior for unstructured random-effects covariance
prior(priorspec) prior for model parameters; this option may be repeated
dryrun show model summary without estimation

Simulation

nchains(#) number of chains; default is to simulate one chain
mcmcsize(#) MCMC sample size; default is mcmcsize(10000)

burnin(#) burn-in period; default is burnin(2500)

thinning(#) thinning interval; default is thinning(1)

rseed(#) random-number seed
exclude(paramref) specify model parameters to be excluded from the simulation results
restubs(restub1 restub2 . . .) specify stubs for random-effects parameters for all levels

Blocking
∗blocksize(#) maximum block size; default is blocksize(50)

block(paramref
[
, blockopts

]
) specify a block of model parameters; this option may be repeated

blocksummary display block summary
∗noblocking do not block parameters by default

Initialization

initial(initspec) specify initial values for model parameters with a single chain
init#(initspec) specify initial values for #th chain; requires nchains()

initall(initspec) specify initial values for all chains; requires nchains()

nomleinitial suppress the use of maximum likelihood estimates as starting values
initrandom specify random initial values
initsummary display initial values used for simulation
∗noisily display output from the estimation command during initialization

Adaptation

adaptation(adaptopts) control the adaptive MCMC procedure
scale(#) initial multiplier for scale factor; default is scale(2.38)

covariance(cov) initial proposal covariance; default is the identity matrix
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Reporting

clevel(#) set credible interval level; default is clevel(95)

hpd display HPD credible intervals instead of the default equal-tailed
credible intervals

eform
[
(string)

]
report exponentiated coefficients and, optionally, label as string

remargl compute log marginal-likelihood
batch(#) specify length of block for batch-means calculations;

default is batch(0)

saving(filename
[
, replace

]
) save simulation results to filename.dta

nomodelsummary suppress model summary
nomesummary suppress multilevel-structure summary
chainsdetail display detailed simulation summary for each chain[
no
]
dots suppress dots or display dots every 100 iterations and iteration

numbers every 1,000 iterations; default is dots

dots(#
[
, every(#)

]
) display dots as simulation is performed[

no
]
show(paramref) specify model parameters to be excluded from or included in

the output
showreffects

[
(reref)

]
specify that all or a subset of random-effects parameters be included

in the output
melabel display estimation table using the same row labels as metobit

nogroup suppress table summarizing groups
notable suppress estimation table
noheader suppress output header
title(string) display string as title above the table of parameter estimates
display options control spacing, line width, and base and empty cells

Advanced

search(search options) control the search for feasible initial values
corrlag(#) specify maximum autocorrelation lag; default varies
corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)

∗Starred options are specific to the bayes prefix; other options are common between bayes and bayesmh.
Options prior() and block() may be repeated.
priorspec and paramref are defined in [BAYES] bayesmh.
paramref may contain factor variables; see [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Model parameters are regression coefficients {depvar:indepvars}, error variance {e.depvar:sigma2}, random effects
{rename}, and either variance components {rename:sigma2} or, if option covariance(unstructured) is
specified, matrix parameter {restub:Sigma,matrix}; see Likelihood model in [BAYES] bayes for how renames
and restub are defined. Use the dryrun option to see the definitions of model parameters prior to estimation.

For a detailed description of bayesopts, see Options in [BAYES] bayes.

Remarks and examples

For a general introduction to Bayesian analysis, see [BAYES] Intro. For a general introduction
to Bayesian estimation using an adaptive Metropolis–Hastings algorithm, see [BAYES] bayesmh. For
remarks and examples specific to the bayes prefix, see [BAYES] bayes. For details about the estimation
command, see [ME] metobit.
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For a simple example of the bayes prefix, see Introductory example in [BAYES] bayes. For
multilevel examples, see Multilevel models in [BAYES] bayes.

Stored results
See Stored results in [BAYES] bayes.

Methods and formulas
See Methods and formulas in [BAYES] bayesmh.

Also see
[BAYES] bayes — Bayesian regression models using the bayes prefix

[ME] metobit — Multilevel mixed-effects tobit regression

[BAYES] Bayesian postestimation — Postestimation tools for bayesmh and the bayes prefix

[BAYES] Bayesian estimation — Bayesian estimation commands

[BAYES] Bayesian commands — Introduction to commands for Bayesian analysis

[BAYES] Intro — Introduction to Bayesian analysis

[BAYES] Glossary



Title

bayes: mixed — Bayesian multilevel linear regression

Description Quick start Menu Syntax
Remarks and examples Stored results Methods and formulas Also see

Description
bayes: mixed fits a Bayesian multilevel linear regression to a continuous outcome; see

[BAYES] bayes and [ME] mixed for details.

Quick start
Bayesian two-level linear regression of y on x1 and x2 with random intercepts by id , using default

normal priors for regression coefficients and default inverse-gamma priors for the error variance
and for the variance of random intercepts

bayes: mixed y x1 x2 || id:

Use a standard deviation of 10 instead of 100 for the default normal priors
bayes, normalprior(10): mixed y x1 x2 || id:

Use uniform priors for the slopes and a normal prior for the intercept
bayes, prior({y: x1 x2}, uniform(-10,10)) ///
prior({y: cons}, normal(0,10)): mixed y x1 x2 || id:

Save simulation results to simdata.dta, and use a random-number seed for reproducibility
bayes, saving(simdata) rseed(123): mixed y x1 x2 || id:

Specify 20,000 Markov chain Monte Carlo (MCMC) samples, set length of the burn-in period to 5,000,
and request that a dot be displayed every 500 simulations

bayes, mcmcsize(20000) burnin(5000) dots(500): mixed y x1 x2 || id:

In the above, request that the 90% highest posterior density (HPD) credible interval be displayed
instead of the default 95% equal-tailed credible interval

bayes, clevel(90) hpd

Also see Quick start in [BAYES] bayes and Quick start in [ME] mixed.

Menu
Statistics > Multilevel mixed-effects models > Bayesian regression > Linear regression
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Syntax

bayes
[
, bayesopts

]
: mixed depvar fe equation[

|| re equation
] [

|| re equation . . .
] [

, options
]

where the syntax of fe equation is[
indepvars

] [
if
] [

in
] [

weight
] [

, fe options
]

and the syntax of re equation is one of the following:

for random coefficients and intercepts

levelvar:
[

varlist
] [

, re options
]

for random effects among the values of a factor variable

levelvar: R.varname

levelvar either is a variable identifying the group structure for the random effects at that level or is
all, representing one group comprising all observations.

fe options Description

Model

noconstant suppress constant term from the fixed-effects equation

re options Description

Model

covariance(vartype) variance–covariance structure of the random effects; structures
independent, exchangeable, identity, and unstructured
are supported

noconstant suppress constant term from the random-effects equation

options Description

Reporting

noheader suppress output header
nogroup suppress table summarizing groups
display options control spacing, line width, and base and empty cells

level(#) set credible level; default is level(95)

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar, indepvars, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.
fweights are allowed; see [U] 11.1.6 weight.
bayes: mixed, level() is equivalent to bayes, clevel(): mixed.
For a detailed description of options, see Options in [ME] mixed.
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bayesopts Description

Priors
∗normalprior(#) specify standard deviation of default normal priors for regression

coefficients; default is normalprior(100)
∗igammaprior(# #) specify shape and scale of default inverse-gamma prior for

variance components; default is igammaprior(0.01 0.01)
∗iwishartprior(#

[
. . .
]
) specify degrees of freedom and, optionally, scale matrix of default

inverse-Wishart prior for unstructured random-effects covariance
prior(priorspec) prior for model parameters; this option may be repeated
dryrun show model summary without estimation

Simulation

nchains(#) number of chains; default is to simulate one chain
mcmcsize(#) MCMC sample size; default is mcmcsize(10000)

burnin(#) burn-in period; default is burnin(2500)

thinning(#) thinning interval; default is thinning(1)

rseed(#) random-number seed
exclude(paramref) specify model parameters to be excluded from the simulation results
restubs(restub1 restub2 . . .) specify stubs for random-effects parameters for all levels

Blocking
∗blocksize(#) maximum block size; default is blocksize(50)

block(paramref
[
, blockopts

]
) specify a block of model parameters; this option may be repeated

blocksummary display block summary
∗noblocking do not block parameters by default

Initialization

initial(initspec) specify initial values for model parameters with a single chain
init#(initspec) specify initial values for #th chain; requires nchains()

initall(initspec) specify initial values for all chains; requires nchains()

nomleinitial suppress the use of maximum likelihood estimates as starting values
initrandom specify random initial values
initsummary display initial values used for simulation
∗noisily display output from the estimation command during initialization

Adaptation

adaptation(adaptopts) control the adaptive MCMC procedure
scale(#) initial multiplier for scale factor; default is scale(2.38)

covariance(cov) initial proposal covariance; default is the identity matrix
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Reporting

clevel(#) set credible interval level; default is clevel(95)

hpd display HPD credible intervals instead of the default equal-tailed
credible intervals

eform
[
(string)

]
report exponentiated coefficients and, optionally, label as string

remargl compute log marginal-likelihood
batch(#) specify length of block for batch-means calculations;

default is batch(0)

saving(filename
[
, replace

]
) save simulation results to filename.dta

nomodelsummary suppress model summary
nomesummary suppress multilevel-structure summary
chainsdetail display detailed simulation summary for each chain[
no
]
dots suppress dots or display dots every 100 iterations and iteration

numbers every 1,000 iterations; default is dots

dots(#
[
, every(#)

]
) display dots as simulation is performed[

no
]
show(paramref) specify model parameters to be excluded from or included in

the output
showreffects

[
(reref)

]
specify that all or a subset of random-effects parameters be included

in the output
melabel display estimation table using the same row labels as mixed

nogroup suppress table summarizing groups
notable suppress estimation table
noheader suppress output header
title(string) display string as title above the table of parameter estimates
display options control spacing, line width, and base and empty cells

Advanced

search(search options) control the search for feasible initial values
corrlag(#) specify maximum autocorrelation lag; default varies
corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)

∗Starred options are specific to the bayes prefix; other options are common between bayes and bayesmh.
Options prior() and block() may be repeated.
priorspec and paramref are defined in [BAYES] bayesmh.
paramref may contain factor variables; see [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Model parameters are regression coefficients {depvar:indepvars}, error variance {e.depvar:sigma2}, random effects
{rename}, and either variance components {rename:sigma2} or, if option covariance(unstructured) is
specified, matrix parameter {restub:Sigma,matrix}; see Likelihood model in [BAYES] bayes for how renames
and restub are defined. Use the dryrun option to see the definitions of model parameters prior to estimation.

For a detailed description of bayesopts, see Options in [BAYES] bayes.

Remarks and examples

For a general introduction to Bayesian analysis, see [BAYES] Intro. For a general introduction to
Bayesian estimation using adaptive Metropolis–Hastings and Gibbs algorithms, see [BAYES] bayesmh.
For remarks and examples specific to the bayes prefix, see [BAYES] bayes. For details about the
estimation command, see [ME] mixed.
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For a simple example of the bayes prefix, see Introductory example in [BAYES] bayes. For
multilevel examples, see Multilevel models in [BAYES] bayes.

By default, bayes: mixed uses Gibbs sampling for all model parameters except the random-
effects parameters. If you specify a prior() distribution for which Gibbs sampling is not available,
bayes: mixed will switch to adaptive Metropolis–Hastings sampling. In general, bayes: mixed will
try to use a more efficient Gibbs sampling for the model parameters whenever available.

Stored results
See Stored results in [BAYES] bayes.

Methods and formulas
See Methods and formulas in [BAYES] bayesmh.

Also see
[BAYES] bayes — Bayesian regression models using the bayes prefix

[ME] mixed — Multilevel mixed-effects linear regression

[BAYES] Bayesian postestimation — Postestimation tools for bayesmh and the bayes prefix

[BAYES] Bayesian estimation — Bayesian estimation commands

[BAYES] Bayesian commands — Introduction to commands for Bayesian analysis

[BAYES] Intro — Introduction to Bayesian analysis

[BAYES] Glossary



Title

bayes: mlogit — Bayesian multinomial logistic regression

Description Quick start Menu Syntax
Remarks and examples Stored results Methods and formulas Also see

Description
bayes: mlogit fits a Bayesian multinomial logistic regression to a categorical outcome; see

[BAYES] bayes and [R] mlogit for details.

Quick start
Bayesian multinomial logistic regression of y on x1 and x2, using default normal priors for regression

coefficients
bayes: mlogit y x1 x2

Use a standard deviation of 10 instead of 100 for the default normal priors
bayes, normalprior(10): mlogit y x1 x2

Use uniform priors for the slopes and a normal prior for the intercept for the category 2

bayes, prior({2: x1 x2}, uniform(-10,10)) ///
prior({2: cons}, normal(0,10)): mlogit y x1 x2

Save simulation results to simdata.dta, and use a random-number seed for reproducibility
bayes, saving(simdata) rseed(123): mlogit y x1 x2

Specify 20,000 Markov chain Monte Carlo (MCMC) samples, set length of the burn-in period to 5,000,
and request that a dot be displayed every 500 simulations

bayes, mcmcsize(20000) burnin(5000) dots(500): mlogit y x1 x2

In the above, request that the 90% highest posterior density (HPD) credible interval be displayed
instead of the default 95% equal-tailed credible interval

bayes, clevel(90) hpd

Display relative-risk ratios instead of coefficients
bayes: mlogit y x1 x2, rrr

Display relative-risk ratios on replay
bayes, rrr

Also see Quick start in [BAYES] bayes and Quick start in [R] mlogit.

Menu
Statistics > Categorical outcomes > Bayesian regression >Multinomial logistic regression
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Syntax
bayes

[
, bayesopts

]
: mlogit depvar

[
indepvars

] [
if
] [

in
] [

weight
] [

, options
]

options Description

Model

noconstant suppress constant term
baseoutcome(#) value of depvar that will be the base outcome

Reporting

rrr report relative-risk ratios
display options control spacing, line width, and base and empty cells

level(#) set credible level; default is level(95)

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.
fweights are allowed; see [U] 11.1.6 weight.
bayes: mlogit, level() is equivalent to bayes, clevel(): mlogit.
For a detailed description of options, see Options in [R] mlogit.

bayesopts Description

Priors
∗normalprior(#) specify standard deviation of default normal priors for regression

coefficients; default is normalprior(100)

prior(priorspec) prior for model parameters; this option may be repeated
dryrun show model summary without estimation

Simulation

nchains(#) number of chains; default is to simulate one chain
mcmcsize(#) MCMC sample size; default is mcmcsize(10000)

burnin(#) burn-in period; default is burnin(2500)

thinning(#) thinning interval; default is thinning(1)

rseed(#) random-number seed
exclude(paramref) specify model parameters to be excluded from the simulation results

Blocking
∗blocksize(#) maximum block size; default is blocksize(50)

block(paramref
[
, blockopts

]
) specify a block of model parameters; this option may be repeated

blocksummary display block summary
∗noblocking do not block parameters by default

Initialization

initial(initspec) specify initial values for model parameters with a single chain
init#(initspec) specify initial values for #th chain; requires nchains()

initall(initspec) specify initial values for all chains; requires nchains()

nomleinitial suppress the use of maximum likelihood estimates as starting values
initrandom specify random initial values
initsummary display initial values used for simulation
∗noisily display output from the estimation command during initialization
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Adaptation

adaptation(adaptopts) control the adaptive MCMC procedure
scale(#) initial multiplier for scale factor; default is scale(2.38)

covariance(cov) initial proposal covariance; default is the identity matrix

Reporting

clevel(#) set credible interval level; default is clevel(95)

hpd display HPD credible intervals instead of the default equal-tailed
credible intervals

∗rrr report relative-risk ratios
eform

[
(string)

]
report exponentiated coefficients and, optionally, label as string

batch(#) specify length of block for batch-means calculations;
default is batch(0)

saving(filename
[
, replace

]
) save simulation results to filename.dta

nomodelsummary suppress model summary
chainsdetail display detailed simulation summary for each chain[
no
]
dots suppress dots or display dots every 100 iterations and iteration

numbers every 1,000 iterations; default is nodots

dots(#
[
, every(#)

]
) display dots as simulation is performed[

no
]
show(paramref) specify model parameters to be excluded from or included in

the output
notable suppress estimation table
noheader suppress output header
title(string) display string as title above the table of parameter estimates
display options control spacing, line width, and base and empty cells

Advanced

search(search options) control the search for feasible initial values
corrlag(#) specify maximum autocorrelation lag; default varies
corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)

∗Starred options are specific to the bayes prefix; other options are common between bayes and bayesmh.
Options prior() and block() may be repeated.
priorspec and paramref are defined in [BAYES] bayesmh.
paramref may contain factor variables; see [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Model parameters are regression coefficients {outcome1:indepvars}, {outcome2:indepvars}, and so on, where
outcome#’s are the values of the dependent variable or the value labels of the dependent variable if they
exist. Use the dryrun option to see the definitions of model parameters prior to estimation.

For a detailed description of bayesopts, see Options in [BAYES] bayes.

Remarks and examples
For a general introduction to Bayesian analysis, see [BAYES] Intro. For a general introduction

to Bayesian estimation using an adaptive Metropolis–Hastings algorithm, see [BAYES] bayesmh. For
remarks and examples specific to the bayes prefix, see [BAYES] bayes. For details about the estimation
command, see [R] mlogit.

For a simple example of the bayes prefix, see Introductory example in [BAYES] bayes. Also see
Multinomial logistic regression in [BAYES] bayes.
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Stored results
See Stored results in [BAYES] bayes.

Methods and formulas
See Methods and formulas in [BAYES] bayesmh.

Also see
[BAYES] bayes — Bayesian regression models using the bayes prefix

[R] mlogit — Multinomial (polytomous) logistic regression

[BAYES] Bayesian postestimation — Postestimation tools for bayesmh and the bayes prefix

[BAYES] Bayesian estimation — Bayesian estimation commands

[BAYES] Bayesian commands — Introduction to commands for Bayesian analysis

[BAYES] Intro — Introduction to Bayesian analysis

[BAYES] Glossary



Title

bayes: mprobit — Bayesian multinomial probit regression

Description Quick start Menu Syntax
Remarks and examples Stored results Methods and formulas Also see

Description
bayes: mprobit fits a Bayesian multinomial probit regression to a categorical outcome; see

[BAYES] bayes and [R] mprobit for details.

Quick start
Bayesian multinomial probit regression of y on x1 and x2, using default normal priors for regression

coefficients
bayes: mprobit y x1 x2

Use a standard deviation of 10 instead of 100 for the default normal priors
bayes, normalprior(10): mprobit y x1 x2

Use uniform priors for the slopes and a normal prior for the intercept for the category 2

bayes, prior({2: x1 x2}, uniform(-10,10)) ///
prior({2: cons}, normal(0,10)): mprobit y x1 x2

Save simulation results to simdata.dta, and use a random-number seed for reproducibility
bayes, saving(simdata) rseed(123): mprobit y x1 x2

Specify 20,000 Markov chain Monte Carlo (MCMC) samples, set length of the burn-in period to 5,000,
and request that a dot be displayed every 500 simulations

bayes, mcmcsize(20000) burnin(5000) dots(500): mprobit y x1 x2

In the above, request that the 90% highest posterior density (HPD) credible interval be displayed
instead of the default 95% equal-tailed credible interval

bayes, clevel(90) hpd

Also see Quick start in [BAYES] bayes and Quick start in [R] mprobit.

Menu
Statistics > Categorical outcomes > Bayesian regression >Multinomial probit regression
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Syntax
bayes

[
, bayesopts

]
: mprobit depvar

[
indepvars

] [
if
] [

in
] [

weight
] [

, options
]

options Description

Model

noconstant suppress constant term
baseoutcome(#) value of depvar that will be the base outcome
probitparam use the probit variance parameterization

Reporting

display options control spacing, line width, and base and empty cells

level(#) set credible level; default is level(95)

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
fweights are allowed; see [U] 11.1.6 weight.
bayes: mprobit, level() is equivalent to bayes, clevel(): mprobit.
For a detailed description of options, see Options in [R] mprobit.

bayesopts Description

Priors
∗normalprior(#) specify standard deviation of default normal priors for regression

coefficients; default is normalprior(100)

prior(priorspec) prior for model parameters; this option may be repeated
dryrun show model summary without estimation

Simulation

nchains(#) number of chains; default is to simulate one chain
mcmcsize(#) MCMC sample size; default is mcmcsize(10000)

burnin(#) burn-in period; default is burnin(2500)

thinning(#) thinning interval; default is thinning(1)

rseed(#) random-number seed
exclude(paramref) specify model parameters to be excluded from the simulation results

Blocking
∗blocksize(#) maximum block size; default is blocksize(50)

block(paramref
[
, blockopts

]
) specify a block of model parameters; this option may be repeated

blocksummary display block summary
∗noblocking do not block parameters by default

Initialization

initial(initspec) specify initial values for model parameters with a single chain
init#(initspec) specify initial values for #th chain; requires nchains()

initall(initspec) specify initial values for all chains; requires nchains()

nomleinitial suppress the use of maximum likelihood estimates as starting values
initrandom specify random initial values
initsummary display initial values used for simulation
∗noisily display output from the estimation command during initialization
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Adaptation

adaptation(adaptopts) control the adaptive MCMC procedure
scale(#) initial multiplier for scale factor; default is scale(2.38)

covariance(cov) initial proposal covariance; default is the identity matrix

Reporting

clevel(#) set credible interval level; default is clevel(95)

hpd display HPD credible intervals instead of the default equal-tailed
credible intervals

eform
[
(string)

]
report exponentiated coefficients and, optionally, label as string

batch(#) specify length of block for batch-means calculations;
default is batch(0)

saving(filename
[
, replace

]
) save simulation results to filename.dta

nomodelsummary suppress model summary
chainsdetail display detailed simulation summary for each chain[
no
]
dots suppress dots or display dots every 100 iterations and iteration

numbers every 1,000 iterations; default is nodots

dots(#
[
, every(#)

]
) display dots as simulation is performed[

no
]
show(paramref) specify model parameters to be excluded from or included in

the output
notable suppress estimation table
noheader suppress output header
title(string) display string as title above the table of parameter estimates
display options control spacing, line width, and base and empty cells

Advanced

search(search options) control the search for feasible initial values
corrlag(#) specify maximum autocorrelation lag; default varies
corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)

∗Starred options are specific to the bayes prefix; other options are common between bayes and bayesmh.
Options prior() and block() may be repeated.
priorspec and paramref are defined in [BAYES] bayesmh.
paramref may contain factor variables; see [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Model parameters are regression coefficients {outcome1:indepvars}, {outcome2:indepvars}, and so on, where
outcome#’s are the values of the dependent variable or the value labels of the dependent variable if they
exist. Use the dryrun option to see the definitions of model parameters prior to estimation.

For a detailed description of bayesopts, see Options in [BAYES] bayes.

Remarks and examples
For a general introduction to Bayesian analysis, see [BAYES] Intro. For a general introduction

to Bayesian estimation using an adaptive Metropolis–Hastings algorithm, see [BAYES] bayesmh. For
remarks and examples specific to the bayes prefix, see [BAYES] bayes. For details about the estimation
command, see [R] mprobit.

For a simple example of the bayes prefix, see Introductory example in [BAYES] bayes. Also see
Multinomial logistic regression in [BAYES] bayes.
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Stored results
See Stored results in [BAYES] bayes.

Methods and formulas
See Methods and formulas in [BAYES] bayesmh.

Also see
[BAYES] bayes — Bayesian regression models using the bayes prefix

[R] mprobit — Multinomial probit regression

[BAYES] Bayesian postestimation — Postestimation tools for bayesmh and the bayes prefix

[BAYES] Bayesian estimation — Bayesian estimation commands

[BAYES] Bayesian commands — Introduction to commands for Bayesian analysis

[BAYES] Intro — Introduction to Bayesian analysis

[BAYES] Glossary



Title

bayes: mvreg — Bayesian multivariate regression

Description Quick start Menu Syntax
Remarks and examples Stored results Methods and formulas Also see

Description
bayes: mvreg fits a Bayesian multivariate regression to multiple continuous outcomes; see

[BAYES] bayes and [MV] mvreg for details.

Quick start
Bayesian multivariate regression of y1 and y2 on x1 and x2, using default normal priors for regression

coefficients and Jeffreys prior for the covariance matrix
bayes: mvreg y1 y2 = x1 x2

Use a standard deviation of 10 instead of 100 for the default normal priors
bayes, normalprior(10): mvreg y1 y2 = x1 x2

Use uniform priors for the slopes and a normal prior for the intercept of the dependent variable y2

bayes, prior({y2: x1 x2}, uniform(-10,10)) ///
prior({y2: cons}, normal(0,10)): mvreg y1 y2 = x1 x2

Save simulation results to simdata.dta, and use a random-number seed for reproducibility
bayes, saving(simdata) rseed(123): mvreg y1 y2 = x1 x2

Specify 20,000 Markov chain Monte Carlo (MCMC) samples, set length of the burn-in period to 5,000,
and request that a dot be displayed every 500 simulations

bayes, mcmcsize(20000) burnin(5000) dots(500): mvreg y1 y2 = x1 x2

In the above, request that the 90% highest posterior density (HPD) credible interval be displayed
instead of the default 95% equal-tailed credible interval

bayes, clevel(90) hpd

Also see Quick start in [BAYES] bayes and Quick start in [MV] mvreg.

Menu
Statistics > Linear models and related > Bayesian regression > Multivariate regression

609



610 bayes: mvreg — Bayesian multivariate regression

Syntax
bayes

[
, bayesopts

]
: mvreg depvars = indepvars

[
if
] [

in
] [

weight
] [

, options
]

options Description

Model

noconstant suppress constant term

Reporting

display options control spacing, line width, and base and empty cells

level(#) set credible level; default is level(95)

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
fweights are allowed; see [U] 11.1.6 weight.
bayes: mvreg, level() is equivalent to bayes, clevel(): mvreg.
For a detailed description of options, see Options in [MV] mvreg.

bayesopts Description

Priors
∗gibbs specify Gibbs sampling; available only with normal priors for

regression coefficients and multivariate Jeffreys prior for
covariance

∗normalprior(#) specify standard deviation of default normal priors for regression
coefficients; default is normalprior(100)

prior(priorspec) prior for model parameters; this option may be repeated
dryrun show model summary without estimation

Simulation

nchains(#) number of chains; default is to simulate one chain
mcmcsize(#) MCMC sample size; default is mcmcsize(10000)

burnin(#) burn-in period; default is burnin(2500)

thinning(#) thinning interval; default is thinning(1)

rseed(#) random-number seed
exclude(paramref) specify model parameters to be excluded from the simulation results

Blocking
∗blocksize(#) maximum block size; default is blocksize(50)

block(paramref
[
, blockopts

]
) specify a block of model parameters; this option may be repeated

blocksummary display block summary
∗noblocking do not block parameters by default

Initialization

initial(initspec) specify initial values for model parameters with a single chain
init#(initspec) specify initial values for #th chain; requires nchains()

initall(initspec) specify initial values for all chains; requires nchains()

nomleinitial suppress the use of maximum likelihood estimates as starting values
initrandom specify random initial values
initsummary display initial values used for simulation
∗noisily display output from the estimation command during initialization
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Adaptation

adaptation(adaptopts) control the adaptive MCMC procedure
scale(#) initial multiplier for scale factor; default is scale(2.38)

covariance(cov) initial proposal covariance; default is the identity matrix

Reporting

clevel(#) set credible interval level; default is clevel(95)

hpd display HPD credible intervals instead of the default equal-tailed
credible intervals

eform
[
(string)

]
report exponentiated coefficients and, optionally, label as string

batch(#) specify length of block for batch-means calculations;
default is batch(0)

saving(filename
[
, replace

]
) save simulation results to filename.dta

nomodelsummary suppress model summary
chainsdetail display detailed simulation summary for each chain[
no
]
dots suppress dots or display dots every 100 iterations and iteration

numbers every 1,000 iterations; default is nodots

dots(#
[
, every(#)

]
) display dots as simulation is performed[

no
]
show(paramref) specify model parameters to be excluded from or included in

the output
notable suppress estimation table
noheader suppress output header
title(string) display string as title above the table of parameter estimates
display options control spacing, line width, and base and empty cells

Advanced

search(search options) control the search for feasible initial values
corrlag(#) specify maximum autocorrelation lag; default varies
corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)

∗Starred options are specific to the bayes prefix; other options are common between bayes and bayesmh.
Options prior() and block() may be repeated.
priorspec and paramref are defined in [BAYES] bayesmh.
paramref may contain factor variables; see [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Model parameters are regression coefficients {depvar1:indepvars}, {depvar2:indepvars}, and so on, and covariance
matrix {Sigma,matrix}. Use the dryrun option to see the definitions of model parameters prior to estimation.

Multivariate Jeffreys prior, jeffreys(d), is used by default for the covariance matrix of dimension d.
For a detailed description of bayesopts, see Options in [BAYES] bayes.

Remarks and examples
For a general introduction to Bayesian analysis, see [BAYES] Intro. For a general introduction to

Bayesian estimation using adaptive Metropolis–Hastings and Gibbs algorithms, see [BAYES] bayesmh.
For remarks and examples specific to the bayes prefix, see [BAYES] bayes. For details about the
estimation command, see [MV] mvreg.

For a simple example of the bayes prefix, see Introductory example in [BAYES] bayes.
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Stored results
See Stored results in [BAYES] bayes.

Methods and formulas
See Methods and formulas in [BAYES] bayesmh.

Also see
[BAYES] bayes — Bayesian regression models using the bayes prefix

[MV] mvreg — Multivariate regression

[BAYES] Bayesian postestimation — Postestimation tools for bayesmh and the bayes prefix

[BAYES] Bayesian estimation — Bayesian estimation commands

[BAYES] Bayesian commands — Introduction to commands for Bayesian analysis

[BAYES] Intro — Introduction to Bayesian analysis

[BAYES] Glossary



Title

bayes: nbreg — Bayesian negative binomial regression

Description Quick start Menu Syntax
Remarks and examples Stored results Methods and formulas Also see

Description
bayes: nbreg fits a Bayesian negative binomial regression to a nonnegative count outcome; see

[BAYES] bayes and [R] nbreg for details.

Quick start
Bayesian negative binomial regression of y on x1 and x2, using default normal priors for regression

coefficients and log-overdispersion parameter
bayes: nbreg y x1 x2

Use a standard deviation of 10 instead of 100 for the default normal priors
bayes, normalprior(10): nbreg y x1 x2

Use uniform priors for the slopes and a normal prior for the intercept
bayes, prior({y: x1 x2}, uniform(-10,10)) ///
prior({y: cons}, normal(0,10)): nbreg y x1 x2

Save simulation results to simdata.dta, and use a random-number seed for reproducibility
bayes, saving(simdata) rseed(123): nbreg y x1 x2

Specify 20,000 Markov chain Monte Carlo (MCMC) samples, set length of the burn-in period to 5,000,
and request that a dot be displayed every 500 simulations

bayes, mcmcsize(20000) burnin(5000) dots(500): nbreg y x1 x2

In the above, request that the 90% highest posterior density (HPD) credible interval be displayed
instead of the default 95% equal-tailed credible interval

bayes, clevel(90) hpd

Display incidence-rate ratios instead of coefficients
bayes: nbreg y x1 x2, irr

Display incidence-rate ratios on replay
bayes, irr

Also see Quick start in [BAYES] bayes and Quick start in [R] nbreg.

Menu
Statistics > Count outcomes > Bayesian regression > Negative binomial regression
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Syntax
bayes

[
, bayesopts

]
: nbreg depvar

[
indepvars

] [
if
] [

in
] [

weight
] [

, options
]

options Description

Model

noconstant suppress constant term
dispersion(mean) parameterization of dispersion; the default
dispersion(constant) constant dispersion for all observations
exposure(varnamee) include ln(varnamee) in model with coefficient constrained to 1
offset(varnameo) include varnameo in model with coefficient constrained to 1

Reporting

irr report incidence-rate ratios
display options control spacing, line width, and base and empty cells

level(#) set credible level; default is level(95)

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar, indepvars, varnamee, and varnameo may contain time-series operators; see [U] 11.4.4 Time-series varlists.
fweights are allowed; see [U] 11.1.6 weight.
bayes: nbreg, level() is equivalent to bayes, clevel(): nbreg.
For a detailed description of options, see Options for nbreg in [R] nbreg.

bayesopts Description

Priors
∗normalprior(#) specify standard deviation of default normal priors for regression

coefficients and log-overdispersion parameter;
default is normalprior(100)

prior(priorspec) prior for model parameters; this option may be repeated
dryrun show model summary without estimation

Simulation

nchains(#) number of chains; default is to simulate one chain
mcmcsize(#) MCMC sample size; default is mcmcsize(10000)

burnin(#) burn-in period; default is burnin(2500)

thinning(#) thinning interval; default is thinning(1)

rseed(#) random-number seed
exclude(paramref) specify model parameters to be excluded from the simulation results

Blocking
∗blocksize(#) maximum block size; default is blocksize(50)

block(paramref
[
, blockopts

]
) specify a block of model parameters; this option may be repeated

blocksummary display block summary
∗noblocking do not block parameters by default
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Initialization

initial(initspec) specify initial values for model parameters with a single chain
init#(initspec) specify initial values for #th chain; requires nchains()

initall(initspec) specify initial values for all chains; requires nchains()

nomleinitial suppress the use of maximum likelihood estimates as starting values
initrandom specify random initial values
initsummary display initial values used for simulation
∗noisily display output from the estimation command during initialization

Adaptation

adaptation(adaptopts) control the adaptive MCMC procedure
scale(#) initial multiplier for scale factor; default is scale(2.38)

covariance(cov) initial proposal covariance; default is the identity matrix

Reporting

clevel(#) set credible interval level; default is clevel(95)

hpd display HPD credible intervals instead of the default equal-tailed
credible intervals

∗irr report incidence-rate ratios
eform

[
(string)

]
report exponentiated coefficients and, optionally, label as string

batch(#) specify length of block for batch-means calculations;
default is batch(0)

saving(filename
[
, replace

]
) save simulation results to filename.dta

nomodelsummary suppress model summary
chainsdetail display detailed simulation summary for each chain[
no
]
dots suppress dots or display dots every 100 iterations and iteration

numbers every 1,000 iterations; default is nodots

dots(#
[
, every(#)

]
) display dots as simulation is performed[

no
]
show(paramref) specify model parameters to be excluded from or included in

the output
notable suppress estimation table
noheader suppress output header
title(string) display string as title above the table of parameter estimates
display options control spacing, line width, and base and empty cells

Advanced

search(search options) control the search for feasible initial values
corrlag(#) specify maximum autocorrelation lag; default varies
corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)

∗Starred options are specific to the bayes prefix; other options are common between bayes and bayesmh.
Options prior() and block() may be repeated.
priorspec and paramref are defined in [BAYES] bayesmh.
paramref may contain factor variables; see [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Model parameters are regression coefficients {depvar:indepvars} and log-overdispersion parameter {lnalpha} with
mean dispersion or {lndelta} with constant dispersion. Use the dryrun option to see the definitions of model
parameters prior to estimation.

For a detailed description of bayesopts, see Options in [BAYES] bayes.
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Remarks and examples
For a general introduction to Bayesian analysis, see [BAYES] Intro. For a general introduction

to Bayesian estimation using an adaptive Metropolis–Hastings algorithm, see [BAYES] bayesmh. For
remarks and examples specific to the bayes prefix, see [BAYES] bayes. For details about the estimation
command, see [R] nbreg.

For a simple example of the bayes prefix, see Introductory example in [BAYES] bayes.

Stored results
See Stored results in [BAYES] bayes.

Methods and formulas
See Methods and formulas in [BAYES] bayesmh.

Also see
[BAYES] bayes — Bayesian regression models using the bayes prefix

[R] nbreg — Negative binomial regression

[BAYES] Bayesian postestimation — Postestimation tools for bayesmh and the bayes prefix

[BAYES] Bayesian estimation — Bayesian estimation commands

[BAYES] Bayesian commands — Introduction to commands for Bayesian analysis

[BAYES] Intro — Introduction to Bayesian analysis

[BAYES] Glossary



Title

bayes: ologit — Bayesian ordered logistic regression

Description Quick start Menu Syntax
Remarks and examples Stored results Methods and formulas Also see

Description
bayes: ologit fits a Bayesian ordered logistic regression to an ordinal outcome; see [BAYES] bayes

and [R] ologit for details.

Quick start
Bayesian ordered logistic regression of y on x1 and x2, using default normal priors for regression

coefficients and flat priors for cutpoints
bayes: ologit y x1 x2

Use a standard deviation of 10 instead of 100 for the default normal priors
bayes, normalprior(10): ologit y x1 x2

Use uniform priors for the slopes and a normal prior for the intercept
bayes, prior({y: x1 x2}, uniform(-10,10)) ///
prior({y: cons}, normal(0,10)): ologit y x1 x2

Save simulation results to simdata.dta, and use a random-number seed for reproducibility
bayes, saving(simdata) rseed(123): ologit y x1 x2

Specify 20,000 Markov chain Monte Carlo (MCMC) samples, set length of the burn-in period to 5,000,
and request that a dot be displayed every 500 simulations

bayes, mcmcsize(20000) burnin(5000) dots(500): ologit y x1 x2

In the above, request that the 90% highest posterior density (HPD) credible interval be displayed
instead of the default 95% equal-tailed credible interval

bayes, clevel(90) hpd

Display odds ratios instead of coefficients
bayes: ologit y x1 x2, or

Display odds ratios on replay
bayes, or

Also see Quick start in [BAYES] bayes and Quick start in [R] ologit.

Menu
Statistics > Ordinal outcomes > Bayesian regression > Ordered logistic regression
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Syntax
bayes

[
, bayesopts

]
: ologit depvar

[
indepvars

] [
if
] [

in
] [

weight
] [

, options
]

options Description

Model

offset(varname) include varname in model with coefficient constrained to 1

Reporting

or report odds ratios
display options control spacing, line width, and base and empty cells

level(#) set credible level; default is level(95)

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.
fweights are allowed; see [U] 11.1.6 weight.
bayes: ologit, level() is equivalent to bayes, clevel(): ologit.
For a detailed description of options, see Options in [R] ologit.

bayesopts Description

Priors
∗normalprior(#) specify standard deviation of default normal priors for regression

coefficients; default is normalprior(100)

prior(priorspec) prior for model parameters; this option may be repeated
dryrun show model summary without estimation

Simulation

nchains(#) number of chains; default is to simulate one chain
mcmcsize(#) MCMC sample size; default is mcmcsize(10000)

burnin(#) burn-in period; default is burnin(2500)

thinning(#) thinning interval; default is thinning(1)

rseed(#) random-number seed
exclude(paramref) specify model parameters to be excluded from the simulation results

Blocking
∗blocksize(#) maximum block size; default is blocksize(50)

block(paramref
[
, blockopts

]
) specify a block of model parameters; this option may be repeated

blocksummary display block summary
∗noblocking do not block parameters by default

Initialization

initial(initspec) specify initial values for model parameters with a single chain
init#(initspec) specify initial values for #th chain; requires nchains()

initall(initspec) specify initial values for all chains; requires nchains()

nomleinitial suppress the use of maximum likelihood estimates as starting values
initrandom specify random initial values
initsummary display initial values used for simulation
∗noisily display output from the estimation command during initialization
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Adaptation

adaptation(adaptopts) control the adaptive MCMC procedure
scale(#) initial multiplier for scale factor; default is scale(2.38)

covariance(cov) initial proposal covariance; default is the identity matrix

Reporting

clevel(#) set credible interval level; default is clevel(95)

hpd display HPD credible intervals instead of the default equal-tailed
credible intervals

∗or report odds ratios
eform

[
(string)

]
report exponentiated coefficients and, optionally, label as string

batch(#) specify length of block for batch-means calculations;
default is batch(0)

saving(filename
[
, replace

]
) save simulation results to filename.dta

nomodelsummary suppress model summary
chainsdetail display detailed simulation summary for each chain[
no
]
dots suppress dots or display dots every 100 iterations and iteration

numbers every 1,000 iterations; default is nodots

dots(#
[
, every(#)

]
) display dots as simulation is performed[

no
]
show(paramref) specify model parameters to be excluded from or included in

the output
notable suppress estimation table
noheader suppress output header
title(string) display string as title above the table of parameter estimates
display options control spacing, line width, and base and empty cells

Advanced

search(search options) control the search for feasible initial values
corrlag(#) specify maximum autocorrelation lag; default varies
corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)

∗Starred options are specific to the bayes prefix; other options are common between bayes and bayesmh.
Options prior() and block() may be repeated.
priorspec and paramref are defined in [BAYES] bayesmh.
paramref may contain factor variables; see [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Model parameters are regression coefficients {depvar:indepvars} and cutpoints {cut1}, {cut2}, and so on. Use the
dryrun option to see the definitions of model parameters prior to estimation.

Flat priors, flat, are used by default for cutpoints.
For a detailed description of bayesopts, see Options in [BAYES] bayes.

Remarks and examples
For a general introduction to Bayesian analysis, see [BAYES] Intro. For a general introduction

to Bayesian estimation using an adaptive Metropolis–Hastings algorithm, see [BAYES] bayesmh. For
remarks and examples specific to the bayes prefix, see [BAYES] bayes. For details about the estimation
command, see [R] ologit.

For a simple example of the bayes prefix, see Introductory example in [BAYES] bayes.
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Stored results
See Stored results in [BAYES] bayes.

Methods and formulas
See Methods and formulas in [BAYES] bayesmh.

Also see
[BAYES] bayes — Bayesian regression models using the bayes prefix

[R] ologit — Ordered logistic regression

[BAYES] Bayesian postestimation — Postestimation tools for bayesmh and the bayes prefix

[BAYES] Bayesian estimation — Bayesian estimation commands

[BAYES] Bayesian commands — Introduction to commands for Bayesian analysis

[BAYES] Intro — Introduction to Bayesian analysis

[BAYES] Glossary



Title

bayes: oprobit — Bayesian ordered probit regression

Description Quick start Menu Syntax
Remarks and examples Stored results Methods and formulas Also see

Description
bayes: oprobit fits a Bayesian ordered probit regression to an ordinal outcome; see [BAYES] bayes

and [R] oprobit for details.

Quick start
Bayesian ordered probit regression of y on x1 and x2, using default normal priors for regression

coefficients and flat priors for cutpoints
bayes: oprobit y x1 x2

Use a standard deviation of 10 instead of 100 for the default normal priors
bayes, normalprior(10): oprobit y x1 x2

Use uniform priors for the slopes and a normal prior for the intercept
bayes, prior({y: x1 x2}, uniform(-10,10)) ///
prior({y: cons}, normal(0,10)): oprobit y x1 x2

Save simulation results to simdata.dta, and use a random-number seed for reproducibility
bayes, saving(simdata) rseed(123): oprobit y x1 x2

Specify 20,000 Markov chain Monte Carlo (MCMC) samples, set length of the burn-in period to 5,000,
and request that a dot be displayed every 500 simulations

bayes, mcmcsize(20000) burnin(5000) dots(500): oprobit y x1 x2

In the above, request that the 90% highest posterior density (HPD) credible interval be displayed
instead of the default 95% equal-tailed credible interval

bayes, clevel(90) hpd

Also see Quick start in [BAYES] bayes and Quick start in [R] oprobit.

Menu
Statistics > Ordinal outcomes > Bayesian regression > Ordered probit regression
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Syntax

bayes
[
, bayesopts

]
: oprobit depvar

[
indepvars

] [
if
] [

in
] [

weight
] [

, options
]

options Description

Model

offset(varname) include varname in model with coefficient constrained to 1

Reporting

display options control spacing, line width, and base and empty cells

level(#) set credible level; default is level(95)

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.
fweights are allowed; see [U] 11.1.6 weight.
bayes: oprobit, level() is equivalent to bayes, clevel(): oprobit.
For a detailed description of options, see Options in [R] oprobit.

bayesopts Description

Priors
∗normalprior(#) specify standard deviation of default normal priors for regression

coefficients; default is normalprior(100)

prior(priorspec) prior for model parameters; this option may be repeated
dryrun show model summary without estimation

Simulation

nchains(#) number of chains; default is to simulate one chain
mcmcsize(#) MCMC sample size; default is mcmcsize(10000)

burnin(#) burn-in period; default is burnin(2500)

thinning(#) thinning interval; default is thinning(1)

rseed(#) random-number seed
exclude(paramref) specify model parameters to be excluded from the simulation results

Blocking
∗blocksize(#) maximum block size; default is blocksize(50)

block(paramref
[
, blockopts

]
) specify a block of model parameters; this option may be repeated

blocksummary display block summary
∗noblocking do not block parameters by default

Initialization

initial(initspec) specify initial values for model parameters with a single chain
init#(initspec) specify initial values for #th chain; requires nchains()

initall(initspec) specify initial values for all chains; requires nchains()

nomleinitial suppress the use of maximum likelihood estimates as starting values
initrandom specify random initial values
initsummary display initial values used for simulation
∗noisily display output from the estimation command during initialization
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Adaptation

adaptation(adaptopts) control the adaptive MCMC procedure
scale(#) initial multiplier for scale factor; default is scale(2.38)

covariance(cov) initial proposal covariance; default is the identity matrix

Reporting

clevel(#) set credible interval level; default is clevel(95)

hpd display HPD credible intervals instead of the default equal-tailed
credible intervals

eform
[
(string)

]
report exponentiated coefficients and, optionally, label as string

batch(#) specify length of block for batch-means calculations;
default is batch(0)

saving(filename
[
, replace

]
) save simulation results to filename.dta

nomodelsummary suppress model summary
chainsdetail display detailed simulation summary for each chain[
no
]
dots suppress dots or display dots every 100 iterations and iteration

numbers every 1,000 iterations; default is nodots

dots(#
[
, every(#)

]
) display dots as simulation is performed[

no
]
show(paramref) specify model parameters to be excluded from or included in

the output
notable suppress estimation table
noheader suppress output header
title(string) display string as title above the table of parameter estimates
display options control spacing, line width, and base and empty cells

Advanced

search(search options) control the search for feasible initial values
corrlag(#) specify maximum autocorrelation lag; default varies
corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)

∗Starred options are specific to the bayes prefix; other options are common between bayes and bayesmh.
Options prior() and block() may be repeated.
priorspec and paramref are defined in [BAYES] bayesmh.
paramref may contain factor variables; see [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Model parameters are regression coefficients {depvar:indepvars} and cutpoints {cut1}, {cut2}, and so on. Use the
dryrun option to see the definitions of model parameters prior to estimation.

Flat priors, flat, are used by default for cutpoints.
For a detailed description of bayesopts, see Options in [BAYES] bayes.

Remarks and examples
For a general introduction to Bayesian analysis, see [BAYES] Intro. For a general introduction

to Bayesian estimation using an adaptive Metropolis–Hastings algorithm, see [BAYES] bayesmh. For
remarks and examples specific to the bayes prefix, see [BAYES] bayes. For details about the estimation
command, see [R] oprobit.

For a simple example of the bayes prefix, see Introductory example in [BAYES] bayes.
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Stored results
See Stored results in [BAYES] bayes.

Methods and formulas
See Methods and formulas in [BAYES] bayesmh.

Also see
[BAYES] bayes — Bayesian regression models using the bayes prefix

[R] oprobit — Ordered probit regression

[BAYES] Bayesian postestimation — Postestimation tools for bayesmh and the bayes prefix

[BAYES] Bayesian estimation — Bayesian estimation commands

[BAYES] Bayesian commands — Introduction to commands for Bayesian analysis

[BAYES] Intro — Introduction to Bayesian analysis

[BAYES] Glossary



Title

bayes: poisson — Bayesian Poisson regression

Description Quick start Menu Syntax
Remarks and examples Stored results Methods and formulas Also see

Description
bayes: poisson fits a Bayesian Poisson regression to a nonnegative count outcome; see

[BAYES] bayes and [R] poisson for details.

Quick start
Bayesian Poisson regression of y on x1 and x2, using default normal priors for regression coefficients

bayes: poisson y x1 x2

Use a standard deviation of 10 instead of 100 for the default normal priors
bayes, normalprior(10): poisson y x1 x2

Use uniform priors for the slopes and a normal prior for the intercept
bayes, prior({y: x1 x2}, uniform(-10,10)) ///
prior({y: cons}, normal(0,10)): poisson y x1 x2

Save simulation results to simdata.dta, and use a random-number seed for reproducibility
bayes, saving(simdata) rseed(123): poisson y x1 x2

Specify 20,000 Markov chain Monte Carlo (MCMC) samples, set length of the burn-in period to 5,000,
and request that a dot be displayed every 500 simulations

bayes, mcmcsize(20000) burnin(5000) dots(500): poisson y x1 x2

In the above, request that the 90% highest posterior density (HPD) credible interval be displayed
instead of the default 95% equal-tailed credible interval

bayes, clevel(90) hpd

Display incidence-rate ratios instead of coefficients
bayes: poisson y x1 x2, irr

Display incidence-rate ratios on replay
bayes, irr

Also see Quick start in [BAYES] bayes and Quick start in [R] poisson.

Menu
Statistics > Count outcomes > Bayesian regression > Poisson regression
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Syntax
bayes

[
, bayesopts

]
: poisson depvar

[
indepvars

] [
if
] [

in
] [

weight
] [

, options
]

options Description

Model

noconstant suppress constant term
exposure(varnamee) include ln(varnamee) in model with coefficient constrained to 1
offset(varnameo) include varnameo in model with coefficient constrained to 1

Reporting

irr report incidence-rate ratios
display options control spacing, line width, and base and empty cells

level(#) set credible level; default is level(95)

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar, indepvars, varnamee, and varnameo may contain time-series operators; see [U] 11.4.4 Time-series varlists.
fweights are allowed; see [U] 11.1.6 weight.
bayes: poisson, level() is equivalent to bayes, clevel(): poisson.
For a detailed description of options, see Options in [R] poisson.

bayesopts Description

Priors
∗normalprior(#) specify standard deviation of default normal priors for regression

coefficients; default is normalprior(100)

prior(priorspec) prior for model parameters; this option may be repeated
dryrun show model summary without estimation

Simulation

nchains(#) number of chains; default is to simulate one chain
mcmcsize(#) MCMC sample size; default is mcmcsize(10000)

burnin(#) burn-in period; default is burnin(2500)

thinning(#) thinning interval; default is thinning(1)

rseed(#) random-number seed
exclude(paramref) specify model parameters to be excluded from the simulation results

Blocking
∗blocksize(#) maximum block size; default is blocksize(50)

block(paramref
[
, blockopts

]
) specify a block of model parameters; this option may be repeated

blocksummary display block summary
∗noblocking do not block parameters by default
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Initialization

initial(initspec) specify initial values for model parameters with a single chain
init#(initspec) specify initial values for #th chain; requires nchains()

initall(initspec) specify initial values for all chains; requires nchains()

nomleinitial suppress the use of maximum likelihood estimates as starting values
initrandom specify random initial values
initsummary display initial values used for simulation
∗noisily display output from the estimation command during initialization

Adaptation

adaptation(adaptopts) control the adaptive MCMC procedure
scale(#) initial multiplier for scale factor; default is scale(2.38)

covariance(cov) initial proposal covariance; default is the identity matrix

Reporting

clevel(#) set credible interval level; default is clevel(95)

hpd display HPD credible intervals instead of the default equal-tailed
credible intervals

∗irr report incidence-rate ratios
eform

[
(string)

]
report exponentiated coefficients and, optionally, label as string

batch(#) specify length of block for batch-means calculations;
default is batch(0)

saving(filename
[
, replace

]
) save simulation results to filename.dta

nomodelsummary suppress model summary
chainsdetail display detailed simulation summary for each chain[
no
]
dots suppress dots or display dots every 100 iterations and iteration

numbers every 1,000 iterations; default is nodots

dots(#
[
, every(#)

]
) display dots as simulation is performed[

no
]
show(paramref) specify model parameters to be excluded from or included in

the output
notable suppress estimation table
noheader suppress output header
title(string) display string as title above the table of parameter estimates
display options control spacing, line width, and base and empty cells

Advanced

search(search options) control the search for feasible initial values
corrlag(#) specify maximum autocorrelation lag; default varies
corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)

∗Starred options are specific to the bayes prefix; other options are common between bayes and bayesmh.
Options prior() and block() may be repeated.
priorspec and paramref are defined in [BAYES] bayesmh.
paramref may contain factor variables; see [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Model parameters are regression coefficients {depvar:indepvars}. Use the dryrun option to see the definitions of
model parameters prior to estimation.

For a detailed description of bayesopts, see Options in [BAYES] bayes.
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Remarks and examples
For a general introduction to Bayesian analysis, see [BAYES] Intro. For a general introduction

to Bayesian estimation using an adaptive Metropolis–Hastings algorithm, see [BAYES] bayesmh. For
remarks and examples specific to the bayes prefix, see [BAYES] bayes. For details about the estimation
command, see [R] poisson.

For a simple example of the bayes prefix, see Introductory example in [BAYES] bayes.

Stored results
See Stored results in [BAYES] bayes.

Methods and formulas
See Methods and formulas in [BAYES] bayesmh.

Also see
[BAYES] bayes — Bayesian regression models using the bayes prefix

[R] poisson — Poisson regression

[BAYES] Bayesian postestimation — Postestimation tools for bayesmh and the bayes prefix

[BAYES] Bayesian estimation — Bayesian estimation commands

[BAYES] Bayesian commands — Introduction to commands for Bayesian analysis

[BAYES] Intro — Introduction to Bayesian analysis

[BAYES] Glossary



Title

bayes: probit — Bayesian probit regression

Description Quick start Menu Syntax
Remarks and examples Stored results Methods and formulas Also see

Description
bayes: probit fits a Bayesian probit regression to a binary outcome; see [BAYES] bayes and

[R] probit for details.

Quick start
Bayesian probit regression of y on x1 and x2, using default normal priors for regression coefficients

bayes: probit y x1 x2

Use a standard deviation of 10 instead of 100 for the default normal priors
bayes, normalprior(10): probit y x1 x2

Use uniform priors for the slopes and a normal prior for the intercept
bayes, prior({y: x1 x2}, uniform(-10,10)) ///
prior({y: cons}, normal(0,10)): probit y x1 x2

Save simulation results to simdata.dta, and use a random-number seed for reproducibility
bayes, saving(simdata) rseed(123): probit y x1 x2

Specify 20,000 Markov chain Monte Carlo (MCMC) samples, set length of the burn-in period to 5,000,
and request that a dot be displayed every 500 simulations

bayes, mcmcsize(20000) burnin(5000) dots(500): probit y x1 x2

In the above, request that the 90% highest posterior density (HPD) credible interval be displayed
instead of the default 95% equal-tailed credible interval

bayes, clevel(90) hpd

Also see Quick start in [BAYES] bayes and Quick start in [R] probit.

Menu
Statistics > Binary outcomes > Bayesian regression > Probit regression

629



630 bayes: probit — Bayesian probit regression

Syntax
bayes

[
, bayesopts

]
: probit depvar

[
indepvars

] [
if
] [

in
] [

weight
] [

, options
]

options Description

Model

noconstant suppress constant term
offset(varname) include varname in model with coefficient constrained to 1
asis retain perfect predictor variables

Reporting

display options control spacing, line width, and base and empty cells

level(#) set credible level; default is level(95)

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.
fweights are allowed; see [U] 11.1.6 weight.
bayes: probit, level() is equivalent to bayes, clevel(): probit.
For a detailed description of options, see Options in [R] probit.

bayesopts Description

Priors
∗normalprior(#) specify standard deviation of default normal priors for regression

coefficients; default is normalprior(100)

prior(priorspec) prior for model parameters; this option may be repeated
dryrun show model summary without estimation

Simulation

nchains(#) number of chains; default is to simulate one chain
mcmcsize(#) MCMC sample size; default is mcmcsize(10000)

burnin(#) burn-in period; default is burnin(2500)

thinning(#) thinning interval; default is thinning(1)

rseed(#) random-number seed
exclude(paramref) specify model parameters to be excluded from the simulation results

Blocking
∗blocksize(#) maximum block size; default is blocksize(50)

block(paramref
[
, blockopts

]
) specify a block of model parameters; this option may be repeated

blocksummary display block summary
∗noblocking do not block parameters by default

Initialization

initial(initspec) specify initial values for model parameters with a single chain
init#(initspec) specify initial values for #th chain; requires nchains()

initall(initspec) specify initial values for all chains; requires nchains()

nomleinitial suppress the use of maximum likelihood estimates as starting values
initrandom specify random initial values
initsummary display initial values used for simulation
∗noisily display output from the estimation command during initialization
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Adaptation

adaptation(adaptopts) control the adaptive MCMC procedure
scale(#) initial multiplier for scale factor; default is scale(2.38)

covariance(cov) initial proposal covariance; default is the identity matrix

Reporting

clevel(#) set credible interval level; default is clevel(95)

hpd display HPD credible intervals instead of the default equal-tailed
credible intervals

eform
[
(string)

]
report exponentiated coefficients and, optionally, label as string

batch(#) specify length of block for batch-means calculations;
default is batch(0)

saving(filename
[
, replace

]
) save simulation results to filename.dta

nomodelsummary suppress model summary
chainsdetail display detailed simulation summary for each chain[
no
]
dots suppress dots or display dots every 100 iterations and iteration

numbers every 1,000 iterations; default is nodots

dots(#
[
, every(#)

]
) display dots as simulation is performed[

no
]
show(paramref) specify model parameters to be excluded from or included in

the output
notable suppress estimation table
noheader suppress output header
title(string) display string as title above the table of parameter estimates
display options control spacing, line width, and base and empty cells

Advanced

search(search options) control the search for feasible initial values
corrlag(#) specify maximum autocorrelation lag; default varies
corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)

∗Starred options are specific to the bayes prefix; other options are common between bayes and bayesmh.
Options prior() and block() may be repeated.
priorspec and paramref are defined in [BAYES] bayesmh.
paramref may contain factor variables; see [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Model parameters are regression coefficients {depvar:indepvars}. Use the dryrun option to see the definitions of
model parameters prior to estimation.

For a detailed description of bayesopts, see Options in [BAYES] bayes.

Remarks and examples
For a general introduction to Bayesian analysis, see [BAYES] Intro. For a general introduction

to Bayesian estimation using an adaptive Metropolis–Hastings algorithm, see [BAYES] bayesmh. For
remarks and examples specific to the bayes prefix, see [BAYES] bayes. For details about the estimation
command, see [R] probit.

For a simple example of the bayes prefix, see Introductory example in [BAYES] bayes. Also see
Logistic regression with perfect predictors in [BAYES] bayes.
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Stored results
See Stored results in [BAYES] bayes.

Methods and formulas
See Methods and formulas in [BAYES] bayesmh.

Also see
[BAYES] bayes — Bayesian regression models using the bayes prefix

[R] probit — Probit regression

[BAYES] Bayesian postestimation — Postestimation tools for bayesmh and the bayes prefix

[BAYES] Bayesian estimation — Bayesian estimation commands

[BAYES] Bayesian commands — Introduction to commands for Bayesian analysis

[BAYES] Intro — Introduction to Bayesian analysis

[BAYES] Glossary



Title

bayes: regress — Bayesian linear regression

Description Quick start Menu Syntax
Remarks and examples Stored results Methods and formulas Also see

Description
bayes: regress fits a Bayesian linear regression to a continuous outcome; see [BAYES] bayes

and [R] regress for details.

Quick start
Bayesian linear regression of y on x1 and x2, using default normal priors for regression coefficients

and default inverse-gamma prior for the variance
bayes: regress y x1 x2

Use a standard deviation of 10 instead of 100 for the default normal priors
bayes, normalprior(10): regress y x1 x2

Use a shape of 1 and a scale of 2 instead of values of 0.01 for the default inverse-gamma prior
bayes, igammaprior(1 2): regress y x1 x2

Use uniform priors for the slopes and a normal prior for the intercept
bayes, prior({y: x1 x2}, uniform(-10,10)) ///
prior({y: cons}, normal(0,10)): regress y x1 x2

Save simulation results to simdata.dta, and use a random-number seed for reproducibility
bayes, saving(simdata) rseed(123): regress y x1 x2

Specify 20,000 Markov chain Monte Carlo (MCMC) samples, set length of the burn-in period to 5,000,
and request that a dot be displayed every 500 simulations

bayes, mcmcsize(20000) burnin(5000) dots(500): regress y x1 x2

In the above, request that the 90% highest posterior density (HPD) credible interval be displayed
instead of the default 95% equal-tailed credible interval

bayes, clevel(90) hpd

Also see Quick start in [BAYES] bayes and Quick start in [R] regress.

Menu
Statistics > Linear models and related > Bayesian regression > Linear regression

633



634 bayes: regress — Bayesian linear regression

Syntax
bayes

[
, bayesopts

]
: regress depvar

[
indepvars

] [
if
] [

in
] [

weight
] [

, options
]

options Description

Model

noconstant suppress constant term

Reporting

eform(string) report exponentiated coefficients and label as string
display options control spacing, line width, and base and empty cells

level(#) set credible level; default is level(95)

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.
fweights are allowed; see [U] 11.1.6 weight.
bayes: regress, level() is equivalent to bayes, clevel(): regress.
For a detailed description of options, see Options in [R] regress.

bayesopts Description

Priors
∗gibbs specify Gibbs sampling; available only with normal priors for

regression coefficients and an inverse-gamma prior for variance
∗normalprior(#) specify standard deviation of default normal priors for regression

coefficients; default is normalprior(100)
∗igammaprior(# #) specify shape and scale of default inverse-gamma prior for

variance; default is igammaprior(0.01 0.01)

prior(priorspec) prior for model parameters; this option may be repeated
dryrun show model summary without estimation

Simulation

nchains(#) number of chains; default is to simulate one chain
mcmcsize(#) MCMC sample size; default is mcmcsize(10000)

burnin(#) burn-in period; default is burnin(2500)

thinning(#) thinning interval; default is thinning(1)

rseed(#) random-number seed
exclude(paramref) specify model parameters to be excluded from the simulation results

Blocking
∗blocksize(#) maximum block size; default is blocksize(50)

block(paramref
[
, blockopts

]
) specify a block of model parameters; this option may be repeated

blocksummary display block summary
∗noblocking do not block parameters by default
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Initialization

initial(initspec) specify initial values for model parameters with a single chain
init#(initspec) specify initial values for #th chain; requires nchains()

initall(initspec) specify initial values for all chains; requires nchains()

nomleinitial suppress the use of maximum likelihood estimates as starting values
initrandom specify random initial values
initsummary display initial values used for simulation
∗noisily display output from the estimation command during initialization

Adaptation

adaptation(adaptopts) control the adaptive MCMC procedure
scale(#) initial multiplier for scale factor; default is scale(2.38)

covariance(cov) initial proposal covariance; default is the identity matrix

Reporting

clevel(#) set credible interval level; default is clevel(95)

hpd display HPD credible intervals instead of the default equal-tailed
credible intervals

eform
[
(string)

]
report exponentiated coefficients and, optionally, label as string

batch(#) specify length of block for batch-means calculations;
default is batch(0)

saving(filename
[
, replace

]
) save simulation results to filename.dta

nomodelsummary suppress model summary
chainsdetail display detailed simulation summary for each chain[
no
]
dots suppress dots or display dots every 100 iterations and iteration

numbers every 1,000 iterations; default is nodots

dots(#
[
, every(#)

]
) display dots as simulation is performed[

no
]
show(paramref) specify model parameters to be excluded from or included in

the output
notable suppress estimation table
noheader suppress output header
title(string) display string as title above the table of parameter estimates
display options control spacing, line width, and base and empty cells

Advanced

search(search options) control the search for feasible initial values
corrlag(#) specify maximum autocorrelation lag; default varies
corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)

∗Starred options are specific to the bayes prefix; other options are common between bayes and bayesmh.
Options prior() and block() may be repeated.
priorspec and paramref are defined in [BAYES] bayesmh.
paramref may contain factor variables; see [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Model parameters are regression coefficients {depvar:indepvars} and variance {sigma2}. Use the dryrun option to
see the definitions of model parameters prior to estimation.

For a detailed description of bayesopts, see Options in [BAYES] bayes.
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Remarks and examples
For a general introduction to Bayesian analysis, see [BAYES] Intro. For a general introduction to

Bayesian estimation using adaptive Metropolis–Hastings and Gibbs algorithms, see [BAYES] bayesmh.
For remarks and examples specific to the bayes prefix, see [BAYES] bayes. For details about the
estimation command, see [R] regress.

For a simple example of the bayes prefix, see Introductory example in [BAYES] bayes. Also see
Linear regression: A case of informative default priors in [BAYES] bayes.

Video examples

Bayesian linear regression using the bayes prefix

Bayesian linear regression using the bayes prefix: How to specify custom priors

Bayesian linear regression using the bayes prefix: Checking convergence of the MCMC chain

Bayesian linear regression using the bayes prefix: How to customize the MCMC chain

Stored results
See Stored results in [BAYES] bayes.

Methods and formulas
See Methods and formulas in [BAYES] bayesmh.

Also see
[BAYES] bayes — Bayesian regression models using the bayes prefix

[R] regress — Linear regression

[BAYES] Bayesian postestimation — Postestimation tools for bayesmh and the bayes prefix

[BAYES] Bayesian estimation — Bayesian estimation commands

[BAYES] Bayesian commands — Introduction to commands for Bayesian analysis

[BAYES] Intro — Introduction to Bayesian analysis

[BAYES] Glossary
[BMA] bmaregress — Bayesian model averaging for linear regression

https://www.youtube.com/watch?v=L7GfMLl7EqM
https://www.youtube.com/watch?v=76K1Cznzz0Q
https://www.youtube.com/watch?v=W9EUr1rtH-k
https://www.youtube.com/watch?v=KStrHq2Nw6w


Title

bayes: streg — Bayesian parametric survival models

Description Quick start Menu Syntax
Remarks and examples Stored results Methods and formulas Also see

Description
bayes: streg fits a Bayesian parametric survival model to a survival-time outcome; see

[BAYES] bayes and [ST] streg for details.

Quick start
Bayesian Weibull survival model of stset survival-time outcome on x1 and x2, using default normal

priors for regression coefficients and log-ancillary parameters
bayes: streg x1 x2, distribution(weibull)

Use a standard deviation of 10 instead of 100 for the default normal priors
bayes, normalprior(10): streg x1 x2, distribution(weibull)

Use uniform priors for the slopes and a normal prior for the intercept
bayes, prior({ t: x1 x2}, uniform(-10,10)) ///
prior({ t: cons}, normal(0,10)): streg x1 x2, distribution(weibull)

Save simulation results to simdata.dta, and use a random-number seed for reproducibility
bayes, saving(simdata) rseed(123): ///
streg x1 x2, distribution(weibull)

Specify 20,000 Markov chain Monte Carlo (MCMC) samples, set length of the burn-in period to 5,000,
and request that a dot be displayed every 500 simulations

bayes, mcmcsize(20000) burnin(5000) dots(500): ///
streg x1 x2, distribution(weibull)

In the above, request that the 90% highest posterior density (HPD) credible interval be displayed
instead of the default 95% equal-tailed credible interval

bayes, clevel(90) hpd

Use accelerated failure-time metric instead of proportional-hazards parameterization, and display time
ratios instead of coefficients

bayes, tratio: streg x1 x2, distribution(weibull) time

Display time ratios on replay
bayes, tratio

Also see Quick start in [BAYES] bayes and Quick start in [ST] streg.

Menu
Statistics > Survival analysis > Regression models > Bayesian parametric survival models
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Syntax

bayes
[
, bayesopts

]
: streg

[
varlist

] [
if
] [

in
] [

, options
]

options Description

Model

noconstant suppress constant term
distribution(exponential) exponential survival distribution
distribution(gompertz) Gompertz survival distribution
distribution(loglogistic) loglogistic survival distribution
distribution(llogistic) synonym for distribution(loglogistic)
distribution(weibull) Weibull survival distribution
distribution(lognormal) lognormal survival distribution
distribution(lnormal) synonym for distribution(lognormal)
distribution(ggamma) generalized gamma survival distribution
frailty(gamma) gamma frailty distribution
frailty(invgaussian) inverse-Gaussian distribution
time use accelerated failure-time metric

Model 2

strata(varname) strata ID variable
offset(varname) include varname in model with coefficient constrained to 1
shared(varname) shared frailty ID variable
ancillary(varlist) use varlist to model the first ancillary parameter
anc2(varlist) use varlist to model the second ancillary parameter

Reporting

nohr do not report hazard ratios
tratio report time ratios
noshow do not show st setting information
display options control spacing, line width, and base and empty cells

level(#) set credible level; default is level(95)

You must stset your data before using bayes: streg; see [ST] stset.
varlist may contain factor variables; see [U] 11.4.3 Factor variables.
bayes: streg, level() is equivalent to bayes, clevel(): streg.
For a detailed description of options, see Options in [ST] streg.

bayesopts Description

Priors
∗normalprior(#) specify standard deviation of default normal priors for regression

coefficients and log-ancillary parameters;
default is normalprior(100)

prior(priorspec) prior for model parameters; this option may be repeated
dryrun show model summary without estimation
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Simulation

nchains(#) number of chains; default is to simulate one chain
mcmcsize(#) MCMC sample size; default is mcmcsize(10000)

burnin(#) burn-in period; default is burnin(2500)

thinning(#) thinning interval; default is thinning(1)

rseed(#) random-number seed
exclude(paramref) specify model parameters to be excluded from the simulation results

Blocking
∗blocksize(#) maximum block size; default is blocksize(50)

block(paramref
[
, blockopts

]
) specify a block of model parameters; this option may be repeated

blocksummary display block summary
∗noblocking do not block parameters by default

Initialization

initial(initspec) specify initial values for model parameters with a single chain
init#(initspec) specify initial values for #th chain; requires nchains()

initall(initspec) specify initial values for all chains; requires nchains()

nomleinitial suppress the use of maximum likelihood estimates as starting values
initrandom specify random initial values
initsummary display initial values used for simulation
∗noisily display output from the estimation command during initialization

Adaptation

adaptation(adaptopts) control the adaptive MCMC procedure
scale(#) initial multiplier for scale factor; default is scale(2.38)

covariance(cov) initial proposal covariance; default is the identity matrix

Reporting

clevel(#) set credible interval level; default is clevel(95)

hpd display HPD credible intervals instead of the default equal-tailed
credible intervals

∗nohr do not report hazard ratios
∗tratio report time ratios; requires option time with streg

eform
[
(string)

]
report exponentiated coefficients and, optionally, label as string

batch(#) specify length of block for batch-means calculations;
default is batch(0)

saving(filename
[
, replace

]
) save simulation results to filename.dta

nomodelsummary suppress model summary
chainsdetail display detailed simulation summary for each chain[
no
]
dots suppress dots or display dots every 100 iterations and iteration

numbers every 1,000 iterations; default is nodots

dots(#
[
, every(#)

]
) display dots as simulation is performed[

no
]
show(paramref) specify model parameters to be excluded from or included in

the output
notable suppress estimation table
noheader suppress output header
title(string) display string as title above the table of parameter estimates
display options control spacing, line width, and base and empty cells
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Advanced

search(search options) control the search for feasible initial values
corrlag(#) specify maximum autocorrelation lag; default varies
corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)

∗Starred options are specific to the bayes prefix; other options are common between bayes and bayesmh.
Options prior() and block() may be repeated.
priorspec and paramref are defined in [BAYES] bayesmh.
paramref may contain factor variables; see [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Model parameters are regression coefficients {depvar:indepvars} and ancillary parameters as described in Ancillary
model parameters. Use the dryrun option to see the definitions of model parameters prior to estimation.

For a detailed description of bayesopts, see Options in [BAYES] bayes.

Remarks and examples
For a general introduction to Bayesian analysis, see [BAYES] Intro. For a general introduction

to Bayesian estimation using an adaptive Metropolis–Hastings algorithm, see [BAYES] bayesmh. For
remarks and examples specific to the bayes prefix, see [BAYES] bayes. For details about the estimation
command, see [ST] streg.

For a simple example of the bayes prefix, see Introductory example in [BAYES] bayes. Also see
Parametric survival model in [BAYES] bayes.

Ancillary model parameters

In addition to regression coefficients { t:varlist}, bayes: streg defines ancillary parameters that
depend on the chosen survival model; see table 1 below. Positive ancillary parameters are transformed
to be defined on the whole real line. All ancillary parameters are assigned default normal priors with
zero mean and variance of 10,000.

Table 1. Ancillary model parameters defined by bayes: streg

Ancillary Transformed
Distribution parameters model parameters

Exponential None None
Weibull p {ln p}

Gompertz γ {gamma}

Lognormal σ {lnsigma}

Loglogistic γ {lngamma}

Generalized gamma σ, κ {lnsigma}, {kappa}

For frailty models, when option frailty() or option shared() is specified with streg, bayes:
streg also defines the log-frailty parameter {lntheta}.

If option ancillary(varlist) is specified, regression coefficients {ln p:varlist}, {gamma:varlist},
and so on are defined for all ancillary parameters except κ. If option anc2(varlist) is specified, then
regression coefficients {kappa:varlist} are defined for κ.
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If option strata(varname) is specified, additional stratum-specific coefficients of the form
{eqname:#.varname} are defined for the main regression and ancillary parameters. For example,
if drug contains three strata, then specifying option strata(drug) will result in additional main
regression coefficients { t:2.drug} and { t:3.drug} and—say, for Weibull regression—in addi-
tional parameters {ln p:2.drug} and {ln p:3.drug}. In the model summary with default priors,
you may see these parameters labeled as { t:i.drug} and {ln p:i.drug}, for short.

Use the dryrun option with the bayes prefix to see the definitions of model parameters prior to
estimation.

Stored results
See Stored results in [BAYES] bayes.

Methods and formulas
See Methods and formulas in [BAYES] bayesmh.

Also see
[BAYES] bayes — Bayesian regression models using the bayes prefix

[ST] streg — Parametric survival models

[BAYES] Bayesian postestimation — Postestimation tools for bayesmh and the bayes prefix

[BAYES] Bayesian estimation — Bayesian estimation commands

[BAYES] Bayesian commands — Introduction to commands for Bayesian analysis

[BAYES] Intro — Introduction to Bayesian analysis

[BAYES] Glossary



Title

bayes: tnbreg — Bayesian truncated negative binomial regression

Description Quick start Menu Syntax
Remarks and examples Stored results Methods and formulas Also see

Description
bayes: tnbreg fits a Bayesian truncated negative binomial regression to a positive count outcome

whose values are all above the truncation point; see [BAYES] bayes and [R] tnbreg for details.

Quick start
Bayesian truncated negative binomial regression of y on x1 and x2, using a lower truncation limit of

5 and using default normal priors for regression coefficients and log-overdispersion parameter
bayes: tnbreg y x1 x2, ll(5)

Use a standard deviation of 10 instead of 100 for the default normal priors
bayes, normalprior(10): tnbreg y x1 x2, ll(5)

Use uniform priors for the slopes and a normal prior for the intercept
bayes, prior({y: x1 x2}, uniform(-10,10)) ///
prior({y: cons}, normal(0,10)): tnbreg y x1 x2, ll(5)

Save simulation results to simdata.dta, and use a random-number seed for reproducibility
bayes, saving(simdata) rseed(123): tnbreg y x1 x2, ll(5)

Specify 20,000 Markov chain Monte Carlo (MCMC) samples, set length of the burn-in period to 5,000,
and request that a dot be displayed every 500 simulations

bayes, mcmcsize(20000) burnin(5000) dots(500): tnbreg y x1 x2, ll(5)

In the above, request that the 90% highest posterior density (HPD) credible interval be displayed
instead of the default 95% equal-tailed credible interval

bayes, clevel(90) hpd

Display incidence-rate ratios instead of coefficients
bayes: tnbreg y x1 x2, ll(5) irr

Display incidence-rate ratios on replay
bayes, irr

Also see Quick start in [BAYES] bayes and Quick start in [R] tnbreg.

Menu
Statistics > Count outcomes > Bayesian regression > Truncated negative binomial regression

642



bayes: tnbreg — Bayesian truncated negative binomial regression 643

Syntax
bayes

[
, bayesopts

]
: tnbreg depvar

[
indepvars

] [
if
] [

in
] [

weight
] [

, options
]

options Description

Model

noconstant suppress constant term
ll(# | varname) truncation point; default value is ll(0), zero truncation
dispersion(mean) parameterization of dispersion; the default
dispersion(constant) constant dispersion for all observations
exposure(varnamee) include ln(varnamee) in model with coefficient constrained to 1
offset(varnameo) include varnameo in model with coefficient constrained to 1

Reporting

irr report incidence-rate ratios
display options control spacing, line width, and base and empty cells

level(#) set credible level; default is level(95)

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.
fweights are allowed; see [U] 11.1.6 weight.
bayes: tnbreg, level() is equivalent to bayes, clevel(): tnbreg.
For a detailed description of options, see Options in [R] tnbreg.

bayesopts Description

Priors
∗normalprior(#) specify standard deviation of default normal priors for regression

coefficients and log-overdispersion parameter;
default is normalprior(100)

prior(priorspec) prior for model parameters; this option may be repeated
dryrun show model summary without estimation

Simulation

nchains(#) number of chains; default is to simulate one chain
mcmcsize(#) MCMC sample size; default is mcmcsize(10000)

burnin(#) burn-in period; default is burnin(2500)

thinning(#) thinning interval; default is thinning(1)

rseed(#) random-number seed
exclude(paramref) specify model parameters to be excluded from the simulation results

Blocking
∗blocksize(#) maximum block size; default is blocksize(50)

block(paramref
[
, blockopts

]
) specify a block of model parameters; this option may be repeated

blocksummary display block summary
∗noblocking do not block parameters by default
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Initialization

initial(initspec) specify initial values for model parameters with a single chain
init#(initspec) specify initial values for #th chain; requires nchains()

initall(initspec) specify initial values for all chains; requires nchains()

nomleinitial suppress the use of maximum likelihood estimates as starting values
initrandom specify random initial values
initsummary display initial values used for simulation
∗noisily display output from the estimation command during initialization

Adaptation

adaptation(adaptopts) control the adaptive MCMC procedure
scale(#) initial multiplier for scale factor; default is scale(2.38)

covariance(cov) initial proposal covariance; default is the identity matrix

Reporting

clevel(#) set credible interval level; default is clevel(95)

hpd display HPD credible intervals instead of the default equal-tailed
credible intervals

∗irr report incidence-rate ratios
eform

[
(string)

]
report exponentiated coefficients and, optionally, label as string

batch(#) specify length of block for batch-means calculations;
default is batch(0)

saving(filename
[
, replace

]
) save simulation results to filename.dta

nomodelsummary suppress model summary
chainsdetail display detailed simulation summary for each chain[
no
]
dots suppress dots or display dots every 100 iterations and iteration

numbers every 1,000 iterations; default is nodots

dots(#
[
, every(#)

]
) display dots as simulation is performed[

no
]
show(paramref) specify model parameters to be excluded from or included in

the output
notable suppress estimation table
noheader suppress output header
title(string) display string as title above the table of parameter estimates
display options control spacing, line width, and base and empty cells

Advanced

search(search options) control the search for feasible initial values
corrlag(#) specify maximum autocorrelation lag; default varies
corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)

∗Starred options are specific to the bayes prefix; other options are common between bayes and bayesmh.
Options prior() and block() may be repeated.
priorspec and paramref are defined in [BAYES] bayesmh.
paramref may contain factor variables; see [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Model parameters are regression coefficients {depvar:indepvars} and log-overdispersion parameter {lnalpha} with
mean dispersion or {lndelta} with constant dispersion. Use the dryrun option to see the definitions of model
parameters prior to estimation.

For a detailed description of bayesopts, see Options in [BAYES] bayes.
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Remarks and examples
For a general introduction to Bayesian analysis, see [BAYES] Intro. For a general introduction

to Bayesian estimation using an adaptive Metropolis–Hastings algorithm, see [BAYES] bayesmh. For
remarks and examples specific to the bayes prefix, see [BAYES] bayes. For details about the estimation
command, see [R] tnbreg.

For a simple example of the bayes prefix, see Introductory example in [BAYES] bayes. Also see
Truncated Poisson regression in [BAYES] bayes.

Stored results
See Stored results in [BAYES] bayes.

Methods and formulas
See Methods and formulas in [BAYES] bayesmh.

Also see
[BAYES] bayes — Bayesian regression models using the bayes prefix

[R] tnbreg — Truncated negative binomial regression

[BAYES] Bayesian postestimation — Postestimation tools for bayesmh and the bayes prefix

[BAYES] Bayesian estimation — Bayesian estimation commands

[BAYES] Bayesian commands — Introduction to commands for Bayesian analysis

[BAYES] Intro — Introduction to Bayesian analysis

[BAYES] Glossary



Title

bayes: tobit — Bayesian tobit regression

Description Quick start Menu Syntax
Remarks and examples Stored results Methods and formulas Also see

Description
bayes: tobit fits a Bayesian tobit regression to a censored continuous outcome; see [BAYES] bayes

and [R] tobit for details.

Quick start
Bayesian tobit regression of y on x1 and x2, using a lower censoring limit of 17 and using default

normal priors for regression coefficients and default inverse-gamma prior for the variance
bayes: tobit y x1 x2, ll(17)

Use a standard deviation of 10 instead of 100 for the default normal priors
bayes, normalprior(10): tobit y x1 x2, ll(17)

Use a shape of 1 and a scale of 2 instead of values of 0.01 for the default inverse-gamma prior
bayes, igammaprior(1 2): tobit y x1 x2, ll(17)

Use uniform priors for the slopes and a normal prior for the intercept
bayes, prior({y: x1 x2}, uniform(-10,10)) ///
prior({y: cons}, normal(0,10)): tobit y x1 x2, ll(17)

Save simulation results to simdata.dta, and use a random-number seed for reproducibility
bayes, saving(simdata) rseed(123): tobit y x1 x2, ll(17)

Specify 20,000 Markov chain Monte Carlo (MCMC) samples, set length of the burn-in period to 5,000,
and request that a dot be displayed every 500 simulations

bayes, mcmcsize(20000) burnin(5000) dots(500): tobit y x1 x2, ll(17)

In the above, request that the 90% highest posterior density (HPD) credible interval be displayed
instead of the default 95% equal-tailed credible interval

bayes, clevel(90) hpd

Also see Quick start in [BAYES] bayes and Quick start in [R] tobit.

Menu
Statistics > Linear models and related > Bayesian regression > Tobit regression
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Syntax
bayes

[
, bayesopts

]
: tobit depvar

[
indepvars

] [
if
] [

in
] [

weight
] [

, options
]

options Description

Model

noconstant suppress constant term
ll
[
(varname | #)

]
left-censoring variable or limit

ul
[
(varname | #)

]
right-censoring variable or limit

offset(varname) include varname in model with coefficient constrained to 1

Reporting

display options control spacing, line width, and base and empty cells

level(#) set credible level; default is level(95)

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.
fweights are allowed; see [U] 11.1.6 weight.
bayes: tobit, level() is equivalent to bayes, clevel(): tobit.
For a detailed description of options, see Options in [R] tobit.

bayesopts Description

Priors
∗normalprior(#) specify standard deviation of default normal priors for regression

coefficients; default is normalprior(100)
∗igammaprior(# #) specify shape and scale of default inverse-gamma prior for

variance; default is igammaprior(0.01 0.01)

prior(priorspec) prior for model parameters; this option may be repeated
dryrun show model summary without estimation

Simulation

nchains(#) number of chains; default is to simulate one chain
mcmcsize(#) MCMC sample size; default is mcmcsize(10000)

burnin(#) burn-in period; default is burnin(2500)

thinning(#) thinning interval; default is thinning(1)

rseed(#) random-number seed
exclude(paramref) specify model parameters to be excluded from the simulation results

Blocking
∗blocksize(#) maximum block size; default is blocksize(50)

block(paramref
[
, blockopts

]
) specify a block of model parameters; this option may be repeated

blocksummary display block summary
∗noblocking do not block parameters by default
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Initialization

initial(initspec) specify initial values for model parameters with a single chain
init#(initspec) specify initial values for #th chain; requires nchains()

initall(initspec) specify initial values for all chains; requires nchains()

nomleinitial suppress the use of maximum likelihood estimates as starting values
initrandom specify random initial values
initsummary display initial values used for simulation
∗noisily display output from the estimation command during initialization

Adaptation

adaptation(adaptopts) control the adaptive MCMC procedure
scale(#) initial multiplier for scale factor; default is scale(2.38)

covariance(cov) initial proposal covariance; default is the identity matrix

Reporting

clevel(#) set credible interval level; default is clevel(95)

hpd display HPD credible intervals instead of the default equal-tailed
credible intervals

eform
[
(string)

]
report exponentiated coefficients and, optionally, label as string

batch(#) specify length of block for batch-means calculations;
default is batch(0)

saving(filename
[
, replace

]
) save simulation results to filename.dta

nomodelsummary suppress model summary
chainsdetail display detailed simulation summary for each chain[
no
]
dots suppress dots or display dots every 100 iterations and iteration

numbers every 1,000 iterations; default is nodots

dots(#
[
, every(#)

]
) display dots as simulation is performed[

no
]
show(paramref) specify model parameters to be excluded from or included in

the output
notable suppress estimation table
noheader suppress output header
title(string) display string as title above the table of parameter estimates
display options control spacing, line width, and base and empty cells

Advanced

search(search options) control the search for feasible initial values
corrlag(#) specify maximum autocorrelation lag; default varies
corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)

∗Starred options are specific to the bayes prefix; other options are common between bayes and bayesmh.
Options prior() and block() may be repeated.
priorspec and paramref are defined in [BAYES] bayesmh.
paramref may contain factor variables; see [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Model parameters are regression coefficients {depvar:indepvars} and variance {sigma2}. Use the dryrun option to
see the definitions of model parameters prior to estimation.

For a detailed description of bayesopts, see Options in [BAYES] bayes.
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Remarks and examples
For a general introduction to Bayesian analysis, see [BAYES] Intro. For a general introduction

to Bayesian estimation using an adaptive Metropolis–Hastings algorithm, see [BAYES] bayesmh. For
remarks and examples specific to the bayes prefix, see [BAYES] bayes. For details about the estimation
command, see [R] tobit.

For a simple example of the bayes prefix, see Introductory example in [BAYES] bayes.

Stored results
See Stored results in [BAYES] bayes.

Methods and formulas
See Methods and formulas in [BAYES] bayesmh.

Also see
[BAYES] bayes — Bayesian regression models using the bayes prefix

[R] tobit — Tobit regression

[BAYES] Bayesian postestimation — Postestimation tools for bayesmh and the bayes prefix

[BAYES] Bayesian estimation — Bayesian estimation commands

[BAYES] Bayesian commands — Introduction to commands for Bayesian analysis

[BAYES] Intro — Introduction to Bayesian analysis

[BAYES] Glossary



Title

bayes: tpoisson — Bayesian truncated Poisson regression

Description Quick start Menu Syntax
Remarks and examples Stored results Methods and formulas Also see

Description
bayes: tpoisson fits a Bayesian truncated Poisson regression to a positive count outcome whose

values are all above the truncation point; see [BAYES] bayes and [R] tpoisson for details.

Quick start
Bayesian truncated Poisson regression of y on x1 and x2, using a lower truncation limit of 5 and

using default normal priors for regression coefficients
bayes: tpoisson y x1 x2, ll(5)

Use a standard deviation of 10 instead of 100 for the default normal priors
bayes, normalprior(10): tpoisson y x1 x2, ll(5)

Use uniform priors for the slopes and a normal prior for the intercept
bayes, prior({y: x1 x2}, uniform(-10,10)) ///
prior({y: cons}, normal(0,10)): tpoisson y x1 x2, ll(5)

Save simulation results to simdata.dta, and use a random-number seed for reproducibility
bayes, saving(simdata) rseed(123): tpoisson y x1 x2, ll(5)

Specify 20,000 Markov chain Monte Carlo (MCMC) samples, set length of the burn-in period to 5,000,
and request that a dot be displayed every 500 simulations

bayes, mcmcsize(20000) burnin(5000) dots(500): tpoisson y x1 x2, ll(5)

In the above, request that the 90% highest posterior density (HPD) credible interval be displayed
instead of the default 95% equal-tailed credible interval

bayes, clevel(90) hpd

Display incidence-rate ratios instead of coefficients
bayes: tpoisson y x1 x2, ll(5) irr

Display incidence-rate ratios on replay
bayes, irr

Also see Quick start in [BAYES] bayes and Quick start in [R] tpoisson.

Menu
Statistics > Count outcomes > Bayesian regression > Truncated Poisson regression
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Syntax
bayes

[
, bayesopts

]
: tpoisson depvar

[
indepvars

] [
if
] [

in
] [

weight
] [

, options
]

options Description

Model

noconstant suppress constant term
ll(# | varname) lower limit for truncation; default is ll(0)

ul(# | varname) upper limit for truncation
exposure(varnamee) include ln(varnamee) in model with coefficient constrained to 1
offset(varnameo) include varnameo in model with coefficient constrained to 1

Reporting

irr report incidence-rate ratios
display options control spacing, line width, and base and empty cells

level(#) set credible level; default is level(95)

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.
fweights are allowed; see [U] 11.1.6 weight.
bayes: tpoisson, level() is equivalent to bayes, clevel(): tpoisson.
For a detailed description of options, see Options in [R] tpoisson.

bayesopts Description

Priors
∗normalprior(#) specify standard deviation of default normal priors for regression

coefficients; default is normalprior(100)

prior(priorspec) prior for model parameters; this option may be repeated
dryrun show model summary without estimation

Simulation

nchains(#) number of chains; default is to simulate one chain
mcmcsize(#) MCMC sample size; default is mcmcsize(10000)

burnin(#) burn-in period; default is burnin(2500)

thinning(#) thinning interval; default is thinning(1)

rseed(#) random-number seed
exclude(paramref) specify model parameters to be excluded from the simulation results

Blocking
∗blocksize(#) maximum block size; default is blocksize(50)

block(paramref
[
, blockopts

]
) specify a block of model parameters; this option may be repeated

blocksummary display block summary
∗noblocking do not block parameters by default
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Initialization

initial(initspec) specify initial values for model parameters with a single chain
init#(initspec) specify initial values for #th chain; requires nchains()

initall(initspec) specify initial values for all chains; requires nchains()

nomleinitial suppress the use of maximum likelihood estimates as starting values
initrandom specify random initial values
initsummary display initial values used for simulation
∗noisily display output from the estimation command during initialization

Adaptation

adaptation(adaptopts) control the adaptive MCMC procedure
scale(#) initial multiplier for scale factor; default is scale(2.38)

covariance(cov) initial proposal covariance; default is the identity matrix

Reporting

clevel(#) set credible interval level; default is clevel(95)

hpd display HPD credible intervals instead of the default equal-tailed
credible intervals

∗irr report incidence-rate ratios
eform

[
(string)

]
report exponentiated coefficients and, optionally, label as string

batch(#) specify length of block for batch-means calculations;
default is batch(0)

saving(filename
[
, replace

]
) save simulation results to filename.dta

nomodelsummary suppress model summary
chainsdetail display detailed simulation summary for each chain[
no
]
dots suppress dots or display dots every 100 iterations and iteration

numbers every 1,000 iterations; default is nodots

dots(#
[
, every(#)

]
) display dots as simulation is performed[

no
]
show(paramref) specify model parameters to be excluded from or included in

the output
notable suppress estimation table
noheader suppress output header
title(string) display string as title above the table of parameter estimates
display options control spacing, line width, and base and empty cells

Advanced

search(search options) control the search for feasible initial values
corrlag(#) specify maximum autocorrelation lag; default varies
corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)

∗Starred options are specific to the bayes prefix; other options are common between bayes and bayesmh.
Options prior() and block() may be repeated.
priorspec and paramref are defined in [BAYES] bayesmh.
paramref may contain factor variables; see [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Model parameters are regression coefficients {depvar:indepvars}. Use the dryrun option to see the definitions of
model parameters prior to estimation.

For a detailed description of bayesopts, see Options in [BAYES] bayes.
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Remarks and examples
For a general introduction to Bayesian analysis, see [BAYES] Intro. For a general introduction

to Bayesian estimation using an adaptive Metropolis–Hastings algorithm, see [BAYES] bayesmh. For
remarks and examples specific to the bayes prefix, see [BAYES] bayes. For details about the estimation
command, see [R] tpoisson.

For a simple example of the bayes prefix, see Introductory example in [BAYES] bayes. Also see
Truncated Poisson regression in [BAYES] bayes.

Stored results
See Stored results in [BAYES] bayes.

Methods and formulas
See Methods and formulas in [BAYES] bayesmh.

Also see
[BAYES] bayes — Bayesian regression models using the bayes prefix

[R] tpoisson — Truncated Poisson regression

[BAYES] Bayesian postestimation — Postestimation tools for bayesmh and the bayes prefix

[BAYES] Bayesian estimation — Bayesian estimation commands

[BAYES] Bayesian commands — Introduction to commands for Bayesian analysis

[BAYES] Intro — Introduction to Bayesian analysis

[BAYES] Glossary



Title

bayes: truncreg — Bayesian truncated regression

Description Quick start Menu Syntax
Remarks and examples Stored results Methods and formulas Also see

Description
bayes: truncreg fits a Bayesian truncated linear regression to a continuous outcome; see

[BAYES] bayes and [R] truncreg for details.

Quick start
Bayesian truncated linear regression of y on x1 and x2, using a lower truncation limit of 17 and using

default normal priors for regression coefficients and default inverse-gamma prior for the variance
bayes: truncreg y x1 x2, ll(17)

Use a standard deviation of 10 instead of 100 for the default normal priors
bayes, normalprior(10): truncreg y x1 x2, ll(17)

Use a shape of 1 and a scale of 2 instead of values of 0.01 for the default inverse-gamma prior
bayes, igammaprior(1 2): truncreg y x1 x2, ll(17)

Use uniform priors for the slopes and a normal prior for the intercept
bayes, prior({y: x1 x2}, uniform(-10,10)) ///
prior({y: cons}, normal(0,10)): truncreg y x1 x2, ll(17)

Save simulation results to simdata.dta, and use a random-number seed for reproducibility
bayes, saving(simdata) rseed(123):, ///
truncreg y x1 x2, ll(17)

Specify 20,000 Markov chain Monte Carlo (MCMC) samples, set length of the burn-in period to 5,000,
and request that a dot be displayed every 500 simulations

bayes, mcmcsize(20000) burnin(5000) dots(500):, ///
truncreg y x1 x2, ll(17)

In the above, request that the 90% highest posterior density (HPD) credible interval be displayed
instead of the default 95% equal-tailed credible interval

bayes, clevel(90) hpd

Also see Quick start in [BAYES] bayes and Quick start in [R] truncreg.

Menu
Statistics > Linear models and related > Bayesian regression > Truncated regression
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Syntax
bayes

[
, bayesopts

]
: truncreg depvar

[
indepvars

] [
if
] [

in
] [

weight
] [

, options
]

options Description

Model

noconstant suppress constant term
ll(varname | #) left-truncation variable or limit
ul(varname | #) right-truncation variable or limit
offset(varname) include varname in model with coefficient constrained to 1

Reporting

display options control spacing, line width, and base and empty cells

level(#) set credible level; default is level(95)

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.
fweights are allowed; see [U] 11.1.6 weight.
bayes: truncreg, level() is equivalent to bayes, clevel(): truncreg.
For a detailed description of options, see Options in [R] truncreg.

bayesopts Description

Priors
∗normalprior(#) specify standard deviation of default normal priors for regression

coefficients; default is normalprior(100)
∗igammaprior(# #) specify shape and scale of default inverse-gamma prior for

variance; default is igammaprior(0.01 0.01)

prior(priorspec) prior for model parameters; this option may be repeated
dryrun show model summary without estimation

Simulation

nchains(#) number of chains; default is to simulate one chain
mcmcsize(#) MCMC sample size; default is mcmcsize(10000)

burnin(#) burn-in period; default is burnin(2500)

thinning(#) thinning interval; default is thinning(1)

rseed(#) random-number seed
exclude(paramref) specify model parameters to be excluded from the simulation results

Blocking
∗blocksize(#) maximum block size; default is blocksize(50)

block(paramref
[
, blockopts

]
) specify a block of model parameters; this option may be repeated

blocksummary display block summary
∗noblocking do not block parameters by default
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Initialization

initial(initspec) specify initial values for model parameters with a single chain
init#(initspec) specify initial values for #th chain; requires nchains()

initall(initspec) specify initial values for all chains; requires nchains()

nomleinitial suppress the use of maximum likelihood estimates as starting values
initrandom specify random initial values
initsummary display initial values used for simulation
∗noisily display output from the estimation command during initialization

Adaptation

adaptation(adaptopts) control the adaptive MCMC procedure
scale(#) initial multiplier for scale factor; default is scale(2.38)

covariance(cov) initial proposal covariance; default is the identity matrix

Reporting

clevel(#) set credible interval level; default is clevel(95)

hpd display HPD credible intervals instead of the default equal-tailed
credible intervals

eform
[
(string)

]
report exponentiated coefficients and, optionally, label as string

batch(#) specify length of block for batch-means calculations;
default is batch(0)

saving(filename
[
, replace

]
) save simulation results to filename.dta

nomodelsummary suppress model summary
chainsdetail display detailed simulation summary for each chain[
no
]
dots suppress dots or display dots every 100 iterations and iteration

numbers every 1,000 iterations; default is nodots

dots(#
[
, every(#)

]
) display dots as simulation is performed[

no
]
show(paramref) specify model parameters to be excluded from or included in

the output
notable suppress estimation table
noheader suppress output header
title(string) display string as title above the table of parameter estimates
display options control spacing, line width, and base and empty cells

Advanced

search(search options) control the search for feasible initial values
corrlag(#) specify maximum autocorrelation lag; default varies
corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)

∗Starred options are specific to the bayes prefix; other options are common between bayes and bayesmh.
Options prior() and block() may be repeated.
priorspec and paramref are defined in [BAYES] bayesmh.
paramref may contain factor variables; see [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Model parameters are regression coefficients {depvar:indepvars} and variance {sigma2}. Use the dryrun option to
see the definitions of model parameters prior to estimation.

For a detailed description of bayesopts, see Options in [BAYES] bayes.



bayes: truncreg — Bayesian truncated regression 657

Remarks and examples
For a general introduction to Bayesian analysis, see [BAYES] Intro. For a general introduction

to Bayesian estimation using an adaptive Metropolis–Hastings algorithm, see [BAYES] bayesmh. For
remarks and examples specific to the bayes prefix, see [BAYES] bayes. For details about the estimation
command, see [R] truncreg.

For a simple example of the bayes prefix, see Introductory example in [BAYES] bayes.

Stored results
See Stored results in [BAYES] bayes.

Methods and formulas
See Methods and formulas in [BAYES] bayesmh.

Also see
[BAYES] bayes — Bayesian regression models using the bayes prefix

[R] truncreg — Truncated regression

[BAYES] Bayesian postestimation — Postestimation tools for bayesmh and the bayes prefix

[BAYES] Bayesian estimation — Bayesian estimation commands

[BAYES] Bayesian commands — Introduction to commands for Bayesian analysis

[BAYES] Intro — Introduction to Bayesian analysis

[BAYES] Glossary



Title

bayes: var — Bayesian vector autoregressive models

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

bayes: var fits a Bayesian vector autoregressive (VAR) model—a multivariate time-series regression
of each dependent variable on lags of itself and on lags of all the other dependent variables. bayes: var
also fits a variant of Bayesian VAR models known as the Bayesian VARX model, which also includes
exogenous variables. The command supports four classes of priors, which are specific to VAR, including
the original and the conjugate Minnesota priors. See [BAYES] bayes and [TS] var for details.

Quick start
Bayesian VAR for three time series (K = 3) with default two lags (p = 2) and using the default

conjugate Minnesota prior
bayes: var y1 y2 y3

Same as above, but with three lags and exogenous variable x1 (m = 1)
bayes: var y1 y2 y3, lags(1/3) exog(x1)

Same as above, but with random seed for reproducibility and saving simulation results in dataset
bvarsim.dta

bayes, rseed(17) saving(bvarsim): var y1 y2 y3, lags(1/3) exog(x1)

Customize the default conjugate Minnesota prior by changing the self-variables tightness parameter
from 0.1 to 1, the lag decay from 1 to 0.5, and the exogenous-variables tightness parameter from
100 to 1

bayes, minnconjprior(selftight(1) lagdecay(0.5) exogtight(1)): ///
var y1 y2 y3, lags(1/3) exog(x1)

Report posterior summaries only for coefficients on lag 1 and lag 3 of variable y1 in the first equation
(y1), on lag 2 of variable y3 in the second equation (y2), and on exogenous variable x1 in the
third equation (y3)

. bayesstats summary {y1:L1.y1} {y1:L3.y1} {y2:L2.y3} {y3:x1}

Bayesian VAR for three time series with two lags using the original Minnesota prior with fixed AR
error covariance

bayes, minnfixedcovprior: var y1 y2 y3

Same as above, but changing some of the default original Minnesota prior settings: self-variables
tightness parameter from 0.1 to 0.5 and cross-variables tightness parameter from 0.5 to 0.1

bayes, minnfixedcovprior(selftight(0.5) crosstight(0.1)): var y1 y2 y3

Specify independent multivariate normal (MVN) prior for VAR coefficients and inverse-Wishart prior
for error covariance

bayes, minniwishprior: var y1 y2 y3
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Same as above, but specify a 3 × 1 zero mean vector for the MVN prior for self-variables first-lag
coefficients (other coefficients are also set to 0 automatically) and a 3× 3 identity scaling matrix
for the inverse-Wishart prior for error covariance

matrix b0 = J(3,1,0)
matrix Omega0 = diag(J(3,1,1))
bayes, minniwishprior(mean(b0) scale(Omega0)): var y1 y2 y3

Specify independent MVN prior for coefficients and multivariate Jeffreys prior for error covariance
bayes, minnjeffprior: var y1 y2 y3

Same as above, but change the default MVN prior mean vector to a 21 × 1 zero mean vector and
covariance matrix to a 21× 21 identity matrix for all 21 = 3× (2× 3 + 1) coefficients

matrix b0 = J(21,1,0)
matrix S0 = I(21)
bayes, minniwishprior(mean(b0) cov(S0)): var y1 y2 y3

Also see Quick start in [BAYES] bayes and Quick start in [TS] var.

Menu
Statistics > Multivariate time series > Bayesian models > Vector autoregression (VAR)

Syntax
bayes

[
, bayesopts

]
: var depvarlist

[
if
] [

in
] [

, options
]

options Description

Model

noconstant suppress constant term
lags(numlist) specify a list of lags for the VAR
exog(varlist) specify exogenous variables

level(#) set credible level; default is level(95)

You must tsset your data before using bayes: var; see [TS] tsset.
depvarlist and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.
bayes: var, level() is equivalent to bayes, clevel(): var.
For a detailed description of options, see Options in [TS] var.

bayesopts Description

Priors
∗minnconjprior

[
(conjopts)

]
conjugate Minnesota prior for VAR coefficients and error covariance;

the default
∗minnfixedcovprior

[
(fixcovopts)

]
original Minnesota prior with fixed error covariance

∗minniwishprior
[
(iwishopts)

]
Minnesota prior with inverse-Wishart prior for error covariance

∗minnjeffprior
[
(jeffopts)

]
Minnesota prior with multivariate Jeffreys prior for error covariance

dryrun show model summary without estimation
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Simulation

nchains(#) number of chains; default is to simulate one chain
mcmcsize(#) MCMC sample size; default is mcmcsize(10000)

burnin(#) burn-in period; default is burnin(2500)

thinning(#) thinning interval; default is thinning(1)

rseed(#) random-number seed
exclude(paramref) specify model parameters to be excluded from the simulation results

Blocking

blocksummary display block summary
Initialization

initial(initspec) specify initial values for model parameters with a single chain
init#(initspec) specify initial values for #th chain; requires nchains()

initall(initspec) specify initial values for all chains; requires nchains()

nomleinitial suppress the use of maximum likelihood estimates as starting values
initrandom specify random initial values
initsummary display initial values used for simulation
∗noisily display output from the estimation command during initialization

Reporting

clevel(#) set credible interval level; default is clevel(95)

hpd display HPD credible intervals instead of the default equal-tailed
credible intervals

eform
[
(string)

]
report exponentiated coefficients and, optionally, label as string

batch(#) specify length of block for batch-means calculations;
default is batch(0)

saving(filename
[
, replace

]
) save simulation results to filename.dta

nomodelsummary suppress model summary
chainsdetail display detailed simulation summary for each chain[
no
]
dots suppress dots or display dots every 100 iterations and iteration

numbers every 1,000 iterations; default is nodots

dots(#
[
, every(#)

]
) display dots as simulation is performed[

no
]
show(paramref) specify model parameters to be excluded from or included in

the output
notable suppress estimation table
noheader suppress output header
title(string) display string as title above the table of parameter estimates
display options control spacing, line width, and base and empty cells

Advanced

search(search options) control the search for feasible initial values
corrlag(#) specify maximum autocorrelation lag; default varies
corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)

∗Starred options are specific to the bayes prefix; other options are common between bayes and bayesmh.
priorspec and paramref are defined in [BAYES] bayesmh.
paramref may contain factor variables; see [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Model parameters are K×p outcome-specific regression coefficients for lagged outcome (dependent) variables plus a
constant term unless noconstant is specified: {depvar k:Ldepvar 1 Ldepvar 2 . . . Ldepvar K cons}, where
Ldepvar k denotes a list of lags for dependent variable depvar k such as the default L1.depvar k L2.depvar k.
If exog(varlist) is specified, regression coefficients also include K×m outcome-specific coefficients for exogenous
variables: {depvar k:varlist}. Use the dryrun option to see the definitions of model parameters prior to estimation.

Only one of options minnconjprior(), minnfixedcovprior(), minniwishprior(), or minnjeffprior() may
be specified.

For a detailed description of bayesopts, see Options below.

conjopts Description

mean(. . .) mean vector for the MVN prior
phi(matname) covariance product matrix Φ0 for the MVN prior; default is diagonal

autoregressive-structure matrix
df(#) degrees of freedom for the inverse-Wishart prior; default is K + 2
scale(matname) scale matrix for the inverse-Wishart prior; default is proportional to

AR estimate of error covariance
minnopts Minnesota prior options

fixcovopts Description

mean(. . .) mean vector for the MVN prior
minnopts Minnesota prior options

iwishopts Description

mean(. . .) mean vector for the MVN prior
cov(matname) covariance matrix for the MVN prior; default is diagonal

autoregressive-structure matrix
df(#) degrees of freedom for the inverse-Wishart prior; default is K + 2
scale(matname) scale matrix for the inverse-Wishart prior; default is proportional to

AR estimate of error covariance
minnopts Minnesota prior options

jeffopts Description

mean(. . .) mean vector for the MVN prior
cov(matname) covariance matrix for the MVN prior; default is diagonal

autoregressive-structure matrix
minnopts Minnesota prior options

meanopts Description

mean(matname) mean vector for the MVN prior for all K(Kp+ 1 +m) coefficients; default
is to use 1s for K self-variables first-lag coefficients and 0s otherwise

mean(m1,. . .,mK) mean values for the MVN prior for K self-variables first-lag coefficients;
all other means are assumed to be zero
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minnopts Description

selftight(#) self-variables tightness parameter for the Minnesota prior; default is
selftight(0.1)

crosstight(#) cross-variables tightness parameter for the Minnesota priors; default is
crosstight(0.5); not used with conjugate Minnesota prior

lagdecay(#) lag decay parameter for the Minnesota prior; default is lagdecay(1)

exogtight(#) exogenous-variables tightness parameter for the Minnesota prior; default is
exogtight(100)

arcov use separate AR models to estimate error covariance
varcov use VAR model to estimate error covariance

Options

noconstant, lags(numlist), and exog(varlist); see [TS] var.

� � �
Priors �

minnconjprior and minnconjprior(conjopts) specify that a conjugate Minnesota prior be used
for VAR coefficients and error covariance. minnconjprior is the default. The prior for VAR
coefficients is MVN with mean and covariance based on the original Minnesota prior. The prior for
the error covariance is an inverse-Wishart distribution. See Conjugate Minnesota prior for VAR
model with unknown error covariance in Methods and formulas.

conjopts are mean(meanspec), phi(matname), df(#), scale(matname), and minnopts.
meanspec is one of matnameK(Kp+1+m), or matnameK , or m1, . . . , mK .

mean(matname) specifies the mean vector (as a Stata matrix) of the MVN prior distribution
for all K(Kp + 1 + m) VAR coefficients. The default is to use ones for K self-variables
first-lag coefficients and zeros otherwise.

mean(m1,. . .,mK |matname) specifies K mean values or mean vector matname of length
K of prior means for the self-variables first-lag coefficients. The rest are set to zero.

phi(matname) specifies the covariance product matrix Φ0 (as a Stata matrix) of the MVN
prior distribution for the VAR coefficients. The default is the Minnesota factor covariance, a
diagonal matrix that accounts for the autoregressive structure of the VAR model; see Methods
and formulas.

df(#) specifies the degrees of freedom of the inverse-Wishart prior distribution for the error
covariance. The default is K + 2, and this is the minimum allowed value.

scale(matname) specifies the scale matrix of the inverse-Wishart prior distribution for the error
covariance. The default is proportional to the diagonal matrix of K AR variance estimates,
one for each VAR equation; see Methods and formulas.

minnfixedcovprior and minnfixedcovprior(fixcovopts) specify that the Minnesota prior with
a fixed AR (or VAR if option varcov is specified) covariance be used for VAR coefficients. This
is the original Minnesota prior for Bayesian VAR models. In this model formulation, the error
covariance is considered fixed, thus decreasing the number of parameters needed to be simulated
and speeding up computations. See Original Minnesota prior with known (fixed) error covariance
in Methods and formulas.

fixcovopts are mean(meanspec) and minnopts.
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minniwishprior and minniwishprior(iwishopts) specify that the MVN prior for VAR coefficients
and an inverse-Wishart prior for the error covariance be used. The priors for VAR coefficients and
error covariance are independent. The default MVN prior for coefficients uses the Minnesota prior
mean vector and covariance matrix. See MVN-inverse Wishart prior in Methods and formulas.

iwishopts are mean(meanspec), cov(matname), df(#), scale(matname), and minnopts.

cov(matname) specifies the covariance matrix Ω0 (as a Stata matrix) of the MVN prior
distribution for the VAR coefficients. The default is a diagonal matrix that accounts for the
autoregressive structure of the VAR model; see Methods and formulas.

df(#) specifies the degrees of freedom of the inverse-Wishart prior distribution for the error
covariance. The default is K + 2, and this is the minimum allowed value.

scale(matname) specifies the scale matrix of the inverse-Wishart prior distribution for the error
covariance. The default is proportional to the diagonal matrix of K AR variance estimates,
one for each VAR equation; see Methods and formulas.

minnjeffprior and minnjeffprior(jeffopts) specify that the MVN prior for VAR coefficients and
the Jeffreys prior for the error covariance be used. The priors for VAR coefficients and error
covariance are independent. The default MVN prior for coefficients uses the Minnesota prior mean
vector and covariance matrix. See Multivariate normal-diffuse (normal-Jeffreys) prior in Methods
and formulas.

jeffopts are mean(meanspec), cov(matname), and minnopts.

cov(matname) specifies the covariance matrix Ω0 (as a Stata matrix) of the MVN prior
distribution for the VAR coefficients. The default is a diagonal matrix that accounts for the
autoregressive structure of the VAR model; see Methods and formulas.

minnopts are selftight(#), crosstight(#), lagdecay(#), exogtight(#), arcov, and varcov.

selftight(#) specifies the self-variables tightness parameter, λ1, for the Minnesota prior. The
default is selftight(0.1). The smaller this value, the more concentrated the prior distribution
around the prior mean for self-variables lag coefficients. See Methods and formulas.

crosstight(#) specifies the cross-variables tightness parameter, λ2, for the Minnesota prior.
The default is crosstight(0.5). The smaller this value, the more concentrated the prior
distribution around the prior mean for cross-variables lag coefficients. crosstight() is not
used with the conjugate Minnesota prior. See Methods and formulas.

lagdecay(#) specifies the lag-decay parameter, λ3, for the Minnesota prior. This is a rate of
lag-decay correction to the prior standard deviation of all endogenous-variables lag coefficients.
See Methods and formulas.

exogtight(#) specifies the exogenous-variables tightness parameter, λ4, for the Minnesota prior.
This is a multiplicative factor to the prior standard deviation of exogenous-variables coefficients.
See Methods and formulas.

arcov, the default, specifies that the diagonal AR matrix estimate be used as an estimate of the
error covariance matrix. This AR matrix has, on the diagonal, the estimates of error variances
obtained from fitting a separate AR(p) model to each dependent variable. Only one of arcov
or varcov may be specified.

varcov specifies that the VAR matrix estimate be used as an estimate of the error covariance
matrix. The VAR matrix is an estimate of the error covariance obtained from fitting a VAR(p)
model to the dependent variables.

arcov and varcov are used with all Minnesota priors. For the original prior with a fixed error
covariance, these options specify which estimate will be used for the error covariance matrix.
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For other priors, these options specify which estimate will be used for the prior scale matrix
of an inverse-Wishart prior for error covariance matrix.

See descriptions of other bayesopts in Options in [BAYES] bayes.

Remarks and examples
For a general introduction to Bayesian analysis, see [BAYES] Intro. For an introduction to VAR

models, see [TS] var intro. For a general introduction to Bayesian estimation using Gibbs sampling,
see [BAYES] bayesmh. For remarks and examples specific to the bayes prefix, see [BAYES] bayes.
For details about the estimation command, see [TS] var.

For a simple example of the bayes prefix, see Introductory example in [BAYES] bayes.

Remarks are presented under the following headings:
Advantages of Bayesian VAR models
Introductory examples
US macroeconomic examples

Examples are presented under the following headings:
Default Bayesian VAR model
Bayesian VAR model with original Minnesota prior
MVN priors with unrestricted error covariances
Testing Bayesian VAR stability
Explaining the Minnesota prior
Choosing the number of lags of a VAR model
Bayesian VAR(4) model estimation
IRFs
Forecasting
One-step-ahead Bayesian predictions

Advantages of Bayesian VAR models

Since their introduction by Doan, Litterman, and Sims (1984), Bayesian VAR models have gained
popularity for several reasons. As Bayesian models in general, they benefit from a unified and
coherent approach of Bayesian inference; see [BAYES] Intro. Kadiyala and Karlsson (1997), Bańbura,
Giannone, and Reichlin (2008), and Dieppe, Legrand, and van Roye (2016) describe advantages of
Bayesian VARs. We summarize some below.

One of the major problems with traditional VAR models is overparameterization. The number of
regression parameters in a VAR model is quadratic to the number of response variables and proportional
to the number of lags. This leads to many parameters being estimated even for small models and
thus to loss of degrees of freedom when maximum likelihood estimation is used. Overparameterized
models also produce poor forecasts. The problem of overparameterization is exacerbated when VAR
models are applied to small datasets, which is common in many economic applications.

In the Bayesian framework, VAR model parameters are considered random and are controlled by
prior distributions. Prior selection, viewed as a limitation of Bayesian inference in the past, is now
a powerful tool for flexible analysis and not purely a source of subjective inference. For example, it
is easy to shrink higher-lag regression parameters through their priors and thus reduce the effective
number of lags. One such example prior is the Minnesota prior (Litterman 1980). The Minnesota prior
on regression coefficients and error covariance supports a wide range of models, from oversimplified
to overparameterized ones. The Bayesian out-of-sample prediction errors, which can be obtained by
simulation, provide a measure for choosing between oversimplified and overparameterized models
(Litterman 1984). In cases of small or low-quality data, stronger priors based on existing expert
knowledge can greatly enhance otherwise potentially unreliable VAR analysis.
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VAR model specification requires choosing the number of lags. Within the Bayesian approach, we
can use Bayes factors to compare models using different lags and choose the best one. We can use
Bayes factors also for other decision-based inference such as selecting exogenous variables.

The availability of flexible priors, reliable lag-selection criteria, and efficient sampling algorithms
capable of producing precise Bayesian estimates makes Bayesian VAR inference a useful alternative
to the traditional VAR analysis.

Introductory examples

Example 1: Default Bayesian VAR model

Let’s revisit example 1 from [TS] var, which replicates a case from Lütkepohl (2005, 77–78).
The example models the relationships between the first differences of the natural log of investment,
dln inv, of income, dln inc, and of consumption, dln cons, registered at each quarter of the
years between 1960 and 1978 in West Germany.

. webuse lutkepohl2
(Quarterly SA West German macro data, Bil DM, from Lutkepohl 1993 Table E.1)

. tsset

Time variable: qtr, 1960q1 to 1982q4
Delta: 1 quarter

The original VAR in example 1 considers all observations before 1979, has two lags, and is fit
using the var command.



666 bayes: var — Bayesian vector autoregressive models

. var dln_inv dln_inc dln_consump if qtr<=tq(1978q4)

Vector autoregression

Sample: 1960q4 thru 1978q4 Number of obs = 73
Log likelihood = 606.307 AIC = -16.03581
FPE = 2.18e-11 HQIC = -15.77323
Det(Sigma_ml) = 1.23e-11 SBIC = -15.37691

Equation Parms RMSE R-sq chi2 P>chi2

dln_inv 7 .046148 0.1286 10.76961 0.0958
dln_inc 7 .011719 0.1142 9.410683 0.1518
dln_consump 7 .009445 0.2513 24.50031 0.0004

Coefficient Std. err. z P>|z| [95% conf. interval]

dln_inv
dln_inv

L1. -.3196318 .1192898 -2.68 0.007 -.5534355 -.0858282
L2. -.1605508 .118767 -1.35 0.176 -.39333 .0722283

dln_inc
L1. .1459851 .5188451 0.28 0.778 -.8709326 1.162903
L2. .1146009 .508295 0.23 0.822 -.881639 1.110841

dln_consump
L1. .9612288 .6316557 1.52 0.128 -.2767936 2.199251
L2. .9344001 .6324034 1.48 0.140 -.3050877 2.173888

_cons -.0167221 .0163796 -1.02 0.307 -.0488257 .0153814

dln_inc
dln_inv

L1. .0439309 .0302933 1.45 0.147 -.0154427 .1033046
L2. .0500302 .0301605 1.66 0.097 -.0090833 .1091437

dln_inc
L1. -.1527311 .131759 -1.16 0.246 -.4109741 .1055118
L2. .0191634 .1290799 0.15 0.882 -.2338285 .2721552

dln_consump
L1. .2884992 .1604069 1.80 0.072 -.0258926 .6028909
L2. -.0102 .1605968 -0.06 0.949 -.3249639 .3045639

_cons .0157672 .0041596 3.79 0.000 .0076146 .0239198

dln_consump
dln_inv

L1. -.002423 .0244142 -0.10 0.921 -.050274 .045428
L2. .0338806 .0243072 1.39 0.163 -.0137607 .0815219

dln_inc
L1. .2248134 .1061884 2.12 0.034 .0166879 .4329389
L2. .3549135 .1040292 3.41 0.001 .1510199 .558807

dln_consump
L1. -.2639695 .1292766 -2.04 0.041 -.517347 -.010592
L2. -.0222264 .1294296 -0.17 0.864 -.2759039 .231451

_cons .0129258 .0033523 3.86 0.000 .0063554 .0194962
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The output table reports summaries for 21 regression coefficients. But in VAR models, it is usually
more instructive to analyze how shocks on a dependent variable affect other dependent variables and
the variable itself over time. In this example, we focus on technical aspects of fitting Bayesian VAR
models and the immediate impact on regression coefficients and covariances. Later in example 8, we
demonstrate how to use more common impulse–response functions (IRFs) to interpret results.

Let us start by fitting the same VAR model using the bayes: var command with the default
model prior—conjugate Minnesota prior for regression coefficients and error covariance. In addition
to the bayes prefix, we specify the rseed() option for reproducibility and run three MCMC chains
to compute a Gelman–Rubin convergence diagnostic; see Convergence diagnostics using multiple
chains.

. bayes, rseed(17) nchains(3):
> var dln_inv dln_inc dln_consump if qtr<=tq(1978q4)
Chain 1

Burn-in ...
Simulation ...

Chain 2
Burn-in ...
Simulation ...

Chain 3
Burn-in ...
Simulation ...

Model summary

Likelihood:
dln_inv
dln_inc

dln_consump ~ mvnormal(3,xb_dln_inv,xb_dln_inc,xb_dln_consump,{Sigma,m})

Priors:
{dln_inv:L(1 2).dln_inv} (1)
{dln_inv:L(1 2).dln_inc} (1)

{dln_inv:L(1 2).dln_consump} (1)
{dln_inv:_cons} (1)

{dln_inc:L(1 2).dln_inv} (2)
{dln_inc:L(1 2).dln_inc} (2)

{dln_inc:L(1 2).dln_consump} (2)
{dln_inc:_cons} (2)

{dln_consump:L(1 2).dln_inv} (3)
{dln_consump:L(1 2).dln_inc} (3)

{dln_consump:L(1 2).dln_consump} (3)
{dln_consump:_cons} ~ varconjugate(3,2,1,_b0,{Sigma,m},_Phi0)

(3)
{Sigma,m} ~ iwishart(3,5,_Sigma0)

(1) Parameters are elements of the linear form xb_dln_inv.
(2) Parameters are elements of the linear form xb_dln_inc.
(3) Parameters are elements of the linear form xb_dln_consump.

Bayesian vector autoregression Number of chains = 3
Gibbs sampling Per MCMC chain:

Iterations = 12,500
Burn-in = 2,500
Sample size = 10,000

Sample: 1960q4 thru 1978q4 Number of obs = 73
Avg acceptance rate = 1
Avg efficiency: min = .9755

avg = .994
max = 1

Avg log marginal-likelihood = 483.43596 Max Gelman--Rubin Rc = 1
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Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

dln_inv
dln_inv

L1. .4808475 .103581 .000598 .480019 .2786408 .6837882
L2. .0068788 .0627703 .000362 .0069781 -.1167651 .1290908

dln_inc
L1. .1026098 .4103202 .002369 .1044135 -.7070827 .8989748
L2. .0320344 .2434573 .001406 .032674 -.4520181 .5169279

dln_consump
L1. -.0181305 .4774359 .002766 -.0166627 -.9574952 .9252084
L2. .0297566 .2885481 .001687 .0288948 -.5385765 .5989857

_cons .0063813 .0152462 .000088 .0063497 -.0235027 .0364822

dln_inc
dln_inv

L1. .0148781 .0245811 .000142 .0149684 -.033299 .0630655
L2. .001391 .0147206 .000086 .0013496 -.0272677 .0305663

dln_inc
L1. .5782111 .0966633 .000564 .5787724 .3873585 .7675225
L2. .0130696 .0576478 .000333 .0131284 -.0985297 .126328

dln_consump
L1. -.0315052 .1143589 .000664 -.0311991 -.2557682 .1961411
L2. -.0193878 .0681031 .000393 -.0194134 -.1543933 .1152181

_cons .0087345 .0036292 .000021 .0087388 .0016601 .0158279

dln_consump
dln_inv

L1. -.0183338 .0216079 .000125 -.0182276 -.0610608 .0238827
L2. .0086858 .0131225 .000076 .0087476 -.0172135 .0344555

dln_inc
L1. -.0283731 .0857885 .000498 -.0287275 -.1961209 .1409767
L2. .0344015 .0508225 .000297 .0344959 -.0658067 .1335025

dln_consump
L1. .5452017 .1011028 .000584 .5452941 .3461853 .7423402
L2. .0528311 .0603558 .00035 .0523857 -.0640511 .1727009

_cons .0078026 .0032046 .000019 .0077938 .0015249 .014078

Sigma_1_1 .0039149 .0006512 3.8e-06 .0038459 .002843 .0054003
Sigma_2_1 -.0000195 .0001079 6.2e-07 -.0000193 -.0002359 .0001924
Sigma_3_1 .0001329 .000097 5.6e-07 .0001291 -.0000493 .0003346
Sigma_2_2 .000219 .0000365 2.1e-07 .0002148 .0001587 .0003014
Sigma_3_2 .0000463 .0000232 1.3e-07 .0000451 4.14e-06 .000096
Sigma_3_3 .0001703 .0000282 1.6e-07 .0001673 .0001239 .0002344

Note: Default initial values are used for multiple chains.

The simulation is performed using Gibbs sampling, which provides high sampling efficiency, 0.99
on average. The maximum Gelman–Rubin Rc statistic is a perfect 1, which suggests no convergence
issues. Because of this and to speed up computation, we will use only one chain in subsequent
examples.
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The model summary provides description of the model. We have an MVN likelihood for the
error terms. Regression coefficients are assigned a conjugate Minnesota prior, which is labeled as
varconjugate(3,2,1, b0,{Sigma,m}, Phi0) in the output. The arguments are the number of
dependent variables (3), number of lags (2), number of exogenous variables (0) plus a constant term
per equation (1), default prior mean vector ( b0), error covariance matrix parameter ({Sigma,m}),
and Minnesota factor covariance ( Phi0), which is a function of tightness parameters that control
the concentration of the prior around its mean. The conjugate Minnesota prior for the coefficients is
MVN with mean vector β0 and covariance Σ ⊗ Φ0, where β0 and Φ0 are defined in Methods and
formulas. We discuss the Minnesota prior in detail in example 5. If you are not familiar with this
prior, you may want to look at this example.

Error covariance {Sigma,m} is assigned an inverse-Wishart prior with default degrees of freedom
df = K + 2 = 5 and scale matrix Scale0= (df −K − 1) Sigma0= Sigma0, where Sigma0
is the diagonal AR covariance matrix, a diagonal matrix formed by error-variance estimates from
fitting a separate AR model to each dependent variable; see VAR model specification in Methods and
formulas.

The table of results contains three groups of regression parameters, one for each dependent
variable, just like the output from the var command. bayes: var additionally displays the estimates
of the error covariance {Sigma,m}. The output table reports standard Bayesian posterior summaries
([BAYES] bayesstats summary).

The prior mean vector b0 is 1 for the coefficients corresponding to the first own lags of
dependent variables, which we also refer to as self-variables first-lag coefficients, and 0 otherwise.
In the output table, these are labeled as {dln inv:L1.dln inv}, {dln inc:L1.dln inc}, and
{dln consump:L1.dln consump}. As such, the prior is centered around each variable being a
univariate random walk. The estimated posterior means for the coefficients reflect the strong prior
assumptions in the model. For example, the estimated posterior mean of {dln inv:L1.dln inv}
is 0.48 with a 95% CrI of [0.28, 0.68] compared with the estimates from the var command of −0.32
with a 95% CI of −0.55,−0.086, which are quite different. Similarly, the posterior mean estimate
for {dln inc:L1.dln inc} is 0.58 versus −0.15 and for {dln consump:L1.dln consump} is
0.55 versus −0.26. Continuing with the dln consump equation, we see that the posterior mean
estimates of cross-variable lag coefficients are small. The estimated posterior mean of the first lag
of income, {dln consump:L1.dln inc}, is −0.03, and its 95% CrI includes 0. From the var
results, {dln consump:L1.dln inc} is 0.22 and is statistically significantly different from 0 (with
p-value= 0.034).

All three self-variables first-lag coefficients have positive posterior estimates: means, medians,
and 95% CrIs. Posterior estimates of remaining coefficients are close to 0. The results suggest a
strong AR impact for each dependent variable and weak cross-correlations between the variables. The
{Sigma,m} estimates show that there is some residual correlation in the error terms unexplained
by the regression coefficients. The prior thus dominates the information about regression coefficients
available in the data. This can be partially explained by the relatively small sample size of only 73
observations given the number of estimated parameters.

The results from the VAR models rely on the stability assumption. Thus, it is important to test
this assumption, as we demonstrate in example 4. When the assumption is satisfied, as it is for these
data, you may consider specifying priors for regression coefficients that are centered around zero;
for instance, using these priors for our dataset produces results that are similar to those from var
(example 2).
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Example 2: Bayesian VAR model with original Minnesota prior

In early work on Bayesian VAR (Doan, Litterman, and Sims 1984 and Litterman 1986), researchers
simplified the model prior by assuming a known, fixed-error covariance matrix. The covariance Σ

in the MVN likelihood is replaced by an estimate Σ̂. A typical choice for Σ̂ is a diagonal matrix
of variance estimates obtained by fitting a separate AR model to each dependent variable. The prior
covariance for regression coefficients is then obtained from Σ̂ as described in Original Minnesota
prior with known (fixed) error covariance in Methods and formulas. This prior specification is known
as the original Minnesota prior. Also see example 5.

To fit a model with the original Minnesota prior, we specify the minnfixedcovprior option with
bayes: var.

. bayes, minnfixedcovprior rseed(17):
> var dln_inv dln_inc dln_consump if qtr<=tq(1978q4)
Burn-in ...
Simulation ...

Model summary

Likelihood:
dln_inv
dln_inc

dln_consump ~ mvnormal(3,xb_dln_inv,xb_dln_inc,xb_dln_consump,_Sigma0)

Priors:
{dln_inv:L(1 2).dln_inv} (1)
{dln_inv:L(1 2).dln_inc} (1)

{dln_inv:L(1 2).dln_consump} (1)
{dln_inv:_cons} (1)

{dln_inc:L(1 2).dln_inv} (2)
{dln_inc:L(1 2).dln_inc} (2)

{dln_inc:L(1 2).dln_consump} (2)
{dln_inc:_cons} (2)

{dln_consump:L(1 2).dln_inv} (3)
{dln_consump:L(1 2).dln_inc} (3)

{dln_consump:L(1 2).dln_consump} (3)
{dln_consump:_cons} ~ minnesota(3,2,1,_b0,_Sigma0,.1,.5,1,100)

(3)

(1) Parameters are elements of the linear form xb_dln_inv.
(2) Parameters are elements of the linear form xb_dln_inc.
(3) Parameters are elements of the linear form xb_dln_consump.
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Bayesian vector autoregression MCMC iterations = 12,500
Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Sample: 1960q4 thru 1978q4 Number of obs = 73

Acceptance rate = 1
Efficiency: min = .946

avg = .9957
Log marginal-likelihood = 478.02208 max = 1

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

dln_inv
dln_inv

L1. .4836549 .0751107 .000751 .4825203 .3359447 .6314641
L2. .0077444 .0458064 .000458 .0070614 -.0813891 .0984996

dln_inc
L1. .0370079 .1779866 .00178 .0381258 -.3085588 .3854122
L2. .0090371 .0963583 .000964 .0081537 -.1793915 .1992546

dln_consump
L1. -.0028656 .2124749 .002125 -.0027569 -.4232734 .410695
L2. .0094103 .1125252 .001125 .0087853 -.210387 .2303232

_cons .0081521 .0082618 .000082 .0080767 -.0079144 .0244083

dln_inc
dln_inv

L1. .0052036 .0117865 .000118 .0051966 -.0176583 .0288828
L2. .0003523 .0063033 .000061 .0003332 -.011977 .012503

dln_inc
L1. .5758156 .0761506 .000776 .5767133 .4271662 .7249808
L2. .0120131 .0457046 .000457 .0124684 -.0785969 .1006224

dln_consump
L1. -.0081978 .0543999 .000537 -.0080116 -.1156294 .0990992
L2. -.0057737 .0288414 .000288 -.0056489 -.0627868 .0500214

_cons .0082507 .0024756 .000025 .0082296 .0035138 .0131572

dln_consump
dln_inv

L1. -.0068309 .0099134 .000102 -.0067224 -.0262589 .0127061
L2. .002545 .0052876 .000053 .0025395 -.0079491 .0129162

dln_inc
L1. -.0091519 .0393528 .000394 -.0091127 -.0874506 .0692072
L2. .0101553 .0207397 .000207 .0101049 -.0305975 .0503957

dln_consump
L1. .5358264 .0760533 .000752 .5362025 .3870167 .6834547
L2. .0540704 .0459402 .000459 .0538069 -.0364033 .1445824

_cons .007971 .0022349 .000022 .0079594 .0036197 .0123659

Compared with the default conjugate Minnesota prior from example 1, the error covariance matrix
{Sigma,m} in the likelihood is replaced with a fixed matrix Sigma0, a diagonal AR covariance esti-
mate. The regression coefficients are assigned the minnesota(3,2,1, b0, Sigma0,.1,.5,1,100)
prior. Most of the prior arguments are as we described in example 1, except the covariance matrix
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is now formed by Sigma0 and tightness parameters (0.1, 0.5, 1, 100); see Original Minnesota prior
with known (fixed) error covariance. Specifically, the default for the self-variables tightness parameter
λ1 is 0.1 (option selftight()), the default for the cross-variables tightness parameter λ2 is 0.5
(option crosstight()), the default for the lag-decay parameter λ3 is 1 (option lagdecay()), and
the default for the exogenous-variables tightness parameter is 100 (option exogtight()).

Like the default conjugate Minnesota prior, the original Minnesota prior places the same strong
prior assumptions on regression coefficients: the prior mean vector b0 contains 1 for self-variables
first-lag coefficients and 0s for all other coefficients. The strength of the shrinkage toward the prior
mean b0 is controlled mainly by the tightness parameter λ1, which can be reset using the Minnesota
prior option selftight(). Coefficients of exogenous variables, including the constant terms, are
shrunk toward 0 but are given wide prior variance controlled by the tightness parameter λ4 and
specified in the exogtight() option.

As expected, the results assuming the original Minnesota prior are closer to those assuming the
default conjugate Minnesota prior than to those from the var command. In the absence of strong
information about model parameters in the data, the Minnesota prior may introduce a stronger time
dependence in the results. For example, the prior mean value for {dln inv:L1.dln inv} is 1 and
the posterior mean estimate is 0.48, whereas the estimate from the var command is −0.32. It is
completely acceptable to have a negative first-lag correlation in the change of investments at quarterly
level. The Minnesota prior, however, expects an increase in investments to be followed by another
increase in investment in the next time period. The question of whether this is a reasonable prior
expectation is an empirical question. It is thus important to understand the behavior of the default
Minnesota prior and use it carefully.

To relax the time-dependence assumption of the Minnesota prior, we can change the prior mean
b0 to be a zero vector and decrease the tightness of the prior by increasing the λ1 parameter from the

default of 0.1 to 1. The prior for the self-variables first-lag coefficients thus changes from N(1, 0.01)
to N(0, 1) and those for the cross-variables first-lag coefficients from N(0, 0.0025) to N(0, 0.25).

We change the defaults by specifying the respective suboptions within the minnfixedcovprior()
option. There are several ways to specify the prior mean values. We can provide a full 1×21 vector of
mean values. Or, if we want to change the default values only for self-variables first-lag coefficients,
we can specify a vector of lower dimension, 1× 3 in our example. The remaining coefficients will
be automatically set to zeros. Alternatively, for self-variables first-lag coefficients, we can list the
values directly in the mean() suboption, that is, mean(0,0,0). We use the second approach below
and specify a zero mean vector for self-variables first-lag coefficients.
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. matrix b0 = J(1,3,0)

. bayes, minnfixedcovprior(mean(b0) selftight(1)) rseed(17):
> var dln_inv dln_inc dln_consump if qtr<=tq(1978q4)
Burn-in ...
Simulation ...

Model summary

Likelihood:
dln_inv
dln_inc

dln_consump ~ mvnormal(3,xb_dln_inv,xb_dln_inc,xb_dln_consump,_Sigma0)

Priors:
{dln_inv:L(1 2).dln_inv} (1)
{dln_inv:L(1 2).dln_inc} (1)

{dln_inv:L(1 2).dln_consump} (1)
{dln_inv:_cons} (1)

{dln_inc:L(1 2).dln_inv} (2)
{dln_inc:L(1 2).dln_inc} (2)

{dln_inc:L(1 2).dln_consump} (2)
{dln_inc:_cons} (2)

{dln_consump:L(1 2).dln_inv} (3)
{dln_consump:L(1 2).dln_inc} (3)

{dln_consump:L(1 2).dln_consump} (3)
{dln_consump:_cons} ~ minnesota(3,2,1,b0,_Sigma0,1,.5,1,100) (3)

(1) Parameters are elements of the linear form xb_dln_inv.
(2) Parameters are elements of the linear form xb_dln_inc.
(3) Parameters are elements of the linear form xb_dln_consump.

Bayesian vector autoregression MCMC iterations = 12,500
Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Sample: 1960q4 thru 1978q4 Number of obs = 73

Acceptance rate = 1
Efficiency: min = .946

avg = .9946
Log marginal-likelihood = 539.71278 max = 1

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

dln_inv
dln_inv

L1. -.2987647 .1218328 .001218 -.300605 -.5383571 -.0590116
L2. -.1415209 .1192125 .001192 -.1439763 -.3729553 .0926795

dln_inc
L1. .2014271 .5068694 .005069 .2036 -.7741228 1.196341
L2. .1683548 .4567907 .004512 .1662872 -.7269593 1.058442

dln_consump
L1. .8313647 .6128113 .006128 .8291778 -.3631793 2.037414
L2. .6988162 .554944 .005549 .6984739 -.3870548 1.810489

_cons -.0124058 .016376 .000161 -.0123152 -.0449067 .0197023



674 bayes: var — Bayesian vector autoregressive models

dln_inc
dln_inv

L1. .0401237 .0307154 .000307 .0401054 -.0194542 .1018312
L2. .0397051 .0285189 .000276 .0396625 -.0158618 .0955686

dln_inc
L1. -.1359873 .1350215 .001376 -.133623 -.4004453 .1259119
L2. .0225672 .1266313 .001266 .0237303 -.2302853 .2689963

dln_consump
L1. .269855 .1601578 .001602 .2691198 -.0423728 .579863
L2. -.003682 .1444577 .001445 -.001067 -.2915697 .276431

_cons .0158543 .0041686 .000042 .0158808 .0075933 .0241443

dln_consump
dln_inv

L1. -.0046515 .0259292 .000267 -.0043679 -.055467 .0464489
L2. .0277595 .0239298 .000239 .0277642 -.0190999 .0748595

dln_inc
L1. .1971296 .1126233 .001126 .1963476 -.025344 .4199598
L2. .273373 .100819 .001008 .2730468 .076632 .4698413

dln_consump
L1. -.2200755 .1392633 .001393 -.2176729 -.4890732 .0503819
L2. .0383448 .1342118 .001342 .0392141 -.2271728 .2978496

_cons .0132401 .0036414 .000036 .0132355 .0062362 .0203544

Now the posterior mean estimates of regression coefficients are similar to the estimates from the
original var command. For example, the posterior mean estimate of {dln inv:L1.dln inv} is
about −0.30 compared with var’s estimate of −0.32.

The original Minnesota prior always assumes no correlation between cross-equation error terms.
The following two priors relax this assumption.

Example 3: MVN priors with unrestricted error covariances

What if we want to relax the assumption about the error covariance imposed by the original Minnesota
prior? We can use a MVN-inverse-Wishart prior (option minniwishprior) or MVN-Jeffreys prior
(option minnjeffprior). These priors use the same default MVN prior for the regression coefficients
as the original Minnesota prior, but they assume an unrestricted error covariance and use the respective
inverse-Wishart or Jeffreys prior for it.

Let’s start with an MVN-inverse-Wishart prior. Continuing with example 2, we change the default
prior means for the regression coefficients to be zeros by specifying zero values for the three self-
variables first-lag coefficients in the mean() option. This specification automatically assigns zero
prior means for all other coefficients. We also use the self-variables tightness parameter of 1 instead
of the default 0.1 to loosen the prior variance tightness.
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. bayes, minniwishprior(mean(0,0,0) selftight(1)) rseed(17):
> var dln_inv dln_inc dln_consump if qtr<=tq(1978q4)
Burn-in ...
Simulation ...

Model summary

Likelihood:
dln_inv
dln_inc

dln_consump ~ mvnormal(3,xb_dln_inv,xb_dln_inc,xb_dln_consump,{Sigma,m})

Priors:
{dln_inv:L(1 2).dln_inv} (1)
{dln_inv:L(1 2).dln_inc} (1)

{dln_inv:L(1 2).dln_consump} (1)
{dln_inv:_cons} (1)

{dln_inc:L(1 2).dln_inv} (2)
{dln_inc:L(1 2).dln_inc} (2)

{dln_inc:L(1 2).dln_consump} (2)
{dln_inc:_cons} (2)

{dln_consump:L(1 2).dln_inv} (3)
{dln_consump:L(1 2).dln_inc} (3)

{dln_consump:L(1 2).dln_consump} (3)
{dln_consump:_cons} ~ varmvnormal(3,2,1,(0,0,0),_Omega0) (3)

{Sigma,m} ~ iwishart(3,5,_Sigma0)

(1) Parameters are elements of the linear form xb_dln_inv.
(2) Parameters are elements of the linear form xb_dln_inc.
(3) Parameters are elements of the linear form xb_dln_consump.

Bayesian vector autoregression MCMC iterations = 12,500
Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Sample: 1960q4 thru 1978q4 Number of obs = 73

Acceptance rate = 1
Efficiency: min = .8113

avg = .9438
Log marginal-likelihood = 527.12015 max = 1

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

dln_inv
dln_inv

L1. -.2510453 .1176975 .001153 -.2528143 -.4765424 -.0235274
L2. -.1063315 .116444 .001164 -.1059882 -.3344738 .1229004

dln_inc
L1. .2446635 .3498178 .003498 .2500731 -.4573745 .9259674
L2. .095764 .219266 .002193 .0971031 -.3381891 .5251107

dln_consump
L1. .3645458 .3744485 .003811 .3680423 -.3646316 1.108422
L2. .1400995 .2298 .002392 .1395888 -.310524 .5901507

_cons .0074369 .0119759 .000123 .0073878 -.0153556 .0307578
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dln_inc
dln_inv

L1. .046923 .0316428 .000316 .0469129 -.0145534 .1098345
L2. .0505845 .0310234 .000319 .0506224 -.0100996 .1122741

dln_inc
L1. -.1526888 .1310382 .00131 -.1527139 -.4111528 .106306
L2. -.0118679 .1209026 .001225 -.0130416 -.2506488 .2254785

dln_consump
L1. .2586053 .1552061 .001552 .259664 -.0444987 .5662822
L2. -.013651 .1354632 .001407 -.0124392 -.278631 .2532518

_cons .0170262 .0041118 .000043 .0170605 .0090405 .0250246

dln_consump
dln_inv

L1. .000902 .0253473 .000253 .0008 -.0484133 .0512205
L2. .0365412 .025467 .000261 .0366538 -.0138045 .0861043

dln_inc
L1. .2124569 .1058319 .001058 .2127713 .0019291 .421758
L2. .2993713 .0940064 .000973 .2987598 .1160611 .4852742

dln_consump
L1. -.2757223 .1279485 .001279 -.2756011 -.5238806 -.0256011
L2. -.0293205 .1199357 .001199 -.0295581 -.2669714 .2049208

_cons .0146112 .003401 .000035 .0145617 .0080611 .0213525

Sigma_1_1 .0021287 .0003691 3.9e-06 .0020854 .0015264 .0029714
Sigma_2_1 .0000718 .0000664 7.3e-07 .0000693 -.0000518 .0002108
Sigma_3_1 .0001215 .0000558 6.1e-07 .0001178 .0000212 .0002401
Sigma_2_2 .0001363 .0000239 2.6e-07 .0001338 .0000971 .0001908
Sigma_3_2 .0000601 .0000153 1.7e-07 .0000588 .0000341 .0000943
Sigma_3_3 .0000892 .0000155 1.7e-07 .0000875 .0000638 .0001243

In the model summary, the regression coefficients are assigned the varmvnormal() prior, in which
the prior covariance matrix Omega0 is a function of tightness parameters, the same as with the
original Minnesota prior.

The inverse-Wishart prior for the error covariance matrix is controlled by the degrees of freedom
and the scaling matrix. The default degrees of freedom df = K+2 = 3+2 = 5, and the default scale
is Scale0= (df−K − 1) Sigma0= Sigma0. The low degrees of freedom of the inverse-Wishart
prior constrain the {Sigma,m} matrix parameter to be close to the scaling matrix Sigma0.

The results are somewhat similar to those using the original Minnesota prior, but the error covariance
matrix is now being estimated. Some of the covariance estimates are bounded away from zero based
on their estimated CrIs, which suggests that the assumption of no correlation between the error terms
imposed by the original Minnesota prior may not be appropriate for these data. Note that these results
are closer to the results obtained from the var command.
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Instead of assuming an inverse-Wishart prior for the error covariance, we can use the multivariate
Jeffreys prior.

. bayes, minnjeffprior(mean(0,0,0) selftight(1)) rseed(17):
> var dln_inv dln_inc dln_consump if qtr<=tq(1978q4)
Burn-in ...
Simulation ...

Model summary

Likelihood:
dln_inv
dln_inc

dln_consump ~ mvnormal(3,xb_dln_inv,xb_dln_inc,xb_dln_consump,{Sigma,m})

Priors:
{dln_inv:L(1 2).dln_inv} (1)
{dln_inv:L(1 2).dln_inc} (1)

{dln_inv:L(1 2).dln_consump} (1)
{dln_inv:_cons} (1)

{dln_inc:L(1 2).dln_inv} (2)
{dln_inc:L(1 2).dln_inc} (2)

{dln_inc:L(1 2).dln_consump} (2)
{dln_inc:_cons} (2)

{dln_consump:L(1 2).dln_inv} (3)
{dln_consump:L(1 2).dln_inc} (3)

{dln_consump:L(1 2).dln_consump} (3)
{dln_consump:_cons} ~ varmvnormal(3,2,1,(0,0,0),_Omega0) (3)

{Sigma,m} ~ jeffreys(3)

(1) Parameters are elements of the linear form xb_dln_inv.
(2) Parameters are elements of the linear form xb_dln_inc.
(3) Parameters are elements of the linear form xb_dln_consump.

Bayesian vector autoregression MCMC iterations = 12,500
Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Sample: 1960q4 thru 1978q4 Number of obs = 73

Acceptance rate = 1
Efficiency: min = .8186

avg = .9489
Log marginal-likelihood = 535.28175 max = 1

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

dln_inv
dln_inv

L1. -.2455836 .1221811 .001236 -.2462348 -.4869383 -.0050753
L2. -.1025647 .1181023 .001181 -.102274 -.3362211 .127451

dln_inc
L1. .2298239 .3566309 .003566 .2342159 -.4802715 .9178026
L2. .0920532 .2204407 .002259 .0922503 -.332021 .5241679

dln_consump
L1. .3544481 .3829504 .00383 .3546005 -.4036804 1.108751
L2. .1308923 .230888 .002307 .130488 -.3293822 .5811411

_cons .00804 .012356 .000125 .0080513 -.0161679 .0326142
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dln_inc
dln_inv

L1. .0467331 .0327457 .000331 .0468285 -.0167597 .1107341
L2. .0501114 .0318974 .000319 .050056 -.0133188 .1128243

dln_inc
L1. -.1506219 .1354065 .001354 -.1523624 -.4147838 .1141846
L2. -.0144403 .1264436 .001279 -.0141583 -.2584229 .2348877

dln_consump
L1. .2593289 .1596995 .001637 .2588021 -.0541279 .5715087
L2. -.0130386 .1386775 .001409 -.0140483 -.2836371 .2634825

_cons .0170224 .004309 .000044 .0170312 .0085191 .0255192

dln_consump
dln_inv

L1. .0011214 .026178 .000262 .0010064 -.0490433 .0534858
L2. .0364058 .0259021 .000259 .036759 -.0159044 .0879265

dln_inc
L1. .2110716 .1078844 .001117 .2120819 -.0014118 .4214028
L2. .2979752 .0981546 .000982 .2974221 .1032472 .4875104

dln_consump
L1. -.2786814 .1301325 .001329 -.2805229 -.5309565 -.0213882
L2. -.0292443 .1226758 .001257 -.0298197 -.270218 .2118989

_cons .014751 .0035158 .000036 .0147164 .0078041 .021617

Sigma_1_1 .0022852 .000416 4.4e-06 .0022362 .0016076 .0032668
Sigma_2_1 .000077 .0000744 8.1e-07 .0000744 -.0000643 .0002339
Sigma_3_1 .0001311 .0000621 6.8e-07 .0001268 .000018 .0002672
Sigma_2_2 .0001475 .0000269 3.0e-07 .0001445 .0001042 .0002088
Sigma_3_2 .0000659 .0000175 1.9e-07 .0000642 .0000367 .0001061
Sigma_3_3 .0000961 .0000177 1.9e-07 .0000941 .0000676 .0001365

The results are similar to the MVN-inverse-Wishart prior results. The change in the prior for the error
covariance did not change its estimates much, which again confirms that the data contribution to the
posterior model is weak.

Example 4: Testing Bayesian VAR stability

A VAR model has meaningful interpretation in terms of IRFs and forecast-error variance decompo-
sitions only if the time-series process it represents is stable. The default Minnesota prior is based on
the assumption that each dependent variable follows a univariate random walk, which is an unstable
process. In the absence of strong information about model parameters in the data, the posterior is
shrunk more toward the prior, so it is possible that Bayesian posterior estimates may not satisfy the
stability assumption even when the frequentist estimates from the VAR model do. Thus, a stability
check for a Bayesian VAR is particularly important.

In a frequentist setting, VAR stability can be checked by inspecting the eigenvalues of the companion
matrix using the [TS] varstable command. In a Bayesian setting, the companion matrix and its
eigenvalues are random, so we must inspect their posterior distributions. The Bayesian command
for testing stationarity, bayesvarstable, reports posterior summaries for the eigenvalue moduli.
Stability is declared when all eigenvalues are within the unit circle with high probability.
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Let us refit the Bayesian VAR model from example 1 using the default prior options. In addition,
we save simulation results in bvarsex1.dta, which is required by bayesvarstable. Because we
already discussed the estimation results, we rerun the command quietly.

. quietly bayes, rseed(17) saving(bvarex1):
> var dln_inv dln_inc dln_consump if qtr<=tq(1978q4)

Now we call bayesvarstable to check the stability condition.
. bayesvarstable

Eigenvalue stability condition Companion matrix size = 6
MCMC sample size = 10000

Eigenvalue Equal-tailed
modulus Mean Std. dev. MCSE Median [95% cred. interval]

1 .7204885 .0946585 .000947 .7185141 .5401149 .911899
2 .5959965 .1036993 .001037 .6005058 .3817847 .7834288
3 .4271097 .1243872 .001244 .4243446 .2125586 .6563634
4 .2109317 .0790968 .000791 .1972916 .0886465 .3853979
5 .1357284 .0561101 .000561 .1322702 .0390514 .254025
6 .075227 .0499245 .000499 .0688643 .0033007 .1854592

Pr(eigenvalues lie inside the unit circle) = 0.9975

The companion matrix is of dimension 6 (3 dependent variables times 2 lags), so the output table reports
posterior summaries for the moduli of 6 eigenvalues. The eigenvalues are displayed in decreasing
order of their moduli. The largest eigenvalue modulus has a posterior mean of 0.72 and is within
the unit circle. The command also reports the posterior probability that all eigenvalues lie in the unit
circle, 0.9975. The high value of this probability provides confidence that the stability condition is
satisfied.

US macroeconomic examples

In the next set of examples, we will use usmacro.dta, quarterly macroeconomic data extracted
from the Federal Reserve Economic Database that spans from 1954 to 2010.

. use https://www.stata-press.com/data/r18/usmacro
(Federal Reserve Economic Data - St. Louis Fed)

. describe

Contains data from https://www.stata-press.com/data/r18/usmacro.dta
Observations: 226 Federal Reserve Economic Data -

St. Louis Fed
Variables: 4 4 Dec 2022 12:39

Variable Storage Display Value
name type format label Variable label

fedfunds double %10.0g Federal funds rate
date int %tq Date (quarters)
inflation float %9.0g Annual rate of inflation
ogap float %9.0g GDP gap

Sorted by: date

. tsset

Time variable: date, 1954q3 to 2010q4
Delta: 1 quarter
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Observed are three dependent variables: fedfunds, for federal funds rate, inflation, for annual
rate of inflation, and ogap, for the GDP output gap, or the difference between actual and potential
GDP. The date variable registers the quarterly periods.

Example 5: Explaining the Minnesota prior

Consider the following simple VAR(2) model for usmacro.dta with dependent variables ogap
and inflation:

ogap = a11L.ogap + a12L2.ogap + a21L.inflation + a22L2.inflation + a0 + u1

inflation = b11L.ogap + b12L2.ogap + b21L.inflation + b22L2.inflation + b0 + u2

In the specification of the original Minnesota prior, (u1, u2) is assumed to follow a bivariate normal
distribution with 0 means and fixed error covariance Σ0 = diag(σ̂2

1 , σ̂
2
2), which we define later.

Consider the vector β of 8 endogenous regression coefficients aij’s and bij’s and 2 exogenous
constant terms a0 and b0. Specifically, we refer to a11, a12, b21, and b22 as endogenous-self-variables
lag coefficients (or simply self-variables coefficients); to a21, a22, b11, and b12 as endogenous-cross-
variables lag coefficients (or simply cross-variables coefficients); and to a0 and b0 as “exogenous-
variables” coefficients. We used quotes for a0 and b0 because, technically, these are constant terms
that do not correspond to any exogenous variables. But in what follows, we will treat them as such.
In the presence of exogenous variables, we would refer to their coefficients as exogenous-variables
coefficients. We also refer to a11 and b21 as self-variables first-lag coefficients, also know as first
own lag coefficients.

The original Minnesota prior for β is MVN with 10× 1 mean vector β0 and 10× 10 covariance
Ω0, where β0 and Ω0 are defined in Original Minnesota prior with known (fixed) error covariance.
β0 contains 1 for all self-variables first-lag coefficients and 0 for all the other coefficients. Ω0 is a
diagonal matrix in which diagonals are functions of error variance estimates from individual AR models
and tightness parameters. Because the covariance matrix Ω0 is diagonal, all regression coefficients
are assumed uncorrelated a priori.

In our example, the error variance estimates are the ordinary least-squares (OLS) residual variance
estimates σ̂2

1 and σ̂2
2 obtained from fitting separately the following two AR models,

ogap = c1L.ogap + c2L2.ogap + c3 + e1

inflation = d1L.inflation + d2L2.inflation + d3 + e2

where ei ∼ N(0, σ2
i ) for i = 1, 2.

The Minnesota prior has four control (tightness) parameters: λ1, λ2, λ3, and λ4, with default
values of 0.1, 0.5, 1, and 100. These parameters can be reset using the selftight(), crosstight(),
lagdecay(), and exogtight() Minnesota prior options, respectively.

Below, we show the default prior distributions for all coefficients. Let l denote the current lag.

Priors for endogenous-self-variables first-lag and second-lag coefficients are

a11, b21 ∼ N(1, 0.01)

a12, b22 ∼ N(0, 0.0025)

where λ2
1/l

2λ3 = λ2
1 = 0.01 for l = 1 and λ2

1/l
2λ3 = 0.0025 for l = 2.
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Priors for endogenous-cross-variables first-lag and second-lag coefficients are

a21 ∼ N(0, 0.0025
σ̂2

1

σ̂2
2

)

b11 ∼ N(0, 0.0025
σ̂2

2

σ̂2
1

)

a22 ∼ N(0, 0.000625
σ̂2

1

σ̂2
2

)

b12 ∼ N(0, 0.000625
σ̂2

2

σ̂2
1

)

where (λ2
1λ

2
2)/l2λ3 = λ2

1λ
2
2 = 0.0025 for l = 1 and (λ2

1λ
2
2)/l2λ3 = 0.000625 for l = 2.

Priors for exogenous constant terms are

a0 ∼ N(0, 100σ̂2
1)

b0 ∼ N(0, 100σ̂2
2)

where λ2
1λ

2
4 = 100.

The default prior variances for the coefficients of all endogenous variables are rather small. The
Minnesota prior essentially assumes that we have two independent time series each representing a
univariate random walk:

ogap = L1.ogap + ε1

inflation = L1.inflation + ε2

The prior variances shrink as the lag l increases as long as λ3 is positive. Also, cross-variables
variances shrink by a factor of λ2

2 from self-variables variances. All variances are proportional to λ2
1.

If we increase λ1 from 0.1, the default, to 1, all variances will increase by a factor of 100.

In the specification of the conjugate Minnesota prior, (u1, u2) is assumed to follow a bivariate
normal with 0 means and an unknown error covariance Σ.

The prior for β is conditional on Σ. The prior mean stays the same, but the prior covariance
matrix Ω0 is replaced by Σ⊗Φ0, where Φ0 has a structure similar to Ω0 but of dimension 5 instead
of 10,

Φ0 = diag
(

1

σ̂2
1

0.01,
1

σ̂2
2

0.01,
1

σ̂2
1

0.0025,
1

σ̂2
2

0.0025, 100

)
where λ2

1/l
2λ3 = λ2

1 = 0.01 for l = 1, λ2
1/l

2λ3 = 0.0025 for l = 2, and λ2
1λ

2
4 = 100.

In this case, the prior assumption on β implies that the multivariate process consists of two
dependent random walks.

Error covariance Σ is assigned an inverse-Wishart prior with default degrees of freedom K+2 = 4,
and the default scale matrix S0 is a diagonal matrix formed by the AR variance estimates. The effect
of this prior can be interpreted as a lack of contemporaneous correlation among the error terms.
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Example 6: Choosing the number of lags of a VAR model

Consider usmacro.dta. Let’s look at time series of the three dependent variables.

. use https://www.stata-press.com/data/r18/usmacro
(Federal Reserve Economic Data - St. Louis Fed)

. tsline inflation ogap fedfunds

-10

0

10

20

1950q1 1960q1 1970q1 1980q1 1990q1 2000q1 2010q1
Date (quarters)

Annual rate of inflation GDP gap
Federal funds rate

Time-series plots suggest a relationship between the three dependent variables that we would like to
explore using a Bayesian VAR model.

Our goal is to model the dynamics of the three time series using VAR. We will use the bayes: var
command to fit a Bayesian VAR model with the default conjugate Minnesota prior for the regression
coefficients and error covariance. We will use all observations before the 1st quarter of 2004 to fit
the model and leave out the later observations to test the forecasting ability of the model.

An important consideration in specifying the model is choosing the maximum number of lags.
An expert in the field may have an optimal choice based on theoretical or empirical knowledge, but
for us, it is not immediately clear whether we should use 2, 4, or more lags. In a classical setting,
one can use the varsoc command to choose the maximum lag. It is not uncommon for varsoc to
suggest too large of a lag length. For example, if we run varsoc on our data using up to 12 lags,
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. varsoc inflation ogap fedfunds, maxlag(12)

Lag-order selection criteria

Sample: 1958q3 thru 2010q4 Number of obs = 210

Lag LL LR df p FPE AIC HQIC SBIC

0 -1488.6 296.509 14.2057 14.225 14.2535
1 -723.715 1529.8 9 0.000 .221616 7.00681 7.08413 7.19807
2 -689.089 69.252 9 0.000 .173634 6.76275 6.89806 7.09746*
3 -673.171 31.836 9 0.000 .162585 6.69686 6.89017 7.17502
4 -661.806 22.729 9 0.007 .159006 6.67434 6.92564 7.29595
5 -639.015 45.583 9 0.000 .139492 6.543 6.85228 7.30805
6 -619.85 38.329 9 0.000 .126698 6.44619 6.81346* 7.35469
7 -615.967 7.7663 9 0.558 .133135 6.49492 6.92019 7.54687
8 -610.886 10.161 9 0.338 .138349 6.53225 7.0155 7.72765
9 -587.182 47.409 9 0.000 .120437 6.39221 6.93345 7.73105

10 -581.902 10.559 9 0.307 .124996 6.42764 7.02688 7.90993
11 -567.442 28.921* 9 0.001 .118912* 6.37564* 7.03286 8.00137
12 -565.064 4.7562 9 0.855 .126973 6.4387 7.15392 8.20789

* optimal lag
Endogenous: inflation ogap fedfunds
Exogenous: _cons

the AIC criterion suggests a maximum lag of 11. A VAR model with 11 lags for our data will have
102 coefficients, which is likely too many given the sample size of 190. The resulting imprecision in
the estimates would lead to wide forecast intervals.

From a Bayesian viewpoint, an optimal way to solve this problem is to use Bayesian model
comparison. First, we choose a reasonable set of possible lags, 1, . . . , pmax. Then, for each lag p,
we fit a Bayesian VAR(p) model. Finally, we compare the fitted models using their log-marginal
likelihoods. Except the number of lags, all other model specifications, including the choice of priors,
stay the same.

In this example, we consider six possible VAR models with lags ranging from 1 to 6. We specify
two options with bayes: var: rseed(17), for reproducibility, and saving() to save the simulation
results. The latter is required by estimates store to store Bayesian model estimation results. We
run the models quietly to suppress lengthy estimation output.

. quietly bayes, rseed(17) saving(bvarsim,replace):
> var inflation ogap fedfunds if date < tq(2004q1), lags(1/1)

. estimates store bvar1

. quietly bayes, rseed(17) saving(bvarsim,replace):
> var inflation ogap fedfunds if date < tq(2004q1), lags(1/2)

. estimates store bvar2

. quietly bayes, rseed(17) saving(bvarsim,replace):
> var inflation ogap fedfunds if date < tq(2004q1), lags(1/3)

. estimates store bvar3

. quietly bayes, rseed(17) saving(bvarsim,replace):
> var inflation ogap fedfunds if date < tq(2004q1), lags(1/4)

. estimates store bvar4

. quietly bayes, rseed(17) saving(bvarsim,replace):
> var inflation ogap fedfunds if date < tq(2004q1), lags(1/5)

. estimates store bvar5

. quietly bayes, rseed(17) saving(bvarsim,replace):
> var inflation ogap fedfunds if date < tq(2004q1), lags(1/6)

. estimates store bvar6
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We compare the models using the bayestest model command. All six models are assumed
equally probable a priori, as can be seen from the second column of the output table. The third
column shows posterior model probabilities; the model with the highest probability is the best.

. bayestest model bvar1 bvar2 bvar3 bvar4 bvar5 bvar6

Bayesian model tests

log(ML) P(M) P(M|y)

bvar1 -690.7037 0.1667 0.0000
bvar2 -680.1811 0.1667 0.0000
bvar3 -674.5212 0.1667 0.0065
bvar4 -670.3258 0.1667 0.4313
bvar5 -670.7045 0.1667 0.2953
bvar6 -670.8059 0.1667 0.2669

Note: Marginal likelihood (ML) is computed using
Laplace--Metropolis approximation.

The model with four lags has the highest posterior probability, 0.43, and thus four is our choice for
the number of lags. Incidentally or not, four lags corresponds to a period of one year.

Example 7: Bayesian VAR(4) model estimation

Continuing with example 6, we proceed with Bayesian estimation of the chosen VAR(4) model. We
rerun the model but this time showing the MCMC summary and output tables. The model summary
is suppressed for brevity, but as we mentioned in example 6, we use the default conjugate Minnesota
prior.
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. bayes, nomodelsummary rseed(17):
> var inflation ogap fedfunds if date < tq(2004q1), lags(1/4)
Burn-in ...
Simulation ...

Bayesian vector autoregression MCMC iterations = 12,500
Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Sample: 1956q3 thru 2003q4 Number of obs = 190

Acceptance rate = 1
Efficiency: min = .9322

avg = .993
Log marginal-likelihood = -670.32584 max = 1

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

inflation
inflation

L1. 1.107465 .0422849 .000423 1.106848 1.02544 1.192476
L2. -.064825 .0417594 .000418 -.064536 -.1470882 .0176208
L3. -.0358872 .0290815 .000291 -.0359867 -.092745 .0210088
L4. -.0397985 .0215853 .000216 -.0397207 -.0821996 .002274

ogap
L1. .0646785 .0294384 .000305 .0644936 .0070243 .1229662
L2. .0071294 .0267595 .000268 .0072498 -.0444994 .058461
L3. -.002015 .0187035 .000192 -.0021291 -.038934 .0346847
L4. -.0088532 .0142951 .000141 -.0089083 -.0366927 .0193774

fedfunds
L1. .0770026 .027543 .000275 .076643 .0237776 .1315991
L2. -.0351476 .0243814 .000244 -.0351349 -.0831241 .0124089
L3. -.0151671 .0173423 .000173 -.0154901 -.0487873 .0193082
L4. -.0190271 .0134133 .000134 -.0191324 -.0456025 .0072003

_cons .1225433 .0832813 .000833 .1225758 -.0433392 .2853939

ogap
inflation

L1. -.068909 .0627925 .000628 -.0683572 -.1934463 .0524915
L2. .0073091 .0617798 .000609 .0066414 -.1153963 .1276874
L3. .0098226 .0437754 .000438 .0105327 -.0773841 .0942487
L4. .0146217 .0325626 .000326 .0147658 -.0498018 .0778098

ogap
L1. 1.030706 .0443351 .000436 1.030381 .9445329 1.117702
L2. -.0533506 .0405626 .000406 -.0536868 -.1331328 .0269409
L3. -.0463432 .028635 .000286 -.0468054 -.1021503 .0103083
L4. -.0243524 .0215736 .000216 -.0246339 -.0671305 .0178628

fedfunds
L1. -.0080148 .0410321 .000404 -.0079538 -.0897528 .0726622
L2. -.0513393 .0362004 .000362 -.0514847 -.1208578 .0196766
L3. .0096443 .0264572 .000265 .0092495 -.0416928 .0618986
L4. .0028706 .0200856 .000201 .002678 -.0362012 .0424353

_cons .3851112 .1261445 .001261 .3836084 .1334414 .6333448
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fedfunds
inflation

L1. .0568126 .0719825 .00072 .0563617 -.0829406 .2008528
L2. .0568927 .0706982 .000699 .0569514 -.0811303 .1967728
L3. -.0026048 .0495878 .000474 -.0023296 -.1001453 .09392
L4. -.0159998 .0369476 .000375 -.0163655 -.0877556 .0563861

ogap
L1. .1873653 .0495204 .000498 .1873384 .0899816 .2850046
L2. -.0544593 .045749 .000465 -.055174 -.1438389 .035413
L3. -.0485134 .0324919 .000335 -.048869 -.1120501 .0148947
L4. -.0327431 .0245286 .000245 -.0324051 -.0807114 .0156984

fedfunds
L1. .9623752 .0472236 .000472 .9622282 .8696618 1.054146
L2. -.0728725 .0414158 .000414 -.0731102 -.1538312 .0082934
L3. .0146377 .0293537 .000294 .0143481 -.0419335 .072309
L4. .0018861 .0228329 .000228 .0021041 -.0430797 .0462406

_cons .1931161 .1433129 .001433 .1950842 -.0912408 .4717853

Sigma_1_1 .2873009 .0293728 .000297 .2853721 .2349716 .3493519
Sigma_2_1 .0281781 .0315254 .000315 .0276486 -.0345647 .0912571
Sigma_3_1 .1480748 .0372496 .000372 .1468518 .0777631 .2251876
Sigma_2_2 .6575456 .0671182 .000684 .6530136 .5395734 .8029292
Sigma_3_2 .2398338 .0559347 .000559 .238127 .1357633 .3561841
Sigma_3_3 .8371554 .0857785 .000858 .8298623 .6868505 1.024522

The Gibbs sampling used to simulate the posterior distribution has high efficiency of 99% on average
and the perfect acceptance rate of 1. There is no indication of convergence problems.

There are 39 regression coefficients in the model, which would be difficult to interpret directly.
The posterior estimates for the error covariance matrix {Sigma,m} suggest a positive correlation
between fedfunds and inflation and fedfunds and ogdp; see the estimates for {Sigma 3 1}
and {Sigma 3 2}.

Because we did not use the saving() option with bayes: var, the simulation results are saved
in a temporary dataset. If you plan to use one of the postestimation commands such as bayesirf
or bayesfcast, you need to save the simulation results to a permanent dataset. We can do this by
using the saving() option on replay.

. bayes, saving(bvarex2)
note: file bvarex2.dta saved.
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Before continuing with postestimation analysis, let’s check the stability condition of the model
using the bayesvarstable command.

. bayesvarstable

Eigenvalue stability condition Companion matrix size = 12
MCMC sample size = 10000

Eigenvalue Equal-tailed
modulus Mean Std. dev. MCSE Median [95% cred. interval]

1 .9473457 .0199198 .000199 .9481282 .9057116 .9838371
2 .9417123 .0257058 .000257 .9453142 .877582 .9811621
3 .8184194 .0716288 .000716 .8274233 .6763741 .9322606
4 .5930213 .0930861 .000931 .5836551 .4256008 .7733104
5 .4859573 .0896516 .000897 .4866775 .330644 .6554575
6 .3659255 .0417669 .000418 .3635287 .291461 .459251
7 .3499339 .0365851 .000366 .3496959 .2767796 .4214287
8 .3155561 .0383687 .000384 .3173136 .2348504 .3856269
9 .3014183 .0396995 .000397 .3038818 .2177103 .3736035

10 .2670156 .0479518 .00048 .2717858 .1582521 .3475958
11 .2361436 .0556598 .000557 .2414199 .1135724 .329785
12 .1887299 .0805818 .000806 .2036124 .0151749 .3102756

Pr(eigenvalues lie inside the unit circle) = 0.9977

The command reports that the companion matrix of our model is of size 12 (three response variables
times four lags) and thus reports posterior summaries for the moduli of 12 eigenvalues. The posterior
probability that all eigenvalues lie in the unit circle is estimated to be essentially 1, so the stability
condition is satisfied.

The main postestimation tools for interpreting VAR models are IRFs and forecasting, which we
illustrate in the following examples.

Example 8: IRFs

IRFs are commonly used to summarize a VAR model. IRFs measure the effect of a shock in one
variable, also called an impulse variable, on a given response variable. The effect of the shock on the
response variable is traced out over a predefined number of future steps. We compute a number of
IRF statistics associated with our model using the bayesirf command, whose syntax is similar to the
frequentist irf command. For computational details, see Methods and formulas of [BAYES] bayesirf
create.

The bayesirf create command computes IRF results and stores them in a dataset with a special
structure and with the .irf extension. One .irf dataset may contain several sets of IRF results.

Continuing with example 7, let’s compute the effect of shocks for up to 15 years (60 quarter
periods) into the future. We name the set of results birf1 and save them in birfex2.irf.

. bayesirf create birf1, step(60) set(birfex2)
(file birfex2.irf created)
(file birfex2.irf now active)
(file birfex2.irf updated)

It is easier to visualize the effect of a shock in one response variable on all other response variables
and itself by using the bayesirf graph command. The command draws the posterior mean estimates
of IRF coefficients along with 95% CrIs. Let’s inspect the effect of shock on fedfunds. Shocks of
interests are specified using the impulse() option.
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. bayesirf graph irf, impulse(fedfunds)
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IRFs are obtained by setting the error vector in the likelihood model to (0,0,1) (1 for fedfunds and
0 otherwise) at step 0 and propagating this unit vector in time according to the VAR equations. For
example, the response of inflation (second graph) starts from 0 at step 0, slightly increases during
the first year, then slowly decreases during the next 4 years, and finally converges to a small positive
value at the end of our 15-year period. According to the third graph, after a monetary shock from
the Federal Reserve, the output gap decreases during the first two years, then slowly increases for
the following eight years, and finally stabilizes at a small positive value. Notably, the shock effect
on all response variables reach equilibrium after about 12 years.

We can examine IRF coefficients in more detail by listing them in a table using bayesirf table.
For example, let’s inspect how the output gap is responding to a shock in federal funds in the first
two years. This particular choice is made using the response(), impulse(), and step() options.

. bayesirf table irf, response(ogap) impulse(fedfunds) step(7)

Results from birf1

(1) (1) (1)
Step irf Lower Upper

0 0 0 0
1 -.008015 -.089753 .072662
2 -.072428 -.205354 .059264
3 -.128667 -.296316 .039592
4 -.174391 -.361456 .009988
5 -.208873 -.409928 -.009742
6 -.232076 -.444489 -.021792
7 -.245563 -.466458 -.028681

Posterior means reported.
95% equal-tailed credible lower and upper bounds reported.
(1) irfname = birf1, impulse = fedfunds, and response = ogap.
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The bayesirf table command reports posterior mean estimates (first column), lower 95% credible
limits (second column), and upper 95% credible limits (third column). We see that a 1% increase in
fedfunds leads to about a 0.01 units decrease in ogap after 1 quarter and to 0.25 units decrease in
ogap after 8 quarters (2 years). That is, in the short term, an increase in federal spending increases
the gap between real and potential GDP.

The regular IRF functions do not account for the fact that the shocks in different impulse variables
are generally not independent. For example, in our case, shocks in federal funds and inflation are likely
dependent. A better representation of the dynamics between variables is provided by the so-called
orthogonalized IRFs (OIRFs), referred to as oirf in bayesirf commands. The latter depends on the
preset causal ordering of the impulse variables, as specified using the order() option. The default
order is the order in which the variables are listed in the bayes: var command specification.

For example, let’s examine the following causal order: inflation → fedfunds → ogap. In
other words, let’s assume that fedfunds has no immediate effect on inflation and that ogap has
no immediate effect on inflation and fedfunds.

. bayesirf create birf2, step(60) set(birfex2) order(inflation fedfunds ogap)
(file birfex2.irf now active)
(file birfex2.irf updated)

The new IRF statistics are saved as birf2 in birfex2.irf.

We can now summarize oirf statistics of ogap response to impulse in the third equation, referred
to as fedfunds, corresponding to the new order we have specified.

. bayesirf table oirf, irf(birf2) response(ogap) impulse(fedfunds) step(7)

Results from birf2

(1) (1) (1)
Step oirf Lower Upper

0 .257325 .148406 .370283
1 .258308 .128963 .395361
2 .195725 .041816 .35614
3 .123306 -.047116 .30244
4 .050238 -.130222 .241047
5 -.014137 -.201699 .186256
6 -.067159 -.261451 .13775
7 -.109004 -.309117 .103761

Posterior means reported.
95% equal-tailed credible lower and upper bounds reported.
(1) irfname = birf2, impulse = fedfunds, and response = ogap.

We observe notable differences between oirf and irf estimates reported above. A shock in the
fedfunds equation now starts at 0.26 at step 0 and initially has little effect on closing the positive
output gap, but after 4 steps (about a year), ogap becomes negative. As in the case with irf values,
we see that a shock in federal funds has a negative effect on the output gap in a short term. OIRFs
have the benefit of accounting for the correlation between inflation and fedfunds.

The interpretation of OIRFs very much depends on the causal order of response variables. Choosing
an order can be difficult when there is no obvious choice based on expert knowledge. Next, for easier
comparison, we show how to use bayesirf graph to plot the OIRFs from both birf1 and birf2,
which differ only in the response variable ordering.
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. bayesirf graph oirf, impulse(fedfunds)
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The first row shows OIRFs for the original order, inflation → ogap → fedfunds, and the second
row shows results for the new order, inflation → fedfunds → ogap. As we remarked above,
there are differences between the OIRF results corresponding to different orderings.
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Another way to follow the dynamics in ogap is to inspect the cumulative OIRF, coirf. Cumulative
IRF statistics accumulate the shock effects over time. The following graph compares the cumulative
OIRFs of birf1 and birf2 to a shock in fedfunds.

. bayesirf graph coirf, impulse(fedfunds)

-10

0

10

20

30

-10

0

10

20

30

0 20 40 60 0 20 40 60 0 20 40 60

birf1, fedfunds, fedfunds birf1, fedfunds, inflation birf1, fedfunds, ogap

birf2, fedfunds, fedfunds birf2, fedfunds, inflation birf2, fedfunds, ogap

95% equal-tailed CrI Posterior mean of COIRF

Step

Graphs by irfname, impulse variable, and response variable

All two shock effects reach equilibrium after about 10 years. In the long term, a monetary shock
reduces inflation and decreases the output gap.

Another set of IRFs that are useful for interpreting VAR models is the forecast error variance
decompositions, or FEVDs. FEVDs measure the contribution, in terms of variability, of impulse
variables to the forecast error in response variables. FEVDs, similar to OIRFs, depend on the causal
ordering of the response variables.
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For illustration, let’s inspect the FEVDs of the response variable fedfunds for the birf2 results
corresponding to the inflation → fedfunds → ogap order. First, we show FEVD graphs.

. bayesirf graph fevd, irf(birf2) response(fedfunds)
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In the long term, half the forecast error of fedfunds is contributed by fedfunds itself, whereas
inflation and ogap contribute by a quarter each.
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A table of FEVD estimates gives us more details.

. bayesirf table fevd, irf(birf2) response(fedfunds) step(7)

Results from birf2

(1) (1) (1)
Step fevd Lower Upper

0 0 0 0
1 .095083 .027875 .180163
2 .102093 .029869 .192633
3 .114495 .034531 .216095
4 .128495 .038329 .242878
5 .142093 .041094 .268065
6 .155334 .043475 .293326
7 .16808 .045986 .318506

(2) (2) (2)
Step fevd Lower Upper

0 0 0 0
1 .904917 .819837 .972125
2 .885277 .794215 .957829
3 .852453 .751346 .936377
4 .818721 .702946 .917391
5 .789353 .659076 .902321
6 .763024 .619474 .890185
7 .739026 .582641 .879954

(3) (3) (3)
Step fevd Lower Upper

0 0 0 0
1 0 0 0
2 .01263 .002624 .027988
3 .033052 .00823 .069683
4 .052784 .013287 .111021
5 .068554 .016546 .144177
6 .081642 .018741 .174098
7 .092895 .020159 .199897

Posterior means reported.
95% equal-tailed credible lower and upper bounds reported.
(1) irfname = birf2, impulse = inflation, and response = fedfunds.
(2) irfname = birf2, impulse = fedfunds, and response = fedfunds.
(3) irfname = birf2, impulse = ogap, and response = fedfunds.

The command output contains three tables, one for each impulse. At step 1, which corresponds to
one-step-ahead predictions, FEVD posterior mean estimates are about 0.095 for inflation, 0.905
for fedfunds, and 0 for ogap due to the imposed order. The sum of FEVDs across impulses is 1.
Most of the forecast error in fedfunds is because of the variability in fedfunds itself. At step 8,
however, FEVD estimates become 0.18 for inflation, 0.72 for fedfunds, and 0.10 for ogap. The
predominant effect of its own variability in FEVD estimates is an indirect effect of the Minnesota prior
that shrinks self-variables first-lag coefficients to 1 and all others to 0.
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Example 9: Forecasting

Bayesian dynamic forecasting is a special case of Bayesian predictions that uses posterior predictive
distributions conditional on time to predict a response variable at multiple steps into the future; see
Methods and formulas of [BAYES] bayesfcast compute.

bayesfcast compute is the Bayesian counterpart of the [TS] fcast compute command, which is
used for Bayesian forecasting after the bayes: var command.

Let’s compute dynamic forecasts starting with the first quarter of 2004 until the end of the observed
time frame, or 28 quarter periods ahead.

. bayesfcast compute b_, step(28) dynamic(tq(2004q1))

By default, bayesfcast compute computes and saves in the current dataset the posterior mean
estimates of the predicted response variables along with the 95% credible intervals. The new variables
are prefixed with b .

It would be interesting to compare the Bayesian forecast results with the frequentist ones obtained
by fcast compute after fitting the var command on the same model.

. quietly var inflation ogap fedfunds if date < tq(2004q1), lags(1/4)

. fcast compute f_, step(28) dynamic(tq(2004q1))

We can use the bayesfcast graph command to plot the observed and forecasted values along
with their 95% CIs for the frequentist and 95% CrIs for the Bayesian results. Frequentist results are
on the left, and Bayesian results are on the right.

. bayesfcast graph f_inflation b_inflation f_ogap b_ogap f_fedfunds b_fedfunds,
> observed byopts(rows(3) title("Frequentist (left) vs. Bayesian (right)"))
> legend(label(1 "95% CI and CrI bounds"))
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In the forecast period before 2008, the Bayesian forecasts seem to fit the observed response variables
slightly better. The 95% CrIs include the observed values most of the time, except for ogap at the
second half of 2008 during the great recession. We should not expect a VAR model to forecast extreme
events such as recessions.
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Example 10: One-step-ahead Bayesian predictions

One-step-ahead Bayesian predictions are a special case of Bayesian forecasts, where current
observed responses are used to make predictions for the next time period. In contrast to dynamic
predictions, one-step-ahead predictions can be computed using the general postestimation command
for Bayesian predictions, bayespredict.

For illustration, let’s compute predicted posterior means for the three responses starting with
the first quarter of 2004 and save the results as new variables pr1 inflation, pr1 ogap, and
pr1 fedfunds.

. bayespredict pr1_inflation pr1_ogap pr1_fedfunds if date>=tq(2004q1), mean

Computing predictions ...

Because these are one-step-ahead predictions, we expect them to be fairly close to the observed
responses, much more so than dynamic forecasts with multiple prediction steps ahead. To verify that,
let’s look at the prediction errors computed as the difference between the observed and predicted
responses and plot them as time series.

. generate err1_inflation = inflation - pr1_inflation
(198 missing values generated)

. generate err1_ogap = ogap - pr1_ogap
(198 missing values generated)

. generate err1_fedfunds = fedfunds - pr1_fedfunds
(198 missing values generated)

. tsline err1_inflation err1_ogap err1_fedfunds if date>=tq(2004q1), yline(0)
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Recall that the measurement units in this example are percentage growth rates for inflation and
federal funds and percentage deviation from trend for the output gap. We see that one-step-ahead
predictions perform well right before the beginning of the great recession in 2008, within a margin
of 1 unit; that is, prediction errors are within 1 percentage point of realized values. After that,
all three errors become negative for a period of time, which means they commit overprediction,
but then stabilize again at the end of 2009. The predictions for inflation are particularly off,
overpredicting before the second quarter of 2009 and underpredicting after that until the end of 2009.
A logical conclusion is that our model, fit on the data before the great recession, cannot capture the
macroeconomic disruption of 2008 and 2009.

Finally, for those of you interested in comparing Bayesian and classical one-step-ahead predictions,
we show the computation for the latter.
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. quietly var inflation ogap fedfunds if date < tq(2004q1), lags(1/4)

. predict pr2_inflation, equation(inflation)
(option xb assumed; fitted values)
(8 missing values generated)

. predict pr2_ogap, equation(ogap)
(option xb assumed; fitted values)
(8 missing values generated)

. predict pr2_fedfunds, equation(fedfunds)
(option xb assumed; fitted values)
(8 missing values generated)

. generate err2_inflation = inflation - pr2_inflation
(8 missing values generated)

. generate err2_ogap = ogap - pr2_ogap
(8 missing values generated)

. generate err2_fedfunds = fedfunds - pr2_fedfunds
(8 missing values generated)

. tsline err2_inflation err2_ogap err2_fedfunds if date>=tq(2004q1), yline(0)
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Bayesian and classical one-step-ahead predictions are similar, both failing to follow the dynamics of
2008–2009. However, Bayesian predictions for federal funds appear to be more precise.
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Stored results
See Stored results in [BAYES] bayes. In addition, bayes: var stores the following in e():
Scalars

e(tmin) first time period in sample
e(tmax) maximum time
e(mlag) highest lag in VAR
e(selftight) self-variables tightness parameter in Minnesota priors
e(crosstight) cross-variables tightness parameter in Minnesota priors (not with conjugate Minnesota

prior)
e(lagdecay) lag-decay parameter in Minnesota priors
e(exogtight) exogenous-variables tightness parameter in Minnesota priors
e(dfcov) degrees of freedom of inverse-Wishart prior

Macros
e(cmdname) var
e(prefix) bayes
e(command) var command specification
e(varprior) prior model for VAR coefficients and error covariance
e(endog) names of endogenous variables
e(exog) names of exogenous variables, and their lags, if specified
e(exogvars) names of exogenous variables, if specified
e(lags) lags in model
e(exlags) lags of exogenous variables in model, if specified
e(timevar) time variable specified in tsset
e(tsfmt) format for the current time variable

Matrices
e(exlagsm) matrix mapping lags to exogenous variables (with exog())
e(phi) covariance product matrix Φ0 for conjugate Minnesota prior
e(arcov) AR covariance matrix (with arcov)
e(varcov) VAR covariance matrix (with varcov)
e(mvnmean) mean vector of MVN prior
e(mvncov) covariance matrix of MVN prior (with mvniwishprior() or mvnjeffprior())
e(scalecov) scale matrix of inverse-Wishart prior

Methods and formulas
Methods and formulas are presented under the following headings:

VAR model specification
Original Minnesota prior with known (fixed) error covariance
Conjugate Minnesota prior for VAR model with unknown error covariance
MVN-inverse Wishart prior
MVN-diffuse (normal-Jeffreys) prior

VAR model specification

Let yt be a K × 1 vector of endogenous (dependent) variables at time t for t = 1, . . . , T and xt
be a m× 1 vector of exogenous regressors including the constant terms.

A p-order VAR model, VAR(p), can be defined according to Lütkepohl (2005) as

yt = A1yt−1 + · · ·+ Apyt−p + Cxt + ut, ut ∼ N(0,Σ)

where p is the number of lags;

Al = (alij) are K×K matrices of unknown endogenous-variables lag coefficients (l = 1, . . . , p);

C = (cis) is a K ×m matrix of exogenous-variables coefficients; and

ut is a K × 1 vector of error terms with a K ×K covariance matrix Σ.
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A VAR(p) model can be written in a more compact form as

Y = XB + U

where

Y =

 y′1
...

y′T

, X =

 y′0 y′−1 . . . y′1−p x′1
...

y′T−1 y′T−2 . . . y′T−p x′T

, B =


A′1

...
A′p
C′

, U =

 u′1
...

u′T


Y is a T × k matrix, X is a T × (Kp + m) matrix, B is a (Kp + m) × K matrix of all

coefficients, and U is a T ×K matrix.

The OLS estimates of B and Σ are

B̂ = (X′X)−1X′Y

Σ̂OLS = Û′Û/(T −Kp−m− 1), Û = Y −XB̂ (1)

Vectorizing the above matrix equation, we obtain

y = X?β + u

where y = vec(Y) is KT × 1 vector, X? = IK ⊗X is a KT ×K(Kp + m) matrix (⊗ is the
Kronecker product and IK is a K ×K identity matrix), β = vec(B) is a K(Kp+m)× 1 vector
of all coefficients, and u = vec(U) is a KT × 1 error vector with a KT ×KT covariance matrix
Σ? = Σ⊗ IT .

An essential component of every Bayesian VAR model is specifying a suitable prior for the vector
of coefficients β. In what follows, we will describe several commonly used priors, all based on a
so-called Minnesota prior. But before we continue, let’s define components that are used by all of
these priors.

Consider a univariate AR(p) model for each outcome k = 1, . . . ,K,

yk,t = a1yk,t−1 + · · ·+ apyk,t−p + a0 + ek,t (2)

where ek,t ∼ N(0, σ2
k). All priors considered below use the OLS estimate, σ̂2

k, of σ2
k. Some of the

priors also use a diagonal covariance estimate formed by K error-variance estimates from separate
AR(p) models: Σ̂diag = diag(σ̂2

1 , . . . , σ̂
2
K).

Original Minnesota prior with known (fixed) error covariance

The original Bayesian VAR model with a Minnesota prior (Litterman 1980, 1986) assumes that the
covariance matrix of the error vectors ut is known, Σ = Σ0; that is,

u ∼ N(0,Σ0 ⊗ IT )
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The original formulation (suboption arcov in minnopts) used a diagonal matrix with the estimated
error variances from K separate AR models (2) on the diagonal as a covariance estimate, Σ0 =

Σ̂diag = diag(σ̂2
1 , . . . , σ̂

2
K). Litterman thus proposed to estimate the VAR model equation by equation,

rather than as a system of equations, to reduce the computational burden, which at the time was a
serious problem. Another formulation (suboption varcov in minnopts) used the OLS estimate of the
covariance matrix from the VAR model, Σ0 = Σ̂OLS, defined in (1).

This prior is implemented by the minnfixedcovprior option of bayes: var, but it is not the
default prior. The default prior is the conjugate Minnesota prior (option minnconjprior) described in
the next section, which uses a less restrictive prior covariance. But we describe the original Minnesota
prior first because the conjugate Minnesota prior is its extension.

The Minnesota prior for coefficient vector β is an MVN prior,

β ∼ N(β0,Ω0)

where a KT × 1 vector β0 and a KT ×KT matrix Ω0 are defined in a way that accounts for the
special time-series structure of the VAR(p) model, which we describe next.

The regression vector β is formed by the endogenous-variables lag coefficients alij (l = 1, . . . , p
and i, j = 1, . . . ,K) and exogenous-variables coefficients cis (i = 1, . . . ,K and s = 1, . . . ,m). The
Minnesota priors assumes that expected values for all coefficients are zero, except for the self-variables
first-lag coefficients; that is,

E(alij) = δ1lδij and E(cis) = 0

where δij = 1 if i = j and 0 otherwise, so the prior mean vector β0 is a K(Kp+ m)× 1 vector
of 0s and 1s, with 1s corresponding to the self-variables first-lag coefficients.

The original Minnesota prior assumes that there is no correlation between the coefficients of β.
The Minnesota covariance Ω0 is thus a diagonal matrix, its diagonal formed by the prior variances
σ2
al
ij

for the endogenous-variables lag coefficients and σ2
cis for the exogenous-variables coefficients.

The prior variances are based on the OLS estimates of error variances, σ̂2
k’s, and are defined below.

For endogenous-self-variables lag coefficients, the prior variances are

σ2
al
ii

=

(
λ1

lλ3

)2

For endogenous-cross-variables lag coefficients (i 6= j), the prior variances are

σ2
al
ij

=

(
σ̂2
i

σ̂2
j

)(
λ1λ2

lλ3

)2

For exogenous-variables coefficients, the prior variances are

σ2
cis = σ̂2

i (λ1λ4)2

In the above formulas, λ1 controls the tightness of the prior variance for self-variables lag coefficients
and can be specified in the selftight() suboption of the Minnesota prior options, minnopts;
λ2 controls the cross-variables lag coefficients spread and can be specified in the crosstight()
suboption; λ3 controls the lag attenuation and can be specified in the lagdecay() suboption (the
higher the lag, the tighter the prior variances); and λ4 controls the prior variance of the exogenous-
variables coefficients and can be specified in the exogtight() option. Default values for these control
parameters are λ1 = 0.1, λ2 = 0.5, λ3 = 1, and λ4 = 100.
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The prior mean β0 and diagonal covariance matrix Ω0 described above define the original Minnesota
prior, which is available by specifying the minnfixedcovprior option with bayes: var. You can
customize this prior by specifying the minnfixedcovprior(fixcovopts) option.

In the model-summary output of bayes: var, we refer to the defaults Σ0 and β0 as Sigma0
and b0, respectively. Ω0 is viewed as a function of Sigma0 and prior control parameters λ’s.

Conjugate Minnesota prior for VAR model with unknown error covariance

Another framework of Bayesian VAR models assumes that error vectors ut have an unknown
covariance matrix Σ. In this case, u ∼ N(0,Σ⊗ IT ).

Karlsson (2013) proposed a prior for β with the prior covariance having a similar form to the
covariance matrix Σ. Specifically, the author defined the prior covariance as a product of Σ and
another covariance matrix, Φ0, which we refer to as a Minnesota factor covariance,

β ∼ N(β0,Σ⊗Φ0)

The prior mean vector β0 is the same as in the original Minnesota prior, and Φ0 is a fixed
(Kp+m)× (Kp+m) covariance matrix as defined below.

Φ0 = diag
({

σ2
al
j

}K,p
j=1,l=1

,
{
σ2
cs

}m
s=1

)
is set to be a diagonal matrix similar to the Minnesota

covariance Ω0 but of a lower dimension (Kp + m) × (Kp + m) compared with KT ×KT . The
elements of Φ0 are defined below for l = 1, . . . , p, j = 1 . . . ,K, and s = 1, . . . ,m.

For endogenous-variables lag coefficients,

σ2
al
j

=

(
1

σ̂2
j

)(
λ1

lλ3

)2

And for exogenous-variables coefficients,

σ2
cs = (λ1λ4)2

In the above formulas, λ1, λ3, and λ4 have the same interpretation as in the original Minnesota prior.
In this formulation, λ2 is not used because there is no distinction between the self- and cross-variables.

The covariance parameter Σ has an inverse-Wishart prior with a scale matrix S0 and degrees of
freedom α0:

Σ ∼ InvWishart(α0,S0)

You can specify α0 in the df() suboption and S0 in the scale() suboption of the minncon-
jprior() option. The default values are α0 = K + 2, the minimum possible value such that the
mean exists, and S0 = (α0 −K − 1)Σ0, where Σ0 is as it is defined for the original Minnesota
prior. With these default values, the prior mean of Σ is Σ0.

The conjugate Minnesota prior is the default prior for bayes: var, and it corresponds to the
minnconjprior option, which is implied by default. You can customize this prior by specifying the
minnconjprior(conjopts) option.

In the model-summary output of bayes: var, we refer to the defaults Φ0 as Phi0, β0 as b0,
and S0 as Scale0. With degrees of freedom K + 2 (default), S0 is displayed as Sigma0.
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MVN-inverse Wishart prior

You can also specify an MVN-inverse Wishart prior for the VAR coefficients and error covariance.
This prior also assumes an unknown error covariance Σ, u ∼ N(0,Σ⊗ IT ).

The regression vector β has an MVN prior

β ∼ N(β̃, Ω̃)

with a fixed mean vector β̃ and a covariance matrix Ω̃, which can be specified independently.

The covariance parameter Σ has an inverse-Wishart prior with a scale matrix S0 and degrees of
freedom α0,

Σ ∼ InvWishart(α0,S0)

You can specify this prior by using the minniwishprior(iwishopts) option. You can specify β̃

using the mean() suboption and Ω̃ using the cov() suboption. Default values for β̃ and Ω̃ are the
prior mean and covariance, β0 and Ω0, of the original Minnesota prior.

You can specify α0 using the df() suboption and S0 using the scale() suboption. The default
values are α0 = K + 2, the minimum possible value such that the mean exists, and S0 =
(α0 −K − 1)Σ0.

In the model-summary output of bayes: var, we refer to the defaults β0 as b0, Ω0 as Omega0,
and S0 as Scale0. With degrees of freedom K + 2 (default), S0 is displayed as Sigma0.

MVN-diffuse (normal-Jeffreys) prior

Instead of an inverse-Wishart prior for the covariance matrix, as in the previous section, one may
consider a diffused (multivariate Jeffreys) prior. As before, u ∼ N(0,Σ⊗ IT ).

The prior for β is still the MVN prior, as defined in MVN-inverse Wishart prior,

β ∼ N(β̃, Ω̃)

with a mean vector β̃ and a covariance matrix Ω̃. But the covariance matrix Σ has a multivariate
Jeffreys prior,

π(Σ) ∝ |Σ|
K+1

2

You can specify the minnjeffprior(jeffopts) option for this prior. You can specify β̃ using the
mean() suboption and Ω̃ using the cov() suboption. As with MVN-inverse Wishart prior, the default
values for β̃ and Ω̃ are the prior mean and covariance, β0 and Ω0, of the original Minnesota prior.

In the model-summary output of bayes: var, we refer to the defaults β0 and Ω0 as b0 and
Omega0, respectively.

Also see Methods and formulas in [BAYES] bayesmh.
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Title

bayes: var postestimation — Postestimation tools for bayes: var

Postestimation commands Also see

Postestimation commands
The following Bayesian postestimation commands are of special interest after bayes: var:

Command Description

bayesfcast Bayesian dynamic forecasts
bayesirf Bayesian impulse–response functions
bayesvarstable check stability condition of estimates

The following standard Bayesian postestimation commands are also available:

Command Description

bayesgraph graphical summaries and convergence diagnostics
bayesstats grubin Gelman–Rubin convergence diagnostics
bayesstats ess effective sample sizes and related statistics
bayesstats ppvalues Bayesian predictive p-values
bayesstats summary Bayesian summary statistics for model parameters and their functions
bayesstats ic Bayesian information criteria and Bayes factors
bayestest model hypothesis testing using model posterior probabilities
bayestest interval interval hypothesis testing
bayespredict Bayesian predictions
∗estimates cataloging estimation results

∗ estimates table and estimates stats are not appropriate with bayes: var estimation results.

Also see
[BAYES] bayes: var — Bayesian vector autoregressive models

[BAYES] Bayesian postestimation — Postestimation tools for bayesmh and the bayes prefix

[TS] var postestimation — Postestimation tools for var

[BAYES] Intro — Introduction to Bayesian analysis

[BAYES] Glossary
[U] 20 Estimation and postestimation commands
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Title

bayesvarstable — Check the stability condition of Bayesian VAR estimates

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

bayesvarstable checks the eigenvalue stability condition after fitting Bayesian vector autore-
gression (VAR) by using bayes: var.

Quick start
Checking eigenvalue stability condition after bayes: var

bayesvarstable

Same as above, but compute 80% highest posterior density (HPD) credible intervals instead of 95%
equal-tailed credible intervals

bayesvarstable, hpd clevel(80)

Menu
Statistics > Multivariate time series > Bayesian models > Check stability condition of VAR estimates

704
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Syntax
bayesvarstable

[
, options

]
options Description

estimates(estname) use previously stored results estname; default is to use active
results

clevel(#) set credible interval level; default is clevel(95)

hpd save HPD credible intervals instead of the default equal-tailed
credible intervals

mcmcsaving(filename
[
, replace

]
) save simulation results to filename.dta

collect is allowed; see [U] 11.1.10 Prefix commands.

Options
estimates(estname) requests that bayesvarstable use the previously obtained set of bayes: var

estimates stored as estname. By default, bayesvarstable uses the active estimation results. See
[R] estimates for information on manipulating estimation results.

clevel(#) specifies the credible level, as a percentage, for equal-tailed and HPD credible intervals.
The default is clevel(95) or as set by [BAYES] set clevel.

hpd displays the HPD credible intervals instead of the default equal-tailed credible intervals.

mcmcsaving(filename
[
, replace

]
) saves simulation results in filename.dta. The replace option

specifies to overwrite filename.dta if it exists. If the mcmcsaving() option is not specified,
simulation results are not saved.

The saved dataset has the following structure. Variable chain records chain identifiers. Variable
index records iteration numbers. bayesvarstable saves only states (sets of values) that are

different from one iteration to another and the frequency of each state in variable frequency. As
such, index may not necessarily contain consecutive integers. Remember to use frequency
as a frequency weight if you need to obtain any summaries of this dataset. Values for modulus of
each eigenvalue are saved in a separate variable in the dataset.

Remarks and examples
Stability is an important condition for VAR model interpretation; see Remarks and examples of

[TS] varstable. If the stability condition of a VAR model is not met, its impulse–response functions
(IRFs) and forecast-error variance decompositions do not reach equilibrium and thus do not have clear
interpretation.

Lütkepohl (2005) and Hamilton (1994) show that if the modulus of each eigenvalue of the companion
matrix A is strictly less than one, the estimated VAR is stable (see Methods and formulas for the
definition of the matrix A). In a Bayesian setting, we are concerned with the posterior distribution
of A and its eigenvalues.

Following are two examples illustrating stable and unstable VAR models.
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Example 1: Stable VAR model

We revisit example 1 from [TS] varstable. It uses lutkepohl2.dta of West Germany microe-
conomic quarterly data for the years between 1960 and 1978. The example studies the relationships
between investment, dln inv, income, dln inc, and consumption, dln consump.

. use https://www.stata-press.com/data/r18/lutkepohl2

. tsset

Using the bayes: var command, we fit a Bayesian VAR model with two lags on the dependent
variables dln inv, dln inc, and dln consump. Considered are observations between the second
quarter of 1961 and the fourth quarter of 1978. We use the default conjugate Minnesota prior for
regression coefficients and error covariance matrix.

. bayes, rseed(17) nomodelsummary:
> var dln_inv dln_inc dln_consump if qtr>=tq(1961q2) & qtr<=tq(1978q4)
Burn-in ...
Simulation ...

Bayesian vector autoregression MCMC iterations = 12,500
Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Sample: 1961q2 thru 1978q4 Number of obs = 71

Acceptance rate = 1
Efficiency: min = .9556

avg = .9962
Log marginal-likelihood = 467.75286 max = 1

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

dln_inv
dln_inv

L1. .4749526 .1046821 .001071 .4762824 .2706787 .6790291
L2. .0062935 .063174 .000632 .0058376 -.1181113 .129959

dln_inc
L1. .1150521 .4145854 .004146 .1155755 -.7122031 .9358321
L2. .0096558 .2461088 .002464 .0129206 -.4780951 .490937

dln_consump
L1. -.0693822 .4910385 .004828 -.0712677 -1.016477 .9050535
L2. .0182113 .2919327 .002919 .0169657 -.5563898 .6010627

_cons .0067839 .0153897 .000154 .0067986 -.0233363 .0367596
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dln_inc
dln_inv

L1. .0152113 .0248328 .000248 .0154024 -.0341219 .0635173
L2. .000957 .0149204 .000147 .0010833 -.0285813 .0306545

dln_inc
L1. .600281 .0981275 .000981 .5997577 .4077653 .7928394
L2. .011757 .0577031 .000577 .0123101 -.1009659 .1245041

dln_consump
L1. -.0331359 .1151265 .001151 -.0318916 -.2594495 .1939938
L2. -.0266197 .0694851 .000695 -.0263958 -.1637059 .1123704

_cons .0084678 .0036265 .000037 .0084371 .0013034 .0155666

dln_consump
dln_inv

L1. -.0183312 .0220482 .00022 -.0182937 -.062597 .0243933
L2. .0092806 .0135179 .000135 .0094044 -.0171007 .036166

dln_inc
L1. -.0365965 .0875614 .000876 -.0368425 -.2086565 .1364804
L2. .0345945 .0520216 .000514 .0339648 -.0668323 .136918

dln_consump
L1. .5444814 .1030406 .001027 .5432019 .3416401 .7489821
L2. .0555939 .0617942 .000618 .055126 -.063175 .1763757

_cons .0078414 .0032597 .000033 .0078245 .001402 .0141132

Sigma_1_1 .003945 .0006693 6.4e-06 .0038783 .0028446 .0054382
Sigma_2_1 -.0000314 .0001118 1.1e-06 -.0000291 -.0002548 .0001897
Sigma_3_1 .000138 .0001007 1.0e-06 .0001355 -.0000512 .0003478
Sigma_2_2 .0002195 .0000373 3.7e-07 .0002158 .0001579 .0003039
Sigma_3_2 .0000502 .0000238 2.4e-07 .000049 6.46e-06 .0001007
Sigma_3_3 .0001743 .0000294 2.9e-07 .0001714 .0001261 .0002408

For explanation of the output of bayes: var, see Remarks and examples of [BAYES] bayes: var.

To use the bayesvarstable command, we need to save simulation results computed by bayes: var
in a permanent dataset.

. bayes, saving(bvarex1)
note: file bvarex1.dta saved.

Now we are ready to check the stability condition for the above Bayesian model.

. bayesvarstable

Eigenvalue stability condition Companion matrix size = 6
MCMC sample size = 10000

Eigenvalue Equal-tailed
modulus Mean Std. dev. MCSE Median [95% cred. interval]

1 .7295294 .0952871 .000953 .7272906 .547312 .9209245
2 .6039037 .1045099 .001045 .6094994 .3810883 .7904044
3 .428933 .1272649 .001273 .4239249 .2113325 .6645651
4 .2126552 .0780213 .00078 .1997342 .0900884 .3846134
5 .1378018 .0565196 .000565 .1349177 .0385605 .2577174
6 .0759403 .05052 .000505 .0700686 .0035577 .1847619

Pr(eigenvalues lie inside the unit circle) = 0.9966
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The VAR model has a companion matrix of size 6 (3 response variables times 2 lags). The
bayesvarstable command thus reports posterior summaries for the moduli of 6 eigenvalues.
The maximum one has a posterior mean of 0.73, less than 1. In addition to posterior means, we also
see posterior standard deviations, MCMC standard errors, medians, and credible intervals.

The bayesvarstable command estimates the probability of unit circle inclusion for all eigenvalues
to be 0.9966, or essentially 1. The stability condition is thus satisfied.

We may specify the HPD credible intervals instead of the default equal-tailed ones and change the
level of the intervals. This, however, would not change the estimated probability of inclusion and the
overall conclusion.

. bayesvarstable, hpd clevel(80)

Eigenvalue stability condition Companion matrix size = 6
MCMC sample size = 10000

Eigenvalue HPD
modulus Mean Std. dev. MCSE Median [80% cred. interval]

1 .7295294 .0952871 .000953 .7272906 .6066106 .8490679
2 .6039037 .1045099 .001045 .6094994 .4782224 .7449145
3 .428933 .1272649 .001273 .4239249 .2656266 .6001815
4 .2126552 .0780213 .00078 .1997342 .1065876 .3036596
5 .1378018 .0565196 .000565 .1349177 .0623463 .2060198
6 .0759403 .05052 .000505 .0700686 .0000169 .1200219

Pr(eigenvalues lie inside the unit circle) = 0.9966

As we mentioned above, a stable VAR model has IRFs that reach equilibrium in the long run. Let’s
verify this. We compute IRFs for 60 quarters (15 years) ahead and save them as birf estimates in
birfex1.irf.

. bayesirf create birf, step(60) set(birfex1)
(file birfex1.irf created)
(file birfex1.irf now active)
(file birfex1.irf updated)
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See Remarks and examples for details about [BAYES] bayesirf create. We check the long-term
behavior of the cumulative orthogonalized IRFs using the bayesirf graph command.

. bayesirf graph coirf
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95% equal-tailed CrI Posterior mean of COIRF

Step

Graphs by irfname, impulse variable, and response variable

In particular, we look at the cumulative shock effects of impulse variables on themselves (the graphs
on the diagonal). It is clear that all shocks reach long-term equilibrium after about 2 years (all graphs
converge to horizontal asymptotes). These are the types of graphs we expect to see from a stable VAR
model.

Example 2: Unstable VAR model

In this example, we show how the specification of a strong prior may violate the stability condition
of a VAR model.

We consider the same VAR model as in the previous example, but now we reduce the number of lags
from 2 to 1 and strengthen the default Minnesota prior. In particular, we change the selftight()
suboption of minnconjprior() from its default value of 0.1 to 0.001. This option determines the
prior variance of regression coefficients; see self-variables tightness parameter. A value of 0.001 will
shrink the regression coefficients to their prior mean values, which are 1 for self-variables first-lag
coefficients and 0 otherwise. The shrinkage is thus toward a random-walk behavior, which is known
to be unstable. Given the modest sample size of 90 observations, we expect the prior to dominate
the information available in the data.
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. bayes, minnconjprior(selftight(0.001)) rseed(17) saving(bvarex2) nomodelsummary:
> var dln_inv dln_inc dln_consump, lags(1)
Burn-in ...
Simulation ...

Bayesian vector autoregression MCMC iterations = 12,500
Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Sample: 1960q3 thru 1982q4 Number of obs = 90

Acceptance rate = 1
Efficiency: min = .9779

avg = .9988
Log marginal-likelihood = 590.1324 max = 1

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

dln_inv
dln_inv

L1. .9999075 .0015466 .000015 .9999005 .9968787 1.002993

dln_inc
L1. -.0001024 .0057483 .000056 -.0000905 -.0113532 .0112184

dln_consump
L1. .0000347 .0062553 .000063 .0000484 -.0122773 .0124097

_cons -.0000218 .0050112 .00005 -4.42e-06 -.009838 .0097902

dln_inc
dln_inv

L1. 5.87e-06 .0003621 3.6e-06 6.24e-06 -.0006947 .000714

dln_inc
L1. .9999134 .0013413 .000013 .9999053 .9973009 1.002532

dln_consump
L1. -.0000275 .0014526 .000015 -.0000321 -.0028922 .0028222

_cons -.0001133 .0011346 .000011 -.0001213 -.002378 .0021637

dln_consump
dln_inv

L1. -7.21e-06 .0003546 3.5e-06 -8.11e-06 -.0007066 .0006912

dln_inc
L1. -.0000405 .001341 .000014 -.0000284 -.0027065 .002576

dln_consump
L1. .9998961 .0014424 .000014 .9999152 .9970457 1.002728

_cons -.000031 .0011446 .000011 -.0000338 -.0022769 .0022331

Sigma_1_1 .004672 .0006967 7.0e-06 .0046044 .0034928 .00625
Sigma_2_1 -.0000808 .0001147 1.1e-06 -.0000799 -.0003115 .0001442
Sigma_3_1 .0002439 .0001158 1.2e-06 .00024 .0000266 .0004826
Sigma_2_2 .0002519 .0000382 3.8e-07 .0002482 .0001879 .000336
Sigma_3_2 .000067 .0000275 2.8e-07 .0000655 .0000169 .0001243
Sigma_3_3 .0002483 .0000366 3.7e-07 .0002447 .0001869 .0003288

file bvarex2.dta saved.

The posterior mean estimates of regression coefficients are very close to their prior mean values.
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We use bayesvarstable to check the stability condition.
. bayesvarstable

Eigenvalue stability condition Companion matrix size = 3
MCMC sample size = 10000

Eigenvalue Equal-tailed
modulus Mean Std. dev. MCSE Median [95% cred. interval]

1 1.001409 .0012333 .000012 1.001324 .999263 1.004065
2 .9998958 .0011205 .000011 .9998891 .997711 1.002059
3 .9984138 .0012513 .000013 .998492 .9957189 1.000603

Pr(eigenvalues lie inside the unit circle) = 0.1194

The reported probability that all three eigenvalues lie in the unit circle is only about 12% and is
clearly insufficient to claim the stability of the estimates.

We can also look at IRFs for visual confirmation of the instability of the model. We compute IRFs
for 60 quarters ahead and save them as birf estimates in birfex2.irf.

. bayesirf create birf, step(60) set(birfex2)
(file birfex2.irf created)
(file birfex2.irf now active)
(file birfex2.irf updated)

Then we plot the cumulative orthogonalized IRFs using bayesirf graph.
. bayesirf graph coirf
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Step

Graphs by irfname, impulse variable, and response variable

It is clear that the shocks of impulses on themselves (the graphs on the diagonal) do not reach
equilibrium and continue to increase beyond the 60-quarter period. This is a typical behavior of an
unstable VAR model.

This particular instability problem arises because the used prior strongly favors an unstable, random-
walk model, and there is not enough information in the data to outweigh this prior. For instance, if we
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specified zero prior means for all coefficients, we would not run into this problem. What constitutes
a strong prior depends on the sample size and the amount of information contained in the data about
model parameters. The conclusion in this example may not hold for other VAR models and datasets.
We thus recommend checking the stability condition after fitting any VAR model before proceeding
with postestimation analysis.

Stored results
bayesvarstable stores the following in r():

Scalars
r(prob incl) probability of unit circle inclusion of all eigenvalues
r(mcmcsize) MCMC sample size
r(compsize) companion matrix size

Matrices
r(summary) matrix with posterior summary statistics for eigenvalues

Methods and formulas
Consider a companion matrix A defined in Methods and formulas of [TS] varstable. In a Bayesian

setting, A is a random matrix with a posterior distribution that depends on the prior distribution
of regression coefficients and error covariance matrix. The Bayesian computations use the MCMC
sample created by the bayes: var command that contains draws from the posterior distribution of
the regression coefficients/matrices and error covariance.

For each draw, the eigenvalue moduli of the companion matrix A∗ that corresponds to that draw
are computed and saved in an MCMC sample. Finally, the resulting MCMC samples of eigenvalue
moduli are summarized, and standard Bayesian statistics such as posterior mean, medians, and credible
intervals are reported.

The posterior probability of the unit circle inclusion is estimated as the proportion of MCMC
observations for which all eigenvalues of A∗’s are strictly within the unit circle.

References
Hamilton, J. D. 1994. Time Series Analysis. Princeton, NJ: Princeton University Press.

Lütkepohl, H. 2005. New Introduction to Multiple Time Series Analysis. New York: Springer.

Also see
[BAYES] bayes: var postestimation — Postestimation tools for bayes: var

[BAYES] bayes: var — Bayesian vector autoregressive models

[TS] varstable — Check the stability condition of VAR or SVAR estimates

http://www.stata.com/bookstore/imtsa.html


Title

bayesfcast — Bayesian dynamic forecasts

Description Quick start Syntax Also see

Description
bayesfcast computes and graphs Bayesian dynamic forecasts of the endogenous variables af-

ter bayes: var. bayesfcast has two subcommands. bayesfcast compute computes the posterior
means or medians of dynamic forecasts, posterior standard deviations, and credible intervals. bayesf-
cast graph graphs Bayesian predictions, credible intervals, and observed values.

Quick start
Fit a Bayesian vector autoregression model

bayes, saving(bvarmcmc): var y1 y2 y3

Compute posterior means and credible intervals of dynamic forecast for 8 steps ahead
bayesfcast compute bf_, step(8)

Graph the posterior means, credible intervals, and observed values
bayesfcast graph bf_y1 bf_y2 bf_y3, observed

Syntax
bayesfcast subcommand . . .

[
, . . .

]
subcommand Description

compute obtain dynamic forecasts
graph graph dynamic forecasts obtained from bayesfcast compute

bayesfcast can be used after bayes: var; see [BAYES] bayes: var.

Also see
[BAYES] bayes: var — Bayesian vector autoregressive models
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Title

bayesfcast compute — Compute Bayesian dynamic forecasts

Description Quick start Menu Syntax
Options Remarks and examples Methods and formulas Reference
Also see

Description

bayesfcast compute produces Bayesian dynamic forecasts of the dependent variables in a model
previously fit by bayes: var. It creates new variables for prediction results and, if necessary, extends
the time frame of the dataset to contain the prediction horizon. Prediction results can be posterior
means or medians, posterior standard deviations, and credible intervals.

Quick start
Posterior means stored in b y1, b y2, and b y3 as dynamic forecasts after fitting a model with

bayes: var for dependent variables y1, y2, and y3

bayesfcast compute b

Same as above, but begin forecast on the first quarter of 1979 for 10 periods ahead
bayesfcast compute b , dynamic(q(1979q1)) step(10)

Same as above, but requesting posterior medians instead of posterior means be saved as forecasts
along with 80% equal-tailed credible intervals.

bayesfcast compute b , dynamic(q(1979q1)) step(10) median clevel(80)

Menu
Statistics > Multivariate time series > Bayesian models > VAR forecasts > Compute forecasts (required for graph)
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Syntax
bayesfcast compute prefix

[
, options

]
prefix is the prefix appended to the names of the dependent variables to create the names of the
variables holding the dynamic forecasts.

options Description

step(#) set # periods to forecast; default is step(1)

dynamic(time constant) begin dynamic forecasts at time constant
estimate(estname) use previously stored results estname; default is to use active

results
replace replace existing forecast variables that have the same prefix
clevel(#) set credible interval level; default is clevel(95)

hpd save HPD credible intervals instead of the default equal-tailed
credible intervals

median save posterior medians instead of default posterior means and
standard deviations

mcmcsaving(filename
[
, replace

]
) save simulation results to filename.dta

mcmcsaving save simulation results to prefix mcmc.dta

rseed(#) random-number seed

bayesfcast compute can be used only after bayes: var.
You must tsset your data before using bayesfcast compute; see [TS] tsset.

Options
step(#), dynamic(time constant), estimate(estname), and replace; see [TS] fcast compute.

clevel(#) specifies the credible level, as a percentage, for equal-tailed and HPD credible intervals.
The default is clevel(95) or as set by [BAYES] set clevel.

hpd displays the HPD credible intervals instead of the default equal-tailed credible intervals.

median calculates and saves posterior medians instead of the posterior means and standard deviations.

mcmcsaving(filename
[
, replace

]
) saves simulation results in filename.dta. The replace option

specifies to overwrite filename.dta if it exists. If the mcmcsaving() option is not specified,
simulation results are not saved.

The saved dataset has the following structure. Variable chain records chain identifiers. Variable
index records iteration numbers. bayesfcast saves only states (sets of values) that are different

from one iteration to another and the frequency of each state in variable frequency. As such,
index may not necessarily contain consecutive integers. Remember to use frequency as a

frequency weight if you need to obtain any summaries of this dataset. Values for each forecasted
outcome are saved in a separate variable in the dataset. The variable corresponding to outcome y
and time period t is named as y t.

mcmcsaving saves the simulation results in prefix mcmc.dta.

rseed(#) sets the random-number seed. This option can be used to reproduce results. With one
chain, rseed(#) is equivalent to typing set seed # prior to calling the bayes prefix; see [R] set
seed. With multiple chains, you should use rseed() for reproducibility; see Reproducing results
in [BAYES] bayesmh.
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Remarks and examples
Below, we show examples of dynamic forecasts after fitting Bayesian vector autoregression (VAR)

models. Also see example 9 in [BAYES] bayes: var for another example.

Example 1

We revisit example 1 from [TS] fcast compute. It uses lutkepohl2.dta of West Germany microe-
conomic quarterly data for the years between 1960 and 1978. The example studies the relationships
between investment (dln inv), income (dln inc), and consumption (dln consump).

. use https://www.stata-press.com/data/r18/lutkepohl2

. tsset

First, we fit a Bayesian VAR model with two lags on the dependent variables dln inv, dln inc,
and dln consump using the bayes: var command with default settings. The output of the command
is suppressed. The subsequent bayesfcast command requires that the simulation results generated
by bayes: var be saved in a permanent dataset, in our case bfcastex1.dta.

. bayes, rseed(17) nomodelsummary notable noheader:
> var dln_inv dln_inc dln_consump if qtr<tq(1979q1)
Burn-in ...
Simulation ...

. bayes, saving(bfcastex1, replace)
note: file bfcastex1.dta not found; file saved.

We then compute 8-step dynamic predictions for each of the three dependent variables using
bayesfcast compute. We specify b1 prefix for the newly created variables.

. bayesfcast compute b1_, step(8)

The prediction results are saved in the current dataset and include posterior means, b1 *, posterior
standard deviations, b1 * sd, and 95% credible intervals, b1 * lb and b1 * ub. Populated are
observations between qtr = 1978q4 and qtr = 1980q4.
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Next, using the bayesfcast graph command, we show the posterior mean forecasts along with
the 95% credible bands.

. bayesfcast graph b1_dln_inc b1_dln_inv b1_dln_consump, observed
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Compared with the original forecasts shown in example 1, the Bayesian posterior means forecasts
are much smoother and closer to the stationary state. The variability of the Bayesian forecasts, as
measured by the width of the 95% credible bands, tends to increase slightly with time, whereas the
width of the confidence bands in the original forecasts stays the same. The Bayesian forecasts thus
appear to provide more conservative predictions.

Example 2

Continuing with example 1, we fit a second VAR model in which the Minnesota prior on regression
coefficients is more relaxed, thus giving us posterior estimates that are closer to the frequentist ones,
as obtained by the var command.

We use the same VAR(2) model specification but specify the selftight(1) suboption of the
minnconjprior() option, which controls the Minnesota prior. Again, we suppress the output of the
bayes: var command and save the simulation results in bfcastex2.dta.
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. bayes, minnconjprior(selftight(1)) rseed(17) nomodelsummary notable noheader:
> var dln_inc dln_consump dln_inv if qtr<tq(1979q1)
Burn-in ...
Simulation ...

. bayes, saving(bfcastex2, replace)
note: file bfcastex2.dta not found; file saved.

Then, we compute Bayesian forecasts based on the second model and save them in the current
dataset using the b2 prefix for the newly created variables.

. bayesfcast compute b2_, step(8)

Finally, we plot the forecasts of the two models along with the observed values for the dln inv
variable (shown in green).

. graph twoway line b2_dln_inv b1_dln_inv dln_inv qtr
> if b2_dln_inv < ., legend(pos(6))
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The Bayesian forecasts of the second model (shown in blue) are more rugged than those of the first
model and are indeed closer to the original forecasts from example 1. Although initially the second
model forecasts are closer to the observed, their precision quickly drops afterward, and the more
conservative predictions of the first model appear to fare better later on. The forecasts of both models
converge with each other after six time steps.

Methods and formulas
Methods and formulas are presented under the following headings:

Bayesian dynamic forecasts
Dynamic forecasts after bayes: var

Bayesian dynamic forecasts

In the frequentist context, dynamic forecasts are based on one set of point estimates of the model
parameter vector θ. In a Bayesian framework, instead of point estimates, an entire posterior distribution
of θ is used to compute forecasts.
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Let yt be a vector of outcome variables at time t. A dynamic forecast with horizon h is a
realization of future observations yT+1, yT+2, . . ., yT+h based on the observations up to time T :
y1, y2, . . ., yT . Let f(yT+1:T+h|y1:T , θ) be the distribution of future observations conditional on
the observations up to time T . Bayesian dynamic forecasts are drawn from the posterior predictive
distribution

p(yT+1:T+h|y1:T ) =

∫
f(yT+1:T+h|y1:T , θ)p(θ|D)dθ

where p(θ|D) is the posterior distribution of the model with respect to some data D. For example, D
may include the outcome observations y|1:T along with observations on exogenous variables X1:T .

In practice, f(yT+1:T+h|y1:T , θ) is computed recursively using the factorization

f(yT+1:T+h|y1:T , θ) = f(yT+1|y1:T , θ)f(yT+2|y1:T+1, θ) . . . f(yT+h|y1:T+h−1, θ)

After fitting a time-series model using bayes: var, we have a Markov chain Monte Carlo (MCMC)
sample of realizations of θ from its posterior distribution p(θ|D). To simulate the distribution of the
dynamic forecast p(yT+1:T+h|y1:T ), we recycle this same MCMC sample.

1. For each draw θs from the MCMC sample {θ1, θ2, . . . , θM}, repeat the following:

2.1. Generate ỹsT+1 from f(yT+1|y1:T , θ
s).

2.2. Generate ỹsT+2 from f(yT+2|y1:T , ỹ
s
T+1, θ

s).

. . .

2.h. Generate ỹsT+h from f(yT+h|y1:T , ỹ
s
T+1:T+h−1, θ

s).

3. Save the forecast draw (ỹsT+1, ỹ
s
T+2, . . . , ỹ

s
T+h).

4. Using the simulated forecast draws, compute posterior summaries such as means, medians,
and credible intervals for each of the h forecast steps yT+1, . . ., yT+h.

The bayesfcast compute command saves the estimated posterior summaries computed by the
above algorithm in the current dataset similar to the way the fcast compute command computes
and saves forecast point estimates.

Dynamic forecasts after bayes: var

The method of simulating Bayesian dynamic forecasts in the special case of VAR is proposed in
Karlsson (2013). It follows the steps of the above general algorithm for simulating an MCMC sample
of forecasts from the posterior predictive distribution p(yT+1:T+h|y1:T ).

Let’s consider a VAR(p) model using the notation from Methods and formulas of [BAYES] bayes: var:

yt = A1yt−1 + · · ·+ Apyt−p + Cxt + ut

for t = 1, . . . , T .

The model parameter vector θ includes elements of A1, . . ., Ap, C, and error covariance matrix
Σ of the error terms ut’s. For each MCMC draw of the parameters θs, the forecast steps 2.1 to 2.h
reduce to the following,
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ỹsT+1 = As
1yT + As

2yT−1 · · ·+ As
pyT−p+1 + CsxT+1 + ũT+1

ỹsT+2 = As
1ỹ

s
T+1 + As

2yT + · · ·+ As
pyT−p + CsxT+2 + ũT+2

. . .

ỹsT+h = As
1ỹ

s
T+h−1 + As

2ỹ
s
T+h−2 + · · ·+ CsxT+h + ũT+h

where ũT+1, . . ., ũT+h are independent draws from N(0,Σs).

Reference
Karlsson, S. 2013. Forecasting with Bayesian vector autoregression. In Handbook of Economic Forecasting, vol. 2B,

ed. G. Elliott and A. Timmermann, 791–897. Amsterdam: North-Holland. https://doi.org/10.1016/B978-0-444-62731-
5.00015-4.

Also see
[TS] fcast compute — Compute dynamic forecasts after var, svar, or vec

[BAYES] bayesfcast graph — Graphs of Bayesian dynamic forecasts

[BAYES] bayes: var — Bayesian vector autoregressive models

https://doi.org/10.1016/B978-0-444-62731-5.00015-4
https://doi.org/10.1016/B978-0-444-62731-5.00015-4


Title

bayesfcast graph — Graphs of Bayesian dynamic forecasts

Description Menu Syntax Options
Remarks and examples Also see

Description
bayesfcast graph graphs Bayesian dynamic forecasts of the endogenous variables from a VAR(p)

model that has already been obtained from bayesfcast compute; see [BAYES] bayesfcast compute.

Menu
Statistics > Multivariate time series > Bayesian models > VAR forecasts > Graph forecasts

Syntax
bayesfcast graph varlist

[
if
] [

in
] [

, options
]

varlist contains one or more forecasted variables generated by bayesfcast compute.

options Description

fcast options any options documented in [TS] fcast graph
nocri suppress credible bands

CrI plot

criopts(area options) affect rendition of the credible bands

bayesfcast compute can be used only after bayes: var.
The nocri option replaces the noci option on the Main tab of [TS] fcast graph.
The CrI plot tab replaces the CI plot tab of [TS] fcast graph.

Options
fcast options are any of the options documented in [TS] fcast graph for the var command. noci is

a synonym for nocri, and ciopts() is a synonym for criopts(). Synonymous options do not
appear on the dialog box.

nocri suppresses displaying the credible bands. This option replaces the noci option of [TS] fcast
graph on the Main tab.

� � �
CrI plot �

criopts(area options) affects the rendition of the credible bands for the forecasts. area options
are as described in [G-3] area options. fcast’s ciopts() is a synonym for criopts().

The CrI plot tab replaces the CI plot tab of [TS] fcast graph.
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Remarks and examples
See [TS] fcast graph for a general discussion, and see example 9 in [BAYES] bayes: var for an

example.

Also see
[TS] fcast graph — Graph forecasts after fcast compute

[BAYES] bayesfcast compute — Compute Bayesian dynamic forecasts

[BAYES] bayes: var — Bayesian vector autoregressive models



Title

bayesirf — Bayesian IRFs, dynamic-multiplier functions, and FEVDs

Description Quick start Syntax Remarks and examples Also see

Description
bayesirf creates and manipulates Bayesian impulse–response function (IRF) files that contain

estimates of the IRFs, dynamic-multiplier functions, and forecast-error variance decompositions (FEVDs)
created after estimation by bayes: var; see [BAYES] bayes: var.

bayesirf creates and manipulates Bayesian IRF files that contain estimates of the IRFs created after
estimation by bayes: dsge or bayes: dsgenl; see [BAYES] bayes: dsge or [BAYES] bayes: dsgenl.

IRFs and FEVDs are described in [TS] irf.

Quick start
Fit a Bayesian vector autoregression (VAR) model

bayes, saving(bvarmcmc): var y1 y2 y3

Create IRF myirf and IRF file bayesirfs.irf

bayesirf create myirf, set(bayesirfs)

Graph orthogonalized IRF for dependent variables y1 and y2 given a shock to y1

bayesirf graph oirf, impulse(y1) response(y1 y2)

Same as above, but present results in a table
bayesirf table oirf, impulse(y1) response(y1 y2)

See other bayesirf subcommands for additional Quick starts.
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Syntax
bayesirf subcommand . . .

[
, . . .

]
subcommand Description

create create IRF file containing IRFs, dynamic-multiplier functions, and FEVDs;
[BAYES] bayesirf create

set set the active IRF file; [TS] irf set

graph graph results from active file; [BAYES] bayesirf graph
cgraph combine graphs of IRFs, dynamic-multiplier functions, and FEVDs;

[BAYES] bayesirf cgraph
ograph graph overlaid IRFs, dynamic-multiplier functions, and FEVDs;

[BAYES] bayesirf ograph
table create tables of IRFs, dynamic-multiplier functions, and FEVDs from

active file; [BAYES] bayesirf table
ctable combine tables of IRFs, dynamic-multiplier functions, and FEVDs;

[BAYES] bayesirf ctable

describe describe contents of active file; [TS] irf describe
add add results from an IRF file to the active IRF file; [TS] irf add
drop drop IRF results from active file; [TS] irf drop
rename rename IRF results within a file; [TS] irf rename

bayesirf can be used after bayes: var, bayes: dsge or bayes: dsgenl; see [BAYES] bayes: var,
[BAYES] bayes: dsge, or [BAYES] bayes: dsgenl.

bayesirf set, describe, add, drop, and rename have the same syntax as their respective irf commands.

Remarks and examples
For examples and details about IRFs and other functions, see Remarks and examples in

[BAYES] bayesirf create. Also see example 8 in [BAYES] bayes: var.

Also see
[TS] irf — Create and analyze IRFs, dynamic-multiplier functions, and FEVDs

[BAYES] bayes: dsge — Bayesian linear dynamic stochastic general equilibrium models

[BAYES] bayes: dsgenl — Bayesian nonlinear dynamic stochastic general equilibrium models

[BAYES] bayes: var — Bayesian vector autoregressive models



Title

bayesirf create — Obtain Bayesian IRFs, dynamic-multiplier functions, and FEVDs

Description Quick start Menu Syntax
Options Remarks and examples Methods and formulas Also see

Description
bayesirf create computes posterior summaries of impulse–response functions (IRFs), dynamic-

multiplier functions, and forecast-error variance decompositions (FEVDs). Posterior means, medians,
and credible intervals of all of these functions are referred to collectively as Bayesian IRF results
and are saved in an IRF file under a specified filename. Once you have created a set of Bayesian IRF
results, you can use the other bayesirf commands to analyze them.

Quick start
Create IRF myirf with 8 forecast periods in the active IRF file

bayesirf create myirf

Same as above, but save the entire Markov chain Monte Carlo (MCMC) sample of results in
myirfmcmc.dta (required when option clevel() or hpd is specified with other bayesirf
subcommands)

bayesirf create myirf, mcmcsaving(myirfmcmc)

Compute IRF for 12 periods and use myirfs.irf file for saving results
bayesirf create myirf, set(myirfs) step(12)

Same as above, but compute 80% highest posterior density (HPD) credible intervals instead of 95%
equal-tailed credible intervals

bayesirf create myirf, set(myirfs) step(12) clevel(80) hpd

Note: bayesirf commands can be used after bayes: var, bayes: dsge, or bayes: dsgenl; see
[BAYES] bayes: var, [BAYES] bayes: dsge, or [BAYES] bayes: dsgenl.

Menu
Statistics > Multivariate time series > Bayesian models > IRF and FEVD analysis
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Syntax
bayesirf create irfname

[
, options

]
irfname is any valid name that does not exceed 15 characters.

options Description

Main

set(filename
[
, replace

]
) make filename active

replace replace irfname if it already exists
step(#) set forecast horizon to #; default is step(8)

order(varlist) specify Cholesky ordering of endogenous variables;
available only after bayes: var

estimates(estname) use previously stored results estname; default is to use active
results

Bayesian

clevel(#) set credible interval level; default is clevel(95)

equaltailed save equal-tailed credible intervals; the default
hpd save HPD credible intervals instead of the default equal-tailed

credible intervals
mcmcsaving(filename

[
, replace

]
) save simulation results to filename.dta

mcmcsaving save simulation results to irfname mcmc.dta

bayesirf create can be used only after bayes: var, bayes: dsge, and bayes: dsgenl.
You must tsset your data before using bayes: var or bayes: dsge and, hence, before using bayesirf create;

see [TS] tsset.

Options

� � �
Main �

set(filename
[
, replace

]
), replace, step(#), order(varlist), and estimates(estname); see

[TS] irf create. Option order() is available only after estimation using bayes: var.

� � �
Bayesian �

clevel(#) specifies the credible level, as a percentage, for equal-tailed and HPD credible intervals.
The default is clevel(95) or as set by [BAYES] set clevel.

hpd displays the HPD credible intervals instead of the default equal-tailed credible intervals.

mcmcsaving(filename
[
, replace

]
) saves simulation results in filename.dta. The replace option

specifies to overwrite filename.dta if it exists. If the mcmcsaving() option is not specified,
simulation results are not saved.

The saved dataset has the following structure. Variable chain records chain identifiers. Variable
index records iteration numbers. bayesirf create saves only states (sets of values) that are

different from one iteration to another and the frequency of each state in variable frequency. As
such, index may not necessarily contain consecutive integers. Remember to use frequency
as a frequency weight if you need to obtain any summaries of this dataset. MCMC values for each
computed function func for each combination of an impulse #1 and response #2 variables and for
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each time period t are saved in a separate variable in the dataset. These variables are named as
func #1 #2 t.

mcmcsaving saves the simulation results in irfname mcmc.dta.

Remarks and examples
Please read [TS] irf first. An introductory example using IRFs is presented there.

bayesirf create estimates several types of IRFs, dynamic-multiplier functions, and FEVDs.
Which estimates are saved depends on the estimation method previously used to fit the model.

Estimation command
dsge/

Saves var dsgenl

simple IRFs x x
orthogonalized IRFs x
dynamic multipliers x
cumulative IRFs x
cumulative orthogonalized IRFs x
cumulative dynamic multipliers x

Cholesky FEVDs x

bayesirf computes results based on the MCMC sample from the corresponding posterior distri-
butions of IRF and other functions, which we will call the IRF MCMC sample. bayesirf create
computes posterior means, medians, standard deviations, and, by default, 95% equal-tailed credible
intervals for all functions and saves them in irfname.dta. When you later display or graph credible
intervals by using, for instance, bayesirf table or bayesirf graph, the default credible intervals
will be reported. If, for instance, you want to change the default level by using clevel() or compute
HPD credible intervals by using hpd with those commands, you must first save the IRF MCMC sample
by using mcmcsaving() with bayesirf create. For example,

. bayesirf create myirf, mcmcsaving(myirfmcmc)

You can also specify the clevel() or hpd option directly with bayesirf create to save the
desired credible intervals in the current IRF file to be used by all bayesirf subcommands by default.

Remarks and examples are presented under the following headings:

IRFs after Bayesian vector autoregression (VAR) models
Technical aspects of IRF files
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IRFs after Bayesian vector autoregression (VAR) models

Example 1: Bayesian VAR(2) model with default prior

We revisit example 1 from the documentation of the irf create command. It uses the lutkepohl2
dataset of West Germany microeconomic quarterly data for the years between 1960 and 1978. The
example studies the relationships between investment, dln inv, income, dln inc, and consumption,
dln consump.

. use https://www.stata-press.com/data/r18/lutkepohl2

. tsset

Using the bayes: var command, we fit a Bayesian VAR model with two lags on the dependent
variables dln inv, dln inc, and dln consump.

. bayes, rseed(17) saving(bvarex1) nomodelsummary:
> var dln_inv dln_inc dln_consump if qtr>=tq(1961q2) & qtr<=tq(1978q4)
Burn-in ...
Simulation ...

Bayesian vector autoregression MCMC iterations = 12,500
Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
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Sample: 1961q2 thru 1978q4 Number of obs = 71
Acceptance rate = 1
Efficiency: min = .9556

avg = .9962
Log marginal-likelihood = 467.75286 max = 1

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

dln_inv
dln_inv

L1. .4749526 .1046821 .001071 .4762824 .2706787 .6790291
L2. .0062935 .063174 .000632 .0058376 -.1181113 .129959

dln_inc
L1. .1150521 .4145854 .004146 .1155755 -.7122031 .9358321
L2. .0096558 .2461088 .002464 .0129206 -.4780951 .490937

dln_consump
L1. -.0693822 .4910385 .004828 -.0712677 -1.016477 .9050535
L2. .0182113 .2919327 .002919 .0169657 -.5563898 .6010627

_cons .0067839 .0153897 .000154 .0067986 -.0233363 .0367596

dln_inc
dln_inv

L1. .0152113 .0248328 .000248 .0154024 -.0341219 .0635173
L2. .000957 .0149204 .000147 .0010833 -.0285813 .0306545

dln_inc
L1. .600281 .0981275 .000981 .5997577 .4077653 .7928394
L2. .011757 .0577031 .000577 .0123101 -.1009659 .1245041

dln_consump
L1. -.0331359 .1151265 .001151 -.0318916 -.2594495 .1939938
L2. -.0266197 .0694851 .000695 -.0263958 -.1637059 .1123704

_cons .0084678 .0036265 .000037 .0084371 .0013034 .0155666

dln_consump
dln_inv

L1. -.0183312 .0220482 .00022 -.0182937 -.062597 .0243933
L2. .0092806 .0135179 .000135 .0094044 -.0171007 .036166

dln_inc
L1. -.0365965 .0875614 .000876 -.0368425 -.2086565 .1364804
L2. .0345945 .0520216 .000514 .0339648 -.0668323 .136918

dln_consump
L1. .5444814 .1030406 .001027 .5432019 .3416401 .7489821
L2. .0555939 .0617942 .000618 .055126 -.063175 .1763757

_cons .0078414 .0032597 .000033 .0078245 .001402 .0141132

Sigma_1_1 .003945 .0006693 6.4e-06 .0038783 .0028446 .0054382
Sigma_2_1 -.0000314 .0001118 1.1e-06 -.0000291 -.0002548 .0001897
Sigma_3_1 .000138 .0001007 1.0e-06 .0001355 -.0000512 .0003478
Sigma_2_2 .0002195 .0000373 3.7e-07 .0002158 .0001579 .0003039
Sigma_3_2 .0000502 .0000238 2.4e-07 .000049 6.46e-06 .0001007
Sigma_3_3 .0001743 .0000294 2.9e-07 .0001714 .0001261 .0002408

file bvarex1.dta saved.
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There are 21 regression coefficients in the model. By default, bayes: var applies a conjugate
Minnesota prior on regression coefficients, the effect of which may be difficult to observe directly
from the output table. The IRF functions provide a more accessible interpretation of estimation results
by assessing the effect of an instant change in one variable on the rest as this effect develops in time.
It would be interesting to see a comparison between Bayesian and frequentist results.

Before continuing, let’s check the stability condition of the model. The interpretation of IRFs
assumes that this condition is satisfied.

. bayesvarstable

Eigenvalue stability condition Companion matrix size = 6
MCMC sample size = 10000

Eigenvalue Equal-tailed
modulus Mean Std. dev. MCSE Median [95% cred. interval]

1 .7295294 .0952871 .000953 .7272906 .547312 .9209245
2 .6039037 .1045099 .001045 .6094994 .3810883 .7904044
3 .428933 .1272649 .001273 .4239249 .2113325 .6645651
4 .2126552 .0780213 .00078 .1997342 .0900884 .3846134
5 .1378018 .0565196 .000565 .1349177 .0385605 .2577174
6 .0759403 .05052 .000505 .0700686 .0035577 .1847619

Pr(eigenvalues lie inside the unit circle) = 0.9966

The unit circle inclusion probability for eigenvalues is essentially 1, so the stability condition is
satisfied.

We continue with computing IRFs for 8 steps ahead and save the results as birf1 in birfex1.irf.

. bayesirf create birf1, step(8) set(birfex1)
(file birfex1.irf created)
(file birfex1.irf now active)
(file birfex1.irf updated)
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A quick way to inspect IRF estimates is by using bayesirf graph.

. bayesirf graph irf
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Step

Graphs by irfname, impulse variable, and response variable

There are nine IRF graphs, one for each combination of the three impulses and three responses.

Example 2: Bayesian VAR(2) model with weakly informative prior

To see the effect of priors on regression coefficients, we fit a second model in which we relax the
Minnesota prior by changing the selftight() parameter from the default of 0.1 to 1. The effect
of this change is that now the Bayesian estimates will be closer to the frequentist ones, as would be
obtained from the corresponding [TS] var command.

. bayes, minnconjprior(selftight(1)) rseed(17) saving(bvarex2) nomodelsummary:
> var dln_inv dln_inc dln_consump if qtr>=tq(1961q2) & qtr<=tq(1978q4)
Burn-in ...
Simulation ...

Bayesian vector autoregression MCMC iterations = 12,500
Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
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Sample: 1961q2 thru 1978q4 Number of obs = 71
Acceptance rate = 1
Efficiency: min = .9551

avg = .9982
Log marginal-likelihood = 516.18125 max = 1

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

dln_inv
dln_inv

L1. -.291233 .1205245 .001233 -.2896978 -.5273294 -.0564433
L2. -.147377 .1174619 .001175 -.1479881 -.37888 .0835443

dln_inc
L1. .2349793 .5412359 .005412 .2376725 -.8448062 1.296301
L2. .0318927 .5068351 .005074 .0364385 -.9534818 1.014282

dln_consump
L1. .7590264 .6437021 .006356 .7512454 -.4969188 2.034697
L2. .7816876 .6184552 .006185 .7857257 -.4503459 2.015964

_cons -.0115762 .0166601 .000167 -.0115223 -.0447488 .0209634

dln_inc
dln_inv

L1. .0437786 .031111 .000311 .0439332 -.017398 .1045939
L2. .0455046 .0301702 .000296 .0456176 -.0144909 .1057367

dln_inc
L1. -.1070955 .1398919 .001399 -.1073961 -.3828335 .1651545
L2. .0235544 .1295408 .001295 .0245432 -.2289609 .2773168

dln_consump
L1. .2556043 .1658887 .001659 .2566669 -.0714113 .5763302
L2. -.0311667 .1611506 .001612 -.0307495 -.3473144 .2870275

_cons .0158357 .004275 .000043 .0158581 .0074012 .024185

dln_consump
dln_inv

L1. -.0043581 .0251223 .000251 -.0044075 -.0539712 .0445555
L2. .0340665 .024665 .000247 .0340276 -.0140267 .082563

dln_inc
L1. .1833481 .1134026 .001134 .1830458 -.0411146 .4053818
L2. .3091415 .1060541 .001049 .3090028 .1014922 .5166988

dln_consump
L1. -.2203787 .1344117 .001314 -.2190475 -.479903 .0415251
L2. .0221078 .1295494 .001295 .0226184 -.228624 .2798039

_cons .0128598 .0034698 .000035 .0128702 .0060369 .0195489

Sigma_1_1 .0020092 .0003405 3.3e-06 .0019742 .0014548 .0027654
Sigma_2_1 .0000578 .0000625 6.2e-07 .0000563 -.0000618 .0001857
Sigma_3_1 .0001097 .0000518 5.2e-07 .0001073 .0000149 .0002205
Sigma_2_2 .0001322 .0000223 2.2e-07 .0001301 .0000954 .0001828
Sigma_3_2 .0000562 .0000143 1.4e-07 .000055 .0000316 .0000877
Sigma_3_3 .000087 .0000147 1.5e-07 .0000855 .0000629 .0001202

file bvarex2.dta saved.
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We compute IRFs for the second model and save them as birf2 in the same dataset birfex1.

. bayesirf create birf2, step(8) set(birfex1)
(file birfex1.irf now active)
(file birfex1.irf updated)

Using the bayesirf ctable command, we show the posterior means of FEVDs of the impulse
dln inc on the response dln consump along with estimates of posterior standard deviations.

. bayesirf ctable (birf1 dln_inc dln_consump fevd)
> (birf2 dln_inc dln_consump fevd), nocri stddev

(1) (1) (2) (2)
Step fevd Std. dev. fevd Std. dev.

0 0 0 0 0
1 .078122 .054559 .249063 .08115
2 .077138 .053865 .254958 .077739
3 .083944 .058845 .313267 .084101
4 .090341 .064417 .31425 .083694
5 .095177 .068994 .318057 .085284
6 .098524 .072337 .318697 .085481
7 .100779 .074699 .319035 .085732
8 .102291 .076363 .31923 .085885

Posterior means reported.
(1) irfname = birf1, impulse = dln_inc, and response = dln_consump.
(2) irfname = birf2, impulse = dln_inc, and response = dln_consump.

We notice that the FEVD estimates for the second model are much closer to those in the original
example 1. In contrast, for the first model, the contribution of dln inc to the variance of dln consump
is substantially lower, starting from 8% for step 1 and increasing only to 10% for step 8. The difference
between the two models can be explained by the effect of using different priors for regression
coefficients. The default conjugate Minnesota prior with the selftight() parameter of 0.1 shrinks
the cross-variables lag coefficients to zero, thus reducing the corresponding FEVDs. For example, the
posterior mean estimates of {dln consump:L1.dln inc} and {dln consump:L2.dln inc} are
about 0.18 and 0.31 in the second model but only −0.04 and 0.03 in the first model.
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Finally, let’s examine the orthogonalized IRF (OIRF) response on dln consump using the bayesirf
graph command.

. bayesirf graph oirf, response(dln_consump)
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Step

Graphs by irfname, impulse variable, and response variable

The IRF graphs confirm the differences between the two models caused by the effect of the Minnesota
prior on regression coefficients. For the first model, which has stronger priors, the impulse responses
on dln consump are smoother and have larger uncertainty, as evident by their credible bands. For
the second model, the prior effect is minimal, and the graphs have ups and downs that may be due
to some seasonal trends. There are no general rules for choosing the right amount of prior strength.
The choice should be based on subject matter and prior experience. We also observe that all OIRFs
converge to 0 relatively fast, as we expect from a stable VAR model.
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The cumulative OIRFs show equilibrium convergence clearly:

. bayesirf graph coirf, response(dln_consump)
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Graphs by irfname, impulse variable, and response variable

Technical aspects of IRF files

bayesirf create computes posterior statistics of a series of IRFs and saves them in an IRF file.
IRF files are just Stata datasets that have names ending in .irf instead of .dta. The dataset in the
file has a nested panel structure.

Variable irfname contains the irfname specified by the user. Variable impulse records the name
of the endogenous variable whose innovations are the impulse. Variable response records the name
of the endogenous variable that is responding to the innovations. In a model with K endogenous
variables, there are K2 combinations of impulse and response. Variable step records the periods
for which these estimates were computed.
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Below is a catalog of the statistics that bayesirf create estimates after the bayes: var command
and the variable names under which they are saved in the IRF file.

Posterior statistic Name
Posterior mean of IRFs irf

Posterior mean of OIRFs oirf

Posterior mean of cumulative IRFs cirf

Posterior mean of cumulative OIRFs coirf

Posterior mean of dynamic-multiplier functions dm

Posterior mean of cumulative dynamic-multiplier functions cdm

Posterior mean of Cholesky forecast-error decomposition fevd

Posterior standard deviation of the IRFs stdirf

Posterior standard deviation of the OIRFs stdoirf

Posterior standard deviation of the cumulative IRFs stdcirf

Posterior standard deviation of the cumulative OIRFs stdcoirf

Posterior standard deviation of dynamic-multiplier functions stddm

Posterior standard deviation of cumulative dynamic-multiplier functions stdcdm

Posterior standard deviation of the Cholesky forecast-error decomposition stdfevd

Posterior median of the IRFs medirf

Posterior median of the OIRFs medoirf

Posterior median of the cumulative IRFs medcirf

Posterior median of the cumulative OIRFs medcoirf

Posterior median of dynamic-multiplier functions meddm

Posterior median of cumulative dynamic-multiplier functions medcdm

Posterior median of the Cholesky forecast-error decomposition medfevd

Lower CrI of the IRFs irfl

Lower CrI of the OIRFs oirfl

Lower CrI of the cumulative IRFs cirfl

Lower CrI of the cumulative OIRFs coirfl

Lower CrI of dynamic-multiplier functions dml

Lower CrI of cumulative dynamic-multiplier functions cdml

Lower CrI of the Cholesky forecast-error decomposition fevdl

Upper CrI of the IRFs irfu

Upper Crl of the OIRFs oirfu

Upper CrI of the cumulative IRFs cirfu

Upper CrI of the cumulative OIRFs coirfu

Upper CrI of dynamic-multiplier functions dmu

Upper CrI of cumulative dynamic-multiplier functions cdmu

Upper CrI of the Cholesky forecast-error decomposition fevdu
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In addition to the variables, information is stored in dta characteristics. See Technical aspects of
IRF files for the list of main characteristics. Below we list the characteristics that are specific to the
bayes prefix models. For each irfname in dta[irfnames], these are the additional characteristics:

Name Contents
dta[irfname bayes] it is bayes if irfname is created by bayesirf create

dta[irfname level] level of the saved credible intervals
dta[irfname hpd] it is hpd if HPD instead of equal-tailed CrIs are saved
dta[irfname mcmcfile] MCMC file of simulated IRFs
dta[irfname mcmcsize] MCMC sample size

Methods and formulas
Bayesian estimates of IRFs and other functions are obtained from their respective posterior distri-

butions.

Let Φi = (φjk,i) denote the impulse–response matrix after i periods; see Methods and formulas
in [TS] irf create for its definition. Bayesian computation of IRFs involves estimation of the posterior
distribution of each coefficient φjk,i. Specifically, we recycle the MCMC sample created by the bayes:
prefix command that contains draws from the posterior distribution of the model parameters such
as regression coefficients and error covariance. For each draw, the IRF coefficients are computed
according to the formulas in [TS] irf create and saved as MCMC samples, one for each coefficient.
Finally, the resulting MCMC samples of IRF coefficients are summarized, and standard statistics such
as posterior means, medians, and credible intervals are saved in the .irf file produced by bayesirf
create.

Other functions are computed similarly; see Methods and formulas in [TS] irf create for their
definitions.

Also see
[BAYES] bayesirf — Bayesian IRFs, dynamic-multiplier functions, and FEVDs

[TS] irf — Create and analyze IRFs, dynamic-multiplier functions, and FEVDs

[BAYES] bayes: dsge — Bayesian linear dynamic stochastic general equilibrium models

[BAYES] bayes: dsgenl — Bayesian nonlinear dynamic stochastic general equilibrium models

[BAYES] bayes: var — Bayesian vector autoregressive models
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bayesirf graph — Graphs of Bayesian IRFs, dynamic-multiplier functions, and FEVDs

Description Quick start Menu Syntax
Options Remarks and examples Stored results Also see

Description
bayesirf graph graphs Bayesian impulse–response functions (IRFs), dynamic-multiplier functions,

and forecast-error variance decompositions (FEVDs) over time.

Quick start
Graph IRF for dependent variables y1 and y2 given an unexpected shock to y1

bayesirf graph irf, impulse(y1) response(y2)

Same as above, but for orthogonalized shocks
bayesirf graph oirf, impulse(y1) response(y2)

Same as above, but begin the plot with the third forecast period
bayesirf graph oirf, impulse(y1) response(y2) lstep(3)

Same as above, but with a separate graph for each IRF in the current IRF file
bayesirf graph oirf, impulse(y1) response(y2) lstep(3) individual

Note: bayesirf commands can be used after bayes: var, bayes: dsge, or bayes: dsgenl; see
[BAYES] bayes: var, [BAYES] bayes: dsge, or [BAYES] bayes: dsgenl.

Menu
Statistics > Multivariate time series > Bayesian models > IRF and FEVD analysis

738



bayesirf graph — Graphs of Bayesian IRFs, dynamic-multiplier functions, and FEVDs 739

Syntax
bayesirf graph stat

[
, options

]
stat Description

Main

irf IRF
oirf orthogonalized IRF
dm dynamic-multiplier function
cirf cumulative IRF
coirf cumulative orthogonalized IRF
cdm cumulative dynamic-multiplier function
fevd Cholesky forecast-error variance decomposition

Notes: 1. No statistic may appear more than once.
2. If credible intervals are included (the default), only two statistics may be included.
3. If credible intervals are suppressed (option nocri), up to four statistics may be included.
4. Only irf is available after bayes: dsge and bayes: dsgenl.

options Description

irf options any options documented in [TS] irf graph

Bayesian

nocri suppress credible intervals
clevel(#) set credible interval level; default is set by

bayesirf create

equaltailed display equal-tailed credible intervals; default is set by
bayesirf create

hpd display HPD credible intervals; default is set by
bayesirf create

median display posterior medians instead of posterior means

CrI plot

cri#opts(area options) affect rendition of the credible interval for the # stat

The CrI plot tab replaces the CI plot tab of [TS] irf graph.
collect is allowed; see [U] 11.1.10 Prefix commands.

Options

irf options are any of the options documented in [TS] irf graph. level(#) is a synonym for
clevel(#), noci is a synonym for nocri, and ci#opts() is a synonym for cri#opts().
Synonymous options do not appear on the dialog box.

� � �
Bayesian �

nocri suppresses displaying the credible intervals for each statistic.

clevel(#), equaltailed, and hpd affect the calculation of credible intervals. When the specified
options do not correspond to the default credible intervals saved in the current IRF file by bayesirf
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create, bayesirf will need an IRF MCMC sample to recompute the credible intervals. You can
save this sample by specifying option mcmcsaving() with bayesirf create. Alternatively, if
you would like to save the desired credible intervals as the default credible intervals in the current
IRF file, you can specify the corresponding options directly with bayesirf create. See Remarks
and examples in [BAYES] bayesirf create.

clevel(#) specifies the credible level, as a percentage, for equal-tailed and HPD credible intervals.

equaltailed displays the equal-tailed credible intervals. equaltailed may not be specified with
hpd.

hpd displays the HPD credible intervals. hpd may not be specified with equaltailed.

median displays the posterior medians instead of the default posterior means.

� � �
CrI plot �

cri1opts(area options) and cri2opts(area options) affect the rendition of the credible intervals
for the first (cri1opts()) and second (cri2opts()) statistics in stat. area options are as described
in [G-3] area options. irf’s ci#opts() is a synonym for cri#opts().

The CrI plot tab replaces the CI plot tab of [TS] irf graph.

Remarks and examples
See [TS] irf graph for a general discussion about IRF and other graphs, and see example 8 in

[BAYES] bayes: var for an example.

Also see [BAYES] bayesirf cgraph, which produces combined graphs; [BAYES] bayesirf ograph,
which produces overlaid graphs; and [BAYES] bayesirf table, which displays results in tabular form.

Stored results
For stored results, see Stored results in [TS] irf graph.

Also see
[TS] irf graph — Graphs of IRFs, dynamic-multiplier functions, and FEVDs

[BAYES] bayesirf cgraph — Combined graphs of Bayesian IRF results

[BAYES] bayesirf ograph — Overlaid graphs of Bayesian IRF results

[BAYES] bayesirf create — Obtain Bayesian IRFs, dynamic-multiplier functions, and FEVDs

[BAYES] bayesirf table — Tables of Bayesian IRFs, dynamic-multiplier functions, and FEVDs

[BAYES] bayesirf — Bayesian IRFs, dynamic-multiplier functions, and FEVDs
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bayesirf cgraph — Combined graphs of Bayesian IRF results

Description Quick start Menu Syntax
Options Remarks and examples Stored results Also see

Description
bayesirf cgraph makes a combined graph of Bayesian impulse–response function (IRF) results.

A graph is made for specified combinations of named IRF results, impulse variables, response variables,
and statistics. bayesirf cgraph combines these graphs into one image, unless separate graphs are
requested.

Quick start
Combine graphs of an orthogonalized IRF birf and cumulative IRF birf for dependent variable y1

and y2.
bayesirf cgraph (birf y1 y2 oirf) (birf y1 y2 cirf)

Same as above, but with maximum steps of 4 and 80% credible interval
bayesirf cgraph (birf y1 y2 oirf) (birf y1 y2 cirf), ustep(4) clevel(80)

Note: bayesirf commands can be used after bayes: var, bayes: dsge, or bayes: dsgenl; see
[BAYES] bayes: var, [BAYES] bayes: dsge, or [BAYES] bayes: dsgenl.

Menu
Statistics > Multivariate time series > Bayesian models > IRF and FEVD analysis
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Syntax
bayesirf cgraph (spec1)

[
(spec2) . . . (specN)

] [
, options

]
where (speck) is

(irfname impulsevar responsevar stat
[
, spec options

]
)

irfname is the name of a set of IRF results in the active IRF file. impulsevar should be specified as an
endogenous variable for all statistics except dm and cdm; for those, specify as an exogenous variable.
responsevar is an endogenous variable name. stat is one or more statistics from the list below:

stat Description

Main

irf IRF
oirf orthogonalized IRF
dm dynamic-multiplier function
cirf cumulative IRF
coirf cumulative orthogonalized IRF
cdm cumulative dynamic-multiplier function
fevd Cholesky forecast-error variance decomposition

Notes: 1. No statistic may appear more than once.
2. If credible intervals are included (the default), only two statistics may be included.
3. If credible intervals are suppressed (option nocri), up to four statistics may be included.
4. Only irf is available after bayes: dsge and bayes: dsgenl.

options Description

irf options any options documented in [TS] irf cgraph

Bayesian

nocri suppress credible intervals
clevel(#) set credible interval level; default is set by

bayesirf create

equaltailed display equal-tailed credible intervals; default is set by
bayesirf create

hpd display HPD credible intervals; default is set by
bayesirf create

median display posterior medians instead of posterior means

CrI plot

cri#opts(area options) affect rendition of the credible interval for the # stat

The CrI plot tab replaces the CI plot tab of [TS] irf cgraph.
collect is allowed; see [U] 11.1.10 Prefix commands.
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spec options Description

irf spec options any spec options documented in [TS] irf cgraph

Bayesian

nocri suppress credible intervals
clevel(#) set credible interval level; default is set by

bayesirf create

equaltailed display equal-tailed credible intervals; default is set by
bayesirf create

hpd display HPD credible intervals; default is set by
bayesirf create

median display posterior medians instead of posterior means

CrI plot

cri#opts(area options) affect rendition of the credible interval for the # stat

spec options may be specified within a graph specification, globally, or in both. When specified in a graph
specification, the spec options affect only the specification in which they are used. When supplied globally, the
spec options affect all graph specifications. When supplied in both places, options in the graph specification take
precedence.

Options
irf options and irf spec options are any of the options and spec options, respectively, documented

in [TS] irf cgraph. level(#) is a synonym for clevel(#), noci is a synonym for nocri, and
ci#opts() is a synonym for cri#opts(). Synonymous options do not appear on the dialog box.

� � �
Bayesian �

nocri suppresses displaying the credible intervals for each statistic.

clevel(#), equaltailed, and hpd affect the calculation of credible intervals. When the specified
options do not correspond to the default credible intervals saved in the current IRF file by bayesirf
create, bayesirf will need an IRF MCMC sample to recompute the credible intervals. You can
save this sample by specifying option mcmcsaving() with bayesirf create. Alternatively, if
you would like to save the desired credible intervals as the default credible intervals in the current
IRF file, you can specify the corresponding options directly with bayesirf create. See Remarks
and examples in [BAYES] bayesirf create.

clevel(#) specifies the credible level, as a percentage, for equal-tailed and HPD credible intervals.

equaltailed displays the equal-tailed credible intervals. equaltailed may not be specified with
hpd.

hpd displays the HPD credible intervals. hpd may not be specified with equaltailed.

median displays the posterior medians instead of the default posterior means.
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� � �
CrI plot �

cri1opts(area options) and cri2opts(area options) affect the rendition of the credible intervals
for the first (cri1opts()) and second (cri2opts()) statistics in stat. area options are as described
in [G-3] area options. irf’s ci#opts() is a synonym for cri#opts().

The CrI plot tab replaces the CI plot tab of [TS] irf cgraph.

Remarks and examples
See [TS] irf cgraph for a general discussion about combined IRF and other graphs.

Also see [BAYES] bayesirf graph, which produces individual graphs; [BAYES] bayesirf ograph,
which produces overlaid graphs; and [BAYES] bayesirf table, which displays results in tabular form.

Stored results
For stored results, see Stored results in [TS] irf cgraph.

Also see
[TS] irf cgraph — Combined graphs of IRFs, dynamic-multiplier functions, and FEVDs

[BAYES] bayesirf graph — Graphs of Bayesian IRFs, dynamic-multiplier functions, and FEVDs

[BAYES] bayesirf ograph — Overlaid graphs of Bayesian IRF results

[BAYES] bayesirf create — Obtain Bayesian IRFs, dynamic-multiplier functions, and FEVDs

[BAYES] bayesirf table — Tables of Bayesian IRFs, dynamic-multiplier functions, and FEVDs

[BAYES] bayesirf — Bayesian IRFs, dynamic-multiplier functions, and FEVDs



Title

bayesirf ograph — Overlaid graphs of Bayesian IRF results

Description Quick start Menu Syntax
Options Remarks and examples Stored results Also see

Description
bayesirf ograph displays plots of Bayesian impulse–response function (IRF) results on one graph

(one pair of axes).

Quick start
Graph of an orthogonalized IRF birf overlaid on cumulative IRF birf for dependent variable y1 and

y2

bayesirf ograph (birf y1 y2 oirf) (birf y1 y2 cirf)

Note: bayesirf commands can be used after bayes: var, bayes: dsge, or bayes: dsgenl; see
[BAYES] bayes: var, [BAYES] bayes: dsge, or [BAYES] bayes: dsgenl.

Menu
Statistics > Multivariate time series > Bayesian models > IRF and FEVD analysis
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Syntax
bayesirf ograph (spec1)

[
(spec2) . . .

[
(spec15)

] ] [
, options

]
where (speck) is

(irfname impulsevar responsevar stat
[
, spec options

]
) )

irfname is the name of a set of IRF results in the active IRF file or “.”, which means the first named
result in the active IRF file. impulsevar should be specified as an endogenous variable for all statistics
except dm and cdm; for those, specify as an exogenous variable. responsevar is an endogenous variable
name. stat is one or more statistics from the list below:

stat Description

Main

irf IRF
oirf orthogonalized IRF
dm dynamic-multiplier function
cirf cumulative IRF
coirf cumulative orthogonalized IRF
cdm cumulative dynamic-multiplier function
fevd Cholesky forecast-error variance decomposition

Note: Only irf is available after bayes: dsge and bayes: dsgenl.

options Description

irf options any options documented in [TS] irf ograph

Bayesian

cri add credible bands to the graph
clevel(#) set credible interval level; default is set by

bayesirf create

equaltailed display equal-tailed credible intervals; default is set by
bayesirf create

hpd display HPD credible intervals; default is set by
bayesirf create

median display posterior medians instead of posterior means

CrI plot

criopts(area options) affect rendition of the credible intervals

The CrI plot tab replaces the CI plot tab of [TS] irf ograph.
collect is allowed; see [U] 11.1.10 Prefix commands.
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spec options Description

irf spec options any spec options documented in [TS] irf ograph

Bayesian

cri add credible bands to the graph
clevel(#) set credible interval level; default is set by

bayesirf create

equaltailed display equal-tailed credible intervals; default is set by
bayesirf create

hpd display HPD credible intervals; default is set by
bayesirf create

median display posterior medians instead of posterior means

CrI plot

criopts(area options) affect rendition of the credible intervals

spec options may be specified within a graph specification, globally, or in both. When specified in a graph
specification, the spec options affect only the specification in which they are used. When supplied globally, the
spec options affect all graph specifications. When supplied in both places, options in the graph specification take
precedence.

Options
irf options and irf spec options are any of the options and spec options, respectively, documented in

[TS] irf ograph. level(#) is a synonym for clevel(#), ci is a synonym for cri, and ciopts()
is a synonym for criopts(). Synonymous options do not appear on the dialog box.

� � �
Bayesian �

cri displays the credible intervals for each statistic. It is implied if hpd or equaltailed is specified.

clevel(#), equaltailed, and hpd affect the calculation of credible intervals. When the specified
options do not correspond to the default credible intervals saved in the current IRF file by bayesirf
create, bayesirf will need an IRF MCMC sample to recompute the credible intervals. You can
save this sample by specifying option mcmcsaving() with bayesirf create. Alternatively, if
you would like to save the desired credible intervals as the default credible intervals in the current
IRF file, you can specify the corresponding options directly with bayesirf create. See Remarks
and examples in [BAYES] bayesirf create.

clevel(#) specifies the credible level, as a percentage, for equal-tailed and HPD credible intervals.

equaltailed displays the equal-tailed credible intervals. equaltailed may not be specified with
hpd.

hpd displays the HPD credible intervals. hpd may not be specified with equaltailed.

median displays the posterior medians instead of the default posterior means.
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� � �
CrI plot �

criopts(area options) affects the rendition of the credible intervals for the plotted statistics; see
[G-3] area options. criopts() implies cri. irf’s ciopts() is a synonym for criopts().

The CrI plot tab replaces the CI plot tab of [TS] irf ograph.

Remarks and examples
See [TS] irf ograph for a general discussion about overlaid IRF and other graphs.

Also see [BAYES] bayesirf graph, which produces individual graphs; [BAYES] bayesirf cgraph,
which produces combined graphs; and [BAYES] bayesirf table, which displays results in tabular form.

Stored results
For stored results, see Stored results in [TS] irf ograph.

Also see
[TS] irf ograph — Overlaid graphs of IRFs, dynamic-multiplier functions, and FEVDs

[BAYES] bayesirf graph — Graphs of Bayesian IRFs, dynamic-multiplier functions, and FEVDs

[BAYES] bayesirf cgraph — Combined graphs of Bayesian IRF results

[BAYES] bayesirf table — Tables of Bayesian IRFs, dynamic-multiplier functions, and FEVDs

[BAYES] bayesirf create — Obtain Bayesian IRFs, dynamic-multiplier functions, and FEVDs

[BAYES] bayesirf — Bayesian IRFs, dynamic-multiplier functions, and FEVDs



Title

bayesirf table — Tables of Bayesian IRFs, dynamic-multiplier functions, and FEVDs

Description Quick start Menu Syntax
Options Remarks and examples Stored results Also see

Description
bayesirf table makes a table of the values of the requested Bayesian statistics at each time

since impulse. Each column represents a combination of an impulse variable and a response variable
for each statistic from the named impulse–response function (IRF) results.

Quick start
Table of IRFs for dependent variables y1 and y2 given an unexpected shock to y1

bayesirf table irf, impulse(y1) response(y2)

Same as above, but for orthogonalized shocks
bayesirf table oirf, impulse(y1) response(y2)

Same as above, but with 3 as the common maximum step horizon for all tables
bayesirf table oirf, impulse(y1) response(y2) step(3)

Same as above, but with a separate table for each IRF in the active IRF file
bayesirf table oirf, impulse(y1) response(y2) step(3) individual

Note: bayesirf commands can be used after bayes: var, bayes: dsge, or bayes: dsgenl; see
[BAYES] bayes: var, [BAYES] bayes: dsge, or [BAYES] bayes: dsgenl.

Menu
Statistics > Multivariate time series > Bayesian models > IRF and FEVD analysis
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Syntax
bayesirf table

[
stat
] [

, options
]

stat Description

Main

irf IRF
oirf orthogonalized IRF
dm dynamic-multiplier function
cirf cumulative IRF
coirf cumulative orthogonalized IRF
cdm cumulative dynamic-multiplier function
fevd Cholesky forecast-error variance decomposition

If stat is not specified, all statistics are included. You may specify more than one stat.
Note: Only irf is available after bayes: dsge and bayes: dsgenl.

options Description

irf options any options documented in [TS] irf table

Bayesian

nocri suppress credible intervals
clevel(#) set credible interval level; default is set by

bayesirf create

equaltailed display equal-tailed credible intervals; default is set by
bayesirf create

hpd display HPD credible intervals; default is set by
bayesirf create

median display posterior medians instead of posterior means
stddev include posterior standard deviations in the tables

collect is allowed; see [U] 11.1.10 Prefix commands.

Options
irf options are any of the options documented in [TS] irf table. level(#) is a synonym for clevel(#),

noci is a synonym for nocri, and stderror is a synonym for stddev. Synonymous options do
not appear on the dialog box.

� � �
Bayesian �

nocri suppresses displaying the credible intervals for each statistic.

clevel(#), equaltailed, and hpd affect the calculation of credible intervals. When the specified
options do not correspond to the default credible intervals saved in the current IRF file by bayesirf
create, bayesirf will need an IRF MCMC sample to recompute the credible intervals. You can
save this sample by specifying option mcmcsaving() with bayesirf create. Alternatively, if
you would like to save the desired credible intervals as the default credible intervals in the current
IRF file, you can specify the corresponding options directly with bayesirf create. See Remarks
and examples in [BAYES] bayesirf create.
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clevel(#) specifies the credible level, as a percentage, for equal-tailed and HPD credible intervals.

equaltailed displays the equal-tailed credible intervals. equaltailed may not be specified with
hpd.

hpd displays the HPD credible intervals. hpd may not be specified with equaltailed.

median displays the posterior medians instead of the default posterior means.

stddev specifies that posterior standard deviations for each statistic also be included in the table.

Remarks and examples
See [TS] irf table for a general discussion, and see example 8 in [BAYES] bayes: var for an

example.

Also see [TS] irf ctable, which produces combined tables; and [TS] irf graph, which displays
results on a graph.

Stored results
For stored results, see Stored results in [TS] irf table.

Also see
[TS] irf table — Tables of IRFs, dynamic-multiplier functions, and FEVDs

[BAYES] bayesirf ctable — Combined tables of Bayesian IRF results

[BAYES] bayesirf graph — Graphs of Bayesian IRFs, dynamic-multiplier functions, and FEVDs

[BAYES] bayesirf create — Obtain Bayesian IRFs, dynamic-multiplier functions, and FEVDs

[BAYES] bayesirf — Bayesian IRFs, dynamic-multiplier functions, and FEVDs



Title

bayesirf ctable — Combined tables of Bayesian IRF results

Description Quick start Menu Syntax
Options Remarks and examples Stored results Also see

Description
bayesirf ctable makes a table or a combined table of Bayesian impulse–response function (IRF)

results. A table is made for specified combinations of named IRF results, impulse variables, response
variables, and statistics. irf ctable combines these tables into one table, unless separate tables are
requested.

bayesirf ctable operates on the active IRF file; see [TS] irf set.

Quick start
Combine tables of an orthogonalized IRF birf and cumulative IRF birf for dependent variable y1

and y2

bayesirf ctable (birf y1 y2 oirf) (birf y1 y2 cirf)

Same as above, but with maximum steps of 4 and 80% credible interval
bayesirf ctable (birf y1 y2 oirf) (birf y1 y2 cirf), step(4) clevel(80)

Note: bayesirf commands can be used after bayes: var, bayes: dsge, or bayes: dsgenl; see
[BAYES] bayes: var, [BAYES] bayes: dsge, or [BAYES] bayes: dsgenl.

Menu
Statistics > Multivariate time series > Bayesian models > IRF and FEVD analysis
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Syntax
bayesirf ctable (spec1)

[
(spec2) . . .

[
(specN)

] ] [
, options

]
where (speck) is

(irfname impulsevar responsevar stat
[
, spec options

]
)

irfname is the name of a set of IRF results in the active IRF file. impulsevar should be specified as an
endogenous variable for all statistics except dm and cdm; for those, specify as an exogenous variable.
responsevar is an endogenous variable name. stat is one or more statistics from the list below:

stat Description

Main

irf IRF
oirf orthogonalized IRF
dm dynamic-multiplier function
cirf cumulative IRF
coirf cumulative orthogonalized IRF
cdm cumulative dynamic-multiplier function
fevd Cholesky forecast-error variance decomposition

Note: Only irf is available after bayes: dsge and bayes: dsgenl.

options Description

irf options any options documented in [TS] irf ctable

Bayesian

nocri suppress credible intervals
clevel(#) set credible interval level; default is set by

bayesirf create

equaltailed display equal-tailed credible intervals; default is set by
bayesirf create

hpd display HPD credible intervals; default is set by
bayesirf create

median display posterior medians instead of posterior means
stddev include posterior standard deviations in the tables

collect is allowed; see [U] 11.1.10 Prefix commands.
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spec options Description

irf spec options any spec options documented in [TS] irf ctable

Bayesian

nocri suppress credible intervals
clevel(#) set credible interval level; default is set by

bayesirf create

equaltailed display equal-tailed credible intervals; default is set by
bayesirf create

hpd display HPD credible intervals; default is set by
bayesirf create

median display posterior medians instead of posterior means
stddev include posterior standard deviations in the tables

spec options may be specified within a table specification, globally, or both. When specified in a table specification,
the spec options affect only the specification in which they are used. When supplied globally, the spec options
affect all table specifications. When specified in both places, options for the table specification take precedence.

Options
irf options and irf spec options are any of the options and spec options, respectively, documented

in [TS] irf ctable. level(#) is a synonym for clevel(#), noci is a synonym for nocri, and
stderror is a synonym for stddev. Synonymous options do not appear on the dialog box.

� � �
Bayesian �

nocri suppresses displaying the credible intervals for each statistic.

clevel(#), equaltailed, and hpd affect the calculation of credible intervals. When the specified
options do not correspond to the default credible intervals saved in the current IRF file by bayesirf
create, bayesirf will need an IRF MCMC sample to recompute the credible intervals. You can
save this sample by specifying option mcmcsaving() with bayesirf create. Alternatively, if
you would like to save the desired credible intervals as the default credible intervals in the current
IRF file, you can specify the corresponding options directly with bayesirf create. See Remarks
and examples in [BAYES] bayesirf create.

clevel(#) specifies the credible level, as a percentage, for equal-tailed and HPD credible intervals.

equaltailed displays the equal-tailed credible intervals. equaltailed may not be specified with
hpd.

hpd displays the HPD credible intervals. hpd may not be specified with equaltailed.

median displays the posterior medians instead of the default posterior means.

stddev specifies that posterior standard deviations for each statistic also be included in the table.

Remarks and examples
See [TS] irf ctable for a general discussion, and see example 2 in [BAYES] bayesirf create for an

example.

Also see [TS] irf table, which produces individual tables; and [TS] irf graph, which displays
results on a graph.
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Stored results
For stored results, see Stored results in [TS] irf ctable.

Also see
[TS] irf ctable — Combined tables of IRFs, dynamic-multiplier functions, and FEVDs

[BAYES] bayesirf table — Tables of Bayesian IRFs, dynamic-multiplier functions, and FEVDs

[BAYES] bayesirf graph — Graphs of Bayesian IRFs, dynamic-multiplier functions, and FEVDs

[BAYES] bayesirf create — Obtain Bayesian IRFs, dynamic-multiplier functions, and FEVDs

[BAYES] bayesirf — Bayesian IRFs, dynamic-multiplier functions, and FEVDs



Title

bayes: xtlogit — Bayesian random-effects logit model

Description Quick start Menu Syntax
Remarks and examples Stored results Methods and formulas Also see

Description
bayes: xtlogit fits a Bayesian panel-data random-effects logit model to a binary outcome; see

[BAYES] bayes and [XT] xtlogit for details.

Quick start
Bayesian random-effects logit model of y on x1 and x2 with random intercepts by id (after xtseting on

panel variable id), using default normal priors for regression coefficients and default inverse-gamma
prior for the variance of random intercepts

bayes: xtlogit y x1 x2

Use a standard deviation of 10 instead of 100 for the default normal priors
bayes, normalprior(10): xtlogit y x1 x2

Use a shape of 1 and a scale of 2 instead of values of 0.01 for the default inverse-gamma prior
bayes, igammaprior(1 2): xtlogit y x1 x2

Use uniform priors for the slopes and a normal prior for the intercept
bayes, prior({y: x1 x2}, uniform(-10,10)) ///
prior({y: cons}, normal(0,10)): xtlogit y x1 x2

Save simulation results to simdata.dta, and use a random-number seed for reproducibility
bayes, saving(simdata) rseed(123): xtlogit y x1 x2

Specify 20,000 Markov chain Monte Carlo (MCMC) samples, set length of the burn-in period to 5,000,
and request that a dot be displayed every 500 simulations

bayes, mcmcsize(20000) burnin(5000) dots(500): xtlogit y x1 x2

In the above, request that the 90% highest posterior density (HPD) credible interval be displayed
instead of the default 95% equal-tailed credible interval

bayes, clevel(90) hpd

Report odds ratios instead of regression coefficients
bayes, or

Also see Quick start in [BAYES] bayes and Quick start in [XT] xtlogit.

Menu
Statistics > Longitudinal/panel data > Binary outcomes > Bayesian regression > Logistic regression
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Syntax
bayes

[
, bayesopts

]
: xtlogit depvar

[
indepvars

] [
if
] [

in
] [

, options
]

options Description

Model

noconstant suppress constant term
offset(varname) include varname in model with coefficient constrained to 1
asis retain perfect predictor variables

Reporting

or report odds ratios
display options control spacing, line width, and base and empty cells

level(#) set credible level; default is level(95)

A panel variable must be specified; see [XT] xtset.
indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.
bayes: xtlogit, level() is equivalent to bayes, clevel(): xtlogit.
For a detailed description of options, see Options in [XT] xtlogit.

bayesopts Description

Priors
∗normalprior(#) specify standard deviation of default normal priors for regression

coefficients; default is normalprior(100)
∗igammaprior(# #) specify shape and scale of default inverse-gamma prior for

variance components; default is igammaprior(0.01 0.01)

prior(priorspec) prior for model parameters; this option may be repeated
dryrun show model summary without estimation

Simulation

nchains(#) number of chains; default is to simulate one chain
mcmcsize(#) MCMC sample size; default is mcmcsize(10000)

burnin(#) burn-in period; default is burnin(2500)

thinning(#) thinning interval; default is thinning(1)

rseed(#) random-number seed
exclude(paramref) specify model parameters to be excluded from the simulation results

Blocking

block(paramref
[
, blockopts

]
) specify a block of model parameters; this option may be repeated

blocksummary display block summary



758 bayes: xtlogit — Bayesian random-effects logit model

Initialization

initial(initspec) specify initial values for model parameters with a single chain
init#(initspec) specify initial values for #th chain; requires nchains()

initall(initspec) specify initial values for all chains; requires nchains()

nomleinitial suppress the use of maximum likelihood estimates as starting values
initrandom specify random initial values
initsummary display initial values used for simulation
∗noisily display output from the estimation command during initialization

Adaptation

adaptation(adaptopts) control the adaptive MCMC procedure
scale(#) initial multiplier for scale factor; default is scale(2.38)

covariance(cov) initial proposal covariance; default is the identity matrix

Reporting

clevel(#) set credible interval level; default is clevel(95)

hpd display HPD credible intervals instead of the default equal-tailed
credible intervals

∗or report odds ratios
eform

[
(string)

]
report exponentiated coefficients and, optionally, label as string

remargl compute log marginal-likelihood; suppressed by default
batch(#) specify length of block for batch-means calculations;

default is batch(0)

saving(filename
[
, replace

]
) save simulation results to filename.dta

nomodelsummary suppress model summary
chainsdetail display detailed simulation summary for each chain[
no
]
dots suppress dots or display dots every 100 iterations and iteration

numbers every 1,000 iterations; default is nodots

dots(#
[
, every(#)

]
) display dots as simulation is performed[

no
]
show(paramref) specify model parameters to be excluded from or included in

the output
showreffects

[
(reref)

]
specify that all or a subset of random-effects parameters be included

in the output
notable suppress estimation table
noheader suppress output header
title(string) display string as title above the table of parameter estimates
display options control spacing, line width, and base and empty cells

Advanced

search(search options) control the search for feasible initial values
corrlag(#) specify maximum autocorrelation lag; default varies
corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)

∗Starred options are specific to the bayes prefix; other options are common between bayes and bayesmh.
Options prior() and block() may be repeated.
priorspec and paramref are defined in [BAYES] bayesmh.
paramref may contain factor variables; see [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Model parameters are regression coefficients {depvar:indepvars}, random effects {U[panelvar]} or simply {U}, and
random-effects variance {var U}. Use the dryrun option to see the definitions of model parameters prior to
estimation.

For a detailed description of bayesopts, see Options in [BAYES] bayes.

Remarks and examples
For a general introduction to Bayesian analysis, see [BAYES] Intro. For a general introduction

to Bayesian estimation using an adaptive Metropolis–Hastings algorithm, see [BAYES] bayesmh. For
remarks and examples specific to the bayes prefix, see [BAYES] bayes. For details about the estimation
command, see [XT] xtlogit.

For a simple example of the bayes prefix, see Introductory example in [BAYES] bayes. Also see
Panel-data models in [BAYES] bayes.

Stored results
See Stored results in [BAYES] bayes. In addition, bayes: xtlogit also stores the following results:

Macros
e(ivar) variable denoting groups
e(redistrib) distribution of random effects

Methods and formulas
See Methods and formulas in [BAYES] bayesmh.

Also see
[BAYES] bayes — Bayesian regression models using the bayes prefix

[XT] xtlogit — Fixed-effects, random-effects, and population-averaged logit models

[BAYES] Bayesian postestimation — Postestimation tools for bayesmh and the bayes prefix

[BAYES] Bayesian estimation — Bayesian estimation commands

[BAYES] Bayesian commands — Introduction to commands for Bayesian analysis

[BAYES] Intro — Introduction to Bayesian analysis

[BAYES] Glossary



Title

bayes: xtmlogit — Bayesian random-effects multinomial logit model

Description Quick start Menu Syntax
Remarks and examples Stored results Methods and formulas Also see

Description
bayes: xtmlogit fits a Bayesian panel-data random-effects multinomial logit model to categorical

outcomes; see [BAYES] bayes and [XT] xtmlogit for details.

Quick start
Bayesian random-effects multinomial logit model of y on x1 and x2 with random intercepts by id

(after xtseting on panel variable id), using default normal priors for regression coefficients and
default inverse-gamma prior for the variance of random intercepts

bayes: xtmlogit y x1 x2

Use a standard deviation of 10 instead of 100 for the default normal priors
bayes, normalprior(10): xtmlogit y x1 x2

Use a shape of 1 and a scale of 2 instead of values of 0.01 for the default inverse-gamma prior
bayes, igammaprior(1 2): xtmlogit y x1 x2

Use uniform priors for the slopes and a normal prior for the intercept
bayes, prior({y: x1 x2}, uniform(-10,10)) ///
prior({y: cons}, normal(0,10)): xtmlogit y x1 x2

Save simulation results to simdata.dta, and use a random-number seed for reproducibility
bayes, saving(simdata) rseed(123): xtmlogit y x1 x2

Specify 20,000 Markov chain Monte Carlo (MCMC) samples, set length of the burn-in period to 5,000,
and request that a dot be displayed every 500 simulations

bayes, mcmcsize(20000) burnin(5000) dots(500): xtmlogit y x1 x2

In the above, request that the 90% highest posterior density (HPD) credible interval be displayed
instead of the default 95% equal-tailed credible interval

bayes, clevel(90) hpd

Bayesian random-effects multinomial logit model of y on x1 and x2, with the second outcome as
the base outcome

bayes: xtmlogit y x1 x2, baseoutcome(2)

As above, but report relative-risk ratios
bayes: xtmlogit y x1 x2, baseoutcome(2) rrr

As above, but using shared random-effects covariance between outcomes
bayes: xtmlogit y x1 x2, baseoutcome(2) covariance(shared) rrr

Also see Quick start in [BAYES] bayes and Quick start in [XT] xtmlogit.
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Menu
Statistics > Longitudinal/panel data > Categorical outcomes > Bayesian regression > Multinomial logistic regression

Syntax

bayes
[
, bayesopts

]
: xtmlogit depvar

[
indepvars

] [
if
] [

in
] [

weight
] [

, options
]

options Description

Model

noconstant suppress constant term
baseoutcome(#) value of depvar that will be the base outcome; default is the last

outcome level
covariance(vartype) variance–covariance structure of the random effects; default is

covariance(independent)

Reporting

rrr report relative-risk ratios
display options control spacing, line width, and base and empty cells

level(#) set credible level; default is level(95)

A panel variable must be specified; see [XT] xtset.
indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.
fweights are allowed; see [U] 11.1.6 weight.
bayes: xtmlogit, level() is equivalent to bayes, clevel(): xtmlogit.
For a detailed description of options, see Options in [XT] xtmlogit.

bayesopts Description

Priors
∗normalprior(#) specify standard deviation of default normal priors for regression

coefficients; default is normalprior(100)
∗igammaprior(# #) specify shape and scale of default inverse-gamma prior for

variance components; default is igammaprior(0.01 0.01)
∗iwishartprior(#

[
. . .
]
) specify degrees of freedom and, optionally, scale matrix of default

inverse-Wishart prior for unstructured random-effects covariance
prior(priorspec) prior for model parameters; this option may be repeated
dryrun show model summary without estimation

Simulation

nchains(#) number of chains; default is to simulate one chain
mcmcsize(#) MCMC sample size; default is mcmcsize(10000)

burnin(#) burn-in period; default is burnin(2500)

thinning(#) thinning interval; default is thinning(1)

rseed(#) random-number seed
exclude(paramref) specify model parameters to be excluded from the simulation results
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Blocking

block(paramref
[
, blockopts

]
) specify a block of model parameters; this option may be repeated

blocksummary display block summary

Initialization

initial(initspec) specify initial values for model parameters with a single chain
init#(initspec) specify initial values for #th chain; requires nchains()

initall(initspec) specify initial values for all chains; requires nchains()

nomleinitial suppress the use of maximum likelihood estimates as starting values
initrandom specify random initial values
initsummary display initial values used for simulation
∗noisily display output from the estimation command during initialization

Adaptation

adaptation(adaptopts) control the adaptive MCMC procedure
scale(#) initial multiplier for scale factor; default is scale(2.38)

covariance(cov) initial proposal covariance; default is the identity matrix

Reporting

clevel(#) set credible interval level; default is clevel(95)

hpd display HPD credible intervals instead of the default equal-tailed
credible intervals

∗rrr report relative-risk ratios
eform

[
(string)

]
report exponentiated coefficients and, optionally, label as string

remargl compute log marginal-likelihood; suppressed by default
batch(#) specify length of block for batch-means calculations;

default is batch(0)

saving(filename
[
, replace

]
) save simulation results to filename.dta

nomodelsummary suppress model summary
chainsdetail display detailed simulation summary for each chain[
no
]
dots suppress dots or display dots every 100 iterations and iteration

numbers every 1,000 iterations; default is nodots

dots(#
[
, every(#)

]
) display dots as simulation is performed[

no
]
show(paramref) specify model parameters to be excluded from or included in

the output
showreffects

[
(reref)

]
specify that all or a subset of random-effects parameters be included

in the output
notable suppress estimation table
noheader suppress output header
title(string) display string as title above the table of parameter estimates
display options control spacing, line width, and base and empty cells

Advanced

search(search options) control the search for feasible initial values
corrlag(#) specify maximum autocorrelation lag; default varies
corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)
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∗Starred options are specific to the bayes prefix; other options are common between bayes and bayesmh.

The full specification of iwishartprior() is iwishartprior(#
[

matname
] [

, relevel(levelvar)
]
).

Options prior() and block() may be repeated.
priorspec and paramref are defined in [BAYES] bayesmh.
paramref may contain factor variables; see [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Model parameters are regression coefficients {outcome1:indepvars}, {outcome2:indepvars}, and so on, where
outcome#’s are the values of the dependent variable or the value labels of the dependent variable if they
exist, random effects {U#[panelvar]} or simply {U#}, and random-effects variances {var U#} or, if random effects
are correlated, covariance {U:Sigma,m}; see Methods and formulas for a full list of parameters. Use the dryrun
option to see the definitions of model parameters prior to estimation.

For a detailed description of bayesopts, see Options in [BAYES] bayes.

Remarks and examples
For a general introduction to Bayesian analysis, see [BAYES] Intro. For a general introduction

to Bayesian estimation using an adaptive Metropolis–Hastings algorithm, see [BAYES] bayesmh. For
remarks and examples specific to the bayes prefix, see [BAYES] bayes. For details about the estimation
command, see [XT] xtmlogit.

For a simple example of the bayes prefix, see Introductory example in [BAYES] bayes. Also see
Panel-data models in [BAYES] bayes.

Example 1

Let’s revisit example 1 from [XT] xtmlogit. The example uses a fictional estatus dataset to model
women employment status, estatus, as a function of various socioeconomic factors such as having
children under 18 years of age, hhchild; age; household income, hhincome; having significant
other, hhsigno; and whether the woman is the primary breadwinner, bwinner. The employment
status falls into three categories: employed, unemployed, and out of labor force.

Women are identified by the id variable, which is declared as the panel variable.

. use https://www.stata-press.com/data/r18/estatus
(Fictional employment status data)

. xtset id

Panel variable: id (unbalanced)
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Let’s fit a Bayesian analog of the model from example 1 of [XT] xtmlogit. The dataset contains
800 random effects and a total of 4,761 observations. To speed up the execution, we reduce the
MCMC sample size from the default of 10,000 to 1,000, and we specify the rseed() option for
reproducibility.

. bayes, rseed(17) mcmcsize(1000): xtmlogit estatus i.hhchild age hhincome
> i.hhsigno i.bwinner
note: Gibbs sampling is used for variance components.
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 1000 .........1000 done

Model summary

Likelihood:
estatus ~ mlogit(xb_Out_of_labor_force,xb_Unemployed)

Priors:
{Out_of_lab~e:1.hhchild} ~ normal(0,10000) (1)

{Out_of_lab~e:age} ~ normal(0,10000) (1)
{Out_of_lab~e:hhincome} ~ normal(0,10000) (1)

{Out_of_lab~e:1.hhsigno} ~ normal(0,10000) (1)
{Out_of_lab~e:1.bwinner} ~ normal(0,10000) (1)

{Out_of_lab~e:_cons} ~ normal(0,10000) (1)
{U1[id]} ~ normal(0,{var_U1}) (1)

{Unemployed:1.hhchild} ~ normal(0,10000) (2)
{Unemployed:age} ~ normal(0,10000) (2)

{Unemployed:hhincome} ~ normal(0,10000) (2)
{Unemployed:1.hhsigno} ~ normal(0,10000) (2)
{Unemployed:1.bwinner} ~ normal(0,10000) (2)

{Unemployed:_cons} ~ normal(0,10000) (2)
{U2[id]} ~ normal(0,{var_U2}) (2)

Hyperprior:
{var_U1 var_U2} ~ igamma(0.01,0.01)

(1) Parameters are elements of the linear form xb_Out_of_labor_force.
(2) Parameters are elements of the linear form xb_Unemployed.
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Bayesian RE multinomial logistic regression MCMC iterations = 3,500
Metropolis--Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 1,000
Group variable: id Number of groups = 800

Obs per group:
min = 5
avg = 6.0
max = 7

Base outcome: Employed Number of obs = 4,761
Acceptance rate = .462
Efficiency: min = .0067

avg = .02054
Log marginal-likelihood max = .03473

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

Out_of_lab~e
hhchild

Yes .4577437 .0904496 .017864 .4640043 .2710479 .6218431
age -.002879 .0055965 .001219 -.0026383 -.0130767 .0085352

hhincome -.0042843 .0018489 .000402 -.0040465 -.0083297 -.0014658

hhsigno
Yes .4691271 .0889745 .017166 .4582264 .3251738 .6559253

bwinner
Yes -.4503803 .0732228 .01895 -.4500302 -.5924365 -.3002816

U1 1 0 0 1 1 1
_cons -.5534515 .2478516 .060647 -.5376768 -1.010935 -.0486457

Unemployed
hhchild

Yes -.0519455 .1168531 .023891 -.0398437 -.2755692 .1858482
age .0092687 .0075203 .001441 .0091324 -.0050356 .0250353

hhincome -.0293463 .0030542 .00118 -.0293997 -.0356738 -.0227989

hhsigno
Yes .0412739 .114903 .021569 .0361712 -.1694103 .2494766

bwinner
Yes -.1812031 .1003491 .033786 -.1773746 -.3642266 .0072658

U2 1 0 0 1 1 1
_cons -.3242398 .3382746 .100034 -.3894121 -.9363997 .335811

var_U1 .8864246 .0884571 .01501 .8815608 .7235478 1.060998
var_U2 .7769171 .1137603 .025427 .757853 .605616 1.036373

Note: Default priors are used for model parameters.
Note: Adaptation tolerance is not met in at least one of the blocks.

Because the Employed outcome level is selected as the base outcome, the results are reported only
for the Out of labor force and Unemployed outcome levels. The posterior mean estimates for
regression coefficients and variances of random effects are similar to the maximum likelihood estimates
from example 1 from [XT] xtmlogit.

The Bayesian model introduced one set of random intercepts for each outcome level except the
base outcome: {U1[id]} and {U2[id]}. By default, the random effects are assigned independent
normal priors with variances {var U1} and {var U2}, respectively.
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Following the original example, we can obtain estimates of relative-risk ratios by specifying the
rrr option with bayes.

. bayes, rrr noheader

Equal-tailed
RRR Std. dev. MCSE Median [95% cred. interval]

Out_of_lab~e
hhchild

Yes 1.586934 .1424381 .028002 1.59043 1.311338 1.862358
age .9971407 .0055807 .001215 .9973652 .9870084 1.008572

hhincome .9957265 .0018402 .0004 .9959617 .9917049 .9985352

hhsigno
Yes 1.605004 .1453829 .028037 1.581267 1.384271 1.926925

bwinner
Yes .6390981 .0469746 .012111 .6376089 .5529823 .7406096

U1 2.718282 0 0 2.718282 2.718282 2.718282
_cons .5928508 .1479 .036194 .5841037 .3638785 .9525185

Unemployed
hhchild

Yes .9559229 .1133981 .023185 .9609396 .7591399 1.204239
age 1.00934 .0075995 .001456 1.009174 .994977 1.025351

hhincome .9710847 .0029661 .001146 .9710282 .964955 .977459

hhsigno
Yes 1.049005 .1200204 .022401 1.036833 .8441625 1.283353

bwinner
Yes .8384893 .0847624 .028742 .837466 .6947338 1.007292

U2 2.718282 0 0 2.718282 2.718282 2.718282
_cons .7657877 .2650145 .074494 .677455 .3921156 1.399075

var_U1 .8864246 .0884571 .01501 .8815608 .7235478 1.060998
var_U2 .7769171 .1137603 .025427 .757853 .605616 1.036373

The original example also estimated marginal probabilities with respect to the hhchild variable using
the margins command. Below, we demonstrate Bayesian estimation of these marginal probabilities
using Bayesian predictions.

First, we save the simulation results produced by bayes: xtmlogit to a permanent Stata dataset.

. bayes, saving(xtmlogitsim, replace)
note: file xtmlogitsim.dta saved.

We then define a Stata program, margprob, that calculates the marginal probabilities based on the
simulated outcomes. See User-defined Stata programs in [BAYES] bayespredict for details.

. program margprob
1. version 18.0
2. args sum ysim
3. local xvar $BAYESPR_extravars
4. local ylabel $BAYESPR_passthruopts
5. gettoken ylabel xlabel : ylabel
6. tempvar presid
7. generate byte ‘presid’ = ‘ysim’ == ‘ylabel’ if ‘xvar’ == ‘xlabel’
8. summarize ‘presid’, meanonly
9. scalar ‘sum’ = r(mean)

10. end
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In addition to the simulated outcome ‘ysim’, the program uses the conditional variable ‘xvar’,
hhchild in our example, passed as an extra variable, and two indices ‘ylabel’ and ‘xlabel’
that specify the outcome category and the conditional variable category, respectively. ‘ylabel’ takes
values 1 , 2, and 3, and ‘xlabel’ takes values 0 and 1. ‘ylabel’ and ‘xlabel’ values are specified
in the passthruopts() options of bayespredict. To calculate all marginal probabilities, we need
to call the program for all six combinations of ylabel and xlabel.

Given the size of the dataset, calculating the Bayesian marginal probabilities using a user-defined
Stata program is time consuming and will take a couple of minutes. We specify the dots option with
bayespredict to monitor the simulation progress.

. bayespredict
> (pr1childNo :@margprob {_ysim1}, extravars(hhchild) passthruopts(1 0))
> (pr1childYes:@margprob {_ysim1}, extravars(hhchild) passthruopts(1 1))
> (pr2childNo :@margprob {_ysim1}, extravars(hhchild) passthruopts(2 0))
> (pr2childYes:@margprob {_ysim1}, extravars(hhchild) passthruopts(2 1))
> (pr3childNo :@margprob {_ysim1}, extravars(hhchild) passthruopts(3 0))
> (pr3childYes:@margprob {_ysim1}, extravars(hhchild) passthruopts(3 1)),
> saving(xtmlogitpred, replace) rseed(17) dots

Computing predictions 1000 .........1000 done

file xtmlogitpred.dta saved.
file xtmlogitpred.ster saved.

The posterior predicted marginal probabilities are saved as xtmlogitpred estimation results.

Finally, we use bayesstats summary to calculate posterior estimates of the marginal probabilities.

. bayesstats summary {pr1childNo} {pr1childYes}
> {pr2childNo} {pr2childYes}
> {pr3childNo} {pr3childYes} using xtmlogitpred

Posterior summary statistics MCMC sample size = 1,000

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

pr1childNo .3001763 .0133316 .000946 .3004053 .2745694 .3259878
pr1childYes .3909447 .0113229 .00092 .3914604 .368676 .4133477
pr2childNo .1615598 .0114636 .001266 .1616008 .1377913 .1843972

pr2childYes .1368543 .0088284 .000782 .1367061 .1205597 .1546466
pr3childNo .5382639 .0150199 .001759 .5382472 .508612 .5678825

pr3childYes .4722009 .0114689 .001325 .4721923 .4497668 .4949767

Because we used uninformative default priors, the reported posterior mean estimates are close to the
marginal probabilities calculated by the margins command.

Stored results
See Stored results in [BAYES] bayes. In addition, bayes: xtmlogit also stores the following

results:

Macros
e(ivar) variable denoting groups
e(baseoutcome) base outcome
e(redistrib) distribution of random effects
e(covariance) random-effects covariance structure
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Methods and formulas
Bayesian random-effects multinomial logit models are based on random-effects multinomial logit

models described in Methods and formulas of [XT] xtmlogit.
A multinomial logit model for a dependent variable with J outcome levels has J − 1 equations,

ignoring the baseline outcome, each having its own set of random intercepts. The equation for the
#th outcome level includes a random-effects parameter {U#[panelvar]}, where panelvar is the panel
variable. You can also refer to the random-effects parameters simply as {U#}. Random effects {U#}’s
can be independent, shared, or correlated.

Independent {U#}’s, covariance(independent), are assigned independent normal priors with
zero means and random-effects variances {var U#}’s. The default prior for {var U#} is an inverse-
gamma distribution with shape and scale of 0.01. You can use the igammaprior() options to change
the default shape and scale parameters.

For a shared covariance structure, covariance(shared), there is one random-effects parameter,
{U[panelvar]}, shared between the outcome-level equations.

For an identity covariance structure, covariance(identity), the random effects {U#[panelvar]}
are different but have the same prior variance {var U}.

For an exchangeable covariance structure, covariance(exchangeable), {U#[panelvar]}’s are
assigned mvn0exchangeable(J−1, {var U}, {rho U}) prior. The default prior for the correlation
parameter {rho U} is uniform on (−1, 1).

For an unstructured covariance, covariance(unstructured), {U#[panelvar]}’s are assigned
mvn0(J − 1, {U:Sigma,m}) prior. The default hyperprior for the variance–covariance matrix
{U:Sigma,m} is inverse-Wishart with J degrees of freedom and the identity scale matrix. You
can use the iwishartprior() option to change the default degrees of freedom and scale matrix.

See Methods and formulas in [BAYES] bayesmh.

Also see
[BAYES] bayes — Bayesian regression models using the bayes prefix

[XT] xtmlogit — Fixed-effects and random-effects multinomial logit models

[BAYES] Bayesian postestimation — Postestimation tools for bayesmh and the bayes prefix

[BAYES] Bayesian estimation — Bayesian estimation commands

[BAYES] Bayesian commands — Introduction to commands for Bayesian analysis

[BAYES] Intro — Introduction to Bayesian analysis

[BAYES] Glossary
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bayes: xtnbreg — Bayesian random-effects negative binomial model

Description Quick start Menu Syntax
Remarks and examples Stored results Methods and formulas Reference
Also see

Description

bayes: xtnbreg fits a Bayesian panel-data random-effects negative binomial model to a nonnegative
count outcome; see [BAYES] bayes and [XT] xtnbreg for details.

Quick start
Bayesian random-effects negative binomial model of y on x1 and x2 with random intercepts by id

(after xtseting on panel variable id), using default normal priors for regression coefficients and
beta prior for the random effects, and Pareto prior for the shape parameters of the beta prior

bayes: xtnbreg y x1 x2

Use a standard deviation of 10 instead of 100 for the default normal priors
bayes, normalprior(10): xtnbreg y x1 x2

Use uniform priors for the slopes and a normal prior for the intercept
bayes, prior({y: x1 x2}, uniform(-10,10)) ///
prior({y: cons}, normal(0,10)): xtnbreg y x1 x2

Save simulation results to simdata.dta, and use a random-number seed for reproducibility
bayes, saving(simdata) rseed(123): xtnbreg y x1 x2

Specify 20,000 Markov chain Monte Carlo (MCMC) samples, set length of the burn-in period to 5,000,
and request that a dot be displayed every 500 simulations

bayes, mcmcsize(20000) burnin(5000) dots(500): xtnbreg y x1 x2

In the above, request that the 90% highest posterior density (HPD) credible interval be displayed
instead of the default 95% equal-tailed credible interval

bayes, clevel(90) hpd

Display incidence-rate ratios instead of coefficients
bayes: xtnbreg y x1 x2, irr

Display incidence-rate ratios on replay
bayes, irr

Random-effects model with exposure variable evar

bayes: xtnbreg y x1 x2, exposure(evar)

Also see Quick start in [BAYES] bayes and Quick start in [XT] xtnbreg.
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Menu
Statistics > Longitudinal/panel data > Bayesian regression > Negative binomial regression

Syntax
bayes

[
, bayesopts

]
: xtnbreg depvar

[
indepvars

] [
if
] [

in
] [

, options
]

options Description

Model

noconstant suppress constant term
exposure(varnamee) include ln(varnamee) in model with coefficient constrained to 1
offset(varnameo) include varnameo in model with coefficient constrained to 1

Reporting

irr report incidence-rate ratios
display options control spacing, line width, and base and empty cells

level(#) set credible level; default is level(95)

A panel variable must be specified; see [XT] xtset.
indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar, indepvars, varnamee, and varnameo may contain time-series operators; see [U] 11.4.4 Time-series varlists.
bayes: xtnbreg, level() is equivalent to bayes, clevel(): xtnbreg.
For a detailed description of options, see Options for RE/FE models in [XT] xtnbreg.

bayesopts Description

Priors
∗normalprior(#) specify standard deviation of default normal priors for regression

coefficients; default is normalprior(100)

prior(priorspec) prior for model parameters; this option may be repeated
dryrun show model summary without estimation

Simulation

nchains(#) number of chains; default is to simulate one chain
mcmcsize(#) MCMC sample size; default is mcmcsize(10000)

burnin(#) burn-in period; default is burnin(2500)

thinning(#) thinning interval; default is thinning(1)

rseed(#) random-number seed
exclude(paramref) specify model parameters to be excluded from the simulation results

Blocking

block(paramref
[
, blockopts

]
) specify a block of model parameters; this option may be repeated

blocksummary display block summary
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Initialization

initial(initspec) specify initial values for model parameters with a single chain
init#(initspec) specify initial values for #th chain; requires nchains()

initall(initspec) specify initial values for all chains; requires nchains()

nomleinitial suppress the use of maximum likelihood estimates as starting values
initrandom specify random initial values
initsummary display initial values used for simulation
∗noisily display output from the estimation command during initialization

Adaptation

adaptation(adaptopts) control the adaptive MCMC procedure
scale(#) initial multiplier for scale factor; default is scale(2.38)

covariance(cov) initial proposal covariance; default is the identity matrix

Reporting

clevel(#) set credible interval level; default is clevel(95)

hpd display HPD credible intervals instead of the default equal-tailed
credible intervals

∗irr report incidence-rate ratios
eform

[
(string)

]
report exponentiated coefficients and, optionally, label as string

remargl compute log marginal-likelihood; suppressed by default
batch(#) specify length of block for batch-means calculations;

default is batch(0)

saving(filename
[
, replace

]
) save simulation results to filename.dta

nomodelsummary suppress model summary
chainsdetail display detailed simulation summary for each chain[
no
]
dots suppress dots or display dots every 100 iterations and iteration

numbers every 1,000 iterations; default is nodots

dots(#
[
, every(#)

]
) display dots as simulation is performed[

no
]
show(paramref) specify model parameters to be excluded from or included in

the output
showreffects

[
(reref)

]
specify that all or a subset of random-effects parameters be included

in the output
notable suppress estimation table
noheader suppress output header
title(string) display string as title above the table of parameter estimates
display options control spacing, line width, and base and empty cells

Advanced

search(search options) control the search for feasible initial values
corrlag(#) specify maximum autocorrelation lag; default varies
corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)

∗Starred options are specific to the bayes prefix; other options are common between bayes and bayesmh.
Options prior() and block() may be repeated.
priorspec and paramref are defined in [BAYES] bayesmh.
paramref may contain factor variables; see [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Model parameters are regression coefficients {depvar:indepvars}, random effects {U[panelvar]} or simply {U}, and
shape parameters {r} and {s} for the beta prior of {U}; also see Methods and formulas. Use the dryrun option
to see the definitions of model parameters prior to estimation.

For a detailed description of bayesopts, see Options in [BAYES] bayes.

Remarks and examples
For a general introduction to Bayesian analysis, see [BAYES] Intro. For a general introduction

to Bayesian estimation using an adaptive Metropolis–Hastings algorithm, see [BAYES] bayesmh. For
remarks and examples specific to the bayes prefix, see [BAYES] bayes. For details about the estimation
command, see [XT] xtnbreg.

For a simple example of the bayes prefix, see Introductory example in [BAYES] bayes. Also see
Panel-data models in [BAYES] bayes.

Stored results
See Stored results in [BAYES] bayes. In addition, bayes: xtnbreg also stores the following results:

Macros
e(ivar) variable denoting groups
e(redistrib) distribution of random effects

Methods and formulas
Bayesian random-effects negative binomial models are based on random-effects negative binomial

models described in Methods and formulas of [XT] xtnbreg.

Let yit be the count for the tth observation in the ith group. We assume yit | γit ∼ Poisson(γit),
where γit | ui ∼ gamma{λit, (1− ui)/ui} with λit = exp(xitβ + offsetit) and ui is a dispersion-
control parameter that varies randomly across groups. The likelihood of the model is thus

Pr(Yit = yit | xit, ui) =
Γ(λit + yit)

Γ(λit)Γ(yit + 1)
uλit
i (1− ui)yit

We further assume that random-effects dispersion parameters ui’s are a priori independent and
follow beta distribution with shape parameters r and s, ui ∼ Beta(r, s). The hyperprior for the shape
parameters is chosen so that the joint distribution of the mean r/(r + s) and inverse square-root
of the sample size (r + s) of the beta distribution is uniform,

{
r/(r + s), (r + s)−0.5

}
∼ 1; see

Gelman et al. (2014, sec. 5.3). This choice leads to a diffused distribution for (r, s) with a density
proportional to (r + s)−2.5, which is a Pareto-type distribution.

bayes: xtnbreg uses the default initial value of 0.5 for the random effects ui’s.

See Methods and formulas in [BAYES] bayesmh.

Reference
Gelman, A., J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin. 2014. Bayesian Data Analysis.

3rd ed. Boca Raton, FL: Chapman and Hall/CRC.
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Also see
[BAYES] bayes — Bayesian regression models using the bayes prefix

[XT] xtnbreg — Fixed-effects, random-effects, & population-averaged negative binomial models

[BAYES] Bayesian postestimation — Postestimation tools for bayesmh and the bayes prefix

[BAYES] Bayesian estimation — Bayesian estimation commands

[BAYES] Bayesian commands — Introduction to commands for Bayesian analysis

[BAYES] Intro — Introduction to Bayesian analysis

[BAYES] Glossary



Title

bayes: xtologit — Bayesian random-effects ordered logistic model

Description Quick start Menu Syntax
Remarks and examples Stored results Methods and formulas Also see

Description
bayes: xtologit fits a Bayesian panel-data random-effects ordered logistic model to an ordinal

outcome; see [BAYES] bayes and [XT] xtologit for details.

Quick start
Bayesian random-effects ordered logistic model of y on x1 and x2 with random intercepts by id

(after xtseting on panel variable id), using default normal priors for regression coefficients and
flat priors for cutpoints and default inverse-gamma prior for the variance of random intercepts

bayes: xtologit y x1 x2

Use a standard deviation of 10 instead of 100 for the default normal priors
bayes, normalprior(10): xtologit y x1 x2

Use a shape of 1 and a scale of 2 instead of values of 0.01 for the default inverse-gamma prior
bayes, igammaprior(1 2): xtologit y x1 x2

Use uniform priors for the slopes and a normal prior for the intercept
bayes, prior({y: x1 x2}, uniform(-10,10)) ///
prior({y: cons}, normal(0,10)): xtologit y x1 x2

Save simulation results to simdata.dta, and use a random-number seed for reproducibility
bayes, saving(simdata) rseed(123): xtologit y x1 x2

Specify 20,000 Markov chain Monte Carlo (MCMC) samples, set length of the burn-in period to 5,000,
and request that a dot be displayed every 500 simulations

bayes, mcmcsize(20000) burnin(5000) dots(500): xtologit y x1 x2

In the above, request that the 90% highest posterior density (HPD) credible interval be displayed
instead of the default 95% equal-tailed credible interval

bayes, clevel(90) hpd

Report odds ratios instead of regression coefficients
bayes, or

Also see Quick start in [BAYES] bayes and Quick start in [XT] xtologit.

Menu
Statistics > Longitudinal/panel data > Ordinal outcomes > Bayesian regression > Ordered logistic regression
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Syntax
bayes

[
, bayesopts

]
: xtologit depvar

[
indepvars

] [
if
] [

in
] [

weight
] [

, options
]

options Description

Model

offset(varname) include varname in model with coefficient constrained to 1

Reporting

or report odds ratios
display options control spacing, line width, and base and empty cells

level(#) set credible level; default is level(95)

A panel variable must be specified; see [XT] xtset.
indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.
fweights are allowed; see [U] 11.1.6 weight.
bayes: xtologit, level() is equivalent to bayes, clevel(): xtologit.
For a detailed description of options, see Options in [XT] xtologit.

bayesopts Description

Priors
∗normalprior(#) specify standard deviation of default normal priors for regression

coefficients; default is normalprior(100)
∗igammaprior(# #) specify shape and scale of default inverse-gamma prior for

variance components; default is igammaprior(0.01 0.01)

prior(priorspec) prior for model parameters; this option may be repeated
dryrun show model summary without estimation

Simulation

nchains(#) number of chains; default is to simulate one chain
mcmcsize(#) MCMC sample size; default is mcmcsize(10000)

burnin(#) burn-in period; default is burnin(2500)

thinning(#) thinning interval; default is thinning(1)

rseed(#) random-number seed
exclude(paramref) specify model parameters to be excluded from the simulation results

Blocking

block(paramref
[
, blockopts

]
) specify a block of model parameters; this option may be repeated

blocksummary display block summary

Initialization

initial(initspec) specify initial values for model parameters with a single chain
init#(initspec) specify initial values for #th chain; requires nchains()

initall(initspec) specify initial values for all chains; requires nchains()

nomleinitial suppress the use of maximum likelihood estimates as starting values
initrandom specify random initial values
initsummary display initial values used for simulation
∗noisily display output from the estimation command during initialization
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Adaptation

adaptation(adaptopts) control the adaptive MCMC procedure
scale(#) initial multiplier for scale factor; default is scale(2.38)

covariance(cov) initial proposal covariance; default is the identity matrix

Reporting

clevel(#) set credible interval level; default is clevel(95)

hpd display HPD credible intervals instead of the default equal-tailed
credible intervals

∗or report odds ratios
eform

[
(string)

]
report exponentiated coefficients and, optionally, label as string

remargl compute log marginal-likelihood; suppressed by default
batch(#) specify length of block for batch-means calculations;

default is batch(0)

saving(filename
[
, replace

]
) save simulation results to filename.dta

nomodelsummary suppress model summary
chainsdetail display detailed simulation summary for each chain[
no
]
dots suppress dots or display dots every 100 iterations and iteration

numbers every 1,000 iterations; default is nodots

dots(#
[
, every(#)

]
) display dots as simulation is performed[

no
]
show(paramref) specify model parameters to be excluded from or included in

the output
showreffects

[
(reref)

]
specify that all or a subset of random-effects parameters be included

in the output
notable suppress estimation table
noheader suppress output header
title(string) display string as title above the table of parameter estimates
display options control spacing, line width, and base and empty cells

Advanced

search(search options) control the search for feasible initial values
corrlag(#) specify maximum autocorrelation lag; default varies
corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)

∗Starred options are specific to the bayes prefix; other options are common between bayes and bayesmh.
Options prior() and block() may be repeated.
priorspec and paramref are defined in [BAYES] bayesmh.
paramref may contain factor variables; see [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Model parameters are regression coefficients {depvar:indepvars}, cutpoints {cut1}, {cut2}, and so on, random effects
{U[panelvar]} or simply {U}, and random-effects variance {var U}. Use the dryrun option to see the definitions
of model parameters prior to estimation.

Flat priors, flat, are used by default for cutpoints.
For a detailed description of bayesopts, see Options in [BAYES] bayes.

Remarks and examples
For a general introduction to Bayesian analysis, see [BAYES] Intro. For a general introduction

to Bayesian estimation using an adaptive Metropolis–Hastings algorithm, see [BAYES] bayesmh. For
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remarks and examples specific to the bayes prefix, see [BAYES] bayes. For details about the estimation
command, see [XT] xtologit.

For a simple example of the bayes prefix, see Introductory example in [BAYES] bayes. Also see
Panel-data models in [BAYES] bayes. Also see example 19 in [BAYES] bayes.

Stored results
See Stored results in [BAYES] bayes. In addition, bayes: xtologit also stores the following

results:

Macros
e(ivar) variable denoting groups
e(redistrib) distribution of random effects

Methods and formulas
See Methods and formulas in [BAYES] bayesmh.

Also see
[BAYES] bayes — Bayesian regression models using the bayes prefix

[XT] xtologit — Random-effects ordered logistic models

[BAYES] Bayesian postestimation — Postestimation tools for bayesmh and the bayes prefix

[BAYES] Bayesian estimation — Bayesian estimation commands

[BAYES] Bayesian commands — Introduction to commands for Bayesian analysis

[BAYES] Intro — Introduction to Bayesian analysis

[BAYES] Glossary



Title

bayes: xtoprobit — Bayesian random-effects ordered probit model

Description Quick start Menu Syntax
Remarks and examples Stored results Methods and formulas Also see

Description
bayes: xtoprobit fits a Bayesian panel-data random-effects ordered probit model to an ordinal

outcome; see [BAYES] bayes and [XT] xtoprobit for details.

Quick start
Bayesian random-effects ordered probit model of y on x1 and x2 with random intercepts by id (after

xtseting on panel variable id), using default normal priors for regression coefficients and flat
priors for cutpoints and default inverse-gamma prior for the variance of random intercepts

bayes: xtoprobit y x1 x2

Use a standard deviation of 10 instead of 100 for the default normal priors
bayes, normalprior(10): xtoprobit y x1 x2

Use a shape of 1 and a scale of 2 instead of values of 0.01 for the default inverse-gamma prior
bayes, igammaprior(1 2): xtoprobit y x1 x2

Use uniform priors for the slopes and a normal prior for the intercept
bayes, prior({y: x1 x2}, uniform(-10,10)) ///
prior({y: cons}, normal(0,10)): xtoprobit y x1 x2

Save simulation results to simdata.dta, and use a random-number seed for reproducibility
bayes, saving(simdata) rseed(123): xtoprobit y x1 x2

Specify 20,000 Markov chain Monte Carlo (MCMC) samples, set length of the burn-in period to 5,000,
and request that a dot be displayed every 500 simulations

bayes, mcmcsize(20000) burnin(5000) dots(500): xtoprobit y x1 x2

In the above, request that the 90% highest posterior density (HPD) credible interval be displayed
instead of the default 95% equal-tailed credible interval

bayes, clevel(90) hpd

Also see Quick start in [BAYES] bayes and Quick start in [XT] xtoprobit.

Menu
Statistics > Longitudinal/panel data > Ordinal outcomes > Bayesian regression > Ordered probit regression
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Syntax

bayes
[
, bayesopts

]
: xtoprobit depvar

[
indepvars

] [
if
] [

in
] [

weight
] [

, options
]

options Description

Model

offset(varname) include varname in model with coefficient constrained to 1

Reporting

display options control spacing, line width, and base and empty cells

level(#) set credible level; default is level(95)

A panel variable must be specified; see [XT] xtset.
indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.
fweights are allowed; see [U] 11.1.6 weight.
bayes: xtoprobit, level() is equivalent to bayes, clevel(): xtoprobit.
For a detailed description of options, see Options in [XT] xtoprobit.

bayesopts Description

Priors
∗normalprior(#) specify standard deviation of default normal priors for regression

coefficients; default is normalprior(100)
∗igammaprior(# #) specify shape and scale of default inverse-gamma prior for

variance components; default is igammaprior(0.01 0.01)

prior(priorspec) prior for model parameters; this option may be repeated
dryrun show model summary without estimation

Simulation

nchains(#) number of chains; default is to simulate one chain
mcmcsize(#) MCMC sample size; default is mcmcsize(10000)

burnin(#) burn-in period; default is burnin(2500)

thinning(#) thinning interval; default is thinning(1)

rseed(#) random-number seed
exclude(paramref) specify model parameters to be excluded from the simulation results

Blocking

block(paramref
[
, blockopts

]
) specify a block of model parameters; this option may be repeated

blocksummary display block summary

Initialization

initial(initspec) specify initial values for model parameters with a single chain
init#(initspec) specify initial values for #th chain; requires nchains()

initall(initspec) specify initial values for all chains; requires nchains()

nomleinitial suppress the use of maximum likelihood estimates as starting values
initrandom specify random initial values
initsummary display initial values used for simulation
∗noisily display output from the estimation command during initialization



780 bayes: xtoprobit — Bayesian random-effects ordered probit model

Adaptation

adaptation(adaptopts) control the adaptive MCMC procedure
scale(#) initial multiplier for scale factor; default is scale(2.38)

covariance(cov) initial proposal covariance; default is the identity matrix

Reporting

clevel(#) set credible interval level; default is clevel(95)

hpd display HPD credible intervals instead of the default equal-tailed
credible intervals

eform
[
(string)

]
report exponentiated coefficients and, optionally, label as string

remargl compute log marginal-likelihood; suppressed by default
batch(#) specify length of block for batch-means calculations;

default is batch(0)

saving(filename
[
, replace

]
) save simulation results to filename.dta

nomodelsummary suppress model summary
chainsdetail display detailed simulation summary for each chain[
no
]
dots suppress dots or display dots every 100 iterations and iteration

numbers every 1,000 iterations; default is nodots

dots(#
[
, every(#)

]
) display dots as simulation is performed[

no
]
show(paramref) specify model parameters to be excluded from or included in

the output
showreffects

[
(reref)

]
specify that all or a subset of random-effects parameters be included

in the output
notable suppress estimation table
noheader suppress output header
title(string) display string as title above the table of parameter estimates
display options control spacing, line width, and base and empty cells

Advanced

search(search options) control the search for feasible initial values
corrlag(#) specify maximum autocorrelation lag; default varies
corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)

∗Starred options are specific to the bayes prefix; other options are common between bayes and bayesmh.
Options prior() and block() may be repeated.
priorspec and paramref are defined in [BAYES] bayesmh.
paramref may contain factor variables; see [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Model parameters are regression coefficients {depvar:indepvars}, cutpoints {cut1}, {cut2}, and so on, random effects
{U[panelvar]} or simply {U}, and random-effects variance {var U}. Use the dryrun option to see the definitions
of model parameters prior to estimation.

Flat priors, flat, are used by default for cutpoints.
For a detailed description of bayesopts, see Options in [BAYES] bayes.

Remarks and examples

For a general introduction to Bayesian analysis, see [BAYES] Intro. For a general introduction
to Bayesian estimation using an adaptive Metropolis–Hastings algorithm, see [BAYES] bayesmh. For
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remarks and examples specific to the bayes prefix, see [BAYES] bayes. For details about the estimation
command, see [XT] xtoprobit.

For a simple example of the bayes prefix, see Introductory example in [BAYES] bayes. Also see
Panel-data models in [BAYES] bayes.

Stored results
See Stored results in [BAYES] bayes. In addition, bayes: xtoprobit also stores the following

results:

Macros
e(ivar) variable denoting groups
e(redistrib) distribution of random effects

Methods and formulas
See Methods and formulas in [BAYES] bayesmh.

Also see
[BAYES] bayes — Bayesian regression models using the bayes prefix

[XT] xtoprobit — Random-effects ordered probit models

[BAYES] Bayesian postestimation — Postestimation tools for bayesmh and the bayes prefix

[BAYES] Bayesian estimation — Bayesian estimation commands

[BAYES] Bayesian commands — Introduction to commands for Bayesian analysis

[BAYES] Intro — Introduction to Bayesian analysis

[BAYES] Glossary



Title

bayes: xtpoisson — Bayesian random-effects Poisson model

Description Quick start Menu Syntax
Remarks and examples Stored results Methods and formulas Also see

Description
bayes: xtpoisson fits a Bayesian panel-data random-effects Poisson model to a nonnegative

count outcome; see [BAYES] bayes and [XT] xtpoisson for details.

Quick start
Bayesian random-effects Poisson model of y on x1 and x2 with random intercepts by id (after

xtseting on panel variable id), using default normal priors for regression coefficients and default
inverse-gamma prior for the variance of random intercepts

bayes: xtpoisson y x1 x2

Use a standard deviation of 10 instead of 100 for the default normal priors
bayes, normalprior(10): xtpoisson y x1 x2

Use a shape of 1 and a scale of 2 instead of values of 0.01 for the default inverse-gamma prior
bayes, igammaprior(1 2): xtpoisson y x1 x2

Use uniform priors for the slopes and a normal prior for the intercept
bayes, prior({y: x1 x2}, uniform(-10,10)) ///
prior({y: cons}, normal(0,10)): xtpoisson y x1 x2

Save simulation results to simdata.dta, and use a random-number seed for reproducibility
bayes, saving(simdata) rseed(123): xtpoisson y x1 x2

Specify 20,000 Markov chain Monte Carlo (MCMC) samples, set length of the burn-in period to 5,000,
and request that a dot be displayed every 500 simulations

bayes, mcmcsize(20000) burnin(5000) dots(500): xtpoisson y x1 x2

In the above, request that the 90% highest posterior density (HPD) credible interval be displayed
instead of the default 95% equal-tailed credible interval

bayes, clevel(90) hpd

Use a normal prior distribution for random effects instead of the default gamma prior
bayes: xtpoisson y x1 x2, normal

Display incidence-rate ratios instead of coefficients
bayes: xtpoisson y x1 x2, irr

Display incidence-rate ratios on replay
bayes, irr

Also see Quick start in [BAYES] bayes and Quick start in [XT] xtpoisson.
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Menu
Statistics > Longitudinal/panel data > Count outcomes > Bayesian regression > Poisson regression

Syntax

bayes
[
, bayesopts

]
: xtpoisson depvar

[
indepvars

] [
if
] [

in
] [

, options
]

options Description

Model

noconstant suppress constant term
exposure(varnamee) include ln(varnamee) in model with coefficient constrained to 1
offset(varnameo) include varnameo in model with coefficient constrained to 1
normal use a normal distribution for random effects instead of gamma

Reporting

irr report incidence-rate ratios
display options control spacing, line width, and base and empty cells

level(#) set credible level; default is level(95)

A panel variable must be specified; see [XT] xtset.
indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar, indepvars, varnamee, and varnameo may contain time-series operators; see [U] 11.4.4 Time-series varlists.
bayes: xtpoisson, level() is equivalent to bayes, clevel(): xtpoisson.
For a detailed description of options, see Options in [XT] xtpoisson.

bayesopts Description

Priors
∗normalprior(#) specify standard deviation of default normal priors for regression

coefficients; default is normalprior(100)
∗igammaprior(# #) specify shape and scale of default inverse-gamma prior for

variance components; default is igammaprior(0.01 0.01)

prior(priorspec) prior for model parameters; this option may be repeated
dryrun show model summary without estimation

Simulation

nchains(#) number of chains; default is to simulate one chain
mcmcsize(#) MCMC sample size; default is mcmcsize(10000)

burnin(#) burn-in period; default is burnin(2500)

thinning(#) thinning interval; default is thinning(1)

rseed(#) random-number seed
exclude(paramref) specify model parameters to be excluded from the simulation results

Blocking

block(paramref
[
, blockopts

]
) specify a block of model parameters; this option may be repeated

blocksummary display block summary
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Initialization

initial(initspec) specify initial values for model parameters with a single chain
init#(initspec) specify initial values for #th chain; requires nchains()

initall(initspec) specify initial values for all chains; requires nchains()

nomleinitial suppress the use of maximum likelihood estimates as starting values
initrandom specify random initial values
initsummary display initial values used for simulation
∗noisily display output from the estimation command during initialization

Adaptation

adaptation(adaptopts) control the adaptive MCMC procedure
scale(#) initial multiplier for scale factor; default is scale(2.38)

covariance(cov) initial proposal covariance; default is the identity matrix

Reporting

clevel(#) set credible interval level; default is clevel(95)

hpd display HPD credible intervals instead of the default equal-tailed
credible intervals

∗irr report incidence-rate ratios
eform

[
(string)

]
report exponentiated coefficients and, optionally, label as string

remargl compute log marginal-likelihood; suppressed by default
batch(#) specify length of block for batch-means calculations;

default is batch(0)

saving(filename
[
, replace

]
) save simulation results to filename.dta

nomodelsummary suppress model summary
chainsdetail display detailed simulation summary for each chain[
no
]
dots suppress dots or display dots every 100 iterations and iteration

numbers every 1,000 iterations; default is nodots

dots(#
[
, every(#)

]
) display dots as simulation is performed[

no
]
show(paramref) specify model parameters to be excluded from or included in

the output
showreffects

[
(reref)

]
specify that all or a subset of random-effects parameters be included

in the output
notable suppress estimation table
noheader suppress output header
title(string) display string as title above the table of parameter estimates
display options control spacing, line width, and base and empty cells

Advanced

search(search options) control the search for feasible initial values
corrlag(#) specify maximum autocorrelation lag; default varies
corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)

∗Starred options are specific to the bayes prefix; other options are common between bayes and bayesmh.
Options prior() and block() may be repeated.
priorspec and paramref are defined in [BAYES] bayesmh.
paramref may contain factor variables; see [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Model parameters are regression coefficients {depvar:indepvars}, random effects {U[panelvar]} or simply {U}, and
parameter {alpha} with the gamma prior or random-effects variance {var U} with the normal prior; also see
Methods and formulas. Use the dryrun option to see the definitions of model parameters prior to estimation.

For a detailed description of bayesopts, see Options in [BAYES] bayes.

Remarks and examples
For a general introduction to Bayesian analysis, see [BAYES] Intro. For a general introduction

to Bayesian estimation using an adaptive Metropolis–Hastings algorithm, see [BAYES] bayesmh. For
remarks and examples specific to the bayes prefix, see [BAYES] bayes. For details about the estimation
command, see [XT] xtpoisson.

For a simple example of the bayes prefix, see Introductory example in [BAYES] bayes. Also see
Panel-data models in [BAYES] bayes.

Example 1

Let’s revisit example 1 from [XT] xtpoisson. The example models the number of ship accidents,
accident, affected by the period of their construction and operation. The factor variables co 75 79,
co 70 74, and co 65 69 mark consecutive construction periods of 5 years, and op 75 79 indicates
the operating period between 1975 and 1979.

. use https://www.stata-press.com/data/r18/ships

. xtset

Panel variable: ship (balanced)

The number of accidents is modeled by a Poisson distribution with the number of months in service,
service, as exposure. The ship variable identifies the individual ships and is set as the panel
variable.

We use bayes: xtpoisson to fit the Bayesian analog of the model. We use the default priors for
regression coefficients and random effects. The random effects are assigned an exponential gamma
prior with a hyperparameter {alpha}. The latter is assigned an inverse-gamma hyperprior. To improve
sampling efficiency, we double the burn-in period, burnin(5000). We also include the irr option
to report incidence-rate ratios instead of regression coefficients.

. bayes, burnin(5000) rseed(17):
> xtpoisson accident op_75_79 co_65_69 co_70_74 co_75_79, exp(service) irr
Burn-in 5000 aaaaaaaaa1000aaaaaaaaa2000aaaaaaaaa3000aaaaaaaaa4000aaaaaaaaa5000
> done
Simulation 10000 .........1000.........2000.........3000.........4000.........
> 5000.........6000.........7000.........8000.........9000.........10000 done

Model summary

Likelihood:
accident service ~ poissonreg(xb_accident)

Priors:
{accident:op_75_79} ~ normal(0,10000) (1)
{accident:co_65_69} ~ normal(0,10000) (1)
{accident:co_70_74} ~ normal(0,10000) (1)
{accident:co_75_79} ~ normal(0,10000) (1)

{accident:_cons} ~ normal(0,10000) (1)
{U[ship]} ~ expgamma(1/{alpha},{alpha}) (1)

Hyperprior:
{alpha} ~ igamma(0.01,0.01)
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(1) Parameters are elements of the linear form xb_accident.

Bayesian RE Poisson regression MCMC iterations = 15,000
Random-walk Metropolis--Hastings sampling Burn-in = 5,000

MCMC sample size = 10,000
Group variable: ship Number of groups = 5

Obs per group:
min = 6
avg = 6.8
max = 7

Number of obs = 34
Acceptance rate = .4103
Efficiency: min = .004533

avg = .02627
Log marginal-likelihood max = .06637

Equal-tailed
IRR Std. dev. MCSE Median [95% cred. interval]

accident
op_75_79 1.482028 .1872034 .012245 1.466002 1.15391 1.885356
co_65_69 2.056534 .3147425 .012217 2.038204 1.516147 2.745889
co_70_74 2.365398 .4163733 .027752 2.31289 1.673906 3.377834
co_75_79 1.641278 .386874 .024248 1.610142 1.021594 2.514659

_cons .0014965 .000378 .000056 .0014293 .0009432 .0024066

alpha .182512 .149803 .012089 .1351156 .0271875 .606201

Note: Variable service is included in the model as the exposure.
Note: _cons estimates baseline incidence rate.
Note: Default priors are used for model parameters.

The posterior mean estimates for regression coefficients are similar to the maximum likelihood
estimates reported in example 1. The posterior mean estimate for {alpha}, about 0.18, is greater
than its maximum likelihood counterpart, 0.09, because its marginal posterior distribution is skewed.

We can use bayesstats summary to report posterior estimates for the random effects {U[ship]}.

. bayesstats summary {U[1/5]}

Posterior summary statistics MCMC sample size = 10,000

Equal-tailed
U[ship] Mean Std. dev. MCSE Median [95% cred. interval]

1 .0603 .2287246 .028578 .0650362 -.4104326 .5109287
2 -.4250167 .2156037 .035458 -.4172961 -.8843667 -.0511939
3 -.422064 .3049497 .032655 -.3893351 -1.115965 .0824852
4 -.0106956 .2549407 .026575 -.0067523 -.5325561 .4791908
5 .3031554 .2326076 .025797 .3001452 -.1498397 .7672204

Next, we would like to assess the goodness of fit of the model by using bayespredict and
bayesstats ppvalues to perform posterior predictive checks. But first, we need to save the current
simulation results to a permanent Stata dataset.

. bayes, saving(xtpoissim1)
note: file xtpoissim1.dta saved.

Deviance is commonly used as a goodness-of-fit statistic for generalized linear models. We define
a Mata function, deviance(), that computes the deviance, which will be used by bayespredict to
compute the deviance based on the simulated outcome ysim and the mean vector mu.
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. mata:
mata (type end to exit)

: real scalar deviance(real colvector ysim, real colvector mu) {
> return (2*sum(ysim:*ln(ysim:/mu):-ysim:+mu))
> }

: end

Next, we call bayespredict to compute the deviance of outcomes simulated from the posterior
predictive distribution and save the results in xtpoispred1.

. bayespredict (@deviance({_ysim1},{_mu1})), rseed(17) saving(xtpoispred1)

Computing predictions ...

file xtpoispred1.dta saved.
file xtpoispred1.ster saved.

Now, we can compute the posterior predictive p-value of the deviance statistics using the
bayesstats ppvalues command.

. bayesstats ppvalues using xtpoispred1

Posterior predictive summary MCMC sample size = 10,000

T Mean Std. dev. E(T_obs) P(T>=T_obs)

_ysim1_deviance 25.02129 7.157104 39.40344 .0523

Note: P(T>=T_obs) close to 0 or 1 indicates lack of fit.

The estimated p-value is only 0.05, but in the absence of a reference model, it is difficult to decide
whether this indicates a lack of fit.

Stored results
See Stored results in [BAYES] bayes. In addition, bayes: xtpoisson also stores the following

results:

Macros
e(ivar) variable denoting groups
e(redistrib) distribution of random effects

Methods and formulas
Bayesian random-effects Poisson models are based on random-effects Poisson models described

in Methods and formulas of [XT] xtpoisson.

Let yit be the count for the tth observation in the ith group. We assume yit | ui, λit ∼
Poisson{ exp(ui)λit}, with λit = exp(xitβ + offsetit) and ui a parameter that varies randomly
across groups. In bayes: xtpoisson, parameters ui’s are represented by {U[panelvar]}, where
panelvar is the panel variable.

By default, random effects exp(ui) are a priori independent and have a gamma prior distribution
with mean 1 and variance α. ui’s are thus assigned an exponential gamma prior with shape 1/α and
scale α. The hyperparameter α, {alpha} in the output of bayes: xtpoisson, has an inverse-gamma
prior with shape and scale of 0.01.
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When the normal option is specified with xtpoisson, the random effects ui’s are assigned
a normal prior distribution with mean 0 and variance σ2

u, denoted as {var U} in the output of
bayes: xtpoisson. By default, σ2

u is assigned an inverse-gamma prior with shape and scale of 0.01.

You can use the igammaprior() option to change the shape and scale of the default inverse-gamma
prior. See Methods and formulas in [BAYES] bayesmh.

Also see
[BAYES] bayes — Bayesian regression models using the bayes prefix

[XT] xtpoisson — Fixed-effects, random-effects, and population-averaged Poisson models

[BAYES] Bayesian postestimation — Postestimation tools for bayesmh and the bayes prefix

[BAYES] Bayesian estimation — Bayesian estimation commands

[BAYES] Bayesian commands — Introduction to commands for Bayesian analysis

[BAYES] Intro — Introduction to Bayesian analysis

[BAYES] Glossary



Title

bayes: xtprobit — Bayesian random-effects probit model

Description Quick start Menu Syntax
Remarks and examples Stored results Methods and formulas Also see

Description
bayes: xtprobit fits a Bayesian panel-data random-effects probit model to a binary outcome;

see [BAYES] bayes and [XT] xtprobit for details.

Quick start
Bayesian random-effects probit model of y on x1 and x2 with random intercepts by id (after

xtseting on panel variable id), using default normal priors for regression coefficients and default
inverse-gamma prior for the variance of random intercepts

bayes: xtprobit y x1 x2

Use a standard deviation of 10 instead of 100 for the default normal priors
bayes, normalprior(10): xtprobit y x1 x2

Use a shape of 1 and a scale of 2 instead of values of 0.01 for the default inverse-gamma prior
bayes, igammaprior(1 2): xtprobit y x1 x2

Use uniform priors for the slopes and a normal prior for the intercept
bayes, prior({y: x1 x2}, uniform(-10,10)) ///
prior({y: cons}, normal(0,10)): xtprobit y x1 x2

Save simulation results to simdata.dta, and use a random-number seed for reproducibility
bayes, saving(simdata) rseed(123): xtprobit y x1 x2

Specify 20,000 Markov chain Monte Carlo (MCMC) samples, set length of the burn-in period to 5,000,
and request that a dot be displayed every 500 simulations

bayes, mcmcsize(20000) burnin(5000) dots(500): xtprobit y x1 x2

In the above, request that the 90% highest posterior density (HPD) credible interval be displayed
instead of the default 95% equal-tailed credible interval

bayes, clevel(90) hpd

Also see Quick start in [BAYES] bayes and Quick start in [XT] xtprobit.

Menu
Statistics > Longitudinal/panel data > Binary outcomes > Bayesian regression > Probit regression
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Syntax
bayes

[
, bayesopts

]
: xtprobit depvar

[
indepvars

] [
if
] [

in
] [

, options
]

options Description

Model

noconstant suppress constant term
offset(varname) include varname in model with coefficient constrained to 1
asis retain perfect predictor variables

Reporting

display options control spacing, line width, and base and empty cells

level(#) set credible level; default is level(95)

A panel variable must be specified; see [XT] xtset.
indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.
bayes: xtprobit, level() is equivalent to bayes, clevel(): xtprobit.
For a detailed description of options, see Options in [XT] xtprobit.

bayesopts Description

Priors
∗normalprior(#) specify standard deviation of default normal priors for regression

coefficients; default is normalprior(100)
∗igammaprior(# #) specify shape and scale of default inverse-gamma prior for

variance components; default is igammaprior(0.01 0.01)

prior(priorspec) prior for model parameters; this option may be repeated
dryrun show model summary without estimation

Simulation

nchains(#) number of chains; default is to simulate one chain
mcmcsize(#) MCMC sample size; default is mcmcsize(10000)

burnin(#) burn-in period; default is burnin(2500)

thinning(#) thinning interval; default is thinning(1)

rseed(#) random-number seed
exclude(paramref) specify model parameters to be excluded from the simulation results

Blocking

block(paramref
[
, blockopts

]
) specify a block of model parameters; this option may be repeated

blocksummary display block summary

Initialization

initial(initspec) specify initial values for model parameters with a single chain
init#(initspec) specify initial values for #th chain; requires nchains()

initall(initspec) specify initial values for all chains; requires nchains()

nomleinitial suppress the use of maximum likelihood estimates as starting values
initrandom specify random initial values
initsummary display initial values used for simulation
∗noisily display output from the estimation command during initialization
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Adaptation

adaptation(adaptopts) control the adaptive MCMC procedure
scale(#) initial multiplier for scale factor; default is scale(2.38)

covariance(cov) initial proposal covariance; default is the identity matrix

Reporting

clevel(#) set credible interval level; default is clevel(95)

hpd display HPD credible intervals instead of the default equal-tailed
credible intervals

eform
[
(string)

]
report exponentiated coefficients and, optionally, label as string

remargl compute log marginal-likelihood; suppressed by default
batch(#) specify length of block for batch-means calculations;

default is batch(0)

saving(filename
[
, replace

]
) save simulation results to filename.dta

nomodelsummary suppress model summary
chainsdetail display detailed simulation summary for each chain[
no
]
dots suppress dots or display dots every 100 iterations and iteration

numbers every 1,000 iterations; default is nodots

dots(#
[
, every(#)

]
) display dots as simulation is performed[

no
]
show(paramref) specify model parameters to be excluded from or included in

the output
showreffects

[
(reref)

]
specify that all or a subset of random-effects parameters be included

in the output
notable suppress estimation table
noheader suppress output header
title(string) display string as title above the table of parameter estimates
display options control spacing, line width, and base and empty cells

Advanced

search(search options) control the search for feasible initial values
corrlag(#) specify maximum autocorrelation lag; default varies
corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)

∗Starred options are specific to the bayes prefix; other options are common between bayes and bayesmh.
Options prior() and block() may be repeated.
priorspec and paramref are defined in [BAYES] bayesmh.
paramref may contain factor variables; see [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Model parameters are regression coefficients {depvar:indepvars}, random effects {U[panelvar]} or simply {U}, and
random-effects variance {var U}. Use the dryrun option to see the definitions of model parameters prior to
estimation.

For a detailed description of bayesopts, see Options in [BAYES] bayes.

Remarks and examples
For a general introduction to Bayesian analysis, see [BAYES] Intro. For a general introduction

to Bayesian estimation using an adaptive Metropolis–Hastings algorithm, see [BAYES] bayesmh. For
remarks and examples specific to the bayes prefix, see [BAYES] bayes. For details about the estimation
command, see [XT] xtprobit.
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For a simple example of the bayes prefix, see Introductory example in [BAYES] bayes. Also see
Panel-data models in [BAYES] bayes.

Stored results
See Stored results in [BAYES] bayes. In addition, bayes: xtprobit also stores the following

results:

Macros
e(ivar) variable denoting groups
e(redistrib) distribution of random effects

Methods and formulas
See Methods and formulas in [BAYES] bayesmh.

Also see
[BAYES] bayes — Bayesian regression models using the bayes prefix

[XT] xtprobit — Random-effects and population-averaged probit models

[BAYES] Bayesian postestimation — Postestimation tools for bayesmh and the bayes prefix

[BAYES] Bayesian estimation — Bayesian estimation commands

[BAYES] Bayesian commands — Introduction to commands for Bayesian analysis

[BAYES] Intro — Introduction to Bayesian analysis

[BAYES] Glossary



Title

bayes: xtreg — Bayesian random-effects linear model

Description Quick start Menu Syntax
Remarks and examples Stored results Methods and formulas Also see

Description
bayes: xtreg fits a Bayesian panel-data random-effects linear regression to a continuous outcome;

see [BAYES] bayes and [XT] xtreg for details.

Quick start
Bayesian random-effects linear regression of y on x1 and x2 with random intercepts by id (after

xtseting on panel variable id), using default normal priors for regression coefficients and default
inverse-gamma priors for the error variance and for the variance of random intercepts

bayes: xtreg y x1 x2

Use a standard deviation of 10 instead of 100 for the default normal priors
bayes, normalprior(10): xtreg y x1 x2

Use a shape of 1 and a scale of 2 instead of values of 0.01 for the default inverse-gamma prior
bayes, igammaprior(1 2): xtreg y x1 x2

Use uniform priors for the slopes and a normal prior for the intercept
bayes, prior({y: x1 x2}, uniform(-10,10)) ///
prior({y: cons}, normal(0,10)): xtreg y x1 x2

Save simulation results to simdata.dta, and use a random-number seed for reproducibility
bayes, saving(simdata) rseed(123): xtreg y x1 x2

Specify 20,000 Markov chain Monte Carlo (MCMC) samples, set length of the burn-in period to 5,000,
and request that a dot be displayed every 500 simulations

bayes, mcmcsize(20000) burnin(5000) dots(500): xtreg y x1 x2

In the above, request that the 90% highest posterior density (HPD) credible interval be displayed
instead of the default 95% equal-tailed credible interval

bayes, clevel(90) hpd

Use Gibbs sampling for all parameters, including random effects
bayes, gibbs: xtreg y x1 x2

Also see Quick start in [BAYES] bayes and Quick start in [XT] xtreg.

Menu
Statistics > Longitudinal/panel data > Bayesian regression > Linear regression
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Syntax
bayes

[
, bayesopts

]
: xtreg depvar

[
indepvars

] [
if
] [

in
] [

, options
]

options Description

Model

noconstant suppress constant term

Reporting

display options control spacing, line width, and base and empty cells

level(#) set credible level; default is level(95)

A panel variable must be specified; see [XT] xtset.
indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.
bayes: xtreg, level() is equivalent to bayes, clevel(): xtreg.
For a detailed description of options, see Options in [XT] xtreg.

bayesopts Description

Priors
∗gibbs specify Gibbs sampling; available only with normal priors for

regression coefficients and an inverse-gamma prior for variance
∗normalprior(#) specify standard deviation of default normal priors for regression

coefficients; default is normalprior(100)
∗igammaprior(# #) specify shape and scale of default inverse-gamma prior for

variance components; default is igammaprior(0.01 0.01)

prior(priorspec) prior for model parameters; this option may be repeated
dryrun show model summary without estimation

Simulation

nchains(#) number of chains; default is to simulate one chain
mcmcsize(#) MCMC sample size; default is mcmcsize(10000)

burnin(#) burn-in period; default is burnin(2500)

thinning(#) thinning interval; default is thinning(1)

rseed(#) random-number seed
exclude(paramref) specify model parameters to be excluded from the simulation results

Blocking

block(paramref
[
, blockopts

]
) specify a block of model parameters; this option may be repeated

blocksummary display block summary

Initialization

initial(initspec) specify initial values for model parameters with a single chain
init#(initspec) specify initial values for #th chain; requires nchains()

initall(initspec) specify initial values for all chains; requires nchains()

nomleinitial suppress the use of maximum likelihood estimates as starting values
initrandom specify random initial values
initsummary display initial values used for simulation
∗noisily display output from the estimation command during initialization
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Adaptation

adaptation(adaptopts) control the adaptive MCMC procedure
scale(#) initial multiplier for scale factor; default is scale(2.38)

covariance(cov) initial proposal covariance; default is the identity matrix

Reporting

clevel(#) set credible interval level; default is clevel(95)

hpd display HPD credible intervals instead of the default equal-tailed
credible intervals

eform
[
(string)

]
report exponentiated coefficients and, optionally, label as string

remargl compute log marginal-likelihood; suppressed by default
batch(#) specify length of block for batch-means calculations;

default is batch(0)

saving(filename
[
, replace

]
) save simulation results to filename.dta

nomodelsummary suppress model summary
chainsdetail display detailed simulation summary for each chain[
no
]
dots suppress dots or display dots every 100 iterations and iteration

numbers every 1,000 iterations; default is nodots

dots(#
[
, every(#)

]
) display dots as simulation is performed[

no
]
show(paramref) specify model parameters to be excluded from or included in

the output
showreffects

[
(reref)

]
specify that all or a subset of random-effects parameters be included

in the output
notable suppress estimation table
noheader suppress output header
title(string) display string as title above the table of parameter estimates
display options control spacing, line width, and base and empty cells

Advanced

search(search options) control the search for feasible initial values
corrlag(#) specify maximum autocorrelation lag; default varies
corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)

∗Starred options are specific to the bayes prefix; other options are common between bayes and bayesmh.
Options prior() and block() may be repeated.
priorspec and paramref are defined in [BAYES] bayesmh.
paramref may contain factor variables; see [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Model parameters are regression coefficients {depvar:indepvars}, error variance {sigma2}, random effects {U[panelvar]}
or simply {U}, and random-effects variance {var U}. Use the dryrun option to see the definitions of model
parameters prior to estimation.

For a detailed description of bayesopts, see Options in [BAYES] bayes.

Remarks and examples
For a general introduction to Bayesian analysis, see [BAYES] Intro. For a general introduction to

Bayesian estimation using adaptive Metropolis–Hastings and Gibbs algorithms, see [BAYES] bayesmh.
For remarks and examples specific to the bayes prefix, see [BAYES] bayes. For details about the
estimation command, see [XT] xtreg.
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For a simple example of the bayes prefix, see Introductory example in [BAYES] bayes. Also see
Panel-data models in [BAYES] bayes.

Stored results
See Stored results in [BAYES] bayes. In addition, bayes: xtreg also stores the following results:

Macros
e(ivar) variable denoting groups
e(redistrib) distribution of random effects

Methods and formulas
See Methods and formulas in [BAYES] bayesmh.

Also see
[BAYES] bayes — Bayesian regression models using the bayes prefix

[XT] xtreg — Fixed-, between-, and random-effects and population-averaged linear models

[BAYES] Bayesian postestimation — Postestimation tools for bayesmh and the bayes prefix

[BAYES] Bayesian estimation — Bayesian estimation commands

[BAYES] Bayesian commands — Introduction to commands for Bayesian analysis

[BAYES] Intro — Introduction to Bayesian analysis

[BAYES] Glossary



Title

bayes: zinb — Bayesian zero-inflated negative binomial regression

Description Quick start Menu Syntax
Remarks and examples Stored results Methods and formulas Also see

Description
bayes: zinb fits a Bayesian zero-inflated negative binomial regression to a nonnegative count

outcome with a high fraction of zeros; see [BAYES] bayes and [R] zinb for details.

Quick start
Bayesian zero-inflated negative binomial regression of y on x1 and x2, using z to model excess zeros

and using default normal priors for regression coefficients and log-overdispersion parameter
bayes: zinb y x1 x2, inflate(z)

Use a standard deviation of 10 instead of 100 for the default normal priors
bayes, normalprior(10): zinb y x1 x2, inflate(z)

Use uniform priors for the slopes and a normal prior for the intercept of the main regression
bayes, prior({y: x1 x2}, uniform(-10,10)) ///
prior({y: cons}, normal(0,10)): zinb y x1 x2, inflate(z)

Save simulation results to simdata.dta, and use a random-number seed for reproducibility
bayes, saving(simdata) rseed(123): zinb y x1 x2, inflate(z)

Specify 20,000 Markov chain Monte Carlo (MCMC) samples, set length of the burn-in period to 5,000,
and request that a dot be displayed every 500 simulations

bayes, mcmcsize(20000) burnin(5000) dots(500): zinb y x1 x2, inflate(z)

In the above, request that the 90% highest posterior density (HPD) credible interval be displayed
instead of the default 95% equal-tailed credible interval

bayes, clevel(90) hpd

Display incidence-rate ratios instead of coefficients
bayes: zinb y x1 x2, inflate(z) irr

Display incidence-rate ratios on replay
bayes, irr

Also see Quick start in [BAYES] bayes and Quick start in [R] zinb.

Menu
Statistics > Count outcomes > Bayesian regression > Zero-inflated negative binomial regression
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Syntax

bayes
[
, bayesopts

]
: zinb depvar

[
indepvars

] [
if
] [

in
] [

weight
]
,

inflate(varlist
[
, offset(varname)

]
| cons)

[
options

]
options Description

Model
∗inflate( ) equation that determines whether the count is zero
noconstant suppress constant term
exposure(varnamee) include ln(varnamee) in model with coefficient constrained to 1
offset(varnameo) include varnameo in model with coefficient constrained to 1
probit use probit model to characterize excess zeros; default is logit

Reporting

irr report incidence-rate ratios
display options control spacing, line width, and base and empty cells

level(#) set credible level; default is level(95)

∗inflate(varlist
[
, offset(varname)

]
| cons) is required.

indepvars and varlist may contain factor variables; see [U] 11.4.3 Factor variables.
fweights are allowed; see [U] 11.1.6 weight.
bayes: zinb, level() is equivalent to bayes, clevel(): zinb.
For a detailed description of options, see Options in [R] zinb.

bayesopts Description

Priors
∗normalprior(#) specify standard deviation of default normal priors for regression

coefficients and log-overdispersion parameter;
default is normalprior(100)

prior(priorspec) prior for model parameters; this option may be repeated
dryrun show model summary without estimation

Simulation

nchains(#) number of chains; default is to simulate one chain
mcmcsize(#) MCMC sample size; default is mcmcsize(10000)

burnin(#) burn-in period; default is burnin(2500)

thinning(#) thinning interval; default is thinning(1)

rseed(#) random-number seed
exclude(paramref) specify model parameters to be excluded from the simulation results

Blocking
∗blocksize(#) maximum block size; default is blocksize(50)

block(paramref
[
, blockopts

]
) specify a block of model parameters; this option may be repeated

blocksummary display block summary
∗noblocking do not block parameters by default
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Initialization

initial(initspec) specify initial values for model parameters with a single chain
init#(initspec) specify initial values for #th chain; requires nchains()

initall(initspec) specify initial values for all chains; requires nchains()

nomleinitial suppress the use of maximum likelihood estimates as starting values
initrandom specify random initial values
initsummary display initial values used for simulation
∗noisily display output from the estimation command during initialization

Adaptation

adaptation(adaptopts) control the adaptive MCMC procedure
scale(#) initial multiplier for scale factor; default is scale(2.38)

covariance(cov) initial proposal covariance; default is the identity matrix

Reporting

clevel(#) set credible interval level; default is clevel(95)

hpd display HPD credible intervals instead of the default equal-tailed
credible intervals

∗irr report incidence-rate ratios
eform

[
(string)

]
report exponentiated coefficients and, optionally, label as string

batch(#) specify length of block for batch-means calculations;
default is batch(0)

saving(filename
[
, replace

]
) save simulation results to filename.dta

nomodelsummary suppress model summary
chainsdetail display detailed simulation summary for each chain[
no
]
dots suppress dots or display dots every 100 iterations and iteration

numbers every 1,000 iterations; default is nodots

dots(#
[
, every(#)

]
) display dots as simulation is performed[

no
]
show(paramref) specify model parameters to be excluded from or included in

the output
notable suppress estimation table
noheader suppress output header
title(string) display string as title above the table of parameter estimates
display options control spacing, line width, and base and empty cells

Advanced

search(search options) control the search for feasible initial values
corrlag(#) specify maximum autocorrelation lag; default varies
corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)

∗Starred options are specific to the bayes prefix; other options are common between bayes and bayesmh.
Options prior() and block() may be repeated.
priorspec and paramref are defined in [BAYES] bayesmh.
paramref may contain factor variables; see [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Model parameters are regression coefficients {depvar:indepvars} for the main regression and {inflate:varlist} for
the inflation equation and log-overdispersion parameter {lnalpha}. Use the dryrun option to see the definitions
of model parameters prior to estimation.

For a detailed description of bayesopts, see Options in [BAYES] bayes.
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Remarks and examples
For a general introduction to Bayesian analysis, see [BAYES] Intro. For a general introduction

to Bayesian estimation using an adaptive Metropolis–Hastings algorithm, see [BAYES] bayesmh. For
remarks and examples specific to the bayes prefix, see [BAYES] bayes. For details about the estimation
command, see [R] zinb.

For a simple example of the bayes prefix, see Introductory example in [BAYES] bayes. Also see
Zero-inflated negative binomial model in [BAYES] bayes.

Stored results
See Stored results in [BAYES] bayes.

Methods and formulas
See Methods and formulas in [BAYES] bayesmh.

Also see
[BAYES] bayes — Bayesian regression models using the bayes prefix

[R] zinb — Zero-inflated negative binomial regression

[BAYES] Bayesian postestimation — Postestimation tools for bayesmh and the bayes prefix

[BAYES] Bayesian estimation — Bayesian estimation commands

[BAYES] Bayesian commands — Introduction to commands for Bayesian analysis

[BAYES] Intro — Introduction to Bayesian analysis

[BAYES] Glossary



Title

bayes: ziologit — Bayesian zero-inflated ordered logit regression

Description Quick start Menu Syntax
Remarks and examples Stored results Methods and formulas Also see

Description
bayes: ziologit fits a Bayesian zero-inflated ordered logit regression to an ordinal outcome

with a high fraction of zeros; see [BAYES] bayes and [R] ziologit for details.

Quick start
Bayesian zero-inflated ordered logit regression of y on x1 and x2, using z to model excess zeros and

using default normal priors for regression coefficients and flat priors for cutpoints
bayes: ziologit y x1 x2, inflate(z)

Use a standard deviation of 10 instead of 100 for the default normal priors
bayes, normalprior(10): ziologit y x1 x2, inflate(z)

Use uniform priors for the slopes and a normal prior for the intercept of the main regression
bayes, prior({y: x1 x2}, uniform(-10,10)) ///
prior({y: cons}, normal(0,10)): ziologit y x1 x2, inflate(z)

Save simulation results to simdata.dta, and use a random-number seed for reproducibility
bayes, saving(simdata) rseed(123): ///
ziologit y x1 x2, inflate(z)

Specify 20,000 Markov chain Monte Carlo (MCMC) samples, set length of the burn-in period to 5,000,
and request that a dot be displayed every 500 simulations

bayes, mcmcsize(20000) burnin(5000) dots(500): ///
ziologit y x1 x2, inflate(z)

In the above, request that the 90% highest posterior density (HPD) credible interval be displayed
instead of the default 95% equal-tailed credible interval

bayes, clevel(90) hpd

Display odds ratios instead of coefficients on replay
bayes, or

Also see Quick start in [BAYES] bayes and Quick start in [R] ziologit.

Menu
Statistics > Ordinal outcomes > Bayesian regression > Zero-inflated ordered logit regression
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Syntax
bayes

[
, bayesopts

]
: ziologit depvar

[
indepvars

] [
if
] [

in
] [

weight
]
,

inflate(varlist
[
, noconstant offset(varname)

]
| cons)

[
options

]
options Description

Model
∗inflate( ) inflation equation that determines excess zero values
offset(varname) include varname in model with coefficient constrained to 1

Reporting

or report odds ratios
display options control spacing, line width, and base and empty cells

level(#) set credible level; default is level(95)

∗inflate(varlist
[
, noconstant offset(varname)

]
| cons) is required.

indepvars and varlist may contain factor variables; see [U] 11.4.3 Factor variables.
fweights are allowed; see [U] 11.1.6 weight.
bayes: ziologit, level() is equivalent to bayes, clevel(): ziologit.
For a detailed description of options, see Options in [R] ziologit.

bayesopts Description

Priors
∗normalprior(#) specify standard deviation of default normal priors for regression

coefficients; default is normalprior(100)

prior(priorspec) prior for model parameters; this option may be repeated
dryrun show model summary without estimation

Simulation

nchains(#) number of chains; default is to simulate one chain
mcmcsize(#) MCMC sample size; default is mcmcsize(10000)

burnin(#) burn-in period; default is burnin(2500)

thinning(#) thinning interval; default is thinning(1)

rseed(#) random-number seed
exclude(paramref) specify model parameters to be excluded from the simulation results

Blocking
∗blocksize(#) maximum block size; default is blocksize(50)

block(paramref
[
, blockopts

]
) specify a block of model parameters; this option may be repeated

blocksummary display block summary
∗noblocking do not block parameters by default
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Initialization

initial(initspec) specify initial values for model parameters with a single chain
init#(initspec) specify initial values for #th chain; requires nchains()

initall(initspec) specify initial values for all chains; requires nchains()

nomleinitial suppress the use of maximum likelihood estimates as starting values
initrandom specify random initial values
initsummary display initial values used for simulation
∗noisily display output from the estimation command during initialization

Adaptation

adaptation(adaptopts) control the adaptive MCMC procedure
scale(#) initial multiplier for scale factor; default is scale(2.38)

covariance(cov) initial proposal covariance; default is the identity matrix

Reporting

clevel(#) set credible interval level; default is clevel(95)

hpd display HPD credible intervals instead of the default equal-tailed
credible intervals

∗or report odds ratios
eform

[
(string)

]
report exponentiated coefficients and, optionally, label as string

batch(#) specify length of block for batch-means calculations;
default is batch(0)

saving(filename
[
, replace

]
) save simulation results to filename.dta

nomodelsummary suppress model summary
chainsdetail display detailed simulation summary for each chain[
no
]
dots suppress dots or display dots every 100 iterations and iteration

numbers every 1,000 iterations; default is nodots

dots(#
[
, every(#)

]
) display dots as simulation is performed[

no
]
show(paramref) specify model parameters to be excluded from or included in

the output
notable suppress estimation table
noheader suppress output header
title(string) display string as title above the table of parameter estimates
display options control spacing, line width, and base and empty cells

Advanced

search(search options) control the search for feasible initial values
corrlag(#) specify maximum autocorrelation lag; default varies
corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)

∗Starred options are specific to the bayes prefix; other options are common between bayes and bayesmh.
Options prior() and block() may be repeated.
priorspec and paramref are defined in [BAYES] bayesmh.
paramref may contain factor variables; see [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Model parameters are regression coefficients {depvar:indepvars} for the main regression and {inflate:varlist} for
the inflation equation and cutpoints {cut1}, {cut2}, and so on. Use the dryrun option to see the definitions of
model parameters prior to estimation.

Flat priors, flat, are used by default for cutpoints.
For a detailed description of bayesopts, see Options in [BAYES] bayes.

Remarks and examples
For a general introduction to Bayesian analysis, see [BAYES] Intro. For a general introduction

to Bayesian estimation using an adaptive Metropolis–Hastings algorithm, see [BAYES] bayesmh. For
remarks and examples specific to the bayes prefix, see [BAYES] bayes. For details about the estimation
command, see [R] ziologit.

For a simple example of the bayes prefix, see Introductory example in [BAYES] bayes. Also see
Zero-inflated negative binomial models in [BAYES] bayes.

Stored results
See Stored results in [BAYES] bayes.

Methods and formulas
See Methods and formulas in [BAYES] bayesmh.

Also see
[BAYES] bayes — Bayesian regression models using the bayes prefix

[R] ziologit — Zero-inflated ordered logit regression

[BAYES] Bayesian postestimation — Postestimation tools for bayesmh and the bayes prefix

[BAYES] Bayesian estimation — Bayesian estimation commands

[BAYES] Bayesian commands — Introduction to commands for Bayesian analysis

[BAYES] Intro — Introduction to Bayesian analysis

[BAYES] Glossary



Title

bayes: zioprobit — Bayesian zero-inflated ordered probit regression

Description Quick start Menu Syntax
Remarks and examples Stored results Methods and formulas Also see

Description
bayes: zioprobit fits a Bayesian zero-inflated ordered probit regression to an ordinal outcome

with a high fraction of zeros; see [BAYES] bayes and [R] zioprobit for details.

Quick start
Bayesian zero-inflated ordered probit regression of y on x1 and x2, using z to model excess zeros

and using default normal priors for regression coefficients and flat priors for cutpoints
bayes: zioprobit y x1 x2, inflate(z)

Use a standard deviation of 10 instead of 100 for the default normal priors
bayes, normalprior(10): zioprobit y x1 x2, inflate(z)

Use uniform priors for the slopes and a normal prior for the intercept of the main regression
bayes, prior({y: x1 x2}, uniform(-10,10)) ///
prior({y: cons}, normal(0,10)): zioprobit y x1 x2, inflate(z)

Save simulation results to simdata.dta, and use a random-number seed for reproducibility
bayes, saving(simdata) rseed(123): ///
zioprobit y x1 x2, inflate(z)

Specify 20,000 Markov chain Monte Carlo (MCMC) samples, set length of the burn-in period to 5,000,
and request that a dot be displayed every 500 simulations

bayes, mcmcsize(20000) burnin(5000) dots(500): ///
zioprobit y x1 x2, inflate(z)

In the above, request that the 90% highest posterior density (HPD) credible interval be displayed
instead of the default 95% equal-tailed credible interval

bayes, clevel(90) hpd

Also see Quick start in [BAYES] bayes and Quick start in [R] zioprobit.

Menu
Statistics > Ordinal outcomes > Bayesian regression > Zero-inflated ordered probit regression
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Syntax
bayes

[
, bayesopts

]
: zioprobit depvar

[
indepvars

] [
if
] [

in
] [

weight
]
,

inflate(varlist
[
, noconstant offset(varname)

]
| cons)

[
options

]
options Description

Model
∗inflate( ) inflation equation that determines excess zero values
offset(varname) include varname in model with coefficient constrained to 1

Reporting

display options control spacing, line width, and base and empty cells

level(#) set credible level; default is level(95)

∗inflate(varlist
[
, noconstant offset(varname)

]
| cons) is required.

indepvars and varlist may contain factor variables; see [U] 11.4.3 Factor variables.
fweights are allowed; see [U] 11.1.6 weight.
bayes: zioprobit, level() is equivalent to bayes, clevel(): zioprobit.
For a detailed description of options, see Options in [R] zioprobit.

bayesopts Description

Priors
∗normalprior(#) specify standard deviation of default normal priors for regression

coefficients; default is normalprior(100)

prior(priorspec) prior for model parameters; this option may be repeated
dryrun show model summary without estimation

Simulation

nchains(#) number of chains; default is to simulate one chain
mcmcsize(#) MCMC sample size; default is mcmcsize(10000)

burnin(#) burn-in period; default is burnin(2500)

thinning(#) thinning interval; default is thinning(1)

rseed(#) random-number seed
exclude(paramref) specify model parameters to be excluded from the simulation results

Blocking
∗blocksize(#) maximum block size; default is blocksize(50)

block(paramref
[
, blockopts

]
) specify a block of model parameters; this option may be repeated

blocksummary display block summary
∗noblocking do not block parameters by default
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Initialization

initial(initspec) specify initial values for model parameters with a single chain
init#(initspec) specify initial values for #th chain; requires nchains()

initall(initspec) specify initial values for all chains; requires nchains()

nomleinitial suppress the use of maximum likelihood estimates as starting values
initrandom specify random initial values
initsummary display initial values used for simulation
∗noisily display output from the estimation command during initialization

Adaptation

adaptation(adaptopts) control the adaptive MCMC procedure
scale(#) initial multiplier for scale factor; default is scale(2.38)

covariance(cov) initial proposal covariance; default is the identity matrix

Reporting

clevel(#) set credible interval level; default is clevel(95)

hpd display HPD credible intervals instead of the default equal-tailed
credible intervals

eform
[
(string)

]
report exponentiated coefficients and, optionally, label as string

batch(#) specify length of block for batch-means calculations;
default is batch(0)

saving(filename
[
, replace

]
) save simulation results to filename.dta

nomodelsummary suppress model summary
chainsdetail display detailed simulation summary for each chain[
no
]
dots suppress dots or display dots every 100 iterations and iteration

numbers every 1,000 iterations; default is nodots

dots(#
[
, every(#)

]
) display dots as simulation is performed[

no
]
show(paramref) specify model parameters to be excluded from or included in

the output
notable suppress estimation table
noheader suppress output header
title(string) display string as title above the table of parameter estimates
display options control spacing, line width, and base and empty cells

Advanced

search(search options) control the search for feasible initial values
corrlag(#) specify maximum autocorrelation lag; default varies
corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)

∗Starred options are specific to the bayes prefix; other options are common between bayes and bayesmh.
Options prior() and block() may be repeated.
priorspec and paramref are defined in [BAYES] bayesmh.
paramref may contain factor variables; see [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Model parameters are regression coefficients {depvar:indepvars} for the main regression and {inflate:varlist} for
the inflation equation and cutpoints {cut1}, {cut2}, and so on. Use the dryrun option to see the definitions of
model parameters prior to estimation.

Flat priors, flat, are used by default for cutpoints.
For a detailed description of bayesopts, see Options in [BAYES] bayes.
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Remarks and examples
For a general introduction to Bayesian analysis, see [BAYES] Intro. For a general introduction

to Bayesian estimation using an adaptive Metropolis–Hastings algorithm, see [BAYES] bayesmh. For
remarks and examples specific to the bayes prefix, see [BAYES] bayes. For details about the estimation
command, see [R] zioprobit.

For a simple example of the bayes prefix, see Introductory example in [BAYES] bayes. Also see
Zero-inflated negative binomial models in [BAYES] bayes.

Stored results
See Stored results in [BAYES] bayes.

Methods and formulas
See Methods and formulas in [BAYES] bayesmh.

Also see
[BAYES] bayes — Bayesian regression models using the bayes prefix

[R] zioprobit — Zero-inflated ordered probit regression

[BAYES] Bayesian postestimation — Postestimation tools for bayesmh and the bayes prefix

[BAYES] Bayesian estimation — Bayesian estimation commands

[BAYES] Bayesian commands — Introduction to commands for Bayesian analysis

[BAYES] Intro — Introduction to Bayesian analysis

[BAYES] Glossary



Title

bayes: zip — Bayesian zero-inflated Poisson regression

Description Quick start Menu Syntax
Remarks and examples Stored results Methods and formulas Also see

Description
bayes: zip fits a Bayesian zero-inflated Poisson regression to a nonnegative count outcome with

a high fraction of zeros; see [BAYES] bayes and [R] zip for details.

Quick start
Bayesian zero-inflated Poisson regression of y on x1 and x2, using z to model excess zeros and

using default normal priors for regression coefficients
bayes: zip y x1 x2, inflate(z)

Use a standard deviation of 10 instead of 100 for the default normal priors
bayes, normalprior(10): zip y x1 x2, inflate(z)

Use uniform priors for the slopes and a normal prior for the intercept of the main regression
bayes, prior({y: x1 x2}, uniform(-10,10)) ///
prior({y: cons}, normal(0,10)): zip y x1 x2, inflate(z)

Save simulation results to simdata.dta, and use a random-number seed for reproducibility
bayes, saving(simdata) rseed(123): zip y x1 x2, inflate(z)

Specify 20,000 Markov chain Monte Carlo (MCMC) samples, set length of the burn-in period to 5,000,
and request that a dot be displayed every 500 simulations

bayes, mcmcsize(20000) burnin(5000) dots(500): zip y x1 x2, inflate(z)

In the above, request that the 90% highest posterior density (HPD) credible interval be displayed
instead of the default 95% equal-tailed credible interval

bayes, clevel(90) hpd

Display incidence-rate ratios instead of coefficients
bayes: zip y x1 x2, inflate(z) irr

Display incidence-rate ratios on replay
bayes, irr

Also see Quick start in [BAYES] bayes and Quick start in [R] zip.

Menu
Statistics > Count outcomes > Bayesian regression > Zero-inflated Poisson regression
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Syntax
bayes

[
, bayesopts

]
: zip depvar

[
indepvars

] [
if
] [

in
] [

weight
]
,

inflate(varlist
[
, offset(varname)

]
| cons)

[
options

]
options Description

Model
∗inflate( ) equation that determines whether the count is zero
noconstant suppress constant term
exposure(varnamee) include ln(varnamee) in model with coefficient constrained to 1
offset(varnameo) include varnameo in model with coefficient constrained to 1
probit use probit model to characterize excess zeros; default is logit

Reporting

irr report incidence-rate ratios
display options control spacing, line width, and base and empty cells

level(#) set credible level; default is level(95)

∗inflate(varlist
[
, offset(varname)

]
| cons) is required.

indepvars and varlist may contain factor variables; see [U] 11.4.3 Factor variables.
fweights are allowed; see [U] 11.1.6 weight.
bayes: zip, level() is equivalent to bayes, clevel(): zip.
For a detailed description of options, see Options in [R] zip.

bayesopts Description

Priors
∗normalprior(#) specify standard deviation of default normal priors for regression

coefficients; default is normalprior(100)

prior(priorspec) prior for model parameters; this option may be repeated
dryrun show model summary without estimation

Simulation

nchains(#) number of chains; default is to simulate one chain
mcmcsize(#) MCMC sample size; default is mcmcsize(10000)

burnin(#) burn-in period; default is burnin(2500)

thinning(#) thinning interval; default is thinning(1)

rseed(#) random-number seed
exclude(paramref) specify model parameters to be excluded from the simulation results

Blocking
∗blocksize(#) maximum block size; default is blocksize(50)

block(paramref
[
, blockopts

]
) specify a block of model parameters; this option may be repeated

blocksummary display block summary
∗noblocking do not block parameters by default
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Initialization

initial(initspec) specify initial values for model parameters with a single chain
init#(initspec) specify initial values for #th chain; requires nchains()

initall(initspec) specify initial values for all chains; requires nchains()

nomleinitial suppress the use of maximum likelihood estimates as starting values
initrandom specify random initial values
initsummary display initial values used for simulation
∗noisily display output from the estimation command during initialization

Adaptation

adaptation(adaptopts) control the adaptive MCMC procedure
scale(#) initial multiplier for scale factor; default is scale(2.38)

covariance(cov) initial proposal covariance; default is the identity matrix

Reporting

clevel(#) set credible interval level; default is clevel(95)

hpd display HPD credible intervals instead of the default equal-tailed
credible intervals

∗irr report incidence-rate ratios
eform

[
(string)

]
report exponentiated coefficients and, optionally, label as string

batch(#) specify length of block for batch-means calculations;
default is batch(0)

saving(filename
[
, replace

]
) save simulation results to filename.dta

nomodelsummary suppress model summary
chainsdetail display detailed simulation summary for each chain[
no
]
dots suppress dots or display dots every 100 iterations and iteration

numbers every 1,000 iterations; default is nodots

dots(#
[
, every(#)

]
) display dots as simulation is performed[

no
]
show(paramref) specify model parameters to be excluded from or included in

the output
notable suppress estimation table
noheader suppress output header
title(string) display string as title above the table of parameter estimates
display options control spacing, line width, and base and empty cells

Advanced

search(search options) control the search for feasible initial values
corrlag(#) specify maximum autocorrelation lag; default varies
corrtol(#) specify autocorrelation tolerance; default is corrtol(0.01)

∗Starred options are specific to the bayes prefix; other options are common between bayes and bayesmh.
Options prior() and block() may be repeated.
priorspec and paramref are defined in [BAYES] bayesmh.
paramref may contain factor variables; see [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Model parameters are regression coefficients {depvar:indepvars} for the main regression and {inflate:varlist} for
the inflation equation. Use the dryrun option to see the definitions of model parameters prior to estimation.

For a detailed description of bayesopts, see Options in [BAYES] bayes.
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Remarks and examples
For a general introduction to Bayesian analysis, see [BAYES] Intro. For a general introduction

to Bayesian estimation using an adaptive Metropolis–Hastings algorithm, see [BAYES] bayesmh. For
remarks and examples specific to the bayes prefix, see [BAYES] bayes. For details about the estimation
command, see [R] zip.

For a simple example of the bayes prefix, see Introductory example in [BAYES] bayes. Also see
Zero-inflated negative binomial model in [BAYES] bayes.

Stored results
See Stored results in [BAYES] bayes.

Methods and formulas
See Methods and formulas in [BAYES] bayesmh.

Also see
[BAYES] bayes — Bayesian regression models using the bayes prefix

[R] zip — Zero-inflated Poisson regression

[BAYES] Bayesian postestimation — Postestimation tools for bayesmh and the bayes prefix

[BAYES] Bayesian estimation — Bayesian estimation commands

[BAYES] Bayesian commands — Introduction to commands for Bayesian analysis

[BAYES] Intro — Introduction to Bayesian analysis

[BAYES] Glossary
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a posteriori. In the context of Bayesian analysis, we use a posteriori to mean “after the sample is
observed”. For example, a posteriori information is any information obtained after the data sample
is observed. See posterior distribution, posterior.

a priori. In the context of Bayesian analysis, we use a priori to mean “before the sample is observed”.
For example, a priori information is any information obtained before the data sample is observed.
In a Bayesian model, a priori information about model parameters is specified by prior distributions.

acceptance rate. In the context of the MH algorithm, acceptance rate is the fraction of the proposed
samples that is accepted. The optimal acceptance rate depends on the properties of the target
distribution and is not known in general. If the target distribution is normal, however, the opti-
mal acceptance rate is known to be 0.44 for univariate distributions and 0.234 for multivariate
distributions.

adaptation. In the context of the MH algorithm, adaptation refers to the process of tuning or adapting the
proposal distribution to optimize the MCMC sampling. Typically, adaptation is performed periodically
during the MCMC sampling. The bayesmh command performs adaptation every # of iterations
as specified in option adaptation(every(#)) for a maximum of adaptation(maxiter())
iterations. In a continuous-adaptation regimes, the adaptation lasts during the entire process of the
MCMC sampling. See [BAYES] bayesmh.

adaptation period. Adaptation period includes all MH adaptive iterations. It equals the length of
the adaptation interval, as specified by adaptation(every()), times the maximum number of
adaptations, adaptation(maxiter()).

adaptive iteration. In the adaptive MH algorithm, adaptive iterations are iterations during which
adaptation is performed.

Akaike information criterion, AIC. Akaike information criterion (AIC) is an information-based model-
selection criterion. It is given by the formula −2 × log likelihood + 2k, where k is the number
of parameters. AIC favors simpler models by penalizing for the number of model parameters. It
does not, however, account for the sample size. As a result, the AIC penalization diminishes as the
sample size increases, as does its ability to guard against overparameterization.

batch means. Batch means are means obtained from batches of sample values of equal size. Batch
means provide an alternative method for estimating MCMC standard errors (MCSE). The batch size
is usually chosen to minimize the correlation between different batches of means.

Bayes factor. Bayes factor is given by the ratio of the marginal likelihoods of two models, M1

and M2. It is a widely used criterion for Bayesian model comparison. Bayes factor is used in
calculating the posterior odds ratio of model M1 versus M2,

P (M1|y)

P (M2|y)
=
P (y|M1)

P (y|M2)

P (M1)

P (M2)

where P (Mi|y) is a posterior probability of model Mi, and P (Mi) is a prior probability of model
Mi. When the two models are equally likely, that is, when P (M1) = P (M2), the Bayes factor
equals the posterior odds ratio of the two models.

Bayes’s theorem. The Bayes’s theorem is a formal method for relating conditional probability
statements. For two (random) events X and Y , the Bayes’s theorem states that

P (X|Y ) ∝ P (Y |X)P (X)
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that is, the probability of X conditional on Y is proportional to the probability of X and the
probability of Y conditional on X . In Bayesian analysis, the Bayes’s theorem is used for combining
prior information about model parameters and evidence from the observed data to form the posterior
distribution.

Bayesian analysis. Bayesian analysis is a statistical methodology that considers model parameters to
be random quantities and estimates their posterior distribution by combining prior knowledge about
parameters with the evidence from the observed data sample. Prior knowledge about parameters
is described by prior distributions and evidence from the observed data is incorporated through a
likelihood model. Using the Bayes’s theorem, the prior distribution and the likelihood model are
combined to form the posterior distribution of model parameters. The posterior distribution is then
used for parameter inference, hypothesis testing, and prediction.

Bayesian estimation. Bayesian estimation consists of fitting Bayesian models and estimating their
parameters based on the resulting posterior distribution. Bayesian estimation in Stata can be done
using the convenient bayes prefix or the more general bayesmh command. See [BAYES] Bayesian
estimation for details.

Bayesian estimation results. Estimation results obtained after the bayes prefix or the bayesmh
command.

Bayesian hypothesis testing. Bayesian hypothesis testing computes probabilities of hypotheses condi-
tional on the observed data. In contrast to the frequentist hypothesis testing, the Bayesian hypothesis
testing computes the actual probability of a hypothesis H by using the Bayes’s theorem,

P (H|y) ∝ P (y|H)P (H)

where y is the observed data, P (y|H) is the marginal likelihood of y given H , and P (H) is
the prior probability of H . Two different hypotheses, H1 and H2, can be compared by simply
comparing P (H1|y) to P (H2|y).

Bayesian information criterion, BIC. The Bayesian information criterion (BIC), also known as
Schwarz criterion, is an information based criterion used for model selection in classical statistics.
It is given by the formula −2× log likelihood+k× lnn, where k is the number of parameters and
n is the sample size. BIC favors simpler, in terms of complexity, models and it is more conservative
than AIC.

Bayesian model checking. In Bayesian statistics, model checking refers to testing likelihood and prior
model adequacy in the context of a research problem and observed data. A simple sanity check
may include verifying that posterior inference produces results that are reasonable in the context of
the problem. More substantive checks may include analysis of the sensitivity of Bayesian inference
to changes in likelihood and prior distribution specifications. See posterior predictive checking.

Bayesian predictions. Bayesian predictions are samples from the posterior predictive distribution of
outcome variables and functions of these samples and, optionally, model parameters. Examples
of Bayesian predictions include replicated data, out-of-sample predictions, and test statistics of
simulated outcomes.

blocking. In the context of the MH algorithm, blocking refers to the process of separating model
parameters into different subsets or blocks to be sampled independently of each other. MH algorithm
generates proposals and applies the acceptance–rejection rule sequentially for each block. It is
recommended that correlated parameters are kept in one block. Separating less-correlated or
independent model parameters in different blocks may improve the mixing of the MH algorithm.

burn-in period. The burn-in period is the number of iterations it takes for an MCMC sequence to
reach stationarity.

central posterior interval. See equal-tailed credible interval.
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conditional conjugacy. See semiconjugate prior.

conjugate prior. A prior distribution is conjugate for a family of likelihood distributions if the prior
and posterior distributions belong to the same family of distributions. For example, the gamma
distribution is a conjugate prior for the Poisson likelihood. Conjugacy may provide an efficient
way of sampling from posterior distributions and is used in Gibbs sampling.

continuous parameters. Continuous parameters are parameters with continuous prior distributions.

credible interval. In Bayesian analysis, the credible interval of a scalar model parameter is an interval
from the domain of the marginal posterior distribution of that parameter. Two types of credible
intervals are typically used in practice: equal-tailed credible intervals and HPD credible intervals.

credible level. The credible level is a probability level between 0% and 100% used for calculating
credible intervals in Bayesian analysis. For example, a 95% credible interval for a scalar parameter
is an interval the parameter belongs to with the probability of 95%.

cross-variable. A cross-variable is a Stata term to refer to the dependent variable used as a lagged
regressor in the VAR model in an outcome equation that is not its own. For instance, in a VAR
model with two dependent variables (y1 and y2) and two lags,

y1 = a11L.y1 + a12L2.y1 + a21L.y2 + a22L2.y2 + a0 + u1

y2 = b11L.y1 + b12L2.y1 + b21L.y2 + b22L2.y2 + b0 + u2

y2 is the cross-variable in the first outcome equation (y1), and y1 is the cross-variable in the second
outcome equation (y2). Note that y1 and y2 are self-variables in the first and second equations,
respectively. Cross-variables are always endogenous variables. We also often refer to the coefficients
of cross-variables as cross-variables first-lag coefficients (a21 and b11), cross-variables second-lag
coefficients (a22 and b12), and so on. See [BAYES] bayes: var.

cross-variables first-lag coefficients. Regression coefficients in a VAR model that correspond to first
lags ([U] 11.4.4 Time-series varlists) of cross-variables. See [BAYES] bayes: var.

cross-variables tightness parameter. A cross-variables tightness parameter is a parameter, λ2, that
controls the tightness of the Minnesota prior distribution by controlling the prior variance for
the cross-variables coefficients. It is specified in the Minnesota prior option crosstight(). See
Methods and formulas of [BAYES] bayes: var for details.

cusum plot, CUSUM plot. The cusum (CUSUM) plot of an MCMC sample is a plot of cumulative
sums of the differences between sample values and their overall mean against the iteration number.
Cusum plots are useful graphical summaries for detecting early drifts in MCMC samples.

deviance information criterion, DIC. The deviance information criterion (DIC) is an information
based criterion used for Bayesian model selection. It is an analog of AIC and is given by the
formula D(θ) + 2× pD, where D(θ) is the deviance at the sample mean and pD is the effective
complexity, a quantity equivalent to the number of parameters in the model. Models with smaller
DIC are preferred.

diminishing adaptation. Diminishing adaptation of the adaptive algorithm is the type of adaptation
in which the amount of adaptation decreases with the size of the MCMC chain.

discrete parameters. Discrete parameters are parameters with discrete prior distributions.

effective sample size, ESS. Effective sample size (ESS) is the MCMC sample size T adjusted for the
autocorrelation in the sample. It represents the number of independent observations in an MCMC
sample. ESS is used instead of T in calculating MCSE. Small ESS relative to T indicates high
autocorrelation and consequently poor mixing of the chain.
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efficiency. In the context of MCMC, efficiency is a term used for assessing the mixing quality of
an MCMC procedure. Efficient MCMC algorithms are able to explore posterior domains in less
time (using fewer iterations). Efficiency is typically quantified by the sample autocorrelation and
effective sample size. An MCMC procedure that generates samples with low autocorrelation and
consequently high ESS is more efficient.

endogenous variable. In the context of VAR, an endogenous variable is a dependent variable included
in the model as a regressor with a lag operator; see [U] 11.4.4 Time-series varlists. Also see
endogenous variable in [TS] Glossary for a general definition.

equal-tailed credible interval. An equal-tailed credible interval is a credible interval defined in
such a way that both tails of the marginal posterior distribution have the same probability. A
{100 × (1 − α)}% equal-tailed credible interval is defined by the α/2th and {(1 − α)/2}th
quantiles of the marginal posterior distribution.

exogenous variable. In the context of VAR, an exogenous variable is an independent variable (regressor)
included in the model. Also see exogenous variable in [TS] Glossary for a general definition.

exogenous-variables tightness parameter. An exogenous-variables tightness parameter is a parameter,
λ4, that controls the tightness of the Minnesota prior distribution by controlling the prior variance
for the exogenous-variables coefficients. It is specified in the Minnesota prior option exogtight().
See Methods and formulas of [BAYES] bayes: var for details.

feasible initial value. An initial-value vector is feasible if it corresponds to a state with a positive
posterior probability.

fixed effects. See fixed-effects parameters.

fixed-effects parameters. In the Bayesian context, the term “fixed effects” or “fixed-effects parameters”
is a misnomer, because all model parameters are inherently random. We use this term in the context
of Bayesian multilevel models to refer to regression model parameters and to distinguish them from
the random-effects parameters. You can think of fixed-effects parameters as parameters modeling
population averaged or marginal relationship of the response and the variables of interest.

frequentist analysis. Frequentist analysis is a form of statistical analysis where model parameters are
considered to be unknown but fixed constants and the observed data are viewed as a repeatable
random sample. Inference is based on the sampling distribution of the data.

full conditionals. A full conditional is the probability distribution of a random variate conditioned
on all other random variates in a joint probability model. Full conditional distributions are used
in Gibbs sampling.

full Gibbs sampling. See Gibbs sampling, Gibbs sampler.

Gelman–Rubin convergence diagnostic, Gelman–Rubin convergence statistic. Gelman–Rubin con-
vergence diagnostic assesses MCMC convergence by analyzing differences between multiple Markov
chains. The convergence is assessed by comparing the estimated between-chains and within-chain
variances for each model parameter. Large differences between these variances indicate noncon-
vergence. See [BAYES] bayesstats grubin.

Gibbs sampling, Gibbs sampler. Gibbs sampling is an MCMC method, according to which each
random variable from a joint probability model is sampled according to its full conditional
distribution.

highest posterior density credible interval, HPD credible interval. The highest posterior density
(HPD) credible interval is a type of a credible interval with the highest marginal posterior density.
An HPD interval has the shortest width among all other credible intervals. For some multimodal
marginal distributions, HPD may not exists. See highest posterior density region, HPD region.
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highest posterior density region, HPD region. The highest posterior density (HPD) region for model
parameters has the highest marginal posterior probability among all domain regions. Unlike an
HPD credible interval, an HPD region always exist.

hybrid MH sampling, hybrid MH sampler. A hybrid MH sampler is an MCMC method in which
some blocks of parameters are updated using the MH algorithms and other blocks are updated
using Gibbs sampling.

hyperparameter. In Bayesian analysis, hyperparameter is a parameter of a prior distribution, in
contrast to a model parameter.

hyperprior. In Bayesian analysis, hyperprior is a prior distribution of hyperparameters. See hyper-
parameter.

improper prior. A prior is said to be improper if it does not integrate to a finite number. Uniform
distributions over unbounded intervals are improper. Improper priors may still yield proper posterior
distributions. When using improper priors, however, one has to make sure that the resulting posterior
distribution is proper for Bayesian inference to be invalid.

independent a posteriori. Parameters are considered independent a posteriori if their marginal
posterior distributions are independent; that is, their joint posterior distribution is the product of
their individual marginal posterior distributions.

independent a priori. Parameters are considered independent a priori if their prior distributions are
independent; that is, their joint prior distribution is the product of their individual marginal prior
distributions.

informative prior. An informative prior is a prior distribution that has substantial influence on the
posterior distribution.

in-sample predictions. See replicated outcome.

interval hypothesis testing. Interval hypothesis testing performs interval hypothesis tests for model
parameters and functions of model parameters.

interval test. In Bayesian analysis, an interval test applied to a scalar model parameter calculates the
marginal posterior probability for the parameter to belong to the specified interval.

Jeffreys prior. The Jeffreys prior of a vector of model parameters θ is proportional to the square
root of the determinant of its Fisher information matrix I(θ). Jeffreys priors are locally uniform
and, by definition, agree with the likelihood function. Jeffreys priors are considered noninformative
priors that have minimal impact on the posterior distribution.

lag coefficient. In the context of time-series regression analysis, a lag coefficient is a regression
coefficient that corresponds to a variable included in the regression model with a lag operator; see
[U] 11.4.4 Time-series varlists.

lag-decay parameter. A lag-decay parameter is a parameter, λ3, that controls the tightness of the
Minnesota prior distribution by controlling the prior variance as a function of a lag for all
endogenous-variables coefficients. It is specified in the Minnesota prior option lagdecay(). See
Methods and formulas of [BAYES] bayes: var for details.

marginal distribution. In Bayesian context, a distribution of the data after integrating out parameters
from the joint distribution of the parameters and the data.

marginal likelihood. In the context of Bayesian model comparison, a marginalized over model param-
eters θ likelihood of data y for a given model M , P (y|M) = m(y) =

∫
P (y|θ,M)P (θ|M)dθ.

Also see Bayes factor.

marginal posterior distribution. In Bayesian context, a marginal posterior distribution is a distribution
resulting from integrating out all but one parameter from the joint posterior distribution.
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Markov chain. Markov chain is a random process that generates sequences of random vectors (or
states) and satisfies the Markov property: the next state depends only on the current state and not
on any of the previous states. MCMC is the most common methodology for simulating Markov
chains.

matrix model parameter. A matrix model parameter is any model parameter that is a matrix. Matrix
elements, however, are viewed as scalar model parameters.

Matrix model parameters are defined and referred to within the bayesmh command as
{param,matrix} or {eqname:param,matrix} with the equation name eqname. For example,
{Sigma, matrix} and {Scale:Omega, matrix} are matrix model parameters. Individual matrix
elements cannot be referred to within the bayesmh command, but they can be referred within postes-
timation commands accepting parameters. For example, to refer to the individual elements of the de-
fined above, say, 2×2 matrices, use {Sigma 1 1}, {Sigma 2 1}, {Sigma 1 2}, {Sigma 2 2}
and {Scale:Omega 1 1}, {Scale:Omega 2 1}, {Scale:Omega 1 2}, {Scale:Omega 2 2},
respectively. See [BAYES] bayesmh.

matrix parameter. See matrix model parameter.

MCMC, Markov chain Monte Carlo. MCMC is a class of simulation-based methods for generating
samples from probability distributions. Any MCMC algorithm simulates a Markov chain with a
target distribution as its stationary or equilibrium distribution. The precision of MCMC algorithms
increases with the number of iterations. The lack of a stopping rule and convergence rule, however,
makes it difficult to determine for how long to run MCMC. The time needed to converge to the
target distribution within a prespecified error is referred to as mixing time. Better MCMC algorithms
have faster mixing times. Some of the popular MCMC algorithms are random-walk Metropolis,
Metropolis–Hastings, and Gibbs sampling.

MCMC replicates. An MCMC sample of simulated outcomes.

MCMC sample. An MCMC sample is obtained from MCMC sampling. An MCMC sample approximates
a target distribution and is used for summarizing this distribution.

MCMC sample size. MCMC sample size is the size of the MCMC sample. It is specified in bayesmh’s
option mcmcsize(); see [BAYES] bayesmh.

MCMC sampling, MCMC sampler. MCMC sampling is an MCMC algorithm that generates samples
from a target probability distribution.

MCMC standard error, MCSE MCSE is the standard error of the posterior mean estimate. It is
defined as the standard deviation divided by the square root of ESS. MCSEs are analogs of standard
errors in frequentist statistics and measure the accuracy of the simulated MCMC sample.

Metropolis–Hastings (MH) sampling, MH sampler. A Metropolis–Hastings (MH) sampler is an
MCMC method for simulating probability distributions. According to this method, at each step
of the Markov chain, a new proposal state is generated from the current state according to a
prespecified proposal distribution. Based on the current and new state, an acceptance probability
is calculated and then used to accept or reject the proposed state. Important characteristics of MH
sampling is the acceptance rate and mixing time. The MH algorithm is very general and can be
applied to an arbitrary target distribution. However, its efficiency is limited, in terms of mixing
time, and decreases as the dimension of the target distribution increases. Gibbs sampling, when
available, can provide much more efficient sampling than MH sampling.

Minnesota prior. In Bayesian VAR models, Minnesota priors are used as priors for regression
coefficients. A Minnesota prior is a multivariate normal distribution with a special mean vector
and covariance matrix. The mean vector contains all zeroes except the values corresponding to
self-variables first-lag coefficients, which are set to 1. The covariance matrix can be fixed or can be
a product of a fixed matrix and a matrix model parameter as in the case of a conjugate Minnesota
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prior. The Minnesota prior assumes that, a priori, each univariate time series in the model is a
random walk.

Minnesota factor covariance. In Bayesian VAR models with a conjugate Minnesota prior, the factor
covariance matrix is used to form the covariance of the multivariate normal prior for regression
coefficients. The latter is defined as the Kronecker product of the unknown covariance matrix of
error terms with the Minnesota factor covariance.

mixing of Markov chain. Mixing refers to the rate at which a Markov chain traverses the parameter
space. It is a property of the Markov chain that is different from convergence. Poor mixing indicates
a slow rate at which the chain explores the stationary distribution and will require more iterations to
provide inference at a given precision. Poor (slow) mixing is typically a result of high correlation
between model parameters or of weakly-defined model specifications.

model hypothesis testing. Model hypothesis testing tests hypotheses about models by computing
model posterior probabilities.

model parameter. A model parameter refers to any (random) parameter in a Bayesian model. Model
parameters can be scalars or matrices. Examples of model parameters as defined in bayesmh are
{mu}, {scale:s}, {Sigma,matrix}, and {Scale:Omega,matrix}. See [BAYES] bayesmh and,
specifically, Declaring model parameters and Referring to model parameters in that entry. Also
see Different ways of specifying model parameters in [BAYES] Bayesian postestimation.

model posterior probability. Model posterior probability is probability of a model M computed
conditional on the observed data y,

P (M |y) = P (M)P (y|M) = P (M)m(y)

where P (M) is the prior probability of a model M and m(y) is the marginal likelihood under
model M .

noninformative prior. A noninformative prior is a prior with negligible influence on the posterior
distribution. See, for example, Jeffreys prior.

objective prior. See noninformative prior.

one-at-a-time MCMC sampling. A one-at-a-time MCMC sample is an MCMC sampling procedure in
which random variables are sampled individually, one at a time. For example, in Gibbs sampling,
individual variates are sampled one at a time, conditionally on the most recent values of the rest
of the variates.

out-of-sample predictions. Predictions of future observations; see simulated outcome.

overdispersed initial value. An overdispersed initial value is obtained from a distribution that
is overdispersed or has larger variability relative to the true marginal posterior distribution.
Overdispersed initial values are used with multiple Markov chains for diagnosing MCMC convergence.
Also see Specifying initial values in [BAYES] bayesmh.

posterior distribution, posterior. A posterior distribution is a probability distribution of model
parameters conditional on observed data. The posterior distribution is determined by the likelihood
of the parameters and their prior distribution. For a parameter vector θ and data y, the posterior
distribution is given by

P (θ|y) =
P (θ)P (y|θ)

P (y)

where P (θ) is the prior distribution, P (y|θ) is the model likelihood, and P (y) is the marginal
distribution for y. Bayesian inference is based on a posterior distribution.

posterior independence. See independent a posteriori.
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posterior interval. See credible interval.

posterior odds. Posterior odds for θ1 compared with θ2 is the ratio of posterior density evaluated at
θ1 and θ2 under a given model,

p(θ1|y)

p(θ2|y)
=
p(θ1)

p(θ2)

p(y|θ1)

p(y|θ2)

In other words, posterior odds are prior odds times the likelihood ratio.

posterior predictive checking. Posterior predictive checking is a methodology for assessing goodness
of fit of a Bayesian model using replicated data simulated from the posterior predictive distribution
of the model. For example, graphical diagnostics of the replicated residuals may be used to check
the distributional assumptions of the model error terms. A more formal and systematic approach
uses test quantities and test statistics to measure discrepancies between replicated data and observed
data. Test statistics such as a mean, minimum, and maximum can be used to compare different
aspects of the observed data distribution with those of the replicated-data distribution. Posterior
predictive p-values, also called Bayesian p-values, computed for test quantities and test statistics
are used to quantify the discrepancy between the observed and replicated data. Also see Bayesian
model checking.

posterior predictive distribution. Posterior predictive distribution is a distribution of unobserved (fu-
ture) data conditional on observed data. Posterior predictive distribution is derived by marginalizing
the likelihood function with respect to the posterior distribution of model parameters.

posterior predictive p-value. Posterior predictive p-value, also called a Bayesian p-value, is the
probability that a test quantity (or statistic) computed for the replicated data is greater or equal to
the test quantity computed for the observed data. Posterior predictive p-values are used in posterior
predictive checking. p-values less than 0.05 or greater than 0.95 typically indicate model misfit
(Gelman et al. 2014).

predictive distribution. See prior predictive distribution and posterior predictive distribution.

predictive inference. In Bayesian statistics, predictive inference is inference about unobserved (future)
data conditionally on past data and prior knowledge of model parameters. Predictive inference is
based on prior predictive or posterior predictive distribution of model parameters.

predictive outcome. Predictive outcome ỹ is a value or a set of values simulated from a posterior
predictive distribution p(ỹ|y) of a Bayesian model (Gelman et al. 2014). In contrast with replicated
outcome, predictive outcomes may use the values of independent variables that are different from
those used to fit the model. Also see simulated outcome.

prior distribution, prior. In Bayesian statistics, prior distributions are probability distributions of
model parameters formed based on some a priori knowledge about parameters. Prior distributions
are independent of the observed data.

prior independence. See independent a priori.

prior odds. Prior odds for θ1 compared with θ2 is the ratio of prior density evaluated at θ1 and θ2

under a given model, p(θ1)/p(θ2). Also see posterior odds.

prior predictive distribution. Prior predictive distribution is a distribution of unobserved (future) data
derived by marginalizing the likelihood function with respect to the prior distribution of model
parameters. Also see marginal distribution.

prior tightness. A prior tightness is controlled by a tightness parameter, which is typically a multiplier
for the prior variance. The smaller the value of this parameter, the smaller the prior variance, and
the “tighter” (more highly concentrated) the prior around the prior mean. See [BAYES] bayes: var.



Glossary 821

probability of unit circle inclusion. In the context of Bayesian VAR, this is a posterior probability
that all moduli of eigenvalues of a companion matrix lie within the unit circle. The higher this
probability, the more likely the stability condition is met for the considered Bayesian VAR model.

proposal distribution. In the context of the MH algorithm, a proposal distribution is used for defining
the transition steps of the Markov chain. In the standard random-walk Metropolis algorithm, the
proposal distribution is a multivariate normal distribution with zero mean and adaptable covariance
matrix.

pseudoconvergence. A Markov chain may appear to converge when in fact it did not. We refer to
this phenomenon as pseudoconvergence. Pseudoconvergence is typically caused by multimodality
of the stationary distribution, in which case the chain may fail to traverse the weakly connected
regions of the distribution space. A common way to detect pseudoconvergence is to run multiple
chains using different starting values and to verify that all of the chain converge to the same target
distribution.

random effects. See random-effects parameters.

random-effects linear form. A linear form representing a random-effects variable that can be used
in substitutable expressions.

random-effects parameters. In the context of Bayesian multilevel models, random-effects parameters
are parameters associated with a random-effects variable. Random-effects parameters are assumed
to be conditionally independent across levels of the random-effects variable given all other model
parameters. Often, random-effects parameters are assumed to be normally distributed with a zero
mean and an unknown variance–covariance matrix.

random-effects variable. A variable identifying the group structure for the random effects at a specific
level of hierarchy.

reference prior. See noninformative prior.

replicated data. Replicated data, yrep, are data that could be observed if the experiment that
produced the observed data, yobs, were replicated using the same model and the same values of
independent variables that generated yobs. See Gelman et al. (2014, 145), [BAYES] bayespredict,
and [BAYES] bayesstats ppvalues.

replicated outcome. Replicated outcome is a special case of a simulated outcome that is generated
using the same values of independent variables as those used to fit the model. Also see replicated
data.

scalar model parameter. A scalar model parameter is any model parameter that is a scalar. For
example, {mean} and {hape:alpha} are scalar parameters, as declared by the bayesmh command.
Elements of matrix model parameters are viewed as scalar model parameters. For example, for
a 2× 2 matrix parameter {Sigma,matrix}, individual elements {Sigma 1 1}, {Sigma 2 1},
{Sigma 1 2}, and {Sigma 2 2} are scalar parameters. If a matrix parameter contains a label, the
label should be included in the specification of individual elements as well. See [BAYES] bayesmh.

scalar parameter. See scalar model parameter.

self-variable. A self-variable is a Stata term to refer to the dependent variable used as a lagged
regressor in the VAR model in its own outcome equation. For instance, in a VAR model with two
dependent variables (y1 and y2) and two lags,

y1 = a11L.y1 + a12L2.y1 + a21L.y2 + a22L2.y2 + a0 + u1

y2 = b11L.y1 + b12L2.y1 + b21L.y2 + b22L2.y2 + b0 + u2
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y1 is the self-variable in the first outcome equation (y1), and y2 is the self-variable in the second
outcome equation (y2). Note that y2 and y1 are cross-variables in the first and second equations,
respectively. Self-variables are always endogenous variables. We also often refer to the coefficients
of self-variables as self-variables first-lag coefficients (a11 and b21), self-variables second-lag
coefficients (a12 and b22), and so on. See [BAYES] bayes: var.

self-variables first-lag coefficients. Self-variables first-lag coefficients are regression coefficients in
a VAR model that correspond to first lags ([U] 11.4.4 Time-series varlists) of self-variables. See
[BAYES] bayes: var.

self-variables tightness parameter. A self-variables tightness parameter is a parameter, λ1, that
controls the tightness of the Minnesota prior distribution by controlling the prior variance for the
self-variables coefficients. It is specified in the Minnesota prior option selftight(). See Methods
and formulas of [BAYES] bayes: var for details.

semiconjugate prior. A prior distribution is semiconjugate for a family of likelihood distributions if
the prior and (full) conditional posterior distributions belong to the same family of distributions.
For semiconjugacy to hold, parameters must typically be independent a priori; that is, their joint
prior distribution must be the product of the individual marginal prior distributions. For example,
the normal prior distribution for a mean parameter of a normal data distribution with an unknown
variance (which is assumed to be independent of the mean a priori) is a semiconjugate prior.
Semiconjugacy may provide an efficient way of sampling from posterior distributions and is used
in Gibbs sampling.

simulated outcome. In Bayesian predictive inference, simulated outcomes are samples from the
posterior predictive distribution. In the context of bayespredict, we define a simulated outcome
as a T × n matrix of new outcome values simulated from the posterior predictive distribution,
p(ỹ|y), for a particular outcome variable y, where T is the MCMC sample size and n is the
number of observations.

stationary distribution. Stationary distribution of a stochastic process is a joint distribution that does
not change over time. In the context of MCMC, stationary distribution is the target probability
distribution to which the Markov chain converges. When MCMC is used for simulating a Bayesian
model, the stationary distribution is the target joint posterior distribution of model parameters.

subjective prior. See informative prior.

subsampling the chain. See thinning.

sufficient statistic. Sufficient statistic for a parameter of a parametric likelihood model is any function
of the sample that contains all the information about the model parameter.

test quantity. In Bayesian predictive inference, test quantity is any function of a simulated outcome,
ysim, and model parameters θ. It is estimated by sampling from the joint posterior distribution
p(ysim, θ). A test quantity that depends only on ysim is called a test statistic. Test quantities are
used in posterior predictive checking to assess model fit.

test statistic. A special case of a test quantity that depends only on the data.

thinning. Thinning is a way of reducing autocorrelation in the MCMC sample by subsampling the MCMC
chain every prespecified number of iterations determined by the thinning interval. For example,
the thinning interval of 1 corresponds to using the entire MCMC sample; the thinning interval of 2
corresponds to using every other sample value; and the thinning interval of 3 corresponds to using
values from iterations 1, 4, 7, 10, and so on. Thinning should be applied with caution when used
to reduce autocorrelation because it may not always be the most appropriate way of improving
the precision of estimates.

tightness. See prior tightness.
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tightness parameter. A tightness parameter is a parameter, typically a multiplier for the prior variance,
that controls the tightness of the prior. The smaller the value of this parameter, the smaller the
prior variance, and the “tighter” (more highly concentrated) the prior around the prior mean. See
self-variables tightness parameter, cross-variables tightness parameter, lad-decay parameter, and
exogenous-variables tightness parameter. Also see Methods and formula in [BAYES] bayes: var.

vague prior. See noninformative prior.

valid initial state. See feasible initial value.

vanishing adaptation. See diminishing adaptation.

VAR, vector autoregression. See VAR in [TS] Glossary.

Zellner’s g-prior. Zellner’s g-prior is a form of a weakly informative prior for the regression
coefficients in a linear model. It accounts for the correlation between the predictor variables and
controls the impact of the prior of the regression coefficients on the posterior with parameter g. For
example, g = 1 means that prior weight is 50% and g →∞ means diffuse prior.

Reference
Gelman, A., J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin. 2014. Bayesian Data Analysis.

3rd ed. Boca Raton, FL: Chapman and Hall/CRC.
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See the combined subject index and the combined author index in the Stata Index.
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