Microeconometrics: Methods and Applications |
||||||||||||||||||||||||||||||||||||
Click to enlarge See the back cover |
As an Amazon Associate, StataCorp earns a small referral credit from
qualifying purchases made from affiliate links on our site.
eBook not available for this title
eBook not available for this title |
|
||||||||||||||||||||||||||||||||||
Comment from the Stata technical groupMicroeconometrics: Methods and Applications, by A. Colin Cameron and Pravin Trivedi, provides the broadest treatment of microeconometrics available. It gives a sound introduction to the theory so that researchers can use the theory to solve their particular problems. It covers such a wide choice of topics and models by summarizing some of the theoretical points without ignoring the many important model-implementation details. In addition to the standard topics, this book provides thorough treatments of causality and data structures. Moreover, the chapter-length treatments of semiparametric methods, the bootstrap, simulation-based estimation, and estimation with data from complex survey designs provide exceptional coverage of these up-and-coming techniques. In the process, the book discusses more specific models than any other microeconometrics textbook. The book will be especially interesting to Stata users because the authors have posted do-files and datasets so that you can replicate nearly all the examples in their book at http://cameron.econ.ucdavis.edu/mmabook/mmaprograms.html. |
||||||||||||||||||||||||||||||||||||
Table of contentsView table of contents >> I Preliminaries
1. Overview
1.1 Introduction
2. Causal and Noncausal Models1.2 Distinctive Aspects of Microeconometrics 1.3 Book Outline 1.4 How to Use This Book 1.5 Software 1.6 Notation and Conventions
2.1 Introduction
3. Microeconomic Data Structures2.2 Structural Models 2.3 Exogeneity 2.4 Linear Simultaneous Equations Model 2.5 Identification Concepts 2.6 Single-Equation Models 2.7 Potential Outcome Model 2.8 Causal Modeling and Estimation Strategies 2.9 Bibliographic Notes
3.1 Introduction
3.2 Observational Data 3.3 Data from Social Experiments 3.4 Data from Natural Experiments 3.5 Practical Considerations 3.6 Bibliographic Notes II Core Methods
4. Linear models
4.1 Introduction
5. Maximum Likelihood and Nonlinear Least-Squares Estimation4.2 Regressions and Loss Functions 4.3 Example: Returns to Schooling 4.4 Ordinary Least Squares 4.5 Weighted Least Squares 4.6 Median and Quantile Regression 4.7 Model Misspecification 4.8 Instrumental Variables 4.9 Instrumental Variables in Practice 4.10 Practical Considerations 4.11 Bibliographic Notes
5.1 Introduction
6. Generalized Method of Movements and Systems Estimation5.2 Overview of Nonlinear Estimators 5.3 Extremum Estimators 5.4 Estimating Equations 5.5 Statistical Inference 5.6 Maximum Likelihood 5.7 Quasi-Maximum Likelihood 5.8 Nonlinear Least Squares 5.9 Example: ML and NLS Estimation 5.10 Practical Considerations 5.11 Bibliographic Notes
6.1 Introduction
7. Hypothesis Tests6.2 Examples 6.3 Generalized Method of Moments 6.4 Linear Instrumental Variables 6.5 Nonlinear Instrumental Variables 6.6 Sequential Two-Step m-Estimation 6.7 Minimum Distance Estimation 6.8 Empirical Likelihood 6.9 Linear Systems of Equations 6.10 Nonlinear Sets of Equations 6.11 Practical Considerations 6.12 Bibliographic Notes
7.1 Introduction
8. Specification Tests and Model Selection7.2 Wald Test 7.3 Likelihood-Based Tests 7.4 Example: Likelihood-Based Hypothesis Tests 7.5 Tests in Non-ML Settings 7.6 Power and Size of Tests 7.7 Monte Carlo Studies 7.8 Bootstrap Example 7.9 Practical Considerations 7.10 Bibliographic Notes
8.1 Introduction
9. Semiparametric Methods8.2 m-Tests 8.3 Hausman Test 8.4 Tests for Some Common Misspecifications 8.5 Discriminating between Nonnested Models 8.6 Consequences of Testing 8.7 Model Diagnostics 8.8 Practical Considerations 8.9 Bibliographic Notes
9.1 Introduction
10. Numerical Optimization9.2 Nonparametric Example: Hourly Wage 9.3 Kernel Density Estimation 9.4 Nonparametric Local Regression 9.5 Kernel Regression 9.6 Alternative Nonparametric Regression Estimators 9.7 Semiparametric Regression 9.8 Derivations of Mean and Variance of Kernel Estimators 9.9 Practical Considerations 9.10 Bibliographic Notes
10.1 Introduction
10.2 General Considerations 10.3 Specific Methods 10.4 Practical Considerations 10.5 Bibliographic Notes III Simulation-based methods
11. Bootstrap Methods
11.1 Introduction
12. Simulation-Based Methods11.2 Bootstrap Summary 11.3 Bootstrap Example 11.4 Bootstrap Theory 11.5 Bootstrap Extensions 11.6 Bootstrap Applications 11.7 Practical Considerations 11.8 Bibliographic Notes
12.1 Introduction
13. Bayesian Methods12.2 Examples 12.3 Basics of Computing Integrals 12.4 Maximum Simulated Likelihood Estimation 12.5 Moment-Based Simulation Estimation 12.6 Indirect Inference 12.7 Simulators 12.8 Methods of Drawing Random Variates 12.9 Bibliographic Notes
13.1 Introduction
13.2 Bayesian Approach 13.3 Bayesian Analysis of Linear Regression 13.4 Monte Carlo Integration 13.5 Markov Chain Monte Carlo Simulation 13.6 MCMC Example: Gibbs Sampler for SUR 13.7 Data Augmentation 13.8 Bayesian Model Selection 13.9 Practical Considerations 13.10 Bibliographic Notes IV Models for Cross-Section Data
14. Binary Outcome Models
14.1 Introduction
15. Multinomial Models14.2 Binary Outcome Example: Fishing Mode Choice 14.3 Logit and Probit Models 14.4 Latent Variable Models 14.5 Choice-Based Samples 14.6 Grouped and Aggregate Data 14.7 Semiparametric Estimation 14.8 Derivation of Logit from Type I Extreme Value 14.9 Practical Considerations 14.10 Bibliographic Notes
15.1 Introduction
16. Tobit and Selection Models15.2 Example: Choice of Fishing Mode 15.3 General Results 15.4 Multinomial Logit 15.5 Additive Random Utility Models 15.6 Nested Logit 15.7 Random Parameters Logit 15.8 Multinomial Probit 15.9 Ordered, Sequential, and Ranked Outcomes 15.10 Multivariate Discrete Outcomes 15.11 Semiparametric Estimation 15.12 Derivations for MNL, CL, and NL Models 15.13 Practical Considerations 15.14 Bibliographic Notes
16.1 Introduction
17. Transition Data: Survival Analysis16.2 Censored and Truncated Models 16.3 Tobit Model 16.4 Two-Part Model 16.5 Sample Selection Models 16.6 Selection Example: Health Expenditures 16.7 Roy Model 16.8 Structural Models 16.9 Semiparametric Estimation 16.10 Derivations for the Tobit Model 16.11 Practical Considerations 16.12 Bibliographic Notes
17.1 Introduction
18. Mixture Models and Unobserved Heterogeneity17.2 Example: Duration of Strikes 17.3 Basic Concepts 17.4 Censoring 17.5 Nonparametric Models 17.6 Parametric Regression Models 17.7 Some Important Duration Models 17.8 Cox PH Model 17.9 Time-Varying Regressors 17.10 Discrete-Time Proportional Hazards 17.11 Duration Example: Unemployment Duration 17.12 Practical Considerations 17.13 Bibliographic Notes
18.1 Introduction
19. Models of Multiple Hazards18.2 Unobserved Heterogeneity and Dispersion 18.3 Identification in Mixture Models 18.4 Specification of the Heterogeneity Distribution 18.5 Discrete Heterogeneity and Latent Class Analysis 18.6 Stock and Flow Sampling 18.7 Specification Testing 18.8 Unobserved Heterogeneity Example: Unemployment Duration 18.9 Practical Considerations 18.10 Bibliographic Notes
19.1 Introduction
20. Models of Count Data19.2 Competing Risks 19.3 Joint Duration Distributions 19.4 Multiple Spells 19.5 Competing Risks Example: Unemployment Duration 19.6 Practical Considerations 19.7 Bibliographic Notes
20.1 Introduction
20.2 Basic Count Data Regression 20.3 Count Example: Contacts with Medical Doctor 20.4 Parametric Count Regression Models 20.5 Partially Parametric Models 20.6 Multivariate Counts and Endogenous Regressors 20.7 Count Example: Further Analysis 20.8 Practical Considerations 20.9 Bibliographic Notes V Models for Panel Data
21. Linear Panel Models: Basics
21.1 Introduction
22. Linear Panel Models: Extensions21.2 Overview of Models and Estimators 21.3 Linear Panel Example: Hours and Wages 21.4 Fixed Effects versus Random Effects Models 21.5 Pooled Models 21.6 Fixed Effects Model 21.7 Random Effects Model 21.8 Modeling Issues 21.9 Practical Considerations 21.10 Bibliographic Notes
22.1 Introduction
23. Nonlinear Panel Models22.2 GMM Estimation of Linear Panel Models 22.3 Panel GMM Example: Hours and Wages 22.4 Random and Fixed Effects Panel GMM 22.5 Dynamic Models 22.6 Difference-in-Differences Estimator 22.7 Repeated Cross Sections and Pseudo Panels 22.8 Mixed Linear Models 22.9 Practical Considerations 22.10 Bibliographic Notes
23.1 Introduction
23.2 General Results 23.3 Nonlinear Panel Example: Patents and R&D 23.4 Binary Outcome Data 23.5 Tobit and Selection Models 23.6 Transition Data 23.7 Count Data 23.8 Semiparametric Estimation 23.9 Practical Considerations 23.10 Bibliographic Notes VI Further Topics
24. Stratified and Clustered Samples
24.1 Introduction
25. Treatment Evaluation24.2 Survey Sampling 24.3 Weighting 24.4 Endogenous Stratification 24.5 Clustering 24.6 Hierarchical Linear Models 24.7 Clustering Example: Vietnam Health Care Use 24.8 Complex Surveys 24.9 Practical Considerations 24.10 Bibliographic Notes
25.1 Introduction
26. Measurement Error Models25.2 Setup and Assumptions 25.3 Treatment Effects and Selection Bias 25.4 Matching and Propensity Score Estimators 25.5 Differences-in-Differences Estimators 25.6 Regression Discontinuity Design 25.7 Instrumental Variable Methods 25.8 Example: The Effect of Training on Earnings 25.9 Bibliographic Notes
26.1 Introduction
27. Missing Data and Imputation26.2 Measurement Error in Linear Regression 26.3 Identification Strategies 26.4 Measurement Errors in Nonlinear Models 26.5 Attenuation Bias Simulation Examples 26.6 Bibliographic Notes
27.1 Introduction
27.2 Missing Data Assumptions 27.3 Handling Missing Data without Models 27.4 Observed-Data Likelihood 27.5 Regression-Based Imputation 27.6 Data Augmentation and MCMC 27.7 Multiple Imputation 27.8 Missing Data MCMC Imputation Example 27.9 Practical Considerations 27.10 Bibliographic Notes Appendices
A. Asymptotic Theory
A.1 Introduction
B. Making Pseudo-Random DrawsA.2 Convergence in Probability A.3 Laws of Large Numbers A.4 Convergence in Distribution A.5 Central Limit Theorems A.6 Multivariate Normal Limit Distributions A.7 Stochastic Order of Magnitude A.8 Other Results A.9 Bibliographic Notes References
Index
|
Learn
Free webinars
NetCourses
Classroom and web training
Organizational training
Video tutorials
Third-party courses
Web resources
Teaching with Stata
© Copyright 1996–2024 StataCorp LLC. All rights reserved.
×
We use cookies to ensure that we give you the best experience on our website—to enhance site navigation, to analyze usage, and to assist in our marketing efforts. By continuing to use our site, you consent to the storing of cookies on your device and agree to delivery of content, including web fonts and JavaScript, from third party web services.
Cookie Settings
Last updated: 16 November 2022
StataCorp LLC (StataCorp) strives to provide our users with exceptional products and services. To do so, we must collect personal information from you. This information is necessary to conduct business with our existing and potential customers. We collect and use this information only where we may legally do so. This policy explains what personal information we collect, how we use it, and what rights you have to that information.
These cookies are essential for our website to function and do not store any personally identifiable information. These cookies cannot be disabled.
This website uses cookies to provide you with a better user experience. A cookie is a small piece of data our website stores on a site visitor's hard drive and accesses each time you visit so we can improve your access to our site, better understand how you use our site, and serve you content that may be of interest to you. For instance, we store a cookie when you log in to our shopping cart so that we can maintain your shopping cart should you not complete checkout. These cookies do not directly store your personal information, but they do support the ability to uniquely identify your internet browser and device.
Please note: Clearing your browser cookies at any time will undo preferences saved here. The option selected here will apply only to the device you are currently using.